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摘要 

本文的重點是硏究含有多種不同物理特性的三維區域內電磁場方程組 

的數値解法。這類方程通常稱爲交接面問題，數値求解這一類問題的 

困難主要在於原微分方程組的解在整個物理區域上正則性很低，所以 

一般數値方法精度比較差。我們將在本文中提出一種有限體積法。我 

們將充分利用原微分方程的局部光滑性以及特殊處理電磁場在不同介 

質的交接面上的物理條件，從而使這種有限體積法在非常無結構的網 

格上至少可達到一階收斂，並且在均句正則的網格上可達到二階收 

斂。更爲重要的是，我們的有限體積法自動滿足兩個物理上極爲重要 

的散度定律。大量的數値例子已充分証明了這種新的數値方法的穩定 

性及有效性。就我們所知，這是第一個用於求解電磁場交接面問題的 

二階收斂的數値方法。也是第一次嚴格地全面地給出了有限體積法求 

解交接面問題的收斂性分析0 
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ABSTRACT 

In this thesis, we consider the Maxwell's equations in a three-dimensional 

polyhedral domain composed of two dialectic materials with different physical 

parameters. A finite volume method is derived to solve the problem, and a new 

approach is proposed to handle the physical charateristics of the electromagnetic 

fields on the interface between the two different materials. The approximate 

electromagnetic fields are shown to satisfy the two divergence constraints in the 

discrete level. Convergence analysis will be given for both semi-discrete and 

fully-discrete problems. In the case of general polyhedral domains, our proposed 

method is first order convergent in space. The convergence is one order higher 

when the domain is a cuboid, though the true solution of Maxwell's system lacks 

enough global regularity in the entire physical domain due to the presence of the 

discontinuities of the physical coefficients across the interface. For both cases, 

the convergence in time is always second order. Numerical examples will also 

be given to consolidate our theortical results. To our knowledge, this is the first 

finite volume method with second order convergence for solving the Maxwell's 

equations in non-homogeneous media. 
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Chapter 1 

Introduction 

The Maxwell's equations are a set of physical laws that govern all the electric-

and magnetic-related systems which we see in our daily life, in the industrial 

and engineering applications. The solutions of the Maxwell's equations are hence 

widely needed in the study and design of these systems. Some examples include 

the systems making use of the electromagnetic wave guide, radiation and wave 

scattering, and so on. For some complex electromagnetic systems, which may 

involve many different physical media, the solutions of Maxwell's equations in 

non-homogeneous media are frequently required. 

1.1 Applications of Maxwell's equations 

First, we present two applications involving solution of the Maxwell's equations. 

(I) Target identification. 

The solution of Maxwell's equations can be useful in reconstructing the 

shape of a target. A trial electromagnetic pulse reflected from a known 

target is compared to that reflected from the desired target. The error can 

then be obtained. Further iterations then proceed by changing the shape 

of the known target to reduce the error. 

1 



Chapter 1. Introduction 2 

(II) Aerospace design. 

The materials used in the aerospaces are usually multilayered. In order to 

design an aeorspace which is hard to detect, the modeling of the electro-

magnetic properties of the multilayered material is required. 

1.2 Introduction to Maxwell's equations 

In this section we introduce the Maxwell's equations in a non-homogeneous do-

main. For simplicity, we consider a domain occupied by two different dialectic 

materials. The results of this thesis can be extended to the case that a domain is 

occupied by many different materials. Let be a domain in R^ with boundary 

dVt and unit outward normal vector n. Let e be the electric permittivity and fi 

be the magnetic permeability of the medium occupied by VL. For fixed T > 0, the 

Maxwell's equations are: 

d'E 
e — - curl H = J in Q x (0,T), (1.1) 

L/ b 
gH 

/ i — + curl E 二 0 in Q x (0,T), (1.2) 

div(eE) = p in Q x (0,T), (1.3) 

div(/xH) = 0 in Q x (0,T). (1.4) 

Here and denote the electric and magnetic fields respectively. 

J{x,t) is the known applied current and p{x, t) is the charge density. We remark 

here that (1.1) is called the Maxwell-Ampere law which states that any change in 

electric field would produce magnetic field. (1.2) is called the Faraday's law which 

states that any change in magnetic field would produce electric field. (1.3) and 

(1.4) are called the Gauss's law which describe the charge properties of electric 

and magnetic fields respectively. 

Let be another domain such that Qi C Q，and let F 二 SQi with unit 

outward normal vector m. We also let = Q\Qi. We assume that and 
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are occupied by two different dialectic materials so that the parameters e and 

fx are discontinuous across the interface F. We consider only the case that the 

parameters are two piecewise constant functions in Q defined as 
f f 

ci in (JLi in 
e = < , M = \ 

€2 in /i2 in Q2 

where ê , /î  (z = 1, 2) are positive constants. Our numerical method, which will 

be presented later, is also applicable when the two parameters im {i = 1, 2) are 

smooth functions. 

We suppose that the Maxwell's equations (1.1)-(1.4) satisfy a perfect conduc-

tor boundary condition 

E x n = 0 on d^ x (0,T), (1.5) 

and initial conditions 

E(x, 0) = Eo(x) and 0) = Ho(a;) Vx G Q, (1.6) 

such that the functions Eo(x) and Ho(x) satisfy 

div(eEo) 二 p(x, 0) and div(/iHo) = 0. (1.7) 

The boundary condition (1.5) for the electric field E implies the following bound-

ary condition for the magnetic field H: 

curl H X n = - J X n on dQ x (0,T). (1.8) 

We further assume that the following continuity equation holds: 

丨 塞二 divJ, (1.9) 

which represents the conservation of electric charge. Throughout the paper, the 

jump of any function A across the interface F is defined as 

[A] := Asir — Ai\r 

i 1.1 
if 
j 

j 
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where Ai = fori = 1,2. It is known physically that the electric and magnetic 

fields E and H must satisfy the following jump conditions across the interface F: 

: E x m ] = 0 , [eE.m] 二 pr， (1.10) 

H X m] = Jr ， [ / i H • m] = 0, (1.11) 

where pri^.t) is the surface charge density while t) is the surface current 

density. In addition, we will adopt the following constitutive relations 

D 二 eE, (1.12) 

B 二 /jH, (1.13) 

where D and B are the electric flux density and the magnetic flux density respec-

tively. 

1.3 Historical outline of numerical methods 

In this section, we give a brief outline of some existing numerical methods and 

related aspects in numerical solution of the Maxwell's equations. 

To our knowledge, the first numerical methods was established by Yee [24 

in 1966. In [24], a standard finite difference method is employed to approximate 

both the spatial and time derivatives in the curl Maxwell's equations (1.1)-(1.2) 

in homogeneous domain. However, the convergence analysis for this method is 

open for a long time, and in 1992, Monk and Siili [18] provide a proof for the 

second order convergence of Yee's scheme on nonuniform grids. 

In order to handle complicated geometry of domains, finite element and finite 

volume methods are introduced. In Monk [17] and Raviart [22], a fully discrete 

finite element method is used to solve the decoupled time-dependent Maxwell's 

equations in homogeneous domain. In addition, the second order convergence 

analysis for the stationary problem is provided. In Ciarlet and Zou [8], a conver-

gence analysis for the fully discrete time dependent problem is given. In Chen 
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and Yee [3], a finite volume method is used to solve the Maxwell's equations in 

homogeneous domain, and in Nicolaides and Wang [20], convergence analysis for 

both semi-discrete and fully-discrete schemes are also provided. 

However, the aforemensioned methods are concerned with only homogeneous 

medium cases. For many real applications, one is often encountered with the so-

lution of the Maxwell's equations in non-homogeneous media. Several attempts 

have been made to handle the interface Maxwell's problems [3] [4] [23]. For 

example, Chen and Yee [3] studied an FDTD/FVTD hybrid method for the in-

terface problem, assuming both the tangential components of the electric and 

magnetic fields are continuous across the interface and the electric field is tan-

gentially piecewise constant on the interface. Chen, Du and Zou [4] proposed an 

edge finite element method for solving the Maxwell's system with very general 

inhomogeneous interface conditions and developed a general framework for its 

convergence analysis. 

1.4 A new approach 

The previously mensioned finite volume methods can only handle limited cases, 

namely, homogeneous domains and non-homogeneous domains with special inter-

face conditions. In this section and the following chapters, we present a new finite 

volume approach to solve the Maxwell's equations in non-homogeneous media (cf. 

Chung and Zou [6]). 

One of the improvements over the existing methods of our proposed method 

is that it can deal with inhomogeneous interface conditions, whereas the existing 

methods can only handle homogeneous interface conditions. In terms of im-

plementation, our proposed method suggests a simple approach to handle the 

interface conditions. On the other hand, the numerical solution to the Maxwell's 

system found by our method can be proved to satisfy the two divergence con-
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straints in discrete sense, which ensures physically consistent solution. In lit-

erature, we seldom find any argument discussing if the numerical solution of a 

method satisfies the divergence constraints. 

In spite of the derivation of numerical scheme, the main part of this thesis is 

on the convergence analysis of the method. We will give the convergence analysis 

of both semi-discrete and fully discrete schemes. As for any interface problem, 

the true solution of the Maxwell's system has very low global regularity, namely, 

it is only in the space This fact greatly produces tremendous difficulty in 

dealing with the convergence analysis. However, despite low global regularity of 

solutions, it can be shown that, as for homogeneous domains in [20], our proposed 

method, with respect to spatial variables, is first order convergent for polyhedral 

domains and second order convergent for rectangular domains. Under a CFL 

stability condition, the fully discrete scheme is second order convergent in time. 

In this thesis, we only consider the case when the domain is a polyhedron. In 

many real applications, however, we always encounter with smooth domains and 

any other irregular domains. For those cases, though they cannot be handled by 

our method directly, but the theory in this thesis can be further generalized to 

solve those problems without essential difficulties. 

The thesis is organised as follows. In Chapter 2, some Sobolev space theory 

and related functional analytic tools will be presented. In Chapter 3，we will 

discuss the finite volume discretization of the domain. The discrete analog of di-

vergence and curl operators will be defined. Then, we will prove discrete forms of 

some famous theorems in vector field theory and functional analysis. In Chapter 

4 and Chapter 5, we will derive, respectively, the spatial and fully discretization 

of the Maxwell's equations. In addition, we show how the semi-discrete and fully 

discrete solutions satisfy the two divergence constraints in discrete level. A com-

plete convergence analysis for both schemes will also be given. In Chapter 6, two 

numerical examples will be shown to consolidate our theory. 

！ 

i 



Chapter 2 

Mathematical Backgrounds 

In this chapter, we present some mathematical notations and basic mathematical 

tools that will be used in our subsequent numerical analysis. 

2.1 Sobolev spaces 

Let m be a nonnegative integer and 1 < p < cx), we define the Sobolev space 

= { u G U\Q) ； d^'u G V H < m}, 

which is equipped with the norm 

I以||wm’p(n) = ( X l 
0<|Q|<m 

and the semi-norm 

Hwrr^^Pin) = ( 广 
| a | 二 m 

Here d^u denotes the a-th order weak derivative of u. When p = 2，we write 

H ’ ) = which is indeed a Hilbert space. Let u = (ui,u2,u3) E R^. 

We say u G Py^'P(Q)^ if and only if m G PF^'^(Q) for i = 1,2, 3. We extend the 

norm in in the usual way, namely 
3 

Z=1 

7 

i 



Chapter 2. Mathematical Backgrounds 8 

and extend similarly for the semi-norm. Note that same definitions are adopted 

for and 

By LP{0,T]X) we mean the set of all strongly measurable functions u{t, •) 

from [0, T] into the Banach space X such that 

/\u{t)\Wdt < oo for 1 < p < oo, 
-

where the integral is understood in the Bochner sense. Similar to VK^'^(n), we 

define 
77 

= ； — G L n o , T ; X ) V|a| < m}, 

with norm 

0<|a|<m 

When p = 2, we write VP^气0,T; JT) as Similarly, u G 

if and only if ui G T; X ) , for i — 1,2,3. The norm and semi-norm in 

i / ( 0 , T ; X ) 3 are defined in a similar fashion. 

Furthermore, u G if and only if m G C^ip) for 2 - 1 , 2 , 3 where 

C^(r^) denotes the space of m times differentiable functions in VL with norm 
m 

\Ui\\crr^m) = y^SUp • 
a=0 

Similarly, (7^(0，T; X) denotes the space of m times differentiable functions from 

0, T] into X with norm 
m 

\u\\cm(0,T-X) = yz sup � llx. 

2.2 Tools from functional analysis 

In this section, we quote without proof some well known results in literature. 

These results are very useful tools for the convergence analysis of our finite volume 

method which will be presented later. 
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The fisrt one is called the Bramble-Hilbert lemma. 

Theorem 2.1 (Bramble-Hilbert lemma) Let Q be a hounded domain in 

with a Lips chitz continuous boundary. Let f be a continuous linear functional on 

the space for some integer /c > 0 and some real number p G [0, oo], 

such that, 

f{P) = 0, 

for any polynomial P of degree less than or equal to k. Then for all v G 

for some constant K{Q) depends only on Q and || . denotes the norm 

in the dual space of 

The second one is called the Sobolev embedding theorem. We only present 

part of it. For a full version, we refer readers to Adams [1 . 

Theorem 2.2 (Sobolev embedding theorem) Let ^ be a hounded domain in 

R几 with a Lips chit z continuous boundary. Suppose that mp > n. Then 

for any integer j > 0. 

In the above theorem, the notation 气Q) 4 CP (0) means the following: 

for any u E we have u G and there exist a constant K(p) 

depends only on Vi and indepenent of u such that 

I…Ic•？.(n) < 

When Q = (a, b), we have the following special case. 

Theorem 2.3 Let Q = (a, b). Then for 1 < p < oo, 

for any integer j > 0. 



Chapter 3 

Discretization of Vector Fields 

In this chapter we will present the finite volume discretization of the two im-

portant differential operators: div and curl. They are cruial for our subsequent 

derivation of numerical approximations. In addition, we will provide discrete 

analog of some famous theorems in vector field theory. 

3.1 Domain triangulation 

We now discuss the triangulation of the domain Q. It is actually the Voronoi-

Delanuay triangulation which has some useful properties that allow us to derive 

the numerical schemes in the subsequent chapters. Most notations used below 

are borrowed from Nicolaides, Wang and Wu [19] [20] [21]. For details of Voronoi-

Delanuay triangulation, see Fortune [12 . 

Assume that both Q, and are polyhedra. We triangulate fl by using stan-

dard finite element type tetrahedra which we call primal elements. This trian-

gulation of O is not arbitrary in the sense that primal faces, that is the face of 

primal element, should align with the interface F. That means the two triangu-

lations in and match each other on F as well as they are combined into a 

standard triangulation of the whole domain Q. A primal element with as least 

10 



Chapter 3. Discretization of Vector Fields 11 

one face lying on r is called an interface primal element. Similarly, a primal face 

and a primal edge lying on F is called an interface primal face and an interface 

primal edge respectively. We denote by h the maximum side length of all primal 

elements. We assume that the ratios of any two edges of an individual primal 

element are uniformly bounded from above and below as h tends to 0. This is 

equivalent to say that all dihedral angles of each tetrahedron are acute. 

The dual elements are formed by connecting adjacent circumcenters of primal 

elements. In the case of a primal element with face on the boundary, connect 

the circumcenter to the boundary face. It is easy to see that the dual elements 

are convex polyhedra with faces being convex polygons. However, there are some 

dual faces belonging to both and � O w i n g to this fact, some definitions 

and convergence analysis related to dual elements are more complicated and are 

not similar to those for primal elements. We call the dual elements, dual faces 

and dual edges with non-empty intersection with both and O2 the inteface 

dual elements, interface dual faces and interface dual edges respectively. With 

these definitions, we conclude with the following properties concerning the primal 

and dual meshes. First, primal edges are orthogonal to and in one-to-one corre-

spondence with dual faces. Secondly, dual edges are also orthogonal to and in 

one-to-one correspondence with primal faces. These orthogonalities are the key 

to the derivation of our numerical schemes. 

3.2 Mesh dependent norms 

: Let N and L be the number of primal elements and dual elements respectively. 

Let F be the number of primal faces (or dual edges) and M be the number of 

primal edges (or dual faces). Assume that these quantities, as well as primal 

nodes and dual nodes, are numbered sequentially in some way. The individual 

elements, faces, edges, nodes of the primal mesh are denoted by r̂ , kj, CT̂  and 
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ui respectively. Those quantities relating dual mesh are denoted by primed form 

such as T-. A direction is assigned to each primal and dual edge by the rule 

that positive direction maens it points from lower node number to higher node 

number. Direction is also assigned to each primal and dual face such that it is the 

same as the corresponding dual and primal edge. We also denote Fi the number 

of interior primal faces (or dual edges) and Mi the number of interior primal 

edges (or dual faces). 

Let Sj be the area of Kj and h'j be the length of a'j. We define 

if a'j G 

—h'j = ‘ 1 " ; if a； G 

{fj'i^aj + “ CLjYjh'j otherwise, 

where 0 < â - < 1 denotes the ratio of the length of the portion of oj that belongs 

to Qi. For any u and v in , we introduce an mesh and parameter dependent 

inner product defined by 

(tx, v)w := ^ ^ UjVjSjTi'j = (Su, D'v) = {D'u^ Sv)^ (3.1) 
Kj Gil 

where S \= diag(sj) and D' \= diag(/z^) are Fi x Fi diagonal matrices,(.,.) 

denotes the standard Euclidean inner product. With this inner product, the 

associated norm is defined as 

1 
I以llw := (3.2) 

Clearly, this norm is equivalent to the standard discrete L^-norm. Now, let s'j be 

the area of hj be the length of aj and let 
f 

if G Hi 

巧=€25；- if Kjj e 02 

[eihj + e2(l — hj))s'- otherwise, 
X 

i I j. 
1 
i 
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where 0 < 6j < 1 denotes the ratio of the area of the portion of K'j that belongs 

to Qi. Similarly, we define an mesh and parameter dependent inner product in 

R鲍by 

{u,v)w' ：二 ^ Uj巧否'jhj = (^S'u,Dv�= {Du,S'v), (3.3) 

where S' diag(s^) and D := diag("j) are Mi x Mi diagonal matrices. The 

associated norm is 
1 

|w||�：二（Ii，i0‘,， （3.4) 

which is again equivalent to the discrete L^-norm. 

Denote by Mr the number of inteface primal edges. Define a My X My diagonal 

matrix Dy := diag(/ij) with components corresponding to interface primal edges. 

Now, for any vectors u,v G R^^, we define the following inner product 

{u, v)wr ：二 ^ h^jUfUj = {Dtu, Dtv), (3.5) 

明r 
with the associated norm 

1 
\u\\wr := 以 ) ( 3 . 6 ) 

3.3 Discrete circulation operators 

In this section, we present the finite volume discretization of the curl operator. 

Furthermore, discrete forms of some famous theorems are provided. 

Let cFj G dKi. We say aj is oriented positively along dî i if the direction of aj 

agrees with the direction of dt̂ i formed by the right hand rule with the thumb 

pointing to the direction of a[. Otherwise, we say Gj is oriented negatively along 

dKi. For each interior primal face we define discrete circulation by 

{Cu),, := ^ Ujh” (3.7) 
o-jEdKi 
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where 
f 

~ hj if (jj is oriented positively along dî i 
hj = 

I —hj if (Jj is oriented negatively along dKi. 

Similarly, for each interior dual face the discrete circulation is defined as 
ufh), (3.8) 

where 

{ h ' j if a'j is oriented postively along dhî  

—Ji'j if (T'j is oriented negatively along 加;. 

Clearly, C and C are linear operators mapping from R^ to IR凡 and IR巧 to IR地 

respectively. We remark that (3.7) and (3.8) are discrete analog of the integrals 

/ c u r l 'E • Ui da and / curl H • Ui da 
--i J K'i 

by virtue of the Stokes' theorem where iij represents the unit normal vector to 

both primal and dual faces. 

With the definition of the discrete circulation operator C, we define the fol-

lowing inner product 

(u, v)v ：= {CvUC如：[�i = {S-^Cu, D'Cv) = [D'Cu, S-化u) (3.9) 

KiEQ, 

for any vectors u,v e R^ and its associated norm 

1 
\u\\v ：= (3.10) 

Clearly, this norm is equivalent to the discrete 丑i-norm. 

For each strictly interior dual edge a'j, that is, both end points of a'j lie in Q, 

we define a row vector whose zth component is the sign of the orientation of a'j 

relative to the zth strictly interior dual face. Collecting these vectors, we have a 
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Fi X Ml matrix G defined as 
( 

1 if (j’j is oriented positively along Dk!̂  

(G)ji —1 if a'j is oriented negatively along dK,[ 

0 if a'j does not meet 彻;•• 

Let w e R似 be a vector whose A;th component is the value assigned on the 

kth primal edge. Let Wi G R似丄 be the restriction of w to the interior primal 

edges. Denote by w\dn the components of w on the boundary. Likewise, denote 

by f G RFi the vector whose jth component represents a value on the jth interior 

dual edge. 

Lemma 3.1 With the above definitions of w, Wi and v together with w\dfi = 0； 

we have 

Cw = GDwu (3.11) 

and 

C'v = G^D'v. (3.12) 

Proof. To see (3.11) is true, we consider the zth component to both sides. Note 

that the zth component corresponds to the primal face tZi. By definition (3.7) 

and the fact that w\dn = 0, we have 

( C秘 )〜 =Y ^ Wjhj 
(7j edKi 
Ml 

i=i 
where 

( 

1 if (7j is oriented postively along dKi 

Cj = \ —1 if (7j is oriented negatively along dK,i 

0 if (jj does not meet dK.i 
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and cTj's are interior primal edges. For the right hand side, we have 

Ml 
{GDwi)^, 二 ^gjhjWj, 

•7=1 

where 
f 

1 if (J- is oriented postively along dK'j 

gj = —1 if <7: is oriented negatively along dK,'j 

0 if does not meet dK,'j 

is the ith row of the matrix G. By the orthogonality between primal and dual 

meshes, we conclude that Cj and gj are the same which implies (3.11). The proof 

for (3.12) can be done by similar techniques. 

• 

Now, we have the following result. 

Lemma 3.2 Using the same definitions in Lemma 3.1, we have 

{Cw,D'v) 二 口v,Dwi). (3.13) 

Proof. Applying Lemma 3.1, we have 

{C'v, Dwi) = {G^D'v, Dwi) by (3.12) 

={D'v, GDwi) 

=[D'v, Cw) by (3.11). 

• 

We remark that (3.13) is the discrete form of the Green's formula 

/ curl E • B c/x = / curl B-Y^dx 

JN JN 

which holds when E x n = 0 on dQ. 

Concerning with the matrix G, we have the following lemma. 
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Lemma 3.3 Let L be the number of interior primal nodes. Then 

rank(G) ^ Ei - L. 

Proof. Recall that each column of G corresponds a dual face. Take any interior 

dual element. Without loss of generality, let •.. , k'i be dual faces lying on 

the boundary of the chosen dual element. Then consider a linear combination of 

the corresponding columns of G: 

aiCi + a2C2 H h a/Q, 

where q denotes the z-th column of G. We choose ai in the following way. If the 

direction oi k!- is pointing outward to the dual element, choose ctj = 1. Otherwise, 

choose dj = —1. Clearly, we have 

aiCi + a2C2 H h a/Q = 0. 

Since each interior dual element corresponds to a interior primal node, we have 

the desired result. 

• 

We emphasis here that all the above results are valid when both Q and 

are rectangular domains. In this case, both primal and dual elements are cuboids 

while both primal and dual faces are rectangles. From Lemma 3.3, we know that 

the matrix G^G is positive semi-definite. So, \{G^G) > 0 where \{G^G) repre-

sents eigenvalues of G^G. Denote be the smallest positive eigenvalue 

of G^G. Then, we have the following result. 

Lemma 3.4 Assume that both Q and are rectangular domains. Then there 

exist a constant K independent of h such that 

( 价 ) > Kh\ (3.14) 
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With Lemma 3.4, we have the following 

Lemma 3.5 Assume that both and Qi are rectangular domains. Let u 6 R似 

with u\dn = 0 and Cu + 0. Then there exist a constant K independent of h such 

that 

\u\\w' < 别M|v. (3.15) 

Proof. By the definition of y-norm, we have 

\u\\l 二 (B'S-^Cu,Cu) > Kh-\Cu,Cu). 

By Lemma 3.2 and Cu + 0, we have 

0 < {Cu, Cu) = {G^GDu, Du), 

and consequently G^GDu + 0. Let Aj, j = 1,2，…,Mi, be the eigenvalues 

of G^G and let Uj be the corresponding eigenvectors. Since G^G is positive 

semi-definite, let M* be such that 

Xj = 0， f o r 1 < j < M* 

Xj > 0, for M* + l < i < Ml. 

Notice that we can choose Uj, for j = 1,2,…，Mi，such that they form an 

orthonormal basis for R恥 . S o , we can express Du into the following form 

Ml 

i=i 

By the fact that G^GDu + 0 and {cuj}口 spans the null space of G^G, we have 

(Du,ujj) = 0, for l<j<M*, 

and consequently, 
Ml 

Du = ^^ (Du,ujj)ujj. 
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Hence, we obtain 

{Cu, Cu) = {G^GDu, Du) 
Ml Ml 

= Y.…〜⑴)•)吟E聊,叫)�j) 

Ml Ml 

j=M*+l j=M*-\-l 

Since G^Guj 二 XjUjj, we finally obtain 

Ml Ml 
{Cu, Cu) = ( {Du,u;j)XjUJj, (Du,ujj)Uj) 

j=M*+l j=M*+l 

Ml Ml 

j=M*+l j=M*+l 

= min XJDu, Du). 
M*+l<j<Mi 厂 

Hence, 

= D u ) 

‘ W X i n 购 |M|2�. 

Then (3.15) follows from (3.14). 

• 

We remark here that (3.15) is the discrete analog of the following Poincare's 

inequality: 

/ dx<K dx, 
JN JN 

for any u G H] {Q). 

J 
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3.4 Discrete flux operators 

In this section, we give the finite volume discretization of the divergence operator. 

We also provide the discrete versions of some famous results in vector field theory. 

Let Ti be a primal element and Kj G dvi be a primal face. We say Kj is oriented 

positively along dri if the dual edge oj on Kj is directed toward the outside of Ti. 

Otherwise we say Kj is oriented negatively along dri. For each primal element r̂  

we define a discrete flux by 

{Vu)i :: ^ ufsj, \/u G RFI (3.16) 
KjedTi 

where no components of u related to the boundary faces are involved, and sj is 

given by 
z 

Sj if hZj is oriented positively along dTi 
Sj ~ 

—Sj if K,j is oriented negatively along di^. 
\ 

The mapping V is the discrete version of the divergence operator by noting that 

/ div udx= u - n ds. 
J Ti J dn 

Similarly, for each dual element r/, we define a discrete flux by 

{V'u)i := Y^ Ujs'j, Mu G R恥 (3.17) 
K'jedrl 

where 
( 

if KJj is oriented postively along dr^ 
— 

—s'j if K,'j is oriented negatively along dr^. 

We next present a discrete analog of the identity div (curl u) = 0 for the discrete 

divergence operators V and V. To do so, we introduce two matrices Bi and B[. 
Bi is 8i Fi X N matrix given by 

( 

1 if Kj is oriented postively along dri 

{Bi)ji := —1 if Kj is oriented negatively along dri 

0 if Kj does not meet dri, 



Chapter 3. Discretization of Vector Fields 21 

while B[is di Ml X L matrix given by 
£ 

1 if Klj is oriented postively along dr^ 

{B[)ji ：二 - 1 i f i s oriented negatively along dr'-

0 if KJj does not meet 
Lemma 3.6 We have 

V 二 BTS ， V, 二讽 f S' (3.18) 

and 

BlC = 0 ， {B[)^C' = 0. (3.19) 

Proof. For any u G RFI , 观 have 
Fx 

= [ UjSj = Y^ djUjSj 

Kjedn j=i 

where 
f 

1 if Kj is oriented positively along dri 

dj = < —1 if tZj is oriented negatively along dri 

0 if Kj does not meet dri. 
\ 

Clearly, the vector formed by dj's is the z-th column of the matrix Bi and hence 

V = BjS. The relation V' = can be proved similarly. 

For (3.19), we observe that the z-th row of B^ is the direction of Kj with 

respect to r̂ . Let w G with w\dQ = 0. Then in the z-th component of BfCw, 

each Wj which is involved in that component appears exactly twice with two 

opposite signs, hence {BfCw)i = 0. Similar argument can be applied to show 
讽 Y ĉ' = 0. 

• 
Here we quote a lemma from Nicolaides and Wu [21]. We know that for any 

vector field F with curl F = 0, there must exist a scalar potential p such that 

F = Vp. The following lemma shows the discrete analog of this fact, namely, for 

any vector v with discrete circulation free, there must exist a scalar potential. 
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Lemma 3.7 We have 

(a) Let G RFi . Then there exist (j) e such that v = Bi(j) if and only if 

G^v = 0. 

(b) Let V e R似 1. Then there exist (j) e MP such that v 二 B'^cj) if and only if 

Gv = 0. 

Proof. The proof for part (a) can be found in Nicolaides and Wu [21]. Part (b) 

can be proved in an analogous way. 

• 

I 
i i 



Chapter 4 

Spatial Discretization of the 

Maxwell's Equations 

In this chapter we present the spatial discretization of the Maxwell's equations 

(1.1)-(1.4) by finite volume method. We will give the semi-discrete approximation 

of (1.1)-(1.2) and show from this semi-discrete scheme that how (1.3) and (1.4) 

are satisfied in the discrete level. In addition to this consistency property, we will 

also give the convergence analysis of our finite volume method. 

4.1 Derivation 

First we introduce the following average quantities. Consider the magnetic flux 

density B. We define its primal face average Bj G M巧 by 

{Bf)i '•= — [ B • n^ da, 
Si J Ki 

for each primal face Ki. We define its dual edge average B'^ G IR朽 by the following 

fashion. For each non-interface dual edge a'-, we define 

(Kh ：二 ‘ [ B n, dl. 

23 

I i i 
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For each interface dual edge a'̂ , we let a} = a l n ^ i and of 二 o'i fl VL2 be the 

portion of g\ in and Q2 respectively. Then we define 

:= oii^ 丄 B . iii (iZ + (1 - ai)^ ^ B . Hi dl, 

where â  := pfi/iH/i;)—1 and h: represents the length of cr[ for r = 1,2. Notice 

that the dual edge average for interface dual edge is defined as the weighted 

average of the edge averages of the corresponding portions of cr- in and Q2. 

The reason for the choice of the weight ai will be apparent in the derivation of 

the semi-discrete scheme. 

Now, we turn to the electric field E. For each primal edge we define the 

primal edge average Ee G R地 by 

{Ee)i ：二‘ [ E n, dl. 
�Jcxi 

Similar to the dual edge average for B, we define the dual face average E'^ G R^^ 

of E by the following fashion. For each non-interface dual face ẑ -, we define 

{E'f), := 4 厂 E n, da. 

For each interface dual face, let k] = 门 and tzf = K.[r\ Q2 be the portions of 

K.'- in Qi and Q2，and 5J and sf be the area of them respectively. We define 

{E'f)i ：二 pA [ E Hi A) 4 / E n, da, 

Si J k\ J 

where jSi Clearly, the dual face average of E for an interface dual 

face is defined as the weighted average of the face averages of the portions of 

in Qi and Here, the choice of will become apparent in the later derivation. 

In the finite volume scheme, we approximate the edge averages of E on each 

primal edge and the face averages of B on each primal face. Now, integrating 

both sides of (1.2) on a primal face kj, we have 

f B • iio dcr + [ curl E • n? da = 0. 
dt A, A, 

I 
i 1 i 
J 
j 

I 
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By the Stokes' theorem, 

^ f B • n," da + [ E • t, ci/ = 0, 
dt J^j aiedKj Jai 

where the directions t-s are defined by the right hand rule on the face t̂ j. Then 

E ( 难 = 0 

CTiedKj 

which can be written as 

f t � � B f � j S j � + { C E e � 3 = Q . (4.1) 

Integrating both sides of (1.1) on a non-interface dual face k!�6 Qr, r = 1,2, 

we get 

f e.E . n, da — f —B . ti dl 二 [ J • n, da, 

where the directions t'̂ s are defined by the right hand rule on the face From 

the definitions of h'j and s'j, we have 

J ^ i i ^ ' M ) - iC'B'：^ = f 3' n , da. (4.2) 

Now, suppose that k!，is an interface dual face. Let = ac] U where /c) is the 

part of KJj that lies in Vti. (see Figure 1) 

( \ / 
\ — c / 

\ ‘ / 
Figure 1: An interface dual face K,'j with normal rij 
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Similarly integrating both sides of (1.1) on k'j, 

^ ― [ ê E • n. da - y ^ / curl U • Uj da = / J n) da. 

Applying Stokes' theorem and the relation B : /iH, we have 

—/ eiE • n,- da + — / esE . n, da 

r 1 r 1 r (4.3) 
- y / —B'tUl- Y / —Bt^c//^ / J- n, da, 

一 〜“一 人丨. 

where we remark that there are some edges in dtZj, r = 1, 2, that belong to F and 

are not edges of our primal and dual meshes, in this case, 71 and 72 (see Figure 

1). Furthermore, the directions t] and t- are defined by the right hand rule with 

respect to and K,j respectively. From figure 1, we see that 
E J\*iB.t�dl 二 E /, ^ B . tj dl 

+ [ —Bi . t^i dl+ [ —Bi . t] dl 

and 

y [ -B-tui= y f -B• t?dl 
cr'-edK^ ^ a'-edK^\r ^ 

+ [ —B2 • t? d/ + [ —B2. t' dl 
Jji 772 

where we recall that B^ = B|n. for i = 1,2. Here, and in the sequel, we will use 

B without the subscript i if no confusion is caused. Notice that t- and tf are 

the same if a'- is an interface dual edge. When t] and t�represent directions on 

7i, i 二 1,2，they have opposite directions. Assume that the directions of 71 and 

7 2 are the direction of tf. Summing up the two equations, the right hand side is 

given by 

V V [ —B • t, d/ 4- V { [ —Bi . ti dl + [ —B2 • ti dl) 

+ [ (H2-Hi) -ti dl+ [ (H2 - Hi) • t2 dl, 
J 71 72 
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where ti and t2 are the directions of 71 and 72 respectively. On 71, we have 

(H2 - Hi) . ti = ((H2 - Hi) X mi) • n, = Jr . n,. (4.4) 

Similarly, on 72, 

(H2 - Hi) . t2 = ((H2 - Hi) X ms) . nj = Jr . n力 (4.5) 

where mi and m2 are the unit normal vector on the interface F at 71 and 72 

respectively. Collecting these results, (4.3) becomes, 

—/ eiE • n. da^— CaE -Uj d a - Y ] / —B • t,- dl 

- Y { [ —Bi •ti(M+ [ —B2 • t, dl) 

= J • iij da + ^ / Jr . nj dl. 
人； r = l 

By the definition of face and edge averages for those faces and edges relating the 

interface, we obtain 
2 

J ^ H E ' M ) —�C'BX'3 = I , n , 如 . + E 义 Jr . n) dl (4.6) 

We remark that the other interface dual faces are handled similarly. 

Now let E e R恥 and B G M î be the approximations of the primal edge 

and face averages of the true solution E and B to (1.1)-(1.4) respectively. (4.1) 

suggests the following approximation 

s]智+�CE�]=0. (4.7) 

We suppose that the values of the dual face average and the corresponding pri-

mal edge average are approximately equal as h tends to zero. We also suppose 

the same result holds for primal faces and dual edges. Then (4.2) suggests the 

following approximation 

s'f-^ - [C'B), = f J • n, da. (4.8) 
j 

\ 
1 
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For components related to interface dual faces, we suppose that the face aver-

ages on Kj and Kj are nearly the same as the corresponding edge average on aj. 

Likewise, the edge averages on aj and are approximately the same as the face 

average on kj. NOW (4.6) suggest the following approximation 

4 孕 — i ^ ' B ) ] = [ + t f Jr • n, dl (4.9) 
DT Jk'. r=l J � 

Hence we have the following semi-discrete approximation : Find E G M似i and 

B G RPi such that 

S'^ -C'B = J (4.10) 
at 

S早+ CE 二 0 (4.11) 
at 

where J G R恥 is defined as 

Jj := / 3 . Uj da (4.12) 

for each non-interface dual face and 

Jj ：= / J • n̂  (icr + ^ / Jr .nj dl (4.13) 

人;. r = l J � 

for each interface dual face. We supplement the system (4.10)-(4.11) with the 

initial condition: 

丑(0) = Ee(0)， B(0) = B,(0)， (4.14) 

where E“0 ) and 5/ (0) are the primal edge average of E and primal face average 

of B at time 力二 0. 

Theorem 4.1 The semi-discrete scheme (4.10)-(人.11) has a unique solution. 

Proof. The uniqueness follows from the fact that (4.10)-(4.11) is a system of 

linear ordinary differential equations with constant coefficients. 

• 
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4.2 Consistency theory 

In previous section, we have derived a semi-discrete approximation for (1.1)-(1.2). 

We are now in a position to present the consistency theory for our finite volume 

method. 

Let us consider the continuous Maxwell's equations (1.1)-(1.4). Taking the 

divergence to both sides of (1.1) and (1.2), we have 

基 div(eE) = divJ, 

^div( / iH) = 0. 

By the initial condition (1.7) and the continuity equation (1.9), we have 

div(eE) = p, 

d i v ( / i H ) 二 0, 

for all t G (0, T). Hence, any solution (E,B) satisfying (1.1)-(1.2), with the 

continuity equation being hold for any time and the initial function ( E o，B o ) 

satisfies the divergence constraints (1.3)-(1.4), must satisfy the same divergence 

constraints (1.3)-(1.4). 

It is clear that the semi-discrete approximation (4.10)-(4.11) is the discrete 

analog of the continuous Maxwell's equations (1.1)-(1.2). In order to ensure the 

finite volume solution to (4.10)-(4.11) represents the solution which also satisfies 

the divergence constraints, it is required to show that the finite volume solution 

I {E, B) satisfies some discrete analog of the divergence constraints, 
i 

The following theorem shows how the finite volume solution B satisfies the 

； divergence constraint in the discrete level. 

I Theorem 4.2 S-ose B . - soluUon of tke serm一 scHeme (棒)-

I (J^.ll). Then 

VB = 0 for any time t > 0. (4.15) 

J 
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Proof. We observe that 

J ^ m ) = j ^ i B l S B ) by (3.18) 

二 - B ^ C E by (4.11) 

= 0 by (3.19). 

Also, by the initial condition d i v ( / i H o ) = 0，we obtain for any primal element n 

the following 

1 d i v ( / i H o ) dx = 0 
J Ti 

/ Bo . n — = 0 
KjGdn " j 

iPB^m, = 0. 

Note that B 二 Bf at time t = 0. Hence VB = 0 for any time t > 0. 

• 
The next theorem will display how the finite volume solution E satisfies the 

divergence constraint in the discrete level. 

Theorem 4.3 Suppose E is the solution of the semi-discrete scheme (4-10)-

(4.11). Then 

V'E 二 + f for any time t > 0, (4.16) 

where p and ^ are vectors in R^ with 

pj ：= / pdx^ pr da and ^ := V'{Ee - E'f){0). (4.17) 
JT'. JRJNR 

Proof. We observe that 

j^i^ 'E) = j ^ m r S ' E ) by (3.18) 

={B[fC'B + { B [ f j , + {B[fj2 by (4.10) 

= { B [ f j , + by (3.19), 
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where 

{Ji)i ：= / J -Ui da 

Wi ：二 Jr • n^ dl. 

We remark here that [J2)i — 0 for each non-interface dual face Also, J2)j = 

0 for any non-interface dual element rj. Integrating both sides of the continuity 

equation (1.9) on a non-interface dual element rj, we obtain 

dx — [ divJ dx, 
j dt Jr'. 

= ^ / J • n̂  da, 

where n̂  is the unit outward normal vector of rj on the boundary face By the 

definition of the matrix we have 

So, for each non-interface dual element rj, we obtain 

盒(抓))=1/广血. （4.18) 

Similarly, integrating both sides of the continuity equation (1.9) on an interface 

dual element rj, we get 

f 聖 dx = y ^ f 3 . Ui da - f [J • m] da. 
人J 沉 A'nr 

From (1.1), we have 

I f [eE ' m\ da — f [curl H - m] da = f [J • m] da, 
dt Jrjnr irjnr Jrjnr 

^ f pT da - [ [curl H . m] c/a 二 f [J • m] da. 
也-Jr'.nr Jrjnr Jrjnr 

！ i i 
i 
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By the equations (4.4) and (4.5), 

[ [ c u r l H . m口CT = [ / [H • t ]̂ dl = [ / Jr • n^ dl. 

By the definition of the matrix B�, we note that 

E / J r - n , d l = { { B [ ) ^ J 2 ) j . 

Hence, for each interface dual element rj, we obtain 

i 料 = 紅 广 “ U , 广 . (4.19) 

Also, by the initial condition div(eEo) = p(0), we obtain for any dual element rj 

the following 

[ d i v ( e E o ) dx 二 p{0) dx 

V / eEo • Hi da = / p(0) dx + pr{0) da 

(IT剩)j 二 講 

Integrating both sides of (4.18) and (4.19) on [0,力]， 

V'E{t)=V'E{0)^p{t)-p{0), 

and finally the following 

since E = Ee at time t 二 0. 

• 
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4.3 Convergence theory 

We devote this section to the convergence analysis of our semi-discrete finite 

volume method. We further divide this section into two parts. In the first part, 

we give a proof of the semi-discrete approximation for the case when both Q and 

r̂ i are polyhedral domains. We have shown that the approximation is first order 

convergent. In the second part, we consider a special case when both Q and 

are rectangular domains. In this case, we can prove that the approximation is 

actually second order convergent. 

4.3.1 Polyhedral domain 

Before we go on with the convergence analysis on our finite volume method, we 

need the following technical lemma which is essential in the later analysis. In 

fact, it is the Bramble-Hilbert lemma we cited in Chapter 2. However, we have a 

sharper estimate on the constant K{Q). 

Lemma 4.1 Let ti he a tetrahedral primal element. Suppose that f is a bounded 

linear functional on the space such that / ( c ) = 0 for any constant func-

tion c G Ml. Then for any v € 

(4.20) 

holds for some generic constant K. 

Proof. We prove this lemma by first considering the standard tetrahedral element 

f, with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1). Clearly, there is an affine 

transformation T that maps r̂  onto 干i. We denote by v the transformed function. 

Then, by the Bramble-Hilbert lemma, there is a constant K independent of r̂  

such that 

I 綱 口 作 lu � ( f , ) . (4.21) 
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Define a 3 x 3 matrix A as follows: 

� 0 0� 

A 0 h 0 . 

� 0 0 hj 

Then A defines an affine transformation that maps 干i onto a tetrahedral element 干i 

with vertices (0,0,0), (/i,0,0), (0,/i, 0) and (0,0,/i). Let v be the corresponding 

transformed function. Also, we denote the coordinate systems in f̂  and f j as 

(x,仏 z) and (x, y, z) respectively. Then, by the chain rule, we have 

dv dv dx dv dx dv dx , dv 
— I I — h • 

OX ox ox oy oy oz oz ox 

Similarly, we have 

dv dv dv ov 
二 , o 八— ‘ oy oy oz oz 

Therefore, 

y — ^ p dMvdz 

— P 
一,i u 

Then, (4.21) becomes 

\f[v)\<Kh'-i\v\w^,,^ny (4.22) 

Now, we can find an affine transformation Q \ f^ ti independent of h such that 
A A A 

QAT = I, which is the identity transformation. By applying Q to (4.22) and the 

chain rule to the right hand side of (4.22), we have 

• 
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We now proceed to develop the convergence theory for the semi-discrete ap-

proximation. To do so, substracting (4.7) from (4.1), we have 

— Bf) + C(E — Ee) 二 0. (4.23) 
LLC 

Similarly, subtracting (4.8) from (4.2) and (4.9) from (4.6) we obtain 

— - C丨[B — B',) = 0. (4.24) 
at J 

By the boundary condition E x n = 0 on we have 

(E —五二 0. (4.25) 

Now, multiplying (4.23) by D'{B — B'J and (4.24) by D(E -丑丄 then adding 

the two equations together, we have 

(S(B - Bf),D\B - Be)) + {S'{E — E}), D{E - E,)) 

二 (C\B - — Ee)) - {C{E — Ee), D\B - B:))， 

where the dot represents derivative in time. By (4.25) and lemma 3.2, 

{C'{B - - Ee)) - {C{E - E^), D'{B - B'^)) = 0, 

and consequently 

{B-Bf,B-B'Jw +、色 - E ' ” E - Ee)w' = 0. (4.26) 

Now, we rewrite (4.26) as 

{B — B�, B — B:)w + (JE _ Ee, E — Ee)w' 

={E'f — Ee,E — Ee)w' + {Bf — B�, B — 

Applying integration by parts with respect to time in the above equation, we 

obtain 

- KWw + 11^ - ^ell^') , \ 
(4.27) 

={E'f — Ee, E — Ee)w' + {Bf — B�, B -

The following theorem is devoted to show that our semi-discrete finite volume 

approximation of the Maxwell's equations is first order convergent. 
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Theorem 4.4 Assume that (E,B) G (T^i'HO, T; T ^ i 气 ) 3 ) 2 ， f o r i : 1,2，sat-

isfies (1.1)-(14) andp > 2. Let (E,B) be the solution of (4.10)-(4.11) on non-

uniform grids with maximum grid size h. Then 

m a x {\\{E - Ee){t)\\w' + \\{B - Bf){t)\\w) 
0<t<T 

一 2 (4.28) 

Proof. We prove this theorem by using (4.27). For each non-interface interior 

primal edge a“ we have 

{E'f — Ee)i = \ ( E • Hi da - i / t . U i d l , 

where n̂  is the unit normal vector to the dual face According to Sobolev 

embedding theorem, for p > 2, we have 

U r/) 4 (/.；), U r/) 4 

where rj and r/ are two dual element sharing the same dual face Hence, 

[Ef — Ee)i is a bounded linear functional on V^i气rj U r/)^ and vanishes for any 

constant functions. By Lemma 4.1, 
• , “ jĵ  3 * 

{Ef - S Kh p 

for some generic constant K. 

Now, for each interface primal edge cr“ we have 

( 辟 - i j e h = 、 _ h + (1 - m , ) — 

Notice that {Ef^ -Ee ) i and {Ef^—Ee)i are bounded linear functional on 

r/) n Qi)^ and U r/) Pi respectively and both of them vanish for any 

constant functions. Lemma 4.1 then yields 

• • 1 3 * 

(丑/i —丑e)i| S Kh 叫E|]4n，p((Tj/UT/)nni)3, 

(左 / 2 _ < Kh^ p |E|vt^i ’p((TjuT,)nn2)3-
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Hence, 

Ml 

II玛-EeWw' = -

i=l 

6 恥 

2 Ml 2 恥 2 

r=l i=l i=l 

By the fact that 

Ml 

we conclude that 
2 

I I 冉 - E e W w < KhY^ |iVi’P(a03. (4.29) 
r = l 

Similarly, we have 

2 

I I力/ — K\\w < (4.30) 
r = l 

Integrating both sides of (4.27) on the interval (0, t) and by the Cauchy-

Schwarz inequality, we have 

\\{B - B ' M f ^ + \ \ { E - E^mr^, 

Jo 
+ \\{E - Ee){s)\\w'\\m - Ee){s)\\w') ds, 

< 2max(||(5 — BimWw + ||(五—五e)�Ik) 
rT 

X / 11(5/ — K){s)\\w + \\{E'f - 左 d s . 
Jo 
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Then by (4.29) and (4.30), we have 

max {\\{E — EemWw + \\{B - B'^){t)\\w) 
0 < ~t < 'J. 1 

2 

< î /?<̂ (|E|̂ i，i(o，T;M î’p(i7i))3 + |B|î i’i(•；r;iyi’p(fi�3). 
2=1 

In order to complete the proof, we first observe that 

\\{B - Bf){t)\\w < \\{B 一 B'J{t)\\w + I I ( ^； - Bf){t)\\w. 

So, it remains to estimate - Bf){t)\\w From (4.30), we know that 

2 

\Bf — B'^Ww < Kh^^ |B|M/i，p(a03-
r = l 

Hence, 

2 

max (Bf - B')(t) w < Kh丫 max |B�|v[/i’P(nr)3, 
0<t<T J — 0<t<T \ ' 

r = l 
2 

< Kh^^^ ||B||vt/i’i(o,T;M/i，p(ni))3’ 
r = l 

where the last step follows from Sobolev embedding theorem. 

• 

4.3.2 Rectangular domain 

We now give the convergence analysis on our semi-discrete finite volume approxi-

mation of the Maxwell's equations when both Q and are rectangular domains. 

It is clear that all the derivations we developed for the finite volume scheme with 

the polydedral domain can be carried over to the rectangular domain case. 

First, we need the following technical lemma which is a sharp estimate of the 

Bramble-Hilbert lemma. 
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Lemma 4.2 Let 丁i be a cubic primal element. Suppose that f is a hounded 

linear functional on the space W^'Piri) such that / ( c ) = 0 for any linear function 

c G Pi{Ti). Then for any v G T^^'^(ri)； 

\f{v)\ < (4.31) 

holds for some generic constant K. Moreover, if f vanishes at all quadratic 

functions, then 

\f{v)\<Kh'-l\v\ws,Pir,). (4.32) 

Proof. We prove this lemma by first considering the standard cubic element 

Ti = [ 0 , C l e a r l y , there is an affine transformation T that maps r̂  onto f,-. We 

let V be the transformed function. Then, by the Bramble-Hilbert lemma, there is 

a constant K independent of Ti such that 

/(幻I S (4.33) 

Define a 3 x 3 matrix A as follows: 

ĥ 0 0 � 

A := 0 h 0 . 

� 0 0 hj 

Then A defines an affine transformation that maps f̂  onto a cubic element 干i = 

0, h]̂ . Let V be the corresponding transformed function. Also, we denote the 

coordinate systems in fi and 干i as (x, y, i ) and (x, y, z) respectively. Then, by the 

chain rule, we have 
A 八 〜 r\ A 〜 八 〜 r̂  — ov ov ox ov ox ov ox , ov 

— I I — h 

OX ox ox oy oy oz oz ox 

Applying the chain rule again, we have 
2 炉 6 

— h 
dx^ dx^ ‘ 

\ 

\ 
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Similarly, we have 

Therefore, 

— ~ P 
—几 “W^'Pifi)-

Then, (4.33) becomes 

\f{v)\ < (4.34) 

Now, we can find an affine transformation Q : n n independent of h such that 
A 

QAT 二 /，which is the identity transformation. By applying Q to (4.34) and the 

chain rule to the right hand side of (4.34)，we have 
2_ 3 

/ ⑷ I < Kh —小 W^'Pin)-

(4.32) can be proved in a similar way. 

• 

We are now in a position to establish our convergence theory. Differentiating 

both sides of (4.10) with respect to t, we get 

, 化 — " 些 = d J 
dt^ dt — dt, 

and by (4.11)， 

+ = (4.35) 
d1/ dt 

Rewrite (4.35) into the following form 

— Ee) + C'S-哪-五。：f - S’智-C'S-饥, 
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and by (4.1), we then derive 

S ’ . � E — Ee) + C'S-'C[E — E^) 二 J~ - S'智 + C'Bf). (4.36) 

Namely, E - Ee satisfies the second order ordinary differential equation (4.36) 

with the following initial condition 

( 丑 — 二 0. (4.37) 

Multiplying both sides of (4.36) by D{E - Ee), we obtain 

_ —左丄 D{E — 4)) + [C'S-'C{E -丑丄 D{E -良)）=(ft, D{E - 4)), 

where 

By (3.13), 

" “ • • t • • (jj T • • 

{S'{E — Ee), D{E — Ee)) + {D'S-'C{E — — E,)) 二 D[E — E,)). 

By Integration by parts with respect to t, we have 

臺 ！ ” 五 — 丑 ‘ ' + 臺 ！ | | [ 丑 』 2 广 ( 4 . 3 8 ) 

Now, we will use Lemmata 4.3-4.5 to establish our convergence theory for 

the semi-discrete approximation. First, for any primal face Ki, without loss of 

generality, we assume 
i^i = {(x,y,z) ： X = < y < yi+i,Zi < z < Zi+i}. 

Let Tj and Tk be two primal elements sharing the face Ki and let Cj and C^, with 

Cj < Ck, be the center of tj and r̂  respectively. Then define 

Ai ：二 {{x,y,z) --Cj <x <Ck,yz<y < yi+i,Zi < z < Zi+i}. 
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Now, let UhB be the standard piecewise linear element interpolation of the func-

tion B. That is, for all x in A ,̂ we have 
8 

S = 1 

where denotes the nodal points of Â  and (x) is a linear function satisfying 

(hMr) 二… forr^^s 

^ i s M = 1， for r = s. 

We remark here that for an interface primal face the corresponding Â  has two 

parts, one part in Q̂ i and the other in Os- Let A^ = Ai H Qr, for r = 1,2, which 

is a cuboid. Then we define UhB in each of the two parts in a similar fashion. 

Clearly, D^B is a tri-linear function in each Â  or A ,̂ for r = 1,2. 

Then we have 

Lemma 4.3 f can be written into the following form: 

f = J - ^ C ' { B f - UhBf) - F + Jr + 仏 (4.39) 

where 

Jj ：二 - Je)” (Jr) , :=亡 / (Jr - n .Jr) . n dl. (4.40) 
r=l J � 

For aj nT = (p, 

Hj ：二 s'j^ [ curl ( n / 3 -H)-ndl (4.41) 
"j Jaj 

and for aj HT ^ (f), 

_ 2 
Hj := 4厂 / curl {UhUk - H,) • n dl. (4.42) 

k=i �J a j 

In addition, Jr is a vector having components corresponding to all interface primal 

edges and g is a vector having components corresponding to the interface primal 

edges which lie on edges o/Qi. 
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Proof. We divide the proof into three parts. 

(i) For any non-interface primal edge aj, from (1.1), we get 

— f eE-ndl- [ curlH nd/ = f 3 - n dl 

dt J a j J (Jj J CTj 

Dividing both sides by hj gives 

r curlH nd/^ ^ [ J-ndl. 
dt hj J^. hj J^. 

Hence, 

fj= [ J-nda-s'j^ [ J • n dl + (C'Bf)j - 5；-̂  [ curl U n dl 
Jk'. hj J^. rij Jaj 

二 — Je)j + {C'Bf)j — 5；.̂  [ c u r lH-nd l , 
"j Jaj 

where 

( ) • ：= -i- f J • n da and (Je)j ：= ^ f J - n dl. 
s'j 人;. hj 

We further write f j into the following form 

二 s'八J'f — Je)j + {C'{Bf — U , B f ) ) , + {C'U.Bf), 

-s；.^ [ curl n"H .ndl + 5；-̂  [ curl (11/3 - H) n dl. 
hj Jaj Jcxj 

To calculate the term 

{C'T[hBf)j -5；.^ [ curl rUH . n dl, 

we consider the following figure: 
尸2 

K 

Ps K Qi Pi 

y 

Pa 

Figure 2: An non-interface dual face tz'j with normal n 
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Since 11/3 is a linear function, we have 

(C'llhBf)] - s'j^ f curl rUH • n dl 
� J a j 

二 - + — 丨 (尸3) 

- 4 c u r i n / , H - n ( Q i ) 

= — + h!jlhHy{Pi) — KU^HyiPs) 

dUhHy dUhH：, 

=0 , 

where, in the above calculation, we have assumed, without loss of generality, that 

the normal direction n is the same as the 么-axis direction. Hence, we have 

fj = - Je)j + {C'{Bf — UhBf))j + [ curl (n ,H - H) n dl. 

(ii) For each interface primal edge dj not lying on the edges of l^i, we have 

from (1.1) the following two equations 

/ e i E i . n dl — f curl Hi - n dl = j J • n dl, 
.j J aj J (Jj 

参[€2E2 . n dl — j curl H] • n dl = [ 3 • n dl. 
咖 J (Tj J (Jj J (Jj 

Dividing both sides by hj and by the interface condition (1.10), we get 

dEe 1 f 1 r , „ 
Ci— — / curl t±i • n dl = — / J • n dl, 

dt hj J^. hj J � 

€2—r-̂  - — / curl 112 • n dl = — / J • n dl. 
dt hj J^. hj J^. 

Multiplying s] to the first equation and to the second equation and adding the 

resulting two equations together, we obtain 

[ = [ J.ndl. 
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So, 

2 . 2 1 厂 
fj 二 — Je)j + E / 了 r.ndl + {C'Bf)j — ^ / curl H, . n dl. 

Since aj does not lie on the edges of Qi, 71 and 72 combine and form only one 

line, which is denoted by Hence, 
2 

fj = - Je)j + [ Jv-ndl^ {C'Bf)j - ^ [ curl H, • n dl 
hj k=i j Jaj 

We further write f j into the following form 
2 

fj 二 s'jiJ'f — Je)j + [ n"Jr -ndl-^ {C'UnBf)j — 亡 sj去 f curl • n dl 

+ f ( J r - rUJr) . n cfZ + {C'(Bf -
2 

+ [ curl (n^Hfc - H, ) • n dl. 
k=i � " J . 

To calculate the term 
2 

[UhJr .ndl + {C'UhBf)j I curl H/̂ A： • n dl, 

we consider the following figure: 
尸6 

o K 
hi 

P7 P5 
Q2 y 

h] f 

Ps 
Figure 3: An interface dual face tz'j with normal n 

In the figure above, the lower rectangle represents while the upper rectangle 

represents Kj. Notice that, since we are considering a uniform mesh, Q2 is the 
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mid-point of j j . Since ri/̂ Bfe, for /c = 1,2, is a linear function, we have 

f n„Jr -ndl^ - n,,Hi,)(Q2), 

-hlUnHiyiPj) — (Pt), 

and 
2 1 r 

^ s ^ T T / curl • n dl 
fc二 1 〜 

=s)curl n^Hi . n(Q2) + sjcurl UhHk . n(Q2) 
^ dUhHiy dUhiiix.. � ^ dIlhB.2y dTT/J^. .� 

+ 込） 

Collecting all terms，we have 
2 

[ri/^Jr -ndl-^ {C'IlhBf)j [ curl^hiik .ndl = Q. 
Jij k=i N Jaj 

Hence, we obtain 

fj 二 S丨人J'f — Je)j + f (Jr — n , J r ) -ndl-h (C'(Bf -
Jij 

2 . 
+ Ya 4厂 / curl - H,) . n dl. 

(iii) For each interface primal edge aj lying on the edges of ^i, following the 

proof similiar to (ii)，we have the following 
2 2 

fj = S'人 J'f - Je)j + ^ f n,Jr .ndl + {C'UhBf)j f curl H^H, . n dl 

+ (Jr- n,Jr) .ndl + {C\Bf — Ih 喻 

2 1 r 

+ curl — H,) . n dl. 
k=i Jaj 

To calculate the term 
2 2 

^ [ n"Jr + {C'IlhBf)j - i Z ' j r f curl n.H^ . n dl, 

r=l J � k=l j Jaj 

we consider the following figure: 
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PIO 

hi 

PU � _ _ _ P , 

h\ 71 \ 

尸 12 

Figure 4: An interface dual face with normal n 

In the figure above, the smaller part represents k] and the remaining part repre-

sents Since for A; = 1,2, is a linear function, we have 

^ [ Il/^Jr .ndl 二 -h]{UhH2y — UhHiy){Ri) + - n"Hi�i?2)， 

r=l 

and 

{C'UhBf)j 二 hlUhili.iPu) + hlUhHi,{Pu) — h'jJln^^xiPio) + 

and 

2 1 . 
X M T T / curl Uhiik • n dl 

=s j cur l n"Hi . n(Q3) + 如 r l IlhHk . n(Q3) 

= 々 " ^ - 仏)+ F 腿 

where Ri and R2 denote the mid-points of 71 and 72 respectively. Furthermore, 

we have 

f IlhJr •ndl = -h]{Uhii2y - UnUiy){Qs) + — n/3l:r)(Q3) + 办 
r = l J � 
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where 

gj ：二 h}(IhH2y — n,Hi, ) (Q3) — - n ,Hi , ) (Q3) 

By the definition of Jr, we have 

9j = h]{Un3r . n{Qs) — n,Jr . n(i^i)) 
(4.43) 

+ hlOJhJr . n(i?2) — n^Jr . n(Q3)), 

where we remark that n is the normal vector of the dual face Kj. Collecting all 

the terms, we obtain 

V [ UhJr -ndl-^ {C'UhBf)j — ^ [ curl UhHk . n dl =办 
r=l J � k=l � J a j 

and finally the following 

fj = S'八 J'f — Je)j + ^ f ( J r - n,Jr) + {C'{Bf — ThBf))] 
r=l J � 

+ ^ I curl (n/̂ Mfc - Hfc) • n (f/ + gj. 
k=i � 

Summarizing the results obtained in (i)-(iii), Lemma 4.3 follows. 

• 

Now, we give some estimates for E — E^. We will consider the two cases: 

C{E — Ee){t) ^ 0 for a.e. t e [0,T]; and C{E - Ee){t) = 0 for 力 G (ti,力2) with 

C [0，T]. First we show 

Lemma 4.4 Assume that C{E — E^) • 0 for a.e. t G [0,T]. Then there exist a 

constant K independent of h such that 

\E - EeWwr < K\\E - Ee\\v- (4.44) 
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Proof. By (3.15) in Lemma 3.5, we have for any ueR^ with u\dQ = 0, 

{S'u, Du) < K{D'S-^Cu, Cu). (4.45) 

Consider the following auxiliary problem: Find w G such that 
f 

Cu — -S{B - Bf), for all interior primal face. 
< (4.46) 

u = E — Ee, for all interface primal edge. 
V 

Clearly, by (4.23), the problem (4.46) has a solution u ^ E - E^. Now, we solve 

the problem (4.46) in the following way. For each Uj corresponding to an primal 

edge (Jj in we take Uj 二 {E-Ee)j, i.e., the component of E-Ee corresponding 

to (Tj. Then, with the components corresponding to Q2 and F fixed, we rewrite 

(4.46) into the following linear system 

GiDu = 6， （4.47) 

where 6 is a vector containing all the related known components and Gi is the 

restriction of G to ^li. We remark here that in the system (4.47), the number 

of equations is in general greater than the number of unknowns. However, since 

(4.46) has a solution, the system (4.47) is consistent. 

Since the matrix Gi has the same structure as the matrix G, by Lemma 

3.3，there are 0{N^) free variables in the system (4.47). We choose these free 

variables to be all equal to some interface components with the condition that 

each component appears 0{N) times. We can do this since there are 0{N'^) 

interface components. Then, after fixing free variables, the other components 

can be uniquely determined by solving the system (4.47). 

Putting u into the equation (4.45), we have 

{S'u, Du) < K{D'S'^Cu, Cu). (4.48) 

For the left hand side, we have 

{S'u,Du) > {S'u,Du), 
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where u denotes a vector having the same interface components and free compo-

nents as u and having the remaining components vanish. So, we have 

For the right hand side, since u is the solution to the system (4.47), we have 

{D'S-'Cu, Cu) = {D'{B — Bf), S{B — Bf)). 

Multiplying both sides of (4.23) by D\B — Bf), we have 

{S{B-Bf),D'{B-Bf)) 

=-{C{E-Ee),D'{B-Bf)) 

< K{D'S-'C{E -五e), C{E - E,))HS{B — Bf), D'{B - 5力)告， 

where we have applied the Cauchy-Schwarz inequality in the last step. So, we 

derive 

{S{B - Bf),D'{B — Bf)) < K{D'S-'C{E — E^), C(E - Ee)) 

which completes the proof. 

• 

We remark here that (4.44) is the discrete analog of the following trace theo-

rem 

/ ds<K{ dx-\- / dx), 
Jr Jfi Jn 

for any u G and of the Poincare's inequality 

/ |w|2 ds<K dx, 
Jr Jn 

for any u G Hq (Q). 

In addition to Lemma 4.4, we have the following 
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Lemma 4.5 Assume that C{E — Ee) + 0. Then there exist a constant K inde-

pendent of h such that 

max\E - Ee\j < K\\E — Ee\\v, (4-49) 
树 — 
max IE - Ee\i < K\\E — Ee\\v (4.50) 
(Tj en 

Proof. The proof of this lemma is similar to that of Lemma 4.4. For (4.49), we 

take all the 0{N^) free variables in (4.47) as max^.^r \E — E山.For (4.50), we 

take all the O(N^) free variables in (4.47) as max�ef21五 _ 五elj- Then the result 

follows. 

• 

Now, we proceed with the convergence analysis on the semi-discrete approxi-

mation (4.1)-(4.2). The following theorem gives the T/-norm estimate for E - Ee. 

Theorem 4.5 Suppose thatB e VF2，i(0, T ;丑仏 ) ) 3， f ^ r r 二 1,2，is the true so-

luUon of (LI)-(14). and that J e W 2 ， i ( o , T ; 炉 ( n ) ) 3 and Jr G W^^^O.T; 

Let E be the solution of (J^.lO)-(J^.ll) on uniform grid. Then 

m a x \{E-Ee){t)\\v 
0<t<T 

2 

+ ||J||w2,i(o，r;F2(fi))3 + ||Jr||Ĥ 2’i(o，:r;ij3(r))3). 
r = l 

(4.51) 

Proof. Integrating both sides of (4.38) from 0 to t and by the initial condition 

(4.37), we have 

— EemWw' + ll(丑一Eemwl = 2 J: (ft, D{E — Ee)){s) ds. (4.52) 

Integration by parts then yields, 

义'(1’ D{E — EMs) ds = D{E — E^t) - f (祭，D{E - E^s) ds. 
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By (4.39), we know that 

( f t M E - 聊 ) 

二 J + C\Bf — U n B f ) + J r + p), D{E - EMt) 

= ( � 厂 应 + Jr + g).D{E - Ee)){t) + {D\Bf — 11 為 ) , C { E - EMt). 

Notice that the theorem is trivially true at time t if C{E — Ee){t) — 0. So, without 

loss of generality, we assume that C{E - Ee){t) / 0 for all 0 < t < T. Now, we 

estimate the above equation term by term. 

By the Cauchy-Schwarz inequality, we have 

(¥，D{E —聊)< - E』『， 

and by Lemma 3.5, we have 

D[E — < \\S'-'^\\w'\\E —尽Ik, 

By the Sobolev embedding theorem, ( J丨厂為』d e f i n e s a bounded linear functional 

on the space U T^Y where T'- and r̂  are two dual elements sharing the 

same face Clearly, {j 'j — Je)j vanishes for any linear functions since we are 

considering uniform mesh. By the Bramble-Hilbert lemma, 

|( — 2 î /̂ Mj|/̂ 2̂(<U7•4)3• 

丨 From (4.40), we have 

I J 7 Ml 
' — 1 ^ 2 _ '2 / T/ T N 2 

^ ^ 也 w' - Z^SjthjSj Sj [Jf - Je)j 

I Ml • 
！ - 欣 Xl|j|W;UT‘)3 
I i=i 
I 二似4|J|“j"^)3 
I By the Cauchy-Schwarz inequality and Lemma 3.5, we have 
• 

( D{E - EMt) < K\\S'-'^\M\E - E,\\y. 

B'l 
I 

I 
i 



Chapter 4. Spatial Discretization of the Maxwell's Equations 53 

Corresponding to each non-interface primal edge dj, we have 

^ [ curl {Uhil -U)-ndl 
� J a j 

defines a bounded linear functional on the space U r^)^ and vanishes for 

any quadratic functions. So, 
I f • . 1 . 

— / curl {UhH - H) • n (i/| < 
JoTj ^ 

Similarly, corresponding to each interface primal edge cr̂ -, for A: = 1, 2, we have 
I f . 1 . 

J- / curl {UhUk -Hk)-n dl\ < 

Hence, we obtain 

q'-idS 2 _ 'sp-/, -'-2 碼 2 
3 = 1 

2 Ml 
-Kh各 _ W;ur‘)叫3 

k=l j=l 
2 

= 肌 | H | “ 叫 3 . 

k=l 
By the Cauchy-Schwarz inequality, we have 

(嗜,D{E — EMt) < 警 k l l 五 -

By Lemma 4.4, we have 

(华,D{E - Ee麗 < — E^\\y. 

By Sobolev embedding theorem, the term 

Y J ( j r - n" jr) • n dl 

defines a bounded linear functional on the space , where T^I and KI are 

two interface primal faces sharing the same edge CTj, and vanishes for any linear 

functions. By the Bramble-Hilbert lemma, we have 

(jr - n"jr) -ndl\< 一 p . 
r=l J � 
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So, we obtain 

n-idJr 2 — v ^ 7 d{Jr)j 2 
u IT wr 二 " A 

(Tjer 

ajer 

= K h ^ Jr l/"2(r)3. 

Notice that g has only non-zero components corresponding to interface primal 

edge lying on edges of Qi, there are only 0{N) non-zero components in g. By 

the Cauchy-Schwarz inequality, we have 

(塞，哪—尽 ) )⑴旧丨丨2漂丑e l ” 
and by Lemma 4.5, we have 

{%D{E - E綱 < -

From (4.43), we know that (see Figure 4) 

9j = h]{Un3r . n{Qs) — U^Jr . n{R,)) + 咖丄.辽胸—U^Jr . n{Qs)). 

Now, we estimate gj. First 

9j\ < jr||ci(r)3. 

So, 

where the above summation is taken over all the primal edges aj lying on the 

edges of Qi and has 0{N) terms. 

By the definition of l/-norm, we have 

{D'{Bf - UhBf), C[E - E,)){t) < K\\B^ - - E,\\y. 

i 
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Notice that Bf - UhBf defines a bounded linear functional on / / - (r , Ur .̂) ,̂ where 

Ti and Tk are two primal elements sharing the same face and vanishes for any 

linear functions. So, 

Hence, \VT; obtain 

户1 

户1 

2 

二 八 ‘ " 丨 队 
r二 1 

Collect iiifi, the above ivsiilts. \v(�obtain 
•J 

(If 
( I , r)� ! ' : ~ 厂'.））(。^ I<fl~i} ^ + |J|//-’(L”3 + ||J| ||//3(I.).0||,;—厂rllr. 

I-\)ll()\viiî  a similar i)i()(>r. we lui\r 

<[2 f 
. r)U.: I% ))it) < h'fr{J2 + |ji//��” + IPi li//.”i.”）||厂-/vlir. 

r 1 

Thru, from ( l."V一)）. we liaw 

il(/- - h', ){t)\\l 

< h'lr max (I'： - /:,,.)(/):� 
— i>-. r- / 

- ) 

X jB n ： ； 0 / " � < > . � 卞 J n - • nj //•'f})^ + u义"(j.7 ’//(n ”'')-
r二 1 

By I he \ oun.i;'s iin^juality, \vr obtain i hr dc.sircd roiilt. 

• 
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The following theorem gives our main result in this section. 

Theorem 4.6 Suppose that B e W^^^O.T; H^Qr))^ andE e 

for r = 1,2, is the true solution of (1.1)-(14), and that J G 

and JR G W^^^O^T; . Let [E,B) be the solution of (4.10)-(4.11) on uni-

form grid. Then 

max(||(E - E,){t)\\w' + \\{B 一 Bf){t)\\w) 

2 2 

||B||v̂ 2,i(0,T;i/3(f2,))3 + ^ (4.53) 
r — 1 r=l 

Proof. Multiplying both sides of (4.23) by D\B - Bf){t), we have 

— Bf), D'{B - Bfm + {C{E —尽),D\B - B , ) ) � = 0 . 

By the Cauchy-Schwarz inequality, we have 

Ij^UB - Bf){t)\\l, < K\\{E 一 E^mWvUB - Bf){t)\\w. 

Integrating from 0 to t, we obtain 

||(B - Bf){t)\\l <K f ||(丑—Fe)(s)ll'y ds + f \\{B - Bf){s)\\'^ ds 
Jo Jo 

< ^max^ II(五 一 Eemwl + f\\{B- Bf){s)f^ ds. 
— — «/ 0 

Applying the Gronwall's inequality, we obtain 

— Bf){t)\\l. < ir max \\{E -五e)⑷ 

Then the desired result for B - Bf follows from Theorem 4.5. 

Now, let 

/ : = {te[0,T]:C{E-Eem^0}. 
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Then for any t G / , by Lemma 3.5, we have 

\\{E - EemWw < KUE - Ee){t)\\y 

which with Theorem 4.5 yields 

max\\{E — Ee){t)\\w' 
2 

||B||vt/2,i(o,T;i73(Q )̂)3 + ||J||Î 2，I(o，T;丑2(n))3 + 11Jp11VF?，！(o，r;丑3(r))3)• 
r = l 

(4.54) 

For t G [0, T]\I, it suffices to prove the following Lemma 4.6. 

• 

Lemma 4.6 Suppose that B G andE e Vri,i(0，T; 队))3， 

for r = 1,2, is the true solution of (Ll)-(14), and that J G 

and Jr G W^^^O^T; Let E be the solution of (4.10)-(4.11) on uniform 

grid with C{E - Ee){t) = 0 for all ti < t < t2. Then 

max — 丑 e ) � | | � 
ti<t<t2 

2 2 

r二1 r=l 

+ l|J||Ty2，l(0，;r;丑2 � ) ) 3 + ||Jr||iy2’l(o，T;丑 3(r))3). 

Proof. For any t G ( 力 i , 力 2 ) ， s i n c e C{E — Ee){t) = 0, by Lemma 3.7, there exist 

0 G R^ such that 

D{E - Ee) = B[(t>. 

Then 

-五丄 D{E - E,)) = — B � 

= {jV\E-E,),cl>) by (3.18). 
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By Theorem 5.3, we have 

(S'j^iE - Ee),D{E — Ee)) = 饥 e), </>). 

Now, we define a vector Ep G R恥 in the following fashion. For any primal 

edge with non-empty intersection with edges of and normal to F, 

：= . n)(Q)) + (1 — f3j)(E . n)(Q|), 

where n is the direction of the primal edge and QJ denotes the mid-points of the 

face for r = 1, 2. Here we recall that /̂ J 二 K,'j D Qr- For a face in we divide 

the face in the same way as its neighbouring face in Qi. For the other primal 

edges, 

where Pj is the mid-point of the primal edge. So, 

- Ee\D�E — E^)) = V%�,利 + {jV'{E,-丑丄 c^, 

and consequently, 

— Ee), D(E — Ee)) = V%), + — — E；)). 

For any dual element rj, we denote by I^E the standard finite element linear 

interpolation of the function E on rj. The formula is the same as E/^B. For 

an interface dual element, since it has a non-empty intersection with both r̂ i 

and we define I^E in each of the two parts of the dual element. For each 

non-interface dual element rj, 

pj — / pdx= div(eE) dx. 

We rewrite pj as 

Pj = I div(e(E - rUE)) dx+ [ div(erUE) dx, 
人； Jr； 
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and by the divergence theorem, 

Pj = {V'{E'f — UhE'f))j + f div(en^E) dx. 
J—j 

Now, for each interface dual element rj, 

pj = / p dx + / pr da = / div(eE) doc + [eE . m] da. 
JT'. JR'.CW JT'- AJNR 

We rewrite it as 

Pj = 1 div(e(E - n "E) ) dx + [ [e(E - I^E) . m] da 
JT'. JRJNR 

+ / d i v ( e E U E ) c b + / [ e n " E . m ] da, 
JT'. 人 J N R 

and by the divergence theorem, 

Pj = - IlhE'f))j + [ div(erUE) dx + [ [el^E . m] da. 
Jr'. Jrjnr 

Hence, we obtain 

— n.^}), 0) + -勾，D{E — E^)) + (菩 , 

where 

Rj ：二 / div(erUE) doc + [el^E - m] da - {V'Ep)j. 
人j Jr;nr 

Since E^E is a linear function in each dual element, by a direct computation, we 

have R = 0. Finally, we obtain 

Ij^WE — EeWl. = — — E,)) + {S'{E, — Ee).D{E — E,)). 

Integrating from ti to t, and by the Cauchy-Schwarz inequality, we have 

I K 五 - 私 ) ⑴ ‘ ’ 

= ||(五 一 Ee){h)\\ly, + 2 f \\{E'f 一 UhE'f){s)\\w'UE - E,){s)\\w' ds 
Jti 

+ 2 [ ds. 
人1 
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By (4.54), we have 

\{E - Ee){ti)\\w' 
2 

+ ||J||vK2-i(o,T;i?2(f2))3 + ||Jr||vK2，i(o’T;丑3(r))3). 
r = l 

For each non-interface dual face, the term E'̂  — lihE'f defines a bounded linear 

functional vanishes for any linear functions, so 

For each interface dual face Kp we have 

— = [ ( E - n , E ) - n d a + i l - f 3 j � \ / (E - n,E) . n da. 

So, we have 

2 

r = l 

Consequently, 
Ml 

I I 冉 - = - n"冉 ) / 
2 Ml 

r = l j=l 
2 

r = l 

From the definition of Ep, for any primal edge aj with non-empty intersection 

with edges of and normal to F, we have 

{Ep - Ee)j 

二从电.n)(Q�+ (1 - m 电 . _ 1 f 电.ndl 
� J (^j 

=m 电.n)(Q))[ E.ndO + ( l - /3 , ) ( (E . n)(Q,) — ‘ [ E n dl). 
几 j J <Jj Jaj 



Chapter 4. Spatial Discretization of the Maxwell's Equations 61 

Notice that 

f t.ndl 
� J a j 

. n)(Q)) — (E • n ) ( P , ) [ (E • n - (E • n)(P,)) dl 
几 j JcXj 

<K/i||E||ci(ni)3. 

Similarly, we have 

(E • n ) ( Q 2 ) - 1 / E . n ci/ < 
"j Jaj 

Since the number of primal edges with non-empty intersection with edges of f̂ i 

and normal to P is 0{N), we obtain 

2 

E ''M^p — < Kh' iiE|ici(n.)3 1 
(Tj r=l aj 

2 

< Kh^ ^ I肉 ⑴ 
r=l 

For the other components of Ep — Ê ^ by the definition of Ep, we have 

( 4 - Ee)j = (E . n){Pj) — ‘ [ E-ndl. 
� J c T j 

Since, {Ep — Ee)j defines a bounded linear functional which vanishes for any linear 

functions, by similar steps as above, we obtain 

2 

- < Kh' 丑 叫 3 . 

(Tj r=l 
Consequently, 

2 

I烏-Ee\\w' < 
r=l 

Collecting the above results, we have proved the desired estimate. 

• 
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We remark here that Theorem 4.6 shows our semi-discrete finite volume approx-

imation of the Maxwell's equations is second order convergent for rectangular 

domains. Furthermore, the above estimates are optimal since the W and W' 

norms are the discrete analog of L^-norm. 

i 



Chapter 5 

Fully Discretization of the 

Maxwell's Equations 

In this chapter, a fully discretization of the Maxwell's equations, that is dis-

cretization in both space and time, will be presented. For the fully discrete finite 

volume approximation of Maxwell's equations, we will prove that the solution to 

this discrete approximation satisfies the divergence constraints in discrete sense. 

Furthermore, a convergence analysis will be given in both the following cases: 

first, the domains Q and r̂ i are two polyhedra; second, the domains Q and 

are two cuboids. In the second case, we can prove that the convergence rate is 

one order higher, that is, it is second order convergent. Also, the convergence in 

time is second order for both cases. 

5.1 Derivation 

In this section, we will derive the fully discrete approximation of Maxwell's equa-

tions by our finite volume method. Our approach is to discretize the time deriva-

tives in (4.10)-(4.11) by finite differences. Let us recall the definition of finite 

difference. For any smooth function u[t), we can approximate its first order 

63 
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derivative at a point t by the following formula 

M t ) � u j t + r) - u(t - r) 
了 〜 ^ ’ （5.1) 

for small r. It is called the central difference approximation of first order deriva-

tives. It can be shown, by using a Taylor expansion, that this approximation is 

second order. 

Let NT be the number of subintervals of [0, T] and At be the length of each 

subinterval. Denote tn := nAt, for 0 < n < A t̂ — 1- In our finite volume method, 

we approximate the true solution E(t) at times tn with the approximation repre-

sented by E^ while the true solution B(t) at times with the approximation 

represented by B 时 T h i s method is the so called leapfrog scheme. The ini-

tial condition B^ is computed by using Taylor's expansion and the Maxwell's 

equations (1.1)-(1.2). 

For (4.10), we apply the central difference approximation to the derivative in 

time at time t = , then 

S'h , 匕 — 4 Jdt, 
At At L t 

where we use the average value of J on the subinterval [nAt, (n + l)At] to ap-

proximate the value of J at ^ = 力 C l e a r l y , this approximation is second order 

accurate. Similarly, for (4.11), we apply the central difference approximation to 

the time derivative at time t = tn+i^ so we get 

+ = 0. 
At 

Now, we have the fully discrete scheme: Given ( 丑 去 ) • 〈 几 t h e next 

approximation is calculated by solving the following equations 

- E") - A t C ' B n + � =户+ 去 (5.2) 

— + A 力 CE 时 1 = 0 (5.3) 
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where 

~ , 1 r(n+l)At ~ 
J^+2 := J dt, 

JnAt 

We also supplement (5.2)-(5.3) with an initial condition 

= Ee(0), b'2 =Bf{ti). (5.4) 

Theorem 5.1 The fully discrete scheme (5.2)-(5.3) has a unique solution. 

Proof. The reason for the uniqueness follows from the fact that (5.2)-(5.3) is an 

explicit finite difference method for solving system of linear first order ordinary 

differential equations. 

• 

5.2 Consistency theory 

As explained in last chapter, it is important to know whether the solution of 

the fully discrete approximation of Maxwell's equations satisfies the divergence 

constraints in some discrete sense. Otherwise, the solution is not representing 

true phenomenon since both the magnetic and electric fields must satisfy the 

divergence constraints. 

In the following theorem, we have shown that the solution B 几 t o (5.2)-(5.3) 

satisfies the divergence constraint in discrete level. 

Theorem 5.2 Let B^'^i, forO <n < NT-1, be the solution to the fully discrete 

scheme (5.2)-(5.3), then B几is divergence-free in the discrete level, i.e., 

VB^'+i 二 0, 0 < n < Â t - 1. (5.5) 

Proof. By Lemma 3.6 and (5.3), we have 

时 * - B^+i) 二 - = -AtBTCE^+i = 0. 
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Taking the divergence in both sides of (1.2), we obtain 

羞div(同 二 0, 

that implies div(/iH) = 0 at time t 二 by noting (1.7). Integrating this 

equation over a primal element Ti and using the Stokes' theorem lead to (at 

t 二 ！ At) 

/ B . n — 二 0. 
KjEdn 人 

By the definition of Bf, this can be written as 

{VB]) i = 0 

1 1 1 
for any i. So T>B字=0. Using B^ = B^ ̂  we conclude that 

DB几+、=0, 0 < n < N t - 1. 

• 
The next theorem shows how the solution E^ to (5.2)-(5.3) satisfies the di-

vergence constraint in discrete level. 

Theorem 5.3 Let E^, 0 < n < Nt — 1； be the solution to the fully discrete 

scheme (5.2)-(5.3). Then we have 

VE"" = + V'{Ee — £；})(0), 0 < n < Â t - 1 (5.6) 

where p is a vector in with 

p] •= / p{x,tn) dx^ / pT{x,tn) da. (5.7) 

Jt'. Jrjnr 

Proof. By Lemma 3.6 and (5.2), we have for 0 < n < Nt — 2 that 

1 ptn+l 
= = / {B[fJdt. 

人n 
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Summing up all these equations over n, we obtain 

V'E"" 二 V'E。+ f \ B [ f j dt, 0 < n < iVr - 1. (5.8) 
Jo 

Integrating the initial condition div(eE(x, 0)) 二 p{x, 0) over a strictly interior 

dual element r/, we have 

^ / eE(x, 0) -Ur da = / p{x, 0) dx, (5.9) 

which, by the definition of the face average, can be written as 

{V'{E'f){0))i = dx. (5.10) 

We know E^ = Ee{0) for all primal edges corresponding to the dual faces of r/, 

then (5.10) is equivalent to 

{V'E^)i = / p{x, 0 ) dx + ei 

where 

ei : � 

For an interface dual element rj, that is rj n F (j), we can write 
2 

[d iv(eE(x ,0) ) dx = ^ [ div(eE(x, 0)) dx = f p{x, 0) dx. 
人‘ k=l J丁'j …k Jr'. 

By the divergence theorem and the jump condition [eE -m] = p^ on F, we obtain 

= / p{x, 0) cb + / pr{x, 0) da + ej, 
JT'. JR'PT 

where 

ej..= iV'[Ee-E,f 勵 . (5.11) 

By the continuity equation (1.9), for any interface dual element rj, we have 

^ [ p dx = f divJ dx = y^ f divJ dx 
幻丁'j 人； t^iJr^nn, 
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Applying the divergence theorem, 

S- f P dx = y^ f J • lir da — f \J • ml da. 

From equation (1.1), we see 

/ J • m] da = — f [curl H • m] da f [eE . m] da 
jnr irjnr dt J^jnr 

— — f [curl H . m] (icr + 要 , pr da. 
irjnr dt y^jnr 

From figure 1 and the equations (4.4) and (4.5), 

/ [curl H • m] da = ^ ^ / [H . t̂ ] dl = ^^ / Jp • n̂  da. 

Combining the above results, we have 

Integrating both sides over [0, tn] gives 

/p{x, tn) dx — 0) dx 
-j JT; 

= [ { { B T J ) j dt^ [ Pr{x,0) da- f pr{x,tn) da. 
Jo Jr^nv Jrjnr 

By a similiar argument, we can derive the same result for any strictly interior 

dual elements. Hence, we have proved (5.6). 

• 
We remark that the last term in (5.7) vanishes for any strictly interior dual 

element r/. But for any interface dual element rj, we can integrate both sides of 

(1.3) over rj and apply the divergence theorem to obtain 

y^ / eE -Hr da = / p dx + pr da. 

Thus (5.6) is a fully discrete approximation of this integral version of the diver-

gence constraint (1.3). 
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5.3 Convergence theory 

In this section, we develop the convergence theory for the fully discrete approx-

imation (5.2)-(5.3) of the Maxwell's equations. We divide this section into two 

parts. The first part deals with the case when both Cl and Vli are polydedral 

domains. It can be shown that the convergence rate is 0(h). The second part 

deals with the case when both and are rectangular domains and shows that 

the convergence rate is one order higher, that is, 

5.3.1 Polyhedral domain 

Before the development of the convergence theory of our fully discrete finite vol-

ume approximation, we need the following technical lemma which is in fact the 

Bramble-Hilbert lemma but with a sharper estimate of the constant. 

Lemma 5.1 Suppose that f is a hounded linear functional on the space At) 

and / ( c ) = 0 for any constant functions c G M .̂ Then there exist a constant K 

independent of At such that 

/ 0 ) | < K\v\wiA{0At)- (5.12) 

Proof. Define a linear transformation f : [0, At] —)• [0,1] by f 二 Denote 

V be the transformed function, that is, v{t) = v{{At)~^t) — v{t). Then, by the 

Bramble-Hilbert lemma, there exist a generic constant K such that 

< 耶|Mn’i(0,l). 

Notice that 

八 厂 1 航 y 
V 1̂1，1(0’1) = dt, 

Jo at 
r^' dvdt , . 

=l丨五力力， 
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八 1 

where in the last step, we have applied the inverse transformation T—丄 to the 

integral. So, we obtain 
. 广 dv . 
” iyi，i(0，l) 二 j , 

which implies the lemma. 

• 

We remark here that the above lemma can be generalized to the case that the 

space Tyi’i(0, At) is replaced by (n + l)At). 

We are now in a position to give the convergence analysis for the fully discrete 

finite volume approximation. From (5.2)-(5.3), we obtain 

5 ' ( ( 五 _ 广)—(五"一E'P) ) = AtCiB^'+i - Be^-^) + W (5.13) 

时I - B广鲁） - ( 5几 +去—B广”）二 — E:+〜Af几(5.14) 

where, by a direct computation, we have 

:= r H — — E'P) + AtCB^^' ' (5.15) 

J\f几—广鲁-5广去）—AtCE^-^K (5.16) 

Now, multiplying (5.13) by D((E”—E二 + (E时i—E，”) and (5.14) by 时金― 

+ (B^+l - � + • ) ) , we have 

丑时 1 — E'广、—(E^^ — E'P)), — E:) + — 

+ - 臺)-(B^+i - D\(B几+、— B，*) + — 臺))） 

= — B'，‘),D((E"" - E^) + (E奸丄—五̂时丄))) 

— - - 时 + (5^+t -

+ L>((五” - E ^ ) + (E奸 1 —丑:“+i))) 

+ (A/"�L>'((B奸* - + -
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Adding all the equations from n = 0,1,Nt — 1, we obtain 

II丑iVT-l _ 五 评 , + 脚-1 — 脚 ‘ 

=M{C丨(^BNT-�- B'eNT-、、，D�ENT-i —丑，-1)) 

Nt-1 
+ —五广）—购-E:), — El) + (五⑷ -五 i+ i ) V 

i=0 
Nt-2 

+ E - - ( B ” - B:旧),{B^^i — B：^') + ( 於 i — 

+ 乂1 + 乂 2, 

(5.17) 

where 
Nt-I 

乂 1 £ {M\D{{E^ - El) + (E仔 1 - El+% 

i=0 
Nt-2 1 3 

A2 : : 乞 i y ( B 件 * — B':+�) + (B终鲁—B，誉))). 
i=0 

We give the error estimate of the fully discrete scheme in the following theo-

rem. 

Theorem 5.4 Assume that (E,B) G (丑2(0，T; I^i气Q�3)2，y抓 z = 1,2 and 

p > 2, satisfies (1.1)-(14) and Jp G Let (E几,B几+”，Q < 

n < Nt — 1，be the solution of (5.2)-(5.3) on non-uniform grids. Then, under 

the stability condition 

� mm(hii) , \ CmAt < (5.18) 

where M2 is the maximum of ratios of the maximum to minimum edge lengths 

over the union of adjacent elements, M3 is the maximum number of dual edge 

over all dual faces, and 

2 1 c • — 
m . min(ei，e2)min(//i，/i.2). 
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we have 

max {\\E' — EiWw + - B，^\\w) 
0<i<NT-i 

一 _ 2 (5.19) 
< 丑2(o ,r ; ;y i ’p (r )3) + ^ ||(E, B)||丑2(o，r;iyi,p(ni)3)2). 

Proof. We consider the right hand side of (5.17). The proof consists of four parts. 

(i) Firstly, we have 

From elementary linear algebra, we know that is the 

largest singular value of the matrix . By the Gerschgorin's 

theorem, 

mm(ei,e2)2 min{jLii, jU2)2 minij{hij)2 

where max^j and min ĵ are taken over the union of adjacent elements. With the 

definitions of c 爪， M ] and M3, we obtain 

- B'，-i”,D(ENT-I — E，- i ) ) 
3 

仏 t c j巧严 f p … -召：…丨丨“丑 ^ —丑，-1||『 
mm[hij) 

3 

SC爪 A t ^ ^ ^ ^ ^ d l B 彻—* — B : 脚 败 + II 丑物-1 —丑 fT-1||2 ). 
min(/iij) 

(ii) By the definition of integral, we have 

1(4糾—丑— (F'/ - EDI = I / E} -Fedt I 
JiAt 
r{i+l)At 

< / \E'f - Eel dt. 
JiAt 
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Then 
Ml 

||(五严—丑广)-阅—丑:)丨|2『种购- - [E'; -

Ml n{i+l)At 

U J込t 

p{i+l)At Ml 

< At / I - dt 
人 Ai 

r{i+l)At 
=At — Ee\\w' dt. 

JiAt 

By (4.29), we have 

广(m)At 2 
I I (五；⑷—五— {E'l — < Kh'At / E | E � | 2沪， p (叫 3 dt 

AAi 口 1 

2 

r = l 

Similarly, by (4.30), we have 

3 3 1 / 1 2 

r ~ l 

(iii) From (5.16), 

J\r 二- (SBf) dt — AtCEfi 

二 / {CEe) dt - AtCEl+\ 

Clearly A/"/, the l-th component of J\f\ is a bounded linear functional with variable 

{CEe)i and A/"/ = 0 for constant {CEe)i in time, by Lemma 5.1，we have 

A/71 S KAt\\CEe\\Ll{{^+l)At,{^+|)At)• 

Notice that {CEe)i is a bounded linear functional with variable E and vanishes for 

any constant functions in the union of two adjacent polyhedra. By the Bramble-
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Hilbert lemma and a standand rescale change argument, we obtain 

• 2— ^ ‘飞 

{CEe)l\ < Kh ~P E 

where tj and r^ are two primal elements sharing the same face ki. Combining 

the results, 

A/71 < Kh^'pAt / |E|(^i,p(^.urO)3 dt. 

By the Cauchy-Schwarz‘s inequality, we obtain 

6 广 . 

< K h ' - H A t ) ' / | E | 一，卞 d t . 

Hence 

i i s - i A / i ‘ = f > 響 臂 
1=1 

6 r(i+f)At 

< Kh'-HAtf / ^ |E|一,UT�3 dt 

2 

r二 1 
where the last line follows from Holder's inequality. By the facts that 

Nt NT 

Y^a^ < (Nt)会a沙 and NrAt = T, 
i=l i=l 

we have 

Nt-2 2 

2 = 1 

(iv) Similiar to N\ we have 

. H 终 ~ . 1 

M\= (J- S'Ef)i dt + At[C'Be+-2)i 
JiAt 

= - / [C'B'eVdt + At^B:—2�i 
JiAt 
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and for any non-interface dual face we can derive the following by the same 

argument as above: 

6 . 
\Mi\' < Kh4--p[AtfL |B|?VFi，。(TjUT‘))3 dt. 

Now, for any interface dual face /̂ J, M\ is a bounded linear functional with 

variable {C'B[)i and vanishes for any linear functions in time, so by Lemma 5.1, 

we have 

Notice that 

{C'&:)i = E 聊 ” 
(T'.edK\ 

= E 聊 E ^mh^^Mh 
cr'^edK} a'.ednf 

where 

Jr ：二 ^ ^ / Jr • n da. 
r = l J � 

Since the first term in the above equation vanishes for any constant functions, we 

have 

h八Be�j\ < Kh 

where rj and rĵ  are two dual elements sharing the same dual face k\. Similarly, 

for the second term, we have 

^ � ” 2 3 •• 
/ , < Kh p|B|v^n，p((Tj/UT‘)nn2)3. 

The last term can be estimated in the following way 

fp ~ .. .. 
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Combining the results, 

3 广(i+l)At 2 
I^Wil <Kh^-p(Aty / dt 

人 At 口 1 

+ Kh{MY / ||jr||i^i’p(r)3 dt. 
JiAt 

By the Cauchy-Schwarz，s inequality, we obtain 
Mi+l)At 2 

/ ||Jr||^i,P(r)3 dt. 
JiAt 

Hence, by collecting the results for interface and non-interface components, we 

have 

Ml 

/二 1 
n{i+l)At Ml 2 

< Kh'-HAtf / Z I ] _2v^i’UT� dt 
J 込t I二 1 r=l 

r(i+l)At 
+ Kh(AtfN' / ||Jr||'H^i,P(r)3 dt, 

JiAt 

since there are interface components. So, by the Holder's inequality, we 

get 

2 

r = l 

and consequently 
Nt-I 2 
y^ \\S '^M'Ww < Kh^ ^ ||B||//2(o,r;vyi.p(n,))3 + IJr|//2(o’T;M/i’p(r))3. 
1 = 1 r= l 

Finally, collecting the terms in (i)-(iv), we get the desired result. 

• 
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5.3.2 Rectangular domain 

We devote this section to the convergence analysis of our fully discrete finite 

volume method when both the domains Q and are two cuboids. First, we 

have the following sharp form for the Bramble-Hilbert lemma. 

Lemma 5.2 Suppose that f is a bounded linear functional on the space At) 

and / ( c ) = 0 for any linear functions c G Pi(0, At). Then there exist a constant 

K independent of At such that 

\f{v)\ < KAt\v\w2,iioAt)- (5.20) 

Moreover, if f{c) = 0 for any quadratic functions c G 户2(0，At), then 

\f{v)\<K{At)^\v\w^A^0At)- (5.21) 

Proof. Define a linear transformation f : [0，At] [0,1] by f = ( A t ) D e n o t e 

V be the transformed function, that is, v{i) = v{{At)~'^i) = v{t). Then, by the 

Bramble-Hilbert lemma, there exist a generic constant K such that 

Notice that, by the chain rule 

厂 1 (fv 
问评2，1(。，1)=| I 涵 I 成 

= l 出， 

where in the last step, we have applied the inverse transformation T_丄 to the 

integral. So, we obtain 

. 广 cPv . 
” 1(0,1)=旭 j cLt, 

which implies (5.20). (5.21) can be proved by a similar argument. 

• 
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We remark here that the above lemma can be generalized to the case that the 

space Vr^’i(0, At) is replaced by JV^'^inAt, (n + l)At) for m = 2,3. 

From (5.2), we have the following two equations 

(丑 n+l —五 n) — AtC'B 奸 i = 去， 

-丑几+1) — Ate丨=户+ 誉. 

Subtracting, we have 

(丑n+2 _ 2丑n+1 + 五n) _ - B 奸 = - 户 + 去， 

and by (5.3), we obtain finally 

(丑 n+2 — 2 丑 n+1 + 五 n) + = — 户 ( 5 . 2 2 ) 

For simplicity, we define [/几：=丑几-E^. Then, we rewrite (5.22) into the 

following form 

^ (5.23) 
= j n + l _ jn+\ _ — 3丑 n̂+l + 丑二) _ 

From (4.1)，we know that 

UjL 

so (5.23) becomes 

S , ( � + 2 _ 2/7^+1 + IT) + ( A 力 时 1 
, (5.24) 

= - i 时 全 — S \ E ， 2 — 2 五 + E二 + ( A 力 尽 

at J 

We further rewrite (5.24) into the following form 

S , ( 『 + 2 一 2un+i + u” + (AtfC'S-^CU''^^ 

= — 去—S'(E，2 _ ；广 1 + E^) + - B广全）+ 2时 1, 

(5.25) 
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where 

2时 1 ：二 { A t f C ^ B f ' - —召广*). (5.26) 
(jLL 

Now we can rewrite (5.25) as 

— 2[7 时 1 + IT^、+ 

广(n+2)Ai 
- -丑广 1) + / C'Bf ds) 

J{n+l)At 
广(n+l)At 3 1 1 

— - 丑广 1 — E^) + / C'Bf ds) + —尺时！ + 2时 1, 
JnAt 

(5.27) 

where 
1 Mn+l)At 

尺 几 : = MCB^'' - / C'Bf ds. 

JnAt 

Multiplying both sides of (5.27) by D ( � + 2 — � ) a n d summing up all the equa-

tions from n = 0 to n = j，for any integer j with 0 < j < A^ — 3, we obtain 

(5.28) 

where 
3 p{n+2)At 

As ：二 — —丑广 1) + / C'Bf ds) 

n{n+l)At 

-(J几+告-5,(丑-五?）+ / C'Bf -
JnAt 

j 
乂4 ：= 尺 时 臺 - 全 + —『)). 

n = 0 

We further rewrite (5.28) into the following form 

(5.29) 
= - U^'Wlr, + — + 乂3 + 乂4. 

Analogous to Lemma 4.4 and Lemma 4.5，we have the following: 
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Lemma 5.3 Assume that C(五几—E】）革 Q for 2 S n S NT— 1. Then there exist 

a constant K independent of h such that 

— E^^Wwr < 別 丨 五 " - ( 5 . 3 0 ) 

Proof. By (3.15) in Lemma 3.5, we have for any u e with u\aQ = 0 and 

{S'u, Du) < K{D'S-^Cu, Cu). (5.31) 

Consider the following auxiliary problem: Find vP'^^ G R^ such that 

= for all interior primal face , � 
< (5.32) 

二 丑ri+1 —五2+1’ for all interface primal edge, 
V 

where 

尸+1 - (At)—1(5几+鲁—B几+ 臺). 
dt 

By (4.23) and (5.3), we have 

C^E时 1 — - - — B几+去）. (5.33) 
(JJL 

Hence, the problem (5.32) has a solution ii时i =五时 i -丑广 i . Now, we solve 

the problem (5.32) in the following way. For each H广 corresponding to an 

primal edge aj in � w e take 二 (丑时i — where (丑时i — is 

a component of — E^^^ corresponding to cTj. Then, with the components 

corresponding to Vt) and T are already fixed, we rewrite (5.32) into the following 

linear system 

GiDiT+i = 6 奸 1, (5.34) 

where 6奸i is a vector containing all the related known components and Gi is 

the restriction of G to Qi. We remark here that in system (5.34), number of 

equations is in general greater than number of unknowns. However, since (5.32) 

has a solution, the system (5.34) is consistent. 



Chapter 4. Spatial Discretization of the Maxwell's Equations 81 

Since the matrix Gi has the same structure as the matrix G, by Lemma 3.3, 

there are O(N^) free variables in the system (5.34). We choose these free variables 

are the interface components with the condition that each component appears 

0(N) times. We can do this since there are O(N^) interface components. Then, 

after fixing free variables, the other components can be uniquely determined by 

solving the system (5.34). 

Putting into the equation (5.31), we have 

Dii奸 1) < C^r^i). (5.35) 

For the left hand side, we have 

(SV̂ +i，L>i2时 1) > (6"e+i，i>r+i)， 

where u denotes a vector having the same interface components and free compo-

nents as ii时 1 and having the other components vanish. So, we have 

> ；几+1 -丑 

For the right hand side, since is the solution to the system (5.34), we have 

Multiplying both sides of (5.33) by we have 

(57几+1，1)'严+1) 

�K(jD'5^-IC(五时 1 时 i)，C(丑时 1 —丑广 奸 告. 

Hence, we obtain the desired estimate. 

• 
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Lemma 5.4 Assume that C�E"" - E^) ^ 0 for 2 < n < Nt-I. Then there exist 

a constant K independent of h such that 

max I丑” — < KWE"" - Ê Ŵv (5.36) 
crjET 

max|£；" — < K\\E'' — E^\\v (5.37) 

Proof. (5.36) follows from the the proof of Lemma 5.3 by choosing all the free 

variables as max^ .̂̂ r I 丑 " " - S i m i l a r l y , (5.37) follows from the the proof of 

Lemma 5.3 by choosing all the free variables as maxo-̂ en — 

• 

In the following theorem, we give the l/-norm estimate for E^ — E^. 

Theorem 5.5 Assume that B G W^^O.T- 门 VF4，i(0, T;丑2(0�))3，f^r 

z - 1 , 2 , satisfies (1.1)-(14), J G andJr e 

Let E'^, 0 < n < Nt — I, be the solution of (5.2)-(5.3) on uniform grids. Then 

under the stability condition 

< (5.38) 

where M2 is the maximum of the ratios of the maximum to minimum edge lengths 

over the union of adjacent elements, and 

2 1 
Q • — 

饥.min(ei，e2)min(/ii，//2)， 

we have 

max 
0<n<NT-l 

2 2 

||B||vi/2,i(0,T;H3(n,))3 + ^ ||B||^4,i(o,T;ij2(n,))3 (5.39) 
r=l r = l 



Chapter 4. Spatial Discretization of the Maxwell's Equations 83 

Proof. By considering (5.29), we divide the proof into three parts, 

(i) First, we have 

- [/•HI)) 

From elementary linear algebra, we know that is the 

largest singular value of the matrix D ^ C . By the Gerschgorin's 

theorem, 
3 

, 1 1 . 1 1 4 ,max“-( / i“ ) i� 
< 一(；^―——产x( . 二 5 ) , 

min(ei, €2” min(/ii，/i2) 2 min^ [tiij) 2 

where max^j and min ĵ are taken over the union of adjacent elements. From the 

definitions of c饥 and M2, we obtain 
[/奸 2 — [/•HI)) 

< (At)2 二 II 炉 炉 + 2 — f；州丨丨� 
— mmij[hij) 

< At 2 妳;；"、(II 妒 2 _ 炉+1丨丨2败,+ ^AtnU^-'Yv)-

~ 3 

(ii) We now estimate 乂3. By the definition of J^+i, we have 

户+t — —五广 1) + / C'Bf ds 
二 / {J-S'^^C'Bf) ds 

J{n+l)At "力 

广(n+2)At 
= f ds. 

J{n+l)At 

Similarly, we have 
n{n+l)At 

J^+2 — - + / C'Bf ds 
JnAt 

p{n+l)At 

二 fds. 
JnAt 
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Observe that 

/ fds- fds 
J{n+l)At JnAt 

=(/ fds- Atf{tn+i)) + (At/(Wi) — / f ds). 

J{n+l)At JnAt 

By virtue of the Taylor expansion, there e x i s t G ((nH-l)At, (n + 2)At) such 

that 

广(n+2)At 1 fj „ 

«/(n+l)At 乙 肌 

Similarly, there exist g (nAt, (n + 1)At) such that 
广(n+l)At 1 f] 1 

At/(Wi) - L f = 
So, we rewrite Az as 

n = 0 

Also, there exist rf+i G C {nAt, {n + 2)At) such that 

and consequently 

乂3 =亡(A,)2(|/(7f+l)，專…—『))• 
n = 0 

By summation by parts, we have 

乂3 二(A力州)，IW州)+ 轉 》 ] 、 , D I P , 

J 

—；^(At)2(|/(”奸 1)-盒/(”,— 
n=2 

By Lemma 4.3, Lemma 5.3 and Lemma 5.4, we follow the same proof as in 

Theorem 4.5，then the following can be proved 
7 2 

r二1 
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Consequently, we obtain 

(|/(ry)+i)，iX7 奸 2) 

<Kh^ max 
— 2<n<iVT-l 

2 

X ( y ^ ||B||viA2,i(o’r;ij3�+ ||J||î 2,i(o,r;iy2(n))3 + ||Jr||M 2̂’i(o,:r;丑3(r))3). 
r = l 

Similarly, 

⑷ ,皿 " + 1 ) 

<Kh^ max ||�||v 

2 

X ||B||HA2,i(o,T;/f3(n̂ ))3 + ||J||i4̂ 2,i(o,r;if2(f2))3 + ||Jr||w2，i(o,r;丑2(r))3). 
r = l 

By the definition of integral, we have 

> ’ — ( 作 

Following the proof in Theorem 4.5, we obtain 

<Kh\Y, |BU3(n.)3 + \J\HHnr + Whhd^WWV. 
r=l 

So, 

n二2 
j 广严 2 

<Kh ^ / ( � , |B|ff3(叫3 + |J|g2(Q)3 + |Jr|ff3(r)3)||『||；/, 

n=2 J f - i r二1 
and consequently, 

n二2 
j rin+2)At 2 

<Kh^ max Ŵ Wv ^ / |B|丑3(0̂ )3 + |J|ij2(n)3 + |Jr|i/3(r)3) 
2诞Nt-1 ^ J{n-2)At 口 1 

<Kh^ max 
— 2<n<NT-l 

2 

X (̂ |B|vî 2’i(o’T;//3(nA3 + |J|M̂ 2,i(0,T;ff2(n))3 + |Jr|M/2，i(o,T;H3(r))3). 
r = l 
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(iii) We rewrite Q时丄 as 

Q 糾 = - ^ / D'Bf ds). 

Hence, we have 
1 /-(n+DAt . 

( 2 " + i ， - tr)) 二 (所+1 / Bf ds), - � ) ) • 

By using the Taylor expansion, there exist f几+i G ((n + At, (n + |)At) such 

that 
1 n{n+^)At 1 

B r - ^ J 台 f d s - ^ A t f •拟C+i). 

So, we have 

(Q"+i，î ([r+2 — tr)) = 力)4(irj ,̂(e+i)，c([r+2 _ t/n)). 

By summation by parts, we have 
3 

n二0 

二 - (A 力)4(zrS,(e‘+i)，C[/7+2) + 

Z 斗 n二2 
Notice that 

2 2 

\Bf\\w < K y B < K B H^nr^-
r=l r = l 

So，we have 

i(At)4(irs,(e+i)，cf/州） 

2 

一 — r=l 
2 

max WlI'̂ Wv ||B||vtM’i(o,T;H2(aO)3, 
2<n<iVj' —1 � “ 

~ — r = l 
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and 

2 

<Kh'^{Atf max— 
_ — r二1 

Similarly, we have 

n二 2 

n—2 ^ 

n=2 Je^-i 肌 

j 广+1 
<Kh\AtY max / ds, 
— \ ) 2 < n < N T - l ^ Jfn-i dt"^ 、 乂 

- - n二 2 J、 

and consequently, 

- 力 ) 4 云/(严)-拟广1))，⑶” 
n = 2 

max 
2<n<NT-l 

(iv) We rewrite as 
3 1 广(n+2)AZ 

TT.誉=AtGTD'[B"}+-2 — 去 / Bf ds). 

Similarly, we have 

= 广 — 去 / Bf ds). 
M JnAt 

So, we get 

where 
3 1 n{n+2)At i i 广(n+l)At 

r+1 := (Bp - 去 / Bf ds) - (B广2 Bj ds). 
At J(n+l)At M JnAt 
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By the Taylor expansion, there exist 暑 G ((n + 1)At, (n + 2)At) such that 
3 1 r(n+2)At 

- 4 - / Bfds 
M Jin+l)At 

1 , 3 1 /•(n+2)At 1 

Also, there exist f^+l G (nAt, (n + 1)A力)such that 

/ Bf ds 
, At JnAt J 

1 1 1 n{n+l)At 1 fiA i 

Hence, 

jn+l 二 jn+l + jn+1^ 

where 

/r+i ：二 — - ( A 力 )2 (劣+L 劣+全） 

At J^^t 24^ 时互乂况4 八 、 ) 

Consequently, we obtain 
j 

n = 0 

j J 

n=0 n=0 

By the mean value theorem, there exist G ((n + (n + |)At) such that 

By summation by parts, we have 
j 

n=0 

i+1 

n=2 
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By the Cauchy-Schwarz inequality, 

( D 7 广 < 

< K l A t f max 
2 

< max ||B(r7 .̂+i)||丑2��)3 
— 2<n<NT-l ^ 

- - : r = l 
2 

< Kh^At max HU'̂ Wv ||B||viM，i(o’:r;丑2��))3. 
一 2<n<NT-l ^ 

_ 一 r=l 

Similarly, we have 

2 

一 _ r = l 

By the definition of integral, 
ij 

ds. 
,n — 1 at 

So, 

< / 1 w ^ W w W W v d s . 
n 二 2 n=2一丄 

Consequently, we obtain 

J 

n=2 

<K(Atf max V / | | - — d s 
- � ) 2 < n < N T - l ^ Jrjn-I d t 各 , 

n=2 'I 

j 广州 2 
<Kh^At max V / V 1 ) 3 ds 

2<n<NT-l V - i f ^ dt头 � ) 
n=2 I r = l 

2 

一 — r = l 
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By the definition of I严 ,w e have 

(L>'J2^C(�+2 —『)） 

1 n{n+2)At 1 

1 广(n+l)At 1 ； 1 

Hence, 

1 广 (n+2 )At 

J{n+l)At 饥 

1 r{n+l)At 
+ 丄 I I涵召,�|| ,||�+2 -� IMS 
1 r(n+2)At q4 

< — (Atf max / \\-7^Bf{s)\\w ds. 
—24、 ) 2<n<Nr-l • J * dt 各 八 ) 

Since 

I I ^ B / � I k < — 
r = l 

we finally obtain 
j 

|[(D'J2n+l，C(tr+2-�))| 
n = 0 

1 j n{n+2)At 2 

S 豆 ( A 力 2 〈 微 》 L � 3 ds 
- — n = 0 ^ ^ ^ /“二工 

1 2 
S 豆(A 力)3 2<3 眾-1 E 丨丨 B"̂ 4̂’i(。，T;if2 �� 3. 

— _ r = l 

Collecting terms in (i)-(iv), we obtain the desired result. 

• 

We now give our main estimate in this section. 
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Theorem 5.6 Assume that B G T; H Py '̂i (0, T; E G 

fori = 1,2, satisfy (1.1)-(1.4), J e and 

Jr G 1^2,1(0’ T;丑3(r))3. Let (五几，0 < n < Nt - 1, be the solution of 

(5.2)-(5.3) on uniform grids. Then under the stability condition 

(5.40) 

where M2 is the maximum of the ratios of the maximum to minimum edge lengths 

over the union of adjacent elements, and 

2 1 e •———— 
饥• min(ei,e2)min(/ii,//2), 

we have 

max —五 + 
0<n<NT-l J 

2 

r = l 
+ ||J||w^2,i(0,T;i?2(r2))2 + ||Jr||M^2’i(o,T;H3(r))3). 

(5.41) 

Proof. From (5.3), we have 

- B 奸 + AtCE^+i = 0. 

So, 

— B 广 • ） — - B广”）+ —丑广）=尸+1, (5.42) 

where 

From (4.23)，we rewrite P奸 1 as 

• 1 1 厂 … + 1 ) 八 亡 . 
奸 1 二 _ Bf ds). 

M J{n+^)At 
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3 1 

Multiplying both sides of (5.42) by 鲁 - B p ) + ( 妒 - B产)）a n d 

summing up all the equations from n = 0 to n = j, where 0 < j < Nt - 2, we 

obtain 

- — B广誉)） 

j 
= — - - B 广 + —召广全))） 

n二 0 

+ - + ( B 奸 * — 5 广 * ) ) ) . 

n=0 
By the Cauchy-Schwarz inequality, 

I — -五r" i ) ’D ' ( (B时暑—B广誉）+ (B时I - 5广1) ) )| 
n-0 

Nt-2 3 1 

<At ^ II丑时 1 - — Bplk + — BplM 
n-O 

<K max J^ l̂lv max -
— 0<n<NT-l 0<n<NT-l � 

where the last step follows from the fact that 

Nt-2 

Â  ^ 1 < K. 
71 = 0 

Since 

1 r{n+l)At 

& 广 - — / Bf ds 

defines a bounded linear functional which vanishes for any linear functions, so 

/ Bf ds\ < K(At) / \Bf\ ds. 

By the Cauchy-Schwarz inequality, 

- / - Bf ds\^ < K(Mf / ds. 
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Hence, 

i=l 
广(n+§)At Fi — 

< K{Atf / E 湖 S / l ? 心 

r{n+l)At 2 

J(n+全)AZ 口 1 

Consequently, we obtain 

Nt-2 NT-2 
^ < {Nt - l)HJ2 IIS-i广+i‘）全 

n=0 n=0 

Nt-2 广(n+|)At 2 
/ E i B i W 

n=0 口 1 
2 

< Kh2 ^ |B|丑3(o，T;H2(f̂ r))3. 
r二1 

By Theorem 5.5, we have the estimate for 全一 

Now, we give the estimate for E"^ - E^. For any 0 < n < Nt - I with 

C(五几一E^) / 0, by Lemma 3.5, we have 

II丑n —五elvK' < KWE"" - Ê Wv. 

Hence, by Theorem 5.5, we obtain 

WE'^-E^^Ww 
2 2 

+ ^ ||B||Ĥ 4,i(o,T;H2(n̂ ))3 (5.43) 
r=l r=l 

+ l|J||w 2̂,i(o,r;if2(n))2 + ||Jr||v̂ 2̂’i(o,7̂ ;̂ 3(r))3). 

For any n with — E^) = 0, the proof is complete by proving the following 

Lemma 5.5. 

• 
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Lemma 5.5 Suppose that B G H^Qr))' andE G H^Qr))', 

for r = 1 ,2， i s the true solution of (1.1)-(14)，and that J G W^^^^.T] 

and Jr G Let 五几 be the solution of (5.2)-(5.3) on uniform 

grid with C^E"" — E二 = 0 for all rn < n < n?. Then 

max WE"" -E'^Ww 
n\<n<n2 

2 2 
<Kh?(^ ||B||Ĥ2,i(o’r;丑3…r))3 + ̂  ||E||M/i,i(0,T;i/3(n,))3 (5.44) 

r=l r= l 

+ ||J||Ĥ 2,i(o,T;i72(n))3 + ||Jr||Ty2,i(o，r;丑 3(r))3). 

Proof. For any rii < n < n2 with — E^) = 0, by Lemma 3.7, there exist 

伊 e MP such that 

— E^) = 

With the definition of for any ni < n < n2 - 1, we have 

( S , ( � + l — l/n)，D(ir+l + [ / ” ） 二 - U W i ( 严 + r ) ) 

二（p'(�+l — � n )，々n + l + � n ) . 

By Theorem 5.3, we apply a similar procedure as in the proof of Lemma 4.6 to 

V丨 IT^+i and V V , we obtain 

(项 n + l —『)，寧n+1 +『)） 

H s ' m - ih 顺几+1) - ( E } — i h E } 屬 ， 寧 + i n ) 

+ — — {E； — E^)), jD(『+i +『））. 

For n = rii, we have 

(卿ni+l —�1)，寧ni+1 + � 1 ) ) 

=Os'(『i+i _『i)，B;0 几 1+1) + [/几 1+1 - u 几 

_�ni),於ni+1) + ( 5 < ' ( � � + 1 — tT”，iXT”. 
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By Theorem 5.3 and the proof of Lemma 4.6, we have 

(y(� i+ l — [/”，i^([ri+l + yni)) = + l — l/ni)，DU打i) 

+ {S\{E'f — n�})(力恥+1) - {E) - IhE'fXU,蒙 

+ - 五 —(五r —丑 

Hence, for any rii < j < n2 — 1, we obtain 
j 

Y^ - + u,) 
n—ni 

= E - - {E'f - + U-)) 
n=:ni+l 

+ - 五 - {E^ - E：)), + " ” ) } 

+ {s\{E'f — - ( 巧 - 几 一 ) 

+ 广 — — 殿 - D U ’ 

For rii < n < j, we observe that 

{E'f — - {E'f — IhE丨f偏 二 / {E'f- U.E'f) ds, 
J nAt 

and that 
n(n+l)At 

(丑n+1 -丑广 1) — (^n — eD 二 ( 4 - 良） d s . 
JnAt 

By the Cauchy-Schwarz inequality, 

3 

n—ni 
nn2^t • • • 

< max WlI'^Ww / {\\E'f - Uh&fWw + \\Ep - Ee\\w') ds 
ni<n<n2 JniAt 
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Consequently, 

( 卯 州 ， 皿 州 ） 

< max / (11^； - TlhE'fWw + - 4 l k O ds 
ni<n<n2 JniAt 

In the proof of Lemma 4.6，we already have the estimate for \\E'f - UhE'fWw' and 

\Ep - EeWw- Also, by (5.43), we have the estimate for DU""'). For the 

remaining term, we estimate in the following way 

( 5 " [ r i + i ， Z X r i ) 引 叫 I k S ( max W W w W ' W w ^ ni<n<n2 

Since C V ^ / 0，we have the desired estimate by (5.43). 

• 

We remark here that Theorem 5.6 shows our fully discrete finite volume ap-

proximation of the Maxwell's equations is second order in W and VF'-norm for 

rectangular domains. So, it is an optimal error estimate. 



Chapter 6 

Numerical Tests 

In this chapter, we apply the finite volume method (5.2)-(5.3) to solve the Maxwell's 

system (1.1)-(1.4) in nonhomogeneous media. It can be seen from the numerical 

examples below that the convergence of the scheme is indeed of second order for 

the considered Maxwell's equations with discontinuous physical coefficients. 

6.1 Convergence test 

Let Q X [0，T] 二 [0,1]^ x [0,1] and r̂ i = |]3. We triangulate the domain Q 

into smaller equal cuboids with No being the number of grid points in each axis 

direction, and divide [0，T] into Nt equal subintervals. We assume the media are 

equipped with the following discontinuous physical parameters: 

0.1 in 0.05 in Qi 
e = , yLt = < 

2 in 1 in 
s. 

To check the accuracy of the finite volume method (5.2)-(5.3), we construct the 

Maxwell's system (1.1)-(1.4) with its exact solutions given by 

—ê t cos(27ra;) sin(27r2/) sin(27r2；) 

E 二 —e^t sin(27ra;) cos(27Ty) sin(27r2：) 

—e^t sm{2nx) sin(27ry) cos(27r2；) 

97 
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-0 .05 cos(27rx) sin(27ry) sin(27r2；) + x 

B 二 一0.05 sin(27ra;) cos(27ry) sin(27r2；) — y 

-0 .05 siii(27nr) sin(27r2/) cos(27r2；) + 1 

We note that both E and B are continuous in Q, but H = ^B and D = eE are 

discontinuous across the interface. We can verify that the exact solution (E, B) 

satisfies the interface conditions 

:E X m] 二 0 , [B . m] 二 0. 

Solving the fully discrete finite volume system (5.2)-(5.3), we obtain the following 

result: 

Nt Nd error ratio 

180 6 0.6166 一 

360 12 0.1777 3.47 

720 24 0.0475 3.74 

1440 48 0.0123 3.86 

2880 96 0.0031 3.97 

Table 1: Convergence rate for the first example 

where the errors are the discrete L^-norm errors between the true solution (E, B) 

and the finite volume solution {E, B) with the norms calculated using (3.2) and 

(3.4), namely 

max lll^^ - E ^ w + 时* - B' I^'Ww]-0<n<NT-l I J J 

From the table above, we see that the convergence rate is approximately O(h^), 

that indicates the second order accuracy of the proposed finite volume method 

(5.2)-(5.3). 
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Our second example is concerned with the Maxwell's system (1.1)-(1.4) with 

the following true solutions 

cos(67ra;) sin(67ry) sin(67r2：) + cos(27ra;) sin(27rt/) sin(27rz) 

El 二 一e兀t sin(67rx) cos(67ry) sin(67r2；) + sin(27rx) cos(27ry) sin(27r2：) 

sin(67ra:) sin(67ry) cos(67rz) + sin(27rx) sin(27ry) cos(27r2：) 

-(e^t + 1) cos(67rx) sin(67r|/) sin(67r2；) + cos(27nr) sin(27r^) sin(27r2：) 

E2 二 一 ( e冗* + 1) sin(67ra;) cos(67ry) sin(67r2；) + sin(27nr) cos(27ry) sin(27r2：) 

—(e兀* + 1) sin(67rx) sin(67ry) cos(67r2：) + sin(27rx) sin(27ry) cos(27r2；) 

where E^ = for i = 1,2, and B is the same as above. In this example, H field 

and the normal component of E is discontinuous across the interface F. Solving 

the system with the finite volume method (5.2)-(5.3), we obtain the following 

result: 

Nt Nd error ratio 

360 12 1.6090 — 

720 24 0.4851 3.32 

1440 48 0.1312 3.70 

2880 96 0.0341 3.85 

5760 192 0.0087 3.92 

Table 2: Convergence rate for the second example 

We see that the convergence rate is 0{h?), which again demonstrates the second 

order accuracy of the numerical method (5.2)-(5.3). 

6.2 Electromagnetic scattering 

We now present a numerical experiment for an electromagnetic scattering problem 

by our finite volume method. Assume that a plane wave source is given on the 
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boundary x == 0. We choose the source as given by 

Ey = sin(47r(x — C2t)), H^ = 咏 2 sin(47r(x — C2t)) 

where C2 二 (€2/̂ 2)―金 is the speed of light in the medium occupied by Q � . N o t e that 

both the electric and magnetic fields propagate in the x-direction. The numerical 

solution of the electric field Ey is shown in the following figure: 
3p 1 1 J 1 1 1 1 1 1 

\ 

\ 

- \ , / - � � � -

1.八 / C \ . 

m^: 
-3! I I I I i I — I — I — I — 
_ 0 10 20 30 40 50 60 70 80 90 100 

Figure 3: Numerical solution of Ey 

where in figure 3 the dotted line, dash dot line, dash line and solid line rep-

resent respectively the snap shots of the electric field patterns at times t = 

0.25,0.5,0.75,1. In addition, the vertical axis denotes the amplitude of the field 

strength while the horizontal axis denotes the position in x-direction. We remark 

that the amplitudes of the waves have been doubled so that it looks clearer. The 

plot in figure 3 corresponds to the pattern of the electric field which does not 

pass through the inhomogeneous part of that is Qi. It shows that the electric 

field propagates smoothly in the x-direction. 

In figure 4，we give the numerical solution of the magnetic flux density Bz 

and we have shown the snap shots of patterns of the magnetic flux density which 

passes through the inhomogeneous part of Q, that is Qi. From the figure, we see 

that the wave propagates in the x-direction, but there are discontinuities when 
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the wave passes through the interface between and We remark that the 

amplitudes of the waves have been doubled and all the notations in figure 4 are 

defined similarly as figure 3. 
31 1 1 1 1 i 1 1 1 1 

�,Yl -
1- A \ ‘ 

；\ / \ N 
0 - I ’ ./• \ r. ••…—…= V"̂  — ^ > 

； � � J \ i � X ^ 
I � . . / V ；I 

- 1 - 、'丨 -\J\ / -

• . . . - \一/ 

0 1 I I I I I I I 1 1 _ 0 10 20 30 40 50 60 70 80 90 100 
Figure 4: Numerical solution of B^ 
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