
RESOLVING HORIZONTAL PARTITIONING AND SCHEMATIC

VARIANCES USING METADATABASE APPROACH

By
POON Koon-hei

M a s t e r O f P h i l o s o p h y T h e s i s
Presented to

The Graduate School

In Partial Fulfillment
ofthe Requirements for the Degree of

MASTER OF PHILOSOPHY

F A C U L T Y OF B U S I N E S S A D M I N I S T R A T I O N

©The Chinese University ofHong Kong, June 2000.

y ^ B ^ S i S V
I p T T i j ^
y ^ ^ UNIVERSITY"""""yM/
N̂gXLIBRARY SYSTEMX>̂ ^ ^ ^ ^ ^

• .

Resolving Horizontal Partitioning and Schematic Variances
Using Metadatabase Approach

Abstract
With the proliferation ofPC-base database systems and advancements in communication
technologies, computing powers are typically decentralized to the front line operations in
modem enterprises. This nourishes the development of heterogeneous distributed
database systems. Data objects are often segmented (horizontal or vertical partitioned) or
replicated over different local systems. Horizontal partitioning is often overlooked
although it is classified as a common phenomenon in these systems. It induces problems
when users retrieve information from horizontally partitioned data objects. Without
knowing that a set of data objects is horizontal partitioned, only partial data will be
resulted and rendering query results incomplete or even incorrect. The problem in
information retrieval from horizontal partitioned data objects can be further complicated
when structural differences such as level of abstractions and schematic variances exist
among these data objects. Many database integration methodologies or approaches have
been developed since the 80s,. The main objectives for these methodologies are to
facilitate information sharing (e.g. global query) in the heterogeneous distributed
environment. These existing methodologies are either ignored or overly simplified the
horizontal partitioning problem on retrieving information from local systems. In this
study, we extend a system integration methodology, the Metadatabase approach, with the
capability to retrieve and integrate information from horizontal partitioned data objects.
The Metadatabase approach has many favorable features such as allows local autonomy
and provides adaptability while facilitating interoperability among local systems.
Specifically, we characterized horizontal partitioned data objects using metadata, which
are subsequently modeled and included in the existing Metadatabase. Methods, which
utilize this set of new metadata, for processing global queries against horizontal
partitioned data objects are developed.

2

香港中文大學

決策科學及管理經濟學部

工商管理學系

哲學碩士論文

KJlMetadatabase
方法解決平行劃分及結構差異問題

撮要(BIG-5)

網絡通訊技術發展及以微電腦為基礎的資訊系統的普及，利於現代企業把大量的計

算資源下放到前線作業中。這無疑提供異構型分佈式數据庫系統一個理想的發展環

境。在分布式環境中，同義的資料物件難以避免地分別儲存於不同系統中，這現象

稱為平行劃分。縱然資料物件的平行劃分被歸類為此等系統的基本問題,但在過去

的研究中這問題往往被忽略.本文放棄了被平行劃分的資料物件皆具有相同結構的

假設,進而把資料抽象層面和結構差異放在平行劃分的範圉內進行分析并揭開了這

系列問題筒單的面紗.自八十年代開始至今，學者門開發了不同的數据庫整合方法'

此等方法目的為提供分佈式操作環境，容許本地系統自主，增加系統的兼容性和改

善資料保安等等。主流方法為：整体架構，聯合資料庫管理系統（?08%3)及多資料

庫語言。整体架構放棄了本地系統的自主。FDBMS得功能极為倚重其所選的共同資

料模型。多資料庫語言剣要求用戶對各個本地系統有所了解。其中Metadatabase放

棄了慣用的整体架構而採用融合架構資料和總体知識整體模型，從而獲得更高的彈

性及透明度.但其原型未有顧及資料物件的平行劃分問題,故本文所提倡的解決方案

將以他 tadatabase為實現對象.結果證明在有限改動下，解決方案可以融入M e t a d a t a

6336的體制內并對資料物件的平行分問題實現較以往全面的解決方案.

3

T A B L E O F C O N T E N T S

C H A P T E R 1 INTRODUCTION 6
C H A P T E R 2 LITERATURE REVIEW 13

13

2.2.EXAMPLE SYSTEMS 2 0
2.2.LMultibase 20
2.2.2.Mermai d 23
2.2.3. The Metadatabase Approach ^^ 29

C H A P T E R 3 THE METADATABASE APPROACH 31
3.1.TWO-STAGE ENTITY RELATIONSHIP (TSER) MODEL 31
3.2.THE GIRD 34
3.3.THE METADATABASE SYSTEM IN ACTION 36
3.3.GLOBAL QUERY FORMULATIONS AND PROCESSING IN THE METADATABASE
SYSTEM 37

C H A P T E R 4 PROBLEM OUTLINES FOR HORIZONTAL
PARTITIONING AND ITS VARIANTS 39

4.1 . HORIZONTAL PARTITIONING 39
4 .2 . LEVEL OF ABSTRACTION 41
4 .3 . SCHEMATIC VARIANCES 4 2
4 .4 . SUMMARY 43
4 .5 . THE SCENARIO 4 4
4.6. POPULATING THE METADATABASE 48

C H A P T E R 5 THE ENHANCEMENTS FOR GLOBAL QUERY WITH
HORIZONTAL PARTITIONED DATA OBJECTS 51

5.1. IDENTIFYING PARTITIONED DATA OBJECTS 51
5.2. ADDITIONAL METADATA FOR THE HORIZONTAL PARTITIONED DATA OBJECTS 52
5.3. COMPLICATIONS OF HORIZONTAL PARTITIONING PROBLEM 54

5.3.LLevel of abstraction 55
5.3.2. Schematic variances 5 7

5.4. GLOBAL QUERY WITH HORIZONTAL PARTITIONING DATA OBJECTS 59
5.5. HOUSING THE NEW METADATA 68
5.6. EXAMPLE 72

C H A P T E R 6 ANALYSIS 75
C H A P T E R 7 CONCLUSION AND FUTURE WORKS 78
REFERENCES 80
APPENDICES 84

A. GIRD DEFINITIONS 84
AL GIRD Model 84
A2, GIRD/SER Contents 84
A3, GIRD/OER Constructs 幻

4

A4. Definition ofMeta-attributes 89
B. PROBLEMS REPRESENTATIONS IN RELATION ALGEBRA 96

B1, Horizontal problem 卯
B2, Level of abstraction 96
B3, Schematic Variance ^^

C. DETAILS OF LOCAL SYSTEMS 98

5

C H A P T E R 1
Introduction

Background
In the past decade, information technology and the business world are entangled in a
spiral relationship that fuels each other's development. In this information era, by
knowing more and faster is the key to win the battle in the marketplace. As a result,
information systems are the most important applications which businesses rely on. The
decentralized structure of a modem enterprise and the proliferation of PC-based IS
applications nourish the existence of distributed information systems. Hence, corporate
database systems no longer are housed at the tip of the pyramid of the company hierarchy.
Departmental databases are very common in modem multinational enterprises to allow
flexible management and speedy accesses.

When the monarchic power of information system management is decentralized,
individual systems often evolve independently. This is a natural way for individual
systems adapting to the local requirements, especially for coping with the ever-changing
business needs. Consequently, these systems are further away from the original unified
database design schematically and semantically. Local systems inevitably become
heterogeneous in terms of hardware, software, or even schematic database designs.
Hence, management's privilege to have consolidated/summarized information at their
fingertips expires because information is not easily shareable among the local resources.
This kind of information is especially important for executives anchor decision-makers
who would focus on the macroscopic picture of their business.

6

There are three directions to coordinate local systems in a heterogeneous distributed
environment. First, re-establishing a centralized regime that eliminates the distributed and
heterogeneous environment in the expense of foregoing distributed processing and
flexibility. Second, implementing a homogeneous distributed system, which allows
distributed processing but local systems are required to compile to a prescribed system
design. In addition, this class of systems incurs higher costs on synchronizing local
systems and refitting for new requirements. Both centralized and homogeneous
distributed systems require enterprise-wide standardization sacrificing local information
systems autonomy that handicaps flexibility. Third, use a framework with an extra layer
between local systems and global users, which acts as a middleman for transactions on
information exchange and queries from all local system. Therefore, a higher level of
autonomy at the local system level can be sustained without preventing information
sharing. The framework is called heterogeneous distributed database management
systems (HDDBMS).

Information retrieval and horizontal partitioning
Global query is an essential component in heterogeneous distributed database
management system. Users often need to retrieve consolidated information from several
local systems. Generally, an HDDBMS, like an ordinary database management system,
accepts queries from users and translates them into local queries for different local
systems. Local systems will then process the queries and retum results to the HDDBMS
for result integration.

In a distributed environment, semantically equivalent data objects are often segmented
horizontally. Horizontal partitioning occurs when tuples of a relation (i.e. records in a
table) are divided and physically stored in multiple sub-systems. Retrieving information

7

from these systems without knowing the data are horizontal partitioned, the query result
could be incomplete or even incorrect. Despite the fact the horizontal partitioned data
objects may hinder information sharing, there are reasons and benefits for data objects to
be horizontal partitioned.

(1) Hardware/software limitations - data objects are partitioned into to smaller segments
to overcome system limitations andŷ or to reduce
system overhead and recurring costs.

(2) Facilitate distributed processing - production databases, which generate transaction
data, are common on the front-line operations and
data processing can be done at local sites when
data object are horizontally partitioned.

(3) Enhance data availability - users are more willing to utilize information resources if
these resources become handier. Also, the level data
availability can be assured when there is system failure
and/or sabotages.

As a result, horizontal partitioning is concrete and an inevitable issue for information
retrieval in a distributed environment. The heterogeneity of the local systems further
complicates the issue.

As local systems alter and design their data objects with respect to the local situation,
heterogeneity becomes a natural result. Hence, semantically equivalent data object can be
schematically different. For instance, a data object, NAME, modeled and stored at
different levels ofabstraction (detail), such as simply one item NAME in one system and
two items (FIRST NAME and LAST NAME) in another system. Another type ofdesign
variation, which often exists among the horizontally partitioned data object, is schematic

8

variance. These two variations are caused by data modeling preferences and business
needs. Query horizontal partitioned data with the prescribed variations is not a easy task.

Results from existing system integration methodologies
Four major heterogeneous distributed system integration approaches can be summarized
from literature: (1) integrated schema; (2) federated database management systems
(FDBMS); and (3) Multidatabase languages. Different systems developed from different
methodologies have its strengths and weaknesses in solving the problems regarding
information retrieval form horizontal partitioned data objects. Literature on systems
employing integrated schema approaches mainly stress on the method to generate the
global schema from the local system. Due to the structural conformity, the problem is
expected to be easier to be solved in the integrated schema approach. However, the
integrated schema approach are not favorable to dynamic business environment because
its limitations on the local autonomy and adaptability. Multidatabase language systems
require user to resolve the conflicts in each encounter. Intensive user interventions on the
conflicts among local systems are required in this class of systems. As a result, it is
regarded as a partial solution to the problem as it provides very limited user assistance and
local system transparency. Various implementations of the federated database
management system employ different common data models. Local systems with different
data models must be mapped to the chosen common data model. So that, the schema
integration is not done to the local systems and hence, a higher level of adaptability and
autonomy can be obtained. Yet, loss might be incurred during the mapping processes due
to modeling capability of different data models. Therefore, they impose assumptions on
schema mappings to reconcile discrepancies in different data models, including mappings
for horizontal partitioned data objects.

9

Both generic and methodology-specified methods for solving this problem were given in
previous researches, they were overly simplified that without considering the
combinations ofthe two complications, level ofabstraction and schematic variances, to be
addressed. The two variants are seldom put under the scope of the horizontal partitioning
because of implementation assumption or limitations inherited from the methodology
andy'or data model. Therefore, it is a different perspective in analyzing horizontal
partitioning with the two variants.

The Metadatabase approach
Metadata are not only used to describe information about data items like in a data
dictionary. In the Metadatabase approach, the functionality of metadata is extended to
convey information about information resources, like hardware and software resources
information, and knowledge about relationships and interactions ofinformation resources
inside an enterprise. With the capability of modeling knowledge, concepts that are
implicitly implied can be modeled. This knowledge can provide more intelligent
assistance to users such that users are save from technical details of local systems. As a
result, information resources can be systematically modeled in the Metadatabase system
and, hence, information resources are more manageable. The approach has the following
strengths: (1) local system autonomy - local systems have the rights to design, to operate
and to evolve according to local needs; (2) system transparency — global users do not
need to deal with sub-systems or not even realize their existence. As the global model has
sufficient enterprise knowledge, the system can provide users' with technical details for
global queries; (3) adaptability - adding new hardware/software and system migration do
not require major re-build ofthe global system; and (4) interoperability - accommodating
heterogeneity while resolving conflicts in data models, data item definitions and data
manipulation languages.

10

Other methodologies might have different balances on the achievements due to limitations
inherited from the methodology employed and/or from the system design and
assumptions. For example, some of them might focus on information sharing by
foregoing local system heterogeneity while the other try to preserve local system
autonomy by giving up system transparency. With all the strengths from the approach,
the prototype of the Metadatabase, however, has not been enabled for retrieving
information from horizontal partitioned data objects.

The proposed research
This paper is to address challenges induced by the horizontal partition data objects in
global query processing in a heterogeneous distributed environment. At the same time,
we need to maintain high levels of local autonomy, transparency, adaptability and
interoperability. Metadatabase approach has strengths that are required and these
strengths are not acquired by other existing methodologies. We believe that the
Metadatabase system can be extended with additional functionality to process global
queries with horizontal partitioned data objects (and its variants). Hence, the proposed
solutions will be materialized using the Metadatabase approach.

In this study, a case is set up, which contains horizontal partitioned data objects and its
variants, for illustration purpose. New metadata are identified by going through a some
exemplary queries with horizontal partitioned data object and/or its variants to the case
system. Then, the current global query processing algorithms are enhanced to take
advantage of these newly identified metadata such that the Metadatabase system can
retrieve information from horizontal partitioned data objects. Enhancements are made
with considerations that the prescribed strengths of the Metadatabase approach must be

11

retained. The set of newly identified metadata is, consequently, incorporated into the
Metadatabase such that horizontal partitioned data objects are properly modeled.

The organization ofthis thesis
The flow of this paper follows: Literature reviews on common database integration
methodologies and the respective methods for handling horizontal partitioning problem
are given in Chapter 2. As the proposed solutions will be implemented to the
Metadatabase system, additional information about the Metadatabase approach is given in
Chapter 3. Then, the horizontal partitioning problem and its variants are revealed,
together with a scenario, Chapter 4. Chapter 5 is centered on the proposed solutions for
the problem and how they are incorporated into the Metadatabase system. Analysis on the
advantage ofthe new methods in comparing to other methodologies will be discussed in
Chapter 6 and, finally, followed by the conclusion.

12

C H A P T E R 2
Literature Review

2.1.Background
The premises of building heterogeneous distributed database management (HDDBMS)
are to address the distribution, autonomy and interoperability problems:

Distribution Distributed databases simply means that information is stored
(distributed) in different database systems. Therefore, a distributed
database can be homogenous if sub-systems share the identical
design, software and hardware specifications. Otherwise, the
distributed database system becomes heterogeneous.

Autonomy Local systems have full control over its system domain like system
design, information sharing and process executions. In addition,
merges and conversions should not be required for a local system
level to participate in the HDDBMS.

Adaptability Evolution of local systems is unavoidable when autonomy is
granted. A HDDBMS must capable to adapt changes in local
systems with a reasonable effort such that it does not require over-
haul when there is any change in local systems.

Interoperability Dissimilarities emerge naturally in an automated environment.
These dissimilarities might occur at any level from design to
implementation of an information system and this is called
heterogeneity. A HDDBMS has to be catered for heterogeneous

13

environments and to make its member systems interoperable to
each other such that they are benefited by their mutual existence.

In addition to these four dimensions we must address to, there are tactical issues to be
resolved different kinds ofconflicts among heterogeneous systems [SL90, ERS98]:

Horizontal partitions It is an inevitable phenomenon in a heterogeneous distributed
environment that semantically equivalent data objects are
horizontal partitioned in different systems.

Naming conflicts Synonyms map a real-world object to different names in different
database systems. In contrast, homonyms map different real-world
object into identical names in various systems.

Scaling difference Fields with identical names and real-world counterparts might be
incompatible due to different in scale, unit and/or frequency. For
instance, US dollar verse HK dollar in price', Zulu time verse local
time in time.

Key equivalence Keys are the identifiers of data objects in database systems.
Equivalent keys might be mapped to different real-world objects
due to autonomy. This renders identifiers invalid.

Schematic variance With different modeling techniques, the domain of a data item a in
system A might be divided into different subsets {b} in the other
system, B (or vice versa). At the same time, the data items {b},
each ofwhich has a domain subset of a, belong to another data item
c in A. i.e. in relational terms, the intension of a data object is in

14

the extension ofthe other one in different systems. In other words,
fields/attributes of a data object is values of an attribute in other
one.

Level ofabstraction The same piece of information are captured at different level of
detail, for example, customer name is stored as a single field in one
system while it is stored as firstname and lastname in another one.

Many researchers had devoted their efforts on formulating methodologies and building
HDBMS systems, which meet the premises, since 80s. This makes modem enterprises
enjoy the synergy and flexibility of localized information systems given networking and
communication infrastructures are entrenched in our society.

The bottom line ofthe integration process is to give users a uniform interface to those data
stored in different databases. No matter a global schema or a model is put in place, it has
to fulfill this need. There are three categories of heterogeneous distributed database
management system architecture [ERS98]: global schema integration [BLN86, Mot87,
BKDV92, SP94], federated databases management systems (FDBMS) [SL90] and
multidatabase languages approach. In additional to that, data dictionary systems are also
included in this analysis.

A global integrated schema is built by either a top-down or a bottom-up approach. The
top-down approach enforces a globally defined schema to all component databases. The
bottom-up approach performs by component databases pair-wise or group-wise
unification and finally come up with the global schema. No matter which route is picked,
every systems under the umbrella of the global schema are assimilated using a uniform
representation in the global schema integration methodology. It provides, obviously, a

15

total integrated and conflict-free environment as of the integration date. Environmental
changes, which are common in a dynamic environment, invalidate the global schema
leading to reworks. It is also questionable whether a global schema can even be achieved
when an enterprise spans over several industries and their business models are conflict to
each other. A fatal drawback of this methodology is that it sacrifices local system
autonomy totally.

Federated database management systems consist of 5-layer (from local to global)
[SL90]: local schemata, component schemata, export schemata, a federated schema and
external schemata. A common data model (CDM) is enforced to all these schemata
except the local schema, i.e. local autonomy can be achieved to a certain extent.
However, (a part of) the schema in each oflocal systems is required to be converted into a
component schema as a premium to join the federation. A FDBMS effectively starts
integration at the component schema level but not at the local schema level. An export
schema is a restricted version ofthe respective component schema such that accesses form
the global level can be controlled. The federated schema combines all or some of export
schemata and it can be further partitioned into several external schemata for different
groups of users. Besides the five schemata, a FDBMS performs auxiliary functions
through different processors: transforming processors, filtering processors, a constructing
processor and a federation dictionary. The transforming processors carry out bi-
directional mapping (with help from the federation dictionary) between local schemata
and the corresponding component schema. Filtering processors screen global service
requests according to access control information specified in export schemata. The
constructing processor distributes global service requests among export schemata and
integrates results from local systems as a response to the request.

16

With the basic structure charted, FDBMSs are further branched out as loosely-coupled
and tightly-coupled FDBMS. The administration rights of the global schema marks the
difference between loosely-coupled and tightly coupled FDBMS [GSC95]. Tightly-
coupled FDBMSs, Fig. 1，are capable to house one (e.g. MERMAID) or multiple (e.g.
Multibase) federated schemata. The centralized administration of the global schema in
tightly-coupled FDBMS facilitates the integration process by minimizing duplicated effort
on setting up a unified data representation; nonetheless, the static nature of the federated
schema(ta) handicaps tightly-coupled FDBMSs dealing with environmental changes.

User User

^ V
1 ^ 1 y~* ； y y- y ^
1 External | Federa ted S c h e m a | Extemai |
1 Schema j (Common Data Model) 1 Schema i $ ‘ z ‘ ~^~"~~

广 ^ ^ ^ ^ ^ \
I" o • f̂ .nn tructing processor"^^^ § |> 厂 ~ ^ Filtering

^ ~̂~̂̂ -_̂_̂名̂̂^̂-̂-̂"“̂ ^ c J processor

，r i ,--, • � - ’
I r • ，--_,• } I • I
1 Export i i Export i j Export j
i Schema i i Schema ， i Schema i Transform Federation
; 1 i j 2 i i N i 1̂) Processor Dictionary

LI A L-� - - ' A '-"-' 4
1 i i s ^ s ^ Sys N

Component Component , • 寒 _ • • • Component
Schema 1 Schema 2 , ‘ “ “ “ * • Schema N

(CDM) (CDM) (CDM) ^ Z “
Sys 1 Sys 2 Sys N

Local Schema 1 Local Schema 2 , • • • • • • Local Schema N
(LDM 1) (LDM 2) (LDM N) 1̂ J^ J

Fig 1. Schematic diagram of a tightly-couple FDBMS

On the other hand, the administrations of federated schemata are delegated to individual
users in loosely-couple FDBMSs [CR93, YOL97, BCDE93, ZSC95]; as shown Fig. 2.
Users are permitted to create their own federated schema through view integration of
export schemata. View integration allows different semantic mappings in different
federated schemata. Lossely-coupled FDBMSs are more adaptive to environment

17

changes as view integration induces less rigidity then schema integration does.
Synchronizing customized federated schemata with local systems evolution become
difficult because more administrators and semantic mappings are involved. Also,
duplicated works on building similar federated schemata are inevitable.

User User User

\ ~ ~ — ， ^ ^ ^ ^ ^ r ^ ^ ^ ^ ^ H K — Y — Y — \
Federated Federated Federated
Schema 1 Schema 2 Schema 3

(CDM) (CDM) {CDM)

\ , i r^c^.^^
\ I i ^nsirucpnajpKj6es^^^^ § | ~ Filtering

C " V \ ° i ^ ^ ^ O ^ " " " f " ^ > ^ ^ V ""芸 y processor

'̂ .̂¾ 义
丨 Export i i Export | | Export
1 Schema j | Schema ’ i Schema Transform Federation
i 1 1 j 2 i I N 1 . Processor Dictionary
！ I I _•. 1 .««_J L—-丨 廬 1 “

； 卞 : | 卞 | T
S ^ Sy^ SysN

Component Component •, • • • • • Component
Schema 1 Schema 2 , • “ • “ • Schema N (CDM) (CDM) (CDM) X X *^

s ^ Sys 2 Sys N
Local Schema 1 Local Schema 2 , - - - - - Local Schema N (LDM1) (LDM 2) (LDM N) 1̂ 人 J Fig 2. Schematic diagram of a loosely-couple FDBMS

Multidatabase language approaches [HBP94, Lit93, Lit94, LMR90] aim to provide basic
constructs such that users can build their own global query over a cluster of databases
systems without having a integrated schema built. These languages extend the capability
of traditional query languages to handle multiple data base environment. The advantage
of these approaches is that participant DBMSs can excises high level of autonomy, even
higher than that in loosely-coupled FDBMSs. Yet, user might be required to re-leam and
understand schemata of local systems every time start a new query session in such
environment because changes have be made to local systems. Therefore, the major

18

challenge of this approach is to help users identifying relationship among interrelated
schemata in addition to resolving schematic and semantic conflicts.

Data dictionary systems have been used for supporting life-cycles ofdatabase systems as
well as database integration like the Information Resources Dictionary System (IRDS)
DK87]. They have shown their effectiveness in management information resources by

using metadata. However, these systems do not incorporate knowledge of interaction
among database systems inside an enterprise. The Global Information Resource Directory
(GIRD) tools a step forward that wields schematic, semantic and knowledge together. The
traditional ER data model is criticized to be incapable capturing semantic information,
which is essential to model interaction among systems in a multi-database environment.
The Two-stage Entity Relationship (TSER) model incorporates semantic information and
knowledge into the traditional ER data model. Hence, the Metadatabase approach uses
TSER to model the GIRD, which is employed as the unified metadata model of the
Metadatabase. The total absence ofaglobal schema and availability ofknowledge model
distinguish the Metadatabase from methodologies/approaches mentioned before. Local
systems and their interactions are model in the GIRD. A global model can be customized
over heterogeneous database systems in an enterprise that masks all heterogeneity from
the users' perspective like a tightly-coupled FDBMS. On the other hand, user-defined
views can be materialized and stored in the Metadatabase similar to a loosely-coupled
FDBMS. It further provides a uniform query language that operates on multiple databases
environment with on-line assistance analogous to functionality provided by multi-
databsase languages approaches as mentioned. Yet, users are saved from knowing
schematic details of local system as the knowledge model will compensate these efforts.
With all the strength embodied in the Metadatabase, this paper will be using it as the base
approach to solve the horizontal partitioning and schematic variances problems.

19

2.2.Example systems
Multibase and MERMAID are chosen to be example systems because both systems are
mature and functionality address to the problems discuss in this paper has been developed
or discussed dedicatedly. Other literature on HDDBMS is either not touched on the
horizontal partitioning problem [SY96] orjust claiming the problem is solved in a limited
scope [PRSL93, LSS94, Chu90] and/or without substantial supporting literature about the
process and methodology [Hua94, PRR91, GSC96，Sou93]. Sketches of the outlook of
the two example systems are revealed here as comer stones for comparison in later
section.

2.2.1.Multibase
Multibase performs database integration by means of schema and language translation
using the functional data model (FDM) as the global model. It employs a three-tier
structure using functional data model [SBD+81, SP94, CH96] as shown in Fig. 3. The
three tiers are (1) the global schema; (2) the integration schema and local schema; (3)
local host schema. The global schema provides users a uniform interface to those local
systems. Multiple global schemata can be defined to materialize different views of local
systems and to satisfy different integration requirements. The local schema are the
receptors of the global system which translate schemata of a local system (local host
schemata) into the global data model. The traditional Multibase [SBD+81] used the
functional data model as the CDM. (There is a modified approach using relational model
in [Hua94].) The schematic design ofMultibase is shown in Fig. 3.

20

Global
Schema

(GS)

yr
广 ^

Global query translator

V y

”
广 ^

Query processor
V ^ ^

i i t *
• •。•_ K. Integration

Local Schema 1 Local Schema 2 Local Schema N schema
(LS1) (LS2) (LSN) (IS)

f Local database V Local database V l o c a l database)
interface 1 interface 2 interface N

i (LDI 1) X (L D I 2) 人 （ L D I N) J Xxx.
Local host Local host Local host
schema 1 schema 2 schema N
(LHS1) (LHS2) (LHS N) Fig. 3. Multibase schematic diagram

The integration schema in which contains information for resolving conflicting data
objects in local systems. Conflicts are resolved by a two-step process: schema and
domain integration. Data integration language (DIL) - DAPLEX [Shi81] is provided to
map local data objects into the local schemata so that they are represented using CDM
before schema integration. Local schemata are further mapped into the global schema
using the DIL. Inconsistency and conflicts either resolved by altering LHSs into uniform
representation or by mapping information stored in the integration schema (IS). Functions
can be written in DIL to handle vertical, horizontal partitioning and schematic variances
[SBD81+]. Domain conflicts are resolved by conversion and aggregation functions.

21

Expression functions are used for representing mathematical relations among data objects.
Mapping among string, textual, information can be made by enumerative functions. More
complicated mappings that do not have a direct functional relationship can be derived by
procedural and aggregation functions.

Horizontal partitioning problems are resolved by generalization such that a generic data
object is used to represent the horizontal partitioned set of data objects. Suppose there are
two local schema for keeping employees' data: EMP1 (SSNo, Name, Sal, Age) and EMP2
(SSNo, Name, Sal, Address). A generic entity, say EMP, will be created in the global
schema for generalizing EMP1 and EMP2. There are total three entities in the global
schema: EMP(SSNo, Name, Sal), EMPl(SSNo, Age), EMP2(SSNo, Address). In order
to show EMP1 and EMP2 are “subclasses，，to the EMP, two ISA-relations are imposed to
signify relationship among these three entities as shown in Fig. 4.

/ H X
ISA ISA

X X
EMP1 EMP2

w w
Fig. 4 Generalization ofEMPl and EMP2

By using the generalization method, horizontal partitioned data objects are partially
represented by a "superclass". Attribute (functions in FDM) set of the superclass is
determined by the intersection ofthat of all partitioned enmities. Any residual attribute in
the partitioned entities that cannot be represented by the superclass has to be represented
as a separate entity with a ISA-relation pointing to the superclass. As a result, both EMP1
and EMP2 still exist in the global schema after generalization. Therefore, only those
common attributes o fa set ofhorizontal partitioned data objects can be retrieved when the

22

superclass is targeted, hence, the global schema cannot make all local partitions
transparent to users.

All the functions defined in the functional data model are entity-specified that make
complex global data object difficult to be maintained. When there is any change to local
schema, all related functions and methods have to be rebuilt. For huge global schema
where there are a lot of horizontal partitioned data objects, efforts paid in updating old
functions will be enormous. Under such circumstance, necessary changes are inhabited or
prolonged system life-cycle invalidate changes such that the system adaptability is
crippled.

2.2.2.Mermaid
Mermaid is a front-end interface on a group ofheterogeneous database systems [TBD87].
Its schematic diagram as shown in Fig. 5. The primary objective is to allow is retrieve
data from different local systems with a standard interface. Updating local databases in
Mermaid is a trivial case, only one database at a time, as data entries are assumed taking
place at local system. There are two global query languages are currently supported in
Mermaid: SQL, for relational schema, and ARIEL, for semantic schema. A highly
structured distributed intermediate language (DIL) is used as the communication media
among all parties in the system. However, a translator for each node of the system is
required to translate between the global and local query languages. New global query
languages can be adopted if a corresponding translator is developed. A basic set of query
function is defined in DIL. Therefore, the system only support local systems have the
defined function set, i.e. DIL can be translated into local query language; otherwise the
local system will be dropped. The global schema is/are stored in the Data
Dictionary/Directory (DD/D) using relational model in Mermaid. There might be

23

multiple global schemata defined to fulfill different integration needs but they must be
stored in different DD/Ds. Besides schematic information, system and physical
information of local systems are stored in the DD/D as well to facilitate query
optimization process. Data translation is required ifthere is any discrepancy between the
data representation in the global level and the local systems. For instance, unit and scale,
grouping, etc. Two types of mapping can be applied on the conflicting data: functional
and enumerated mappings. In order to create the global schema, local schemata are
converted into relational model; and then, local schemata are unified by schema
translation methods given in Mermaid.

24

',二「:::、、、、、 / ' ' ' "ARIEL、、，
i SQL In te r f ace i 、、mterface)
、、、 一 ' ' ' 、、、———_i—‘ ‘

^ ^ 4 ¾ ^
f G loba lquery^ f G l o b ^ u e r 7 ^ CGlobal q u e r y)

language language language
Urans lator 1 b J l^translator 2 b J y rans la to r N a J
r G l o b a l q u e r y 、 f Global q u e r y) CGlobal q u e r y)

language language language
^^translator1a J ĴransTator 2 a J y rans la to r N b J

Global Global , • • • • • Global
Schema 1 Schema 2 • “ • “ Schema N

^ S 7 > 7 ^
DD/D 1 DD/D 2 DD/D N

^ ^ ^ ^ " ^ ^ ~ f " " ^ ^

1 i *
~~Translated~~ Translated Translated
local schema 1 <——• local schema 2 < • local schemaN

(Relational) (Relational) (Relational) |

^GIobaMocal S ^Global- local S f Global-local)
language language language

i^translator 1b J !^translator 2b J ^J rans la to rNbJ

r G l o b a l - l o c a l 、 f Global- local^ f Global-local ^
language language language

\^translator 1a J l ^ t rans la to r2aJ ^translator Na—

Local System Local System . , Local System 1 2 . - - N
Fig. 5. Schematic diagram for MERMAID

At the relation level, vertical and horizontal partitioning, projection, one-to-many and
many-to-one relation mappings can be resolved by methods provided.

Horizontal partitioned data objects in MERMAID are classified into four categories: local,
replicated, fragmented, dependent fragmented. Local data objects exist in one and only
one site are local; exist in multiple sites in form of duplicates are replicated. Those
fragmented are horizontal partitioned data objects with disjoint partitions, i.e. it is
assumed that there is no overlap among partitions. Dependent fragmented data objects are

25

a group of functional dependent fragment data objects. Query optimization regarding
horizontal partitioned data objects are discussed in [CBTY89]. The proposed algorithm
tried to move "fragments" involved in the query into one processing site, where the query
result will be generated, and perform union before further processing [RPR88, CTBY89 .
The algorithm took processing and transmission times (costs) into account and tried to
minimize them giving shortest query respond time. There are seven steps in processing
queries targeting horizontal partitioned data objects. (1) The algorithm first applies all
selection criteria to all fragmented relations wherever applicable. As a result, the data
volume to be transferred can be reduced. (2) A heuristic is applied to select fragmented
relations to process sites so that the sum of transmission and processing times is
minimized. Replicating some of fragmented relations to the processing sites might be
required. (3) Semijoins are applied to relations located in the same site to further reduce
data transmission time. (4,5) Fragmented relations are move to respective processing site
determined in step (2) and process the query in parallel. (6) Results from different
processing sites will be assembled at the result site where the query was first issued. (7)
Aggregation, eliminating duplicated records and formatting for output will be done at the
final step at the result site.

2.2.3.The Metadatabase Approach
Metadatabase employs Two-Stage Entity (TSER) Relationship model as the data model.
TSER is developed as a modeling tool for complex information modeling. It is capable to
model both functional and structural model of information resources in an enterprise.
Both models are modeled separately and integrated in the later part of the integration
process. After local systems modeled using TSER, they are transformed into metadata
and stored in the Global Information Resources Dictionary (GIRD). The GIRD combines
semantic, schematic, facts (static) and knowledge (dynamic) information of all the local

26

systems. (Refer to appendix A for the GIRD model) Facts and knowledge are used to
synthesize rules regarding inter- or intra- local systems operations. Metadata about local
systems together with knowledge and rules stored in the GIRD become the Metadatabase.
Therefore, global schema does not exist in Metadatabase. Local systems and knowledge
about their interactions are fused together in forms ofmetadata, and hence, a global model
about information resources inside an enterprise is established. Without the constraints of
schema transformation a higher degree of transparency and autonomy in local system can
be obtained.

Besides, there are three addition components in the Metadatabase system other than the
Metadatabase itself [HRY+92]. (1) The Metadatabase management system (MDBMS)
provides required functionality to maintain and utilized metadata stored in the
Metadatabase. In addition, it acts as an interface for the two following components to the
Metadatabase. (2) The information base modeling system (IBMS) is a CASE tools
helping users model and maintain the information resources in an enterprise and fmally
the GIRD is populated with proper metadata. (3) The rule-oriented programming
environment (ROPE) interface the MDBMS and local systems. It helps implement and
enforce knowledge on interaction among local systems. It is implemented as a software
shell that monitors any local system activity that is significant to the enterprise as a whole.
As a result, overall system consistency can be ensured. The schematic diagram as shown
in Fig. 6. The Metadatabase can also be deployed in a distributed environment for large
enterprise.

27

Locai Local Local
Application Application , - - - - Application

1 2 N ^ ^ > ^
Rule-Oriented

Information Base Programming
Moldeling System Environment

(>BMS) (ROPE) ^ ^ ^ " ^
Metadatabase Management System

j
Data Items Mdoels Rules

Metadatabase

Fig. 6. Schematic diagram for the Metadatabase system. (Taken
from [CRY+92])

The Metadatabase system has three modes of operation. They are passive, semi-active
and active mode. In passive mode, the Metadatabase is as simple as an information
direction of local systems. The Metadatabase system is not necessary connected to the
local systems. Rules for resolving conflicts among sub-systems are not required because
only information regarding sub-systems, not data stored in them, can be retrieved by
users. A global query system is an addition feature ofthe Metadatabase system in semi-
active mode. That allows the Metadatabase system interacts with local systems and
processes users' queries on data stored in sub-systems with on-line assistance on query
formulation. Operations are carried out and monitored by shells built around each of local
systems and the Metadatabase system itself. Shells are built on top of respective systems
using local development tools and pose no intervention on local operations. Rules for
resolving conflicts on data items and assuring consistency across systems are

28

implemented in this mode. These shells also provide a foundation for the active mode of
the Metadatabase system. In the active mode, knowledge of sub-systems is formulated as
rules in the system that enhances the control of the overall operations. There are two
sources ofmles: (1) from direct inference ofthe model and (2) from users. The system
provides utilities for rule generation from both sources. In addition, utilities for rule
implementation and maintenance are also provided. As a result, adaptive ways for sub-
system interactions are achieved because rules change automatically as the model changes
or as per users' requests.

For the objectives listed at the beginning of this chapter, the Metadatabase system
provides comparably better solutions than other methodologies as discussed in previous
sections. However, the system does not cater for the horizontal partitioning problem. It is
a natural consequence for the original idea ofthe Metadatabase is for computer integrated
manufacturing environment that horizontal partitioning problem is not common.

2.3.Summary
The federated database management systems approaches have substantial improvement
form the integrated schema approaches. Schemata of local systems are preserved in
FDBMS approaches in most cases. This increases the level of autonomy. As mappings
from the local schema to the component schema are required, there are occasions that
functional and data model incompatibilities among the local systems and the federated
systems. To resolve such situations, local systems have to be changed accordingly or
leave those systems out of the federation. Loosely-coupled FDBMS approach is in tum
more adaptive and flexible than the tightly-couple counterpart. The adaptively and
flexibility are given by the user-defined federated schemata. Yet, without coordination,
duplicated efforts are inevitable. The formulation process, however, required extensive

29

knowledge about local systems and the common data model. For actively changing
federations, recurrent efforts must be paid for updating user-defined federated schemata.
Hence, users cannot avoid dealing with local systems repeatedly. Drawbacks ofFDBMS
is rooted in schema mapping from the local schemata in local data model to the federated
schema(ta) in the common data model. The mapping mechanism cannot create additional
concepts that do not schematically exist in local schemata. In order words, functionality
ofthe federation is limited by that oflocal systems.

Different methodologies develop their own methods to recover information scattered in
horizontal partitioned data objects. With different metrologies and data modeling
techniques employed, assumptions and limitations are inherited. MERMAID defines a set
of basic functions of the global system help identify if a local system can be fully
incorporated into the federation. Horizontal partitioned data objects are assumed to be
either replicas or disjoint set despite that does not true for all business models. On the
other hand, Multibase handles horizontal partitioned problem in a more flexible manner
by creating a generic global entity that capture the common attributes of a set of
horizontal partitioned data objects. For those attributes that cannot be generalized, they
are retained in the global schema as separate entities. As both FDBMS in general and its
instances have deficiencies in handling horizontal partitioning problem, new methods for
the problem are worth investigating. The Metadatabase approach is selected to
materialized the improved method on solving horizontal partitioning problems given that
its strengths in achieving objectives for a HDDBMS.

30

C H A P T E R 3
The Metadatabase Approach

3.1.Two-Stage Entity Relationship (TSER) model
TSER is the vehicle to convoy information resources inside an enterprise to the global
model in the Metadatabase system. It is developed as a modeling tool for complex
information modeling targeting both functional and structural models of information
resources in an enterprise. Both models are modeled separately and can be integrated in
the later part ofthe integration process with at least 3NF [HBRY91]. TSER models the
functional model with two constructs: SUBJECT (SE) and CONTECT (SR). A SE stores
database views and their functional dependencies while a SR keeps relations and
interaction among SUBJECTs.

Construct Primitives Description
SUBJECT Contains data items Represents functional units

(SE) (attributes), functional of information such has user
dependencies (among data views and application
items), intra-SUBJECT rules systems, and is analogous to
(characterized by data items frame or object. Triggers
belonging to a single and dynamic definition of
SUBJECT), and class items are examples of intra-
hierarchy (generalizes and SUBJECT rules.
aggregates SUBJECTS).

CONTEXT Contains inter-SUBJECT rules Represents interactions
(SR) (characterized by items among subject and control

belongs to different knowledge such as business
SUBJECTS), typically rules and operating

Oincludes directions of flows procedures and is analogous

• for logic (decisions and to process logic. control) and data I (communication, etc.) |

31

Construct | Primitives | Description
Note:

(1) The full contents (as applicable) must be specified for all SUBJECTS at the leaf level ofthe
SUBJECT hierarchy. The class hierarchy implies integrity rules for applications, but its presence is not
required.
(2) Rules are constructed in the form of(a subset of) predicate logic where all clauses
must only consist ofthe logical operators and the data items that have been declared
or defined in the subjects, excepting certain key words such as do and execute. A data
item may be defined to represent an executable routine, algorithm or mathematical
expression
Table 1. TSER functional model (SER) constructs^
At the structural level, SRs are mapped into Operational Entities (OE), Pmal
Relationships (PR), Functional Relationships (FR) and Mandatory Relationships (MR).
An OE is characterized by a single primary key and is analogous to an entity in ER or an
object in object-oriented framework. A PR has composite keys and connects to either
other PRs or OEs. A FR signifies the functional dependence among OEs and/or PRs. The
arrow is pointing to the determined and the determinant is on the normal end. The
arrow side of a MR called the owned while the normal side is called the owner. A MR
also depicts functional relationship among OEs and PRs with condition that if the owner
does not exist, there will not be any owned.

CONSTRUCTS DEFINITION AND DESCROPTION
OPERATIONAL ENTITY Objects identified by a singular primary key, (Q ^ (optional) alternative keys, and non-prime attribute

PLURAL RELATIONSHIP Association of entities characterized by a
(PR) composite primary key and signifying a

Omany-to_many and independent relation.

^

1 Taken from [HBRY91]

32

CONSTRUCTS DEFINITION AND DESCROPTION
FUNCTIONAL RELATIONSHIP A many-to one association that signifies (FR) inheritance relationships. FRs represents the

referential integrity constraint implies by the
existence of foreign keys.

- � The arrow side is called the determined and
N , z � � � � � � 1 ^ points to either an OE or a PR, while the

^ � � � � ，，z� ^ other side is called the determinant and is
� � � � z also linked to either an OE or a PR. The

primary key of the determined side is
included as a non-prime attribute (i.e. a
foreign key) of the determinant side.

MANATORY RELATIONSHIP A one-to-many/zxeJ association ofOEs.
(MR) MRs represents the existence-dependency

1 ^ ¢ ¢ ^ ^ N constraint.
^ ^ The "1" side is linked to the owner OR while

^ ^ the arrow side points to the owned OE.
Note:
(1) In both top-down design and reverse engineering, the OER model is typically

derived automatically from the SER model by using the TSER normalization
algorithm.

(2) While there usually are multiple SER representing different views or application
systems ofan enterprise model, there always exists only one integrated OER
model for the global system

Table 2. TSER functional model (SER) constructs^

Although TSER is in a form of Entity-Relationship representation, it is not restricted to
model ER-based systems. Among all information resources in an enterprise, each of
applications is modeled as a functional view. Each of those functional views is further
broken down into sub-views as an application might provide multiple functions. Then,
the corresponding structural views are derived from functional sub-views. Finally, views
are integrated into the global model, which represents information resources of the entire
enterprise under the scope ofthe system. The building the meta-model of an enterprise is
shown in Fig. 8.

2 Taken from [HBRY91]

33

Enterprise rZ^^^
Application 1 Application 2 Application N

I i •
Functional Functional , • • • • Functional

view 1 view 2 , “ “ ‘ “ view N

i ： // /7 //
.-:••I • ^ i ^ 1 ^ , I r = ^ ^ ^ ^ ^ [7 ^ ^

I I f
i Functional ' Functional • • • J Functional

L yiew1.1 L yiew2.1 , ' ‘ ^ " yiew N.1
i L_ L_ ^

|l.....J]^^ r p 4 ^ F=^4=^, i 7 = ^ |
i • Data models/ n n

t ^ Metadata Structural view Structural view Structural view
H Li.i L , 2.1 . - • " L - N.1

^ .::¾>... L \:.. ‘ 4..:.......二 ^ ^ ¾ > ^
Global integrated stmcturual model

Enterprise Model —

Fig. 7. TSER as a meta-model for information modeling (Taken from [HTTB93])

3.2.The GIRD
Functionally, the meta-model comprises of four views: (1) Application; (2) Functional;
(3) Structural and (4) Resources. Among these four views, contextual information, inter-
relations of views, is modeled according to literature, target modeling paradigms and
empirical studies. The four views are built by TSER constructs and that streamlines the
consolidation process for forming the GIRD.

34

The Application view gives a high-level abstraction of applications employed in an
enterprise and models interaction among applications and users like users' privileges.
The Functional view models the enterprise at the functional or semantic level. It is
centered on the interaction among context, subjects and data items. Subjects are
component of applications and described by data items. Data items form local systems
are masked by their global counterparts and hide from users' view in the global model.
Rules can be applied when conversion and reversion is needed. Context is the dynamic
knowledge among subjects. The interactions are modeled by rules, as well. Rules are
pooled in the rule base in form oflogical expressions built by Facts (static knowledge) in
the Metadatabase system and they can trigger external functions and procedures.

The Structural view is the structural model for the global model of the enterprise.
Metadata about global entity-relationships, OE and PR in TSER terms, are stored in the
GIRD for binding local data objects logically. Local integrity constraints are modeled by
FR and MR as integrity of global data objects so that those constraints are preserved at
the global level. Global data object can be mapped to multiple local instances in different
application and names. Each of subjects in the Functional view is mapped to a set of
global data objects to which data items are assigned. The Resource view layouts how
hardware and software resource are utilized and maintained in an enterprise.
Applications, data items and computations occupy software resources. Software resources
consist ofmodules and distributed among information infrastructures.

Consolidating the four views forms the GIRD. It is done by merging common constructs
in different views. The GIRD is the schema of the Metadatabase. Metadata of local
systems are populated into the Metadatabase with required knowledge to make the model
functional. The details ofthe GJRD are given in Appendix A.

35

3.3.The Metadatabase system in action
As the Metadatabase is aiming for complex information resource modeling, extra effort
have been paid for providing assistance to users to model operate and maintain the global
model. Information base modeling system (IBMS) is a CASE tool help user model the
enterprise information resources accordingly. Views are defined and manipulated visually
and represented in metadata, which is ready to be populated into the Metadatabase. The
prepared metadata are migrated to the GIRD by the Metadatabase management system
(MDBMS). Like a conventional DBMS, MDBMS interface the Metadatabase with
outside components helping user operate and exploit the metadata stored. Users can
navigate themselves among models, which represent the respective local system, and
discover the details of system(s) without the hassle of physically dealing with local
system(s). It also serves as a global query system (GQS), which can target the metadata
as well as the actual data located in the local systems. On top of the functionality as
multi-database language, with the help of knowledge regarding local system, extensive
on-line assistance can be provided making global query formulation easier. Knowledge in
the Metadatabase are modeled by rules. Rules are either directly inference ofthe global
model or user-defined. They are modeled and programmed by a rule-oriented
programming environment (ROPE). The ROPE interacts with local system and
monitors their operations so that rules modeled inside the Metadatabase can be enforced.

The Metadatabase system can be implemented in three modes. (1) The passive mode
serves as the enhanced data dictionary of the enterprise that the system does not actively
interact with local system. It is also the basic step in building the enterprise model that
enable the system fully functional in the following two modes. (2) The semi-active mode
provides additional functionality on global query system such that users are allowed to

36

interact with local systems through the system. (3) The active mode of the Metadatabase
serves as a coordinator of information resources inside an enterprise that facilitate
interactions among local systems. Global rules are enforced making information are
consistent through out the enterprise; i.e. the same identifier gives the same real-world
object with consistent data items describing it. As a result, users can enjoy the synergy of
integrated information resources at the global level.

3.3.Global query formulations and processing in the Metadatabase system
For the solution proposed in later chapters, modifications are mainly on the global query
processing, a process in the global query system. A summary on the current global query
processing will help us pinpointing what and how modification(s) to be made.
Enhancements to the current Metadatabase for solving the problems will be based on the
outlines given in Chapter 4.

A formal global query is specified as the following [CH96]:
GQ ::= (A, D, <C> I <M>)
Where,
A is the set of data items specified by user and determined automatically by the

MDBMS (ifnecessary).
D is the domain ofthe global query. The MDBMS will determine the required data

objects for the global query if the user does not specify all the required data
objects during global query formulation.

<C> is a set of selection conditions and/orjoin conditions.
<M> are system metadata that minimally required by the global query.

The existing Metadatabase GQS has following steps:

37

Global query formulation Users can transverse through models in the enterpnse
visually, select items and specifies selection conditions with
assistance from the Metadatabase.

Join condition determination The Metadatabase management system will determine joins
if joins are not specified. A minimum set of data objects
will be determined according to the items specified by the
user. Then, the shortest path connecting the minimal set of
data will also be identified.

Globalqueryprocessing The formulated global query in the previous step is
decomposed into a minimal set of local queries that will
sufficient for the required result. Similarly, a minimal set of
file, data objects in local systems, will be determined.

Local query generation Based on the set of files determined and metadata about the
respective system, local queries formulated using local
manipulation language will be generated and be dispatched.

Query execution Dispatched queries will be processed by the local systems.
Query results will be returned to MDBMS for result
integration.

Result integration Local query results returned are converted and assembled to
the global format as the global query result.

These steps will be further elaborated in later chapters when modifications are made.

38

C H A P T E R 4
Problem Outlines for Horizontal Partitioning and

Its Variants
4.1.Horizontal partitioning
When semantically equivalent records are segmented in different in data objects, they are
horizontal partitioned. It can be caused by distributed operation environment, replication
andA)r hardware/software limitations. Regardless of the causes, horizontal partitioned
data objects can be beneficial. Horizontal partitioned data objects facilitate parallel
processing as data objects can be distributed into different systems. Especially for
production databases, which generate transaction data, front-line operations can be easily
distributed into several systems and, hence, improve efficiency. When data objects are
horizontally partitioned, the size of each partitioned can be controlled and alleviate
hardware/software burden making systems more agile andflexihle. Horizontal partitioned
data objects can be distributed and becomes more "reachable "for users. "Supply creates
its own demand'" is a classical economic theory and its also apply to information
utilization. Users are more willing use information resources that are in their proximity
because of responsiveness and availability. After all, using the information resources
during decision-making processes is the only way extract the real business values out of
the information system. Data become more secured when they are horizontal partitioned.
Remote-site replication, a form of horizontal partitioning, allows quick recovery from
fatal system clashes. Other forms will prevent hackers and insidious users from having
the full set ofsensitive data at one spot. Horizontal partitioned data object can be created
by local systems due to local autonomy. In other words, horizontal partitioning problem

3 Say's law - Say J.B. (1821) A Treatise on Political Economy, London: Longmans.

39

is inevitable in and for a heterogeneous distributed environment. It increases the value of
such environment but, at the same time, it poses difficulties in composing the global
views for those partitioned data objects.

Currently, the Metadatabase treats all horizontal partitioned data objects as identical
replicas. Schematically, data objects shares equivalent identifiers or having the equivalent
identifiers as a part ofcomposite key are considered as horizontal partitioned regardless of
the attribute set they functionally imply. There are three patterns of horizontal
partitioning:

^"•—^^^^*^^^^^^^*•^^^^^^^“‘ "^^^"*^^^“ I

1 � . A 'I ^ A M
Y _ ' - ^ ^ M _ — ， _

Fig. 8a Type A Fig. 8b Type B

Three types oiclusters, a set ofhorizontal partitioned data objects, are depicted in Fig. 8.
Type A horizontal partitioning is shown in Fig. 8a and that is the basic form ofhorizontal
partitioning that attribute sets of the cluster are equivalent, not necessary identical.
Overlapping occurs when two or more equivalent keys exist in the cluster assuming
records are consistency in a cluster. Ifboth A and B perfectly overlap to each other, that is
a replication, a special case in horizontal partitioning. Fig. 8b shows the Type B
horizontal partitioning. It is a generalized form of the Type A problem such that members
in a cluster have equivalent identifiers but the sets of data items are only partially
overlapped.

40

There is one more important piece of information has been often left out. That is the
implicit concept that partitions a cluster of horizontally partitioned data objects. In our
physical world, the tags on a file cabin reduce our searching time dramatically. The way
that the tags are put on is the implicit concept that partitions the files in a file cabin. By
the same token, the partitioning concept helps global query services minimizing query
processing time. A partition concept might not exist at local system level. For example,
there is not a field storing which sales center a customer belongs to in both local sites in
our case. It is because the partition concept only matters at the global level. Therefore it
is natural that the concept is not explicitly modeled in local schema. As a result, there is
at least one partition concept that can be applied to a cluster ofhorizontal partitioned data
objects. With all the overlapping partition concepts, it is important to assist users to sort
out complex horizontal partitioned situations especially when the global modeVschema is
huge and complicated. However, these require complete knowledge ofthe enterprise and
its sub-systems and are beyond the modeling capability of an integrated schema. The
problem can be represented in relational algebra as shown in Appendix B1.

4.2.Level of abstraction
Different systems have different reasons for keeping the same information at different
levels of detail to best fit the business environment. It has been called as schema
isomorphism [ERS98] because it only induces structural changes at data object level but
does not affect the overall schema of a system. These variations occur possibly because
of business nature, user preferences, etc. Typical examples are on recording names,
addresses and telephone numbers. Keeping addresses in different segments is more
manageable than in a single field but there is no standard way to break down an address
into different segments and that would cause confusion to users. After all, the information

41

to be stored does not change due to different structures of the data object. Yet, this
complicates horizontal partitioning problems because a Type A problem will be treated
wrongly as other types ofproblems. (Refer to Appendix B2 for the problem represented in
relational algebra.)

4.3.Schematic variances
The schematic variances problems are characterized by difference in partitioning of the
domain of a data item inside a data object. As a result, in relational terms, a subset of
attributes (intensions) of a data object is in the domain (extension) of the other
semantically identical data item in other data object. Visually, we can put customers'
contact numbers in two ways (Fig. 9):

Contacts:
CustNum Phone ContactType
001 1234 “ Office
001 — 8549 Home

K 002 7583 — Office r ^
/ \ 002 - 6582 Home \

P 丨 1 �
\ Customers: y v \V>^ CustNum Office Home / / \ 001 1234 ^ \ /

^ 002 一 7583 ^ N
. . . • . • LL： ... • ‘ • • • •

Fig 9. Schematic variances example |

Both Contacts and Customers are virtually carrying identical information. Office and
Home belong to the domain of ContactType in Contacts. {ContactType might be
determined by an external data object.) On the other hand, the domain of Phone in

42

Contacts is split into Office and Home in Customers. When either one is chosen to be the
global model, there will be field that never can be recovered or that without local
counterpart. For example, if Contacts becomes the global representation, none of data
item in Customers will match the domain of ContactType. Therefore, schematic
variances introduce a complex domain mapping problem to database integration [SCG93,
SK93, DR93]. (Refer to Appendix B3 to relational algebra representation)

4.4.Summary
Horizontal partitioning problem is one of the basic functionality of an HBDBMS.
However, it is often overlooked by previous researches because ofits apparent simplicity.
The simplicity is rooted at the assumption that horizontal partitioned data objects are
having identical structures. This assumption will be released in the next chapter. There
are three types ofhorizontal partitioning identified in the chapter. A Type A problem is
the basic form with equivalent attribute set and possible overlapping in a cluster. A Type
B problem is a generalized form of a Type A problem with different attribute set and
possible overlapping. The Type C problems are equivalent to vertical partitioning
problem. By introducing the partition attribute to model the concept that partition a
horizontal partitioned cluster, we can optimize global query processing by eliminating the
irreverent cluster members. In addition, horizontal partitioning problem is further
complicated by introducing two variations: level of abstraction and schematic variances.
These two variations only exist in the scope ofhorizontal partitioning as shown in Fig. 11.
It is not different from a single database operation if a query does not target multiple
partitions in a partitioned cluster. Data objects with different levels of abstraction cause
confusion in distinguishing a Type A horizontal partitioning problem from another and
rendering query result invalid. Schematic variances occur at the schematic level such that
semantic equivalent data objects are having different schematic representation. Hence,

43

data objects cannot simply be cascaded; complex schema mapping is required when
schematic variances happen in a horizontal partitioned cluster.

Database integration problems

/ Horizontal partitioning X (problem \ ^ ^ ^ ^ ^ ^
Level of Schematic y^^^absto^on \̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^ v^^^^^

Fig. 10. Horizontal partitioning problems and its variations

4.5.The Scenario
For illustration purpose, discussion in this paper will be made around the sales settlement
system of an enterprise. The system consists of 3 local systems: Sales Center A (Site A),
Sales Center B (Site B) and the Head Office (HO). There are modeled using TSER
constructs as the following:

Sales
Center A

Z \ 、 n r ~ " " . ^ ^ X . J Order
Customers < <、、、Issue ,〉 Orders % ^ ^ H a s ^ • Details

z " , � \ �
Product < < 'Con ta in>

1 、、、•'" Fig l la. TSER OER submodel of Site A

44

Sales
CenterB

Z"\、、 ^^^ffX^ J Order
Customers ^ <、Issue > Orders < ^ ^ ^ H a s ^ ^ • Details

< ^ ^ ^ ^ ^ Product 4 < 'Con ta in>

X
Contact

Fig 1 lb. TSER OER submodel of Site B

Head Office

Pujchase I — — < ' ' ' ' ' Has " > Invoice
Order 、、、、、、 , ' " Z

< " H a O — — 二 ~ ~ < 《 。 n t 》 〉 " ^ ^ J Parts H z < B ^
、、、、•"" 、、、、、、-", ^ ^

Supplier <^^^^^^^1^^>

Fig 1 lc. TSER OER submodel ofthe HO

The two sales centers, A and B, (Fig. 11a and 11b respectively) keep their own customer
and product bases and take customers' orders. The order processing sections are identical
in both sales centers. Nonetheless, the schema of the two customer bases are different.
Customers are kept in a single entity with all related information in Site A. Site B keeps
customers' contact information separate from the customer entity so that Site B allows
multiple contact numbers under a customer. The Head Office (Fig. l lc) performs central
administrative processes. Product and supplier information is maintained for logistic
reasons. The HO collects sales orders from the two sales centers also such that invoices
can be issued. Therefore, Purchase_Orders and Order—Details are the unions of their own

45

counterparts in both sales centers. As a result, there are multiple options to retrieve
information form the systems. (Refer to appendix C for details of local system and the
global model.)

The three systems are then consolidated into a global OER sub-model. The consolidation
process done by merging constructs with identical primary identifiers as a single construct
entity in the global OER sub-model [HBRY91].

46

I i
I I 〜

I r A.Orders
] A.Customers | (Subset of

I L _ _ ^ ！“ / - � � � � � HOPO) \ ^ ^
！ 一 • 1 , ' ' ' , 、、、、、、 Purchase_Orders . ^ ^ ^ H a s ^ >

I Customers ^ <、、Issue , � (HO.PO) ^ ^ ^ ^ ^

I .| i 、、、、、''， B ^ J^^
！ B.Customers 1 (Subset of
I 丨 HO.PO)
I I
I I
I t
i__j->—fw — — T ，》 "，—— ——~" ~ ~ ‘ “ ^ r—‘—~~™~~*

,A “、 ‘ ‘ . ^ ^ I ; = e) ^ — ^ y
J

Contacts ~ ~ ^ Z Z Z _ Z Z Z | ~
(B.Contacts) A.Products A.Order_Details

(Subset of (Subset of
HOParts) Z、、、、 |HO.PO_Details)|
Products . . " ' ' c o n t a i n ^ ^ Order_Detai ls
(HOParts) ^ \ ^ ° " * ^ V ' (HO.PO_Detials)

~~B.Produc ts~~" 、、、-''' B.O_Details
(Subset of (Subset of
HOParts) |HO.PO_Details)|

/ ^ o i r \ ^ _ Materials ^ ^ ^ u p p i y " x _ _ _ Suppl iers
^ ^ J O . B O j y p ^ (HO.Materials) S t iO-Sup^JyT (HO.Suppliers)

OER submodel KEY:

| - S a . e | O = ， L - J '̂̂ s：^；：：： '̂
(Sys.E_name)

J I I t • mm III •曙丨 i •‘-—..'

Constructs used in Fig. 12. are TSER constructs as shown in Table 1 and 2 in Section 3.1..
There are normal and floating icons for OEs to distinguish different types of horizontal
partitioning patterns. All the normal icons represent that the local data object is not
horizontally partitioned. There are two types of floating icons showing those horizontal
partitioned local data objects. A floating icon with solid outer box shows that local data
objects (partially) overlap with each other in subsystems. On the other hand, a floating

47

icon with dotted outer box means all the local partitions are disjoint. For example, there
are two partitions of Customers in each of Site A (A.Customer — customer in Fig. l la)
and Site B (B.Customer - customer in Fig. llb). And, there are three partitions of
Products in Site A (A.Product - product in Fig. 11a)，Site B (B.Product - product in
Fig. 1 lb) and the HO (Parts - parts in Fig. 1 lc).

In our case, Purchase_Order, Order_Details and Products are Type A horizontal
partitioned, as the attribute sets of the all members of the cluster are equivalent.
Customers in our local systems are Type B horizontal partitioned. It is because apart
form the equivalent primary keys, attribute sets in the both local systems are partially
overlapped.

Customers are not only horizontal partitioned but also process both level of abstraction
and schematic variance simultaneously. Customers' names are modeled as multiple and
single fields in Site A and Site B respectively. The problem occurs at the data object
structural level and is not shown at the schematic model level. In our global model, we
choose to use multiple-field representation for addresses and names in our global model
regardless of there are different level of abstraction in Site A and Site B. The different
way to model customers' contact number is an example to the schematic variance problem
and it can be identified at the schematic model of the systems. Types of contact numbers
in Site A are modeled by three different fields in the customer entity while contact
information is detached from the customer entity as a separate entity, Contacts, in Site B.
Customers and Contacts has a one-to-many fixed relationship, i.e. a contact number only
exists in Contacts ifit is belongs to a customer exists Customers.

4.6.Populating the Metadatabase

48

Given global OER sub-model, we can populate the related parts of the Metadatabase with
metadata. Application (subsystem) information is kept in APPLICATION. Each of the
OE and PR in the global OER sub-model will be stored in ENT-REL as the global
representation of local data objects and the respective local names will be in NameAs.
Although there are multiple horizontal partitioned data objects exist in subsystems, users
will see one and only one global representation ofeach of partitioned objects in the global
model. Therefore, users are saved form struggling through system form system for the
desired information. Metadata regarding data items in the global and the local OER-
models are populated into ITEM with their respective equivalence metadata in
EQUIVALENT.

However, the assumption behind is that all local objects modeled by an entry in ENT-
REL are identical, i.e. assuming there is no horizontal partitioning exists in the local
systems. When query is launched through the global query system in the Metadatabase,
algorithms are set to minimize number of data object accessed with lowest accessing cost
(time). During the process, horizontal partitioned data objects are treated indifferently
[CH96].

Examples:
Given the global query formulation interface, users can easily launch a query:
SELECT CustName from Customer
The query result should give all customer name inside the customer base should be
returned. However, the current GQS will only retum the set of customers either in Site A
or B, but not all of them.

Considered that the existence of horizontal partitioning data objects is so pervasive in a
heterogeneous distributed environment and the strengths of the Metadatabase discussed,

49

the problem of processing global queries with horizontal partitioned data objects will be
further investigated following the Metadatabase approach. The problems will be
characterized using metadata. The set of new metadata will be included and modeled into
the system along with necessary methods to enable the Metadatabase to resolve the
problem.

50

C H A P T E R 5
The Enhancements for Global Query with

Horizontal Partitioned Data Objects

By analyzing queries on horizontal partitioned data objects in the coming sections,
additional metadata will be identified. Then, methods are formulated to resolve problems
during query processing with horizontal partitioned data objects. Metadata identified
during the two phases will be summarized and modeled into the Metadatabase. Finally,
results from different sections will be summarized in an example to conclude this chapter.

5.1.Identifying partitioned data objects
Currently, the MDBMS is not enabled with the power of detecting horizontal partitioned
data objects. Global queries are formulated by browsing through the enterprise model
with the current query engine. Users might specify required data items in a global query
and left the Metadatabase to complete the query with technical details. The global query
completion phase is to determine necessary components, which are not specified the user,
for the global query. During the global query process phase, a minimal set of local files
will be identified. Once the required set of local files is determined to be accessed,
system-specific selection criteria andjoin conditions are inserted. Then, local queries can
be formulated accordingly and be dispatched to the designated local systems for
execution. In these processes, if multiple data sources are found they are treated as
replicas. In our case model, a global query likes:

SELECT Ord_ID, Amt
FROM Purchase_Orders;

51

It would only result contents from one of three partitioned local files, where data are
stored in local systems. Yet, in our example, there are three partitions exist for
Purcahse_Orders, namely: Order (Site A), Ord (Site B) and Purchase—Order (HO). It is
because none of existing metadata is carrying information of horizontal partitioning
regarding data objects. Therefore, it is the first step to accommodate metadata that would
indicate ifthe local counterparts ofaglobal data object are horizontally partitioned instead
ofreplications ofeach other. The additional metadata is to indicate the global object(s)
selected in a global query is horizontally partitioned.
New metadata required:

Metadata name Data type Description
Partitioned Boolean Indicates if a global data

object is horizontal
partitioned at local systems

5.2.Additional metadata for the horizontal partitioned data objects
As there are different partitions of data objects inside the enterprise when data are
horizontal partitioned, users probably want to specify the partition(s) of data to be
accessed. For this purpose, a global query will be formulated like this:

SELECT Prod_ID, ProdName
FROM Products
WHERE Sales_Ctr = ‘A’；

The user expects the query to result what are being sold in the sales center A as stated in
the selection criteria. In other words, selection criteria are the hints for the Metadatabase
to locate the required partition(s). With the new metadata identified, we know that
Products is horizontally partitioned in three different sites. Yet, it is not sufficient to
pinpoint whereabouts of a designated partition in local systems. Hence, additional
metadata are needed for locating particular partition of data a local files.

52

In the above example, selection criteria with Sales_Ctr only valid at the global level as
Sales_Ctr does not exist otherwise. It is because Sales_Ctr at the local level is implied
by the local system itself. The Metadatabase is capable to model global items that do not
exist in any of local systems as non-persistent items. The global data item Sales_Ctr
models the partition concept that partitions the local files of the global data object
Products. Global data items that model partition concepts are called partition attributes.
Partition attributes are not restricted to be non-persistent items when the required
information is modeled in local systems. The Metadatabase is transparent in making users
not realizing that the additional partition attribute might not exist in the local data objects.
The following query will possibly be launched against horizontal partitioned data objects:

SELECT *
FROM Ord_Detials;
As all data items are selected including partition attribute, it has to be screened out during
the global query process phase to prevent issuing invalid queries to local systems as it
does not exist in local systems. Then, the designated value of a partition attribute to
respective subset of local query results is required to be appended as a derived data item
during the result integration phase.

Partition attributes alone is not sufficient to limit local files will be accessed for a global
query because there is no information inside the Metadatabase that matches the
corresponding selection criteria. Partition conditions are needed to describe which
partition of data is contained in a local file. They are modeled a new metadata using
logical expressions in disjunctive normal form (DNF) because logical inferences can be
easily made with selection criteria.

53

The advantages ofhaving partition attributes and partition concepts in place are two folds:
(1) it limits the potential search space of a global query making the query process more
efficient; (2) it preserves the autonomy oflocal system. With these metadata stored in the
Metadatabase, users can identify how a global data objects are partitioned and where its
partitions scatter in the enterprise by launching queries on the Metadatabase instead ofon
local systems. In order to identify data sources, additional metadata are required to
associate local files to partition attributes and the designated values that validate the
relevant selection criteria.
New metadata required:

Metadata name Data type Description
Partition attribute Numeric Signifying an global item
(PA) Synonym to Itemcode is a partition attribute tat

models a partition concept
Partition condition String To store a set of well form
(PC) formula (WFF) in DNF to

valid selection criteria with
PA involved

5.3.Complications ofhorizontal partitioning problem
In terms of solving the horizontal partitioning problem in previous database literature
would come to an end here as any global query issued against horizontal partitioned data
objects can be handled. The following two sections about the level of abstract and the
schematic variance problems were dealt with as separate issues or simply ignored in the
context ofhorizontal partitioning.

Ifthe two variants are not resolved under to scope ofthe horizontal partitioning problem,
it leads to the assumption that all partitioned data objects are identical in structure. For
production database, those produce transaction data, data objects are often identical
structure. Yet, this assumption is not necessary true in a heterogeneous distributed
environment. For example, customers' names are modeled different in two of the sales

54

centers in our example system. That is very reasonable to model customer names using a
single field for corporate accounts while using multiple fields for other retail customers.
As a result, we need to concatenate firstname and lastname fields in A only when we want
to cascade that to B in which the first and last names are put in a single field, or vice
versa. Similar reasons are valid when we model data object with schematic variances.

5.3.1.Level of abstraction
Different levels of abstraction are the differences in how detail is information stored in
data objects. Using less number of data items to capture the same information is said to
have higher level of abstraction. For instance, customers' name in Site A are stored in a
single field called name while the same information is broken down into two fields,
firstname and lastname in Site B. That is，Site A has a higher level of abstraction on
recording customers’ name. The level of abstraction problem is matter of mapping
between one and multiple attributes.

The current Metadatabase has equivalence information in converting from global items to
local items, or vice versa, stored in the Meta-PR Equivalent. Nonetheless, the Meta-PR
Equivalent that contains equivalence information takes only one parameter when
convertingy^reversing items, i.e. a global item can be only mapped to a single local item at
a time. The current structure ofEquivalent follows:

55

ITEM
ltemcodp ltemname ltemtype App

001 ODJD P A
002 OrderlD P A
003 ltemlD P A
004 Otv P A

� � 5 了 二 1 Equivalent
006 OID P B ^ ^
007 ProductlD P B ltemcoflp Eqltemrnfip convertby reverseby
008 Oty P B ni ^ 013 。。！ 1 4
009 OrdDetlD P HO 01J3 0Q5 2 ^
010 OrdlD P HO 0 1 009 3 6
011 ProdlD P HO
012 Quantity P HO
013 OrdDet_ID P MDB
014 :Ord_lD P MDB
015 ProdJD P MDB
016 Oty P MDB

I ni7 Ralfts r . t r _ m MDB Fig. 13. Example of equivalence information

In Fig. 13, the global item OrdDet_ID (013) has three local counterparts: OD_ID (001) in
Site A, OID (005) in Site B and OrdDetID (009) in HO. All of them are 1-to-l mappings.

When a global query like the following is launched:
SELECT firstname, lastname, street, district
FROM Customer;
There are problems when formulating the local queries for both Site A and Site B. It is
because only parts ofthe global query find a one-to-one mapping Equivalent for the both
local sites: firstname and lastname in Site A and street and district in Site B. However,
customers，name is stored as a single field in Site B making only one of firstname or
lastname can be mapped to name, a many-to-one mapping required. The similar
mapping problem occurs for address information mappings to Site A. It introduces
inconsistency due to incomplete mapping when only the one with loose end is selected in
the query. On the other hand, the global model can model customer names using a single
field and, in tum, we need one-to-many mapping instead.

The current equivalence information need to be enhanced so that a global item can be
mapped to multiple items in a local object when the level of abstraction is higher in the
global level. Otherwise, when the level ofabstraction at the global level is lower than that

56

at the local level, multiple global items will be aggregated as one local item. To
incorporate the additional equivalence information to the Metadatabase, a set of sequence
numbers that signifies a set of data items with one-to-many or many-to-one relation. It
also discloses the relative order when the set is passed into a conversionA*eversion rule.
New metadata required:

Metadata name Data type Description
Convert_order Numeric Relative orders of global
Reverse:order and local items when

passing into conversion or
reversion rules.

5.3.2.Schematic variances
Schematic variances occur when a domain of a data item in a system is split into several
subsets and stored in different data items in other system — domain specialization — or vice
versa - domain generalization. In our example global model, customers' contact numbers
are modeled as an entity in Site B so that a customer can has a (an unlimited) number of
contact numbers (contact numbers are stored in Phone). Customers in Site A，however,
customers are limited to have three contact numbers, which are modeled as three fields:
home, mobile and office. The relationship among data items in both Customers in our
example model can be shown as the following:

Site A Site B
Specialization

phone T ^ . home, mobile, office ^ Generalization
4-

Normally database modelers would choose the Site B model as the better one. It is
because structural changes, which induces more effort to do so, have to be made to the
Customers entity in Site A when additional contact number is required for customers. As

57

database models are to fit the business environment, both modeling techniques are
considered to be valid and we need to cater a solution for both cases.

By using TSER modeling method, identical keys are consolidated when integration OER
submodels. This ensures that the global model will be modeled as Site B in case ofboth
modeling techniques are used in local systems (as shown in our global model in Fig. 12).
It is because both local Customers share the same key and will be consolidated while
Contacts becomes an orphan attaching to the global Customers. As a result, the new
metadata proposed in this section provide information on the complex relationship of
domain mappings among local data objects to the global model When a user issues a
global query to obtain customer names and whose contact number(s):

SELECT firstname, lastname, phone
FROM Customers
WHERE Customer.CustID 二 Contact.ContID
AND ConType = ‘Office，OR ConType 二 'Mobile’；

The global model can be directly mapped to Site B with the help of current set of
metadata plus the additional metadata for level of abstraction specified in the previous
section. We will focus on new metadata required for the mapping from the global model
to a local system like Site A.

The complication, in the example, is that phone numbers are stored in three different data
items in the Customers of Site A while we have only one data item in the global model.
That is，the domain of the global data item phone is specialized into 3 fields in
Customers of Site A. Schematic variances problems are problem of domain mapping (1-
to-many or many-to-1) ofdata items among systems.

In addition, the three field names, home, mobile and off!ce, or their equivalent forms, are
in the domain of the global item contype, which distinguishes types of contact numbers

58

stored from one to others. With the help of contype, a specific subset of data in phone
can be identified. If there are specialized domains in the local level match the subset of
data identified, the local query should be formulated accordingly instead ofcombining all
specialized domains indifferently for any global query issued. The required domiand
mapping information is not included in the existing equivalence information in the
Metadatabase. As a result, the meta-PR Equivalence is further modified with a new
metadata, which carries domain mapping information.

New metadata required:
Metadata name Data type Description

Domain mapping Numeric It indicates the domain
relationship among data
items.

5.4.Global query with horizontal partitioning data objects
To illustrate the impact of introducing horizontal partitioned data objects, we will go
through the global query processes described in Section 3.3 again.

Global query formulation. This phase is to allow user issue global queries. Users are
given a visual interface to transverse models and to select data items and the data objects
from which data items are drawn. Data objects for a global query is optional when the
users do not care or not know where data items are actually stored. The Metadata system
will determine data objects required answering a global query automatically. Therefore,
users are not necessary to specify the technical details of the query. Due to this feature of
the Metadatabase, this formulation process is not affected by horizontal partitioned data
objects because (1) they need not deal with data objects particularly and (2) horizontal
partitioned data objects are bound by a corresponding global representation. (As shown in
Fig. 12) In this phase an incomplete global query (IGQ) is resulted and is denoted as:
IGQ = (A", [D"], [<SC>]|[<M>])

59

Where,
A" is the set of data items selected by the user;
[D"] is the set ofdata objects specified by the user [optional];
[<SC>] is the set of selection criteria given by the user [optional];
[<M>] is the set ofsystem metadata given by the user [optional].

Join condition determination and global query completion. This phase is to determine
the missing information (ifany), which are essential for global query processing, ofglobal
queries issued by users. With the IGQ issued by the user, the minimal set of data objects,
Omin，that are necessary to answer the query will be determined by the Minimum-Set-of-
ERs algorithm. When multiple data objects required, join operations are usually needed.
Then, a shortest path is determined thatjoins all data object in the minimal set identified.
Horizontal partitioned data objects do not affect the representations of global objects and
relationship among them and hence, this phase is not affected as well. As a result ofthis
phase, a complete global query (GQ) is formulated as the following:
GQ ::= (A, D, <C>|<M>); or
Where,
A is the union of A" and A', which are a set of data items that are implied by IGQ

required for global query processing;
D is the union ofD" and D', which is the set of data objects determined by the global

query system and it is required for the completion the GQ;
<C> is a set of expressions of selection criteria (given by the user) and join conditions

(given by the user and/or determined by the system) or both; and
<M> is a set ofmetadata required to complete the global query.

60

Global query decomposition. The global query decomposition procedures is to break
down the global query, GQ, into a set oflocal files and data items to be drawn from each
of these files. As a result, local queries can be formulated afterwards. To improve the
overall performance of global query processing in Meatdatabase, we decompose a global
query into a minimal set oflocal files that is required to complete the global query.

The original process [CH96] did not take horizontal partitioning into account and that
must be revised to process global queries with horizontal partitioned data objects. It
identifies all possible local files for required data items. Then, the minimal file access list
will be obtained followed by finding equivalent data items in each of identified local files.

With the newly added metadata, partitioned, global data objects identified, D, can be
categorized into 2 groups: horizontal partitioned and normal data objects. In tum, local
files correspond to those horizontal partitioned data objects can be found. By interfering
the selection criteria, where required/excluded partitions are stated by users, in the GQ and
partitioned conditions of local files, local files that contain no required partition or
specifically excluded can be screened out. If the user did not state the required partition in
the GQ, all found local files would be accessed.

Combinations of local files with minimum overlapping that resemble the required
partitions will then be found. For all found combinations, none of local files in it can be
replaced by other member in that combination. In addition, one of those found
combinations must be accessed so that data in local files of horizontal partitioned data
objects can be retrieved correctly. However, the combination with least number of local
files is the minimal file access list only if the combination contains all required data items
in the GQ. Otherwise, the source local files of data items that are not contained in each of
combinations will be found so that the minimal file access list can be guaranteed.

61

Then, for each of local file in the minimal file access list, required equivalent local data
items will be identified. By using new metadata, converse/reverse order and domain
mapping, data items with different level of abstraction and schematic variances can be
accessed. Finally, reversion rules required for result integration will be appended, if
necessary.

The global query decomposition can also be summarized into the following steps:
1. Identify local files, F'np, for horizontal partitioned data objects in D.
2. Given F'np, fmd combinations of f； e F'HP that contains all required partitions required

by the GQ and result C'HP.
3. Determine the minimal file access list, ¥^ , given Cup and A.

3.1. Given c^ e Cnp,
3.2. Determine data items, A^ e A that has no equivalence in any oflocal files in CHp.
3.3. Determine the minimal set of files, F^, containing A^.
3.4. Keep (½ and F^ if ||Cnp|| + I p J < previously known best solution.
3.5. Retum c ^ as F^，and F^.

4. Identify data item(s) to be accessed from each of local file in 卩冊 and F^.
4.1. For each local file, determine equivalent data items in the file.
4.2. Find data items with different level of abstraction
4.3. Find data items with schematic variances

5. Append rules for result integration.

1. Identify local files for horizontal partitioned data objects in D.
for each d̂ e D

if partitioned(di) then
F'HP = F'HP u GET_candidate_partitions(di, <SC>)

end if
end for
Function GET_candidate_partitions(di, <SC>) /*retums a set oflocal files*/

/*dj is a global data object*/
/*<SC> is the selection criteria in DNF = {<sCi>, <SC2>, ..,<sc>,...*/
P = GET_partitions(di) /*{p” P2, ..,Pi}*/
PA = GET_PA(di) /*{pa”pa^，..,paJ*/
for each p̂ e P

<PC>二 GET_PC(Pi) /*{<pc,>, <pc2>,...<pc>,...} inDNF*/
for each <pcj> e <PC>

Retum_this_partition = FALSE
for each <sCk> e <SC>

for each pa； | (paj e GET_dataitems<sCk>
and paj e GET_dataitems<pCj>)

/*GET_dataitems retums a set of data items used in

62

a set of expression*/
if overlap(range_of(<sCk>, paj), range_of(<pCj>, paj))=

TRUE then
/*Check ifrange ofpa^ in <sCk> overlap with that of

<pCj>*/
Retum_this_partition = TRUE

end if
end for

end for
if Retum_this_partition = TRUE then

Result_set = Result u <pCj>
end if

end for
end for
retum Result_set

end GET_candidate_partitions

2. Given Fnp，fmd combinations off； e F'HP that contains all required partitions
required by the GQ and result Cnp.
for each f e F^p

CV = CHP U Get_combos(f, pHp-{f}, 0)
end for
Get_combos(head, rest, COMBO)

ifhead = 0 then
retum 0

else
if rest = 0 then

retum COMBO u {{head}}
else

for each restj e rest
Get_combos(resti, rest - {restJ, COMBO)
for each {combo} e COMBO

if GET_partitions({head}) 3
GET_partitions({combo})
/*GET_partitions retums PC of a set oflocal
files*/

retum COMBO u {{head}} - {combo}
else if GET_partitions({head}) e

GET_partitions({combo})
retum COMBO u {combo}

else
retum COMBO u {combo u {head}}

end if
end for

end for
end if

63

end if
end Get—combos

3. Determine the minimal file access list from Cjip.
for each Cjn> e Cnp

A^ = A - Va(Equivalent(a) e fnp) | (a e A A fnp e c^)
if A^ 本 0 then

Min_flles = ||0亚|| + ||八』

Current—set 二 Get_min_sets(AN)
if||Current_set|| < min_files then

Fnp = ĤP U CfQ>
F^ = F^ u Current—set

end if
end if

end for
Get_min_sets(A)

for (each a e A)
Fa = get_files(a)
if||FJ| =—1 then

A = A - {a}
F = F u F
丄mm 丄mm ^上 a

A = A — Va'3f(a' e f | (a' e A)八（a，* a) A (f e FJ)
end if

end for
if A 二 0 then

retum F—
else

retum Get_min_sets(F^i„, A,0)
end if

end Get_min_sets
Get_min_sets_h(Fmin, A, results) /*results=0 initially*/

Current_best = ||A|| + ||F^J|
Select a from A;
Fa = get_files(a)
for ((each f G FJ and (F,本 0))

i f A - {a} ^ 0 then
if|pmin u {f]|| < current_best then

resutls = {F^„u {f}}
Current_best = | |F^„u {f]||

else if||F^in u {f)|| = Current_best then
results = results u {F^„ U {f}}

else
Get_min_sets(F^^ u {f}, A - {a}, results)

end if
end if

64

end for
end Get_min_sets_h

4. Identify data item(s) to be accessed from each oflocal file in Fnp and F̂ ,.
4.1 Find equivalent data item, E, of a e A in each of f in Fnp or F .̂
4.2 Attach local data item(s) with different level of abstractions to f, given E

and a.
ifRord(E, a)本 0 and DM(E,a) = 0 then

A = A - {a}
else ifCord(E, a)本 0 and DM(E,a) = 0 then

{a'} = {a} u LA(E, f, Crule)
/*LA retums a set ofglobal data items that are mapped to a local
one*/
A = A - {a'}

else
IfDM(E,a) = 0 then

A = A- {a}
end if

end if
Af = A f U E

4.3 Attach local data item(s) with schematic variances to f, given E and a.
4.3.a For specialization, drop local items that are not selected according to

the <SC> in the GQ.
ifDM(E, a) = 1 then /*specialization*/

b = binding_item(E) | (DM = 3)
/*binding_item retums a item given a set of equivalent data
item*/
i fb G GET_dataitems(<SC>) then

E 二 E — Ve(，satisfy (e, <SC> | b)
end if

end if
4.3.b For generalization, attach file-specific selection criteria to limit the

resulted domain of E in local query for f.
ifDM(E, a) = 2 then /*generalization*/

G = Equivalent(E)
b = binding_item(E) | ((DM = 3) A f)
for each ((g e G) and (g e A)) then

<SC>f = “ v" & b & “= “ & Covert(g |GET_rule(b)
A g e G)

65

end for
end if

5. Append required rules for result integration.

Local queries formulation. After the minimal set of local files to be accessed is
identified, system-specific <<SC> and <JC> are required for formulating local queries.
Each of these local queries targets only one local system. The original algorithm first
inserts system-specific <SC> and <JC> to groups oflocal files that are in the same source
local systems. Such that, join operations can be performed at local level and hence the
advantage of distributed processing is leveraged.

n ^ 7 ^ 7 ^ ~ "
/ Data object 4 \ / Data object 1 \

H P - A (non-HP) \ k (n o n - H P) 八
horizontal partitioned / \ \ \ J \
Non-HP- / V _ ^ V _ ^ \
not horizontal partitioned / 1 ; \
J C - JC4 \ JC1
J o i n c o n d _ I j ^ jC2 \

/̂ l̂l̂ ^̂ ĵ î̂ ŷ lî ĵ̂ l̂ f̂ l̂l̂ b̂ĵ l̂ l^^^^^^^|)|(|^ 1^^^^(|^^|^^ l̂ ^̂ ||̂ ^̂ ĥ̂ l̂ ^

Fig. 14. An example wherejoin conditions cannot be inserted properly to a local query for
a system

Consider the situation as shown in Fig. 14” there are five data objects involved in a GQ.
Among them, four are not horizontal partitioned. There are four different join conditions
needed among these local data objects. Assuming that there are 2 local systems
containing all the files we want: one with local files ofdata object 1，2 and a partition of3
while the other system having the rest of required. Hence, performing join operation at
local level will return incorrect results because there are only parts of required data in data
object 3 is in each ofsystems. As a result, JC2 and JC3 cannot be inserted although local

66

files of data object 3 are in the same systems as those of non-horizontal partitioned data
objects.
The algorithm for this phase is modified to process GQ with both horizontal partitioned
and non-horizontal-partitioned data objects involved. It processes local files for
horizontal partitioned data objects and those for others separately. Steps are:
1. Group members of F^ by targeted local system.
2. Apply system-specific selection criteria andjoin conditions to each group. 3. Apply system-specific selection criteria to members in Fj^.
4. Formulate local queries for each group and each member ofFnp.
Local quefy generation. Given that ¥^, with system-specific <SC> and <JC>, and F̂ ，

with system-specific <SC> are resulted in the previous phase, local queries are generated
according to local system specifications. For SQL-bases system, local queries for non-
horizontal-partitioned data objects will be formulated as the following:
SELECT a.|, a�，^3,—
FROM f；, f “ f “ f；,....
WHERE<SC>i AND<JC>i
For horizontal partitioned data objects:
SELECT a.j, a^‘ a^,
FROM f?
WHERE < SC >j

Result integration. During the result integration phase, results returned from local
queries are assembled by applying global join conditions. Local query results from all
partitions ofahorizontal partitioned data object, R ^ = {r,, r̂，“.，r„}, are integrated first on
a pair-wise basis until a single view is resulted. The operation can be done by the
following SQL statement:
Rnp = RHP u (r, LEFT JOH^ r�UNION r̂ RIGHT]OJN r』，）—{rJ 一 {r�}

67

where r； and rj are local query results and i^j. Thenjoin conditions determined in previous
phase is applied to all local query results and results the answer of the global query.

With the revised procedures, the Metadatabase is extended with the capability to
processing global queries against horizontal partitioned data objects, i.e. 2.II and 2.V in
Fig 13. As mentioned, MDBMS ensure inter-subsystem consistency, i.e. identical values
ofequivalent record identifiers are mapped to the same real-world object and the values of
equivalent attributes across local systems are consistent. This gives MDBMS a major
advantage over other integration methodologies on handling horizontal partitioning. It is
because reversing the attribute values of a set of records to determine consistency is
greatly depend on system taxonomy or probabilistic inferences [BHP94, PRSL93, LP93,
RR95, AKWS95]. Yet, ensuring consistency among local systems is out the scope ofthis
paper. In the following method presented, we assumed consistency is enforced.

5.5.Housing the new metadata
With new metadata for handling horizontal partitioning problem identified in previous
two sections, we need to modify the current GIRD definition to put the new metadata in
action. The objective is to minimize the impact of these modifications to the existing
framework, methods and most importantly, integrity ofthe Metadatabase.
New meta-attributes:
Meta-attribute name Attribute Type Meta-entity Domain

Partitioned Boolean ENT-REL 1 ^
PA Numeric — NameAs Null/Itemcode

"PA-expr String NameAs Characters
Putting Partitioned into the meta-entity ENT-REL gives users extra information on
whether a data object is partitioned. Partitioned is set to TRUE if a global data object is
horizontal partitioned or vice versa. The NameAs meta-entity keeps the mapping of the
global data objects to the local name. PA is added to NameAs, as a part ofthe composite

68

key, so as to group clusters of horizontal partitioned data objects. PA is synonym of
Itemcode and is valued Null if a data object is not horizontal partitioned. Closely related
to PA, a new meta-attribute PA-expr is added to NameAs as well. It is a set of well-
form-formula (WFF) with format of

[PA] <operator> <value>
where,
[PA] is a dummy section that structures a WFF and it will be replaced by proper local

item name during the local query generation phase;
<operator> e {<，=, >, =<,〉=， }̂;

<value> is the value assigned by the modeler that states the domain(s) of a local data
object. ALL is an artificial value assigned to those data object that is valid for any PA-
expr. If the domain of a local data object covers more than one segments of the PA that
partitioned the cluster logically, DNF ofthe WFFs will be stored in PA-expr.

Users can issue queries against the Metadatabase instead of sub-systems. These queries
will retum information on the enterprise information systems that are modeled in the
Metadatabase instead of actual data stored in local systems. Therefore, with these
additional meta-attributes, users can identify horizontal partitioned data objects in the
enterprise. According the new structure, the Metadatabase will be populated for the
Order_Details as the following (only related part of GIRD is shown):

69

l t e m c o d e l t e m n a m e l t e m t y p e App
001 :OD_ID P A

Revised representation 002 ordeno p 八
^ 003 ltemlD P A

004 Qty P A
_丨丨丨• I ‘ I Q Q 5 ^^ D I D p B

ERname er type akey Par t i t ioned p ..巳

Ord_Det ia ls OE ;iODID | v 007 p「。ductlD P B

Z 008 Qty P B

009 OrdDetlD P HO
010 OrdlD P HO
011 ProdlD P HO

^ ^ ^ " \ ^ ^ 012 Quanti ty iiP HO
< C N a m e A ^ E N T - R E L o i 3 OrdDet_iD P GiRD ^̂ -Y "̂'̂ ^ L___^__J 014 Ord�D P GIRD / 015 Prod ID P GIRD / — •..,.;-..

/ 016 Qty _P GIRD
/ ^T? S a l e s _ c t r NP GIRD / 1 I ^ ^ ^

/ APPLICATION < ^ ^ P A ^ I T E M / L J ^ ^ ^ = ¾ ^
E R n a m e A p p l n a m e l o c a l n a m e \PA Expr E R n a m e A p p l n a m e l t e m c o d e
Ord_Detai ls A :Order_Detai ls Sales_Ctr=A Ord_Detai ls A 017
Ord_Detai ls 丨巳 Order_Detai ls Sales_Ctr=B Ord_Detai ls B 017
o r d l o e t a i l s HO Order_Detai ls Sa les_Ct r=ALL Ord_Detai ls HO 017

Fig. 15 Example of populating new metadata (partial)

In Fig. 15., the global data object Ord—Details is signified to be horizontal partitioned by
the new metadata Paritioned. The partition attribute, Sales_ctr, that partitions
Ord_details is added to ITEM with itemcode equals 017. Two new metadata are added to
NameAs, where local names of a global data object in different applications are stored.
They are to model how Ord—Details are partitioned into local systems, i.e. the designated
subset(s) ofdata carried by each of the local partitions.

To incorporate the new metadata identified for tackling the variations of horizontal
partitioning problem, we first tabulate them as the following:
New meta-attributes:
Meta-attribute name Attribute Type Meta-entity Domain

C order — Numeric Equivalent Integer
R order Numeric Equivalent Integer
DomainMap Numeric Equivalent Integer

70

C/R_order keeps the relative sequences (for its value > 0) of a set of item when they are
passed into a conversionA*eversion rule. A zero is assigned if the rule takes only one
parameter. Therefore, by C/R_order, not only identifies a set of items that maps to each
other with a pre-defined rule, it also helps passing the right parameter to the right slot
when triggering rules. An example of populating the new C/R_order into the
Metadatabase is shown in Fig. 17. FName and LName from application A is concatenated
(by a rule) as the global data item Name.

ITEM
l temcode ltemname ltemtype App

001 custiD p A Equivalent
002 FName P A 。 4 山 、 ^ ^ ,.,.„.̂ ；
003 L N a m e P A ltemcode： Ealtemcodeconvertbyreverseb: C_order R—order
nn^ AHHr ' P A K 016 007 1 3 0 1
004 Addr P A _ ^ : i i 6 008 2 3 0 2
005 C u s t o m e r l D P B ""' ^ / . . o Q01 4 5 0 0

,‘.,‘..、..,、.—， ： \ J I 0 \ J \ J • …

006 Name P B oi6 004 0 0 0 0
007 Addr1 P B • 014 : 002 : § 8 0 1
008 Addr2 P B 014 003 7, | ^ |
013 CustlD P MDB 014 006 0 0 L ^ — — ^
014 :Name P MDB
016 Addr P MDB

Fi^. 16. Equivalence information enhanced with relative order (to be revised)

In Fig. 16, Rule#3 takes two data items in system A, item 002 and item 003, as parameters
and converts the local data items to the global data item Addr (016) in MDB.

DomainMap is a numeric meta-attribute that signifies the type of domain mapping
among equivalent data objects discussed in the pervious section. When a mapping from a
global data to local data items are 1-to-m (or vice versa), it can be either a problem of
different in level of abstractions or a schematic variance problem. The determinant ofthe
type ofthe variant is the value ofDomainMap: 1 - the domain of the global data item is a
specialization of that of the local data item; 2 - the domain of the global data item is a

71

generalization ofthat ofthe local data item; 3 — the equivalent data item is in the domain
ofthe data item; 0 — domains ofthe global and local items are disjoint.

I T E M

I t e m c o d e l t emname A p p l i c a t i o n

001 C u s t ID Sys A 一 <

0 0 2 H o m e S y s _ A
003 Of f ice S y s _ A
0 0 4 Mob i le S y s _ A
0 0 5 A d d r S y s _ A
006 C_ ID S y s _ B
^ … A JL M o _ D Legend: Key Primarykey
007 A d d r 1 S y s _ B jT^ f .a l Existingmetadata
0 0 8 A d d r 2 ： S y s _ B _ i c Newmetadata
0 0 9 Con t_ ID S y s _ B
010 Phone S y s _ B
011 Type S y s _ B
0 1 2 C」D M D B Equ iva lence

：••"••• •，

013 A d d r 1 M D B i temcode Eq i t emcode Covert Reverse C_Order R_Roder DM
014 A d d r 2 M D B ~ ~ J 7 i ~ ~ " 0 0 1 1 2 0 0 0
015 C o n t J D j J2L^^^^^、^J 0 1 2 0 0 6 3 4 0 0 0
016 Phone M D B 013 005 5 : 6 l 。 0
017 Type M D B 014 005 5 7 2 0 0

——..—…………-----̂ 013 007 8 10 0 0 0

014 008 9 1 1 0 0 0
015 009 12 13 0 0 0
016 002 14 15 0 0 1

: 0 1 6 003 16 17 0 0 1
~ ~ ^ : 016 i 004 18 19 0 0 1

^ X 016 010 20 21 0 0 0
017 002 22 23 0 0 3
017 003 24 25 0 0 3
017 004 26 27 0 0 . ?
017 011 28 29 0 0 0

Fig. 17. Example of a populated Metadatabase with DomainMap metadata

As shown in Fig. 17, the domains of local data items, home (002), office (003) and
mobile (004), are subsets to the global item phone (016). At the same time, items 002,
003 and 004 are in the domain of item contype (017) showing that it is a schematic
variance problem. Separate local queries will be issue targeting local items 002，003 and
004 to retrieve the corresponding data for global data item 016.

5.6.Example
To summarize that modifications and enhancements made to the current Metadatabase,
the revised GIRD definitions are in appendix A. An example is provided with detail
walk-through ofthe methods to conclude this chapter.

72

Example:
SELECT firstname, lastname, street, district, phone
FROM Customers, Contacts
WHERE Customers.CustID=Contact.ConID AND
ConType = "Office";

Tlie purpose of this query is to find all customers' office contact numbers. By going

through the global query formulation and join condition determination, the minimal set of

global data obj ect is determined to be {Customers, Contacts} and attributes (data items)

A= {firstname, lastname, street, district, phone}. Both elements in data objects requied in

this GQ are horizontal partitioned by checking the meta-attribute Partitioned in ENT-

REL. Hence,

1. F' HP = (A. Customers, B. Customers, B . Contact)
2. C' HP = (A. Customers, B.Customers, B.Contact)
3. As there is one combination can be found such that CHP = C' HP

4. As all required data items are in CHP such that CHP is the minimal file access list

To determine which data items are drawn from the local data objects, the following table

can be formed by consulting the Equivalent of the Metadatabase.

Global Site A - Customers
Data item Data item

Firstname Firstname
Lastname Lastname
(street, district) Addr
phone Home, office, mobile

For Site A, as "contype = "office"" is given in the GQ, home and mobile is dropped from

the data item list and this selection criteria will not be passed onto the local query for Site

A.

Global Site B - Customers
Data item Data item

(firstname, lastname) Name
Street Street
District District

For Site B, difference in level of abstractions between the global and local customer name

is identified.

73

During the local query decomposition phase, two local queries is formed. For Site A,
(SiteA.customers, {firstname, lastname, addr, office}, NULL). There are two elements in
Lo targeting Site B, with the join condition in GQ, we can group these two elements as

(SiteB.Customers, {name, street, district, phone}, <"Customer.ID = Contacts.CustID"
AND “Contype = “Office’”，〉). Such that, 2 sub-queries launched against the two local
systems:
Site A:
SELECT firstname, lastname, addr, office
FROM Customers;
SiteB:
SELECT name, street, district, phone
FROM Customers, Contacts
WHERE Customer.ID = Contacts.CustID AND
Contype = “Office”；

There are two reversion required during the result integration phase: (1) addr from Site A
is reversed into street and district; (2) name from Site B reversed to firstname and
lastname. Also, both office and phone from both sites united in the domain ofthe global
data item phone. As a result, the global query result is returned.

74

C H A P T E R 6
Analysis

Multidatabase languages extend the traditional data manipulation languages with
capability handling multiple data sources. This approach does not have an integrated
schema and it does not mediate changes at the local system level. Users are exposed to all
technical details of local systems, i.e. local systems are not transparent to users, and they
need to resolve conflicts by themselves. Thus, users must specify all technical details of
local systems to formulate a global query. Metadata and knowledge, which can automate
conflict resolutions without compromising local autonomy, are not included in this
approach. When comparing incompatible data formats, e.g. joining a numeric data item to
an alphanumeric one, user-defined conversion functions are required making the query
even more complicated, if not incomprehensible. For retrieving information from
horizontal partitioned data objects, manually operations from identifying the existence of
horizontal partitioned data objects to creating resolutions are required in the multidatabase
approach. By combining metadata and knowledge, the Metadatabase approach makes
global query formulations more automated and horizontal partitioned data objects are
transparent from users. Given that, the proposed methods for resolving the horizontal
partitioning problem and its variants inherit the strengths of the Metadatabase approach.
Therefore, the Metadatabase approach save users from dealing with complicated technical
details while they are unavoidable when multidatabase approach is employed

Federated Database Management Systems (FDBMS). A FDBMS takes a snap-shot of
schemata of local systems are mapped using a common data model (CDM) before
integration begins. As a result, only those data items, which are explicitly expressed in

75

local systems, can be modeled in the integrated schema. Thus, the partition concepts that
might be implicitly implied by local systems cannot be modeled in systems using the
FDBMS approach. Therefore, all local partitions must be accessed to determine if any
required data exists in a particular partition and that is an unnecessary burden for the
method presented in this study. In addition, knowledge of local systems that is
incorporated in a FDBMS is limited when compared to that in the Metadatabase approach
and knowledge is not incorporated in the integrated schema. Missing knowledge
regarding which and how data object are partitioned, these methodologies can only either
impose assumption on modeling data objects at local systems or hard-coded the
knowledge into the system. That, in tum, reduces local autonomy or adaptability of the
system. A federation dictionary is built to help resolving conflicts among systems in the
FDBMS approach and is implemented as the data dictionary/directory (DD/D) in
MERMAID and the integration schema (IS) in Multibase. Conflict resolution methods
are hard-coded and stored in the DD/D and IS in MERMAID and Multibase respectively.
Hence, these methods must be changed accordingly when there is any change in local
systems. On the other hand, methods for conflict resolutions are parameterized, which
take metadata as parameters and are independent from local systems. Hence, these
methods are more reusable and, most importantly, more manageable in the Metadatabase

system.

Integrated schema approach. Conflicts at the data object and data item levels are
eliminated in systems using the integrated schema approach. As a result, information can
be shared among systems. Yet, any change made to a local system will propagate to all
other systems, as it has to be reflected in the integrated schema. In other words, it is
difficult to make changes in local systems and hence only low adaptability and autonomy
can be achieved in this approach. Information in horizontal partitioned data objects can

76

be retrieved by consolidating data from different data sources. In order to differentiate
data from various data sources, additional information must be attached to each of data in
local systems. For example, a “location code" must be attached to all sales records in the
Sales Center A such that the data source of those records can be identified after they are
consolidated at the global level with sales records from other sales centers. Nonetheless,
the location codes are implied by the system installed in different sales centers and they
are functional at the local system level. Besides, it dose not allow overlapping among
partitioned. Therefore, resolution for information retrieval from horizontal partitioned
data objects provided by the integrated schema approach would be restrictive and
inefficient. On the other hand, the methods presented in this study enjoy the capability of
modeling knowledge provided by the Metadatabase approach. We designated each subset
of data (a partition) in a set ofhorizontal partitioned data objects with partition attributes
and partition conditions. They are implicitly implied by the set of horizontal partitioned
data objects and might not be physically exists in any of local systems. In the
Metadatabase approach, the knowledge is modeled by means of metadata without
affecting structures of local systems. It certainly yields a better adaptability and local
autonomy. In additional, partition conditions can model complex relationships among
partitions such as, overlapping, include, disjoint, etc.. As a result, horizontal partitioned
data objects are better modeled not by imposing changes to local system or forgoing
valuable information but by knowledge oflocal systems.

77

C H A P T E R 7
Conclusion and Future Works

Horizontal partitioned data are often found in a heterogeneous distributed environment.
Without knowing the existence of such data objects, information retrieval using global
queries might retum with incomplete or incorrect results. The situation is even more
complicated when structure differences, as a result of local autonomy, are taken into
consideration. However, the problem of information retrieval with horizontal partitioned
data objects is not sufficient addressed in previous studies.

In this study, we have identified the generic semantic and schematic knowledge for
representing horizontal partitioned data. This knowledge is then modeled in terms of
metadata to describe how they are horizontal partitioned over local systems. Previous
researches had not effectively model horizontal partition data because semantic
knowledge about local systems was not formally incorporated. In additional, knowledge
base was not included in previous methodologies such that there was no effective and
systematic way to store, retrieve and manage semantic knowledge of local systems at the
global level.

The Metadatabase approach is adopted as the implementation foundation of this study
because a knowledge base is formally incorporated in the methodology. The approach
also has achieved high level of local system autonomy, transparency, interoperability and
adaptability. We extended the existing Metadatabase system with the capability of
retrieving horizontal partitioned data objects from local system. We first modeled and
represented the knowledge ofhorizontal partitioned data object using metadata which are
subsequently incorporated into the Metadatabase. Then, we enhanced the global

78

processing of the existing Metadatabase with new methods that will utilize newly
identified metadata for retrieval.

As a result, the limitation in retrieving information from local system with horizontal
partitioned data objects using the Metadatabase system is lifted while the four favorable
characteristics (i.e. autonomy, transparency, interoperability and adaptability) are
preserved. Horizontal partitioned data objects are transparent to users who can formulate
global queries without realizing data objects are horizontal partitioned. The changes in
any local system only require updating the respective metadata stored in the
Metadatabase. Therefore, the Metadatabase system maintains a high degree of
adaptability. Furthermore, there is no restriction imposed to local systems and they are
free to evolve according to local needs as long as these changes are reflected by updating
the Metadatabase. Information sharing is not hindered even there are differences in
software and/or hardware, system designs, etc. Thus, high level of local autonomy and
interoperability are sustained.

Further research efforts should focus on two areas: (1) Extend the modeling tools to help
system analysts and modelers to model and represent horizontal partitioned data objects in
local systems. Therefore, the insertion of partition attributes, partition conditions of each
partition and other related metadata can be more automated; and (2) Optimize global
query processing with more sophisticated optimization methods, for example,
simultaneously takes into account for object size, local computation time and network
efficiency.

79

References
[AKWS95] S. Agarwal, A. Keller, G. Wiederhold and K. Saraswat, “ Flexible

Relation: An Approach for Integrating Data from Multiple, Possibly
Inconsistent Database," IEEE 1063-6382/95, 1995.

Bou91] M. Bouziane, “Metadata modeling and management," PH.D dissertation,
Computer Science Dept., Rensselaer Polytechnic Inst., Troy, NY, 1991.

[BCDE93] 0 . Bukhres, J. Chen, W. Du and A.K. Elmagarmid, "InterBase: An
Execution Environment for Heterogeneous Software Systems," IEEE
0018-9162/93/0800-0057, 1993.

[BDKV92] P. Buneman, S. Davidson, A. Kosky and M. VanInwegen, “A Basis for
Interactive SchemaMerging," IEEE 0073-1129-1/92, 1992.

[BHP94] M. Bright, A. Hurson and S. Pakzad, "Automated Resolution of Semantic
Heterogeneity in Multidatabase," ACM Transaction on Database Systems,
Vol. 19, No. 2, June 1994.

[BLN86] C. Batini, M. Lenzerini and S.B. Navathe, “A comparative analysis of
methodologies for database schema integration", ACM Computing
Surveys 18(4), December 1986.

[CBTY89] A. Chen, D. Brill, M. Templeton and C. Yu, "Distributed Query Processing
in a Multiple Database System," IEEE 0733-8716/89/0400-0390, 1989.

[CH96] W. Cheung and C. Hsu. "The Model-Assisted Global Query System for
Multiple Database in Distributed Enterprise," ACM Transaction on
Information Systems, 1996.

[Chu90] C. Chung, "DATAPLEX: An Access to Heterogeneous Distributed
Databases," Communication ofthe ACM, Vol. 33, No. 1, Jan 1990.

CR93] S.M. Chung and C.N. Ravikiran, “A Heterogeneous Distributed
Information System," IEEE 0-8186-4212-2/93, IEEE, 1993.

.DH84] U. Dayal and H. Hwang, “View definition and generalization for database
integration in MULTIBASE: A system for heterogeneous distributed
database," IEEE Trans. Software Engineering, SE-10, 6, 1984.

DR93] D. Zhou and K. Ramamohanarao. "Representation and Translation of
Queries in Heterogeneous Databases with Schematic Discrepancies,"
Interoperable Database Systems (DS-5) (A-25) ppH7-189, IFIP 1993.

80

[ERS98] Elagarmid A, Rusinkiewicz M. and Sheth A. (editors), 1998.
"Management of Heterogeneous and Autonomous Database Systems,
Chapter 1”，Morgan Kaufmarm Publishers, Inc.

[GSC95] M Garcia-Solaco, F. Saltor and M. Castellanos, “A Structure Based
Schema Integration Methodology," IEEE 1063-6382/95, IEEE, 1995.

[GSC96] M Garcia-Solaco, F. Saltor and M. Castellanos, “Extensional Issues in
Schema Integration," Database Reengineering and Interoperability, p261-
273, Plenum Press, New York 1996.

HBP94] A.R. Hurson, M.W. Bright, and H. Pakzad, "Multidatabase Systems: An
Advanced Solution for Global Information Sharing," Los Alamitos, CA,
IEEE Computer Society Press, 1994.

[HBRY91] Cheng Hsu, M,hamed Bouziane, Lauriw Rattner and Lester Yee, 1991.
"Information Resources Management in Heterogeneous, Distributed
Environments: A Metadatabase Approach", IEEE Transactions on
Software Engineering Vol. 17, No. 6, June 1991.

HRY+92] Cheng Hsu, Gilbert Babin, et, al, "What is Rensselaer's Metadatabase
System?," 0-8186-2615-1/92, 1992 IEEE.

HTTB93] C. Hsu, Y. Tao, M. Bouziane and G. Babin, “Paradigm Translation in
Integrating Manufacturing Information Using Meta-model: The TSER
Approach," Information System Engineering, September 1993.

[Hua94] J. Huang, "Multibase: A Heterogeneous Multidatabse Management
System," IEEE 0730-3157/94, 1994.

[Lit93] W. Litwin, "0*SQL: A language for Object Oriented Multidatabases
Interoperability," Interoperable Database System (DS-5) (A-25), IFIP,
1993.

[Lit94] W. Litwin, "Multidatabase System,” Englewood Cliff, NJ, Prentice Hall,
1994.

[LMR90] W. Litwin, L. Mark and N. Roussopoulos, "Interoperability of multiple
autonomous databases," ACM Computing Surveys, 22(3), September
1990.

[LP93] E. Lim and S. Prabhakar, "Entity Identification in Database Integration,"
IEEE 1063-6382093, 1993.

[LSS94] E. Lim, J. Srivastava, S. Shekhar, “ Resolving Attribute Incompatibility in
Database Integration an evidential Reasoning Approach," IEEE 1063-
6382/94, 1994.

[Mot87] A. Motro, "Superviews: Virtual Integration of Multiple Databases," IEEE
Transactions on Software Engineering, vol. SE-13, July 1987.

81

[PRR91] W. Perrizo, J. Rajkumar and P. Ram, "HYDRO: A Heterogeneous
Distributed Database System," ACM 0-89791-425-2/91/0005/0032, 1991.

;PRSL93] S. Prabhakar, J. Richardson, J. Srivastava and E. Lim, "Instance-level
integration in federated autonomous databases," Proceedings ofthe 26̂ ^
Annual Hawaii International Conference on System Sciences, Vol. 3, p62-
69, 1993.

[RPR88] M.P. Reddy, B.E. Prasad and P.G. Reddy, "Query Processing in
Heterogeneous Distributed Database Management System," ？, 1988

[RR95] V. Ramesh and A. Ram, “A Methodology for Interschema Relationship
Identification in Heterogeneous Database," IEEE 1060-345/95, 1995.

:SBD+81] J. Smith, P. Bemstein，U. Dayal，N Goodman, T. Lander, K. Lin and E.
Wong, "Multibase — integration heterogeneous distributed database
systems," Proc. ofAFIPS, 1981.

SCG93] F. Saltor, M.G. Castekkanos and M. Garcia-Solaco, "Overcoming
Schematic Discrepancies in Interoperable Databases," Interoperable
Database Systems (DS-5) (A-25) ppl91-205, IFIP 1993.

Shi81] D.W. Shipman, "The Functional Data Model and the Data Language
DAPLEX," ACM Transactions on Database Systems, Vol. 6, No. 1, March
1981.

[SK93] A. Sheth and V. Kashyap, “So Far (Schematically) yet So Near
(Semantically),，, Interoperable Database Systems (DS-5) (A-25) pp283-
312,IFIP 1993.

[SL90] A. Sheth and J. Larson, 1990. "Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases", ACM
Computing Surveys, Vol. 22, No. 3, September 1990.

[Sou93] C. Soutou, "Towards a Methodology for Developing a Federated Database
System," IEEE 0-8186-4212-2/93, 1993.

'SP94] S. Spaccapietra and C. Parent, 1994 "View integration: A step forward in
solving structure conflicts", IEEE Transactions on Knowledge and Data
Engineering 6(2), April 1994.

"SY96] G. Suzuki and M. Yamamuro, "Schema Integration Methodology
Including Structural Conflict Resolution and Checking Conceptual
Similarity," Database Reengineering and Interoperability, p247-260,
Plenum Press, New York 1996.

[TBD87] M. Templeton, D. Brill, S. Dao, E. Lund, P. Ward, A. Chen and R.
MacGregor, "Mermaid-A Front-end to Distributed Heterogeneous
Database," IEEE proceedings, vol. 75, No. 5, May 1987.

82

"YOL97] L.L. Yan, M. Tamer Ozsu and L. Liu, "Accessing Heterogeneous Data
Through Homogenization and Integration," IEEE 0-8186-7946-8/97, 1997.

ZSC95] J. Zhao, A. Segev and A. Chatterjee, "A Universal Relation Approach to
Federated Database Management," IEEE 1063-6382/95, 1995.

83

Appendices

A. GIRD Definitions
Al. GIRD Model4

Item Of

ENT-REL

,.: ERExist >

I '~T:~~~ I

BelongTo

ITEM

Stored In

......

APPLICATION

SUBJECT

......

<"'-C~nvert ~; ... >
.•..

For

··Appl ·····
····· ... Maintai.IJ ······

Relates

FACT

SOFTWARE
RESOURCES

,: .. ,/ .~.ubjec~:.~ .. ~· ·> ·LI ---,---,------,,-J

A2. GIRDISER Contents

RULE

USER

. ~~';~:~;~

CONTEXT

ACTION

BindFact

Calls

HARDWARE
RESOURCES

Maintain

4 Materials of this appendix are modified based on [CH96] and [Bou91]

84

KEY: Boxed attributes |are new meta-attributes.
Application-view SUBJECT
Attributes:

Applname, descript, Userid, usemame, class, position, phone, office, address,
password, accesscode, addedby, deateadded, modifby, lastmod, nummods

Functional dependencies:
Applname — descript, addedby, dateadded, modifby, lastmod,

nummods
Userid ^ usemame, class, position, phone, office, address,

addedby, dateadded, modifby, lastmod, nummods
(Applname, Userid) — password, accesscode

Synonyms:
Userid = addedby

Functional-view SUBJECT
Attributes:

Applname, Sname, SSname, descript, xcoord. ycoord, Fileid, Cname, Itemcode,
itemname, itemtype, format, length, domain, unit, defvalue, Rname, acttype,
Factid, factname, facttype, factvalue, valuetype, valueof, Procid, Functid
direction, relpos, relorder, Eqitemcode, convertby, reverseby, |cordeij kordeij
domainmap|, Parid, parorder, Resid, resname, addedby, dateadded, modifby,
lastmod, nummods

Functional dependencies:
Sname — descript, xcoord, ycoord, SSname,

Applname, Fileid, addedby, dateadded,
modifby, lastmod, nummods

Cname — descript, xcoord, ycoord, Applname,
addedby, dateadded, modifby, lastmod,
nummods

Itemcode — itemname, itemtype, descript, format,
length, unit, domain, defvalue, Applname,
addedby, dateadded, modifby, lastmod,
nummods

Rname — rtype, descript, Condid, numconds,
addedby, dataadded, modifby, lastmod,
nummods

Condid — leftfact, operator, rightfact, addedby,
dateadded, modify, lastmod, nummods

Actid — acttype, Factid, addedby, dateadde,
modifby, lastmod, nummods

Factid — factname, descript, facttype, factvalue,
valuetype, valueof

85

Resid — resname
(Cname,Sname) — direction
(Itemcode, Sname) — relpos
(Sname, Rname) — relorder
(Cname, Rname) — relorder
(Actid, Rname) — relorder ^ _ _ ^ _ ^ _ _ ^
(Itemcode, Eqitemcode) ^ convertby, reverseby, |cordeij, kordeij

domainmap|
(Factif, Funcid, Parid) — parorder
(Actidm Procid, Parid) — parorder

Synonyms:
Resid = Fileid = Functid = Procid
Itemcode = Eqitemcode = valueof (if facttype = 1)
Factid = leftfact 二 rightfact = Parid = valueof (if facttype =5)
Condid = valueof (if facttype = 4 or 5)
Sname = SSname

Structural-view SUBJECT
Attributes:

Applname, ERname, ertype, descript, akey, bartitionedj Intname, inttype, master,
slave, Itemcode, itemname, ^ , format, length, domain, unit, defvalue, Sname,
relpos, inpkey, posinpkey, localname, @ addedby, dateadded, modifby, lastmod,
nummods

Functional dependencies: ^ _ _ _ ^
ERname ^ ertype, descript, akey, |partitione4

addedby, dateadded, modfby, lastmod,
nummods

Intname ~* inttype, descript, master, slave, addedby, dateadded, modifby, lastmod, nummods
Sname — Applname
(Sname, ERname) — addedby, dataadded, modifby, lastmod,

nummods
(Itemcode, ERname) — relpos, inpkey posinpkey
(ERname, Applname) — localname, TO
(Emame, Applname, — 网
Itemcode)

Synonyms:
ERname 二 master = slave

Resource-view SUBJECT
Attributes:

86

Applname, Fileid, Resid, resname, extension, restype, descript, sizevalue, sizeunit,
coding, developedby, Serialno, hname, htype, location, nodename, nodeaddr,
putchby, datepurch, manufacturer, ltemcode, itemname, dataorg, Subresid,
relationship, path, invokecom, relpos, maintainedby, addedby, dateadded,
modifby, lastmod, nummods

Functional dependencies:
Resid — resname, extension, restype, descript,

sizevalue, sizeunit, coding, developedby,
addedby, dateadded,modifby, lastmod,
nummods

Serialno — hname, htype, descript, location,
nodename, userid, nodeaddr, manufacturer,
purchby, datepurch

ltemcode — Itename
(Applname, Resid) — Dataorg
(Subresid, Resid) — Relationship
(Resid, Serialno) — path, invokecom
(ltemcode, Fileid) — Relpos

Synonyms:

Resid = Subresid 二 Fileid

A3. GIRD/OER Constructs
Meta-entities (meta-OE) Key: CONSTRUCT NAME (Primary key, attribute[1],. .,attribute[n])
Application (Applname, descript, Userid, addedby, dateadded, modifby,

lastmod, nummods)
User (Usend, usemame, class, position, phone, office, address, addedby,

dateadded, modifby, lastmod, nummods)
Subject (Sname, descript, xcoord, ycoord, Sname, Applname, Fileid,

addedby, dateadded, modifby, lastmod, nummods)
Context (Cname, descript, xcoord, ycoord, Applname, addedby, dateadded,

modify, lastmod, nummods)
Ent-rel (ERname, ertype, descript, akey, bartitioned|, addedby, dateadded,

modifby, lastmod, nummods)
Integrity Qntname, inttype, descript, master, slave, addedby, dateadded,

modifby, lastmod, nummods)
Item atemcode, itename, itemtype, descript, format, length, domain,

unit, defvalue, Applname, addedby, dateadded, modifby, lastmod,
nummods)

87

Rule (Rname, rtype, descript, Condid, addedby, dateadded, modifby,
lastmod, nummods)

Condition (Condid, leftfact, operator, rightfact, addedby, dateadded, modifby,
lastmod, nummods)

Action (Actid, acttype, factid, addedby, dateadded, modifby, lastmod,
nummods)

Fact (Factid, factname, descript, datatype, factvalue, valuetype, valueof)
Software-resource (Resid, resname, extension, restype, descript, sizevalue, sizeunit,

coding, developedby, addedby, dateadded, modifby, lastmod,
nummods)

Hardware-resource rSerialno, hname, htype, descript, Userid, location, nodename,
nodeaddr, manufacturer, purchby, datepurch, addedby, dateadded,
modifby, lastmod, nummods)

Meat-plural Relationships {PRs)
1) Actof (Actid, Rname, relorder)
2) Applies (Sname, Rname, relorder)
3) Appluser ?Applname, Userid, password, accesscode, addedby, dateadded,

modifby, lastmod, nummods)
4) Belongto fItemcode, ERname, relpos, inpkey, posinpkey)
5) Calls (Actid, Procid, Parid, parorder)
6) Computes (Factid, Functid, Parid, parorder)
7) Contains (Cname, Rname, relorder)
8) Describes atemcode, Sname, relpos)
9) Equivalent (Itemcode, EqItemcode, convertby, reverseby, |corderj Fordej

|domainma^, addedby, dateadded)
10) Mappedto (Sname, ERname, addedby, dateadded, modifby, lastmod, nummods)
11) Moduleof rSubresid, Resid, relationship)
12) NameAs (ERname, Applname, @ , localname)
13) PA (ERname, Applname, Itemcode)
14) Relates (Cname, Sname, direction)
15) Resident fResid, Serialno, path, invokecom)
16) Storedin Qtemcode, Fileid, relpos)
17) Uses (Applname, Resid, dataorg)

Meta-mandatorv Relationships {MRs)
Component (Application, Subject)

Role Application 二 owner
Role Subject 二 owned

Inter-components (Application, Context)
Role Application = owner

88

Role Context = owned
Defines (Subjectl, Subject2)

Role Subjectl = owner (i.e. the superclass)
Role Subject2 = owned (i.e. the subclass)

Express (Condition, Fact)
Role Condition = owner
Role Fact = owned

Loperand (Fact, Condition)
Role Fact 二 owner
Role Condition = owned

Roperand (Fact, Condition)
Role Fact = owner
Role Condition = owned

Meta-Functional Relationship (FRs)
Administrator (Application, User)

Role Application = determinant
Role User = determined

Bind-Fact (Action, Fact)
Role Action = determinant
Role Fact 二 determined

Condof (Rule, Condition)
Role Rule = determinant
Role Condition = determined

Convert (Equivalent, Rule)
Role Equivalent = determinant
Role Rule = determined

ERExist (Integrity, Ent-rel)
Role Megrity = determinant
Role Ent-rel 二 determined

For (Fact, Item)
Role Fact 二 determinant
Role Item = determined

Maintain (Hardware-Resource, User)
Role Hardware-Resource = determinant
Role User = determined

Itemin (Item, Application)
Role Item = determinant
Role Application == determined

Subjectin (Subject, Software-resource)
Role Item 二 determinant
Role Application = determined

A4. Definition ofMeta-attributes
Key:
attribute-name - non-key field in meta-relations

89

Attribute - key field in meta-relations
Attribute - both key and non-key field in meta-relations
Rows with double outer-box are new items.
Meta-attribute Description Synonym(s)

name
Accesscode An attribute of the meta-PR-ApplUser that

identifies a user's authorized data access level; e.g.
Read(R)/Write(W)/Execute(E)/Delete(D).

Actid Unique identifier (primary key) for meta-entity-
Action

Acttype Class of actions ofthe production rule:
0 — assignment-statement action
1 一 declarative-statement action
2 - procedure-call action

Addedby Name/initials of a modeler or information
administrator who entered the meta-entity or
relationship into the GIRD. Provides for an audit
trail.

Address Home address ofauser in meta-entity-User
Akey Alternative primary keys for an Ent-rel base

relation
Applname Unique name (primary key) for an application
Class Classification scheme for end-users; can serve to

control privileges and data access.
Cname Unique name (primary key) for the meta-entity-

Context
Coding The type of physical representation of a software

resource; e.g. Pascal or LISP for program code; and
ASCII or VASM for data files.

Condid a) Unique name (primary key) for meta-entity-
Condition

b) an attribute for meta-entity-Rule
Convertby Used in meta-PR-Equivalent to represent the rule Rname

converting the format ofthe first item to the format
ofits equivalent.

I Corder Used in meta-PR-Equivalent to represent relative
position of Eqitemcode when passed into a
conversion rule for converting to the first item. For
value:
>0 — relative sequence
O(zero) - the Eqitemcode is the only parameter in

the conversion rule
NULL — the domain of the Eqitemcode is part of

that of Itemcode _ _ _ _ _ _
; ^ ^ ^ ^ ^ ^ ^ ^ ^ S ^ S 5 ^ ^ ^ ^ ^ ^ E 3 S = ^ = ^ ^ ^ ^ = ^ ^ ^ = ^ ^ ^ ^ ^ ^ = ^ ^ = ^ ^ ^ ^ = ^ ^ ^ ^ = ^ ^ ^ ^ = = ^ ^ ^ = ^ ^ ^ = ^ ^ ^ = ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ = ^ - " ' = ^ ^ = = ^ ^ ^ =

Dataorg Indicates how the data is organized in an
application in meta-PR-Uses.

Dateadded Date the instance of meta-entity or meta-
relationship was added to GIRD.

90

Meta-attribute Description Synonym(s)
name

Datepurch Purchase/acquisition date for hardware resources
Defvalue Default value, ifany, for a meta-entity-Item
Descript Description of all defined meta-entities and meta-

relationships
Developedby The name of the firm or person who developed a

software resource.
Direction a) Indicates how the link (data flows) between a

Context and Subject is directed graphically:
1 - toward Subject
2 — toward Context
3 - bi-directional
nil - none
b) An attribute ofmeta-PR-Relates

Domain The set ofvalues that can be assigned to a data item
in meta-entity-Item.

^ I t e m c o d e The equivalent data item in meta-PR-Equivalent Itemcode
ERname Unique name (primary key) for meta-entity-Ent-

r^
Ertype The type of Ent-rel:

OE - operational entity
PR - plural relationship

Extension The file-name extension (if any) for a software
resource.

Factid a) Unique system-generated identifier (primary
key) for meta-entity-Fact

b) An attribute of meta-entity-Action
Factname An attribute represents the fact name.
Facttype Attribute ofmeta-entity-Fact that indicates the type

of the fact represented and how its value is to be
assigned: 0 - constant value
1 — value retrieved from local data item
2 — identifier whose value is supplied by user at
run-time
3 — value computed by a function call
4 — value of an expression
5 — identifier bound by an action of a rule
6 - declarative fact

Factvalue The calculated or referenced value, or a constant,
that binds a fact during the rule inferenceing
process.

Fileid _ An attribute of meta-ent i ty-Subject Res id
Format The data item representation type in meta-entity-Item
Functid a) Identifies the function to be called for binding a Resid

fact I b) Key fields in meta-PR-Computes

91

Meta-attribute Description “^ Synonym(s)
name

Hname Model number or name of a hardware resource.
Htype An attribute of meta-entity-Hardware-resource

representing the type of hardware; e.g. line-printer,
mainframe, etc.

Inpkey a) A flag (boolean value) indicating whether or not
a data item is part ofthe primary key of an Ent-rel
b) An attribute ifmeta-PR-Belongto

Intname Unique name (primary key) for an integrity
constraint

Inttype The type of integrity constraint:
FR - functional relationship
MR - mandatory relationship

Invokecom a) The command to invoke a software resource on
a hardware resource
b) An attribute of meta-PR-Residesat

Domainmap An attribute indicates the type of domain mapping
between the Itemcode and the Eqitemcode meta-
PR-Equivalent.
0 — normal mapping
1 — the domain of the Eqitemcode is subset ofthat

ofthe Itemcode
2 — the domain of the Eqitemcode is superset of

that of the Itemcode
3 — Eqitemcode belongs to the domain of the

Itemcode _ _ _ _ = _ _ _ = _
. , ^ ^ _ ^ _ ^ _ ^ ^ ^ ^ — — ~ ^ g ; ^ ^ s i ^ = ^ ^ ^ ^ ^ ^ = : ^ ^ ^ ^ = ^ ^ = ^ = ^ = = ^ ^ ^ = = ^ = i ^ ^ ^ ^ = ^ ^ ^ ^ = ^ ^ ^ ^ ^ ^ ^ = = Itemcode Unique system-generated identifier (primary key)

for a data element in meta-entity-Item
Itemname The name of a data item in meta-entity-Item
Itemtype An attribute of meta-entity-Item to indicate whether

the data item is "persistent" (exists in at least one
local DB) or is generated at runtime.

Lastmod Date of last modification of GIRD meta-
entities/relationship

Leftfact The left operand of an expression Factid
Length The length of a data item. (May refer to length in

character or bytes depending upon implementation)
Localname An attribute of meta-PR-NameAs indicates the

local name of a global data object in its
corresponding local system.

Location Physical location for meta-entity-Hardware-
resource

Manufacturer The manufacturer of a hardware resource
Master An attribute of meta-entity Integrity representing ERname

the role of an Ent-rel:
a) the determinant of an FR
b) the owner of a MR

Modifby Identifier (name or initials) of an individual who|

92

Meta-attribute Description Synonym(s)
name

last modified an instance of a meta-relation
Nodeaddr Network address for a hardware resource
Nodename Network “node，，name for a hardware resource
Nummods Number ofmodifications to a meta-entity. It exists

in all meta-entity and most of meta-PRs.
Office Office location or address of meta-entity-User
Operator The logical operator in antecedent of a production

rule. This includes the set of arithmetic and set
operators.

PA A partition attribute of a cluster of horizontal Itemcode
partitioned local data object

~ ^ A set of WWF specifies the domain of a local data
object with respect to the PA in a horizontal
partitioned cluster. “ALL，’ is designated for
satisfying any PA value automatically.

Parid It represents a parameter of a function or procedure. Factid
Parorder The relative position of the parameter in a

function/procedure parameter list
Partitioned A flag (boolean value) indicates if a global data

object in meta-entity-Ent-rel that is horizontal
partitioned.

Password The password to an application in meta-PR-
Appluser

Path Path to top level directory in which a software
resource resides on a hardware resource

Phone Business telephone number of a user
Posinpkey The relative position of a data item field in the

primary key ofEnt-rel
Position Organizational position of the user; e.g. president,

DBA, etc.
Procid It identifies the procedure to be called by a rule Resid

action.
Purchby Identifier ofindividual responsible for the purchase

of the hardware resource
Relationship The relationship among software resources; in

meta-PR-Moduleof —
Relorder Relative order (sequence) of a Rule within a

Subject or Context — or of an Action in a Rule
Relpos Relative position of a data item in meta-entity-

Ent-rel
Resid A unique identifier (primary key) for meta-entity-

Software-resource
Resname Title/name of a software resource
Reverseby Used in meta-PR-Equivalent to represent the rule Rname

converting the format of Eqitemcode to the format
ofits equivalent (i.e. opposite of convertby).

Rightfact The right operand of an expression Factid

93

Meta-attribute Description Synonym(s)
name

Rname Unique (primary key) for meta-entity-Rule
Rorder Used in meta-PR-Equivalent to represent relative

position of Eqitemcode when passed into a
reversion rule for reversing to the first item. (i.e.
opposite ofcorder). For values:
>0 — relative sequence
O(zero) — the Eqitemcode is the only parameter in

the conversion rule
NULL — the domain of the Eqitemcode is part of

that ofItemcode
Rtype The type of rule; e.g. Modeling, Production,

Conversion, etc.
Serialno The unique identifier for meta-entity-Hardware-

resource
Sizeunit The unit of measure for describing storage of a

software resource; e.g. KBytes, blocks, cylinder,
pages, etc.

Sizevalue Quantity of units of storage for a specified software
resource (expressed in sizeunit)

Slave An attribute of meta-entity Integrity representing ERname
the role of an Ent-rel:
a) the determined of an FR
b) the owned of a MR

Sname Unique name (primary key) of meta-entity-
Subject

Subresid The key field in meta-PR-Moduleof representing a Resid
(sub-)software resource.

SSname The upper-level (if any) subject name for meta- Sname
entity-Subject

Unit An attribute of meta-entity-Item indicating a data
item unit of measure (if applicable).

Userid Unique identifier (primary key) for meta-entity-
User

Usemame Full name of a user in meta-entity-User
Valueof An attribute ofFact, which is:

a) ltemcode - facttype 二 1 (A data item)
b) Condid — facttype = 4 or 6 (A result of an

expression or declarative fact)
c) Factid — facttype = 5 (An assignment to other ^^

Valuetype Data type (character, integer, etc.) of the value
represented by a fact.

Xcoord X-coordinate of the graphical representation of a
Subject or Context

Ycoord Y-coordinate of the graphical representation of a
Subject or Context

94

^ ； ^ r ^ V H ^ ' , '广 > . , 、 • . 《 . . . \ : . :、.. 。 .. .- , 「.：-:

^ J V f^\ ^ 飞 、̂， --丨.. •>〉 .
“ 、 ‘ ， 、 〜 • ., . ， fi. K ^ ^ •

••• .i •“ ,.； -v5>'-''>4.' V* f'. •-"'' ；•；" • --• - 、- • • . I ••. .. -丨，

••,.• '̂:v;:".:;. •• -̂- ‘̂̂ ‘ •‘ ...: -.1?. , , . • ^ . . -: •
, . w .. -.;.,•'.. ： ‘ ， •• - . • :>•.

..1 •,"' ；< ‘ « . . . ： ‘, tf . . . “‘ •

j ： . •: ‘ . . . • 」, ’ ， ^ ('^ ‘ ‘ ； ,/ .'' . . . : . j . ' • . • • f . . .
’‘.. • - .’. .• ，

. = - - . 4 •：：；" ^ ¾ - ; : -；.： . ¾ / - ; . ' 」 .

：• :: ” ‘ ., “ V.

, ？ ;. • ,.

.--‘：！ • . •

i . 乂

•.. . . J . -¾ .' . .L.-:, …-• • •
>,"S1.. • . •,礼、^ • ;u ' V i r - - , ：•：«：.‘

、广

餘'•• ‘ -^ ：；__ 'h^,^,^;:.%-,r:^ 7' v4- ̂ •• ., .. •:: 、 ^
f 难{ i . • “ ’- -••.

, 、 ” 4 ^ ¾ / ^ ‘ . .—:::-[:-..::: : , . . . 、 • ^ • - " • • : 於 ： . 9 5 . � � j》 ' . , . '^X'^% . ‘ ;^^r • . .. y -:̂ ,.,.-,;"-.,.. ？ , : , :...?:: : . ” .:、、:::: -：-：：•：：•••：.: t.i«£tj|Jâ I)3‘',fefe。u�-‘�Aj:,®..h .̂..,i?[:,.�l..L“ k .̂ , ^ ' ” — " . . - … . ‘ J ‘ _,.,A.一,,.《 „v,„ uj.,

B. Problems Representations in Relation Algebra
B1. Horizontal problem

n — R=ru,, Ri urivk，..,", ̂ ^ 吼�.，“,R; u...
where,
{ e q v (k ^) , e q v (^ 0 ， . . , e q v (“ j) } U { e q v (k ') , e q v K) , . . , e q v (^ ,) } U

{eqv(k'), eqv(a,),..,eqv(^y)}U …二 {k, 2̂̂ 1,..,仅„}
=> {eqv(k*)，eqv(a**)，..，eqv(a***)} Q {k, ̂ ^,..,仅„}

k* is the primary key or a part of primary key of R*.

Assuming that,
n 小 R*={o}
i i { k , « ， . . ’ 《 } - { k , A * ， . . ’ / ? - * } 、)

B2. Level of abstraction
TT T? =TT R^ u n 2 R ' U —
..ik’《i，..,a,, " ^ _ i i k i , f (^ " . . , ^ P , g (a k , . . , ^ /) 丄 l k ’hK ’ . . ’a ,) where,
/ , g, h are equivalence functions, so that,
{ e q v (k ') , eqv(<9Ti , " , d3 f j) , e q v (< ^ , . . ’ 《 i) } U

{eqv(k')，eqv(̂ x v,^y))U …={k,汉丨,-,̂ n}
=> {eqv(k*), eqv(a,.,.., ̂ 3f***)} c {k, ^^,.., ̂ 3r̂ }
k* is the primary key or a part of primary key of R*.
Assuming that,
n { k , a , . . , a } - { k \A8 , . . ,A»* } R - 树

96

B3. Schematic Variance

FL (R><-s)=n.v. TurL，,2 Tur^3 Tu".
where,
P\，.., p^ shares the same domain, such that
p^y.y^pn=p
=^EL (R > < . = . s) = n . v T
and n T=n, (R><ws)
丄 ieqv(k"),eqvO^) 丄 U , a 、 允—穴

97

C. Details of local systems
Sales Center A
Operation Entities:
Customers CustID, firstname, lastname, addr,mobile, pager, office
Orders OrderID, CustID, date, amt
Order Detials OD ID, OrderID, ProdID, qty
Products ProdID, name, unitprice
Sales Center B
Operation Entities:
Customers CustomerID, name, street district
Contacts ContID, CustomerID, phone, contype
Orders OID, CustID, date, amt, remark
Order Detials ODID, OID, ItemID, qty
Products ItemID, name, unitprice
Head Office
Operation Entities:
PQ POID, CustomerID, date, amt
P0 Details POD ID, CustID, PartID, qty
Parts ~~ PartID, descript, unitprice
Invoice — Inv ID, POID, date, remark
Materials ~~ Mat ID, descript, qty
Suppliers Sup ID, name, addr
Plural Relationships:
BOM Mat ID, PartID, stdyield
Supply Sup ID, Mat ID, unitcost
Global Model
Operation Entities:
Customers CustomerID, firstname, lastname, street, district, sales ctr
Contacts ContID，CustomerID, phone, contype, sales ctr
PQ POID, CustomerID, date，amt, sales ctr
P0 Details POD ID, CustID, ProdID, qty, sales ctr
Product ProdID, descript, unitcost, sales ctr
Invoice Inv ID, POID, date, remark
Materials Mat ID, descript, qty
Suppliers Sup ID, name, addr
Plural Relationships: BOM Mat ID, PartID, stdyield
Supply Sup ID, Mat ID, unitprice

98

耀 ？ ！ 臂 二 叙 / ： . … � � ‘ “ : . - > I _ . . , . : . , . . .

‘ / � 7"':广, / V � ' : . . . : . : . . .: : _ .

�r^ ‘ f :. • .
.•。•:..... :?.>•?•. •々•" : •., .
―：. ...-1 ,̂ • -: •: . ‘ : , • -.
• . “ ‘ •• ‘ ’ / , ' • . … • . • I ••-•'' ‘ . , “ • .

• •‘ . • • ‘ •
• - • . • 。

• :.. ‘ . ， f .
• ^ ‘ .

• . -• ‘ ,. ^

/

• -̂ ‘ • _. ‘ • -
� . • “ ‘.-• . • •:',‘ p? •••
V...- • . -,wJ-', .•-•' ••) :.. _. ‘
:•1. . r Ji~ • :. “ . . • “ - .. ,_ _ •
. i _ > . . i . .：：«•• -., . •• • •；• - ' - . - ' i : - ^ - ; " / L i i - l - ' . ,：' ‘ • - - - . -1 ‘

、V • ” ‘ . , . - ‘ ^
/、，•* \ 1 。 •„ ' •： ‘ . ., / • j ’ . . . ‘ -:、..:’ . . . - , . . '

叫 " / V / / s .' ‘ Mt>i：；,, . -'V ,：；. -：,'• ：̂ ,；.^,："-：'；：；-.,-, . „,；, • • • . : :_ : , : ' • / • •.- .:•'• , : : : : , j;_r̂ '::,;,:;._._._
.̂''iiy.'.'i'^；" c-,<i'v...>..v. • "i’,-� | | .“-i.Li',)..‘A、-..、:.，.- , , , •—••' - - . . " � ‘ . . - - I .f - ,. ^ . 1 | � _ : I - __ Vj| ._ 丨丨- _ , . ‘ .,_>_ . 1 ,丨:.： .:_ “ ,,.‘，11 7 |_ __' .- -ftMk,iiij^^'„‘Ai,.:^tv‘..i ‘ ‘，.人丨 J? •)? ’- 「：. • . :̂ :, v.̂ s;:̂ -''̂ '̂J'l:-- v':.:...V._.":-:.;.= :r •.:-::.Sf).^/ ..:,:.::K,:

CUHK L i b r a r i e s

圓圓__11111
0 0 3 f l 0 3 S E S

