
Genetic Based Clustering Algorithms and Applications

by

LEE Wing Kin

A dissertation submitted in partial

fulfillment of the requirements for the degree of

Master of Philosophy

in the Division of

Systems Engineering and Engineering Management

of

The Chinese University of Hong Kong

Shatin, N.T.,

Hong Kong SAR, China

July 2000

Genetic Based Clustering Algorithms and Applications

© Copyright

by

The Chinese University of Hong Kong

July 2000

Abstract

Genetic Based Clustering Algorithms and Applications

by

LEE Wing Kin

Clustering methods refer to a group of unsupervised pattern classification procedures

that separate or partition a finite collection of objects into subsets based on some

predefined criteria. These methods have been applied to many real-life problems. In

this thesis, we examine the nature of a clustering problem, develop reliable and efficient

algorithms for it, and investigate their practicality in different database applications.

The literature has shown that the clustering of a data array can be stated as a

traveling salesman problem (TSP). Hence, TSP structure may be exploited to solve

the clustering problem. In this thesis, we explore the use of genetic algorithms (GA)

and propose a methodology based on it to solve the clustering problem. In particular,

the TSP structure is exploited in our solution methodology. We also consider several

clustering problems in information systems. In a typical distributed/parallel database

system, a transaction mostly accesses a subset of the entire database. It is, therefore,

natural to organize commonly accessed data together and to allocate them into different

machine(s)/site(s) in a computer network so as to minimize remote transaction pro-

cessing. For this reason, data partitioning and data allocation are performance critical

issues in distributed database design. In this thesis, we are dealing with data parti-

tioning. In particular, we examine data partitioning in four different contexts: vertical

partitioning (VP) a relational database (RDB), horizontal partitioning (HP) a RDB,

object-oriented database (OODB) design, and document database design.

To further enhance the performance of our GA clustering algorithms, we propose

three new GA crossover operators for solving the TSP. These include a modified ver-

i

sion of an existing Enhanced Edge Recombination (EER) operator, called Enhanced

Cost Edge Recombination operator (ECER), and two new operators, called Shortest

Path (SP) operator and Shortest Edge (SE) operator. Their performances are com-

pared with several existing operators using the problem instances from a well-known

TSP repository. We run the experiments on a SUN SPARC Ultra-5_10 workstation.

Experimental results indicate that the proposed operators have different contributions

and that our operators are compared very favourably to others in solving the problem.

ii

論文槪述

遺傳分類算法與應用

李永健

分類法是指在某一特定的前題下，把物件集分割成數份或是把相關的物件

組成數份，這方法能廣泛地應用在多個領域。在本論文’我們會深入探討分類

法的特質，提出一個有效及可靠的分類算法，並硏究其數個應用。

在文獻中曾經提及矩陣排列能應用於分類問題上，另外’它能演化成一個

旅行商問題或貨郎擔問題(traveling salesman problem，簡稱TSP)�本論文嘗試

透過利用TSP結構及了解遺傳算法（genetic algorithms，簡稱GA)，開發H0新

的遺傳分類算法。由於分類算法應用範圍廣泛，我們特別探討所提出的遺傳分

類算法如何應用在資訊系統中。在存取一個分散資料庫的過程中，一個交易通

常會涉及到存取某一部份的資料庫。如果能夠把相關的資料分類，然後把它們

分配在不同的電算機上，資料庫的存取效率也就大大提高。基於上述原因，資

料分類和分配這兩個問題在分散資料庫設計上有著重要的影響。在本論文，我

們集中硏究資料庫的資料分類，並探討我們所提出的新算法於分散資料庫中的

四種應用，它們包括垂直分割關聯資料庫、橫切關聯資料庫、對象特性資料庫

設計和文件資料庫設計。

另外，我們提出三個新的遺傳雜交算子，包括一個經修改的改良邊重組雜

交算子(enhanced cost edge recombination，簡稱 ECER)，一個最短路徑算子

(shortest path，簡稱SP)和一個最短邊算子（shortest edge，簡稱SE)，我們運用

這三個算子來解決TSP資料庫中的數十個問題。實驗結果指出，我們所提出的

雜交算子於解決TSP問題上有著不同的貢獻，並且它們比文獻中所提及的數個

算子優勝。

Acknowledgments

I am deeply thankful to my supervisor, Professor C. H. Cheng, for the guidance pro-

vided. This thesis would not be completed without his insights and direction. Moreover,

he gave me valuable suggestions to improve my presentation skills.

I wish to thank the internal reviewers, Professor K. F. Wong and Professor Jeffrey

X. Yu, for their comments and suggestions. They, together with my supervisor, chaired

the database discussion group from which I got helpful guidance and comments for my

research.

I would also like to thank the staff of the Department of Systems Engineering and

Engineering Management for their help, and also the Chinese University of Hong Kong

for providing a nice environment.

I would like to thank my girlfriend - Miss Chai Kit Yin. She gives me precious

private time and provides encouragement when needed. Also, I wish to thank my

family members, especially my mother, offers unlimited love.

iii

Contents

Abstract i

Acknowledgments iii

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Clustering 1

1.1.1 Hierarchical Classification 2

1.1.2 Partitional Classification 3

1.1.3 Comparative Analysis 4

1.2 Cluster Analysis and Traveling Salesman Problem 5

1.3 Solving Clustering Problem 7

1.4 Genetic Algorithms 9

1.5 Outline of Work 11

2 The Clustering Algorithms and Applications 13

2.1 Introduction 13

2.2 Traveling Salesman Problem 14

2.2.1 Related Work on TSP 14

iv

2.2.2 Solving TSP using Genetic Algorithm 15

2.3 Applications 22

2.3.1 Clustering for Vertical Partitioning Design 22

2.3.2 Horizontal Partitioning a Relational Database 36

2.3.3 Object-Oriented Database Design 42

2.3.4 Document Database Design 49

2.4 Conclusions 53

3 The Experiments for Vertical Partitioning Problem 55

3.1 Introduction 55

3.2 Comparative Study 56

3.3 Experimental Results 59

3.4 Conclusions 61

4 Three New Operators for TSP 62

4.1 Introduction 62

4.2 Enhanced Cost Edge Recombination Operator 63

4.3 Shortest Path Operator 66

4.4 Shortest Edge Operator 69

4.5 The Experiments 71

4.5.1 Experimental Results for a 48-city TSP 71

4.5.2 Experimental Results for Problems in TSPLIB 73

4.6 Conclusions 77

5 Conclusions 78

5.1 Summary of Achievements 78

5.2 Future Development 80

Bibliography 81

V

List of Figures

1.1 Tree of classification types 2

1.2 A traditional Genetic Algorithm 10

2.1 An example of order crossover operator 18

2.2 Genetic algorithm for solving the TSP 22

2.3 The PROJECT relation 24

2.4 Examples of horizontal partitions 24

2.5 Examples of vertical partitions 25

2.6 Transaction-attribute matrix 1 28

2.7 Re-arranged transaction-attribute matrix 2 29

2.8 Another transaction-attribute matrix 3 29

2.9 Cost matrix for attributes of the example in Figure 2.6 31

2.10 Cost matrix for transactions of the example in Figure 2.6 32

2.11 An example for solving the VP 34

2.12 Connection of relations using a link 37

2.13 Ceri and Pelagate's algorithm for horizontal partitioning 38

2.14 Initial transaction-predicate matrix 40

2.15 Re-arranged transaction-predicate matrix 41

2.16 Dept_Employee database 45

2.17 AAC matrix for the class EMPLOYEE 47

vi

2.18 Re-arranged AAC matrix for the class EMPLOYEE 48

2.19 The model of a document database system 49

2.20 Procedure for computing HI between two documents 51

2.21 Cost matrix with six documents 52

2.22 Re-arranged cost matrix with six documents 52

3.1 The bond energy algorithm 56

3.2 The algorithm of Slagle et al 57

3.3 Transaction-attribute matrix 4 with an embedded "inner" block 57

3.4 Transaction-attribute matrix 5 after the SHIFT procedure is applied • . 58

4.1 The algorithm for Edge Recombination (ER) operator 64

4.2 The algorithm for Enhanced Cost Edge Recombination (ECER) operator 66

4.3 Weight matrix for SP operator 67

4.4 The Dijkstra's shortest path algorithm 68

4.5 The algorithm for Shortest Path (SP) operator 68

4.6 The algorithm for Shortest Edge (SE) operator 70

vii

List of Tables

2.1 Attribute sizes for class EMPLOYEE 46

2.2 Transactions that access the attributes of class EMPLOYEE 46

3.1 Results for solving VP with GA and Slagle's algorithm . 59

4.1 Edge table for Edge Recombination (ER) operator 64

4.2 Edge table for Enhanced Edge Recombination (EER) operator 65

4.3 Results for a 48-city TSP (untuned) 71

4.4 Results for a 48-city TSP (tuned) 72

4.5 Computational results for TSPs less than or equal to 100 cities � 74

4.6 Computational results for TSPs within 100 and 500 cities 75

4.7 Computational results for TSPs above 500 cities 76

viii

Chapter 1

Introduction

1.1 Clustering

Clustering methods refer to a group of unsupervised pattern classification methods

that partition the input space into n partitions so as to satisfy some predefined criteria

([43] and [56]). These methods have been applied to many different areas such as

manufacturing systems ([1] and [14]), logistics activities ([17], [78] and [97]), information

system designs ([87], [93] and [102]).

When cluster partitions are disjoint, one obtains exclusive classification (i.e., each

data point belongs to only exactly one cluster). On the other hand, when partitions are

overlapping, one obtains non-exclusive classification [56]. Clustering methods, which

seek to provide exclusive classification, can be broadly classified into intrinsic and

extrinsic classification [56]. Intrinsic classification is also called “ unsupervised learning"

because no category labels are used. Extrinsic classification uses category labels on the

objects. For example, suppose that various statistics of personal health have been

collected from smokers and non-smokers. An intrinsic classification method groups the

individuals based on similarities among the health statistics and then tries to determine

whether smoking is a factor in the propensity of individuals toward various diseases. An

1

1.1 Clustering ？

extrinsic classification method studies ways of discriminating smokers from non-smokers

based on health statistics. In this thesis, we focus on intrinsic classification.

Classifications

Non-Exclusive Exclusive

Extrinsic Intrinsic (Unsupervised)

Hierarchical Partitional

Figure 1.1: Tree of classification types

1.1.1 Hierarchical Classification

Exclusive, intrinsic classification can be subdivided into hierarchical and partitional

56], (see Figure 1.1). Hierarchical classification is a nested sequence of partitions.

Suppose n objects to be clustered are included in the set 屯.

where Xi is the ith object. A partition, T of ^ breaks 少 into subsets {Ci, C2,…，Cm}

satisfying the following:

Ci 门 = $ for i and j from 1 to m, z / j

Ci U C2 . . . U Cm = ^

Notice that 少 is an empty set. A clustering is a partition; the components of the

partition are called clusters. For example, let's assume the clustering C with three

1.1 Clustering ？

clusters and the clustering B with five clusters are defined as follows:

C = { (xi , X3, X5,X7), (X2,X4,X6, Xg), {xg, O îo)}

B = {{xi,xs), xj), 0^2), (^4,^6, Xs), 町 0) }

B is nested into C. That means, every component of Bis a proper subset of a component

of C. Both C and B are clusterings of the set of objects {xi,X2,. • • ,2:10}.

Given n objects, there are partitions to be considered before they can be

divided into two groups [3]. Clearly, when n is large, the number of possible partitions

to consider may be very large. To make it more complicated, one has to decide at

which level of the hierarchy to stop to determine the number of clusters.

Several popular hierarchical clustering methods have been proposed. They are the

single-link, average-link, complete-link, centroid, median and Ward's clustering method

(see [56]). Golden and Meehl [37] find that the average-link, complete-link, and Ward's

clustering method outperform the others. Besides, Bayne et al [5] conclude that the

Ward's method and complete-link method are preferable to median, group average and

centroid methods. However, as stated by Anderberg [3], all these methods do not

guarantee an optimal solution in terms of the clustering criterion.

1.1.2 Partitional Classification

The problem of partitional clustering (non-hierarchical) can be formally stated as fol-

lows. Given n patterns in a d-dimensional metric space, determine a partition of the

patterns into K groups, or clusters, such that the patterns in a cluster are more similar

to each other than to patterns in different clusters. Notice that the value of K may or

may not be specified.

The theoretical solution to this partitional problem is straightforward. This is to

select a criterion, evaluate if for all possible partitions containing K clusters, and pick

the partition that optimizes the criterion. However, as the number of objects increases,

the number of possible partitions explodes. For example, there are 34,105 distinct

1.1 Clustering ？

partitions of 10 objects into four clusters, but this number explodes to approximately

II,259,666,000 if 19 objects are partitioned into four clusters [56]. Clearly, exhaustive

enumeration of all possible partitions is not computationally feasible even for small

numbers of patterns.

To avoid this combinatorial explosion, several heuristics have been proposed. Many

of them start with an initial partition and perform one or more of the following actions:

moving objects from one cluster to the other, and merging and splitting clusters. Per-

haps the most well-known of these methods is the A;-means [56]. It attempts to obtain k

cluster centers by minimizing the square-error. It produces partitions which minimizes

within-cluster scatter or maximizes between-cluster scatter. However, to avoid local

optimum solutions, one has to examine many if not all initial partitions. To generate

all possible initial partitions is again not computationally feasible.

Other approaches attempt to eliminate solutions and can be used to achieve an

optimal solution. Examples of these are Branch and Bound, integer programming,

mathematical programming, etc ([27], [65], [70], [94] and [109]). Although some signif-

icant computational savings are realized, these methods are still not computationally

feasible for large clustering problems.

1.1.3 Comparative Analysis

Milligan [83], Milligan et al [84] and Milligan and Cooper [85] investigate several clus-

tering methods. They conduct experiments on fifteen clustering algorithms including

all the popular hierarchical and partitional approaches. They find that no one single

group of algorithms is consistently superior to any other group [83]. For example,

the /c-means partitional algorithm gives better results than hierarchical methods only

when the starting partition is close to the final solution. Besides, Hartigan [44] con-

cludes that different classifications are suitable for different uses. Hence, there is no the

best classification. The choice between hierarchical or partitional clustering methods

1.2 Cluster Analysis and Traveling Salesman Problem ^

in fact depends on the domain of the underlying problem.

1.2 Cluster Analysis and Traveling Salesman Problem

Consider the clustering of a non-negative M x N array. Given two finite sets R and

S and a non-negative matrix [ars)reR,seS, where Qrs measures the strength of the

relationship between elements r G and 5 G One would like to permute the rows

and columns of the matrix so as to bring its large elements together. The resulting

clustering should identify strong relationships between subsets of R and S.

McCormick et al. [80] argue that clustering a matrix may be useful for problem

decomposition and data reorganization. They illustrate this with three examples. The

first one is an airport design problem. Given R {S is equal to R; i.e. a similarity array)

as a set of 27 facilities that should be available at the airport and are under the control

of the designer; â s is fixed at 0, 1, 2 or 3 depending on whether facilities r and s have

no, a weak, a moderate, or a strong dependency. The permuted matrix should suggest

a decomposition of the design problem into sub-problems that interact not at all or

only in a limited and well-defined ways. The second example involves a set R of 53

aircraft types and a set S of 37 functions that they can perform; â s 二 1 if aircraft r

is suitable for function s, and t^s 二 0 otherwise. The rearranged matrix shows which

aircrafts are able to perform the same functions and which tasks can be performed by

the same aircraft. The third example also deals with an object-attribute array. R is

a set of 24 marketing techniques, 5' is a set of 17 marketing applications, â s = 1 if

technique r has been successfully used for application s, and ars = 0 otherwise. Lenstra

and Rinnooy Kan [72] give a fourth example. It deals with an input-output matrix. R

(same as S) is a set of 50 regions on the Indonesian islands, ars = 1 if at least 50 tons

of rice are annually transported from region r to region 5, and ars = 0 otherwise.

As stated by Lenstra [71], all these problems can be modeled as a traveling salesman

problem (TSP). TSP is the problem of a salesman who, starting from his home city,

1.2 Cluster Analysis and Traveling Salesman Problem ^

has to find the shortest tour that takes him exactly once through each of a number

of other cities and then back to his home city. Suppose there are n cities and cij is

the distance between cities i and j { i j = 1 , … , n) . The salesman is interested in a

permutation tt of {1, . . . ,n} that minimizes:

n-l

y ^ C兀(i)7r(i+l) + C7r(n)7r(l)
i=l

Hence, 7r{i) is the zth city visited. The TSP is symmetric if Cij = Cji for all i j .

To solve the clustering problem, McCormick et al [80] propose to measure the

effectiveness of a clustering by the sum of all products of horizontally or vertically

adjacent elements. Notice that higher sums of these products tend to correspond to

better clusterings. The problem is now to permute the rows and columns of the matrix

so as to maximize this criterion.

Permuting the rows does not affect their horizontal adjacencies of the elements,

and permuting the columns does not affect their vertical adjacencies. The problem

therefore decomposes into two separate and similar problems, one for the rows and one

for the columns. We consider the former. The row optimization problem is to find a

permutation p oi R that maximizes:

降 1

r=l seS

Here, row p{r) of the matrix is put in position r. This is, again, nothing but the

symmetric traveling salesman problem [71]. Let = {1，...，阅}，and define

n = + 1 and

Cij = — XvsGS ̂ is^jst Cin = Cnj = 0 for j G R

The rows of the matrix are the cities, the additive inverses of their inner products

are the distances, and a dummy city has been added to close the tour. Notice that

1.3 Solving Clustering Problem 1

column permutation can be done in the same way. Thus, the clustering problem can

be reduced to two separate traveling salesman problems. In general, the clustering

problem for a p-dimensional array can be stated as p-TSPs，and it may be tackled by

an optimal or a heuristic algorithm for the TSP.

The TSP has become the prototypical problem of combinatorial optimization.

Moreover, many solution approaches that have become standard in combinatorial opti-

mization are first developed and tested in the context of the TSP. This is partly because

its simplicity of statement and its difficulty of a solution are even more apparent than

for most other problems in the area [68]. Due to its advantages, many mathematical

formulation, applications and solution approaches have been developed [72 .

1.3 Solving Clustering Problem

We have shown that clustering is a combinatorial optimization problem which can be

reduced to a TSP. It is, therefore, difficult to find an efficient and optimal algorithm

that uses polynomial time to solve a given optimization problem. Indeed, the clustering

methods described in Section 1.1 can be broadly classified into two categories, namely

exact methods and heuristic methods [30].

Exact methods seek to examine the possibility of an optimal solution. Results

obtained by them are the best available. Examples of these are Branch and Bound

65] and dynamic programming [57]. However, if the search space of a problem is very

large, these methods may require excessive running time. To avoid examining all the

feasible points in the search space, many methods attempt to eliminate solutions. For

instance, Branch and Bound approach tries to reduce the complexity through pruning,

whereas dynamic programming approach tries to avoid some redundant calculations in

the total enumeration. Although some achieve computational savings, most of them

are still computationally infeasible for large problems ([9], [30]).

Heuristic methods seek to search for good approximation solutions. They are a

1.3 Solving Clustering Problem ？

popular way of addressing hard problems, because of their simplicity and computational

efficiency. Examples of these are the A;-means (c-means or basic ISODATA) methods

([54]，[55] and [107]). In each iteration of these algorithms, an object is systematically

moved to another cluster if such a move reduces the value of the objective function.

It is possible that these methods may get stuck at a local minimum. They avoid this

problem by taking several different random initial configurations and by applying the

procedure to each configuration. This type of evaluation is, however, too ad hoc and

the quality of the results highly depends on the type of data and objective function

([9],[30]).

Recently, a third class of methods has emerged which are called met a-heuristics or

inter-disciplinary approaches. These methods generate new points in the search space

by applying operators to current points and statistically move toward more promising

areas in the search space. They rely upon an intelligent search of a large but finite

solution using statistical methods. These methods do not require to take cost function

derivatives and can thus deal with discrete parameters and non-continuous cost func-

tions. They represent processes in nature that are remarkably successful at optimizing

natural phenomena [46]. These methods include simulated annealing (SA) [62], tabu

search (TS) [62] and genetic algorithms (GA) [36 .

SA is inspired by the process that takes place in a crystalline substance during a

slow cooling. Starting from a random point in the search space, a random move is

made. If this move takes us to a higher point, it is accepted. If it takes us to a lower

point, it is accepted only with probability p(力)，where t is time. The function p{t) begins

close to 1, but gradually reduces towards zero (the analogy being with the cooling of a

solid). However, SA only deals with one candidate solution at a time, and so does not

build up an overall picture of the search space [6 .

As for SA, the TS method is based on gradual local improvement of a current

solution of an optimization problem. It searches for a new solution in the neighborhood

1.4 Genetic Algorithms ？

of the current one. However, it usually searches the whole neighborhood, instead of

picking at random one of its members, as SA does [30 .

A third met a-heuristic, the GA, is the subject of this thesis and is described in the

following section.

1.4 Genetic Algorithms

John Holland proposed genetic algorithm (GA) [50] in 1975. GA has since become

a topic of active research [36] and has been successfully applied in solving some well-

known complicated problems such as optimization of gas pipeline [33], Blind Knapsack

problem [35], etc. GA is an adaptive method which is based on genetic processes of

biological organisms. Over many generations, natural populations evolve according

to the principles of natural selection and "survival of the fittest". By mimicking this

process, GA is able to "evolve" solutions to real world problems, if it has been suitably

encoded. For example, GA can be used to design bridge structures for maximum

strength/weight ratio, or to determine the least wasteful layout for cutting shapes from

a piece of cloth. It can also be used for online process control, such as in a chemical

plant, or load balancing on a multi-processor computer system [6 •

In nature, an individual within a population competes with one another for resources

(e.g. food or water). Besides, an individual within same the species often competes

with others to attract a mate. Those individuals which are most successful in surviving

and attracting mates will have relatively larger number of offspring. On the other hand,

poorly performing individuals will produce fewer offspring or may even “ die out" • This

means that the genes from the highly adapted, or "fitted" will spread to an increasing

number of individuals in each successive generation. In this way, species evolve to

become more and more well suited to their environment, see [6 .

GA uses a direct analogy of this natural behaviour. It works with a population of

“individuals", each representing a feasible solution to a given problem. Each individual

1.4 Genetic Algorithms

is assigned a "fitness score" according to how good a solution to the problem is. The

highly fitted individuals are given opportunities to "reproduce", by "cross breeding"

with other individuals in the population. This produces new individuals as "offspring"

and the least fitted members of the population are less likely to get selected for re-

production, and so "die out". Over many generations, good characteristics are spread

throughout the population, being mixed and exchanged with other good characteristics

as they go. By favouring the mating of the more fitted individuals, the most promising

areas of the search space are explored. If GA is designed well, the population will

converge to an optimal solution to the problem. The standard GA can be represented

as shown in Figure 1.2. For more detail descriptions, see [22], [23], [40], [42], [36] and

[82].

Begin
generate initial population
compute fitness of each individual

While (NOT finished) Do
Begin

For population^ize/2 Do
Begin

select two individuals from old generation for mating
recombine the two individuals to give two offspring
compute fitness of the two offspring
insert offspring in new generation

End
If population has converged Then finished := True

End
End

Figure 1.2: A traditional Genetic Algorithm

Clearly, the large population of solutions and simultaneously searching for better

1.5 Outline of Work 11

solutions give the genetic algorithm its power. Indeed, some of the advantages of GA

can be summarized as below [46]:

1. Optimizes with continuous or discrete parameters.

2. Does not require derivative information.

3. Simultaneously searches from a wide sampling of the cost surface.

4. Deals with a large number of parameters.

5. Is well suited for parallel computers.

6. Optimizes parameters with extremely complex cost surfaces; they can jump out

of a local minimum.

7. Provides a list of optimum parameters, not just a single solution.

8. May encode the parameters so that the optimization is done with the encoded

parameters, and

9. Works with numerically generated data, experimental data, or analytical func-

tions.

These advantages are intriguing and could lead to stunning results in situation where

traditional optimization approaches fail miserably.

1.5 Outline of Work

In this chapter, we have shown that clustering is a combinatorial problem. By formulate

the underlying problem as a TSP, one can take advantage of its problem structure.

There are many methods proposed to solve the clustering problem. Most of these

methods can be classified into two categories, namely exact methods and heuristic

methods. However, a third class of methods called meta-heuristic or inter-disciplinary

1.5 Outline of Work ^

approaches has emerged. These methods, including genetic algorithms, have several

advantages over the traditional methods. In this thesis, we explore the use of genetic

algorithms (GA) and propose a methodology based on GA to solve the clustering

problem.

In the following chapter, the TSP literature is reviewed. Also, the applicability of ge-

netic algorithms (GA) to a TSP is presented. To extend the applications of our GA clus-

tering algorithms, we consider several design problems in information systems. They

are vertical partitioning (VP), horizontal partitioning (HP), object-oriented database

(OODB) design, and docuiiieiit database design.

To evaluate the performance of our proposed algorithm, we compare our approach

with th(； Slaglo's, an efficient heuristic method for solving VP problem in Chapter 3.

We generate several VP problems whose sizes range from 20 to 100 attributes. Coiiipii-

tatioiial results indicate that our proposed algorithm outperforms the Slagle's for the

same application.

To further cnhaiico the perforiiiaiice of our GA clustering algorithms, w() pr()i)()s(i

thi(M- n(nv operators for solving the TSP in Chapter 4. These iiichidc a modified version

of the (»xistin^ Enluuicod Edgo Recoiiibinatioii operator (EER) [103], called Enhanced

Cost Kd^c Krromhiiiati(川 operator (ECER) . two m，w op(?nit()rs, calknl Shortest Edge

ojxM-ator (SK) and Shortrsl Path operator (SP). The pcrforinaiico of tlie proposed

opcM-.itors arv coiiiparc^l with spvrnil existiiiji； operators using all the proijlein iiistaiicos,

\vhi)M�sizes nin‘i;(>s from 14 to 783 (:iti(>s. The i)i(>l)l(�ms takcni from TSPLIB [95 .

I'>xprriiiuMital results show that tli(、proposed ()prnit()rs liavc difForcnt coiitributioiLS and

that om- operators arc r(>mimi-(>d very favourably to otlirrs for solving th(�TSP.

I'in.illy. C'lia])t(T 5 outlines the coiiclusioiis and future (lf>v(>l()piii(”it.

Chapter 2

The Clustering Algorithms and

Applications

2.1 Introduction

We have shown that clustering is a combinatorial problem. By formulate the under-

lying problem as a traveling salesman problem (TSP), one can take advantage of its

problem structure. In the following section, the TSP literature is reviewed. Also, the

applicability of genetic algorithms (GA) to a TSP is presented. Before a GA can be

run, there are several design issues that must be addressed. These include: initializa-

tion, coding, crossover, fitness function, mutation, parent selection, replacement and

termination.

To extend the applications of our GA clustering algorithms, we consider several

design problems in information systems. They are vertical partitioning (VP), horizontal

partitioning (HP), object-oriented database (OODB) design, and document database

design. For each application, we review the related literature and formulate a solution

model for it. An example is also used to demonstrate the practicality of the proposed

algorithm to the underlying application.

13

2.2 Traveling Salesman Problem —

2.2 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization prob-

lem. The problem assumes that a salesman wants to visit iV cities with the requirement

that each city should be visited by once (except the first city). The distance traveled

by the salesman from the starting city to the ending city and from the ending city back

to the starting city should be minimized.

Although the structure of TSP is simple, it can be applied to solve many practical

problems. For instance, it can be used in designing computer network which connects

all computers in a ring topology by cables or optical fibers, ([26] and [99]). Suppose

there are N computers and the costs for cabling between computers are known, the

problem can be formulated as an TV-city TSP. There are many other applications of TSP

such as manufacturing circuit board [77], X-ray crystallography [10], VLSI fabrication

64]，etc (see also [61], [68] and [72]).

However, solving the TSP is not simple. Given an A -̂city TSP, it is easy to see that

there will be {N-l)\ possible tours. For example, if it takes 1 x 10—5 second to evaluate

the cost of a tour, it takes 36 seconds to find the optimal tour for a 10-city TSP; and

if N grows up to 30, 2.8 x years would be required to search all combinations! In

fact, TSP is well-known to be NP-hard [32:.

2.2.1 Related Work on TSP

Traditionally, two approaches, namely exact methods and heuristic methods, are used

to solve the TSP. Although the exact methods such as integer programming [81], cut-

ting planes [92], Branch and Bound [69] and dynamic programming [8] can guarantee

the solution optimality, it requires excessive computation. On the other hand, heuristic

methods such as 2-opt [74], Markov chain [79], nearest insertion [98], farthest insertion,

cheapest insertion, sweep, savings etc., are efficient, but they cannot guarantee a good

quality solution and many of them do not even have a proven constant worst-case per-

2.2 Traveling Salesman Problem —

formance ratio [96]. According to Graham et al. [38], the best known performance ratio

for solving the TSP is obtained by Christofides' heuristic [16]. It obtains a performance

ratio of at most That means, the worst-case obtained by it is guaranteed to be less

than I times the optimal solution.

A third class of solution methods has emerged in recent years, which is called meta-

heuristic methods or inter-disciplinary approaches. These include simulated annealing

(SA) [62], genetic algorithms (GA) [36], and tabu search (TS) [47]. But Bhuyan et al.

9] claim that the disadvantages of SA in solving combinatorial optimization problems

are that a tremendous amount of execution time is needed and the determination of

an efficient annealing schedule is difficult. Also, SA only deals with one candidate

solution at a time, and so does not build up an overall picture of the search space

6]. Knox [63] reports that TS and a modified version of simulated annealing [67

exhibit similar performance for solving the TSP. Homaifar et al. (1993) [51] state

that if a GA is well designed, it can be comparative with the best known techniques

including the SA and TS. In fact, GA has shown great promise in solving some very

complicated combinatorial problems including some large-scale TSPs and produced

significant improvements in this area ([11], [34], [39], [51], [60], [91], [103], [108] and

112]). GA is suitable for the problem because it quickly directs a search to promising

areas of the search space. In this thesis, we use genetic algorithms to solve the TSP

and investigate the practicality of GA for information systems applications.

2.2.2 Solving TSP using Genetic Algorithm

Before a GA can be run, a suitable coding or representation for the problem must be

devised. We also require a fitness function, which assigns a figure of merit to each coded

solution. During the run, parents must be selected for reproduction, and recombined

to generate offspring.

Notice that each of the above components alone can be regarded as a research

2.2 Traveling Salesman Problem —

topic. In fact, different researches have tried to enhance the performance of GA for

solving the TSP by proposing various techniques in each of the above components. For

instance, Tamaki et al. [106] propose a new method for coding a TSP and find that

the search for the optimal tour is more effective. Whitley [111] investigates the parent

selection scheme and develops a new rank based selection method to obtain better

results. As stated by Falkenauer [30], perhaps the most important technique in GA is

the crossover, also called the recombination operator. Indeed, several operators have

been proposed for TSP [82]. In this section, we first address various design issues in

GA for solving TSP: initialization, coding, crossover, fitness function, mutation, parent

selection, replacement and termination. In Chapter 4，we propose three new crossover

operators that can further enhance the performance.

Initialization

Initialization involves generating initial solution to the problem. The initial solutions

can be generated randomly or using some heuristic methods. For simplicity and to

avoid additional overheads, we generate the initial population randomly.

Coding

Traditionally, GA used binary representation, e.g. xi = (01011001), which is often

termed chromosome. However, since each digit has cardinality of 2, higher cardinality

alphabets have been used and some researchers claim that it has advantages over the

traditional coding [6]. In our implementation, we use non-binary representation. Sev-

eral non-binary coding methods were proposed such as adjacency, ordinal, path and

ordered [82]. For traveling salesman problem, the most natural representation of a tour

is the sequence of cities in the route, i.e. the i-th number represents the city which

must be visited on the z-th position in the order. For instance, xi = (4, 3, 2,1, 5) gives

the sequences of cities in a solution of a 5-cities TSP.

2.2 Traveling Salesman Problem —

Crossover

Crossover requires two individuals to exchange their genetic composition. The offspring

then inherits some genes from its parents via this operation. Traditional GA uses 1-

point crossover. When a crossover operator is to be carried out over a pair of parents,

a cutting point will be usually selected randomly, and the chromosomes of the parents

will be both split at that point and then the segments of those chromosomes will be

exchanged to give birth to the offspring. However, many different crossover algorithms

have been devised, and many involve more than one cutting point. An advantage of

having more crossover points is that the problem space may be searched more thor-

oughly. In fact, DeJong [24] investigates the effectiveness of multiple-point crossover,

and concludes that 2-point crossover leads to performance improvement, further adding

crossover points have adverse effect. The problem with further adding crossover points

is that building blocks are more likely to be disrupted.

Several operators have been proposed for TSP: Partially-mapped (PMX) (Goldberg

and Lingle [34])，Order (OX) (Davis [21])，Cycle (CX) (Oliver et al. [91]), 0X2 and

Position Based (PB) (G. Syswerda [105]), Edge Recombination (ER) (Whitley et al.

112]), Enhanced Edge Recombination (Starkweather et al. [103]). The above operators

are 2-point crossover except ER and EER.

Take the Order operator as an example. The offspring inherits the elements between

the two crossover points from the selected parent in the same order and positions as they

appear in that parent. The remaining elements are inherited from the other parent in

the order they appear, beginning with the first position following the second crossover

point and skipping over all elements already present in the offspring.

2.2 Traveling Salesman Problem —

Parent 1: a b c d e f g h i
Parent 2: c f a h d i b g e
Crossover point: * *
Offspring: f g a h d i b c e

Figure 2.1: An example of order crossover operator

An example is given in Figure 2.1. The elements a, h, d,i and b are inherited from

Parent 2 in the order and position in which they occur in Parent 2. Then starting from

the first position after the second crossover point, the offspring inherits from Parent 1.

In this example, position 8 is the next position. In Parent 1, h is located in position 8.

However, it is already present in the offspring, so Parent 1 is searched until an element

is found which is not already present in the offspring. In this case, c is inherited from

Parent 1. This process continues until the offspring is complete.

Starkweather et al. [103] study several operators and conclude that for the TSP the

important information would seem to be the adjacency information. The ER operator

explicitly preserves adjacency information and clearly has the best performance on

this problem. Moreover, the enhanced ER (EER) further improve the performance

of the system [103]. In Chapter 4, three new operators are proposed for TSP. The

performances of them together with the above operators are evaluated, results are

shown in Section 4.5.

Fitness Function

A fitness function must be used to evaluate the "fitness" (value) of the individuals

within the population. Parents are selected from the population using a scheme that

favours the more fitted individuals to produce offspring. Good individuals will probably

have more opportunities to be selected as parents and poor ones may not be at all.

Obviously, the fitness function used in TSP is simply the total distance traveled

2.2 Traveling Salesman Problem —

by the salesman. Therefore, more fitted individuals will have smaller total distance

traveled. Since the distance between any two cities are known, the total distance of the

route can be obtained easily for each solution (individual).

Mutation

Mutation is applied to each child individually after crossover. It randomly alters each

gene with a small probability (typically 0.001). Mutation, thus, provides a small amount

of random search, and helps to ensure that no point in the search space has a zero

probability of being examined.

Several mutation operators are suggested [82]. For example, Oliver et al. [91] de-

velop a mutation operator called SWAP which randomly swap two cities in a TSP

sequence. However, the usage and design of different operators are still immature and

face a number of open issues. For instances, Niirnberg et al. [89] evaluate several mu-

tation operators and conclude that there can be a trade-off between good convergence

rates and reachable solutions depending on the mutation operators used. However, the

choice of appropriate mutation operators may need to be done by some kind of empirical

data analysis drawn from the actual evolutionary dynamics or even by a self-adaptive

process [31]. Obviously, it is not an easy task. In addition, some crossover operators

such as ER and EER already provide an effective mutation rate [112]. Therefore, in

order to provide a fair comparison of different crossover operators, we do not consider

any mutation operator in our implementation. An analysis of the choice of mutation

operators remains as a future task.

Parent Selection

Parent selection is a process that allocates reproductive opportunities to individuals.

The biased selection enables the convergence of the search. As the population converges,

so the range of fitness in the population reduces. However, this sometimes leads to

2.2 Traveling Salesman Problem —

premature convergence and slow finishing.

Premature convergence means that the genes from a few comparatively highly fit

(but not optimal) individuals may rapidly come to dominate the population, causing

it to converge on a local optimum. Slow finishing is the reverse problem to premature

convergence. After many generations, the population will have largely converged, but

may still not have precisely located the global optimum. The average fitness will be

high, and there may be little difference between the best and the average individuals.

Consequently there is an insufficient gradient in the fitness function to push the GA

towards the global optimal solution.

There are many methods to overcome these problems. Several are described in [4 .

The commonly employed methods include fitness scaling and fitness ranking. Fitness

ranking overcomes the reliance on an extreme individual. Individuals are sorted in

order of raw fitness, and then reproductive values are assigned according to rank. In

fitness scaling, the maximum number of reproductive trials allocated to an individual is

set to a certain value. Whitley [111] conducts some experiments and shows that fitness

ranking to be superior to fitness scaling.

To allocate reproductive trials to individual so that higher ranked individual will

obtain higher reproductive trials, it can be done linearly or exponentially. In our

implementation, we adopt the approach of Whitley [111] to rank individuals according

to their fitness and in producing selective pressure (bias), i.e. a linear function is

used. For example, the 5th ranked individual will end up with the same chance to be

selected as its parent each time regardless of its fitness value of those above (or below).

Also, for selective pressure equals to 1.5 implies that the top ranked individual in the

population is 1.5 times more likely to reproduce (in one reproductive cycle) than the

median individual in the population.

2.2 Traveling Salesman Problem —

Replacement

There are two replacement approaches, named generation gap and steady-state replace-

ment. The generation gap is defined as the proportion of individuals in the population

which are replaced in each generation. Most work has used a generation gap of 1,

i.e. the whole population is replaced in each generation [40]. However, a more recent

trend has favoured steady-state replacement ([110], [111] and [104]). It replaces a few

individuals in each generation.

In our implementation, we adopt a steady-state approach similar to that of GENI-

TOR [111], i.e. in each generation only two worst individuals are replaced. Therefore,

parents and offspring may co-exist in a population.

Termination

The process of crossover and replacement are repeated until the population converges

or attains a pre-specified maximum number of generations. In our implementation,

we employ the former criterion. The population is said to have converged when all of

the genes (individuals) have the same fitness value. As the population converges, the

average fitness will approach that of the best individual. In our implementation, we

set the termination until population converges.

Implementation

The pseudo-code of the algorithm is given in Figure 2.2.

2.3 Applications 34

Input cost matrix for TSP

Generate an initial population of N random solutions (individuals)

While (termination criterion not satisfied) do

Select two parents Pi and P2 according to fitness ranking
Using the crossover operator to generate two new offspring
Replace two worst individuals in the population with two new offspring

End while

Output top ranked solution

Figure 2.2: Genetic algorithm for solving the TSP

In Figure 2.2, the input to the algorithm is the cost matrix of the TSP. The algorithm

starts by generating N number of individuals. For each generation, two parents are

selected to generate two new offspring. Two worst individuals will be replaced by these

two new offspring in the population. The above process terminates when the stopping

criterion is reached and the algorithm output the top ranked individual.

We implemented the algorithm using C + + and the program ran on a Sun SPARC

Ultra-5-10 workstation. In the next section, we use the proposed algorithm to solve

several design problems in information systems.

2.3 Applications

2.3.1 Clustering for Vertical Partitioning Design

To cope with the increasing volume of today database applications, cluster computing

technology provides an efficient solution. Cluster computers facilitate high performance

and high reliability. These features are paramount in large database applications.

Using them as database servers, data are typically partitioned and distributed widely

over the cluster. This effectively results in a classical distributed or parallel database

2.3 Applications 35

environment (see [2] and [90]), respectively.

Response time in a distributed or parallel i database system is largely determined

by how the database programs and data are organized and stored on the different ma-

chines/sites. In practice, it is quite common that the database programs are available

on each site and the main design issue in distributed databases reduces to the distri-

bution of data. The concept is to place related data (e.g. a frequently accessed group

of attributes) on near-by, preferably on the same, sites. Nevertheless, identification of

such groups is not straightforward especially in large applications involving thousands

of database transactions. In general, the study of the data distribution requires solving

two problems: the partitioning problem and the allocation problem [115]. In this thesis,

we deal with the partitioning problem and propose a genetic search based algorithm to

solve it.

Given the work-profile of a database application, in terms of the transactions and the

data they access, the objective of our algorithm is to identify the aforesaid data groups.

Individual groups, commonly known as database fragments, could then be placed on

the most appropriate computer site(s). Without loss of generality, our algorithm was

designed under the following assumptions:

1. The relational database model is assumed [20]. Today, relational databases are

by far the most wide-used in the industry.

2. The application work-profile, i.e. the frequently accessed data and the corre-

sponding transactions, is known in advance. Based on this information, user

access patterns can be estimated, and from it, important database transactions

could be located.

ITo simplify the discussion, we focus on distributed database design. But the proposed method is
equally applicable to parallel database design.

2.3 Applications 36

3. In vertical partitioning (see the next paragraph) applications, it is assumed that

the primary key of a relation is duplicated in every vertical fragments produced.

In this way, the reconstruction of the whole relation from its vertical fragments

is possible through the join operation.

A relation is essentially a table. Dividing a table into smaller ones requires two

elementary operations: vertical partitioning and horizontal partitioning. Consider a

relation PROJECT concerning all ongoing projects of a company in Figure 2.3. We

may horizontally divide it into two smaller units in Figure 2.4. The primary key

ProjNo is duplicated in both relations so that the original relation can be re-constructed.

Similarly, we may vertically divide it into two smaller units, as shown in Figure 2.5.

Vertical and horizontal partitioning are elementary operations. They can also be nested

and leading to hybrid fragments.

PROJECT
ProjNo ProjName Budget Location

J1 Database development 130000 Michigan
J2 Group technology 115000 Illinois
J3 CAD/CAM 240000 Michigan
J4 Maintenance 330000 Iowa

Figure 2.3: The PROJECT relation

PROJECT 1
ProjNo ProjName Budget Location

J1 Database development 130000 Michigan
J2 Group technology 115000 Illinois

PROJECT 2
ProjNo ProjName Budget Location

J3 C A D / C A M 2 4 0 0 0 0 M i c h i g a n
J4 Maintenance 330000 Iowa

Figure 2.4: Examples of horizontal partitions

2.3 Applications 37

PROJECT 3
Pro j No ProjName Location

J1 Database development Michigan
J2 Group technology Illinois
J3 CAD/CAM Michigan
J4 Maintenance Iowa

PROJECT 4
ProjNo Budget

Ji 130000
J2 115000
J3 240000
J4 330000

Figure 2.5: Examples of vertical partitions

Notice that relation fragments PROJECTl and PR0JECT2 (see Figure 2.4) are

the tuple sets Jl, J2 and J2, J3, respectively. Similarly, the same for PROJECTS and

PR0JECT4 (see Figure 2.5) are the tables defined by [ProjNo, ProjName, Location

and [ProjNo, Budget], respectively.

These fragments are not randomly formed. It is the role of the database designers

to determine how best to partition the original relation in order to achieve the highest

performance and/or reliability over a computer cluster.

Related Work for Vertical Partitioning Problem

The motivation of vertical partitioning (VP) in database design is to minimize the

number of page accesses while create smaller fragments to satisfy user queries. As

Navathe et al. [87] point out, if a relation has n non-primary key attributes, the

number of possible fragments to consider will equal to n仇 Bell number, B{n). For

large value of n, B{n) ^ n^. For example, when n = 10, B{n) ^ 115,000; when

n = 15, B{n) ^ 10 ;̂ and when n = 30，B{n) ^ From this scale, it is not difficult

for one to appreciate the complexity of the vertical partitioning problem.

2.3 Applications 38

Hoffer [49] has formulated a 0-1 nonlinear integer-programming model for the ver-

tical partitioning problem. The model minimizes storage, retrieval, and update costs

which subject to the capacity constraints on database sub-files. An approximate so-

lution based on the bond energy (BE) algorithm is used. Eisner and Severance [28

propose to identify the most frequently accessed data fragments and place them in

high-speed primary memory. This partitioning problem is isomorphic to the minicut-

maxflow network problem, which can be solved by the Ford/Fulkerson algorithm. How-

ever, the solution method is inefficient for large problems. Hammer and Niamir [45

design a mechanism that can find a near optimal vertical partition, although it con-

ducts a search through the space of all possible partitions by employing the hill-climbing

technique.

Navathe et al. [87] extend the work of Hoffer. Affinity among attributes is defined to

express the extent to which they are simultaneously processed. The BE (Bond Energy)

algorithm is introduced which partitions attributes according to their affinity. Since

the BE algorithm does not necessarily produce a solution in a diagonal structure, a

heuristic algorithm is required to divide attributes into overlapping or non-overlapping

fragments. Cornell and Yu ([18], [19]) develop an integer programming formulation to

solve the problem of vertical partitioning. At each iteration, the integer programming

formulation finds an optimal partitioning that splits the relation into two fragments.

The integer programming formulation can be applied recursively until no profitable split

can be found. However, this approach only finds a local optimal partition. Navathe et

al. [88] propose an algorithm for vertical partitioning in 1989, which uses a graphical

technique. The major feature of this algorithm is that all fragments are generated by

one iteration in a time of O(n^). However, as pointed out by Lin and Zhang [76], it

has some undesirable features.

Later, Lin et al. [76] propose a new cluster model and a graphical vertical par-

titioning algorithm to overcome some deficiencies found in the algorithm of [88]. It

2.3 Applications 39

has proved to be more efficient that the algorithm in [87] and more effective than [88 •

Cheng [13] propose a new vertical partitioning algorithm based on a branch and bound

approach. In a binary access matrix, the algorithm outperforms the BE algorithms

used by Hoffer and Navathe et al. Huang and Van [52] propose an heuristic search

algorithm to search the large solution space of partitions and to choose one partition

that yields the minimum number of disk accesses by using the A* technique.

Refer to Section 1.3, these clustering methods can be broadly classified into two

categories, namely exact methods and heuristic methods. Most of them are either so

computational cumbersome which actually cannot be applied to solving any practical

problem of moderate size, or are efficient but offer no guarantee to find any solution

of reasonably good quality. A third class of methods has emerged recently. These

methods include simulated annealing (SA) [62], tabu search (TS) [47] and genetic algo-

rithms (GA) [36]. These new methods have shown great promise in solving some very

complicated combinatorial problems in finite computation time.

In this thesis, we focus on genetic algorithms and propose a methodology based on

genetic algorithms for database application design. In the next section, we present the

model of vertical partitioning design. Due to the advantages of the traveling salesman

problem (TSP) (see Section 1.2), we formulate the vertical partitioning problem as a

TSP. Then, we present an example, which is adopted from a literature, to demonstrate

the practicality of GA in solving the vertical partitioning problem. Several problems

are generated in this problem and the performance of it is compared with a well-known

algorithm in Chapter 3.

The Model

An application work-profile describes the access patterns of a set of transactions {T l ,

T2, . . . } , say, over the attributes of the database relation, i.e. {Al , A 2 , … } . For

design purpose, it is commonly modeled by a transaction-attribute matrix. Consider the

2.3 Applications 40

transaction-attribute matrix (Figure 2.6). It contains five non-primary key attributes,

i.e. {A l , A2, A3, A4, A5}, and four transactions, i.e. { T l , T2, T3, T4} ’ accessing

the relation. A "1" (or "0") entry in the matrix indicates that the corresponding

transaction uses (or does not use) the attribute(s) concerned. To demonstrate the

clustering concept, we assume that the access of frequencies of all transactions are the

same. This assumption will be relaxed later. Notice that in Figure 2.6, the distribution

of "1" in the matrix is completely random. Such a matrix is highly inefficient in

database design.

Attributes
. . _ . „ , . _ A-CCGSS

Al A2 A3 A4 A5 ^ •
frequencies

Transactions
T l 1 1 1 20
T2 1 1 20
T3 1 1 20
T4 1 1 20

Figure 2.6: Transaction-attribute matrix 1

Consider another transaction-attribute matrix 2, (Figure 2.7). It is formed by

rearranging certain rows and columns of matrix 1. Matrix 2 comprises a diagonal block

structure. TC-1 is a transaction cluster which accesses AC-1, an attribute cluster;

similarly, TC-2 accesses AC-2.

TC-1/AC-1 and TC-2/AC-2 form two perfectly separable sub-matrices�Practically，

a transaction in a sub-matrix only accesses attributes in the same sub-matrix. At-

tributes in a sub-matrix make up a fragment. These fragments could then be distributed

over the computer system. This lays down the objective of vertical partitioning. In

distributed database design, the designers decompose the corresponding transaction-

2.3 Applications 29

Attributes
AC-1 AC-2

/ — ^ ― - s /： Access
Al A3 A5 A2 A4 „ •

^frequencies _ —
Transactions
T C J T 2 1 1 20
丄 丄 1 T4 1 1 20
T C J T 3 1 1 20

T1 1 1 1 20
一 •

Figure 2.7: Re-arranged transaction-attribute matrix 2

attribute matrix into sub-matrices. Attributes in a sub-matrix should closely match

the data access requirements of the transactions in the same sub-matrix. The goal of

vertical partitioning is to maximize the number of “ 1” entries retained in sub-matrices.

But clearly separable sub-matrix patterns are not easy to determine; especially in real

life situations, e.g. banking, where the number of transaction could be thousands

and the number of attributes could be up to hundreds. For instance, consider the

transaction-attribute matrix 3 (see Figure 2.8).

Attributes
AC-1 AC-2 AC-3

a T ^ a T ^ a T ^ ^ Access
frequencies

Transactions
J T1 1 1 1 20

\ T2 1 1 1 20
J T3 1 1 1 1 20

I。-』！ T4 1 1 20

Figure 2.8: Another transaction-attribute matrix 3

2.3 Applications ^

Completely separable sub-matrices do not exist in matrix 3 because attributes A4

and A6 are accessed by transactions from different sub-matrices. Attributes 4 and 6 are

known as inter-sub-matrix attributes. Although, these inter-sub-matrix attributes are

common and prevent the formation of clearly separable diagonal sub-matrices, existing

clustering algorithms cannot handle them effectively, e.g. [87 .

In this example, notice that the removal of inter-sub-matrix attributes A4 and A6

would lead to the formation of two perfectly separable sub-matrices. In general, to deal

with the inter-sub-matrix attributes, e.g. A4 and A6 in matrix 3, the following two

options may be taken in distributed database design.

1. Duplicate the inter-sub-matrix attributes into all of the identified sub-matrices.

2. Create an additional sub-matrix comprising the inter-sub-matrix attributes.

The choice of these design options depends on the update frequency of the transac-

tions. The former requires update of multiple copies of the same data. This inevitably

would undermine the performance of the system. However, if updates are infrequent,

multiple updates would be affordable. Under this circumstance, option 1 would be

preferred. On the other hand, if update transactions are frequent, option 2 would be a

better choice as data would be isolated and data inconsistency would be avoided.

The TSP Solution

The problem of determining a desirable permutation for rows and columns in a solution

matrix can be formulated as a Traveling Salesman Problem (TSP) [72]. To set up

the TSP-VP problem, we will make use of distance measures between a pair of rows

(attributes) and columns (transactions).

We define the distance (cost) between transaction Ti and Tj as follows:

, Y^k=i lO'ik X Fi - ajk X Fj\ if Gik + ajk , �
dij = (2.1)

0 otherwise
\

2.3 Applications 31

where aik is the entry in the unorganized transaction-attribute matrix [i represents

transaction Ti and k represents attribute Ak) and Fi is the access frequencies for trans-

action Ti per unit time period (e.g., a day).

Similarly, we use the following distance (cost) measure for attributes Ai and Aj.

m

dij = ^ \{aki - akj) X (2-2)
k=l

In TSP, the total distance is calculated as the distance traveled by the salesman from

the starting city to the last city plus the distance from the last city back to the starting

city. The TSP objective is to minimize the total distance traveled by the salesman

provided that each city (except the starting city) should be visited by once. In the VP,

the first and last attributes/transactions need not be connected and we observe that

there is no constraint to govern the selection of the starting attribute/transaction. For

this reason, we introduce a dummy attribute/transaction in our VP with distance zero

for connecting to every attribute/transaction, we can then formulate the problem as a

TSP.

Using the example in Figure 2.6, we compute the distance measure between at-

tributes using Equation 2.2. We obtain the following cost matrix:

Al A2 As A4 As
~ T i 0 m 0 m W

A2 80 0 80 0 20
A3 0 80 0 80 60
A4 80 0 80 0 20

60 20 60 20 0

Figure 2.9: Cost matrix for attributes of the example in Figure 2.6

Similarly, using Equation 2.1, the cost matrix for transactions is given as:

2.3 Applications 44

— T i T2 Ts T4
~ 1 \ 0 1 0 0 2 0 1 0 0 ~

T2 100 0 80 0
Ts 20 80 0 80
T4 100 0 80 0

Figure 2.10: Cost matrix for transactions of the example in Figure 2�6

After we obtain the cost matrix for attributes/transactions, we can introduce a

dummy attribute/transaction into the problem. For instance, two dummy variables:

attribute A6 and transaction T5 are introduced into the cost matrix with distance zero

for connecting to every attribute/transaction. By solving the permutation problem as

a TSP, we obtain the following tours for attribute and transaction grouping:

A1-A3-A5-A2-A4-A6 Total cost： 80

T3-T1-T5-T2-T4 Total cost: 100

By removing the dummy attribute/transaction, we have two sequences: {Al , A3,

A5, A2, A4} and {T2, T4, T3, T l } . Note that we obtain the re-arranged transaction-

attribute matrix as shown in Figure 2.7.

Clearly, two fragments: AC-1 and AC-2, can be easily identified in Figure 2.7.

However, in real life situations such as banking, where the number of attributes could

be hundreds, clearly sub-matrix patterns are not easy to determine. In these cases, a

splitting algorithm can be applied to further cluster the solution sequence�Anderberg

(1973) [3] discusses seven hierarchical clustering techniques. Among the seven tech-

niques, single linkage, average linkage and complete linkage clustering are most widely

used. For instance, in the above example, we can cut the attribute sequence at the

edge A3-A5 to obtain the two fragments. It is because the edge A3-A5 contributes

the highest cost in the solution. Note that this method is similar to the single linkage

clustering method.

2.3 Applications 45

There are several approaches that have been proposed for the permutation of at-

tributes. A well-known approach is the Bond Energy Algorithm (BE) proposed by Mc-

Cormick et al. [80]. Slagle et al. [100] modify the BE and use it in data-reorganization.

In the next section, the applicability of GA to TSP-VP is described by using an exam-

ple from the literature. By formulated the VP problem as a TSP, VP is achieved when

the associated TSP is solved. In Chapter 3, we compare the performance of our GA

clustering algorithm with the Slagle's.

An Example

An example with 20 attributes and 15 transactions is adopted from Navathe et al. [87

to provide a comprehensive understanding of our algorithm in solving the VP. The

performance of the GA depends on many factors: (1) population size, (2) termination

criteria, (3) selective pressure. After tuning the parameter values through several exper-

iments ，we set the population size to 1200 and selective pressure to 1.2 (see Table 4=4).

Enhanced Cost Edge Recombination (ECER) operator (see Chapter 4) is used and the

GA is run until the population converges. We implemented the algorithm using C + +

and the program ran on a Sun SPARC Ultra-5�0 workstation.

The computation time is about 10 seconds and the total number of trials (genera-

tions) for attribute grouping is 3017 and for transaction grouping is 8774. All solutions

converge. They have the same total distance of 720 for attribute grouping and 875 for

transaction grouping. (Note that we are only interested in grouping attributes. Trans-

actions are permuted in order to obtain a better understanding of the re-arranged

transaction-attribute matrix.) Figure 2.11 shows the re-arranged transaction-attribute

matrix after permutation of attributes and transactions.

2.3 Applications ？1

Attribute
14 2 12 Is 9 3 7 10 11 17 18 16 15 20 19 4 6 5 1 8

— “ Access Tran- „
丄 . Freq. sactions T3 1 1 1 1 1 1 50 X7 1 1 1 1 1 15

T12 1 1 1 1 1 1 10
； 1 1 1 1 1 1 ；？

Tfi 1 1 1 1 15
1 1 1 15

TIO 1 1 1 1 10 TI3 1 1 1 1 1 1 10
T15 1 1 1 1 1 1 5
了4 1 1 1 1 50

T8 1 1 1 1 1 1 1 1 15
T2 1 1 1 1 1 50
T i l 1 1 1 1 1 1 1 1 10
T14 1 1 1 1 1 1 1 1 1 5

1 1 1 1 1 50

Figure 2.11: An example for solving the VP

To obtain fragments, we cut the attribute tour at the edge having the highest cost.

(Note that this method is similar to the single linkage method, see [3].) Such cutting is

reasonable since it meets the subjective criterion [87] of a 'good' vertical partitioning,

that is,

(I) attributes most frequently accessed together by transactions should form a frag-

ment; and

(II) all pairs of attributes in a fragment have high affinity 'within fragment' but low

affinity 'between fragments'

However, this approach might not determine the best clustering result because the

distances between attributes within each fragment are not taken into consideration. To

determine the best clustering result, the selection criterion developed by Stanfel [102

can be used. (Note that this method is similar to the average linkage method, see

3].) This selection criterion seeks to minimize the average distance within groups and

maximize the average distance between groups. First, define:

f
1, if records i and j are in the same group

y^J =

0, otherwise
V

2.3 Applications 47

The expression for the average distance within groups is given as

• M - l srM V . ~ � • J

where dij is the distance between the attributes i and j.

While the expression for the average distance between groups is given as

Yli^i 1 - Yij) (2 4 �

Hence, in order to achieve the objective of maximizing the homogeneity of records

within groups as well as the heterogeneity of records between groups, the difference

between the average distance within groups and the average distance between groups

is minimized as shown in Equation 2.5:

• M-l^pM 小 Y. . spM-l ^M J. /I _ y.A

yM-lyM y yM-lyM , (

The partition point is the result that gives the minimum value of Equation 2.5.

This clustering method is a sequence of partitions in which each partition is nested

into next partition in the sequence and is known as hierarchical clustering method (see

Section 1.1.1).

Clearly, the objective value of Equation 2.5 can be used as statistics to compare

cluster validity. It measures the degree of linear correspondence between attributes

within the same group. Small values imply that the attributes within the same group

agree to each other. In fact, this statistic is quite similar to Hubert's F statistics [53],

which can be used to test cluster validity.

The above approach is used to identify fragments. Four fragments are identified,

which are: {14, 2, 12，13, 9}, {3，7, 10, 11, 17, 18}, {16, 15，20, 19} and {4, 6, 5, 1, 8}.

2.3 Applications 48

Note that the fragments identified are the same as the one obtained by Navathe et al

87:.

Conclusions

In this section, we present the vertical partitioning (VP) problem. We then formulate

the problem as a traveling salesman problem (TSP) and propose a methodology based

on genetic algorithms (GA) to solve the corresponding TSP-VP. We also adopt an

example from a literature to demonstrate the practicality of our new GA clustering

algorithm in solving the VP problem.

2.3.2 Horizontal Partitioning a Relational Database

As we have discussed earlier (see Section 2.3.1), horizontal partitioning (HP) decom-

poses a relational table along its tuples. There are two related but different types

of partitioning: primary and derived. Primary horizontal partitioning of a relation

is performed using predicates that are defined on that relation. Derived horizontal

partitioning is the partitioning of a relation which results in predicates being defined

on another relation. Our discussion on horizontal partitioning mainly focuses on the

former.

Given a relation PROJECT, the SQL query "SELECT * FROM PROJECT

WHERE Budget > 140000" will extract the information of all projects with budgets

over $140,000. At this point, we are only interested in the simple predicate (i.e. Budget

> 140000). The predicate forms the basis of one of the horizontal partitions in Fig-

ure 2.4. In general, given a relation R(Ai, A2, . . . , where Ai is an attribute defined

over domain Di, a simple predicate pj defined on R has the form pj： {ylj^Value} where

0 G <, <, >, > } and Value G A . SQL queries containing simple predicates are

common. But in some occasions, e.g. in decision support system (DSS) applications, ad

hoc queries are also frequent. These queries inevitably involve complicated predicates.

2.3 Applications 49

A complicated predicate consisting of multiple simple predicates^ could be decomposed

into an equivalent collection of SQL queries with simple predicates. For this reason, ir-

respective of the complexity of the predicates, horizontal partitioning could be achieved

by analyzing them.

Primary horizontal partitioning: Given a SQL query containing a set of simple

predicates accessing a relation R, we define P as the set of all simple predicates,

P = {pi,p2,... ,Pm}- The conjunction of these predicates (or some negatives) forms

the fragment schema on the relation R. The objective function of primary horizontal

partitioning is to define some complicated predicates (involving logical OR and/or AND

operations) to decompose the relation R into fragments which will then be distributed

over the computer clusters.

SALARY

Job Title, Sal

EMPLOYEE � ‘

Eno, Ename, Job—Title

Figure 2.12: Connection of relations using a link

Derived horizontal partitioning: Database transactions often access more than one

relation. Related database relations can be connected through joins. For example, in

Figure 2.12, relations SALARY and EMPLOYEE are connected by a link, L, repre-

senting a join. The member of the link is EMPLOYEE and the owner of the link is

SALARY.
^In disjunctive normal form, multiple conjunctive predicates are connected with disjunction op-

erators. Similarly, in conjunctive normal form, multiple disjunctive predicates are connected with
conjunctive operators.

2.3 Applications 50

Horizontal partitions of the member relation of a link are derived using a selection

operation specified on the owner relation of the link. In other words, the member

relation will be partitioned according to the partitioning of the owner relation. The

partitioning algorithm is similar to the partitioning algorithm for primary horizontal

partitioning except the partitions from the owner relation are used.

Related Work for Horizontal Partitioning Problem

Ceri and Pelagate [12] develop an iterative procedure for horizontal partitioning. The

set P of predicates is complete if and only if any two tuples belonging to the same

partition are referenced with the same probability by any database applications. The

set P is relevant if and only if each predicate in the set partitions the relation at hand.

A simple predicate is relevant in determining a partition if and only if the predicate and

its negation are referenced differently at least by one application. Ceri/Pelagate's par-

titioning algorithm involves adding relevant predicates to the set P until it is complete.

It then forms database fragments based on P. Their algorithm is shown in Figure 2.13.

1 Find one relevant predicate pi.

2 Let = {pi} .

3 Find another relevant predicate and add this to P.

4 Continue until P is complete.

5 Form the fragment schema for this relation.

Figure 2.13: Ceri and Pelagate's algorithm for horizontal partitioning

They further impose a frequency constraint on each resulting fragment. This con-

straint ensures that the probability of access to each tuple in a candidate fragment

must be the same. If this property does not hold, then further horizontal fragment a-

2.3 Applications 51

tion may take place; that is, the fragment has not been fully reduced. As pointed out

by Zhang and Orlowska [114], the test of completeness involves the comparison of the

probabilities of access by any applications. Thus, as the size of set P increases, the cost

of calculation can be very expensive.

Alternatively, Zhang and Orlowska [114] define predicate affinity. The BE (i.e. Bond

Energy) algorithm [80] is then used to cluster predicates, and a horizontal partition

is formed for each cluster. However, the BE algorithm may not necessarily produce

clusters along the diagonal during cluster identification. When this happens, cluster

extraction will require additional computation.

An Example

Similar to the transaction-attribute matrix for vertical partitioning, we use a

transaction-predicate matrix to represent the predicate access pattern of a set of given

transactions. This matrix is used to define the primary horizontal partitioning model.

Based on the transaction-predicate matrix, we identify and remove inter-cluster predi-

cates in order to form clusters of transactions using the same set of predicates. Further,

using the clusters and inter-cluster predicates, we can define the database partitions

(i.e. fragments). We use the example of Zhang and Orlowska [114] to illustrate our

partitioning strategy. In the example, R = (Eno, Ename, Sal, Degree) is a relation

schema and there are seven transactions (T1-T7) using nine predicates over R. These

predicates are:

PI: Eno < 10

P2: Eno > 20

P3: Sal > 50K

P4: Eno > 20

P5: 30 < Eno < 60

P6: Degree = Ph.D.

2.3 Applications 52

P7： Eno < 15

P8： Eno > 50

P9: Sal < 50K

Their corresponding transactions are shown as follows:

T l : Eno < 10, Sal > 50K, Degree = Ph.D.

T2: Eno < 20, Sal > 50K

T3： Eno > 20，Sal > 50K

T4: 30 < Eno < 60, Sal < 50K, Degree = Ph.D.

T5: Eno < 15, Sal < 50K, Degree 二 Ph.D.

T6: Eno > 50, Sal < 50K, Degree = Ph.D.

T7: Eno < 15，Sal > 50K

Based on the information provided, the transaction-predicate matrix shown in Fig-

ure 2.14 is produced. Since transaction 1 uses predicates PI, P3, and P6, the corre-

sponding matrix elements are “ 1”.

Attributes
— PI P2 P3 P4 P5 P6 P7 P8 P9

m . Access Transactions ” .
l^requencies

T l 1 0 1 0 0 1 0 0 0 25
T2 0 1 1 0 0 0 0 0 0 50
T3 0 0 1 1 0 0 0 0 0 25
T4 0 0 0 0 1 1 0 0 1 35
T5 0 0 0 0 0 1 1 0 1 25
T6 0 0 0 0 0 1 0 1 1 25
T7 0 0 1 0 0 0 1 0 0 25

Figure 2.14: Initial transaction-predicate matrix

2.3 Applications 53

A Genetic Algorithm for Horizontal Partitioning

We apply our algorithm and obtain the following path for predicates:

3-2-1-4-8-7-5-9-6 Total cost: 485

and for the transaction group:

1-2-3-7-5-6-4 Total cost： 410

Attributes
P3 P2 PI P4 P8 P7 P5 P9 P6

. Access
Transactions ^ •

l^requencies
T1 1 1 1 25
T2 1 1 50
T3 1 1 25
T7 1 1 25
T5 1 1 1 25
T6 1 1 1 25
T4 1 1 1 35

Figure 2.15: Re-arranged transaction-predicate matrix

The re-arranged transaction-predicate matrix is shown in Figure 2.15. For simplic-

ity, only the entries with ” 1” are shown. Clearly, it is difficult to identify sub-matrices.

However, the edge that contributes the highest cost of the predicate path is 7-5. We cut

the path at this edge. As a result, we have higher cost between fragments, and within

a fragment, we have lower cost among predicates. Two subsets are formed which are

{P3, P2, PI, P4, P8, P7} and {P5, P9, P6}. Note that we obtain the same result as

Zhang and Orlowska [114] when we apply the quadratic equation (proposed by Navathe

et al. [87]) to cluster the matrix.

As proposed by Zhang and Orlowska [114], the first subset {P3, P2, PI, P4, P8,

P7} can be simplified to Sal > 50K. The second subset for fragmentation is {P5, P9,

2.3 Applications 54

P6}. That is (30 < Eno < 60) AND (Sal < 50K) AND (Degree=Ph.D). Thus the final

predicates are:

Predicate 1: Sal > 50K

Predicate 2: (Degree-Ph.D.) AND (Sal < 50K) AND (30 < Eno 60)

Tuples satisfying either one of the two predicates will be assigned to the correspond-

ing partitions and those which satisfy neither will be assigned to the third partition�

In this way, the third partition could be characterized by the following predicate:

((Sal < 50K) AND (Degree Ph.D.)) OR ((Sal < 50K) AND (Eno < 30 OR Eno > 60)).

Conclusions

In this section, we examine our new GA clustering algorithm for solving the horizontal

partitioning (HP) problem. By using the transaction-predicate matrix, we define the

cost measure between predicates. Then, we employ our new GA clustering algorithm

to cluster predicates. We adopt an example from a literature to demonstrate the

practicality of our algorithm in solving this problem.

2.3.3 Object-Oriented Database Design

Recently, the object-oriented (0 0) data model has evolved as an alternative to the

relational data model for supporting modern database applications such as office au-

tomation systems and computer aided design. As a consequence, the performance

demand on 0 0 database systems has increased. The literature has shown that high

performance OODB systems can be achieved by using various data partitioning tech-

niques. These include vertical, horizontal, mixed and path partitioning. In this thesis,

we focus on vertical partitioning an OODB.

Object-oriented databases (OODBs) present additional semantics like structural

properties (inheritance, composite objects) and interrelationships between objects.

2.3 Applications 55

Hence, the existing clustering algorithms (used in relational databases, for instance)

have to be adapted to the object-oriented model. Also, the VP problem in relational

database is known to be NP-hard [75]. Since OODBs present additional semantics

and methods in the classes, vertical partitioning an OODB is more complex [29]. In

this chapter, we demonstrate that our new genetic clustering algorithm (GA) can be

adapted to solve this partitioning problem.

Related Work for partitioning an OODB

In relational databases, many vertical partitioning algorithms are based upon logical

factors such as attribute-attribute affinity (A A A) [87] and physical factors such as

minimization of disk accesses [18]. Bellatreche et al. [7] and Ezeife et al. [29] pro-

pose two algorithms respectively for vertical partitioning an OODB. Both attempt at

maximizing the logical affinity between the methods (met hod-met hod affinity, M M A).

MMA is defined between any two methods as the sum of frequencies of all the transac-

tions which access the two methods together. Similarly, AAA is defined between any

two attributes as the sum of access frequencies of all the transactions accessing the

two attributes together. As pointed out by Chinchwadkar et al. [15], more affinity be-

tween the methods in a fragment implies reduction in the remote methods invocations

and reduction in communication cost. Also, more affinity between the attributes in a

fragment implies less irrelevant 10.

Ezeife's algorithm [29] tries to maximize the objective function by interchanging the

columns of the MMA matrix. MMA matrix is a square matrix in which the numbers of

rows and columns are the same as the number of methods in the class. Each entry in the

MMA matrix represents the MMA value between the pair of methods represented by

the corresponding row and column. Similarly, AAA matrix can be formed in the same

manner. The objective function is a measure of affinities between columns and the two

columns adjacent to them. Bellatreche's algorithm [7] identifies partitions by forming

2.3 Applications 56

a MMA graph and attempts to find maximum affinity cycles inside the graph. Each

cycle represents a fragment. Both of these algorithms form groups of methods such

that the methods which are frequently accessed together belong to the same fragment.

Since vertical partitioning problem is NP-hard [75], we explore the use of genetic

algorithm (GA) for solving this problem. GA is a well-known algorithm for solving

difficult combinatorial optimization problems (see Section 1.3).

The Model

Similarly, GA can be adapted to vertical partitioning of an OODB by minimizing the

cost between methods (met hod-met hod cost) in each partition. We define the M M C

(method-method cost) between any two methods as the sum of the access frequencies

of all the transactions which access either of the two methods but not both. Also,

A A C (attribute-attribute cost) between any two attributes within the same class is

defined as the sum of the access frequencies of all the transactions which access either

of the two attributes but not both. Note that all the access frequencies to the attributes

within a class included methods that access the class directly and through subclasses or

other classes permitted by the schema [29]. Also, if the sizes of attributes are known,

Equation 2.2 should be modified to incorporate the weighting of attributes in the cost

function. We modify Equation 2.2 to measure the distance (cost) between attribute Ai

and Aj within the same class as follows:

m
di j = \(aki x w i - dkj X Wj) X (2.6)

k=i

where a^i is the entry in the unorganized transaction-attribute matrix (k represents

transaction Tk and i represents attribute Ai) and F^ is the access frequencies for trans-

action Tk per unit time period (e.g., a day) and Wi denotes the size of the attribute Ai.

Note that if transaction T^ 'uses' the attribute Ai, a î is 1，else, a î is 0. In Equation 2.6,

2.3 Applications 57

we also consider the sizes of attributes since large-sized attributes always consume more

resources and use more 10 time and communication time than small-sized attributes.

Therefore, weighting which is proportional to the size of the attribute is incorporated

into the cost function.

An Example

An example is adopted from literature [15] to demonstrate our algorithm in solving

the VP of an OODB. Since our aim is data distribution rather than optimization of

communication, we use the AAC matrix as an input. Figure 2.16 shows an example of

a DEPT_EMPLOYEE database schema.

Class DEPT {
string Dname;
EMPLOYEE Dhead;
int Dno;

}
Class DATE {

int Day;
int Month;
int Year;

}
Class PERSONJN.ORGN {

string SocSecNo;
}
Class EMPLOYEE： public PERSONS JN_ORGN {

string Ename;
string Ecode;
DATE DateBirth;
char Sex;
int Salary;
string Designation;

}
Class M_EMPLOYEE: public EMPLOYEE {

int NoOfChildren;
}

Figure 2.16: Dept_Employee database

2.3 Applications 58

Suppose class EMPLOYEE is to be partitioned. The attribute sizes for this class is

shown in Table 2.1. Table 2.2 shows the transactions that access attributes of this class

and their corresponding access frequencies. It includes all the accesses to the attributes

of class EMPLOYEE directly and through subclassses and other classes permitted by

the schema [29]. Therefore, attribute accesses of some transactions may be identical

(for example, T4, T7 and T15).

Attribute Size in bytes
" m Ename ^

E2 Ecode 8
E3 DateBirth 8
E4 Sex 1
E5 Salary 4
E6 Designation 5

Table 2.1: Attribute sizes for class EMPLOYEE

Transactions Attribute Access
Accessed Frequency

T i El E4 E6 ^
T2 E2 E5 15
T3 El E5 15
T4 El E3 5
T5 El E2 15
T6 El E2 E3 10
T7 El E3 10
T8 El E3 E5 5
T9 El E4 15
TIO El E2 E5 E6 40
T i l E4 E5 E6 15
T12 E2 E5 E6 15
T13 E5 E6 15
T14 E2 E5 15
T15 El E3 20

Table 2.2： Transactions that access the attributes of class EMPLOYEE

2.3 Applications 59

Using Equation 2.6, the cost between any two attributes of the class EMPLOYEE

is computed and shown in Figure 2.17. It is an A AC matrix. An A AC matrix is a

square matrix in which numbers of rows and columns are the same as the number

of methods in the class. Each entry in the AAC matrix represents the AAC value

between the pair of attributes represented by corresponding row and column. Once we

have a cost matrix, we can apply our GA clustering algorithm to permute the rows

and columns in the matrix so as to cluster similar attributes together. Note that the

matrix shown in Figure 2.17 is a symmetric matrix, we only have to permute either

the rows or the columns. As pointed out by Chinchwadkar et al [15], more affinity

between the methods in a fragment implies reduction in the remote methods invocations

and reduction in communication cost. Also, more affinity between the attributes in a

fragment implies less irrelevant 10. Note that our aim is to minimize irrelevant 10. If

optimization of communication is needed, we have to use a MMC matrix as an input.

El E2 E3 E4 E5 E6
0 4640 4400 4775 4860 4500

E2 4640 0 1120 935 740 1650
E3 4400 1120 0 455 900 2050
E4 4775 935 455 0 565 1625
E5 4860 740 900 565 0 1510
E6 4500 1650 2050 1625 1510 0

Figure 2.17: AAC matrix for the class EMPLOYEE

By applying the GA with population size 1200, bias 1.2 and ECER operator (see

Chapter 4) is used, we ran our program on a Sun SPARC Ultra-5_10 workstation.

The computational time is less than 1 second. The re-arranged ACC is obtained and

is shown in Figure 2.18. All solutions are converged and we obtain an attribute path

which is {El , E3, E4, E5, E2, E6}. The total distance is 7810. Using Stanfel's approach

102] to cluster the solution path, we identify two fragments which are {El, E3}, {E4,

2.3 Applications 60

E5, E2, E6}. When the second fragment are further partitioned, we have two more

fragments which are {E4, E5} and {E2, E6}.

El E3 E4 E5 E2 E6
" m 0 4400 4775 4860 4640 4500

E3 4400 0 455 900 1120 2050
E4 4775 455 0 565 935 1625
E5 4860 900 565 0 740 1510
E2 4640 1120 935 740 0 1650
E6 4500 2050 1625 1510 1650 0

Figure 2.18: Re-arranged AAC matrix for the class EMPLOYEE

Conclusions

Recently, the object-oriented (0 0) data model has evolved as an alternative to the

relational data model for supporting modern database applications such as office au-

tomation systems and computer aided design. As a consequence, the performance

demand on 0 0 database systems has increased. However, OODB presents additional

semantics like structural properties (inheritance, composite objects) and interrelation-

ships between objects, the existing clustering algorithms have to be adapted to the 0 0

model. In this section, we examine our new GA clustering algorithm for vertical par-

titioning an object-oriented database (OODB). We introduce the met ho d- met ho d cost

(MMC) between two methods in a class and attribute-attribute cost (AAC) between

any two attributes within the same class. The MMC is used to optimize communica-

tion while the AAC is used to minimize irrelevant 10. In this thesis, we focus on the

AAC (i.e. data distribution) and adopt an example from a literature to demonstrate

the practicality of our algorithm in solving this problem.

2.3 Applications 61

2.3.4 Document Database Design

Due to the rapid growth of the World Wide Web and hardware performance, many

database systems are built for storing documents. These databases, named document

databases, increase the convenience for query and access. A document databases usually

consists of a large number of electronic books and a major portion in the digital library

is the electronic books. Also, there has been a recent trend to publish electronic books

rather than hard copy. Especially in the professional field, the reference manuals are

usually preserved as the document databases in order to increase the convenience to

query. Therefore, research relating to digital library has become an important issue.

If there is a document database system, which is modeled as shown in Figure 2�19,

users can formulate a query to retrieve documents, and re-formulate the query when

they see the results, and so on, until satisfied with the answer [86]. The query effec-

tiveness depends upon user's knowledge about the query language. In order to improve

the efficiency of a document database, similar documents should be clustered together

and stored in the same site(s)/machine(s) in a computer network. Obviously, the above

problem is a partitioning problem which can be tackled by our new genetic clustering

algorithm (GA).

Users Query Processing Document Database

Figure 2.19: The model of a document database system

Structural Document Databases

Classical information retrieval on document databases usually allows little structuring

86], since it retrieves information only on data. In order to improve the performance

of the document databases, documents that stored in the database should be struc-

turally organized. In addition to the electronic form of content that stored in the

2.3 Applications 62

database, structural information such as chapter, section and paragraph hierarchy may

also embedded in the database. Such structural information are useful in querying the

documents which named the Structural Documents (SD) [59], since most people always

read books with chapter-oriented concept.

Jiang et al [58] propose an idea to transform the documents into a set of structural

documents, which merge two documents with similarity greater than the given threshold

into one structural document. Based on this idea, they develop a clustering-based

approach to construct the SD. Similarly, we define the cost measure between any two

different documents and develop a GA-based clustering approach to cluster documents.

If similar documents based on its structure are partitioned together, the retrieval and

query time of the database can be improved.

The Model

To measure the cost between two documents, we use the heuristics similar to the

similarity measure developed by Jiang et al [58]. The cost measure between two

documents in two different chapters is higher than that in the same chapter, and the

cost between two different documents in two different sections is higher than in the

same section. Without loss of generality, we follow the assumptions made by Jiang

et al. [58], which assume the whole reference book to be divided into a three-tier

hierarchy, including chapter, section and paragraph. Based on these heuristics, we

define the Hierarchy Independence (HI) between two documents, which can be easily

computed by the following procedure:

2.3 Applications 63

Step 1: If two documents are in the same chapter, HI ^ 0 and stop.
Step 2: If two documents are in the same section, HI — (1/s), where s is the total

number of sections in this chapter.
Step 3: If two documents are in the same paragraph, HI — 0.5 + (1/p), where p is

the total number of paragraphs in this section, and stop.
Step 4. HI 卜 1.

Figure 2.20: Procedure for computing HI between two documents

Let the two documents be denoted as Di and Dj. The cost of Di and Dj, denoted

by is computed by the following formula:

C{i,j) = (l-6)x different(2,i) + 5 x HI(i,j), (2.7)

where different(z, j) means the number of words and keywords which appear in either

of documents Di and Dj, but not both. The value is normalized by dividing the

total number of keywords in both documents Di and Dj. HI{i, j) is the hierarchy

independence of documents Di and Dj and S is an adaptive weight value with 0 < ^ <1.

The default value of S is 0.5, which can be adjusted by the number of chapters for

a given book. For example, when the number of chapters is near to 1 or n for a book

divided into n documents, S is set as the value closed to 0，as there is not much meaning

in the structure [58 .

An Example of Cost Measure

An example is adopted from Jiang et al. [58] to demonstrate the cost measure between

two different documents. Let Di = {'intelligent', 'query', 'agent'}, \Di\ = 3, and Dj

—{'database', 'query'}, |jDj| = 2. Therefore, the number of the words which appear

either in documents Di and Dj but not both is 3, and we have different(i, j) = 0.6.

By computing the cost measure between any two different documents Di and Dj,

2.3 Applications 64

a cost matrix [Cij] can be formed by letting Qj 二 C(i，j). GA can be applied to the

matrix [Cij] and minimize the cost of the sequence of Qj by re-arrange the rows and

columns of the matrix. After we obtain the re-arranged matrix, we can identify groups

of documents by using the Stanfel's clustering method [102 •

A Clustering Example

Assume we have six documents, {Dl , D2, D3, D4, D5, D6}, and the cost matrix is

shown in Figure 2.21.

Dl D2 Ds DA D5 DQ
0 0 . 2 0.6 0.5 0.6 0.9

D2 0.2 0 0.5 0.4 0.7 0.8
Ds 0.6 0.5 0 0.3 0.2 0.9
D4 0.5 0.4 0.3 0 0.1 0.7
D5 0.6 0.7 0.2 0.1 0 0.8
Do 0.9 0.8 0.9 0.7 0.8 0

Figure 2.21: Cost matrix with six documents

By applying GA with population size 1200, bias 1.2 and ECER operator (see Chap-

ter 4) is used, we obtain the re-arranged matrix and is shown in Figure 2.22. The

solution sequence {Dl, D2, D3, D5, D4, D6} which has total cost of 1.7. We further

clustered the sequence using the Stanfel's clustering approach [102]. Three fragments

are identified which are {Dl , D2}, {D3, D5} and {D4, D6}.

Dl D2 Ds D5 乃 4 Dq
~ W i 0 0 . 2 0.6 0.6 0.5 0.9

L>2 0.2 0 0.5 0.7 0.4 0.8
D^ 0.6 0.5 0 0.2 0.3 0.9
L>5 0.6 0.7 0.2 0 0.1 0.8
L>4 0.5 0.4 0.3 0.1 0 0.7
Dq 0.9 0.8 0.9 0.8 0.7 0

Figure 2.22: Re-arranged cost matrix with six documents

2.4 Conclusions ^

Remarks on Chinese document database: Besides English document database, GA

is capable of partitioning Chinese document databases by using the association measure

developed by (Liang [73]; Sproat and Shih [101]). Since there is no obvious word bound-

ary in the Chinese text, an identification process for identifying each possible disyllabic

word from target database is needed. After the disyllabic words are identified from the

sentence by applying the association measure, each document can be transferred to a

set of keywords. After this transformation, cost measure can be proceeded as usual

58；.

Conclusions

Due to the rapid growth of the World Wide Web and hardware performance, many

database systems are built for storing documents. These databases, named document

databases, increase the convenience for query and access. Classical information re-

trieval on document databases usually allows little structuring. However, structural

information is useful in designing a document database, for instance, most people al-

ways read books with chapter-oriented concept. Besides, the literature has shown that

documents that stored in the database can be structurally organized. Based on this

idea, we introduce the cost measure for documents and employ our new GA clustering

algorithm to partition the document databases. We adopt an example from a literature

to demonstrate the practicality of our algorithm in solving this problem.

2.4 Conclusions

In this chapter, we review the TSP literature and explore the use of genetic algorithms

(GA) to solve several clustering problems in information systems. They are vertical par-

titioning (VP), horizontal partitioning (HP), object-oriented database (OODB) design,

and document database design. For each application, we review the related literature

and formulate a solution model for it. An example is also used to demonstrate the

2.4 Conclusions 54

practicality of the proposed algorithm to the underlying application.

In Section 2.3.1, we present the vertical partitioning (VP) problem. We then for-

mulate the problem as a traveling salesman problem (TSP) and propose a methodology

based on genetic algorithms (GA) to solve the corresponding TSP-VP. We also adopt

an example from a literature to demonstrate the practicality of our new GA clustering

algorithm in solving the VP problem.

In Section 2.3.2, we examine our new GA clustering algorithm for solving the hori-

zontal partitioning (HP) problem. By using the transaction-predicate matrix, we define

the cost measure between predicates. Then, we employ our new GA clustering algo-

rithm to cluster predicates. We adopt an example from a literature to demonstrate the

practicality of our algorithm in solving this problem.

In Section 2.3.3, we examine our new GA clustering algorithm for vertical parti-

tioning an object-oriented database (OODB). We introduce the met hod-met hod cost

(MMC) between two methods in a class and attribute-attribute cost (AAC) between

any two attributes within the same class. Based on these cost functions, our proposed

algorithm is adapted to cluster fragments. We adopt an example from a literature to

demonstrate the practicality of our algorithm in solving this problem.

In Section 2.3.4, we introduce the cost measure for documents and employ our new

GA clustering algorithm to partition the document databases. We adopt an exam-

ple from a literature to demonstrate the practicality of our algorithm in solving this

problem.

Chapter 3

The Experiments for Vertical

Partitioning Problem

3.1 Introduction

To evaluate the performance of our proposed algorithm, we compare our approach with

the Slagle's [100], an efficient heuristic method for solving the Vertical Partitioning (VP)

problem. It should be noted that the Slagle's algorithm is similar to the bond energy

algorithm (BE) [80] which is a well-known clustering algorithm. Most of the current

approaches ([12], [18], [87], [114]) for database partitioning problem apply BE as a

clustering method.

In the next section, we first demonstrate the disadvantages of the BE and show

that the same problems would not occur when our proposed algorithm is used. Next,

in Section 3.3, we generate several VP problems whose sizes range from 20 to 100

attributes. By solving these problems, we compare the performance of our proposed

algorithm to the Slagle's.

55

3.2 Comparative Study — ^

3.2 Comparative Study

The Bond Energy Algorithm (BE)iS proposed by McCormick et al. [80] in 1972. The

algorithm shown in Figure 3.1 is a straightforward algorithm for permuting the rows

and columns of an M x AT matrix A of nonnegative entries so as to maximize the

objective function.

Step 1: Place one of the rows of an m x n array arbitrarily. Set i = 1.
Step 2： Set j = i-hl.
Step 3: Place the jth. row in each of the z + 1 positions, and compute the

row's contribution to the measure of effectiveness^.
Step 4: j = j + 1 and repeat Step 3 until j = m.
Step 5: Place the row j at the position that gives the largest incremental

contribution to the measure of effectiveness.
Step 6: i = i-\-1 and repeat Steps 2-6 until i = m.
Repeat the above steps for the columns.

Figure 3.1: The bond energy algorithm

Later, Slagle et al. [100] modify the BE and use it in the clustering problem. The

algorithm of Slagle et al. is quite similar to the BE. The difference is that the objective

function is maximized in BE, while in Slagle's algorithm, the objective function is

minimized. In BE, it measures the affinity between every objects, whereas in Slagle's

algorithm, it measures the cost between every objects. The algorithm of Slagle et al.

in Figure 3.2 can find a short path, but not necessarily the shortest.

^The measure of effectiveness of an array A is the sum of the bond strengths in the array, where
the bond strength between the two nearest neighbor elements is defined as their product.

3.2 Comparative Study — ^

Step 1: Place one of the rows of an m x n array arbitrarily. Set i = 1.
Step 2: Arbitrarily select a row from the remaining m - i rows.
Step 3: Place the row in each of the z + 1 positions and compute the row's

contribution to the weight of the path.
Step 4: Place the row at the position that gives the smallest incremental

contribution to the weight of the path [100 .
Step 5: i = i-\-l and repeat Steps 2-5 until i = m.
The above steps are repeated for the columns as well.

Figure 3.2: The algorithm of Slagle et al.

In the work of Navathe et al [87], the Bond Energy algorithm [80] is first applied

to permute rows and columns of a transaction-attribute matrix, then a hierarchical

clustering algorithm called SPLIT_NON_OVERLAP is applied to further partition the

matrix into two nonoverlapping fragments. Their hierarchical clustering algorithm is

simply to maximize a quadratic function so that fragments produced are ” balanced，，

with respect to transaction load. However, the SPLIT_NON_OVERLAP algorithm has

the disadvantage of not being able to partition an object by selecting out an embedded

"inner" block. An example is given in Figure 3.3. Clearly, {A2, A3} should form a

fragment and {Al , A4, A5} should form an another fragment. Obviously, they cannot

be identified by using the SPLITJSfON.OVERLAP algorithm and existing hierarchical

algorithms cannot handle them effectively.

Attributes

Al A2 A3 A4 A5 ^ "Access
l^requencies

Transactions
T1 1 1 1 20
T2 1 1 20
T3 1 1 20
T4 1 1 20

Figure 3.3: Transaction-attribute matrix 4 with an embedded “inner" block

3.2 Comparative Study — ^

The disadvantage of the Bond Energy algorithm is that it may produce transaction-

attribute matrix with "inner" block structure. It is because the Bond Energy algorithm

used in permuting transactions/attributes are unable to select the most contributing

transaction/attribute to be the starting and ending transaction/attribute in the se-

quence. Hence, the solution sequence obtained may need to be further adjusted.

To correct this problem, they propose a procedure called SHIFT which moves the

leftmost column of the matrix in Figure 3.3 to the extreme right, and the topmost

row of the matrix to the bottom (see Figure 3.4) so that every diagonal block gets the

opportunity of being brought to the upper left corner in the matrix.

Attributes
… … A . A r A Access A2 A3 A4 A5 Al „ . Frequencies

Transactions
T2 1 1 20
T3 1 1 20
T4 1 1 20
Tl 1 1 1 20

Figure 3.4: Transaction-attribute matrix 5 after the SHIFT procedure is applied

Same problem would not occur when GA is used to permute rows and columns in

a transaction-attribute matrix for GA has already “ considered" the best way to select

the most contributing transaction/attribute to be the starting transaction/attribute.

In this way, the whole sequence is benefited (the total distance of the sequence is

minimized). Recall that a dummy transaction/attribute is introduced into the TSP so

that the solution tour obtained is already the shortest sequence (path).

3.3 Experimental Results ^

3.3 Experimental Results

To compare the effectiveness of our algorithm with the Slagle's, several problem in-

stances with different sizes are generated. First, we generate a matrix with diagonal

block structure. Next, each transaction is randomly assigned an access frequency. To

avoid solving a trivial problem, some randomness is introduced into the matrix. By

taking some chances, say 0.1, the entries in the matrix are swapped from 0 to 1 or from

1 to 0. Finally, the columns and rows of the matrix are randomly swapped and an

initial transaction-attribute matrix is generated.

Each problem is solved ten times and the average is obtained. For GA, the popu-

lation size is set to 1200 and selective pressure to 1.2 and ECER operator is used (see

Chapter 4). The program is run on a SUN SPARC Ultra-5_10 workstation. Results for

solving VP are shown in Table 3.1. Note that our aim is to minimize the total distance

of TSP and the summation values of Equation 2.5.

NumberProbability Total distance Total distance Values of Values of
Problem of of of the solution of the solution Eq. 2.5 Eq. 2.5
Size fragments swapping by GA by Slagle by GA by Slagle

^ 4 0 ^ -481
20 4 0.1 1817 3336.6 -455 -380.9
20 4 0.2 2343 4479.9 -519 -361.1
20 5 0.1 1190 2411.9 -420.6 -379.9
20 5 0.2 1542 2924.2 -449 -388.5
50 5 0.1 10099.8 22785.3 -1200.2 -712
50 5 0.2 15171.2 28332.7 -711.5 -536.7
50 10 0.1 15906.5 29391.7 -2017.2 -1349.1
50 10 0.2 26551.9 38786.2 -2113.9 -1752.2
100 10 0.1 31796.4 61023.1 -1662.5 -974.2
100 10 0.2 49335.1 81008.1 -1564.8 -1155.3
100 20 0.1 20223.1 38319.5 -2583 -1886.3
100 20 0.2 33403.1 58609.8 -3457 -2564.5

Total distance of the solution： the summation of the values of Equation 2.2
Value of Equation 2.5: the summation of the objective values of Equation 2.5

Table 3.1: Results for solving VP with GA and Slagle's algorithm

3.3 Experimental Results ^

In Table 3.1, the problem size is the number of attributes of the VP. Number of

fragments is the number of clusters that the problem has. The third column shows the

probability of swapping. It is used to control the randomness of the problem. Large

swapping value suggests that the transaction-attribute matrix is very scattered. Note

that for swapping value larger than 0.2, the problem become very scattered and very

few interesting clusters can be formed. Therefore, the swapping value is restricted to

less than 0.2.

The total distance of the solution path is the summation of the values as described in

Equation 2.2. Note that the distance used by GA is the same as by the Slagle's. When

clusters are identified using Stanfel's approach, the objective values of Equation 2.5

are also summed up. Small values of Equation 2.5 suggest that clusters obtained are

more valid (see Section 2.3.1). It is because the value of Equation 2.5 measures the

difference between the average distance within fragments and the average distance

between fragments.

The first row in Table 3.1 shows a problem with 20 attributes and 4 fragments.

The swapping value is zero. That means, the matrix can be re-arranged to a perfectly

diagonal block structure and each transaction will access one fragment only. The sum-

mation values of Equation 2.5 are both -481, which indicate that both algorithms are

able to cluster similar attributes together and identify the corresponding fragments.

Regarding the objective value, GA has a lower value, which indicates that GA can

further minimize the total distance of the attribute path.

For other problems, GA further minimizes the objective function and gives lower

values of Equation 2.5. This implies that fragments clustered by GA is more reasonable.

Compare with other methods, GA is more significant in solving large and scattered

problems.

3.4 Conclusions ^

3.4 Conclusions

In Section 3.2, we demonstrate the disadvantage of the Bond Energy algorithm (BE)

80]. BE may produce transaction-attribute matrix with "inner" block structure. Note

that there is no efficient hierarchical clustering algorithm which can partition an em-

bedded "inner" block matrix. In the work of Navathe et al. [87], an additional proce-

dure known as SHIFT is proposed as the remedy. It is invoked before a hierarchical

clustering algorithm can be applied. However, we have shown that this problem will

not occur when the proposed algorithm is used to permute transaction/attribute in

a transaction-attribute matrix. After the proposed algorithm is applied, any existing

splitting algorithms can be used to identify fragments.

In Section 3.3, we compare the Slagle's algorithm [100], which is a modified version

of the Bond Energy algorithm [80], with the proposed algorithm. Experimental results

indicate that, with the same objective function, our proposed algorithm outperforms

the Slagle's in the value of the objective function obtained. Also, a statistics, which

is similar to the Hubert's F statistics [53], is used to test the validity of the clusters

obtained by the two algorithms. Computational results shows that the clusters obtained

by our proposed algorithm is more reasonable than the Slagle's. The performance of our

proposed algorithm is more significant in solving large-scale problems. Unlike Eisner

and Serverance [28] and some heuristic algorithms, GA can solve large scale problem

very well as it always guarantees a fair solution under finite computation time. It is

critical in real life situations, e.g. banking, where the number of transaction could be

thousands and the number of attributes could be up to hundreds.

Chapter 4

Three New Operators for TSP

4.1 Introduction

As stated by Falkenauer [30], perhaps the most important technique in Genetic Algo-

rithms (GA) is the crossover operator, also called the recombination operator. Thus,

an effective and reliable crossover operator can greatly enhance the system. In this

chapter, we develop three new crossover operators which can satisfy these criteria.

Whitley et al. [112] devise a crossover operator called Edge Recombination (ER)

for solving the traveling salesman problem (TSP), which is based on Grefenstette's [41

but has a better edge-preserving property. Later, Starkweather et al. [103] develop

an improved version of ER (EER) which can further improve the system. Their work

concludes that the effectiveness of different operators is dependent on the problem

domain: operators which work well in problems where adjacency is important (e.g.

TSP) may not be effective for other types of sequencing problems. Also, operators

which perform poorly on the TSP work extremely well for the warehouse scheduling

task. ER and EER emphasize edges in that 95% to 99% of the edges that compose the

offspring are inherited from one of the two parents. So the population can converge at

a faster rate without losing important adjacency information (good schemata). In case

62

4.2 Enhanced Cost Edge Recombination Operator 75

when edge failure occurs (i.e. isolated city occurs), the ER crossover can randomly

choose a new city to continue the tour. This provides an effective mutation rate of

0.009, or less than 1% [112]. For enhanced ER, the average trials needed are even fewer

which suggests that EER can transfer edges from parents more effectively [103]. Thus,

ER and EER outperform its predecessors for solving TSP.

However, we believe that the edges transformation process can be done better if we

have more information on the choice of edges that are needed to be transferred. In this

chapter, we devise three new operators for TSP which are capable of effectively using

adjacency information as EER and at the same time improve the inheritance of the

mating process.

4.2 Enhanced Cost Edge Recombination Operator

We propose a modified version of EER in this section. Our proposed crossover (ECER)

is similar to the Enhanced Edge Recombination crossover operator (EER) [103] except

that we consider the cost of edges for breaking ties. It has been observed that GA works

well on TSP if adjacency information from two parents can be effectively transferred

to offspring. If tie breaking in EER is managed well, the process of transformation of

adjacency information from parents can be done more effectively.

The Edge Recombination (ER) operator is different from other genetic sequencing

operators in that it emphasizes adjacency information instead of the order or position of

the items in the sequence. The “edge table" used by the operator is really an adjacency

table listing the connections in and out of a city found in the two parent sequences.

The edges are then used to construct offspring in such a way that isolation cities or

elements are avoided in the sequence [103 .

For example, the tour [b a d f g e c j h i] contains the links [ba, ad, df, fg, ge, ec,

cj, jh, hi, ib]. In order to preserve links present in the two parent sequences, a table

is built which contains all the links present in each parent tour. Building the offspring

4.2 Enhanced Cost Edge Recombination Operator 64

then proceeds [112] as described in Figure 4.1.

1. Select a starting element. This can be one of the starting elements from a parent,
or can be chosen from the set of elements that have the fewest entries in the edge
table.

2. Of the elements that have links to this previous element, choose the element that
has the fewest number of links remaining in its edge table entry. Ties are broken
randomly.

3. Repeat step 2 until the new offspring sequence is complete.

Figure 4.1: The algorithm for Edge Recombination (ER) operator

Consider the following sequences: [a b c d e f] and [c d e b f a]. An edge table of

Edge Recombination is given in Table 4.1.

city link
a b f c
b a c e f
c b d a
d e e
e d f b
f e a b

Table 4.1: Edge table for Edge Recombination (ER) operator

Suppose element a is selected to start the offspring tour. Since a has been used, all

occurrences of a are removed from the right-hand side of the edge table. Element a has

links to elements b, f and c. Element f and c both have 2 links remaining in their table

entries. Therefore, f is randomly selected as the next element in the offspring, and all

occurrences of f are removed from the right-hand side of the edge table. Element f

has links to e and b, both of which have 2 links remaining. Therefore, either one of

them is selected randomly and the process continues until the child tour is complete.

4.2 Enhanced Cost Edge Recombination Operator 77

The offspring is then produced as [a f b c d e .

When the Edge Recombination operator was first implemented, it had no active

mechanism to preserve "common subsequences" between two parents. Later, Stark-

weather et al [103] propose the Enhanced Edge Recombination (EER) operator which

solve this problem. During the construction of the "edge table" in EER, if an insertion

involves an item, which is already in the edge table, that element of the sequence must

be a common edge. The elements of a sequence are stored in the edge table as inte-

gers; so if an element is already present, the sign of the value is inverted to represent

a common edge: e.g. if A is already in the table, change it to -A. The sign acts as a

flag. Consider the sequences [a b c d e f] and [c d e b f a] and edge table in Table 4.2.

city link
a b -f c

b a c e f

c b -d a

d -c -e

e -d f b

f e -a b

Table 4.2: Edge table for Enhanced Edge Recombination (EER) operator

In EER, priority is given to negative entries when constructing offspring. Suppose

the starting city is city a, EER will choose city f as its next city. However, a tie can

be found when there are more than one entry with negative values and both having

the same number of links to other entries. In this circumstance, EER will break the

tie randomly. But for ECER, it will choose the edge with the smallest cost among

those entries. Suppose the starting city is city d. Refer to the edge table, there are two

entries (c and e) with negative values. Besides, both of them have three links to other

entries. EER would break the tie randomly by choosing either city c or city e as its

adjacent city. However, ECER will choose the edge with minimum cost. Suppose the

4.3 Shortest Path Operator ^

edge [dc] having edge cost of 100 and edge [de] having cost of 40. In this case, city e

will be chosen as its adjacent city.

Also, if there is no negative entries, ECER will choose the entry with the smallest

number of links to other entries. If a tie is found, it will break the tie by choosing the

edge with the smallest cost. The algorithm for ECER is given in Figure 4.2.

1. Select a starting element. This can be one of the starting elements from a parent.

2. Construct the edge table. Assign negative values to common edges.

3. Of the elements that have links to this previous element, choose the element that
has the fewest number of links remaining in its edge table entry, priority is given
to negative entries.

4. If a tie is found, break it by choosing the edge with the smallest cost. When there
are more than one edge with the smallest cost, break the tie randomly.

5. Repeat step 3-4 until the new offspring sequence in complete.

6. Select the first element from the other parent as a starting element, repeat the
above steps to generate the second offspring.

Figure 4.2: The algorithm for Enhanced Cost Edge Recombination (ECER) operator

Note that ECER will bias the crossover permutation by favouring the selection of

edges with lower costs. It speeds up the searching time for the whole system without

degrading the quality of the solution. Some experiments are conducted to demonstrate

that ECER outperforms the EER in most cases (see Section 4.5).

4.3 Shortest Path Operator

In this section, a new genetic sequencing operator, namely Shortest Path crossover

operator (SP), is proposed. As stated by Holland (1975) [50], during the reproductive

phase of GA, individuals are selected from the population and recombined, producing

4.3 Shortest Path Operator ^

offspring which will comprise the next generation. Therefore, good individuals will

probably be selected several times in a generation, poor ones may not be at all. How-

ever, it has been observed that crossover may produce offspring of low fitness. Although

these offspring will not be likely to get selected for reproduction in next generation,

the overall fitness of the population is decreased. Since the purpose of crossover is to

produce better offspring, this effect may decrease the efficiency of the system. Hence,

to fully optimize the mating process, we develop the SP operator which seek to generate

a local optimal offspring in each generation.

The crossover permutation can be considered as a shortest path problem. The

pervious example (Table 4.2) is used to demonstrate the mechanism of SP. Suppose in

a particular generation, two parents [a b c d e f] and [c d e b f a] are chosen. The

weight matrix is constructed in Figure 4.3.

a b c d e f
a � 一 80 50 oo oo 40 “
b 80 — 20 oo 20 30
c 50 20 — 100 oo oo
d oo oo 100 — 40 oo
e oo 20 oo 4 0 — 2 5
f 40 30 oo oo 25 —

一

Figure 4.3: Weight matrix for SP operator

If there is no corresponding edge in both parents, the cost of the edge is set to oo

(in practice, some very large number). Note that the diagonal entries are set to null

because it is not applicable. By using the weight matrix, the Dijkstra's shortest path

algorithm [25] is applied for finding a shortest path from a specified city to another

specified city. First, let cost(v^ u) be the weight of edge [vu]. If no edge between v and

u, cost{v, u) = oo. Also, let d{v) be the distance from the source to v. The algorithm

4.3 Shortest Path Operator ^

of Dijkstra is outlined in Figure 4.4.

Let V contain the source vertex and
U contain all the other vertices,
while (U is not empty) do

choose "li" such that it is in U with smallest d(u);
add "ti" to V and remove ”u” from U；

for each，，t(；，，in U do
if d{u) + cost{u,w) < d{w) then

d{w) = d[u) + cost(u,w)
end if

end for
end while

Figure 4.4: The Dijkstra's shortest path algorithm

To construct new offspring, we proceed as shown in Figure 4.5.

1. Construct the weight matrix using the edge information from parents.

2. Choose a starting city that can be one of the starting elements from a parent.

3. Choose the ending city by using the same criterion used in ECER.

4. Apply the Dijkstra's shortest path algorithm to find a shortest path from the
starting city to the ending city.

5. Update the weight matrix to remove any visited cities.

6. The ending city now becomes the starting city.

7. Repeat step 3-6 until the new offspring sequence is complete.

8. Select the first element from the other parent as a starting element, repeat the
above steps to generate the second offspring.

Figure 4.5: The algorithm for Shortest Path (SP) operator

In some cases, a feasible ending city may not be found. This happens when the

starting city is isolated. In this case, an unvisited city will be selected according to its

4.3 Shortest Path Operator ^

parent order to continue the sequence. Suppose we choose city a from parent 1 (see

Figure 4.3) as the starting city (the first offspring). Since edge [af] is a common edge,

city f will be chosen as the ending city. By applying the shortest path algorithm. The

shortest path from city a to city f is simply [af]. Now, city f becomes the starting city,

and according to the mechanism of ECER, it will choose city e as its ending city. The

shortest path from city f to city e is just [fe]. By repeating this process, SP generates

a new offspring [a f e d c b .

The searching process can be improved by using an edge table (see Table 4.2) instead

of a weight matrix. The computational cost associated with SP crossover can be lesser

than the Dijkstra's shortest path algorithm [25]. The original Dijkstra's shortest path

requires O(n^) computational time because it requires to search n number of cities

twice. With the use of an edge table, since each city can only have four feasible links,

the searching time can be reduced to 0[n). In each generation, we might have to apply

the shortest path algorithm several times. For the worst case, it may be n times for

n number of cities. Therefore, the SP crossover operator will require O(n^) time for n

number of cities in each generation.

Some experiments are conducted and the results are shown in Section 4.5. It demon-

strates that in most cases, the quality of the solutions obtained by using SP outperform

others.

4.4 Shortest Edge Operator

Our SP crossover has high computational requirement. Sometimes, the user may seek

to have a fair solution and want to spend the minimum of time on computation. We

propose the Shortest Edge crossover operator (SE) which may satisfy this criterion.

The mechanism for SE is very simple. By starting with a city, each time it will pick

up an edge which has the minimum cost among all feasible edges. In case if no feasible

edges exist, it will randomly pick up an unvisited city and continue the search. The

4.3 Shortest Path Operator ^

algorithm is given in Figure 4.6.

1. Select a starting element. This can be one of the starting elements from a parent,
or can be chosen from the set of elements that have the fewest entries in the edge
table.

2. Of the elements that have links to this previous element, choose the element that
has the smallest distance to the previous element, breaking ties randomly.

3. Repeat step 2 until the new offspring sequence is complete.

4. Select the first element from the other parent as a starting element, repeat the
above steps to generate the second offspring.

Figure 4.6: The algorithm for Shortest Edge (SE) operator

Using the same example in Section 4.3. Suppose we have two parents [a b c d e f

and [c d e b f a] and the weight matrix is constructed as in Figure 4.3. We choose city

a as the starting city. Among all feasible edges [ab, ac, af], edge [af] has the minimum

cost which is 40. Thus, we pick edge [af]. Starting with city /，we choose city e since

edge [fe] has the minimum cost. By repeating this process, SE generates a new offspring

a f e b c d .

With the use of an edge table (Table 4.2), the searching time for the above process

can be improved. Since each city can only have four feasible edges at most. Thus,

for n number of cities, SE will require 0(n) time in each generation. Since SE will

only choose the smallest edge to construct offspring, the population can be converged

faster than other operators can; i.e. it gives the smallest amount of execution time.

Some experiments are conducted. Results indicate that SE produces fair solution in

the smallest amount of time (see Section 4.5).

4.5 The Experiments I?

4.5 The Experiments

Ten crossover operators: EER, ER, OX, PMX, CX, 0X2，PB, ECER, SP and SE (see

Section 2.2.2) are studied in our tests. We would like to evaluate the effectiveness of

various operators in solving the traditional TSP. In particular, the performance of our

operators: ECER, SP and SE should be noted.

4.5.1 Experimental Results for a 48-city T S P

A 48-city problem (hk48) is adopted from TSPLIB [95] to demonstrate the effectiveness

of our proposed crossover in solving the TSP. The optimal solution for this problem is

1 1 4 6 1 [95；.

We compare the performance on two levels, each of the above operators is used

to run using the same parameters for 10 experiments and then each is tuned for best

results. The parameters for the first comparison are: selective pressure (bias) of 1.5

(see Section 2.2.2) and population size of 1000. We run the experiments on a SUN

SPARC Ultra-5-10 machine. The results appear in Table 4.3.

Average Average
Selective Average Best time used

Operator pressure Population trials cost Gap (seconds)
O 1000 1 0 4 7 1 . 6 7 1 1 4 9 3 . 6 7 0 . 2 9 % ^

ECER 1.5 1000 9191.56 11515.33 0.47% 60
SE 1.5 1000 7453.78 11601.00 1.22% 24
EER 1.5 1000 20674.67 11984.22 4.37% 118
ER 1.5 1000 55240.11 12311.44 6.91% 150
OX 1.5 1000 85495.33 12493.00 8.26% 46
0X2 1.5 1000 52552.00 14113.00 23.14% 45
PB 1.5 1000 59384.67 14162.89 23.57% 62
PMX 1.5 1000 30123.56 15603.00 36.14% 31
CX 1.5 1000 15388.56 24026.56 52.30% 7
Gap: the percentage difference between our solution and the optimal solution

Table 4.3: Results for a 48-city TSP (untuned)

4.5 The Experiments I ?

We attempt to optimize the performance of each operator by tuning the bias and

population size. Each time we increase the population size by 100 until there is no

further improvement in the solution. Next, we vary the bias from 1.1 to 2.0 and obtain

the best value for the bias. The results are shown in Table 4.4.

Average Average
Selective Average Best time used

Operator pressure Population trials c ^ Gap (seconds)
LG 1 1 3 8 9 . 7 8 1 1 4 7 0 . 8 9 0 . 0 9 % 1 0 ^

ECER 1.2 1200 12423.44 11476.33 0.13% 90
SE 1.5 1300 12867.89 11581.56 1.05% 42
EER 1.3 1400 36048.67 11604.89 1.34% 177
ER 1.1 1700 125801.40 11734.00 2.33% 381
OX 1.5 1500 145355.90 12021.33 4.66% 109
0X2 1.1 2000 175898.20 12609.22 10.02% 196
PB 1.5 1700 105145.20 13290.11 15.96% 114
PMX 1.1 1900 91963.00 14021.44 22.34% 101
CX 1.6 1300 18554.33 24083.89 52.41% ^
Gap: the percentage difference between our solution and the optimal solution

Table 4.4: Results for a 48-city TSP (tuned)

We observe that using larger population sizes lead to better solutions but more

searching time is required and using higher selection bias values in general gives smaller

number of trials (generations). Table 4.4 clearly indicates that Enhanced Edge Recom-

bination operator (EER) outperforms its predecessors. CX produces the poorest results

in solving the problem. In fact, the population converges too fast to a local optimum

before the global optimum can be explored. In most cases, CX only uses less that 8 sec-

onds to complete the search. For OX, 0X2，PB and PMX, they produce better results

after the parameters are tuned. However, their performances are still lagged behind ER

and EER. Our finding is consistent with Starkweather et al. [103], which suggests that

EER turns out to have a better performance than most order-based crossover operators

4.5 The Experiments I?

on TSP.

After the parameters are tuned (Table 4.4), ER and EER produce the solutions with

gaps around 2%. As stated by Whitley et al [112], these two operators emphasize edges

in that 95% to 99% of the edges that compose the offspring are inherited from one of the

two parents. So the population can converge at a faster rate without losing important

adjacency information (good schemata). Such adjacency information is important in

solving TSP [103]. In case when edge failure occurs (i.e. isolated city occurs), the

ER crossover can randomly choose a new city to continue the tour. This provides an

effective mutation rate of 0.009, or less than 1%. For enhanced ER, the average trials

needed are even fewer which suggests that EER can transfer edges from parents more

effectively [112 .

Although EER is already very efficient, our proposed operators still provide visible

improvement in solving this example. Using smaller production sizes and running time,

our proposed operators still obtain better solutions than EER. For SE, it produces the

average solution with gap of 0.13% and at the same time spent the smallest computa-

tional time. For SP, it produces the best average solution with gap of 0.09%. It is very

near to the optimal solution. For ECER, the performance is in between SE and SP.

4.5.2 Experimental Results for Problems in TSPLIB

To further demonstrate the effectiveness of SE, SP and ECER, we use all the TSP

instances, whose sizes are below 1000, from the TSPLIB [95]. We compare the perfor-

mance of our operators against Enhanced ER. For each problem instances, we conduct

the experiment once.

With the setting of parameters obtained in Table 4.4, four operators are used to

solve the problem instances. To give a fair comparison, we partition the problems into

3 sets. The first set contains problem sizes less than or equal to 100 cities, set 2 contains

problems with size between 100 and 500 cities, and set 3 contains problems above 500

4.5 The Experiments I?

cities. The results are shown in Table 4.5 to 4.7.

EER SE ECER SP E E R E C E R SP
Problem Size of Optimal gap gap gap gap Time Time Time Time
name problem solution (%) (%) (%) (%) (mins) (mins) (mins) (mins)
att48 l O ^ ~ 2 . 9 8 5.60 1.96 0.19 ^ ^ 5.38 1.80
bayg29 29 1610 0.92 4.05 0.80 0 0.92 0.73 0.72 0.92
bays29 29 2020 0.69 2.98 0 0 0.95 0.77 0.88 0.50
berlin52 52 7542 2.77 4.19 0 0.07 3.75 0.62 1.40 1.62
bierl27 127 118282 9.49 4.39 3.56 2.21 41.48 9.08 11.77 17.53
brazil58 58 25395 3.32 3.25 0.84 1.86 4.80 1.72 3.33 2.15
burmal4 14 3323 0 0 0 0 0.18 0.17 0.10 0.15
dantzig42 42 699 2.65 7.42 0.14 0 2.27 0.45 3.82 1.02
eil51 51 426 1.16 7.19 0.23 0.23 5.08 0.70 1.42 4.55
eil76 76 538 427 3.41 0.92 2.18 10.95 1.30 5.20 19.23
fri26 26 937 0 0 0 0 0.57 0.12 0.35 0.32
grl7 17 2085 0 2.98 0 0 0.23 0.12 0.22 0.20
gr21 21 2707 0 5.55 0 0 0.35 0.10 0.23 0.38
gr24 24 1272 0 0.47 0 0 0.48 0.17 0.37 0.92
gr48 48 5046 1.69 7.0 2.62 0.90 3.08 1.05 4.57 2.10
gr96 96 55209 10.62 8.07 3.09 2.46 18.92 19.63 15.68 102.3
hk48 48 11461 5.83 0.68 0 0 3.53 0.88 1.12 1.83
kroAlOO 100 21282 16.54 6.70 3.81 2.41 24.83 3.15 6.10 7.73
kroBlOO 100 22141 16.09 6.71 4.57 5.02 34.03 2.08 9.58 63.58
kroClOO 100 20749 16.97 5.83 1.59 2.37 27.97 3.90 10.63 13.23
kroDlOO 100 21294 16.64 9.67 4.08 3.48 21.35 7.33 12.25 12.18
kroElOO 100 22068 16.72 9.35 3.57 1.23 21.07 7.32 9.33 9.92
pr76 76 108159 6.73 8.52 2.76 2.21 11.92 2.27 4.13 7.25
rat99 99 1211 18.23 7.84 2.96 2.26 85.40 1.98 8.67 7.72
rdlOO 100 7910 11.10 8.93 3.23 3.81 19.65 1.58 13.53 7.97
si 175 175 21407 6.55 1.34 0.67 1.42 83.28 10.97 32.18 32.2
swiss42 42 1273 0.62 2.00 0 0 1.70 0.55 0.80 1.65
ulyssesie 16 6859 0 0.16 0 0 0.27 0.42 0.13 0.16
ulysses22 22 7013 0 0.99 ^ 0 0.45 0.10 0.22 0.23

Average 5.96! 4.661 1.431 1.181 14.91 2.75 5.66 11.08
Gap: the percentage difference between our solution and the optimal solution

Table 4.5: Computational results for TSPs less than or equal to 100 cities

4.5 The Experiments I?

EER SE ECER SP EER ECER SP
Problem Size of Optimal gap gap gap gap Time Time Time Time
name problem solution (%) (%) (%) (%) (mins) (mins) (mins) (mins)

2579 51.39 15.36 ^ 1 0 . 8 8 11.37 553.23 43.10 83.05 126.40
brglSO 180 1950 60.12 0 0.51 1.02 421 10.67 42.1 75.32
chl30 130 6110 15.37 8.07 3.99 6.13 57.45 4.48 17.30 24.18
chl50 150 6528 27.10 4.34 5.57 4.94 86.20 9.72 35.93 28.12
dl98 198 15780 31.10 9.65 5.45 5.41 191.0 21.77 94.72 79.10
d493 493 35002 58.20 11.61 14.93 14.55 1947.28 216.13 503.32 845.9
eillOl 101 629 17.99 8.71 4.55 4.12 35.35 14.35 14.27 11.72
fl417 417 11861 69.32 14.37 23.69 16.53 6506.23 183.83 727.90 478.32
gil262 262 2378 45.70 9.48 12.19 7.47 829.25 33.95 266.5 186.95
grl20 120 6942 21.62 13.53 8.04 6.21 38.78 3.32 19.18 15.35
grl37 137 69853 23.85 6.58 2.54 4.22 69.98 8.82 20.68 18.40
gr202 202 40160 30.65 12.83 6.99 6.87 186.60 21.95 45.38 79.27
gr229 229 134602 41.41 8.87 8.14 6.43 1186.98 40.42 69.10 124.22
gr431 431 171414 55.43 12.55 19.86 12.00 1351.13 129.95 1470.97 3225.55
kroAlSO 150 26524 29.15 7.10 8.01 5.17 93.55 16.98 31.38 42.2
kroBlSO 150 26130 30.46 9.96 8.77 6.55 83.08 6.10 30.3 27.85
kroA200 200 29368 40.97 10.46 7.72 5.91 225.37 21.57 60.78 51.27
kroB200 200 29437 37.61 11.99 6.75 8.86 262.25 84.43 68.90 48.23
linl05 105 14379 22.55 2.85 2.31 3.10 35.73 22.95 19.22 12.50
lin318 318 42029 53.18 12.06 12.49 12.99 729.87 59.82 502.13 386.98
linhp318 318 41345 54.62 11.76 17.45 12.33 830.35 50.35 212.43 261.03
pcb442 442 50778 60.29 14.11 19.80 12.76 2710.17 197.12 346.32 849.15
prior 107 44303 20.46 5.79 2.11 2.98 44.52 2.63 10.15 7.65
prl24 124 59030 30.51 3.75 2.93 3.02 120.57 12.33 68.10 41.60
prl36 136 96772 26.50 12.54 12.43 6.19 110.02 51.63 25.20 33.77
prl44 144 58537 33.0 2.87 2.17 1.72 61.85 15.45 43.72 46.08
prl52 152 73682 31.14 4.99 4.98 1.87 66.35 12.68 31.53 20.68
pr226 226 80369 57.09 5.25 4.71 5.05 576.57 19.67 62.35 82.92
pr264 264 49135 54.08 10.26 10.49 9.37 1801.42 36.62 212.97 165.15
pr299 299 48191 55.19 15.96 13.04 16.80 1372.95 68.30 252.68 257.88
pr439 439 107217 62.42 17.29 20.57 13.45 2015.85 112.83 410.87 343.78
ratl95 195 2323 33.70 9.65 5.72 4.17 245.22 12.88 77.12 64.48
rd400 400 15281 56.83 17.25 14.33 15.95 985.62 71.05 257.78 460.20
ts225 225 126643 46.34 6.91 6.04 3.27 214.75 22.18 36.73 56.58
tsp225 225 3919 42.49 8.26 10.30 10.40 272.12 14.23 107.91 58.05
ul59 159 42080 37.87 11.90 2.83 2.91 70.5 8.95 26.63 20.83

Average 40.71 9.69 8.98 7.56 733.03 46.20 175.16 240.49
Gap: the percentage difference between our solution and the optimal solution

Table 4.6: Computational results for TSPs within 100 and 500 cities

4.5 The Experiments I?

EER SE ECER SP EER PSE ECER SP
Problem Size of Optimal gap gap gap gap Time Time Time Time
name problem solution (%) (%) (%) (%) (mins) (mins) (mins) (mins)
att532 ^ 27686 67.58 17.72 16.18 18.41 3197.38 207.02 852.28 690.50
d657 657 48912 69.57 15.79 24.49 21.46 6132.67 328.17 1560.22 3255.72
gr666 666 294358 69.54 15.73 20.63 21.33 5501.32 474.17 1471.33 4465.62
p654 654 34643 86.92 20.92 34.21 21.69 7341.32 511.97 3200.60 2579.1
pa561 561 2763 65.41 15.30 20.14 16.09 3324.58 209.08 710.83 765.37
rat575 575 6773 67.22 16.69 18.42 16.34 4981.12 563.37 2119.12 1443.33
rat783 783 8806 72.88 19.89 25.96 23.28 10092.7 1265.88 2972.22 2763.28
si535 535 21407 66.85 56.68 57.94 57.17 3437.73 364.47 837.60 1064.08
u574 574 36905 68.33 15.67 21.50 20.82 4549.57 193.47 1536.10 1240.27
u724 724 41910 73.53 17.71 25.48 23.09 8500.60 1176.22 2849.62 2423.53

Average 70.78 21.21 26.501 23.971 5705.90 529.38 1810.99 2069.08
Gap: the percentage difference between our solution and the optimal solution

Table 4.7: Computational results for TSPs above 500 cities

Generally, our proposed operators produce better results than EER in quality of

solutions obtained and CPU time used. Even for small-sized problems, our proposed

operators outperform EER by about 4% (Table 4.5) and the CPU time used can be

reduced to 9% of time used by EER. For SP, it produces the average result with gap

of 1.18% whereas EER produces the result with gap of 5.95%. For SE, it produces

better result than EER by using smaller amount of time. The performances of our

proposed operators are more significant in solving large-sized problems. For large-sized

problems (Table 4.7), the average gap obtained by using EER is about 70% whereas

our proposed operators can obtain the solutions with gaps around 25%. Moreover, the

CPU time used by EER is much longer than the time used by our proposed operators.

It takes about 450% of the time taken by our proposed operators. It demonstrates the

inability of EER in solving large-scale problems.

In most cases, SE operator produces a fair result given the smallest computational

time. It converges faster than other operators did without losing the ability of finding

a fair solution. For solving small and median-sized problems, SE is lagged behind SP

and ECER. However, the difference diminishes when large problem instances are used.

The performance of ECER is in between SE and SP. It uses more time than SE and

less time than SP. The results produced are also between SE and SP.

4.6 Conclusions ZZ

For solving small and median-sized problems (Table 4.5 and Table 4.6), SP produces

the best results given the average gap is the smallest among all operators. However,

the time used by SP is longer than SE and ECER. For solving large-sized problems

(Table 4.7), SP is slightly lagged behind SE.

To conclude, using smaller production sizes and running time, our proposed opera-

tors still produce better solutions than other operators especially the EER. Note that

this can save memory usage and CPU time. These two factors are very critical in solv-

ing large-scale TSPs. Also, our proposed operators have shown different contributions

in solving the problem. When the user seek to obtain the best quality of solution, SP

is a good choice. If time and quality are under concern, ECER is a better choice. On

the other hand, SE is suitable when the user seek to have a fair solution in the shortest

amount of time and is very effective in solving large-scale TSPs.

4.6 Conclusions

In this chapter, in order to enhance the performance of our new genetic based clus-

tering algorithms, we propose three new GA operators. They are the Shortest Path

(SP), the Shortest Edge (SE) and a modified version of the existing Enhanced Edge

Recombination (EER) crossover operator, called Enhance Cost Edge Recombination

(ECER) operator. The performances of our proposed operators are evaluated with

seven existing operators using the TSPLIB problem instances, whose sizes range from

14 to 783 cities. Experimental results indicate that our proposed crossovers outperform

other operators, especially the EER which is known to be a powerful crossover opera-

tor. By using fewer memory and lesser CPU time, our proposed operators are still able

to produce better results than the others. Besides, they have different contributions in

solving TSP: in most cases, SE performs the fastest, SP produces the best result and

the performance of ECER is in between the two.

Chapter 5

Conclusions

5.1 Summary of Achievements

Clustering methods refer to a group of unsupervised pattern classification procedures

that separate or partition a finite collection of objects into subsets to satisfy some

predefined criteria. These methods have been used to solve many real-life problems.

In this thesis, we examine the nature of a clustering problem and develop reliable and

efficient algorithms.

Although many clustering algorithms have been proposed, their performance has

not been extensively studied. Moreover, the special problem structure in clustering

is rarely explored. Since the literature has shown that the clustering of a data array

can be stated as the traveling salesman problem (TSP), the TSP structure may be

useful in solving a clustering problem. In this thesis, we explore the use of genetic

algorithms (GA) and propose a new GA clustering approach to solve the clustering

problem. In particular, the TSP structure is exploited in our solution methodology. To

demonstrate the use of our proposed algorithm, we consider several design problems

in information systems. They are vertical partitioning (VP), horizontal partitioning

(HP), object-oriented database (OODB) design and document database design.

78

5.1 Summary of Achievements ^

Recently, OODB model has evolved as an alternative to the relational data model

for supporting modern database applications. However, OODB presents additional

semantics like structural properties (inheritance, composite objects) and interrelation-

ships between objects. Hence, the existing clustering algorithms (used in relational

databases, for instance) have to be adapted to the object-oriented model. In this the-

sis, we examine the use of our new GA clustering algorithms in designing an OODB.

Due to the rapid growth of the World Wide Web and hardware performance, a lot of

database systems are built for storing documents. Moreover, the literature has shown

that documents that stored in a database can be structurally organized. If similar

documents based on its structure are partitioned together, the retrieval and query time

of the database can be improved. In this thesis, we also demonstrate that our new

clustering algorithm can be exploited to design structural document databases.

To evaluate the performance of our proposed algorithm, we compare our approach

with the Slagle's, an efficient heuristic method for solving the VP problem. It should

be noted that the Slagle's algorithm is similar to the bond energy algorithm (BEA)

which is a well-known clustering algorithm. We generate several VP problems whose

sizes range from 20 to 100 attributes. Computational results indicate that our proposed

algorithm outperforms the Slagle's. It can further minimize the objective function and

is able to produce more reasonable fragments.

In order to enhance the performance of the proposed algorithms, we propose three

new GA operators for solving the TSP, namely Shortest Path (SP), Shortest Edge

(SE) and a modified version of the existing Enhanced Edge Recombination (EER)

crossover operator, called Enhance Cost Edge Recombination (ECER) operator. The

performances of our proposed operators are evaluated with seven existing operators

using the problem instances, whose sizes range from 14 to 783 cities. Experimental

results indicate that our proposed crossover operators outperform others, especially

the EER operator which is known to be very powerful. By using fewer memory and

5.2 Future Development

lesser CPU time, our proposed operators are still able to produce better results than

the others. Besides, they have different contributions in solving TSP: in most cases,

SE performs the fastest operation, SP produces the best result and the performance of

ECER is in between the two.

5.2 Future Development

In distributed/parallel database system, low level design such as hardware parameters

can be incorporated into the cost function so as to produce more precise fragments.

Also, after data are partitioned, we can allocate them to different sites/machines using

the proposed algorithm. Besides, if the cost function is carefully modified, the proposed

algorithm can be used in distributed query processing to allocate operations of queries

to different sites. The application can be extended in designing mixed partitioning,

overlapping fragments and fragments used in different memory level.

Apart from information systems, our clustering algorithm can be applied to many

different areas whenever we can formulate a proper cost function for the underlying

application. For instance, we can use it in re-ordering the part-machine matrix for

cellular manufacturing. This problem is concerned with the identification of machines

to be included in each cell as well as the specification of the cells where each part is

to be processed. We can define the cost measure for machines and parts based on the

part-machine incidence matrix. The objective is to cluster machines/parts into groups

such that machines/parts located within the same group have lower costs whereas those

between groups have higher costs.

For GA, we can analysis the choice of mutation operators in solving the TSP.

Different mutation operators and other coding methods can be developed to further

enhance the system. Besides, we can develop hybrid crossover that exploit the benefits

of different operators.

-END -

Bibliography

1] R. G. Askin, S. H. Cresswell, J. B. Goldberg and A. J. Vakharia, "A Hamiltonian
Path Approach to Reordering the Part-machine Matrix for Cellular Manufactur-
ing", Int. J. Prod. Res., Vol. 29, No. 6，pp. 1081-1100, 1991.

2] M. Abdelguerfi and K .F. Wong, Parallel Database Techniques, lEEE-CS Press,
1998.

3] M. R. Anderberg, Cluster Analysis for applications. Academic Press, New York,
1973.

4] J. E. Baker, "Reducing Bias and Inefficiency in the Selection Algorithm", in J.
J. Grefenstette, editor, Proceedings of the Second International Conference on
Genetic Algorithms, pp. 14-21, Lawrence Erlbaum Associates, 1987.

5] C. K. Bayne, J. J. Beauchamp, C. L. Begovich, and V. E. Kane, “Monte Carlo
Comparisons of Selected Clutering Procedures", Pattern Recognition, 12’ pp. 51-
62, 1980.

6] David Beasley, David R. Bull and Ralph R. Martin, "An Overview of Genetic
Algorithms: Part 1, Fundamentals", University Computing, 15(2), pp. 58-69,
1993.

7] L. Bellatreche, A. Simonet and M. Simonet, "An Algorithm for Vertical Fragmen-
tation in Distributed Object Database Systems with Complex Attributes and
Methods", in 7th Intl. Conf. on Databases and Expert Systems, DEXA96, pp.
15-21, IEEE Computer Society, Zurich, Swittzerland, September, 1996.

8] B. E. Bellman, “Dynamic Programming Treatment of the Traveling Salesman
Problem", Journal of the Association for Computing Machinery, 9, pp. 61-63,
1963.

81

BIBLIOGRAPHY Sf

9] J. N. Bhuyan, V. V. Raghavan, V. K. Elayavalli, "Genetic Algorithm for Clus-
tering with an Ordered Representation", Proceedings of the fourth International
Conference on Genetic Algorithms, in R. K. Belew, L. B. Booker, editor, Morgan
Kaufmann, pp. 408-415, 1991.

10] R. G. Bland and D. F. Shallcross, "Large Traveling Salesman Problems Arising
Prom Experiments in X-Ray Crystallography: A Preliminary Report in Compu-
tation" ,Operations Research Letters, Vol. 8, pp. 125-128, 1989.

11] H. Braun, "On Traveling Salesman Problems by Genetic Algorithms", 1st Work-
shop on Parallel Problem Solving from Nature, pp. 129-133, Oct., 1990.

12] S. Ceri, and G. Pelagate, Distributed Databases: Principle and Systems, McGraw-
Hill, New York, 1984.

13] C. H. Cheng, ” A Branch and Bound Clustering Algorithm", IEEE Transactions
on Systems, Man, and Cybernetics, SMC-25, pp. 895-898, 1995.

14] C. H. Cheng, Y. P. Gupta, W. H. Lee and K. F. Wong, ” A TSP-based Heuristic
for Forming Machine Groups and Part Families", Int. J. Prod. Res” Vol. 36, No.
5, pp. 1325-1337, 1998.

15] Gajanan S. Chinchwadkar, Angela Goh and Ee-Peng Lira, “Simulated Anneal-
ing for Vertically Partitioning an 0 0 Database", International Conference on
Information, Communications and Signal Processing, ICICS '97 Singapore, 9-12
September, pp. 800-804, 1997.

16] N. Christofides, "Worst-case Analysis of a New Heuristic for The Traveling
Salesman Problem", Report 388, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pa, 1976.

17] Hong K. Chung and John P. Norback, "A Clustering and Insertion Heuristic
Applied to a Large Routing Problem in Food Distribution", J. Op. Res. Soc.,
Vol. 42，No.7, pp. 555-564, 1991.

18] D. W. Cornell and P. S. Yu, ”A Vertical Partitioning Algorithm for Relational
Databases", Proceedings of the Third International Conference on Data Engi-
neering^ pp. 30-35, 1987.

19] D. W. Cornell and P. S. Yu, “ An Effective Approach to Vertical Partitioning for
Physical Design of Relational Databases", IEEE Trans. Software Eng., 16(2), pp.
248-258, 1990.

BIBLIOGRAPHY Sf

20] C. J. Date, An Introduction to Database Systems, 6th edition, Addison-Wesley,
Massachusetts, 1995.

21] L. Davis, "Applying Adaptive Algorithms to Epistatic Domains", Proc. 9th In-
ternational Joint Conference on Artifical Intelligence, pp. 162-164, 1985.

"22] L. Davis, Genetic Algorithms and Simulated Annealing, Pitman, 1987.

23] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.

"24] K. DeJong, The Analysis and Behaviour of a Class of Genetic Adaptive Systems,
Ph.D. thesis, University of Michigan, 1975.

25] E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs", Nu-
merische Mathematik, 1, pp. 269-271, 1959.

.26] R. C. Dixon, "Lore of the Token Ring", IEEE Network Magazine, Vol. 1, pp.
11-18, Jan. 1987.

27] A. W. F. Edwards and L. L. Cavalli-Sforza, "A Method for Cluster Analysis",
Biometrics, 21，pp. 3 6 2 - 3 7 5 , 1965.

'28] M. J. Eisner and D. G. Severance, "Mathematical Techniques for Efficient Record
Segmentation In Large Shared Databases", Journal of ACM^ 23, pp. 619-635,
1976.

29] C. I. Ezeife and K. Barker, "Vertical Class Fragmentation in a Distributed Object
Based System", Technical Reprot: 94-03, Dept. of Computer Science, Uni. Of
Manitoba, Canada, 1994.

30] E. Falkenauer, Genetic Algorithms and Grouping Problems, John Wiley & Sons,
1998.

31] D. B. Fogel, L. J. Fogel, and J. W. At mar., “ Meta-evolutonary Programming",
in R. R. Chen, editor, Proceedings of the 25th Asilomar Conference on Signals,
Systems and Computers, pp. 540-545, San Jose, CA, Maple Press, 1991.

32] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, 1979.

33] D. E. Goldberg, “Computer-aided Gas Pipeline Operation Using Genetic Al-
gorithms and Rule Learning", (Doctoral dissertation, University of Michigan),

BIBLIOGRAPHY Sf

Dissertation Abstract International, 44(10), 3174B, (University Microfilms No.
8402282), 1983.

34] D. Goldberg and R. Lingle, "Alleles, Loci, and the Traveling Salesman Problem",
First International Conference on Genetic Algorithms and Their Applications,
pp. 154-159, 1985.

.35] D. E. Goldberg and R. E. Smith, "Blind Inferential Search with Genetic Algo-
rithms" ,paper presented at ORSA/TIMS Joint National Meeting, Miami, FL,
1986.

36] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison Wesley, Reading, MA, 1989.

37] R. R. Golden, P. E. Meehl, "Detection of Biological Sex - An Empirical Test of
Cluster Methods", Multivariate Behavioral Research, 15, pp. 475-496, 1980.

38] R. L. Graham et al, Handbook of Combinatorics, Vol. 2, The MIT Press, north-
Holland, 1995.

39] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht, "Genetic Algorithms
for the Traveling Salesman Problem"，First International Conference on Genetic
Algorithms and Their Applications, pp. 160-168, 1985.

40] J. J. Grefenstette, “ Optimization of Control Parameters for Genetic Algorithms",
IEEE Trans. SMC, 16, pp. 122-128, 1986.

41] J. Grefenstette, "Incorporating Problem Specific Knowledge in Genetic Algo-
rithms" ,Genetic Algorithms and Simulated Annealing, Lawrence Davis, editor,
pp. 42-60, 1987.

42] J. J. Grefenstette, “Genetic Algorithms and their Applications", In A. Kent and
J. G. Williams, editors, Encyclopaedia of Computer Science and Technology, pp.
139-152, Marcel Dekker, 1990.

43] John A. Hartigan, Clustering Algorithms, John Wiley & Sons, 1975.

44] John A. Hartigan, “ Statistical Theory in Clustering", Journal of Classification,
2, pp. 63-76, 1985.

45] M. Hammer and B. Niamir, ” A Heuristic Approach to Attribute Partitioning",
ACM SIGMOD International Conference on Management of Data, pp. 93-101,
1979.

BIBLIOGRAPHY Sf

46] R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, John Wiley & Sons,
1998.

47] A. Hertz and D. de Werra, "Using Tabu Search Techniques for Graph Coloring",
Computing, 29, pp. 345-351, 1987.

48] F. S. Hillerand and G. J. Lieberman, Introduction to Operations Research,
Holden-Day, California, 1986.

49] J. A. Hoffer, “ An Integer Programming Formulation of Computer Database De-
sign Problems", Information Sciences, 11, pp. 29-48, 1976.

'50] J. H. Holland, Adaptation in Natural and Artificial Systems, MIT Press, 1975.

'51] A. Homaifar, S. Guan, and G. Liepins, "A New Approach on the Traveling Sales-
man Problem", Fifth International Conference on Genetic Algorithms, pp. 460-
466, July, 1993.

52] Yin-Fu Huang, Chin-Huei Van, "Vertical Partitioning in Database Design", In-
formation Sciences, 86, pp. 19-35, 1995

'53] L. J. Hubert and J. Schultz, “ Quadratic Assignment as a General Data-Analysis
Strategy", British Journal of Mathematical and Statistical Psychology, 29, pp.
190-241, 1976.

54] R. Dubes and A. K. Jain., “Clustering Techniques: the User Dilemma", Pattern
Recognition, 8, pp. 247-268, 1980.

55] R. Dubes and A. K. Jain., “Clustering Methodologies in Exploratory Data Anal-
ysis", Adv. Comput, 19, pp. 213-228, 1980.

56] A. K. Jain, R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, New
Jersey, 1988.

57] R. E. Jensen, "A Dynamic Programming Algorithm for Cluster Analysis", Oper-
ations Research, 17, pp. 1034-1057, 1969.

58] M. F. Jiang, S. S. Tseng, C. J. Tsai, “Intelligent Query Agent for Structural
Document Databases", Expert Systems with Applications, 17, pp. 105-113, 1999.

59] M. F. Jiang, S. S. Tseng, C. J. Tsai, "Discovering Structure from Document
Databases", The Third Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pp. 169-173, PAKDD-99, Beijing, China.

B I B L I O G R A P H Y Sf

60] P. Jog, J. Suh and D. Gucht, "The Effect of Population Size, Heuristic Crossover
and Local Improvement on a Genetic Algorithm for the Traveling Salesman Prob-
lem" ,Third International Conference on Genetic Algorithms, pp. 110-115, June,
1989.

61] D. S. Johnson, "Local Optimization and the Traveling Salesman Problem", in
M.S. Paterson (Editor), Proceedings of the 17th Colloquium on Automata, Lan-
guages, and Programming, Springer-Verlag, Lecture Notes in Computer Science,
Vol. 443，pp. 446-461, 1990.

62] S. Kirkpatrick, C. D. Gelatt and M. RVecchi, “Optimization by Simulated An-
nealing", Science, 220，pp. 671-680, 1983.

63] J. Knox, "The Application of TABU Search to the Symmetric Traveling Sales-
mane Problem", Ph.D. dissertation, University of Colorado, 1989.

64] B. Korte, “ Applications of Combinatiorial Optimization", talk at the 13th Inter-
national Mathematical Programming Symposium, Tokyo, 1988.

'65] Warren L. G. Koontz, P. M. Narendra and K. Fukunaga, ” A Branch and Bound
Clustering Algorithm", IEEE Trans. Comput., pp. 908-915, 1975.

66] A. Kusiak and W.S. Chow, "An Algorithm for Cluster Identification", IEEE
Transactions on Systems, Man, and Cybernetics, SMC-17, pp. 696-699, 1987.

'67] J. Lam, "An Efficient Simulated Annealing Schedule", Ph.D. dissertation, De-
partment of Computer Science, Yale University, 1988.

68] E. L. Lawler, et al., The Traveling Salesman Problem, Wiley-Interscience Publi-
cation, 1985.

69] E. L. Lawler and D.E. Wood, "A Branch-and-Bound Methods", A Survey, Op-
erations Research, Vol. 14, pp. 699-719, 1966.

70] L. P. Lefkovitch, "Conditional Clustering", Biometrics, 36, pp. 43-58, 1980.

71] J. K. Lenstra, “ Clustering a Data Array and The Traveling Salesman Problem",
Oper. Res., Vol. 22, pp. 413-414, 1974.

72] J. K. Lenstra, and A. H. G. Kan Rinnooy, “Some Simple Applications of The
Traveling Salesman Problem, Operations Research Quarterly, 26, pp. 717-733,
1975.

B I B L I O G R A P H Y Sf

73] T. Liang, "The Study of Character-based Signature Methods in Chinese Text
Retrieval", Ph.D. thesis, National Chiao Tung University, Taiwan, 1995.

74] S. Lin, and B. W. Kernighan, "An Effective Heuristic Algorithm for Traveling
Salesman Problem", Operation Research, pp. 498-516,1973.

"75] X. Lin, M. Orlowska and Y. Zhang, "A Graph Based Cluster Approach for Verti-
cal Partitioning in Database Design", Data and Knowledge Engineering, Vol. 11,
No. 2, pp. 151-169, 1993.

76] X. Lin and Y. Zhang., ”A New Graphical Method for Vertical Partitioning in
Distributed Database Design", Proceedings of The Fourth Australian Database

Conference, pp. 131-144, 1993.

77] J. D. Litke, "An Improved Solution to the Traveling Salesman Problem with
Thousands of Nodes", Communications of the ACM, Vol. 27, No. 12，pp. 1227-
1236, 1984.

78] Chiun-Ming Liu, “ Clustering Techniques for Stock Location and Order-picking
in a Distribution Center", Computer & Operations Research, 26，pp. 989-1002,
1999.

79] O. Martin, S. W. Otto and E. W. Felten, "Large Step Markov Chains for the
Traveling Salesman Problem”，Complex Systems, 2, pp. 299-326, 1991.

80] W. T. McCormick , P. J. Schwietzer and T. W. White, ”Problem Decomposition
and Data Reorganization by A Clustering Technique"，Operat. Res, 20, pp. 993-
1009, 1972.

81] P. Miliotis, “ Integer Programming Approaches to the Traveling Salesman Prob-
lem", Math. Progr., 10’ pp. 367-378, 1976.

82] Z. Michalewicz, Genetic Algorithms + Data Structures — Evolution Programs,
(Third, Revised and Extended Edition), Hong Kong: Springer, 1999.

83] G. W. Milligan, "An Examination of the Effect of Six Types of Error Perturbation
on Fifteen Clustering Algorithms", Psychometrika, 45，pp. 325-342, 1980.

84] G. W. Milligan, S. C. Soon and L. M. Sokol, ”The Effect of Cluster Size Dimen-
sionality, and the Number of clusters on Recovery of True Cluster Structure"，

IEEE Transactions on Pattern Analysis and Machine Intelligence PA MI, 5, pp.
40-47, 1983.

BIBLIOGRAPHY Sf

85] G. W. Milligan and M. C. Cooper, "An Examination of Procedures for Deter-
mining the Number of Clusters in a Data Set", Psychometrika, 50, pp. 159-179,
1985.

86] G. Navarro & R. Baeza-Yates, "Proximal Nodes: A Model to Query Document
Database by Content and Structure", ACM Transactions on Information Sys-
tems, 15 (4), pp. 400-435, 1997.

87] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, "Vertical Partitioning Algorithm
for Database Design", ACM Transactions on Database Systems, 9, pp. 680-710,
1984.

88] S. Navathe and M. Ra, "Vertical Partitioning for Database Design: A Graphical
Algorithm", Proceedings of ACM SIGMOD, pp. 367-378, 1989.

.89] Hans-Thomas Niirnberg and Hans-Georg Beyer, “ Optimization of Traveling
Salesman Problem", in Angeline et ai., editor, Lecture Notes in Computer Sci-
ence^ 1213，Evolutionary Programming VI, pp. 349-359, Springer, 1997.

90] M. Ozsu, and P. Valduriez, Principles of Distributed Database Systems, Prentice
Hall, New Jersey, 1991.

91] Oliver, I.M., Smith, D.J., and Holland, J.R.C., "A Study of Permutation
Crossover Operators on the Traveling Salesman Problem", Proceedings of the
Second International Conference on Genetic Algorithms, San Mateo, California
(CA: Morgan Kaufmann), pp. 224-230, 1987.

92] M. Padberg and G. Rinaldi, ”Optimization of a 532-city Symmetric Traveling
Salesman Problem by Branch and Cut", Operation Res. Letter, 6, pp. 1-7, 1987.

93] J. Puzicha, T. Hofmann, J. M. Buhmann, “Histogram Clustering for Unsuper-
vised Segmentation and Image Retrieval", Pattern Recognition Letters, 20，pp.
899-909, 1999.

94] M. R. Rao, “ Cluster Analysis and Mathematical Programming", Journal of the
American Statistical Association, 66, pp. 622-626, 1971.

95] G. Reinelt, "TSPLIB - A Traveling Salesman Problem Library", ORSA Journal
of Computing, 3, pp. 376-384, 1991.
(ftp: / / ftp.zib.de / pub / mp-testdata/tsp / tsplib / index.html)

ftp://ftp.zib.de

BIBLIOGRAPHY Sf

96] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP Applica-
tions, Lecture Notes in Computer Science, Vol. 840, Springer Heidelberg, 1994.

"97] M. B. Rosenwein, "An Application of Clustering Analysis to the Problem of
Locating Items within a Warehouse", HE Transactions, Vol. 26, No. 1, pp. 101-
103’ 1994.

98] D. Rosenkrantz, R. Stearns and P. Lewis, "Approximate Algorithms for the Trav-
eling Salesperson Problem", Proceedings of the 15th Annual IEEE Symposium of
Switching and Automata Theory, pp. 33-42, 1974.

99] F. E. Ross, "FDDI - A Tutorial", IEEE Commun. Magazine, Vol. 24, pp. 10-15,
1986.

100] J. R. Slagle, C. L. Chang, and S. R. Heller, "A Clustering and Data-reorganization
Algorithm,", IEEE Trans. Syst, Man. Cybern., Vol. SMC-5, pp. 125-128, Jan.
1975.

101] R. Sproat and C. Shilh, "A Statistical Method for Finding Word Boundaries in
Chinese Text", Computer Proceedings of Chinese and Oriental Languages, 4 (4),
pp. 336-351, 1990.

102] L. E. Stanfel, “ Application of Clustering to Information System Design", Inform.
Processing & Management, Vol. 19, pp. 37-50，1983.

103] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley and C. Whitley, "A Com-
parison of Genetic Sequencing Operators", Proceedings of the fourth International
Conference of GAs and their applications, pp. 69-76, 1991.

104] G. Syswerda, “Uniform Crossover in Genetic Algorithms", in J. D. Schaffer, ed-
itor, Proceedings of the Third International Conference on Genetic Algorithms，，,

pp. 2-9, Morgan Kaufmann, 1989.

105] G. Syswerda, “Schedule Optimization Using Genetic Algorithms", in L Davis, ed-
itor, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, chapter
21, pp. 332-349, 1990.

106] H. Tamaki et al, "A Comparison Study of Genetic Codings for the Traveling
Salesman Problem", Proceeding of The First IEEE Conference On Evolutionary
Computation, Vol. 1, pp. 1-6, 1994.

BIBLIOGRAPHY Sf

107] J. Ton and R. Gonzalez, Pattern Recognition, Reading, M.A.: Addison-Wesley,
1974.

108] N. Ulder, E. Aarts, H. Banbelt, P. Laahoven, and E. Pesch, "Genetic Local Search
Algorithms for Traveling Salesman Problem", 1st Workshop on Parallel Problem
Solving from Nature, pp. 109-116, Oct., 1990.

109] H. D. Vinod, "Integer Programming and Theory of Grouping", Journal of The
American Statistical Association, 64, pp. 506-519, 1969.

110] D. Whitley, “ Using Reproductive Evaluation to Improve Genetic Search and
Heuristic Discovery", in J. J. Grefenstette, editor, Proceedings of the Second In-
ternational Conference on Genetic Algorithms”, pp. 108-115, Lawrence Erlbaum
Associates, 1987.

111] D. Whitley, "The Genitor Algorithm and Selection Pressure: Why Rank-based
Allocation of Reproductive Trials Is Best", Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, San Mateo, California (CA: Morgan
Kaufmann), pp. 116-121, 1989.

112] D. Whitley, T. Starkweather and D. A. Fuquay, “Scheduling Problems and Trav-
eling Salesman: the Genetic Edge Recombination Operator", Proceedings of the
Third International Conference on Genetic Algorithms, San Mateo, Californai
(CA: Morgan Kaufmann), pp. 133-140, 1989.

113] G. Wiederhold, Database Design, McGraw-Hill, New York, 1982.

114] Y. Zhang, and M. E. Orlowska, "On Fragmentation Approaches for Distributed
Database Design", Information Sciences, 1, pp. 117-132, 1994.

115] S. Zhou, H. M. Williams and K. F. Wong, "Data Placement in Shared-Nothing
Database Systems", High Performance Cluster Computing, Vol. 2, Prentice Hall,
pp. 440-453, 1999.

i

i

1
霧：

瓣.

'm •

Isr .

I

r�

• I
：

CUHK L i b r a r i e s

MiMMMM ！

i
I

！

I

