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Abstract 

Genetic Based Clustering Algorithms and Applications 

by 

LEE Wing Kin 

Clustering methods refer to a group of unsupervised pattern classification procedures 

that separate or partition a finite collection of objects into subsets based on some 

predefined criteria. These methods have been applied to many real-life problems. In 

this thesis, we examine the nature of a clustering problem, develop reliable and efficient 

algorithms for it, and investigate their practicality in different database applications. 

The literature has shown that the clustering of a data array can be stated as a 

traveling salesman problem (TSP). Hence, TSP structure may be exploited to solve 

the clustering problem. In this thesis, we explore the use of genetic algorithms (GA) 

and propose a methodology based on it to solve the clustering problem. In particular, 

the TSP structure is exploited in our solution methodology. We also consider several 

clustering problems in information systems. In a typical distributed/parallel database 

system, a transaction mostly accesses a subset of the entire database. It is, therefore, 

natural to organize commonly accessed data together and to allocate them into different 

machine(s)/site(s) in a computer network so as to minimize remote transaction pro-

cessing. For this reason, data partitioning and data allocation are performance critical 

issues in distributed database design. In this thesis, we are dealing with data parti-

tioning. In particular, we examine data partitioning in four different contexts: vertical 

partitioning (VP) a relational database (RDB), horizontal partitioning (HP) a RDB, 

object-oriented database (OODB) design, and document database design. 

To further enhance the performance of our GA clustering algorithms, we propose 

three new GA crossover operators for solving the TSP. These include a modified ver-
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sion of an existing Enhanced Edge Recombination (EER) operator, called Enhanced 

Cost Edge Recombination operator (ECER), and two new operators, called Shortest 

Path (SP) operator and Shortest Edge (SE) operator. Their performances are com-

pared with several existing operators using the problem instances from a well-known 

TSP repository. We run the experiments on a SUN SPARC Ultra-5_10 workstation. 

Experimental results indicate that the proposed operators have different contributions 

and that our operators are compared very favourably to others in solving the problem. 
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論文槪述 

遺傳分類算法與應用 

李永健 

分類法是指在某一特定的前題下，把物件集分割成數份或是把相關的物件 

組成數份，這方法能廣泛地應用在多個領域。在本論文’我們會深入探討分類 

法的特質，提出一個有效及可靠的分類算法，並硏究其數個應用。 

在文獻中曾經提及矩陣排列能應用於分類問題上，另外’它能演化成一個 

旅行商問題或貨郎擔問題(traveling salesman problem，簡稱TSP)�本論文嘗試 

透過利用TSP結構及了解遺傳算法（genetic algorithms，簡稱GA)，開發H0新 

的遺傳分類算法。由於分類算法應用範圍廣泛，我們特別探討所提出的遺傳分 

類算法如何應用在資訊系統中。在存取一個分散資料庫的過程中，一個交易通 

常會涉及到存取某一部份的資料庫。如果能夠把相關的資料分類，然後把它們 

分配在不同的電算機上，資料庫的存取效率也就大大提高。基於上述原因，資 

料分類和分配這兩個問題在分散資料庫設計上有著重要的影響。在本論文，我 

們集中硏究資料庫的資料分類，並探討我們所提出的新算法於分散資料庫中的 

四種應用，它們包括垂直分割關聯資料庫、橫切關聯資料庫、對象特性資料庫 

設計和文件資料庫設計。 

另外，我們提出三個新的遺傳雜交算子，包括一個經修改的改良邊重組雜 

交算子(enhanced cost edge recombination，簡稱 ECER)，一個最短路徑算子 

(shortest path，簡稱SP)和一個最短邊算子（shortest edge，簡稱SE)，我們運用 

這三個算子來解決TSP資料庫中的數十個問題。實驗結果指出，我們所提出的 

雜交算子於解決TSP問題上有著不同的貢獻，並且它們比文獻中所提及的數個 

算子優勝。 
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Chapter 1 

Introduction 

1.1 Clustering 

Clustering methods refer to a group of unsupervised pattern classification methods 

that partition the input space into n partitions so as to satisfy some predefined criteria 

([43] and [56]). These methods have been applied to many different areas such as 

manufacturing systems ([1] and [14]), logistics activities ([17], [78] and [97]), information 

system designs ([87], [93] and [102]). 

When cluster partitions are disjoint, one obtains exclusive classification (i.e., each 

data point belongs to only exactly one cluster). On the other hand, when partitions are 

overlapping, one obtains non-exclusive classification [56]. Clustering methods, which 

seek to provide exclusive classification, can be broadly classified into intrinsic and 

extrinsic classification [56]. Intrinsic classification is also called “ unsupervised learning" 

because no category labels are used. Extrinsic classification uses category labels on the 

objects. For example, suppose that various statistics of personal health have been 

collected from smokers and non-smokers. An intrinsic classification method groups the 

individuals based on similarities among the health statistics and then tries to determine 

whether smoking is a factor in the propensity of individuals toward various diseases. An 
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1.1 Clustering ？ 

extrinsic classification method studies ways of discriminating smokers from non-smokers 

based on health statistics. In this thesis, we focus on intrinsic classification. 

Classifications 

Non-Exclusive Exclusive 

Extrinsic Intrinsic (Unsupervised) 

Hierarchical Partitional 

Figure 1.1: Tree of classification types 

1.1.1 Hierarchical Classification 

Exclusive, intrinsic classification can be subdivided into hierarchical and partitional 

56], (see Figure 1.1). Hierarchical classification is a nested sequence of partitions. 

Suppose n objects to be clustered are included in the set 屯. 

where Xi is the ith object. A partition, T of ^ breaks 少 into subsets {Ci, C2,…，Cm} 

satisfying the following: 

Ci 门 = $ for i and j from 1 to m, z / j 

Ci U C2 . . . U Cm = ^ 

Notice that 少 is an empty set. A clustering is a partition; the components of the 

partition are called clusters. For example, let's assume the clustering C with three 
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clusters and the clustering B with five clusters are defined as follows: 

C = { (xi , X3, X5,X7), (X2,X4,X6, Xg), {xg, O îo)} 

B = {{xi,xs), xj), 0^2), (^4,^6, Xs), 町 0 ) } 

B is nested into C. That means, every component of Bis a proper subset of a component 

of C. Both C and B are clusterings of the set of objects {xi,X2,. • • ,2:10}. 

Given n objects, there are partitions to be considered before they can be 

divided into two groups [3]. Clearly, when n is large, the number of possible partitions 

to consider may be very large. To make it more complicated, one has to decide at 

which level of the hierarchy to stop to determine the number of clusters. 

Several popular hierarchical clustering methods have been proposed. They are the 

single-link, average-link, complete-link, centroid, median and Ward's clustering method 

(see [56]). Golden and Meehl [37] find that the average-link, complete-link, and Ward's 

clustering method outperform the others. Besides, Bayne et al [5] conclude that the 

Ward's method and complete-link method are preferable to median, group average and 

centroid methods. However, as stated by Anderberg [3], all these methods do not 

guarantee an optimal solution in terms of the clustering criterion. 

1.1.2 Partitional Classification 

The problem of partitional clustering (non-hierarchical) can be formally stated as fol-

lows. Given n patterns in a d-dimensional metric space, determine a partition of the 

patterns into K groups, or clusters, such that the patterns in a cluster are more similar 

to each other than to patterns in different clusters. Notice that the value of K may or 

may not be specified. 

The theoretical solution to this partitional problem is straightforward. This is to 

select a criterion, evaluate if for all possible partitions containing K clusters, and pick 

the partition that optimizes the criterion. However, as the number of objects increases, 

the number of possible partitions explodes. For example, there are 34,105 distinct 
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partitions of 10 objects into four clusters, but this number explodes to approximately 

II,259,666,000 if 19 objects are partitioned into four clusters [56]. Clearly, exhaustive 

enumeration of all possible partitions is not computationally feasible even for small 

numbers of patterns. 

To avoid this combinatorial explosion, several heuristics have been proposed. Many 

of them start with an initial partition and perform one or more of the following actions: 

moving objects from one cluster to the other, and merging and splitting clusters. Per-

haps the most well-known of these methods is the A;-means [56]. It attempts to obtain k 

cluster centers by minimizing the square-error. It produces partitions which minimizes 

within-cluster scatter or maximizes between-cluster scatter. However, to avoid local 

optimum solutions, one has to examine many if not all initial partitions. To generate 

all possible initial partitions is again not computationally feasible. 

Other approaches attempt to eliminate solutions and can be used to achieve an 

optimal solution. Examples of these are Branch and Bound, integer programming, 

mathematical programming, etc ([27], [65], [70], [94] and [109]). Although some signif-

icant computational savings are realized, these methods are still not computationally 

feasible for large clustering problems. 

1.1.3 Comparative Analysis 

Milligan [83], Milligan et al [84] and Milligan and Cooper [85] investigate several clus-

tering methods. They conduct experiments on fifteen clustering algorithms including 

all the popular hierarchical and partitional approaches. They find that no one single 

group of algorithms is consistently superior to any other group [83]. For example, 

the /c-means partitional algorithm gives better results than hierarchical methods only 

when the starting partition is close to the final solution. Besides, Hartigan [44] con-

cludes that different classifications are suitable for different uses. Hence, there is no the 

best classification. The choice between hierarchical or partitional clustering methods 
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in fact depends on the domain of the underlying problem. 

1.2 Cluster Analysis and Traveling Salesman Problem 

Consider the clustering of a non-negative M x N array. Given two finite sets R and 

S and a non-negative matrix [ars)reR,seS, where Qrs measures the strength of the 

relationship between elements r G and 5 G One would like to permute the rows 

and columns of the matrix so as to bring its large elements together. The resulting 

clustering should identify strong relationships between subsets of R and S. 

McCormick et al. [80] argue that clustering a matrix may be useful for problem 

decomposition and data reorganization. They illustrate this with three examples. The 

first one is an airport design problem. Given R {S is equal to R; i.e. a similarity array) 

as a set of 27 facilities that should be available at the airport and are under the control 

of the designer; â s is fixed at 0, 1, 2 or 3 depending on whether facilities r and s have 

no, a weak, a moderate, or a strong dependency. The permuted matrix should suggest 

a decomposition of the design problem into sub-problems that interact not at all or 

only in a limited and well-defined ways. The second example involves a set R of 53 

aircraft types and a set S of 37 functions that they can perform; â s 二 1 if aircraft r 

is suitable for function s, and t^s 二 0 otherwise. The rearranged matrix shows which 

aircrafts are able to perform the same functions and which tasks can be performed by 

the same aircraft. The third example also deals with an object-attribute array. R is 

a set of 24 marketing techniques, 5' is a set of 17 marketing applications, â s = 1 if 

technique r has been successfully used for application s, and ars = 0 otherwise. Lenstra 

and Rinnooy Kan [72] give a fourth example. It deals with an input-output matrix. R 

(same as S) is a set of 50 regions on the Indonesian islands, ars = 1 if at least 50 tons 

of rice are annually transported from region r to region 5, and ars = 0 otherwise. 

As stated by Lenstra [71], all these problems can be modeled as a traveling salesman 

problem (TSP). TSP is the problem of a salesman who, starting from his home city, 
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has to find the shortest tour that takes him exactly once through each of a number 

of other cities and then back to his home city. Suppose there are n cities and cij is 

the distance between cities i and j { i j = 1 , … , n ) . The salesman is interested in a 

permutation tt of {1, . . . ,n} that minimizes: 

n-l 

y ^ C兀(i)7r(i+l) + C7r(n)7r(l) 
i=l 

Hence, 7r{i) is the zth city visited. The TSP is symmetric if Cij = Cji for all i j . 

To solve the clustering problem, McCormick et al [80] propose to measure the 

effectiveness of a clustering by the sum of all products of horizontally or vertically 

adjacent elements. Notice that higher sums of these products tend to correspond to 

better clusterings. The problem is now to permute the rows and columns of the matrix 

so as to maximize this criterion. 

Permuting the rows does not affect their horizontal adjacencies of the elements, 

and permuting the columns does not affect their vertical adjacencies. The problem 

therefore decomposes into two separate and similar problems, one for the rows and one 

for the columns. We consider the former. The row optimization problem is to find a 

permutation p oi R that maximizes: 

降 1 

r=l seS 

Here, row p{r) of the matrix is put in position r. This is, again, nothing but the 

symmetric traveling salesman problem [71]. Let = {1，...，阅}，and define 

n = + 1 and 

Cij = — XvsGS ̂ is^jst Cin = Cnj = 0 for j G R 

The rows of the matrix are the cities, the additive inverses of their inner products 

are the distances, and a dummy city has been added to close the tour. Notice that 
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column permutation can be done in the same way. Thus, the clustering problem can 

be reduced to two separate traveling salesman problems. In general, the clustering 

problem for a p-dimensional array can be stated as p-TSPs，and it may be tackled by 

an optimal or a heuristic algorithm for the TSP. 

The TSP has become the prototypical problem of combinatorial optimization. 

Moreover, many solution approaches that have become standard in combinatorial opti-

mization are first developed and tested in the context of the TSP. This is partly because 

its simplicity of statement and its difficulty of a solution are even more apparent than 

for most other problems in the area [68]. Due to its advantages, many mathematical 

formulation, applications and solution approaches have been developed [72 . 

1.3 Solving Clustering Problem 

We have shown that clustering is a combinatorial optimization problem which can be 

reduced to a TSP. It is, therefore, difficult to find an efficient and optimal algorithm 

that uses polynomial time to solve a given optimization problem. Indeed, the clustering 

methods described in Section 1.1 can be broadly classified into two categories, namely 

exact methods and heuristic methods [30]. 

Exact methods seek to examine the possibility of an optimal solution. Results 

obtained by them are the best available. Examples of these are Branch and Bound 

65] and dynamic programming [57]. However, if the search space of a problem is very 

large, these methods may require excessive running time. To avoid examining all the 

feasible points in the search space, many methods attempt to eliminate solutions. For 

instance, Branch and Bound approach tries to reduce the complexity through pruning, 

whereas dynamic programming approach tries to avoid some redundant calculations in 

the total enumeration. Although some achieve computational savings, most of them 

are still computationally infeasible for large problems ([9], [30]). 

Heuristic methods seek to search for good approximation solutions. They are a 
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popular way of addressing hard problems, because of their simplicity and computational 

efficiency. Examples of these are the A;-means (c-means or basic ISODATA) methods 

([54]，[55] and [107]). In each iteration of these algorithms, an object is systematically 

moved to another cluster if such a move reduces the value of the objective function. 

It is possible that these methods may get stuck at a local minimum. They avoid this 

problem by taking several different random initial configurations and by applying the 

procedure to each configuration. This type of evaluation is, however, too ad hoc and 

the quality of the results highly depends on the type of data and objective function 

([9],[30]). 

Recently, a third class of methods has emerged which are called met a-heuristics or 

inter-disciplinary approaches. These methods generate new points in the search space 

by applying operators to current points and statistically move toward more promising 

areas in the search space. They rely upon an intelligent search of a large but finite 

solution using statistical methods. These methods do not require to take cost function 

derivatives and can thus deal with discrete parameters and non-continuous cost func-

tions. They represent processes in nature that are remarkably successful at optimizing 

natural phenomena [46]. These methods include simulated annealing (SA) [62], tabu 

search (TS) [62] and genetic algorithms (GA) [36 . 

SA is inspired by the process that takes place in a crystalline substance during a 

slow cooling. Starting from a random point in the search space, a random move is 

made. If this move takes us to a higher point, it is accepted. If it takes us to a lower 

point, it is accepted only with probability p(力)，where t is time. The function p{t) begins 

close to 1, but gradually reduces towards zero (the analogy being with the cooling of a 

solid). However, SA only deals with one candidate solution at a time, and so does not 

build up an overall picture of the search space [6 . 

As for SA, the TS method is based on gradual local improvement of a current 

solution of an optimization problem. It searches for a new solution in the neighborhood 
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of the current one. However, it usually searches the whole neighborhood, instead of 

picking at random one of its members, as SA does [30 . 

A third met a-heuristic, the GA, is the subject of this thesis and is described in the 

following section. 

1.4 Genetic Algorithms 

John Holland proposed genetic algorithm (GA) [50] in 1975. GA has since become 

a topic of active research [36] and has been successfully applied in solving some well-

known complicated problems such as optimization of gas pipeline [33], Blind Knapsack 

problem [35], etc. GA is an adaptive method which is based on genetic processes of 

biological organisms. Over many generations, natural populations evolve according 

to the principles of natural selection and "survival of the fittest". By mimicking this 

process, GA is able to "evolve" solutions to real world problems, if it has been suitably 

encoded. For example, GA can be used to design bridge structures for maximum 

strength/weight ratio, or to determine the least wasteful layout for cutting shapes from 

a piece of cloth. It can also be used for online process control, such as in a chemical 

plant, or load balancing on a multi-processor computer system [6 • 

In nature, an individual within a population competes with one another for resources 

(e.g. food or water). Besides, an individual within same the species often competes 

with others to attract a mate. Those individuals which are most successful in surviving 

and attracting mates will have relatively larger number of offspring. On the other hand, 

poorly performing individuals will produce fewer offspring or may even “ die out" • This 

means that the genes from the highly adapted, or "fitted" will spread to an increasing 

number of individuals in each successive generation. In this way, species evolve to 

become more and more well suited to their environment, see [6 . 

GA uses a direct analogy of this natural behaviour. It works with a population of 

“individuals", each representing a feasible solution to a given problem. Each individual 
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is assigned a "fitness score" according to how good a solution to the problem is. The 

highly fitted individuals are given opportunities to "reproduce", by "cross breeding" 

with other individuals in the population. This produces new individuals as "offspring" 

and the least fitted members of the population are less likely to get selected for re-

production, and so "die out". Over many generations, good characteristics are spread 

throughout the population, being mixed and exchanged with other good characteristics 

as they go. By favouring the mating of the more fitted individuals, the most promising 

areas of the search space are explored. If GA is designed well, the population will 

converge to an optimal solution to the problem. The standard GA can be represented 

as shown in Figure 1.2. For more detail descriptions, see [22], [23], [40], [42], [36] and 

[82]. 

Begin 
generate initial population 
compute fitness of each individual 

While (NOT finished) Do 
Begin 

For population^ize/2 Do 
Begin 

select two individuals from old generation for mating 
recombine the two individuals to give two offspring 
compute fitness of the two offspring 
insert offspring in new generation 

End 
If population has converged Then finished := True 

End 
End 

Figure 1.2: A traditional Genetic Algorithm 

Clearly, the large population of solutions and simultaneously searching for better 
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solutions give the genetic algorithm its power. Indeed, some of the advantages of GA 

can be summarized as below [46]: 

1. Optimizes with continuous or discrete parameters. 

2. Does not require derivative information. 

3. Simultaneously searches from a wide sampling of the cost surface. 

4. Deals with a large number of parameters. 

5. Is well suited for parallel computers. 

6. Optimizes parameters with extremely complex cost surfaces; they can jump out 

of a local minimum. 

7. Provides a list of optimum parameters, not just a single solution. 

8. May encode the parameters so that the optimization is done with the encoded 

parameters, and 

9. Works with numerically generated data, experimental data, or analytical func-

tions. 

These advantages are intriguing and could lead to stunning results in situation where 

traditional optimization approaches fail miserably. 

1.5 Outline of Work 

In this chapter, we have shown that clustering is a combinatorial problem. By formulate 

the underlying problem as a TSP, one can take advantage of its problem structure. 

There are many methods proposed to solve the clustering problem. Most of these 

methods can be classified into two categories, namely exact methods and heuristic 

methods. However, a third class of methods called meta-heuristic or inter-disciplinary 
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approaches has emerged. These methods, including genetic algorithms, have several 

advantages over the traditional methods. In this thesis, we explore the use of genetic 

algorithms (GA) and propose a methodology based on GA to solve the clustering 

problem. 

In the following chapter, the TSP literature is reviewed. Also, the applicability of ge-

netic algorithms (GA) to a TSP is presented. To extend the applications of our GA clus-

tering algorithms, we consider several design problems in information systems. They 

are vertical partitioning (VP), horizontal partitioning (HP), object-oriented database 

(OODB) design, and docuiiieiit database design. 

To evaluate the performance of our proposed algorithm, we compare our approach 

with th(； Slaglo's, an efficient heuristic method for solving VP problem in Chapter 3. 

We generate several VP problems whose sizes range from 20 to 100 attributes. Coiiipii-

tatioiial results indicate that our proposed algorithm outperforms the Slagle's for the 

same application. 

To further cnhaiico the perforiiiaiice of our GA clustering algorithms, w() pr()i)()s(i 

thi(M- n(nv operators for solving the TSP in Chapter 4. These iiichidc a modified version 

of the (»xistin^ Enluuicod Edgo Recoiiibinatioii operator (EER) [103], called Enhanced 

Cost Kd^c Krromhiiiati(川 operator (ECER) . two m，w op(?nit()rs, calknl Shortest Edge 

ojxM-ator (SK) and Shortrsl Path operator (SP). The pcrforinaiico of tlie proposed 

opcM-.itors arv coiiiparc^l with spvrnil existiiiji； operators using all the proijlein iiistaiicos, 

\vhi)M�sizes nin‘i;(>s from 14 to 783 (:iti(>s. The i)i(>l)l(�ms takcni from TSPLIB [95 . 

I'>xprriiiuMital results show that tli(、proposed ()prnit()rs liavc difForcnt coiitributioiLS and 

that om- operators arc r(>mimi-(>d very favourably to otlirrs for solving th(�TSP. 

I'in.illy. C'lia])t(T 5 outlines the coiiclusioiis and future (lf>v(>l()piii(”it. 



Chapter 2 

The Clustering Algorithms and 

Applications 

2.1 Introduction 

We have shown that clustering is a combinatorial problem. By formulate the under-

lying problem as a traveling salesman problem ( TSP), one can take advantage of its 

problem structure. In the following section, the TSP literature is reviewed. Also, the 

applicability of genetic algorithms (GA) to a TSP is presented. Before a GA can be 

run, there are several design issues that must be addressed. These include: initializa-

tion, coding, crossover, fitness function, mutation, parent selection, replacement and 

termination. 

To extend the applications of our GA clustering algorithms, we consider several 

design problems in information systems. They are vertical partitioning (VP), horizontal 

partitioning (HP), object-oriented database (OODB) design, and document database 

design. For each application, we review the related literature and formulate a solution 

model for it. An example is also used to demonstrate the practicality of the proposed 

algorithm to the underlying application. 

13 
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2.2 Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization prob-

lem. The problem assumes that a salesman wants to visit iV cities with the requirement 

that each city should be visited by once (except the first city). The distance traveled 

by the salesman from the starting city to the ending city and from the ending city back 

to the starting city should be minimized. 

Although the structure of TSP is simple, it can be applied to solve many practical 

problems. For instance, it can be used in designing computer network which connects 

all computers in a ring topology by cables or optical fibers, ([26] and [99]). Suppose 

there are N computers and the costs for cabling between computers are known, the 

problem can be formulated as an TV-city TSP. There are many other applications of TSP 

such as manufacturing circuit board [77], X-ray crystallography [10], VLSI fabrication 

64]，etc (see also [61], [68] and [72]). 

However, solving the TSP is not simple. Given an A -̂city TSP, it is easy to see that 

there will be {N-l)\ possible tours. For example, if it takes 1 x 10—5 second to evaluate 

the cost of a tour, it takes 36 seconds to find the optimal tour for a 10-city TSP; and 

if N grows up to 30, 2.8 x years would be required to search all combinations! In 

fact, TSP is well-known to be NP-hard [32:. 

2.2.1 Related Work on TSP 

Traditionally, two approaches, namely exact methods and heuristic methods, are used 

to solve the TSP. Although the exact methods such as integer programming [81], cut-

ting planes [92], Branch and Bound [69] and dynamic programming [8] can guarantee 

the solution optimality, it requires excessive computation. On the other hand, heuristic 

methods such as 2-opt [74], Markov chain [79], nearest insertion [98], farthest insertion, 

cheapest insertion, sweep, savings etc., are efficient, but they cannot guarantee a good 

quality solution and many of them do not even have a proven constant worst-case per-
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formance ratio [96]. According to Graham et al. [38], the best known performance ratio 

for solving the TSP is obtained by Christofides' heuristic [16]. It obtains a performance 

ratio of at most That means, the worst-case obtained by it is guaranteed to be less 

than I times the optimal solution. 

A third class of solution methods has emerged in recent years, which is called meta-

heuristic methods or inter-disciplinary approaches. These include simulated annealing 

(SA) [62], genetic algorithms (GA) [36], and tabu search (TS) [47]. But Bhuyan et al. 

9] claim that the disadvantages of SA in solving combinatorial optimization problems 

are that a tremendous amount of execution time is needed and the determination of 

an efficient annealing schedule is difficult. Also, SA only deals with one candidate 

solution at a time, and so does not build up an overall picture of the search space 

6]. Knox [63] reports that TS and a modified version of simulated annealing [67 

exhibit similar performance for solving the TSP. Homaifar et al. (1993) [51] state 

that if a GA is well designed, it can be comparative with the best known techniques 

including the SA and TS. In fact, GA has shown great promise in solving some very 

complicated combinatorial problems including some large-scale TSPs and produced 

significant improvements in this area ([11], [34], [39], [51], [60], [91], [103], [108] and 

112]). GA is suitable for the problem because it quickly directs a search to promising 

areas of the search space. In this thesis, we use genetic algorithms to solve the TSP 

and investigate the practicality of GA for information systems applications. 

2.2.2 Solving TSP using Genetic Algorithm 

Before a GA can be run, a suitable coding or representation for the problem must be 

devised. We also require a fitness function, which assigns a figure of merit to each coded 

solution. During the run, parents must be selected for reproduction, and recombined 

to generate offspring. 

Notice that each of the above components alone can be regarded as a research 
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topic. In fact, different researches have tried to enhance the performance of GA for 

solving the TSP by proposing various techniques in each of the above components. For 

instance, Tamaki et al. [106] propose a new method for coding a TSP and find that 

the search for the optimal tour is more effective. Whitley [111] investigates the parent 

selection scheme and develops a new rank based selection method to obtain better 

results. As stated by Falkenauer [30], perhaps the most important technique in GA is 

the crossover, also called the recombination operator. Indeed, several operators have 

been proposed for TSP [82]. In this section, we first address various design issues in 

GA for solving TSP: initialization, coding, crossover, fitness function, mutation, parent 

selection, replacement and termination. In Chapter 4，we propose three new crossover 

operators that can further enhance the performance. 

Initialization 

Initialization involves generating initial solution to the problem. The initial solutions 

can be generated randomly or using some heuristic methods. For simplicity and to 

avoid additional overheads, we generate the initial population randomly. 

Coding 

Traditionally, GA used binary representation, e.g. xi = (01011001), which is often 

termed chromosome. However, since each digit has cardinality of 2, higher cardinality 

alphabets have been used and some researchers claim that it has advantages over the 

traditional coding [6]. In our implementation, we use non-binary representation. Sev-

eral non-binary coding methods were proposed such as adjacency, ordinal, path and 

ordered [82]. For traveling salesman problem, the most natural representation of a tour 

is the sequence of cities in the route, i.e. the i-th number represents the city which 

must be visited on the z-th position in the order. For instance, xi = (4, 3, 2,1, 5) gives 

the sequences of cities in a solution of a 5-cities TSP. 
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Crossover 

Crossover requires two individuals to exchange their genetic composition. The offspring 

then inherits some genes from its parents via this operation. Traditional GA uses 1-

point crossover. When a crossover operator is to be carried out over a pair of parents, 

a cutting point will be usually selected randomly, and the chromosomes of the parents 

will be both split at that point and then the segments of those chromosomes will be 

exchanged to give birth to the offspring. However, many different crossover algorithms 

have been devised, and many involve more than one cutting point. An advantage of 

having more crossover points is that the problem space may be searched more thor-

oughly. In fact, DeJong [24] investigates the effectiveness of multiple-point crossover, 

and concludes that 2-point crossover leads to performance improvement, further adding 

crossover points have adverse effect. The problem with further adding crossover points 

is that building blocks are more likely to be disrupted. 

Several operators have been proposed for TSP: Partially-mapped (PMX) (Goldberg 

and Lingle [34])，Order (OX) (Davis [21])，Cycle (CX) (Oliver et al. [91]), 0X2 and 

Position Based (PB) (G. Syswerda [105]), Edge Recombination (ER) (Whitley et al. 

112]), Enhanced Edge Recombination (Starkweather et al. [103]). The above operators 

are 2-point crossover except ER and EER. 

Take the Order operator as an example. The offspring inherits the elements between 

the two crossover points from the selected parent in the same order and positions as they 

appear in that parent. The remaining elements are inherited from the other parent in 

the order they appear, beginning with the first position following the second crossover 

point and skipping over all elements already present in the offspring. 
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Parent 1: a b c d e f g h i 
Parent 2: c f a h d i b g e 
Crossover point: * * 
Offspring: f g a h d i b c e 

Figure 2.1: An example of order crossover operator 

An example is given in Figure 2.1. The elements a, h, d,i and b are inherited from 

Parent 2 in the order and position in which they occur in Parent 2. Then starting from 

the first position after the second crossover point, the offspring inherits from Parent 1. 

In this example, position 8 is the next position. In Parent 1, h is located in position 8. 

However, it is already present in the offspring, so Parent 1 is searched until an element 

is found which is not already present in the offspring. In this case, c is inherited from 

Parent 1. This process continues until the offspring is complete. 

Starkweather et al. [103] study several operators and conclude that for the TSP the 

important information would seem to be the adjacency information. The ER operator 

explicitly preserves adjacency information and clearly has the best performance on 

this problem. Moreover, the enhanced ER (EER) further improve the performance 

of the system [103]. In Chapter 4, three new operators are proposed for TSP. The 

performances of them together with the above operators are evaluated, results are 

shown in Section 4.5. 

Fitness Function 

A fitness function must be used to evaluate the "fitness" (value) of the individuals 

within the population. Parents are selected from the population using a scheme that 

favours the more fitted individuals to produce offspring. Good individuals will probably 

have more opportunities to be selected as parents and poor ones may not be at all. 

Obviously, the fitness function used in TSP is simply the total distance traveled 
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by the salesman. Therefore, more fitted individuals will have smaller total distance 

traveled. Since the distance between any two cities are known, the total distance of the 

route can be obtained easily for each solution (individual). 

Mutation 

Mutation is applied to each child individually after crossover. It randomly alters each 

gene with a small probability (typically 0.001). Mutation, thus, provides a small amount 

of random search, and helps to ensure that no point in the search space has a zero 

probability of being examined. 

Several mutation operators are suggested [82]. For example, Oliver et al. [91] de-

velop a mutation operator called SWAP which randomly swap two cities in a TSP 

sequence. However, the usage and design of different operators are still immature and 

face a number of open issues. For instances, Niirnberg et al. [89] evaluate several mu-

tation operators and conclude that there can be a trade-off between good convergence 

rates and reachable solutions depending on the mutation operators used. However, the 

choice of appropriate mutation operators may need to be done by some kind of empirical 

data analysis drawn from the actual evolutionary dynamics or even by a self-adaptive 

process [31]. Obviously, it is not an easy task. In addition, some crossover operators 

such as ER and EER already provide an effective mutation rate [112]. Therefore, in 

order to provide a fair comparison of different crossover operators, we do not consider 

any mutation operator in our implementation. An analysis of the choice of mutation 

operators remains as a future task. 

Parent Selection 

Parent selection is a process that allocates reproductive opportunities to individuals. 

The biased selection enables the convergence of the search. As the population converges, 

so the range of fitness in the population reduces. However, this sometimes leads to 
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premature convergence and slow finishing. 

Premature convergence means that the genes from a few comparatively highly fit 

(but not optimal) individuals may rapidly come to dominate the population, causing 

it to converge on a local optimum. Slow finishing is the reverse problem to premature 

convergence. After many generations, the population will have largely converged, but 

may still not have precisely located the global optimum. The average fitness will be 

high, and there may be little difference between the best and the average individuals. 

Consequently there is an insufficient gradient in the fitness function to push the GA 

towards the global optimal solution. 

There are many methods to overcome these problems. Several are described in [4 . 

The commonly employed methods include fitness scaling and fitness ranking. Fitness 

ranking overcomes the reliance on an extreme individual. Individuals are sorted in 

order of raw fitness, and then reproductive values are assigned according to rank. In 

fitness scaling, the maximum number of reproductive trials allocated to an individual is 

set to a certain value. Whitley [111] conducts some experiments and shows that fitness 

ranking to be superior to fitness scaling. 

To allocate reproductive trials to individual so that higher ranked individual will 

obtain higher reproductive trials, it can be done linearly or exponentially. In our 

implementation, we adopt the approach of Whitley [111] to rank individuals according 

to their fitness and in producing selective pressure (bias), i.e. a linear function is 

used. For example, the 5th ranked individual will end up with the same chance to be 

selected as its parent each time regardless of its fitness value of those above (or below). 

Also, for selective pressure equals to 1.5 implies that the top ranked individual in the 

population is 1.5 times more likely to reproduce (in one reproductive cycle) than the 

median individual in the population. 
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Replacement 

There are two replacement approaches, named generation gap and steady-state replace-

ment. The generation gap is defined as the proportion of individuals in the population 

which are replaced in each generation. Most work has used a generation gap of 1, 

i.e. the whole population is replaced in each generation [40]. However, a more recent 

trend has favoured steady-state replacement ([110], [111] and [104]). It replaces a few 

individuals in each generation. 

In our implementation, we adopt a steady-state approach similar to that of GENI-

TOR [111], i.e. in each generation only two worst individuals are replaced. Therefore, 

parents and offspring may co-exist in a population. 

Termination 

The process of crossover and replacement are repeated until the population converges 

or attains a pre-specified maximum number of generations. In our implementation, 

we employ the former criterion. The population is said to have converged when all of 

the genes (individuals) have the same fitness value. As the population converges, the 

average fitness will approach that of the best individual. In our implementation, we 

set the termination until population converges. 

Implementation 

The pseudo-code of the algorithm is given in Figure 2.2. 
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Input cost matrix for TSP 

Generate an initial population of N random solutions (individuals) 

While (termination criterion not satisfied) do 

Select two parents Pi and P2 according to fitness ranking 
Using the crossover operator to generate two new offspring 
Replace two worst individuals in the population with two new offspring 

End while 

Output top ranked solution 

Figure 2.2: Genetic algorithm for solving the TSP 

In Figure 2.2, the input to the algorithm is the cost matrix of the TSP. The algorithm 

starts by generating N number of individuals. For each generation, two parents are 

selected to generate two new offspring. Two worst individuals will be replaced by these 

two new offspring in the population. The above process terminates when the stopping 

criterion is reached and the algorithm output the top ranked individual. 

We implemented the algorithm using C + + and the program ran on a Sun SPARC 

Ultra-5-10 workstation. In the next section, we use the proposed algorithm to solve 

several design problems in information systems. 

2.3 Applications 

2.3.1 Clustering for Vertical Partitioning Design 

To cope with the increasing volume of today database applications, cluster computing 

technology provides an efficient solution. Cluster computers facilitate high performance 

and high reliability. These features are paramount in large database applications. 

Using them as database servers, data are typically partitioned and distributed widely 

over the cluster. This effectively results in a classical distributed or parallel database 
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environment (see [2] and [90]), respectively. 

Response time in a distributed or parallel i database system is largely determined 

by how the database programs and data are organized and stored on the different ma-

chines/sites. In practice, it is quite common that the database programs are available 

on each site and the main design issue in distributed databases reduces to the distri-

bution of data. The concept is to place related data (e.g. a frequently accessed group 

of attributes) on near-by, preferably on the same, sites. Nevertheless, identification of 

such groups is not straightforward especially in large applications involving thousands 

of database transactions. In general, the study of the data distribution requires solving 

two problems: the partitioning problem and the allocation problem [115]. In this thesis, 

we deal with the partitioning problem and propose a genetic search based algorithm to 

solve it. 

Given the work-profile of a database application, in terms of the transactions and the 

data they access, the objective of our algorithm is to identify the aforesaid data groups. 

Individual groups, commonly known as database fragments, could then be placed on 

the most appropriate computer site(s). Without loss of generality, our algorithm was 

designed under the following assumptions: 

1. The relational database model is assumed [20]. Today, relational databases are 

by far the most wide-used in the industry. 

2. The application work-profile, i.e. the frequently accessed data and the corre-

sponding transactions, is known in advance. Based on this information, user 

access patterns can be estimated, and from it, important database transactions 

could be located. 

ITo simplify the discussion, we focus on distributed database design. But the proposed method is 
equally applicable to parallel database design. 
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3. In vertical partitioning (see the next paragraph) applications, it is assumed that 

the primary key of a relation is duplicated in every vertical fragments produced. 

In this way, the reconstruction of the whole relation from its vertical fragments 

is possible through the join operation. 

A relation is essentially a table. Dividing a table into smaller ones requires two 

elementary operations: vertical partitioning and horizontal partitioning. Consider a 

relation PROJECT concerning all ongoing projects of a company in Figure 2.3. We 

may horizontally divide it into two smaller units in Figure 2.4. The primary key 

ProjNo is duplicated in both relations so that the original relation can be re-constructed. 

Similarly, we may vertically divide it into two smaller units, as shown in Figure 2.5. 

Vertical and horizontal partitioning are elementary operations. They can also be nested 

and leading to hybrid fragments. 

PROJECT 
ProjNo ProjName Budget Location 

J1 Database development 130000 Michigan 
J2 Group technology 115000 Illinois 
J3 CAD/CAM 240000 Michigan 
J4 Maintenance 330000 Iowa 

Figure 2.3: The PROJECT relation 

PROJECT 1 
ProjNo ProjName Budget Location 

J1 Database development 130000 Michigan 
J2 Group technology 115000 Illinois 

PROJECT 2 
ProjNo ProjName Budget Location 

J3 C A D / C A M 2 4 0 0 0 0 M i c h i g a n 
J4 Maintenance 330000 Iowa 

Figure 2.4: Examples of horizontal partitions 
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PROJECT 3 
Pro j No ProjName Location 

J1 Database development Michigan 
J2 Group technology Illinois 
J3 CAD/CAM Michigan 
J4 Maintenance Iowa 

PROJECT 4 
ProjNo Budget 

Ji 130000 
J2 115000 
J3 240000 
J4 330000 

Figure 2.5: Examples of vertical partitions 

Notice that relation fragments PROJECTl and PR0JECT2 (see Figure 2.4) are 

the tuple sets Jl, J2 and J2, J3, respectively. Similarly, the same for PROJECTS and 

PR0JECT4 (see Figure 2.5) are the tables defined by [ProjNo, ProjName, Location 

and [ProjNo, Budget], respectively. 

These fragments are not randomly formed. It is the role of the database designers 

to determine how best to partition the original relation in order to achieve the highest 

performance and/or reliability over a computer cluster. 

Related Work for Vertical Partitioning Problem 

The motivation of vertical partitioning (VP) in database design is to minimize the 

number of page accesses while create smaller fragments to satisfy user queries. As 

Navathe et al. [87] point out, if a relation has n non-primary key attributes, the 

number of possible fragments to consider will equal to n仇 Bell number, B{n). For 

large value of n, B{n) ^ n^. For example, when n = 10, B{n) ^ 115,000; when 

n = 15, B{n) ^ 10 ;̂ and when n = 30，B{n) ^ From this scale, it is not difficult 

for one to appreciate the complexity of the vertical partitioning problem. 
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Hoffer [49] has formulated a 0-1 nonlinear integer-programming model for the ver-

tical partitioning problem. The model minimizes storage, retrieval, and update costs 

which subject to the capacity constraints on database sub-files. An approximate so-

lution based on the bond energy (BE) algorithm is used. Eisner and Severance [28 

propose to identify the most frequently accessed data fragments and place them in 

high-speed primary memory. This partitioning problem is isomorphic to the minicut-

maxflow network problem, which can be solved by the Ford/Fulkerson algorithm. How-

ever, the solution method is inefficient for large problems. Hammer and Niamir [45 

design a mechanism that can find a near optimal vertical partition, although it con-

ducts a search through the space of all possible partitions by employing the hill-climbing 

technique. 

Navathe et al. [87] extend the work of Hoffer. Affinity among attributes is defined to 

express the extent to which they are simultaneously processed. The BE (Bond Energy) 

algorithm is introduced which partitions attributes according to their affinity. Since 

the BE algorithm does not necessarily produce a solution in a diagonal structure, a 

heuristic algorithm is required to divide attributes into overlapping or non-overlapping 

fragments. Cornell and Yu ([18], [19]) develop an integer programming formulation to 

solve the problem of vertical partitioning. At each iteration, the integer programming 

formulation finds an optimal partitioning that splits the relation into two fragments. 

The integer programming formulation can be applied recursively until no profitable split 

can be found. However, this approach only finds a local optimal partition. Navathe et 

al. [88] propose an algorithm for vertical partitioning in 1989, which uses a graphical 

technique. The major feature of this algorithm is that all fragments are generated by 

one iteration in a time of O(n^). However, as pointed out by Lin and Zhang [76], it 

has some undesirable features. 

Later, Lin et al. [76] propose a new cluster model and a graphical vertical par-

titioning algorithm to overcome some deficiencies found in the algorithm of [88]. It 
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has proved to be more efficient that the algorithm in [87] and more effective than [88 • 

Cheng [13] propose a new vertical partitioning algorithm based on a branch and bound 

approach. In a binary access matrix, the algorithm outperforms the BE algorithms 

used by Hoffer and Navathe et al. Huang and Van [52] propose an heuristic search 

algorithm to search the large solution space of partitions and to choose one partition 

that yields the minimum number of disk accesses by using the A* technique. 

Refer to Section 1.3, these clustering methods can be broadly classified into two 

categories, namely exact methods and heuristic methods. Most of them are either so 

computational cumbersome which actually cannot be applied to solving any practical 

problem of moderate size, or are efficient but offer no guarantee to find any solution 

of reasonably good quality. A third class of methods has emerged recently. These 

methods include simulated annealing (SA) [62], tabu search (TS) [47] and genetic algo-

rithms (GA) [36]. These new methods have shown great promise in solving some very 

complicated combinatorial problems in finite computation time. 

In this thesis, we focus on genetic algorithms and propose a methodology based on 

genetic algorithms for database application design. In the next section, we present the 

model of vertical partitioning design. Due to the advantages of the traveling salesman 

problem (TSP) (see Section 1.2), we formulate the vertical partitioning problem as a 

TSP. Then, we present an example, which is adopted from a literature, to demonstrate 

the practicality of GA in solving the vertical partitioning problem. Several problems 

are generated in this problem and the performance of it is compared with a well-known 

algorithm in Chapter 3. 

The Model 

An application work-profile describes the access patterns of a set of transactions {T l , 

T2, . . . } , say, over the attributes of the database relation, i.e. {Al , A 2 , … } . For 

design purpose, it is commonly modeled by a transaction-attribute matrix. Consider the 
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transaction-attribute matrix (Figure 2.6). It contains five non-primary key attributes, 

i.e. {A l , A2, A3, A4, A5}, and four transactions, i.e. { T l , T2, T3, T4} ’ accessing 

the relation. A "1" (or "0") entry in the matrix indicates that the corresponding 

transaction uses (or does not use) the attribute(s) concerned. To demonstrate the 

clustering concept, we assume that the access of frequencies of all transactions are the 

same. This assumption will be relaxed later. Notice that in Figure 2.6, the distribution 

of "1" in the matrix is completely random. Such a matrix is highly inefficient in 

database design. 

Attributes 
. . _ . „ , . _ A-CCGSS 

Al A2 A3 A4 A5 ^ • 
frequencies 

Transactions 
T l 1 1 1 20 
T2 1 1 20 
T3 1 1 20 
T4 1 1 20 

Figure 2.6: Transaction-attribute matrix 1 

Consider another transaction-attribute matrix 2, (Figure 2.7). It is formed by 

rearranging certain rows and columns of matrix 1. Matrix 2 comprises a diagonal block 

structure. TC-1 is a transaction cluster which accesses AC-1, an attribute cluster; 

similarly, TC-2 accesses AC-2. 

TC-1/AC-1 and TC-2/AC-2 form two perfectly separable sub-matrices�Practically， 

a transaction in a sub-matrix only accesses attributes in the same sub-matrix. At-

tributes in a sub-matrix make up a fragment. These fragments could then be distributed 

over the computer system. This lays down the objective of vertical partitioning. In 

distributed database design, the designers decompose the corresponding transaction-
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Attributes 
AC-1 AC-2 

/ — ^ ― - s /： Access 
Al A3 A5 A2 A4 „ • 

^frequencies _ — 
Transactions 
T C J T 2 1 1 20 
丄 丄 1 T4 1 1 20 
T C J T 3 1 1 20 

T1 1 1 1 20 
一 • 

Figure 2.7: Re-arranged transaction-attribute matrix 2 

attribute matrix into sub-matrices. Attributes in a sub-matrix should closely match 

the data access requirements of the transactions in the same sub-matrix. The goal of 

vertical partitioning is to maximize the number of “ 1” entries retained in sub-matrices. 

But clearly separable sub-matrix patterns are not easy to determine; especially in real 

life situations, e.g. banking, where the number of transaction could be thousands 

and the number of attributes could be up to hundreds. For instance, consider the 

transaction-attribute matrix 3 (see Figure 2.8). 

Attributes 
AC-1 AC-2 AC-3 

a T ^ a T ^ a T ^ ^ Access 
frequencies 

Transactions 
J T1 1 1 1 20 

\ T2 1 1 1 20 
J T3 1 1 1 1 20 

I。-』！ T4 1 1 20 

Figure 2.8: Another transaction-attribute matrix 3 
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Completely separable sub-matrices do not exist in matrix 3 because attributes A4 

and A6 are accessed by transactions from different sub-matrices. Attributes 4 and 6 are 

known as inter-sub-matrix attributes. Although, these inter-sub-matrix attributes are 

common and prevent the formation of clearly separable diagonal sub-matrices, existing 

clustering algorithms cannot handle them effectively, e.g. [87 . 

In this example, notice that the removal of inter-sub-matrix attributes A4 and A6 

would lead to the formation of two perfectly separable sub-matrices. In general, to deal 

with the inter-sub-matrix attributes, e.g. A4 and A6 in matrix 3, the following two 

options may be taken in distributed database design. 

1. Duplicate the inter-sub-matrix attributes into all of the identified sub-matrices. 

2. Create an additional sub-matrix comprising the inter-sub-matrix attributes. 

The choice of these design options depends on the update frequency of the transac-

tions. The former requires update of multiple copies of the same data. This inevitably 

would undermine the performance of the system. However, if updates are infrequent, 

multiple updates would be affordable. Under this circumstance, option 1 would be 

preferred. On the other hand, if update transactions are frequent, option 2 would be a 

better choice as data would be isolated and data inconsistency would be avoided. 

The TSP Solution 

The problem of determining a desirable permutation for rows and columns in a solution 

matrix can be formulated as a Traveling Salesman Problem (TSP) [72]. To set up 

the TSP-VP problem, we will make use of distance measures between a pair of rows 

(attributes) and columns (transactions). 

We define the distance (cost) between transaction Ti and Tj as follows: 

, Y^k=i lO'ik X Fi - ajk X Fj\ if Gik + ajk , � 
dij = (2.1) 

0 otherwise 
\ 
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where aik is the entry in the unorganized transaction-attribute matrix [i represents 

transaction Ti and k represents attribute Ak) and Fi is the access frequencies for trans-

action Ti per unit time period (e.g., a day). 

Similarly, we use the following distance (cost) measure for attributes Ai and Aj. 

m 

dij = ^ \{aki - akj) X (2-2) 
k=l 

In TSP, the total distance is calculated as the distance traveled by the salesman from 

the starting city to the last city plus the distance from the last city back to the starting 

city. The TSP objective is to minimize the total distance traveled by the salesman 

provided that each city (except the starting city) should be visited by once. In the VP, 

the first and last attributes/transactions need not be connected and we observe that 

there is no constraint to govern the selection of the starting attribute/transaction. For 

this reason, we introduce a dummy attribute/transaction in our VP with distance zero 

for connecting to every attribute/transaction, we can then formulate the problem as a 

TSP. 

Using the example in Figure 2.6, we compute the distance measure between at-

tributes using Equation 2.2. We obtain the following cost matrix: 

Al A2 As A4 As 
~ T i 0 m 0 m W 

A2 80 0 80 0 20 
A3 0 80 0 80 60 
A4 80 0 80 0 20 

60 20 60 20 0 

Figure 2.9: Cost matrix for attributes of the example in Figure 2.6 

Similarly, using Equation 2.1, the cost matrix for transactions is given as: 
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— T i T2 Ts T4 
~ 1 \ 0 1 0 0 2 0 1 0 0 ~ 

T2 100 0 80 0 
Ts 20 80 0 80 
T4 100 0 80 0 

Figure 2.10: Cost matrix for transactions of the example in Figure 2�6 

After we obtain the cost matrix for attributes/transactions, we can introduce a 

dummy attribute/transaction into the problem. For instance, two dummy variables: 

attribute A6 and transaction T5 are introduced into the cost matrix with distance zero 

for connecting to every attribute/transaction. By solving the permutation problem as 

a TSP, we obtain the following tours for attribute and transaction grouping: 

A1-A3-A5-A2-A4-A6 Total cost： 80 

T3-T1-T5-T2-T4 Total cost: 100 

By removing the dummy attribute/transaction, we have two sequences: {Al , A3, 

A5, A2, A4} and {T2, T4, T3, T l } . Note that we obtain the re-arranged transaction-

attribute matrix as shown in Figure 2.7. 

Clearly, two fragments: AC-1 and AC-2, can be easily identified in Figure 2.7. 

However, in real life situations such as banking, where the number of attributes could 

be hundreds, clearly sub-matrix patterns are not easy to determine. In these cases, a 

splitting algorithm can be applied to further cluster the solution sequence�Anderberg 

(1973) [3] discusses seven hierarchical clustering techniques. Among the seven tech-

niques, single linkage, average linkage and complete linkage clustering are most widely 

used. For instance, in the above example, we can cut the attribute sequence at the 

edge A3-A5 to obtain the two fragments. It is because the edge A3-A5 contributes 

the highest cost in the solution. Note that this method is similar to the single linkage 

clustering method. 
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There are several approaches that have been proposed for the permutation of at-

tributes. A well-known approach is the Bond Energy Algorithm (BE) proposed by Mc-

Cormick et al. [80]. Slagle et al. [100] modify the BE and use it in data-reorganization. 

In the next section, the applicability of GA to TSP-VP is described by using an exam-

ple from the literature. By formulated the VP problem as a TSP, VP is achieved when 

the associated TSP is solved. In Chapter 3, we compare the performance of our GA 

clustering algorithm with the Slagle's. 

An Example 

An example with 20 attributes and 15 transactions is adopted from Navathe et al. [87 

to provide a comprehensive understanding of our algorithm in solving the VP. The 

performance of the GA depends on many factors: (1) population size, (2) termination 

criteria, (3) selective pressure. After tuning the parameter values through several exper-

iments ，we set the population size to 1200 and selective pressure to 1.2 (see Table 4=4). 

Enhanced Cost Edge Recombination (ECER) operator (see Chapter 4) is used and the 

GA is run until the population converges. We implemented the algorithm using C + + 

and the program ran on a Sun SPARC Ultra-5�0 workstation. 

The computation time is about 10 seconds and the total number of trials (genera-

tions) for attribute grouping is 3017 and for transaction grouping is 8774. All solutions 

converge. They have the same total distance of 720 for attribute grouping and 875 for 

transaction grouping. (Note that we are only interested in grouping attributes. Trans-

actions are permuted in order to obtain a better understanding of the re-arranged 

transaction-attribute matrix.) Figure 2.11 shows the re-arranged transaction-attribute 

matrix after permutation of attributes and transactions. 
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Attribute 
14 2 12 Is 9 3 7 10 11 17 18 16 15 20 19 4 6 5 1 8 

— “ Access Tran- „ 
丄 . Freq. sactions T3 1 1 1 1 1 1 50 X7 1 1 1 1 1 15 

T12 1 1 1 1 1 1 10 
； 1 1 1 1 1 1 ；？ 

Tfi 1 1 1 1 15 
1 1 1 15 

TIO 1 1 1 1 10 TI3 1 1 1 1 1 1 10 
T15 1 1 1 1 1 1 5 
了4 1 1 1 1 50 

T8 1 1 1 1 1 1 1 1 15 
T2 1 1 1 1 1 50 
T i l 1 1 1 1 1 1 1 1 10 
T14 1 1 1 1 1 1 1 1 1 5 

1 1 1 1 1 50 

Figure 2.11: An example for solving the VP 

To obtain fragments, we cut the attribute tour at the edge having the highest cost. 

(Note that this method is similar to the single linkage method, see [3].) Such cutting is 

reasonable since it meets the subjective criterion [87] of a 'good' vertical partitioning, 

that is, 

(I) attributes most frequently accessed together by transactions should form a frag-

ment; and 

(II) all pairs of attributes in a fragment have high affinity 'within fragment' but low 

affinity 'between fragments' 

However, this approach might not determine the best clustering result because the 

distances between attributes within each fragment are not taken into consideration. To 

determine the best clustering result, the selection criterion developed by Stanfel [102 

can be used. (Note that this method is similar to the average linkage method, see 

3].) This selection criterion seeks to minimize the average distance within groups and 

maximize the average distance between groups. First, define: 

f 
1, if records i and j are in the same group 

y^J = 

0, otherwise 
V 
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The expression for the average distance within groups is given as 

• M - l srM V . ~ � • J 

where dij is the distance between the attributes i and j. 

While the expression for the average distance between groups is given as 

Yli^i 1 - Yij) (2 4 � 

Hence, in order to achieve the objective of maximizing the homogeneity of records 

within groups as well as the heterogeneity of records between groups, the difference 

between the average distance within groups and the average distance between groups 

is minimized as shown in Equation 2.5: 

• M-l^pM 小 Y. . spM-l ^M J. /I _ y.A 

yM-lyM y yM-lyM , ( 

The partition point is the result that gives the minimum value of Equation 2.5. 

This clustering method is a sequence of partitions in which each partition is nested 

into next partition in the sequence and is known as hierarchical clustering method (see 

Section 1.1.1). 

Clearly, the objective value of Equation 2.5 can be used as statistics to compare 

cluster validity. It measures the degree of linear correspondence between attributes 

within the same group. Small values imply that the attributes within the same group 

agree to each other. In fact, this statistic is quite similar to Hubert's F statistics [53], 

which can be used to test cluster validity. 

The above approach is used to identify fragments. Four fragments are identified, 

which are: {14, 2, 12，13, 9}, {3，7, 10, 11, 17, 18}, {16, 15，20, 19} and {4, 6, 5, 1, 8}. 
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Note that the fragments identified are the same as the one obtained by Navathe et al 

87:. 

Conclusions 

In this section, we present the vertical partitioning (VP) problem. We then formulate 

the problem as a traveling salesman problem (TSP) and propose a methodology based 

on genetic algorithms (GA) to solve the corresponding TSP-VP. We also adopt an 

example from a literature to demonstrate the practicality of our new GA clustering 

algorithm in solving the VP problem. 

2.3.2 Horizontal Partitioning a Relational Database 

As we have discussed earlier (see Section 2.3.1), horizontal partitioning (HP) decom-

poses a relational table along its tuples. There are two related but different types 

of partitioning: primary and derived. Primary horizontal partitioning of a relation 

is performed using predicates that are defined on that relation. Derived horizontal 

partitioning is the partitioning of a relation which results in predicates being defined 

on another relation. Our discussion on horizontal partitioning mainly focuses on the 

former. 

Given a relation PROJECT, the SQL query "SELECT * FROM PROJECT 

WHERE Budget > 140000" will extract the information of all projects with budgets 

over $140,000. At this point, we are only interested in the simple predicate (i.e. Budget 

> 140000). The predicate forms the basis of one of the horizontal partitions in Fig-

ure 2.4. In general, given a relation R(Ai, A2, . . . , where Ai is an attribute defined 

over domain Di, a simple predicate pj defined on R has the form pj： {ylj^Value} where 

0 G <, <, >, > } and Value G A . SQL queries containing simple predicates are 

common. But in some occasions, e.g. in decision support system (DSS) applications, ad 

hoc queries are also frequent. These queries inevitably involve complicated predicates. 
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A complicated predicate consisting of multiple simple predicates^ could be decomposed 

into an equivalent collection of SQL queries with simple predicates. For this reason, ir-

respective of the complexity of the predicates, horizontal partitioning could be achieved 

by analyzing them. 

Primary horizontal partitioning: Given a SQL query containing a set of simple 

predicates accessing a relation R, we define P as the set of all simple predicates, 

P = {pi,p2,... ,Pm}- The conjunction of these predicates (or some negatives) forms 

the fragment schema on the relation R. The objective function of primary horizontal 

partitioning is to define some complicated predicates (involving logical OR and/or AND 

operations) to decompose the relation R into fragments which will then be distributed 

over the computer clusters. 

SALARY 

Job Title, Sal 

EMPLOYEE � ‘ 

Eno, Ename, Job—Title 

Figure 2.12: Connection of relations using a link 

Derived horizontal partitioning: Database transactions often access more than one 

relation. Related database relations can be connected through joins. For example, in 

Figure 2.12, relations SALARY and EMPLOYEE are connected by a link, L, repre-

senting a join. The member of the link is EMPLOYEE and the owner of the link is 

SALARY. 
^In disjunctive normal form, multiple conjunctive predicates are connected with disjunction op-

erators. Similarly, in conjunctive normal form, multiple disjunctive predicates are connected with 
conjunctive operators. 



2.3 Applications 50 

Horizontal partitions of the member relation of a link are derived using a selection 

operation specified on the owner relation of the link. In other words, the member 

relation will be partitioned according to the partitioning of the owner relation. The 

partitioning algorithm is similar to the partitioning algorithm for primary horizontal 

partitioning except the partitions from the owner relation are used. 

Related Work for Horizontal Partitioning Problem 

Ceri and Pelagate [12] develop an iterative procedure for horizontal partitioning. The 

set P of predicates is complete if and only if any two tuples belonging to the same 

partition are referenced with the same probability by any database applications. The 

set P is relevant if and only if each predicate in the set partitions the relation at hand. 

A simple predicate is relevant in determining a partition if and only if the predicate and 

its negation are referenced differently at least by one application. Ceri/Pelagate's par-

titioning algorithm involves adding relevant predicates to the set P until it is complete. 

It then forms database fragments based on P. Their algorithm is shown in Figure 2.13. 

1 Find one relevant predicate pi. 

2 Let = {pi} . 

3 Find another relevant predicate and add this to P. 

4 Continue until P is complete. 

5 Form the fragment schema for this relation. 

Figure 2.13: Ceri and Pelagate's algorithm for horizontal partitioning 

They further impose a frequency constraint on each resulting fragment. This con-

straint ensures that the probability of access to each tuple in a candidate fragment 

must be the same. If this property does not hold, then further horizontal fragment a-
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tion may take place; that is, the fragment has not been fully reduced. As pointed out 

by Zhang and Orlowska [114], the test of completeness involves the comparison of the 

probabilities of access by any applications. Thus, as the size of set P increases, the cost 

of calculation can be very expensive. 

Alternatively, Zhang and Orlowska [114] define predicate affinity. The BE (i.e. Bond 

Energy) algorithm [80] is then used to cluster predicates, and a horizontal partition 

is formed for each cluster. However, the BE algorithm may not necessarily produce 

clusters along the diagonal during cluster identification. When this happens, cluster 

extraction will require additional computation. 

An Example 

Similar to the transaction-attribute matrix for vertical partitioning, we use a 

transaction-predicate matrix to represent the predicate access pattern of a set of given 

transactions. This matrix is used to define the primary horizontal partitioning model. 

Based on the transaction-predicate matrix, we identify and remove inter-cluster predi-

cates in order to form clusters of transactions using the same set of predicates. Further, 

using the clusters and inter-cluster predicates, we can define the database partitions 

(i.e. fragments). We use the example of Zhang and Orlowska [114] to illustrate our 

partitioning strategy. In the example, R = (Eno, Ename, Sal, Degree) is a relation 

schema and there are seven transactions (T1-T7) using nine predicates over R. These 

predicates are: 

PI: Eno < 10 

P2: Eno > 20 

P3: Sal > 50K 

P4: Eno > 20 

P5: 30 < Eno < 60 

P6: Degree = Ph.D. 
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P7： Eno < 15 

P8： Eno > 50 

P9: Sal < 50K 

Their corresponding transactions are shown as follows: 

T l : Eno < 10, Sal > 50K, Degree = Ph.D. 

T2: Eno < 20, Sal > 50K 

T3： Eno > 20，Sal > 50K 

T4: 30 < Eno < 60, Sal < 50K, Degree = Ph.D. 

T5: Eno < 15, Sal < 50K, Degree 二 Ph.D. 

T6: Eno > 50, Sal < 50K, Degree = Ph.D. 

T7: Eno < 15，Sal > 50K 

Based on the information provided, the transaction-predicate matrix shown in Fig-

ure 2.14 is produced. Since transaction 1 uses predicates PI, P3, and P6, the corre-

sponding matrix elements are “ 1”. 

Attributes 
— PI P2 P3 P4 P5 P6 P7 P8 P9 

m . Access Transactions ” . 
l^requencies 

T l 1 0 1 0 0 1 0 0 0 25 
T2 0 1 1 0 0 0 0 0 0 50 
T3 0 0 1 1 0 0 0 0 0 25 
T4 0 0 0 0 1 1 0 0 1 35 
T5 0 0 0 0 0 1 1 0 1 25 
T6 0 0 0 0 0 1 0 1 1 25 
T7 0 0 1 0 0 0 1 0 0 25 

Figure 2.14: Initial transaction-predicate matrix 
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A Genetic Algorithm for Horizontal Partitioning 

We apply our algorithm and obtain the following path for predicates: 

3-2-1-4-8-7-5-9-6 Total cost: 485 

and for the transaction group: 

1-2-3-7-5-6-4 Total cost： 410 

Attributes 
P3 P2 PI P4 P8 P7 P5 P9 P6 

. Access 
Transactions ^ • 

l^requencies 
T1 1 1 1 25 
T2 1 1 50 
T3 1 1 25 
T7 1 1 25 
T5 1 1 1 25 
T6 1 1 1 25 
T4 1 1 1 35 

Figure 2.15: Re-arranged transaction-predicate matrix 

The re-arranged transaction-predicate matrix is shown in Figure 2.15. For simplic-

ity, only the entries with ” 1” are shown. Clearly, it is difficult to identify sub-matrices. 

However, the edge that contributes the highest cost of the predicate path is 7-5. We cut 

the path at this edge. As a result, we have higher cost between fragments, and within 

a fragment, we have lower cost among predicates. Two subsets are formed which are 

{P3, P2, PI, P4, P8, P7} and {P5, P9, P6}. Note that we obtain the same result as 

Zhang and Orlowska [114] when we apply the quadratic equation (proposed by Navathe 

et al. [87]) to cluster the matrix. 

As proposed by Zhang and Orlowska [114], the first subset {P3, P2, PI, P4, P8, 

P7} can be simplified to Sal > 50K. The second subset for fragmentation is {P5, P9, 
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P6}. That is (30 < Eno < 60) AND (Sal < 50K) AND (Degree=Ph.D). Thus the final 

predicates are: 

Predicate 1: Sal > 50K 

Predicate 2: (Degree-Ph.D.) AND (Sal < 50K) AND (30 < Eno 60) 

Tuples satisfying either one of the two predicates will be assigned to the correspond-

ing partitions and those which satisfy neither will be assigned to the third partition� 

In this way, the third partition could be characterized by the following predicate: 

((Sal < 50K) AND (Degree Ph.D.)) OR ((Sal < 50K) AND (Eno < 30 OR Eno > 60)). 

Conclusions 

In this section, we examine our new GA clustering algorithm for solving the horizontal 

partitioning (HP) problem. By using the transaction-predicate matrix, we define the 

cost measure between predicates. Then, we employ our new GA clustering algorithm 

to cluster predicates. We adopt an example from a literature to demonstrate the 

practicality of our algorithm in solving this problem. 

2.3.3 Object-Oriented Database Design 

Recently, the object-oriented ( 0 0 ) data model has evolved as an alternative to the 

relational data model for supporting modern database applications such as office au-

tomation systems and computer aided design. As a consequence, the performance 

demand on 0 0 database systems has increased. The literature has shown that high 

performance OODB systems can be achieved by using various data partitioning tech-

niques. These include vertical, horizontal, mixed and path partitioning. In this thesis, 

we focus on vertical partitioning an OODB. 

Object-oriented databases (OODBs) present additional semantics like structural 

properties (inheritance, composite objects) and interrelationships between objects. 
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Hence, the existing clustering algorithms (used in relational databases, for instance) 

have to be adapted to the object-oriented model. Also, the VP problem in relational 

database is known to be NP-hard [75]. Since OODBs present additional semantics 

and methods in the classes, vertical partitioning an OODB is more complex [29]. In 

this chapter, we demonstrate that our new genetic clustering algorithm (GA) can be 

adapted to solve this partitioning problem. 

Related Work for partitioning an OODB 

In relational databases, many vertical partitioning algorithms are based upon logical 

factors such as attribute-attribute affinity ( A A A ) [87] and physical factors such as 

minimization of disk accesses [18]. Bellatreche et al. [7] and Ezeife et al. [29] pro-

pose two algorithms respectively for vertical partitioning an OODB. Both attempt at 

maximizing the logical affinity between the methods (met hod-met hod affinity, M M A). 

MMA is defined between any two methods as the sum of frequencies of all the transac-

tions which access the two methods together. Similarly, AAA is defined between any 

two attributes as the sum of access frequencies of all the transactions accessing the 

two attributes together. As pointed out by Chinchwadkar et al. [15], more affinity be-

tween the methods in a fragment implies reduction in the remote methods invocations 

and reduction in communication cost. Also, more affinity between the attributes in a 

fragment implies less irrelevant 10. 

Ezeife's algorithm [29] tries to maximize the objective function by interchanging the 

columns of the MMA matrix. MMA matrix is a square matrix in which the numbers of 

rows and columns are the same as the number of methods in the class. Each entry in the 

MMA matrix represents the MMA value between the pair of methods represented by 

the corresponding row and column. Similarly, AAA matrix can be formed in the same 

manner. The objective function is a measure of affinities between columns and the two 

columns adjacent to them. Bellatreche's algorithm [7] identifies partitions by forming 
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a MMA graph and attempts to find maximum affinity cycles inside the graph. Each 

cycle represents a fragment. Both of these algorithms form groups of methods such 

that the methods which are frequently accessed together belong to the same fragment. 

Since vertical partitioning problem is NP-hard [75], we explore the use of genetic 

algorithm (GA) for solving this problem. GA is a well-known algorithm for solving 

difficult combinatorial optimization problems (see Section 1.3). 

The Model 

Similarly, GA can be adapted to vertical partitioning of an OODB by minimizing the 

cost between methods (met hod-met hod cost) in each partition. We define the M M C 

(method-method cost) between any two methods as the sum of the access frequencies 

of all the transactions which access either of the two methods but not both. Also, 

A A C (attribute-attribute cost) between any two attributes within the same class is 

defined as the sum of the access frequencies of all the transactions which access either 

of the two attributes but not both. Note that all the access frequencies to the attributes 

within a class included methods that access the class directly and through subclasses or 

other classes permitted by the schema [29]. Also, if the sizes of attributes are known, 

Equation 2.2 should be modified to incorporate the weighting of attributes in the cost 

function. We modify Equation 2.2 to measure the distance (cost) between attribute Ai 

and Aj within the same class as follows: 

m 
di j = \(aki x w i - dkj X Wj) X (2.6) 

k=i 

where a^i is the entry in the unorganized transaction-attribute matrix (k represents 

transaction Tk and i represents attribute Ai) and F^ is the access frequencies for trans-

action Tk per unit time period (e.g., a day) and Wi denotes the size of the attribute Ai. 

Note that if transaction T^ 'uses' the attribute Ai, a î is 1，else, a î is 0. In Equation 2.6, 
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we also consider the sizes of attributes since large-sized attributes always consume more 

resources and use more 10 time and communication time than small-sized attributes. 

Therefore, weighting which is proportional to the size of the attribute is incorporated 

into the cost function. 

An Example 

An example is adopted from literature [15] to demonstrate our algorithm in solving 

the VP of an OODB. Since our aim is data distribution rather than optimization of 

communication, we use the AAC matrix as an input. Figure 2.16 shows an example of 

a DEPT_EMPLOYEE database schema. 

Class DEPT { 
string Dname; 
EMPLOYEE Dhead; 
int Dno; 

} 
Class DATE { 

int Day; 
int Month; 
int Year; 

} 
Class PERSONJN.ORGN { 

string SocSecNo; 
} 
Class EMPLOYEE： public PERSONS JN_ORGN { 

string Ename; 
string Ecode; 
DATE DateBirth; 
char Sex; 
int Salary; 
string Designation; 

} 
Class M_EMPLOYEE: public EMPLOYEE { 

int NoOfChildren; 
} 

Figure 2.16: Dept_Employee database 
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Suppose class EMPLOYEE is to be partitioned. The attribute sizes for this class is 

shown in Table 2.1. Table 2.2 shows the transactions that access attributes of this class 

and their corresponding access frequencies. It includes all the accesses to the attributes 

of class EMPLOYEE directly and through subclassses and other classes permitted by 

the schema [29]. Therefore, attribute accesses of some transactions may be identical 

(for example, T4, T7 and T15). 

Attribute Size in bytes 
" m Ename ^ 

E2 Ecode 8 
E3 DateBirth 8 
E4 Sex 1 
E5 Salary 4 
E6 Designation 5 

Table 2.1: Attribute sizes for class EMPLOYEE 

Transactions Attribute Access 
Accessed Frequency 

T i El E4 E6 ^ 
T2 E2 E5 15 
T3 El E5 15 
T4 El E3 5 
T5 El E2 15 
T6 El E2 E3 10 
T7 El E3 10 
T8 El E3 E5 5 
T9 El E4 15 
TIO El E2 E5 E6 40 
T i l E4 E5 E6 15 
T12 E2 E5 E6 15 
T13 E5 E6 15 
T14 E2 E5 15 
T15 El E3 20 

Table 2.2： Transactions that access the attributes of class EMPLOYEE 
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Using Equation 2.6, the cost between any two attributes of the class EMPLOYEE 

is computed and shown in Figure 2.17. It is an A AC matrix. An A AC matrix is a 

square matrix in which numbers of rows and columns are the same as the number 

of methods in the class. Each entry in the AAC matrix represents the AAC value 

between the pair of attributes represented by corresponding row and column. Once we 

have a cost matrix, we can apply our GA clustering algorithm to permute the rows 

and columns in the matrix so as to cluster similar attributes together. Note that the 

matrix shown in Figure 2.17 is a symmetric matrix, we only have to permute either 

the rows or the columns. As pointed out by Chinchwadkar et al [15], more affinity 

between the methods in a fragment implies reduction in the remote methods invocations 

and reduction in communication cost. Also, more affinity between the attributes in a 

fragment implies less irrelevant 10. Note that our aim is to minimize irrelevant 10. If 

optimization of communication is needed, we have to use a MMC matrix as an input. 

El E2 E3 E4 E5 E6 
0 4640 4400 4775 4860 4500 

E2 4640 0 1120 935 740 1650 
E3 4400 1120 0 455 900 2050 
E4 4775 935 455 0 565 1625 
E5 4860 740 900 565 0 1510 
E6 4500 1650 2050 1625 1510 0 

Figure 2.17: AAC matrix for the class EMPLOYEE 

By applying the GA with population size 1200, bias 1.2 and ECER operator (see 

Chapter 4) is used, we ran our program on a Sun SPARC Ultra-5_10 workstation. 

The computational time is less than 1 second. The re-arranged ACC is obtained and 

is shown in Figure 2.18. All solutions are converged and we obtain an attribute path 

which is {El , E3, E4, E5, E2, E6}. The total distance is 7810. Using Stanfel's approach 

102] to cluster the solution path, we identify two fragments which are {El, E3}, {E4, 
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E5, E2, E6}. When the second fragment are further partitioned, we have two more 

fragments which are {E4, E5} and {E2, E6}. 

El E3 E4 E5 E2 E6 
" m 0 4400 4775 4860 4640 4500 

E3 4400 0 455 900 1120 2050 
E4 4775 455 0 565 935 1625 
E5 4860 900 565 0 740 1510 
E2 4640 1120 935 740 0 1650 
E6 4500 2050 1625 1510 1650 0 

Figure 2.18: Re-arranged AAC matrix for the class EMPLOYEE 

Conclusions 

Recently, the object-oriented ( 0 0 ) data model has evolved as an alternative to the 

relational data model for supporting modern database applications such as office au-

tomation systems and computer aided design. As a consequence, the performance 

demand on 0 0 database systems has increased. However, OODB presents additional 

semantics like structural properties (inheritance, composite objects) and interrelation-

ships between objects, the existing clustering algorithms have to be adapted to the 0 0 

model. In this section, we examine our new GA clustering algorithm for vertical par-

titioning an object-oriented database (OODB). We introduce the met ho d- met ho d cost 

(MMC) between two methods in a class and attribute-attribute cost (AAC) between 

any two attributes within the same class. The MMC is used to optimize communica-

tion while the AAC is used to minimize irrelevant 10. In this thesis, we focus on the 

AAC (i.e. data distribution) and adopt an example from a literature to demonstrate 

the practicality of our algorithm in solving this problem. 
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2.3.4 Document Database Design 

Due to the rapid growth of the World Wide Web and hardware performance, many 

database systems are built for storing documents. These databases, named document 

databases, increase the convenience for query and access. A document databases usually 

consists of a large number of electronic books and a major portion in the digital library 

is the electronic books. Also, there has been a recent trend to publish electronic books 

rather than hard copy. Especially in the professional field, the reference manuals are 

usually preserved as the document databases in order to increase the convenience to 

query. Therefore, research relating to digital library has become an important issue. 

If there is a document database system, which is modeled as shown in Figure 2�19, 

users can formulate a query to retrieve documents, and re-formulate the query when 

they see the results, and so on, until satisfied with the answer [86]. The query effec-

tiveness depends upon user's knowledge about the query language. In order to improve 

the efficiency of a document database, similar documents should be clustered together 

and stored in the same site(s)/machine(s) in a computer network. Obviously, the above 

problem is a partitioning problem which can be tackled by our new genetic clustering 

algorithm (GA). 

Users Query Processing Document Database 

Figure 2.19: The model of a document database system 

Structural Document Databases 

Classical information retrieval on document databases usually allows little structuring 

86], since it retrieves information only on data. In order to improve the performance 

of the document databases, documents that stored in the database should be struc-

turally organized. In addition to the electronic form of content that stored in the 
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database, structural information such as chapter, section and paragraph hierarchy may 

also embedded in the database. Such structural information are useful in querying the 

documents which named the Structural Documents (SD) [59], since most people always 

read books with chapter-oriented concept. 

Jiang et al [58] propose an idea to transform the documents into a set of structural 

documents, which merge two documents with similarity greater than the given threshold 

into one structural document. Based on this idea, they develop a clustering-based 

approach to construct the SD. Similarly, we define the cost measure between any two 

different documents and develop a GA-based clustering approach to cluster documents. 

If similar documents based on its structure are partitioned together, the retrieval and 

query time of the database can be improved. 

The Model 

To measure the cost between two documents, we use the heuristics similar to the 

similarity measure developed by Jiang et al [58]. The cost measure between two 

documents in two different chapters is higher than that in the same chapter, and the 

cost between two different documents in two different sections is higher than in the 

same section. Without loss of generality, we follow the assumptions made by Jiang 

et al. [58], which assume the whole reference book to be divided into a three-tier 

hierarchy, including chapter, section and paragraph. Based on these heuristics, we 

define the Hierarchy Independence (HI) between two documents, which can be easily 

computed by the following procedure: 
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Step 1: If two documents are in the same chapter, HI ^ 0 and stop. 
Step 2: If two documents are in the same section, HI — (1/s), where s is the total 

number of sections in this chapter. 
Step 3: If two documents are in the same paragraph, HI — 0.5 + (1/p), where p is 

the total number of paragraphs in this section, and stop. 
Step 4. HI 卜 1. 

Figure 2.20: Procedure for computing HI between two documents 

Let the two documents be denoted as Di and Dj. The cost of Di and Dj, denoted 

by is computed by the following formula: 

C{i,j) = (l-6)x different(2,i) + 5 x HI(i,j), (2.7) 

where different(z, j ) means the number of words and keywords which appear in either 

of documents Di and Dj, but not both. The value is normalized by dividing the 

total number of keywords in both documents Di and Dj. HI{i, j) is the hierarchy 

independence of documents Di and Dj and S is an adaptive weight value with 0 < ^ <1. 

The default value of S is 0.5, which can be adjusted by the number of chapters for 

a given book. For example, when the number of chapters is near to 1 or n for a book 

divided into n documents, S is set as the value closed to 0，as there is not much meaning 

in the structure [58 . 

An Example of Cost Measure 

An example is adopted from Jiang et al. [58] to demonstrate the cost measure between 

two different documents. Let Di = {'intelligent', 'query', 'agent'}, \Di\ = 3, and Dj 

—{'database', 'query'}, |jDj| = 2. Therefore, the number of the words which appear 

either in documents Di and Dj but not both is 3, and we have different(i, j) = 0.6. 

By computing the cost measure between any two different documents Di and Dj, 
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a cost matrix [Cij] can be formed by letting Qj 二 C(i，j). GA can be applied to the 

matrix [Cij] and minimize the cost of the sequence of Qj by re-arrange the rows and 

columns of the matrix. After we obtain the re-arranged matrix, we can identify groups 

of documents by using the Stanfel's clustering method [102 • 

A Clustering Example 

Assume we have six documents, {Dl , D2, D3, D4, D5, D6}, and the cost matrix is 

shown in Figure 2.21. 

Dl D2 Ds DA D5 DQ 
0 0 . 2 0.6 0.5 0.6 0.9 

D2 0.2 0 0.5 0.4 0.7 0.8 
Ds 0.6 0.5 0 0.3 0.2 0.9 
D4 0.5 0.4 0.3 0 0.1 0.7 
D5 0.6 0.7 0.2 0.1 0 0.8 
Do 0.9 0.8 0.9 0.7 0.8 0 

Figure 2.21: Cost matrix with six documents 

By applying GA with population size 1200, bias 1.2 and ECER operator (see Chap-

ter 4) is used, we obtain the re-arranged matrix and is shown in Figure 2.22. The 

solution sequence {Dl, D2, D3, D5, D4, D6} which has total cost of 1.7. We further 

clustered the sequence using the Stanfel's clustering approach [102]. Three fragments 

are identified which are {Dl , D2}, {D3, D5} and {D4, D6}. 

Dl D2 Ds D5 乃 4 Dq 
~ W i 0 0 . 2 0.6 0.6 0.5 0.9 

L>2 0.2 0 0.5 0.7 0.4 0.8 
D^ 0.6 0.5 0 0.2 0.3 0.9 
L>5 0.6 0.7 0.2 0 0.1 0.8 
L>4 0.5 0.4 0.3 0.1 0 0.7 
Dq 0.9 0.8 0.9 0.8 0.7 0 

Figure 2.22: Re-arranged cost matrix with six documents 
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Remarks on Chinese document database: Besides English document database, GA 

is capable of partitioning Chinese document databases by using the association measure 

developed by (Liang [73]; Sproat and Shih [101]). Since there is no obvious word bound-

ary in the Chinese text, an identification process for identifying each possible disyllabic 

word from target database is needed. After the disyllabic words are identified from the 

sentence by applying the association measure, each document can be transferred to a 

set of keywords. After this transformation, cost measure can be proceeded as usual 

58；. 

Conclusions 

Due to the rapid growth of the World Wide Web and hardware performance, many 

database systems are built for storing documents. These databases, named document 

databases, increase the convenience for query and access. Classical information re-

trieval on document databases usually allows little structuring. However, structural 

information is useful in designing a document database, for instance, most people al-

ways read books with chapter-oriented concept. Besides, the literature has shown that 

documents that stored in the database can be structurally organized. Based on this 

idea, we introduce the cost measure for documents and employ our new GA clustering 

algorithm to partition the document databases. We adopt an example from a literature 

to demonstrate the practicality of our algorithm in solving this problem. 

2.4 Conclusions 

In this chapter, we review the TSP literature and explore the use of genetic algorithms 

(GA) to solve several clustering problems in information systems. They are vertical par-

titioning (VP), horizontal partitioning (HP), object-oriented database (OODB) design, 

and document database design. For each application, we review the related literature 

and formulate a solution model for it. An example is also used to demonstrate the 
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practicality of the proposed algorithm to the underlying application. 

In Section 2.3.1, we present the vertical partitioning (VP) problem. We then for-

mulate the problem as a traveling salesman problem (TSP) and propose a methodology 

based on genetic algorithms (GA) to solve the corresponding TSP-VP. We also adopt 

an example from a literature to demonstrate the practicality of our new GA clustering 

algorithm in solving the VP problem. 

In Section 2.3.2, we examine our new GA clustering algorithm for solving the hori-

zontal partitioning (HP) problem. By using the transaction-predicate matrix, we define 

the cost measure between predicates. Then, we employ our new GA clustering algo-

rithm to cluster predicates. We adopt an example from a literature to demonstrate the 

practicality of our algorithm in solving this problem. 

In Section 2.3.3, we examine our new GA clustering algorithm for vertical parti-

tioning an object-oriented database (OODB). We introduce the met hod-met hod cost 

(MMC) between two methods in a class and attribute-attribute cost (AAC) between 

any two attributes within the same class. Based on these cost functions, our proposed 

algorithm is adapted to cluster fragments. We adopt an example from a literature to 

demonstrate the practicality of our algorithm in solving this problem. 

In Section 2.3.4, we introduce the cost measure for documents and employ our new 

GA clustering algorithm to partition the document databases. We adopt an exam-

ple from a literature to demonstrate the practicality of our algorithm in solving this 

problem. 



Chapter 3 

The Experiments for Vertical 

Partitioning Problem 

3.1 Introduction 

To evaluate the performance of our proposed algorithm, we compare our approach with 

the Slagle's [100], an efficient heuristic method for solving the Vertical Partitioning (VP) 

problem. It should be noted that the Slagle's algorithm is similar to the bond energy 

algorithm (BE) [80] which is a well-known clustering algorithm. Most of the current 

approaches ([12], [18], [87], [114]) for database partitioning problem apply BE as a 

clustering method. 

In the next section, we first demonstrate the disadvantages of the BE and show 

that the same problems would not occur when our proposed algorithm is used. Next, 

in Section 3.3, we generate several VP problems whose sizes range from 20 to 100 

attributes. By solving these problems, we compare the performance of our proposed 

algorithm to the Slagle's. 
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3.2 Comparative Study 

The Bond Energy Algorithm (BE)iS proposed by McCormick et al. [80] in 1972. The 

algorithm shown in Figure 3.1 is a straightforward algorithm for permuting the rows 

and columns of an M x AT matrix A of nonnegative entries so as to maximize the 

objective function. 

Step 1: Place one of the rows of an m x n array arbitrarily. Set i = 1. 
Step 2： Set j = i-hl. 
Step 3: Place the jth. row in each of the z + 1 positions, and compute the 

row's contribution to the measure of effectiveness^. 
Step 4: j = j + 1 and repeat Step 3 until j = m. 
Step 5: Place the row j at the position that gives the largest incremental 

contribution to the measure of effectiveness. 
Step 6: i = i-\-1 and repeat Steps 2-6 until i = m. 
Repeat the above steps for the columns. 

Figure 3.1: The bond energy algorithm 

Later, Slagle et al. [100] modify the BE and use it in the clustering problem. The 

algorithm of Slagle et al. is quite similar to the BE. The difference is that the objective 

function is maximized in BE, while in Slagle's algorithm, the objective function is 

minimized. In BE, it measures the affinity between every objects, whereas in Slagle's 

algorithm, it measures the cost between every objects. The algorithm of Slagle et al. 

in Figure 3.2 can find a short path, but not necessarily the shortest. 

^The measure of effectiveness of an array A is the sum of the bond strengths in the array, where 
the bond strength between the two nearest neighbor elements is defined as their product. 
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Step 1: Place one of the rows of an m x n array arbitrarily. Set i = 1. 
Step 2: Arbitrarily select a row from the remaining m - i rows. 
Step 3: Place the row in each of the z + 1 positions and compute the row's 

contribution to the weight of the path. 
Step 4: Place the row at the position that gives the smallest incremental 

contribution to the weight of the path [100 . 
Step 5: i = i-\-l and repeat Steps 2-5 until i = m. 
The above steps are repeated for the columns as well. 

Figure 3.2: The algorithm of Slagle et al. 

In the work of Navathe et al [87], the Bond Energy algorithm [80] is first applied 

to permute rows and columns of a transaction-attribute matrix, then a hierarchical 

clustering algorithm called SPLIT_NON_OVERLAP is applied to further partition the 

matrix into two nonoverlapping fragments. Their hierarchical clustering algorithm is 

simply to maximize a quadratic function so that fragments produced are ” balanced，， 

with respect to transaction load. However, the SPLIT_NON_OVERLAP algorithm has 

the disadvantage of not being able to partition an object by selecting out an embedded 

"inner" block. An example is given in Figure 3.3. Clearly, {A2, A3} should form a 

fragment and {Al , A4, A5} should form an another fragment. Obviously, they cannot 

be identified by using the SPLITJSfON.OVERLAP algorithm and existing hierarchical 

algorithms cannot handle them effectively. 

Attributes 

Al A2 A3 A4 A5 ^ "Access 
l^requencies 

Transactions 
T1 1 1 1 20 
T2 1 1 20 
T3 1 1 20 
T4 1 1 20 

Figure 3.3: Transaction-attribute matrix 4 with an embedded “inner" block 
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The disadvantage of the Bond Energy algorithm is that it may produce transaction-

attribute matrix with "inner" block structure. It is because the Bond Energy algorithm 

used in permuting transactions/attributes are unable to select the most contributing 

transaction/attribute to be the starting and ending transaction/attribute in the se-

quence. Hence, the solution sequence obtained may need to be further adjusted. 

To correct this problem, they propose a procedure called SHIFT which moves the 

leftmost column of the matrix in Figure 3.3 to the extreme right, and the topmost 

row of the matrix to the bottom (see Figure 3.4) so that every diagonal block gets the 

opportunity of being brought to the upper left corner in the matrix. 

Attributes 
… … A . A r A Access A2 A3 A4 A5 Al „ . Frequencies 

Transactions 
T2 1 1 20 
T3 1 1 20 
T4 1 1 20 
Tl 1 1 1 20 

Figure 3.4: Transaction-attribute matrix 5 after the SHIFT procedure is applied 

Same problem would not occur when GA is used to permute rows and columns in 

a transaction-attribute matrix for GA has already “ considered" the best way to select 

the most contributing transaction/attribute to be the starting transaction/attribute. 

In this way, the whole sequence is benefited (the total distance of the sequence is 

minimized). Recall that a dummy transaction/attribute is introduced into the TSP so 

that the solution tour obtained is already the shortest sequence (path). 
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3.3 Experimental Results 

To compare the effectiveness of our algorithm with the Slagle's, several problem in-

stances with different sizes are generated. First, we generate a matrix with diagonal 

block structure. Next, each transaction is randomly assigned an access frequency. To 

avoid solving a trivial problem, some randomness is introduced into the matrix. By 

taking some chances, say 0.1, the entries in the matrix are swapped from 0 to 1 or from 

1 to 0. Finally, the columns and rows of the matrix are randomly swapped and an 

initial transaction-attribute matrix is generated. 

Each problem is solved ten times and the average is obtained. For GA, the popu-

lation size is set to 1200 and selective pressure to 1.2 and ECER operator is used (see 

Chapter 4). The program is run on a SUN SPARC Ultra-5_10 workstation. Results for 

solving VP are shown in Table 3.1. Note that our aim is to minimize the total distance 

of TSP and the summation values of Equation 2.5. 

NumberProbability Total distance Total distance Values of Values of 
Problem of of of the solution of the solution Eq. 2.5 Eq. 2.5 
Size fragments swapping by GA by Slagle by GA by Slagle 

^ 4 0 ^ -481 
20 4 0.1 1817 3336.6 -455 -380.9 
20 4 0.2 2343 4479.9 -519 -361.1 
20 5 0.1 1190 2411.9 -420.6 -379.9 
20 5 0.2 1542 2924.2 -449 -388.5 
50 5 0.1 10099.8 22785.3 -1200.2 -712 
50 5 0.2 15171.2 28332.7 -711.5 -536.7 
50 10 0.1 15906.5 29391.7 -2017.2 -1349.1 
50 10 0.2 26551.9 38786.2 -2113.9 -1752.2 
100 10 0.1 31796.4 61023.1 -1662.5 -974.2 
100 10 0.2 49335.1 81008.1 -1564.8 -1155.3 
100 20 0.1 20223.1 38319.5 -2583 -1886.3 
100 20 0.2 33403.1 58609.8 -3457 -2564.5 

Total distance of the solution： the summation of the values of Equation 2.2 
Value of Equation 2.5: the summation of the objective values of Equation 2.5 

Table 3.1: Results for solving VP with GA and Slagle's algorithm 
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In Table 3.1, the problem size is the number of attributes of the VP. Number of 

fragments is the number of clusters that the problem has. The third column shows the 

probability of swapping. It is used to control the randomness of the problem. Large 

swapping value suggests that the transaction-attribute matrix is very scattered. Note 

that for swapping value larger than 0.2, the problem become very scattered and very 

few interesting clusters can be formed. Therefore, the swapping value is restricted to 

less than 0.2. 

The total distance of the solution path is the summation of the values as described in 

Equation 2.2. Note that the distance used by GA is the same as by the Slagle's. When 

clusters are identified using Stanfel's approach, the objective values of Equation 2.5 

are also summed up. Small values of Equation 2.5 suggest that clusters obtained are 

more valid (see Section 2.3.1). It is because the value of Equation 2.5 measures the 

difference between the average distance within fragments and the average distance 

between fragments. 

The first row in Table 3.1 shows a problem with 20 attributes and 4 fragments. 

The swapping value is zero. That means, the matrix can be re-arranged to a perfectly 

diagonal block structure and each transaction will access one fragment only. The sum-

mation values of Equation 2.5 are both -481, which indicate that both algorithms are 

able to cluster similar attributes together and identify the corresponding fragments. 

Regarding the objective value, GA has a lower value, which indicates that GA can 

further minimize the total distance of the attribute path. 

For other problems, GA further minimizes the objective function and gives lower 

values of Equation 2.5. This implies that fragments clustered by GA is more reasonable. 

Compare with other methods, GA is more significant in solving large and scattered 

problems. 
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3.4 Conclusions 

In Section 3.2, we demonstrate the disadvantage of the Bond Energy algorithm (BE) 

80]. BE may produce transaction-attribute matrix with "inner" block structure. Note 

that there is no efficient hierarchical clustering algorithm which can partition an em-

bedded "inner" block matrix. In the work of Navathe et al. [87], an additional proce-

dure known as SHIFT is proposed as the remedy. It is invoked before a hierarchical 

clustering algorithm can be applied. However, we have shown that this problem will 

not occur when the proposed algorithm is used to permute transaction/attribute in 

a transaction-attribute matrix. After the proposed algorithm is applied, any existing 

splitting algorithms can be used to identify fragments. 

In Section 3.3, we compare the Slagle's algorithm [100], which is a modified version 

of the Bond Energy algorithm [80], with the proposed algorithm. Experimental results 

indicate that, with the same objective function, our proposed algorithm outperforms 

the Slagle's in the value of the objective function obtained. Also, a statistics, which 

is similar to the Hubert's F statistics [53], is used to test the validity of the clusters 

obtained by the two algorithms. Computational results shows that the clusters obtained 

by our proposed algorithm is more reasonable than the Slagle's. The performance of our 

proposed algorithm is more significant in solving large-scale problems. Unlike Eisner 

and Serverance [28] and some heuristic algorithms, GA can solve large scale problem 

very well as it always guarantees a fair solution under finite computation time. It is 

critical in real life situations, e.g. banking, where the number of transaction could be 

thousands and the number of attributes could be up to hundreds. 



Chapter 4 

Three New Operators for TSP 

4.1 Introduction 

As stated by Falkenauer [30], perhaps the most important technique in Genetic Algo-

rithms (GA) is the crossover operator, also called the recombination operator. Thus, 

an effective and reliable crossover operator can greatly enhance the system. In this 

chapter, we develop three new crossover operators which can satisfy these criteria. 

Whitley et al. [112] devise a crossover operator called Edge Recombination (ER) 

for solving the traveling salesman problem (TSP), which is based on Grefenstette's [41 

but has a better edge-preserving property. Later, Starkweather et al. [103] develop 

an improved version of ER (EER) which can further improve the system. Their work 

concludes that the effectiveness of different operators is dependent on the problem 

domain: operators which work well in problems where adjacency is important (e.g. 

TSP) may not be effective for other types of sequencing problems. Also, operators 

which perform poorly on the TSP work extremely well for the warehouse scheduling 

task. ER and EER emphasize edges in that 95% to 99% of the edges that compose the 

offspring are inherited from one of the two parents. So the population can converge at 

a faster rate without losing important adjacency information (good schemata). In case 
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when edge failure occurs (i.e. isolated city occurs), the ER crossover can randomly 

choose a new city to continue the tour. This provides an effective mutation rate of 

0.009, or less than 1% [112]. For enhanced ER, the average trials needed are even fewer 

which suggests that EER can transfer edges from parents more effectively [103]. Thus, 

ER and EER outperform its predecessors for solving TSP. 

However, we believe that the edges transformation process can be done better if we 

have more information on the choice of edges that are needed to be transferred. In this 

chapter, we devise three new operators for TSP which are capable of effectively using 

adjacency information as EER and at the same time improve the inheritance of the 

mating process. 

4.2 Enhanced Cost Edge Recombination Operator 

We propose a modified version of EER in this section. Our proposed crossover (ECER) 

is similar to the Enhanced Edge Recombination crossover operator (EER) [103] except 

that we consider the cost of edges for breaking ties. It has been observed that GA works 

well on TSP if adjacency information from two parents can be effectively transferred 

to offspring. If tie breaking in EER is managed well, the process of transformation of 

adjacency information from parents can be done more effectively. 

The Edge Recombination (ER) operator is different from other genetic sequencing 

operators in that it emphasizes adjacency information instead of the order or position of 

the items in the sequence. The “edge table" used by the operator is really an adjacency 

table listing the connections in and out of a city found in the two parent sequences. 

The edges are then used to construct offspring in such a way that isolation cities or 

elements are avoided in the sequence [103 . 

For example, the tour [ b a d f g e c j h i ] contains the links [ba, ad, df, fg, ge, ec, 

cj, jh, hi, ib]. In order to preserve links present in the two parent sequences, a table 

is built which contains all the links present in each parent tour. Building the offspring 
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then proceeds [112] as described in Figure 4.1. 

1. Select a starting element. This can be one of the starting elements from a parent, 
or can be chosen from the set of elements that have the fewest entries in the edge 
table. 

2. Of the elements that have links to this previous element, choose the element that 
has the fewest number of links remaining in its edge table entry. Ties are broken 
randomly. 

3. Repeat step 2 until the new offspring sequence is complete. 

Figure 4.1: The algorithm for Edge Recombination (ER) operator 

Consider the following sequences: [a b c d e f] and [c d e b f a]. An edge table of 

Edge Recombination is given in Table 4.1. 

city link 
a b f c 
b a c e f 
c b d a 
d e e 
e d f b 
f e a b 

Table 4.1: Edge table for Edge Recombination (ER) operator 

Suppose element a is selected to start the offspring tour. Since a has been used, all 

occurrences of a are removed from the right-hand side of the edge table. Element a has 

links to elements b, f and c. Element f and c both have 2 links remaining in their table 

entries. Therefore, f is randomly selected as the next element in the offspring, and all 

occurrences of f are removed from the right-hand side of the edge table. Element f 

has links to e and b, both of which have 2 links remaining. Therefore, either one of 

them is selected randomly and the process continues until the child tour is complete. 
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The offspring is then produced as [a f b c d e . 

When the Edge Recombination operator was first implemented, it had no active 

mechanism to preserve "common subsequences" between two parents. Later, Stark-

weather et al [103] propose the Enhanced Edge Recombination (EER) operator which 

solve this problem. During the construction of the "edge table" in EER, if an insertion 

involves an item, which is already in the edge table, that element of the sequence must 

be a common edge. The elements of a sequence are stored in the edge table as inte-

gers; so if an element is already present, the sign of the value is inverted to represent 

a common edge: e.g. if A is already in the table, change it to -A. The sign acts as a 

flag. Consider the sequences [a b c d e f] and [c d e b f a] and edge table in Table 4.2. 

city link 
a b -f c 

b a c e f 

c b -d a 

d -c -e 

e -d f b 

f e -a b 

Table 4.2: Edge table for Enhanced Edge Recombination (EER) operator 

In EER, priority is given to negative entries when constructing offspring. Suppose 

the starting city is city a, EER will choose city f as its next city. However, a tie can 

be found when there are more than one entry with negative values and both having 

the same number of links to other entries. In this circumstance, EER will break the 

tie randomly. But for ECER, it will choose the edge with the smallest cost among 

those entries. Suppose the starting city is city d. Refer to the edge table, there are two 

entries (c and e) with negative values. Besides, both of them have three links to other 

entries. EER would break the tie randomly by choosing either city c or city e as its 

adjacent city. However, ECER will choose the edge with minimum cost. Suppose the 
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edge [dc] having edge cost of 100 and edge [de] having cost of 40. In this case, city e 

will be chosen as its adjacent city. 

Also, if there is no negative entries, ECER will choose the entry with the smallest 

number of links to other entries. If a tie is found, it will break the tie by choosing the 

edge with the smallest cost. The algorithm for ECER is given in Figure 4.2. 

1. Select a starting element. This can be one of the starting elements from a parent. 

2. Construct the edge table. Assign negative values to common edges. 

3. Of the elements that have links to this previous element, choose the element that 
has the fewest number of links remaining in its edge table entry, priority is given 
to negative entries. 

4. If a tie is found, break it by choosing the edge with the smallest cost. When there 
are more than one edge with the smallest cost, break the tie randomly. 

5. Repeat step 3-4 until the new offspring sequence in complete. 

6. Select the first element from the other parent as a starting element, repeat the 
above steps to generate the second offspring. 

Figure 4.2: The algorithm for Enhanced Cost Edge Recombination (ECER) operator 

Note that ECER will bias the crossover permutation by favouring the selection of 

edges with lower costs. It speeds up the searching time for the whole system without 

degrading the quality of the solution. Some experiments are conducted to demonstrate 

that ECER outperforms the EER in most cases (see Section 4.5). 

4.3 Shortest Path Operator 

In this section, a new genetic sequencing operator, namely Shortest Path crossover 

operator (SP), is proposed. As stated by Holland (1975) [50], during the reproductive 

phase of GA, individuals are selected from the population and recombined, producing 
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offspring which will comprise the next generation. Therefore, good individuals will 

probably be selected several times in a generation, poor ones may not be at all. How-

ever, it has been observed that crossover may produce offspring of low fitness. Although 

these offspring will not be likely to get selected for reproduction in next generation, 

the overall fitness of the population is decreased. Since the purpose of crossover is to 

produce better offspring, this effect may decrease the efficiency of the system. Hence, 

to fully optimize the mating process, we develop the SP operator which seek to generate 

a local optimal offspring in each generation. 

The crossover permutation can be considered as a shortest path problem. The 

pervious example (Table 4.2) is used to demonstrate the mechanism of SP. Suppose in 

a particular generation, two parents [a b c d e f] and [c d e b f a] are chosen. The 

weight matrix is constructed in Figure 4.3. 

a b c d e f 
a � 一 80 50 oo oo 40 “ 
b 80 — 20 oo 20 30 
c 50 20 — 100 oo oo 
d oo oo 100 — 40 oo 
e oo 20 oo 4 0 — 2 5 
f 40 30 oo oo 25 — 

一 

Figure 4.3: Weight matrix for SP operator 

If there is no corresponding edge in both parents, the cost of the edge is set to oo 

(in practice, some very large number). Note that the diagonal entries are set to null 

because it is not applicable. By using the weight matrix, the Dijkstra's shortest path 

algorithm [25] is applied for finding a shortest path from a specified city to another 

specified city. First, let cost(v^ u) be the weight of edge [vu]. If no edge between v and 

u, cost{v, u) = oo. Also, let d{v) be the distance from the source to v. The algorithm 
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of Dijkstra is outlined in Figure 4.4. 

Let V contain the source vertex and 
U contain all the other vertices, 
while (U is not empty) do 

choose "li" such that it is in U with smallest d(u); 
add "ti" to V and remove ”u” from U； 

for each，，t(；，，in U do 
if d{u) + cost{u,w) < d{w) then 

d{w) = d[u) + cost(u,w) 
end if 

end for 
end while 

Figure 4.4: The Dijkstra's shortest path algorithm 

To construct new offspring, we proceed as shown in Figure 4.5. 

1. Construct the weight matrix using the edge information from parents. 

2. Choose a starting city that can be one of the starting elements from a parent. 

3. Choose the ending city by using the same criterion used in ECER. 

4. Apply the Dijkstra's shortest path algorithm to find a shortest path from the 
starting city to the ending city. 

5. Update the weight matrix to remove any visited cities. 

6. The ending city now becomes the starting city. 

7. Repeat step 3-6 until the new offspring sequence is complete. 

8. Select the first element from the other parent as a starting element, repeat the 
above steps to generate the second offspring. 

Figure 4.5: The algorithm for Shortest Path (SP) operator 

In some cases, a feasible ending city may not be found. This happens when the 

starting city is isolated. In this case, an unvisited city will be selected according to its 
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parent order to continue the sequence. Suppose we choose city a from parent 1 (see 

Figure 4.3) as the starting city (the first offspring). Since edge [af] is a common edge, 

city f will be chosen as the ending city. By applying the shortest path algorithm. The 

shortest path from city a to city f is simply [af]. Now, city f becomes the starting city, 

and according to the mechanism of ECER, it will choose city e as its ending city. The 

shortest path from city f to city e is just [fe]. By repeating this process, SP generates 

a new offspring [a f e d c b . 

The searching process can be improved by using an edge table (see Table 4.2) instead 

of a weight matrix. The computational cost associated with SP crossover can be lesser 

than the Dijkstra's shortest path algorithm [25]. The original Dijkstra's shortest path 

requires O(n^) computational time because it requires to search n number of cities 

twice. With the use of an edge table, since each city can only have four feasible links, 

the searching time can be reduced to 0[n). In each generation, we might have to apply 

the shortest path algorithm several times. For the worst case, it may be n times for 

n number of cities. Therefore, the SP crossover operator will require O(n^) time for n 

number of cities in each generation. 

Some experiments are conducted and the results are shown in Section 4.5. It demon-

strates that in most cases, the quality of the solutions obtained by using SP outperform 

others. 

4.4 Shortest Edge Operator 

Our SP crossover has high computational requirement. Sometimes, the user may seek 

to have a fair solution and want to spend the minimum of time on computation. We 

propose the Shortest Edge crossover operator (SE) which may satisfy this criterion. 

The mechanism for SE is very simple. By starting with a city, each time it will pick 

up an edge which has the minimum cost among all feasible edges. In case if no feasible 

edges exist, it will randomly pick up an unvisited city and continue the search. The 
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algorithm is given in Figure 4.6. 

1. Select a starting element. This can be one of the starting elements from a parent, 
or can be chosen from the set of elements that have the fewest entries in the edge 
table. 

2. Of the elements that have links to this previous element, choose the element that 
has the smallest distance to the previous element, breaking ties randomly. 

3. Repeat step 2 until the new offspring sequence is complete. 

4. Select the first element from the other parent as a starting element, repeat the 
above steps to generate the second offspring. 

Figure 4.6: The algorithm for Shortest Edge (SE) operator 

Using the same example in Section 4.3. Suppose we have two parents [a b c d e f 

and [c d e b f a] and the weight matrix is constructed as in Figure 4.3. We choose city 

a as the starting city. Among all feasible edges [ab, ac, af], edge [af] has the minimum 

cost which is 40. Thus, we pick edge [af]. Starting with city /，we choose city e since 

edge [fe] has the minimum cost. By repeating this process, SE generates a new offspring 

a f e b c d . 

With the use of an edge table (Table 4.2), the searching time for the above process 

can be improved. Since each city can only have four feasible edges at most. Thus, 

for n number of cities, SE will require 0(n) time in each generation. Since SE will 

only choose the smallest edge to construct offspring, the population can be converged 

faster than other operators can; i.e. it gives the smallest amount of execution time. 

Some experiments are conducted. Results indicate that SE produces fair solution in 

the smallest amount of time (see Section 4.5). 
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4.5 The Experiments 

Ten crossover operators: EER, ER, OX, PMX, CX, 0X2，PB, ECER, SP and SE (see 

Section 2.2.2) are studied in our tests. We would like to evaluate the effectiveness of 

various operators in solving the traditional TSP. In particular, the performance of our 

operators: ECER, SP and SE should be noted. 

4.5.1 Experimental Results for a 48-city T S P 

A 48-city problem (hk48) is adopted from TSPLIB [95] to demonstrate the effectiveness 

of our proposed crossover in solving the TSP. The optimal solution for this problem is 

1 1 4 6 1 [95；. 

We compare the performance on two levels, each of the above operators is used 

to run using the same parameters for 10 experiments and then each is tuned for best 

results. The parameters for the first comparison are: selective pressure (bias) of 1.5 

(see Section 2.2.2) and population size of 1000. We run the experiments on a SUN 

SPARC Ultra-5-10 machine. The results appear in Table 4.3. 

Average Average 
Selective Average Best time used 

Operator pressure Population trials cost Gap (seconds) 
O 1000 1 0 4 7 1 . 6 7 1 1 4 9 3 . 6 7 0 . 2 9 % ^ 

ECER 1.5 1000 9191.56 11515.33 0.47% 60 
SE 1.5 1000 7453.78 11601.00 1.22% 24 
EER 1.5 1000 20674.67 11984.22 4.37% 118 
ER 1.5 1000 55240.11 12311.44 6.91% 150 
OX 1.5 1000 85495.33 12493.00 8.26% 46 
0X2 1.5 1000 52552.00 14113.00 23.14% 45 
PB 1.5 1000 59384.67 14162.89 23.57% 62 
PMX 1.5 1000 30123.56 15603.00 36.14% 31 
CX 1.5 1000 15388.56 24026.56 52.30% 7 
Gap: the percentage difference between our solution and the optimal solution 

Table 4.3: Results for a 48-city TSP (untuned) 
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We attempt to optimize the performance of each operator by tuning the bias and 

population size. Each time we increase the population size by 100 until there is no 

further improvement in the solution. Next, we vary the bias from 1.1 to 2.0 and obtain 

the best value for the bias. The results are shown in Table 4.4. 

Average Average 
Selective Average Best time used 

Operator pressure Population trials c ^ Gap (seconds) 
LG 1 1 3 8 9 . 7 8 1 1 4 7 0 . 8 9 0 . 0 9 % 1 0 ^ 

ECER 1.2 1200 12423.44 11476.33 0.13% 90 
SE 1.5 1300 12867.89 11581.56 1.05% 42 
EER 1.3 1400 36048.67 11604.89 1.34% 177 
ER 1.1 1700 125801.40 11734.00 2.33% 381 
OX 1.5 1500 145355.90 12021.33 4.66% 109 
0X2 1.1 2000 175898.20 12609.22 10.02% 196 
PB 1.5 1700 105145.20 13290.11 15.96% 114 
PMX 1.1 1900 91963.00 14021.44 22.34% 101 
CX 1.6 1300 18554.33 24083.89 52.41% ^ 
Gap: the percentage difference between our solution and the optimal solution 

Table 4.4: Results for a 48-city TSP (tuned) 

We observe that using larger population sizes lead to better solutions but more 

searching time is required and using higher selection bias values in general gives smaller 

number of trials (generations). Table 4.4 clearly indicates that Enhanced Edge Recom-

bination operator (EER) outperforms its predecessors. CX produces the poorest results 

in solving the problem. In fact, the population converges too fast to a local optimum 

before the global optimum can be explored. In most cases, CX only uses less that 8 sec-

onds to complete the search. For OX, 0X2，PB and PMX, they produce better results 

after the parameters are tuned. However, their performances are still lagged behind ER 

and EER. Our finding is consistent with Starkweather et al. [103], which suggests that 

EER turns out to have a better performance than most order-based crossover operators 
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on TSP. 

After the parameters are tuned (Table 4.4), ER and EER produce the solutions with 

gaps around 2%. As stated by Whitley et al [112], these two operators emphasize edges 

in that 95% to 99% of the edges that compose the offspring are inherited from one of the 

two parents. So the population can converge at a faster rate without losing important 

adjacency information (good schemata). Such adjacency information is important in 

solving TSP [103]. In case when edge failure occurs (i.e. isolated city occurs), the 

ER crossover can randomly choose a new city to continue the tour. This provides an 

effective mutation rate of 0.009, or less than 1%. For enhanced ER, the average trials 

needed are even fewer which suggests that EER can transfer edges from parents more 

effectively [112 . 

Although EER is already very efficient, our proposed operators still provide visible 

improvement in solving this example. Using smaller production sizes and running time, 

our proposed operators still obtain better solutions than EER. For SE, it produces the 

average solution with gap of 0.13% and at the same time spent the smallest computa-

tional time. For SP, it produces the best average solution with gap of 0.09%. It is very 

near to the optimal solution. For ECER, the performance is in between SE and SP. 

4.5.2 Experimental Results for Problems in TSPLIB 

To further demonstrate the effectiveness of SE, SP and ECER, we use all the TSP 

instances, whose sizes are below 1000, from the TSPLIB [95]. We compare the perfor-

mance of our operators against Enhanced ER. For each problem instances, we conduct 

the experiment once. 

With the setting of parameters obtained in Table 4.4, four operators are used to 

solve the problem instances. To give a fair comparison, we partition the problems into 

3 sets. The first set contains problem sizes less than or equal to 100 cities, set 2 contains 

problems with size between 100 and 500 cities, and set 3 contains problems above 500 



4.5 The Experiments I? 

cities. The results are shown in Table 4.5 to 4.7. 

EER SE ECER SP E E R E C E R SP 
Problem Size of Optimal gap gap gap gap Time Time Time Time 
name problem solution (%) (%) (%) (%) (mins) (mins) (mins) (mins) 
att48 l O ^ ~ 2 . 9 8 5.60 1.96 0.19 ^ ^ 5.38 1.80 
bayg29 29 1610 0.92 4.05 0.80 0 0.92 0.73 0.72 0.92 
bays29 29 2020 0.69 2.98 0 0 0.95 0.77 0.88 0.50 
berlin52 52 7542 2.77 4.19 0 0.07 3.75 0.62 1.40 1.62 
bierl27 127 118282 9.49 4.39 3.56 2.21 41.48 9.08 11.77 17.53 
brazil58 58 25395 3.32 3.25 0.84 1.86 4.80 1.72 3.33 2.15 
burmal4 14 3323 0 0 0 0 0.18 0.17 0.10 0.15 
dantzig42 42 699 2.65 7.42 0.14 0 2.27 0.45 3.82 1.02 
eil51 51 426 1.16 7.19 0.23 0.23 5.08 0.70 1.42 4.55 
eil76 76 538 427 3.41 0.92 2.18 10.95 1.30 5.20 19.23 
fri26 26 937 0 0 0 0 0.57 0.12 0.35 0.32 
grl7 17 2085 0 2.98 0 0 0.23 0.12 0.22 0.20 
gr21 21 2707 0 5.55 0 0 0.35 0.10 0.23 0.38 
gr24 24 1272 0 0.47 0 0 0.48 0.17 0.37 0.92 
gr48 48 5046 1.69 7.0 2.62 0.90 3.08 1.05 4.57 2.10 
gr96 96 55209 10.62 8.07 3.09 2.46 18.92 19.63 15.68 102.3 
hk48 48 11461 5.83 0.68 0 0 3.53 0.88 1.12 1.83 
kroAlOO 100 21282 16.54 6.70 3.81 2.41 24.83 3.15 6.10 7.73 
kroBlOO 100 22141 16.09 6.71 4.57 5.02 34.03 2.08 9.58 63.58 
kroClOO 100 20749 16.97 5.83 1.59 2.37 27.97 3.90 10.63 13.23 
kroDlOO 100 21294 16.64 9.67 4.08 3.48 21.35 7.33 12.25 12.18 
kroElOO 100 22068 16.72 9.35 3.57 1.23 21.07 7.32 9.33 9.92 
pr76 76 108159 6.73 8.52 2.76 2.21 11.92 2.27 4.13 7.25 
rat99 99 1211 18.23 7.84 2.96 2.26 85.40 1.98 8.67 7.72 
rdlOO 100 7910 11.10 8.93 3.23 3.81 19.65 1.58 13.53 7.97 
si 175 175 21407 6.55 1.34 0.67 1.42 83.28 10.97 32.18 32.2 
swiss42 42 1273 0.62 2.00 0 0 1.70 0.55 0.80 1.65 
ulyssesie 16 6859 0 0.16 0 0 0.27 0.42 0.13 0.16 
ulysses22 22 7013 0 0.99 ^ 0 0.45 0.10 0.22 0.23 

Average 5.96! 4.661 1.431 1.181 14.91 2.75 5.66 11.08 
Gap: the percentage difference between our solution and the optimal solution 

Table 4.5: Computational results for TSPs less than or equal to 100 cities 
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EER SE ECER SP EER ECER SP 
Problem Size of Optimal gap gap gap gap Time Time Time Time 
name problem solution (%) (%) (%) (%) (mins) (mins) (mins) (mins) 

2579 51.39 15.36 ^ 1 0 . 8 8 11.37 553.23 43.10 83.05 126.40 
brglSO 180 1950 60.12 0 0.51 1.02 421 10.67 42.1 75.32 
chl30 130 6110 15.37 8.07 3.99 6.13 57.45 4.48 17.30 24.18 
chl50 150 6528 27.10 4.34 5.57 4.94 86.20 9.72 35.93 28.12 
dl98 198 15780 31.10 9.65 5.45 5.41 191.0 21.77 94.72 79.10 
d493 493 35002 58.20 11.61 14.93 14.55 1947.28 216.13 503.32 845.9 
eillOl 101 629 17.99 8.71 4.55 4.12 35.35 14.35 14.27 11.72 
fl417 417 11861 69.32 14.37 23.69 16.53 6506.23 183.83 727.90 478.32 
gil262 262 2378 45.70 9.48 12.19 7.47 829.25 33.95 266.5 186.95 
grl20 120 6942 21.62 13.53 8.04 6.21 38.78 3.32 19.18 15.35 
grl37 137 69853 23.85 6.58 2.54 4.22 69.98 8.82 20.68 18.40 
gr202 202 40160 30.65 12.83 6.99 6.87 186.60 21.95 45.38 79.27 
gr229 229 134602 41.41 8.87 8.14 6.43 1186.98 40.42 69.10 124.22 
gr431 431 171414 55.43 12.55 19.86 12.00 1351.13 129.95 1470.97 3225.55 
kroAlSO 150 26524 29.15 7.10 8.01 5.17 93.55 16.98 31.38 42.2 
kroBlSO 150 26130 30.46 9.96 8.77 6.55 83.08 6.10 30.3 27.85 
kroA200 200 29368 40.97 10.46 7.72 5.91 225.37 21.57 60.78 51.27 
kroB200 200 29437 37.61 11.99 6.75 8.86 262.25 84.43 68.90 48.23 
linl05 105 14379 22.55 2.85 2.31 3.10 35.73 22.95 19.22 12.50 
lin318 318 42029 53.18 12.06 12.49 12.99 729.87 59.82 502.13 386.98 
linhp318 318 41345 54.62 11.76 17.45 12.33 830.35 50.35 212.43 261.03 
pcb442 442 50778 60.29 14.11 19.80 12.76 2710.17 197.12 346.32 849.15 
prior 107 44303 20.46 5.79 2.11 2.98 44.52 2.63 10.15 7.65 
prl24 124 59030 30.51 3.75 2.93 3.02 120.57 12.33 68.10 41.60 
prl36 136 96772 26.50 12.54 12.43 6.19 110.02 51.63 25.20 33.77 
prl44 144 58537 33.0 2.87 2.17 1.72 61.85 15.45 43.72 46.08 
prl52 152 73682 31.14 4.99 4.98 1.87 66.35 12.68 31.53 20.68 
pr226 226 80369 57.09 5.25 4.71 5.05 576.57 19.67 62.35 82.92 
pr264 264 49135 54.08 10.26 10.49 9.37 1801.42 36.62 212.97 165.15 
pr299 299 48191 55.19 15.96 13.04 16.80 1372.95 68.30 252.68 257.88 
pr439 439 107217 62.42 17.29 20.57 13.45 2015.85 112.83 410.87 343.78 
ratl95 195 2323 33.70 9.65 5.72 4.17 245.22 12.88 77.12 64.48 
rd400 400 15281 56.83 17.25 14.33 15.95 985.62 71.05 257.78 460.20 
ts225 225 126643 46.34 6.91 6.04 3.27 214.75 22.18 36.73 56.58 
tsp225 225 3919 42.49 8.26 10.30 10.40 272.12 14.23 107.91 58.05 
ul59 159 42080 37.87 11.90 2.83 2.91 70.5 8.95 26.63 20.83 

Average 40.71 9.69 8.98 7.56 733.03 46.20 175.16 240.49 
Gap: the percentage difference between our solution and the optimal solution 

Table 4.6: Computational results for TSPs within 100 and 500 cities 



4.5 The Experiments I? 

EER SE ECER SP EER PSE ECER SP 
Problem Size of Optimal gap gap gap gap Time Time Time Time 
name problem solution (%) (%) (%) (%) (mins) (mins) (mins) (mins) 
att532 ^ 27686 67.58 17.72 16.18 18.41 3197.38 207.02 852.28 690.50 
d657 657 48912 69.57 15.79 24.49 21.46 6132.67 328.17 1560.22 3255.72 
gr666 666 294358 69.54 15.73 20.63 21.33 5501.32 474.17 1471.33 4465.62 
p654 654 34643 86.92 20.92 34.21 21.69 7341.32 511.97 3200.60 2579.1 
pa561 561 2763 65.41 15.30 20.14 16.09 3324.58 209.08 710.83 765.37 
rat575 575 6773 67.22 16.69 18.42 16.34 4981.12 563.37 2119.12 1443.33 
rat783 783 8806 72.88 19.89 25.96 23.28 10092.7 1265.88 2972.22 2763.28 
si535 535 21407 66.85 56.68 57.94 57.17 3437.73 364.47 837.60 1064.08 
u574 574 36905 68.33 15.67 21.50 20.82 4549.57 193.47 1536.10 1240.27 
u724 724 41910 73.53 17.71 25.48 23.09 8500.60 1176.22 2849.62 2423.53 

Average 70.78 21.21 26.501 23.971 5705.90 529.38 1810.99 2069.08 
Gap: the percentage difference between our solution and the optimal solution 

Table 4.7: Computational results for TSPs above 500 cities 

Generally, our proposed operators produce better results than EER in quality of 

solutions obtained and CPU time used. Even for small-sized problems, our proposed 

operators outperform EER by about 4% (Table 4.5) and the CPU time used can be 

reduced to 9% of time used by EER. For SP, it produces the average result with gap 

of 1.18% whereas EER produces the result with gap of 5.95%. For SE, it produces 

better result than EER by using smaller amount of time. The performances of our 

proposed operators are more significant in solving large-sized problems. For large-sized 

problems (Table 4.7), the average gap obtained by using EER is about 70% whereas 

our proposed operators can obtain the solutions with gaps around 25%. Moreover, the 

CPU time used by EER is much longer than the time used by our proposed operators. 

It takes about 450% of the time taken by our proposed operators. It demonstrates the 

inability of EER in solving large-scale problems. 

In most cases, SE operator produces a fair result given the smallest computational 

time. It converges faster than other operators did without losing the ability of finding 

a fair solution. For solving small and median-sized problems, SE is lagged behind SP 

and ECER. However, the difference diminishes when large problem instances are used. 

The performance of ECER is in between SE and SP. It uses more time than SE and 

less time than SP. The results produced are also between SE and SP. 
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For solving small and median-sized problems (Table 4.5 and Table 4.6), SP produces 

the best results given the average gap is the smallest among all operators. However, 

the time used by SP is longer than SE and ECER. For solving large-sized problems 

(Table 4.7), SP is slightly lagged behind SE. 

To conclude, using smaller production sizes and running time, our proposed opera-

tors still produce better solutions than other operators especially the EER. Note that 

this can save memory usage and CPU time. These two factors are very critical in solv-

ing large-scale TSPs. Also, our proposed operators have shown different contributions 

in solving the problem. When the user seek to obtain the best quality of solution, SP 

is a good choice. If time and quality are under concern, ECER is a better choice. On 

the other hand, SE is suitable when the user seek to have a fair solution in the shortest 

amount of time and is very effective in solving large-scale TSPs. 

4.6 Conclusions 

In this chapter, in order to enhance the performance of our new genetic based clus-

tering algorithms, we propose three new GA operators. They are the Shortest Path 

(SP), the Shortest Edge (SE) and a modified version of the existing Enhanced Edge 

Recombination (EER) crossover operator, called Enhance Cost Edge Recombination 

(ECER) operator. The performances of our proposed operators are evaluated with 

seven existing operators using the TSPLIB problem instances, whose sizes range from 

14 to 783 cities. Experimental results indicate that our proposed crossovers outperform 

other operators, especially the EER which is known to be a powerful crossover opera-

tor. By using fewer memory and lesser CPU time, our proposed operators are still able 

to produce better results than the others. Besides, they have different contributions in 

solving TSP: in most cases, SE performs the fastest, SP produces the best result and 

the performance of ECER is in between the two. 



Chapter 5 

Conclusions 

5.1 Summary of Achievements 

Clustering methods refer to a group of unsupervised pattern classification procedures 

that separate or partition a finite collection of objects into subsets to satisfy some 

predefined criteria. These methods have been used to solve many real-life problems. 

In this thesis, we examine the nature of a clustering problem and develop reliable and 

efficient algorithms. 

Although many clustering algorithms have been proposed, their performance has 

not been extensively studied. Moreover, the special problem structure in clustering 

is rarely explored. Since the literature has shown that the clustering of a data array 

can be stated as the traveling salesman problem (TSP), the TSP structure may be 

useful in solving a clustering problem. In this thesis, we explore the use of genetic 

algorithms (GA) and propose a new GA clustering approach to solve the clustering 

problem. In particular, the TSP structure is exploited in our solution methodology. To 

demonstrate the use of our proposed algorithm, we consider several design problems 

in information systems. They are vertical partitioning (VP), horizontal partitioning 

(HP), object-oriented database (OODB) design and document database design. 
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Recently, OODB model has evolved as an alternative to the relational data model 

for supporting modern database applications. However, OODB presents additional 

semantics like structural properties (inheritance, composite objects) and interrelation-

ships between objects. Hence, the existing clustering algorithms (used in relational 

databases, for instance) have to be adapted to the object-oriented model. In this the-

sis, we examine the use of our new GA clustering algorithms in designing an OODB. 

Due to the rapid growth of the World Wide Web and hardware performance, a lot of 

database systems are built for storing documents. Moreover, the literature has shown 

that documents that stored in a database can be structurally organized. If similar 

documents based on its structure are partitioned together, the retrieval and query time 

of the database can be improved. In this thesis, we also demonstrate that our new 

clustering algorithm can be exploited to design structural document databases. 

To evaluate the performance of our proposed algorithm, we compare our approach 

with the Slagle's, an efficient heuristic method for solving the VP problem. It should 

be noted that the Slagle's algorithm is similar to the bond energy algorithm (BEA) 

which is a well-known clustering algorithm. We generate several VP problems whose 

sizes range from 20 to 100 attributes. Computational results indicate that our proposed 

algorithm outperforms the Slagle's. It can further minimize the objective function and 

is able to produce more reasonable fragments. 

In order to enhance the performance of the proposed algorithms, we propose three 

new GA operators for solving the TSP, namely Shortest Path (SP), Shortest Edge 

(SE) and a modified version of the existing Enhanced Edge Recombination (EER) 

crossover operator, called Enhance Cost Edge Recombination (ECER) operator. The 

performances of our proposed operators are evaluated with seven existing operators 

using the problem instances, whose sizes range from 14 to 783 cities. Experimental 

results indicate that our proposed crossover operators outperform others, especially 

the EER operator which is known to be very powerful. By using fewer memory and 
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lesser CPU time, our proposed operators are still able to produce better results than 

the others. Besides, they have different contributions in solving TSP: in most cases, 

SE performs the fastest operation, SP produces the best result and the performance of 

ECER is in between the two. 

5.2 Future Development 

In distributed/parallel database system, low level design such as hardware parameters 

can be incorporated into the cost function so as to produce more precise fragments. 

Also, after data are partitioned, we can allocate them to different sites/machines using 

the proposed algorithm. Besides, if the cost function is carefully modified, the proposed 

algorithm can be used in distributed query processing to allocate operations of queries 

to different sites. The application can be extended in designing mixed partitioning, 

overlapping fragments and fragments used in different memory level. 

Apart from information systems, our clustering algorithm can be applied to many 

different areas whenever we can formulate a proper cost function for the underlying 

application. For instance, we can use it in re-ordering the part-machine matrix for 

cellular manufacturing. This problem is concerned with the identification of machines 

to be included in each cell as well as the specification of the cells where each part is 

to be processed. We can define the cost measure for machines and parts based on the 

part-machine incidence matrix. The objective is to cluster machines/parts into groups 

such that machines/parts located within the same group have lower costs whereas those 

between groups have higher costs. 

For GA, we can analysis the choice of mutation operators in solving the TSP. 

Different mutation operators and other coding methods can be developed to further 

enhance the system. Besides, we can develop hybrid crossover that exploit the benefits 

of different operators. 

-END -
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