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Abstract 

A digital signature is a reliable electronic method of signing electronic documents 

that provides the recipient with a way to verify the sender, determine that the 

content of the document has not been altered since it was signed and prevent the 

sender from repudiating the fact that he or she signed and sent the electronic 

document. 

This thesis mainly discusses the ElGarnal signature scheme, especially on the 

f()rgery of tliis signature scheme and its variations. There are some ways to 

f.orge an ElGarnal signature, without knowing the private key of the signer, if 

the parameters used in the signature scheme are not carefully chosen. One of 

this forgery is done l)y the Bleiclienbacher's attack. 

The other way of forging signature is to break the discrete logarithm. There 

are some algorithms to solve the discrete logarithm problem, such as l)aby-step 

giant-step, Pollard's p, Pohlig Hellman, index-calculus and the mirnber fiekl 

sieve. This thesis chooses quadratic field in the number field sieve to solve the 

discrete logarithm pi.oblein. 
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；最要 

在日常生活中，我們經常會在文件中，支票上簽名，以証明 

文件及支票的有效性•但是在電子化世界上，要達到同樣的 

效果，我們不能單單把簽名掃描到電腦中，然後附於文件 

上•因爲這些電腦檔案，我們可以作任意改動.所以在這個 

電子化的世界上，我們需要一個電子簽署的方法. 

現在的電子簽署系統，都是利用公開鑰匙的系統.在公開鑰 

匙的系統中，每個人都會擁有兩支鑰匙，一支鑰匙是公開鑰 

匙，另一支是私人输匙•公開輸匙是公開給人知道的，而私 

人鑰匙就要保密，不能給人知道的.在電子簽署的系統中， 

我們會用自己的私人鑰匙，利用一些數學程式，來附於文件 

上•當收件人收到這文件及其電子簽署，會利用寄件人的公 

開鑰匙，來驗証文件的真確性• 

曰常生活的簽署，會有被人僞冒的情況出現.電子簽署的情 

況也是一樣•在這篇論文中，主要是討論£1030&1這個電子 

簽署及其延伸方案.在Bleichenbacher—文中’有提及一個僞 

冒ElGamal這個電子簽署的方法，我們會利用這個攻擊方 

法，來對ElGamal的延伸進行類似的攻擊.而且，我們更會 

討論一些破解discrete logarithm的方法.在論文中，我們會提 

出利用Quadratic Field NFS來作破解• 
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Chapter 1 

Introduction 

Every clay, people sign their names to contracts, cheques, credit card receipts and 

other documents, showing that they are the originator of these documents. The 

signature allows other people to verify that a particular document did indeed 

originate frorn the signer. This is the vise of the handwritten signature. 

In general, a signature should have the following properties: 

1. The signature is authentic. The signature convinces the document's recip-

ient that the signer deliberately signed tlie document. 

2. The signature is uiiforgeable. The signature is proof that the signer, and 

110 one else, deliberately signed the document. 

3. The signed document is unalterable. After the document is signed, it 

cannot be altered without generating new signature. 

4. The signature cannot be repudiated. Once the document is signed, the 

signer caimot later claim that he or she didn't sign it. 

1 



Chapter 1 Introduction 

How can we implement the handwritten signature in the digital world? Can 

we just scan the handwritten signature and append it with the docuinent? Of 

course no! Since the scanned signature is just a computer file, it is trivial to 

duplicate. Second, it would be easy to cut and paste a scanned image from one 

document to another (lociiment. Third, computer files can be modified after 

they are 'signed'. Therefore, it is not a good solution. 

So, what should we do? Thanks to the advance of cryptography. Before explain-

ing how we can imitate handwritten signature in the digital world, let's have 

some introduction to cryptography first. In traditional cryptography, if two par-

ties want to coinmiinicate in a secure way, both the sender and the receiver agree 

011 a secret key; the sender uses the secret key to encrypt the message, and the 

receiver uses the same secret key to decrypt the message. This method is known 

as secret key or symmetric cryptography. The eavesdropper, without knowing 

the secret key, cannot decrypt the message. 

Can we use this symmetric cryptography to imitate handwritten signature, that 

is, the signer uses the secret key to 'sign' the message and the receiver uses the 

same key to 'verify，the signature? The answer is no. Since the receiver must 

know the secret key in order to 'verify' the signature, it means that the receiver 

can also use this secret key to 'sigii' the signature. Therefore, forgery can be 

easily implemented if we use this scheme. It is still acceptable if this scheme is 

only iised between two trusted parties. However, in the digital world, where we 

have to sign document to many people, we must prepare different secret keys 

for different people - it is unacceptable. 

2 



Chapter 1 Introduction 

Such problem cannot be solved until 1976, Whitfield Diffie and Martin Hellrnan 

8] introduced the concept of public-key cryptography. In the public-key cryp-

tosystem, each person has a pair of keys, one key is called the public key and 

the other is called the private key. The public key is published, while the private 

key is kept secret. 

But someone will ask, can we easily deduce the private key from the public key? 

No! Why? In the public key cryptosystern, we caii easily compute the public key 

fi.om the private key (since it is very likely that these two keys are the same), but 

it, is infeasible to compute the private key from the public key. It is something 

like a one-way function: A one-way function is a mathematical function that it 

is significantly easier to compute in one direction (the forward direction) than in 

tlie opposite direction (the inverse direction). It might be possible, for example, 

to compute the function in the forward direction in seconds but to compute its 

inverse coiild take years, niilleiinia, if at all possible. 

How can it be done? It can be done by the well known hard problems in cryp-

tography: integer factorisation, discrete logarithm and elliptic curve discrete 

logarithm. Here is an example, it is easy to compute 101 x 103, right? It is 

10403. However, if I say, factor the number 10403，can we easily find its factors? 

Still yes, since 10403 is still a small number, we can find its factors hy trial 

division. However, if I ask you to factor a number that is 100-，200-digit long, 

is it still easy to find its factors? No! That is one of the hard problems, called 

integer factorisation. 

With the help of the public key cryptosysteiri, we can implement a signature 
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Chapter 1 Introduction 

scheme in the digital world, called digital signature. The sender uses his private 

to 'sign' the document, and the receiver uses the corresponding public key to 

'verify' the signature. 

This thesis will discuss one of the signature schemes, call ElGamal signature 

scheme, which is a, signature scheme based on the hard problem of discrete loga-

rithm. What is this signature scheme about? Let's refer to the figure 1.1. First 

the signer, say, Alice, applies a hash function to the message, creating a so-called 

message digest. What is a hash function? A hash functioii is a mathematical 

function that takes an input rn and returns a fixed-size string, called the hashed 

value. Often, the input string m is much longer than the hashed value. Given 

tlie hashed value, it is infeasible to find another rn，such that they have the 

same hashed value. MD2, MD5 and Secure Hashing Algorithm (SHA) are some 

well-known hash functions. 

So why should we use the hash function? It is because of two reasons, one is the 

message digest is generally much smaller than the original message; therefore, we 

can save sorne bandwidth in the transmission and save sonie computing power 

iii handling the message afterwards. The other reason is because of the security 

issues, which will be discussed in chapter 3. Alice then uses her private key, 

together with the message digest, generates two values r and s by the discrete 

logarithm. We will call these two values a signature pair afterwards. This is the 

signing process of the signature scheme. Alice will then send this signature pair, 

together with the message to the receiver, say, Bob. 

When Bob obtains the signature pair and the message, he does the following to 

4 
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Figure 1.1: digital signature signing process 

verify the signature. First, lie also applies the hash function to the message and 

gets the value of the message digest. Then, he uses the public key of Alice, the 

message digest and the signature pair r and s, to compute some values. If these 

values are valid, then he will accept the signature; otherwise, he will reject the 

signature. The flow chart is shown in figure 1.2. 

Is this signature scheme authentic? Yes, since only Alice has the private key, 

only she can sign the document with her private key. Deducing the private from 

the public key is hard, so once we received this signature, we can assure that 

it is come from Alice. With the same reason, once the message is signed and 

the signature is generated, Alice cannot deny signing the document. Since the 

hash function is used in the signing process, one cannot alter the content of the 

document (since it is infeasible to find another document which can generate 

the same hash value). 

Is this signature scheme iinforgeable? In reality, handwritten signature can be 
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Figure 1.2: digital signature verifying process 

forged. Signatures can be lifted from one piece of paper and moved to another, 

aiid (lociimeiits can be altered after signing. In digital signature, forgery can 

also be possible. One rnethod is to compute the private key from the public 

key. Yet I have said that the ElGamal signature scheme is based on the hard 

problem called discrete logarithm, there are still some algorithms to speed up 

the cracking. However, until now, there are no algorithm can solve this hard 

problern in a reasonable time. These algorithms will be discussed iii chapter 2 

and 4. The other method is to forge the signature without knowing the private 

key. In chapter 3’ we will discuss that if the parameters used in the ElGamal 

signature scheme are not carefully chosen, the signature scheme will l>e viiliier-

able to several attacks, one of them is the topic of this thesis - Bleichenbacher's 
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Chapter 1 Introduction 

attack. We will extend this Bleichenbacher's attack to other variations of ElGa-

nial signature scheme. 

If we choose the parameters carefully, this signature scheme is not likely to be 

forged. One of the secure signature schemes is Digital Signature Standard. The 

National Institute of Standards and Technology (NIST), iii cooperation with 

the National Security Agency, proposes DSS which is the digital authentication 

standard of the U.S. goveriiirient. This standard will also be discussed in the 

later part of chapter 3. 

What is the use of digital signature? With the digital signature, we can sign 

t,he document with ovir private key and others can easily verify the document 

with our public key. One of the uses is in email system. Since the 'narne' and 

'email address，of an email are not authentic, we cannot assiire that an email 

from "Alice" is really come from Alice. With the help of digital signature, once 

we have received the signature pair and the original message of Alice, we believe 

that the sender is Alice. 

Digital tirnestarnps rnay be used in connection with digital signatures to bind a 

document to a particular time of origin. It is not sufficient to just note the date 

in the message, since dates on computers can be easily manipulated. It is bet-

ter that timestarnping is done by someone everyone trusts, such as a certifying 

authority. 

7 



Chapter 2 

Background 

This chapter will give the background information necessary for further discus-

sion. Since most of the material discussed in this thesis is about cryptography, 

and rriany cryptographic algorithms are based oii the theory of abstract algebra, 

siich as group, ring, field. Therefore, the first section will be about abstract 

algebra. 

2.1 Abstract Algebra 

Before the introduction of abstract algebra, some terms must be defined {binary 

operation, com,rnutativity, associativity). 

Definition 2.1.1 A lnnary operation * on a set S is a mapping from S x S to 

S. 

Definition 2.1.2 A binary operation * is commutative if it satisfies 

a * b = h * a 

8 



Cho,pter 2 Background 

Definition 2.1.3 A bmary operation * is associative if it satisfies 

(a * b) * b = a * (b * c) 

2.1.1 Group 

Group is the basic of the cryptography. Many cryptographic algorithms are 

based on the group theory. The definition of group and some examples will be 

given here. 

Definition 2.1.4 A group G is a nonempty set together with a bina,ry operation 

* which satisfies the following properties: 

• * is associafAve (a,ssociativity). 

• There is an element e in G such that a * e = a and e * a = a for every 

dement a m G (the element e is called the identity element ofG). 

• For every element a in G, there is an element x in G such that a * x = e 

and X * a = e (The element x is called the inverse o.fa). 

The group just defined rnay be represented by the symbol (G, *). This notation 

makes it explicit that the group consists of the set G ancl the binary operation 

*• If there is no danger of confusion, we shall denote the group simply with the 

letter G. 

Here is an example of a group - the group of integers inodiilo 6. This groiip 

consists of six elements, 

{ 0 , 1 , 2 , 3 , 4 , 5 } 

9 



Chapter 2 Background 

and a binary operation called addition modulo 6, + . Table 2.1 shows the oper-

ations. 

It means that 0 + 1 = 1, 2 + 3 = 5, 4 + 3 二 1. We often use Ze to denote this 

+ 0 1 2 3 4 5 
~0~~0 1 2 3 4 5 

1 1 2 3 4 5 0 
2 2 3 4 5 0 1 
3 3 4 5 0 1 2 
4 4 5 0 1 2 3 
5 5 0 1 2 3 4 

Table 2.1: Operation table for integers modulo 6 

groiip. In general, the set Z„,，with the binary operation of addition modulo n, 

forms a group. However, the set Z„ , with the binary operation of multiplication 

iriodiilo n, is not a group. 

Definition 2.1.5 A group G is called an Abelian group if the commutafAve law 

holds m the group. 

Definition 2.1.6 A subgroup H of a group G is a group such that the set H is 

a subset ofG. 

Definition 2.1.7 A finite group is a group G which contains a finite number of 

elements. 

2.1.2 Ring 

A ring R is a nonempty set together with two binary operations, narnely, addition 

+ aii(l multiplication * which satisfies the following properties: 

1 0 



Cho,pter 2 Background 

1. R with addition alone is an Abelian group. 

2. Multiplication is associative. 

3. Multiplication is distributive over addition. That is, for all a,b, and c in 

R, 

a * (b + c) = a * b + a * c 

and 

(b + c) * a = b * a + c * a 

Since R with addition alone is an Abelian group, there is in R a neutral element 

for addition: it is called the zero element and is written 0. Also, every element 

has an additive inverse called its negative; the negative of a is denoted by —a. 

Subtraction is defined by 

a — b = a + {-b) 

2.1.3 Field 

Definition 2.1.8 A field is a nonempty set F together with two binary oper-

ations, namely, addition + and multiplication * which satisfies the following 

properties: 

1. F with addition alone is an Ahelian group 

忍.F — {0} with multiplication is an Ahelian group, where 0 is the identity 

element for addition. 

3. Multiplication is distributive over addition. That is, for all a,b, and c in 

R, 

a * {b + c) = a * b + a * c 

11 



Chapter 2 Background 

and 

{b + c) * a = b * a + c * a 

The set Zp under the usual operations of modulo addition and modulo multipli-

cation forms a field, provided that p is a prime number . 

Definition 2.1.9 A finite field is a field F which contains a finite number of 

elements. 

2.1.4 Useful Theorems in Number Theory 

There are two useful theorems which are frequently used in number theory: they 

are the Chinese Remainder Theorem and Euler's Theorem. 

Chinese Remainder Theorem Let n^, ri2, . . . , n^ be pairwise relatively prime 

integers, then the system of sirnviltaneoiis congruences 

.T = (ii (mod rii) 

X = ci,2 (mod ri2) 

工=o,k (rnod rik) (2.1) 

has a unique solution rnodulo n = n1n2 . . . n^. The solution x to the simultane-

ous congruences can be computed as 

k 

X = J 2 ( i i N M (mod n) (2.2) 
i=l 

wliere 

A^z = n/n, (2.3) 

1 2 



Chapter 2 Background 

and 

M, = N - ^ (mod n,) (2.4) 

Euler 's Theorem 

Theorem 2.1.1 Ifa and m, are integers such that gcd(a,, m) = 1，then o.^^^^ = 1 

(mod m), where 4>{m) is the Euler's (j)-funcMon. 

Corollary 2.1.1 If p is prime, then the number ofinvertible elements in the 

complete residue system, modulo p is p - 1，i.e., 4>{p) = p— 1. Therefore, for any 

a + 0 (mod p), a^~^ = 1 (m,od p). 

2.2 Discrete Logarithm 

Discrete logarithm is one of the hard problems in the cryptography field. It is dif-

ficult to solve because until now, there is no polynomial running time algorithm 

to solve the discrete logarithm problem. Many algorithms (will be discussed 

later) runs sub-exponential time. They are not as fast as polynomial time algo-

rithms, yet they are considerably faster than exponential tirne methods. 

Definition 2.2.1 If G is a finite group, the order of G is the number of ele-

ments in G. 

Definition 2.2.2 A cyclic group G of order n is a group defined by an element 

tt (the generator), where the powers ofthe generator (a, a^, .. .，a^) are unique. 

Definition 2.2.3 Let G be a finite cyclic group of order n, a be the generator 

ofG, and P G G, the discrete logarithm problem, is to find an integer x, 0 < x < 

n — 1，such that a^ = |3. 

1 3 



Chapter 2 Background 

In general, a discrete logarithm problem involves a prirne number p and a genera-

tor «. The group used is a multiplication group Z*. Then the discrete logarithm 

problem becomes: 

Given /;, a and /3, find an x such that /3 = a^ (mod p) or solve the 

discrete logarithm logô  ^. 

2.3 Solving Discrete Logarithm 

This section will discuss some methods to solve the discrete logarithm problem. 

2.3.1 Exhaustive Search 

It is the naive method to solve the discrete logarithm. It tries all the possibilities 

of X until we find one that a^ = p (mod p). 

Algorithm Compute a � , a^, a^, until we find an i such that a^ = /5 (mod /;). 

Example The element a = 19 is a generator of the group G of ZJg^. Find x 

such that 19^ = 82 (mod 191). 

Solution We try ?； = 0 , 1 . . . and finally we find that 19̂ '̂  = 82 (mod 191). 

Therefore, x = 19. (The intermediate steps are shown iii table 2.2) 

Since this method searches all the possibilities o f j ; , it takes 0 ( n ) multiplications. 

Owing to its complexity, it is only useful for a small n only. 

1 4 
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~ i II 0 1 2 3 4 5 6 7 8 9 
“ W II 1 19 170 174 59 166 98 143 43 53 

“？； T o " T T 12 13 ~ W 15 — 16 17 l 8 ~ ~ 1 ^ 
—19?: II 52 33 54 71 12 37 130 178 135 82 

Table 2.2: Intermediate steps of exhaustive search algorithm 

2.3.2 Baby Step Giant Step 

The baby-step giant-step algorithm makes use of a time-memory trade-off to 

search an interval of length n for a discrete logarithm using only 0(\/n) opera-

tions. 

The idea of baby-step giant-step is: Let m 二�y^ where n is the order of a. 

We can write x = ini + j, where 0 < i,j < m. Hence, a^ = cy^^a-\ which implies 

^(tt,y - a^. 

Algorithm 

1. Set m = \/n. 

2. Construct a, table with entries (j, a^) for 0 < j < rri. 

3. For i = 0 to m — 1, 

(a) Set 7 = f ^ ( ^ a 1 . 

(b) If 7 = a^, then break and output x 二 im + j. 

(c) Else continue. 

In step 3(b), we will compare the value of 7 with a^. To facilitate the comparison, 

it is better to sort the colurnn aK Roughly speaking, it takes 0(^/n,) storage 

1 5 



Chapter 2 Background 

and 0 ( v ^ ) operations. 

Example Use the same example as section 2.3.1. 

Solution 

1. m =�v^l = 14 

2. Construct the table as in table 2.3. 

i 0 1 2 3 4 5 6 7 

W 1 19 170 174 59 166 98 143 

?： ~ 8 ~ ~ 9 ~ ~ U T 11 T ^ " 13 ~ U 

19^ 43 53 52 33 54 71 12 

Table 2.3: Intermediate steps of baby-step giant-step algorithm 

3. Then we compute a~^^ = 16 (mod 191). We try z = 0 , l , . . . and obtain 

7 = 82 * 16^ = 166 (mod 191) where 166 = 19^. Therefore, we can 

calculate x by 1 * 14 + 5 = 19. Thus .x is solved. 

2.3.3 Pollard's rho 

Pollard's rho algorithm [20] is the best collision search algorithm. It gets its 

name because the algorithm produces a trail of numbers that when graphically 

represented with a line connecting successive elements, the trail looks like the 

Greek letter rho, ,). The objective of this algorithm is to find where the tail 

rneets the loop. 

Let f(x) be a polynomial with integer coefficients. Starting from 工(）=1, define 

1 6 



Chapter 2 Background 

a sequence of group elements xg, .xi,工2，. • • where 

y 

/3 • Xj, if x̂  G Si, 

.T,;+i = ! [ x , ) = x\, if .T, G 52, (2.5) 

a • .T̂ , if Xi G 5a 

\ 

for i > 0. The set 5i , S2 and S^ are chosen siich that they are of roughly equal 

size. 

This sequence in tiirn defines two sequences of integers flo, 0,1, 0,2, . . . and 60, 61, 

h2, . . . satisfying x,； = a^'P^' for i > 0, where ao = 0 and bo = 0: 

( 
(h, if Xi e 5 i , 

fl'i+i 二 2a,; mod n, if x, G S2 (2.6) 

� a , ; + 1 rnod n, if Xi G S3 

ancl 
f 

l)i + 1 mod n, if x^ G 5i 

:̂+1 = 2h, mod n, if x^ e S2 (2.7) 

� k , if x-j G 5,3, 

where n is the order of the group. When an Xi is computed, it is compared 

with the other sequence elements Xj (for j = 0, 1， . . . , i — 1). If a collision is 

found, i.e., there exists a j such that x,； = Xj, we can probably solve the discrete 

logarithm problem. Since if we find a pair i and j such that x^ 二 Xj, then 

a"' fi'' = a ( i j p j . Taking logarithm to base a , we have 

a-i + h loga P = a] + bj log^ /3 (mod n) 

{k - bj) log^ P = a,j — a,i (mod n) 

log« P = g ^ ( m o d n ) (2.8) 
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It is not practical to keep track of all values of Xi. The Pollard's p method 

employs a clever procedure to detect a collision, called Floyd's cycle detecting 

algorithm. Instead of finding a collision of x̂  and Xj, we find two elements Xi 

and X2i- If we find Xi = .¾, we can follow the similar argument as above and 

solve the discrete logarithm of log^ /3, where 

loga^ = ^ ^ (modn) (2.9) 
h — hi 

E x a m p l e The element a = 19 is a generator of the subgroup G of Z&3 of order 

n = 191. The discrete logarithm problem is to find an x such that a^ 二 336 

(mod 383). First, we have a = 19, |3 = 336, n = 191. Then we partition the set 

G into three subsets 5 i , S2, Ss according to this rule: 

X G Si if X 三 1 (mod 3) 

X E S2 if X 三 2 (mod 3) 

X e S3 if .T 三 3 (mod 3) (2.10) 

Using the Pollard's p algorithm, and setting x^ — 1, ao = 0 and bo = 0, we 

obtain table (2.4): 

Since we find a collision when i = 11, wliere an = 4, bu = 18, a22 = 89, 

b22 = 104. Then 

89 - 4 
logig336 = 18 — 104 ( m o d l 9 1 ) 

= 1 9 (mod 191) (2.11) 

2.3.4 Pohlig-Hellman 

Pohlig-Hellman algorithm [19] takes the advantage of the prime factorisation of 

p — 1. This algorithm is best understood by first considering the special case 
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1 II Xj I a^ I bi X2i d2i /)2i 

T ^ ~ ^ ~ ~ 0 ~ ~ ~ ^ m " ~ 0 Y~ 
2 294 0 2 330 0 8 
3 261 0 4 134 1 16 
4 330 0 8 116 3 16 
5 128 0 16 205 4 17 
6 134 1 16 9 5 18 
7 248 2 16 50 20 72 
8 116 3 16 161 21 73 
9 289 4 16 25 44 146 
10 205 4 17 293 88 103 
11 323 4 18 323 89 104 

Table 2.4: Intermediate steps of Pollard's p method 

when p = 2"' + 1. 

For p = 2"- + 1 

This algorithm is to find the binary expansion of x (6o, /)i, ..., bn-i) 

n-\ 
x = Y,kT 

i=0 

The least significant bit bo of.T is determined by raising P to the ( p - l ) / 2 = 2""^ 

power and applying the nile 

< 

, ’ � / � + 1 , bo = 0 
广 1 ) / 2 = (mod p) (2.12) 

i - 1 , bo = 1 

This fact is established by noting that, since a is primitive, 

o>-i)/2 = —1 (mod p) (2.13) 

and therefore, 

0(p-i)/2 = (^^)(p-D/2 = ( — 1广(niod p) (2.14) 
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If .T is divisible by two, i.e., bo = 0, then (2.14) gives +1 ; otherwise, it gives - 1 . 

The next bit in the expansion of x is then determined by letting 

7 = /3a-bo = a$i (mod p) (2.15) 

where 
n-l 

xi = Y , b a ' (2.16) 
i=l 

To find the next bit /)i, we raise 7 to (p — 1)/4 = 2""'^ power and applying the 

rule 
( , . , , f +1, 61 = 0 

7(P-i)/4=<^ (modp) (2.17) 
-1, 、 = 1 

\ 

Reasoning as before, if x is divisible by four, i.e., bi = 0, then (2.17) will give 

+ 1; otherwise, it will give —1. 

In general, to find the bit b” we first must have 

7 = a^' ( m o d p) (2.18) 

where Xi is 
n-l 

x̂  = Y , b , 2 ' (2.19) 
J=i 

Then we raise 7 to the m — th power where 

- = ^ ^ (2.20) 

and apply the rule 
y 

+ 1, h = 0 

7^' = (mod p) (2.21) 
i - 1 , k = 1 
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For arbitrary primes 

Let the prirne factorisation of p — 1 is 

p - l = ^ 2 . . - l ) T , P i < 2 ) m (2.22) 

The algorithm is to find the value of x (mod p^') for i = 1，2,. . . , k and compute 

X via the Chinese Remainder Theorem. 

Consider the following expansion of x (mod p"'): 

r i i — l 

•T = [ b3pi (2.23) 
j=0 

where 0 < bj < p,； — 1. 

The least significant coefficient, bo, is detenniiied by raising /3 to the (p — l)/p^ 

power, 

0(P-i)M = ^(p-i)xM (mo(ip) 

= 7 f (inod p) 

= 者 ( m o d p ) (2.24) 

where 

7, = a(P-i)/P' (2.25) 

is a primitive p^-th root of unity. There are therefore only Pi possible values for 

0p-i)/pi (mod p), and the resultant value uniquely determines bo. 

To determine the next digit /)! in the base p̂  expansion of x (mod p"') , we inust 

first have 

C 二 |3a-bo = o;A (mod p) (2.26) 
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where Xi is 
Tli — l 

•Ti = [ ~ r i . (2.27) 
,7 = 1 

and then raise ( to the (p — l)|p] power 

C(p-i)/p;2 二 f;j>-iWp? (mod p) 

= 7 产 ( m o d p) 

= 者 ( m o d p) (2.28) 

Again, there are only p̂  possible values of ((”一”斤？ and this valid determines 6i. 

This process is continued to determine all the coefficients bj. 

Example 

1. The prime factorisation of p - 1 = 190 is 2 • 5 • 19 

2. (a) Compute Xi = x (mod 2) 

«95 二 i9(J5 (mod 191) 

= 1 9 0 (mod 191) 

/̂ 95 二 8295 (mod 191) 

= 1 9 0 (mod 191) (2.29) 

Therefore, the coefficient bo = 1. Then xi = 1 (mod 2). 

(b) Compute X2 = x (mod 5) 

«38 = ig38 (mod 191) 

= 3 9 (mod 191) 

3̂8 = 82.38 (mod 191) 

= 4 9 (mod 191) (2.30) 
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We use extensive search method to find the coefficient bo = 4. There-

fore, X2 = 4 (mod 5) 

(c) Compute x3 = x (mod 19) 

«10 = 19io (mod 191) 

二 52 (mod 191) 

� 1 0 = 82io (mod 191) 

二 1 (mod 191) (2.31) 

We use extensive search method to find the coefficient 60 — 0. There-

fore, .T,3 = 0 (mod 19) 

(d) Now, we have 

X = 1 (mod 2) 

X = 4 (mod 5) 

.T = 0 (mod 19) (2.32) 

Using Chinese Remainder Theorem, we find that x = 19. 

2.3.5 Index Calculus 

Algorithm 

1. Choose a subset S = {p1,p2, •. • ,Pt] of G 

2. (a) Select a random number k, 0 < k < n - 1, and compute a^ 

(b) Try to write n^ as a product of elements in 5: 

i 

o^' = X{iA\ c , > o 
T = 1 
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If successful, take logarithms of both sides of equation to obtain a 

linear relation 

t 

k = Y 1 Ci log„pi (mod p - 1). 
i=l 

(c) Repeat these steps until there are enough relations. 

3. Solve the above linear system and obtain log^ pi. 

4. (a) Select a random number k, 0 < k < p - 1, and compute /3 . a^. 

(b) Try to write /3 • a^ as a product of elements 'm S. So, 

t 

p . a ^ = Y [ p f ^ d, > 0. (2.33) 

i=l 

Repeat 4a until the attempt is successful. Then 

t 

log, P = Y . (k log« lh — k (mod p) (2.34) 
z=i 

Example Use the same example as in section 2.3.1, 

1. First, the factor base chosen is S = {2, 3，5, 7} 

2. We randomly generate k and obtain the following relations 

1920 mod 191 = 2 • 3 • 5 

i9i2 mod 191 二 2 • 3.3 

1992 mod 191 = 32 • 5 

1 9 舰 mod 191 = 23 . 3 • 5 

1 9 " i mo(l 191 = 2 • 3 • 7 (2.35) 
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3. Taking the logarithms of both sides, 

20 = log 2 + log 3 + log 5 (mod 190) 

12 = log2 + 31og3 (rnod 190) 

92 = 21og3 + log5 (mod 190) 

108 = 3 log 2 + log 3 + log 5 (mod 190) 

141 = log 2 + log 3 + log 7 (mod 190) (2.36) 

4. Then solve the system of linear equations with four unknowns 

log2 = 44 

log3 = 116 

log5 = 50 

log7 = 171 (2.37) 

5. Suppose that the integer k = 65 is selected. Since 

^ • a^ = 82 • 1965 (mod 191) 

= 8 1 (mod 191) 

= 3 4 (mod 191) (2.38) 

6. It follows that 

logi9 82 + 65 = 4 logi9 3 (mod 190) 

logi9 82 = 4 • 116 — 65 (mod 190) 

= 1 9 (2.39) 
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Chapter 3 

Forging ElGamal Signature 

This chapter will first discuss the original ElGamal signature schemes and ana-

lyze the security of this signature scheme. In [3], it shows that there are some 

security risks in the ElGarnal signature scheme if the parameters are not care-

fully chosen. In this case, forgery is possible even that the adversary doesn't 

know the private key of the signer. I will extend such type of forgery to the 

variations of the ElGarnal signature scheme. The last part will discuss a vari-

ant of the ElGamal signature scheme that is the digital authentication standard 

adopted by the U.S. government - it is Digital Signature Standard (DSS) 

3.1 ElGamal Signature Scheme 

ElGamal signature scheme is based on the discrete logarithm problem (which is 

discussed in chapter 2). This scheme mainly involves foiir steps: 1. Choose the 

public parameters p and a, these parameters can be shared among several users. 

2. Generate the key pair (private key and public key) of the signer. 3. Given a 
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message m, generate a pair (r,s), which is called the signature on message m. 

4. Verify the signature pair on the message. 

Public Parameters 

1. Choose a large prime number p, and the multiplicative group Z*, 

where the group operation is multiplication modulo p. 

2. Choose a generator a of the multiplicative group Z*. 

3. Publish p and a. 

Key Generation 

1. Randomly generate an integer x, where 1 < x < p — 2. 

2. Compute y = a^ (mod p). 

3. Private key: x 

Public key: y. 

Signature Generation 

1. Select a random number k, 1 < k < p — 2, such that g c d ( A : , p - l ) = 1. 

2. Compute r = o^ (mod p). 

3. Compute s = kr^(ni - rx) (mod p — 1). 

4. Signature pair (r,s). 

Signature Verification 

1. Verify that 1 < r < p — 1; if not, reject the signature. 

2. Compute Vi = ifr^ (mod p). 

2 7 



Chapter 3 Forging ElGarnal Signature 

3. Compute V2 = a^ (mod p). 

4. If Vi = i>2, accept the signature; otherwise, reject the signature. 

In chapter 1, we have mentioned the model of digital signature. Suppose Alice 

wants to send a message to Bob. Alice uses her private key to sign the message 

(or message digest) and Bob uses Alice's public key to verify the signature pair. 

The goal of an adversary is to forge signatures; that is, to produce signatures 

whicli will be accepted as those of some other entity. In general, we can catego-

rize the type of forgery as follows: 

1. total hreak. Aii adversary is either able to compute the private key infor-

mation of the signer, or finds an efficient signing algorithm functionally 

equivalent to the valid signing algorithm. 

2. selective forgery. An adversary is able to create a valid signature for a par-

ticular message or class of messages chosen a priori. Creating the signature 

does not directly involve the legitimate signer. 

3. existential forgery. An adversary is able to forge a signature for at least one 

message. The adversary has little or no control over the message whose 

signature is obtained, and the legitimate signer iriay be involved in the 

deception. 

Total hreak in ElGamal signature scheme equals to the solving of discrete log-

arithm problem. Some algorithms (baby-step giant step, Pollard's p, Pohlig-

Hellman and index-calculus) have been covered in chapter 2. Chapter 4 will 

discuss another method, which can also solve the discrete logarithm. 
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Selective forgery is possible in the ElGamal signature scheme. These cases 

are now discussed. 

3.2 ElGamal signature without hash function 

The ElGamal signature scheme presented in the previous section doesn't employ 

any hash function on the message m. Iii practice, a hash function should be 

applied to the message rn iii the signature generation step. We will discuss why 

the hash function is needed in this section. 

Siipi)ose we alreaxly have a valid signature pair (r, s) oii the message m, we can 

make nse of this signature pair to reproduce another valid signature pair on 

sorrie messages as follows: 

Select integers A, B, and C arbitrarily such that (Ar - Cs) is relatively prime 

to p — 1. Set 

r' = rAa!3yC (inod p), (3.1) 

s' = r's/(Ar - Cs) ( r n o d p - 1), (3.2) 

rn' = r ' (Am + B s ) / ( A r - C s ) (mod p- 1). (3.3) 

Then the {r', s') are a valid signature pair on message m'. 

To see how we can get this r', s' and 7n', here is my derivation. First, w() assume 

that r' is controlled by three variables, r, a and y, so we set 

r' = r^a^y^ (mod p) (3.4) 
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If (r ' ,s ') is a valid signature pair on message m', then it should satisfy 

« 爪 ' = / r ' s ' (mod p) 

= y ' ' ( r ^ a ^ ^ f Y ' (mod p) 

= / + c " A s ' a B s ' ( m � d p ) (3.5) 

If we can express yr'+Cs'^As' jĵ  terms of a powers, then we can found the value 

of m'. To achieve this, we can get some hints from the equation 

' i fr ' = a ^ (3.6) 

So the key is to find an t such that 

yv'+Cs'^As' = (yr—�t (mod p) (3.7) 

To obtain the value of t, first by comparing the coefficients in equation (3.7), we 

have 

r' + Cs' = rt (mod p - 1) 

As' = st (mod p 一 1) (3.8) 

Therefore, 

r's + Css' = Ars' (rnod p — 1) 

{Ar — Cs)s' = r's (mod p — 1) 

s' 二 J ^ ^ ( m o d p - l ) (3.9) 

Once s' is found, we can find t from (3.8) 

J^j-! 

t ' = 如 _ c s ( m o d p - l ) (3.10) 
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Therefore, the value of m' can be found in equation (3.5) 

a^' = . i / + C s ? s � B s ' (modp) 

= ( y W f a ^ ' ' (mod p) 

= { a ^ f a^'' (mod p) (3.11) 

Therefore, m' is 

m' = rnt + Bs' (mod p - 1) 

^ y ' r's 
= m - — + B- — (mod p - 1) 

Ar - Cs Ar - Cs ^ ‘ 
r'[Am + B s ) , , � ， � 

= ^ r - C . ( m o d p - l ) (3.12) 

Here the (r', s') is a valid signature pair on message m'. Note that in this forgery, 

we can only sign a particular type of message, which is specified iii equation (3.3). 

So it is a kind of selective forgery. There is one interesting thing, if we set A = 0 

in equation (3.1), (3.2) and (3.3), we have 

r' = a.ByC (mod p) 

s' = —r'C (mod p — 1) 

m' = -r'BjC (mod p - 1) (3.13) 

It means that we can generate legitimate signatures without knowing any sig-

natures in prior. 

In order to prevent such selective forgery, we can apply a hash function on the 

message in the signature generation step. That is, the signature generation step 

will become 

s = kr^[h{m) — rx] (mod p — 1) (3.14) 
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instead of 

s = kr^[m — rx] (mod p — 1) (3.15) 

If no hash function is used, such forgery is possible for soine particular messages 

rn. If hash function is used, such forgery is possible for some particular h(m). 

Owing to the nature of hash function, it is difficult to find the message m frorn 

h{m,). Therefore, such type of forgery can be avoided. 

3.3 Security of ElGamal signature scheme 

In this section, some security issues of ElGamal signature scheme will be dis-

cussed. 

1. Sarne k cannot be used twice; otherwise, we can probably calculate the 

private key x of the signer. Suppose the signer generate two signature 

pairs (r, ,s'i) and (r, S2) with the sarne A;, so we have 

si = A;-i {h{m,i) — rx} (mod p 一 1) (3.16) 

and 

S2 = kr^ {h{m2) - rx} (rnod p - 1) (3.17) 

Then, 

{si — s2)k = h(m,i) — J1(m2) (mod p — 1) (3.18) 

If gcd(si - S 2 , p - 1) = 1，then 

k = 7 ~ ~ - ~ " r [h{rni) — /1(m2)] (mod p — 1) (3.19) 
1̂ 1 一 S2) 
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Once k is known, we can solve for x by substituting it into either equation 

(3.16) or (3.17). Therefore, 

. = — i ) � 列 ' ( m o d p - l ) (3.20) 

or 

•X 二 ' — ) , S2k' ( , n o d p - l ) (3.21) 

2. It is important that the verifier checks whether 1 < r < p is satisfied. If 

this check is not done, we can produce another signature pair (r2, S2) 011 

message m,2 if we have a valid signature pair (r! ,Si) on message rui at 

hand. 

Proof. If /i(mi)-i (mod p — 1) exists, set 

u = "(m2)"(m1)_1 (mod p — 1) (3.22) 

Now (T2,6'2) can be found by setting 

S2 = siu ( m o d p - 1) (3.23) 

ancl by computing r2 satisfying 

r2 = riu (mod p — 1) (3.24) 

r2 = n (mod p) (3.25) 

r*2 can be found by using the Chinese Remainder Theorem. This (r2, S2) 

is a valid signature pair on message ni2 because 

j p r ' 2 ' = ' � r f K (mod p) 

= (以 � 1 々广 （mod p) 

= « ' — 1 ) " (mod p) 

= c / — (mod p) (3.26) 
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3. This is the case for discrete logarithm at GF(2") . If the extension polyno-

mial is ,T" +:r + l and a is a root of this polynomial. Suppose the signature 

r = (1,1，.. ., 1), we can solve for k since 

f y n _ | _ 1 

l + tt + ... + a"-i = ^ — c\ + 1 
Q. 

— Q f " 

= c v i - n (3.27) 

Generally, if the public key (1,1，. • •，1), then we can solve the private key 

easily. 

3.4 Bleichenbacher's Attack 

In [3], it shows that forgery is possible if tlie prime number p or the generator 

« are not chosen carefully. First, we will present the Bleichenbacher's attack 

011 ElGamal signature scheme and show that such attack can be extended to 

variations of the ElGamal signature scheme. 

Theorem 3.4.1 Letp- 1 二 biv where b is smooth and let y be the public key of 

user A. If a generator p = cw with 0 < c < b and an integer t are known such 

that 卢力=a (m,od p), then a valid ElGamal signature (r, s) on a given h can be 

found. 

Proof. The equation 

“概三！广(mod p) (3.28) 

can be solved for z. Since « is the generator of the group Z* with order p - 1, 

then the subgroup H generated by a'" has a smooth order b. Therefore, we caii 
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use the algorithm of Pohlig and Hellman to solve the above equation. 

Now let 

r = |3 (mod p) (3.29) 

and 

s = t(h — cwz) (mod p - 1) (3.30) 

This (r, s) is a valid signature pair on message h since 

r Y = ( " 7 一 ( " 广 ( m o d p) 

= « ' 卜 隱 广 （ m o d p ) 

= « ' ' (mod p) (3.31) 

Corollary 3.4.1 Ifa is smooth and dividesp-1, then it is possible to generate 

a valid ElGamal signature. 

Proof. Let ^ = {p — l)/a and t = (p — 3)/2. Then /3̂  = ( - l ) / 3 " i = a ( m o d p). 

Thus it follows by Theorem 3.4.1 that signatures can be forged. 

We can see that forgery can be possible even if we have applied the liash function 

to the message. The probability of finding a generator |3 depends on the value 

of b. If b is small, then it is unlikely that we will find a generator. Moreover, 

the generator a should be chosen carefully such that it does not divide p — 1. 

Since p and a are shared among several users. These parameters are usually 

generated from an authority. With the Bleichenbacher's attack, an authority 

can generate a trapdoor prime in which the |3 and t can be found easily. T w o 

different methods to generate this trapdoor are shown here. 
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3.4.1 Constructing trapdoor 

Method A When p is fixed and p - 1 = bw with b smooth, then we can find a , 

P and t in the following way (provided that b is not too small). 

1. Choose c e { 1 , . . •, b - 1} randomly \intil /3 = ciu is a generator of Z* 

2. Choose t with gcd(t,p — 1) = 1 

3. Compute o； = |3̂ ' 

Method B When the generator a is fixed, then p, p and t can be generated as 

follows 

1. Seloct three positive integers u，v and c siich that v is odd and c"a;" has 

approximately the size of the prime to construct. 

2. Compute tlie smooth divisors of c”a" - 1 

3. If there exists a srnooth divisor d > c of c"tt" - 1 sudi that p = c^a" — d^ 

is prime, ^ — u is relatively prime to p — 1 and a is a generator of Z*, 

then compute 

. p-1 
^ = ' — 

j) — 1 
f' = v ( ^ — — ^ r i ) (mod p - 1) (3.32) 

Since d divides c"a"' — 1 and p — 1 = c^a" — rf — 1, so d also divides p - 1. Thus 

|3 satisfies the precondition of Theorem 3.4.1. Since 

a"c" = d" (mod p) (3.33) 
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we have 

a - " = { c d r ' Y (modp) (3.34) 

Therefore, 

� = ( c ^ y (rnodp) 

= cdr^{p — 1) ” (rnod p) 

= [ — c d ~ ^ y (mod p) 

= ( - 1 ) « " " (rnod p) 

= a ^ - ^ (mod p) (3.35) 

Hence 

pt = a (mod p) (3.36) 

3.5 Extension to Bleichenbacher's attack 

Many variations of the basic ElGamal signature scheme have been proposed and 

some of these variations are also vulnerable by Bleichenbacher's attack. Here is 

iriy extension of Bleichenbacher's attack to these variations. 

In the basic ElGamal signature scheme, after suitable rearrangement, the signing 

equation can be written as 

u = vx + kw (mod p — 1) 

where u — h{rn), v = r, and w = s in the original ElGamal signature schciiie. 

These variations generally involve in permutating the terms u, 'u, and tv in the 

signing equation. Table (3.1) shows the variations of the ElGamal signature 

scheme. 
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3.5.1 Attack on variation 3 

In the variation 3, the signing equation is 

5 = rx + kh{m) (mod p - 1) (3.37) 

and the verification equation is 

y?.�— = a' (mod p) (3.38) 

To forge the signature, we follow the steps as in Bleichenbacher's attack, except 

that 

s = cwz + jh(m,) (mod p - 1) (3.39) 
6 

Proof 

a'=严++'—) (mod p) 

= f t ^ o i " — ) (mod p) 

= ' / , • ) (mod p) (3.40) 

u V w Signing equation Verification 

1 h r s h = rx + ks ~ifr^ = a,!~ 
2 h s r h = sx + kr ifr^ = a^ 
3 s r h(m) s = rx + kh{m) yV'(— = (? 
4 s h{m,) r s = xh[m) + kr 以“(””,_ ^s 
5 T s li{m) r = sx + kh{m) '"V“"” = a^ 

_6__T— Ji{rn) s r - xh(m) + ks 以"(爪)尸-Q；̂  

Table 3.1: Variations of the ElGamal signature scheme 
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3.5.2 Attack on variation 5 

In variation 5, the signing equation is 

r = sx + kJi{rn) (inod p - 1) (3.41) 

and tlie verification equation is 

••) 二 ^r (mod p) (3.42) 

Again, to forge the signature, we follow the steps as in Bleichenbacher's attack, 

except that 

rt — h(m) , 
s = ^ " ^ ^ ^ (mod p - 1) (3.43) 

Proof 

ySr— = y ’ r — (mod p) 

(with some prob.) = : „ ) ] " ; . ( m ) ( 腦 ( 1 p) 

r i — h (in) I / � 

= a ~ T ~ r ' _ ( m o d p) 

二 f / r - " ( — r " ( — (morl p) 

= ^ ' ' (rnodp) (3.44) 

3.5.3 Attack on variation 6 

In variation 6, the signing equation is 

r = xh(m) + ks (mod p — 1) (3.45) 

and the verification equation is 

" / — V 二 � r (mod p) (3.46) 
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Similarly, we follow the steps as in Bleichenbacher's attack, except that 

s = f[r — zh{m)] (mod p - 1) (3.47) 

Proof 

yl_V = yh{m)^t[r-zh{m)] (modp) 

= y ' _ ) a ' - z _ ) (mod p) 

= i / ^ ^ ) a ' a - ' ^ ' ^ ^ ^ ( m o d p) 

(with some prob.) = y—a�j-'_�(mod p) 

= t t ' (mod p) (3.48) 

3.6 Digital Signature Standard(DSS) 

The National Institute of Standards and Technology (NIST) published the Dig-

ital Signature Algorithm (DSA) in t,lie Digital Signature Standard (DSS), which 

is a part of the U.S. government's Capstone project. DSA is based on the dis-

crete logarithm problem and a variant of the ElGamal signature scheme. It is 

more secure than the ElGamal signature scheme since it chooses the parameters 

carefully such that the attacks described in previous sections do not exist. 

Public Parameters 

1. Select a prime number q, where 2̂ ^̂  < q < 2 _ . 

2. Select a prirne number p, where 2 " < p < 2' for 512 < 1 < 1024 and 

/ is a multiple of 64 and with the property that q divides {p - 1) 

3. Select an integer g, where 1 < g < p - 1 such that �(P—i)/<? > i (mod 

ri 
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4. Compute a = "(p-1)/9 (mod p), so a is the generator of the cyclic 

group of order q in Z* 

5. Publish p, a 

Key Generation 

1. Randomly generate an integer x, where 0 < x < q 

2. Compute y = a^' (inod p) 

3. Private key: x 

Public key: y 

Signature Generation 

1. Riiii(loinly generate an integer A:, where 0 < k < q 

2. Compute r = {a& (mod p)} (mod q) 

3. Compute kr^ (mod q) 

4. Compute s = kr^{h{m) + rx) (mod q) 

5. Signature pair (r, s) 

Signature Verification 

1. Check whether 0 < r' < q and 0 < s' < q- if either condition is 

violated, reject tlie signature 

2. Compute w = s'—i (mod q) and h(m') 

3. Compute Ui = wh[m!) (mod q) and U2 = r'w (mod q) 

4. Compute v =[仅“”广(mod p)](mod q) 
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5. If V — r', accept the signature 

Now, we want to prove that the above signature verification works, i.e., if m = 

m', r = r' and s = s', then v = r'. We need the following result to proceed. 

Lemma 3.6.1 Let p and q be primes such that q divides p - 1，g is a positive 

mteger less than p, and a 二 g(p-^)/^ (mod p). Then a^ 二 1 (mod p), and if 

m = n (mod q), then a^ = a^ (modp) 

Proof. 

«" = {"(P-i)/”<7 (mod p) 

= g P - i (mod p) 

= 1 (mod p) (3.49) 

If rn = n (mod q), then m = n + kq for some integer k. 

� m 二 ^n+fc, (mod p) 

= a " a h (mod p) 

= c v " ( a ^ ) ' (mod p) 

= « ' ' ( m o d p ) (3.50) 

Theorem 3.6.1 Ifm = m!, r = r' and s = s' m the signature verification, then 

V = r'. 

Proof. We liavo 

w -- s'-i (rnod q) 

= ' s - i (mod g) (3.51) 
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'U'i = wh{m!) (mod q) 

=wh{m) (mod q) (3.52) 

U'2 = r'w (inod q) 

= r w (mod q) (3.53) 

Now, 

V = K'M/^(mod p)](mod q) 

= K " ( — � ( m o d p ) ] ( m o d q ) 

=K' '-^^^cv^""(mod p)](mod q) 

= [ a ( " ( - ) + - ) - ( m o d p)](mod q) (3.54) 

and 

s = k_i lh(rn) + rx] (mod q) (3.55) 

Hence 

w = A;["(m) + rx]~^ (mod q) 

w[h{m,) + rx] = k (rnod q) (3.56) 

Thus by the lemma 

V = a^(mod p) (mod q) 

= r (mod q) 

= r ' (mod q) (3.57) 

Here is an example of typical DSS signature generation [7]. The prime modulus 

'p chosen is 
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P = 7 434 410 770 759 874 867 539 421 675 728 577 177 024 889 699 

586 189 000 788 950 934 679 315 164 676 852 047 058 354 758 883 

833 299 702 695 428 196 962 057 871 264 685 291 775 577 130 504 

050 839 126 673 

and the prime divisor of p — 1，q is 

Q = 1 138 656 671 590 261 728 308 283 492 178 581 223 478 058 193 

247 

Therefore, {p — l)/q is 

{P - l )Ai = 6 529 106 583 441 773 144 705 959 127 165 952 066 964 

259 152 507 339 624 395 270 343 160 295 123 275 238 619 980 855 

555 928 611 777 361 776 

The generator for the cyclic subgroup of order q in Z；, « is 

« = 5 154 978 420 348 751 798 752 390 524 304 908 179 080 782 918 

903 280 816 528 537 868 887 210 221 705 817 467 399 501 053 627 

846 983 235 883 800 157 945 206 652 168 013 881 208 773 209 963 

452 245 182 466 

The private key, .T, is 

•̂  = 185 200 992 879 430 349 246 928 890 763 396 348 557 950 060 

052 

Then the public key, /5 = a^ is 
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3 = 1 313 262 929 912 132 563 149 647 614 777 216 522 615 273 453 

570 746 151 675 467 137 191 353 050 812 753 072 254 631 435 649 

494 300 072 321 220 858 192 262 592 093 219 893 426 623 085 296 

074 200 376 115 

Signature generation Assume the hashed message, h(m) is 

Mm) = 968 236 873 715 988 614 170 569 073 515 315 707 566 766 

479 517 

We randomly generate an integer, k 

k = 305 736 015 983 784 127 425 204 148 486 426 464 792 703 852 

479 

Then r=[cv& (mod p)] (mod q) is 

r - 797 387 772 302 493 209 021 291 765 790 742 058 535 532 839 

360 

The inverse of k 

A:-i = 76 032 227 071 633 570 089 031 757 830 396 511 732 987 263 

255 

So 

s = 376 128 930 725 767 930 183 372 771 997 677 399 746 658 752 

712 

8tgnaiure venficaUon Calculate w = s'_i (mod q) 
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w = 901 773 569 445 286 146 281 696 254 684 032 552 931 964 781 

595 

ui = w • h{m/) (mod q) and 

ui = 1 092 677 610 583 452 800 814 993 273 503 516 509 004 891 

674 269 

'u,2 = r'w (mod q) 

/7,2 = 742 761 371 689 099 697 708 866 970 523 451 752 290 280 404 

144 

Compute V = {a"'^ y"'^ (mod p) } (mod q) 

y = 797 387 772 302 493 209 021 291 765 790 742 058 535 532 839 

360 

which is equal to r, so we accept this signature. 
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Quadratic Field Sieve 

4.1 Quadratic Field 

In this chapter, integers in quadratic field will be used in the number field sieve 

to solve the discrete logarithm problem. First we will have some introduction of 

the qiiadmtic field. 

Theorem 4.1.1 An algebraic number of the form a + b^D where a and b are 

'raMonal numbers and D is a squarefree integer form,s a quadratic field and it is 

denoted as Q(\/D). 

Let a ^ b V D and c ^ d y / D are the algebraic numbers in the quadratic field. The 

fom. arithmetic operations in quadratic field are defined as 

(a + 6 v ^ ) i ( c + fiK/^) = (c/,±c) + (6±^i)y；^ 

(a + h\/D){c + d\/^) 二 (ac + bdD) + (ad + bc)y/B 

� ‘ + by/D _ ac - bdD bc — ad 厂 

c + dy/D 二 c2 - d?D + c^-(PD (4.1) 
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As D is a square-free integer, ĉ  - d^D will always + 0, except when c = d = 

0. Thus all divisions by c + d \ f ^ can be carried out, except the division by 

( )+ i)y/D = 0, the zero element of the field. Since the result of any arithmetic 

operation can always be reduced to p + qy/D, with p aiid q rational numbers, 

the domain is closed under arithmetic operations, and it is thiis a field. 

4.1.1 Integers of Quadratic Field 

The integers in the quadratic field is defined as 

Definition 4.1.1 The number z is sa.id to be an integer of the quadratic field 

Q(v^D) if it satisfies a quadratic equation of the form 

ẑ +pz + q = 0 (4.2) 

7"//,ere coefficients p and q are ratwnal mtegers^. 

Theorem 4.1.2 The integers ofQ{VD) are of the form x = r + sp for r and 

s heing arbitrary ratwnal integers, and where 

\/D ifD = 2 or = 3 (mod 4) 
p = (4 3) 

� = ^ ^ tfD = l (mod4) . 

Proof. If the number z = r + s^/D is a solution of the quadratic equation in 

(4.2), then 

(z — r f = Ds^ (4.4) 

That is 

2̂ - 2rz + r2 — Ds^ = 0 (4.5) 
1 To avoid imhecilit,y, we shall call the ordinary integers r a t i o n a l i n t e g e r s 
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By comparing equation in (4.2) and (4.5)，-2r and r^ — Ds^ should be integers. 

Piitting r = a/2 for integer a, 2r is always a rational integer and 

— - Ds' 二 j 一 Ds" (4.6) 

is a rational integer if either 

1. a is even, in this case r and s are rational integers, or 

2. a is o(ld, in this case, a,2/4 = 1/4 (mod 1), and Ds^ = 1/4 (mod 1). This 

condition is satisfied if s = 1/2 (mod 1) and D = 1 (mod 4). 

Therefore, combining these cases, we lia,ve the above theorem. 

Some examples of the integers in quadratic field are: the integers in Q(\/T) are 

simply called rational integers, and the integers in Q ( v / ^ ) are called Gaussian 

integers. 

4.1.2 Primes in Quadratic Field 

Definition 4.1.2 The number x = a + b^/D and x = a — 6 y ^ are called 

conjugate numbers in Q(VD) 

Definition 4.1.3 The norm, o.fx m Q{VD) is 

N{x) = XX (4.7) 

Definition 4.1.4 If x is an integer ofQ{VD) and 

N(x) = 土1 (4.8) 

then X is called a unit of Q(^/D). 
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Definition 4.1.5 If the integer a ofQ{y/D) cannot be decomposed as a = j5^, 

皿仇 ^ o.nd 7 integers ofQ{VD), unless one of3 or 7 is a umt，then a is sa.%d 

to he a pnm,e ofQ(VD). Otherwise a is said to be composite m Q{VD) 

Definition 4.1.6 An integral domain D m which factorisation into irreducible 

elements is possible, and all such factonsaMons are umque, is called a unique 

factorisation domain. 

The algebraic integers in an arbitrary quadratic field do not necessary have 

unique factorisations. There are exactly 25 quadratic fields in which there exists 

uniqiie factorisations: they are -163, -67，-43, -19, -11 , -7, -3，-2, -1，2，3，5, 6，7, 

11, 13, 17, 19，21, 29, 33, 37，41, 57, and 73 [10]. 

4.2 Number Field Sieve 

The number field sieve runs sub-exponential time in solving discrete logarithm 

problem. This method is similar to the index-calculus in which they both have 

the factor base. First, we will give a sketch of the algorithm. The number field 

sieve is based on the fact that: 

Theorem 4.2.1 Suppose the discrete logarithm problem, is log^ b. Let q he a 

p n m e dmi,sor ofp — 1. If we are able to find s,t G Z，with t copnme to q 

satisfying the property 

n'l/ = w^ (modp) (4.9) 

/or som,e w, then we can compute x rnod q. 

Proof. Since if (4.9) holds, then 

^'^'" = w ' ( m o d p ) (4.10) 
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Since a is the generator, we can let w = a\ then (4.10) can be written as 

广=0,叫(rnod p) (4.11) 

Therefore, 

6" + tx = iq (mod p - 1) (4.12) 

Since q is a factor of p — 1, 

s + tx = 0 (mod q) (4.13) 

Therefore, we can compute x rnod q where 

X = — s f i (rnod q) (4.14) 

Construction of the number field The number field sieve is based on the 

ol)servation that it is possible to construct a number field K — Q(a) and a ring 

hornomorphism ip from Z[a] of K to Z / n Z such that (^(a) = m (mod p). To 

generate the number field, we need an irreducible polynomial 

f { X ) = X" + (in-iX^-' + ... + aiX + ao (4.15) 

We restrict the degree of f(X) to be two, i.e., we use the integers in quadratic 

field. The reason is that: The algorithm runs better if the mimber field is a 

unique factorisation domain. There are only 25 quadratic fields wliicli liave 

imiqiie factorisation (k)maiii. We can save soiiie tiine in soardiing a ftd(l tliat 

Tiioets this requireiiioiit. 

In order to construct the ring lioinornorphism, we have to find a m such that 

/(m) = 0 (mod p) (4.16) 
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Choose the factor base In the second stage, we have to choose two factor 

bases. The first factor base B j consists of small primes, including a and b. The 

second factor base B2 consists of those prime with small iiorin iii the quadratic 

field. 

Sieving step The sieving step involves the concept of smoothness, here are the 

definitions of smoothness for both rational integers and algebraic integers. 

Definition 4.2.1 A mtional integer is called B-smooth if every prime number 

dividing it is a,t most B 

Definition 4.2.2 An algebraic integer is called B-smooth if every prime number 

dividing its norm is at most B 

The sieving step determines a set T of pairs (c, d) such that 

1. the rational integer (c + dm,) is Bi-smooth 

2. the algebraic integer (c + da) is B2-srn00th 

Linear algebra Use the Lanczos algorithm to determine a subset S C T such 

that 

1. n(cfi)es((: + dTn') is only divisible by a aiicl b 

2. n(c/iOes^(c + d'a) is a q-th power in Z[o; 

Compute result After having accomplished this, we achieve congruence (4.9) 

via 

a”/ = J | (c + dm,) 
(c,d)€S 
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= v^(c + da) 
{c,d)es 

= 綱 

= w ^ (mod p) (4.17) 

4.3 Solving Sparse Linear Equations Over Fi-

nite Fields 

The system of linear equations collected in nurnber field sieve are generally very 

large. These systems cannot be solved using ordinary linear algebra techniques, 

(lue to both tirne and space constraints. However, the equations generated are 

extremely sparse, there are only a few non-zero coefficients per equation. Here 

are some methods to solve the sparse rnatrix. 

4.3.1 Lanczos and conjugate gradient methods 

Suppose that we have to solve the system 

Ax = b (4.18) 

for a column n-vect,oi. .T, where A is a symmetric n x n matrix, and b is a given 

column n-vector. Let 

bo = h, (4.19) 

ci = Abo, (4.20) 

"1 = ^ i - ^ ^ ' ' ^ o , (4.21) 
< ^ , c i > 
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and then, for i > 1, define 

Q+i = 我 （4.22) 

/> . < C,+ i ,Q+i > < f ^ ^ h C ^ , � 
Oi+i = C,+1 k ； ^z-i (4.23) 

< 6 u C i + i > < Oi_i,Q > 

The algorithm stops when it finds a b] that is conjugate to itself, i.e., such that 

< bj, Abj > = 0. This happens for some j < n. If Wj = 0，then 

j-i 

x = J 2 d A (4.24) 
t=0 

is a solution, where 

, < bi, b > , � 
(k = ~ ~ r ^ — — 4.25 

<~，Q+i> 

(If Wj / 0, the algorithm fails) 

The Lanczos algorithm was invented to solve systems with real coefficients. To 

solve systems over finite fields, we can just apply the above equations to a finite 

field situation. [12] discusses some solutions when the matrix is not square. 

4.3.2 Structured Gaussian Elimination 

The basic idea of the structured Gaussian elimination is to declare some columns 

with rnany non-zero coefficients as heavy, and those with few non-zero coefficients 

as light. 

1- Delete all columns which have a single nonzero coefficient and the rows 

iii which those columns have nonzero coefficients. Repeat this step until 

there are no niore columns with a single nonzero entry. 

2. Select those aM columns which have the largest number of nonzero ele-

ments for some a > 0. Call these columns "heavy", the others "light". 
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Typical value of a might be 1/32. The entries in the "heavy" columns 

for every given row might be stored on a disk, with a pointer attached to 

the row list indicating the storage location. These pointers would have 

coefficients attached to them, which are set to 1 initially. The weight of 

a row is then defined as the number of nonzero coefficients in its "light" 

columns. 

3. Eliminate variables corresponding to rows of weight 1 by subtracting ap-

propriate multiples of those rows from other rows that have nonzero coeffi-

cients corresponding to those variables. If u times row i is to be subtracted 

from row j , the pointers attached to row j are to have added to them the 

pointers of row i, with their coefficients multiplied by u. Repeat this step 

until there are no more rows of weight 1. At the end of this process there 

are likely to be many more equations than unknowns. 

4. If r rows are excess, drop the r rows with highest weight. 

4.3.3 Wiedemann Algorithm 

Let the linear equations to be solved is 

Ax = 6, 

where A is a sparse non-singular n x n matrix. Let the minimal polynomial of 
A be f(z), where 

d 

f ( z ) = Y l c , z ^ (4.26) 
j=0 
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for d < n, Co / 0. By the definition of the minimal pohaiomial, 

d 

[ c ^ . A ^ = 0 , (4.27) 
j=0 

Thus, 

d 

X > A ^ 6 = 0 
.7=0 

d 

Y 2 CjA^b + Cob = 0 
.7 = 1 

d 

b = -CQ^^CjA^b 
j=i 

- d -

= “ 4 — C o - i f c j A ^ - 1 6 (4.28) 
. i=i . 

Then we can obtain the solution 

d 

X = - C Q ^ ^ C j A ^ - ^ (4.29) 

j=i 

In general, we use the Structured Gaussian Elimination to reduce the size of 

matrix. And then we can apply either the Wiedemann or Lanczos algorithm to 

solve the system of equations. 
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Conclusion 

Cryptography is a strict discipline, in the sense that the parameters used in the 

cryptographic algorithins should be carefully chosen. Otherwise, it may pose 

some security holes for the attacker to break in the system. For example, we 

liave discussed the ElGamal signature scheme in chapter 3. 

1. A hash function should be applied to the message first in the signature gen-

eration, otherwise, we can generate a valid signature pair without knowing 

the private key of signer. 

2. When we receive the signature, we should check that r should be less than 

!)• 

3. A different k should be selected for each message to be signed. Otherwise, 

t,he private key of tlie signer can be probably recovered. 

4. The prime number should be large enough to prevent the index-calculus 

attack. 
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5. p - 1 should contain a large prime factor q, to prevent the Pohlig-Hellrnan 

attack. 

6. Frorn the Bleichenbacher's attack, the generator a chosen should not divide 

P-L 

This thesis extends the Bleichenbacher's attack to the variations of the ElGamal 

signature scheme. However, such types of attack often impose a stricter condi-

tion. 

The Digital Signature Standard is a more secure version of digital signature 

than ElGarnal signature scheme. It is because the prime mimber p contains 

at least a large prime q, which can prevent some attacks like index-calculus, 

Pohlig-Hellman and Bleichenbacher. But with the advance of the computing 

technology, the prime should go beyond one thousand to two thousand bits. 

In chapter 4, we have discussed a special kind of niirnber field sieve - the inte-

gers iii quadratic field. The use of quadratic integers facilitates the searching for 

unique factorisation domain (since in quadratic field, there are oiily 25 unique 

factorisation domain). In using the number field sieve, we have to deal with a 

large and sparse matrix. It will be tirne-consiirning if we just use orcliiiaiy Gaus-

sian elimination to solve such matrix. Therefore, some techniques like Lanczos 

Algorithm, Structured Gaussian Elimination and Wiecleinaiiii Algorithm are 

used. 
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