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簡介 

交換網絡是”廣義無阻塞”如果有一種無阻塞選擇路向程式的存在°而 

對於一個 3級的C l o s交換網絡 [ n x m , rxr, m x n ] 而 言 ， 如 果 m > 

2n-l ‘那麼這交換網絡則是，，嚴格無阻塞”，這是比廣義無阻塞更強 

的性質。Benes [ 1 ]於 1 9 6 5年証明，當m 2 L3n/2�，則交換網絡[n 

xm, 2x2, m x n ]是廣義無阻塞。這也証明了廣義無阻塞並不等同於 

嚴格無阻塞。而這也帶來了一個問題，就是究竟除了 Benes所發 

現的之外，還有沒有其他廣義無阻塞但又不是嚴格無阻塞交換網 

絡。對此問題我們給予一個肯定的答案，就是 [ 6 x 1 0 , 3 x 3 , 10x6]是 

廣義無阻塞。在部份的註明過程當中，我們使用了電腦搜查作為輔 

助。 

在另一方面，我們也証明了交換網絡 [ 5 x 8 , 3x3, 8x5]不是廣義無 

阻塞。而我們更註明如果在交換網絡 [ n x m , rxr, mxn]之上存在一 

種無阻塞的”擠滿路向程式”，貝II m> Ll5n/8J。從[6x10, 3x3, 10x6] 

之例可見：廣義無阻塞交換網絡並不等同於它所用的路向程式是擠滿 

路向程式。 



Abstract 
A switching network is said to be wide-sense nonblocking if there is a 

nonblocking algorithm for route selection. The 3-stage Clos network 

rzxm，rxr, mxn] is strictly nonblocking when m > 2n — 1 and hence is 

also wide-sense nonblocking. In 1965, Benes [1] proved that the network 

nxm, 2x2, mxn] is wide-sense nonblocking when m > L3ri/2�. This 

identifies a family of 3-stage networks that are wide-sense nonblocking but 

not strictly nonblocking. It also raised the question on the existence of 

any wide-sense nonblocking network [nxm, rxr, mxn], r > 2, that is not 

strictly nonblocking. We answer this old question affirmatively with an 

algorithm over the network [6x10, 3x3，10x6]. The approach pertains to 

the concept of upper ideals in lattice theory. Part of the justification of the 

algorithm is by exhaustive computer search. 

On the other hand, the first smallest 3-stage network with the wide-

sense nonblocking property undetermined previously is [5x8, 3x3, 8x5 . 

From the same upper-ideal approach, we find this network not wide-sense 



nonblocking. We also prove that, if there exists a nonblocking packing al-

gorithm over [nxm, r^xr，mxn], then m > In view of the network 

6x10, 3x3, 10x6], a wide-sense nonblocking network does not necessarily 

admit a packing algorithm. 
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1 Introduction 

1.1 Background of switching networks 

Without switching concept, every user can only communicate with each 

other by a point-to-point network. The simplest case is there are only two 

users. They only need one single link for the communication. The situation 

is shown as Figure 1. However, the situation becomes more complex if the 

number of users (TV) increases. Figure 2 shows six links are needed when 

TV = 4. Therefore, the number of links will be increased exponentially if N 

increases. 

Communication Link 
User A UserB 

Figure 1: A point-to-point network for TV 2 

In order to make the network simple, reduce the number of connective links, 

and lower the construction cost, another network is proposed. It is the 

star network, which is shown on Figure 3 . The intermediate node, which 

is called switch, is a main key to reduce the total number of connective 

links. In the early beginning, the switch is operated manually by plugs. 

1 



Communication Link 
User A User B 

User C User D 

Figure 2: A point-to-point network for TV = 4 

Therefore, the switch is inefficient and insecure. The inefficiency is due to 

the slow manual switching and insecurity in eavesdropping on conversation 

by the switch operator. 

By the rapid development of electronics, the automated mechanical or 

electronic switch relays shown in Figure 4 replace the manual switches. 

However, for large TV, the hardware implementation could be difficult, as 

a consequence of the large number of cross points and the rather extensive 

connections required. 

To solve this problem, multi-interconnection switching networks are 

used. The idea is to use simple and smaller switches to construct a bigger 

switch. The disadvantage of this design is the network may lead to blocking. 

2 



User A y User B 

x ^ Switch \ 

User C User D 

Figure 3: A star network for TV = 4 

Blocking [6] is defined as the network has no ability to complete a 

connection, even when the input and the output for the connection to be 

established are idle. Therefore, switches can be divided into two categories. 

They are blocking and nonblocking switches. 

For a two-stage network, establishing a connection between an input and 

an output is to connect the first-stage switch and the second-stage switch 

by the one and only one connection link which is shown in Figure 5. The 

disadvantage of the network is no two inputs of the switch in the first stage 

3 



4 OUTPUTS 

Y — — Y — — Y — — V 

^ 6 — — 9 — — 9 — — 9 ^ 
Q. 
Z 

； 9 — — Y — — Y — — V ^ 

9 — — Y — — Y — — Y 

Figure 4: Switch relays for N=4 

could be connected respectively to two outputs of the switch in the second 

stage. For example, connecting input x to output y is impossible in Figure 5 

if the input a is already connected with the output b. The reason is there 

is only one circuit between every switch in the first stage and every switch 

in the second stage. 
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1st stage 2nd stage 

Input a Output b 

Input X \ / l̂ tput y 

憑 
Figure 5: A two-stage switching network for N=9 

1.2 Nonblocking properties of 3-stage networks 

In 1953, Clos proposed a modification to the network in order to cope with 

the blocking problem. His suggestion was to add an intermediate stage 

into a two-stage network. The function of the intermediate stage is to 

allow alternative pathways for making a connection. Therefore, three-stage 

network is also called as Clos network. In addition, every switch in the 
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first-(third-) stage having a connection link to each switch in the second 

stage is classified as the Clos network. There are three types of nonblocking 

three-stage networks: strict-sense nonblocking, rearrangeable nonblocking, 

and wide-sense nonblocking. 

A symmetric Clos network has the same number of inputs and outputs in 

the first- and third-stage switches. In addition, they also have the same 

number of switches in the first and third stage. Let [nxm, rxr , mxn] de-

note a 3-stage Clos network where the first-, second- and third-stage nodes 

are, respectively, nxm, rxr and mxn. Figure 6 shows [4x4, 3x3, 4 x 4 . 

In addition, a strict-sense nonblocking type is a switching network, in 

which a connection could always be made between an idle input and an 

idle output without changing the connections already established. The 

minimum number of middle-stage switches min{m) should be equal to 

2n — 1 where n is the number of inputs (outputs) of the first- (third-) stage 

switch. The theorem is easy to prove. Assume making a connection from 

an input of a first-stage switch (called a) to an output of a third-stage 

switch (called x). The remaining n — 1 inputs of the switch a may be 

using n — 1 middle-stage switches for making connections. The case will be 

6 



2nd stage 
1st stage ̂ ^ ^ ^ 3rd stage 

Figure 6: [4x4, 3x3, 4x4] network 

similar for the switch x. Therefore, totally 2n — 2 middle-stage switches are 

needed to handle the worst case. To make the last connection for switch a 

to switch X, an additional middle-stage switch would be sufficient. That is 

why min{m) should be equal to 2n — 1. For easy understanding, Figure 7 

explains the case for a [3x5, 3x3, 5x3] network. The connection between 

a and h needs the last empty middle-stage switch. 

In order to reduce the complexity of the switching network, adding 

minimum intermediate switches min{m) to provide a totally nonblocking 
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2nd stage 
1st stage ^ ^ ‘ ^ ^ ^ 3rd stage 

春 
Figure 7: [3x5，3x3, 5x3] network 

network becomes a general question. Thus, if m < 2n — 1, blocking may 

occur. One of the solutions is by rearranging the already established 

connections in order to avoid the blocking. This is the concept of the 

rearrangeable nonblocking switching network (RSN). Since there are n 

inputs and n outputs for the first-stage switch and the third-stage switch 

respectively, at least n middle switches will be needed to implement the 

RSN. The main disadvantage of the RSN is to do connection rearrange-

ment for some new connection requests. It will increase the complexity 
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of the switch and also a smart enough algorithm is needed to guarantee 

the reconnection delay. In addition, for some real time application like 

telephone conversation, the effect of the rearrangement reconnection may 

affect the quality of the service. 

Based on the above mention, strict-sense nonblocking network will be 

an ideal switching network . However, 2n - 1 middle-stage switches 

will be a great cost if n is large. In commercial or industry field, the 

network increases the manufacturing cost a lot. In engineering field, too 

many devices putting together may cost a lot of interference and heating 

problems. Therefore, unstable switching network would be the result. 

Moreover, some may suggest using the RSN. Absolutely, the main disad-

vantages mentioned before will cause great objection pressure. According 

to the above consideration, another solution needs to be proposed to 

balance the two. That means we need to find a switching network which 

uses less middle-stage switches than strict-sense nonblocking networks 

and also some smart routing algorithms can avoid blocking without doing 

any rearrangement. This kind of switching network is called wide-sense 

nonblocking (WSN) switching network. The network is said to be WSN if 
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there is a nonblocking algorithm for route selection. 

A nonblocking switching network needs to fulfill the connection requisition 

from all users if both ends are idle. Switching becomes more and more 

important because of the rapid development of the computer network and 

the communication network. The design of a network for interconnecting a 

large number of telecommunication end users with high bandwidth could 

be a complex problem. Therefore, how to provide an efficient and effective 

nonblocking switch with min{m) is a more crucial issue than ever before. 

1.3 Wide-sense nonblocking networks 

Denote by WS(n, r) the minimum value of m such that [nxm, rxr , mxn 

is WSN. An algorithm is called a packing algorithm if the selected route 

is always through one of the heaviest loaded second-stage node. For 

nxm, 2x2, mxn], there is a unique packing algorithm, which is obviously 

optimal in the sense of requiring the minimum number of second-stage 

nodes. In 1965, this packing algorithm was proved by Benes [1] to be 

nonblocking when m > [3n/2\. Consequently, WS{n^ 2) < [_3n/2�. It is 

not hard to see that WS{n, 2) > [3n/2j and hence WS{n, 2) 二 [3n/2_. 
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This result identified a family of 3-stage WSN networks that are strictly 

nonblocking. It also raised the question on the existence of any WSN, but 

not strictly nonblocking, network in the form of [nxm, rxr, mxn], where 

r > 2. In Section 3, we shall answer this question affirmatively with a 

nonblocking algorithm over the network [6x10, 3x3，10x6]. The algorithm 

relies on the concept of upper ideals to be described in Section 2. 

Other known facts on values of WS{n^ r) are as follows. A strictly 

nonblocking network is automatically WSN, hence WS[n, r) < 2n — 1. 

E. F. Moore proved that WS{n, r) = 2n - I when r > [n - 1)î ^^Zi] • 

This result was recorded in Kurshan-Benes [7]. Du-Fishburn-Gao-Hwang [3 

proved that WS{n^ r) > [7n/4j when r > 3. Li [9] proved that 

• WS{n, r) > [(7n + 1)/4J when r > 4 and 

• WS(n, r) > L(7n + 2 ) / 4 � w h e n n > 3 and r > p([rz/4」)，where the 

function p(s) means the maximum number of (4s + 2)-element subsets 

in a (7s + 3)-element set such that the pairwise intersection between any 

two of these subsets contains exactly 25 + 1 elements. For example, since 

p(l) = 4 and p(2) = 6. Therefore, 1^5(6, r) = 11 for n > 5 and 

^75(10, r) > 18 for r > 7. 
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；n fs W - 5545- 24025- 102961 437581+ 

n 2 3 4 - 6 5544 24024 102960 -
437580 

2 3 
3 5 

4 6 I 
5 一 7 8 or 9 I 9 

T 9 一 10 or 11 I 11 

T 1 0 一 12 or 13 I 13 

~8 12 — 14 or 15 | 15 

T 1} — 15-17 I 16 or 17 I 17 

10 15 17-19 I 18 or 19 I 19 

Table 1: Previously known values and bounds of WS(n, r) for n < 10. 

From all these results, Table 1 summarizes the values of WS{n, r) for 

n < 10. The smallest undetermined value in Table 1 is 3). In 

Section 5，we shall prove that the network [5x8, 3x3, 8x5] is not WSN 

and hence 3) = 9. The proof again relies on the concept of upper 

ideals. 

1.4 Routing algorithms by packing 

Define a network as strictly nonblocking by packing if every packing 

algorithm is nonblocking over the network. Similarly, a network is WSN 

by packing if a certain packing algorithm is nonblocking. Smith [10 

proved that the number of second-stage nodes required for a WSN network 
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cannot be less than [2n - n /r j under a large class of packing rules. 

Du-Fishburn-Gao-Hwang [5] proved that [nxm, rxr , mxn] is WSN by 

packing only if m > [(2 - nj. Yang [11] sharpened this necessary 

condition to m > [(2 — nj, where F2r—i is the Fibonacci number. 

\ Strictly nonblocking 
Strictly nonblocking ； by packing 

WSN 〈 WSN by packing 

Figure 8: Relationship among various nonblocking properties of networks. 

Figure 8 shows the obvious relationship among various nonblocking prop-

erties of networks. For [nxm, 2x2, mxn] in particular, the two horizontal 

implications in the figure are reversible since packing obviously minimizes 

the required number of second-stage nodes. Thus the vertical implication 

in the figure is not reversible by the aforementioned result of Benes [1 . 
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/ \ strictly nonblocking 
Strictly nonblocking ^ / by packing 

与 . . . 腫 

WSN 义 么 K WSN by packing 

Figure 9: Relationship among various nonblocking properties of the network 

nxm, rxr , mxn . 

A natural question is then: for [nxm, rxr , mxn] in general, are the two 

horizontal implications in Figure 8 still reversible? Following the proof of 

Lemma 2.1.6 and Theorem 2.1.7 in Hwang [5], one can establish the ne-

cessity of the inequality m > 2n — 1 for [nxm, rxr , mxn] to be strictly 

nonblocking by packing. Thus, the upper horizontal implication in Figure 8 

remains reversible for a general r. In Section 6, we shall prove that, if 

nxm, 3x3, mxn] is WSN by packing, then m > L宇」.Therefore, the 

WSN network [6x10, 3x3, 10x6] is not WSN by packing. Figure 9 sum-

marizes these conclusions. 
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2 The Concept of the Upper Ideals 

The focus of the thesis is on the network [nxm, 3x3, mxn]. Let the three 

first-stage nodes be labeled as a, b and c and the three third-stage nodes 

as X, y and z. As far as a routing algorithm over the 3-stage network is 

concerned, a connected route can be identified by the node it traverses 

through at every stage and a connection request can be identified by the 

first- and third-stage nodes. Label inputs and outputs of a middle-stage 

node as a, b, c, x, y, and z according to the node each I /O is linked to. 

This convention is shown in Figure 10. Hereafter a node will refer to a 

middle-stage node unless otherwise specified. 

The state of a node is the set of connections it is carrying. For example, 

the set {ax, bz} represents the state of carrying two connections, one from 

a to x and the other from b to z. For the sake of simplicity, the notation 

for this state will be simplified as axbz. The empty state is denoted as 0. 

Altogether there are 34 possible states displayed in Figure 11. Two states 

are connected by a line in the figure when one can be obtained by adding 

a new route to the other. 

15 



stage 1 Stage 2 Stage 3 

C Z • \ I 

Figure 10: I /O labels of a middle-stage node. 

The set-theoretical containment endows a natural order among the 34 

states. The state 0 is regarded as the smallest. The network state of 

nxm, rxr , mxn] is determined by states of the m individual nodes. 

Following the terminology of lattice theory, we have the definition below. 

Definition 1 With respect to a network state of [nxm, 3x3，mxn], a set 

S of nodes is called an upper ideal if, whenever S contains a node in the 

node state 0, then S contains every node in every node state greater than or 

equal to 0. The upper ideal generated by a collection of node states means 

the smallest upper ideal that includes all nodes in these states. 

16 



J W — — ^ M ^ ^ 

bycz by bycx 

Figure 11: Chessboard for r = 3 
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Notation We shall use the notation < ... > for upper ideal generation. 

Thus, for example, <axhy> represents the set of nodes in the two states 

axby and axbycz，while <ax, by> represents the set of all nodes in the 

twelve states ax, by, axby, axbz, axcy, axcz, azby, hycx, bycz, axbycz, 

axbzcy, and azby ex. The cardinality of a set S of nodes will be denoted as 

<S|. For every node state 6, let Sq denote the set of nodes in the state 0. 

Definition 2 Define the upper ideals. 

Ha =<ax, ay, az>, H^ =<ax, kc, cx>, 

lax =<ay, CLZ, bx, cx>, 

Jax =<cix, bycz, bzcy>, and 

Kax 二<bycz, hzcy>. 

For s G {a, b, c} and t G {x, y, z}, the upper ideals Hg, Ht, ht, Jst, cmd 

Kst are defined symmetrically. 

Lemma 1 A network state such that \Ha\ < n, \Hx\ < n, and \Ha U H^ = 

m leads to blocking regardless the routing algorithm. 

Proof The two inequalities ensure that the first-stage nodes a and the 

third-stage x are not saturated. Thus a connection from a to x could be 

18 



requested. The assumption of U 丑J 二 m blocks this request. • 

Lemma 1 can prove the condition 爪 二 2n — 1 of the strict-sense nonblocking 

networks easily as follows. For the worst case, 二 |丑0；| 二 几一 1- Besides, 

blocking will occur if m 二 2n — 2. One more middle-stage switch is required 

to handle the last connection ax. Therefore, m = 2n - 1 middle-stage 

nodes are needed regardless of the routing algorithm for a strict-sense 

nonblocking network. 

Actually, the whole state set of a network can be divided into two sub-sets. 

They are nonblocking and blocking. The nonblocking set is also called as 

“safe" set for a particular routing algorithm A. If a network state is inside 

the set, any connection request can be fulfilled by the routing algorithm A. 

That is no matter how we add or delete the routes. The switch still can 

keep away from blocking. 

Obviously, the blocking set is a pointer to avoid blocking. It indicates that 

the state of the network will be blocked in future. Therefore, the best way 

to find out the algorithm is to kick out all the blocking states. On the other 

hand, the ideal situation is all routing processes are inside the nonblocking 
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set. 

Furthermore, blocking set is further divided into two. They are absolutely 

blocking set and may-he blocking set. In the absolutely blocking set, no 

matter which algorithm you are using blocking still occurs. Therefore, the 

absolute blocking set is algorithm independent. On the other hand, the 

may-be blocking set is algorithm dependent. 

Besides, we can conclude that for the whole network state set. It divides 

into two sub-sets. The size of them is depends on which algorithm have 

been chosen. However, inside the blocking set, there is a fixed size and 

algorithm independent sub-set called absolutely blocking set as shown in 

Figure 12. 

1st is a good element to construct an indicator for the absolutely blocking 

set. In addition, those network states which cannot fulfil the Theorem 1 

can be found blocking in a few steps no matter which routing algorithm is 

used. 

Theorem 1 For the network [nxm, 3x3，m x n] with m < 2n — 1, a net-

20 



f:.「：、 
/ ^ May-be blocking set \ 
\ 名 / / Blocking Set 
\ / Absolutely blocking set / 

Figure 12: Set diagram 

work state such that \Iax\ = rn leads to blocking regardless the routing algo-

rithm. 

Proof Delete all routes except those traversing through the first-stage node 

a or the third-stage node x. Thus every node becomes in the state ay, az, 

bx, or ex. Let + |<Sâ| = i and + l̂ ĉccl = m — i. Thus n > i > m — n. 

Case 1: i < n and m — i < n. 

By Lemma 1, the network state leads to blocking. 

Case 2: i = n. Thus m — i = m — n<n — 1. 

21 



Add a connection from b to x. Then, |<Say| + ItŜ Î = n — 1, \Saybx + 

Sazbxl — 1 and |<Sb工I + 二 m - n. 

Delete the old route in the node in the state ayhx or azbx. Then 

Say\ + = n — 1 and jtSbâ l + |<Sc:r| = m — n + 1. 

The network state is as in Case 1. 

Case 3 : m — i = n. The case is symmetric to Case 2. • 

The theorem offers a guideline in routing: Avoid the situation when 

Iax\ = m or, more generally, when |/站| = m for any s and any t. 

Before the introduction of Theorem 2, let us investigate the follow-

ing example. The focus of the thesis in WSN networks are on the 

3x3’ L宇」xn . 

Example: Consider the given network state and find out the unknown 

value of X, Y and Z. 

State: l̂ ol = A", \Sax\ = V, and \Shycz\ 二 Z 
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From the above, we can get the following three inequality : 

X + y < n (1) 

< X-\-Z<n (2) 

X + + Z = 宇」 (3) 

(1) + (2)： 

2X + y 4- z < 2n 

sub. into ( 3 ) : 

X < 2 n - L宇」 

4 ni 

Form (1) : Y <n-X 

4 - [fl 

4 y > L¥� 
——I" 4 J 

similarly, Z 2 L t � 口 

From the above example, if all empty node states are occupied by all ay 

or all az, the network is blocking by Theorem 1. The inequalities indicate 

that sufficient connection requests from first-stage node a to third-stage 

node y or z can fully occupy all the middle-stage nodes. Based on this 

argument, the inequalities can give out a danger signal that Theorem 1 will 

be violated soon. In order to fulfil the inequalities more easily, we maximize 
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the value of X and minimize the vlaue of Y. Thus, by the solutions of the 

example, X =「引 and = Z = Lf _ • 

Theorem 2 For the network [nxm, 3x3, mxn] with m =[宇」，a net-

work state such that \ Jax\ > 2|_x�隐^ [ x � S < n leads to blocking 

regardless the routing algorithm. 

Proof Delete some old routes until every node becomes in the state ax, 

bycz and bzcy. Let |<Saa:| = i. Then, \Shycz\ + 沈;J = 2|_宇」—i. Thus 

礼學」—NGZS LT� -

Case 1: z - [ f _. 

A d d � 5 ] connections from the first-stage node a to the third-stage 

node z. Then |<5«工| = LT」，Wcz \ + \^bzcy\ = L T � a n d \Saz\ =「完_. 

Thus I/ay I 二 |<5aa;| + + \^bycz\ + I'^bzcyl = L 警」+�1^ + L ^ . = 

罕」+ 72 = L宇J. By Theorem 1, the network state leads to blocking. 

Case 2: 孕」— n<i< 1^1. 
L 4 J — L 4 」 

Add (|_学」—i) connections from a to x. Then = i + k, \Saxbycz \ + 

Saxbzcyl = L T 」 - and \Sbycz \ + \Sbzcy \ = L T 」 + k where 0 < /C < 

扭 _ j L 4 � L 

Delete the two old routes in every node in the state axhycz or axbzcy. 
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Then = L引 and + 二 Lt」+k. 

Clear routes in k of the nodes in the state bycz or bzcy. The situation 

becomes as in Case 1. • 

Theorem 3 For the network [nxm, 3x3, mxn] with m 二 [宇」，denote 

hy NSi, a network state with = n and \Sbycz\ + \^bzcy\ = 学」—「4 • 

Then, a network state such that \Jax\ > 学」leads to either blocking or 

NSi regardless the routing algorithm. 

Proof 

Delete all routes until every node state becomes ax, bycz and bzcy. Let 

Î SazI == i, \Stycz\ + = 2L 孕」 - I . Thus 2 L f ^ � — n S i � 

Case 1: 2L宇」—n < i < [ ¥ � 
1 _ 4 」 一 一 1 _ 4 」 

By Theorem 2, the network state leads to blocking state. 

Case 2: L孕」< <〈几 
L 4 J —— 

Add (n — i) connections from the first-stage node a to the third-stage 

node X. Then \Sax\ = i ^ k, + 工 = n _ i - k and 

Styczl + \Sbzcy \ = - n + k. Thus 0 < k < n - i. 

Delete the two old routes in every node in the state axbycz or axbzcy. 

Then the network state becomes \Sax\ = n, \Sbycz \ + \Stzcy\ = — 

n + k. 
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Clear routes in k of the nodes in the state bycz or bzcy. The network 

state becomes in the state NSi. • 

Theorems 2 and 3, as well as Theorem 1, offer guidelines in routing. 

3 Routing algorithm over the network 

6x10, 3x3, 10x6 

6x10, 3x3, 10x6] is proved by the Simulation Program (SP) that there 

exists a WSN routing algorithm. Only a counter example is sufficient to 

prove that a network is blocking. However, it is very difficult to verify that 

the network is WSN. Therefore, an effective and efficient way to do the 

proof is by the exhaustive computer search. The SP is designed to do this 

boring and tedious job. The main function of the SP is to go through all 

the possible routes. A nonblocking routing algorithm can start from the 

empty network state and exit the program because no more new network 

state can be found by the SP. 

Since the packing algorithm is proved not good enough in Section 6, a new 

routing algorithm need to be found to make the network WSN. Therefore, 

the concept of the upper ideals can be used to avoid the routing algorithm 
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to step into the blocking set. On the other hand, the routing algorithm 

should be very simple. For a complex routing algorithm, most of the effort 

is put into filtering which reduce the efficiency. 

Algorithm 1 Let a network state of the network [6x10, 3x3, lOx 6] be 

called admissible if it satisfies the following two conditions 

( 1 ) < 9 . 

(2) Either \Jst\ <7 or \Kst\ < 3. 

for all s and t. Moreover, let an admissible state be called preferred 

when \Ist\ < 9 and \Jst\ < 7 for all s and t. Given a network state of the 

network, an input node SQ that is carrying less than six routes, and an output 

node to that is carrying less than six routes, the algorithm needs to choose 

a middle-stage node for adding a connection from 5o to to such that the 

resulting state of the network is admissible. The criteria of the selection 

of the middle-stage node are as follows. 

• First, it is preferred that the resulting network state of the network is a 

preferred one. Among such choices, priority is given to a middle-stage 

node that has been carrying 1, 0, or 2 routes, by that order. The tiebreaker 

is the label of the middle-stage node in the increasing order. 
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• When no choice leads to a preferred state, then one leading to an ad-

missible state is adopted. Priority is given to a middle-stage node already 

carrying 0, 1, or 2 routes, by that order. The tiebreaker is again the label 

of the middle-stage node. • 

Theorem 4 The network [6x10, 3x3, 10x6] is WSN. In fact, Algorithm 1 

is nonblocking over the network. 

Proof Firstly, the initial state of the network is the empty state. The 

evolution of the state is through the addition of a new route to a middle 

node or the deletion of an existent route at a time. In the case of adding 

a new route, the number N of possible new states may be 0, 1 or more. 

When TV = 0, blocking occurs. When N > 1, the new state depends upon 

the algorithm of route selection. Exhaustive computer search identifies 

a set of admissible states that include the empty state and is "closed" 

under arbitrary route deletion and under route addition by Algorithm 1. 

The theorem is thus proved constructively. • 

Algorithm 1 is generalized as follows. It is not known whether the 

generalized algorithm, Algorithm 2, is nonblocking over networks 

n x [ ^ J , 3x3, L¥�xrz/，n > 6. 
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Algorithm 2 Let a network state of the network [nx|_宇」，3x3, 孕」xri/ 

be called admissible if it satisfies the following two conditions 

(1) \ I s t \ < m - l . 

( 2 ) Either\Jst\ < 2L学」—1 or \Kst\ < L t 」 _ 工. 

for all s andt. Moreover, let an admissible state be called preferred when 

< m - 1 and \Jst\ < 学」—1 for all s and t. Given a network state 

of the network, an input node Sq that is carrying less than n routes, and 

an output node to that is carrying less than n routes, the algorithm needs 

to choose a middle-stage node for adding a connection from Sq to to such 

that the resulting state of the network is admissible. The criteria of the 

selection of the middle-stage node are as follows. 

• First, it is preferred that the resulting network state of the network is a 

preferred one. Among such choices, priority is given to a middle-stage 

node that has been carrying 1, 0，or 2 routes, by that order. The tiebreaker 

is the label of the m,iddle-stage node in the increasing order. 

• When no choice leads to a preferred state, then one leading to an ad-

missible state IS adopted. Priority is given to a middle-stage node already 

carrying 0, 1, or 2 routes, by that order. The tiebreaker is again the label 

of the middle-stage node. • 
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4 Simulation Program (SP) 

The SP is an important element in developing the routing Algorithm 1. 

The difficulties in designing this program are due to huge memory size and 

low computing speed. Therefore, solving these two problems needs great 

technical skill. 

The SP uses a large buffer memory to hold all the possible network states. 

The data structure to represent a state is shown in Figure 13. Each byte 

is considered as a node state. Therefore, for [6x10, 3x3，10x6], there are 

ten bytes for ten node states. The eleventh byte is using as a pointer for 

hanging process which will be discussed in the coming paragraph. The 

seventh and eighth bits of the first byte are flags indicating whether the 

network state does the insertion or deletion process. 

The maximum buffer size for [6x10, 3x3, 10x6] are around 13M network 

states. Therefore, the SP needs at least 143M bytes of internal memory. 

The buffer is designed in static array in order to reduce the access time. The 

data is sorted and put into the buffer queue in order to do the binary search, 

which do the discarding process if the new network state exists in the buffer. 
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Del flag aX b y CX 

Add flag \ | 1 I 

- 1 \ _ \ r ^ r ^ ^ ^ 
node 2 “ — * - | 1 I 0 I 0 I 1 1 0 1 1 

~ 0 0 0 — 0 — 0 — 0 0 0 

0 O O P 0 0 0 0 
0 0 0 0 0 0 0 0 , , , 

empty state 

0 0 0 0 0 0 0 0 

0 0 — 0 — 0 0 0 0 0 
0 0 — 0 一 0 0 0 0 0 

0 0 0 0 " 0 " 0 0 0 
0 ' 0 — 0 0 0 0 0 0 

node 10 —*• o 0 0 0 0 0 0 0 

Hanging ^ 5 i i 1 i 0 0 0 
address 1 ' I ' I I I I I I 

one byte 

Figure 13: Data structure for n = 6 

The whole buffer is divided into three parts. They are considered as "main" 

buffer, "temp" buffer and “hanging" buffer. The size of the "temp" buffer 

and the “ hanging" buffer is fixed in 256 blocks individually. The remaining 

memory is the "main" buffer. Furthermore, a new state will be either put 

into "main" or “hanging" buffer. The function of the "hanging" buffer is 

to reduce the time in doing the shifting process. Let us explain in a more 

practice way. For example, the status of arrays is "1, 3, 45, empty" as 

shown in Figure 14. If a new number 40 is inserted, 45 must be shifted to 

an empty space and insert the new number 40. The new status of the array 

is，，1, 3, 40，45". Certainly, it wastes a lot of time in shifting process if lots 

of elements need to be shifted in each insertion. Therefore, a “ hanging" 
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buffer is used to save the new insertion data 40. The pointer of the data 

3 is used to point to the location of the "hanging" buffer. The situation 

is shown in Figure 15. Therefore, the shifting process does not necessary 

require in each insertion. In addition, the shifting process can be done after 

the "hanging" buffer is full. 

1 3 45 empty 

Figure 14: Status of an array 

1 I 3 I 45 I E m p t厂 

^r 

40 

Figure 15: Hanging example 

The "temp" buffer is designed to speed up the shifting process by moving 

the “ main" buffer forward 256 blocks of memory instead of doing swapping. 

Therefore, only two steps (read and write) require to shift data to a new 

location. In each shifting process, the location of "temp", "main", and 

“hanging" buffer will be shifted by 256 blocks in circular as shown in 

Figure 16. 
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hanging main temp 
0 256 19200000 

Shifting by 256 
blocks 

temp hanging main 
0 256 511 

Figure 16: Shifting process 

Another way to minimize the size of the database is using canonical form. 

A canonical network state represents a group of network states which 

are equal to the canonical one after doing some canonical transform CT. 

Network state i is equal to network state j if and only if i is equal to j 

after doing the CT. One example is shown in Figure 17. 

Actually, the canonical state depends on what conditions you have set. In 

the SP, we set the following conditions. 

1. N{a) > N{b) > N{c). 

2. N{z) > N{y) > N{x). 

3. The ten row vectors are sorted descending from up to down. 

where the function N(t) is number of routes from (to) first- (third-)stage 

node t. 
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b — 一 y b 一 — y 

b — ^ ^ ~ � — y b — ^ 一一 y 

c — — z c — ‘ 一 z 

State I State j 

A _ I—X 
b — ^ y b — y 

k z a - K 

b — y b — y 

c—— ——z a — — — — z 

State / 

b— "̂̂ 一̂y 
Relable those 。 — — ^ 

inputs and * 
outputs , 

C = ) 
a—— ——X 
b — 一 y 

- z 

state j 

Figure 17: An example of CT 
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Although the SP is implemented by the above data structures, the running 

time is still too long. For example, we need 200M for memory, 500M for 

backup and 6 days to find out that Algorithm 1 is a WSN routing algorithm 

over [6x10, 3x3, 10x6] by a powerful ultra 5 machine. Therefore, it still 

needs some improvements. 

5 Nonexistence of routing algorithm over 

the network [5x8, 3x3 , 8x5 

The networks [nx [ ^ J, 3x3, L 宇」xn] are strict-sense nonblocking for all 

n < 4 because L宇」=2n — 1 if n g 4. Therefore, the first smallest possible 

WSN network may be the network [5x8, 3x3, 8x5] which is shown in 

Figure 18. 

Notation Label the nodes by 1,2,.. .， m. For j < k, let [j, k] denote the 

set of nodes j, j + 1, . . . , k. 

Theorem 5 For the network [5 x 8； 3 x 3, 8 x 5]； the network state NSi 

leads to blocking regardless the routing algorithm. 
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Figure 18: The 3-stage Clos network denoted by [5x8, 3x3, 8x5 
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Proof Let Th2{Jax) represents that the network state leads to blocking by 

Theorem 2 with |<5�3；| = 學」and \Sbycz \ + 沈 二 |_宇_. 

Let Thl{Iax) represents that the network state leads to blocking by 

Theorem 1 with + + |<?石2；| + = rn. 

Let the notation "Add one a ? represents "Add one connection from 

frist-stage node a to the third-stage node x" and so on. 

State T1 : Say =[1，5], S ẑcx =[6，6], So =[7, 8 . 

Add four hz\ the state will become T i l , T12 or T13 as specified below. 

T i l : Saybz = [ 1 , 4 ] , Say = [ 5 , 5 ] , Sbzcx 二[6, 6 ] , <So = [ 7 , 8 : . 

Add two err: the new state become T i l l , T112, T113, T114 or T115. 

T i l l： Saybzcx =[1， 2], Saybz 二[3, 4], Say =[5, 5], Sbzcx —[6, 6], So = [ 7 , 8 . 

Delete every node becomes in the state ay, bxcz or bzcx. 

Then Th2{Jay). 

T"112: Saybzcx = .1, 1., âybz — 2, 4 , Saycx = .5, 5., Sbzccc — 6 , 

<So =[7，8]. 

Delete every node becomes in the state cx, aybz or azby. 

Then T/i2(JcJ. 
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T 1 1 3 : Saybzcx = [ 1 , 1 ] , ^aybz = [ 2 , 4 ] , S a y = = [ 5 , 5 ] , Sbzcx = [ 6 , 6 J , 

<5e. =[7, 7], <So =[8, 8]; ditto 

T114: Saybz =[1，4], Saycx =[5, 5], Sbzcx =[6, 6], Sex =[7，7], 

<So 二[8, 8]; ditto. 

T115: Saybz =[1, 4], Say =[5, 5], <Sb薦=[6, 6], =[7, 8]; ditto. 

T12: Saybz =[1, 3], Say =[4, 5], Sb獻=[6，6], =[7, 7], <5�二[8, 8]. 

Add three cx: there are two cases. 

Case T121: middle-stage nodes 1, 2, 3 carry at least two new cx; 

T121： Saybzcx — .1? 2 , Saybz — 3 , 3 , Say = 4 , 5 , (Sbzccc 二 [ 6 ’ 6], 

Sbzcx 二[7，7], So 二[8, 8]; Delete every node becomes in 

the state ay, bxcz or bzcx. Then Th2{Jay). 

Case T122: middle-stage nodes 4 through 8 carry at least two new cx] 

The case will Th 2{Jcx) because node 1 to 3 carry three ”aybz” and 

node 4 to 8 carry at least three “ err，，. 

T13: Saybz =[1，2], Say =[3, 5], Sbzcx =[6, 6], Sb^ =[7, 8]; Thl{Iaz)-

All the possible routes are considered beginning from the state NSi. There-

fore, the state NSi leads to blocking over the network [5x8, 3x3，8x5 

regardless the routing algorithms. • 
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Theorem 6 The network [5x8, 3x3, 8x5] is not WSN. 

Proof Let the notation，，5-I-P represents that IT̂ TI = m 二 8. Then, 

by Theorem 1, the network state leads to blocking if the state is 5-I-P \Ist 

for some s and some t. 

Let the notation "5-J-P |人̂；丨，，represents that |人：̂丨 2 2 [ , � . B y Theorem 3’ 

the network state leads to blocking if the state is 5-J-P \Jst\ for some s and 

some t. 

By the 5-I-P and 5-J-P, it suffices to force an empty network state leading 

to blocking. 

Add five az: the new state becomes Saz =[1, 5], 5o =[6,8 . 

Add five by: the new state becomes Tl , T2, T3, or T4 as specified below. 

Tl： Sa,by 二[1, 5], 5o =[6, 8]. 

Add five CX： the new state becomes T i l , T12, T13 and T14. 

Til： Sazbycx =[1, 5], tSo 二[6, 8. 

Delete routes: Sazby =[1, 3], Sazcx =[4, 5], Sq =[6, 8. 

A d d t w o bx: Sazby = [ 1 , 3 ] , Sazcx = [ 4 , 5 ] , Sbx = [ 6 , 7 ] , So = [ 8 , 8 : . 

Add two cy: the new state becomes T i l l , and T112. 

Till： Sazby =[1, 3], Sazcx =[4, 5], Sbxcy =[6, 7], <So 二[8，8]: 0； 
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5-J-P Jaz • 

T112: S—y - [ 1 , 3], S 紐 = [ 4 , 5], Sb̂ cy =[6, 6], =[7, 7], 

Scy = 8, 8 ； 5-J-P Jaz • 

T12: Sazbycx 二[1，4], Sa咖 二[5，5], =[6, 6], <So =[7, 8]; 5-J-P • 

T13： Sazbycx =[1, 3], Sazby =[4, 5], Sex =[6, 7], <5�二[8, 8]； 5-J-P Jcx • 

T14： Sazbycx =[1’ 2], Sazby =[3, 5], Sex 二[6, 8]； 5-I-P 丨/?̂：̂  • 

T2 : Sazby 二[1，4], 二[5，5], Sty - [ 6 , 6], 5o = [ 7 , 8]. 

Add three c:r: consider four cases T21, T22, T23, T24 and T25. 

T21: the state of node 5 {az) carries a new connection from c to x; 

5-J-P \Jby\ case. 

T22: the state of node 6 {by) carries a new “cx" route; 5-J-P \Jaz\ case. 

T23: both middle-stage nodes 7 and 8 carry new connections; 

5~J~P Jcx case. 

T24： Sazbycx =[1, 2], Sazby =[3, 4], Saz =[5，5]，Sfjy =[6, 6], Sex 二[7, 7], 

<So = [ 8 , 8 : . 

Delete routes: Sazcx =[1’ 2], Sazby =[3, 4], Saz =[5, 5], Sby =[6，6], 

Sex =[7, 7], 5o =[8, 8 . 

Add two bx： Sazcx =[1, 2], Sazby =[3, 4], Sazbx =[5, 5], Sby =[6, 6], 

^cx =[7, 7], Si)x =[8, 8 . 

Add two cy: Sazcx =[1, 2], Sazby =[3’ 4], Sazbxcy 二[5，5], Sby =[6, 6], 
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Sex 二[7, 7], Sbxcy 二 [8, 8]； 5-J-P Jaz • 

T25: Sazbycx =[1，3], Sazby =[4, 4], =[5, 5], Sty =[6, 6], <So 二[7, 8]. 

Add one more cx: the new state becomes T251 or T252. 

T251: Sâ bycx =[1, 4], S肌 二[5, 5], Sby =[6，6], <9�=[7, 8]. 

Add one more ex. We cannot add the cx into node 5 and node 6 

because of T21 and T22. 

the state: Sazbycx 二 [1，4], Saz =[5, 5], Sby 二[6, 6], Sex =[7，7], 

Sq =[8，8:. 

Delete routes: Sazcx —1，2], Sazby 二[3, 4], Saz =[5, 5], Sby =[6，6], 

Sex =[7，7], tSo =[8, 8 . 

Add two bx： Sazcx =[1, 2], Sazby ==[3, 4], Sazbx =[5, 5], Sby =[6，6], 

ĉx =[7, 7], Sbx =[8, 8. 

Add two cy： Sazcx 2], Sazby 二[3, 4], Sazbxcy =[5, 5], Sby =[6, 6], 

^cx = 7 , 7 , Sbxcy 二 8 , 8 ； 5 - J - P Jaz . 

T252: Sazbycx 二[1, 3], Sazby =[4, 4], Saz =[5, 5], S^y =[6，6], 

Sex =[7, 7], <So 二 [8，8. 

Add one cx： Sazbycx =[1, 3], Sazby =[4，4], Saz =[5，5]： az, 

Shy = 6, 6 , Sex = 7, 7., Sex — 8, 8 ； 5-J-P Jcx . 

T3： Sazby =[1, 3], Saz =[4, 5], Sby =[6, 7], tSo =[8, 8 • 

Add five or: consider T31, T32 and T33. 
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T31: middle-stage node 4 or 5 carries a new route; 5-J-P \Jhy • 

T32: middle-stage node 6 or 7 carries a new route; 5-J-P | Jaz . 

T33: after eliminating the states T31 and T32, we can only add four ex. 

Then the network state leads to blocking. 

T4: Sazby =[1，2], Saz =[3，5], Ŝ y =[6’ 8]; 5-I-P IhA case. • 

In view of Table 1，we conclude that WS{b, 3)=9. 

6 Packing algorithms 

By the following Theorem 7, we prove if the network [nxm, 3x3, mxn] is 

WSN by packing, then m > L宇-. 

Lemma 2 [字」2 — L^J f o r n k 3 

Proof 

We know that, 

A; - 1 < [A:J < A: 

and 
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k <�/c] < A: + 1 where k is a natural number. 

Therefore, 

7n 3n 3n 
一 一 — + — 

L 8 J L 2 J L 4 J 
7n n 3n 

= 一 —n — — + 一 

L 8 J 1^2�L 4 J 
n n ？>71 

^ ^ — — — —— ^ ― •_--‘ 

8 4 � L 4 J 

^ —(互+ 1) 
- 几 9 - 8 - 2 . 

I — 2 > 0 for all n > 16. we could use computer or calculator to prove 

whether the lemma is correct for those cases 3 < n < 16. The results are 

as follows. 

^ ~ H ^ I T f ] “ 7 n ^ ~ ' T 亟 

. _ _ _ L i � _ L j � L T � II L i � _ L T �卞 LT� 

J 0 10 0 
^ 0 11 1 
T " 0 — 12 1 

~6" Q 1 
1 14 1 

'~8 1 15 2 
I 9 I 0 II I 1 

Thus the inequality holds for all n > 3. • 

Theorem 7 If the network [nxm, 3x3, mxn] is nonblocking under some 

packing algorithms, then m > ^ . 
‘ - o -
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Proof Firstly, we prove that the theorem is true for n > 3. The proof starts 

from an empty state. 

Add n ax into the empty state: Sax =[1, n . 

Add n by: S— =[1, n . 

Add n cz: Saxhycz =[1, n. 

Delete routes : S— 二[1’ U」]，̂ axcz 二[UJ + 1,几• 

Add LfJ bz: =[1, U J ] ， - [ L t J + 1 , 姊 Sb, 二[n + 1 , LfJ]. 

Add 2 cy： Saxby ~ .1； _2_ . 5 ^axcz ~ . _2_ + 1, ^ , b̂zcy — Tl 1, . 

Delete routes: Sax =[1, n], S— — + 1, L学」. 

A d d � f | bz: Sa, 二[1, LfJ]' S a - � + 1, n], S一 二[n+ 1, [ f j ] . 

A d d � f l cy: Sa, =[1, LfJ]' ^axbzcy J + 1, n], S— =[n + 1, LfJ]. 

Delete routes: Sax =[1, L x � ] ’ Sbzcy J + 1, LT� : . 

Add a孕」 - L f J ) • Sa工=[1, L f 」 ] ， = [ L f � + 1，LfJ] , 

C —「 3 n I 1 In 
一LL j � 十 1, Llfi-

Delete routes: S�工 二[1，[fj], = [ L f � + 1, [ f j ] , 

‘9 —「扭 + 1 7n f \ 
^az —LL 2 � t 丄'L 4�J 

Sort nodes: =[1, 學 」 ] , = [ L f J + 1, 宇」—[JJ], 

S —[9 ^ — H -L 1 In 1 
OCY —[̂ L 4 � 1_2�十丄，1_4�-. 
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Since [宇」> 字」，the state can be divided into two parts. The size of 

each part is greater than or equal to the value L孕J. The desired network 

state will be like : Ŝ y U Sby =[1， [ f J], ^ax U 二 [ L f � + 1, L T � ] . 

<C cy > \ = L学」_ L学」.Therefore，by Lemma 2, the | < cy > | < 

and \ < az, ax > \ > L字」. In order to achieve the desired state, 

( L警」— L T 」 + L F J ) ”hT are inserted. 

Add (LfJ - LfJ + LfJ ) by: Sa. U 二[1, L宇」— L f J ] , 

s . [ IS , —[ In — llL 4_ 1 ？ M — R —To M _ 1 IR 
Oaccby U Oazby —LL 4 � 1_8�卞丄,力[4� [2」」，̂ ŷ — L̂ L 4 � L2�十丄，L 4 � - • 

Delete routes: <S脇 U S � , —1, L t � 一 Lt」]，Sby = [ L x � — L t � + 工， 

9 ^ _ n n —�9 纽 — n , -i 7n ‘ z L j � _ L3�j，Ocy 一[ZL丁」—L3�t 1, L l � j . 

Since \ < by, cy > \ =[学」and \ < ax,az > \ > [字」，the number of free 

” ay,, is N - |_宇」+ L T � = L T � — L T � . By |_宇」> LfJ ' The free connection 

request ” ay,, is always positive. 

Add (LfJ - LfJ) ay: Sa^ U =[1, [ f j ] , < S如 = [ L f � + 1, 2[警」-LfJ], 

Scy =[2LfJ - LiJ + 1 , LfJ], S叫= [ L割 +1，Lf^J]. 
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The final node should be [ ^ J because (L字J _ LT」）+ L T � = + L f . = 

15n 
L丁 J • 

Since Lemma 2 only applied for n > 3, the above proof is only valid for n > 

3. Therefore, two remaining cases, n = 1 and n = 2 should be considered 

individually. 

Obviously, when n = 1 and m = | ^ � = 1 , the theorem is trivial true. 

For n = 2, 

Add two ax into the empty state : Sax =[1, 2 . 

Add two by : S—y =[1, 2 • 

A d d t w o cz : Saxhycz = [ 1 , 2 . 

Delete routes : S—y =[1], Saxcz =[2 . 

Add one cy : S—y 二 [1]’ ^axcz 二 [2], Scy =[3:. 

From the above, three middle-stage nodes should be needed for the case 

n = 2. In addition,[(丄已二⑵」=3 concludes that the theorem is also true for 

n = 2. Therefore, the theorem is true for all n. • 
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7 Summary and directions of further study 

The Benes theorem [1] identified a family of WSN networks that are not 

strictly nonblocking. It also raised the question on the existence of any 

other such networks in the form of [nxm, rxr , mxn], r > 2. Theorem 4 

answers this question affirmatively with a nonblocking Alogrithm 1 over 

the network [6x10, 3x3, 10x6]. The smallest value of WS{n, r) previously 

undetermined was 3). Theorem 6 finds WS{5, 3) = 9. Theorem 7 

establishes the necessity of m > L ^ � f o r [nxm, 3x3, mxn] to be WSN 

by packing. Thus the example of [6x10, 3x3, 10x6] shows that a WSN 

network is not necessarily WSN by packing. Table 2 shows the modified 

Table 1 with our results. 

rH r ^ 5545- 24025- 102961 437581+ 
n 2 3 4 - 6 5544 24024 102960 -

437580 
J 3 

4 5 
丁 6 — 7 

7 — 9 I 9 — 
T 9 10 I 11 
~7 10 — 12 or 13 I 13 
~S 12 — 14 or 15 I 15 — 
J 13 了5-17 I 16 or 17 | 17 
lio I 15 I 17-19 I 18 or 19 | 19 一 

Table 2: Known values and bounds of WS{n, r) for n < 10. 

For further research, we conjecture that the network [nx L宇」,3x3, [^J xn], 
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n > 6, is WSN through some generalization of Algorithm 1. Algorithm 2 

is one of the possible generalization of Algorithm 1. On the other hand, it 

could be interesting to find a new proof of Theorem 4 without the aid of 

computer. In addition, the SP still needs some improvements. One of the 

suggestions is using the parallel computing technique to shorten the running 

time with a multi-CPU super computer. 
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