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Abstract 

Advances in distributed multimedia systems and networking technologies 

have made it feasible to provide interactive digital services such as video-on-

demand (VoD) services. Designing and implementing a cost-effective VoD sys-

tem so as to deliver video services is a challenging task due to the quality of 

service (QoS) requirements of digital video. 

In this thesis, we consider a theoretical framework for performing admission 

control in a VoD system. Previous work on the admission control on VoD system 

guaranteed QoS only on the aggregated traffic, our admission control algorithm 

can guarantee the QoS requirements of individual connections. Also, currently 

few papers considered both admission control for VoD servers and for the net-

work sub-system. For the VoD service, the user can only view the video at the 

end of the transmission networks. So the transmission of video stream in the net-

work sub-system is also very important. Our algorithm presented in this thesis 
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is a two-step admission control algorithm. The QoS requirements are bandwidth 

and packet dropping rate (the expectation of maximum number of packets can 

be dropped in a transmission timeframe), which are specified by users. By using 

ChernofF's theorem, we can statistically guarantee the bandwidth requirements 

of users'. By using the strong conservation laws, the admissible region for the 

packet dropping rate is easily derived and the admissible control policy which 

achieves the given dropping rate vector (or even "better vector") can be found. 

Experiments show that our proposed algorithm can achieve high bandwidth uti-

lization, making VoD service cost-effectively. 
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一 ‘ 茵 提 供 尉 V i d e o - o n - D e m a n d 系 統 中 

各個用戶質量保證的接1^3控制算法 

作者：王小靑 

摘要 

分佈式多媒體系統和網絡技術的發展，使象Video-on-Demand(VoD)這類互動數字 

化服務成爲可能。由于數字化video的質量要求，設計和霣現一個费用合理的VoD系統 

來傳遞video服務是一個艱巨的任務0 

在篇論文中，我們考慮一個在VOD系統中進行接IfflS制的理論框架。之前的有 

關VoD系統的接Iflg制的工作只能保證整體用戶的質量要求’我們的接$«4制算法能 

保證對每一用户的質量要求。而且，現在很少有論文考慮對VoD服務器和網絡系統的 

接$内控制。Si•于VoD服務，用户只能在傳輸網絡終端上看到video,所以video在網絡上 

的傳輸也是很重要的0我們在這篇論文中提出的算法是一個兩步驟的接$内控制算法0 

貿量要求包括帶寬的要求和packet的放棄率(在一個傳輸週期内最多可以放棄packet的 

個數的期望値)。這些要求是由用戶提出的。通過運用Chernoff定理，我們可以在統計 

上保證用戶的帶寬要求。通適蓮用强守恆律，packet放棄率的可行區域可以容易地找 

到，而且可以給定packet放棄率(或更好的packet放棄率)的接$内控制也可以找到。 

試驗顯示我們所提出的算法可以達到帶寬的高利用，使VoD服務费用合理。 
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Chapter 1 

Introduction 

One of the exciting development in our society in the last decade is the devel-

opment of communication networks [21]. The transmission media evolved from 

copper-based transmission media to optical fiber, made the speed of transmission 

and capacity of the networks improved significantly. Various kinds of switches 

and routers are built to handle more and more complicated communication traf-

fic. The computers used in the communication networks also enjoyed a great 

development. For example, the growth rate of computer speed is that it can 

increase by 100% every 18 months. All of these give the current communica-

tion networks the ability to develop many new applications. Video-on-Demand 

(VoD) is one such application which can provide videos to the users who are 

sitting at home. For example, users can select videos within the VoD provider's 

video collections, choose how to view the selected video under different playback 

modes, e.g., fast forward, fast backward, etc. This is just like viewing the video 

by using a conventional VCR, but without the inconvenience to go to the video 

rental shop to get the wanted videos [7 . 

However, designing and implementing a cost-effective VoD system so as to 

deliver video services is a challenging task due to the quality of service (QoS) 

requirements of digital video. For example, each user may demand to view the 
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Chapter 1 Introduction ^ 

video at certain frame rate. This frame rate requirement can be translated to a 

bandwidth requirement of transmitting the video data. Since most of the video 

data are variable-bit-rate (VBR) in nature, to satisfy this requirement and at 

the same time, to use the bandwidth of the transmission network efficiently, we 

have to perform the necessary bandwidth allocation and management in trans-

mission network. Another implication of the QoS requirement is that we have 

to perform the proper I / O (or disk) scheduling so that the data correspond to 

any video stream can be retrieved in time for delivery. Therefore, in order to 

maximize the number of users we can support in a VoD system, we have to have 

a careful planning of I / O scheduling as well as network bandwidth management. 

Employing some form of admission control mechanism is one way to address this 

problem. 

The admission control is a mechanics to limit the number of users admitted 

in the VoD system so that the specified QoS requirements of the users currently 

in the system can be satisfied. The design of admission control algorithms is 

very important for VoD system because if the admission control in VoD system 

is too conserved, the number of the users the system admits will be less than 

the number of the users the system can support, this will result in the under-

utilization of system resources. On the other hand, if the admission control 

permits too many users to enter the system, the scarcity of system resources 

will make some users' QoS requirements violated. Due to the scarcity of system 

resources, the admission control algorithms should be carefully designed to make 

high utilization of system resources and at the same time, satisfy all the admitted 

users' QoS requirements. In general, when a request arrives to the VoD system, 

the admission control algorithm needs to decide whether to accept or reject this 

request based on the following two criteria: 

• Whether the system has enough resources to satisfy the QoS requirements 

of this request. 
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• If the system decides to accept this new request, the system also needs 

to ensure that the QoS requirements of other existing users will not be 

violated. 

In this thesis, we present a simple yet efficient admission control algorithm 

which can give statistical guarantee for the QoS requirements of each individual 

connection and at the same time, achieve efficient usage of system resources. 

The organization of this thesis is as following: 

In Chapter Two, we briefly describe the general architecture of the VoD 

system and the related issues. We explain why the video streams are V B R in 

nature and which compression technology is usually used for the videos in VoD 

system. We explain some kinds of storage media for VoD system. We explain 

the data placement schemes in VoD system. We also give an overview of disk 

scheduling algorithms in the VoD system. Lastly, we explain the admission 

control in VoD system. 

In Chapter Three, we explain the QoS requirements we choose and the sys-

tem model we use. Then we present our admission control algorithm. Some 

preliminaries related to stochastic scheduling via polymatroid structure is also 

presented. 

In Chapter Four, we present some experimental results obtained by using our 

proposed admission control algorithm. We also compare these results with the 

results obtained by using average bandwidth allocation strategy. 

In Chapter Five, we give the conclusion that our proposed admission control 

algorithm can guarantee the QoS requirements of individual connection and at 

the same time, achieve high bandwidth utilization. We also discuss some future 

work. 



Chapter 2 

The General Architecture of the 
VoD System and the Related 
Issues 

In this chapter, we briefly describe the general architecture of the VoD system 

and the related issues. We explain why the video streams are V B R in nature 

and which compression technology is usually used for videos in VoD system. 

We explain some kinds of storage media for VoD system. We explain the data 

placement schemes in VoD system. We also give an overview of disk scheduling 

algorithms in the VoD system. Lastly, we explain the admission control in VoD 

system. 

2.1 A Brief Description of VoD System 

A typical VoD system consists of a storage sub-system and a network sub-system. 

The users view the videos on their display units at the end of network sub-system. 

Figure 2.1 in [7] illustrates a typical VoD system. 

4 
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Figure 2.1: A VoD System [7: 

The storage sub-system has the functions to store the video files (movies) 

and when a view request is admitted, retrieve the corresponding video file in 

the storage sub-system and transfer video streams to the interface between the 

storage sub-system and network sub-system. 

There are several kinds of media that can be used to store the video files. 

The cheapest one is to use magnetic tapes to store the video files. Other kinds of 

storage media include optical storage, magnetic disks and RAM. We will discuss 

these storage media in detail in section 2.3. 

The data placement scheme in VoD system is an active research field in recent 

years. How to choose a data placement scheme so as to make the retrieval of 

requested video files more efficiently is an important issue related to the perfor-

mance of the VoD system. We will talk about data placement schemes in detail 

in section 2.4. 

How to retrieve the requested video files so as to satisfy the real-time con-

straint and other required QoS requirements is an important problem. This 
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problem is closely related to the disk scheduling, which is also an active research 

field in recent years. We will give an overview of disk scheduling in VoD system 

in section 2.5. 

Before we explain all these topics in detail, we first explain why video streams 

in VoD service are V B R in nature. 

2.2 Why Video Streams in VoD Service are VBR 

in Nature? 

In VoD service, the original video files (movies) are usually very big. They are 

usually compressed to reduce the storage and bandwidth requirements. For video 

compression, MPEG (Motion Picture Experts Group) compression is typically 

used in recent years. There are some special properties with videos. For example, 

a moving picture consists of a succession of still images, we call these still images 

"frames". If there is no much motion between several successive frames, these 

frames will carry almost the same information. Even for the successive frames 

with much motion, some background information in the successive frames is 

identical. This kind of redundancy is called inter-frame redundancy. MPEG 

considers this property of videos. When using MPEG to compress the video files, 

the inter-frame redundancy is removed. So when the successive original frames of 

video containing some identical information are compressed, each of the output 

frames except the first one will contain much less bits related to the identical 

information than that of the first frame. That is, for different original frames, the 

compression rate (which is expressed by the original frame size divided by the 

size of the compressed corresponding frame) is different. Since the video stream 

should be displayed on the users' display units with fixed frame rate to get the 

acceptable quality of video in the users' end, translating this fixed frame rate to 
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bit rate, we find the bit rate is an random variable. Hence the video streams in 

VoD system are VBR in nature. 

Figure 2.2 illustrates the trade-off between image quality and output bit rate 

for a typical compression technology [10]. In this figure, video quality is measured 

by the distortion in a video frame which is the difference between the quality 

of the original image before compression and that after compression. The more 

the motion between successive frames, the larger the bits in the corresponding 

output frames, and the larger bit rate needed to transfer or transmit such a 

frame. 

A 
Bit rate 

1 
\\ V VBR coding • 

\ 丨 Higher activity 

DQ Distortion 

Figure 2.2: Trade-off Between Quality and Bit Rate in Video Compression [10. 

In this thesis, we consider the video files which are compressed using MPEG-1 

and MPEG-2. 
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2.3 The Video Storage Media in the VoD Sys-

tems 

There are several kinds of media that can be used to storage video files. For 

example, magnetic tape, optical storage, magnetic disks and RAM. They all 

have advantages and drawbacks when they are used to store video files. In 

practice, not all movies have the same popularity and the popularity of movies is 

distributed based on the Zipf's law [22]. This implies that we can use a storage 

hierarchy to store the movies. In this section, we briefly explain each of the above 

storage media. 

The cheapest way to store video files is on magnetic tape. When the movie 

is compressed using MPEG-2, the rough size of the compressed movie is usually 

4 GB. According to [14], a DAT tape can store two movies (8 GB) at a cost of 5 

dollars/gigabyte. There are large mechanically tape servers that hold tapes. A 

robot arm is used to fetch the requested tape from the tape server and insert it 

into a tape driver. The drawbacks with this storage systems are the long fetching 

time, the low transfer rate and the very limited number of users can be serviced 

at the same time(the maximum number of users is equal to the number of tape 

drivers in the storage system). 

Another way to store video files is on optical storage. Although currently a 

CD-ROM can only store 650 MB data, the next generation CD-ROM is believed 

to be able to store 4 GB(one movie). The CD-ROM has low cost and high 

reliability, making it to be one good candidate of the storage media to store 

most popular movies. 

The third way to store video files is on magnetic disks. The access time for 

disk is very short (10 msec), and their transfer rate is high (greater than 10 

MB/sec) and its capacity is 10 GB [14]. The main drawback of this type of 
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storage media is relatively high cost. 

The fourth way to store video files is on RAM. This is the fastest way, but 

is also the most expensive way. RAM is most suitable to store the very popular 

movies which usually have multi-viewers simultaneously. 

2.4 The Data Placement Scheme in the VoD 

System 

Choosing the proper data placement scheme is very important for designing a 

cost-effective VoD system. We use "disk" here to represent the storage media the 

VoD system use to store the video files (movies). The video files must be divided 

into "blocks" before they can be stored in the disks. How to place the video 

data in the disk so as to achieve maximum benefit from it (e.g., maximizing the 

number of users that the VoD system can support) is an active research area. 

In this section, we will briefly explain two data placement schemes in current 

literature. 

One of the data placement schemes is called disk farm [14]. Each disk holds 

multiple entire movies and each movie should be held at least in two disks for 

reliable reason. This data placement scheme has some drawbacks if employed in 

a VoD system: On one hand, because there maybe multiple users who want to 

view a same movie simultaneously, putting an entire movie in a single disk will 

limit the number of users who can view the same movie at the same time due 

to the disk I /O bandwidth and the real-time constraint of the video streams; on 

the other hand, if each movie is held on several disks to support more users who 

want to view the same movie simultaneously, the storage capacities of the disks 

are not efficiently utilized because we are duplicating too many movies. 

Another kind of the data placement schemes is called RAID [14](redundant 
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array of inexpensive disks). Each movie is stored in several disks. For example, 

block 1 of the movie is stored in disk 1, block 2 of the movie is stored in disk 

2,...,block N of the movie is stored in disk N, block TV + 1 of the movie is stored 

in disk 1, etc. See Figure 2.3 for an illustration. 

Controller 

I~ ^n!^ jmmtLi mmtmm ‘ wmwtm 1 
；iie剛.！ Sector g Sector 0 

Figure 2.3: A Simple RAID Architecture [5: 

RAID is better than disk farm in that multi-disks can be accessed in parallel 

and independently, so the system can support more users who want to view 

a movie simultaneously, probably starting from the different parts of the same 

movie. 

2.5 An Overview of Disk Scheduling in VoD 

System 

Video streams have rather stringent QoS requirements. For example, the video 

streams must be transferred in real-time in order to satisfy the view require-

ments of users (e.g., 30 frame per second, 1.5 Mbps, etc.). This presses extra 
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requirements on disk scheduling algorithms and the traditional disk scheduling 

algorithms cannot be used directly for VoD application. In this section, we give 

a brief overview of disk scheduling algorithms in VoD system presented in the 

literature [5 . 

One of the algorithms for disk scheduling in VoD system is Round-Robin. 

In each service round, the disk head accesses the video files in a fixed order. 

This algorithm can provide fair access to each video stream and with reasonable 

throughput. It can also guarantee the real-time constraints for each video stream 

if one appropriately chooses the block size for each video stream. It is simple 

and easy to be implemented. But it does not exploit the relative positions of 

different video blocks in one disk. So the seek time may be unnecessary long and 

the disk bandwidth utilization is not high. 

Another algorithm for disk scheduling in VoD system is earliest deadline 

first(EDF). In this algorithm, first, we need compute deadline for each block of 

video files according to the real-time constraints and other QoS requirements. 

Then, the disk head accesses the video files according to the deadline of the 

video blocks. This algorithm can guarantee real-time constraints of each video 

stream by scheduling the video blocks with the earliest deadline first. But this 

algorithm does not exploit the relative positions of different video blocks in one 

disk, either. So the disk bandwidth utilization is not high, either. 

In order to exploit the relative positions of different video blocks in one disk to 

reduce the total seek time, another disk scheduling algorithm — SCAN-EDF — 

was introduced. The SCAN algorithm schedules the disk head access according 

to the relative positions of different video blocks in one disk. By eliminating 

the backtracking of the disk head access, SCAN can reduce the total seek time 

significantly. SCAN-EDF schedules the blocks of video streams according to 

earliest deadline first. When there are several blocks of different video streams 

with the same deadline, SCAN is used to schedule their relative retrieval order. 
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This algorithm can guarantee the real-time constraints of the video streams and 

at the same time, reduce the total seek time. 

2.6 The Admission Control in VoD System 

In order to make VoD service cost-effective, one major issue is to effectively 

and efficiently use system resources, such as disk I / O bandwidth and network 

bandwidth. Although we can use parallel disks to increase the I / O bandwidth, 

it is still a possibility for bottleneck and one has to seriously consider the I /O 

scheduling algorithm. Although the bandwidth of the networks has been greatly 

improved in recent years, because the transmission networks are shared by many 

applications, it is still a scarce system resource. 

Each user has some QoS requirements. For example, each user may demand 

to view the video at certain frame rate. This frame rate requirement can be 

translated to a bandwidth requirement of transmitting the video data. Since 

most of the video data are V B R in nature, to satisfy this requirement and at 

the same time, to use the bandwidth of the transmission network efficiently, we 

have to perform the necessary bandwidth allocation and management in trans-

mission networks. Another implication of the QoS requirements is that we have 

to perform the proper I /O (or disk) scheduling so that the data correspond to 

any video stream can be retrieved in time for delivery. Therefore, in order to 

maximize the number of users we can support in a VoD system, we have to have 

a careful planning of I / O scheduling as well as network bandwidth management. 

Employing some form of admission control mechanism is one way to address 

this problem. In general, when a request arrives to the VoD system, the admission 

control algorithm needs to decide whether to accept or reject this request based 

on the following two criteria: 
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• Whether the system has enough resources to satisfy the QoS requirements 

of this request. 

• If the system decides to accept this new request, the system also needs 

to ensure that the QoS requirements of other existing users will not be 

violated. 

There is much work done for the admission control algorithms for VoD servers, 

to name a few, we have [8’ 11, 15, 12, 9]. Few papers considered both admission 

control for VoD servers and the transmission networks. For the VoD service, the 

user can only view the video at the end of the transmission networks. So the 

transmission of video stream in the transmission networks is also very important. 

Since the VoD service has rather stringent QoS requirements, especially the real 

time constraint, the admission control algorithm should be carefully designed 

and easily implemented. 

Our algorithm presented in this thesis is a two-step admission control al-

gorithm. The QoS requirements are bandwidth and packet dropping rate (the 

expectation of maximum number of packets can be dropped in a transmission 

time frame), which are specified by users. By using ChernofF's theorem, we can 

statistically guarantee the bandwidth requirements of users'. By using the strong 

conservation laws, the admissible region for the dropping rate is easily derived 

and the admissible control policy which achieves the given dropping rate vector 

can be found. Our storage server admission control algorithm is similar to [8], 

but we consider more complex cases. Our network admission control algorithm 

is similar to [2], but with more careful design and simpler presentation. 



Chapter 3 

Our Admission Control 
Algorithm for VoD System 

In this chapter, we explain the QoS requirements we choose and the system model 

we use. Then we present our admission control algorithm. Some preliminaries 

related to stochastic scheduling via polymatroid structure is also presented. 

3.1 QoS Requirements We Choose 

QoS is a generic notion. It means different things for different people. In VoD 

service, QoS usually refers to the service quality that the end users specified. 

In this thesis, the QoS requirements we choose are bandwidth requirement 

and packet dropping rate requirement which are specified by users. 

Bandwidth requirement — In order to get normal quality of video at the 

end users' display units, the video must be played at a fixed frame rate. For 

example, for video compressed by MPEG, this rate is 30 frame/sec (NTSC). It 

is 1.5 Mbps (average) for MPEG-1 compressed videos and 4-15 Mbps (average) 

for MPEG-2 compressed videos. To guarantee this kind of play rate, we should 

14 
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allocate enough bandwidth, both in disks (that is, disk I / O ) and transmission 

networks. 

Packet dropping rate requirement 一 Because of the real-time constraints of 

the digital videos, the packet will be dropped if it has excessive delay. In this 

thesis, we consider the packets in network sub-system which should be transmit-

ted in current transmission time frame but can not be transmitted as violating 

the deadline and must be dropped. 

3.2 System Model 

, display 
I I 1 I _st_â ojis_ 
I i^no ……ml^I i � • ! 
I • … . i n m i i 
I p - — — — — —— 1 r " N e t w o r k ^ ~ • | 

1 I I 
I kj multimedia 丨 j j C ) j 
I I lervCT \ I L' 'j 

Figure 3.1: Multimedia Storage Server Architecture. 

Figure 3.1 illustrates the VoD server we consider in this thesis. The client 

can send in a video viewing request to the VoD server, and the VoD server has 

to perform the necessary admission control, both for the server I / O bandwidth 

resource as well as the network bandwidth resource. 

In general, the VoD server also needs to perform storage management for all 

video data. There are many different data placement techniques reported in the 

literatures [6], for example, for a large video file (e.g., movie), we may consider 

to stripe the data evenly across all disks in the system. For many small and 
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popular video files (e.g., commercial), we may have to classify these short clips 

as a set of objects and assign each video object to a disk so as to achieve storage 

and load balanced feature (see Chapter Two for a detailed description). 

To service video request, the disk storage system usually employs some form of 

the cycle-based (or group-based) scheduling algorithm [3, 16, 20]. Let us briefly 

describe the cycle-based scheduling algorithm here. In cycle-based scheduling al-

gorithms, the retrieval of data from the disk sub-system is performed on a cyclic 

basis where each cycle is of length T and in each cycle, the system retrieves data 

for n video requests. Under the cycle-based scheduling algorithm, the transmis-

sion of data retrieved from the storage system in the z•认 cycle does not start until 

the end of the z•艺"cycled This is motivated by the increased opportunities for 

performing seek optimization (i.e., data blocks needed for service are retrieved 

using a SCAN-type algoritlim). The cost of this optimization is that the system 

needs additional buffer space to hold the retrieved data until the beginning of 

the next cycle. This cycle-based (or group-based) approach to servicing video 

request streams is, for instance, suggested in [3, 16, 20], and the trade-off be-

tween improved utilization of the disk bandwidth (due to seek optimization) and 

the need for additional buffer space is analyzed in several works^, e.g., [3, 1, 20'. 

Figure 3.2 illustrates the cycle-based scheduling algorithm. 

In the figure, the system is retrieving data for three video streams. The re-

quirement is that all retrieved data must be serviced (be delivered to the network 

module for network transmission) at the end of every cycle. Since the disk is per-

forming some form of SCAN algorithm at each cycle so as to reduce the overall 

seek overhead, the order of data retrieved from various streams is different from 

cycle to cycle. Also, depending on the data placement policy, it is possible that 

iThat is, here we assume that the server is responsible for maintaining the continuity in 
data delivery, where the clients have relatively little buffer space. Thus, if the data delivery is 
not “offset” by one cycle from data retrieval, jitter may occur. 

2ln general, larger values of n afford better seek optimization opportunities, but they also 
result in larger buffer space requirement. 
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Figure 3.2: Cycle-based Scheduling Algorithm for Retrieving Three Streams of 
Data. 

the size of data retrieved for each video stream varies from cycle to cycle. 

network 
la 2a 3a 2b 3b lb 3c 2c Ic 

storage 2a la 3a lb 3b 2b 3c 2c Ic 
system 

time 

Figure 3.3: Pipelining Effect Between Storage Retrieval and the Network Trans-
mission. 

At the end of a disk transfer cycle, the data are available for network trans-

mission. Without loss of generality, we assume the communication network can 

transmit a fixed amount of data for every period T � . The data retrieved from 

the disk storage system will be "packetized" and transmitted across the network. 

Figure 3.3 illustrates the pipelining effect of the data retrieved from the storage 

system to the transmission network. During the first period, the storage system 

retrieved three data blocks (e.g., la,2a,3a) for these three video streams. These 

data blocks will be transmitted in the following network transmission period. An 

important point to note is the order of data packet transmission can be different 

from the order of data retrieval from the storage system. This implies that the 

storage module and the network transmission module can operate independently 

on selecting which data to retrieve or to transmit (or even to drop, if possible). 
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Let bi be the random variable denoting the bandwidth requirement of the 

‘认 video request and bi = E[bi] be its average bandwidth requirement. One 

way to guarantee the quality of service for the 2；•�“request is to make sure that 

both the disk storage system and the network transmission system can sustain 

S“ that is, the storage system can retrieve biT amount of data per cycle and 

the network can transmit biTo amount of data per period. To achieve this, one 

way is to provide worst-case resource allocation, that is, let b* = max{6t} , then 

we need to allocate enough disk I /O bandwidth to retrieve b'-T amount of data 

per cycle and allocate enough transmission bandwidth to transmit 6*To amount 

of data per transmission time frame. This type of pessimistic admission control 

usually implies that the resources of the VoD system is under-utilized. The goal 

of our admission control algorithm is to guarantee the QoS requirements of the 

individual connection and at the same time, maximize the number of concurrent 

users that the system can support. 

In the following sections, we will present our admission control algorithm. 

Let us first define some notations which will be used throughout this thesis. 

n = number of request currently admitted in the VoD system. 

N = number of disk in the storage system. 

To = the length of a time frame in the transmission network. This is also 

the length of a transfer cycle in each disk. 

Ti 二 the length of non-idling time in a transfer cycle of disk z, i = 1 , 2 , . . . , 见 

di = the packet dropping rate requirement specified by user i. 

Pij = the average probability of a block of video required by viewer j is 

in disk i. 

p — the maximum overflow probability in disk transfer cycle. In order 

to make higher utilization of disk transfer bandwidth, we permit 

the disk transfer cycle can overflow with probability less than 

or equal to this probability. 
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Note that the average read-size of a video stream should be equal to the average 

bandwidth requirement of the user who requires this video file times the length 

of a transfer cycle. 

3.3 The Admission Control for the Storage Sub-

system 

For the n requests currently admitted, the bandwidth requirements are b = 

(61，..., bn), the dropping rate requirements are d = ( ( / i , . . . , 4 ) . The number of 

required videos in disk i is 

…=\Pil + h Pin 

Therefore, for disk i G { 1 , 2 , . . . , _/V}, we have: 
rii Hi 

Ti = 丁 二 ( n ‘ ) + ^rot-3 + X ] Ttrf-j 
J = 1 J = 1 

where T = � ( j i i ) refer to the worst case seek time for service n, requests, i.e., when 

these Hi requests are evenly spaced out on the disk surface [6], Trot-j refers to 

the rotational latency for video stream j, Ttrf-j refers to the disk transfer time 

for video stream j, j = 1 , . . . , n. 

Let there be a new request ((n + 1 产)arriving with bandwidth requirement 

bn+i and dropping rate requirement dn+i. Assume that the video block requested 

by the (n + 1)认 request is in disk i with probability = I,…，N. If it is 

admitted, T] becomes: 

n' n' 

•7 = 1 J = 1 

where n； = + … + p^{n+l)]• Let F石人s) be the Laplace transform for the 

random variable T, and let F : - 人 s ) and 介-/•s) be the Laplace transforms 
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for the random variables Trot-j and respectively. Since Trot-j ,Ttrf-jJ = 

1, •.. are independent, using the convolution property of Laplace transform, 

we get: 

nM) = …')]fl fl 
i=i 3=1 

Let Mi{s) be the moment generating function for the random variable T]. Since 

Mi(s) is equal to FJJ—<s), applying ChernofF's theorem to bound the tail of the 

random variable T“ we have the following [8]: 

i ^ r o 6 [ r , � r � ] < i n f { ^ } . (3.1) 

Using standard numerical solution techniques, we can obtain the optimal 6* 

which gives the tightest upper bound. If there exists a J] such that > p, 

the disk transfer cannot satisfy the bandwidth requirement of request (n + 1), 

since it means that at least one disk transfer cycle will violate the overflow 

probability requirement if (n + request is admitted. On the other hand, if 

all � ? • � ) < p, it means the disk transfer can satisfy the bandwidth requirements 

of all n + 1 requests. 

Let us consider two special cases of the admission control for storage sub-

system under different data placement policies: 

Well-balanced Case 

The admitted requests are well-balanced, that is, before the (n + 1 产 request 

arrives, the required movies are distributed in N disks evenly. So in each disk i, 

there are at most [劳]video streams in service. 

If we admit the (n + 1)认 request whose required movie is on disk i with 

probability l/N, = 1 , . . . , /V, the cycle time of disk i becomes: 

舰 ， n + 1 � " ^ 1 「爭 1 
Ti = '^Teekil^^]) + Y1 丁 r o t - j + ^trf-j 

1� J=1 J=l 
the Laplace transform for T] becomes 

「"十 l"! j-n+l 1 

w = 「判]n n 一糾 
•？=1 j=i 
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so using the method mentioned before we can obtain the value of 6*. If there 

exists a T] such t h a t � ( ; � ) > p, the disk transfer cannot satisfy the bandwidth 

requirement of request (n + 1). On the other hand, if all 二！二) < p, it means the 

disk transfer can satisfy the bandwidth requirements of all 7̂  + 1 requests. 

Unbalanced Case: 

We consider the case that the requests are extremely unbalanced, that is, before 

the (n + 1 产 request arrives, all the movies required are in one disk, say N. The 

movie required by (n + 1)认 request is also in Disk N. If we admit request n + 1, 

the cycle time of disk N becomes: 

n + l n + 1 

TN = 丁 二 ( n + + E 丁 r o H + E rtrf-j 
J=1 J=l 

and the Laplace transform for TN becomes: 

n + l n + l 

� = n F二一々 ）n 
i=i j=i 

So using the method we mentioned before we can get 6* and decide whether the 

disk transfer can satisfy the bandwidth requirements of all n + 1 requests or not. 

If the bandwidth requirements of users' can be satisfied, then we need check 

whether the packet dropping rate requirements of the users' can be satisfied or 

not. 

3.4 The Admission Control for Network Sub-

system 

Before we approach to the admission control algorithm for network sub-system, 

we need give some preliminaries which we will use in deriving the admission 

control algorithm for network sub-system. 
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3.4.1 Preliminaries 

Let = { 1 ’ . . . , n } be a finite set; x = is a n-dimension vector. We first 

need to define the meaning of polymatroid [17]: 

Definition 1 The following polytope 

n i ) = ^ ^ E } (3.2) 
ieA 

is termed a polymatroid if the function / : 2丑 •况 + satisfies the following 

properties: (i) (normalized) / ( 0 ) = 0; (ii) (increasing) if A C B C B, then 

f ( A ) < f(B); (iii) (submodular) if A, B C E, then f(A) + f(B) > f{A U B) + 

f(AnB). 

Specially, if 

m = { x 2 0 : S f(A), = f{E)} 

ieA ieE 

Then B{f) is the base of polymatroid V{f). 

The following is an example of polytope(polymatroid): 

x̂  > 0, i = 1,2,3 

a：! < 3 

< 2 

< 4 

XI X2 <4： 

Xi-]-X3<A 

X2-\- X3<A 

XI X2-\- X3 < 4 

The function / : 2五—况+ is defined as: 
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m = 0 

/ ( { I } ) = 3 

/ ( { 2 } ) = 2 

/({3}) = 4 

/ ( { I , 2 } ) = 4 

/ ( { I , 3 } ) = 4 

/({2’3}) = 4 

/({1,2,3}) = 4 

It is easy to show that the function f satisfies the three properties in defini-

tion 1, so the above polytope is also a polymatroid and the plane within X Y Z U V 

(refer to Figure 3.4) is the base of this polymatroid. 

The following definition defines the vertex of the base of polymatroid [4.. 

Definition 2 Let TT denote a permutation of { 1 , 2 , . . •, n } , defined below is a 

"vertex" of the base of polymatroid defined in Definition 1 

= f ( M ) 

= /({兀1,兀 2 r . . , 7 r n } ) - / ( { 7 r i ’ 7 r 2 , . . . ， 7 r „ - i } ) 

Apply definition 2 to the above example, we can get the vertices of B(f). 

when TT = {1,2,3}, the vertex is (3’ 1,0)， 
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Figure 3.4: The Base of Polymatroid X Y Z U V 

when TT = { 1 , 3 , 2 } , the vertex is (3’ 0,1)， 

when TT = { 2 , 1 , 3 } , the vertex is (2 ,2 ,0) , 

when TT = { 2 , 3 , 1 } , the vertex is (0 ,2 ,2) , 

when TT = { 3 , 1 , 2 } , the vertex is (0 ,0 ,4) , 

when TT = { 3 , 2 , 1 } , the vertex is (0 ,0 ,4) . 

Definition 3 [13] A scheduling control policy is said admissible if it is non-idling 

and non-anticipative, that is, if no server is allowed to be idle when there are 

jobs waiting to be served, and the control is only allowed to make use of past 

history and the current state of the system. Any admissible control cannot affect 

the arrival processes or the service requirements of the job. 

Next, we will give the definition of strong conservation laws which was re-

ported in [13]. 
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Let E = { 1 , 2 , . . . , n } denote the set of all job types. For any ACE, let \A\ 

denote the cardinality of A. Let U denote the set of all admissible policies. Let 

X" denote the performance measure under an admissible policy u ^U. Let TT = 

(TTI, . . . , TTN) denote a permutation of the integers { 1 , . . . , n } , which represents an 

admissible priority rule, that is, type TTI jobs have the highest priority, and type 

Tin jobs have the lowest priority. 

Definition 4 [13] The performance vector x is said to satisfy strong conservation 

laws, if there exists a set function b (or respectively, / ): 况+,satisfying 

b(A) = ^ 冗,,VTT : {7ri,...,7r|^|} = A, VA C E- (3.3) 

or respectively, 

f{A) = Y. V7r:{7ri,...,7r|^|} = A, VA C E; (3.4) 

(when A = 0, by definition, 6(0) = / ( 0 ) = 0); such that for all w G ^ the 

following is satisfied: 

m . y A c E ; HE)-, (3.5) 
ieA ieE 

or respectively, 

f(A), yAcE; = f(E). (3.6) 
ieA i^E 

If the performance measure in a particular question is minimized (or maxi-

mized) by the admissible priority rules, then the function 6 ( or / ) applies in this 

question [19]. 

This definition states two requirements that a performance vector must satisfy 

in order to satisfy strong conservation laws [13]: 

1. The summation of all components of the performance vector in question is 

invariant under any admissible control policy. This requirement is reflected 
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in following equations 

IEE 

or 

IEE 

2. The summation of components of the performance vector in question 

who represent job types in A is minimized (or maximized) by any absolute 

priority rule giving the job types in A over the other job types. This 

requirement is reflected in following equations and inequalities: 

6(A) = ^ â TT., VTT : { t t i , … , p z ! * } = VA C E., 

yAcE； 
ieA 

or 

= r 冗"V兀：{兀1,.. •, P^A\} = A, MAC E-

vAcE； 
ieA 

The following theorem gives the relationship between the strong conservation 

laws and the base of a polymatroid (We use B(b) to denote the polytope {x > 

0 ： T^ieA > A C E; J2ieE = K^)} which is also a base of polymatroid 

by setting 6(A) := b{E) - f(E — A)). 

Theorem 1 [13] Assume the performance vector x satisfies the strong conser-

vation laws ( 3.3) and ( 3.5) [ ( 3.4) and ( 3.6)]. Then: 

a. the convex polytope B{b) [B{f)] is the performance space; 

b. B{b) [B(f)] is the base of a polymatroid; and 

c. the vertices of B{b) [B(f)] are the performance vectors of the absolute 

priority rules. 
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Since B(b) [B{f)] is a convex polytope, any vector in B{b) [B(f)] can be ex-

pressed as a convex combination of its vertices. This implies that if a performance 

vector satisfies the strong conservation laws, we can easily derive the space of 

this performance vector. Also, given a vector, we can easily find out whether 

there exists an admissible priority rule under which the performance measure 

can achieve this vector or not. 

3.4.2 The Admission Control Algorithm for Network Sub-

system 

In a transmission time frame, assuming the packets which need to be transmitted 

in current time frame arrive at the network at the beginning of current time 

frame. We employ admissible policy defined in last subsection since obviously, 

allowing the server idling when there are packets need to be transmitted in 

current time frame will not benefit the system. Also, in practice, it is usually 

difficult to obtain the future information of the system, so an admissible policy 

is desirable. Here we regard packets which should be transmitted in current 

time frame but can not be transmitted as violating the deadline and must be 

dropped. Since the probability of overflow in a disk transfer cycle is very small 

and we can ignore the bits dropped in disk transfer cycle, we can assume that 

the distribution of the size of video stream which need to be transmitted in a 

transmission time frame is the same as the disk read-size in the corresponding 

disk transfer cycle. 

Assume the packet size is same for all the video streams(this is the case in 

ATM networks where each packet (cell) has the fixed length), it is easily seen 

that: 

1. The overall dropping rate, over all video streams in E is invariant under 
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any admissible policy; 

2. The dropping rate over any given subset A,AcEis minimized by offering 

absolute priority to video streams in the subset A over the video streams 

in ( E - A ) . 

So we know that the dropping rate vector d = ( c / i , . . . , c/n+i) satisfies the 

strong conservation laws. 

From the preliminaries, we know the space of dropping rate d is a base 

of polymatroid with each vertex corresponding to a specific absolute priority 

scheduling policy. Since this base of polymatroid is a convex polytope, any point 

of this base of polymatroid can be expressed as a convex combination of its 

vertices. So if the required dropping rate vector is in this polytope, we know we 

can find a convex combination of absolute priority rules to achieve it. 

Let low{A) denote the lower bound of dropping rate over given subset A, 

A C E. If the dropping rate vector d = ( c / i , . . . , dn+i) satisfies^: 

^d^>low{A), Ac E 
ieA 

and 

^ c/j > low(E) 
ieE 

we can always find a point in the space of d which is better than given d and 

can be realized by a convex combination of absolute priority rules. 

Now we consider a simple example to illustrate the above idea: 

Example 1 Suppose currently there are 2 requests admitted in the VoD sys-

tem. The arrival rate of the first video stream is 5 packets/time frame, 

the arrival rate of the second video stream is 7 packets/time frame with 

3ln here ,丑={1 , . . . , n + 1} 
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probability 0.5 and 3 packets/time frame with probability 0.5. The maxi-

mum number of packets can be transmitted in a time frame is 11. So we 

have low{{l}) = low{{2}) = 0Jow{{l,2}) = 0.5. Applying definition 2 by 

setting low{A) := low(E) - f(E - A) , we can get the admissible region for 

dropping rate d = ( c / i ’ c y which is illustrate in Figure 3.5. So if the drop-

ping rate requirement is d = (0.5,1), it is easily seen that Z(0.5 ’ 1) is in 

the admissible region but not in the space of d. So we can achieve a better 

dropping rate vector (0.5，0) by giving higher priority to video stream 2. 

1 厂 "2(0.5,1) 

0.9 -

0.8 -

0.7 -

0.6 -

>< 0.5 V:(QA5) 

0.4 -

0.3 - ^ ^ ^ ^ 

0.2 -

0.1 -

^ ^ ^ ^ ^ ^ M 0.45 
X 

Figure 3.5: The Admissible Region of the Dropping Rate Vector (c/i，（/2) in 
Example 1. 

Now consider the third requested video stream is arriving with rate 5 pack-

ets/time frame with probability 0.5 and 3 packets/time frame with proba-

bility 0.5. So if the third request is admitted, we can get: 

/ o — { 1 } ) = lowi{2}) = low({3}) = 0 , / — { 1 , 2 } ) = 0.5, 

low({l, 3 } ) = 0, low({2,3}) = 0.25, low({l,2,3}) = 3. 
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The admissible region of the dropping rate vector d = (c?i’(/2,^4) includes 

all the points (xi,X2, X3) that satisfy: 

> 0, = 1,2,3 

xi-\- X 2 > 0.5 

âl + > 0 
X2-{ -X3> 0.25 

a；! + + 3:3 > 3 

The space of d is illustrated in Figure 3.6. The vertices of the space of d are: 

耶 . 7 5 ’ 0.25,0), y (2.75，0’ 0.25), Z(0.5 ’ 0,2.5), U(0,0.5’ 2.5), V ( 0 , 3 ’ 0). The 

corresponding priority rules to achieve these vertices are:(3,2,1) , (2 ,3 ,1) , 

( 2 , 1 ,3 ) , ( 1 , 2 ,3 ) , ( 3 , 1 ,2 ) . 

.... ： 
. . . . 

.• . . . • 

:.• ：.....…..:.』• : : : : 
‘ .： : : . H C ( 0 . 5 , 1 , 2 . 5 ) 

25 饮 姊 ： 
2.5] ： Y .̂0.2.51.：...... 

：\ -e(0.5Xl-5) 

N 眉 \ X ..... 
1 ~ • ; 1 ： Nms.o) . : ： i ; 

.•• ： : ^ ^ 

；: \ .•• ... 2,5 

........:，.............…^ 

0.5 1 ^ 
2 2.5 ； 

3 y 

X 

Figure 3.6: The Space of the Dropping Rate vector (t/i, fia) in Example 1. 

Let us consider the following 3 scenarios: 
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1. If the third request has the dropping rate requirement 而 = 0 . 5 , the 

dropping rate requirement is A(0.5,1,0.5) . Because the new total 

dropping rate requirement is c/i + + = 0.5 + 1 + 0.5 = 2, which is 

smaller than /ow;({l , 2, 3 } ) ( = 3), we cannot find an admissible policy 

to achieve it. The third request will be rejected. 

2. If the third request has the dropping rate requirement 而 = 1 . 5 , the 

dropping rate requirement is 5 (0 .5 ,1 ,1 ,5 ) . Since (0.5,1,1.5) is an 

internal point of the convex poly tope in Figure 3.6 , we know we 

can find a convex combination of absolute priority rules to achieve it. 

Specifically, by solving the linear equation systems: 

/ \ / \ / \ 
^ 0.5 2.75 [ 2.75 

0 + a 2 0 + «3 0.25 + 

( 2 . 5 J i 0.25 j ( 0 ) 

M 卜 M 
+ «4 3 + 0.5 1 

M (2.5 J ( 1.5， 

where E L I = 1 and a, > 0, i = 1 , 2 , . . . , 5 . We can get a vector 

( « 1 ’ « 3 , as) = (/, /c, ^ - - /c, if + + i / c , I - / - 糾 , w h e r e 

0 < l ,k < 1 and / + A: < 1. The admissible policies which can 

achieve the dropping rate (0.5,1,1.5) is 

/ (2 ,1 ,3 ) + k ( 2 , 3 , l ) + ( ^ - l l - k ) ( 3 , 2 , l ) + 

+ ( l + � + ]̂  叫 3,1,2) + (臺-/-i/Od,�,?） 

3. If the third request has the dropping rate requirement c/3 = 2.5, the 

dropping rate requirement is C(0.5 ,1 ,2 .5) . We can prove that 

> low(A),Ac E and J ^ d ) low�E� 
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So we know we can find an admissible policy which can achieve a 

better dropping rate vector than d = (0.5,1,2.5). Specifically, we can 

use the admissible policy derived in case 2 to achieve a better dropping 

rate vector (0.5,1,1.5). Therefore, the third request can be admitted. 
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Experiment 

In this chapter, we present some experimental results obtained by using our 

proposed admission control algorithm. We also compare these results with the 

results obtained by using average bandwidth allocation strategy. Since using 

peak bandwidth allocation (or worst case resource allocation) will result in worst 

bandwidth utilization than that of using average bandwidth allocation, we will 

not include the comparison between our method and peak bandwidth allocation 

strategy. 

In our first experiment, there are two disks in the VoD storage system. The 

related characteristics of each disk are listed in Table 4.1. 

In Table 4.1, d is the seek distance for a requested video block in a disk 

transfer cycle. We use the worst case seek distance as the value of d, which is 

the seek distance for a requested video block when all the requested video blocks 

Number of cylinders 5288 
Transfer rate 80 Mbps 
Maximum rotational latency 8.33 milliseconds 

Seek time function (sees) seek(d) = { 0.6 * 10—3 + 0.3 * 10—3 ^ y/d \i d< 400 
： 1 5.75* 10—3+ 0.002 * 10-3* c/ If d > 400 

Table 4.1: The Parameters of the Disk Used in the Experiment 

33 
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in a disk are evenly spaced out on the surface of this disk. So 

� Number of cylinders in the disk 1 
a 

Number of requested video blocks in the disk 

and seek(d) is the seek time for finding a video block in a disk. Also, we assume 

the rotational latency for the requested video block is uniformly distributed in 

the range [0,8.33] millisecond. 

The compressed video are stored in the disks using RAID which we talked 

about in Chapter two. The size of one data block is exponentially distributed 

with mean 1.5 Mb for each MPEG-1 video block and 5 Mb for each MPEG-2 

video block. 

The VoD system can provide service in three classes. Class A service is 

provided to users whose requested videos are compressed by MPEG-1 and whose 

average bandwidth requirements are 1.5 Mbps and dropping rate requirements 

are 2% (that is, the average number of bits dropped in a transmission time 

frame should be less than 1.5 * 2% = 0.03 Mb). Class B service is provided 

to users whose requested videos are compressed by MPEG-1 and whose average 

bandwidth requirements are 1.5 Mbps and dropping rate requirements are 6%. 

Class C service is provided to users whose requested videos are compressed by 

MPEG-2 and whose average bandwidth requirements are 5 Mbps and dropping 

rate requirements are 10% [18]. We call a user's request “class i request" if the 

user will get class i service when his request is admitted, i e E = {A, B,C}. The 

length of a transfer cycle in the disk is 1 second. During each transfer cycle, the 

read-size of video is exponentially distributed with mean 1.5 Mb for each MPEG-

1 video and 5 Mb for each MPEG-2 video. The given overflow probability of 

disk transfer cycle is 1.0 * 10"''. The transmission network we employed is ATM 

network with bandwidth 155 Mbps. The length of a transmission time frame is 

1 second. 

From the previous chapters, we know that a new request (or new requests)can 
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be admitted if and only if the system has enough resource to satisfy the QoS 

requirements of the new request(s) and at the same time, the QoS requirements 

of other existing viewers will not be violated. 

We assume that at the beginning of the experiment, there are 51 video streams 

in the VoD system. Each class has 17 video streams (one can easily verify that 

the VoD system can support these video streams, both in disk sub-system and the 

network sub-system). Now there are one class A request, two class B requests 

and one class C request arrive at the same time. To see whether these new 

requests can be admitted or not, first we need check whether the bandwidth 

requirements of the users' can be satisfied. Assuming the admitted requests are 

well-balanced, if the new requests are admitted in disk sub-system, applying the 

formula in Table 4.1, the worst case seek time for a video is 0.0047 sees, then 

applying Equation (3.1), we got 

P[T^ > 1] < 7.7539 * 10" ' i = 1,2 

so the probability of overflow of the disk transfer cycle is less that given p = 

1.0 * 10-4. The bandwidth requirements of all users' can be satisfied. 

Next, we need check whether the dropping rate requirements of all users' can 

be satisfied. We treat the video streams belonging to the same service class as 

one "big" video stream and compute the lower bound of dropping rate low(A), 

where A C E,E = {A,B,C} represents the set of three "big" video streams. 

The results are listed in Table 4.2, also listed are dropping rate requirements 

d(A),A C E. By comparing the dropping rate requirements d[A) with low{A), 

we got: 

d{A) > low{A) where ACE,E = {A,B,C} 

So these new requests can be admitted. The admissible region includes all the 
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I t e m Value(Mb) Item Value(Mb) 
d{A} O M low{A} L2397e-25 
d{B} 1.71 low{B} 7.2971e-25 
d{C} 9 low{C} 0.0442 
d{AB} 2.25 low{AB} 3.7213e-14 
d{AC} 9.54 low{AC} 0.6438 

d{BC} 10.71 low{BC} 0.7337 
d{ABC} 10.764 lowjABC} 5.4121 

Table 4.2: d{A) and low(A) in Experiment 1 

points whose coordinates X3) satisfy: 

Xi > 0, i = 1 ,2 ,3 

Xi > low{A) 

X2 > low{B) 

X3 > low(C) 

Xi-]-X2> low{AB) 

+ > low(AC) 

X2-^X3> low(BC) 

X3> low{ABC) 

The space of d is illustrate in Figure 4.1 where HIJKO is a base of polyma-

troid, H = (4.6783,0.6895,0.0442), I = (4.6783,0,0.7337), J = (0.5996,4.7682,0.0442), 

K = (0,4.7682, 0.6438), 0 = (0’ 0,5.4121). The corresponding admissible policy 

to achieve these vertices are: (3,2,1), (2,3,1),(3,1,2),(1,3,2),(2,1,3). 

From the previous chapter, we know we can find the admissible scheduling 

policy to achieve each point in the base of polymatroid HIJKO. For each of 

other points in admissible region, we can find an admissible scheduling policy to 

achieve a "better" point than the point itself. 

Because d(E) = 10.764 > 5.4121 = low(E), we know we can find a point 

which is in the base of polymatroid HIJKO and which is better than the given 



Chapter 4 Experiment 37 
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/(^O.0,0.0,5.4121) ... 
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5 5 4 
X 

y 

Figure 4.1: The Base of Polymatroid HIJKO which is the space of d 

dropping rate vector. Here, the given dropping rate vector is (0.54,1.71,9) (see 

Table 4.2), by deducting 1 from ck, deducting 4.8379 from c/3, we got the "better" 

point (0.54,0.71,4.1621), where 0.54 + 0.71 + 4.1621 = 5.4121 = low{E). After 

solve the following linear equation systems, 

(4 .6783 ) { 4.6783 ) ( 0 . 5 9 9 6 � 

0.6895 + « 2 0.0 + a 3 4.7682 + 

� 0 . 0 4 4 2 j ( 0.7337 j ( 0.0442 ) 

/ \ / \ / \ 
0.0 [ 0.0 I / 0.54 ] 

+ 04 4.7682 + 0 5 0.0 = 0.71 

� 0 . 6 4 3 8 ) \ 5.4121 j ( 4.1621 ^ 

5 

Z X . = 1 

cli >0, i = 1 , 2 , . . . , 5 
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we got (ai,a2,a3,(Z4,a5) = (0,0.0963,0.1489,0,0.7548), that is, the admissible 

policy to achieve (0.54,0.71,4.1621) is the policy that at the beginning of a time 

frame, with probability 0.0963, the scheduling policy is (2,3,1); with probability 

0.1489, the scheduling policy is (3,1,2); with probability 0.7548, the scheduling 

policy is (2,1,3). Within each class, the scheduling policy is allocating the band-

width proportional to the number of bits each video stream has at the beginning 

of the time frame. 

We continue doing the experiment, and got the result that at least the consid-

ered VoD system can support 20 video streams for class respectively. 

Now we compare the results obtained by using our proposed algorithm with 

the results obtained by average bandwidth allocation strategy. Here "average 

bandwidth allocation strategy" refers to the strategy that allocates transmission 

bandwidth to the video streams in network sub-system according to the average 

bandwidth requirement of the users'. This strategy also considers the V B R na-

ture of the video streams, so it can achieve higher bandwidth utilization than 

peak bandwidth allocation strategy. In our example, employing average band-

width allocation strategy means allocating 1.5 Mbps bandwidth to each video 

streams in class A and class B and 5 Mbps bandwidth to each video streams 

in class C. If there are 20 video streams for class A.B^nAC, respectively, the 

overall bandwidth requirement is 160 Mbps which exceeds the bandwidth of the 

transmission network which is 155 Mbps. So by employing average bandwidth 

allocation strategy, we cannot admitted 20 video streams for class respec-

tively. And we cannot determine whether the dropping rate requirement of each 

user's can be satisfied or not. This is in contrast with our proposed algorithm 

which can accommodate 20 video streams for class ^BandC, respectively, and 

at the same time, we can find the admissible scheduling policy to achieve the 

dropping rate requirements easily. 

In our second experiment, we use the same type of disks in experiment 1, but 
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the number of disks is 9. 

The videos are compressed using MPEG-2 and stored in the disks using 

RAID. There are three kinds of videos. The bandwidth requirements of the 

first, second and third kind of videos are exponentially distributed with mean 5, 

10, 15 Mbps, respectively. This is corresponding to the situation that more and 

more videos are compressed using MPEG-2 and the bandwidth requirement of 

MPEG-2 videos range from 4 Mbps to 15 Mbps. 

The VoD system can provide service in three classes. Class A service is pro-

vided to users whose average bandwidth requirements are 5 Mbps and dropping 

rate requirements are 10% [18]. Class B service is provided to users whose av-

erage bandwidth requirements are 10 Mbps and dropping rate requirements are 

10%. Class C service is provided to users whose average bandwidth requirements 

are 15 Mbps and dropping rate requirements are 10%. The length of a trans-

fer cycle in the disk is 1 second. During each transfer cycle, the read-size of 

videos is exponentially distributed with mean 5 Mb, 10 Mb and 15 Mb for class 

A,B,C service, respectively. The given overflow probability of disk transfer cycle 

is 1.0 * 10-4. The transmission network we employed now is ATM network with 

bandwidth 622 Mbps. The length of a transmission time frame is 1 second. 

Assuming the admitted requests are well-balanced, using our admission con-

trol algorithm, we know that the VoD system can support 60 video streams: 10 

class A streams, 20 class B streams, 30 class C streams. 

Now we compare the results obtained by using our proposed algorithm with 

the results obtained by average bandwidth allocation strategy. Using average 

bandwidth allocation strategy means allocating 5 Mbps, 10 Mbps and 15 Mbps 

bandwidth to each video streams in class A, B,C , respectively. If there are 10, 

20, 30 video streams for class BandC, respectively, the overall bandwidth re-

quirement is 700 Mbps which exceeds the bandwidth of the transmission network 
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which is 622 Mbps. So the ATM network can not support 10 class A , 20 class B 

and 30 class C video streams. Also, we cannot determine whether the dropping 

rate requirement of each user's can be satisfied or not. This is in contrast with 

our proposed algorithm which can accommodate 10,20,30 video streams for class 

A, B andC, respectively, and at the same time, we can find the scheduling policy 

to achieve the dropping rate requirements easily. 

Note that employing our admission control algorithm, we can check several 

simultaneously arriving requests at the same time. When the video streams 

become bursty, the benefit of using our admission control algorithm becomes 

larger (that is, the utilization of system resource will be significantly higher than 

that by using the average bandwidth allocation strategy). Also note that, the 

time complexity of our algorithm is a function of number of service class, not the 

number of total requests. So the time complexity of our algorithm will be fixed 

for a specific VoD system with fixed number of service class. 



Chapter 5 

Conclusion and Future Work 

In this chapter, we give the conclusion that our proposed admission control 

algorithm can guarantee the QoS requirements of individual connections and at 

the same time, achieve high bandwidth utilization. We also discuss some future 

work. 

5.1 Conclusion 

In this thesis, we considered a theoretical framework of performing admission 

control in a VoD system. Previous work on the admission control in VoD is 

usually performed on a aggregated traffic basis. Our admission control algorithm 

can guarantee the QoS requirements of individual connections and at the same 

time, achieve high bandwidth utilization. In the storage sub-system, some form 

of cycle-based scheduling algorithm is used and we determine the conditions 

in which the storage sub-system can satisfy the bandwidth requirements of the 

users'. For the network sub-system, we derive the admissible region of the packet 

dropping rate vector and the admissible scheduling policy to achieve the dropping 

rate vector within the admissible region. 

Our admission control algorithm for network sub-system is an application of 

41 
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strong conservation laws in VoD system. Strong conservation laws are one kind 

of fundamental laws for a wide range of stochastic systems [19]. If a performance 

vector satisfies the strong conservation laws, its space is a base of polymatroid. 

Each vertex in this base of polymatroid can be achieved by an absolute priority 

rule. This gives us a clear concept of the admissible region for the dropping rate 

vector in network sub-system of VoD system, which will be very useful if we want 

to find an optimal scheduling policy to achieve a vector in it. 

Experiments show that our proposed algorithm can achieve high bandwidth 

utilization, making VoD service cost-effectively. 

5.2 Future Work 

In this thesis, we assume the read-size of the video streams in disk is a kind of 

random variable whose Laplace transform is known or can be got. This model 

belongs to the stochastic source model. Instead of stochastic source models, 

video sources can be specified by stochastic bound or deterministic time-invariant 

traffic envelope. How to derive the efficient admission control algorithm for VoD 

system under these two video source models is an interesting problem. 

With the popular of Internet, the combination of the Internet and VoD may 

provide many new applications on entertainment, business and education in the 

future [7]. An important issue in providing VoD service over Internet is how to 

adapt the admission control algorithm to the newly proposed diffserv model so 

that the individual viewer's QoS requirements can be satisfied. 
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