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Abstract 

A well-known theorem proved by Arrow, Barankin and Blackwell states that if 

the n-dimensional real Euclidean space is equipped with its natural ordering, then 

for any compact convex subset A, the set of the positive proper efficient points of 

A is dense in the set of the efficient points of A. In Chapter 1, we give a survey 

on several generalizations of this theorem. For a weakly compact convex subset 

in a normed space with partial ordering defined by a qiiasi-Bishop-Phelps cone, 

the density result stated above holds valid. Also we consider the density result 

in a general topological vector space equipped with a weakly closed convex cone 

which admits strictly positive continuous linear fimctionals. Moreover several 

density results in general dual space setting are presented. In Chapter 2，a density 

theorem of super efficient points are discussed. 

In Chapter 3, we deal with the corinectedness results in vector optimization 

as well as the coritractibility of the set of the efficient points in a locally convex 

space and the path-connectedness of the set of the positive proper efficient points 

in a reflexive Banach space. 

In last chapter, we present some recent results on error bounds. Topics in-

cluded are: 

1. error bound concerning lower semicontinuous functions in normed spaces. 

2. sufficient condition for a proper weakly lower semicontinuous function on a 

reflexive Banach space to have an error bound with fractional exponent. 

3. error bound for a quadratic function on the ri-dimensional real Euclidean 

space. 
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摘 要 

一個由A r r o w 、 B a r a n k i n及B l a c k w e l l所證明的著名定理 

指 出 ： 若 n 維 實 E u c l i d 空 間 之 元 素 依 自 然 順 序 關 係 ， 

那 麼 任 何 緊 凸 子 集 A 的 正 常 態 有 效 點 集 在 A 的 有 效 

點 集 内 稠 密 。 在 此 論 文 中 ， 我 們 綜 述 這 個 定 理 的 一 

些 推 廣 。 設 有 一 賦 範 線 性 空 間 ， 其 上 的 偏 序 由 一 個 

擬Bishop - P h e l p s 錐 所 定 義 ， 則 對 於 任 何 在 這 賦 範 線 

性 空 間 中 的 弱 緊 凸 子 集 ， 上 面 提 到 的 稠 密 性 結 果 保 

留 真 確 。 同 時 我 們 也 考 慮 在 普 遍 拓 樸 線 性 空 間 上 ， 

其 中 偏 序 由 一 個 弱 閉 凸 錐 所 定 義 ， 而 拓 樸 線 性 空 間 

上 亦 存 在 嚴 格 正 連 續 線 性 泛 函 之 下 的 稠 密 性 結 果 。 

此 外 ， 一 些 在 普 遍 對 偶 空 間 中 的 稠 密 性 結 果 亦 有 所 

介 紹 。 在 第 二 章 中 我 們 會 討 論 對 於 超 有 效 點 集 的 稠 

密 性 結 果 。 

第 三 章 中 我 們 處 理 向 量 最 優 化 問 題 中 的 連 通 性 、 有 

關 局 部 凸 拓 樸 線 性 空 間 中 有 效 點 集 的 可 缩 性 及 自 反 

B a n a c h 空 間 中 正 常 態 有 效 點 集 的 道 路 連 通 性 等 等 結 

果0 

在 最 後 一 章 ， 我 們 介 紹 一 些 有 關 誤 差 界 的 最 近 結 果 

。 論 題 包 括 ： 

一 • 有 關 賦 範 線 性 空 間 中 的 下 半 連 續 函 數 的 誤 差 界 

0 

二 • 自 反 B a n a c h 空 間 中 真 弱 下 半 連 續 函 數 存 在 分 數 

指 數 誤 差 界 的 充 分 條 件 。 

三.有關n維實Euclid空間中二次函數的誤差界。 
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Chapter 0 

Introduction 

In the study of vector optimization, one main aim is to identify the efficient points 

of a given set A in a partially ordered topological vector space A' equipped wi th an 

ordering cone S. However, observed by Kul in and Tucker and later by Geoffrion, 

some efficient points exhibit certain abnormal property. To overcome this draw-

back of efficient points, several kinds of proper efficiencies have been introduced; 

see Kuhn and Tucker [30], Hurwicz [31], Geoffrion [32], Borwein [33], Harley [34], 

Benson [35], Henig [36] and Borwein and Zhuang [1]； also see Guerraggio, Molho 

and Zaffaroni [37]. Some are related to the scalarization problem; some focus 

on trade-off ratios between the components of the objective function; some focus 

on the geometric approach and some on the stability property. In general, the 

proper efficiencies have been defined with respect to conical orderings. 

Among these proper efficiencies the positive proper efficiency plays an impor-

tant role in the vector optimization. I t is closely related to the scalarization of a 

vector problem. Every positive proper efficient point is a minimum solution of a 

scalar optimization problem 

m i n / ( a ) 

where / is a continuous linear functional strictly positive on the ordering cone. 

In 1953, Arrow, Barankin and Blackwell [15] proved the famous result: If 

1 
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is equipped with its natural (componentwise) ordering and if A is a compact con-

vex subset of then the set of the positive proper efficient points in A is dense 

in the set of the efficient points in A: for any efficient point, there is a point 

sufficiently near which is supported by some strictly positive continuous linear 

functional. This theorem has important implications in both vector optimization 

and mathematical economics. In the study of multiple objective optimization, the 

main aim is to identify the set of efficient points. Also in the study of mathemat-

ical economics, a strictly positive continuous linear functional p can be regarded 

as a pricing system and a point 0,0 supported by p can be regarded as an optimal 

alternative allocation of resources under a certain corresponding pricing system. 

Then this theorem tells us that "nearly every" efficient alternative allocation of 

resource with respect to the componentwise ordering can be sustained by a certain 

pricing system. 

In the past 30 years, the Arrow-Barankin-Blackwell Theorem has been gener-

alized in many directions by many authors. Harley [34] and Bitran and Magnanti 

38] extended the theorem to R"' with arbitrary closed convex pointed ordering 

cone. Radner [40], Majumdar [41] and Peleg [42] proved the density results in 

the infinite dimensional normed vector lattices / ⑴ ， a n d P with 1 < p < 00 

respectively. Chichilinisky and Kalman [43] gave the result in the framework of 

Hilbert spaces. 

In the setting of general normed spaces, Borwein [39] and Satz [44] extended 

the above theorem of Arrow, Barankin and Blackwell in a normed space partially 

ordered by a convex cone with a weakly compact base and with a base norm 

respectively. Furthermore, Jahn [23] showed the density result holds in the setting 

that the normed space is partially ordered by a Bishop-Phelps cone and the set 

^ is assumed to be weakly compact convex. Petschke [24] extended Jahri's result 

to the case in that the ordering cone has a closed bounded base. Petschke's result 

has been further generalized in two directions: Gallagher and Saleh [20] showed 
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that Petschke's result remains valid in the setting of locally convex topological 

vector space, and, recently Ng and Zheng [14] gave a density result in a general 

normed space partially ordered by a qiiasi-Bishop-Phelps cone. In Section 1.2 we 

wil l give a survey on the density result based on the paper [14 . 

Note that, the results above require severe restriction on the ordering cone. In 

order to relax these requirements, several authors had their researches in another 

direction. Ferro [17] first gave the density result in a normed space partially or-

dered by a closed convex cone whose dual cone has nonempty algebraic interior 

and with the set A being compact convex; later he extended his result in which 

the ordering cone is only required to admit a strictly positive continuous linear 

functional (indeed it is a necessary condition for such a density theorem). Also 

Gallagher and Saleh [20] introduced the concept of _D-cones and give a density 

result in the setting of normed spaces. Notice that in some sense the result of Gal-

lagher and Saleh also extended the Ferro's later result in locally bounded spaces 

setting. Chen [25] gave a generalization to the theorem of Arrow, Barankin and 

Blackwell in the framework of a locally convex space, partially ordered by a closed 

convex cone with nonempty topological interior and with the corresponding dual 

cone admitting a nonempty quasi-interior. Recently, Zheng [9] generalized Ferro's 

result in a general topological vector space with a weakly closed convex ordering 

cone with nonempty quasi-interior. In Section 1.3 we wil l discuss this generaliza-

tion of Arrow-Barankin-Blackwell Theorem with the rather weak requirement on 

the ordering cone in the framework of a general topological vector space. 

Moreover, it is interesting and worthy to study the Arrow-Barankin-Blackwell 

Theorem in the dual spaces setting. This has also some economics applications. 

Majiimdar [41] and Peleg [42] considered the space L⑷ wi th the allowable class 

of support functionals in the set of nonnegative elements in L^ and the space 

with the allowable class of support functionals in the set of nonnegative elements 

in /I'respectively. Ferro [18] has also considered the ca^e. However, it was 



Density Theorems, Connectedness Results and Error Bounds 4 

Gallagher [21] who first studied the general case in the dual space setting. His 

result was further extended by Song [22]: if F is a compact convex subset in the 

dual space A!* of a normed space X which is partially ordered by a closed convex 

cone, then the set of points in F supported by the strictly positive elements of 

PC (in the canonical embedding of A' in X**) is dense in the set of the efficient 

points in F with respect to the dual cone. Recently Ng and Zheng [14] extended 

Song's result based on the density result given by Zheng [9]. A l l these wil l be 

studied in our Section 1.4. 

The relationship between the set of the positive proper efficient points and 

the set of the efficient points has been studied by many authors. In this thesis we 

also discuss another kind of proper efficiency: the super efficiency. This concept 

was first introduced by Borwein and Zhiiang [1] in the setting of normed spaces in 

1993. In [1], some desirable properties, involving some characterization of super 

efficiency by scalar optimization and density property in the set of the efficient 

points, were presented. In 1997, Zheng [2] further generalized the concept of 

super efficiency in the setting of locally convex spaces, and also examined the 

relationship among super efficiency and other kinds of proper efficiency. I t is 

remarkable that super efficiency is highly related to the Henig proper efficiency. 

Furthermore, in [3], Zheng gave a density result concerning the super efficiency: if 

a locally convex space is equipped with an ordering cone having a closed bounded 

base and if the set A is weakly compact, then the set of the super efficient points 

in A is dense in the set of the efficient points in A. Besides, this density result is 
V 

also valid for the Henig proper efficiency instead of super efficiency. These density 

results wil l be presented in Chapter 2. 

In general, one of the important directions in the study of vector optimization 

is to investigate the structures and the topological properties of the sets of the ef-

ficient points and of the proper efficient points. Other than the density property, 

connectedness of those sets is also of interest. One reason for studying connected-
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ness is that, in a continuous maximization problem on the commodity space in the 

study of economics, normally a large number of Pareto-optimal alternatives are 

resulted, and then the connectedness property ensures a continuous moving from 

one efficient alternative to any other one along a "path" consisting of efficient 

alternatives only. This study on connectedness of the set of the efficient points 

has been carried out by a number of authors: Peleg [45], Smale [46], Naccacche 

47], Schecter [48], Bitran and Magnanti [38], Choo and Atkins [49], Warburton 

8]，Gong [7], Luc [50, 51, 52] and Zheng [6]; also see the reference therein. 

In particular, Gong [7] studied the connectedness of the efficient solution set in 

a convex vector optimization for set-valued maps in the normed space. A vector 

minimization problem for a set,-valued map F is: 

(VMP) Min{F{x) : x e A}, wi th respect to cone S, 

where A is a nonempty compact convex subset of a real HausdorfF topological 

vector space A', 5 is a closed convex cone with a base in a real normed space 

y^ and F is an upper semicontimious 5-convex set-valued map from A to 

with compact values. Let be the set of all strictly positive continuous linear 

fimctionals on y . For each x e A and each h G let 

= {ye F{x)\h{y) = mm{h(z)\z e F ( . T ) } } ; 

that is, P(x, h) is the solution set of the scalar minimization problem of the 

function h on F{x). Let E, U, V respectively denote the sets: 

E: the efficient solution set of 

U: the positive proper efficient outcome set of ( V M P ) and 

V- the efficient outcome set of (VMP). 

Under this setup, Gong's main results (Theorem 4.1 and Theorem 5.1 in [7]) are: 

E, U, V are connected if 

h) is connected, V.T G A,\/h € (1) 
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However, in the Section 3.3 of this thesis, I wil l show that the condition (1) 

can be dropped and Gong's results still remain valid. In Chapter 3, we wil l also 

briefly report on the contractibility and path-connectedness results in [6 . 

The final part of this thesis is devoted to consider the error bounds in op-

timization problems. Error bounds take an important role in the sensitivity 

analysis of the mathematical programming and in convergence analysis of some 

algorithms. The error bound analysis concerns that if a function is given, what 

relation between the distance of an arbitrary point from the zero set and the 

value of function at that point is. In recent years the research on error bound 

has attracted many researchers and a large number of publications have appeared 

to report the progress of this study. For more detail, one can refer to excellent 

survey papers of Lewis and Pang [53] and Pang [54] and the references therein. 

In [10], the error bound for a proper lower semicontinuous function on a normed 

space is studied, several sufficient conditions and several necessary conditions 

have been given for validity of error bounds. Also some equivalent conditions for 

error bound were presented in the setting that the normed space is a reflexive 

Banach space and the function is lower semicontinuous convex. As an applica-

tion, a computable Lipschitz bound constant was given. In [11], Ng and Zheng 

considered the error bounds with fractional exponents other than exponent one. 

Using the partial order induced by a proper weakly lower semicontimious function 

on a reflexive Banach space, Ng and Zheng established several results concerning 

the sufficient conditions to guarantee the error bounds with fractional exponents 

hold for those functions. Moreover an application which aims at identifying the 

exponents of the error bound for a quadratic function on IR" was also given. In 

Chapter 4 we wil l give a systematic survey on [10] and [11 . 



Chapter 1 

Density Theorems in Vector 

Optimization 

1.1 Preliminary 

Throughout this thesis the topological vector spaces all are assumed to be real 

Hausdorff; all the corresponding topological dual spaces are assumed to separate 

points in those topological vector spaces. 

Let ^ be a topological vector space. A binary re lat ion」 is said to be a pre-

order in if it is (l)reflexive (for any x e x ^ x) and (2)transitive (for 

any x, E A', .x ^ z whenever x ：̂  y and ^ ^ z). Fur ther」 i s a p a r t i a l o rder 

in X if i t is a pre-order and it is (3 )an t i symmet r i c (.T 二 y whenever x <y and 

y 

A subset S C X is called a cone if aS C S for any a > 0. Suppose 5 is a 

convex cone; that is, 

S-^SCS and Va >0,aSC S; 

then S specifies a pre-order ：^^ in by: for all x, y e X^ 

:<s y if and only if y - x e S. (1.1) 

7 
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In this case the cone S is called an ordering cone in X. Throughout this thesis 

the cone S is assumed to be nontrivial; that is, 5 0 and S ^ X. 

A cone S is said to be pointed if 门—S = {0}. Suppose 5 is a pointed 

convex cone. I t is easy to show that defined in (1.1) is a partial order in X . In 

this case {X, :<s) is said to be a partially ordered topological vector space. 

More detail can be found in [26] and [27]. Usually we wil l consider the setting 

with the pointed convex ordering cone. 

For a cone S^ Q Q S is said to be a base of S if 

(i) B is convex, 

(ii) 0 • cl{e) and 

( i i i ) S C cone吼 

where c/(9) is the closure of 9 in A' and co7ie(0) := {tO\t > 0,6* E 0 } . The 

following remark is easy to verify. 

Remark 1.1 .1 A cone S is pointed convex if S has a base. 

In vector optimization analysis, it is worthwhile to consider the continuous 

linear fiinctionals on X. Let A'* denote the topological dual space of X. Suppose 

5 is a cone in X\ we use the following notations: 

：= { / G A'*|/(s) > 0, V s G ^ } and 

{/ G A:*\f{s) > 0 , V S G 5 \ { 0 } } . 

is called the dual cone of a cone S, which consists of all the positive con-

tinuous l inear funct ionals on X. is called the quasi-interior of the dual 

cone, which consists of all the strictly positive continuous linear functionals 

on 

The following proposition tells that the dual cone induces a pre-order in the 

topological dual space. 
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Proposition 1.1.1 Let A' he a topological vector space and S <Z X be a cone. 

Then is a weak-*-closed convex cone in A!*. 

Proof: Since { / G ⑷ > 0} is weak-*-closed for each s G 5 and 

ClsGsU G ' ^1 / (5 ) > 0 } ， i s weak-*-closed. Also it is easy to verify that 

+ C and C for all a > 0. • 

As a result, the dual cone specifies a pre-order in ；f* by the association 

f dis+ 9 if and only if g - f e S'^. The following proposition discusses when the 

pre-order induced is further a partial order in the topological dual space. 

Proposition 1.1.2 Let X he a locally convex space and S C X be a convex cone. 

Then is a pointed cone in X* if and only if d{S — S) = X. 

Proof : Suppose cl{S - S) ^ X. Then there exists .TQ G A' such that .TQ 幸 

- S). Note that cl[S — S) is closed convex. By the Separation Theorem 

there is / G A'* \ {0} such that /(.TQ) > snp{f{y)\y e cl(S - 5 ) } . If there exists 

yo E cl{S-S) such that f{yo) + 0 then 鶴 yo G cl{S-S) and f ( ^ ^ y o ) - / ( .TQ) . 

I t leads to a contradiction. Therefore we have f{s) = 0 for any s e S. Hence 

/ e 门 ( - 5 + ) and so is not pointed. Conversely, suppose d(S - S) = 

Since 5+ n (-5^+) = {f e ；M*\f{s) = 0,Vs G 5 } , it follows from cl{S - S) = ^ 

that 5+ n ( - 5 + ) = {0}. • 

V 

A cone S is said to be generating if 5 - 5 = By Proposition 1.1.1 and 

Proposition 1.1.2, the dual cone specifies a partial order in A'* if ^ is locally 

convex and S is generating convex. 

The quasi-interior of the dual cone is not necessarily nonempty (for ex-

ample, ； = B[a, b], the set of all bounded functions on [a, b], and 

S = {xe B[a,b]\x(t) > 0,\/t e 
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then = 0. See [19]) and not necessarily identical to the topological interior of 

the dual cone (for example, X 二 P with 1 < p < +oo and S is the nonnegative 

orthant, then int{S^) = 0 but, + 0. See [19]). 

Since the assumption of nonempty quasi-interior of the dual cone (that is, 

admits strictly positive continuous linear functionals) is indispensable to 

guarantee the existence of the positive proper efficient points, which is the core 

concept in this chapter and which definition wil l be stated later, i t is important to 

know when + 0. The following propositions give some equivalent conditions 

for it. 

Proposition 1.1.3 heX X be a topological vector space and S C X he a convex 

cone. Then — 0 and only if there exists an open convex set U in X such 

that O^U and S C cone{U). 

Proof: Suppose f G Define U = {x e A ' | / ( .T ) > 1}. Clearly U is an 

open convex set in A' such that 0 ^ U and S C cone(U). Conversely, suppose 

there exists an open convex set U in X such that 0 ^ [ / and S C cone{U). I t 

follows from the Separation Theorem that there exists f e \ {0} such that 

f{u) > /(O) = 0 for all ueU. This and S C cone[U) imply that f G and 

thus is nonempty. • 

Let w-d{Q) denote the closure of 6 with respect to the weak topology of the 

topological vector space. Then we have the next equivalent, condition for + 0. 

Proposition 1.1.4 Let X he a topological vector space and S C M he a convex 

cone. Then ^ 0 and only if S has a base 9 such that 0 车 w-d{Q). 

Proof: Suppose f e S+\ Define e = {s e S\f(s) = 1}. Clearly 6 is a base of 

S and 0 • w-d[Q) (Because w-d{e) C {.x € ^ \ f ( x ) = 1} ) . 
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Conversely suppose S has a base 9 such that 0 • w-cl(e). Since the weak 

topology is locally convex, by the Separation Theorem, there exists f G A** \ |0 } 

such that f{0) > /(O) = 0 for all OeO. This implies that f G and thus 

is nonempty. • 

Since every closed convex subset in a locally convex space is weakly closed, 

the following corollary is directly from Proposition 1.1.4. 

Corollary 1.1.5 Let X be a locally convex space and S Q X be a convex cone. 

Then ^^ if and only if S has a base. 

Now let us state the definition of the efficient points and the positive proper 

efficient points below. They are the core concepts in this chapter. 

Definition 1.1.1 Let X be a topological vector space and S C X he the ordering 

cone. Let A he a nonempty subset of X. Let A he a nonempty subset of X. An 

element a e A is called an efficient point of A with respect to S if 

{A - a,) n - S g (1.2) 

The set of the efficient points of A with respect to S is denoted by E(A, S). 

Remark 1.1.2 In case that S is pointed, (1.2) can he simplified to 

( ^ - a ) n - 5 = : : { 0 } . (1.3) 

/n other word, a G E{A, S) whenever fla G A such that a •^s o, and a + a. 

Definition 1.1.2 Let X he a topological vector space and S <Z X he the ordering 

cone with nonempty quasi-interior Let A be a nonem,pty subset of X. An 

elemmt a。G A is called a positive proper efficient point of A with respect to 

S if 

3f e S^\ya e A, /(ao) < f { a ) . (1.4) 
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The set of the positive proper efficient points of A with respect to S is denoted by 

The following proposition gives a way to identify whether a point AQ G A is a 

positive proper efficient point or not. 

Proposition 1.1.6 Let X he a topological vector space and S X he the ordering 

cone. Let A he a nonempty convex subset of X. An element a^ e A is a positive 

proper efficient point of A with respect to S if and only if there exists an open 

convex subset U of X such that 

( i ) S C cone(U) and 

(a) cone{A - a。）n —U =边. 

Proof: Suppose a � G Then these exists f G such that for all 

a G A, f(ao) < / (a ) ; hence f{a — ao) > 0 for all a G A. Therefore we have 

cone(A — ao) C {x G ^ \ f { x ) > 0 } . (1.5) 

Let U = {x e A'|/(.'r) > 1}. Clearly U is open convex and S C cone(U). Since 

-U = {x € A'|/( .T ) < - 1 } , it follows from (1.5) that cone{A — A O ) 门 一 = 

Conversely, suppose U is an open convex subset satisfying (z) and (ii). From (ii) 

and the Separation Theorem there are / 6 A'* \ {0} and 7 G R such that 

、 / W > 7 > f ( - u ) , V.T 6 cone(A-ao),Vu e U. (1.6) 

Since 0 e cone {A - ao). 7 < 0. This implies that f(u) > - 7 > 0 for any u e U] 

hence, from (z), f G 5+''. Aiming to show a。G Pos{A), i t suffices to show that 

/(.T) > 0 for any x 6 cone{A - ao). Suppose not; there is .TQ G cone(A - 0,0) such 

that /(.To) < 0. Then there is a sufficiently large n。G N such that /(n。.?：。) < 

7 < 0. I t contradicts with (1.6). This proves the result. • 
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In the rest of this preliminary section, we discuss some elementary properties 

of the set of the efficient points and the set of the positive proper efficient, points. 

Proposition 1.1.7 Let X be a topological vector space and S C X he the ordering 

cone such that + 0. Let A be a nonempty subset of X. Then Pos{A, S) C 

E{AS). 

Proof: Let us prove by contradiction. Suppose ao in A and o.q • E{A, S). In 

view of (1.2), there exists a e A such that a — a^ G —S and a — a。• S. Therefore 

一 "。e i-S) \ {0}; hence for any f G 5"+、f(o.) = /(a。）+ / ( a - a。）< /(ao). 

As a result, ao 朱 S). • 

Proposition 1.1.8 Let X he a topological vector space. Let S and K he closed 

convex pointed cones m X such that S \ { 0 } C int{K). Let A be a nonempty 

dosed convex subset of X. Then E{A, K) C Pos{A, S). 

Proof: Let a。G E{A, K). Since K is convex pointed, it follows from Remark 

1.1.2 that ( A - a o ) n - A ' = {0}. As 0 ^ - i n t ( K ) , we have ( A - a o ) n - m t ( K ) = 0. 

Since (A - ao) is closed convex and -int{K) is open convex, from the Separation 

Theorem, there exists / G A'* \ {0} such that 

V A G / ⑷ — / K ) > / ( — S ) . ( 1 . 7 ) 

、. Firstly, as a。G A, we have f{s) > /(ao) — /(ao) = 0 for any s G {0}. This 

implies that f G Secondly, by (1.7), it is easy to show that / (a ) - /(ao) > 0 

for any a G A. Combining two results we have (Iq G POS(4，S). • 

Proposition 1.1.9 Let X he a topological vector space and S Q X he a convex 

pointed cone. Let A and B he nonem.pty subsets of X such that A C B C A + S. 

ThenE(A,S) = E(B,S). 
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Proof: For any a G E{A,S), suppose that a 來 E(B,S). Then there is b' e B 

such that b' :<s a and b' ^ a. Since B C A + 5, 6' can be written as o! + s' for 

some of e A and some s' G S. Therefore a! :<s b' :<s d and a' • a; it contradicts 

with a e E{A,S). Conversely, suppose b G E{B,S). Since (A - 句 n C 

{B -b) n -S = {0} ’ it is sufficient to show that b ^ A. Suppose not; that is, 

there exist a" G A and s" G S \ {0} such that b = a!' + s". However we have 

a〃 e AC B, a " ^ and a" + b. I t contradicts with b e E(B, S). • 

Proposition 1.1.10 Let X he a topological vector space and S C ^ he an or-

dering cone. Let A and B he nonempty subsets of X such that A C B C A S. 

Them Pos、A^, S) = Pos(B,S). 

Proof : Suppose a。G Pos{A, S): there exists f G such that (1.4) holds. 

Therefore f{ao) < f(a) + f{s) = f(a + 5) for any a e A and any s e S. I t 

follows from B C A S that Pos{A, S) C Pos{B,S). Conversely, suppose 

bo e Pos(B,S). There exists f G 5+'' such that f(bo) < f{b) for b e B. I t 

follows from A C B that f(bo) < f(a) for 0, G A. I t is sufficient to show that 

bo G A. Suppose not: that is, there exist 0' G A and s' G S \ {0} such that 

60 = 0' + s'. Then for each g G g{a') < g{o') + g(s') = g{bo). I t contradicts 

with bo G Pos…，S). Therefore bo G Pos(A，5"). • 

1.2 The Arrow-Barankin-Blackwell Theorem in 

Normed Spaces 

In the preceding section we have known that the set of the positive proper efficient 

points is contained in the set of the efficient points. In the following sections, we 
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turn to a well-known problem, first considered by Arrow, Barankin and Blackwell, 

which concerns the conditions required to guarantee the density of the set of 

positive proper efficient points in the set of the efficient points. In 1953, Arrow, 

Barankin and Blackwell [15] proved the following remarkable result: Given a 

nonempty compact convex subset A in equipped with the natural order (that 

is, wi th an ordering cone of {(.Tr)i<r<n e R'"\xr > 0,1 < r < n}.), 

Pos{A,Wl) is dense in This result has been further generalized by a 

number of authors. 

In this section, we discuss several density results in the setting of normed 

spaces. In 1988, J. Jahn [23] proved that, in a normed space X which is par-

tially ordered by a Bishop-Phelps cone S, for a weakly compact convex subset 

A, Pos(A, S) is norm dense in E(A, S). This result was further generalized by 

M. Petschke in 1990. The following is Petschke's result. 

Theorem 1.2.1 ([24] Corollary 4.2) Let X he a normed space partially or-

dered by a convex cone S with a closed hounded base. Let A X he a weakly 

compact convex subset. Then E[A, S) C S)). 

Actually the requirement that the ordering cone has a closed bounded base 

is a great restriction. For example, the nonnegative orthants in and L^ with 

1 < p < +00 do not have any closed bounded bases (indeed, no bounded bases); 

see [19]. Therefore it is natural to try to relax this limitation. 

On the other side, as we state out in preceding section, the condition of 

nonempty quasi-interior of the dual cone is indispensable. Several authors gave 

some density results under this necessary condition on the ordering cone. In 

particular, F. Ferro proved the following result in 1993. 

Theorem 1.2.2 ([18] Theorem 2.2) Let M he a normed space partially or-

dered -by a closed convex pointed cone S such that ^ 0. Let A C X he a 

com,pact convex subset. Then E{A, S) C cl{Pos{A, S)). 
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Comparing with Theorem 1.2.1, Theorem 1.2.2 requires a weaker restriction 

on the ordering cone S (indeed, necessary to guarantee the existence of positive 

proper efficient points) but a stronger restriction on the set A. This is revealed 

that there may be a trade-off between the restriction on the set A and the re-

striction on the ordering cone S. 

In this section, we wil l present the result given by K. F. Ng and X. Y. Zheng 

14], in which Theorem 1.2.1 is generalized by the way that the ordering cone is 

a qiiasi-Bishop-Phelps cone and other requirements remain. Also a density result 

wi th no compactness assumption on the set A is studied. 

Before our discussion, let us start with a definition. 

Definition 1 .2 .1 Let X he a norw,ed space and S C ^ he a dosed convex pointed 

cone. Let r he a locally convex topology on X weaker than (or equal to) the norm 

topology such that every t-com,pact subset of 1 is norm, hounded. A sequence 

{'S'njneN of T-dosed convex pointed cones in A' is called an T-enlargement of S if 

( i ) V n eN, S \ { 0 } C int{Sr,), and 

⑷ for each hounded sequence {c „ }neN with E for each n E N，d i s t [ c n , S) 

0； where dist(cn, S) = i i i f { | |c „ , — 5|||5 G 5 } for each n 6 N . 

In this section we use uj denote the weak topology of X. 

Proposition 1 .2 .3 Let X he a normal space and S C X he a closed convex 

pointed cone with a base 6 . Suppose that 5 = inf{ | | /9| | |^ e © } > 1. For each 

n 6 N , define 

Sn = cl{cone[e + - B ( X ) ) ) , (1.8) 
n \ I 

—ere B{X) is the dosed unit hall of X. Then {5n}neN is a UJ-enlargement of S 

in X.‘ 
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Proof : Clearly every weakly compact subset in ^ is bounded. Next, Sn is a 

weakly closed convex pointed cone with a base c/(9 + (see Theorem 1.1 

in [1]). Moreover, for each n G N, since 6 C int(Sn), S \ {0} C mt(5„ ) . Now 

suppose {c„,}„,6N is a bounded sequence in X with c„, G Sn for each n G N. In view 

of (1.8), for each n G N, there exist > 0, 0„, £ B, G B(X) and yn G 

such that 

Cn = tn{On + " - ^n ) + "^/n-
n n 

Note that c„, - =力n (没n + -̂̂ n)； hence 

|Cn|| > tvPn + -T^nW 一 -||?/n|| > - - ) - - • 
n n n n 

This and boundedness of {cn j^GN imply that {tn}neN is a bounded scalar sequence. 

Since 

dist(Cn,S) < ||Cn — tnOnW < — + 丄 
n n 

and + ^Ill/nil — 0 when n — +oo, we have dist(cn, S) — 0. Combining 

all these, {^^jnGN is a cj-enlargement of S in X. • 

Before we state the definition of quasi-Bishop-Phelps cones, we first recall the 

definition of Bishop-Phelps cones and the concept that a cone is representable as 

a Bishop-Phelps cone. 

Definition 1.2.2 Let X he a normed space and S C ^ be a dosed convex cone. 

、 1. S is a Bishop-Phelps cone if there exists a nonzero continuous linear func-

tional f (that is, f e JM* \ { 0 } ) such that 

S = {xe^\\\x\\ < f { x ) } . 

2. S is said to he representable as a Bishop-Phelps cone if there exist a nonzero 

continuous linear functional f and an equivalent norm, || • ||g such that 

S = { x ^ ^ \ \ \ x \ U < f { x ) } . 
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The fo l lowing is a ma in result of Petschke [24 . 

Theorem 1.2.4 ([24] Theorem 3.2) Let X he a normed space and S C X be 

a nontrivial cone (that is S { 0 } and S ^ X). Then S is representahle as a 

Bishop-Phelps cone if and only if S is a convex cone with a closed bounded base. 

Remark 1.2.1 See [26]. A convex cone with a dosed hounded base is a closed 

convex pointed cone. 

Remark 1.2.2 It is easy to show that a closed convex cone with a hounded base 

has a closed hounded base. 

Remark 1.2 .3 In view of Rem,ark 1.2.2, we know that, given that S is a closed 

c^onvex cone, S is representahle as a Bishop-Phelps cone if S has a hounded base. 

I n view of these, the quasi-Bishop-Phelps cone is defined as follows: 

Definition 1.2.3 Let M he a normed space and S <Z X he a dosed convex cone. 

S is a quasi-Bishop-Phelps cone if there exists a com,pact subset G of X* such 

that 

SC{xe M I N I < s u p { / ( .T )| / G G}}. 

The next propos i t ion follows f rom Remark 1.2.3. 

Proposition 1.2.5 Let X be a normed space. Let S be a dosed convex cone. If 

S has a hounded base then S is a quasi-Bishop-Phelps cone. 

Proposition 1.2.6 Let X he a nornn,ed space and S C X he a closed convex 

pointed cone. The following statemmts are equivalent. 

(A) S is a quasi-Bishop-Phelps cone. 

(B) 0 • u-cl{Us), where Us =、s [ = 1}. 



Density Theorems, Connectedness Results and Error Bounds 19 

(C) For any hounded net {sa}aga in S, sx if and only if sx 0. 

Proof: I t is clear that (C) (B). 

Firstly, let's show that (B) ^ (A). On the condition of (B), there exist gi, •. •, 

gm, in A'* such that 

E P(:\\9i{x)\ < 1’V2 E { ! , • • • , M } } = 0. 

Fix X e Us. Therefore there is 1 < zq < m such that |认o(:r)| > 1. Without loss 

of generality we may assume g^^(x) > 1. So ||.T|| < maxi勺《爪,{̂ (.7：)} and thus 

S C (x e A'III.TII < m a x {伪(工 ) } } . 
l<7;<m 

Hence 5 is a qiiasi-Bishop-Phelps cone. 

Secondly, let's show that (A) => (C). Suppose {sx}xeA is a bounded net in S 

with Sx 0. Without loss of generality we can assume that ||«§入|| < 1 for each 

A G A. Let G be a compact subset of X* such that 

SC{xeX\\\x\\<snp{f{x)\feG}}. 

For arbitrary e > 0, there exist /i，.. •, in G such that 

n 

i=l 

where B(X*) is the closed unit ball of X*. For each A G A, since ||SA|1 < 1, we 

have 

、 I N I < sup{/ (5a) | / e G } < max{ f i (sx) } + (1.9) 

I t follows from SA 0 that there exists AQ G A such that for each A G A with 

A > Ao，maxi<i<n{fi(sx)} < This and (1.9) imply that SA 0. • 

Recall that every weakly convergent sequence in X is bounded. Also notice 

that the weak topology u; of A' is metrizable on every bounded subset of if A：* 

is separable. Then Proposition 1.2.6 implies the following corollary. 



Density Theorems, Connectedness Results and Error Bounds 20 

Corollary 1 .2 .7 Let X be a norm,ed space such that X* is separable. Then a 

dosed convex pointed cone S of X is a quasi-Bishop-Phelps cone if and only if 

each sequence in S which weakly converges to 0 is convergent to 0. 

In view of preceding corollary, we have the following definition. 

Definition 1.2.4 Let X he a normed space. Then a closed convex cone S C X is 

said to have property {W) if and only if each sequence in S which weakly converges 

to 0 is convergent to 0. 

Therefore the following implication is clear. 

Remark 1 .2 .4 S has a bounded base S is a quasi-Bishop-Phelps cone S 

has property (W). 

See [14]; there is an example that S has a property {W) but S has no bounded 

base. 

Now we present the density results in the normed space. 

L e m m a 1.2.8 Let X be a normed space and S C X he a dosed convex cone with 

隐 T-enlargement {5n}nGN- Let A C X he an r-com,pact convex subset Then for 

舰h, a, e E{A,S), there exists a sequence {a„,}nGN with a„ 6 E{A, Sn) for each 

neN such that dist(an, a- S) -^0. Hence E{A, S) C S) + S). 

Proof: Let A^ = {a - S^,) n A. Then Q E(A, Sn) (Because for any .x G 

Sn), we have x e d-Sn and thus x-Sn C d-Sn； so —5；.) = {.T} 

An(厅—5;)n(;r-5；) = {x} 4 An(x-Sn) = {. t}). Since A is r-compact and 

is T-closed, A^ is again r-compact. Using argument involved Zorii's Lemma we 

have E{Ar,,Sn) + 0. By Proposit ion 1.1.8, E{A„.,Sn) C E{A, S^) C Pos{A, S). 

Therefore we can pick 〜 G E{An,Sn) C P o s ( ] ’ S ) for each n e N. As a„ G 

^ 0 - Sn, we have a — a„, G Sn- Since is a r-enlargement of S and 
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{^^njneN is bounded (because A is bounded), we have dist(a - S) — 0. In the 

other word, dist(an, d, - S) — 0. As a consequence, E(A, S) C cl(Pos{A, 5 ) + 5). 
• 

Theorem 1.2.9 Let X he a normed space and S C A! he a closed convex cone 

with a base; let A C X he a weakly com,pact convex subset. Then for each a G 

S), there exist a sequence in Pos(A, S) and a sequence in 

S such that a^ a and ||a„, + — a|| ^ 0. 

Proof: Suppose S has a base Q. Without loss of generality we can assume 

that 6 = inf{||(9|||i9 G 6 } > 1. By Proposition 1.2.3 there exists a ^-enlargement 

{5'n}neN of S. In view of Lemma 1.2.8, for each n G N, there exist a„ G S) 

and Sn e S, such that 

+ S n - a | | — 0. (1.10) 

Hence the second conclusion follows. Next, since A is weakly compact, by 

Eberlein-Smulian Theorem, there is a subsequence of {a^jneN weakly conver-

gent to some (Iq G A. Without loss of generality, we can assume that a„ an. 

This and (1.10) imply that — a。. Since S is weakly closed, a - ao G S. As 

行'€ E[A, S), we conclude that ao = a. So the first conclusion a„ a follows. • 

Remark 1.2.5 Since the norm, topology and the weak topology coincide on every 

compact subset of X, the first conclusion of Theorem. 1.2.9 implies Theorem. 1.2.2. 

The following main result extends the theorem of Petschke. 

Theorem 1.2 .10 Let X he a normed space and S Q X he a closed convex cone 

« base and property (W); let A C X he a weakly compact convex subset. 

Then E{A,S) C d{Pos{A, S)). 
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Proof : Let a G E{A, S). Following the notation in the proof of Theorem 1.2.9, 

we have a„, a and ||a„, + — a|| 一 0. These two imply that 0. Since 

S has property (VK), Sn 一 0 and thus — a. Since a is arbitrarily chosen, we 

have E(A,S) C cl{Pos{A, S)). • 

The following theorem is directly from Theorem 1.2.10 and Remark 1.2.4. 

Theorem 1.2.11 Let S Q X he a dosed convex cone with a base; let A C X be 

a weakly com,pact convex subset. Assume that S is a quasi-Bishop-Phelps cone. 

Then E{A,S) C cl{Pos{A, S)). 

Next we discuss the density theorem that there is no compactness assumption 

on the set A. In order to reach this result, some notations and lemmas are needed. 

First let iis consider a general locally convex space A'. Suppose 5 is a cone 

with a base 6 . We define 

zr?i©(5+) = {f e S+\mf{f{0)\e G 0 } > 0}. 

Remark 1.2.6 By the Separation Theorem,, intQ(S+、+ 0. 

Remark 1.2.7 + 27?i©(5+) C zr?i©(5+) C 

Next proposition states that intQ{S^) and int(S'^) coincide when G is a 

bounded base in a normed space, where int(S'^) is the norm interior of in 

； r . 

Proposition 1.2.12 Let X be a normed space and S X he a cone with a 

hounded base 6. Then intQ[S+、二 int(S+). 

Proof: Let 6 = inf{|l/9|||i9 € 0 } > 0. Firstly, for any f G int[S+), there exists 

e > 0 such that / + ^ G for any p € A'* with < e. Take 久 G 0 such that 

+ (1.11) 
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By Hahn-Banach Theorem, there exists g^ e Af* such that = e and 认(礼）= 

一e||氏II, so / + € 5+. Therefore /((9,) + g脚 > 0; that is, f{0,) > e\\e,\\ > eS. 

This and (1.11) imply that 

This results that f € intQ(S+). 

Secondly, suppose f G inte(S+). Let inf{/(l9)|(9 G G} = a > 0. Since 9 is 

bounded, there exists e > 0 such that whenever 0 E Q and g ^ X* with ||p|| < e, 

\g{0)\ < 晉；furthermore, 

This tells that f G int、S+). • 

Corollary 1.2.13 In a normed space A' with a convex cone S, int、S+、^ 0 

and only if S has a hounded base. 

Lemma 1.2.14 ([3] Lemma 3.1 (i)) Let X he a locally convex space and S C 

X he an ordering cone with a hounded base 0 . Suppose « decreasing 

sequence with respect to S; that is, Xi ^s hs • • • hs ^n ts .. • . Abo suppose 

that f G intQ[S+、such that {f{x„)}neN is hounded below. Then is a 

Cauchy sequence in X. 

Proof: Since f G mt©(5+), let a = 'mi{f(e)\0 e 9 } > 0. For any neighborhood 

of 0 in since 6 is bounded, there exists 力o > 0 such that 

t e c V , W e [(Mo]. (1.12) 

Since f e intQ、S+) C and {.T„,}„,eN is decreasing with respect to 5, we have 

{f{^'n)}neN is decreasing. This and that {/(.T„,)}„,eN is bounded below imply that 
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{f(xn)}n€N is convergent. Therefore there is no € N such that 

F(j'M - ^N) < Otto, Vn, m, n>m.> UQ. (1.13) 

Also for any n > m > no, Xm — Xn h s O5 so there are Xm.„, > 0 and 0誦.^ B such 

that 

^m. — Tn 二 ^mn^mn-

This and (1.13) imply that 

cdo > /(-Tm - ^n) 二 Amn/(<^mn) > > 0； 

hence 力o > Amn > 0. So, by (1.12), we have x^. — .T„ G V. As a consequence, 

is a Cauchy sequence in • 

We say that A has a domination property with respect to S if, for any 

a G A, there is a G E(A, S) such that a •<3 a. The following lemma gives a 

sufficient condition for the domination property of A. 

Lemma 1.2.15 ([3] Theorem 3.1) Let X he a locally convex space and S Q X 

be a dosed convex cone with a hounded base 6. Let A X he a sequentially 

complete subset. Suppose that there is f € intQ[S+、such that f is bounded below 

on A. Then A has the domination property. 

Proof: For any .TQ G 

inf{/(.T)|.T G A n (.To - S)} > inf{ /( .T)| .T e A} > - 0 0 ; 

therefore for any e > 0 given, there is G A A (.TQ — S) such that 

f M < inf{/(.T)|.T € A n (.To - S)} + e. 

In this way, for any Qq G A, we can construct a sequence in A such that 
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(i) {o,n}n£N is & decreasing sequence with respect to S, and 

(ii) / ( a j < inf{/(.T)|.T € A n (a„,_i — 5 ) } + for all n G N. 

Since (i) and that f is bounded below on A, by Lemma 1.2.14, {a„}n,GN is a 

Cauchy sequence in X. From the sequential completeness of A, there is a e A 

such that (In 一 a. Since 5 is a closed convex cone, one has a„ a, for all n G N 

and a :<s ao. I t suffices to show that a € E{A, S). Suppose not: there exists 

a e A such that a a, and a, dis a. As f E mt©(5+) C / (a ) < f(a). On 

the other hand, since ^s 石'ts we have & 6 A A (a„, — S) for all n e N. 

Therefore by ( i i ) , for any n G N, 

/ ⑷ > inf{/(.T)|.T e A n K - 5 ) } > / (a „+ i ) - - 1 - . 
n + 1 

When n 一 +oo, we have / (a ) > / (a) . This contradicts the aissertion before. As 

a result, 0. G E{A,S). • 

Here is another main result in this section. Note that there is no compactness 

assumption on the set A. 

Theorem 1.2.16 Let X he a norm,ed space and 5 C A' a closed convex cone 

with a weakly com,pact base; let A C X be a closed convex subset and a 6 E(A, S). 

If there exists r > 0 such that A 门 B(d,,r) is complete, then a G d(Pos(A, S)). 

Hence E{A, S) C C / ( P O S ( A ， S O ) ？ /A 切 complete itself. 

Proof : Let 0 be a weakly compact base of S. Without loss of generality we may 

assume that inf{||̂ |||6' G 6 } > 1. Then for each n G N, we let 

Sn = cone(e + -B(A')). 
n 

By Remark 1.2.1，Sn is a closed convex cone with a closed bounded base 9 + 

Let Ar A n B{d,,r). By assumption Ar is complete; since a - Sn 
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is closed，Ar n (a — Sn) is also complete. Firstly, we show that E(Ar n (a -

Srr), Sn) ^ 0- In view of Lemma 1.2.15, it is sufficient to show that there exists 

f ^ 切力e+i风;kO((*^”,)+) such that f is bounded below on Ar n (行一Sn). By 

the Separation Theorem, m 力 ⑷ ( ( 5 ； ) + ) + 0. Pick f 6 去风; 

Since 门(i^ — Sn) C B(a, r), f is bounded below on Ar A (d, 一 Sn). Therefore 

Pick (In e E(Arn{a-Sn), Sn) for each n G N. Then there exist On G 0 , h^ G B{X) 

and tn > 0 such that 

0.n = a - t r , { e n - ^ { - ) K ) . (1.14) 

Note that Ar n (d, - Sn) is bounded and inf{||.T|||.T 6 0 + ^B(X)} > 0. Then 

{tn}neN is bounded. Without loss of generality we can assume that t^, ^ t > 0 

and weakly convergent to some 0 eO (Note that 6 is weakly compact.). 

Then it follows from (1.14) that weakly convergent to a - tO. Note that 

a — 力 e A n (行,一S). Since a € E(A,S), we can conclude that t = 0. As 

e + is bounded, 

it again follows from (1.14) and 力=0 that a„ —> a. 

What remains is to show that a„ G Pos(A^ S) for sufficiently large n 6 N. Since 

— o,, without loss of generality we may assume that — a|| < i for each n. 

Therefore 
^ n B(an, C ^ n B{a, r) = Ar. (1.15) 

From Proposition 1.1.8’ 

an e E(Ar n (5, - 5；), Sn) C E(Ar, S„) C Pos(Ar, S). 

Then there exists /„, G such that for all x E Ar, 

/n(fln) < fn⑷. (1.16) 

And for any .t G ^ \ 人，according to (1.15), ||.t — a„,|| > By the convexity of 

A . 

+ 一 G 4 门 B ( 〜 , ^ Ar. 
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Thus by (1.16), 

r 
fn{a,n) < f(an + r (x — an)); 

X - a „ , | 

that is, /„,(«'n) < Combining this with (1.16), we have < / „ (a) for 

all a € A] that is, a„, 6 Pos(A, S). • 

1.3 The Arrow-Barankin-Blackwell Theorem in 

Topological Vector Spaces 

In this section, we wil l discuss the result given by X. Y. Zheng [9], in which Arrow-

Barankin-Blackwell Theorem is generalized in the setting of general topological 

vector spaces. This follows along the proofs of the main result of Ferro [18] in 

the setting of normed spaces and of the main result of Chen [25] in the setting of 

locally convex spaces. 

Before the main result is discussed, we introduce several notations and lemmas 

needed. 

Let A' be a topological vector space, be the corresponding topological dual 

space, we assume that A'* separates the points of X . 

Let N(0) denote the family of all neighborhoods of 0 in A'. And for each 

V e N(0), V" denotes the polar of K, that is, 

Clearly if Ki, V2 € N(0) with Vi D V2, then C V^^. Let V - {(n,K)|r?, G 

N,l / G N(0)}. We define a binary relation j in D as follows: 

(ni, Vi)」（712’ V2) if and only if n i < n ] and Vi D V2. 

Then we have the following lemmas. 
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Lemma 1.3.1 ： )̂ is a directed set. 

Proof: For any (ni, 14), (722, V2) G V given, take n = max{ni, 77,2} and V = 

Vi 门 Clearly (n, V) eV and (n“ K ) 」 ( n , V) for i = 1,2. • 

Lemma 1.3.2 Let X be a topological vector space and S Q X he a weakly closed 

convex cone. Then x e S if and only if f { x ) > 0 for each f E S^. 

Proof: The necessity is clear from the definition of Now suppose x 朱 S. 

Note that the weak topology is locally convex. Since {.T} is weakly compact 

convex and S is weakly closed convex, by the Separation Theorem, there exists 

f e A ' * \ { 0 } such that f { x ) < f{s) for all s e S. I t is esusy to show, that f(s) > 0 

for all s G 5 (that is, f e and, that f { x ) < 0. These prove the sufficiency. 
• 

Lemma 1.3.3 Let X he a topological vector space and S Q X he a weakly closed 

convex cone. Suppose p £ . Set 

B{n, = (1.17) 
77/ 

and, 

A(n, V) = [j tB(n, V), V(n, V) G V. (1.18) 
t>o 

Then we have 

1- Mm, Vi) c 4(77,2,1^2)讨(几1，Vi) ^ K , V2)，Vi) ev for 1 = 1, 2’ and 

2. xeS tf and only tf f ( x ) > 0 for each f e U(„.’voeP ̂("‘， 

Proof: 
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1. Let [ni.Vi) < {n2, V2) where (n,；, K ) e V ioT i = 1,2. For each f € 

^(P'l, Vi), it follows from (1.17) and (1.18) that there exist 力〉0 and 

Pi G V^-^ S^ such that 

/ =《(丄)尹+ pi). (1.19) 

Since (n i ,K i ) ^ (n2，V̂ 2), we have 0 < ^ < 1 and C V^. Clearly 

( ^ ) p i e V^ n g 门 Therefore this and (1.19) imply that 

7A 1 Til 打 2 ？7.2 Til 

As a result, A(n i , Vi) C A(n2, V2). 

2. By Proposition 1.1.1, S'^ is weak-*-closed; therefore, in view of Lemma 

1.3.2, it suffices to show that S^ = c/(U(n,\/)Gi> ^) ) - Firstly, it is clear 

that ^ Secondly, let f G S+. There exists Vf e N (0 ) 

such that / e V> n As / + ①P e A(n, Vf) C V) for each 

n G N, we have f G d(n 
V)) and it ends the proof. 

• 

Remark 1.3.1 Both the sets B{n, V) and A{n, V) defined for each (n, V) G V 

are subsets of the quasi-interior 

And the lemma below is a well-known theorem. We state it without the proof. 

Lemma 1.3.4 ([16]) Let X and y be topological vector spaces and let A and 

B be compact convex subsets in X and in y respectively. Let ^ he a real-valued 

function on Ax B. Suppose that, for each b e B,外,b) is a continuous convex 

function on A, and that, for each a G A, ^{a, •) is a continuous concave function 

on B. Then there is a pair (ao, bg) E A x B such that 

. < ^(ao,6o) < 屯(a, bo) 

for all a e A and for all b G B. 
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Now we present the main result of this section. 

Theorem 1.3.5 Let X he a topological vector space and S C X he a weakly 

closed convex cone such that • 0. Suppose that A is a nonempty compact 

convex subset of X. Then E{A, S) C cl{Pos(A, S)). 

Proof: Fix d e E{A, S). Wi th a translation we can assume that a = 0 G E[A, S). 

Let p G 5+''； B(n, V) and A{n, V) are defined as in Lemma 1.3.3 for each (n, V) e 

V. By Alaoghi Theorem (Theorem 3.15 in [4])，V^ is a weak-*-compact convex 

subset in A'* for each V E N(0). Together with that is weak-*-closed convex, 

we have that B(n, V )̂ = (•)尹 + 门 is weak-*-compact convex in X* for each 

[n, V) e V. Define the function ^ : ^ x B(n, K) R by 

少(《'，/) = /(«')， VaGA,VfGB(n,V). 

Clearly $ satisfies the hypothesis stated in Lemma 1.3.4, when X* is equipped 

with the weak-* topology. Therefore there exist a(„,’v/) G A and f(„.’v) e B(n, V) 

such that 

f i ^ n y ) ) < f{n,v)(ain,v)) < /(n，v)(«'), Vfl, G A , V / G B(n, V). (1.20) 

Since /(打’y) E B(n,V) C it follows from (1.20) that G Pas(A，S"). As 

0 G A, again from (1.20) we have 

fioin,v)) < 0， V(n, VO G v y f e B{n, V). (1.21) 

By Lemma 1.3.1’ {a>(ny)}{n,v)ev is a net in Pos{A,S). Since A is compact, 

there exists a subnet of {a^ny)}{n,v)ev convergent to some ao 6 A. Therefore 

fl'o G d{Pos{A,S)). I t is sufficient to show that oq = 0 G E{A, S) to end the 

proof. Without loss of generality, we may assume that {a^ny)}{ny)ev converges 

to gq. Therefore 

咖 n ’ v o 卜 " M , v^ G U A{n,V). (1.22) 
iny)ev 
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Fix ^ G Uf „.’v)ep V). Then there is V^) G V such that g G A{ng^ Vg). 

According to (1.22), for any arbitrary e > 0, there is Vg^^) G V such that, 

( � , v g � K , ’ Vg’e), and 

î (ao) + (1.23) 

By (1) of Lemma 1.3.3, g € A{ng, Vg) C A(〜 , ’ l /g , ) . Therefore there are ^ > 0 

and f e B(ng,, 1/仏such that g = i f . By (1.21)， 

Since e is arbitrary, this and (1.23) imply that g(a。) < 0. Since g is an arbitrary 

element in we have g{ao) < 0 for all g G \J(n,v)ev By 

(2) of Lemma 1.3.3, a^ G -S. Since 0 G E(A, S), it should be that o.q = 0. As a 

result, the theorem follows. • 

Considering the case that the topological vector space is equipped with its 

weak topology, it is easy to deduce the theorem below using similar argument in 

the proof of Theorem 1.3.5. 

Theorem 1.3.6 Let X be a topological vector space and S X he a weakly closed 

convex cone such that 5+'' — 0. Suppose that A is a nonempty weakly com,pact 

convex subset of A：. Then E{A, S) C w-d{Pos{A, S)). 

Since every closed convex subset is weakly closed in a locally convex space, 

we have the following corollary. 

Corollary 1.3.7 Let X he a locally convex space and S C ^ he a dosed convex 

cone such that + 0. Suppose that A is a nonempty compact (weakly compact, 

respectively) convex subset of X. Then E{A, S) C d{Pos{A,S)) (E{A,S) C 

;S))，respectively). 
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1.4 Density Results in Dual Space Setting 

Let A' be a topological vector space and A'* be the corresponding topological 

dual space. Let A be a nonempty subset of X . A point ao G A is said to be 

supported by a linear function 小 if (/)(ao) < 0(a) for all a e A. In this case, a。 

is called the support point of the set A and (f) is called the support functional of 

the set A. In general, we can consider a subset F of ？l*: A point ao E A is said 

to a F-s i ipport point, denoted by a。e F-supp{A), if there exists /o G F such 

that fo{ao) < fo(a) for all a € A. In contrast to the sections before, you may 

conclude that all the positive proper efficient points are the support points w i th 

the set of support functionals consisting of all the str ict ly positive continuous 

linear functionals; that is, the set Pos(A, S) is indeed coinciding S^''-supp{A). 

Furthermore, note that X * is a topological vector space itself. We can consider 

the same concepts wi th the support points in A^* and the support functionals in 

However, since there is a canonical embedding of A' in X** , we can consider 

the support functional restricted in the prediial instead of the dual. In this case, 

let F be a nonempty subset of A!* and A be a nonempty subset of X . A point 

/o € F is said to a A-weak-*-support point of F if there exists ao 6 A such that 

foM < f M for all f e F. Wi thout any ambiguity caused, and for short, 

we use A-supp(F) to denote the set of all ^-weak-*-support points of F and we 

directly use the element .T E ^ to denote a weak-* continuous linear functional 

X : A!* ^ R, where 

尋 二 /⑷， V / G 

In this section, let ^ be a normed space and let 5 be a convex cone in 

By Proposition 1.1.1，the dual cone S^ is a weak-*-closed convex cone in the 

topological dual space X* . Hence a p r e - o r d e r i s induced in the way that for 

any f , g e A：*, f 9 if and only i f ^ - / G In the view of Definit ion 

1.1.1, / G F is said to be an efficient point of F w i th respect to 5+, denoted by 
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Moreover, if is a convex cone such that cl{S — S) = X, then by Proposition 

1.1.2 S'^ is a pointed cone in A!*. In this case, / G E{F, if and only if 

(F - / ) n ( — s + ) = {0}. 

Suppose 5 is a convex cone. Analogous to the set of strictly positive 

continuous linear functionals on X , we define 

{ s e S \ g { s ) > 0 y g e S ^ \ { 0 } } . 

Sp consists of all the strictly positive elements in the ordering cone S. I t is 

easy to verify that Sp-supp{F) C E[F,S+). Therefore, analogous to the Arrow-

Barankin-Blackwell Theorem, it is worthwhile to study when Sp-supp(F) is dense 

in E(F, 5"+). In this section we will present two density results in this dual setting. 

The first one is first proved by W. Song [22] and the second one is by K. F. Ng 

and X. Y. Zheng [14 . 

Before our discussion on the density result, as we know that the condition 

Sp ¥ (D is indispensable to such a density result in the dual space setting, we first 

study some propositions concerning the set Sp. 

Throughout this section, we use uj* denote the weak-* topology of X . 

Lemma 1.4.1 Let X he a normed space and S Q X be a closed convex cone. 

Suppose X e If g{x) > 0 for all g € S^, then x G S. 

Proof: Suppose x 朱 S. By the Separation Theorem, there is f e \ {0} such 

that 

inf{ / (5) |5 eS}> f i x ) . (1.24) 
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I t is easy to verify that 

M{f{s)\seS} = 0; (1.25) 

thus f e 5+. However, by (1.24) and (1.25), f { x ) < 0; it contradicts with the 

hypothesis. So we have x G S. • 

Proposition 1 .4 .2 Let X he a normed space and S <Z X he a closed convex cone. 

Then Sp ^ ^ if and only if has a weak-*-closed base. 

Proof: Suppose 5o G Sp. Then let 少 = { p e S+\g{so) = 1}. Clearly ^ is a base 

of Since 5+ is weak-*-closed, ^ is a weak-*-closed base of 5'+. Conversely, 

suppose has a weak-*-closed base 少.Consider that ；T is equipped with 

its weak-* topology, which is locally convex indeed. Then by the Separation 

Theorem, there exists Xq e X \ {0} such that ip(xo) > O(.To) = 0 for all 功 e 少. 

Clearly 

q M > 0, (1.26) 

Then (̂.TQ) > 0 for all g G By Lemma 1.4.1, we have .TQ G S. Furthermore, 

in view of (1.26), xq e Sp and thus Sp 0. • 

、 I t is natural to study the relationship between int{S), which is the norm-

interior of 5, and Sp, which is the set of strictly positive elements. 

Proposition 1 .4 .3 Let X be a normed space and S C X he a convex cone. Then 

int{S) C SP. 

Proof: Let s G int(S). Suppose s • Sp： that is, = 0 for some g, e S^\{0}. 

Since s G int(S), there is a neighborhood V of 0 in ^ such that s + V Q S. As 
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gs e S+, we have 

= + >0, V̂^ G K 

As a result, Qs = 0, which contradicts with gs 6 {0}. Hence int{S) C Sp. • 

Also the following result concerns when norm interior of a closed convex cone 

is nonempty. 

Proposition 1 .4 .4 Let X he a normed space and S C X he a closed convex cone. 

Then int{S) — 0 and only if S+ has a weak- compact base. 

Proof: Suppose s。€ int(S). Let 少二 {夕 G S'^\g(so) = 1}. Clearly ^ is a 

weak-*-closed base of Since SQ € int{S), Sq ~ S is a neighborhood of 0 in 

By Alaogiu Theorem, {.T* G A:'*|.T*(SO — s) < 1 , V 5 € S} is weak-(compact. For 

any ?/； G ^ and any s G -S, 

ip{so - s ) =妙(So)—妙(s) < 功(So) = 1. 

Therefore 少 C {.T* G A'*|.X*(SO - 5) < 1, VS G 5 } and thus 少 is weak-*-compact. 

Conversely, suppose has a weak-*-compact base 少.Let us consider the case 

that ？i* is equipped with a weak-* topology. Then by the Separation Theorem, 

there is .TQ G A' \ {0} such that 

M{^{xo)\ip € > 0. 

Without loss of generality, we let inf{^(.To)|^ G > 1. Since 屯 is weak-*-

compact, V {x G ？l\iP(x) < 1，•妙 G is a norm-neighborhood of 0 in X. 

Then for any v £ V and any G 

î T'O — ？” > 0； 

by Lemma 1.4.1, Xq — v ^ S. Therfore Xq — V C S and hence .TQ G int(S). • 

The following proposition gives a very remarkable result. 
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Proposition 1.4.5 Let X be a normed space and S C X he a dosed convex cone. 

Suppose int(S) + 0. Then Sp = int、S、. 

Proof: In view of Proposition 1.4.3, it suffices to show that Sp C int(S). Suppose 

So G S\{int{S) U { • } ) • Since int{S) is nonempty open convex, by the Separation 

Theorem, there exists f e X* \ {0} such that 

f(so) < m , Vs G S. 

Since SQ and 0 are in S, we have /(s。）= 0 二 in f { / (s ) |s € S}. This implies that 

/ G S ' + \ { 0 } . This and /(SQ) = 0 imply that SQ • Sp. • 

In 1997, W. Song [22] gave the following density result in the dual space 

setting. The proof below is due to K. F. Ng and X. Y. Zheng [14 . 

Theorem 1.4 .6 Let X he a normed space and S Q X he a closed convex cone 

such that Sp i- 0. Suppose F is a com,pact (weak-*-compact respectively) convex 

subset of A'*. Then 

E{F,S-^)Ccl(Sp-supp{F)) 

(E(F, 5 + ) C uj*-d(Sp-supp{F)) respectively). 

Proof: Since the norm topology and the weak-* topology are identical on every 

compact subset of X* , we need only to show that the theorem holds valid in the 

case when F is weak-*-compact. Let Af* is equipped with its weak-*topology. 

Note that 5+ is a weak-*-closed convex cone in A'*. As Sp ^ 0, we pick some 

5o G Sp. Let 少二 {g G S^\g{so) = 1}. By Proposition 1.4.2 ^ is a weak-*-closed 

base of Also S^ is pointed. Considering all these, is a closed convex cone 

with a base and F is a compact convex set in the locally convex space 
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Since Sp is the set of the strictly positive weak-*-continuous linear functionals on 

A^*, by Corollary 1.3.7, we have 

E{F,S^) C uj*-cl(Sp-supp{F)). 

This proves the theorem. • 

Now we discuss another density result by K. F. Ng and X. Y. Zheng [14] in 

the dual space setting. The concepts of the enlargement and the quasi-*-Bishop-

Phelps cone are needed. Now we give the definition of quasi-*-Bishop-Phelps 

cones. 

Definition 1.4.1 Let X he a normed space and S C X he a convex cone. The 

dual cone of S is called a quasi- Bishop-Phelps cone if there exists a corn,pact 

subset K of X such that 

S ^ c { f e ^ ' \ \ \ f \ \ < s u p { f { x ) \ x e K } } . 

The following proposition tells us that given that S is closed convex, then S^ 

is a quasi-*-Bishop-Phelps cone if int{S) is nonempty. 

Proposition 1.4.7 Let X he a norm,ed space and S C X he a dosed convex cone. 

Then int{S) •化 if and only if there exists Xq 6 X \ { 0 } such that 

Proof: Suppose int{S) — 0. Then there exist xq e S \ {0} and r > 0 such that 

B(xo,r) := {.T e A'lll.x - .Toll < r j C S. Therefore for all g e S^ and for all 

X e B(.To,r), > 0. This implies that 

. gM > sup{p(.T)|.T G B(0,r)} = r||"||’ Vg E 
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Hence, S+ C {f e ； r | | | / | | < / ( 〒 ) } . Conversely, suppose that 5+ C { / G 

X*\\\f\\ < /(.To)} for some .TQ G A' \ {0}. Then for all g £ and for all 

X e B(.to, 1)， 

咖 < IMI <g i^o ) ' ^ 

hence g{x) > 0. By Lemma 1.4.1, B{xo, 1) C S] thus .TQ ^ int{S). • 

Using the similar argument in the proof of Proposition 1.2.6, we have the 

following proposition which states some equivalent conditions for a dual cone 

being a quasi-*-Bishop-Phelps cone. 

Proposition 1.4.8 Let X he a normed space and S C A! be a convex cone. The 

following statements are equivalent. 

(A) The dual cone S'^ is a quasi- Bishop-Phelps cone. 

(B) 0 • LU*-d{Us+), where Us+ = {g e 5+|||c/|| = 1}. 

(C) For any hounded net {/A}A€A 切'S+，fx ^ 0 if and only if fx — 0. 

Recall that every weak-*-convergent sequence in X* is bounded with respect 

to the norm topology of X* if ^ is a Bariach space. Also the weak-* topology is 

metrizable if X is separable. Then we have the following corollary. 

Corollary 1.4.9 Let X he a separable Banach space and S C X he a convex 

cone. Then the dual cone is a quasi- Bishop-Phelps cone if and only if every 

sequence in 5"+ which is weak- *-convergent to 0 is also convergent to 0. 

In order to reach our another main density result in the dual space of a Banach 

space in this section, several lemmas are first introduced. The lemma below is 

without proof stated. 
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Lemma 1.4.10 ([28] Theorem 1) Let X he a Banach Space and let F be a 

weak-*-closed convex subset of X*. Then for any boundary point / G F， there 

exist a sequence {fn}neN F and, a sequence {.T^j^GN in X with 1| = 1 for 

each n G N； such that 

| | / n - / | | - 0 

and 

VN G N , / “ : R „ ) 二 I N F { / ( : R 』 / E F } . 

Lemma 1.4.11 Let X he a Banach space and S C X he a dosed convex cone. 

Suppose has a weak-*-closed base 少 such that inf{||训 | |功 E 少} > 1. For each 

n G N, define 

S-^(n) := cone(屯 + - ^ ( A ' * ) ) , (1.27) n 

where B[X*) : = {.T* G < 1}. Them S'^{N) is a weak-*-dosed cone with 

a base ^ + in 

Proof: By Krein-Smulian Theorem (see Theorem 12.1 in [29]), for each n G N, 

it is sufficient to show the weak-*-closediiess of S'^{n) by showing that »S+(n) A 

dB{X*) is weak-*-closed for each c? > 0. Fix n G N and <i > 0. Suppose 

{gxjx^A is a net in S'^{n) f i dB{A!*) such that gx g for some g G X*. Clearly 

g e dB(A：*). For each A G A, there exist xpx e 少，h) G and ^a > 0 

such that gx = tx{ipx + By Alaoglu Theorem, B{X*) is weak-*-compact. 

Without loss of generality we can assume that {hx}xeA is weak-*-convergent to 

some h G B{P(：*). Also since i r i f { | | / | | | / G ^ + > 0 and {C/A}AGA C 

dB[X*)^ we have {^aIaga is a bounded scalar sequence. Again without loss of 

generality we can assume that {^AIAGA converges to some t > 0. There are two 

cases. 
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1. i n = o: 

h如二 ^ g. 
n 

Since { 力 ; ^ S'^ and is weak-*-closed, p G C 

2. I f t > 0: 

= -(丄)"A ^ ( I ) " - i-)h =：水 tx n t n 

Since {4>x}xeA ^ 少 and 屯 is weak-*-closed, {j)gx — ^ 少.Therefore 

As a result, is a weak-*-closed cone w i th a base 少 + in X* . • 

Lemma 1.4.12 With the same setting in Lemma l.J^.ll, {iS+(77,)}n.eN a uj*-

enlargement of in X*. 

Proof: Firstly, every weak-*-compact subset of X * is bounded. Secondly, by 

Lemma 1.4.11，S"+(n) is a weak-*-closed cone in A'* for each n G N. Thirdly, since 

少 C int、S+ {71)、, \ {0} C int{S'^(n)). Fourthly, for each bounded sequence 

{9n}neN with Qn G S'^(u) for each n, using the similar argument in the proof of 

Proposition 1.2.3，we have dist(gn, S'^) —» 0. • 

Lemma 1.4.13 Let X be a Banach space and S ^ X he a dosed convex cone 

such that has a weak-*-dosed base 屯 with inf{||々 |||?/； G > 1. For each 

n G N，define S'^(n) as in (1.27). Suppose F C X* he a weak-*-compact convex 

subset. Then for each n G N， each 小几 € E(F, S'^{n)) and arbitrary e > 0， there 

exist fn G Sp-supp(F) and g^ G such that \\fn — 4>n + 9n\\ < e. 
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Proof: Fix n € N, € E(F, S+{n)) and e > 0. Then 

(F-(/>„,) n - 5 + ( n ) - { 0 } ; 

hence (F — n -切力(S^+(77,)) = 0. Note that int[S+{n)) + 0. I t follows from 

the Separation Theorem that there exists (f G \ {0} such that 

inf{¥P(/)|/ G(F-<t>n)} > s u p { i ( / ) | / G 5+(n)}. 

Therefore 

in f {v^( / ) | / € ( F - - snp{-^{f)\f € > 0; 

thus 

Since 0 G (F - + 5+(n)), i i i f{(/?(/)|/ e {F - (jy^ + S+(n))} = 0. Hence 0 is 

a boundary point of F — + S'^ (n). I t follows from the weak-*-compactness of 

F and Lemma 1.4.11 that F — (j)”, + S^(n) is weak-*-closed. I t is also clear that 

F—</ ) „ , + (n ) is convex. In view of Lemma 1.4.10, there exist Qq G F — ( / > „ . + 

and .TO G ^ with ||.TO|| = 1, such that 

ll^oll < m i n { ^ , e } (1.28) 

and 

V^ G F - + 5+(n), go(xo) < g(xo). (1.29) 

Now pick fn € F and Qn E S^ (n) such that go = / „ — + gn- So the conclusion 

l/n — + 二 1111 < e follows from (1.28). What remains is to show that 

fn G Sp-supp{F). Let / G F be arbitrary. Since f — (pn 9n ^ F — (pn + 

by (1.29), we have 

/n(-To) < /(•%). 



Density Theorems, Connectedness Results and Error Bounds 42 

That is, /n(.To) = i n f { / ( . T o ) | / G F}. Therefore it suffices to show that .tq € 

Sp. Pick ho € such that ho(To) = -1. Let e "i/ he arbitrary. Since 

^ + ① ho G ^ + (^)B(A'*) C F - ( / ) „ , + by (1.28) and (1.29), we have 

+ (》 "O) ( .TO) ^ 9 O M > -IIPOII > -

Therefore ip(xo) > ^ > 0. This and Lemma 1.4.1 implies that .TQ G Sp. • 

Theorem 1.4.14 Let X he a Banach space and S C X be a closed convex cone 

such that Sp is nonempty and is a quasi- *-Bishop-Phelps cone. Suppose F C 

A!* is a weak-*-closed convex subset. Then E{F, C d(Sp-supp{F)). 

Proof: Suppose / e E(F, Let Fq = F H {f + B{A：*)). Then FQ is a weak-

*-compact convex subset of A"* and / G E{Fq, 5+). Since Sp — 0, by Proposition 

1.4.2, has a weak-*-closed base 少.Without loss of generality we may assume 

that G > 1. For each n G N, we define 

By Lemma 1.4.12, is a u;*-enlargement of in X*. 

Note that Fq is weak-*-compact convex. I t follows from Lemma 1.2.8 that there 

exists a sequence {(/)n}neN，with (j)n G •E(Fo, for each n G N, such that 

dist{(j)n, f — 5"+) — 0. Therefore there exists a sequence {"n}neN in such that 

| | ( / > n - ( / - M I H O . (1.30) 

111 view of Lemma 1.4.13, there are sequences {fn}neN in Sp-supp(Fo) and {p'nlneN 

in such that for each n 6 N, 

‘ l l / n - ^ n + Pnll < (1.31) 
n 
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Since 

l/n + 9n - / + Z^'nll S \\fn _ 4>n + QnW + \\4>n _ / + 

following from (1.30) and (1.31), 

\\fn+9n- f + (1.32) 

Note that {/njneN C FQ is a bounded sequence. This and (1.32) imply that 

{gn + hn}neN IS boimded. Furthermore, + ^ + G for each 

n G N. By the fact that {S'^{n)}neN is a a;*-enlargement of in A'*, we have 

dist(gn + K., S^) 0. 

Then there exists {kn}neN in S'^ such that + h” — kn\\ — 0. From this and 

(1.32) we now have 

Win + K — / I I — 0. (1.33) 

Since FQ is weak-*-compact, without loss of generality we can assume that /„, ~ > 
w* — 

/o G Fq. I t follows from (1.33) that kn ~~> f — /〇.Note that {kn}n€N Q S'^ and 

is weak-*-closed; so / — /。G Since / G E{F, »S+)，we should have / 〇 = / ; 

thus kn 0. From the boundedness of {/njneN and (1.33), {kn}neN is also 

bounded. Therefore by the assumption that is a quasi-*-Bishop-Phelps cone 

and by Proposition 1.4.8, kn — 0. Therefore by (1.33) again, 一 / . Using the 

argument in proof of Theorem 1.2.16, we have / „ G Sp-supp{F) for sufficiently 

large n. This shows that / G cl(Sp-supp{F)) and ends the proof. • 

The corollary below follows from Theorem 1.4.14 and Proposition 1.4.7. 

Corollary 1.4 .15 Let X he a Banach space and S C X he a dosed convex cone 

with a nonempty interior. Suppose F C X* he a weak-*-doseA convex subset. 

Then E{F,S+) C cl(Sp-supp{F)). 
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Remark 1 .4 .1 Comparing Theorem 1.4.6 and Theorem 14. U, we will also find 

the interesting ”trade-off’，. Theorem 1.4.6 requires a rather weak restriction on the 

ordering cone (indeed, Sp +化 IS the necessary condition m the density theorem) 

but a relatively strong restriction on the set F (F is com,pact convex). On the 

other hand, Theorem, I4.I4 requires a relatively strong limitation on the ordering 

cone (in the way it admits a quasi- Bishop-Phelps dual cone) but a relatively weak 

assumption on the set F (indeed F is only needed to be weak-*-closed convex). It 

is interesting to develop more results in the dual space setting to verify whether 

such a "trade-off” gives the two different streams of density results. 



Chapter 2 

Density Theorem for Super 

Efficiency 

In the preceding chapter we have presented several results concerning the density 

of the set of the positive proper efficient points in the set of the efficient points. 

In this chapter we wi l l discuss another kind of proper efficiency: the super ef-

ficiency. We wi l l present some facts about the super efficiency and a theorem 

concerning the density of the set of the super efficient points in the set of the 

efficient points wi l l be given. The results reported in this chapter are originally 

given by J. M. Borwein and D. Zhuang [1] in the setting of normed vector spaces. 

The extensions to the setting of locally convex topological vector spaces are due 

to X. Y. Zheng [2, 3]. In this chapter we give a systematic survey of these authors 

especially [2] and [3 . 

2.1 Definition and Criteria for Super Efficiency 

Definition 2.1.1 Let y he a normed vector space, S C y he an ordering cone, 

and A be a nonem,pty subset of y. A point a in A, is called a super efficient 

45 
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point of A with respect to S, i f , there exists a real number M > 0 such that 

cl[cone{A — a)] H (B - S) C MB, (2.1) 

where B is the closed unit hall in y. The set of all super efficient points of A 

with respect to S is denoted by SE{A, S). 

Remark 2.1.1 It will he shown below that the condition (2.1) can he replaced by 

cone{A - a) D {B - S) C MB. (2.2) 

Moreover this condition implies that a is an efficient point. Indeed if a G A 

and a :<s a, then n(a - d) G -S and hence n{a - a) belongs to L.H.S. of (2.2) 

for each n G N; thus (2.2) implies that a - a — 0 and a = a. 

The fo l lowing def in i t ion is clearly consistent to Def in i t ion 2.1.1. 

Definition 2.1.2 Let X he a locally convex space, S C X he an ordering cone, 

and A he a nonem,pty subset of X. A point a. of A is called a super efficient 

point of A with respect to S, i f , for any neighborhood V of 0 in X, there exists a 

neighborhood U of 0 in X such that 

cl[cone{A — a)] n(U-S)CV. (2.3) 

The set of all super efficient points of A with respect to S is denoted by SE(A,S). 

The proposi t ion below shows us tha t (2.3) can be replaced by (2.4) (dropping 

the closure on the L.H.S.) . 

Proposition 2.1.1 Let X he a locally convex space, S C A! he an ordering cone, 

and A he a nonempty subset of X. Let a. 6 A. Then, a G SE{A, S), if and only 

i f , for any neighborhood V of 0 in X, there exists a neighborhood U of 0 in X 

such that 

cone(A - a) n(U - S ) C V . (2.4) 
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Proof: The necessity part is obvious. 

For any neighborhood V of 0, there is V î, a neighborhood of 0, such that Vi + Vi C 

V. Therefore there is [ / i , a neighborhood of 0, such that 

cone{A - a) n ( [A - S) C Vj . 

Also there is U2, a neighborhood of 0, such that U2 — Ih Q (U\ n Vi). I t follows 

that, 

d[cone{A - a)] n [U: - S) C {cone(A - a) + U2) n (U2 - S) 

C {cone(A — a) H {U2 - U2 - S)) + U2 

C Vi + [/2 

c v. 

• 

Thus the following two remarks are clear. 

Remark 2.1 .2 (2.3) in Definition 2.1.2 can he replaced by (2.4)-

Remark 2.1 .3 (2.1) in Definition 2.1.1 can be replaced by (2.2). 

Other than using the setting above, we can also identify the super efficient 

points by virtue of the family of continuous seminorms defining the topology in 

A'. 

Proposition 2.1.2 Let X he a locally convex space, S C X he an ordering cone, 

A he a nonempty subset of X and let a G A. Then, a, 6 SE(A, S), if and only i f , 

for any continuous seminorm, p on A!, there is a continuous seminorm q on A! 

such that, p(a — a) < q(x) whenever a ^ A, x £ X with a — a :<s x. 
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Proof : First, we show the sufficiency. For any neighborhood V of 0 given, 

without loss of generality, we may assume that V is closed, circled and convex. 

Let 

p(x) = in{{t > 0|.7： € t V j , x e (2.5) 

By Theorem 1.35 in [4], p is a continuous seminorm on M and 

V = {xe X\p{x) < 1}. (2.6) 

By assumption, there is a continuous seminorm q on X such that, p{a - a) < q{x) 

whenever a E A, x e ^ with a, — a :<s x. Let 

U = {xe X\q{x) < 1}. (2.7) 

Then is a neighborhood of 0. Assume that x € cone(A — a) n ([/ —巧 and 

X — 0: There are t > a e A and u e U such that x = t{o. — a) :<s u\ that is, 

{o, - a) :<s u/t. By assumption it follows that p{a - o) < q[u/i). Multiplying by 

t and making use of (2.7) we have 

p ⑷ = q { u ) < 1. 

Hence by (2.6), x G V] i t implies that c o n e ( A -句 n ( [ / - S ) CV. By Proposition 

2.1.1，a G SE{A,S). 

Conversely, suppose that a, G SE{A, S). For any continuous seminorm p on 

let 

V = {x£ X\p(x) < 1} ; 

thus 

p(x) = inf{^ > 0|.T G f V } , X e (2.8) 

By Definition 2.1.2, there is a neighborhood [ / of 0 such that 

cllcone{A - a)] n(U -S)CV. (2.9) 
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Without loss of generality, we can assume that U is closed, circled and convex. 

Let 

q{x) = inf{^ > 0|.T G tU}, x G A'; 

thus, is a continuous seminorm on ^ and U = {x £ < 1}. Let a G A, 

and let x ^ X wi th (a — a) :<s x: there is 5 G 5 such that a — a = x — s. We 

prove that p{a — a) < q{x) by considering two cases. 

1. Suppose q{x) = 0. Then we must have that p{a - a) = 0. Indeed if not, 

then by (2.8), there is 力。〉0 such that a — a ^ t^V, that is, (a — a)/to 來 

V . However, (a — a)/IQ G cone[A — a) and (a — a)/IQ = {x — s)/to G 

U — S (because q{x/to) = q{T,)/to = 0). This contradicts with (2.9), and 

establishes our claim. 

2. Suppose that q(x) > 0. Then we have x/q{x) G U. Note that {a — a)/q{x) G 

cone(A-d,) and {a-a.)/q(x) = { x - s ) / q { x ) G U-S. B y (2.9), {a-a)/q{T) G 

V. Therefore p((a — d)/q(x)) < 1 and thus p(a — a.) < q{x). 

• 

We have observed that every super efficient point is an efficient point. This 

can also be seen immediately from the preceding proposition. 

Corollary 2 .1 .3 Let X he a locally convex space, S Q X he an ordering cone, 

and A be a nonempty subset of X. Then SE{A, S) C E{A, S). 

Proof: Suppose a G SE{A, S) and that a ^ A wi th a — a 0 for some a G A. 

Let p be a continuous seminorm on A' and take a continuous seminorm q according 

to Proposition 2.1.2. Letting x = 0，we have p{a — a) < q{x) = 0. Since p is 

arbitrary, we can conclude that a = a. That is, a G E{A, S). 
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Making use of the fact that for any continuous seminorm r on a normed vector 

space y, there is a real number M > 0 such that for any y e y, r{y) < M\\y\\, 

we can reach the following corollary. 

Corollary 2.1.4 Let y he a normed vector space, S c y be an ordering cone, A 

be a nonempty subset of y and a, e A. Then, a, € SE{A, S), if and only i f , there 

is a real number M > 0 such that |la - a|| < M||^|| whenever a e A, y e y with 

(a - a) dis y. 

In the discussion in this chapter, the notations below wil l be frequently used. 

Let Pc： he a locally convex space, 5 C A' be an ordering cone with a base 6 , and 

in te iS^ ) 二 { / G i n f { / _ G 6 } > 0}. 

Thus in te(S^) Q By the Separation Theorem, we have mte(5+) + 0. Also 

we let N(0) denoting the family of all neighborhoods of 0 in X. 

The following two propositions study the relation between SE{A,S) and 

inteiS-^). 

Proposition 2.1.5 Let X be a locally convex space, S ^ X he an ordering cone 

with a hounded base B and A be a subset of X. Assume that there are f G 

intQ{S'^) and a ^ A such that 

/ ⑷ = i n f { / ⑷ | a e 斗 （2.10) 

Thenar SE{A,S). 

Proof: Suppose not: that is, there is VQ € N(0) such that for any U G N(0), 

c o n e ( A - a )门 ( [ / —名 Vo. Therefore for each U, there are uu e U,Ou e Q, Xu > 

such that 

Uu —入[/〜G cone{A — a), (2.11) 
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and, 

uu — XuOu i K). (2.12) 

Take Vi G N(0) with Vi - Vi C VQ. Since { u u } u e N { 0 ) converges to 0，without 

loss of generality, we can assume that uu G Vi for each U. Therefore by (2.12) 

and VI — VI C VQ, we have XuOu t Vi- By assumption that 6 is boimded, there 

is a real number AQ > 0 such that for 0 < //, < AQ, fiQ C VI. Hence for each U, 

入[/ > AQ. On the other hand, by (2.10), one has 

f { x ) > 0, for any x e cone{A — a). 

This and (2.11) imply that f { u u — Xu^u) > 0, so together with the fact that for 

each [/,入[/ 2 入0，we have for each U, 

However, as {uu}u£N{o) converges to 0, it follows that 

0> Aoinf{/(^)|^€e}, 

which contradicts f G intQ{S'^). • 

And the following proposition provides a partial converse for the preceding 

one. 

Proposition 2.1.6 Let X he a locally convex space, S C A! he an ordering cone 

with a bounded base 6 and A be a convex subset of X. Assum.e that a G SE{A, S). 

Then there is f G intQ(S+) such that / (a ) = i r i f { / (a) |a 6 A}. 

Proof: Because of the assumption that G is a base of S, there is a convex 

neighborhood of 0 such that ( - 6 ) f l = 0; so, 

(2.13) 
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Also by the assumption that D E SE(A, S), there is an open convex neighborhood 

[/ of 0 such that t / C y and cone(A — a) n、-U - 5) C V. By (2.13), 

cone{A - a) n {-U - 9 ) C V f ] { - U - 6 ) = 0. 

Note that -U-Q is open convex and cone{A-a,) is convex; then by the Separation 

Theorem, there is / G X * \ {0} such that 

i n f{ / ( .T )| .T E cone{A - A ) } > SUP{/(.T)|.T E - U - 6 } . (2.14) 

I t is easy to show that 

inf{/(.T)|.T € cone{A — a)} = 0; (2.15) 

consequently we have 

f (a) = mf{f(a)\a e A}. 

What is remained is to show that f e By (2.14) and (2.15), 

0>sup{/(.T)|.Te - [ / - e } . (2.16) 

Since / — 0 and [/ is a neighborhood of 0，there is u e U such that f(u) < 0. By 

(2.16)，for any ^ G e , 0 > - f { u ) — 肌 that is f(0) > - / ( u ) ; thus 

0<-f(u)<mi{f(0)\0ee}. 

This implies f £ mt©(S+). • 

Remark 2.1.4 Note that inte{S^) ^ this tells that every super efficient 

point of a convex subset with respect to a hounded-based cone is again a positive 

proper efficient point. 

In this sense, super efficiency is a very strong kind of proper efficiency. Under 

certain setting it is found that the set of the super efficient points is contained in 

the set of other sorts of proper efficient points, such as the positive proper ones. 

Therefore the density result in this chapter actually extends theorem of Arrow, 

Barankin and Blackwell. 
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2.2 Henig Proper Efficiency 

First, we give a definition of Henig dilating cones in locally convex spaces. 

Definition 2 .2 .1 Let X be a locally convex space and S Q X he an ordering 

cone with a base 6. Suppose V is a convex neighborhood of 0 in X such that 

0 • c/(e +V). Let 

Sv{e) = cone{Q + V). 

Clearly (6 + V) is convex and 0 ^ c/(0 4-V). Therefore the following remark 

is obvious. 

Remark 2.2.1 5 ^ ( 6 ) is a convex pointed cone with a base ( 9 + V). 

Using the concept of Henig dilating cone, we first introduce the Henig proper 

efficiency wi th respect to a base of a cone in a locally convex space. 

Definition 2.2 .2 Let X he a locally convex space, S C X he, an ordering cone 

with a base 6 and A he a subset in X. a e A ts a Henig proper efficient point 

of A with respect to G, if there is a convex neighborhood V of 0 in X, with 

0 i cl(e + V), such that 

d[con,e{A - a)] n - S V ( e ) = {0}. (2.17) 

The set of all Henig proper efficient points of A with respect to 6 is denoted by 

HE{A,e). 

Suppose that G is a base of an ordering cone S in a locally convex space X. 

By the Separation Theorem, we have Z77ie(5+) • 0. Take some / e G A；"*, wi th 

fe e intQ(S+); 

let 

ae = in f { i©(_ e e } � 0 . 
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Define 

Also let Ne(0) denote the family of all convex neighborhoods of 0 contained in 

Ve- In the following discussion, the notations above wil l be used without further 

remark. 

For any convex neighborhood V of 0 with 0 朱 c/(6 + V), there is a convex 

neighborhood K) of 0 wi th Vq C V© (that is, Vq e N©(0)) such that S'vb(B) C 

SV(Q) (Simply take VQ = V f j V^.). Therefore, we can give a simple way below 

to check the Henig proper efficiency with respect to a base 6 . 

Proposition 2.2.1 Let X he a locally convex space, S C X he an ordering cone 

with a base Q, A he a subset of M and a G A. Then a, G HE (A, 0)； if and only 

i f , there is V G N e ( 0 ) such that a G E{A, SV(Q))，that is 

cone(A — a) n -5v(0) = {0}. (2.18) 

Proof: The necessity part is obvious. Suppose that there is a convex neighbor-

hood y of 0 with V C Vb such that (2.18) holds. Then 

cone(A - a) n (-9 

Let Vo be a convex neighborhood of 0 such that Vq + Vq C V； therefore we have 

{cone{A - a) + V^) H ( - 9 — Vo) = 0, 

which implies that cl[cone{A — a)] n —SV。(0) = {0}, proving (2.17). 

In the following definition of the Henig proper efficient points with respect to 

cone 5, we use B{S) to denote the family of all bases of an ordering cone 5 in a 

locally convex space. 
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Definition 2 .2 .3 Let X be a locally convex space, S C X be an ordering cone 

with a base and A be a subset in X. ae A is a Henig proper efficient point 

of A with respect to S, if 

aG Pi HE(A,e). 

eeB{S) 

The set of the Henig proper efficient points of A with respect to S is denoted by 

HE(A,S); that is 

HE{A,S) = Pi HE{A,e). 

eeB{S) 

In the two propositions below, we study some properties of the Henig proper 

efficiency. 

Proposition 2 .2 .2 Let X he a locally convex space, S C X he an ordering cone 

with a base and A he a subset in A'. Then for any 9i,02 G B{S), there are 

e ' , e " G B(S) such that, 

1. HE{A, B i ) U HE(A, 62) C HE{A, Q'), and, 

2. HE{A,e") C HE{A,ei)nHE{A,Q2)-

Proof: Since 6,： G B(S), by the Separation Theorem, there are fi G 2r?ie(5+) 

such that 

= > 0 , 2 = 1，2. 

1. Take O' 二 61 + €>2. To begin with we show that 9 ' G B(S). Firstly, for 

any 0' G 9 ' , there are 61 G 61 and Q2 G 62 such that (9' = Oi +192. We have 

‘ so 0 朱 c/(€)'). Secondly, we clearly have cone(6') C S, Thirdly for each 

s e 5 \ { 0 } , there are A,； > 0’ (9,； G 6,；, for i = 1,2, such that s = XiOi =入 
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Therefore 

Ai + A2. 

These show that Q' G B(S). In the next we aim to show that HE (A, 9 i ) U 

HE{A,e2) C HE(A,e'). By symmetry it suffices to show that HE(A, B i ) C 

HE(A,e'). For any a G HE(A,ei), by Proposition 2.2.1, there is K G 

Nei (O) such that cone(A - a) n —SV(Qi) = { • } . To show the result, i t is 

sufficient to show that SV(Q') C 5 v ( 6 i ) . Suppose s G 5V(8 ' ) , there are 

Oi G B i , <92 G 62, A > 0 and v ^V such that s =久(6>i -h O2 + v). Since 

6*2 G cone(Qi), there exist // > 0 and O3 G G i such that O2 = /⑷3. Let 

+ fiOs 
"4 = —T^ • 

1 + //. 

By the convexity of 61 and V, 64 G 0 i and j ^ e V , hence 

s = A("i + (92 + v) = A(1 + 離 + T ^ ) e 5V(ei). 

Therefore 5 ^ ( 9 ' ) C SV(€)i) and the result follows. 

2. Take 0 " = co(e i U 62), where co(e i U 62) is the convex hull of ( 0 i U 62) 

in X. Firstly, by the convexity of 0 i and 62, for each 6>" E B", there are 

0 < A < 1, <91 G Gi and O2 G 62 such that = + (1 - A)没2- Therefore 

( / i + /2)(没”）> A 綱 + ( 1 - A 鹏 ） 

> Atti + (1 - A)a2 

> m in {a i , a2 } 

> 0, 

hence 0 朱 c / (0”) . Secondly, clearly cone(0") CSC ccm,e(Qi) C cone(6"). 

These imply that 8" G B{S). Note that for z = 1,2, 9,； C 9" and thus for 

, any V G N©^(0) f l N©"(0), C 5 ^ ( 0 " ) . I t follows that for i 二 1,2， 

HE(A, 6 " ) C HE(A, 9,；) and consequently the result follows. 



Density Theorems, Connectedness Results a,nd Error Bounds 57 

• 

P r o p o s i t i o n 2 .2 .3 Let X be a locally convex space, S ^ X he an ordering cone 

with a hounded base 6 0 and A he a subset of A：. Then for any 6 G B(S), 

HE(A, Bo) C HE(A,e). 

Proof: Let 6 € B{S). By the Separation Theorem, there is FE € INTE(S'^) such 

that 

ae - i n f { / © ( ^ ) | ^ € e } > 0 . (2.19) 

Since Bq is bounded and / e is positive, there is 入〉0 such that 

AOo C {x e < feix) < a©}. (2.20) 

Clearly ABq G B(S). Take V G N©(0) A NAeo(O). For each s € 5y (e ) , there is 

// > 0, (9 G e and v eV such that s = //(<9 + v). Since ^ G 5 and AOQ G B(5) , 

there are r > 0 and OQ G ABQ such that 9 = 丁0Q. Hence fe(0) = Tfe(Oo). By 

(2.19), fe{0) > ae； by (2.20), 0 < /e(^o) < ^e- Therefore r > 1 and hence 

^ € K as K is a convex neighborhood of 0. Hence, 

s 二 + 二 ） e 6 V ( A e o ) . 
T 

Therefore 

5 v ( e ) C Sv(xeo) = Sv/xiOo); 

、 thus 

HE(A,eo) C HE[A,e). 

Corol lary 2 .2 .4 Let X he a locally convex space, S C X he an ordering cone 

with a hounded base 60 and A be a subset of A', Then HE [A, S) = HE{A, 6 0 ) . 
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2.3 Density Theorem for Super Efficiency 

In this section, some propositions concerning relations between the Henig proper 

efficiency and the super efficiency are presented. Finally a density theorem for 

the super efficiency is discussed. 

Proposit ion 2.3.1 Let M he a locally convex space, S C X be an ordering cone 

with a base and A be a nonempty subset of X. Then SE{A, S) C HE{A, S). 

P r o o f : Using the relation that 

HE(A, S) = Pi HE(A,e), 

eeBiS) 

we only need to show that for each 6 G B{S), SE(A, S) C HE(A, 6 ) . Given 6 

a base of 5, because 0 • c / (6) , there is a convex neighborhood K of 0 such that 

(一 e ) n 2 \ / = 0; so, 

( _ e _ y ) n \ / = 0. (2.21) 

For any a G SE[A, 5) , there is f / G N (0 ) such that cone[A — a) f l {-U -S)CV. 

Without loss of generality we can assume that U CV and thus by (2.21), 

cone{A - a) n - e ) Q V n - e ) = 0. 

I t follows that 

、 cone{A - a) n -Su(e) = { 0 } . 

That is, a G HE(A, 6 ) and so SEiA, S) C HE [A, S). • 

The Proposition 2.3.1 actually gives a generalization to Proposition 3.2 in 

Borwein and Zhuang [1] of the setting of normed spaces. Besides, the proposition 

next generalizes Proposition 3.3 in Borwein and Zhuang [1] from the setting of 

normed spaces to locally convex spaces. 
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Proposi t ion 2.3.2 Let X be a locally convex space, S C X be an ordering 

cone with a hounded base and A be a nonempty subset of X. Then SE(A, S)= 

HE{A, S). 

Proo f : Let 0 be a bounded base of S. By Corollary 2.2.4 and Proposition 2.3.1, 

it suffices to prove that HE(A,Q) C SE(A, S). Let a G HE(A,Q)] then by 

Proposition 2.2.1, there is Kq ^ Ne(0) such that a £ 五(A’5V。(G)). 

Suppose a • SE[A, S): There is Vi € N(0) such that for any U e N(0) , 

—幻 n ([/— •S) ^ Vi； 

that is, for each U G N(0) , there are ay e A, Uy ^ U, € 6 , Â； > 0 and 

flu > 0 such that 

A^(af/ - a) = uu -

and 

Uu - fiuOu i Vi. (2.22) 

Note that \jj{o.v - a) ^ Ki, so Aj； > 0 and au + a. Take V2 G N(0) with 

V2 — V2 C Vi. As the net {uu}ueT<i{0) converges to 0, without loss of generality 

we can assume that {uu}ueN{o) Q V2. By (2.22) and since V2 — V2 ^ Vi, we have 

/i[/(9[/ ^ V2 for each U G N(0) . Since 0 is bounded, there is a real number ",0 > 0 

such that for any r wi th 0 < r < //Q, TO C V2. Hence for each U, fiu > //〇. 

This and the fact that {UU}U^N{O) converges to 0 lead to that {^ } [ /eN(o) again 

converges to 0. Therefore there is UQ G N(0) such that — ^ G VQ and hence 
卯0 

。 . I'-Uo I'^Uo a \ /如0, 、广 c (C\\ 
0,Uo = T—( Guo) = 一 「 ( + ^Uo) e _5Vo(Q). 

入 UQ fl'Uo 入 Uo IkJQ 

Since a G E{A, 6'vb(B)) and auo G A, we have ciuq = contradicting to an earlier 

assertion. Consequently a G HE{A,Q) and thus SE{A, S) = HE(A,S). • 
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We are now ready for the main result which asserts that the set of the super 

efficient points is dense in the set of the efficient points; this generalizes many 

previous density results before. 

First we introduce two lemmas in order to show the theorem. 

Lemma 2.3.3 Let X he a locally convex space, S C X he an ordering cone with 

a closed hounded base A be a weakly com,pact subset of X and a G E{A, S). 

Then for any V 6 N(0)，there is Uy G N e ( 0 ) such that 

(A-d)n-ci{SuAe))cv. 

P r o o f : Suppose that this is false: there exists VQ G N ( 0 ) such that for any 

U G N©(0) , 

{A-a)n-d(Su(e))(^Vo. 

Then for any U G Ne(0 ) , there exists ajj G A such that 

at； - a G - c / ( 5 t / ( e ) ) , (2.23) 

and 

au — a * I/q. (2.24) 

By (2.23), {au - + t / ) A — — 0 and hence there are uu G U, vu € U, 

没[/ e © and A{/ > 0 such that 

au - d - \ - u u = - X u i ^ u + ？ t̂/)- (2.25) 

Note that both {uu}u£Ne{0) and {vu}ueNe{o) converge to 0. Suppose that 

Xu 一 0: by (2.25) and the boundedness of 6 , we have ajj — a convergent to 

0, contradicting to (2.24). Therefore \ u 卡 0. Then without loss of generality we 

can rewrite (2.25) as 

-^u - a + uy) + Vu- (2.26) 
Af/ 
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Again, suppose {A[/}[/eNe(0) is unbounded: Since A is weakly compact, A is 

bounded. So the right hand side of (2.26) converges to 0, contradicting the fact 

that 6 is a base. Therefore without loss of generality, assume that {A[/}[/eNe(o) 

converges to some A, w i th A > 0. Since A is weakly compact, we may also assume 

that {au}ueNeio) weakly converges to some a, where a G A. Then from (2.26), 

{—Ou}ueNe{o) weakly converges to ^(a — a). Note that every closed convex subset 

in a locally convex space is weakly closed, so 6 is weakly closed and thus 

e - e； 

that is, a :<s a. By (2.24), a + a. This contradicts wi th a G E(A, S) and hence 

the result follows. 

Lemma 2.3.4 Let X he a locally convex space, K C A! he a pointed ordering 

cone, A he a weakly compact subset of X and a G A. Let B = — A —cf,[K). 

If there is a G A such that a — a ^ E[B, K), then a G K). 

P r o o f : By that a — a ^ E{B, K) and K is pointed, 

{a-d} = Bn ( {a - d } - K ) (2.27) 

Consider the set A H (谷—/C), we aim to show that {a } = — K). For each 

a e 乂 门 — AT)，there is k ^ K such that a = a — k. Hence a — a = a — a — k. 

Since a — a e (A — a) C B and, a — a = (a. — d) — k e {a — a} — K, one has 

a — a e B 门 ( {a — a} — K). By (2.27), a — a = a — a, that is a = a. As a result, 

aeE{A,K). 

T h e o r e m 2 . 3 . 5 Let X he a locally convex space, S C X be an ordering cone with 

d closed hounded base and A he a weakly compact subset of X. Then E(A, S) C 

d[SE{A,S)'. 
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Proof: Let a, e S). In order to prove the theorem, we aim to show that for 

any neighborhood V of 0 given, 

+ vo n 风A, 5") # 0. 

Let fe, CKe and Ve as the settings as before. By Lemma 2.3.3, it follows that 

there is a convex neighborhood t / of 0 with U C Ve, such that 

(A — a) n -d(»St/(e)) C K 

We define 

As U and 9 are convex, so —cl{Su{Q)) is a closed convex subset and thus a 

weakly closed subset in 义.Together with {A — D) being weakly compact, one can 

get that AQ is weakly compact. As / e is weakly continuous, there is A ^ A wi th 

A, — A £ AQ C V, such that, 

/e (a — A.) = MI{f(x)\x e Aq}. (2.28) 

On the other hand, from the definitions of / e and Ve and that, U C Ve, we have 

/ E ⑷ 〉 守， V.T G e + U. 

Therefore one has /© e By (2.28)， 

a - a e Pos(Ae, 5^/(6)) C E (Ae, S^(e) ) . 

Using Lemma 2.3.4 wi th substituting B — A Q and K = SU{Q), 

ae E(A,Su(e)). 

I t follows from Proposition 2.2.1, a G HE(A, 6 ) . Since 6 is a bounded base of 

S, by Proposition 2.3.2, a G SE{A, S). Note that A — A E V, and hence 

a e (a + v )门 S) + 0. 

That is, the theorem follows. • 



Chapter 3 

Connectedness Results in Vector 

Optimization 

In the study of vector optimization, one of the most important problems is to 

investigate the topological properties of the efficient outcome sets and the efficient 

solution sets. In contrast to the density properties discussed in previous two 

chapters, we wil l present some connectedness results in vector optimization in 

this chapter. Given a vector minimization problem for a set-valued map F: 

(VMP) Min{F{x) : x e A}, wi th respect to cone 5, 

the corresponding efficient outcome set is denoted by Min(F{A), 5), 

Min{F{A), S) := E{F{A), S); (3.1) 

the corresponding efficient solution set is denoted by Min{A, S, F ) , 

Min{A,S,F) y F-^{y). (3.2) 
yeMi.n{F{A),S) 

X. H. Gong [7] gave the following connectedness results (definitions of these not 

yet defined wil l be given in Section 3.1): 

63 
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T h e o r e m 3 . 0 . 1 Let A be a nonempty compact convex subset of a real Hausdorff 

topological vector space X. Let S he a closed convex cone in a real normed space 

y with a base, and let F he an upper semicontinuous S-convex set-valued map 

from, A to y with com,pact values. Furthermore’ assume that 

P ( F ( . T ) , h) is connected, \fh G G A , ( 3 . 3 ) 

where 

P{F(x),h) = {ye F(x)\h{y) = mm{h{z)\z € F { x ) } } . 

Then G(h) and Min{F{A), S) are connected, where 

G{h) = P{F(A),h) = {ye F{A)\h(y) = rmn{h{z)\z e F{A)}}. 

T h e o r e m 3 . 0 . 2 With the same assumptions in Theorem, 3.0.1, one also has 

Min[A, S, F) is connected, where 

Mm(A, S, F) = { a G A\F{a) n Min{F{A), S) + 0 } . 

Inspired by the work X. Y. Zheng done in [6], I wi l l show that even the 

condition (3.3) is dropped Theorem 3.0.1 holds valid. Furthermore as the proof 

of Theorem 3.0.2 involves the use of Theorem 3.0.1, (3.3) is also not essential to 

Theorem 3.0.2. 

Besides, some other connectedness results, especially the ones about cori-

tractibil ity, given by X. Y. Zheng [6], are presented in this chapter. 

3.1 Set-valued Maps 

In this preliminary section, after giving some basic definitions involving set-valued 

maps we establish some useful theorems concerning these maps. These results 

£lre frequently used in this chapter. More details can be found in J. P. Ai idin and 

I. Ekeland [5 . 
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D e f i n i t i o n 3 . 1 . 1 Let X and y be two sets. A s e t - v a l u e d m a p F from X to 

y, denoted as F : X y, is a map associating each x ^ X with a s u b s e t F [ x ) 

in y, where F{x) is called the i m a g e or v a l u e of F at x. 

We say that the set-valued map F is closed-valued (respectively compact, 

bounded and any properties of a subset and so on) if all images of F are closed 

(respectively compact, bounded and any properties of a subset and so on) in y . 

For any subset A of X, we use the following notation for the image of A under 

F: 

F(A) = U F(.t). 

A set-valued map F is said to be p r o p e r if there exists XQ G X such that 

F(XQ) + 0. The d o m a i n of F is defined by 

Dom(F) {x G ^\F{x) + 0 } . 

Clearly F is proper if Dom.(F) + 0. I f Dom{F) = we say F is s tr ic t . 

The i m a g e of F is defined by 

Im{F) ：二 IJ F(.T). 
xeAf 

R e m a r k 3 . 1 . 1 / m ( F ) 二 = L U d — f ) 

Another important concept is the g r a p h of F , which is defined by 

Graph(F} = {(x,y) F { x ) } . 

R e m a r k 3 . 1 . 2 Dom(F) and Im{F) are the projections of Gro,ph{F) on X and 

y respectively. 

We say that the set-valued map F is closed (respectively compact, bounded 

and any properties of a subset and so on) if Graph(F) is closed (respectively 

compact, bounded and any properties of a subset and so on) in A! x y. 
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The i n v e r s e m a p is a set-valued map f rom y t o X such tha t for any 

y e y , 

F - \ y ) = {x e Xjy e F ( x ) } . 

Recall t ha t i n a vector space y wh ich is equipped an order ing cone 5 , a subset 

A of is said to be S'-convex i f A + is convex. 

D e f i n i t i o n 3 . 1 . 2 Let A he a convex subset of a vector space X and S be an 

ordering cone in a vector space y. A set-valued map F from, A! to y is said to 

be S-convex on A i f , for any ai, a,2 € A and t E [0,1], 

昨 1) + (1 — t)F{a2) C F{to,I + (1 - 1)0,2) + S, 

R e m a r k 3 . 1 . 3 F{A) is S-convex in y if F is S-convex on a convex subset A. 

Now consider some topologica l concepts for set-valued maps. 

D e f i n i t i o n 3 . 1 . 3 Let X and y he topological spaces. A set-valued map F from, 

X toy is said to he u p p e r s e m i c o n t i n u o u s at Xq G X i f , for each neighborhood 

V containing F(xo) in y； there exists a neighborhood U of xq in X such that 

F(U) C V. F is said to be upper semicontinuous if F is upper semicontinuous 

at each x G X. 

D e f i n i t i o n 3 . 1 . 4 Let X and y be topological spaces. A set-valued map F from, 

X toy is said to he l o w e r s e m i c o n t i n u o u s at XQ G X i f , for each neighborhood 

V in Y with V FL F(.TO) + 0, there exists a neighborhood U of XQ in X such that 

for each x G U，门 0. F is said to be lower semicontinuous if F is lower 

semicontinuous at each x E X. 

R e m a r k 3 . 1 . 4 See [ 5 j , F is lower semicontinuous at xq ^ X if and only if for 

dny net {.T^} converging to Xq and any y。e F(xo), there exists a net {y^}, with 

y^ E F(x^) for each //，converging to y^. 
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Let {X, Tx) and ry) be locally convex spaces; let ujx and uoy be the weak 

topologies of [X^ Tx) and Ty) respectively. We say that a set-valued map 

F is a strong-weak (respectively weak-strong, weak-weak) upper semicontinuous 

if F is upper semicontinuous w i th respect to [X^ t x ) and (乂0；；̂) (respectively 

{X^ LUx) and ry)^ {X^ujx) and Similar terminology applies to the 

lower semicontimiities. Also F is said to be strong-weak closed if Graph{F) is 

closed w i th respect to r ^ x uy and so on. 

Finally we list out two useful theorems; their proofs can be found in Chapter 

3, Section 1 of [5 . 

T h e o r e m 3 . 1 . 1 Let ^ and y he Hausdorff topological spaces, and F be an upper 

semicontinuous set-valued map from X to y with closed values. Then F is closed. 

T h e o r e m 3 . 1 . 2 Let X and y he Hausdorff topological spaces, and F be a closed 

set-valued map from X to y. Suppose that y is compact. Then F is upper 

semicontinuous. 

3.2 The Contractibility of the Efficient Point 

Sets 

We start our discussion by giving the definition of contractibil i ty of a topological 

space. 

Definition 3.2.1 Let Z he a topological space. Z is said to be contractible if 

there is a continuous map i / : Z x [0,1] ^ Z and a point ZQ E Z such that 

H(z, 0) = z and H、z, 1) = ZQ for each z ^ Z. 

Providing that Z is contractible, H(z,.) gives a continuous path from z to ZQ 

for each z ^ Z. Therefore the following remark is obvious. 

R e m a r k 3 . 2 . 1 Z is path connected if Z is contractible. 
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D e f i n i t i o n 3 . 2 . 2 Let X he a locally convex space and Z C X. Z is said to he 

weakly contractihle if Z is contracUble with respect to the weak topology of X. 

Let A' be a locally convex space and 5 C Af be a closed convex pointed cone. 

A function g on X is said to be (strictly) increasing if g{x2) > whenever 

.Ti, X2 e X w i th .Ti <s (that is, .X2 — .TI G 5 \ {0} ) . A function p on A" is said 

to be st-convex if g is convex and < 椒 )产 )w h e n e v e r .TI,.T2 G 

wi th Xi • ax^ for any constant a > 0. 

Given a continuous convex function p on X, the subdifferential dg is a set-

valued map from X to its topological dual space X* w i th for each x E A', 

dg{x) - { / G < g{x + h) - ^(.T), for all h G X}. 

D e f i n i t i o n 3 . 2 . 3 Let X he a locally convex space. A continuous st-convex func-

tion g on X is said to have property {St) i f , dg{?C) is hounded below on each 

bounded subset of X, that is, for each hounded subset A of X, there is a constant 

M > 0 such that for each a e A and each f e dg{X), f(o.) > - M . Furihermore, 

X is said to have the property (St), if there exists a continuous st-convex function 

QQ on X such that QQ has property {St). 

In order to reach the main result about the contractibi l i ty of the efficient point 

sets in this section, we first state several lemmas. 

L e m m a 3 . 2 . 1 Let X be a locally convex space and S C ^ he a closed convex 

cone with a hounded base. Suppose that go is a continuous st-convex function 

on X and go has property {St). Then there exists /〇 € S'^^' such that go + /〇 is 

(strictly) increasing on X. 

P r o o f : Let 6 be a bounded base of S. By the Separation Theorem, there exists 

f eX*\ {0} such that 

a = > 0. 
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Note that f' G As O is bounded and go has property (St), there exists a 

constant M > 0 such that for each f e dgo{M) and each 0 e Q, /(<9) > -M. 

Define /o = + 1 ) / ; clearly /o G A im to show that go + /。is (strictly) 

increasing on X. Letting x ^ X and s E S \ {0} , since 6 is a bâ se of S, there 

exist t > 0 and ^ G 0 such that s = t9. Besides, we pick f\ G dgo^X) and thus 

+ 5) - g^ix) > fi(s) and f i ( 0 ) > -M. Hence, 

{go + /o)(-'K + s) - (go + / O ) ( . T ) = + - go(x)fo(s) 

> / i ⑷ + / o ⑷ 

a 
M 

> t { - M ) + t{— + l)a 
a 

= a t 

> 0. 

As a result, go + /。is (strictly) increasing. • 

The following lemma asserts that if A is weakly compact and 5-convex, then 

the set of global minimizers of a (strictly) increasing continuous convex function 

on the set (x — S) H ( A S ) is a. nonempty convex subset of the efficient point 

set of A for each x ^ A-\- S. 

L e m m a 3 . 2 . 2 Let X he a locally convex space, S C X be a dosed convex pointed 

cone and A C X he a weakly compact S-convex subset. Let g he a (strictly) 

increasing continuous convex function on X. Let G : A S ^ X, I : A S ^ R 

and L : A-{- S :=t ^ he defined by 

G(x) ：= ( x - S ) n { A + S), V.T 6 A + S-, (3.4) 

/ ⑷ m i { g { y ) \ y G G C T ) } , V.T G A + S, ( 3 . 5 ) 
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and 

L{x) := {y G G{x)\g{y) = / ( .T )} , V.T G A + S. ( 3 . 6 ) 

Then for each x e A-\- S, L(x) is a nonempty convex subset of E{A, S). 

P r o o f : Let x E A-\- S. First ly we note that 

L{x) = { y e G { x M y ) < l { x ) } . 

Since g is convex and G{T) is convex, {y G G(x)\g{y) < L{x)} is convex; that is, 

L{x) is convex. 

Secondly, we show that L{x) is nonempty. As (.r — 5") H (A + S) may not be 

weakly compact in we define another set-valued map G' on A + S by 

G'(Z) •= { Z - S)N A, for each Z E A ^ S . 

And we define corresponding I' and L' on A S hy replacing G by G' in (3.5) 

and (3.6) respectively. We note that for each z G A S, G'{z) is nonempty 

and weakly compact (as {z — S) is weakly closed and A is weakly compact). On 

the other hand, as ^ is a continuous convex function on a locally convex space, 

g is weakly lower semicontinuous. As a result, l'(z) is well-defined and L'{z) is 

nonempty for each z ^ A-\- S. Next we aim to show that L ' ( . T ) = L{x). 

Suppose z G I /( . t) ; then there are 5i, S2 G 5 and a G A such that 

z = a-{- Si = X — S2. 

Hence, 

a = z- Si and a = — Si - S2 G (.t - S) n A = 〔 G(:r). (3.7) 

Since g is (strictly) increasing and z G L(x), if si + 0, i t follows that 

9(fJ') = 9{z 一 si) < g{z) = 'mi{g(y)\y £ G(.7：)} < g(a). 
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A contradiction occurs; thus z — a. From G'[X) C G{X), we have (x) > L(x) 

and therefore by (3.6) and (3.7), 

9{z) = /(.力 < < g(a) = g{z); 

that is, z G L'(.T) . Conversely , suppose that z G L ' (.T) and we aim to show that 

z G L(x). Indeed , if not, there exists zi G G(x) such that g{zi) < g{z). Then, 

there exist 5i, S2 G S and A ^ A such that 

Zi = a -{- Si = X — S2. 

Hence 

a = z i - Si and a = rr _ — S2 € (:r — A A = G' {x). 

As g is (strictly) increasing, so g{zi — Si) < g(zi); thus, 

ff⑷=ffi^i - si) < g{zi) < g{z). 

I t contradicts the facts that a G G'(x) and z G L'(.T), hence z G L(.T). Combining 

the above two claims, L(x) = L'(x) and thus L(x) is nonempty. 

Lastly we want to show that L'(x) is a subset of E{A, S). Suppose z G L ' ( x ) 

such that z • E[A, S), there is s G 5 \ {0 } such that z - s e A. Note that 

z — s G 一 门 A = G'(X). However by the (strictly) increasingness of g, 

g{z — s) < g{z), i t contradicts that z G L'(.T) . Consequently, L{x) is a nonempty 

convex subset of S). • 

T h e o r e m 3 . 2 . 3 Let X he a topological space, y he a locally convex space, G be 

a lower semicontinuous strong-weak dosed set-valued map from, X to y, and g he 

a continuous convex function on y. Let l{x) = mi{g{y)\y G G(x)} and L{x)= 

{y G G(x)\g(y) = l ( x ) } for' each x G If L{X) is relatively weakly com,pact, 

thfM I is continuous on Dom,{L) and L is strong-weak upper semicontinuous on 

Dorn,(L). 
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Proof : Firstly let us show that I is continuous. Let x G Dom(L) and be a 

net in Dom,(L) wi th convergent to x. A im to show that lim^ = l{x). 

Let {yi_i}吟I be a net in such that y^ G L(x^) for each /i G I. Since L(A') is 

relative weakly compact, without loss of generality, there is y £ y to which 

{yn}fj,ei weakly converges. Since g is continuous convex in a locally convex space, 

g is weakly lower semicontinuous and thus 

9{y) < l im = l im (3.8) 

Also since G is strong-weak closed, we have y G G{x) and thus l(x) < g{y). 

Combining wi th (3.8), we have 

l [ x ) < l iminf / ( .T.) . (3.9) 
tJ-

On the other hand, take a point z G L{x) C G(x). Since G is lower semicon-

tinuous, there exists {z^j^g/ wi th z^ G G(x^) for each //, € I such that 

converges to z. Therefore for each //, G I , 

" ⑷ > / C O . (3.10) 

From the continuity of g, 

l im Slip g(z^) = g{z) 二 l{x). 

From this and (3.10)，we have 

l(x) > lim siip/(.T^). 

Together wi th (3.9)，I is continuous on Dom(L). 

Secondly, we want to show that L is strong-weak upper semicontinuous on Dom(L). 

Suppose that this is false: there exists a E Dom(L) at which L is not strong-

weak upper semicontinuous; that is, there exist a weakly open neighborhood V 

of L{a) i l l y, a net {O-AIAGA in Dom{L) converging to a, and, {^A}AGA wi th each 
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bx E L(ax) such that for each A G A. Since L[X) is relative weakly com-

pact, without loss of generality, we can assume that {^AIAGA weakly converges to 

some bey. From that G is strong-weak closed, we have b € G{a). Also g is 

continuous convex, so it is weakly lower semicontinuous. Together wi th that I is 

continuous, 

9{b) < limgibx) = lim/(aA) = l(a‘). 
A A 

This and b G G{a) imply that b G L{a) C V. However, i t is impossible as V is a 

weakly open and bx ^ V for each A G A. • 

L e m m a 3 . 2 . 4 Let X he a locally convex space, S ^ X he a dosed convex pointed 

cone and A he a weakly com,pact S-convex subset of X such that the interior 

of A S is nonempty. Let Z = int[A + 5") U S) and for each z E Z, 

G(z) = (2 — n (^4 + 5"). Then G is lower semicontinuous. 

P r o o f : Firstly for each ZQ G E(A, S), G{ZO) = {ZQ}. AS Z E G(z) for each 2 G Z, 

G is lower semicontinuous on E{A, S). Secondly for each zq € int(A + S) given, 

for each y G G{zo) and each open neighborhood V oi y m X given, we aim to 

show that there exists a neighborhood U of ZQ in ^ such that for each z ^ U, 

+ 0. As zo G int(A + S), there exists a neighborhood Wi of 0 in A' such 

that 

20 + V^i C A + (3.11) 

Since + (1 — t)zo) = y, there exists 0 < ô < 1 such that 

toy + (1 - to)zo 6 K (3.12) 

Since A is 5-convex, as y e A + S and by (3.11)， 
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that is, 

toy + (1 — to)zo + ( 1 - t o ) W i C A + 5 . 

Hence toy + (1 — to)^o is an interior point oi AS. By (3.12) and that V is open, 

toy + (1 — to)zo is also an interior point of V. As a result, 

toy + (1 - to)zo e int(V n ( A + 5 ) ) . 

Therefore there is a neighborhood W2 of 0 in A' such that 

toy + (1 — to)zo + C V n (A + 5) . (3.13) 

Since y G G{ZQ) C (ZQ — 5 ) , one has ~y) ^ S; also as 2。= toy + (1 — TO)zQ + 

to{zo — y), one has 

20 € toy + (1 — to)zo + W2 + S. 

Now we take U = toy + (1 — fo)zo + W2 + S, which is, indeed, a neighborhood of 

zq. For any z 6 U, there is s G 5 such that 

z-setoy-\-(l-to)zo + W2. 

By (3.13), z - s e V 门 (A + Combining with z - s e (z - S), 

Therefore V" n G(z、^ 0 for each zeU. D 

L e m m a 3 .2 .5 Let ？d he a locally convex space, S C X be a dosed convex cone 

and A he a weakly com,pact S-convex subset of X. G(x) := (x — S) D (A -h S) for 

each X £ A-+- S. Then G is strong-weak closed. 
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Proof: Let {(.TA, 2/A)}AGA be a net in Graph{G) such that 

x x - ^ x o e A - { - S , y x ^ y o e A + S, (3.14) 

where ujx is the weak topology of Note that any X ^ A, yx E G(xx)= 

{xx - n (A + SO. Therefore 

^'X - y x e S. (3.15) 

Note that S is closed convex in a locally convex space so S is weakly closed, By 

(3.14) and (3.15), .TQ — yo 6 S. Also as ^ is weakly compact and S is weakly 

closed, A + 5 is weakly closed. By (3.14)，yo ^ A + S. As a result, 

2/0 e (:ro — SO n (A + S); 

that is 

yo € G{xo). 

• 

Now we are ready to present the main result in this section. 

T h e o r e m 3 . 2 . 6 Let X be a locally convex space with property (St), S C X he a 

closed convex cone with a hounded base, A he a weakly compact S-convex subset 

of X such that the relative interior of A-]-S is nonempty. Then E{A, S) is weakly 

contractible. 

P r o o f : Taking a subspace if necessary, we can assume that int(A-\-S) is nonempty. 

By property {St) of there is a continuous st-convex function gi on X having 

property (Si). Pick fi G dgi{0) and define go by 

" 0 ⑷ = - 9i{0) - /I(.T), for each x G A'. 



Density Theorems, Connectedness Results a,nd Error Bounds 76 

Note that go is nonnegative continuous st-convex on X w i th po(0) = 0. As 

dgQ{X) = dgi{?i) — / i , go has property (St). By Lemma 3.2.1, there is /〇 G 

such that go + /〇 is (strictly) increasing. Define g = go /o, so g is an 

(strictly) increasing continuous st-convex function. Since A is weakly compact, 

/o is bounded on A. Therefore it is easy to show that there exists SQ G S\A such 

that 

/o(so) + in f { /o (a) |aG A } > 0 . (3.16) 

Let Ao = A + 5o； by (3.16), 

inf{/o(.T)|.T G Ao} > 0. (3.17) 

Clearly E{A,S) = E{AQ, S) - 5o and int(Ao + S) ^ 0; therefore it suffices to 

show that E(AO, S) is weakly contractible. 

Let Z = int(Ao + 5) U E(Ao, S). For each 2 G Z, let 

G(z) := (z-S)n(Ao + S), 

and 

L ⑷ { y e G ( z M y ) = l(2)}. 

By Lemma 3.2.2, for each z G Z, L(z) is a nonempty convex subset of E(Ao, S). 

Note that, by (3.17)，0 • L(z). We further claim that L is a point-valued map on 

Z. For each z e Z, let 饥，y) G L(z). Since L{z) is convex, ^ ^ € L{z). Hence 

As /o is linear, one has 

^ ,奶 + y2、 gojyi) + ^0(^2) 
= 2 • 
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By st-convexity of go, y\ = ay2 for some constant a > 0. Suppose 0 < a < 1. By 

convexity of go and 如(0) = 0, 

< (1 - a)^o(O) + ago(y2) = apo(2/2)-

Therefore 

= g(yi) = g(ay2) = Mem) + go{ay2) 

< o^Mm) + o^go{y2) 

= a g i v i ) -

Note that g(y2) = goiy)、+ /。(2/2). Since “。is nonnegat ive,卯⑷ > 0; as y2 E 

+ S, it follows from (3.17) and /。G that g{y2) > 0. So we should have 

a = 1. And it is similar in case that a > 1 (consider 仍 = ^ ^ i ) . Therefore y i = 奶 

and L is a point-valued map. 

By Lemma 3.2.4, G is lower semicontinuous, and by Lemma 3.2.5, G is strong-

weak closed. Since AQ is weakly compact and L{Z) C E{AO, S) C AQ, L(Z) 

is relatively weakly compact. According to Theorem 3.2.3, L is a strong-weak 

continuous pointed-valued map on Z. 

Finally, we show the weak contract,ibility of E{AQ, S). Pick ao G int{AO + S)] so 

L{ao) e E{Ao, S). Define a map H : E(Ao, S) x [0,1] — E{Ao, S) by 

H(a,t) := L(tao (1 - t)o), \fa G E{Ao,S),\/t e [0,1:. 

Clearly for each a G E(Ao, S), H{a, 0) == a and H[a, 1) = L(ao). By the strong-

weak continuity of L, H is weakly continuous. I t follows that E{AQ, S) is weakly 

contractible. • 

The strong topology of a locally convex space and its weak topology coin-

'cide on each compact subset. Therefore the following corollary is directly from 

Theorem 3.2.6. 
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Corollary 3.2.7 Let X he a locally convex space with property {St), S C X be 

a closed convex cone with a hounded base, A be a compact S-convex subset of X 

such that the relative interior of A^S is nonempty. Then E(A, S) is contractible. 

After discussing on the contractibi l i ty results in the setting of locally convex 

spaces, we present some results in the setting of normed spaces. 

Let A' be a normed space. || . || is called to be str ict ly convex if『i"^工21| < 1 

whenever .TI, X2 G A' w i th ||rEi|| = ||.T2|| = 1 and Xi — X2.丨| • || is called to 

be locally uniformly convex if, for any e > 0 and any x ^ X w i th ||.T|| = 1， 

there exists 5 > 0 such that > 1 — (5 whenever y ^ X w i th = 1 and 

\x — y\\ > e. Clearly || • || is str ict ly convex if || . || is locally uniformly convex. 

Note that || • || is str ict ly convex if and only if || • || is a st-convex function. 

Hence every strictly convex normed space has property (St) as 

a | | - | | ( x ) c { / G X * | | | / | | < i } 

is bounded below on every bounded subset of X. 

Before showing a contractibi l i ty result in some normed spaces, we first state 

the following well known lemma. For sake of convenience, we provide its proof. 

Lemma 3.2.8 Lei X he a normed space with an equivalent norm, || • || which 

is locally uniformly convex. Assume that 切’̂  with | | . TN |L — > | | . T O | | and 

{xrJneN weakly convergent to XQ for some XQ 6 ？C. Then Xn —> XQ. 

Proof: I f .To = 0, then clearly ||.TN,|| —̂  1|.TO|| implies X^ —> XQ. 

Suppose .To + 0; then .t„, .tq if and only if .t„,/||.t„,|| —> .TO/||.TO||. Therefore we 

may, without loss of generality, assume that 1|.T„,|| = ||.TO|| = 1 for each N G N. 

Take f e A：* such that ||/|| = 1 and /(.TQ) = 1. Therefore 

‘ f i ^ n + •仰）< W^n + .Toll < 2； 
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as {.TNJNGN is weakly convergent to .TQ, we have 

f i ^ n + -To) — + -To) = 2. 

Consequently ||.T„, + .TO|| — 2 and hence, following from the locally uniform con-

vexity of II • II, —> .TQ. 

T h e o r e m 3 . 2 . 9 Let Af he a normed space with a locally uniformly convex equiv-

alent norm, S C X be a dosed convex cone with a hounded base, and A C A! be a 

weakly com,pact S-convex subset such that A + S has a nonern,pty relative interior. 

Then E{A, S) is contracfAhle. 

P r o o f : Let || - || be a locally uniformly convex equivalent norm of X . Wi thout 

loss of generality, assume int{A + S) 0. For all x G A", define 

Note that QQ is a nonnegative continuous st-convex function w i th po(0) = 0 and 

go has property (St). By Lemma 3.2.1, there is /〇 € such that g = go fo is 

(str ict ly) increasing. Pick a point SQ G 5 such that 

inf{^(.T)|.T G So + A } > 0. 

Let Ao 二 So + A. Clearly E(A, S) 二 五(Ao，S) — 5o and int{Ao + 5 ) 0. Let 

Z = int{Ao + S)U E(Ao, S). For each z G Z , define 

G{z) := (z-S)n{Ao + S), 

and 

L⑷:={yeG(z)\g(y) = l(z)}. 
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Corresponding to the similar setting in proof for Theorem 3.2.6, we have L is a 

point-valued strong-weak continuous map from Z to E(Ao, S) and for any a G 

E(Ao, S), L{a) = a. Next we aim to show that L is further a strong-strong 

continuous. I f i t is true, then E(Ao, S) is contractible. Take z ^ Z. Let {^njnGN 

be a sequence in Z such that Zn —> 2. Since L is strong-weak continuous, 

L ⑷ 么 L{z), (3.18) 

where lu^ is the weak topology of A'. By Theorem 3.2.3, I is continuous on Z; so 

l{zn) —>• l{z). Hence 

As g = fo-h go, we have 

/ o (L (z „ . ) ) + | | L (知 ) | 卜 / o ( L ⑷ ） + | | L ⑷ I I . 

I t follows from /o G A：* that /o(L(2n)) — fo(L(z)). Therefore 

In view of Lemma 3.2.8, this and (3.18) imply 

L(Zn) — L(z). 

Therefore L is strong-strong continuous; as a consequence, E{Ao, S) is con-

tractible. • 

In contrast to Corollary 3.2.7, the subset A needs not be compact in Theo-

rem 3.2.9. Also i t is well-known that a normed space has an equivalent locally 

uniformly convex norm if i t is either separable or reflexive. 

• Finally we study a result concerning the path connectedness of the positive 

proper efficient point sets. I t is from the contractibil i ty results. 
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T h e o r e m 3 .2 .10 Let X he a reflexive Banach space, S Q X he a closed convex 

cone with a bounded base, and A C X be a hounded subset such that A S is 

dosed convex. Then Pos{A, S) is path connected. 

Proof: Let AQ be the closed convex hull of A. As AS is closed convex, 

ACAoCA-hS. 

Hence by Proposition 1.1.10’ = Pos(A, S). Therefore it suffices to 

show that Pos(Ao, S) is path connected. Let ai, a] G Pos(Ao, S); so there are 

/ i , /2 G such that 

f M j ) = mi{fj{a)\a e A ) } , j = 1,2. (3.19) 

Without loss of generality, let 6 be a closed bounded base of S. Hence 0 is 

weakly compact by the reflexivity of A'. Then, 

Let e = min{a i , «2}/ (2 max{| | / i | | , II/2II}) and B be the closed unit ball of A'. So, 

e〉0. Consider the subset 9 + eB. By the construction of e, it follows that for 

any 6 G 9 + eB, 

刷 > 0, J. = 1 ,2 . (3.20) 

Again, by the reflexivity of eB is closed convex bounded so it is weakly com-

pact. Therefore Q + eB is also weakly compact. This and (3.20) imply that 

0 ^ © + eB. Consider the Henig dilating cone 

5 , (9 ) :=cone(e + eB). 

Note that 5<：(6) is a closed convex cone with a closed bounded base 6 + eB. By 

(3.20), / i , /2 e (5e(e))+\ hence, ai, a】€ Pos{Ao, C E{Ao,S,{e)). 

Firstly, we claim that 

拟0,綱）gFas(A),外 (3.21) 



Density Theorems, Connectedness Results a,nd Error Bounds 82 

For each A € E{AO, 5^(9)), (AQ — a)门—》S“e) 二 {0} . Therefore 

{Ao - a) n -int、S人G、、= 0 . 

By the Separation Theorem, there exists f ^ X* \ {0} such that 

inf{/(.T - a)\x G AQ} > sup{-/(.T)|.T G 5 , (9)}. 

Since 0 G 5^(6) and a G AQ, 

inf{/(.T - a)\x e Ao} = SUP{-/(.t)|.T € 5 , ( 9 ) } = 0. (3.22) 

Therefore, 

f{o,) = mi{f{x)\xeAo}. (3.23) 

Besides, there exists bo e B such that f{bo) > 0. By (3.22), f{0 — ebo) > 0 for 

each ^ € O, so 

m > 綱 > 0. 

I t follows that f e This and (3.23) imply that A G POS{AQ,S). 

Secondly, we claim that E{Ao, 5^(0)) is contractible. Since 6 + eB is closed 

convex bounded, 5^(9) is a closed convex cone; AQ is a weakly compact subset 

as it is closed convex bounded in a reflexive Banach space; Q + eB has nonempty 

interior and therefore so does AQ + 5c(6). Lastly without loss of generality, let 

Xj + t j ( O j + ebj) E A ) + 5 , ( 0 ) , j = 1, 2 , 

where Xj G A), tj > 0, Oj e G, bj e B for j = 1, 2. Let A G (0,1), by the 

S'-convexity of A and convexity of G + eB, 

A[.TI + ti{Oi + e^i)] + ( 1 - A)[.T2 + 力2("2 + eb2): 

= + (1 - X)x2 + + e6i) + (1 - X)t2{02 + eb】) 

• e Ao + 5 + [Xh + (1 - A)^2](0 + eB) 

c Ao + 5 , (e ) . 
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Therefore Ao is S'c(B)-convex. Under these conditions, E(AO, SE(Q)) is con-

tractible by Theorem 3.2.9. So there are a continuous map 

H ： E{Ao, S,(e)) X [0’ 1] — 5 , (6 ) ) 

and a point a。G 5^(9)) such that for each a G £"(^0, 5c(0)), H{a,0) = a 

and H(a, 1) = ao. Note that E(Ao, S,(Q)) C Pos(Ao, S); we define (p : [0’ 1] 一 

H(au2t), 0 < t < l 
妳 ） = 1 • 

[H[a2,2-2t), \<t<l 

Then, (F provides a continuous path on POS{AQ, S) from AI to a2, and therefore 

Pos(Ao, S) is path connected. • 

3.3 Connectedness Results in Vector Optimiza-

tion Problems 

In this section, we wi l l move on the connectedness result in the vector optimiza-

t ion problem, that is, the connectedness of the efficient outcome sets and the 

efficient solution sets. We start by introducing two propositions. The following 

one is first proved by Warbi ir ton [8]. I t tells that upper semicontinuity preserves 

connectedness. 

P r o p o s i t i o n 3 . 3 . 1 Let X he a connected topological space and y he a topological 

space. Assume that F \ X ^ y is an upper semicontinuous set-valued map with 

connected values. Then F{X) is connected. 

P r o o f : Suppose that F(A ' ) is not connected in y： there exist Vi and V2, both 

.nonempty and open in y such that 
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F(AOnVj .7^0， J = 1,2, 

and, 

F{X) n Vi n = 

Consider the sets F—i(Vi) and F-'(V2). Clearly F'^Vi) U F — H l ^ = % and 

F - \ V j ) + 0, for j = 1,2. First ly claim that 

F - i ( V i ) n F - i ( V 2 ) 二 0. (3.24) 

Indeed, if not, let .T G F-\Vi) N 厂-1(乂2). Then F{x) N 0, for j 二 1,2’ this 

contradicts that F{x) is connected in y. Secondly claim that F~HV i ) is open in 

Let X e F - i ( V i ) ; then F{x) C Vi, otherwise F{x) is not connected indeed. 

Since F is upper semicontinuous, there exists an open neighborhood U of x in A' 

such that F{U) C Vi, thus U C F'^Vi). As .T in arbitrary, we get that F'^Vi) 

is open. Similarly F—1(1/2) is also open in A'. These and (3.24) imply that A' is 

not connected. • 

And the following proposition is well known. I t tells that upper semicontinuity 

also preserves compactness. For sake of convenience, we provide its proof. 

Proposition 3.3.2 Let X he a compact, topological space and y be a topological 

space. Assume that F : X ^ y is an upper semicontinuous set-valued map with 

compact values. Then F{X) is com,pact. 

P r o o f : Let {Oi}i^i be an open cover of F{X) where I is some index set. For 

each .T G A", let be an open cover of F(.T), where 4 C I. As F(x) is 

compact, there exists a finite subset Cx of such that 

‘ F(x) C M O,：. 
reCx 



Density Theorems, Connectedness Results a,nd Error Bounds 85 

Note that Ui^c^Oi is a neighborhood of F(.T) in y； by the upper semicontimiity 

of F , there exists an open neighborhood N(x) of x in X such that 

F(N[x)) C U O,. 
ieCx 

Note that {N(x)}xex forms an open cover of X. Since A' is compact, there exist 

ocj, 1 < j < n, such that A! C IJ"^^ N (x j ) . Therefore 

n 77. 

F { X ) c [ j F { N ( x , ) ) c [ j y Ch. 
j=i j.=i iec：,. 

So, {Oi}i^i has a finite subcover and hence F{X) is compact. 

The following result is by X. Y. Zheng. 

P r o p o s i t i o n 3 . 3 . 3 Let ？C he a locally convex space, S Q X he a closed con-

vex cone with a base, and A he a weakly cow,pact S-convex subset of X. Then 

Pos{A, S) is connected respect to the weak topology. 

Proof : For each bounded subset M of A', let 

PMU) ••= sup{|/(.T)||.T G M}, for each f G X*. 

Then PM is a seminorm on X*. Let r * be the locally convex topology induced 

by the family { P M \ M is bounded in X ] on X* and u x be the weak topology of 

A'. Let T : =4 A' be defined by: 

T ( f ) : = { a G A\f{a) = mf{f(x)\x e A}}, for each f G 

Clearly = Pos{A, S). Also note that if / € S+\ 

inf{/(.T)|.T G A } = inf{/(.T)|.T E A + S } . 

So, it is easy to verify that 

T ( f ) = {0.eA + Slf(a) = mf{/(.T)|.T G A + 5 } } , 
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and thus, for each f G T(J) is convex and then connected wi th respect 

to the weak topology u；^. Now we show that T is t*-UJX upper semicontinuous 

on Suppose that this is not the case: there are /o G a weakly open 

neighborhood VQ of T( /o) in Af, a net {/a}a6A wi th fx 二 /o and a net {aA}AeA 

wi th each AX G T(/A), such that AX • VQ for each A e A. Since for each A G A, 

€ T(/A) C a and A is weakly compact, we can assume that, without loss of 

generality, weakly converges to some a。G A. This and that VQ is weakly 

open imply that a。• Vq, hence a。朱 T(fo). Pick ai e r ( / o ) ; so 

M a i ) < / o K ) . (3.25) 

Let K := {A- ao) U {ao, a i } . Clearly K is a. bounded subset. Since fx /〇’ we 

have 

limPK{fx-fo) = 0. (3.26) 

As for each A € A, {ax 一 ao) G K, ao G K and ai e K, by (3.26), 

(/A 一 / o ) K - «o) 4 0, (/A — /o)(ao) — 0，and {fx - / o ) K ) 一 0. 

From this and a) ao, 

/ A K ) 一 /A(ai) 一 fo{ao) - /o(ai ) . (3.27) 

Note that, for each A 6 A, fx{o,x) < fx{o.i), this and (3.27) imply that 

/o(O'o) < fo{ai). 

I t contradicts wi th (3.25). I t results that T is T*-u;;f upper semicontinuous on 

Since T is wi th connected values, is T*-connected and = Pos(或 S), 

i t follows from Proposition 3.3.1 that Pos{A, S) in connected wi th respect to the 

weak topology of X . • 

‘ B y Corollary 1.3.7，Pos{A, S) is dense in E{A,S) w i th respect to the weak 

topology. Then we have the following corollary. 
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Corollary 3.3.4 Let ^ be a locally convex space, S C X be a closed convex cone 

with a base, and A he a weakly compact S-convex subset of X. Then S) is 

connected respect to the weak topology. 

Using the technique used in the proof of preceding proposition, I give the 

following result concerning the connectedness of the efficient outcome set of a 

vector optimization problem in a normed space. 

T h e o r e m 3 . 3 . 5 Let X be a topological vector space, y he a normed space ordered 

hy a closed convex cone S with a base, A be a compact convex subset of X. Assum,e 

that F is an upper semicontinuous S-convex set-valued map from, A to y with 

com,pact values. Then Pos{F(A), S) and Min{F(A), S) are connected. 

Proof : From compactness and convexity of A, also upper semicontinuity and 

^-convexity of F , it follows from Proposition 3.3.2 and Remark 3.1.3 that F{A) 

is compact S'-convex. By Theorem 1.3.5 and Proposition 1.1.10, 

Min(F{A),S) = E{F{A),S) C d{Pos{F{A), S)). 

So, i t suffices to show that Pos(F(A), S) is connected. Let T : S^' =4 F{A) be a 

set-valued map defined by: 

T ( f ) ：= {y e F(A)\f{y) = mm{f(z)\z G F(A)}}, for each f G 

Firstly, claim that T is wi th connected values. We can reach i t by showing that 

T ( f ) is convex for each f G As A is convex and F is S'-convex, so F{A) is 

5-convex. Note that for each f e 5"+':, 

mm{f{z)\z e F{A)} = mm{f(z)\z G F{A) + S}. 

Therefore, it is easy to verify that 

T { f ) = {ye F(A) + S\f(y) = mm{f(z)\z G F{A) + 5 } } ; 
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hence T ( f ) is convex and then connected for each f G 

Secondly we claim that T is upper semicontinuous. Since F(A) is a compact 

subset in y, in view of Theorem 3.1.2, it is sufficient to show that T is closed. Let 

{ ( /A , ？/A)}AGA BE a net in Graph{T) such that h — fo e and y x y o e F{A). 

Since yx G T ( / A ) , one has for any y G F{A) and any A G A that 

f\{y\) < fx{y)-

Therefore we have 

fo(yo) < My)-

This leads to 

yo e T ( / o ) . 

Therefore T is closed and T is upper semicontinuous. Since T is wi th connected 

values, is convex (thus connected) and = Pos(F{A),S), i t follows 

from Proposition 3.3.1 that is connected. • 

In contract to Theorem 3.0.1, Theorem 3.3.5 comments that (3.3) is not es-

sential. 

And now we present the connectedness result for the efficient solution sets by 

X. Y. Zheng. 

T h e o r e m 3 . 3 . 6 Let, X and y be locally convex spaces, S C y he a closed convex 

cone with a base, AC X he a compact, convex subset Assume that F is a strong-

weak upper semicontinuous S-convex set-valued map from A to y with weakly 

compact values. Then the efficient solution set Min(A, S, F) is connected. 

'Proof: By Proposition 3.3.2, F{A) is weakly compact. By the ^-convexity of F 

and convexity of A, F(A) is 5-convex. Then, by Corollary 3.3.4, E(F{A),S) is 
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connected with respect to the weak topology of y. 

Consider the inverse set-valued map F"^ from E{F(A),S) to A. Clearly 

Min{A, 5, F) = F-\E(F(A),S)). 

In view of Proposition 3.3.1, we need only show that is a weak-strong upper 

semicontimious set-valued map with connected values in X . To do this, firstly, 

note that A is compact; by Theorem 3.1.2, we can get the result that F—丄 is 

weak-strong upper semicontinuous by showing that is weak-strong closed. 

Clearly this condition is equivalent to that Graph(F) is strong-weak closed. Now 

as F is strong-weak upper semicontinuous set-valued map with compact values 

in a Hausdorff space and by Theorem 3.1.1, Graph(F) is strong-weak closed and 

thus F - i is weak-strong upper semicontinuous. 

Secondly, aim to prove that F ] is with connected values. For each y G E{F(A), 5), 

let ai, (12 e and A G [0,1]. By ^-convexity of F , 

A F ( a i ) + (1 - X)F{a2) C + (1 一 A)a2) + S. 

Since y G F{ai) and y G 厂⑷， 

y = Xy + { l - X ) y C F(Xa, + (1 — A)a2) + S. 

Therefore there exist z G F{Xo,i + (1 — 入)a?) and s G 5 such that y = z-\-s. As A 

is convex, z G F{A). However, since y G E{F(A),S) and z G F(A), we conclude 

that s = 0 and hence 

y e F(Xa, + ( 1 - A ) a 2 ) . 

As a result, Xai + (1 — X)a2 G F ' ^ y ) and consequently, F — i s convex and 

thus connected. • 



Chapter 4 

Error Bounds In Normed Spaces 

In this chapter we wi l l discuss the concept of the error bounds. Error bounds 

take an important role in the sensitivity analysis of the mathematical program-

ming. What it concerns is that if a function is given, what relation between the 

distance of an arbitrary point from the zero set and the function value on that 

point is. Actually, in this chapter we consider the set of points wi th nonpositive 

values instead of the zero set. Also in contrast to most of previous researches on 

error bounds, we also study some results about the error bounds with fractional 

exponents other than exponent one. In this chapter we wi l l give a systematic 

survey of the papers [10] and [11] by K. F. Ng and X. Y. Zheng. 

Let A' be a normed space, a function f : X Ru {+00} is said to be p roper 

if the set 

dom(f) := {x € X\f(x) < + 0 0 } 

is nonempty. Now we state the definition of the error bound as follows. 

D e f i n i t i o n 4 .0 .1 Let X he a normed space and f : X ^Ru {+00} he a proper 

function. Assume that the set 

S := {x e X\f{x) < 0 } 

90 
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is nonempty. Then f is said to have an e r r o r b o u n d， (or say that an error 

bound for f holds) if there exists a positive constant r such that for each x G X, 

dist(x, S) < T[/(.7:)]+, 

—,ere dist{x, S) = i n f { | | x - y\\\y G S} and [f{x)]+ = max{/(j：), 0 } . In this case 

T is said to be an error hound for f . 

I n this chapter, we always assume that S is nonempty. 

R e m a r k 4 . 0 . 1 To verify that 丁 > 0 is an error hound for f it is sufficient (and 

necessary) to check that dist(x, S) < r f { x ) is true for each x e dom{f) \ S. 

I n this prel iminary section, let us also state a lemma which is based on the 

famous Ekeland var iat ional principle. I t w i l l be used later in our discussion. 

L e m m a 4 . 0 . 1 ([12] T h e o r e m 2 ( i i ) ) Let be a cow,plete metric space and 

f : X ^RU { + 0 0 } be a proper lower semicontinuous function hounded from he-

/謂.Let Z X\f(z) = M{f{y)\y e ； f } } and dtst(x, Z) = z)\z G 

Z } for each x G Let a > 0. Suppose that for each x e A： with f { x ) > 

mf{f{y)\y G X} there exists x e A" such that 

1. x X and 

么 f ( T : ) - ^ a d { x \ x ) < f ( x ) . 

Then，for each x € A', f { x ) 一 mi{f{y)\y e X} > adist(x, Z). 

4.1 Error Bounds of Lower Semicontinuous Func-

tions in Normed Spaces 

Recall tha t for each x e X w i t h f { x ) < + 0 0 and each h e M w i t h \\h\\ = 1， 

the upper Dini-d i rect ional derivative and the lower Din i -d i rect ional derivative 
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are denoted by 

r 腳,)：二 l imsup 凡 … 制 

and 

d - m { h ) : = l i m i n f 凡 … 側 
力—0+ t 

respectively. I f f ( x ) = +00, we define := - 0 0 . Note that d-^f(x)(h) < 
一+ 

d / 0 ) ( " ) ; if the equality holds, f is said to be right different,iable at x in the 

direction h. 

Firstly, we discuss some sufficient conditions for a proper lower semicontinuous 

function f to have an error bound. We introduce the following mean-value type 

theorem. 

L e m m a 4 . 1 . 1 Let X he a norm,ed space and / : —> R U { + 0 0 } be a proper 

lower semicontinuous funcMon. Let x G dorn{f), he X with ||/?,|| = 1 and A > 0. 

Assume that there exists S eR such that for each t G [0, A), 

d^f(x + th){h) < 6. 

Then 

f { x + Xh) - f { x ) < X6. 

P r o o f : For any e > 0, let 

久e = sup{0 < t < X\f(x + th) 一 f i x ) < t{S + e)}. (4.1) 

From the lower semicontinuity of / , 

/(.T + A, /?,) - / ( .T) < + (4.2) 

We show that A, = A. Suppose not: that is, A, < A. Then ^ j [ x + A,/?,)(/?) < 6, 

and so there exists A' G (A^, A) such that 

/ ( • ^ + A'/?) - / ( . T + \ H ) < (A ' - + E). 
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This and (4.2) imply that 

f ( x + X ' h ) - f { x ) < X ' ( 6 ^ e ) . 

However, it contradicts wi th (4.1). As a result, Â  = A; thus 

f { x + X h ) - f ( x ) < X { 6 + e). 

Then, the lemma follows from letting e — 0. 口 

L e m m a 4 . 1 . 2 Let he a metric space and f : X ^ RU {+00} be a proper 

function. Let r > 0 and 0 < p < 1 he constants. Suppose that for each x e 

dom,{f) \ S (that is, 0 < f { x ) < +00人 there exists x G A' with 0 < f ( x ) < + 0 0 

such that 

dist{x , S) < pdist{x, S) 

and 

d{x,x) < r [ f ( x ) - f i x ' ) ' . 

Then, for each x € dist{x, S) < T[F(x)] + . 

Proof : We may suppose that x e dom.(f)\S (otherwise the conclusion is tr ivial ly 

true). We write XQ for x. In view of the assumption, we have only two different 

cases below. 

1. There exists {xi,x2, C A' such that {.TI,.T2, C dom(J) \ S, 

/(.T„) = 0 and for each 1 < z < n, 

d(.7:i_i,Xi) < r [ f (.Ti_i) — f ( x i j . 

Then 
n 

dist(xo, S) < d(xo,Xr,,) < ^ .T,：) 

？:=i 
• n 

< E 柳 H ) - f { x i ) ] = r [ / ( .To) - f(xn)] = r f ( x o ) . 
？:=i 
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2. There exists a sequence {xk}kGN in dom.{f) \ S such that for each keN 

dist{xk,S) < pdist{xk-i,S) 

and 

d { X k - U X k ) < T [ / ( . T f c _ i ) - f { X k ) . 

Then these imply that for each k eN, 

dist{xo, S) < d{xo,Xk) + dist(xk,S) 
k 

< ^ , .T,:) + p^dist{xo, S) 

k 

< Y ^ r l f { x i _ , ) - f { x i ) ] - \ - p'dist(xo,S) 

= T [ / ( : r o ) — /(.Tfc)] + p^dist(xo, S) 

< rf{xo)-^ p''dist{xo,S). 

L e t t i n g k + 0 0 , we have dist人XQ, S) < r f { x o ) . 

Combining two cases, the error bound result follows. • 

By Lemma 4.1.2, we show the theorem below concerning the sufficient con-

dition for a proper lower semicontinuous function on a normed space to have an 

error bound. 

T h e o r e m 4 . 1 . 3 Let X he a normed space and f : X Ru {+00} be a proper 

lower semicontinuous function. Let 0 < S < + 0 0 and 0 < p < 1 he constants. 

Suppose that for each x G dorn.{f) \ S, there exist h工 e A' with \\h^\\ = 1 and 

Xx 〉 0 such that 

‘ d+f{x + < -8, Mt G [0, A , ) , (4.3) 
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and 

dist{x + S) < pdist{x, S). (4.4) 

Then, for each x G dist{x, S) < ^ [ f { x ) ] + . 

Proof: Referring to Lemma 4.1.2, we aim to show that for each x e dom,{f) \ S, 

there exists x such that 0 < f { x ' ) < +oo, dist(x\ S) < pdist(x, S) and d{x,x) < 

去 [ / ⑷ - / ( • 々 ] . I f f { x + Kha：) > 0, we take .T' = .T + X^h^. What remains is to 

show that d{x,x + X^h^) < i [ / ( . T ) - f(x + 入 工 B y Lemma 4.1.1 and (4.3), 

/(•T + A 工 - f ( x ) < - X J , so, 

c/(:r’:r + = II(.T + - .T|| = A^ < ^ [ f { x ) — /(.T + X^h^)]. 

O n the other hand, i f f { x + X^h：,) < 0’ let 

十'X ••= sup{0 < t < \^\f(x + sh) > 0, for each s e [0, f ] } . 

From the lower semicontiniiity of f and definition of t工 we have 

/(.?: + t人)< 0 (4.5) 

and 

/(•T + th^) > 0 for a l l t G [0，t^). (4.6) 

、 As S is closed, dist(x, S) > 0. I t follows from (4.5), (4.6) and the lower semicoii-

t imi i ty of f that there exists ŝ , e such that 

—人+ sJix, S) < IIOr + - {x + = t工—s,, < pdist(x, S) 

and 

0 < f ( x + s.^/?,^,) < +00. 
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Now take x' = x + sji：^. What remains is to show that d{x, x + Srh^：) < |[/(.T) 一 

/(•T + replacing A：̂  by s工 and using the same argument in the first part, 

the result follows. • 

Theorem 4.1.5 states that in the setting of Banach spaces, the condition (4.3) 

can be simplified and (4.4) can be dropped. In order to get this result, we discuss 

a lemma which generally follows from Lemma 4.0.1. 

Lemma 4.1.4 Let be a complete metric space and f : M ^ R U { + 0 0 } be 

a proper lower semtconUnuous function. Let T > 0 be a constant. Suppose that 

/ o r each x e dom(f) \ S, there exists x € A' with 0 < f { x ) < +00 such that 

O j ^ d ( x , x ) < r l f ( x ) - f ( x ) ] . 

Then, for each x G AT, dist(x, S) < T[/( .T)]+. 

Proof : We may assume that A： ^ S. Define g⑷:=max{/(.7；), 0} = [/( .T)]+ 

for each x e A：. Note that ^ is a proper lower semicontinuous function bounded 

below. Without loss of generality, we consider x G dom.{f) \ S. By assumption, 

there exists x' G A' such that 0 < /(.T) < +00, .7;' • x and /(.T) + < 

/ W - I t leads to that g{x') + < g{x). Then it follows from Lemma 4.0.1 

and the fact S = {x e X\g{x) = inf{g(y)\y G X } } that for each .T G A', 

抓T ) - m{{g{y)\y e X) > -dist{x, S). 
T 

That is, dist{x, S) < r [ / ( .T) j+. • 

T h e o r e m 4 . 1 . 5 Let X he a Banach space and f : X ^ Ru {+00} he a proper 

I隱r semicontinuous function. Let 0 < S <-\-oo he a constant. Suppose that for 

— ^ e dow.{f) \ S, there exists h^ e A' with 二 1 such that 

这 + / ⑷ ( M < 
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Then, for each x G AT, dist{x, S) < ^ [ / ( x ) ] ^ . 

P r o o f : Let .t G dom{f) \ S and h^ G AT wi th | | " 』 = 1 such that d+f{x)(h：,) < 

-S. For any e wi th <5 > e > 0, 

d - ' f ( x ) ( h , ) < - S < - { 6 - e ) . (4 .7) 

Since f is lower semicontimious and 0 < f { x ) < +00, following from (4.7) there 

exists A > 0 such that 

0 < f { x + Xh^) < + 0 0 

and 

^ [ / ( . T + A / ? J - / ( . T ) ] < - i S - e ) . 

These imply that 

11.7： — (x + A/?,,)II - A < ~ l f ( . T ) — f ( x + Xh,)]. 

By Lemma 4.1.4, for each .T € dist(x,S) < Lett ing e — 0, 

dist(.T, S) < | [ /(.T)] for each x £ A". • 

Recall that cone of feasible directions of a convex set C C A' at a point x e C 

is 

= {v € A'I.T + tv eC for some t > 0}. 

The following corollary gives a general error bound result wi th constraints. 

C o r o l l a r y 4 . 1 . 6 Let X he. a Banach space and f :?(： -^Ru {+00} he a proper 

lo暫 semicontinuous function. Let 0 < 6 <+00 be a constant and C he a closed 

謂‘概—set of A：' such that Sc ：= S DC ^ d}. Suppose that for each x e 

(dom(/)\60nC，there exists K e Tc{x) with \\h^\\ = 1 such that d-^f{x){h^) < 

Then, for each x G C, dist{x, Sc) < | [ / ( . t ) ] + . 
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Proo f : Define g{x) := f { x ) + 60(3：), where 6c is the indicator function of C, that 

is, 

f 0 if .T G C 
• = . 

I +00 \i X ^ C 

Note that ^ is a proper lower semicontinuous function. Also Sc = {.T € ^ \ g { x ) < 

0}; dom,{g)\Sc = (c^om(/) \5")nC; for each x G dom、g、\Sc and each h G •^。⑷’ 

d^g{x){h)=这(/?,). Then by Theorem 4.1.5, for each x G A', we have 

dist{x, Sc) < |[P(.T)]+. Therefore, for each x G C, dist(x, Sc) < |[/ ( .T)] + . • 

Now we discuss the necessary conditions for an error bound for a proper lower 

semicontinuous function to hold. In favour of the discussion, we introduce the 

following notations: For x G dS (boundary of 5) , define 

Ns(x) = {h e ^\\\h\\ = 1 and dist(x + A " , 5 ) = A for some A > 0} 

and 

ONS = {x e dS\Nl{x) + 0 } . 

First we present a theorem concerning the local error bound. 

T h e o r e m 4 . 1 . 7 Let X he a normed space and f : A! ^ RU {+00} be a proper 

lower semicontinuous function. Let T > 0 he a constant. Suppose that for each 

X G dS, there is 6(x) > 0 such that whenever y ^ X with \\y — .t|| < 6(x), 

dist{y, S) < T[f(y)]+. 

Then, for each x G dS, 

T 
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P r o o f : Since inf{d+/(.T)(/7,)|/?. € = +00 whenever x e dS \ dj^S, we can 

only consider the case that x G djvS. For each .T G djvS and each h G 

by the definition of N、(x), there exists A > 0 such that dist{x + A/?,, S) = A. 

Furthermore it is easy to verify that for each t G (0，A), dist(x + th, S) = t > 0； 

therefore x + th ^ S and f(x + th) > 0. Now from the assumption, for each 

t e (0,min{(^(:r),A}), 

于'=dist(x + th, S) < r [ / ( . T + 力/?,)]+ = T[/ ( .T + th) - f ( x ) ' . 

Therefore, > ^ and hence the result follows. • 

The following corollary is a direct consequence of Theorem 4.1.7. 

Corollary 4.1.8 Let X he a normed space and f : M R [ j {+00} be a proper 

lo暫 semicontinuous funcUon. Let r > 0 he a constant Suppose that for each 

e 乂 dist(x, S) < r [ / ( .T ) ]+ . Then, for each x e dS, 

f{T){h)\h e n I { t ) } > - . 
T 

A function f is said to satisfy Slater condition if there exists .TQ G such that 

/(.7：0) < 0. In the following two corollaries, we present the results that in certain 

settings it is necessary for a function to satisfy Slater condition if an error bound 

holds. 

Corollary 4.1.9 Let X he a finite dimmsional normed space and f : X 

IRU {+00} be a differentiahle function. Suppose that f has an error hound. Then 

f satisfies the Slater condition. 

i ^ roo f : Suppose that f does not satisfy the Slater condition. Then for each 

•r G S, f ( x ) = M{f(y)\y e A：} and so V / ( . t ) = 0. B y Coro l lary 4.1.8, N认:r) 
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should be empty for each x € dS. Since ；f is a finite dimensional normed space, 

pick a point 2; G ？(：\8, there exists XQ € dS such that dist(z, S) = H^-XoH. This 

implies that 

峰。 ) . 

This contradiction tells us that f should satisfy the Slater condition. 

Corollary 4.1.10 Let X he a reflexive Banach space and f : X Ru {+00} 

a differentiahle convex function. Suppose that f has an error bound. Then f 

satisfies the Slater condition. 

Proo f : Since f is differentiahle convex, S is closed convex in A'. Pick a point 

z e by the reflexivity of A', there exists .TQ € dS such that dist(z, S)= 

k — .Toll. Using the similar argument in the proof of preceding corollary, the 

result follows. 

4.2 Error Bounds of Lower Semicontinuous Con-

vex Functions in Reflexive Banach Spaces 

In this section, we wil l consider the error bound for a lower semicontinuous convex 

function in a reflexive Banach space. We wil l study some both sufficient and 

necessary conditions for an error bound to hold. 

Recall that the right directional derivative and the left directional derivative 

of a function f are defined respectively by 

‘ d^f{x)(h)= l i m f ( 工 + 叫 - m 
<—0+ t 
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and 

d - m w = l im n 工 例 - m . 

They always exist for a convex funct ion f . For each x G dom.{f) and G { • } , 

d-f(x)(h) = - d ^ f ( x ) { - h ) . 

We define d'^f{x){h) = - o o for al l h e ^ \ { 0 } in case that f ( x ) = +00. See 

13], i t is well known tha t as / is convex, for 0 < < w i t h x + tih, x + t^h 

bo th in dom,{f), 

+ hh)(h) < d-f(x + t2h)(h) < d+f(x + t2h)(h). (4.8) 

Now we present the main result of this section. 

T h e o r e m 4 . 2 . 1 Let X he a reflexive Banach space and — R U { + o o } he 

a proper lower semicontinuous convex function. Let r > 0 be a constant. Then 

the following statements are equivalent. 

(A) T is an error bound for f : dist{x, S) < T[ / ( .T ) ]+ for each x G X. 

(B) T is a local error hound for f at each boundary point of S: for each x e dS, 

there is an 6(x) > 0 such that whenever y ^ X with \\y — x\\ < S{x), 

d i s t { y , S ) < r [ f { y ) ] ^ . 

(C) For each x e dS, 

i n i { d - ' f { x ) { h ) \ h e N l { x ) } > ^ - . (4.9) 

(D) For each x e there exist A.̂  > 0 and G ；f with = 1 such that 

•T + A 人 E S 

and 

+ thT')(h 工)< - - f o r each t e [0, A 工). 
T 



Density Theorems, Connectedness Results a,nd Error Bounds 102 

(E) For each x ^ A! \S, there exists hx 6 X with ||/i3.|| = 1 such that 

巧 ⑷ ( M < - - . 
T 

P r o o f : {A) ^ (B) and (D) (E) are tr ivial; (B)々(C) is from Theorem 4.1.7 

and {E) =>• (A) is from Theorem 4.1.5. Therefore i t is sufficient to show that 

(C) ^ (D). 

Take x e Since X is reflexive and S is closed convex, there exists ^ dS 

such that ||.T - .Toll = dist{x, S) > 0. Let Â； == ||.T - .TO|| and h^ = ^(.TQ - x). 

Then XQ = X Xxhx € S and 

- K . e NI{xq) . (4.10) 

Now we consider two cases. 

1. 0 < /(.T) < +00: B y convex i ty of f and t h a t .T, X + X^h：,： b o t h i n dom(f、, 

we have x + t'K e dom.{f) for each t G [0, A.^). Also from (4.9) and (4.10), 

d ^ f M { - h x ) > This implies that - d - f { x o ) ( h ^ ) > i and thus 

d~f(xo){h：,) < - - . 
T 

See (4.8), we have that for each t G [0, AT), 

d^fioo + th,)(h,) < d - f { x + A⑷⑷=d-/OroKM < --• 
丁 

Hence the statement {D) follows. 

2. f { x ) = +00: By the definition, we have d'^f{x){h) = -00 for all h e ^ 

wi th \\h\\ = 1. Therefore similar to the proof in above, the result follows 

from the convexity of f and (4.8). 

• 

Let Eb{f) := i n f { r > 0\dist{x, S) < T[f{x)]+ for each x G A：}. Note that 

Eb{f) = 0 if and only [f X = S; Eb{f) = +00 if and only if f does not have any 

error bound. Therefore the following corollary is directly from Theorem 4.2.1. 
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COROLLARY 4 . 2 . 2 Let X be a reflexive Banach space and / : A ' ^ R U { + 0 0 } be 

a proper lower semicontinuous convex function. Then 

- J - j r = - sup in f d-^f{x)(h) = in f in f d^f(x)(h). 
Eb(f) x ^ d S h e N l i x ) 八 乂 

The following theorem gives the sufficient and necessary condition for an error 

bound for a continuous convex function to hold in a reflexive Banach space. 

Theorem 4.2.3 Let X be a reflexive Banach space and / : A' M U { + CXD} be 

a continuous convex function. Then f has an error hound if and only if 

6 •= inf inf{||.T*|||.T* G d f { x ) } > 0. (4.11) 
XEX\S 

In this case, dist{x, S) < | [ / ( . t ) ] + for each x G X. 

Proo f : Since f is continuous convex, for each x ^ X and each h ^ X wi th 

I"丨丨=1’ 

d+f[x)(h) = sup{< .T*, h > |.T* e d f ( x ) } . (4.12) 

Suppose that there exists r > 0 such that for each x G A", dist{x, S) < r [ f ( x ) ] ^ . 

In view of {E) of Theorem 4.2.1, for each x e ^ \ S, there exists h^j. G ^ with 

= 1 such that d+f(x)(h工)< - i . Therefore from (4.12), 

s\ ip{< .T*, h^ > |.T* G d f { x ) } < - - . 
T 

Rewriting as follows, we have 

i n f { < .T*, -hx > \T* e df(x)} > 
T 

• Note that since || — h^W = 1，||.T*|| > < x*, -/？,̂. >； hence 

inf{||.T*l||.T* e d f { x ) } > 
丁 
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As it is valid for each x e we have 

in f i n f { .T* X* € d f ( x ) } > - > 0. 
xeAf\s L J、” - 丁 

Conversely, suppose that (4.11) holds. For each x € ^ \ S, df{x) is disjoint 

from int{6(B(X*))), where B{X*) is the unit ball of the dual space X*. By the 

Separation Theorem and the reflexivity of A", there exists h^ G X wi th ||/?,a.|| = 1 

such that 

s i ip{< x\h 工 > |.T* e d f { x ) } < i n f { < .T*, h^ > |.T* 6 (5舉*)}. 

Note that, m f { < .T*, h^ > \x* € 6B(M*)} = -6, so sup{< x*, h^ > |.T* G 

d f { x ) } < -6. By (4.12)， 

d+贼h。< -6. 

Again, in view of Theorem 4.2.1, | is an error bound for / . • 

Corollary 4.2.4 Let X he a reflexive Banach space and f : X ^ RU {+00} be 

a continuous convex function. Suppose that 

Slip in f d'^f(x)(h) < 0. 

Then an error hound for f holds. 

Proof : We prove the corollary by showing that (B) of Theorem 4.2.1 holds. Let 

sup in f d^f(x)(h) < - 2 e , 
xedshex,\\h\\=i 

where e is a positive constant. For any x G dS, there exists h^ G ^ wi th \\hx\ = 

1 such that d'^f(x)(hx) < —e. See [13], is upper semicontinuous. 

Therefore there exists r > 0 such that 

d^f{y){h,) < - e (4.13) 
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whenever —.T|| < r. Note that since f is continuous, there exists S{x) > 0 such 

that for each ？/ G A' wi th \\y - x\\ < 8{x), f { y ) - f { x ) < y； that, is, 

f{y) < y - (4.14) 

Now check that a local error bound holds locally at x. Let y G X \ S wi th 

\y — x\\ < 6(x). From Lemma 4.1.1 and (4.13). 

/ f e + ^ M - / ( ? / ) < = 

I t follows from (4.14) that 

f(y + < f { y ) - j < j - j = o< f { y ) . 

Hence by Intermediate Value Theorem there exists Xy e (0,专)such that f{y + 

Xyhx) = 0. Again, by Lemma 4.1.1, 

f{y + XyK) - f{y) < - V , 

and hence 

f{y) > = e\\y — fe + Xyhx)\\ > edist{y,S). 

Therefore, for each y e X with \\y - .7：|| < 6{x), dist(y, S) < 舍 [ / ⑷ ] + . (B) of 

Theorem 4.2.1 holds and thus the result follows. • 

4.3 Error Bounds with Fractional Exponents 

In the previous sections, a proper function f : A' — R U {+00} on a normed 

space A' is said to have an error bound if there exists r > 0 such that for each 

E 乂 dist{x,S) < r [ f { x ) ] + , where S := {.T € ^\f{T,) < 0 } . Now we in t roduce 

the concept of an error bound with exponent other than 1. Researches on this 
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field have been brought out by K. F. Ng and X. Y. Zheng in [11]. The results 

reported in the following two sections are originally from [11]. In this section, we 

wi l l present some sufficient conditions for error bounds wi th exponents to hold. 

The definition that an error bound with exponent holds is first stated as follows. 

D e f i n i t i o n 4 .3 .1 Let X he a normed space and f : ？C ~> M. U {+00} be a proper 

function. Assum,e that the set 

S := {x G ^ \ f { x ) < 0 } 

is nonempty. Let j > 0 he a constant, f is said to have an error hound with 

exponent 7 if there exists a positive constant r such that for each x G 

d l S t { x , S ) < T { l f ( x ) ] + ) \ 

where dist{x, S) := inf{||.T — y\\\y e S} and [ /(. t)]+ = max{/(.T), 0}. 

Recall that in this chapter we always assume that S is nonempty. Again 

obviously, without loss of generality, we can show an error bound wi th exponent 

7 holds for f by just checking whether dist{x, S) < T[f(x)]^ is true for each 

•T G dom{f) \ S (that is, 0 < f { x ) < 00). 

We use the following notation for convenience. 

D e f i n i t i o n 4 .3 .2 Let X he a normed space and / : A' ^ R U {+00} be a proper 

function. Then 

E x { f ) •= { 7 > 0 | / has an error bound with the exponent 7 } . 

Now we shall study the proposition below. 

P r o p o s i t i o n 4 . 3 . 1 Let X be a normed space and f : A： ^ Ruf+oo} he a proper 

function. Then E x ( f ) is an interval if E x { f ) is nonempty. 
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Proof : Suppose 71, 72 both in Ex(f). Without loss of generality we let 71 < 72. 

There exist r i > 0 and T2 > 0 such that for each x G dist{x, S) < r i [ f { x ) ] ^ \ 

i = 1,2; hence 

dtst{x,S) < max {T i ’T2 }m in { [ / ( : r ) p , [ / ⑷ ] ” } . 

Note that for any a > 0 and for any 7 G [71,72], m i n { f l " i ， < Consequently 

we have for each 7 G [71,72]’ 

dist{x, S) < max{ri,T2}[/(.T)]^, 

and thus this proposition follows. • 

Let A' be a topological space. A partial order “」，，in A' is said to be closed if 

for each x G A', the subset {y G P(:\y ：< x} is closed. Also recall that for a subset 

A of X point ao is said to be a minimal element of A w i th respect t o 」 i f for 

any a e A, a = clq whenever a」a。. The following lemma follows from Zorn's 

Lemma. 

Lemma 4.3.2 Let X be a topological space equipped with a closed partial order 

“4” and A be a compact subset of X. Then for each a E A, there is a minimal 

element qq of A with respect to such that 0,0 j a. 

P r o o f : Let S be the family of all total ly ordered subsets of A. Take a e A. 

Define E .̂ := {D E a for each .T G D}. By Zorn's Lemma, E^ has a 

maximal element DQ w i th respect to the partial order of set inclusion. Note that 

the family {{y e M\y ^ .Tjn^l .T e DQ} has the finite intersection property. Since 

A is compact and {y G A'l^ ：̂  x} is closed for each x G DQ, one has 

XEDO 
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Let ao G 4 n G M\y ：< x}. Therefore a 。 x for each x G Do, in 

particular, ao」a. Now we aim to show that a。is a minimal element of A wi th 

respect t o S u p p o s e to the contrary, there is AI 6 A wi th fl]」o,。and fl] a。. 

Then we define D^ = DQU {a i } . Clearly D i € and thus Do is no longer 

a maximal element in Ea wi th respect to the set inclusion. I t contradicts the 

construction of the set DQ. AS a result, CLQ is a minimal element of A w i th respect 

to ：< wi th ao ：< a. • 

L e m m a 4 . 3 . 3 Let X he a normed space and / : ^ R U { + 0 0 } he a proper 

weakly lower semicontinuous function. Let-F > 0 and T > 0 he constants. Define 

a binary relation ” in ^ as follows: for any x, y e X, 

y：^ 工 订—only if ||.T - y\\ < r { ( [ f ( x ) ] + y - ( [ / ⑷ ] + ) " ) . 

Then」is a weakly dosed partial order in X. 

Proof : C lear l y」 i s reflexive and antisymmetric. And the transit ivity follows 

from the triangle inequality of norm || • ||. Now fix x G ；f, i t is sufficient to show 

that {y e A'ly ^ x} is closed with respect to the weak topology of A'. Note that 

{y ^ ^ = ^ \ r i [ f { y ) U r + - y\\ < r ( [ f ( x ) ] ^ y } . ( 4 . 1 5 ) 

Since r ( [ / ( - ) ]+)^ and ||.T 一 .|| are both weakly lower semicontinuous, 7"([/(.)]+广 + 

1.7： - .11 is also weakly lower semicontinuous. This and (4.15) imply that {y e 

is weakly closed. • 

The following is the main result of this section. 

T h e o r e m 4 . 3 . 4 Let X he a reflexive Banach space and f : X R U { + o o } he a 

proper weakly lower semicontinuous function. Let ^ > 0 and T > 0 be constants. 

Suppose that for each x € dom〔f) \ S, there exists a sequence m X such 

that 
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1. ||.T„, — .t|| —> 0 and 

2. for svfficienUy large n, 0 < ||.T — .T„,|| < T { [ f ( x ) ] ^ - [/(.T„)]T). 

Then, for each x E dist(x, S) < T { [ f ( x ) ] + y . 

P r o o f : Define a binary relation in A' the same as in Lemma 4.3.3. Therefore 

」 i s a weakly closed part ial order in A'. Take x e dom,{f) \ S. Note that f 

is weakly lower semicontiniious, so S is closed and thus dist{x, S) > 0. Let 

r e (0,dist(x,S)). Clearly 

B(:r，r)nS" = 0, 

where B(x,r) = {y e - .T|| < r } . By the reflexivity of A", B{x,r) is weakly 

compact. Recall that is weakly closed. In the view of Lemma 4.3.2’ these imply 

that there is a minimal element xq of B(x, r) such that xq」x. Now we want to 

claim that ||.T - .TO|| = r. Suppose to the contrary, that is, ||.T - .TO|| < r , hence 

r - ||.T - .Toll > 0. Note that .tq ^ 5 ; since XQ」X and x e dom(J), XQ e dom(f). 

Therefore XQ e dom,(f) \ S. Following from the assumptions in the statement of 

Theorem 4.3.4’ there is yo e X such that 

0 < ||.To - ？/oil <r — \\x - rroll (4.16) 

and 

、 0 < ||.To - ？/oil < r([f{xo)Y - [f{yo)V). (4.17) 

From (4.16), y。+ .TQ and y。€ B{x,r). From (4.17), yo」.TQ. These contradict 

the fact that XQ is a minimal element of B(x,r). As a result, ||.T - .TO|| = r. 

Furthermore, as Xq」x, 

r = ||.To — .t|| < r ( [ f ( x ) y - [f(xo)V) < r [ / ( . T ) ] r 

Lett ing r — dist{x,S), we have dist(x,S) < T[/( .T)]T . Consequently the error 

bound w i th exponent 7 holds. • 
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Since a finite dimensional normed space is reflexive and its weak topology 

coincides with the norm topology, the following corollary is obvious. 

Corollary 4.3.5 Let X be a finite dimensional normed space and / ： A' — 

R U { + 0 0 } be a proper lower semicontinuous function. Let j > 0 and T > 0 be 

constants. Suppose that for each x e dom(J)\S，there exists a sequence 

in X such that 

1. ||.T„ — .t|| 0 and 

2. for suffi,ciently large n, 0 < ||.T — .T„,|| < r { [ f ( x ) ] ^ — 广). 

Then, for each x € A', dist(x, S) < r([/(.T)]+)^. 

The following corollary follows from the fact that every lower semicontinuous 

convex function is weakly lower semicontinuous. 

Corollary 4.3.6 Let X he a reflexive Banach space and f : Pd R U { + o c } be a 

proper lower semicontinuous convex function. Let ^ > 0 and T > 0 he constants. 

Suppose that for each x G dom{f) \ S, there exists a sequence m X such 

that 

1. \\xn — .t|| 0 and 

么 for sufficiently large n, 0 < ||.t — .t„ | | < r ( [ f { x ) ] ^ -

Then, for each x G A', dist(x, S) < r ( [ / ( . T ) ] + ) ^ . 

For a proper lower semicontinuous convex function / ： A' R U {+00} , let 

/ * : * R U {+00} be its conjugate function, that is, for each .t* g 

作 * ) = s u p { < x\x > - f ( x ) \ x e A：}, 

where ；T is the dual space of ；f. As the conjugate problems wi l l often be con-

sidered in some mathematical programming problems, it is worthy to study its 

error bound problem. 
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T h e o r e m 4 . 3 . 7 Let A： he a normed space and f : X ^ RU {+00} he a proper 

lower semicontinuous function. Assume that the set 

?;s nonempty. Let j > 0 and T > 0 be constants. Suppose that for each x* G 

dom{f*) \ S*, there exists a sequence {<}nGN 饥 X* such that 

1. Il-T* - .T*|| — 0 and 

2- for sufficiently large n, 0 < - < T([/*(.T*)]'^ -

Then，for each x* G A '* , dist{x\S*) < r([/*(.T*)]+)T. 

Proo f : Note that the conjugate function f* is weak-* lower semicontinuous. The 

reason is: For each a G R, 

{ p e X ' ' \ r { p ) < a } = { p e A'*|SUP{P(.T)-/(.T)} < a } 
•TGA' 

.XGA' 

Since {p e < a + f { x ) } is weak-*-closed for each .T € A', / * is weak-* 

lower semicontimioiis. Additionally, every bounded weak-*-closed subset of X* 

is weak-*-compact. Therefore the theorem follows by repeating the argument in 

proof of Theorem 4.3.4 wi th weak-* topology of ；T in place of weak topology of 

A". • 

Given a function f : X -^RU {+00} , x G ；^ and h e P(： wi th \\h\\ = 1. / is 

said to be directionally continuous in h at x if f(x + th) = f ( x ) . 

T h e o r e m 4 .3 .8 Let X be a refl.exive Banach space and f : X IRU {+00} he a 

proper weakly lower semicontinuous function. Let ^ > 0 and S > 0 he constants. 
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Suppose that for each x G dom,{f) \ S, there exists h：^ G A' with | | / ? , 』 = 1 such 

that f is directionally continuous in h^ at x, that is, 

^lim f{x + th^) = / ( . t ) , (4.18) 

and 

d t f { T ) { K ) < - 6 [ f ( x ) Y - \ (4.19) 

Then, f has an error hound with exponent 7 . 

Proof: Let .T G dom(f) \ S. Take K e X with 丨丨“』=1 such that (4.18) and 

(4.19) hold. (4.18) and that 0 < /( .t) < +00 imply that there exists A > 0 such 

that for all t e [0,A], 0 < f{x + th工、< +oo. Then for t sufficiently small, as / is 

directionally continuous in ĥ： at x, 

[/OR + th,)]^ — [ f { x ) ] ^ = + th,) - f i x ) ] + o(f(x + th,) - / ( . T ) ) , 

and thus 

[/(工 + 啼 - [ / ⑷ r = r r.. .n-l , + f i x + f K ) - f { x ) 
t —「L八.」J 十 f i x + th,) - f ( x ) \ ~t ， 

where。(/((二:)):/((;))) — 0 i “ — 0. Therefore we have 

l i m i n f i ^ i i ? i ± M M M = 飽 广 i l i m m f ^ M l l M 
<—0+ t /J 0+ t 

By (4.19), 

limmf丨凡T + 爛 p 竺 
t - ^ 2 • 

Hence there exists a sequence {tn}n&N, converging to 0, such that for each n G N, 

in > 0 and 

+ - [/(.T)]^ < 

Tn - — T . 
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Let Xn = x + tnhx, so \\xn - .T|| —> 0 and for each n e N, 

0 < II.T - = K. < ⑷ 广 — [ / ( ; ) n . 

By Theorem 4.3.4, for each x e 

• 

The following two corollaries imply that if the normed space A' is finite di-

mensional or convexity of f is assmned, the condition that f is weakly lower 

semicontinuous can be relaxed. The first one is due to the fact that a finite di-

mensional normed space is reflexive and its weak topology is exactly its norm 

topology. 

Corol lary 4 .3 .9 Let A： he a finite 

dimensional normed space and f : JY 

M U { + 0 0 } be a pTopev lower sernicoutinuous function. Let ^ > Q and <5 > 0 

constants. Suppose that for each x € dom.(f) \ S, there exists h工 e M with 

= 1 such that f is directionally continuous in h工 at x and < 

Then f has 
an error hound with exponent 7 . 

Corol lary 4 .3 .10 Let X he a reflexive Banach space and f : X RU { + 0 0 } be 

a proper lower semicontinuous convex function. Let p Q and 6 >0 he constants. 

Suppose that for each x G dow.(f) \ S, there exists h^, e A' with \\h,\\ = 1 such 

—t 这+f (樣)< Then f has an error hound with exponent 7 . 

Proof : Since f is lower semicontiniioiis convex, it is weakly lower semicontinuous. 

In view of Theorem 4.3.8, for any fixed x € dom,{f) \ S, it suffices to show that f 

is directionally continuous in h^ at x. Now d^f[x){h^) < -S[f{x)Y-^ < 0’ there 
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is Ao〉0 such that 二 广 / ( ” < 0, so .T + Xoh, G dom.{f). As f is convex, for 

each t G [0, A。], 

/ ( • ^ + = / [ ( I — + + A O M ] < ( I - F ) / ( . T ) + F / ( . T + A。 /G. 
Ao Ao 

Therefore, 

l imsup/ ( .T + thx) < /(.T). 
t—0+ 

Hence i t follows from the lower semicontinuity of f that f is directionally contin-

nous in h工 at x and the proof is complete. • 

4.4 An Application to Quadratic Functions 

In this section we use the results before to investigate the exponents the error 

bounds of a quadratic function on I T with. Let us consider a general quadratic 

function f w i th 

/ ⑷ = x ^ Q x + b^x + c, .T € 『 ’ （4.20) 

where Q is a ??. x ??. symmetric matr ix, b G R" and c G E; denotes the transpose 

of y E I T . Let ker(Q) = {x e M^IQ.T = 0} and R(Q) = {Qx\x G ST}. We have 

ker{Q)丄 and I T = ker(Q) + R(Q). 

Furthermore, for sake of convenience, we introduce the following notations. 

We let 

= span({x e = ax for some a > 0})， 

= span({.x e R"iQ.T = ax for some a < 0}) , 

'and 

'^s = ker(Q). 
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Then we have A；；丄；t}，for e {1 ,2 ,3} wi th i + j- QX, = A；；, for i = 1,2; 

W = Ml ^ and for each x e R", there are unique .T̂  e i = 1, 2’ 3’ 

such that x = Xi + .T2 + X3. And then for each x G ST, we define a norm ||. by 

I . 到 = i ^ i Q X i - + ||.T3|p)i 

Hence, 

IMIe = (||-^l||e + l|-̂ 2||e + W^sf ) ' - (4.21) 

Note that || • ||e is an equivalent norm on ST. In this section we wi l l make use 

of II . lie instead of the original metric to show the error bound result for / , that 

is, showing the error bound hold wi th respect to || . A l l the notations above 

wi l l be used throughout this section. 

In the first part of this section, we discuss the set Ex{f) (defined in Definition 

4.3.2 in page 106) of the quadratic function stated in (4.20) under the condition 

that b 丄 ker(Q) 

Consider an equation: 

2Q.7： - —b. (4.22) 

Clearly it has a solution if 6 丄 A:er((3) (as b G R{Q)). Now we prove the following 

lemma. 

Lemma 4.4.1 For any two solutions Oi and 62 of (4.22), f{Oi) = j^Q^h 

Proo f : Now 2(3(9,； =-b, i = 1,2. Let 6 = 62- "1, then Qe = 0. Therefore, 

m ) = 仏 + + c = - 2 时 + c 

‘ = - O j q e ^ + c = - ( ^ 1 + e f Q i O , + e) + c 

= - 仰 没 2 + c = 洲 . 
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• 

Lemma 4.4.1 tells us that the constant r, r := f(()) for some solution 6 of 

(4.22), is well defined and independent of the choice of 9. Let ^ be a solution of 

(4.22). Now we rewrite (4.20) as follows: 

/ W = t^Qx + h^x + c 

= + - + e^Qo - e^Qo ^b^e^c 

= 一 2eTQ、x -o)-\- eTQe — O^QO -^b^o-^c 

= 一 ofQix — e) + 2eTQe - e^qe + 没 + c 

Since we are considering the error bound problem, without loss of generality, 

instead of (4.20), we can consider the quadratic function f as 

f ⑷=^^Q^ + r (4.23) 

where r is well-defined in view of Lemma 4.4.1. Furthermore, in virtue of || . 

defined before, (4.23) can be further rewrit ten as 

= ll-^llle - (4.24) 

Now we tu rn to present the error bound results under the circumstance that 

b 丄 The following discussion is based on usage of (4.21) and (4.24). 

First of all, several lemmas are presented. 

Lemma 4.4.2 Suppose that Q has both positive and negative eigenvalues and 

b 丄 keriQ). Then E x { f ) C [ i , +oo ) . 

'Proof: Pick a a positive eigenvalue of Q and let h^ be a corresponding eigen-

vector w i th 丨丨‘丨丨̂ = 1. Let ‘̂； = {.TI G 丄 、 } . Then = ；f； + and 
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QK = 劣 - B y (4.24), for any .t G I T with x = .ti + .T2 + .T3, .r̂  6 A；；, i = l ,2 , 3, 

/ W = ll-^llle -

where r •= / ( " ) for some solution 0 of (4.22). Consider th^ e R" with t > |r|去， 

then f{tha) = -\-r >0. Moreover, 

dist(tha, S) 

=dist{th^,dS) 

= i n f { - tKWl + ll-̂ 2||e + II工3||2] * ： \\xi\\l 一 \\X2\\1 + r = 0, 

e = 1,2,3} 

= i n f { [ | | . T i + ： ||.Ti||2 + r >0, .T i G A'l} 

= i n f { [||.T； + Xh^ 一 th^l + ||.T； + Xh^Wl + r ] * : ||.T； + Xh^l + r > 0 , 

A G R，:r; e A'l} 

= I N F { [2||.T； + (A - + A2 + r ] * : + A^ + R > 0, 

AgR, . t； g A'；}. (4.25) 

Let g(A,x[) = 2||̂；||2 + (A - T)^ + A^ + r with (A,.T；) G M X A'；. We have 

塞 = 2 ( A - ,) + 2A = 4A - 2t (4.26) 

and 

dg . fT^ 
^ = Q. (4.27) 

In order to have minimal 仏 A = 臺 and .T； = 0. Now for sufficiently large 

( IO ) ^ + + 厂 > 0,A E ]R,.T； e so dist{fK, S)= 

[ ( ! -力 )2 + ( 臺 + = ( 专 H e n c e 

lim -等。，⑦一 lim —丄 

This implies that Ex(f) C [ i +oo). I t is because i f O < 7 < i l i m , 丄 出 举 … s ) = 
‘ 2 ' 十 oo [ f( tha)p 一 

•+00. This tells us that for any r > 0 given, we can find 力o > 0 such that 

dtst{toh^,S)>Tlf(toh^)]'y. 
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• 

L e m m a 4 .4 .3 Suppose that Q has both positive and negative eigenvalues, b 丄 

A:er((3) and r := / ⑷ = 0 for some solution 9 of (4.22). Then E x { f ) C { i } . 

Proof: In view of the proof of Lemma 4.4.2, by (4.25), (4.26) and (4.27), for any 

力 > 0, f { f K ) = t^>0 and dist人th⑴ S) = Hence, for each t > 0 

This implies that Ex{f) C {1} (Because if 0 < 7 < i , = +00 

L e m m a 4 .4 .4 Suppose that Q has both positive and negative eigenvalues, b 丄 

A:er(Q) and r := f{9) < 0 for some solution 0 of (4.22). Then E x ( f ) C [ i , 1 . 

Proof: Again, let a, h。be as in the proof of Lemma 4.4.2. Now for any t > 

r|去，we have / ( 力 “ 以 ) | r | . Following (4.25), for t sufficiently near |r|去’ note 

that (A,.T；) = (1,0) is not in the set {(入,：7：;)|||.7：'丄2 + 入2-|r | > 0, A G R,.T； G A'；}, 
therefore, 

dist(th^,S) 

= [ 2 \ \ x [ \ \ l + (A — t)' + a2 — |r|]去:||.t； + X'-\r\>0,Xe R, .t； e A^；} 

= i n f { II, + ( A - t f + A2 一 |r|] * ： ||.t； + A? — H = 0, A g R, .t； 6 A'；} 

= i n f { [2|r| — 2入2 + (A - t f + A^ - |r|] ^ ： |rl - A^ > 0, A G R} 

= i n f { [ ( A - , ) 2 - A 2 + | r | ] L A 2 y r |，A e ] R } 

. 「9 1 T 1 
= r - 2| r |2^+ |r|]2 

i 
= t — r 
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Hence, 

lim dist{tha,S) — lim t - \r\-2 — 1 _ 1 

肌 ） ： 一 》 - IH — “ � “ x / H = ̂ 7î ， 

and this implies that E x { f ) n (1, +oo) = 0. Combining w i th Lemma 4.4.2, one 

has E x { f ) C [ i , l ] . • 

L e m m a 4 . 4 . 5 Suppose that Q has both positive and negative eigenvalues, b 丄 

A:er((5) and r := f ( 0 ) > 0 for some solution 0 of (4.22). Then E x { f ) C [*，1 . 

P r o o f : Pick a a negative eigenvalue of Q and let h。be a corresponding eigen-

vect'or w i th ||/?,a||e = 1. Let < - {x2 G ^21-^2 丄 ha}. Then ； = + Rh^ and 

= By (4.24), for any .T € I T wi th .x 二 .TJ + .T2 + .7:3, .T, G ；»：；；, 2 = 1,2’ 3, 

/(•T) = ll-^llle -

Consider th^ G I T wi th t e (0，V^), then f(th^) = - t ' + r > 0. Moreover, for 
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each t e (0, y / r ) , 

dist(tha, S) 

=dist{tha, dS) 

= [ 1 1 - ^ 1 lie + 11-̂2 - t h ^ l + ||.巧||2]去：||.Ti||2 - \\x2\\l + r = 0’ 

e A；；, 2 = 1,2,3} 

= i n f { [114 + XKWl - r + 114 + Xh^ — ,‘11^2] ‘ : 114 + Xh^Wl - r > 0, 

A G G A'^} 

= i n f { [ 2 | | 4 | | 2 + a2 - r + (A - t f ] * : + 4 } 

= i n f { + A2 — r + (A 一 力)2] * ： 11411: + A2 = r, A e R, .T； G A：；} 

= i n f { [ - 2At + t^ + r]^ ： r - A^ > 0, A e R} 

= r - 2 r “ + ,2]* 

= \ / r — t. 

Hence, 

d lS t ( fK , S) y / ¥ - t 1 1 
hm ~~7777—\~ = hm — = l im — = — — 

、.一i JV'l^'cc) t^^- r-i? ^ + 1 2y/r' 

This implies that Ex[])门（l,+oo) = 0. Combining wi th Lemma 4.4.2，one has 

E x { f ) C [ l l ] . • ’ 

T h e o r e m 4 . 4 . 6 Suppose that Q has both positive and negative eigenvalues, b 丄 

A:er((5) and r := f ( 0 ) = 0 for some solution 0 of (4.22). Then Ex(f) = { i } . 

P r o o f : Take any .t - .TI + .T2 + .T3 G I T \ S, w i th .t,； G 不，z = 1’ 2,3. By (4.24), 
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hence ||.Ti||e > [f(x)]^ > 0. Pick h^ = Then 

d f { x ) { h , ) = 2(xJ — x l ) Q h , = - 2 | | . T i | | e < - 2 [ / ( . T ) ] i 

By Corollary 4.3.9 and Lemma 4 .4 .3，Ex{ f ) = { ! } . • 

T h e o r e m 4 . 4 . 7 Suppose that Q has both positive and negative eigenvalues, b 丄 

A:er(Q) and r := f { 0 ) < 0 for some solution 0 of (4.22). Then Ex{f) = [ i , 1 • 

P r o o f : Take any .t = .TI + .T2 + .T3 G M" \ 5, w i th .t, e i = 1, 2,3. By (4.24), 

hence ||.Ti||e > [ / ( . t ) ]^ > 0 and ||.Ti||e > |r|5 > Q. Then for any 7 e as 

( 2 7 - l ) e [ 0 ’ 1], 

I H I e > | r |鄉 -1) [ /⑷ ]印-(27-1)] = > 0. (4.28) 

P 她 ‘ = A - Then by ( 4 . 2 8 ) , 

By Corollary 4.3.9 and Lemma 4.4.4, E x { f ) = [ i , 1]. • 

T h e o r e m 4 . 4 . 8 Suppose that Q has both positive and negative eigenvalues, b 丄 

MQ) a— r •= f ( 0 ) > 0 for some solution 9 of (4.22). Then Ex(f) = [ i , 1 . 

P r o o f : Let 7 e [|，1]. By Corollary 4.3.9 and Lemma 4.4.5, i t suffices to show 

让at 7 G E x { f ) to complete the proof. Now take any .t = + .T2 + .T3 € I T \ S, 

w i th .T,； G A；；, i = 1,2,3. 
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Firstly, we deal w i th the case that ||.T2||e < 兮.We have /(.T) = \\XI\\L - \\X2\\L + 

r > \\xi\\l + f r . Let 2/2 G 々 w i th \\y2\\e = Then + .T3) = 0; hence 

dist人00, S) < ||.T- + 

= + +2/2)||e 

= ( I I - T I I L 2 + II 工2 + 2 / 2 ) I D 去 

/ / 2 9 、i 

Therefore 

dzst(x,S) ^ (||.Ti||,^ + f r ) i 

[ / ⑷ ] 飞 " l i N i f + W " 
Since 7 > i the right hand side is bounded; therefore there exists n > 0 such 

that for all x G I T \ w i th ||.7：2||« < f , dist{x, S) < r i [ / ( : r ) p . 

Secondly, we consider the case that ||.T2||e > ^ and .TI = 0. Pick h 工 = S o 
11巧 lie 

for each t > 0 w i th 

/(.T + th^) = -(||.T2||e + 力)2 + r〉0， (4.29) 

we have 

dr(x-hth,){h,) = +力"0：)广 i V / ( : r +力 

= 7 [ / ( . T + 1 [-2(.T2 + tKfQh,] 

By (4.29), ||.T2||e + 力 < v ^ ; also ||.T2||e + 力〉 f ; hence, 

+ th⑩,工)< - 2 7 - ^ = < 一 丄 

— r^-'y - 7-2' 

for some constant 7*2 > 0. I t follows from Mean Value Theorem that there exists 

> 0 such that 

/ (•r + toh^) = 0， 
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/(•T + th^) > 0, for each t G [0, to), 

and there exists AQ G (0, to) such that 

- [ / ⑷ r = [ / ( - ^ + - [ / ⑷ r = m / ( . T + < -

Consequently, 

dlSt(x,S) < llx - {x + toh^)\\e = to< T2[f(x)y 

is valid for all x = x i X 2 + X3 E R"'\ S with ||.T2||e > ^ and .ti = 0. 

Thirdly, we consider that ||.T2||e > 夸 and .TI + 0. Pick h 工 = + 
L V2 ^ iFllle 丨丨 丨丨 e" 

So for each t G (0, \/5||.Ti|y with 

/(•T + th,) = - - ^ f - (||.T2||e + + r >0, 

we have 

= 2 7 [ / ( . T + 力 - - J ^ ) 一 + 
V2 Xi e V2||.T2||e 

=V2^[f(x + 啼-1[—|| : r i | |e + — ||.X2||e - 4=] 
V 2 v2 

Together with ||.T2||e + • � 夸 and ||.TI||, > 吉，we have 

+ 樣 ） = - 彻 糾 丨 + ^ 
、 . 八 [(l l- l l le-；^)^- ( I N I . + + 

- ( 4 . 3 0 ) 

The right hand side of (4.30) is bounded as 1 - 7 < i. Therefore there exists 

T 3 � 0 such that for each t G (0, V2\\x^\\e] with f { x + th^) > 0, 

丁3 

We consider two cases: 
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1. There exists to G (0, \/2||a:i||J such that f{x + toh^) = 0: Again from 

Mean Value Theorem, f{x + th工)> 0 for each t G [(Mo) and there exists 

Ao G (0, to) such that 

-[/⑷广=[/(.T + toh.)r — [ f { x ) r = todf(x + Ao/g(/g < - h . 

Hence, 

S) < ||.T - (.T + = to< rs[f(x)]^ 

is valid for all x = x i X 2 + .T3 eW \S w i th ||.T2||E > ^ and .TI + 0. 

2. For all t G (0, ^/2||.Tl||J, f(x + th。> 0: Again by Mean Value Theorem 

that there exists AQ G (0, y/2\\xi\\e) such that 

[/(•T： + 却 i l l e / g 广 - [ / ( . T ) 广 二 V2\\x,\Udf(x + A o " D < —丨le. 
丁3 

(4.31) 
Note that, 

.T + /̂2||.7：l||e/7,̂  = .T1+.T2 + .T3 + V2 | | .T i | | e [4= (一"— + .巧 ) ] 
v2 1-̂1 lie |丨."?̂2丨|/ 

= ( 1 + — ) . T 2 + .T3 
•̂ 2 e 

e A'2 + Ms. 

As X + 丄； u s i n g the result in earlier part of this proof, we 

have 

d鄉 + S) < max{r i , r2} [ / ( .T + . 

Therefore, this and (4.31) imply that for any x = xi + X2 + .T3 G R" \ 5 

wi th ||.T2||e > 夸 and Xi + 0， 

dzst(:r，5") < V2\\xi\\, + dist(x + S) 

• max{r i , r2} [ / ( .T + \/5||:ri|| 人)广 

< max{Ti，7"2，T3}[/(.T)]7. 
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Combining all results above, take r = max{r i , T2, rg}. Then for any x eW\ S, 

we have 

d i s t { x , S ) < T [ f { x ) ] \ 

As a result, [|，1] C Ex(f). Together with Lemma 4.4.5, Ex(f) = [ i , 1]. • 

T h e o r e m 4 . 4 . 9 Suppose that Q has positive eigenvalues and has no negative 

eigenvalues. Suppose b 丄 ker(Q) and r := / ⑷ = 0 for some solution 9 of 

(122). Them E x ( f ) = { i } . 

Proof : Since Q has no negative eigenvalues, S = {x2 + .T3I.T2 G Â2，_T3 G ^3}. 

Therefore take any .t = .TI + .T2 + X3 E R"'\ S wi th .t, G A；；, i = 1,2, 3, we have 

/⑷= l l - ' ^ i l l e > 0 and dist[x, S) = ||.7:i||e > 0’ hence 

dist[x, S) 
[ /⑷” = 1 . 

As a result, Ex(f) = { i } • 

T h e o r e m 4 .4 .10 Suppose that Q has positive eigenvalues and has no negative 

eigenvalues. Suppose b 丄 ker(Q) and r := / ⑷ < 0 for some solution 0 of (4.22). 

ThenEx{f) = [ l l ] . 

Proof : For any x = .ti + .T2 + .T3 € R" \ 5 with Xi ^ i = 1, 2,3, 

/(•T) = \\xi\\l - |r | > 0; 

hence ||.Ti||e > [f{x)]i > 0 and ||.Ti||e > |r|去 > 0. Then for any 7 g [ 全 ’ 1 ] , as 

. ( 2 7 - 1 ) G [ 0 , 1 ] , 

b i l l e > M讲7-1)[八.T)]扣-(2，i)] = I 叫 ⑷ ] 1 ” 〉 0 . (4.32) 
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Pick h , = Then by (4.32), 

df(oc)[h工)=2xjQh^ = - 2 | | . T i | | e < { - 2 \ r p - ^ ) [ f ( x ) Y - \ 

From Corollary 4 . 3 . 9， 1 ] C Ex{f). On the other hand, note that S = {x e 

^ " i 11̂ 1 lie < |r|,.T = .Ti+.T2 + .T3,.T, G = 1,2,3} . Now we have 

l im 轉 1 ’ 。 = l im 丨 N H 叫 去 = 1 

and 

l im dzst(x,,S) = l im I N | e _ M 全 = 1 

These imply that Ex{f) is disjoint from (0，^ U (1, +oo). Combining wi th the 

earlier result, Ex{f) = [ i , 1]. • 

For the sake of considering all the cases, we state two propositions below. 

They are obviously true. 

P r o p o s i t i o n 4 . 4 . 1 1 Suppose that Q has no negative eigenvalues, b 丄 /rer(Q) 

ana? r := f(e) > 0 for some solution 0 of (4.22). Then 5 = 0. 

P r o p o s i t i o n 4 . 4 . 1 2 Suppose that Q has no positive eigenvalues and has negative 

eigenvalues. Suppose that b 丄 A:er(Q) and r := f { 0 ) < 0 for some solution 9 of 

(4-22). Then S = I T and E x { f ) = (0, +oo ) . 

T h e o r e m 4 . 4 . 1 3 Suppose that Q has no positive eigenvalues and has negative 

eigenvalues. Suppose b 丄 ker^Q) and r := f ( 0 ) > 0 for some solution 0 of (122). 

Them E x ( f ) = (0,1]. 

Proo f : For any x = + .t2 + .T3 G M^ wi th .t,； € A；；, i = 1，2’ 3, 
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Note that S = {x e M"i||.T2||e > r}. Therefore take any J： G \ 5, we have 

dist{x, S) = ^ - ||.T2||e. Take any 7 G (0,1], 

SO (0，1] C E x [ f ) . On the other hand, since 

l im 轉 2 , ⑦ = l im V ^ - I M e = 丄 

五:r(/) is disjoint from ( l ,+oo) . Combining the results, one has Ex(f) = (0，1 . 
• 

Now we turn to the situation that b is not orthogonal to ker{Q). First, we 

let bo denote the projection of b on ker(Q), that is, bo G A'3. In case that b is not 

orthogonal to ker{Q), bo ^ 0 and b - bo 丄 Let Oo be a solution of the 

equation 2Q.T = -(b - bo) (such a 〜exists as 6 — 6。丄 k e r _ . And we also 

rewrite the equation (4.20) as follows: for any x e K" 

/ (rr) = x^Qx + b^x + c 

= t ^ Q x + bT(x - 0q) + b̂ Oo + c 

=x^Qx + - 20^Q)(x - Oo) + b'^Oo + c 

= - 城 Q t + + hl{x - 60) + O^QOo + b^Oo + c 

= — - Oo) + 一 Oo) + f(Oo). 

Therefore in the following discussion we can consider the quadratic function: 

/ ⑷ = x ' ^ Q x + b^x + ro, .T G I T , (4.33) 

where r。= / (彻) i s the value of f at some solution 办 of the equation 2Qx = 

—(6 - bo). Note that /((9o) is dependent on the choice of OQ. In virtue of . 
e， 

(4.33) can be further rewritten as 

/ ⑷=11-^1 lie — ll-̂ 2||e + + ^q, (4.34) 
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where x = x i + X2 + .T3 G IT，with .T, G 不，z = 1,2, 3. Making use of this and 

I . lie, we discuss the exponents of the error bound of the quadratic function f 

wi th b I ker{Q). 

L e m m a 4 . 4 . 1 4 Suppose b / ker{Q), then { 1 } C E x { f ) . 

P r o o f : Fix x e R ^ \ S wi th .T = + .T2 + .T3, .T, g A；；, Z = 1,2, 3. Now 

/ ⑷ = l l - ' ^ l l l e -

Pick h , = then 

奶’幼 M = (2.Tfg - 2xlQ + = b ^ A = -||6o||. 
I知丨 

by Corollary 4.3.9, 1 € E x { f ) . • 

T h e o r e m 4 . 4 . 1 5 Suppose that Q has no negative eigenvalues and b is not or-

thogonal to ker(Q). Then Ex(f) = {1 } . 

P r o o f : By (4.34) and that Q has no negative eigenvalues, for each x = x i + x a + 

•̂ 3 e R"-, with.T, G A；；, Z = l , 2 ,3 , 

/(•T) = l|-^l|le + 

Let A's = {.T3 G 々1.7:3 丄 6o}. Then 不 = 劣 + 動 F o r each t > 0, let 

^t =(力 + 罾)知，a n d so 

F ⑷ = 《 ( 力 + + 力||6O||2 > 0 . ( 4 . 3 5 ) 
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Therefore, 

dist{xt, S) 

=dist{xt, dS) 

= i n f { [||.Ti\\l + \\X2\\1 + ||X3 - 5 ： ||.Ti\\l + b^xs + ro = 0’ 

2 = 1,2,3} 

= i n f { [ - b^xs : b'^x^ + TQ < 0, X3 G X^} 

= i n f { [ — 6『(•巧 + 錄 ) + 11.3 — . . IP] * ： 

.T3 e Xs}. (4.36) 

Since bo G A'3, for any .T3 G 礼 ( x ^ + G also. We can replace (.T3 + 綠 ） 

by 2/3 e 而 in (4.36). Note that .T3 - = y , - ^ - (t + = 約 一 k . 

Then (4.36) becomes: 

dist[xt, S) 

= i n f { [ - bly^ + —力6。丨鬥 * ： b'^ys < 0,7/3 G ^3} 

= i n f { [ - • + A60) + ||y； - (A —力)6o||2]去：6『(2/; + A 6 0 ) < 0, 

= i n f { [ — A||6O||2 + —(A — + ||̂；||] ^ ： A < 0, G 

= i n f { [ ( A - ^ ) 2 - A ] ^ | | 6 o | | ： A < 0 } . 

Now, 

去 “ - 什 - 《 。 = [ 2 ( A - ,) - 1]L 切 < - 2 f - l < 0 . 

Therefore, 

dist{xu S) = [(0 —力)2 一 o]i||6o|| =力II60II. 

Thus by (4.35) for each t > 0, 
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This imply that Ex{f) C {1} . Combining w i th Lemma 4.4.14, Ex{f) = {1} . • 

T h e o r e m 4 . 4 . 1 6 Suppose that Q has negative eigenvalues and b is not orthogo-

nal to ker(Q). Then E x { f ) = [ i , 1.. 

Proof : Fix .T G \ ^ wi th .T = + .T2 + .T3, where .t, e i = 1,2, 3. As 

/(.T) = ||.ti||2 - ||.T2||2 + blxs + ro > 0, 

N l ^ + fe + n) > ||.T2||e > 0. 

Define 

•巧 + (ll-^llle + 碌工3 + r o ) ^ ^ + .T3, .T2 — 0 

、，Ti + + b^xs + ro ) i r : 2 + .T3, .T2 = 0 ， 

where f? G ；with Hryie = 1. Note that / ( y ^ ) = 0. Hence, 

S) < ||.T - = (||.Ti||2 + b^xs + ro)圣-||.T2||e < [ / ( . T ) ] i 

This implies that ^ e Ex{f). I t follows from Lemma 4.4.14 and Proposition 4.3.1 

that 

[ l A ] ^ E x { f ) . (4.37) 

On the other hand, similar to the proof of Theorem 4.4.15, we let = {xs e 

丄 Then ； = 劣 + 勵0. For each t > 0, let .T, = (t + and so 
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f M = h l { t + + ro = > 0. Therefore, 

dist(xt, S) 

=dist{xt, OS) 

= i n f { [ll-^llle + + II.T3 — ^ ： \\x,\\l — \\x2\\l + 6J.T3 + Tq = 0, 

rr，: e 不’ z = 1,2,3} 

= i n f { [ 2 | | . t i | | 2 + b^xs + r。+ ||.T3 - * ： \\x,\\l + b “ + r。> 0, 

•Ti G e Xs} 

=inf{[2丨丨工ilL2 + 晴 f e + ^ + ... IP]* ： INL2 + + r o > 0 , 

e A'i,.T3 G A'a} 

= in f { [2 | | .T i | | 2 +6^2/3 + 112/3-^^011']' ： 11-̂1 lie + 2/3 > 0 , 

G G Xs}. (4.38) 

Let = 2\\x,\\l + b'^y^ + 丨丨？力 一 tbof w i th e x A'3. We have 

彻1 一 4•巧Q 

and 

g = 6『+ 2[yl - thl) = 2yl — {2t 一 1)6『. 

In order to have minimal g, x, = 0 and y, = {t - For t large enough, 

(0, {t - l)bo) satisfies the constraint in (4.38). Therefore, 

S ) = [ 仗 ( , - + II 去 6。||2] ^ = i)^||6o|| 

and thus 

l im - ( “ 彻 丨 一 1 

一 \ / 7 R 一 ti\\bo\\ 
This implies that 

E . T ( / ) n ( O , i ) ^ 0 . (4.39) 
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On the other hand, for t small enough, see (4.38), without loss of generality, let 

= 0 and ys = Xbo for some A > 0. Therefore, 

dtst{xt ,S) = inf{[A||6o|p + ( A - 0 ' | | 6 o | p ] ^ : A > 0 } 

= i n f { [ A + (A - t ) 2 ] ^ | | 6o | | ： A > 0} . 

Similar to the proof in Theorem 4.4.15, we have dist(xt,S)=力丨|6o||. Since, 

lim dist(xt,S) — 1 

二 f M I M ' 

丑;r(/) n (l，+oo) = 0. Combining wi th (4.39) and (4.37), 

• 
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