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DESIGN AND CONSTRUCTION OF 
A SMA CONTROLLED ARTIFICIAL FACE 

ABSTRACT 

Emotion expression is the special characteristic ofhuman being and animal. As such, people 

nowadays may prefer a robot which not only provide help but also equipped with emotional 

feedback, and hence the motivation of the present project. In this works, we design and 

construct a human-sized artificial face to mimic human facial expressions. In human face, 

actuation of the many muscles allows expression of different emotions. We aim here to 

conduct actuation of our artificial face by shape memory alloy (SMA) wire in substitute of 

muscles. However, because of its special feature control of the SMA wire is a difficult 

problem. Here, we attempt two methods, the model-based approach and the neural-fuzzy-

based approach. In model-based approach, we identify the model of the SMA wire, based 

upon which the relationship of displacement and applied current can be computed. The 

performance of this approach is illustrated in a ldimension position control experiment ofa 

2 SMA wires linkage system. The model-based approach, however, becomes too difficult to 

use when more SMA wires are involved. Hence, a neural-fuzzy-based approach is also 

pursued, and illustrated in the 2 dimension position control experiments of a 4 SMA wires 

linkage system. With these control algorithms at hand, we provided to design, construct and 

control an artificial face. In this project, the hardware artificial face is built using a plastic 

skull model. There are 6 control points and 3 mechanical structures on the artificial face. By 

actuating different combination of these control points and mechanical structures, the 

artificial face is made to express different facial expressions. 



設計與建立一個利用形狀記憶金屬線驅動的人工面譜 

摘要 

表達感情是人類和動物的一種特有的性質，現時的人們不單希望能夠從機械人 

中得到幫助，更希望能夠與人們有感情的交流，這就是我們這個硏究的動機。 

從這個硏究，我們設計並且建立了一個真人大小的人工面譜，它能夠模仿人類 

面部的表情。人類的面部能夠表達出不同的面部表情是由於眾多的肌肉驅動而 

達到的，我們在這硏究的目標是由形狀記憶金屬線取代了肌肉’我們的人工面 

譜也可以表達出不同的面部表情。可是，因爲形狀記憶金屬線的特殊性質，控 

制形狀記憶金屬線是一個困難的控制問題。在這個硏究中，我們提出了兩個方 

法去解決這個問題，分別是模型近似法及類神經快思邏輯近似法。在模型近似 

法中，我們找出形狀記憶金屬線的數學模型，這樣，便能夠計算到它的收縮長 

度及提供電流大小的關係，這個模型近似法的效能由兩條形狀記憶金屬線連接 

的一維位置控制系統中表達出來。但是當我們將更多的形狀記憶金屬線連接在 

一起時，這個模型近似法變得不準確，因此，我們提出了類神經快思邏輯近似 

法，這個類神經快思邏輯近似法的效能由四條形狀記憶金屬線連接的二維位置 

控制系統中表達出來。由以上得知的控制理論’我們可設計、建立並控制這個 

人工面譜。這個硏究中的人工面譜是建立在一個塑膠造的人頭骨上，在面譜上 

有六個控制點及三個機械結構，從這些控制點及機械結構的不同組合的推動， 

人工面譜便可以得以表達出不同的面部表情。 
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CHAPTER ONE 

INTRODUCTION 

Emotion expression is the special characteristic of human being and animal. In recent years, 

there has been interested in robot emotion feedback to human considerably. In the Science 

University of Tokyo, Japan, they have built a female robotic head that can both recognize 

and express fear, happiness, surprise, sadness, anger and disgust [1]. It was constructed by 

aluminum structure with 18 air-pressure-driven microactuators. In the Massachusetts 

Institute ofTechnology, USA, Research group had developed an interactive robot which can 

express meaningful social exchanges with humans [2]. Their approach is inspired by the way 

infants leam to communicate with adults. Specifically, the mode of social interaction is that 

ofa caretaker-infant relationship where a human acts as the caretaker for the robot. We want 

to make the robot as human-like being as possible nowadays. We prefer a robot that can 

provide not only help but also emotional feedback. 

In this project, the objective is to construct a human-sized artificial face to mimic human 

facial expressions. Ofcourse, a human face is actuated by muscles to express its many facial 

expressions. With the absence of muscle in our artificial face, we need other type of 

actuation to effectuate the expressions. In this regards, many kinds of actuators are possible, 

such as motors, pneumatics, shape memory alloy (SMA), each of them come with certain 

advantages and disadvantages. Motors and pneumatics are powerful and easy to control, but 

they are large, noisy and dirty. SMA wire is clean and bio-friendly, and considering power 

pre area, the largest among the actuators, but the characteristics of SMA are complicated to 

express in mathematics. Controlling the SMA is hence a difficult problem. However, since 

the present project is to construct a human-sized face with clean and quiet moving parts, 

SMA wire is our preferred choice of actuation. 

SMA has been received increasing attention in recent years, especially in the development of 

innovative engineering systems such as micro-actuators, micro-valves, vibration absorbers, 

etc. The use ofthese so called smart materials as actuators in robotic applications attempts to 

take advantage oftheir large capacities in motion and force transmission. To effectuate their 

control, various mathematical models have been proposed in the literatures to describe their 

nonlinear behavior with hysteresis. Some of these models are based on the analogy with the 
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phase transformation in the ferroelectric materials as described by the Landau-Devonshire 

theory [3][4], which is based on state equilibrium consideration set up by a minimized free 

energy function. Others describe the stress variations as a linear function ofstrain variations, 

. the temperature and the martensitic fraction variations. Different mathematical expressions 

of such factors have been applied to approximate the typical stress-strain characteristic and 

hysteresis of the SMA [5][6][7]. In this work, we adopt the model by K.Ikuta [8][9][10] 

describing the relationship of stress, strain and temperature. It is shown that upon identifying 

the various parameters of the Ikuta model, the resulting ldimensional position control 

performance of two linking SMA wires can be conducted satisfactorily. 

Because of the increase in non-linearity as more SMA wires are involved, model-based 

approach becomes less effective in yielding reasonable performance. This motivation also 

our investigation in another approach: the neuro-fuzzy-based approach of controlling SMA. 

Research in the field of neural networks has attracted increasing attention in recent years. 

Since 1943，when Warren McCulloch and Walter Pitts [18] presented the first model of 

artificial neurons, more and more new and sophisticated proposals have been made from 

decade to decade. Mathematical analysis has solved some of the mysteries pose by the new 

models but has left many questions open for future investigations. The advantage of neural 

network is that it can approximate any functions without the need of accurate mathematical 

models. However, due to the lack of standardized process to determine the number of 

neurons, neuron-layers and connections, a neural network may contain redundant, weakly 

contributing components. In this work, we introduce two neuro-fuzzy algorithms. The first 

have a better approximation properly but the structure of the network is more complicated. 

The second has less performance in approximation but readily allows application of certain 

complexity reduction on its structure. 

This thesis is organized as follows: 

Chapter 2 proposes a model-based approach with parameters readily identified and 

measured through simple experiments. A one-dimension control experiment wi l l be 

performed based on this model. 

Chapter 3 introduces two neural-fuzzy algorithms for controlling the movement of four 

linking SMA wires in two-dimensional plane. The experiments yield quite satisfactory 

performance. 

Chapter 4 describes the construction of both software and hardware parts of the artificial 

face system. Various expressions as implemented on the artificial face are shown. 

Chapter 5 concludes what we have done on this thesis and provides some suggestions for 

fiiture development. 
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CHAPTER TWO 

MODEL-BASED CONTROL OF SMA WIRES 

This chapter describes the modeling and model identification of shape memory alloy (SMA) 

wire [ l l ] [12] . Specifically, we take the model by Ikuta [8][9][10] and identifies 

experimentally the relevant parameters of the SMA wire. The identified single wire model is 

then extended to a system of two SMA wires joining together at their tips, based upon which 

open loop position control of the linkage is conducted. Experiments on a two-wires linking 

system with an overlooking video camera for on-line measurements yield quite satisfactory 

performance. 

2.1 MODEL IDENTIFICATION OF SMA WIRES 

Modeling of SMA is subdivided into two principal components, namely, the temperature-

current relationship and the strain-temperature relationship, which capture, respectively, the 

dynamic characteristics and the hysteresis phenomenon of the SMA metal. Together, they 

give rise to the strain-current relationship that dictates the position control of the linking 

point in consideration. 

2.1.1 Temperature-Current Relationship 

Temperature-current relationship is derived by modeling the heat flow in the SMA wire. It is 

assumed that the temperature is spatially uniform throughout during the process, i.e., 

temperature gradients within the wire is negligible, and hence one can apply conventional 

dynamic conduction and heat transfer theory directly [13]. Let 

p^ = density of wire material [kg w'^] 

Cyv = specific heat of wire [Jkg' ^^] 

Vyf = volume of wire [w^ 

Ay, = surface area of wire [讲勺 
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pj = density of the joint material [kg m'^] 

Cj = specific heat of the joint [Jkg_! ^7勺 

Vj = volume of the joint [m^] 

Aj = surface area of the joint [m^] 

r= tempera ture [ t^ 

t = time [5] 

i = electrical current [A\ 

R = electrical resistance of wire [J7\ 

h = convection heat transfer coefficient [Wm^ tT^] 

Tair = ambient temperature [ V \ 

The heat transfer equation for a length of SMA wire mounted on conductingjoints is then 

p^c^V^ 竿 + PjCjVj ^ = Ri' ( 0 一 hAwim - r , , , ) - hAj {T{t) - r , , , ) . (2.1) 
dt dt 

The left hand side of(2.1) amounts to the rate of change of thermal energy in the SMA wire, 

which should equal to the rate ofheat produced by the electrical current, plus the rate ofheat 

lost to the surrounding air from the surfaces of the wire and the joints. Heat lost due to 

radiation is assumed negligible. With a constant current i(t)=ic, the temperature at steady 

state can be expressed as 

j^|2 

划 hA^ + hAj 山广 

Figure 2.1 compares the steady state temperature/current relationship ( r „ vs ic ) obtained 

from experiments and from (2.2). A value of U5xlffW is determined for Aj to yield a 

good match ofthe two. The value of Vj is estimated by comparing the measured transient of 

the temperature response with the predictions from (2.1). Other parameters are obtained as 

follows: /¾; and c^ from the factory provided data sheet for the FLEXD^IOL-LT wire, Ay, and 

V^ from the geometry of the wire, and R is measured directly as the resistance of the SMA 

wire. Any slight changes in these values which might be caused by temperature variations 

are neglected. The joints are made of iron, the values p! and Cj are obtained from the 

corresponding table in [13]. And finally, h and Tair are measured from the environment. 
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Figure 2.1. Steady state temperature-current diagram for a 100/zm FLEXE^OL-LT wire: 

Simulation (solid line) and Experiment (dotted line). ¢ ^ = 6450kgm\ Cy, = 320Jkg] V^, p^ 

=7870kgm\Cj = 447Jkg' V '^ Aj = 1.15xiaW, Vj = 2xlff^m\ R=40f2, h=70Wm^X:\ 

Tair=20V) 

2.1.2 Stress-Strain Relationship 

Here, we consider the SMA material in the biphased state of austenite phase (high 

temperature) or martensite phase (low temperature) only. The R-phase wil l not be 

considered. Let 

e= strain of wire 

6A = Strain in the austenite phase 
eM - strain in the martensite phase 

VA - volume in the austenite phase [m^] 

Vu = volume in the martensite phase [m^] 

DA = young modulus in the austenite phase [MPa] 

DM = young modulus in the martensite phase [MPa] 

cr^ applied stress [MPa] 

R = martensite fraction [%] 
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Using the model proposed by K. Ikuta [8][9][10], the strain <fcan be computed as the average 

of the strain value f * in each unit volume over the total volume Fof the material, i.e., 

� £ = < � " ^ J " r = ̂ " “ Z � + ^ " lsM * dVM 
厂V 厂V^ 厂VM 

where ¢(* and ^ * are the unit volume strain values corresponding to the austenite and 
y 

martensite phases, respectively. With R = ~^， 

8 = (1 - R) < s^ * > +R < s^ * > 

When the material is in a full austenite phase, R=Q and e= <々*>. When it is in full 

martensite phase, R=1 and e = <eu*>. Similarly, the stress ^ i n the wire can be expressed 

as: 

o 二 < a * +o> > = < o* > + < o> > 

where c7* is the applied stress on an elementary volume, and cr；. represents the stress field to 

ensure cohesion of the elementary volumes. Since this field is self-equilibrate, <cr;> = 0，and 

so cr= <c7*>. By the Saint-Venant principle, one then has cr= cA. 

In the austenite phase, behavior is elastic and one has: 

^ , = ^ (2.3) 
DA 

which is, simply, the Hooke's law. In the martensite phase, behavior is elastoplastic and one 

has: 

^M 二 ~^ + oc{a — cTj) + s^ (2.4) 
^M 

where a and ^ account for the transformation plasticity. They vary depending on the 

previous values ofthe applied stress cr.\ as follows: 
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I f cr.x < trand i f 

0 <cr<o-i a = 0; e, = 0 (2.5) 

^ CTi <o-<o-2 a =左2 -S\ ； S^ = 0 (2.6) ^ 2 - ^ l 
o-2 <cr a - 0; s^ = s^ 一 s^ (2.7) 

else 

^ = 0; s , = 6 _ , - ^ (2.8) 
^M 

Equations (2.5)-(2.8) allow us to determine the values 巧，巧，<f/ and 62 for the FLEXD>JOL-

LT wire utilized in our setup, by comparing the simulated stress-strain plots with the 

experimentally determined ones. Figures 2.2 and 2.3 show the results for the temperatures 

20。C and 25°C, respectively. The parameters a\,巧，ei and 句 are obtained to yield a good 

match between the simulated and experimental data. The other parameters ofZ)^ , Z>A/, As, 

Af,, Ms and M/ are read off directly from factory supplied specifications. 

150 , 1 1 1 I 1 1 1 I I • I I I I • I I I I I I • I 

i 丨 丨 丨 丨 丨 丨 丨 / ： ： ： ： ： ： ： ：/// 

9lOO ^ : - f "1 !• ： . . . > . . / / . 

g 丨 丨 丨 Sjmulatioli 1 \ , , \ 」 \ 
二 I I I I !̂ ^^_J_____,__,̂ —“""""y / 

L 7 H H M ^ ^ f l # -
/ ^ I I ！ I lExperiment • / 而 

/ ： ： ： i ： i i J \ 
0 iL I I I I _j_ I U ^ 1 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
Strain (%) 

Figure 2.2. Stress-strain diagram for \OOfim FLEXINOL-LT wire at 20。C: Simulation (solid 

line) and Experiment (dotted line). {DA=50GPa, DM=13GPa, A^=28 V, Aj=32 V, Ms=26 V, 

Mj=21 V,〒50MPa’ ^T2=80MPa, 6r=3.45%) 
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Figure 2.3. Stress-strain diagram for the 100pm FLEXINOL-LT wire at 25。C: Simulation 

(solid line) and Experiment (dotted line). (DA=50GPa, DM=13GPa, cn=120MPa, 

CT2=lS5MPa, er=0.40%) 

2.1.3 Martensite Fraction-Temperature Relationship 

This is the relationship that gives rise to the hysteresis effect. Let Ms’ Mf, As, and A/he the 

start and finish temperatures of martensite and austenite phase, respectively. The martensite 

fraction R e [0，1] as a function of stress and temperature can then be modeled as [8]: 

R(T,a) = ^ - + R, (2.9) 
^ ) l + QX^K{T-ca-Tm) 2 

where c is the Clausius-Clapeyron constant, and K and T„ are constants depending on the 

direction of transformation: 

- for transformation (A — M), (T-ccr) increases : 

T = d f J ^ ^ = ^ ± -
m 2 Af-A, 

- for reverse transformation (M^A), (T-ccr) decreases : 
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= M,+M, 4.4 
m- 2 ' M , - M f 

Moreover, the variables Ri and R2 take on values according to the change ofdirection ofthe 

transformation: 

-when (M^A) reverses to (A^M): Ri = (1 — iJ_i)and R2 = R-i 

-when (A^M) reverses to (M^A): Ri = R_i and R2 = 0 

where R] denotes the value of R before the transformation reverses direction. Figure 2.4 

depicts two simulation examples of the hysteresis effect for the lOOfim FLEXE^JOL-LT wire. 

0 9 」 " - - 3 % ^十、 \ { I ‘； 1 ： -
0 .8 _ • • • _ • J 攀 _ _ • • - ' - • V 推 A - L • • • - \ - 3|^攀• - • - ' - • • • • - L • • • _ 垂 j • _ 垂• • • • • • - • • 一 

二 0.7 ……5……丨-\、[—-\]\----:……k-M……!------
I \ K \： \ ： \R2=0.6 .̂ \ 
I 。 . 6 … … — … … : - - - V - : - - ^ V ^ ~ ~ ： " " " ^ ： ~ " ： ~ " 

i i:;:丨1::_:::_丨:巨丨:::丨廷丨； 
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； ； ; V _ ; V ； R2f0-0 ； ； 
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Figure 2.4. Simulated martensite fraction-temperature relationships for the lOOjum 

FLEXESrOL-LT wire 

2.2 MODEL-BASED POSITION CONTROL OF TWO LINKING SMA WIRES 

Figure 2.5 depicts the position control experimental setup consisting of two lOOjL̂ m 

FLEXINOL LT wires. Each wire has one end connected to a stationary point, and the other 

end joining together and is electrically ground. The wires are designated as wireO and wirel 

as shown. The objective of the experiment is to control the linear movement of the linking 

point by changing the lengths of SMA wires through varying their temperatures. This, in 

tum, is achieved by passing currents through the wires and adjusting the current power 



Chapter 2 Model-based Control ofSMA Wires 0̂_ 

dissipation by a pulse width modulator. The system is equipped with an overlooking video 

system with CCD camera for on-line measurements. 

CCD Camera 
4H 

H m moving 

r ‘丨一1 I I : L ^ io ^ wireQ s l wire1 h 
^ ^ ^ ^ P W M & ^ ^ f g ^ ^ ^ l ^ ^ ^ ^ ^ 

Current amplifier ^<^^-^^^^^^^^ /^“^"^^ 

Figure 2.5. Position control of a two SMA wires linkage system. 

Assuming that the wires are always in tension during the process, it can be stated that at 

equilibrium the total strains of the two wires must be constant and that the stress in the wires 

must be equal to each other. That is: 

^yvire 0 = (1 一 及 wire 0 )^A,wire 0 + 及 wire 0^M ,wire 0 

^wireX ~ (1 一 ^wire\)^A,wire\ + ^wire\^M,wire\ (2 iQ) 

^total ~ ^wireO + ^wirel 

^wireO - ^wirel 

Here, etotai is a constant and can be measured from the experimental setup. Then, using (2.10) 

with (2.3)，(2.4)，and (2.9)，one can solve for 6̂ ireo, i.e., the position ofthe linkage point, as a 

function of the wire currents. 

Figures 2.6-2.8 present the results of the above computation. Figure 2.6 shows the input 

currents to wireO and wirel, Figure 2.7 shows the corresponding simulated temperature 

responses of the wires, and Figure 2.8 depicts the resulting strain fwireo. Experimental 

measurements of e*eo are also included in Figure 2.8 for comparison. The simulated and 

experimental curves compare reasonably well, indicating the performance of the model-

based approach to position control. 
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Figure 2.6. Input currents of wireO (solid line) and wirel (dotted line) ofthe two SMA wires 

linkage system. 
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Figure 2.7. Simulated temperature response of wireO (solid line) and wirel (dotted line) 

subject to the input currents of figure 2.6. 



Chapter 2 Model-based Control ofSMA Wires ^0_ 

1 i l . . . . . . k : : r ^ . . j 
. 芝 I Experiment j、(、 * \ • 

1 1 . 5 ; - … - …；… - … i : i : ; I 「二-… 
.s \ ： / > L： 丨 i 

I “ 、 - … … i - - - - - / - / f = \ - - - - - - - - 丨 - - - - - - - - ！ … … … 
^ 1 \ ； I / ： ： Simulation ： 

' t i - f - | … … — i t … … ― i … … … 
0 5 10 15 20 25 30 

Time (s) 

Figure 2.8. Strain ê ireo ofthe two-SMA wires linkage system subject to the input currents of 

figure 2.6: Simulation (solid line) and Experimental (dotted line) result. 

2.3 SUMMARY 

Shape Memory Alloy (SMA) has generated a lot of expectation in recent years for potential 

use as actuators and sensors. The outstanding problem, however, remains in an accurate 

modeling and subsequent control of its performance. In this chapter, we reported the model-

based approach to the position control of a two SMA wires linking system, whereby an 

existing model is adopted for the FLEXINOL-LT wires utilized in our setup. Necessary 

model parameters are then identified experimentally. Under equilibrium conditions, 

relationship between the currents to the wires and the ensuing position of the linking point 

can be computed. This approach yields acceptable results when applied to a two SMA wire 

case but becomes intractable when additional wire is included. The next chapter utilized two 

neuro-fUzzy approaches. These approaches are applied to a four SMA wires experiment with 

reasonable good perfonnance. 
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CHAPTER THREE 

NEURAL-FUZZY-BASED CONTROL OF SMA WIRES 

In the last chapter, we identified the single SMA wire model and described the movement of 

two linking SMA wires in one-dimension. Because of the high non-linearity of the SMA 

wire, however, the model-based approach becomes less accurate when more SMA wires are 

involved. Moreover, the geometry of the artificial face and the connection ofthe SMA wires 

on the artificial face are complicated. These additional non-linear effects tend to render the 

model-based approach less effective in coming up with reasonable performance. Hence, we 

here pursue the approach to control the system using neural-fuzzy based methods. 

Particularly, we introduce two neural-fuzzy algorithms of different structures. Their 

performance wi l l be illustrated in a controlling experiment of four linking SMA wires 

moving in two-dimensional plane. 

3.1 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

In this section, we introduce a neural network that is functionally equivalent to fuzzy 

inference system. The proposed architecture is referred to as adaptive neuro-fuzzy inference 

system (ANFIS) [14]. Figure 3.1 illustrates the corresponding equivalent ANFIS 

architecture. 

3.1.1 ANFIS Architecture 

The ANFIS structure can be divided into four principal components much like a fuzzy 

system: fuzzification interface, fuzzy rule base, fUzzy inference and defuzzification interface. 

Figure 3.1(a) depicts the architecture ofthe ANFIS for the present work. For simplicity, here 

we use a system with two inputs X} and x2 and one output y for illustration. Each input is 

assumed to have three membership functions, with fUzzy if-then rules in the following form: 

Rule 1: lfxi isAj andjc2 is Bi，then// =p1X1+q1X2+n, 

Rule 2: Ifj：/ isAj mdx2 is B2, then/2 =P2X1+q2X2+r2, 
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Figure 3.1(b) depicts the partition ofthe two-dimensional input space into nine overlapping 

fiizzy regions, each ofwhich is governed by a fuzzy if-then rule. The following describes the 

ANFIS architecture in Figure 3.1(a) layer by layer to mark its functional equivalency to the 

、 f u z z y system ofFigure 3.1(b). Denoting the output as y\，i = l"w/ in layer /，where «/ is the 

number of neurons, one has: 
Premise Parameters X1 Consequent Parameters 

•‘働-
• • r 

X 2 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

n： Product operator N: Normalize operator 

Figure 3.1(a). ANFIS architecture for a two-input fuzzy model with nine rules 

X2 X2 
i i “ ^ ^ 

„ r ^ 3 6 9 
B3 

) x 「 

B2 2 5 8 ^ 
® ^ L 1 4 7 
_ 1 ^ _ X i 

i 
<个 yA7 A2 A3 

) t O Q C X _ 
Figure 3.1(b). The input space that are partitioned into nine fuzzy regions 
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Layer 1 This layer acts as fuzzification interface. Every node i in this layer is an adaptive 

node with an associative node function: 

、 y ! = / ^ A t M f o r i = l Z S , o r 

y| =/^Bi-3(^2) fori = 4,5,6 

where xi (or x2) is the input to node i and 為 (o r Bi.3) is a node function (membership 

function). In effect, the membership function Ai (or 5,.5) maps the input x j (or X2) into the 

membership value jUAi (or /iBi-3) as output. The present work adopt Gaussian bell-shaped 

function ofthe form 

沖 ) = ^ 1 ^ 
, X - Ci 
1+ ai 

for membership function 為(or 5,.j), where {au h c,} is the parameter set to be determined 

by data fitting. These parameters are referred to as premise parameters. 

Layer 2 This layer contains identical nodes labeled as n, with output set to be the product of 

all the incoming signals: 

yl =o)k =MAiMj^Bj(^2) for / = 1,2,3; j = 1,2,3; k = 1工..9 

Physically, the node output represents the firing strength of a rule. This layer is equivalent to 

a ftizzy AND operator. 

Layer 3 The layer also contains identical node labeled as N. The node i here calculates the 

ratio ofthe ith rule's firing strength to the sum of all firing strengths: 

yf = G7; = — for i = l,2...9 
6 ? 1 + 历 2 + - + 似9 

Outputs of this layer are termed normalized firing strengths. 
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Layer 4 Every node i in this layer is an adaptive node with a node function. 

yf = tUifi = m^PiX\ + qiX2 + n) for i =人：…夕 

where input cr, is the normalized firing strength from layer 3 and {p,, qt, n} is another 

parameter set to be determined by data fitting. These parameters are referred to as 

consequent parameters. 

Layer 5 This layer contains a single fixed node, labeled as I . Output of this layer, the overall 

output ofANFIS, is the summation of all inputs to the node: 

, S .Q)- f . 
Overall output = y = y . = Z ^ i f i = 二 ^ ^ 

i ^i^i 

This layer hence acts as a defuzzification interface. 

Altogether, the 5 layers produce an adaptive neural network that is functionally equivalent to 

a product-sum-gravity-based fuzzy inference system with A,, and B/.j as membership 

functions. 

3.1.2 Hybrid Learning Algorithm 

The ANFIS architecture can be trained to approximate any nonlinear function on a compact 

set [14]. In this work we adopt a particularly effective technique called Hybrid learning 

algorithm to train the premise and consequent parameters for our application. The learning 

algorithm is divided into two passes: forward pass and backward pass. In the forward pass, 

nodal operations are carried out to until layer 4 whereby the consequent parameters are 

identified by least-squares method. Then, the error signals are propagated backward whereby 

the premise parameters are updated by gradient descent method. Figure 3.2 summarizes the 

activities in each pass. 
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Forward pass Backward pass 
N ^ ^ H M H i ^ ^ ^ ^ ^ ^ S H M ^ ^ ^ ^ ^ K ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B ^ ^ ^ ^ ^ ^ ^ ^ ^ B ^ H I B B a 3 m : ^ ^ ^ B : S B B B a S S ^ ^ S S ^ B S ^ ^ ^ ^ B B ^ ^ ^ ^ S ^ ^ ^ m m ^ ^ ^ ^ ^ t B ^ ^ ^ ^ ^ ™ * ^ ^ * ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Premise parameters Fixed Gradient descent 

Consequent parameters Least-squares estimator Fixed 

、 Signals Node outputs Error signals 
1 

Forward pass ^ 

input ——^ Premise _ ^ Consequent _ • output 
parameters parameters 

A 
Backward pass 

Figure 3.2. Two passes in the hybrid learning procedure for ANFIS. 

Now we can combine gradient descent and the least-squares estimator to update the 

parameters in an adaptive network. For the hybrid learning algorithm, each epoch is 

composed o fa forward pass and a backward pass. In the forward pass, we observe that it is a 

summation of all incoming signals in layer 5. I f the values of the premise parameters are 

fixed, the overall output can be expressed as a linear combination of the consequent 

parameters. 

y = GTi{piXi +q1X2 +r1) + GT2(p2X1 +q2^2 +"2) + - + ^9(P9il +^9^2 +〜） （3.1) 
= {o7iXi)pi +{aT1X2)q1 + (c^ iM +…+ (G79Jq)p9 +{mgX2)q9 +(2^9V9 

We can rewrite equation (3.1): 

y = Oifi (u) + ^2 /2 (u) + …+ 0 i i h i (u) (3.2) 

where u = [ x j , ;c2]^is the input vector, /；, f2 …f27 are known functions of u i f the premise 

parameters are fixed, and Qu 02." &7are unknown consequent parameter to be estimated. To 

find out the unknown parameter, we do the experiments to obtain the training data set 

composed ofdata pairs {(«,•; y,), i = l,2...N]. They represent desired input-output pairs of the 

target system to be modeled. Substituting each data pair into equation (3.2) yields a set oiN 

linear equations: 
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7 l ( U i Wx + h ( « 1 ) ^ 2 + … + / 2 7 ( W l ) ^ 7 =列， 

/1("2)<^+/2(«2)夕2+巾 + /27〜2)約7 =>̂ 2， （33) 

• • • 

/i(uN)<^i +/2(uN)<^2 +…+/：？("、)〜=yN 

We can rewrite equation (3.3) into matrix form: 

AG = y 

where A is an N x 27 matrix 

/1("1)一/27("1) * • • 
A 一 • • • t\. — • • • 

_ / l ( U N ) . . . / 2 7 ( U N ) _ 

9 is a 27 x 1 unknown consequent parameter vector: 

-巧-
e=： 

f21_ 

and z is an N x 1 output vector: 

>1 -y=： 

yN_ 

Obviously, this is a standard linear least-squares problem, and the best solution for G, which 

2 
minimizes ||A6 一 y ，is the least-squares estimator (LSE) 6*: 

e * = ( A ^ A ) - ^ A ^ y 

where PJ is the transpose of A and (A^A)"'A^ is the pseudoinverse of A i f A^A is 

nonsingular. The unknown consequent parameters can be identified optimally under the 
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condition that the premise parameters are fixed. After the consequent parameters are 

identified, we can compute the error measure for each training data pair. In the backward 

pass, the premise parameters are updated by backpropagation method. We can define the 

error measure for the «th (1 < n < N) entry of training data as the sum of squared errors: 

E „ = { T , - y , f (3.4) 

where T„ is the target output and y„ is the actual output of the nth input of training patterns. 

Hence, the overall error measure is the summation of equation (3.4): 

N 
E=ZE„ 

n=l 

In order to develop a learning procedure that implements gradient descent in E over the 

parameter space, first we have to calculate the error rate 泥拘 for the «th training data and 

for each node output y. The error rate for the output layer, layer 5, can be calculated readily 

from equation (3.4): 

4 = - 2 ( T „ - y „ ) (3.5) < 
For the internal node {k, i), the error rate can be derived by the chain rule: 

_ ^ 一 # ( 祭 1 ) _ ^ 經 

^,k 一 L h+\ ^,k � ‘ 
^i,n m=l ^m,n ^i,n 

where 1 < k < 4. That is, the error rate of an internal node can be expressed as a linear 

combination ofthe error rates of the nodes in the next layer. Therefore for all 1 < k < 4 and 1 

< i < _，we can find dE^ Idy^^ by equation (3.5) and (3.6). 

Now i f a (fl/, bi or c,) is a parameter which we want to find, we have 
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^n : y 诬” ^* 
~^~yksdy" ba 

• where S is the set of nodes whose outputs depend on a. Then the derivative of the overall 

error measure E with respect to a is 

dE = ^ dE„ 

da n=\ 9^ 

Accordingly, the update formula for the generic parameter a is 

A 朋 ^a = - r / -
da 

where rj is a learning rate. At the end of the backward pass for all training data, the premise 

parameters can be identified. 

With Hybrid Learning Algorithm, ANFIS can be trained for any function [15]. 

3.2 GENERALIZED NEURAL NETWORK (GNN) 
Because of the complexity of ANFIS, the generalized neural network (GNN) is presented. 

We need a simpler structure and reasonable performance network to be the control algorithm 

to implement our artificial face. Singular value-based complexity reduction [16][17] can 

apply to the GNN algorithm. The reduced GNN algorithm is capable of filtering out weakly 

contributing weighting connections. This section introduces the GNN architecture and its 

complexity reduction method. 

3.2.1 GNN Architecture 

This paragraph defines a generalized type neural network chosen from [18][19]. 

Let us focus on two neighbour layers / and /+1 of a forward model. Let the neurons be 

denoted as N-，/ = l..w/ in layer /，where «/ is the number of neurons. Further, let input 

values of N\ be x\j^，^ = l..w/_i and its output y\. The connection between two layers (/ 
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and /+1) can be defined by matrix, which consists of weighting functions fjj(y!)，where 

j = l..w/+i. Thus 

• ^ U - f j M ) (3.7) 

Neurons apply sum operation to input values, but have no transfer function. For instance, the 

output of N , , i is: 

於 妙 /=i 

Therefore, from (3.7) neuron Nj^^ yields 

y'f = h l i ( y l ) (3.8) i=i 

We use a system with three inputs xj, x2, X3 and two outputs 力，y2 for illustration. Here, 

ni = 3，《/+1 = 2，i = 1..3 and j = 1..2 . Figure 3.3 shows the architecture of three inputs and 

two outputs generalized neural network. 

^ ^ _ < g ^ 4 U ^ : : : ; ; ^ ^ 4 ^ ^ i ^ ^ ^ ^ , 
^ ^ H ‘ � k ^ ^ ^ ^ ^ ; ; : ^ @ ) - ^ 

" ^ @ > i = = : ^ ; ; ; ; ^ ^ j " " - ^ ^ " " ^ ^ ^ ^ ^ ^ " " " ^ 

^ ^ ^ ^ 7 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 2 ) J 
^ - ^ < c r ^ ^ / ^ ^ 

^ " ^ " • ^ [ ^ ^ z 
I I layer 1+1 layer 1 ^ 

Figure 3.3. Generalized neural network of three inputs and two outputs case. 
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Ifthe same type ofweighting functions are connected to neurons N\ as: 

/ i i ( y ! ) = < f f ( y ! ) 

then the standard neural network is obtained where the connections are weighted by constant 

values w{- ,• and the neurons have transfer functions y = f (x). An extended version of the y»' 
standard network contains neurons that may have different types of functions. This can also 

be defined as a special case of the generalized type network, where the transfer functions of 

the neurons are transformed into the weighting functions ofthe connections as 

f i j M ) : w ( u f ! ( y i i ) 

The introduced generalized neural network has advantageous and also flexible 

approximation properties over the standard type [18][19]. 

3.2.2 Approximation ofthe GNN 

In spite of the mentioned advantageous approximation property, having various types of 

weighting function in the generalized network needs considerable computational effort in 

contrast to the standard type. Furthermore, the use of the generalized type is strongly 

restricted by the fact that its training, namely, the searching of the unknown weighting 

functions may lead to a complicated or unsolvable mathematical problem. One natural 

solution of the training is to replace the unknown weighting functions with linearly 

combined known functions, where only the linear combination must be trained. It practically 

means that some parallel layer is added to the output. From (3.8): 

i , i m «/ ； f / 

y^' = Z l f j M y h b ^ , i , t 
i=li=l 

where fiinctions / j i f ( y j ) are known and values b j j f are trained and m is the number of 

parallel connections net. Obviously it results in the approximation of the original network. 

The key idea of this technique comes from neuro-fuzzy algorithms. Let us have a brief 

introduction, in order to have an easy understanding. Neuro-fuzzy algorithms have recently 
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emerged as a new topic ofboth the fuzzy and the neural network theory. In these techniques, 

the weighting functions in the generalized form are approximated by a one variable fuzzy 

logic algorithm. In order to save the calculation effort let us apply the widely adopted 

product-sum-gravity method [20] that leads to the simple implementation of the generalized 

network even in case oftraining. The product-sum-gravity method is referred to appendix 1. 

In order to approximate the contribution of each neuron to the neurons of the next layer by 

the PSG technique, (3.8) can be written in (3.9). Let us define a more general form, where all 

antecedent universes may have different number of antecedent sets: 

«/ «/ m\ 

> j " i = X f U y ! ) = I J ^ 〜 ， l ) b k 【 (3.9) 

i=l i=l t=l ''' 

where m- is the number of antecedent sets on universe connected to the output of /-th 

neuron in layer /. Figure 3.4 depicts a neuro-fuzzy network that represents (3.9). We use a 

system with three inputs Xj, X2, X3 and two outputs y j , y2 for illustration. Here, «/ = 3， 

ni+i = 2 , / = 1..3, y = 1..2 and m[ = w ^ =W3 = 4 . 

^ W g V ^ - b < X > ^ K ,+i 
Antecedents y{ \ ^^ \i 广 \ >̂ 1+ 

\ A I I I I I ( < > — 

- ^ ^ - K X X < 7 �'+' 
Antecedents y\ >N^ ^i ^ ^ 个 ^ ^ C^^^^ ^2^^ 

^ ^ ^ - K X X ^ � ’ 
Antecedents yl̂  

layerl layerl+1 

Figure 3.4. Approximation of the GNN 

As a matter of fact, i f V/: m\ =m! then this algorithm is the same as summing up the 

outputs ofm generalized network connected parallel: 
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m m\ m! «/ , , w' «/ , , 
y^；' =ZlA,/ ( y i ) b ^ j , = Z Z ^ j ( y h b ^ , u = Z Z / U y l ) 

i=lt=l ” i=li=l “ M/=1 

The benefit is that the arbitrary type weighting functions, which are unknown before the 

training, are replaced with rather simple known functions and only their linear weighting 

must be trained. 

3.2.3 Backpropagation Training Algorithm 

In order to complete the generalized network algorithm let us briefly discuss the key step ofa 

simple training method, that does not tune the antecedent sets, but the position of the 

consequents, namely values 巧，/，,. Let the /:-th training pattern contain input values xj(k) 

and the desired output value d ^ / ^ k ) . Based on the key idea of Least Square Method [21] 

used in backpropagation training algorithm, let the error criteria of the algorithm be the 

square instantaneous error as: 

r ”, ̂ / )2 
(^W(^)f=(jW(^)-^fwf= df、k、-f±〜_ {xUk))b^j,,ik) 1 /=i,=i '， J 

Therefore instantaneous gradient: 

i ^ ^ k ) ^ ^ ^ = -2sf{k)MA (xl(k)) < / " ” 

In order to tune values bĵ ^ ̂ ，the gradient descent method is applied as: 

^lj,i,t {k) = -V{k) = 2p,々l(k)//^^ (x| (k)) 

b),i,t (k +1) = blj’i’t ⑷ + PM^i (太‘< ( 收 广 ⑷ 
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where p is the leaming parameter. Note that the widely adopted simple back-propagation 

algorithm is obtained [18][19][21]. Using more layers and outputs the typical error-back-

propagation can be used [18][19][21]. 

3.2.4 Complexity reduction ofthe GNN 

One of the main problems of applying fuzzy or neural technique is the calculation 

complexity. Engineers have to face this problem in complex systems or especially in the 

field ofinformation retrieval where the extremely large information maps of whole libraries 

or internet have to be processed at each user's request. These applications often use the GNN 

algorithm. 

The main objective of this section is to propose the singular value-based complexity 

reduction [16][17][22][23][24][25][26], which is capable of filtering out common linear 

combinations and reduce the number of antecedent sets based on the transformation of the 

weighting functions. One of the main advantages of the proposed method is that the 

effectiveness ofthe compression is controlled by the help of given error threshold. First, the 

method is presented for exact reduction, then finally it wil l be modified to have reduction 

error controllable property. 

Using singular value-based complexity reduction method, equation (3.9) can always be 

transformed into the following form: 

^ ir 
«7,1 «/ m： f. 

> 4 + i = Z 4 J S " , o M / / ( 瑪 
z=l /="=1 為，, 

r /r 
where “r，’ denotes “reduced，，，further 〜+i < «/+i and V/ : w/ < w/，/. 

The reduced form is represented as neural network on figure 3.5. We use a system with three 

inputs xi, X2, X3 and two outputs yj, y2 for illustration. Here, «/ =3 , «/+1 = 2，/ = 1..3， 

y. = 1..2, m[^=m2 =W3^=2 and «/+1^ = 2. 

The definition of appendix 2 briefly introduces singular value-based reduction (SVDR) 

which is the basic concept of the following calculation. 
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颂 — 4 ^ ^ ^ 
^ ^ _ ^ o o.s o4 o.a o.a i ^ ^ 

Antecedents y\ \ N^ 广—\ J+^ 

. « | ^ f ^ 
o a'""̂ r̂"""T̂"̂ '̂̂ "̂  L̂ / \ / \ 

Antecedents y2 / \ ^ / \ , ^ ~ - \ /+l 

y \ I 1 11 o f A ^ _ z ^ ® M , J y ^ /̂+1 < r ^ 

: ^ ^ 3 个 
^o 0.2 0.4 oe oa 1 

, - • 1 Extra layer Antecedents ^y] 
layer 1+1 

layer 1 

Figure 3.5. Reduced GNN 

The parameters of(3.14) can be introduced in the followings. For convenience, we divide the 

reduction method into 2 steps. We define: 

‘ b l ‘ ... bl “ 
l，'，l «/V，l 

•'=[4，z]，Sr= , : , ... , : r and 
bl ^ ••• bl ^ 

l，/，m/ n^+i^i,ml 

r ]T � ]T 
T / 

V / : A , r ( y i ) " ' / ^ 1 r ( y l ) = I ; 〜 （ 办 . . 々 夕 / ) . 
^i,t=l ^ ,r '，⑷ ht-rn\ i,t=rn̂  J 匕 

Stepl: 

Let matrix 

s � [ s [ " s ! j = [ ‘ ] (3.11) 
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whose size is «/+! x Y.m\ and where /=i 

• 卜。，1…吃>,( 
B( = : ••• : and/ = l..w/. 
^ ' bl . 1 … b l . 

_ "/+1，'，1 ni+i,i,ml _ 

The elements of matrix s ' are hence: 

/ , '-l I 
Sj,o+t=bj,i,t^^^^r^o= I rrip 

产 1 

Then applying SVDR to Ŝ  yields: 

Ŝ  = A � V =A^S^' — — — — = = 

/ / n j 
With A ' =[fly,Jwhose size is ",+iXwJ"+l and with S。=[4,z'j whose size is wf+! x Im,-

•"~ ‘ i—\ 

andpartitionedas s ' ' = B(, ... g|^^' ,oneobtains ^ [ ' = [ b j , i / ] as: 

6 ^ , / = 4,o+Awhere o= I m ; and y = l..w/+i 
‘‘ ‘ 产 1 

Here, one ofthe parameters A^ = [aj^^] of (3.10) can be obtained. 

Step2: 
' b i , ' … b \ ,_ 1山1 "/V，l L e t B ( ' T = •: ... : , where i = 1..«/. 

=, bl /•…b̂ r /• 
l,/,m/ «/+1，“讲/ _ 
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Applying SVDR to fi('^，the following equation obtained: 
s s { 

B ( ' T = T ( D ' V Z = T ' B ^ , f = l "w/ . - =i =i =i =i =i =i 

The size of x | is m, x m「and B「is m「x n[_^^. The elements of matrix B ; are defined 

in the following way: 

“ b { , : … b l r ‘ 
, , 1，'，1 "/V，i 

B � ： • . . ： 
= ' b l ； … b l ； 

UM n^+i,hmi _ • 

H ^ (力 can be obtained by x j as the following way: 
Kt 一, 

� "|T 

V/: JU . “办..//, r{y\) 
4.=1 ^ , 

i,t=m] 

r 1丁 T / 
=!:〜（力，/)…々 ⑷ 

—I V l %^rn{ _ 

Consequently, the parameters of(3.10) are obtained. 

Remark and further characterisation: 

The functions ofthe transformed antecedent sets may not hold the Ruspini partition, hence, 

the PSG algorithm must be theoretically modified. It simply means that the reduced 

algorithm is applicable to implement the original approximation independently on the 

Ruspini partition. 

I f the reduced form is not only for executing the reduced algorithm in a real application, but 

it is for further studies in neuro-fuzzy operation, then the reduced form should accommodate 

additional characterisation pertaining to specific operation. This may require further 



Chapter 3 Neural-fiizzy-based Control of SMA Wires ?L 

transformations. For instance, to obtain matrices T( in such a way that the transformed 
=i 

functions are bounded by [0,1]. Some tools, such as non-negativeness, sum-normalisation 

and set normalisation, have been developed for these purposes [16][17][23]. To maintain the 

‘ Ruspini partition in the case of piece-wise linear sets, the function SVDR is extended 
(SVDE) with non-negativeness and sum-normalization [16], which use in matrices x(， 

where all elements are in interval [0,1] and the sum of the elements in each row is one. 

Consequently, i fSVDE is used instead ofSVDR, the obtained reduced form (3.10) describes 

a fuzzy rule base, where the antecedent fuzzy sets are defined in Ruspini partition. In this 

case the use of (3.10) is theoretically in full accordance with product-sum-gravity inference. 

Appendix 3 briefly discusses two transformations and extends SVDR to SVDE. 

3.2.5 Error bound of in-exact reduction of the GNN 

This section introduces the error bound of in-exact reduction of GNN [27]. I f nonzero 

singular values are discarded, the reduction brings error. The error can be estimated based on 

the discarded singular values since the error by SVDR (SVDE) is the sum of the discarded 

singular values [16][17][23]. The error of the reduced network also depends on the used 

antecedent function type. Various estimation is given in [16] according to the special 

functions. 

Stepl: 

Let vector 

� ]T 
2 , 卜 . " 么 , … ' ) … " 明 ‘ 心 _ 

whose length is ^ m { andmatrix (3.11) Ŝ  = | "g ; . . .2^ .Withthis notation: /=1 一 L- — I J 

y W = s V (3.12) 
= = = 0 

Let apply the above described singular value-based reduction to the s ' matrix and discard 

the non-zero singular values: 
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S, « A ' D ' v ' =A^S^' 

‘ nsVD 
The error of the reduction wil l be the sum of the discarded singular values, Z ^ i =^1 /=w +̂l 
[16]. 

S! - A^ S', < ( T 々)1, 、^ ^ i l . 乂”、 (3.13) = = = i=n^+i -("l^"2) -(«ix«2) 

The difference between the outputs of the original and the reduced network from equation 

(3.12)and (3.13): 

' y ^ = " 5 ' , H 
= = = = = 0 

y W 一广1, = ( S ^ - A ' s ^ ' ) u < Ezdt(yh^i = 1 ^ 1 =«/^1 (3-14) 
= = = = = = 0 i=lt=l i=l 

Step2: 

Let define the following vector: 

r — 

^ X y l ) = [ M M ) … 心 声 

_ 麵 

And S^' canbepartitionedas s ' ' = g | ' . . . W^^ ‘ . With this notification: 

y^ ' ' ^ ' = h . ( y l ) B [ ^ ' A ^ ' (3.15) 
一 • 1=1 —f — 
一 i = l ' 

/ T 
Let apply the above described singular value-based reduction to the B .' matrices and 

discard the non-zero singular values: 
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B ( , T « T ' D ' V 〜 T ( B ( r . 
=i =i —I =i =i =i 

The error of this reduction B(丨丁 - T ( B ^ wil l be the sum of the discarded singular values, 
=i =i =i 

Eli. The output ofthe reduced neural network wil l be 

y /+ l " r = i j ^ , ( 4 5 ; V ' , (3.16) 
= /=尸‘ 一 '一 

where 

r _ 

) i ' ( y l ) = " ! i ' ( y ! ) … “ ‘ , ( y ! ) = l ^ , ( y l ) l | 

=i L ， '»^/ 」 = ' 

The error E2j from equation (3.15) and (3.16) is: 

y /+ i , r_y+ i , , r = ! ^^々 ; ) (5;,丁一 ! ; 2「 ) / < i n O ^ % ^ ; r / 2 , / / 

= = i=i=i 一 ' — / = i = ' 、‘ w 

. 掛 乂 八 伙 為 ‘ ^ 2 ¾ (3.17) 
i=lt=lz=l /=1 

The last step is valid, only i f the sum of the rows of A^ was less or equal than one. This 

could be easily made, i f i n the first step a further transformation is made. 

So the error in the reduction altogether is from equation (3.14) and (3.17): 

E< lE2j+n1E1. 
/=1 
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3.3 NEURAL-FUZZY-BASED POSITION CONTROL OF FOUR LINKING SMA 
WIRES 

. The experimental setup is expanded for position controlling the linking point of 4 SMA 

wires. As depicted in Figure 3.6，the linking point is now free to move in a two-dimensional 

plane, instead of the one-dimensional previously. In this case, the equilibrium condition 

requires that the total strain of the wires must be constant and that their stresses must be 

balanced along each of the ;c and y direction. Though technically the model-based method 

can still be applied for this situation, it wi l l be a very tedious endeavor. Moreover, there are 

now more nonlinear effects to render the model-based approach less effective in coming up 

with reasonable performance. Hence, we opt here to control the system using a neural-fuzzy 

based approach. First, we propose using ANFIS to control this system and then GNN. 

^ 

CCD Camera n 

^^^M / movingj)ointĴ  / 
j S H / ^ - ^ ^ / o I—I I • , J — four current signals 7 / / ^ b= for the four SMA wires Z ^ <^ ’ 

PC PWM& X 2-dimensional plane 
Current driver 

Figure 3.6. Position control system of 4 SMA wires in 2-dimensional plane. 

3.3.1 ANFIS-based Position Control ofFour Linking SMA Wire 

Experimentation starts with generating 1000 data sets for training. Each ofthese data sets is 

obtained by first marking the current position {Xc,y^ of the linkage point ofthe SMA wires, 

and then by commanding currents Qo, h, 12, 13) through the SMA wires and measuring the 

actual position (Xa,ycJ of the linkage as resulted. Current inputs to the wires are randomly 

assigned except that to avoid damaging the SMA wires caused by contradicting command, 

only one of the neighboring pairs (see Figure 3.6) of the SMA wires is activated for each 

data set. The data sets are then utilized to train four 4-inputs 1-output ANFISs, one for each 

wire. The training objective is using the current position (Xc, yc) and actual position {Xa, ya) as 

input, calculate the output applied current (/,,o, is,i. is.2, ksY But it must have an error between 
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io, ii, i2, is and is,o, ki, U,2. “.3. We want to minimize the error and get the trained ANFIS for 

controlling the system. 

Inputs to the ANFISs are the (x,y) coordinates ofthe current position and the to-be-resulted 

• final position ofthe linking point, and the outputs are the currents for the wires. The ANFISs 

here each contains 256 rules, with four membership functions assigned to each input 

variable. The membership functions are all in Gaussian bell shape and all the rule 

consequence are singleton, meaning that pt = 0, qt = 0. The number of fitting parameters is 

hence 304，including 48 premise parameters and 256 consequent parameters, for each 

ANFIS. Convergence of training in this case is fast, shown in figure 3.7, reaching steady 

state values in around 100 epochs or so. Figure 3.8 and 3.9 show the resulting memberships 

and singleton rule consequents, respectively, for the ANFIS obtained for wireO. 

Upon training of the ANFISs, corresponding currents to the wires are then generated to 

command the linking point to move around a circular path. Figure 3.10 compares the circular 

path with the actual trajectory of the linking point obtained through activation of the SMA 

wires with the ANFIS-generated currents. The performance in this case is quite reasonable 

considering, in particular, the simplicity of the present approach. 

12.5 , nr r- 1 1 ‘ 
1 2 . • 

11.5 -T3 ^ 11 
cd 
g ^ 1 0 . 5 . • 

C/3 . 
§ l。-\ ! - \ • 
^ ' • \ -
� : L : 

^ •®0 50 100 150 200 250 300 350 4 0 0 4 5 0 500 

Epoch 

Figure 3.7. Root mean squared error for 1000 training patterns in 500 epochs. 
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导 - 4 0 0 0 “ 

的 - 6 0 0 0 • • ^ 
~ -8000 • ‘ t4~l 
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^ 

Figure 3.8. Singleton rule consequent ofthe trained ANFIS for wireO. 

_ l _ 
» ' " " ^ n • “ 0 . 2 V T T 4 ~ 0 . 5 ^ 0 . 7 ~ " n ~ ~ r s ~ 0 0 , 0.2 0.3 0.4 0.5 0,6 0.7 0 . . 0 9 , 

Inout #1: Current position in x-axis. :>̂ . lnout #2: Current position in v-axis, Vr 

f _ _ 
^ °' "77o.2 0 3 oT^0 5 0 . 6 = n " " ^ 0 ^ 0 . 9 ^ " » 0.1 0.2 0 3 0.4 0.6 0 6 0.7 0 . 0.9 1 

Input #3: Target position in x-axis,而 Input #4: Tareet position in v-axis, v, 

Figure 3.9. Input membership functions of the trained ANFIS for wireO. 
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Figure 3.10. Comparison of commanded circular path and experimental trajectory for the 4 

SMA wire linkage system using ANFIS algorithm. 
3.3.2 GNN-based Position Control ofFour Linking SMA Wire 

In this experimentation, we also generated 1000 data sets for training. Each ofthese data sets 

is obtained by the last four moving currents {co, ci, C2, cj) of the SMA wires, and then by 

commanding currents (io, ii, 12, 13) through the SMA wires and measuring the actual positions 

(Xa,yo) of the linkage as resulted. Current inputs to the wires are randomly assigned except 

that to avoid damaging the SMA wires caused by contradicting command, only one of the 

neighboring pairs (see Figure 3.6) ofthe SMA wires is activated for each data set. The data 

sets are then utilized to train a 6-inputs 4-output GNN. The training objective is using the last 

four moving currents (co, c j , C2, C3) and actual position {Xa, ya) as input, calculate the output 

applied current {is,o. is,i. is.2. isj). But it must have an error between io, ii, i2, i3 and is,o, is,i. k2> 

“ 3. We want to minimize the error and get the trained GNN for controlling the system. 

Inputs to the GNN are the last moving currents ofthe current position and the to-be-resulted 

fmal position ofthe linking point, and the outputs are the currents for the wires. The GNN 

here contains 504 rules, with 21 membership functions assigned to each input variable. The 

membership functions are all in triangular shape, shown in figure 3.11 and all the rule 

consequence are singleton, shown in figure 3.12 for wireO. 
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Upon training of the GNN, corresponding currents to the wires are then generated to 

command the linking point to move around a circular path. Figure 3.13 compares the circular 

path with the actual trajectory of the linking point obtained through activation of the SMA 

. wires with the GNN-generated currents. Because the GNN based controller is more simple 

than the ANFIS one, the performance in this case is not good than the last one. For the 

algorithm implementation, appendix 4 is presented. 

mm 
° 0 0 . 1 0 . 2 0 . 3 0 .4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 

Figure 3.11. Input membership functions ofGNN. 

名 » & 150| ^ . ^ ‘ U 

I : J ^ : ^ A J l / r A v r 4 i r ^ _ ^ J _ _ X _ 

I .，°. V \ -
0 .100 - U \ -« V ^ ^ • ^ ^ , 

> - " " 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 

Number ofrules 
Figure 3.12. Singleton rule consequent of the trained GNN for wireO. 
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Figure 3.13. Comparison of commanded circular path and experimental trajectory for the 4 

SMA wire linkage system using GNN algorithm with 504 rules. 

In section 3.2.4, we introduced the complexity reduction ofthe GNN algorithm. The above 

GNN-based controller can be had an exact reduction according to the method of section 

3.2.4. Figure 3.14 shows the input membership functions of reduced GNN. Each input 

remains 4 membership functions and the GNN remains 96 rules. Figure 3.15 compares the 

circular path with the actual trajectory ofthe linking point obtained through activation ofthe 

SMA wires with the reduced GNN-generated currents 

From figure 3.13 and 3.15, the trajectory of the moving point is similar to a square with 

certain degree of rotation. This is because of the construction of the four actuating SMA 

wires, the direction ofwhich are along the sides ofthe rotated square, and the present control 

algorithm is such that one ofthe wires always dominates over the others. 

3.3.3 Performance Comparison ofANFIS and GNN Algorithms 

In section 3.3.1 and 3.3.2，we showed the experimental results of ANFIS and GNN 

algorithms as controller to control the position control system of 4 SMA wires in 2-

dimensional plane. Figure 3.10 and 3.13 show the trajectories ofthe moving points. We can 

see that the trajectory offigure 3.10 is better than figure 3.13. That means the performance of 

ANFIS-based controller is better than GNN-based controller. But the number of rules of 

ANFIS-based controller is 1024 and reduced GNN-based controller is 64. The different of 



Chapter 3 Neural-fiizzy-based Control of SMA Wires ?L 

the number ofrules is steep, hi this project, we do not need to control the exact position of 

each control point on the artificial face and we want the calculation speed ofthe algorithm as 

fast as possible. So, we implement our artificial face using GNN-based controller. 

0 4备 0 . 4 5 「 1 .-.__.1___--——^ ,——-——T————"r 1 r-—-~~^—_- • • -_ 

l : | ^ w ^ ~ ^ | : | r - ^ ^ - - A ^ 

1 °" / § °" / 

I . ‘； ^ ^ ^ ^ ^ ^ . ^ ^ - ^ ^ ^ ^ I 。 : : p X ^ ^ ^ = « ^ « ^ ^ ^ ^ 
含 I L — 一 _.__ 

。、L—rr^「or—oro:r “— o T i - ô̂^̂  。 V 。 r - r "o:3~Tro.5 。.• o.r 。.• 。.•， The first input value The second input value 
0.4S I .--~r T - T 1 1 T ‘ 0.4S「- —T 1 r r ~ r ‘ ^ ‘ " H o 
0 4 2 。.4 
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Figure 3.14. The input membership functions ofreduced GNN. 
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Figure 3.15. Comparison of commanded circular path and experimental trajectory for the 4 

SMA wire linkage system using the reduced GNN algorithm with 96 rules. 3.4 Summary 
This chapter presented two neural-fuzzy algorithms: ANFIS and GNN. The ANFIS is 

functionally equivalent to fuzzy inference system. However, its structure is more 

complicated. On the other hand, GNN harbors reasonable performance and a simpler 

structure, one that readily allow SVD complexity reduction to be applied. Respective 

performance of the ANFIS, GNN and reduced GNN in controlling the 2D position of a 4 

linking SMA wire system are also included in the chapter. Since the present project involves 

the construction a SMA actuated artificial face, we desire a simple and fast calculation 

algorithm to the controller. For this reason, the reduced GNN is chosen for implementation 

on the artificial face. 
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CHAPTERFOUR 

SMA ACTUATED ARTIFICIAL FACE 

This chapter describes the construction of a SMA-actuated artificial face for mimicking 

human facial expressions. Di a human face, numerous muscles are pulled in order to make 

the facial expressions. The same concept is used in our artificial face but instead ofmuscles, 

we use the shape memory alloy (SMA) wire to pull the skin ofour artificial face to effectuate 

facial expressions. 

h i this project, we link up the software facial model of [28] to our hardware construction. 

The end result is by changing the facial expressions of the facial model in the computer, the 

artificial face w i l l be actuated accordingly. 

4.1 MUSCLES OF THE HUMAN FACE 

In the general sense, muscles are the organs of motion [28]. The muscles of the face are 

commonly known as the muscles of facial expression. By their contractions, various facial 

expressions can be realized. Some facial muscles also perform other important functions, 

such as moving the cheeks and the lips, or closing and opening of the eyelids. The muscles 

used for facial expression are more on the surface. Some ofthe muscles attach to skin at both 

the origin and the insertion such as the obicularis oris, shown in figure 4.1. When the 

muscles are relaxed, the fatty tissues fill the hollows and smooth the angular transitions so as 

to allow the general shape ofthe skull to be seen. The illustration in figure 4.1 illustrates the 

surface muscles ofthe face. 

The muscles of facial expression work collectively and not independently. The group 

functions as a well-organized and coordinated team, each member has specified fiinctions, 

one of which is primary. These muscles mix with one another. It is difficult to separate the 

boundaries between the various muscles. The terminal ends of these muscles are interlaced 

with each other. 
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覆 
Figure 4.1. The frontal view of facial muscles [28]. 

4.2 THE SOFTWARE PART: facial model 
The work of [28] presents a facial model which can display some facial expressions in the 

computer. We adapt the facial model of [28], written in C language, to the one as shown in 

figure 4.2. Corresponding to the hardware designs, there are 6 muscles on the facial model. 

These muscles can be contracted or released one-by-one by pressing the keyboard. For 

convenience, some preset facial expressions are also available in the face model. Once we 

decide on the facial expression in the software facial model, output commands w i l l then be 

directed to the artificial face to realize the chosen expression. 

Our computer setup is Pentium 233MHz，64MB ram and the operating system is Microsoft 

Windows 98. At the start o f the program, figure 4.3 w i l l be shown. It w i l l display two 

windows, the first one is the face model and the second one displays the message. Input 
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control to individual muscle can then be carried out via the keyboard as directed by the 

software. I f needed, one can press "h" to get the help menu. 

Figure 4.2. The geometry and muscles ofthe facial model. 

B [ ^ B 8 ^ 9 H H H H I B H i 
g|||[g^^^^J|pî ^^^^^J|jjgggggyfilWWMWWPfWPW!WMp"PW>PMMMMMiimBIMIMMiML^ 
^ ^ n ^ ^ ^ ^ | P ^ ^ ^ ^ ^ ^ ¾ ^ ! ! ^ ^ ! ^ ! ! ^ ¾ ! ¾ ^ ^ ! ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

• ^ ^ n n ^ ^ i 

M M ¾̂̂¾;;¾:¾:̂̂¾¾¾ 
Figure 4.3. The facial model and the command window. 
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4.3 THE HARDWARE PART: artificial face and peripheral interface 

Figure 4.4 shows the setup o f the whole system. It includes the artificial face and the 

• electrical circuit board as the interface between the artificial face and the computer display. 

In the fol lowing, we w i l l introduce the structure o f the artificial face and the interface circuit. 

_ _ • _ _ “ " " • ‘ 口 ““ 1”’> 、二 - , T _ 
__i____.:. : > I ““ 'î '_"' “‘'|: - ‘“ ”_._..'_.|"彻|_"m ’,’，『，rai^pj*piii|j||^j|j^ 
|i®Slul̂ lSi|： f 」r ‘」/ ^H^BH 

• .^ i i i immmjj i i i i [ j^^M 
:.:,,::::;;m^^^^^^^n ::::•;;_• 
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：：• _ | g j j a g M i:":^^::PHHBSBB|BBBBBBHI .:::'〈::-I >jH§:::》i_ i M i ^ | ^ g p i _ | | | ^ _ _ i i g p i ^ 
丨 _ " M ' "l"ii|l II ‘ I 

^ f $ ^ ^ m 
ltif̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ?̂ ^EL i “ � t o k k ± L j A l ^ i a i i l M B B * ® ^ ^ ^ ^ S 

Figure 4.4. The experimental setup o f the artificial face system. 

4.3.1 SMA Actuated Artificial Face 
The artificial face is a human-sized face which facial expression actuated by SMA wires 

instead ofhuman muscles. For the work o f this thesis, we have 10 SMA wires corresponding 

to the primary muscles in the human face. These 10 SMA wires actuate 6 control points and 

3 mechanical structures, shown in figure 4.5. Eight o f them are constructed as spring-wire 

system which stands for a spring and a SMA wire joining together controlling the movement 

o f eyebrows, l ip and opening and closing o f eyelid. Two of them control the opening and 

closing o f the jaw and are constructed as wire-wire system which stands for two SMA wires 

joining together. The internal structure o f the artificial face is shown in figure 4.6. The 

mechanical construction is shown in figure 4.7. A l l components, i.e.，all construction o f 

SMA wires and springs are embedded inside the skull. 
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Figure 4.5. Definition of the control points. 
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Figure 4.6. The real structure of the artificial face. 
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Figure 4.7. The mechanical construction of the artificial face (the red line presents the SMA 

wire, the blue line presents the fishing line and the green line presents the spring). 

4.3.2 Peripheral Interface 

A l l the output signal of the computer is digital but the SMA wire requires for its operation 

powered analog signal. Some electrical circuit interfaces are needed between the two. These 

include the 8255 input output controller card, pulse width modulator, and a current amplifier. 

8255 input output controller card: 

8255 input output controller card is installed in the PC expansion slot. Through software 

programming, it outputs many channels of 8-bits digital signal to the pulse width modulator. 

Pulse width modulator: 

The pulse width modulator (PWM) generates analog-like signal, the pulse width of which is 

controlled by the 8-bits digital signal from the 8255 input output controller card. The average 

current value of the analog-like signal hence corresponds directly to the 8-bits digital signal 
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from the computer. This 8-bit resolution analog-like signal then in tum varies the length o f 

the SMA wire. The P W M electrical circuit is shown in figure 4.8. 
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lOMHz 个 DO 2 p_n _ 19 

/ po P_Q D 
^ / D1 4 pi p>Q ^ ^ 

i 5 - CCLKEN A/QA ^ °。 〈々 pg 6 ^̂  ^^° o u t p u t t o t h e c u r r e n t a n p U f i e r 
—CCLKEN B/QB ^ °^ ' ' ' ' ^ ~ " D 3 8 ^^ 
^ CCLK C/QC - ^ Z ( D4 n ; : 
^ CLDAD D/QD ^ °^ , y ^ " ~ D 5 1 3 ~ 二 
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^ RCLKEN F/QF ^ °^ Z , p? 17 ^^ 
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^ / MD7 18 
夕 
^ 74LS682 < ^ 

i n p u t f r o n t h e 8255 c o n t r o l l e r ca ro l 

Figure 4.8. The electrical diagram of pulse width modulator. 

Current amplifier: 

Since the analog-like signal from the P W M is not powered, we need a current amplifier to 

power the signal to generate enough current to drive the SMA wire. As the original length of 

each SMA wire in the artificial face is different, the value of the resistance Rb, as shown in 

figure 4.9，needs to be turned appropriately in order to have the same current passing though 

each SMA wire. 
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Figure 4.9. The electrical diagram of current amplifier. 

4.4 POSITION CONTROL ON THE ARTIFICIAL FACE 

From figure 4.7，there are 10 SMA wires on the artificial face. The position of the wire can 

be controlled by applying currents from the computer. Figure 4.10 shows the eyebrow as an 

example in control. The eyebrow is a spring-wire system. Because the spring is a passive 

device, we need only to control the position by actuating the single SMA wire. 

WFf^M^ [，”，• 

T h e t r a c k o f t h e _ _ _ _ _ J ^ ^ ^ ^ ^ ^ M Eyebrow control point ^j||^:::^J||mj^[[gg^~^*"^M J^tKflK^^m 
Control point _ : , 1 | ^ ^ ^ | ^ ^ ] ^ | | | U 

I ^ H i n 

I ' k ^ J 
BuiJHkiu i:̂ >^JH 

Figure 4.10. The right eyebrow of the artificial face. Definition of the position of the control 

point. 

As mentioned before, Both the model-based control and the neural-fuzzy-based control in 

chapter 2 and 3 can be applied to controlling the various point on artificial face. However, as 

the geometry o f the artificial face is complicated, we derive a control method which would 
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yield a fast response time, and also with good performance. The two control methods in 

chapter 2 and 3 w i l l be compared under such considerations. 

4.4.1 Model-based Position Control on Artificial Face 

In chapter 2，the position control of a two linking SMA wires, wire-wire system is 

conducted. For the eyebrow of the artificial face here, it is a spring-wire system but the 

theory in chapter 2 can be applied just the same, except that the equation of one of the wires 

is now replaced by a spring displacement force. Assuming that the wire is always in tension 

during the process, it can be stated that at equilibrium the total strains of the spring and wire 

£totai must be constant and that the stress in the spring Gsprmg and wire G îre must be equal to 

each other. That is: 

^wire = (1 一 ^wire ^^A,wire + ^wire^M,wire 

K • ^spring = ^spring (4 ” 

^total = ^wire + ^spring 

^ wire 二 Gspring 

where £ _ is a constant and can be measured from the experimental setup. K is the spring 

constant which can measure from the experiment. Then, using (4.1) with (2.3)，（2.4) and 

(2.9), one can solve for e îre, i.e., the position of the control point, as a function of the wire 

current. Figure 4.11 shows the experimental result with this method. 

1 1 1 1~p̂  r 1 1 

。.9- "/ f\ - n • H . . 

I I \ ,Desiredpath 

广 '\ ^ ^ 
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^ I � \ ^ I 
^ 0 6 I 广^"“^ ^ ^ “~ ‘ Trajectory of the 
^ 0-5 - 丨 , 1 - control point 
， … , … 
.2 0.3 - ' L i -
• | I I 
0 0 . 2 - -^ 1 ^ _ I I 

。.1 - \「 、^~1 • pK / , . . . ^ 
0 10 20 30 40 50 60 70 

Time 
Figure 4.11. Experimental result ofthe position control of the right eyebrow of the artificial 

face using model-based control method. 
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4.4.2 Neural-fuzzy-based Position Control on Artificial Face 

In chapter 3，we introduced two neural-fuzzy algorithms, ANFIS and GNN. We illustrated 

performance by the example o f position control of four l inking SMA wires in 2 dimensional 

plane. We also commented that, for simpler implementation wi th reasonable performance, 

the reduced G N N controller is to be adopted in our artificial face. To compare wi th the 

performance o f the previous section, here we w i l l control the eyebrow using the reduced 

GNN-based controller. We took 500 data sets as training pattern. Each o f these data sets is 

obtained by recording the last position o f the control point, and then measuring the ensuing 

position as resulted from commanding currents through the SMA wire. Figure 4.12 shows 

the experimental result using a trained GNN-based controller. 

1 , 1 1 ̂  “~T 1 1 
0.9- I I ^^'Desiredpath 

J 0.7- c " ^ L^<r^^'^''^ . 
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Z 丨 丨 ^ ^ control point 
爱。5 I ^ ^ 
霞。.4- / 1 ^ -

•4d 0.3 - / 」 \ . -

1 1 ^ ^ ^ 一 丨厂 -
°.1 - _ _ _ _ ： 

0 ‘ I I I 1 1 1 

0 10 20 30 40 50 60 70 
Time 

Figure 4.12. Experimental result o f the position control o f the right eyebrow o f the artificial 

face using neural-fuzzy-based control method. 

4.4.3 Comparison of the Model-based and Reduced GNN Control of Artificial Face 

It is obvious that figure 4.11 using model-based algorithm is inferior in both the rate and the 

accuracy o f response. This is because the SMA model, identified when it is in straight line 

form, cannot account for the complicated structure and geometry o f the artificial face. This 

also explains why figure 4.11 has larger error compared to the performance of figure 2.8 as 

well, as figure 2.8 is conducted when the SMA wires are in straight line form. On the other 

hand, the neural-fuzzy based control as in the reduced GNN is more adaptive, trained always 

by experimental data at the moment. They hence show better control performance. We 

therefore opt to implement on our artificial face using the reduced GNN-based controller. 
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4.5 EXPERIMENTAL RESULT 

、 U p o n construction of the whole system, each SMA wire in the artificial face is trained one 

by one using independent reduced GNN algorithms. Afterwards, given the movement of 

each muscle in the software facial model, the reduced GNN algorithm calculates the 

appropriate current to be commanded to the corresponding SMA wires. This way, individual 

SMA wire in artificial face can be controlled to achieve the particular assigned control 

position. Figure 4.13 compares the expressions of the facial model and the artificial face for 

some preset facial expressions. Figure 4.14 shows other facial expressions. 

P ; ^ ^ ^ P ^ ^ S ^ ^ C ^ ^ C ^ 
_ . , ^ ^ ^ _, ^^M '>' : . ^ H . ':|4T' • 
I , , � M s f ^ % ^ L ' , � ^ p v % J 
• ' — • ^ H t J ^ ' ^ K " ' ^ M t ^ ^ K ' : . k i u ^ f l 

§ S M l & m ^ M S M 
Figure 4.13. The comparison of the facial model and the artificial face in some facial 

expressions: happy, anger, disgust andjaw opening. 

I 



^^^^^^^^^^^^^^H ̂  ‘“ PIK-D im I -.>..ii P5EO m i •». f»5®£5 M! ,".,iM_.iM. ^^^^^^^^pfl̂ T^^^^^^^^^^^^^B 

^ M i f �' f % ^ f « i • 

•、岁 ̂^ f ̂ 1 
^ H ‘ 3 T ^ ^ 1 ^^^^^^ ^^^^^ 
^̂̂^̂̂^̂̂^̂̂^̂̂^̂̂^̂̂^̂̂ ；̂；；；̂；̂^̂̂ ；̂̂^̂̂ ；̂；̂^̂̂^̂̂^̂；̂；̂；̂；；̂；̂̂^̂̂^̂̂；̂_̂̂ ；̂；̂；；̂_̂̂；；̂^̂；；；̂^̂；；̂__；̂；̂_̂̂；̂_̂__̂_̂̂_̂；̂_̂̂；̂ _̂̂̂ ；̂；；̂^̂̂^̂_；̂；；；̂；；；；̂^̂；；；_̂；；；；；；；；；̂_̂̂；；；；；；；̂；̂2̂；̂^̂；；̂；；̂；̂；；；̂；̂̂；̂̂；̂_；；；；̂^̂̂^̂̂ ；̂；̂^̂̂ ；̂̂_̂̂^̂；̂；；；；；；；_̂；；̂^̂；；；̂；̂；；̂；̂̂^̂；；；；̂；；̂；；；̂^̂̂；̂二:一 |̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ Ŵ 
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CHAPTER FIVE 

CONCLUSION 

In this project, we constructed a SMA-actuated artificial face which can mimic human facial 

expressions. Here, we adopted SMA wires for actuation because of it special features: clean, 

bio-friendly and compact construction. The present work is composed of 3 main parts: 

modeling ofmodel identification of SMA wire, performance comparison of the model-based 

and neural-fuzzy-based algorithm, design and construction of the artificial face. For the 

modeling part, we adopt the model of K.Ikuta and identified the relevant parameters of the 

SMA wire. The validity of the model is then demonstrated via a 1 dimension position control 

experiment. However, understanding the validity of the model-based method is limited due 

to the highly nonlinear nature of the present setup, two neural-fuzzy based approaches, 

ANFIS and GNN, are also investigated. The ANFIS is functionally equivalent to fUzzy 

inference system. It gives very good performance but the structure is more complicated. On 

the other hand, the GNN is of reasonable performance but its structure is reducible using 

SVD complexity reduction. Because there are many SMA wires in the artificial face, to 

reduce the calculation time of the algorithm, we used the reduced GNN algorithm as the 

controller. As constructed the hardware artificial face is linked to a software facial model. 

From the dictated movement of the muscle in the software model, the GNN algorithm 

calculates the appropriate current to be commanded to the corresponding SMA wires. This 

way, individual SMA wire in the artificial face is controlled to the assigned control position. 

Hence, by dictating the facial expressions of the software facial model on the computer, the 

artificial face is then commanded to mimic that dictated expression 

Eventually, we would like to hook up our artificial face with a video system which can 

recognize facial expressions of human in order to mimic their emotion. This is an area of 

future work. Another area of research is the response of the SMA wire. Slow response ofthe 

wire now makes slow implementation of the facial expression. Improving the response ofthe 

SMA wire hence enables mimicking of human facial expressions more lively. Also, the 

artificial face for now is controlled by an open loop control technique algorithm. For the 

more accurate movement, close loop control needs to be applied. This is also our future 

direction. 
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Appendix 1 

Product-sum-gravity (PSG) [20] 

Characterisation of input output 

Let the input and output universe Zand 7, respectively. 

Characterisation of fuzzy sets 

Antecedents: The antecedent fuzzy sets Ar./^(x)，xeX, t = L.m are defmed on 

universe Xin Ruspini-partition, where m is the number ofantecedent sets. 

Consequents: The consequent fiizzy sets are defined as singleton, crisp sets: 

Bt:"Bt(y) = ^bt), Vt:b,ysY 

defined on universe Y. 

Observation: Let the input value ^ * be fUzzificated into singleton observation fuzzy set 
A * such as: 

A * : / ^ j * ( x ) = S ( x * ) , 

Rules: 
I f Af then B^ 

Characterisation of the inference 

The inference technique is based on product-sum-gravity [9]. 

Product: This step yields the contribution ofthe consequent sets to the output according to 

the degree ofmatching among the observation and the antecedent sets. The product has a 

role in the multi-variable case. Therefore the contribution is: 

A4(^*). 
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Sum-gravity: This step follows the center of gravity defuzzification technique. A l l 

consequent sets B^ are weighted by its corresponding contribution //^^ (x*) . The 

defuzzificated value is the weight-point: 

m 
I MAt i^*)bt 

y N = W 
^ m Z MA, (̂ *) 

t=\ 

m 

The /?M5/?m/-partition of the antecedent sets implies that E MAf (^*) = 1，hence the output 

value is: 

m 
y* = JLMAS^*)bt 
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Appendix 2 

Singular Value Decomposition Reduction (SVDR) 

Suppose that matrix 2(„jxn2) ~^ '̂»>^ is given. Applying singular value decomposition 

yields: 

B = U D u J = [ U [ | U f ] 2 = [U^ | U ^ f . = =1= =2 =1 =1 Q ĵ a =2 =2 

The elements of matrix 0 are zeros. Matrices U^ and U^ are orthogonal. Matrix D 

contains the singular values in decreasing magnitude, as the diagonal elements. The zero or 

the smallest of singular values (smaller than singular value threshold To, say) can be 

discarded to yield a simpler system. Let D^ contain the retained and D^ contain the 

discarded singular values. Let the result of SVDR be: 

B = UfD^U'^ 
= = 1 = = 2 

A 
I f B^ contains only zero singular values, then B = B. 

j A . 
I f B contains nonzero singular values, then B is an approximation of B，and the maximal 

A 
difference between the values of B and B [16]: 

A n s v D 

EsvDR = B - B ^( S /i/)l, � 
画 = = i = n , ^ l " = — 2 ) 
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Appendix 3 

Singular Value Decomposition Extended (SVDE) 

A T Transformation: SN {Sum-Normalisation). Let matrix B = Uj"5'U: be given. SN =̂ s=sl =̂ =̂2 
transforms U「 D " and U^ into U / D , and U.'，respectively, while keeping =1 = =2 =1 = =2 
八 T 
B = U j 'D 'U2 and ensuring that the sum of all elements in each row of U^' and U^ ' 

^ ~ > 了 — 

equals 1. Let 5wm(O ,•) = 5Mm((U!") ) , where i = 1,2 and 5wm(U) is the column vector 
= i 

— r T summing over the rows of U . I f 5wm((U.) ) does not contain zero elements, the matrix ¢1 
^ s ^ = \ 

~> T 
is chosen as 於= d i a g [ s u m { i ^ . ) )]. Then according to [13][15], 

^^1 

j nr 
I f 5wm((U") ) = 0 then U .̂ ’ can be determined as: 

\5：=V'¢i —I =1 ri 

J rr% 
I f 5Mm((U"))本 0 then U .̂ ’ can be determined as: 

_ . ~> , T To; 0 H/= E- Hf--((uf)^) 0 1 
_ 」L 」 

八 T T 
After U •, is determined one can always fmd D' so that B = U["D^ U : = U, 'D 'U . ’ • 

= r 1 =s ^s ^ = i ^ s = 2̂  sssl ~~- ^ = Jm 

A T Transformation: NN {Non-negativeness). Let matrix B = U 'D'U ' be given. NN 
=s = 1 = ^= 2» 

transforms U / D ' and U , into U " D " and U "，respectively, while keeping 
ssssx s s ^ ^ Zt — 1 ~~ •— Zt 
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B = U , " D " U , " T and ensuring that the elements of U , ” and U . " are in the interval [0,1]. 
= s s s i SSS = S 2 , ^ s l ^ ― Z* 

According to[13][15], let: 

‘ 1 if « / m i n ^ - l 

Q ~ * otherwise 
J “ /min I 

where atmin is the minimum element of U . " . Then 
^=1 

仏 " 二 仏 " 志 ( 1 - , 的 - , ) 

where q is the number of columns of V . \ With U^." one can always find D" so that 

B = U , ' D ' U , " ^ = U , " D " U ' ' ^ . 
= = 1 = = 2 = 1 = =2 

Having the above transformations, SVDR is extended (SVDE) with non-negativeness, sum-

normalisation, in order to maintain the Ruspini partition in the case of piece-wise linear sets. 

SVDE results in matrices A. , where all elements are in interval [0,1] and the sum of the 
^ = / 

elements in each row is one (i.e. Ruspini partition). 

This function includes the SVDR, SN and NN. Let B / 、be a given matrix. Let =(«ix«2) b 
A T 
B = U("D^U!; be the reduced form after SVDR, SN, and NN, in that order, where = = 1 = = 2 

Uf = U / ' , D^ , , = D " «[ <w, :/ = l,2and U ! ; = U ' ' . 
=1 =1 = (n[xnJ) = I ‘ ， = 2 = 2 
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Appendix 4 

Algorithm to Implement the System 

This appendix introduces the program implementation of the 2D position control system. 

The following block diagram shows the flow of implement of the system. 

Program 1 Data collecting 

} r 

Program 2 Training 

1 ‘ 
Program 3 Controlling 

Program 1: data collecting 
This program is written in C language which is collecting the 1000 input-output data sets, 

count = 0; 
_outp(Base+0, Oxff); 
"outp(Base+l, OxfQ; 
"outp(Base+2, Oxff^; 
"outp(Base+4, OxfQ; 
delay(3000); 
srand( (unsigned)timeO^ULL)); 
for (i=0; i<1000; i++) 
{ 

getposition(); 
i f (reco == 1) 
{ 

X = (x-minx)/lengthx; 
y = (y-miny)/lengthy; 
test_data[count][0] = (float)x; 
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test_data[count][l] = (float)y; 
recol = 1; 

} 
else 
{ 

recol = 0; 
} 
rand_n = rand(); 
oel=floor(((float)rand_n)/4); 
oe2 = ((float)rand_n)/4; 
i f (oel == oe2) {— 

rand_n = (int)floor((((float)rand())/32767)*220); 
outO=rand_n; 
rand_n = ant)floor((((float)rand())/32767)*220); 
outl=rand_n; 
out2=0; 
out3=0; } 

else i f ( (oel+0.25) == oe2 ) { 
out0=0; 
rand_n = (int)floor((((float)rand())/32767)*220); 
outl=rand_n; 
rand_n = (7nt)floor((((float)rand())/32767)*220); 
out2=rand_n; 
out3=0; } 

else if((oel+0.5) == oe2) { 
out0=0; 
outl=0; 
rand_n = (int)floor((((float)rand())/32767)*220); 
out2=rand_n; 
rand_n = (Tnt)floor((((float)rand())/32767)*220); 
out3=rand_n; 

} 一 

else i f ( (oel+0.75) == oe2) { 
rand_n = (int)floor((((float)rand())/32767)*220); 
outO=rand_n; 
outl=0; 一 

out2=0; 
rand_n = (int)floor((((float)rand())/32767)*220); 
out3=rand_n; 

} 一 

out0=255-out0; 
outl=255-outl; 
out2=255-out2; 
out3=255-out3; 

_outp(Base+0, outO); 
_outp(Base+l, outl); 
_outp(Base+2, out2); 
_outp(Base+4, out3); 
delay(2000); 
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getposition(); 
i f ( (reco == 1) & (recol == 1)) 
{ 

X = (x-minx)/lengthx; 
y = (y-miny)/lengthy; 
test_data[count] [2] = (float)x; 
test_data[count][3] = (float)y; 
test"data[count][4] = (float)outO; 
test_data[count] [5] = (float)outl ； 
test_data[count][6] = (float)out2; 
test"data[count][7] = (float)out3; 
count++; 
printf("wireO=%d, wirel=%d, wire2=%d, wire3=%d\n",outO,outl,out2,out3); 

} } 
Program 2: training 
This program is written in MATLAB program which is for training the GNN model of the 2 

dimensional position control system. 

load wOO; 
loadwlO; 
load w20; 
load w30; 
load X； 
load y; 
load wO; 

wOO=wOO/255; 
wlO=wlO/255; 
w20=w20/255; 
w30=w30/255; 

lr=0.0005; 

count=0; 

while (1)， 

load bO; 

fortt=l:10, 
err=0; 
eel=0; 
ee2=0; 
ee3=0; 
ee4=0; 
ee5=0; 
ee6=0; 
count=count+l; 

fortp=l:999, 
x00=triang21(w00(tp)); 
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xlO=triang21(wlO(tp)); 
x20=triang21 (w20(tp)); 
x30=triang21 (w30(tp^; 
xx=triang21 (x(tp))； 
yy=triang21(y(tp)); 

“ ans=x00*b(l,:)'+xl0*b(2,:)'+x20*b(3,:)'+x30*b(4,:)'+xx*b(5,:)'+yy*b(6,:)'; 

en=err+(wO(tp)-ans)^2; 
ee 1 =(wO(tp)-ans)*xOO+ee 1 ； 
ee2=(wO(tp)-ans)*x 10+ee2; 
ee3=(w0(tp)-ans)*x20+ee3 ； 
ee4=(w0(tp)-ans)*x30+ee4; 
ee5=(wO(tp)-ans)*xx+ee5 ； 
ee6=(wO(tp)-ans)*yy+ee6; 

end 

err 
b(l,:)=b(l,:)+lr*eel; 
b(2,:)=b(2,:)+lr*ee2; 
b(3,:)=b(3,:)+lr*ee3; 
b(4,:)=b(4,:)+lr*ee4; 
b(5,:)=b(5,:)+lr*ee5; 
b(6,:)=b(6,:)+lr*ee6; 
error(count)=err; 

end 

save bO b; 

end 

Program 3: controlling 
This program is written in C language which is for controlling the 2 dimensional position 

control system using GNN algorithm. 

/* tracking path */ 
radius = 65; 
for (i=0; i<37; i++) 
{ 

tra_pathx[i] = ((rx[0]+radius*cos(((10*i)*pi)/180))-minx)/lengthx; 
tra_pathy[i] = ((ry[0]+radius*sin(((10*i)*pi)/180))-miny)/lengthy; 

} 
outO = 0; 
outl = 0; 
out2 = 0; 
out3 = 0; 

/* for (count=0; count<l; count++)*/ { 
for (cir=0; cir<37; cir++) 
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{ 
i f ( c i r==0) 
{ 

Q)rintf(fopx,"new circle W ) ; 
^rintf(fopy,"new circle W ) ; 

• } 

Q)rintf(fopx,"%1.2f",x); 
fprintf(fopy,"%1.2f",y); 

appO=(float)outO/255; 
appl=(float)outl/255; 
app2=(float)out2/255; 
app3=(float)out3/255; 

xomO = mf(appO, xomO); 
xoml = mf(appl, xoml); 
xom2 = mf(app2, xom2); 
xom3 = mf(app3, xom3); 
xom4 = mf(tra_pathx[cir], xom4); 
xom5 = mf(tra_pathy[cir], xom5); 

appO = 0; 
app l=0 ; 
app2 =0; 
app3 = 0; 

for (i=0; i<21; i++) 

^ app0=xom0[i]*yom0[0][i]+xoml[i]*yom0[l][i]+xom2[i]*yom0[2][i]+xom3[i] 
*yomO[3][i]+xom4[i]*yomO[4][i]+xom5[i]*yomO[5][i]+appO; 

appl=xom0[i]*yoml[0][i]+xoml[i]*yoml[l][i]+xom2[i]*yoml[2][i]+xom3[i] 
*yoml[3][i]+xom4[i]*yoml[4][i]+xom5[i]*yoml[5][i]+appl; 

app2=xom0[i]*yom2[0][i]+xoml[i]*yom2[l][i]+xom2[i]*yom2[2][i]+xom3[i] 
*yom2[3][i]+xom4[i]*yom2[4][i]+xom5[i]*yom2[5][i]+app2; 

app3=xom0[i]*yom3[0][i]+xoml[i]*yom3[l][i]+xom2[i]*yom3[2][i]+xom3[i] 
*yom3[3][i]+xom4[i]*yom3[4][i]+xom5[i]*yom3[5][i]+app3; 

} 
do 
{ 
outO = (int)appO; 
outl = (int)appl; 
out2 = (int)app2; 
out3 = (int)app3; 

if(out0<0) 
{ 

outO = 0; 
} 
if(outO>255) 
{ 

outO = 255; 
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} 
i f (out l<0) 
{ 

outl = 0; 
} 
i f(outl>255) 
{ 

out l=255; 
} 
if(out2<0) 
{ 

out2 = 0; 
} 
if(out2>255) 
{ 

out2 = 255; 
} 
if(out3<0) 
{ 

out3 = 0; 
} 
if(out3>255) 
{ 

out3 = 255; 
} 
_outp(Base+0, outO); 
_outp(Base+l, outl); 
_outp(Base+2, out2); 
_outp(Base+4, out3); 

delay(800); 
getposition(cir); 
X = (x-minx)/lengthx; 
y = (y-miny)/lengthy; 

printf(”0=%d，l=%d，2=%d，3=%d，ex=%1.2f，ey=o/ol.2f，cir=%dV’，out0，outl，out2，out3， 

x-tra_pathx[cir],y-tra_pathy[cir],cir); 

} while ((fabs(y-tra_pathy[cir]) > 0.06) | (fabs(x-tra_pathx[cir]) > 0.06)); 
printf("ex=% 1.2f,ey=% 1.2f,cir=%d \n",x-tra_pathx[cir],y-tra_pathy[cir],cir); 

} } 
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