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摘要 

「虛擬現實」（〃丨10^代&衍力是近年來備受關注的硏究題目。「虛擬現實」 

有兩個主要特徵一實時互動性（real--time interactivity)及代入感（sense of 
immersion)�由於傳統的人機交互技術（human--computer interaction techniques) 
並不能滿足這兩個特徵，硏究人員正在尋求一些新的辦法去處理人、機之間的 

溝通問題，而手勢識別正是其中一個主要的硏究方向。 

這篇專題論文的硏究題材是「虛擬手實時識別系統」，即如何在虛擬環境 

中，利用一些手勢識別算法來辨認靜態和動態的手勢。本論文旨在發展一個簡 

單、準確、快速及靈活的虛擬手識別系統，而有關的背境資料，包括手部的結 

構、手的模型、手追蹤技術、現有的手勢識別方法及系統均會在本論文中詳細 

介紹° 

手勢識別並不是一個容易解決的問題，現有的識別方法都存有很多問題， 

例如不夠準確、效率不足等等。本論文提出了一個新的識別算法’該算法利用 

「模糊理論」（fuzzytheory)去解決一些以往遇到的限制，並且進行了一系列的 

實驗，以証明該算法的可行性。此外，本論文還發展了兩個應用程式，以驗証 

該手勢識別系統的實用價値，分別是一個手勢資料庫的編輯器和一個三維造 

型.。而組實驗結果均証實該手勢識別算法已達到預期中的效果。 



Abstract 

Virtual reality (VR) is attracting more and more attention in both the aca-

demic and commercial communities. As traditional human-computer interaction 

technologies failed to fulfill both key features of virtual reality, which are inter-

active and immersive, researchers are looking for more sophisticated methods for 

the communication between human and computers. Inspired by the capabilities 

of hand for controlling computer-mediated tasks, hand-input has become one of 

the major research directions. 

This dissertation is a research on virtual-hand recognition, which is defined as 

the utilization of recognition algorithms to identify hand postures and gestures in 

virtual environments. It aims at developing a virtual-hand recognition algorithm 

which is accurate, flexible, simple, and most importantly, efficient. 

In this dissertation, a wide range of related background knowledges are stud-

ied, including the structure of the human hand and the common hand models, 

hand-tracking technologies, current hand recognition algorithms and a number of 

example hand-input systems. 

Posture and gesture recognition is a not an easy problem. Existing recognition 

algorithms are either inaccurate or inefficient to incorporate with virtual reality 

applications. A novel posture recognition algorithm using fuzzy theories is pro-

posed to overcome some series limitations of previous approaches. A serious of 

experiments are carried out to examine the behaviour of the proposed algorithm. 

Moreover, two applications, a posture database editor and a 3D modeler, are also 

developed to investigate the practical performance of the proposed algorithm. It 

is found that the proposed system fulfills the mentioned objectives. 
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Chapter 1 

Introduction 

Virtual reality (VR), or sometimes called virtual environment (VE), is a com-

bination of various technologies which enables a user to interact with an immer-

sive and real-time computer-rendered 3D environment in a natural and intuitive 

way [1]. In terms of functionality, virtual reality is a high-end user interface which 

involves real-time simulation and interactions through multiple sensory channels, 

including visual, auditory, tactile, smell, or even taste [8]. The above definitions 

characterize one key feature of virtual reality: real-time interactivity. Real-time 

interactivity means that the computer should be able to detect the user's action 

and generate the corresponding feedback without any noticeable lag. Another 

key feature is the sense of immersion. With the appropriate equipments, virtual 

reality let users not just only see, but also feel what the computer has done in the 

simulated 3D space. 

Human-computer interaction (HCI) has long been a popular research topic. 

As virtual reality is developing rapidly in recent years, 3D interaction draws more 

and more attention. Conventional input devices, such as keyboards, mice, joy-

sticks, etc., failed to fulfill both two key features of virtual reality. Keyboards 

involve indirect interactions, and the other devices do not possess enough degrees 

of freedom to perform the complex tasks in 3D space. To solve the problem, many 
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Chapter 1 Introduction 

3D instruments, such as Head Mounted Display, stereo glasses, gloves, 3D track-

ers, etc. are invented by different parties from various parts of the world. These 

3D I /O devices, which are often referred to as VR devices, allow users to navigate 

the 3D virtual world and manipulate virtual objects. 

Unfortunately, there is a serious drawback of these V R input devices. Unlike 

the multi-purposed input device, keyboard, VR input devices are designed spe-

cially for 3D interaction, but not command input. There are quite a number of 

common operations, such as loading and saving data, exiting an application, etc., 

which cannot be simply controlled by these devices. One solution for triggering 

these operations is to place 3D widgets in the virtual space. However, these wid-

gets may occlude other parts of the virtual scene and distract the user. As the 

processing power of the computers grows rapidly, researchers are looking for more 

sophisticated alternatives, such as voice input and hand-function input. 

Hands are our basic physical communication channel with the world. We 

touch, we feel and we manipulate real-world objects with our hands. When we 

perform various tasks, the hand forms different shapes and motions. In this disser-

tation, the term posture is defined as a static pose of the hand, while gesture refers 

to a sequence of postures over a short time serious. In addition to the physical 

functions, the hand also plays an important role in inter-personal communication, 

such as hand signal or sign language. Postures and gestures help us to express 

ourselves better. As an insight, posture and gesture recognition has aroused much 

interest as an alternative for human-computer interaction. 

The term virtual-hand generally refers to a graphical representation of the 

hand which is emerged in the virtual environment. To fully represent and simu-

late hand functions, we must use a hand-tracking device to accept the whole-hand 

input, and utilize efficient recognition algorithms to identify the hand input. How-

ever, both technologies are immature. Current hand-tracking devices suffer from 

the problems such as low accuracy, high noise-to-signal ratio, and so on. 
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Chapter 1 Introduction 

The major problem of posture and gesture recognition comes from the com-

plexity of the human hand structure, which possesses about 30 degrees of freedom 

in its full representation. About 20 input parameters are required to specify a 

single posture. Another problem is the lack of accurate and standard measure for 

the hand. Both the sample patterns stored in the posture database and the input 

postures to be recognized may be imprecise. One source of the impreciseness is 

the mechanical noise comes from the hand-tracking device. The second source 

comes from us, human, as no one can repeat the same posture without any vari-

ance. Gesture recognition faces extra difficulties including time-varying signals 

and gesture segmentation. 

As the title suggested, this research aims at developing a real-time virtual-

hand recognition system. The term "virtual-hand recognition" indicates that the 

target system is not just a posture or gesture recognition system, but also a system 

which is able to integrated with real-time virtual reality applications practically. 

Virtual reality applications are usually very computation intensive. In order to 

achieve a smooth animation effect for visual feedback, it is necessary to refresh 

the display at about 20 to 30 frames per second. A number of jobs, such as colli-

sion detection, scene rendering, object behaviour modeling, etc., must be finished 

before displaying the next frame. Moreover, the latency time between the user's 

action and the computer's response must be very small to avoid user dizziness and 

sickness. Under these constraints, the virtual-hand recognition system must be 

simple and efficient, so that it would not affect the overall performance of these 

computation-intensive applications. 

Following this introduction, the next two chapters provides the background 

information about this research. Chapter 2 consists three sections. The first 

section briefly examines the human hand model and the second section describes 

the current hand-tracking technologies. The last section discusses the problems 

encountered in virtual-hand recognition. Chapter 3 reviews the previous work 

which contributes to this field. The first half of the chapter describes the current 
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Chapter 1 Introduction 

hand recognition approaches and the second half introduces some example systems 

which employ hand input. 

A novel fuzzy posture recognition system is proposed and implemented in this 

dissertation. Chapter 4 gives an introduction to the key ideas of fuzzy concepts 

and then describes the proposed system in detail, including the goal, the features, 

the design and architecture of the system. Chapter 5 evaluates the performance 

of the proposed system. 

Chapter 6 introduces a graphical user interface named PostMan, which stands 

for "Posture Manager", as the first application of the fuzzy posture recognition 

system. The application is developed for editing and validating posture records 

in system. The interface design and functions of the application will be described 

in the chapter. 

Another application called 3DVWM (3D Virtual World Modeler) is also de-

veloped. 3DVWM is a CAD-liked modeling tools, which is designed for rapid 

VRML modeling. Chapter 7 describes the system design and the use of virtual-

hand recognition in the application. 

Finally, Chapter 8 concludes the work, and Chapter 9 points out the future 

work of the research. 
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Chapter 2 

Virtual-hand Recognition 

The hand is an important part of our body. It is dextrous and flexible, so that 

we use our hands to manipulate real-world objects in our daily life. Moreover, 

using postures and gestures let us express ourselves better and hence communicate 

with others more effectively. The hand serves as an excellent interface between 

human and computers, especially for 3D virtual reality applications. The term 

virtual-hand generally refers to a graphical model of the human hand which is 

emerged in the virtual world. As the human hand is very complex in its full 

representation, simplified virtual-hand models are usually used in practice. 

Virtual-hand recognition is defined as the utilization of recognition algorithms 

to identify the postures and gestures in the virtual environment. This definition 

features that the recognition algorithm not only can recognize postures or ges-

tures, but also suitable for incorporating with VR systems, which are usually very 

computation intensive. In other words, the recognition algorithm must be sim-

ple and efficient enough, so that it would not affect the normal routines of VR 

systems. 

One enabling technology of virtual-hand recognition is the hand-tracking de-

vices, which monitor the pose and orientation ofthe hand in the 3D space. Hand-

tracking devices have now become a standard equipment in virtual reality. With 
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Chapter 2 Virtual-hand Recognition 

these devices, the user is able to manipulate virtual objects with the hand and the 

computer, on the other hand, generates visual, audio, or even tactile feedback to 

the user. 

This chapter covers the related background information about virtual-hand 

recognition. Section 2.1 briefly examines the hand model. Section 2.2 describes 

the current hand-tracking technologies. Section 2.3 discusses the problems en-

countered in virtual-hand recognition. 

2.1 Hand model 

2.1.1 Hand structure 

From a surgical point of view, the human hand is a complex organ which 

is composed of bones, ligaments, muscles, vessels and skin. Bones make up the 

skeleton of the hand and ligaments connect the bones to formjoints, which restrict 

the freedom of movement of the hand. Muscles drive the hand to form different 

shapes. These tissues are wrapped by skin, which protects them from physical 

damages. Structurally, the human hand consists six major parts: the palm and the 

five fingers, namely thumb, index, middle, ring and pinkie. The last four fingers are 

structurally identical, where each of them have three segments, called phalanxes: 

the distal phalanx (the one furthest from the palm), middle phalanx and proximal 

phalanx (the one connecting to the palm). The structure of the thumb is slightly 

different from the other fingers. There are only two obvious phalanxes, and a large 

proportion of the third segment is connected to the palm by skins. The special 

structure of the third segment allows us to perform anteposition and retroposition}. 

As the human hand is too complex, it is inefficient and impractical to model 

the hand in full manner. Instead, simplified hand models are usually used in 

^Anteposition is the bending of the thumb towards the other side of the palm, while retropo-
sition is the reverse action of anteposition. 
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Index Middle Ring pinkie 

c\ n 0 f] 
A A A / j ^ 
V V' / / Distal 
V y \ j W \ J Interphalangeal 
m / ^ ^ \ 

Thumb \, . k / U I / \ Proximal 
r \ \ A A ' A J Interphalangeal 

% x r ^ ^ 
/ V \ r : Metacarpophalangeal 

Thumb / ^ ^ " ^ " X A : 
Interphalangeal r V \ ^ . / 

Thumb Z X ^ / Palm 
Metacarpophalangeal ^ ^ ^ _ _ ^ 

Trapeziometacarpal 

Figure 2.1. The human hand model. 
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Chapter 2 Virtual-hand Recognition 

virtual-hand systems. There are many tricks to simplify the hand model. The 

most common one is to represent the palm by one single non-moveable object, 

despite that it does have a limited mobility (see Section 2.1.2 for detail). Other 

tricks include using only two phalanxes rather than three for the finger models, 

neglecting the abduction and adduction^ of the fingers, etc. Figure 2.1 shows a 

commonly adopted hand model. 

2.1.2 Motions of the hand joints 

The degree of freedom (DOF) of an object is defined as the number of inde-

pendent variables needed to represent it. The human hand possesses a very high 

degrees of freedom in its full representation, contributed mainly from the finger 

joints. Table 2.1 shows the individual degrees of freedom of the hand joints above 

the wrist, which totalled 23 degrees of freedom. Considering also the 3D position 

and orientation of the hand, which has 6 degrees of freedom^, the full representa-

tion of the hand involves totally 29 degrees of freedom. Some degrees of freedom 

in the hand are not completely 'independent'. They are constrained by the mus-

cles and ligaments of the nearby joints. One example is that we could hardly flex 

the proximal interphalangeal joint while keeping the distal interphalangeal joint 

unflexed. 

In addition to the degree of freedom, which provides a mean for measuring the 

complexity of the hand model, sometimes it is also necessary to concern about the 

range of motion of the hand. Unlike the degrees of freedom, the ranges of motion 

of the joints varies from person to person, and thus can be a source of uncertainty 

in posture and gesture recognition. On average, the extension-flexion^ motion 

^Abduction and adduction refer to the side by side movements of the fingers. Abduction 
moves the fingers away from each other and adduction is the vice verse. 

^The free motion of the hand is enabled by the joints of the arm. The shoulder has 4 degrees 
of freedom, the elbow has 1, and the forearm has 1 (rotation about itself). 

^Extension is the unflexing of a joint, and flexion is the reverse action of extension. 
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- ¾ |DOF 
Thumb Interphalangeal (TIP) 1 

Thumb Thumb Metacarpophalangeal (TMP) 1 
Trapeziometacarpal (TMC) 3 
Distal Interphalangeal (DIP) 1 

Fingers (x4) Proximal Interphalangeal (PIP) 1 
Metacarpophalangeal (MCP) 2 

Palm Metacarpocarpal (x2) 厂 1 
^ t a l 2 厂 

Table 2.1. The degrees of freedom (and their common abbreviations) of 
the hand joints above the wrist. 

of the finger joints has a range of around 90 to 100 degrees, and the abduction-

adduction motion has a range of around 40 degrees. It is worth to note that, 

although the palm has 2 degrees of freedom, contributed by the metacarpocarpal 

joints near the wrist, it has a very limited range of motion (up to several degrees 

only). These two joints are often omitted in most hand models. 

2.2 Hand—tracking technologies 

In order to monitor the pose and 3D orientation of the hand, and translate 

them into electrical signals which can be recognized by computers, researchers 

from various parts of the world started to develop different kinds of hand tracking 

devices since the 1970s. Although the hand-tracking technology has been devel-

oped for more than two decades, existing devices are still far from ideal. The main 

difficulty comes from the complexity of the human hand. 

There are various existing hand-tracking techniques. Most of them can be 

classified into two basic types: glove-based tracking and imaged-based tracking. 

The following explains the principles, examples, and benefits of the two types of 

tracking techniques. 
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Chapter 2 Virtual-hand Recognition 

2.2.1 Glove-based tracking 

Glove-based tracking is probably the most common hand-tracking technique 

nowadays. It detects the hand pose by using a number of small sensors attached 

to particular positions on a light-weight glove. Hand position and orientation 

is monitored using a 3D tracker attached to the hand. The glove^ is usually 

connected to a special hardware, which returns the sensor and tracker readings to 

the computer. In general, glove-based tracking is simpler and more efficient than 

other techniques. 

A number of gloves have been invented in the past decades. The first glove, 

Sayre Glove, is developed, based on the idea of Rich Sayre, at the University 

of Illinois, Chicago in 1976. Although the glove itself is inaccurate and it is 

impractical to be used as a gesture device, the idea raised the attention of many 

researchers. Afterwards in the 1980s, various parties in the world built their own 

gloves. A comprehensive survey of glove technologies is given by Sturman and 

Zeltzer in 1994 [43 . 

In the early 1980s, researchers at the MIT Architecture Machine Group and 

the MIT Media Lab built the MIT LED Glove for real-time computer graphics 

animation. In 1983, Grimes of the Bell Telephone Laboratories developed the 

Digital Data Entry Glove [17], which is designed for recognizing alphabets for the 

deaf. Although the above gloves are much better than the Sayre Glove, they are 

still problematic and never put into actual use. The first commercialized glove is 

the VPL DataGlove, developed by Zimmerman and Lanier in 1987 [54]. Despite 

that both the accuracy and the sampling rate of the glove are unsatisfactory 

for most applications, the VPL DataGlove is still widely used by many research 

institutions for its reasonable cost. In 1989, an exoskeleton glove, called Dexterous 

HandMaster (DHM), is developed by Exos. This glove accurately measures 20 

degrees of freedom of the hand, but is uncomfortable to wear. In the same year, 

^Here (and in the following context) the term "glove" refers to "glove-based hand-tracking 
device", rather than its semantical meaning. 
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^^rn^mmm^saSB^KHKK^BKMKII^^B^^^^^UilMSH^^^^S^^S^S3Bk - ¾ ^ ¾ 

: " ^ 
Figure 2.2. An 18—sensor CyberGlove and the CyberGlove Interface 
Unit (CGIU), which is responsible for the amplification and digitiza-
tion of the sensor signals of the CyberGlove. (Picture adapted from 
http://www. virtex. com/, the official homepage of Virtual Technologies.) 

a low-cost product, the Power Glove, is manufactured by a toy company called 

Mattel for home video games. As the glove is neither accurate, nor comfortable, 

it disappeared in the market after a few years. 

The most common glove right now is probably the CyberGlove, shown in Fig-

ure 2.2. The CyberGlove is first developed by James Kramer at Stanford Uni-

versity in 1990, and is now commercially available from the Virtual Technologies. 

The glove can be equipped with 18 or 22 flex sensors^, where each sensor has 

a resolution of 0.5 degree, and the Polhemus 3D tracking sensor, which detects 

the 3D orientation and position of the hand. In 1996, a tactile feedback option 

for the 18—sensor CyberGlove, called CyberTouch, is developed by the same com-

pany. Software-controlled vibrotactile stimulators are placed on each finger and 

the palm to simulate simple tactile feedback. 

Although the glove-based devices are very popular, there are certain limita-

tions on them. Some users found that it is uncomfortable to wear a glove, espe-

cially after a long period of usage. The mechanical parts attached to the glove, 

®The 18-sensor CyberGlove does not detect the DIP joints of the last 4 fingers. 
11 
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such as sensors, cables, power cords, etc., may sometimes inhibit the free move-

ments ofthe hand. Moreover, re-calibration for individual user is usually required 

to maintain the smoothness and stability of the glove. Periodic re-calibration is 

necessary for some gloves, because the sensor materials are sensitive to environ-

ment changes, such as temperatures, electric and magnetic fields, etc. 

2.2.2 Image-based tracking 

As their name suggested, image-based tracking, or camera-based tracking, 

monitors both the pose and the motion of the hand by analyzing the captured 

images of the hand. Early systems use a single camera to capture the silhou-

ette images of the hand and analyze the images by using image processing and 

computer vision techniques. These systems cannot recognize 3D postures since 

silhouette can only provide 2D informations. Later systems use 2 or more cameras 

and reconstruct the 3D postures from the stereo images obtained. 

Although image-based systems do not attach any mechanical device to users 

and thus provide a more natural and convenient interface, there are quite a num-

ber of drawbacks. First, analyzing hand images involve a lot of image processing 

and computer vision techniques, such as image segmentation, filtering, etc., which 

is usually very time consuming. Therefore, most image-based systems failed to 

perform recognition in real-time. Second, since the palm and the fingers are nat-

urally close to each other, occlusion happens frequently as the hand and fingers 

move. Using more cameras can probably solve this problem, but more computa-

tion is then resulted. Moreover, noise is created by the skin deformation around 

finger joints. Accuracy can be seriously affected by the above two factors. Lastly, 

as the hand is not physically connected to any hardware device, it is impossible 

to implement tactile or force feedback on these systems. 
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Chapter 2 Virtual-hand Recognition 

2.3 Problems in virtual-hand recognition 

The problems encountered in virtual-hand recognition can be divided into 

two types: problems in posture and gesture recognition, and how to utilize the 

recognition algorithms in real-time VR applications. The following explains the 

common problems in virtual-hand recognition. 

2.3.1 Hand complexity 

Obviously, posture and gesture recognition falls into the category of pattern 

recognition problems, which involve the classification of an input pattern according 

to the known sample patterns. In general, the difficulty of a pattern recognition 

problem is directly related to the complexity of the pattern representation. As 

mentioned in Section 2.1, the human hand possess up to 29 degrees of freedom in 

its full representation. Even some of them can be safely ignored, about 20 input 

parameters are usually required to describe a specific posture. Gesture recognition 

usually involves a lot more parameters, depending on the data representation 

scheme of the gestures in the recognition algorithm. 

2.3.2 Human variations 

Similar to some pattern recognition problems, such as speech recognition and 

on-line hand-writing recognition, the posture and gesture recognition suffers from 

one common problem: there is no "absolute” way to represent a pattern. For 

example, everyone knows how to write an "A，，，but none of them writes it perfectly 

the same as others. Even the same person cannot reproduce it exactly again. In 

other words, there are infinite "correct" ways to represent a pattern. This kind of 

variation is very significant in posture and gesture recognition. 

13 
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2.3.3 Immature hand-tracking technologies 

Another source of inaccuracy comes from the noise of the hand-tracking device. 

As mentioned earlier in this chapter, the current hand-tracking technologies are 

still far from ideal. Most common glove-based devices suffer from the problems 

such as unsatisfactory sensor resolution, low accuracy, high noise-to-signal ratio, 

and so on. Image-based tracking is even worse. Current image-based systems are 

too computation expensive to perform recognition in real-time. 

2.3.4 Time-varying signal 

Just like speech and on-line hand-writing, gesture is a time-varying signal. 

Therefore, the pattern representation of gesture recognition involves both the 

space and time domains. This makes gesture recognition more complex than other 

pattern recognition problems, which involve either one domain only. Moreover, 

signal segmentation in gesture recognition is extremely difficult, as there is no 

obvious starting or ending point of a gesture when the hand is moving continuously 

in the 3D space. 

2.3.5 Efficiency 

Frame rate is one ofthe most important concerns in virtual reality applications. 

In general, virtual reality systems must maintain at about 20 to 30 frames per 

second to provide a smooth visual effect of animation [14]. A number of necessary 

tasks, such as collision detection, scene rendering, object behaviour modeling, 

etc., have to be completed before displaying the next frame. The processing 

time allocated for each task is definitely limited. It is not reasonable to devote a 

large proportion of computation resources to the posture and gesture recognition 

process. Another concern is the latency, which is the time between the user's 

action and the computer's response. High latency usually results in user dizziness 
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and sickness. These two concerns impose a very high demand on the processing 

power of the computers. Although the processing power of the computers has 

been increased rapidly in recent years, it still cannot fulfill the demand of VR 

applications. Therefore, practical virtual-hand recognition algorithms must be 

simple and efficient, so that it would not affect the regular routines of the VR 

application. 
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Chapter 3 

Previous Work 

This chapter discusses previous work which contributes to this study. Sec-

tion 3.1 describes the development of the posture and gesture recognition algo-

rithms and examines the current approaches, including template matching, neural 

networks, statistical classification, discontinuity matching, model-based analysis 

and Hidden Markov Models. Section 3.2 introduces some existing systems which 

employ virtual-hand input. 

3.1 Posture and gesture recognition algorithms 

The first posture recognition system [17] is introduced by Grimes, along with 

his Digital Data Entry Glove as a whole, in 1983. The system is designed specifi-

cally for recognizing the American Sign Language alphabets. The sample postures 

for the alphabets are hard-coded electronically into particular combinations of the 

glove's sensor readings. This hardware approach is efficient and robust, but inflex-

ible, in a sense that only a small number of pre-defined postures can be recognized. 

There is no mechanism to recognize user-specified postures. 

Watson's technical report [48], published in 1993, gives an in-depth analysis of 

some posture and gesture recognition approaches, including template matching, 
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neural networks, statistical classification and discontinuity matching. Despite that 

some of these approaches are still being widely used, two new approaches, such as 

model—based analysis and Hidden Markov Models, are proposed in recent years. 

The following explains the general ideas, as well as the advantages and limitations 

of these approaches. 

3.1.1 Template Matching 

Template matching is the first available software approach in the field. Nev-

ertheless, it is still the simplest algorithm among all existing ones. 

In the template matching approach, a posture is represented by a template, 

which is a data structure containing a set of maximum and minimum valid values 

of each parameters of the posture. Figure 3.1 illustrates the idea of the template. 

In the recognition process, the value of each parameter of the input posture is 

compared with the corresponding maximum and minimum values of all templates. 

The absolute value of the difference of each parameter is summed for each tem-

plate. The posture with lowest total difference will be chosen, if the difference 

value is below a pre-defined threshold. 

The earliest system that applied this technique is the VPL's Gesture Rec-

ognizer [54], proposed by Zimmerman and Lanier in 1987. Although the term 

"gesture" is used, the system can recognize postures only. At each sample time, 

the sensor values read from the VPL DataGlove is fed into the recognizer and the 

recognizer returns the most similar match among all postures. A simple template 

editor is also provided with the recognition system to let users create or modify 

templates of the postures stored in the recognizer. 

The major advantages of this approach are simple and flexible. The idea of the 

template representation is simple enough for most users to understand and define 

their own postures quickly and easily. In addition, the approach is very efficient, 

due to its simpleness. However, the correctness of the recognition system can 
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Figure 3.1. A graphical representation of a template. The shaded areas 
indicate the valid ranges of the input parameters Po, Pi, . . . , Pn of a 
posture. 

be seriously affected by noise. In order to deal with the inaccuracies, mentioned 

in Section 2.3, the range of each sensor must be wide enough, which may be up 

to 30% of the full sensor range, to maintain a reasonable recognition rate. As a 

result, the recognizer can only support a very limited number of postures. The 

recognition rate drops significantly when more postures are stored, due to serious 

range overlapping of the templates. For instance, the VPL's Gesture Recognizer, 

which uses the VPL DataGlove as the input device, supports about 10 to 15 

postures only. 

3.1.2 Neural networks 

Neural works are introduced to simulate human intelligent in computers and 

have been successfully applied in many pattern recognition systems. As a result, 

researchers started to study the possibility of using neural networks in recognizing 

postures and gestures. There are quite a number of successful examples, notably 

Fels' GloveTalk [13] and its extension, GloveTalk II [12]. More detail descriptions 

of Fels' systems is given later in Section 3.2. 
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Neural networks are fine-grain connectionist models, which consists a large 

number of highly inter—connected processing elements configured in regular archi-

tectures. Each processing elements, or sometimes called node, collects the values 

from its input connections, performs a pre-defined operation on the values, and 

finally feeds the resulted value to the output connections. Every input connection 

is associated with a weight, indicating the importance of the input value to the 

node. The process of obtaining these weights is called training, or learning, which 

is necessary for the neural network to be put into actual use. During the training, 

labeled examples of the recognition patterns are passed to the neural network 

so that the network can "remember" these patterns. There are various types 

of neural networks, which can be classified according to the network topology, 

architecture and learning algorithm. 

Neural networks have many desirable features in posture and gesture recog-

nition. First, neural networks are highly noise—tolerant and handle incomplete 

information pretty well. This feature solves the inaccuracy factors in the pos-

ture and gesture recognition. Moreover, re-calibration for different users can be 

avoided as the systems are adaptive. However, this approach has also a number 

of serious drawbacks. First, there is no systematic way to design the architecture 

and topology, as well as the learning algorithm of the neural network. These ele-

ments must be determined by trial—and—error. This leads to a long system design 

stage. Another problem is the training of the network. A large number of training 

samples, which can be in terms of hundreds or thousands, are required for training 

the network. The training process must be restarted after adding new samples 

or removing existing samples. The time taken for training the network cannot be 

estimated. It may take hours or even days. Sometimes the training may even fail 

if the training data contains contradicting entries. 
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Figure 3.2. Some example features extracted from a gesture path. 

3.1.3 Statistical classification 

Unlike the previous two approaches, the statistical classification is far less com-

mon in the field. The statistical classification approach is originated by Rubine, 

who applied the method in his system, GRANDMA^ [39], which is an object-

oriented toolkit for building gesture-based applications. 

In Rubine's system, "gesture" is simply defined as a path of points on a 2D 

plane. The recognition process applies statistical decision theory, such as Bayesian 

maximum likelihood theory, to classify an input gesture. The classification is 

based on a set of features extracted from the gesture path. The features chosen 

are usually the geometrical information, such as bounding box, total length of 

^GRANDMA stands for Gesture Recognizers Automated in a Novel Direct Manipulation 
Architecture. 
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the path, sine and cosine value of the starting point and ending point, etc., as 

illustrated in Figure 3.2. The major strength of Rubine's approach is that it 

handles dynamic patterns in a simple way. Unfortunately, there are several deficits 

ofthe approach. First, the recognition is not fully automatic. The start and end of 

a gesture path must be indicated explicitly by the user. Second, there is no general 

rule which guides the selection of gesture features. The feature set used in the 

GRANDMA system was empirically determined by Rubine himself to work well 

on several different gesture sets, including the digits and the alphabets. Moreover, 

training is required as the classification is based on statistical information of the 

sample patterns. Rubine reports that 15 training examples for each gesture is 

usually sufficient. 

Rubine's system is extended by Sturman [42] to support three dimensional 

paths and to deal with the deficits mentioned above. More complex gestures are 

can be recognized by combining the results of applying the method on multiple 

paths of key positions of the hand, such as finger tips, palm, wrist, etc. Another 

significant change is that the feature analysis in the extended system is continual. 

Recognition can be done without indicating the start and end points explicitly. 

However, the problem of manual feature selection is remained unsolved. 

3.1.4 Discontinuity matching 

The discontinuity matching approach is proposed by Watson and O'Neill in 

1995 [50][49] as the gesture recognition system of the GLAD-IN-ART^ project. 

Discontinuity matching is the extension of the classic template matching tech-

nique to recognize dynamic patterns. Instead of raw sensor readings, the disconti-

nuity matching approach represents a gesture by a template of a set of sequences 

of discontinuities, which, instead of using control points, approximate the motion 

^ GLAD-IN-ART stands for Glove-Like Advanced Interface for the Control of Manipulatory 
and Exploratory Procedures in Artificial Realities. 
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Figure 3.3. The changes of one of the degrees of freedom in the hand 
over time in performing a gesture. 

curves of the degrees of freedom of the hand. As illustrated in Figure 3.3, a dis-

continuity, such as a peak, a trough, the start and end of a plateau, is the first 

derivate of the changes of a degree of freedom over time. During the recognition 

process, the discontinuities are extracted by analyzing the angular velocity of the 

degrees of freedom. The sequence of discontinuities for each degree of freedom 

considered are then compared with all sample gesture templates stored in the sys-

tem. The process is the classic template matching technique with some necessary 

minor changes. 

There are a number of advantages of discontinuity matching over the previous 

approaches. First, the gesture representation in this approach is relatively motion 

oriented, which is a significant feature in recognizing dynamic patterns. As the 

approach considers discontinuities rather than control points, the system is robust 

to scaling of gesture pattern over time. This also makes the system less sensible 

to input noise. Jitters can be removed from the input data by using simple filters. 

Nevertheless, the major limitation of the approach is the time complexity. The 

computations involved is more complex compared with the previous approaches. 
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The template comparison is not as simple and efficient as in the classic template 

matching. Watson recommended that future work should be concentrated on 

more effective indexing of sample gestures stored in the system such as tree or 

hash table. Another minor deficit of the system is that gesture training is only 

semi-automatic. A certain extent of human intervention is required. 

3.1.5 Model-based analysis 

In 1995, Lee and Kunii at the University of Aizu proposed a method to rec-

ognize hand postures [30]. Stereo camera images captured are compared to the 

sample hand models by an iterative improvement approach, guided by a set of 

constraints. 

There are a number of disadvantages of this system. Lee and Kunii pointed 

out in their report that both the efficiency and accuracy of the system are unsat-

isfactory. It takes about 45 minutes to obtain a precise recognition result on an 

SGI Iris workstation. Obviously this is not acceptable in real VR applications. 

Taking less iterations improves the efficiency, but the accuracy, on the other hand, 

is seriously affected. In addition to the number of iterations, the accuracy of the 

is also affected by several more factors. First, noise is introduced by skin de-

formations around joints and the occlusion between fingers and the palm. The 

difference between the sizes of the hand models and the user's hand may also led 

to computation errors. 

3.1.6 Hidden Markov Models 

The success of Hidden Markov Models (HMM) in speech recognition and on-

line hand-writing recognition has drawn researcher's attention recently. In gen-

eral, Hidden Markov Models are effective in extracting and recognizing both static 
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and dynamic patterns, and are thus suitable for both posture and gesture recogni-

tion. The approach is very robust and quite efficient. Most importantly, segmen-

tation of gestures is implicitly handled in the models. Although this approach is 

very new in posture and gesture recognition, both Liang and Nam showed their 

successes recently. Liang's sign language recognition system [31] uses HMM to rec-

ognize 50 fundamental postures in the Taiwanese Sign Language, while Nam [34 

applies HMM in recognizing the hand movement path over time. 

Nevertheless, the Hidden Markov Model approach has some serious limitations 

very similar to neural networks. There is no formal rule which guides the develop-

ment of the system. The design of the important elements of the system, such as 

model formulation, pattern representation, etc., may not be obvious. The number 

of states in the HMM must be fine-tuned for each sample pattern and determined 

empirically. The HMM approach has a slightly edge over neural networks that 

the training time is shorter, and re-training is not necessary when adding or re-

moving sample patterns. However, large number of labeled training examples is 

still required to build the statistic basis of the model. 

3.2 Hand-input systems 

There is no doubt that hand interfaces are more natural and convenient. With 

the invention of hand-tracking device and the introduction of hand recognition 

algorithms, it is now possible to use our hands to communicate with computers. 

Sturman conducted a comprehensive study on the topic whole-hand input in his 

doctoral thesis [42]. He mentioned that whole-hand input possess three important 

features, including naturalness, adaptability and dexterity, which make it suitable 

for various applications. The following introduces some hand-input systems. 

24 



Chapter 3 Previous Work 

3.2.1 Gesture languages 

Interpreting gesture languages is one of the driving tasks of hand-input sys-

tems. The two major application areas of gesture languages are command input 

in computer applications and human communication. 

Gimes' Digital Data Entry Glove Interface [17], developed in 1983, is prob-

ably the earliest project in the field. His system uses a hardware approach to 

recognize the American Sign Language (ASL) alphabets. Afterwards, many other 

systems are developed using various techniques. In 1989, Kramer, who created 

the CyberGlove, used a statistical approach to translate ASL into spoken En-

glish [27]. Postures are mapped to predefined ASL letters or symbols and stores 

in an output buffer. When a word phrase is complete, the result will be produced 

by a voice synthesizer. Fels did a very similar work, but in gesture level. His 

GloveTalk [13] capture the hand motions and translate it to speech. He used five 

independent neural networks to analyze 5 different properties of hand motion, 

including the trajectory, shape, direction, displacement and speed. The system 

recognizes 203 signs based on 66 postures combined with 6 movement stages. The 

result is directed to a speech synthesizer. Fels extended his work and developed 

GloveTalk II [12] in 1996. The extended system used only 3 feed-forward networks 

and is more efficient. More features are supported, including unlimited vocabulary, 

direct control of speech frequency and volume. In 1996, Liang proposed a Hidden 

Markov Model approach to recognize Taiwanese Sign Language (TSL) [31]. His 

system recognizes 50 TSL fundamental postures and analyzes the posture streams 

by using dynamic programming techniques. 

3.2.2 3D modeling 

3D interactive modeling is one ofthe major application areas of virtual reality. 

Most commercial 3D modeling tools provide only 2D interfaces and greatly reduce 

the effectiveness of the modeling tasks. With 3D hand interface, the modeling is 
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more convenient and efficient. Direct manipulation, which is one of the most 

important concerns in human-computer interaction, is also made possible. 

In recent years, the topic has become very popular and many 3D modeling 

systems are proposed. The VLEGO system [22], proposed by Kiyokawa et al. 

in 1996, models virtual environment based on toy blocks. The system uses two 

3D pointing devices to simulate two-handed environment. The primitives in the 

system are all rectangular toy blocks. Several more systems are developed in 

1997. Kameyama's Virtual Clay Modeling System [20] supports free-formed direct 

manipulation on the shape of a virtual object. The input device of this system 

consists of a 3D tracker, a 3D mouse and a tactile sensor. Billinghurst et al. 

proposed a virtual scene creation tools called 3D Palette [5]. The 3D Palette 

accepts various input, including tablet and digitizing pen, 3D tracker and even 

simple voice commands. Korida and Utsumiya at the Oita University incorporates 

the TGSH, which stands for Two-handed Gesture environment SHell, with a 

3D geometric modeler [36]. The system is equipped with two CyberGlove's and 

performs dynamic gesture recognition using a recurrent neural network and a 

standard back-propagation algorithm. Due to the high CPU intensity nature 

of the dynamic gesture recognition, the system runs on a network of machines, 

including one SGI Onyx, two R5000 SGI Indy's and a Sun Ultra Enterprise 2. The 

system recognizes 6 two-handed gesture patterns. Later on, they built another 

interactive 3D interface called CHINA [25] on top ofTGSH. The system allows the 

user to create and manipulate 3D objects. It uses a feed-forward neural network 

for static posture recognition and the same recurrent neural network in TGSH to 

interpret hand gestures. 

3.2.3 Medical visualization 

Volume visualization is a technique which applies volume rendering algorithms 

to create images of three dimensional data. Medical visualization is one of its ma-

jor application. Medical volume data, such as brain, lung, etc. obtained by using 
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CT scanners (Computed Tomography) or MRI (Magnetic Resonance Imaging) 

scanners, are represented by 2D projections of the images or stereo images. Users 

are allowed to navigate, or manipulate the volume data with the appropriate VR 

devices. As the visualization itself is very computation intensive, many existing 

visualization systems employ very simple user interface to reduce the overall work-

load of the system. The Virtual Workbench, developed by Poston and Serra [38], 

uses a simple 3D tracker as the input device. 

Recently, Clifton and Pang developed a direct manipulation system [10] that 

allows the user to intuitively slice, dice, and carve the volume data set under 

investigation using hand postures. The posture recognition approach used in the 

system is a very simple template matching. Only six postures can be recognized. 

Nevertheless, the system demonstrated the feasibility of incorporating hand-input 

in medical visualization systems. 
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Posture Recognition 

As mentioned in Chapter 2, one major problem of posture recognition is that 

both the sample postures and the postures to be recognized may be imprecise. 

This kind of imprecise knowledge can be best dealt with using fuzzy concepts. 

A fast and simple posture recognition algorithm using fuzzy model is proposed. 

This chapter first presents the basic ideas of fuzzy sets and fuzzy logic, and then 

describes the proposed fuzzy posture recognition system. 

4.1 Fuzzy concepts 

The basic concepts of fuzzy sets and fuzzy logic are introduced by Zadeh in 

1965 [51]. Fuzzy set theory can be regarded as a generalization of the conventional 

crisp set theory. It provides a mathematical way to represents vagueness and 

uncertainty in everyday life. Fuzzy interpretations are usually more natural and 

useful in solving real life problems, and thus offer a better interface between human 

and computer. Fuzzy logic, as an extension of the traditional two-valued boolean 

logic, manipulates this kind of data in a mathematical way based on the fuzzy 

set theory. Fuzzy sets and fuzzy logic has been successfully applied in various 

field, including expert system, approximate reasoning, pattern recognition, image 
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processing and many others. The following explains the major breakthroughs of 

the fuzzy concepts. 

4.1.1 Degree of membership 

In the conventional crisp set theory, membership relation has only two out-

comes: either "in the set" or "not in the set". Unfortunately, the crisp concept 

fails to represent some relations in an useful way. For instance, we cannot define 

the relation 'tall' in this way: "Everyone over k cm is tall, otherwise he is not 

tall", as it is not sensible to say k - 0.1 cm should is not 'tall'. It does not exist 

a clear-cut boundary in practice which distinguishes 'tall' and 'not tall，. 

These relations, which are vague or imprecise in nature, are better represented 

using fuzzy concept. In the fuzzy set theory, there is no clear boundary which 

defines the membership relation. Figure 4.1 illustrates the difference between the 

membership concept of the two theories. 
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Figure 4.1. Membership function of (a) a fuzzy set and (b) a crisp set 

The two graphs in Figure 4.1 are usually referred to as membership functions, 

which map each element of the fuzzy set to its range space. The vertical axes 

in the graphs represent the degree of membership of a fuzzy element. The degree 

of membership, which can be any real number ranges from the unit interval 0 to 

1 inclusively, is used to measure how likely that an element belongs to a fuzzy 

set. Linguistically, the degree of membership can be regarded as modifiers such 
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as ‘very，, ‘quite，, ‘rather，, etc. Most common membership functions, as the one 

shown in Figure 4.1(a), changes gradually from 0 to 1 and thus introduces a 

soft boundary over a certain range. The conventional crisp set can be regarded 

as a special case of fuzzy set, whose membership relation is defined by a step 

function (Figure 4.1(b)). 

4.1.2 Certainty factor 

In addition to vagueness, very often we have to manipulate uncertain, or even 

incomplete information, as illustrated in the following example. Someone was sick 

and he went to the clinic. The doctor asked his patient for his symptoms and then 

conducted a simple diagnosis. Finally, he told his patient, “Most probably, you 

are . . . “. The wordings of the doctor reflects that he is not 100% sure about the 

result, because the information he obtained contains uncertainty. The symptoms 

provided by the patient may not be completely correct and, moreover, there may 

be some hidden symptoms that cannot be spotted out during the diagnosis. 

An important feature of the fuzzy concepts is its capability to deal with un-

certainty. While the degree of membership successfully handles vagueness and 

imprecision, the concept of certainty factor, proposed by Shortliffe in his expert 

system MYCIN in 1976 [41], is introduced to deal with uncertainty. Certainty 

factor, which is also a real number lies between 0 and 1, describes how certain 

a piece of information is true. In other words, it is a measure of belief, which is 

usually expressed by "absolutely", "possibly", "maybe", "unlikely" etc. in human 

language. 

4.1.3 Evidence combination 

Sometimes there may be two or more pieces of information which directs to 

the same conclusion. In the "doctor and patient" example mentioned in the last 
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section, the doctor drew his conclusion based on two things: the patient's descrip-

tion of his symptoms and the result of his diagnosis. Although there are some 

uncertainties, the doctor is quite confident (he said "Most probably") about the 

conclusion, since both pieces of evidence lead to the same conclusion. Combining 

evidence improves the reliability of the result. 

The Z-/ /system, a fuzzy expert system shell developed by Leung in 1988 [29], 

uses a method called evidence combination to calculate the reliability of the con-

clusion from the certainty factors of individual evidence. Suppose that there are 

two events, whose certainty factors are cfi and c/2 respectively. The certainty 

factor of the combined evidence, c/12, is calculated by: 

c/12 = c / i + c/2 X (1 - c / i ) 

= c / 1 + c / 2 - c / 1 X c / 2 (4.1) 

If more evidence is available, the overall certainty factor can be obtained by 

applying Equation 4.1 on c f u and cf3 to find c/1..3 and so on. 

4.2 Fuzzy posture recognition system 

Pattern recognition is one of the major application areas of fuzzy theories. 

Fuzzy models have been successfully applied to many pattern recognition prob-

lems, such as speed recognition and on-line hand-writing recognition. However, 

no current posture recognition approach applies fuzzy theories to solve the prob-

lems of noise and variance. 

Instantiated by the above facts, a novel posture recognition algorithm is pro-

posed to overcome some serious limitations of the previous approaches by using 

fuzzy theories. This section explains the objectives, working principles and detail 

designs of the proposed system. 
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4.2.1 Objectives 

As mentioned in the previous sections, there are still many limitations in the 

existing hand recognition approaches, which made them impractical to be inte-

grated with virtual reality applications. The proposed fuzzy posture recognition 

system aims at solving both the problems of noise and efficiency at the same time. 

The major objectives of the proposed system is listed below: 

• The system should be capable of dealing with imprecise posture data. 

• The recognition process should be efficient and requires little amount of 

computation time. 

• The mechanism of adding and removing posture records should be simple 

and efficient. 

• The system should be flexible. It should work with any set of postures 

without any tuning or modification to the system. 

4.2.2 System overview 

The fuzzy posture recognition system is designed to handle 19 degrees of free-

doms of the human hand, including the three joints for each finger and the four 

abduction angles. In the recognition process, the system compares the input 

posture against the posture records stored in the system using fuzzy operations. 

When comparing two postures, the system first computes the similarities, which 

are fuzzy variables, ofcorresponding parameters of the postures. The overall simi-

larity is then obtained by combining the results, such as the degree of membership 

and certainty factor, of individual comparisons. This approach is very similar to 

the classic template matching, which handles the inaccuracies by widening the 

possible ranges of the parameters. 

A classification technique is proposed to improve the efficiency of the system, 
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which is proportion to the number of posture comparisons taken during the recog-

nition process. When a posture database is inputed into the system, the system 

classifies the postures according to a subset of the input parameters and groups 

similar postures into the same class. Only the possible class will be searched dur-

ing recognition, and thus greatly reduces the number of postures comparisons. 

Fuzzy theories is also applied in classification. 

There are several advantages of this design. First, fuzzy operations involve 

only very simple arithmetics, and are efficient in nature. Second, assuming that 

the postures records are uniformly distributed over all classes, only a small number 

of postures has to be considered during the recognition process. This feature is 

especially important when the size of the posture database is large. Third, as 

some of the input parameters are already considered at the classification, which is 

done at the start-up time, less parameters are required to be handled in run-time 

and makes the system more efficient. 

The system consists of three major functional components: the posture database, 

the classifier and the identifier. The interaction of the three components is shown 

in Figure 4.2. The posture database stores the posture records and the classifica-

tion results. The classifier and the identifier are responsible for the classification 

aii(l recognition respectively. Detail descriptions on the design of these compo-

nents are given later iii this section. 

4.2.3 Input parameters 

As nientioned in Chapter 2, the huinan hand is too complex to model in full 

inaniier. It is impractical to handle all 23 degrees of freedom of the hand in 

the recognition. The fuzzy posture recognition system considers 19 degrees of 

freedom, including the three extension/flexion angles of each finger and the four 

abduction/adduction angles. Since the efficiency of the system is direct related 

to the number of parameters handled, the remaining less important degrees of 
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Figure 4.2. System Model 

freedom are ignored. 

Most popular gloves, such as DataGlove and CyberGlove, detect the exten-

sion/flexion angles of the finger joints. Most current recognition methods are 

based on the values of joint angles. However, it is believed that there are some 

other derivatives which are better than the joint angles, in terms of both storage 

and processing time. The tip positions of fingers are the alternative proposed in 

this approach. 

Although each finger involves four degrees of freedom, the extension/flexion 

movement of the finger always restricted on the same 2D plane. The tip position 

can be clearly specified by polar coordinates ("，r), with the origin located at the 

MCP joint, as shown in Figure 4.3. In the system, a posture is represented by the 

five tip positions and the four abduction angles. The finger tip position can be 

easily calculated from the joint angles by using simple 2D rotation and translation 

of coordinate systems. 

Despite that there is a small overhead of calculating the finger tip position, this 

posture representation has two advantages. First, the number of variables for each 

finger is reduced from three to two. The overall complexity of the posture, as well 
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Let (xi, yi), (x2,2/2)，（$3,2/3) denote the coordinates of the finger tip position with 
respective to the coordinate systems Ci, C2, C3 respectively. 

Xi _ r*i cos 61 
_ yi J _ [ n sin 9i _ 

X2 _ cos 62 — sin 62 Xi + r*2 
y2 sin 62 cos 62 yi 

_ {xi + r*2) cos 62 — yi sin 62 
{xi + r2) sin O2 + yi cos 62 

^3 = [x2 + r 3 ) cos 6>3 — y2 sin 6>3 
_ ys \ - |_ {x2 + r3) sin 03 + y2 cos 6>3 . 

r = \Jxhyf 

0 = tan-^(y3/x3) 

Figure 4.3. Transformation from joint angles to finger tip position 
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Figure 4.4. A graphical representation of the posture database. The 
numbers inside the dotted line boxes indicate their corresponding index 
to the posture record. 

as the time taken for each recognition, can be saved. Second, finger tip position is 

a much clearer feature than joint angles, in terms of the ease of classification and 

recognition. Usually, the range of each joint angle is around 90 degrees, while the 

error due to noise or human variation may be up to 10 to 20 degrees. The error is 

very large compared to the range of movement. Recognition based on finger tip 

positions is more accurate, since even if each joint has an error of 10 degrees, the 

error of the finger position is relatively smaller. 

4.2.4 Posture database 

The logical structure of the posture database is shown in Figure 4.4. The pos-

ture database consists two components. The first one is an array of posture records. 

Each posture record stores the information required to describe the posture. The 

stored information are listed below: 
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• The name of the posture. 

• A user-assigned ID number for easy identification of a posture. 

• The parameters describing the posture, including the five finger tip positions 

and the four abduction angles. 

The second component is the classification table, which is built for effective 

indexing of similar postures. The table consists many classes, where each class 

represents some characteristics possessed by some postures. For example, the 

class with index 0 may represents all postures with five fingers unflexed, while the 

class with index 20 may represents all postures with the last four fingers closed, 

etc. In other words, a class is actually a list of pointers to the postures with the 

same characteristics. As there are always some uncertainties in the classification, 

each pointer is associated with a certainty factor, which tells how certain that the 

posture belongs to the class. The size of the classification table is determined by 

the classification rules, described in the next section. 

4.2.5 Classifier 

The classifier is responsible for the building of the classification table inside the 

posture database. When a new posture is inserted into the system, the system first 

constructs its posture record and stores it in the posture database. The classifier 

is then invoked to classify the posture according to a subset of the posture's input 

parameters. Lastly, pointers to the posture is appended to the corresponding 

classes. 

In the system, classification is based on eight parameters, including the polar 

distances, r, of the five finger tip positions and the three abduction angles between 

the last four fingers. The abduction angle between the thumb and the index 

finger is not handled here. Each of the above parameters are divided into several 

regions. The polar distance r is divided into 4 regions, indicated by 0 to 3, and 

the abduction angle is divided into 2, indicated by 0 and 1. The total possible of 
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Figure 4.5. Computation of a class index 

combinations of the above configuration equals 4̂  x 2̂  二 8192，which is taken to 

be the number of classes in the posture database. 

The class index of a posture is computed from the regions where the posture's 

parameters lay. The computation is similar to transforming an 7V-based number, 

whose first 5 digits are base-4 and the last 3 is based—2, into decimal form. The 

process is illustrated in Figure 4.5. The number of regions are specially chosen to 

be multiples of 2, so that the computation involves only bit operations, such as bit-

shifting and bitwise—or. These bit operations are more efficient than multiplication 

and addition in most computers. 

Although we can assume that the distribution of the values of the joint angle 

is uniform, same assumption does not hold for the polar distance r. After some 

experiments, it is found that the distribution of r is bell-shaped with the peak 

shifted away from small values of r. If r is simply divided into 4 equal regions, 

the result of classification will be heavily clustered. In order to have a better 

classification result, the regions is divided according to the quartile ranges of the 

distribution of r. 

Fuzzy boundaries are used in defining the regions. Figure 4.6 shows the bound-

aries of the four regions dividing r. Each boundary is a trapezium membership 
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Figure 4.6. The membership functions defining the 4 fuzzy boundaries. 

function. The trapezium member function is chosen because the computation in-

volved is simple. As shown in the figure, a data point may fall in the overlapping 

area of more than one region. That point is considered to be the members of all 

those regions, with the respective certainty factors. 

When a posture is passed to the classifier, the classifier finds out the set of 

classes which should contain the posture. If one of the eight parameters falls in 

the overlapping area of two regions, two pointers to the posture will be inserted 

into the database. If all eight parameters fall in overlapping areas, 2̂  = 256 or 

more pointers will be inserted. A class index is computed for each pointer and 

the pointer is then stored in the corresponding class. 

A certainty factor for each pointer will be computed and stored together with 

the pointer. This certainty factor describes how 'certain，a posture belongs to the 

class. Let cfi to cfs denote the certainty factors of the eight parameters. The 

overall certainty factor c/i...8 is obtained by applying Equation 4.1 successively on 

cfi and c/2, c/12 and c / 3 , and so on. 
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Figure 4.7. Membership function for similarity 

4.2.6 Identifier 

The identifier is responsible for posture recognition. When an input posture is 

passed to the identifier, the identifier first decides which class should be searched. 

A class index for the posture is computed using the same method described pre-

viously. The identifier then retrieves the posture records by the pointers stored in 

the class, and compares them with the input posture. 

Since eight parameters of the posture are already considered during classifica-

tion, the identifier only has to take care of remaining six parameters, i.e. the polar 

angles 9 of five finger tips and the abduction angle between the thumb and the 

index finger. The similarities of the corresponding parameters, which are fuzzy 

terms, are measured by the absolute difference between the parameters. Figure 4.7 

shows the membership function which maps the absolute difference to the degree 

of membership. The similarity drops with the absolute difference increases. 

The six certainty factors obtained are then combined with the one calculated 

by the classifier, by applying Equation 4.1 successively. The result obtained is the 

overall certainty factor, which represent how the certainty of the recognition result. 

The posture record with the highest certainty factor in the class is then sorted 
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out by the identifier. If the certainty factor is above a pre-defined threshold, the 

posture is returned. Otherwise, the identification is considered to be failed. 
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Chapter 5 

Performance Evaluation 

This chapter evaluates the fuzzy posture recognition system. The behaviour 

of the system is examined through two sets of experiments. Section 5.1 describes 

the details of the experiments carried out and their results. Section 5.2 discusses 

the strengths and weaknesses of the proposed method and compares the system 

with existing approaches. 

5.1 Experiments 

The purpose of our experiments is to examine the two basic aspects of the fuzzy 

posture recognition: accuracy and efficiency. The following describes the methods 

and results of the experiments performed. All our experiments are performed on 

an SGI Octane workstation, which is equipped with an R10000 processor and 

128M bytes physical memory, running under the operation system IRIX 6.4. The 

fuzzy posture recognition system and all testing programs in the experiments are 

written in C + + and compiled using GNU g + + version 2.7.2. 
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5.1.1 Accuracy analysis 

The first experiment aims at investigating the behaviour of the fuzzy pos-

ture recognition system under different noise distributions. The experiment is 

performed as follows: 

1. Load a sample database into the system 

2. Select a posture record from the database 

3. Add noise to the parameters of the posture record according to a distribution 

function 

4. Recognize the noisy posture 

5. Record the correctness of the result 

The experiment is repeated using different databases and different noise dis-

tribution functions to increase the reliability of our analysis. As noise, like many 

real-life examples, is usually turned out to be a normal distribution i (or Gaus-

sian distribution), our experiments will be focused on normally distributed noises. 

Noise under bounded uniform distribution is also considered. The results of the 

experiments are summarized in Table 5.1 and Table 5.2. 

As observed in the tables, the major factor that affects the recognition rate 

is the distribution of the input noise. The recognition rate of the fuzzy pos-

ture recognition system varies as the input parameters are subjected to different 

noise distribution functions. Figure 5.1 and Figure 5.2 summaries the relation-

ship between the recognition rate and the noise distribution function in graphical 

representation. 

As shown in the Figure 5.1，the recognition rate only declines slightly when 

the standard deviation of the noise distribution in the input parameter increases 

from 5 degrees to 15 degrees. The recognition rate drops dramatically when the 

1 / W = ^ e ¥ 
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Number of postures Accuracy  
in the database a = 5 cr = 10 a = 15 cr = 20 a = 25 a 二 30—  

l0 100.00% 99.93% 94.56% 77.22% 56.83% 39.81% 
20 100.00% 99.84% 94.93% 74.80% 54.60% 38.48% 
30 100.00% 99.74% 93.93% 71.41% 53.29% 38.04% 
40 100.00% 99.50% 93.16% 70.73% 52.35% 37.36% 
50 100.00% 99.41% 92.42% 70.65% 51.48% 36.66% 
60 100.00% 99.35% 91.91% 70.49% 51.06% 36.36% 
70 99.99% 99.17% 90.61% 69.04% 49.71% 35.54% 
80 99.99% 98.96% 89.83% 67.99% 48.97% 34.82% 
90 99.99% 98.86% 89.63% 67.32% 48.07% 34.02% 
m 99.99% 98.64% 88.16% 67.08% 47.24% 33.61% 

Table 5.1. The behaviour of the fuzzy posture recognition system under 
normal distributions with different values of standard deviation a {fi = 0) 
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Figure 5.1. The relationship between recognition rate and the size of 
posture database for different noise distributions (normal distribution) 
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Number of postures Accuracy  
in the database n 二 10 n 二 20 n 二 30  

l0 100.00% 99.82% 70.06% 
20 100.00% 99.63% 67.96% 
30 99.99% 99.26% 67.62% 
40 99.97% 98.84% 67.10% 
50 99.97% 98.56% 65.34% 
60 99.96% 98.45% 63.50% 
70 99.94% 98.00% 61.95% 
80 99.92% 97.62% 60.95% 
90 99.90% 97.55% 60.01% 
m 99.87% 97.04%) 58.89% 

Table 5.2. The behaviour of the fuzzy posture recognition system under 
uniform distributions with different bounding values (n) 
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Figure 5.2. The relationship between recognition rate and the size of 
posture database for different noise distributions (uniform distribution) 
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standard deviation exceeds 15 degrees. This result is normal and can be easily 

explained. In practice, the error in the input parameters would not be too large. In 

such cases, the input posture should be regarded as some other distinct postures. 

Figure 5.2 shows a very similar trend. 

From the experimental results, we conclude that the fuzzy posture recognition 

system is accurate. The use of fuzzy logic successfully deal with the noises in the 

input parameters. The correctness of the system is not affected by the size of the 

posture database. 

5.1.2 Efficiency analysis 

Another major concern of the recognition system is the efficiency. Our second 

experiment aims at investigating the efficiency of the recognition system when dif-

ferent posture databases are used. The relationship between the CPU time taken 

and the size of the posture database is particularly interested. The experiment is 

performed as follows: 

1. Load a sample database into the system 

2. Prepare an input posture by random 

3. Recognize the posture prepared in the previous step 

4. Repeat Step 2 and 3 for 1,000,000 trials 

5. Record the time taken for the recognition process 

As in the previous experiment, the efficiency test is repeated using different 

posture databases to increase the reliability. As template matching is the most 

efficient one among the current approaches, the experiment is also performed using 

a classic template matcher. Table 5.3 generalizes the result of the experiment. 

As observed in Table 5.3, the proposed system is very efficient. The average 

CPU time taken for recognizing one posture takes only tens of micro-seconds. It 
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Number of postures CPU time (10"^s) “ 
in the database Fuzzy Posture Recognition Template Matching 

— l0 13.65 27.99 
20 14.53 55.65 
30 15.50 83.51 
40 16.35 110.97 
50 16.71 138.90 
60 17.46 166.82 
70 18.83 194.81 
80 19.75 222.94 
90 20.58 249.99 
^ 21.35 279.62 

Table 5.3. Comparison of the efficiency of the two posture recognition 
approaches 
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Figure 5.3. The relationship between efficiency and the size of posture 
database 
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is even more efficient than the template matching approach, especially when the 

size of the posture database is large. 

Figure 5.3 shows the change of CPU time taken by both approaches as the 

size of posture database increases. The technique of classification shorten the time 

taken for recognition, as the number of operations needed for each recognition is 

greatly reduced. For small databases, our system is about 50% faster than the 

template matching approach. As the time taken for class indexing becomes less 

significant in case of larger databases, the speed-up can be further improved. 

5.2 Discussion 

Although we have successfully shown that the proposed recognition system 

is both accurate and efficient, the system is not a perfect solution to the prob-

lem. This section analyses the strengths and weaknesses of the proposed system 

and compares the system with other current methods. A brief summary on the 

proposed system will be given at the end of this section. 

5.2.1 Strengths and weaknesses 

Accuracy Accuracy is always the most important concern in recognition sys-

tems. In the proposed system, we tried to apply fuzzy concepts to deal with the 

inaccuracy factors in the problem of posture recognition. One source of error 

comes from the hand tracking device. According to Kessler's evaluation of Cy-

berGlove [21], the standard deviation of the sensor data is around 10 degrees. As 

shown in the previous section, this level of noise can be accurately handled in the 

proposed system. 
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Efficiency As discussed in Chapter 2, the recognition system must be efficient. 

Like the classing template matching approach, which is well-known for its sim-

pleness and efficiency, the calculation involved in our proposed system is very 

simple. In addition, the technique of classification greatly reduces the number 

of comparisons in the recognition procedure. These two facts explains why our 

system out-performs the classic template matching approach in our experiments. 

The recognition procedure can be finished within tens of micro-seconds even when 

the posture database is very large (100 postures). If a VR application needs 30 

postures and runs at a frame rate of 30 frames/sec, the time interval between two 

frames is 1/30 second 卜 33333.33 micro-seconds). The proportion of the recog-

nition process required is only 15.50/33333.33 � 1 / 2 1 5 0 of the total resources. 

Flexibility Many existing hand recognition systems work for several pre-defined 

posture sets only. Some of them need fine-tuning, or re-training to run with other 

posture sets. Our system does not have this problem. It works properly with all 

testing posture databases (more than 100 distinct posture sets) in our experiments. 

This is an advantage for system developers, since our system allows them to design 

a specific posture command set for their application. A graphical user interface 

for creating and editing posture database will be described in Chapter 6. 

Training In some recognition approaches, such as neural network and HMM, 

extensive training is needed before these system could work properly. A large 

number of labeled training examples are also required. These processes consume 

much human and computation resource. On the contrary, our system is much 

simpler. Our system needs only one example for each sample posture and no 

extensive training is required. 

Gesture recognition The major limitation of the proposed recognition system 

is that it is not applicable to dynamic patterns, i.e. gestures. Current approaches 

that work for gestures include HMM, statistical classification and discontinuity 
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matching. This limitation affects the expression power of the use of whole-hand 

input. The proposed system cannot be applied in some specific applications, such 

as sign language interpretation. 

5.2.2 Summary 

The proposed fuzzy posture recognition system is evaluated in this chapter. 

In conclusion, we have shown that the proposed system possesses several advan-

tages over some existing approaches�First, our system is accurate and efficient. 

The system successfully handles the problem of noise by using fuzzy logic. The 

technique of classification significantly reduced the time taken for recognition. It 

needs only a very small proportion of computation resources. Moreover, the sys-

tem does not require fine-tuning or re-training for different databases. Real-time 

insertion and deletion of posture samples is possible. However, our current system 

cannot recognize dynamic pattern, which limits the expression power of the use 

whole-hand input. 
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Posture Database Editor 

In Chapter 4, a fuzzy posture recognition system is presented. This chapter in-

troduces a graphical user interface designed for editing and validating the posture 

database used in the fuzzy posture recognition system. This posture database 

editor is called “PostMan”, which stands for "Posture Manager". The system 

architecture, user interface design and user functions of PostMan are described in 

the following sections. 

6.1 System architecture 

The posture database editor "PostMan" is designed to work on SGI work-

stations. A common object-oriented programming language, C + + , is used to 

developed the system. This section describes the hardware configuration and the 

software tools used in developing the system. 

6.1.1 Hardware configuration 

The hardware components of the whole system can be divided into three sub-

systems: the host computer, hand-input system and the 3D tracking system. The 
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Figure 6.1. Hardware configuration of the system 

configuration of these components are shown in Figure 6.1. 

Host computer The host computer in the system is an SGI Octane work-

station, equipped with one R10000 processor and 128M bytes physical memory, 

running under the operation system IRIX 6.4. The output device of the computer 

is an 24-bit color monitor, which produces high quality true-color display. The 

main jobs of the host computer includes collecting information from the other two 

sub-systems and running the application program. 

Hand-input system The hand-input system has two components, including 

one 18-sensor CyberGlove and one CyberGlove Interface Unit (CGIU). The Cy-

berGlove detects the sensor signals and sends them to the CGIU. The sensor 

signals are then amplified and digitized by the CGIU hardware. Upon request 
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from the host computer, these data are transmitted back to the host computer 

via an RS-232 serial port. 

3D tracking system A Polhemus 3SPACE FASTRAKsysiem is used to track 

the 3D position and orientation of the hand. The 3Space FASTRAK system 

includes a System Electronics Unit (SEU), a transmitter and a receiver. The SEU 

drives the transmitter to generate electro-magnetic fields and collects the signals 

from the receiver, which is attached near the wrist of the CyberGlove. The SEU 

hardware computes position and orientation of the receiver, and sends these data 

back to the host computer via an RS-232 serial port. 

6.1.2 Software tools 

In addition to the fuzzy posture recognition system, a few software tools are 

used in the development of Postman. With the help of these tools, the system can 

be developed in a more efficient way. The following briefly describes the software 

tools used and their functions. 

VirtualHand software library This software library [28] is shipped with the 

CyberGlove to for developing virtual-hand applications. The library contains 

many useful C functions, including high-level routines for the initialization of the 

glove, communication routines for the hand-input and the 3D tracking systems, 

graphics routines for drawing a virtual-hand model, and some common vector 

and matrix operations. 

OpenGL graphics library In recent years, OpenGL [35] has become the stan-

dard graphics library and is available in many platforms. It offers a software 

interface for 2D and 3D graphics. The virtual hand model used in this system is 

drawn using OpenGL. 
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IRIS ViewKit toolkit The toolkit [19], developed by Silicon Graphics, is used 

to build graphical user interface more easily. It provides a collection of user inter-

face components and thus the time taken for programming is greatly shortened. 

Most widgets in PostMan, such as windows, pull-down menus, dialog boxes, push 

buttons, etc. are built using this toolkit. 

6.2 User interface 

As mentioned at the beginning of the chapter, the main purposes of PostMan 

are editing and validating user-defined posture databases, which can be then 

saved for future use. PostMan has two operation modes: Edit mode and Test 

mode. User functions supported in Edit mode includes the insertion and deletion 

posture records, glove calibration and fine adjustment of the threshold value which 

defines the minimum certainty factor of identifying a posture. Test mode, on the 

other hand, is used to validate the current posture database. File operations are 

supported in both modes. 

A snapshot of PostMan is captured and shown in Figure 6.2. Different com-

ponents of the graphical user interface are also labeled in the figure. The GUI 

can be divided into several areas, including the menu bar, the working frame, the 
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H ^ ^ ^^^H;[厂::;:.‘.‘.‘•‘...j Calibration button 

Message area , B H ^ H L _ , , , ^ ^ ^ H ' ' ' . , . , . . , - - i Insertion button 
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Figure 6.2. Posture database editor 
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(a) File menu (b) Mode menu 

Figure 6.3. The pull-down menus 

data frame, the control panel and the message area. The functionalities of these 

components are described below. 

6.2.1 Menu bar 

The menu bar contains two pull-down menus: the File menu and the Mode 

menu, which are responsible for file operations and mode switching respectively. 

There are five menu items in the File menu (Figure 6.3(a)), including: 

New 

Open 

Save 

Save as 

Exit 

Create a new database 

Load an existing database 

Save the current database 

Save the current database to another file 

Exit PostMan 

When the user choose New, Open, or Exit from the menu, PostMan first checks 

whether there is any unsaved changes. In such case, PostMan will ask the user to 

save the current database first. 
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The second menu in the menu bar is used for mode switching. When the 

editor starts, it operates in Edit mode by default. The user can switch between 

two modes by choosing the corresponding item in the Mode menu (Figure 6.3(b)). 

The check box before the menu items indicates the current operation mode. When 

PostMan is in Test mode, all functions other than the menu functions are disabled. 

The color of the control panel turns dim and the control panel is inactive. 

6.2.2 Working frame and data frame 

The working frame is an OpenGL drawing area. It is used to visualize the 

current hand pose detected by the CyberGlove. The virtual-hand is rendered 

using the function provided by the VirtualHand software library. 

The data frame consists an OpenGL drawing area and a scroll bar. By moving 

the scroll bar besides the drawing area, different posture records in the database 

will be displayed. The name and the ID number of the posture will also be shown 

in the message area at the bottom PostMan. 

6.2.3 Control panel 

Th(、control panel at the lower right corner consists a slider, a toggling button 

aii(l two push buttons. The slider is used to adjust the threshold valuc, which 

(l(、fiii(、s th(、miiiimiim certainty factor iii posture identification (Section 4.2.C). The 

default valuo of this threshold is 0.90. The toggling button is use to invoke tlie 

(lyiianii(、calibration routine. Whon the (lyiiaiiiic calibration routine is activated, 

th(、“LED" on tlie button will 1)(、''oii". The dynamic calibration roiitiiio will be 

(loartivated automatically after about 10 seconds. 

The two push buttons aro used insert aiicl delete posture recorcis respectively. 

When the user presses the Posture Insertion button. PostMan will instruct the 
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(a) (b) 

(c) 

Figure 6.4. Procedures for inserting a posture record 
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user to hold the hand stationary for a few seconds (in the message area in Fig-

ure 6.4(a)). The control panel is now in inactive. PostMan will then record the 

user posture and ask for a name and an ID number the posture record. Fig-

ure 6.4(b) shows the dialog box for inputing these information. The insertion can 

be finished by pressing the "OK" button on the dialog box. The newly inserted 

posture record will be shown in the data frame (Figure 6.4(c)). 

The procedures for deleting a posture record is simpler than insertion. First, 

choose the posture record to be deleted by using the scroll bar. The posture record 

can be then deleted by pressing the Posture Deletion button. 
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Chapter 7 

An Application: 

3D Virtual World Modeler 

Virtual Reality Modeling Language (VRML) [18] is a popular virtual world 

modeling language. Users can use VRML to create 3D objects and compose 

interactive and immersive virtual worlds. It is also possible to distribute a virtual 

world over the World Wide Web and let others viewing it. Although VRML is 

such a powerful tool for 3D modeling, writing VRML code is a time consuming 

and tedious job. One has to keep a clear mind about coordinate systems, position 

and orientation of objects, coloring, lighting, transformations, and so on. It is 

very difficult for the users who are not familiar with 3D modeling, or simply 

have no graphics background, to build a 3D scene efficiently. A good modeling 

tool can certainly help. A number of 3D modeling applications, such as Alias 

Wavefront Animator^^ and 3D Studio™, can export their data in VRML format. 

There are several advantages of using these modelers. First, One can build a 3D 

scene more efficiently. Second, any changes made to the scene can be visualized 

immediately. Unfortunately, these applications are all controlled by 2D input 

devices and do not provide direct 3D interaction for users. This chapter describes 

a 3D VRML modeling tools, called 3DVWM (3D Virtual World Modeler), which 

employs virtual-hand input. 
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7.1 System Design 

The system is implemented using the hardware configuration shown in Fig-

ure 6.1. The software part of the 3DVWM is designed as a state machine. All 

state transitions are controlled by posture commands. Figure 7.1 shows the state 

transition diagram of the current system, and Figure 7.2 shows some common 

posture commands. Instead of using this default posture command set, users are 

allowed to define their own set using the posture database editor described in the 

Chapter 6 
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Figure 7.1. The state transition diagram of the 3D virtual world modeler. 
Object-oriented approach is applied in our system design. Figure 7.3 shows the 

hierarchy of the virtual objects in the system. All virtual objects are divided into 

two classes. The first class includes the visible VRML nodes such as Box, Cone, 
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BDD 
(a) Okay (b) Cancel (c) Menu 

DBD 
(d) Insert (e) Grab (f) Select 
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QQD 
(j) Viewpoint (k) Color (1) Delete 

Figure 7.2. Some posture commands 
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Figure 7.3. Virtual object hierarchy 

Cylinder and Sphere. This kind of object hierarchy is very typical in geometric 

object representation. On the contrary, the second class is a set of invisible objects, 

which are all VRML nodes such as Transform, Group, and the lighting nodes. 

7.2 Common operations 

The following describes the common operations and the corresponding posture 

commands used in the modeler. 

Confirming and canceling an action Like most systems, the most frequent 

operations in modeler are "okay" and "cancel" commands, shown in Figure 7.2(a) 

and Figure 7.2(b) respectively. In most cases, the modeler will return to the 

Normal state when an action is confirmed or cancelled. 

Insertion Object insertion is done through a 3D ring menu, shown in Figure 7.4. 

When a "menu" command (Figure 7.2(c)) is received, a ring menu containing dif-

ferent VRML nodes, such as sphere, cone and lighting, is drawn on the screen. 

The user can turn the menu by twisting the hand and select a menu item by 

the posture command "insert" (Figure 7.2(d)). The selected object, drawn in 
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Figure 7.4. Ring menu 

transparent color, will then moved with the hand until a "point" command (Fig-

ure 7.2(g)) is received. A cross forming by 3 straight lines along the 3 major axes 

is also drawn to help the user to place the object more easily and accurately. 

Grabbing and moving When a "grab" command is detected, the modeler 

goes into the Grab state. In this state, the modeler performs collision detection 

between the hand and the virtual objects. If an object is found to be contacted 

with the hand, it will move with the hand until the modeler leaves the state. The 

modeler will go back to the Normal state when any other command is received. 

Bounding box algorithm is used to speedup the collision detection process. 

Grouping and Ungrouping It is possible to group several primitive objects 

to form a compound object using the "group" operation. The grouped objects 

can be rotated or translated as if it is one single object. The modeler goes into 

the Group state upon receiving a "group" command (Figure 7.2(h)). To select the 

objects to be grouped, the "select" command (Figure 7.2(f)) is used. When the 

user holds this command, the modeler detects collision between the hand and the 

objects. The selected objects will be drawn in transparent color as an indication 
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of being selected. The "okay" and "cancel" commands are used to confirm or 

cancel the "group" operation respectively. 

The reverse of this operation, "ungroup"，is less complicated. First select the 

target object by the "select" command under the Normal state, and then issue an 

"ungroup" command (Figure 7.2(i)) to invoke the operation. 

Deletion The deletion operation is invoked using the "delete" command (Fig-

ure 7.2(1)). The target objects must be selected before issuing the "delete" com-

mand. The object selection process is the same as the one in the "ungroup" 

operation. 

Selection The user can select any objects in the 3D scene by using the "select" 

command. In order to differentiate the selected object from the others, the object 

will be drawn in transparent color. The object's center position, indicated by the 

intersection point of 3 axis-aligned lines, and its bounding box also be shown. 

More description about object selection will be given in the next section. 

Duplication VRML 2.0 supports efficient object duplication by using "DEF" 

and "USE" [18]. Our modeler employs the same mechanism for duplicating ob-

jects. First, select an object and touch it with a "copy" command. Another 

instance of the selected object is then created. Locate the object by using the 

same method in objection insertion. If either one of the instance is modified, all 

other instances follow the change. 

Changing viewpoint The "viewpoint" command (Figure 7.2(j)) is used to 

change the user's viewpoint. When the user holds this command, the modeler 

rotates or translates world coordinate frame according to the orientation of the 

hand. 
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7.3 Virtual VRML Worlds 

In the previous section, we mentioned some common operations with the cor-

responding posture commands. This section describes some operations, which are 

more complicated, with the help of a simple example (Figure 7.5). 

Shading an object The shading color of VRML objects are controlled by 6 

components, including diffuse color, specular color, emissive color, ambient in-

tensity, shininess and transparency. The first three components are RGB color 

notation and the others are real numbers between 0 and 1. By default, the modeler 

draws an object in gray, which is the default color of VRML objects. 

The above shading models can be selected by additional recorded hand pos-

tures. The color components of each shading model can be further specified by a 

hand interaction with a color surrogate cube. The x, y and z coordinates of the 

color cube represent the three components of the RGB color model respectively. 

To set a parameter value, the user can move the hand to the proper color location 

of the cube. The tip position of the index finger is used as a reference point. The 

resulted appearance of the object updates accordingly to the finger's movement. 

We are developing the above hand functions which can match the standard VRML 

shading models, including color selection and texture mapping functions. 

Constrained object movement In many cases, we need to move an object 

either along one of the major axes or rotate about one major axis in lD or 2D, 

rather than a free 6D movement. In order to achieve the constrained operations 

easily, the modeler can be operated in two modes of movements: the free mode 

and the constrained mode. The free mode allows the free motion of the object, 

which follows the hand movement in space. The constrained mode imposes the 

movement to only lD or 2D translation and rotation at a time. The modeler can 

switch the operation modes in the Grab state, using two registered hand postures. 
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Figure 7.5. Building a VRML world 
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Our current system specifies the constrained major axis by the times of select-

ing the same object. Initially, three axes are drawn to indicate the center position 

of a selected object. If the same object is selected again, the x-axis is selected as 

the constrained axis and highlighted. Selecting the object the third time toggles 

the constrained axis to the y-axis, fourth time the z-axis. The next following 

selection returns the operation mode to the normal state (free movement). 

Currently, the modeler provides two types of constrained movement: con-

strained translation and constrained rotation. Under the constrained translation, 

the object can only be moved along the selected axis direction. Similarly, the 

object can only be rotated about the selected axis under the constrained rotation. 

These two movement functions can be identified by two recognized hand postures 

and executed in real-time by mapping the relative movement of hand-object co-

ordinates. Our current system does not support the constrained translation and 

rotation at the same time or a constrained movement around a user-defined ar-

bitrary direction, which will be the extended work of the current system. 

Object alignment The object alignment is necessary to assemble two prim-

itives or objects accurately. Our current system supports two types of object 

alignment: alignment by axis and alignment by bounding box. 

In Figure 7.5(b), the main body of the robot is being assembled. The target 

is to combine the sphere and the cylinder concentrically. The assembly can be 

performed in the following way: first, select both objects with the y-axis toggled. 

Then issue an "alignment by axis" command, which aligns the two objects in 

the y-axis. Touch the sphere and move it along the axis under the constrained 

translation mode. The motion continues until the sphere is half-immersed into 

the cylinder as shown in the figure. 

Figure 7.5(c) shows another alignment type. In the figure, all parts ofthe robot 

are built and ready for the final assembly. To make sure that all the three legs 

touch the ground, we can align them by the bottom face of each of the bounding 
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boxes. The similar idea can be applied to align the upper and lower legs. To 

do so, first toggle the y-axis of the objects to indicate the alignment direction. 

Then issue the "alignment by bounding box" command using the posture, which 

shows the bounding box of the object. Touch the upper leg and move it along the 

selected y-axis direction, until the bottom of the bound box is aligned with the 

top of the bounding box of the lower leg. Repeat the same hand interactions to 

align the other long leg. 

The other parts ofthe robot can be assembled using the similar alignments. For 

instance, to assemble the small leg and the main body, we first align them by the 

y-axis. The grab the main body along the alignment. To adjust the orientation, 

we apply the constrained rotation about the x-axis on the main body. To align 

the two assembled long legs with the main body, we use "alignment by bounding 

box" and move the bounding box until they are aligned. Figure 7.5(d) shows the 

robot model created by the hand modeler viewed from the VRML interface of 
CosmoPlayer™ 

Figure 7.6 shows the internal representation of the robot model in our mod-

eler. This object tree representation is very similar to the VRML scene diagram 

representation. As a result, the translation from our model to VRML source code 

could be much easier and more efficient. 

Our current system only supports the most basic primitives and operations for 

building VRML worlds. Its future work will be focused on extending the system 

to support more advanced VRML features, including complex geometry objects 

such as extrusion and elevation grid, texture mapping and editing, and various 

sensor nodes and interpolators, which make the virtual world more interactive and 

realistic. 
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Chapter 8 

Conclusion 

This dissertation is a research on virtual-hand recognition, which is defined as 

the utilization of recognition algorithms to identify hand postures and gestures in 

virtual environments. It aims at developing a virtual-hand recognition algorithm 

which is accurate, flexible, simple, and most importantly, efficient. In this dis-

sertation, a wide range of background knowledges are studied. A fuzzy posture 

recognition system is proposed and implemented. A series of experiments are 

carried out to examine the behaviour of the system. Two applications are also 

developed to investigate the practical performance of the proposed system. 

8.1 Summaries on previous work 

Real-time interactivity and the sense of immersive are two key features of 

virtual reality (VR). The computer should be able to detect the user's action and 

generate the corresponding feedback to the user without any noticeable lag. With 

the appropriate equipments, virtual reality let users not only see, but also feel 

what the computer has done in the simulated 3D world. Unfortunately, traditional 

interaction technologies failed to fulfill both the above two features. Hand-input 

has become one of the major research directions in human-computer interaction 
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One enabling technology of virtual-hand recognition is the hand-tracking de-

vice, which has become a standard equipment of virtual reality. Two main streams 

of hand-tracking techniques are introduced, including glove-based tracking and 

image-based tracking. Various examples are also described. However, current 

hand-tracking techniques are far from ideal. Although glove-based devices are 

very popular, most gloves are uncomfortable. Some gloves are inaccurate and 

sensitive to noise. The mechanical parts sometimes inhibits the free movements 

of the hand. Periodic re-calibration is usually required to maintain the smooth-

ness and stability of the glove. On the other hand, image-based tracking does not 

attach any mechanical device to the user, but it is slow and inaccurate. The prob-

lem of noise is even more serious then its glove-based counterparts. Moreover, it 

is impossible to implement tactile or force feedback on image-based device. 

The main difficulty of hand-input comes from the complexity of the hand. 

The hand possesses up to 29 degrees of freedom in its full representation. It is 

inefficient and impractical to model the hand in full manner. No existing hand-

tracking device measures all degrees of freedom of the hand. Some less important 

degrees of freedom are often ignored in hand-tracking devices and virtual-hand 

systems. 

There are many problems in virtual-hand recognition, making the task very 

difficult. The first problem is the complexity of the human hand. Even some 

degrees of freedom can be safely ignored, about 20 input parameters are usually 

required to describe a posture, and a lot more for gesture. The second problem 

is the inaccuracy factors, such as human variation and the noise coming from 

hand-tracking devices. Gesture recognition faces extra difficulties. As gestures 

are time-varying signals, the problem space of gesture recognition involves both 

the space and time domains. Gesture segmentation leads to another problem. 

There is no obvious starting or ending of a gesture when the hand is moving 

continuously in the 3D space. 
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The most important concern in virtual-hand recognition is the efficiency. Vir-

tual reality applications are usually very computation intensive. In order to 

achieve a smooth animation effect for visual feedback, it is necessary to main-

tain a high refresh rate and low latency. These two concerns impose a very high 

demand on the processing power of the computer. Therefore, practical virtual-

hand recognition system must be simple and efficient, so that it would not affect 

the regular routines of the VR application. 

Current posture and recognition approaches are carefully studied and ana-

lyzed. No existing recognition approaches is perfect for incorporating with real-

time virtual reality applications. The template matching approach is simple, flexi-

ble and efficient, but its accuracy drops dramatically when more than 15 postures 

are stored in the system. Neural networks are high noise-tolerance and adap-

tive. Inaccurate or incomplete information can be handled effectively. However, 

the approach has a number of serious drawbacks. There is no systematic way 

to design the architecture, topology and the training algorithm of the network. 

The training phase is very long and a large number of labeled examples for each 

posture record is needed. The training process must be restarted after adding or 

removing postures records. Model-based analysis is a new technique and is very 

immature. Both the accuracy and efficiency of the approach are unsatisfactory. 

The above approaches are more suitable for recognizing postures rather than 

gestures. Some other approaches are proposed to handle dynamic patterns for 

gesture recognition. The first one is the statistical classification approach. The 

major strength of the approach is that it handles dynamic patterns in a simple 

way. Gesture segmentation is automatic. However, it is necessary to select a 

feature set for each gesture database and there is no formal rule to guide this 

process. It does not exist a universal feature set that works for all gestures. 

The second approach is discontinuity matching. The gesture representation in 

this approach is relatively motion—oriented, which makes the recognition more 

effective. Moreover, the approach is robust to scaling of gesture pattern over 
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time, and is thus less sensible to noise. Unfortunately, the computation involved 

is too complex and is not suitable for real-time virtual reality systems. 

Hidden Markov Models (HMM) is the most recent approach in the field. Hid-

den Markov Models are effective in recognizing both postures and gestures. The 

approach is very robust and quite efficient. Nevertheless, the approach has some 

serious limitations very similar to neural networks. There is no formal rule which 

guides the development of the system, including the model formulation, pattern 

representation, etc. The number ofstates in the HMM must be fine-tuned for each 

sample pattern and determined empirically. The HMM approach has a slightly 

edge out neural networks that the training time is shorter, and re-training is not 

necessary when adding or removing sample patterns. However, large number of 

labeled training examples is still required to build the statistic basis of the model. 

8.2 Contributions 

A novel fuzzy posture recognition system is proposed and implemented. The 

proposed system can be practically combined with VR applications. The system 

consists of three components: the posture database, the classifier and the iden-

tifier. The classifier roughly classifies the sample postures and stores them into 

different classes of the posture database. The identifier compares the input pos-

ture with the records in the class identified and finds the right match. The use 

of fuzzy logic successfully handles the noise problem in recognition. The system 

accurately recognizes noisy postures in our experiments. The recognition is very 

efficient, using only tens of micro-seconds. The classification technique signifi-

cantly reduces the average search time of the identifier and thus the efficiency 

is improved. The system is also very flexible. It works with all sets of sample 

postures without any modification to the system. Moreover, the insertion of new 

postures is simple and can be done in real-time. 

A posture database editor called PostMan (Posture Manager) is developed. 
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It is a graphical user interface designed for effective management of posture 

databases. The editor has two operation models: the Edit mode and the Test 

mode. In Edit mode, users can insert or delete postures, calibrate the glove and 

adjusting the threshold value which defines the minimum certainty of identifying 

a posture. It can also write the current database to disk, load and edit an existing 

database. Test mode allows users to test the current posture database. 

A 3D modeling tool called 3DVWM (3D Virtual World Modeler) is also de-

veloped. The 3DVWM is a CAD-like modeling tool designed for creating VRML 

world. Instead of keyboard and mouse, a CyberGlove is used as the input and 

control device. The fuzzy posture recognition system is incorporated with the 

modeler to accept posture commands and manipulate the virtual objects directly. 
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Future Work 

The main limitation of the virtual-hand recognition system proposed in this 

dissertation is that it cannot recognize dynamic pattern. In general, gestures are 

more intuitive and are more useful than postures. Therefore, one recommenda-

tion on the future direction of this research is gesture recognition. However, as 

gestures are much more complex than postures, more efficient algorithms are re-

quired. Another possible solution is to use existing recognition approaches and 

runs the recognition process on a separate computer. In fact, many VR systems 

are distributed over local networks to share the workload. 

Another recommended direction is two-handed input. We used to work with 

both hands. Many actions could be simplified by using both hands. Some pre-

vious systems have already shown the possibility of using two-handed posture 

and gesture recognition systems. The two systems, TGSH (Two-handed Gesture 

environment SHell) [36] and CHINA [25], developed at the Oita University used 

a recurrent neural network to recognize 6 two-handed gestures. 

The virtual world modeler described in Chapter 7 has demonstrated one ap-

plication area of hand posture recognition. Other potential application areas 

includes virtual space navigation, interior design, scientific visualization, etc. We 

have started the development an application which is designed for interior design 
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and navigation. In the current system, we can navigate in a virtual room us-

ing three postures, forward, backward and turning. Figure 9.1 demonstrates how 

these postures work. Both the left turn and the right turn command use the same 

posture. The turning direction is indicated by the direction of the thumb. The 

user action shown in Figure 9.1(c) is a right turn. Other functions for object 

manipulation, such as coloring and relocating of objects, etc. will be developed in 

the future. 
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