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Abstract 

Tumor necrosis factor-alpha (TNF) is one of the pleiotropic cytokines that is 

primarily produced by activated macrophages and lymphocytes. It elicits a wide range of 

immunological events such as fever, inflammation and tumor kiUing. Recently, it was 

found that TNF increased the release of reactive oxygen species (ROS) such as superoxide 

radical (02*") and hydrogen peroxide (H2O2) inside the cells. Moreover, some findings 

indicate that TNF produces the increase in the intraceUular free calcium concentration 

([Ca2+]i). 

High concentration of ROS induces Upid peroxidation and DNA damage. High 

[Ca2+] inside the cell activates phosphoUpases, proteases and/or endonucleases. In this 

connection, ROS and Ca^^ have been suggested to be the messengers that lead to a form 

of ceU death known as apoptosis. However, the relationship between ROS and Ca?+ is stiU 

unknown. Therefore, the objective of my research project is to investigate the role and the 

relationship between the ROS and Ca^^ in the TNF-mediated cytotoxicity in a TNF-

sensitive ceU Une, L929 ceUs. Techniques such as agarose gel electrophoresis, confocal 

laser scanning microscopy, flow cytometry and cytotoxicity assay were applied. 

Results from my experiments indicate that TNF induces D N A fragmentation, a 

haUmark of apoptosis, as observed by agarose gel electrophoresis. Moreover, in the cell 

cycle study with flow cytometry, TNF produced a hypodiploid peak next to the G0/G1 

phase suggesting the presence of apoptotic cells and apoptotic bodies. On the other hand, 
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TNP caused a slow rise in ROS and [Ca^^i in L929 cells. The release ofROS could be 

suppressed by enzymatic antioxidants such as catalase or manganese dependent 

superoxide dismutase (MnSOD), and the non-enzymatic antioxidants such as N-

acetylcysteine or 4-hydroxy-TEMPO. Application of mitochondrial electron transport 

chain inhibitors such as rotenone and antimycin A indicates that TNF caused the release of 

ROS from the mitochondria mainly at the ubiquinone site (complex ffl). The use of 

dinitrophenol indicates that the TNF-mediated ceU death was an energy dependent 

process. Application of antioxidants and mitochondrial electron transport chain inhibitors 

could suppress or enhance the TNF-mediated cytotoxicity. 

Similar to the ROS formation, TNF did not produce an immediate increase but a 

slow rise of [Ca2+]i in L929 cells. This was confirmed by the use of thapsigargin, an 

ATPase inhibitor. In the presence of thapsigargin, the [Ca^^]i was significant increased by 

TNF. Addition of calcium-inducing agent such as thimerosal produced a higher TNF-

mediated cytotoxicity. L i contrast, application of calcium chelator such as BAPTAy'AM 

suppressed both the redox rate and the cytotoxicity in TNF-treated cells. L i the 

experiments with the use of mitochondrial Ca^^ cycling inhibitors such as ruthenium red 

and diltiazem, the possible source of Ca!+ for the TNF-effect was found to be 

mitochondria. These results suggest that [Ca^^]i might induce the release ofROS in TNF-

treated L929 cells. 
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In addition, TNF did not change the intraceUular pH in the early phase of 

treatment. Moreover, there was no change in the mitochondrial membrane potential (A^m) 

in TNF-treated L929 ceUs. 

The differences between TNF-sensitive cell Une L929 and TNF-resistant cell lines, 

rL929, rL929- l lE and rL929-4F were also examined. It was found that (1) TNF induced 

cytotoxicity in the sensitive cell line but not in the resistant cell lines; (2) TNF induced 

apoptosis in L929 cells but not in rL929; (3) TNF induced the release ofROS and Ca^^ in 

the sensitive cell line while no similar response was observed in resistant cell lines. These 

observations thus suggest that both ROS and [Ca^^i play an important role in the TNF-

mediated cell killing. 
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論文題目：癌細胞壞死因子所引致的細胞死亡的生化硏究 

學生姓名：高翰森 

導師姓名：江紹佳敎授 

修業學位：哲學碩士 

學糸：生物化學 

肆業日期：一九九八年七月 

摘要： 

癌細胞壞死因子 ( 1 \ ^ 0 [ Necrosis ?&0协1)是一種多效性的細胞因子 

(Cytokine)。它主要由激活的巨趣細胞(河&(：^?&&36)及淋巴細胞(170?&00外6)所分 

泌。癌細胞壞死因子擁有多種免疫功能，包括弓丨致發熱(?6"6力、î :lE(Inflammation) 

和癌細胞死亡等。最近的硏究發現它能夠令細胞釋放出過氧化物(&6&0^76 oxygen 

species) ’包括過氧化物自由基(3叩6^乂丨46位(1化&1)和過氧化氫0^ (̂̂ 08611 peroxide) 

等。再者，它亦能夠令細胞釋放出銘離子(031(：丨 1̂1丨00)。 

高濃度的過氧化物能弓丨致脂肪的過氧化①丨？记pe^oxidation)反應及去氧核糖 

核酸(Deoxyribomlcleic acid, DNA)的破壞。高濃度的躬離子能激活磷脂酶 

(Phospholipase)，蛋白晦(P^ot:ease)及核酸內切藤(Endonuclease)等酵素。以上所 

述的破壞及晦的激活能引致細胞有秩序地死亡(八?0?103丨3)。因此’硏究細胞內 

的過氧化物及躬離子的濃度的關係是很重要的，而科學家對它們的關係所知的仍 

然很少。因此’這項硏究的目的旨在發掘癌細胞壞死因子弓丨致細胞死亡的機理， 
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將焦點集中在過氧化物及躬離子的相互關係。癌細胞壞死因子敏感的細胞L929 

會作爲硏究的對象0本研究利用瓊脂糖凝膠電泳法(Agarose gel electrophoresis) ’ 

共聚焦顯微鏡技術(〇011&0&1 Microscopy) ’流式細胞光度術(?10〜。710爪6117)及細 

胞死亡測定(0710协乂丨&印053&7)等技術來探討癌細胞壞死因子的生化機理。 

本研究發現癌細胞壞死因子能弓丨致去氧核糖核酸的斷裂，這現象爲細胞有秩 

序地死亡的特徵。細胞周期(〔611 07(：16)的硏究發現癌細胞壞死因子能引致G0/G1 

期旁邊有一尖端’證明了去氧核糖核酸的斷裂。再者，它令到過氧化物及躬離子 

在細胞內慢慢地釋放。過氧化氫 ^ ( C a t a l a s e ) 、锰離子 -竭氧化物歧化晦 

(MnSOD)、>̂ -乙餘半胱氨酸5̂ -&06炒1。7316丨116)和四-氫氧-二，二，六，六-四甲基六 

氫tt晚-—-氧(4-OH-TEMPO)等抗氧化劑(Antioxidant)能夠阻止過氧化物的釋 

出°魚滕嗣(Rotenone)及抗霉素A(Antimycin人)等電子傳遞鏈抑制物田16^&00 

transport chain丨0^油0[)的應用證明癌細胞壞死因子作用於輔晦Q(Coenzyme 

Q) ’並引致更多過氧化物的釋放o利用二硝基苯i&(2,4-Dinitrophenol) ’我們發 

現癌細胞壞死因子所導致的細胞死亡是需要能量的。抗氧化劑和電子傳遞鏈抑制 

物的應用能增加或降低癌細胞壞死因子所弓丨致的細胞死亡。 

癌細胞壞死因子引起細胞內躬離子慢慢地釋放。三磷酸腺 f __(ATPase) 

的抑制物Thapsigargin肯|增加癌細胞壞死因子弓丨致的躬離子的釋出。躬離子釋放 

物如硫柳录(Thimerosal)能增加癌細胞壞死因子弓丨致的死亡的嚴重性。相反地， 

躬離子的蜜合物如BAPTAy'AM能降低癌細胞壞死因子弓丨致的細胞死亡及過氧化 

物的釋出。利用粒線體的®離子循環(Mitochondrial calcium cycUng)的抑制物如 

姥紅(Ruthenium Red)和地爾硫草(Diltiazem)證明癌細胞壞死因子弓丨致的躬離子釋 
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物的釋出°利用粒線體的躬離子循環(^^00&0^(^丨&1 calcium 07(：1]̂目)的抑制物如 

• 鍩紅(Ruthenium &64)和地爾硫草(0浙0260)證明癌細胞壞死因子弓丨致的躬離子釋 

放的源頭可能來自粒線體。綜合以上各實驗的結果，經過癌細胞壞死因子的處 

理’細胞內的錦離子能引致過氧化物的釋出。 

癌細胞壞死因子不會即時改變細胞內的氫離子當量濃度指數(pH)。再者，粒 

線體膜的電位(Mitochondrial membrane ?0仿111丨31)也不會受到癌細胞壞死因子所影 

響。 

本研究亦曾比較癌細胞壞死因子敏感的細胞如L%9 ’及有抗性的細胞如 

rL929，rL929-l lE和rL929-4F等的反應。結果發現如下:（一)癌細胞壞死因子不會 

引起抗性細胞的死亡；（二)癌細胞壞死因子不會引發抗性細胞有秩序地死亡；（三） 

癌細胞壞死因子不會弓丨致抗性細胞放出過氧化物及躬離子。以上發現均證明過氧 

:̂：物及！^離子在癌細胞壞死因子弓丨致的細胞死亡擔當了重要的角色。 
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Chapter 1. General Introduction 

1.1 Tumor Necrosis Factor 

1.1.1 History of Tumor Necrosis Factor 

The tumor necrotic effects of bacterial endotoxins have been known for a long 

time and are mediated by tumor necrosis factor (TNF). The story of the discovery o fTNF 

properly begins with Willam B. Coley. In the late 19^ century, he and a few other 

physicians had some successes in treating cancer patients by infecting them with vaccines 

of killed bacteria, and the mixture of Streptococcus pyogenes and Serratia marcescens 

which came to be known as Coley's toxins (Coley, 1891). Gratia and Linz in 1931 (Gratia 

and Linz, 1931) and Shear and colleagues in 1943 (Shear et al., 1943) demonstrated that 

endotoxins can induce hemorrhagic necrosis of certain transplanted tumors in mice. 

However, endotoxins are not directly cytotoxic to tumor cells in vitro. L i 1975 Carswell 

and colleagues showed that serum from mice infected with Bacillus Caknette-Guerin 

(BCG) and subsequently treated with endotoxin contained a substance capable of inducing 

tumor necrosis in certain transplantable tumors in mice (CarsweU et al., 1975). They called 

this substance ' ^ m o r necrosis factor". They developed a hypothesis that endotoxin-

induced tumor necrosis was mediated by the release o fTNF from activated macrophages. 
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1.1.2 TNF Subtypes and Their Purification 

There are two types ofTNP, TNF-a (generaUy caHed TNF or cachectin) and TNF_ 

p (previously known as lymphotoxin (LT)). 

Cachexia is a profound loss of weight and wasting of muscle which sometimes 

occurs in patients with chronic bacterial infection or parasitic infestation. Cachectin is a 

molecule which was first isolated from the culture supernatants of endotoxin-treated 

mouse macrophages, that caused cachexia when injected into normal mice (Beutler et al., 

1985a; Beutler etal., 1985b). Extensive biochemical analysis of this molecule has revealed 

its identity as TNF-a (Beutler and Cerami, 1986). 

Actually, the initiation of the TNF field can be assigned back to 1967 when Ruddle 

and his coUeagues ORiiddle and Waksman, 1967) studied delayed-type hypersensitivity. 

They found that lymphocytes from immunized rats, when cultured in the presence of 

specific antigen, killed syngeneic fibroblasts. This kiUing was due to a "cytotoxic factor" 

released from lymphocytes. Later, Granger and his coUeagues showed that mitogen-

activated spleen cells could produce such a soluble cytotoxic factor that they called 

"lymphotoxin" (Granger and WiUiams, 1968). 

In summary, TNF>a can be obtained from endotoxin-treated macrophage cell lines 

whereas TNF-P can be obtained from lectin-stimulated T-lymphocytes. Moreover, some 

researchers demonstrated that TNF-a is produced not only by macrophages but by several 

other ceU types, including monocytes, natural kiUer cells, T-lymphocytes and glial cells. 
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The production of TNF-3, however, seems to be restricted to lymphocytes. A report 

indicates that myeloma cells may also be a source ofTNF-P (Garrett et cd., 1987). 

Adherent ceUs isolated from human peripheral blood mononuclear ceUs stimulated 

with BCG and endotoxin produced a factor with tumor necrosis activity (pennica et al., 

1984). This factor named human TNF-a ^ IuTNF-a) showed in vivo activities similar to 

those of murine TNP originally discovered in the sera of mice injected with BCG and 

subsequently treated with endotoxin (Carswell etal., 1975). Measurable levels o fHuTNF-

a were detectable after 4-P-phorbol-l, 2P-myristate- 13a-acetate (PMA) stimulation of 

HL-60 cells. Therefore this cell Une was used for both the protein purification and the 

cDNA isolation OPennica et al., 1984). The mature polypeptide consists of 157 amino 

acids. The NH2-terminal amino acid sequence of natural HuTNF-a, however, consists of 

233 amino acids. A segment of 76 residues preceded in natural HuTNF-a is probably 

involved in TNF secretion as it is not observed on mature HuTNF~a (Pennica et al., 

1984). From the cDNA sequence, a relative molecular weight of 17,000 was calculated for 

the mature protein. 

The accessibility of a cDNA probe for recombinant H u T N F ^ (rHuTNF-a) 

permitted the isolation of the cDNA for Murine TNP-a (MuTNF-a). It was found that 

PU5-1.8 cell line with PMA stimulation secreted the highest levels o f MuTNF activity 

(Pennica et a/.，1985). The isolated MuTNF-a cDNA encoded a polypeptide consisting of 
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a 79-amino-acid presequence region foUowed by a sequence for mature MuTNF-a of 156 

amino acids and with a relative molecular weight o f approximately 16,000 to 18,000. 

The human TNF-P (HuTNF-P) was successMy purified from supematants of 

PMA-stimuhted RPMI-1788 B-lymphobkstoid ceUs grown in serum-free RPMI-1640 

medium (Aggarwal et al., 1984). Recombinant TNF-p was determined to be a 

glycoprotein with 171 amino acid residues in length with a rehtive molecukr weight of 

approximately 25,000. An N-Unked glycosylation probably accounted for the increased 

size. 

The gene for murine TNF-P (MuTNF-p) was cloned in 1987 (Ruddle et al, 1987). 

The number of amino acids in mature protein is 169 with a molecular weight of 

approximately 18,000. There are 33 residues in the signal peptide. 

The characteristics ofTNFs isokted from human and murine is shown in Table 1.1 

(review: Aggarwal and Vilcek, 1992; Pennica et al., 1987; Ruddle et al., 1987). Figure 1.1 

shows the comparison of rHuTNF-a, rMuTNF-a and rHuTNF-P sequences (Pennica et 

aL, 1987). Table 1.2 shows the summary o f discovery o fTNF (modified from PaUadino et 

aL, 1987). 

In this thesis, the actions o fTNF-a wiU be focused in more detail and TNF-a wiU 

be abbreviated as “TNF ’ in the foUowing sections. 



Chapter 1. General Introduction Page 6 

Table 1.1 
Characteristics ofTNFs isolated from human and murine. 

Human TNF-a Murine TNF-a Human TNF-P Murine TNF-p 

Source HL-60 PU5-1.8 RPMI-1788 T lymphocyte 

Molecular 17 16-18 B fg 

weight (kDa) 

Glycoslation No Yes Y ^ y ^ 

Cysteine 2 2 None~~~“ 1 

residues 

Amino acid 1^7 1^ Wx i^ 

length 

Signal peptide 76 79 ^ ^ 

Chromosome 6 17 6 f / 

assignment 

Homology 79 % 72 % 

(Modified from Aggarwal and Vilcek, 1992; Pennica et al” 1987; Ruddle et al” 1987) 
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Human TNF-P NHj-Leu Pro Gly Val Gfy Leu Thr Pro Ser Ala A1& Qn Thr Ak Arg Ghi His Pro Lys Met 
Human T N F ^ NHj-VallArg Ser 
Murine TNT^x NHj-Le^^Lsa 

Human TNF-P His Leu Ala His Ser Thr Leij Lys Pro| A^ Ala His| Leu He Gly A s p [ ^ Ser Lys Gk 
Human T N F ^ Ker Ser|Arg Thr Pro|J>erAsp Lys ProS^i AIa H^ Val Val ^ a Asn P r c S ^ a n o n T 
Murine TNFni Ker SerlGto Asn Sej Ser Asp Lvs Pro Val Ala His Val Val Ala Asn _ Gin |vaj G1ii 

Human TNF-p Asn Ser Leu Leu Trp Arg Ala Asn Thr Asp Arg M p y Leu| Gh Asp 5 y 
Human TNpKx GtyHjETeQ Ghi TrpLeu]Asn Arg Arg Ala Asn - AlaTeu Leu Ala Asn Gly 
Murine T N F ^ Glij Gfai Lê l Glu HTrp Leu CSer Ghi Wrg Ala Asn — — - - kla Leu Leu Ala Asn Glv 

Human TNF-P PheSer .eu Ser \snAsn Ser Lei Leu Val Pro frhr Serf f l jkf fy i j Phe Val |TyrSei 
Human TNTF̂ a Val Glu .eu Arg Asp Asn^aEXeuVaTVal Pro 5er d u Gfy Leu TyrLeu| He Tyr Sei 
Murine TNF>ct Met Asp[L^ Lvd Aso Asa Ghi Leu Val Val ProUla Asploh Leu Tvr Led Val rvrSer 

Human TNF-P |Gto Val |V̂ al Phe Ser | Gly ^ys Ala Tyr S e i j ^ Lys Ala Thr Ser Ser Pro Leu Tylheu 
HumanTNF^ Gln Val Leu Phe Lys Gfy Gbi Gfy Cyd …Pro — _— SerThr 一 His| v J u u L e u 
Murine TNF^x bto Val Leu Phe Lvs Gh Gba Glv Cvj - P r o | - — AspTyr lvalLeuLeu 

Human TNF-P Ak jfi^ Glu Val Ghi Leu Phe Ser Ser Gln ^ ^ ^ e ffis[^ Pro| Leu Leu Sei| Ser 
Human TNF*KX ¢ ^ His Thrpe |SerArg| De p i | V a l BCTTyrGlnprp^ ValAsn Leu Leu SerAla 
Murme T N F ^ [fhr His Thrkall Ser Arg PheUlj De Ser Tyr filn hhi|l,ys Val Asn T.eii T,en Ser Ala 

Human TNF-p Ghi Lys Met Val Tyr So - - "^^ Leu ^ Glu — |Pro Trp |Leu His 
Human T N F ^ He Lys SerPro Cysphi Arg G h T T B m o W Gfy^aTHu Ala Eys Pro Trp l'yr Glu 
MurineTNF^ VajLvs Ser Pro Cvs Pro Lvs AsplThr Pro Glu Glv Ala Glu| LeuLvs Pro Trp Tvr Glu 

Human TNF-p Ser Met | f^His 网 Ala Ala|Phe Gto Leu |Thr Gto jSly Asp |Gĥ  Leu Ser| Thr His Thr 
Human TNF>a p > Ue lyrLeTOly Vjly Val Phe Gh Leu Glu Lys Ufy Asp Arg Leu Ser Ala Uu|ne 
MurineTNF^ Pro fle Tvr Leu GW Glv Val Phe Ghi Leu Glu Lvs Gk Asp b l3 Leu SCT Ala Glulval 

Human TNF-p Asp Gly Ile Pro His peu| Val Leu Ser Pro[s^ Thr - j v 3 ^ P h e Gly|Ala Phe|XIj 
Human T N F ^ p ^ Argp^ A s p p ^ e u Asp Phe Aia Glu Ser Gfy Gh Val Tyr Phe Gfy fle p^Ala 
Murine T N F ^ ] ^ Leubd LvshTvr Leu Asp Phe Ala Glu Ser Glv Ghi Val Tvr Phe Gtvl Val Ee Ala 

Human TNF-P Q - C O O H 
HumanTNFKx Lei -COOH 
MurineTNF^ OLeJ-COOH 

Figure 1.1 
Comparison of rHuTNF-a, rMuTNF^ and rHuTNF-p sequences. Identical amino 
acids are boxed. Broken lines indicate amino acid deletions in the sequences QVIodified 
from GilUs, 1987). 
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Table 1.2 
Summary of discovery of tumor necrosis factor. 

Date Event Reference 

1891 Coley treated human cancer patients with Coley, 1891 

mixtures ofkiUed Streptococcus pyrogenes and 

Serratia marcescens preparations 

1931 Demonstration ofhemorrhagic necrosis of Gratia and Linz, 1931 

animal tumors after injection ofbacterial filtrates 

1943 Bacterial agent that induces hemorrhagic Shear etal., 1943 

necrosis identified as a polysaccharide 

1968 Lymphotoxin (TNF-p) produced by antigen- or Ruddle and Waksman 1987 

mitogen-stimulated lymphocytes shown to cause Granger and Williams 1968 

target cell lysis 

1975 Factor capable of inducing tumor necrosis and Carswell etal., 1975 

distinct from endotoxin characterized from 

mouse serum 

1984 Human tumor necrosis factor-P (lymphotoxin) Aggarwal et al., 1984 

cDNA cloned 

1984 Human tumor necrosis factor-a (cachectin) Pennica etal., 1984 

cDNA cloned 

(Modified from PaUadino et aL, 1987) 
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1.1.3 Release ofTNF 

The release o fTNF is divided into two stages, priming and triggering. Figure 1.2 

shows the possible mechanism of priming and triggering of TNF-a production in 

macrophage (Kitahara-Tanabe et al., 1991; Kriegler et al., 1988). The primers such as 

BCG and Corynebacterium parvum can prime on TNF production in macrophages. The 

inducers such as lipopolysaccharide (LPS), phorbol esters and cytokines can trigger the 

release of TNF from activated macrophage. Proteolysis of membrane-associated TNF 

produces soluble TNF. The proteolysis is mediated by a membrane enzyme, 

metaUoproteinase (Gearing et al., 1994). 

1.1.4 Biological Actions ofTNF 

The native TNF is a trimer. Results from X-ray smaU-angle scattering spectra 

indicated that the TNF trimer has a molecular weight between 50,000 and 53,000 (Lewit-

Bentley et al., 1988). In another study, Smith and his coUeagues showed that treating TNF 

with a nonionic detergent such as triton X-100 and by gel filtration produced, in addition 

to the trimer peak, another peak which is believed to be contributed by monomeric TNF. 

Monomeric TNF had a lower specific biological activitiy (Smith and Baglioni, 1987). 

TNF is ahnost not species specific. Human TNF is capable ofproducing biological 

effects on murine cells, and vice versa (Kramer et al., 1988).However, when measured the 

cytotoxicity of murine L929 cells, the specific activity o fMuTNF is about threefold higher 

than that mediated by HuTNF. 
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Primed stage 
jv̂ H[̂  Transcription and translation 

I of precursor TNF as membrane 

p _ . 
Membrane ^ 

Extracellular ^C1 i V ^ 
space ^ Z J 

COOH 

Triggered stage 

1 ^ Processing of precursor TNF and 
. 2 release of mature TNF to extracellular 

- l - ~ -

Membrane ^ 

^ ' - - ^ ^ ^ 

Extracellular Metalloproteinase 
space ( (Gearinge/a/., 1994) 

4 ^ 
COOH 

Figure 1.2 
Possible mechanism of priming and triggering on TNF production in macrophage. 
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TNF is a pleiotropic cytokine that elicits a wide range ofbiological events. It gives 

effect on hematopoietic system (review; Trinchieri, 1992) and immunomodulation (review: 

Bonavida, 1992). Table 1.3 shows the biological activities o fTNF. Sugarman et al. have 

conducted an extensive in vitro screen on a panel of 23 human tumors and 12 murine 

tumor cell lines and some of the results are shown in Table 1.4 (Sugarman et a/.，1985). 

Their results suggest that not all tumor cells are susceptible to TNF. 

1.2 Tumor Necrosis Factor Receptor 

1.2.1 Purification ofTNF Receptor 

To exerts its biological actions, TNF must first bind to cell surface receptors. TNF 

receptors appear on virtually all somatic cells OBeutler and Cerami, 1989). TNF receptors 

channel signals to the cytoplasm and nucleus. There are two types of surface receptors, 

TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). TNFR1 and TNFR2 have a 

molecular weight of 55 kDa and 75 kDa, respectively. L i 1990, the TNF receptor was 

cloned by Leotscher et al. from a human placental lambda g t l l cDNA Ubrary using a PCR 

probe derived from the N-terminus of the 55 kDa TNF receptor (Leotscher et aL, 1990). 

The sequence is identical to that cloned by SchaU et al. (from both plancental and 

premyelocytic HL-60 cDNA Ubraries) using probes derived from TNF-binding protein 

sequences (SchaU et al., 1990). 

TNFR1 is composed of 455 amino acids that can be subdivided into four domains: 

(1) a signal sequence; (2) a 182 residues extracellular cysteine-rich domain; (3) a 20-22 
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Table 1.3 
Biological activities o f T N F . 

Activity Reference 

Induces hemorrhagic necrosis of tumors Pennica etal., 1984 

Induces EL-1 production Torti etal., 1985 

Activates neutrophil functions Gamble etal., 1985 

Growth-stimulatory action (e.g. murine thymocytes) Ranges et al, 1988 “ 

Antiviral ac t iv i ty~~ “ Wong and Goeddel, 1986 

Antiparasitic ef fect~~ “ Review: P ^ I ^ ^ 

Taveme，1987 

Gene expression (e.g. c-fos, c-myc) Lin and Vilcek, 1987 
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Table 1.4 
Summary of responses of human and murine cell lines to rHuTNF-a in vitro. 

Human cell line Origin In vitro sensitivity 
A549 Lung carcinoma -
BT-20 Breast carcinoma + 
Calu-3 Lung carcinoma -
G-361 Melanoma -
HeLa Cervical carcinoma -
ra Oral epidermoid carcinoma -

LS174T Colon carcinoma -
MCF-7 Breast carcinoma + 
Saos-2 Osteogenic sarcoma -

SD-MEL-109 Melanoma + 
T2A Bladder carcinoma -

WK)R Colon carcinoma + 
Murine cell line Origin In vitro sensitivity 

B16F10 Melanoma -
CMS4 Chemically induced sarcoma + 
L929 — Fibroblast + 一 

Meth A ChemicaUy induced sarcoma + 
S ^ Lymphoma -

— WEHI164 Sarcoma + 

(-)Represents < 25 % cytostasis/cytotoxicity. 

(+) Represents > 25 % cytostasis/cytotoxicity. 
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residues transmembrane helical segment; and (4) a 221-223 residues intracellular domain. 

Smith et al. discovered a very different breed of TNF receptor by expression screening a 

human lung fibroblast cDNA library and classified as TNFR2. This receptor is composed 

of 461 amino acids. It comprises signal, cysteine-rich, transmembrane and cytoplasmic 

domains. TNFR1 and TNFR2 show 40 % homology in their extraceUular domains, but 

virtually none in their intraceUular domains (Smith et al., 1990a; TartagHa and Goeddel, 

1992). 

1.2.2 Regulation ofTNF Receptor 

A large number of examples of receptor regulation by homologous or 

heterologous Ugands have been reported (review: Tsujimoto and Oku, 1992). These 

reports suggested that the regulation of receptor number or affinity might be a prevalent 

mechanism of cellular regulation. The biological significance of receptor regulation might 

be related to synergistic or inhibitory effects. 

Up-regulation of TNF receptors 

In some tumor cell lines, TNF and ffNs were shown to exert a synergistic 

cytotoxic action OVilliamson et al., 1983). Pretreatment of various tumor ceUs with mS[-y 

resulted in an increase o f T N F binding (Tsujimoto et aL, 1986a). Resting T cells do not 

express surface receptors for TNF. However, treatment of lymphocytes with JL-2 resulted 

in specific TNF binding to the surface of lympocytes (Owen-Schaub et al., 1989). 

Moreover, exposure of human cervical carcinoma cell line ME-180 to some lectins, such 
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as concanavalin A and wheat germ agglutinin, caused an increase in TNF receptors 

without significant change in their affinity constant (Aggarwal et al., 1986). 

Down-regulation of TNF receptors 

Aggarwal and Eessalu reported that phorbol esters such as PMA, that are known 

to bind and activate protein kinase C (PKC), reduced the total receptor number without 

any significant change in the affinity constant of the receptors in U937 cells (Aggarwal and 

Eessalu, 1987). Treatment ofSV80 cells or FS-11 cells with TL-l resulted in a decrease of 

TNF binding to ceU surface receptors (Holtmann and WaUach, 1987). Recently, it was 

found that blockade of mitochondrial respiration down-regulated tumor necrosis receptors 

(Sanchez-Alcazar et al., 1995). This down-regulation could be simply a side effect of 

mitochondrial dysfiinction, secondary to the loss of ceUular energy. Moreover, LPS and 

glucocorticoids as weU as TNF may down-regulate TNF receptors (Ding et aL, 1989; 

Kull, 1988, Tsujimoto and Vilcek, 1987). 
參 

1.2.3 Functions ofTNFReceptor 1，Receptor 2 and Soluble TNF Receptors 

TNF interacts with its specific receptor and is then intemaUzed. The internalization 

of the receptor-Ugand complex, through receptor-mediated endocytosis, and the eventual 

degradation of the Ugand by lysosomal hydrolases (Tsujimoto et al., 1985). 

TNFR1 

The cross-Unking o fTNFR l is an important component of the activation process. 

TNFR1 was shown to be responsible for inducing nuclear factor KB (NFKB)， 
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accumulation of c-fos, EL-6, and manganous superoxide dismutase mRNA, prostaglandin 

E2，\L-2 receptor, H L A class I and I I cell surface antigen expression, growth inhibition 

and cytotoxicity (Brakebusch et al, 1992; Engelmann et al., 1990b; Espevik et al‘, 1990; 

Hohmann et al., 1990，Kmppa et al., 1992; Naume et al., 1991; Shalaby et al., 1990; 

TartagUa et al, 1991; Thoma et al., 1990). The actions of TNFRl-mediated signaHng 

transduction and cytotoxicity wil l be discussed later. 

TNFR2 

Proliferation of mouse thymocytes and the murine cytotoxic T-cell Une CT-6 is 

stimulated by murine TNF (Tartaglia et al.，1991). Polyclonal antibodies directed against 

TNFR2 induced proliferation in both of these cell types, whereas polyclonal antibodies 

directed against TNFR1 had no effect. In contrast，cytotoxicity in murine L - M ceUs was 

induced by antibodies against TNFR1 but not by antibodies against TNFR2. These results 

suggest that TNFR2 initiates signals for the proliferation of thymocytes and cytotoxic T 

cells, whereas TNFR1 stimulates signals for cytotoxicity. However, TNF-induced 

proliferation may not be mediated by TNFR2 in aU cell types. Engehnann et al. have 

shown that polyclonal antibodies against human TNFR1 can stimulate proliferation of 

human FS11 fibroblasts (Engeknann et al.，1990a). 

Soluble TNFR 

The soluble forms of TNF receptors (sTNFR) have been identified in the serum, 

urine, ascites, and synovial and cerebrospinal fluids of humans. The urinary sTNFR are 

structurally related to the cell surface TNF receptors. Comparison of their amino acid 
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sequences with those of the TNFR1 and TNFR2 revealed that they are in fact the shed 

form of the extraceUular part of the TNFR1 ^Sfophar et al., 1990). The mechanism of the 

release of these receptors is not understood. It has been shown that treatment of U937 

ceUs with PMA could induce the shedding ofTNFRs O^̂ ohno et cd., 1990)，suggesting a 

role for PKC. The possible physiological roles of the sTNFR may serve as: (1) TNF 

buffers by inhibiting the acute and potentially harmful effects of high TNF concentrations; 

(2) a slow release pool for TNF, (3) TNF carrier proteins between body compartments; 

and (4) stabiHzers of TNF bioactivity. It was observed that, at physiological 

concentrations, the trimeric bioactive TNF molecule dissociates irreversibly into inactive 

monomers which subsequently form inactive high molecular weight TNF multimers. 

Therefore, sTNFR may prevent trimeric TNF from dissociating into monomers and then to 

form multimers (Aderka et al., 1992). 

1.3 Possible Signal Transductions of Tumor Necrosis Factor-Alpha 

The feature of TNF action is the striking diversity of many cellular responses. 

Nowadays, no specific biological activity o fTNF could be defined that is in common to all 

TNF-responsive ceUs. Based on the limited structural heterogeneity of specific TNF 

receptors, the multitude of biological activities inducible by TNF must depend on a 

diversification of postreceptor signaling mechanisms. In general, the first event in 

triggering a cellular response is specific high-affinity interaction of TNF with membrane 

receptor molecules, thereby initiating a cascade of signal transfer reaction inside the cell. 

The most direct way of the signaling mechanism is found with receptors that themselves 
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possess intrinsic tyrosine kinase activity in their intraceUular domains. However, there is 

no induction for tyrosine kinase activity o fTNF receptors (Waterman and Sha'afi, 1995). 

A report from Smith et al. shows that cytotoxic activity of microinjected TNF was a 

receptor-independent intracellular function of the ligand itself (Smith et al., 1990b). 

According to this report, TNF membrane receptors would serve as a Ugand transporter 

and a signal transmitter in the membrane. 

TNF induces the activation of five possible cascades inside the ceUs: (1) 

phospholipase A2; (2) phospholipase C; (3) sphingomyeUn; (4) protein kinase; and (5) 

death domain. 

1.3.1 Activation of Phospholipase A2 Cascade 

TNF induces the activation of phosphoHpase A2 (PLA2) in human neutrophils 

OBauldry et al., 1991) and can be inhibited by glucocorticoids in human epithelial 

carcinoma ceU Une Hep-2 (Goppelt-Stniebe and Rehfeldt, 1992). Recently, it was found 

that TNF induces the 85 kDa cytosolic PLA2 (cPLA2) gene expression in human bronchial 

epithelial ceUs, BEAS 2B (Wu et al., 1996). PLA2 has been demonstrated to be coupled 

by G-proteins to membrane receptors (SiUc et al., 1989). The PLA2 activation mediated by 

TNF in different cell types induces the production of arachidonic acid (Gustafson-Svard et 

al., 1993). The arachidonic acid metaboUtes such as prostaglandins and leukotrienes 

exhibit gene regulatory activity such as the induction of c-fos gene (Haliday, et aI., 1991) 

and are important mediators of cytotoxicity (Hayakawa et al., 1993; Neale et al., 1988). 

Ln fact, the TNF-induced cytotoxicity can be reduced by inhibitors of PLA2, such as 
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quinacrine (Suffys et al., 1987). However，Robaye and Dumont found that PLA2 activity 

is not involved in the TNF-triggered cell death in bovine aortic endotheUal ceUs (Robaye 

and Dumont，1992). Recently, it was found that TNF-induced apoptosis (programmed ceU 

death that wiU be discussed later) is mediated by caspases, the cysteine proteases related 

to interleukin lp-converting enzyme, that results in the cleavage and activation of cPLA2, 

which in tum elicits to apoptosis O^issing et al., 1997). 

1.3.2 Activation ofPhospholipase C Pathway 

The second major signaling pathway of TNF-mediated ceU responses involves 

specific phospholipases. However, release of Ca^+ from intemal stores and increase in 

intraceUular inositol trisphosphate (P3) levels have not been detectable in U937 ceU Une 

(Schutze et al., 1992a). TNF stimulates the production of 1,2-diacylglycerol (1,2-DAG) 

by activation o f phosphatidylchoUne-specific phosphoUpase C (PC-PLC) in the absence of 

changes in intraceUular calcium concentration ([Ca^^i). The 1,2-DAG formation in 

response to TNF is a very rapid and transient event (Schutze et al., 1992a). L i contrast, 

Beyaert et al. found that Uthium chloride (LiCl), an inhibitor of phosphoinositide 

metaboUsm and cycUng, increases the cytotoxic activity o f TNF towards some 

transformed ceU Unes such as L929. Treatment o f these ceU Unes wi th the combination of 

TNF and LiCl leads to the prolonged accumulation of inositol monophosphate (H*), 

inositol bisphosphate (0*2)，and inositol trisphosphate (EP3), whereas treatment with TNF 

or L iCl alone did not 03eyaert et a/.，1993). Both TNF-mediated cytotoxicity and -

induced accumulation o f inositol phosphates were blocked by neomycin, a phospholipase 

inhibitor. The increase in n*3 after treating ceUs wi th TNF and L iCl suggests a role of 
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[Ca2+]i in TNF action. Moreover, several agents that lower the [Ca^^]i inhibited TNF 

cytotoxicity (Beyaert et al., 1993). In conclusion, TNF-induced production of ff3 or 

[Ca2+]iis still controversial. 

1.3.3 Activation of Sphingomyelin Pathway 

TNF signaling may involve sphingomyelin (SM) hydrolysis to ceramide by 

sphingomyelinase (SMase) fFigure 1.3). In a cell-free system, TNF induced a rapid 

reduction in membrane sphingomyeHn content and a quantitative elevation in ceramide 

concentration p>essler et al., 1992). There are two types of SMase, the acidic and the 

neutral forms, that exert different functions. The SMases belong to a family of C type 

phospholipases that hydrolyze SM to produce phosphorylcholine and ceramide. The latter 

is viewed as a second messenger-Uke molecule, SMases are widely distributed in various 

tissues and exhibit characteristic cellular compartmentation. Acidic SMase is an 

intraceUular, compartmentalized glycoprotein with an optimal pH of 4.5 and a molecular 

size of 72 kDa (Quintera et al., 1987). Activation of the acidic SMase has been shown to 

require 1,2-DAG (Kolesnick，1987). Schutze et al. found that TNF-responsive PC-PLC 

via 1,2-DAG couples to an acidic SMase, resulting in the generation o f ceramide, with 

eventually triggers rapid induction ofnuclear NFKB activity that controls the expression of 

a variety of cellular genes (Schutze et al., 1992b; review: Kolesnick and Golde, 1994). 

The finding indicates that 1,2-DAG activates an acidic SMase that hydrolyzes SM to 

produce ceramide in U937 and Jurkat cells. The second messenger-like molecule ceramide 

is found to display a potent, NFKB-inducing capacity (Schutze et al., 1992b). In contrast, 

neutral SMase has been implicated in mediating TNF-induced differentiation of HL-60 
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Figure 1.3 
Sphingomyelin hydrolysis to ceramide mediated by sphingomyelinase. Sphingomyelin 
is comprised of a phosphocholine headgroup, a long chain or very long chain saturated or 
monounsaturated fatty acid and a sphingoid base backbone, predominantly sphingosine. 
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cells (Kim et al., 1991). Neutral SMase was shown to activate a protein kinase but did not 

require PLC (Mathias et aL, 1991). . 

In addition, the generation of ceramide in response to TNF may play a role in 

stimulation of the transcription of cPLA2 and cyclooxygenase 2 in L929 cell (Hayakawa et 

al., 1996). Ceramide-related signaling processes in the induction of apoptosis by TNF was 

found in U937 cell (Jarvis et al., 1994). 

1.3.4 Activation of Protein Kinase 

Activation ofprotein kinase A 

TNF has been noted to rapidly increase the production of cyclic AMP (cAMP) that 

potentially results in activation of protein kinase A (PKA) in human diploid fibroblast FS-4 

(Zhang et al., 1988). TNF may either directly activate adenylate cyclase via G-proteins or 

inhibit phosphodiesterase activity. Scheurich et al. found that activation of PKA results in 

an enhancement of TNFR expression. Addition of the membrane-permeable cAMP 

derivative dibutyric-cAMP resulted in a drastic enhancement of TNF binding capacities in 

HL-60 ceU (Scheurich et al., 1989). 

Activation of protein kinase C 

The involvement o fPKC in TNF signaling pathways was monitored by the effects 

of TNF on the PKC activity in U937 and K562 cell lines (Schutze et al., 1990). TNF 

treatment resulted in activation ofPKC associated with a translocation from the cytosol to 

the cell membrane. The molecular mechanism of TNF-induced PKC activation is likely 
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related to 1,2-DAG that generated by PC-specific PLC. Moreover, it has been shown that 

unsaturated fatty acids, such as arachidonic acid, can activate PKC independently of Ca^^ 

and phospholipids (Murakami and Routtenberg, 1985). Therefore, TNF activation o fPKC 

may occur through stimulation of either phospholipase C, leading to increased levels of 

1,2-DAG, or phospholipase A2, elevating arachidonic acid. As mentioned before, 

activation of PKC may down-regulate TNPR expression ceUs (Aggarwal and Eessalu, 

1987). 

Activation of serine/threonine protein kinases 

Treatment of Swiss 3T3 and L929 ceUs with TNF leads to the rapid stimulation of 

several cytosoUc serine/threonine kinases active toward a number of peptide and protein 

substrates, such as myelin basic protein (Van Lint et al., 1992). This confirms the 

hypothesis that kinases other than PKA and PKC may be involved in the TNF signal 

transduction. 

1.3.5 Activation of the Cascade ofDeath Domain 

The cytoplasmic regions of TNFR1 is responsible for transducing the death signal. 

Subsequent mutational analyses in TNFR1 indicated that this domain has been designated 

a death domain OFigure 1.4) (Tartaglia et al.’ 1993，review: Nagata，1997). The death 

domain contains protein TRADD (TNFRl-associated death domain protein) that binds to 

TNFR1 OHsu et al.’ 1995). TRADD binds to FADD (Fas-associating protein with death 

domain) or M 0 R T 1 OFADDMORT1) via interactions between their death domains OHsu 

et al., 1996b). F A D D M 0 R T 1 then activates caspase-8, that carries two death effector 
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Figure 1.4 
TNF induced a cascade of death domain. TNF binds to TNFR1, and the trimerized 
receptor recruits TRADD via interactions between death domains. The death domain o f 
TRADD then recruits F A D D M 0 R T 1 in one pathway to activate caspase-8. In another 
pathway, RIP binds to TRADD and transduces an apoptotic signal through the death 
domain. In addition, RIP together with TRAF2 activates NF-KB, which may induce the 
expression o f survival genes. 
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domain (DED) or M0RT1 (DED/M0RT1) domains at the N-terminal region, through 

which it binds FADDMORT l . The C-terminal region of caspase-8 is related to caspase-1 

family that transduces an apoptotic signal. In addition to this pathway, TNFR1 has another 

pathway leading to apoptosis. REP (receptor interacting protein) is a serine/threonine 

kinase containing a death domain and binds to TRADD Qisu et al., 1996a) and transduces 

an apoptotic signal. On the other hand, RJP together with TRAF2 (TNF receptor-

associated factor 2) activates NF-KB, that may induce the expression of survival genes. 

The role of the kinase activity ofRJP is currently unknown (Liu et al., 1996b). 

1.4 Induction of Both Apoptosis and Necrosis by Tumor Necrosis Factor-

Alpha 

1.4.1 Apoptosis Versus Necrosis 

Two forms of cell death have been recognized by Wyllie et al. (WyUie et al., 

1980), necrosis and apoptosis (or programmed cell death) that are distinguished by 

morphological characteristics (review: Kerr et al., 1995). 

Cellular necrosis is defined by electron-lucent cytoplasm, mitochondrial swelling, 

loss of plasma membrane integrity without drastic morphological changes in nuclei. 

Necrosis has been considered as a passive degenerative phenomenon induced by direct 

toxic or physical injuries, which most often occurs accidentally (Hawkins et ai., 1972). 

Nuclear DNA is randomly cleaved as a consequence of ceUular degeneration. Leakage of 
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the cytoplasm through plasma membrane disruption induces ceMar inflammatory 

responses. Necrotic ceUs in tissues tend to retain their shape until removed by 

mononuclear phagocytes. In cultures, on the other hand, disintegration results in the 

production of amorphous debris CJCerr et al., 1995). 

Apoptosis was originaUy distinguished from necrosis on the basis of its 

ultrasturcture (Kerr et aL, 1972). Apoptosis is characterized by chromatin condensation, 

nuclear fragmentation and formation of apoptotic bodies (WyUie et al., 1980). Apoptosis 

is tightly regulated by molecular mechanisms. In most but not aU forms of apoptosis, 

nuclear DNA is cleaved at intemucleosomal sites that produces 180 base pairs fragments. 

In tissues, apoptotic bodies are often found in clusters, but scattered single bodies are also 

common (Kerr et aL, 1995). Apoptosis can be induced by various stimuU such as ceramide 

(Obeid et al., 1993), cytochrome c (Liu et aL, 1996a), Ca】+ (Park et a!., 1996) and 

hydrogen peroxide (Gardner et al., 1997a). On the other hand, apoptosis can be 

suppressed by Bcl-2 (B-ceU leukemia/lymphoma-2 gene, is a proto-oncogene &st 

identified by its association with B ceU malignancies (Reed, 1994)) (Hockenbery et al., 

1990). Apoptosis is important in animal development such as sculpting, deleting unwanted 

structures, controUing ceU numbers and eUminating nonfunctional, harmfiil, abnormal, or 

misplaced ceUs (review: Jacobson et aL, 1997). 

Recently, the intraceUular ATP leveb have been impUcated both in vitro and in 

vivo as a determinant of the ceU's decision to die by apoptosis or necrosis (review: 

• Tsujimoto 1997). I t was found that necrosis did not require intraceUular ATP. In contrast, 
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depletion of intraceUular ATP by incubating ceUs in glucose-free medium to halt 

glycolysis, in the presence of the mitochondrial Fo-Fi-ATPase inhibitor oHgomycin, 

completely blocked apoptosis induced by Ca:+ ionophore and ATP suppHed through either 

glycolysis or mitochondrial oxidative phosphorylation restored the apoptotic ceU death 

pathway. These results indicate that apoptosis is ATP-dependent (review: Nicotera and 

Leist, 1997). 

1.4.2 TNF Can Induce Both Apoptosis and Necrosis 

Laster et al. found that TNF can induce both apoptotic and necrotic forms of ceU 

lysis that depends on ceU type (Laster et al, 1988). In TNF-sensitive target, an adenovirus 

E l transformant F17 undergoes DNA fragmentation when it dies. This suggested that in 

F17 ceUs, TNF triggers apoptosis. However, L - M ceUs die in a completely different 

manner. UnUke F17 ceUs, L - M ceUs undergo necrotic form of ceU death after TNF 

treatment. 

1.5 Possible Mechanisms of Tumor Necrosis Factor-Alpha-Mediated 

Cytotoxicity 

TNF is cytotoxic to some ceU Unes, but not aU tumor ceUs (Table 1.4). The exact 

mechanism for TNF cytotoxicity is still unknown. In this section, several possible 

mechanisms wil l be introduced. 
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1.5.1 Release of Reactive Oxygen Species 

Review of reactive oxygen species 

Reactive Oxygen Species (UOS), a reduced form of oxygen, are unstable. For 

examples，superoxide radical (02*"), hydrogen peroxide (H2O2), hydroxyl radical (OH*), 

nitric oxide OSK>)，semiquinone (SQ*), peroxyl and alkoxyl radicals 0^00« and R0* ) 

(review: Dawson and Dawson, 1996) are the ROS found in the cytosol. The normal 

background level for H2O2 is about micromolar range (^iM) and there is about nanomolar 

(nM) range for 02*~, OH* and NO*. Mitochondria are considered to be the major site of 

ROS production whereas the primary source is from the electron transport chain. 

Therefore, ROS are generated continuously in respiring cells. Figure 1.5 shows the 

metabolic pathways for the generation of 02*", H2O2 and OH*. N A D H that come from 

glycolysis or TCA cycle, donates electron to ubiquinone QJQ) and then pass through a 

cascade, finally to the electron acceptor, molecular oxygen. Aknost all electrons pass 

through this pathway. However，about 1-3 % of electrons leak out from inner 

mitochondrial membrane and react with molecular oxygen directly, and 02*" is formed 

Pawson and Dawson, 1996). Then, 02*" is converted into H2O2 or water, depends on the 

catalytic pathway. Excessive production ofROS may cause cell death. 

ROS attack different targets inside the cells. Proteins, lipids, D N A and RNA are 

the major targets. ROS cause modification of thiol groups on mitochondrial membrane, 

therefore, increase the [Ca^^]i level by releasing the mitochondrial Ca^^ into cytosol 

(review: Vercesi, 1993). ROS cause lipids peroxidation that increase the membrane 
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Metabolic pathways for the generation of 02*", H2O2 and OH* in the inner 
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permeabUity (Radi et al., 1991). ROS may induce base damage on DNA or RNA (Park et 

a!.，1998; Wiseman and HaUiweU, 1996). Consequently, protein synthesis is inhibited. 

There are two main defence mechanisms for removing ROS inside the ceUs. They 

can be categorized into enzymatic and non-enzymatic defences. The enzymatic defence 

includes the manganese dependent superoxide dismutase (MnSOD) that locaUzed in 

mitochondria; copper and zinc dependent SOD (CWZnSOD)，catalase, glutathione 

peroxidase and glutathione reductase system in cytosol. The non-enzymatic defence 

includes a-tocopherol, ascorbic acid and p-carotene (review: Briehl and Baker, 1996). 

The excessive production ofROS impairs the antioxidant system. It is interesting that low 

level o f oxidants stimuhtes ceU proUferation. Different concentrations of redox-cycUng 

quinone DMNQ in RCvfm5F ceUs induce different responses. At low concentration about 

10 | iM, DMNQ induces ceU proUferation. At medium concentration about 30 jiM，it 

inhibits ceU growth and induces apoptosis. At high concentration such as 100 ^M, it 

causes glutathione and ATP depletion, Ca^^ overload and acute necrosis (Dypbukt et al., 

unpubUshed data). 

Release ofROS after TNF treatment 

Tsujimoto et al found that TNF provokes 02*" generation from human 

neutrophik (Tsujimoto et al, 1986b). Treatment o f murine tumor ceUs such as L929, 

P388 and Pan-02 with rHuTNF induces oxidative damage in vitro (Zimmerman et al., 

1989). Wong and Goeddel found that TNF induced the production ofMnSOD mRNA in 

‘ a U ceU Unes and normal ceUs in vitro and in various organs of mice in vivo (Wong and 
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Goeddel, 1988). Moreover, the antioxidants desferrioxamine and butyIated hydroxyanisol 

inhibited TNF-induced apoptosis in L929 ceUs. However, enforced expression of Bcl-2 

had no effect against TNF-induced apoptosis (Gardner et al, 1997b). 

1.5.2 Release of IntraceUular Calcium 

Review ofCc^— homeostatsis 

There are many signaling pathways in cells. Phosphoinositide cycle (Tigure 1.6) is 

one of these pathways and it regulates the mobilization of calcium ion (Ca】+) (Berridge, 

1985). Cytosolic Ca^+ is important in the regulation of many cellular activities. For 

instance, secretory cell requires Ca^^ as the regulator for secretion. Nuclear calcium 

(Ca2+)n is important in the regulation of a number of nuclear activities such as DNA 

replication (Jindal et al., 1991), gene transcription ps4organ and Curran, 1986), DNA 

repair (Bachs et al., 1994) and apoptosis (Jones et al., 1989). In general, the concentration 

of Ca2+ in extracellular medium is in the range of mM level while the intracellular one is as 

low as nM. Moreover, Ca]+ cannot be synthesized or degraded, hence, the fine tune of 

Ca2+ concentration is very important. I f the concentration of Ca^^ is too high, it may 

induce apoptosis or programmed cell death pSTicotera et al., 1994). 

In general, there are three transporting systems for Ca^^ influx from extraceUular 

medium into cytosol. They include receptor-operated channel, voltage-operated channel 

and Na7Ca2+ exchanger. On the other hand, Ca^^ efflux is regulated by Ca^^-ATPase 

(Figure 1.6a). Ca^^ is sequestered by intraceUular Ca^^ stores such as nucleus and 

endoplasmic reticulum and mediated by Ca^^-ATPase OFigure 1.6b). Ca】+ efflux can be 
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Figure 1.6 
Calcium homeostatsis inside a cell, (a) Câ ^ transport systems on plasma membrane, (b) 
Ca2+ sequestration by the ER and nucleus and (c) Ca^^ cycling in a mitochondrion. 
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regulated by inositol l,4,5-trisphosphate (EP3). The binding of EP3 to ff3-sensitive Ca^^ 

channel induces Ca^^ release from Ca^^ stores (review: Berridge, 1993). Moreover, Ca^^ 

cycling exists in mitochondrion. The uniporter on inner mitochondrial membrane for Ca?+ 

transport is regulated by mitochondrial membrane potential (Avj/m) (Figure 1.6c). The 

membrane potential of mitochondria is about -180 mV inside. The mitochondrial Ca:+ 

efflux is mediated by Na+-dependent and Na+-independent exchanger (review: Vercesi, 

1993). 

Figure 1.7 shows the phosphoinositide cycle. At first, agonist binds to receptor 

that induces the activation of G protein which in tum acts on phosphatidylinositol 4,5-

bisphosphate phosphodiesterase (PDE), or phospholipase CP (PLCp). PLCP is an enzyme 

that degrades phosphatidylinositol 4,5-bisphosphate (^TP2) into two products, EP3 and 1,2-

diacylglycerol (1,2-DAG). 1,2-DAG acts on inactive form of Ca^^-dependent protein 

kinase (PKC) and changes it to an active form. The active form of PKC is very important 

for various functions and also for mitogenesis OBerridge, 1993). On the other hand, ff3 

binds to the EP3-sensitive receptor that induces the release of Ca^ .̂ In general, ff3 

receptors localize on the cytosolic endoplasmic reticulum. To date, several lines of 

evidence show that nuclear membrane may have EP3 receptor OHennager et cd., 1995， 

Malviya, 1994). Therefore, endoplasmic reticulum and perinuclear space are both Ca^+ 

pools that contain 10^ M Ca^^ inside. Moreover, ff3 is phosphorylated to phosphoinositol 

1,3,4,5-tetrakisphosphate (ff4) by the enzyme, HV3 kinase. EP4 binds to its receptor, 

which localized on the plasma membrane and also on the nuclear membrane (Hennager et 

al., 1995). n*4 receptor itself is a Ca?+ channel that permits Ca^^ influx from the extemal 
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Figure 1.7 
The phosphoinositide cycle. The first messenger binds to its specific receptor, activating 
a G protein that in tum stimulates phospholipase Cp (PLCP). Phospholipase Cp cleaves 
phosphatidylinositol 4,5-bisphosphate (PEP2) into two products, inositol 1,4,5-
trisphosphate (0^ ) and l,2-diacylglycerol ( l ,2-DAG). ff3 binds to the DP3 receptor on the 
Ca2+ pool and releases Ca:+ into cytosol. 1,2-DAG acts on inactive PKC and produces 
activated PKC Both Ca^^ and PKC act on other cellular effector molecules. 



Chapter 1. General Introduction Page 35 

medium into the cytosol. After finishing the mobUization of Ca^^ from Ca^^-pool, IP3 was 

degraded (Berridge, 1985). 

Sustained increase in the [Ca^^]i induces the activation of Ca^^-dependent protease, 

phosphoHpases and endonucleases (review: Orrenius et al., 1989) that may induce 

apoptosis. Accumuhtion of [Ca^^]i activates proteases such as calpains. The major target 

for proteases are the cytoskeletal proteins such as a-actinin and actin-binding protein. 

Exposure of isolated hepatocytes to Ca，+ ionophore A23187 was associated with an 

increase in [Ca^^]i, a stimulation of intraceUular proteolysis and the appearance o f phsma 

membrane blebs (Nicotera et al., 1986). PhosphoHpases can be activated by Ca^^. PLA2 

catalyzes the hydrolysis of membrane phosphoUpids that requires Ca^^ for activation, 

which could cause ceU damage (Chien et al., 1979). Ca]+ activates endonucleases that 

cleaves ceU chromatin into oUgonucleosomal fragments. Accumuktion of Ca:+ 

concentration induced DNA fragmentation in rat Uver nuclei (Jones et al., 1989). 

Release of calcium after TNF treatment 

I t is stiU controversial that TNF does affect the [Ca^^]i level and involves in 

cytotoxicity. TNF induces a rapid release o f [Ca^^]i in human neutrophik (Schumann et 

cd., 1993). Moreover, several reports found that TNF induces a slow rise in [Ca^^]i level 

in mammary adenocarcinoma ceUs BT-20 (BeUomo et al., 1992), glial ceUs (KoUer et al., 

1996), and L929 ceUs (Kong et al, 1997). In contrast, Hasegawa and Bonavida reported 

that human peripheral blood lymphocytes shows a Ca^^-independent pathway o f TNF-

• mediated lysis ^Iasegawa and Bonavida, 1989). 
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1.5.3 Miscellaneous Mechanisms 

Other mechanisms may be involved in the cytotoxic effects ofTNF. TNF-mediated 

cytotoxic action involves ADP-ribosylation in target ceUs. ADP-ribosyktion induces 

NAD+ and ATP depletion that causes ceU death (Weilckens et al., 1982). Agarwal et al. 

found that ADP-ribosylation in TNF-treated L929 ceUs increases in a time- and dose-

dependent manner and the inhibitors o f ADP-ribosyl transferase, such as 3-

aminobenzamide and nicotinamide, block TNF-mediated cytotoxicity (Agarwal et al., 

1988). Reports of the synergistic effects of other cytokines EFN-y ^Fransen et al., 1986) 

and inhibitors of DNA topoisomerases O^tsugi et al., 1990) may uncover other 

mechanisms of TNF cytotoxicity. Moreover, the potentiation of TNF cytotoxicity by 

increased temperatures has been reported ^Dubois et al., 1989). 
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1.6 Objectives of Study 

As mentioned before, TNF induces cytotoxic ,effect in some cell lines. The 

mechanisms involve the release of ROS and Ca^ .̂ However, their relationship is still 

unknown. Therefore, the objectives ofthis study is to investigate the effects o fTNF on the 

release ofROS and Ca】+ in L929 cells. Moreover, the relationship between ROS and Ca^^ 

wil l be examined. The role ofCa^^ and ROS in the TNF-induced cytotoxicity wiU also be 

investigated, b i this connection, the release of ROS and Ca】+ were investigated. The 

effects of antioxidants, mitochondrial inhibitors, and Ca:+ chelating agent were studied 

also. Moreover, the mitochondrial membrane potential, pH and ceU cycle were explored. 

L929 cells are one ofthe TNF-sensitive cell Unes that is widely used in the field of 

TNF studies, b i fact, cytotoxicity o fTNF on L929 ceUs was first described by CarsweU et 

al. in 1975 (Carswel et al., 1975). In this study, L929 ceUs were chosen as a model since 

L929 cells is well studied in many reports. The data obtained in this project can be easily 

compared with others. Moreover, in this study, the effects of TNF on resistant-L929 

(rL929) cells were investigated as well. The differences between TNF-sensitive and 

resistant cell lines and the possible mechanisms account for the resistance to TNF were 

examined in this project. The effect o fTNF on the (1) cytotoxicity,⑵ release ofROS, (3) 

release of C ^ \ and (4) cell cycle were investigated and the responses to TNF in both 

sensitive and resistant L929 cells were compared. 
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As described before, the specific activity of MuTNF is about threefold higher than 

HuTNF on the cytotoxicity of L929 cells. Fiers et al, have repeatedly reported on the 

considerable difference in response in vivo between MuTNF and HuTNF (Brouckaert et 

al., 1986). In normal mice, HuTNF is about 50-fold less toxic than MuTNF (Brouckaert 

et al., 1992). Therefore, in this study, the effects of recombinant murine TNF (rMuTNP) 

was selected. 

Several approaches were used for studying the effects of TNF on L929 ceUs. For 

instance, agarose gel electrophoresis and cytotoxicity assay were used for investigating 

cell death. Confocal laser scanning microscopy and flow cytometry were used for 

exploring the release of ROS and Ca】+，pH, mitochondrial membrane potential and ceU 

cycle after TNF treatment. 
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Chapter 2 

Materials and Methods 
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Chapter 2. Materials and Methods 

2.1 Materials 

Table 2.1 shows a summary of the common name, chemical name, formula, 

formula weight and source of chemicals. 

2.1.1 Buffer 

Preparation of buffer 

Buffer was prepared from dissolving chemicals in distiUed water and titrated to 

suitable pH with either HC1 or NaOH except specified. 

Calcium-free bufTer was composed of 130 mM NaCl, 5 mM KC1, 1 mM MgSO4-

7H2O, 1 mM Na2HPO4-2H2O, 10 mM Tris-HEPES, 0.3 % (w/v) glucose and 5 mM 

EGTA. Tris-HEPES was prepared from dissolving HEPES into water and titrated to pH 

7.4 with Tris-base. Calcium-free buffer was titrated to pH 7.4 by Tris-base. Subsequently, 

buffer was filtered by bottle-top filter (0.22 ^im cellulose acetate membrane, 7111，Falcon, 

Becton Dickinson, NJ, USA). Buffer was stored at 4 °C. 

Lysis buffer for agarose gel electrophoresis was composed of 5 mM Tris, 100 

mM EDTA and 1 % SDS (w/v). pH was adjusted to 8.0. Buffer was stored at 4 T . 



Chapter 2. Materials and Methods Page 41 

Table 2.1 
Table of the common name, chemical name, formula, formula weight and source of 
chemicals used in this project. 

Common Name， Formula Source 
Chemical name and formula Weight 

Actinomycin D 1255.4 Sigma Chemical Co.， 

St. Louis，MO, USA 
Agarose — Sigma Chemical Co., 

St. Louis, MO, USA 
Ammonium chloride 53.49 Riedel-de Haen, AG, 

CNH4Cl) Germany 
Ant imycin A Sigma Chemical Co., 
(a mixture of St. Louis, MO, USA 
C28H40N2O9 548.6 
C27H38N2O9 534.6 
C26H36N2O9 520.6 
C25H34N2O9) 5 0 ^ 

B A P T A / A M 764.69 Molecular Probes, 
([1,2-bis(2)aminophenoxy]ethane-N,N,N^N^-tetra- Eugene, Oregon, USA 

acetic，acetoxymethyl ester) 
Boric acid 61.83 Riedel-de Haen, AG, 
(H3BO3) Germany 

Calcium chIoride-2-hydrate 147.02 Riedel-de Haen, AG, 
(CaCl2-2H2O) Germany 

CataIase — Sigma Chemical Co.， 

(from bovine Uver) (200QU/mg protein) St. Louis, MO, USA 
Chloroform 119.3 8 Merck, Germany 

(CHCl3) 
DCF 487.29 Molecular Probes, 

(2',7'-dichlorofluorescm diacetate) (H2DCFDA) Eugene’ Oregon, USA 
DiItiazem 451 Sigma Chemical Co., 

(C22H26N2O4S) St. Louis’ MO, USA 
2,4-Dinitrophenol 184.1 Sigma Chemical Co., 
QDNP) (C6H4OsN2) St. Louis’ MO, USA 

DMSO 78.13 B D H Chemicals Ltd., 
(dimethylsulphoxide) (CH3SOCH3) Poole, England 

DNA marker — Pharmacia Biotech, 
(100 base pair) USA 

EthanoI 46.07 B D H Chemicals Ltd., 
(EtOH) (C2HsOH) Poole, England 
Ethd ium bromide 394 Molecular Probes, 

(EtBr) Eugene, Oregon, USA 
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Continue Table 2.1 

Ethylenediaminetetraacetic acid 292.2 Sigma Chemical Co., 
(EDTA) (C10Hi6N2O8) St. Louis, MO, USA 

Ethylene gIycoI-bis(P-aminoethyl ether) 380.4 Sigma Chemical Co., 
N,N,N%N'-tetraacetic acid St. Louis, MO, USA 

(EGTA) (C14H24N2O10) 
Fetal bovine serum — GibcoBRL, Life 

(FBS) Technologies Inc. 
F luo-3/AM ~~1129.86~~~ Molecular Probes, 

(Fluo-3, acetoxymethyl ester) Eugene, Oregon, USA 
Fura- red/AM 1089 Molecular Probes, 

(Fura-red, acetoxymethyl ester) Eugene，Oregon，USA 
Gel loading dye — Kindly provided by 

(bromphenol blue and glycerol) Prof. K. P. Fung 
Glucose 180.2 Sigma Chemical Co., 

(C6H12O6) St. Louis, MO, USA 
HEPES 2 ^ Sigma Chemical Co., 

fN-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic St. Louis, MO, USA 
acid]) 

Hydrochlor ic acid 36.45 B D H Chemicals Ltd., 
(HC1) Poole, England 

Hydroethidine 315 Molecular Probes, 
(HE) Eugene, Oregon, USA 

Hydrogen peroxide 34.01 Merck, Darmstadt, 
(H2O2) (perhydrol 30 % H2O2) Germany 

4-Hydroxy-TEMPO 172.2 Sigma Chemical Co., 
(4-OH-TEMPO) (C9Hi8NO2) St. Louis，MO, USA 

Ionomycin ^ Calbiochem, CA, USA 
(C41H72O9) 

Isopropanol 60.1 B D H Chemicals Ltd., 
((CH3)2CHOH) Poole, England 
Isoamyl alcohol 88.15 Riedel-de Haen, AG， 

(3-methyl butanol-(l)) (CsH12O) Germany 
Magnesium sulfate-7-hydrate 246.48 B D H Chemicals Ltd., 

(MgSO4-7H2Q) Poole, England 
M T T 4 H l Sigma Chemical Co., 

(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium St. Louis, MO，USA 
bromide; thiazolyl blue) (CigHieNsSBr) 

Molecular sieve — Sigma Chemical Co., 
(Potassium, Sodium alumino-siUcate) (nominal pore St. Louis, MO, USA 

diameter: 3 angstrom) 
N-acetyl-L-cysteine 163.2 Sigma Chemical Co., 
_ c ) (C5H9NO3S) St. Louis, MO, USA 
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Continue Table 2.1 

Neutral red 288.8 Sigma Chemical Co., 
(3-amino-7-dimethylamino-2-methyl-phenazine St. Louis, MO, USA 

hydrochloride) (C15Hi6N4) 
Penicillin-streptomycin 一 GibcoBRL, Life 

(penicillin: 5000U/ml protein Technologies Inc. 
streptomycin: SOOQ îg/mii) 

Phenol 94.11 USB O^nited States 
(CgHsOH) Biochemical), 

Cleveland, OH, USA 
Potassium chloride 74.55 Sigma Chemical Co., 

QCCI) St. Louis，MO, USA 
Potassium phosphate 136.1 Sigma Chemical Co., 

(monobasic anhydrous) OKH2PO4) St. Louis，MO, USA 
Propidium iodide 668.4 Sigma Chemical Co.， 

2 2 St. Louis，MO, USA 
Proteinase K 一 Sigma Chemical Co., 

(from tritirachium album) (16 U/mg protein) St. Louis, MO，USA 
Rhodamine 123 381 Molecular Probes, 

Eugene, Oregon, USA 
Ribonudease A 一 Sigma Chemical Co., 

QRNase A) (102 U/mg protein) St. Louis’ MO，USA 
Rotenone 384.4 Sigma Chemical Co., 
(C23H22O6) St. Louis, MO，USA 

R P M I — GibcoBRL, Life~~~ 
(with phenol red) Technologies hic. 

R P M I — GibcoBRL, Life 
(without phenol red) Technologies hic. 

Ruthenium red 786.35 Sigma Chemical Co., 
St. Louis，MO, USA 

§ 5 § 288.38 USB ^Jnited States 
(sodium dodecyl sulfate) (CH3(CH2) 11SO4Na) Biochemical), 

Cleveland, OH，USA 
Sheath f lu id — Becton Dickinson, NJ, 

y s A 
S N A R F - l / A M 5 ^ Molecular Probes,~~ 

(carboxy-seminaphthorhodafluor-1, acetoxymethyl Eugene, Oregon, USA 
ester) 

Sodium chloride 58.44 Riedel-de Haen, AG, 
0<[aCl) Germany 

Sodium hydrogen carbonate 84.01 Riedel-de Haen, AG, 
O^aHCO3) Germany 
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Continue Table 2.1 

Sodium hydrogen phosphate 141.96 Riedel-de Haen, AG, 
O^a2HPO4) Germany 

Super oxide dismutase — Sigma Chemical Co., 
(manganese-containing) ^ ^ S O D ) St. Louis, MO, USA 

(4400U/mg protein) 
Thapsigargin 650.76 Molecular Probes, 

Eugene, Oregon, USA 
ThenoyItrifluoroacetone 222.2 Sigma Chemical Co., 

(TTFA) (4,4,4-trifluoro-1 -[2-thienyl]-1,3- St. Louis, MO, USA 
butanedione) (C8H5F3O2S) 

Thimersol 404.8 Sigma Chemical Co., 
(sodium ethylmercurithio-salicylate; mercury-[(o- St. Louis, MO, USA 

carboxyphenyl)thio] ethyl sodium salt) 
(C9H9HgO2SNa) 

TNF 一 Boehringer Mannheim, 
(recombinant murine tumor necrosis factor-alpha) Germany 

Tris 121.14~~ USB (United States 
OOT2C(CH2OH)3) Biochemical), 

Cleveland，OH, USA 
Trypsin-EDTA — GibcoBRL, Life 

(0.25 % trypsin, 1 m M EDTA) | Technologies Inc. 
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Phosphate buffered saline (PBS) was composed of 136 mM NaCl, 2.7 mM KC1, 

1.5 mM KH2PO4 and 8 mM Na2HPO4. PBS was titrated to pH 7.4 and steriUzed by 

autoclave. PBS was stored at room temperature. 

Sodium-HEPES buffer was composed of 130 mM NaCl, 5 mM KC1, 1 mM 

MgSO4-7H2O, 1.2 mM Na2HPO4, 10 mM Tris-HEPES, 0.3 % (w/v) glucose and 1 mM 

CaCl2-2H2O. Buffer was titrated to pH 7.4 with Tris-base and filtered by bottle-top filter. 

Buffer was store at 4 °C. 

TBE buffer was composed of 890 mM Tris, 890 mM boric acid and 20 mM 

EDTA. Buffer was adjusted to pH 7.4. TBE buffer was stored at room temperature. 

TE buffer was composed of 10 mM Tris and 0.5 mM EDTA. Buffer was adjusted 

to pH 7.4. Buffer was stored at room temperature. 

2.1.2 Culture Media 

RosweU Park Memorial Institute tissue culture medium 1640 ORPMI 1640 

medium) was used for cell culture. Each pack of the powder o fRPMI 1640 medium with 

phenol red, L-glutamine and 0.5 mM HEPES was dissolved in 1 Uter of dH2O. The 

medium was supplemented with 24 mM NaHCO3. The pH of the medium was adjusted to 

7.4. Finally, medium was filtered by bottle-top filter. The complete RPMI 1640 medium 

was supplemented with 1 % penicillin-streptomycin (v/v) and 10 % FBS (v/v). In some 

experiments, phenol red-free RPMI 1640 medium was used. Colorless RPMI 1640 
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medium was prepared by dissolving each pack of the powder of RPMI 1640 medium, 

without phenol red but with L-glutamine, in 1 Uter of dH2O. The medium was 

supplemented with 24 mM NaHCO3 and 25 mM HEPES. The pH of medium was adjusted 

to 7.4. The medium was filtered by bottle-top filtered. The serum-free, colorless RPMI 

1640 medium was supplemented with 1 % peniciUin-streptomycin only. Culture media 

were stored at 4 °C. 

2.1.3 Chemicals 

Antioxidants such as NAc, 4-OH-TEMPO, catalase and MnSOD were used. M 

ofthem were dissolved in culture medium. Antioxidants should be prepared freshly except 

MnSOD (stock concentration was 6.25 mgy^ml) that was stored at -70 X after dissolving 

in medium. NAc was acidic after dissolving in medium, therefore, pH should be adjusted 

to 7.4. 

CaIcium-chelator such as BAPTAAAM was used. It was dissolved in DMSO 

(excess water was absorbed by molecular sieve). The stock concentration was 2.5 mM and 

it was stored at 4 °C. 

Calcium-inducing agents such as thapsigargin, ionomycin and thimersol were 

used. Thapsigargin and ionomycin were dissolved in DMSO whereas the stock 

concentration were 0.5 mM and 2 mg/ml, respectively. Thimersol was dissolved in dH2O 

and the stock concentration were 5 mM. Thapsigargin and thimersol were stored at 4 °C 

whereas ionomycin was store at -70 °C. 
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Dye for cytotoxicity assay such as neutral red and MTT were prepared. 0.5 g 

neutral red powder was dissolved in 100 ml 0.9 % NaCl (normal saline). The final 

percentage of neutral red was 0.5 % (w/v) and it was stored at room temperature. The 

precipitate of neutral red was filtered by filter paper O^hatman). 5 mg/ml MTT was 

prepared by dissolving MTT powder in PBS and filtered by filter paper. MTT solution 

was stored at 4 °C. 

Fluorescence dye such as fluo-3/AM，fiira-red/AM, DCF, HE, SNARF-l/AM, 

rhodamine 123 and PI were used. The fluorescence dyes for Ca?+ studies include fluo-

3 /AM and fura-red'AM. The fluorescence dyes for ROS were DCF and HE. Al l o f them 

were dissolved in DMSO and the stock concentration was 2.5 mM. The fluorescence 

indicators for pH was SNARF-l /AM. SNARF- l /AM was dissolved in DMSO and the 

stock concentrations was 2.5 mM. Rhodamine 123 is the indicator for mitochondrial 

membrane potential. It was dissolved in absolute EtOH and the stock concentration was 

0.5 mM. D N A chelating dye such as PI was prepared. PI was dissolved in PBS. The stock 

concentration of PI was 2 mg/ml. Except rhodamine 123 that was stored at -20 °C，all 

fluorescence dyes were kept at 4 °C. 

Lysis buffer for cytotoxicity assay such as 1 % SDS (w/v) in dH2O and 0.04 N 

HC1 in isopropanol were prepared. Both SDS and acidified isopropanol were stored at 

room temperature. 
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MitochondriaI-calcium-cycling inhibitors such as ruthenium red and diltiazem 

were used. Ruthenium red and diltiazem were dissolved in Na+-HEPES buffer and dH2O 

respectively. The stock concentration of ruthenium red was 5 mM and diltiazem was 50 

mM. They were stored at 4 °C. 

Mitochondrial inhibitors include rotenone, TTFA, antimycin A and DNP. 

Rotenone was dissolved in DMSO. TTFA, antimycin A and DNP were dissolved in 

absolute EtOH. The stock concentration of rotenone, antimycin A and DNP were 5 mM 

whereas TTFA was 50 mM. M mitochondrial inhibitors were kept at 4 °C, 

Protein inhibitor such as actinomycin D was used. The powder of actinomycin D 

was dissolved in serum-free RPMI and the stock concentration was 1 mg/ml. It was 

stored at -20 "C. 

Recombinant murine TNF-a is produced from Escherichia coli and purified by 

standard chromatographic techniques pVIanuel from Boehringer Mannheim, Germany). It 

was dissolved in PBS. The specific activity is = 6.0 x 10^ U/mg. One unit is defined as the 

amount of TNF that is required to mediate half-maximal cytotoxicity with L929 ceUs in 

the presence of actinomycin D. The stock concentration of TNF was 5^g/ml. TNF was 

aliquot and stored at -70 °C. Repeated freezing and thawing should be avoided. 

Preparation of other chemicals such as MnCl2, NH4Cl, agarose, proteinase K, 

RNase A and EtBr were used. MnCl2 was dissolved in Ca^^-free buffer and the stock 
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concentration was 1 M. NH4Cl was dissolved in dH2O and stock concentration was 3.75 

M. Both MnCl2 and NH4Cl were kept at 4 °C. The powder of agarose was dissolved in . 

TBE buffer and final percentage was 1.5 % (w/v). Proteinase K and EtBr was dissolved in 

dH2O and the stock concentrations were 20 mgAnl and 0.5 ^lg/ml, respectively. RNase A 

was prepared from dissolving in TE buffer and the stock concentration was 10 mg/ml. 

Proteinase K and RNase A were stored at -20 °C whereas EtBr was kept at room 

temperature. 

Chemicals such as H2O2, phenol, chloroform, isoamyl alcohol, gel loading dye, 

DNA marker, trypsin and sheath fluid were also applied. H2O2 should be freshly diluted 

from stock (9.8 M). 

2.1.4 CuItureofCells 

2.1.4.1 Tumor Necrosis Factor-Alpha-Sensitive Cell Line, L929 

L929 cells were purchased from American Type Culture Collection (ATCC, 

Rockville, MD, USA). They were derived from transformed fibroblasts in C3H mice. They 

were maintained in RPMI 1640 medium and supplemented with 10 % FBS and 1 % 

Penicillin-streptomycin (complete RPMI). L929 cells were kept at 37 °C，5 % CO2 

incubator (SHEL LAB) with humidified atmosphere. CeUs were cultured in 25 cm^, 75 

cm^ or 150 cm^ culture flask (Coming) and were kept the passage every 3 or 4 days. For 

every passage, medium was discarded and washed once with PBS. Cells were trypsinized 

by the appHcation of trypsin. The cells suspension was coUected by addition of complete 



Chapter 2. Materials and Methods Page 50 

RPMI and was centrifuged at 1500 r.p.m. for 3 min. Cells were then resuspended in 

complete RPMI and passaged to a new flask. 

2.1.4.2 Tumor Necrosis Factor-Alpha-Resistant CeU Line，rL929, rL929-llE and 

rL929-4F 

rL929, rL929-l l E and rL929-4F were kindly provided by Prof. K. P. Fung and H. 

K. Cheng (Department of Biochemistry, CUHK). The isolation of TNF-resistant variants 

of L929 ceUs were according to the methods described by Zimmerman et al. with 

modifications (Zimmerman et al., 1989). The modified methods were described by Kwan 

(Kwan, 1995). Briefly, L929 ceUs were subcultured into 25 cm^ culture flasks and 20 

units/ml TNF was added into medium. The ceUs were maintained in this medium for a 

period of two weeks with a change of fresh medium every 3 days. Dead ceUs were washed 

away and Uving ceUs were aUowed to grow to confluence again. TNF concentration was 

then increased to 50, 100，200, 1000, and 2000 units/ml in a stepwise manner. FinaUy, 

three ceU clones, rL929, rL929 - l lE and rL9294F, were isolated. Resistant ceUs were 

kept at 37 °C, 5 % CO2incubator. The method of passage was the same as that ofL929. 

2.2 Methods 

2.2.1 Agarose Gel Electrophoresis 

The D N A fragmentation resulting from apoptosis was investigated with 

electrophoresis o f D N A extracts according to Park et al. with modifications OPark et al., 

1996). 
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One miUion ofL929 ceUs in complete RPMI 1640 medium were seeded in 6-well 

plate (Corning) and incubated at 37 °C, 5 % CO2 ovemight until confluence. Cells were 

then treated with TNF for various time intervals. The suspension of dead ceUs were 

collected. The adherent cells were washed with PBS and trypsinized. L929 cells were 

resuspended in lysis buffer and proteinase K (200 昭）and incubated at 37 ®C ovemight. 

D N A was extracted by phenol-chloroform:isoamyl alcohol (24:1) method and spun by 

centrifuge (MSE, MicroCentaur, Sanyo) at 10,000 r.p.m. for 1 min. After centrifugation, 

the aqueous layer was extracted, mixed with chloroform:isoamyl alcohol and centrifuged 

at 10,000 r.p.m. for 1 min. The aqueous layer was extracted and was mixed with 5 M ice-

cold NaCl and absolute ice-cold EtOH, and stored at -20。C ovemight. Mixture was spun 

at 10,000 r.p.m. by using Heraeus Centrifuge (Sepatech Biofuge B, Heraeus) for 5 min 

and then centrifuged at 14,000 r.p.m., 4 X by Eppendorf Centrifuge (5402, Eppendorf) 

for 25 min. EtOH was drained away and air-dry ovemight. 20 ^ig RNase A and TE buffer 

were added, and incubated at 37 X for 2 hr. The D N A content in the final preparation 

was estimated by spectrophotometer (U-2000, Hitachi) at O.D. 260. D N A solution was 

diluted so that O.D. 260 o f the 4 pil-to-0.5 ml D N A solution become 0.1. 10 ^ll o f the 

diluted D N A solution was mixed with 2 ^il gel loading dye and D N A marker (100 b.p.), 

and loaded in 1.5 % agarose gel in TBE. D N A was run for 2 hr at 60 volts. D N A was 

stained with EtBr for 30 min and washed twice with dH2O. The image of the gel was 

taken by photographing with polaroid film (type 667，Polaroid QJ.K.) Ltd., England) 

under U V illumination. 
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2.2.2 Cytotoxicity Assay 

The viabiHty of cells can be determined by various assays such as neutral red assay, 

[^] thymidine release assay, crystal violet assay (FUck and GifFord, 1984) and MTT assay 

(Schulze-Osthoff et al., 1992). In this study, neutral red and MTT assays were used for 

determining cell viability since both of them are easier to be applied. 

Neutral red assay 

L929 cells were seeded at 3 x 10^/well in 100 [x\ of complete RPMI 1640 medium 

in 96-well flat bottom microtiter plates (Coming) and incubated for 20 hr at 37。C，5 % 

CO2 incubator until confluence. Spent medium was removed. Cells were washed twice by 

serum-free RPMI medium and 100 \x\ of diluted TNF of various concentrations and drugs 

in serum-free RPMI medium were added to wells. Control weUs contained serum-free 

medium only. Plates were re-incubated at 37。C，5 % CO2 for another 20 hr. After 

incubation, cells were washed twice with PBS. 50 ^il/weU 0.5 % neutral red (w/v) was 

added to each well and incubated for 1 hr at 37 °C, 5 % CO2. Subsequently, dye was 

removed and the wells were washed twice with PBS. Plates were air-dry in oven 

overnight. The cells were lyzed with 1 % SDS (w/v). Absorbance of weUs at 540 nm was 

determined by using microplate reader (BIO-RAD). 1 % SDS was used as blank. 

MTTassay 

The procedure for MTT assay is similar to that of neutral red assay. Briefly, L929 

cells were seeded at 3 x loVwell in a 96-weU plate and were treated with various 

concentrations of TNF and drugs in serum-free medium. After incubation, medium was 
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discarded. 100 [i\ serum-free RPMI and 20 [i\ MTT were added per well. Plates were 

incubated at 37 °C, 5 % CO2 incubator for 2 hr. MTT solution was discarded and 100 

^dAvell ofacidified isopropanol was added to each well. Plates were incubated at 37 °C for 

15 min. Absorbance of wells at 540 nm was determined by using microplate reader. 

Acidified isopropanol was used as blank. 

Statistical calculations 

Samples were tested in triplicate or septupUcate in each plate. Percentage 

cytotoxicity is means 士 standard deviation (S.D.). Percentage cytotoxicity is defined as 

follows: 

Percentage cytotoxicity = 100 % x (O.D. control - O.D. test) / (O.D. control) 

whereas control ceUs were incubated with medium only. Statistical significance was 

claimed only at p-value less than 0.05 or 0.005. The smaller the p-value is，the more the 

significance for the test. 

2.2.3 Confocal Laser Scanning Microscopy 

Introduction 

Confocal laser scanning microscopy (CLSM) aUows 3-D measurements of • 

biological structures with little blur and high spatial contrast (review: Schild, 1996, 

Lichtman, 1994). CLSM achieves high resolution of a selected plane in a specimen by 

means ofthree basic steps (Figure 2.1). First，light is focused by an objective lens into an 
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hourglass-shaped beam so that the beam strikes one spot at some chosen depth in a 

specimen ^Figure 2.1). Next, light reflected from that spot is focused to a point and 

allowed to pass in its entirety through a pinhole aperture in a mask positioned in front of a 

detecting device such as photomultiplier tube ^*MT). Meanwhile the opaque regions 

around the pinhole block out most of the rays that would tend to obscure the resulting 

image, those reflected by illuminated parts of the specimen lying above and below the 

plane of interest. Finally, the light is moved rapidly from point to point in the specimen 

until the entire plane has been scanned. 

Procedure for detecting cell activity by CLSM 

About 2,000 L929 cells were seeded on a round cover glass with complete RPMI 

1640 medium and incubated at 37 °C, 5 % CO2 for 3 or 4 days. 

Detection of [Ca^^i by CLSM; During the experiment, cover glass was mounted 

on a home-made holder. Cells were then washed twice with Na+-HEPES buffer and 

loaded with fluo-3/AM (final concentration: 10 ^M) at room temperature for 1 hr. After 

loading of dye, cells were washed twice with Na+-HEPES buffer or Ca^^-free buffer. The 

final volume of buffer was 0.5 ml in aU experiments since change of volume of buffer 

during the experiment wil l affect the position of the confocal plane (Lui et al., 1997). Cells 

were then observed under CLSM at room temperature and TNP was added during 

scanning. At various time intervals, x-y images of cells were acquired on a system of 

CLSM (Multiprobe 2001, Molecular Dynamics (MD)), or biSight Plus, OVleridian, Miss.， 

USA) that fitted with an argon laser (6 mW at excitation for CLSM-MD, 5 mW at 



Chapter 2. Materials and Methods Page 55 

Computer 

Photomultiplier 
Tube 

• ^ H H y i i ^ H ^ H Pinhole 

Filter I \ / y Out-of-focus light 

~ " ^ T ~ | ^ r = : = J L = ^ : : : : : ^ ( j ^ I n - f o c u s light 

| / / \ \ ^ ^ W Dichroic 
/ ; \ \ ^ ^ Mirror 

Pinhole / / \ \ 

JLX 
/ - ^ j \ ^ ^ ^ Objective 

貧‘.. 
广 \ V / \ Confocal 

"""1 \ / Plane 
Cover J Ceil \； 
Glass " " " ^ " ' " " ' * ^ " " ^ ^ ^ " ^ " ^ " • " ^ ^ ^ “ 

Figure 2.1 
Principle o f C L S M . 



Chapter 2. Materials and Methods Page 56 

excitation for Meridian) and Nikon diaphot inverted microscope. For fluorescence 

determination by CLSM-MD, an excitation filter with 488 nm wavelength and a long-pass 

emission filter of510 nm were used. For CLSM-Meridian, an excitation filter with 488 nm 

wavelength and a clear filter was used. L929 cells were scanned by using a 60X QSFikon 

PlanApo) or 100X (Nikon, Fluor) oil objectives with low-fluorescence immersion oil 

(T |#c= 1515，Stephens Scientifics, USA). The voltage of the PMT was set at optimum. 

Images and fluorescence intensities were processed and averaged by an image analysis 

software (Imagespace 3.1 for CLSM-MD, or Insight IQ Master Program ver. 1.12 for 

CLSM-Meridian). In the pseudo-color images, cool and warm colors indicate a lower and 

higher fluorescence intensity, respectively. 

Detection of intracellular ROS by CLSM: Cover glass with L929 ceUs was 

mounted on a home-made holder and washed twice with Na+-HEPES buffer. Cells were 

incubated with TNF or drugs for 15 min and then washed twice with Na^-HEPES buffer 

again. Cells were loaded with DCF or HE in Na+-HEPES buffer and measurement by 

CLSM was started simultaneously. The setting of detection was similar to that o f [Ca^^]i. 

Detection of intracellular pH by CLSM: Cover glass with L929 cells was 

mounted on a home-made holder and washed twice with Na+-HEPES buffer. CeUs were 

then loaded with SNARF- l /AM in Na^-HEPES buffer (final concentration: 10 \ M ) for 1 

hr at room temperature. After loading, ceUs were washed twice with Na+-HEPES buffer. 

Cells were then observed by CLSM and the setting of detection was similar to that of 

[Ca2+]i. 
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2.2.4 Flow Cytometry 

Introduction 

Flow cytometry (FCM) has been used extensively to analyze various biological 

properties of cells (Ormerod, 1994). FCM is the measurement of cells in a flow system 

that has been designed to deliver particles in single file past a point of measurement. A 

basic flow cytometer consists of a source of light such as laser beam, a flow cell, optical 

components to focus light of different colors on to the detectors, electronics to amplify 

and process the resulting signals and a computer (Figure 2.2). The flow cell is to deliver 

cells singly to a specific point by hydrodynamic focusing at which the source of light is 

focused. This is achieved by injection of the sample into the center of a stream of Uquid 

called the sheath fluid. Light source strikes on the ceUs and the emission of light is 

collected by detectors. Image analysis by computer was then made to study the 

distribution oflight signals emitting from a population of cells. 

Procedure for detecting cell activity by FCM 

One million ofL929 cells in complete RPMI 1640 medium were seeded in a 6-well 

plate and incubated at 37 °C, 5 % CO2 overnight until confluence. Cells were then treated 

with TNF and different drugs for various time intervals. The procedure for detecting Ca:+, 

ROS, mitochondrial membrane potential (vjv) and ceU cycle are different. 

Detection of [Ca^^i by FCM: After incubation with TNF or drugs, cells were 

washed twice with serum-free RPMI 1640 medium for removing non-adherent cells. The 

adherent cells were loaded with fluo-3/AM and fura-red/AM in serum-free R P M medium 
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Figure 2.2 
Principle o f F C M (Becton Dickinson, FacSort model). 
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for 1 hr. Only the adherent cells were loaded with fluorescence dyes. Cells were then 

trypsinized and washed twice with Na+-HEPES buffer. L929 cells were suspended in Na+-

HEPES buffer. Cells were acquired on a system of FACSort flow cytometer (Becton 

Dickinson). The acquisition of cells were analyzed by lysys I I program (Becton 

Dickinson). For fluorescence determination by FCM, an excitation filter with 488 nm 

wavelength (argon laser) was selected. The population of ceUs were determined by 

forward scatter (FSC) light and side scatter (SSC) Ught. FSC and SSC determine the size 

and the granularity of a cell, respectively. The signals of fluo-3/AM and fura-redy'AM 

were collected at channels of FL-1 (green fluorescence) and FL-3 (red 

fluorescence), respectively. FL-1 and FL-3 were set at linear scale. For one single analysis, 

the fluorescence properties of 10,000 cells were coUected. The sample flow rate was 

adjusted to about 1,000 cells/sec. 

Data analysis of[Cc^^]t 

The mean of fluorescence of fIuo-3 and fura-red were collected. The ratio of fluo-

3 to fura-red was calculated and used for comparing the extent of the release of Ca^ .̂ The 

ratio of fluo-3 to fura-red in different treatments was compared with that of control group 

and presented in percentage of control. Furthermore, the dot plots of fluo-3 against fura-

red was analyzed. Each dot represented one ceU. The dot plot was divided by a diagonal 

line into two regions, R1 and R2 (Figure 2.3), Number of dots in both R1 and R2 were 

recorded. Addition of ionomycin (40 p,g/ml) for 10 min induced Ca^^ release and was used 

for positive control. When the [Ca^^]i level increased, fluorescence of fluo-3 increased 
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Figure 2.3 
Analysis of [Ca^^i changes by the use of fluo-3 and fura-red. L929 ceUs (10Vml) were 
seeded in a 6-weU plate and were incubated overnight at 37 °C, 5 % CO2. Cells were 
loaded with 10 p M fIuo-3/AM and 10 [ jM fura-redy'AM for another hr. Cells were then 
trypsinized. After washing, ceUs were re-suspended in the Na^-HEPES buffer and the 
fluorescence of fluo-3 and fura-red were determined by FCM with an argon laser. Y-axis 
represents the fluorescence intensity of fluo-3 whereas x-axis represents the fluorescence 
intensity of fura-red. Panels (a), (c) and (e) are control group from different experiments. 
Panels (b), (d) and (f) are three experiments in which L929 ceUs were treated with 40 
^ig/ml ionomycin 10 min before measurement. Note that a shift in the ceU population at the 
upper-left in panels (b), (d) and (f) indicates an increase in fluo-3 fluorescence with a 
decrease in fura-red. These imply an increase in [Ca^^]i. Dot plots were divided arbitrarily 
by a diagonal line into two regions, R1 and R2. And the % of cells in each region was 
calculated. 
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whereas fluorescence of fura-red decreased, the ceU population shifted to the upper-

left fFigure 2.3). H*the [Ca^^]i level was high in L929 cells, more dots should occur in R1 

and vice versa in R2. Table 2.2 summarizes the results from Figure 2.3. The summation of 

the number of dots in R1 and R2 was 10,000, that was the total number of cells in 

analysis. Addition ofionomycin induced a drastic shift of dots from R1 to R2 (Figure 2.3b, 

d and f). 

Detection of ROS and cell death by FCM: After incubation with TNF and 

drugs, cells were washed twice with serum-free RPMI 1640 medium and trypsinized. Cells 

were washed twice with serum-free medium and re-suspended. DCF, DCF with PI, or HE 

was added to the suspension and measurement was started simultaneously. The 

fluorescence signals of DCF and PVHE were collected at channels of FL-1 and FL-3, 

respectively. FL-1 and FL-3 were set at log scale. HE and PI cannot be applied 

simultaneously since they have the same emission wavelength (collected at FL-3). Other 

settings for detection of ROS was similar to that of [Ca^^]i. The mean of DCF was 

collected and used for determining the extent of ROS release in different treatments and 

compared to control group. 

Data analysis of cell death 

The proportion of dead cells could be analyzed by the dot plots of PI against DCF 

(Figure 2.4). Dot plot was divided into three regions, R1, R2 and R3. Population R1 with 

PI-negative fluorescence properties, indicating viable ceUs. Population R2 with PI-positive 

fluorescence properties, indicating dying cells population. Population R3 with PI-positive 
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Table 2.2 
Ionomycin induced Ca:+ release. 

Treatment control 1 + 40 ^ig/ml control 2 + 40 ng/ml control + 40 ^igAnl 
ionomycin ionomycin 3 ionomycin 

Fluo-3 intensity 74.68~~ 395.34 65.15 455.11 89.49 285.34 
(arbitrary unit) 

Fura-red 406.65 303.30 274.39 281.27 304.80 174.81~" 
intensity 

(arbitrary unit) 
Fluo-3 /Fura-red 0.18 1.30 — 0.24 1.62 ~ 2 9 1.63 

% ofcontrol * 722 675 562 
m 

Number ofceUs 9684 2285 9176 1286 9550 1883 
in R1 

Number ofcells 3i6 WTs ^ m 4 450 ^ ~ ~ 
inR2 

Results from Figure 2.3 were summarized and the peak fluorescences at the x- and y-axis 

were acquired. The ratio of fluo-3 to fiira-red was then calculated and the % of control 

was obtained according to the foUowing formula: 

• % ofcontrol (%) 

=[f luo-3 / fura-red (TNF treatment)] / [fluo-3 / fura-red (control)] x 100 % 

Moreover, the number of dots in R1 and R2 were determined. 
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Figure 2.4 
Dot plots of PI against DCF. L929 cells (10Vml) were seeded in a 6-well plate and were 
incubated ovemight at 37 °C, 5 % CO2. Cells were then trypsinized and were re-
suspended in the serum-free RPMI. Cells were then loaded with 10 j j M DCF and 8 pig/mi 
PI. Measurement was made by FCM. Y-axis represents the fluorescence intensity of PI 
whereas x-axis represents the fluorescence intensity of DCF. The dot plot was divided by 
two Une into three regions, R1, R2 and R3. The % of ceUs in each region was also 
calculated. 
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fluorescence properties, indicating dead cells. Number of dots in the three regions were 

recorded. 

Detection of Ay™ by FCM; After incubation with TNF and/or drugs, cells were 

washed twice with serum-free RPMI 1640 medium and trypsinized. Cells were washed 

twice with serum-free medium and re-suspended. Rhodamine 123 was added to the 

suspension and incubated at 37 °C for 15 min. The fluorescence was collected at channel 

o fFL-1 (linear scale). 

Detection of cell cycle by FCM: After incubation with TNF and drugs, cells were 

washed twice with serum-free RPMI 1640 medium and trypsinized. Cells were washed 

twice with serum-free medium and re-suspended in ice-cold 70 % EtOH. CeU suspension 

was stored at 4 °C overnight. Cells were then re-suspended in 800 ^il PBS, 100 ^il RNase 

A (1 mg/ml) and 20 Û PI (2 mg/ml). The mixture was incubated at 37 °C for 30 min. Cells 

were analyzed by selecting the coUection of fluorescence o fP I at channel o fFL-2A (linear 

scale) andA)r FL-2H (log scale). 

Al l data from FCM were analyzed by WinMDI version 2.6 that was downloaded 

from intemet (www site: 'http://facs.scripps.eduy'software.html'). 
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Chapter 3. Results 

3.1 Tumor Necrosis Factor-Alpha Induced Apoptosis in L929 Cells 

3.1.1 Introduction 

Carswell et al. firstly described that L929 cells are sensitive to TNF action 

(Carswell et al., 1975). Since then, L929 cells are widely used as a model to study the 

mechanisms of cytotoxicity mediated by TNP. 

For determining cell viability, two assays were used in this project, the MTT and 

the neutral red assay. MTT is a pale yellow substrate that produces a dark blue formazan 

product. MTT is cleaved to form formazan by active mitochondria in aU living, 

metabolically active cells but not dead cells. MTT is converted into formazan derivative 

via mitochondrial dehydrogenase activity by viable cells OPagUacci et al., 1993). The MTT 

formazan reaction product is partially soluble in medium, and so an alcohol such as 

acidified isopropanol is used to dissolve the formazan and produce a homogeneous 

solution suitable for measurement of optical density. The amount of formazan generated is 

therefore directly proportional to the number of viable cells (Mosmann, 1983). On the 

other hand, neutral red is a dye that is commonly used for staining viable ceUs. Neutral red 

is taken up by viable cells but not by dead cells. The uptake is an energy-dependent 

process. The stained cells are solublized by SDS and a homogeneous colored solution is 

produced for the measurement of color intensity. 
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L929 cells were seeded in a 96-well plate and the optimal cell density ofL929 cells 

was determined. Figure 3.1 and Figure 3.2 show the relationship between the optical 

density (O.D.) at 540 nm and the cell density of L929 ceUs by the M T T and neutral red 

assays，respectively. It was found that the density of cell at or below 3 x 10Vwell was an 

optimum for MTT assay since the slope of the curve is ahnost Unear in this region. As the 

density of cell increased, the O.D. 540 nm for neutral red assay increased also. Similar 

result was obtained by neutral red assay. Moreover, L929 cells reached confluence in a 

96-well plate 20 hr after seeding with a cell density of 3 x 10Vwell. Therefore, the density 

ofL929 cells was set at 3 x 10Vwell in cytotoxicity assays. 

Figure 3.3a shows that TNF induced cell death by using neutral red assay. Similar 

results were obtained by using M T T assay (Figure 3.3b). It was found that the cytotoxicity 

of TNF-treated L929 cells is concentration dependent. As TNP concentration increased, 

cytotoxicity increased also. In a 20-hr treatment, the LCso o f T N F on L929 cells was less 

than 5 ng/ml (with cell density: 3 x 10Vml) (Figure 3.3a and 3.3b). As the ceU density of 

experiments of FCM was 1 millionAnl，higher concentration of TNF should be used and 

the concentration o fTNF was arbitrarily set as 50 ng/ml. 

3.1.2 TNF Induced DNA Fragmentation in L929 ceUs 

To determine whether TNF induces apoptosis or necrosis in L929 cells, gel 

electrophoretic analysis o f D N A fragmentation was applied. 
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Figure 3.1 
Optical density (O.D.) 540 nm was proportional to the cell density of L929 ceUs in 
M T T assay. As described in materials and methods, L929 ceUs were seeded at different 
density (10^ - 10Vwell) in complete RPMI 1640 medium and incubated for 20 hr at 37 X , 
5 % CO2. After incubation, spent medium was discarded and washed twice by serum-free 
medium. 100 ^il of serum-free medium was added to each weU and incubated for 20 hr at 
37�C，5 % CO2. MTT assay was then applied and O.D. 540 nm was read by a microplate 
reader (n = 5，expt = 2). 
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Figure 3.2 
Optical density (O.D.) 540 was proportional to the cell density of L929 cells in 
neutral red assay. L929 cells were seeded at different density (10^ - 10Vwell) in complete 
RPMI 1640 medium and incubated for 20 hr at 37 °C, 5 % CO2. After incubation, spent 
medium was discarded and washed twice by serum-free medium. 100 [il of serum-free 
medium was added to each weU and incubated for 20 hr at 37。C, 5 % CO2. Neutral red 
assay was then applied and O.D. 540 nm was read by a microplate reader (n = 5, expt = 
2). 
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Figure 3.3 
TNF induced cytotoxicity in L929 cells in a concentration dependent manner L929 
cells were seeded at 3 x 10Vwell in complete RPMI 1640 medium and incubated for 20 hr 
at 37 °C, 5 % CO2 After incubation, spent medium was discarded and washed twice by 
serum-free medium. 100 ^il of serum-free medium with various concentrations o f T N F as 
indicated was added to each well and incubated for 20 hr at 37 °C, 5 % CO2. (a) Neutral 
red assay (n = 7，expt = 4)，and (b) MTT assay (n = 7，expt = 2) were then applied and the 
% of cytotoxicity was then calculated. 
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Figure 3 .4 shows the result o f D N A fragmentation by agarose gel electrophoresis. 

It was found that in the absence of serum, L929 cells treated with 50 ng/ml TNF for 3 hr 

did not induce cell death since no dead cell detached from the bottom of plate and no 

DNA fragmentation was detectable. However, for the 6 and 10 hr treatment o fTNF, some 

L929 cells were detached from the bottom. The adherent and non-adherent cells were 

collected separately and DNA were extracted for electrophoretic analysis in order to 

determine the source of DNA fragmentation. It can be seen that no detectable DNA 

fragmentation occurred in adherent cells with 3 hr TNF (50 ngAnl) treatment (Figure 3.4). 

In contrast, the non-adherent cells from 6 or 10 hr treatment showed a faint, but clearly 

visible DNA ladders. These indicate that incubation ofL929 ceUs with TNF for 6 or 10 hr 

induced DNA fragmentation. Moreover, DNA fragmentation progressively increased as 

the incubation time o fTNF with L929 cells was increased. 

These results are consistent with the previous report that TNF induced DNA 

fragmentation in L929 ceUs (review: Kerr et al., 1995). It seems very Ukely that after TNF 

treatment, the apoptotic cells detached from the bottom of plate. Moreover, our results 

indicate that DNA fragmentation was more significant in the non-adherent cells after TNF 

treatment. At present, we do not know the relationship between the DNA fragmentation 

and matrix adherence. However, recent reports have shown that surface adherence is an 

important factor to keep cell survival (Chen et al., 1998). 
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Figure 3.4 
Agarose gel electrophoresis of DNA extracted from TNF-treated L929 cells, bi the 
serum-free condition, there was no DNA fragmentation for 3 hour-treatment with 50 
ng/ml TNF. Moreover, for 6 and 10 hr incubation, the adherent cells did not show DNA 
fragmentation. In contrast, DNA fragmentation occurred only in non-adherent cells after 
TNF treatment for 6 or 10 hr. 
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3.2 Effect of Tumor Necrosis Factor-Alpha on Cell Cycle 

3.2.1 Introduction 

The cell cycle can be divided into several phases ^^igure 3.5). A non-cycUng ceU is 

said to be in GO phase. Cells in G1 phase are sitting around either just recovering from 

division or preparing for the initiation of another cycle. CeUs are said to be in S phase 

when they are in the process of making new DNA. Cells in the G2 phase are those that 

have finished DNA synthesis and therefore possess double the normal amount of DNA. 

Cells in M phase are undergoing the chromosome condensation and organization of 

mitosis that occur immediately prior to cytokinesis with the production of two daughter 

cells. 

One of the most common application of FCM is the measurement of DNA to give 

a picture of the cell cycle by showing the DNA histogram O^igure 3.5). By measuring the 

DNA content, it can be determined whether a ceU is in G0/G1, S or G2/M phases of the 

cycle. Any change in cell cycle parameters wiU be reflected in the appearance of the DNA 

histogram. Changes in the DNA histogram are used to study the mechanism of action of 

cytotoxic drugs since such compounds generally disrupt the cell cycle. The most widely 

used dye to determine the DNA content is propridium iodide ^PI) (Sherwood and 

Schimke, 1995). It intercalates into double-stfanded nucleic acids, is excited by the 488 

nm line of an argon-ion laser and fluoresces red. Since it is excluded by viable cells, ceUs 

must be fixed or permeabilized before adding the dye. 



Chapter 3. Resutis Page 74 

/ ^ ^ ^ x 
/ / t DNA histogram \ ^ \ 

i f i L A x f ] 
A Z 
^1 ^ ^ U 

\ \ DNA content y^ / 7 

\〉^^^ 
Figure 3.5 
The cell cycle and DNA content of the cell. 
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3.2.2 Effect ofTNF on Cell Cycle 

Figure 3.6 shows the DNA histogram ofTNF-treated L929 cells. It was found that 

addition of 50 ngAnl TNF for 15 min, 3 or 6 hr did not cause any significant change in the 

G0/G1, S or G2M phases as compared to control. However, addition o fTNP for 10 hr 

produced a peak before the G0/G1 phase (Figure 3.6e). Since the x-axis represents the 

DNA content, the peak before the G0/G1 phase implied that there were some fragmented 

DNA in the TNF-treated L929 cell population. The fragmented DNA may come from the 

apoptotic cells. The data from the cell cycle are consistent with the results from our 

previous agarose gel electrophoresis study (Figure 3.4) that DNA was fragmented in the 

10-hour-TNF treatment. In addition, the number of cells in the G0/G1 and S phase in 10-

hour-TNF treatment decreased. Therefore, cells in S phase were more susceptible to TNP 

since the % of cells in S phase dropped significantly with the 10-hour-TNF treatment. 

In another experiment, the presence of serum affected the TNF effect on the ceU 

cycle. It was found that in the control group, addition of serum caused more cells in the S 

phase (Figure 3.7a)，as compared with the control group in the serum-free condition 

(Figure 3.7e), possibly by shifting cells from the G0/G1 phase to the S phase. This implies 

that more cells were making DNA in the presence of serum whereas the rate of DNA 

duplication was decreased in the absence of serum. Furthermore, serum might afFect the S 

phase in TNF-treated cells. In the presence of serum, the adherent cells show DNA 

fragmentation as indicated in Figure 3.7b. The combination of adherent and non-adherent 

cells produced a higher proportion in the DNA fragmentation (Figure 3.7c). 
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Figure 3.6 
DNA histograms ofTNF-treated L929 ceUs. L929 cells (1 x 10Vml) were seeded in a 6-
well plate and incubated at 37 °C and 5 % CO2 ovemight. Cells were then treated with (a) 
complete RPMI medium alone; 50 ng/ml TNF for (b) 15 min, (c) 3 hr, (d) 6 hr and (e) 10 
hr. Cells were then trypsinized and fixed with 70 % ethanol overnight. Cells were then 
stained with 43 ^igAnl PI for 30 min and the cell cycle was determined by FCM. 
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Figure 3.7 
DNA histograms of TNF-treated L929 cells in the presence and absence of serum for 
10 hours. L929 cells (1 x 10Vml) were seeded in a 6-well plate and incubated at 37 °C and 
5 % CO2 overnight. Cells were then treated with (a) complete RPMI. L929 cells were 
treated with complete RPMI plus 50 ng/ml TNF for 10 hr and (b) adherent cells (c) 
adherent and non-adherent cells and (d) non-adherent cells were coUected. In addition, 
ceils treated with (e) serum-free RPMI, adherent cells after incubaiton with serum-free 
RPMI plus 50 ng/ml TNF for 10 hr (f) adherent and non-adherent cells (g) and non-
adherent cells (h) with TNF treatment were also collected. 
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Figure 3.7d shows that almost all non-adherent cells were mainly in the D N A fragmented 

state. In contrast, in the absence of serum, the adherent cells did not produce a large 

amount of D N A fragmentation. Serum is a good source of growth factors that provides 

enough energy for cells and therefore，apoptosis (an ATP-dependent process) might occur 

in the presence of serum even in the adherent cells (Figure 3 .7b). As shown in Figure 3.71f 

-3 .71h, the D N A fragmented cells were all from the non-adherent cells which is in 

agreement with the results from D N A gel electrophoresis (Figure 3.4). Furthermore, in the 

TNF-treated cells, the number o f cells in G0/G1, S and G 2 M phase decreased as 

compared with the control group. 

In conclusion, TNF induced apoptosis by examining the pattem of cell cycle after 

TNF treatment. In the presence of serum, the number of cells in S phase was higher than 

that in the serum-free condition and the cells might shift from G0/G1 phase to the S phase. 

Moreover, in the presence of serum, addition o f T N F for 10 hr induced apoptosis whereas 

a shorter incubation period did not induce apoptosis. Most of the non-adherent cells were 

the apoptotic cells. 
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3.3 Release of Reactive Oxygen Species in Tumor Necrosis Factor-Alpha 

Treated Cells 

3.3.1 Introduction 

It was found that one of the mechanisms of cytotoxicity after TNF treatment on 

murine cells involved the release ofROS such as H2O2 or 02®~ (Zimmerman et al‘, 1989). 

However, the mechanism and the triggering messengers in this regard are not clear. Jn this 

project, the release o fROS from L929 cells after treatment with rMuTNF was examined. 

For investigating ROS inside the ceUs, two fluorescent dyes，the diacetate form of 

dichlorofluorescin and hydroethidine, were applied. 

The diacetate form of dichiiorofluorescin (DCF-DA) was employed for detecting 

the formation ofH2O2 ^"igure 3.8a). The DCF assay for the quantification of intracellular 

H2O2 was described previously (Cathcart et al, 1983). The principle is that DCF-DA 

diffuses into the cell and is converted into the non-fluorescent intermediate 

dichlorofluorescin (DCFH) by hydrolysis. The non-fluorescent form of DCFH is then 

converted into fluorescent form of dichlorofluorescein ^ )CF) by cellular H2O2. It was 

found that 1:1 stoichiometry is observed between H2O2 and dichlorofluoroscein (Cathcart 

etal, 1983). 

On the other hand, 62*" can be detected by hydroethidine (HE). The HE assay for 

the quantification o f intracellular 02*" has been described (Gorman et al., 1997). HE is 
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Figure 3.8 
Detection of intraceUular H2O2 and 02*" by fluorescence dyes dichlorofluorescin 
diacetate and hydroethidine. (a) Detection ofH2O2: non-fluorescent form ofDCFH can 
be oxidized to fluorescent form of DCF by H2O2. (b) Detection of 62*": non-fluorescent 
form ofHE can be oxidized to fluorescent form ofEtBr by 62*". 
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oxidized by 62*" within the cell to produce ethidium bromide, which emits fluorescence 

when it intercalates into D N A (Figure 3.8b). 

In this section, several techniques such as CLSM, FCM were applied to monitor 

the release ofROS inside L929 cells in the presence or absence o fTNF. 

3.3.2 Release ofROS in TNF-Treated L929 Celis is Time Dependent 

The release o fROS can be monitored by CLSM and the DCF assay. Figure 3.9 

shows the confocal images of L929 ceUs treated with TNF or medium alone. Jn these 

pseudocolor images, the upper panel shows the control cells while the lower one shows 

the TNF-treated ceUs. Confocal scannings were made at the time indicated (15, 30 and 45 

min). As shown in Figure 3.9，TNF caused an increase in the rate ofH2O2 production in 

L929 cells as compared to the control group. The fluorescence intensity was 

heterogeneously distributed inside the cells. Moreover, it was also found that either in 

control or TNF-treated group, the rate of release of H2O2 was heterogeneous in different 

cells. It was noted that in the 30 min of the control group, some hot spots occurred inside 

the cells. These spots may be the sites of mitochondria since redox rate is high in that site. 

Figure 3.10 illustrates the effect o f T N F on the 02*~ production in L929 cells by 

using the HE assay. Similar to the results from DCF assay, TNF caused an increase in the 

rate of02*"product ion in L929 cells as compared to the control group. Since HE can be 

converted into EtBr by 02*", the emission of fluorescence of EtBr-chelated D N A clearly 

shows the location o f nucleus. 
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Figure 3.9 
TNF caused an increase in the rate of H j O j production in L929 ceUs. The upper panel 
shows the control cells and the lower panel shows the TNF-treated cells at the time 
indicated. L929 cells (2 x lOVml) were seeded on a cover glass and incubated at 37。C，5 % 
CO2for 3 days. TNF (50 ng/ml) was then appUed to L929 cells. 15 min after the addition 
of TNF, DCF (final concentration 10 p,M) was added at time zero and measurement 
(CLSM-MD) was made at room temperature. Cells were scanned at a 5-minute-interval. 
The cool and the warm color indicate the lower and the higher fluorescence intensity, 
respectively. Note that TNF caused an increase in the rate of H p : production in L929 cells 
when compared to the control group (expt = 9). 
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Figure 3.10 
TNF caused an increase in the rate of O!.— production in L929 ceUs. The upper panel 
shows the control cells and the lower panel shows the TNF-treated cells at the time 
indicated. L929 ceUs (2 x lOVml) were seeded on a cover glass and incubated at 37 °C, 5 % 
CO2 for 3 days. TNF (50 ng/ml) was then applied to L929 cells. 15 min after the addition 
of TNF, HE (final concentration 10 ^iM) was added at time zero and measurement 
(CLSM-MD) was made at room temperature. Cells were scanned at a 5-minute-interval. 
The cool and the warm color indicate the lower and the higher fluorescence intensity, 
respectively. Note that TNF caused an increase in the rate of 62*" production in L929 cells 
when compared to the control group (expt = 6). EtBr-chelated DNA presented in the cells. 
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For a longer time measurement, the release of ROS can be monitored by FCM. 

Figure 3.11 shows the results from FCM. bi general, as time increases，DCF (Figure 

3.11a) and HE (Figure 3.11b) fluorescence intensities increase. These results indicate that 

H2O2 and 02*~ are produced in cells continuously even in the absence o f T N F stimulation. 

Next，the effect of TNF on the release of ROS was investigated. Incubation of 

L929 cells with 50 ng/ml TNF for 15 min (Figure 3.12a) or 3 hr (Figure 3.12b) did not 

cause more H2O2 production. Interestingly, when ceUs were treated with TNF (50 ng/ml) 

for 6 or 10 hr, a significant increase in H2O2 production was observed ^Figure 3.13). It is 

clear in Figure 3.13 that two peaks (two populations of cells) were seen in terms of DCF 

fluorescence. These results again suggest that the response of cells was heterogeneous. 

Moreover，in the control and TNF-treated group, the large population shifted to the right 

and then to the left, that is，the fluorescence intensity of DCF increased and then 

decreased. It might be due to the efflux of fluorescence product, DCF, from the cytosol to 

the extracellular medium as indicated by other groups (Gorman et al., 1997). Figure 3.14 

summaries the above results. It can be seen that the amount of H2O2 produced in L929 

cells upon TNF treatment was dependent on the incubation time. 

After monitoring the production o f H2O2 by TNF, the release of 62*" was also 

examined by applying fluorescence dye, HE. It was found that incubation of ceUs with 50 

ng/ml TNF for 15 min, 3 or 6 hr, did not cause more production of 02*~ (Figure 3.15). 

However, there was no significant changes as compared to the control group even L929 

cells were incubated with 50 ng/ml TNF for 6 hr (Figure 3.15c). Only a small 
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Figure 3.11 
Time-dependent conversion of non-fluorescent indicators into fluorescent ones. 
L929 cells (1 x 10Vml) were seeded in a 6-well plate and were incubated overnight at 37 
。C：，5 % CO2. Cells were then trypsinized. After washing, DCF (10 ^M) (a) or HE (10 
pM) (b) was added and measurement was made at the time indicated. Y-axis represents 
the number of events (total = 10,000) whereas x-axis represents the fluorescence intensity. 
Note the shifting of the population from left to right indicating the time-dependent 
conversion of non-fluorescent indicators to the fluorescent one (expt > 10). 
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ĴL :Lv 
°10°10^ 1Q210^ 10^ 10°10^1Q2103 Q̂A 

DCFH • D C F 

Figure 3.12 
Incubation of L929 ceUs with TNF for 15 min or 3 hr did not produce more H2O2 
production. Incubation of L929 cells with 50 ng/ml TNF (purple line) for (a) 15 min 
(expt = 9) or (b) 3 hr (expt = 8) did not cause more H2O2 production as compared to 
control group (black line). The time on the left indicates the incubation period of cells with 
DCF. 
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Figure 3.13 
Incubation of L929 cells with TNF for 6 or 10 hr produced more H2O2 production. 
Incubation ofL929 cells with 50 ng/ml TNF (purple line) for (a) 6 hr (expt > 10) or (b) 10 
hr (expt = 3) caused more H2O2 production as compared to control group (black line). 
The time on the left indicates the incubation period of cells with DCF. 
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Figure 3.14 
The release of H2O2 in TNF-treated L929 cells is time dependent The H2O2 
production in cells treated with or without TNF (50 ng/ml) for various time intervals as 
shown in Figure 3.12 and 3.13 were normalized by dividing the peak fluorescence of the 
TNF-treated group with the one of control group. The x-axis represents the incubation 
time of ceUs with DCF. Results are mean 土 SD from 3 experiments. Note the increase in 
the amount ofH2O2 produced in ceUs with longer TNF treatment time intervals. 
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Figure 3.15 
Incubation of L929 cells with TNF for 15 min, 3 or 6 hr did not cause more Oz*" 
production but produced a small increase in a 10 hr assay. Incubation of L929 cells 
with 50 ng/ml TNF (purple line) for (a) 15 min (expt = 3)，(b) 3 hr (expt = 4) or (c) 6 hr 
(expt = 3) did not cause more 02*" production as compared to control group (black line). 
In another experiment，Incubation of L929 cells with 50 ng/ml TNF (purple line) for (d) 
10 hr caused a small increase in 02*~ production as compared to control group (black 
line). The time on the left indicates the incubation period of cells with HE. 
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increase in 02®" production was seen in the group for 10 hr TNF (50 ng/ml) incubation 

(Figure3.15d). 

L929 cells with TNF for 6- or 10-hour incubation produced more release of H2O2 

than that of O j * ' This discrepancy might be due to the protective mechanism inside the 

cells. As mentioned in section 1.5.1，TNF induced MnSOD mRNA in aU cell lines and 

normal cells (Wong and Goeddel, 1988). As indicated in Figure 1.5, 02*" is converted into 

H2O2 by MnSOD inside mitochondria. Therefore, addition of metabolic inhibitor such as 

actinomycin D (AMD), a transcriptase blocker that blocks transcription (Ostrove and 

GifFord, 1979)，should reduce the expression of MnSOD mRNA (Wong and Goeddel, 

1988). This explains why the sensitivity o f T N P cytotoxicity assay is markedly increased 

when cells were incubated with TNF in the presence of AMD 

In light of this, cells were treated with TNP in the presence of A M D (2n,g/ml). It 

can be seen that there was no response in the 15-minute-incubation of cells with TNP and 

A M D (Figure 3.16). However, Figure 3.17 shows that addition of TNF plus A M D did 

increase the rate of 02*" production after incubation for 3 or 6 hr. Moreover, It was found 

that the response of cells was heterogeneous in TNF plus A M D treatment. There were 

two populations of ceUs, the fast and the slow responding cells. Since ceUs incubated with 

TNF plus A M D for 10 hr induced cell death (most of the cells were detached from the 

bottom of the plate) and 02*~ level was not measured (data not shown). 
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Figure 3.16 
Incubation of TNF with or without AMD for 15 min did not cause more Oz*" 
production in L929 cells. L929 cells (1 x 10Vml) were seeded in a 6-well plate and were 
incubated ovemight at 37 °C, 5 % CO2. Cells were pre-treated with 50 ng/ml TNF (purple 
line) with or without 2 ^ig/ml AMD for 15 min. Cells were then trypsinized. 10 ^iM HE 
was added and measurement was made at the time indicated. It was found that cells 
incubated with TNF (a) in the absence of AMD (expt = 3) or (b) presence of AMD (expt 
二 2) for 15 min did not cause 02*" release as compared to control (black line). 
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Figure 3.17 
Incubation of TNF with AMD for 3 or 6 hr produced more Oz*" release in L929 
ceUs. It was found that cells incubated with 50 ng/ml TNF in the absence of AMD (a) did 
not increase Oi*" production (expt = 4)，(b) in the presence of AMD (2 ng/ml), L929 cells 
incubated with 50 ng/ml TNF for 3 hr produced more Oz*" release (expt = 3). Incubation 
of TNF in the absence of AMD (c) did not increase 02*" production (expt = 3) whereas 
(d) TNF plus AMD produced more 02*" release in 6-hour treatment (expt = 3). 
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3.3.3 Effect ofAntioxidants on TNF-Mediated Cytotoxicity 

As described earlier, our data indicate that treatment of L929 with TNF produces 

oxidative damage. In this section, the effect of antioxidants such as catalase, MnSOD, 

NAc and 4-OH-TEMPO on the rMuTNF induced cytotoxicity of L929 cells was 

examined. 

It is well known that catalase removes H2O2 by the formation of water and 

molecular oxygen whereas SOD removes 62*" to form H2O2 (Briehl and Baker, 1996). 

Therefore, catalase and MnSOD are considered to be an antioxidant. Other antioxidants 

such as NAc and 4-OH-TEMPO were applied in this project as well. The actions o f N A c 

involve: (1) replenishment of GSH stores; (2) scavenging ofROS，and (3) prevention of 

mitochondrial membrane depolarization (Cossarizza et al., 1995). 4-OH-TEMPO is a low 

molecular weight SOD analogue that removes excess O i * ' inside the cells. Moreover, it 

prevents lipid hydroperoxide formation (Reddan et al., 1993). 

The data from FCM indicated that addition of catalase, NAc and 4-OH-TEMPO 

did reduce the rate of TNF-mediated H2O2 release in an assay with 6-hour-incubation 

(Figure3.18). 

From the cytotoxicity assay, it was found that addition of antioxidants partiaUy 

reduced TNF-mediated cytotoxicity. Addition of 1000 U/ml catalase with 50 ng/ml TNF 

reduced about 10 % in cytotoxicity (Figure 3.19). The hydrogen peroxide-scavenging 

enzyme, catalase converts two molecules of H2O2 into two molecules of water and one of 
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Figure 3.18 
Addition of antioxidants reduced the amount of TNF-mediated H2O2 release in L929 
cells. L929 cells (1 x 10Vml) were seeded in a 6-well plate and were incubated overnight 
at 37 °C, 5 % CO2. CeUs were then treated with medium only (black line), 50 ng/ml TNF 
(purple line)，antioxidants only (green line), and TNF (50 ng/ml) plus antioxidants (orange 
line) for 6 hr. The dose of the antioxidants are: (a) 2000 U/ml catalase，(b) 10 m M NAc 
and (c) 20 m M TEMPO. Subsequently, cells were assayed with DCF by FCM. Note the 
antioxidants reduced the amount ofH2O2 production. 
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Figure 3.19 
Addition of catalase reduced TNF-mediated cytotoxicity in L929 ceUs. L929 ceUs 
were seeded at 3 x 10Vwell in complete RPMI 1640 medium in a 96-weU plate and 
incubated for 20 hr at 37 °C, 5 % CO2. After incubation, spent medium was discarded and 
washed twice by serum-free medium. 100 ^il o f TNF of various concentrations in the 
presence ( • ) or absence ( • ) of catalase (1000 U/ml) in serum-free medium was added 
and incubated for 20 hr at 37 X , 5 % CO2. M T T assay was then applied and O.D at 540 
nm was read by a microplate reader (n = 7). * * p < 0.005 indicates that there was a 
significant difference between control group and the treatment group. 
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oxygen. Catalase is not cell-permeable whereas H2O2 is freely permeable to the ceU 

(Gorman et al., 1997), The antioxidant effect of catalase that acts on L929 cells might 

probably due to the removal of H2O2 from the culture medium that would promote the 

exit of H2O2 from the cellular cytoplasm to the extracellular environment, and therefore, 

reduced TNF-mediated cytotoxicity. Application of MnSOD (25 ^ig/mO also reduced 

TNP-mediated cytotoxicity by about 5 - 10 % (Figure 3 .20). MnSOD is a relatively large 

molecule that is membrane-impermeable (Mitchell et al., 1990). The mechanism of the 

antioxidant effect of MnSOD was similar to that of catalase. The effect of MnSOD on 

L929 cells might probably due to the removal of Oi*" from the culture medium that 

promoted the efflux of 02*~ from the cytoplasm. Addition of 20 mM NAc suppressed the 

TNF-mediated cytotoxicity (about 5 - 10 %) (Figure 3.21). Furthermore, addition of 5 

mM 4-OH-TEMPO produced a lower TNF-mediated cytotoxicity (reduced about 20 - 40 

%) (Figure 3.22). These results implied that addition of antioxidants was capable of 

reducing the production ofROS thereby suppressing the ceU death. 

3.3.4 Effect ofMitochondrial Inhibitors on TNF-Mediated Cytotoxicity 

As mentioned before, mitochondria are considered to be the major site of ROS 

production. The primary source of ROS may come from the electron transport chain. 

Therefore, the application of mitochondrial inhibitors on electron transport chain may 

affect the release of ROS and the cytotoxicity of TNF. In this connection, several 

mitochondrial inhibitors such as rotenone (mitochondrial complex I inhibitor), TTFA 

(mitochondrial complex I I inhibitor), antimycin A (mitochondrial complex I I I inhibitor) 
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Figure 3.20 
Addition of MnSOD reduced TNF-mediated cytotoxicity in L929 ceUs. L929 cells 
were seeded at 3 x 10Vwell in complete RPMI 1640 medium in a 96-well plate and 
incubated for 20 hr at 37 °C，5 % CO2 100 ^il TNF of various concentrations in the 
presence ( • ) or absence ( • ) of MnSOD (25 p,g/ml) in serum-free medium was added and 
incubated for 20 hr at 37 °C，5 % CO2. Neutral red assay was then applied and O.D. at 
540 nm was read by a microplate reader (n = 7). ** p < 0.005 indicates that there was a 
significant difference between control and treatment group. 
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Figure 3.21 
Addition of NAc reduced TNF-mediated cytotoxicity in L929 cells. L929 cells were 
seeded at 3 x loVwell in complete RPMI 1640 medium in a 96-well plate and incubated 
for 20 hr at 37 °C，5 % CO2. 100 ^il TNF of various concentrations in the presence ( • ) or 
absence ( • ) of NAc (20 mM) in serum-free medium was added and incubated for 20 hr at 
37 °C, 5 % CO2. Neutral red assay was then applied and O.D. at 540 nm was read by a 
microplate reader (n = 3). * p < 0.05 and ** < p < 0.005 indicate that there was a 
significant difference between control and treatment group. 
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Figure 3.22 
Addition of 4 - O H - T E M P O reduced TNF-mediated cytotoxicity in L929 ceUs. L929 
cells were seeded at 3 x 10Vwell in complete medium in a 96-well plate and incubated for 
20 hr at 37 °C，5 % CO2. 100 M-1 TNP" of various concentrations in the presence ( • ) or 
absence ( • ) of 4-OH-TEMPO (5 mM) in serum-free medium was added and incubated 
for 20 hr at 37 °C，5 % CO2. Neutral red assay was then applied and O.D. at 540 nm was 
read by a microplate reader (n = 3). 
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and DNP (mitochondrial protonophorous uncoupler of electron flow) were used. Figure 

3.23 shows the site of the actions of these mitochondrial inhibitors. 

From the cytotoxicity assay, addition of 50 p M rotenone produced a lower TNF-

mediated cytotoxicity (reduced 20 - 40 %) (Figure 3.24). Rotenone is one of the 

mitochondrial complex I inhibitors that blocks the flow of electron from N A D H 

dehydrogenase to ubiquinone (UQ), it reduces 02*" production that mainly comes from 

the UQ site and therefore, it is protective against TNF. Figure 3.25 shows similar results 

with 250 [ M TTFA. TTFA is the mitochondrial complex I I inhibitor that prevents the 

flow of electron from succinate dehydrogenase to UQ and reduces O i * ' production also. 

In contrast, application of mitochondrial complex I I I inhibitor such as antimycin A (25 

^dVl) enhanced the TNF-mediated cytotoxicity (increased about 5 %) (Figure 3.26). 

Antimycin A blocks the electron flow from UQ to cytochrome Ci (cyt Ci), that strongly 

potentiated the production o f 02*" from the UQ site. This explains why TNF-mediated 

cell death was enhanced. In summary, TNF increases the release of ROS from 

mitochondria and the action o f T N F may be on mitochondrial complex HI. 

The data from CLSM further confirmed that rotenone reduced the amount of 

TNF-mediated 02*" production in L929 cells OFigure 3.27 and Figure 3.28). As shown in 

Figure 3.27, the total fluorescence intensities in TNF-treated group and control group 

were higher than that of TNF-plus-rotenone group and rotenone-treated group at 45 min. 

These results indicated that rotenone blocked the electron flow from complex I to UQ, 

therefore，reduced 02*" production. The release of 02*" converted HE into EtBr and 
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Figure 3.23 
T h e site of t he act ions of mi tochondr ia l inhib i tors . 
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Figure 3.24 
Addition of rotenone produced a lower TNF-mediated cytotoxicity in L929 cells. 
L929 cells were seeded at 3 x loVwell in complete medium in a 96-well plate and 
incubated for 20 hr at 37 °C，5 % CO2. 100 ^il TNF of various concentrations in the 
presence {M) or absence ( • ) of rotenone (50 \ iM) in serum-free medium was added and 
incubated for 20 hr at 37。C，5 % CO2. MTT assay was then applied (n = 7, expt = 2). 
Similar results were obtained in neutral red assay (data not shown). 
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Figure 3.25 
Addition of TTFA produced a lower TNF-mediated cytotoxicity in L929 ceUs. L929 
cells were seeded at 3 x 10Vwell in complete medium in a 96-well plate and incubated for 
20 hr at 37 °C, 5 % CO2. 100 \x\ TNF of various concentrations in the presence ( _ or 
absence ( • ) of TTFA (250 ^iM) in serum-free medium was added and incubated for 20 hr 
at 37 °C, 5 % CO2 Neutral red assay was then applied (n = 7, expt = 2). 
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Figure 3.26 
Addit ion of antimycin A enhanced TNF-mediated cytotoxicity in L929 cells. L929 
cells were seeded at 3 x 10VweU in complete medium in a 96-well plate and incubated for 
20 hr at 37 °C, 5 % CO2. 100 ^il TNF of various concentrations in the presence (Wi) or 
absence ( • ) of antimycin A (25 ^dVf) in serum-free medium was added and incubated for 
20 hr at 37 °C，5 % CO2. MTT assay was then applied (n = 7). 
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Figu re 3.27 
T h e confocal images show t h a t ro tenone r educed the a m o u n t of T N F - m e d i a t e d O^*" 
product ion in L929 ceUs. L929 cells (2 x lOVml) were seeded on a cover glass and 
incubated at 37 °C, 5 % CO^ for 4 days. Cells were then incubated with Na+-HEPES 
buffer (a), 50 ng/ml TNF for 15 min (b), 50 ^ M rotenone for 15 min (c), and 50 ng/ml 
TNF and 50 \ i M rotenone for 15 min (d) at room temperature and the abiUty of cells to 
produce Oj*" was then detected by HE (final concentration 10 p,M) with a CLSM-MD at 
time zero. 
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Figure 3.28 „ _ . 
Rotenone reduced the rate of TNF-mediated Oj*" production in L929 cells. This 
graph summaries the results of the confocal images from figure 3.27. The y-axis, FA îast, 
represented the summation offluorescence intensity from aU ceUs at each time interval that 

was divided by the total fluorescence intensity ofthe last image. 
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therefore, it chelated D N A and emitted fluorescence from the nucleus. In contrast, 

antimycin A enhanced the rate of TNF-mediated 02®" production in L929 cells (Figure 

3.29 and Figure 3.30). At the 45 min, the total fluorescence intensities in antimycin A-

treated group and TNF-plus-antimycin A-treated group were higher than that of TNF-

treated group and control group. This implied that antimycin A blocked electron flow 

from complex IE to cyt Ci that enhanced 02*" production. 

Furthermore, addition o f protonophorous uncoupler DNP (30 pM) reduced TNF-

mediated cytotoxicity (about 10 - 30 %) ^"igure 3.31). DNP allows electron transport in 

mitochondria but prevents the phosphorylation of ADP to ATP by uncoupling the 

essential linkage between electron transport and ATP synthesis. In the presence of 

uncoupler, the free energy released by electron transport appears as heat rather than as 

newly made ATP since uncoupling agents greatly increase the permeability of inner 

membrane to proton. As mentioned in section 1.4.1，depletion o f intraceUular ATP 

blocked apoptosis since apoptosis is ATP-dependent (review: Nicotera and Leist, 1997). 

Therefore, addition of uncoupler DNP, that reduces ATP synthesis, might block apoptosis 

and reduced TNF-mediated cytotoxicity. 

L i conclusion, TNF increased the release of ROS such as H2O2 and Oi*" which 

may involve in cell death. The release of H2O2 by TNF was time dependent. As the 

incubation time of TNF increased, the amount of production of H2O2 increased. Addition 

o f metabolic inhibitor such as AMD, that may block TNF-induced MnSOD production, 

increased the release of 02*~. Application of antioxidants such as catalase, 
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Figu re 3.29 
T h e confocal images show t h a t an t imycin A e n h a n c e d the a m o u n t of T N F - m e d i a t e d 
02*" product ion in L929 ceUs. L929 cells (2 x lOVml) were seeded on a cover glass and 
incubated at 37。C，5 % CO^ for 4 days. Cells were then incubated with Na+-HEPES 
buffer (a), 50 ng/ml TNF for 15 min (b), 25 ^ iM antimycin A for 15 min (c), and 50 ng/ml 
TNF and 25 ^ iM antimycin A for 15 min (d) at room temperature and the abiUty of cells to 
produce Oj*" was then detected by HE (final concentration 10 ^ M ) with a CLSM-MD at 
time zero. 
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Figure 3.30 
Antimycin A enhanced the rate of TNF-mediated O：*" production in L929 cells. This 
graph summaries the results of the confocal images from figure 3.29. The y-axis, F/Fiast, 
represented the summation of fluorescence intensity from aU cells at each time interval that 
was divided by the total fluorescence intensity of the last image. 
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Figure 3.31 
Addition of DNP produced a lower TNF-mediated cytotoxicity in L929 cells. L929 
cells were seeded at 3 x 10Vwell in complete medium in a 96-well plate and incubated for 
20 hr at 37 °C, 5 % CO2. 100 ^d TNF of various concentrations in the presence ( • ) or 
absence ( • ) of DNP (30 ^iM) in serum-free medium was added and incubated for 20 hr at 
37 °C, 5 % CO2. MTT assay was then applied (n = 7, expt = 2). Similar results were 
obtained in neutral red assay (data not shown). 
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MnSOD, NAc and 4-OH-TEMPO reduced TNF-mediated cytotoxicity. Furthermore, 

TNF potentiated the release of 02*" from mitochondria and the action o f TNF may be on 

mitochondrial complex HI. The evidence was that addition of mitochondrial complex I and 

I I inhibitors, rotenone and TTFA, that blocked the electron f low from N A D H 

dehydrogenase and succinate dehydrogenase, respectively, reduced the release of 62*" and 

produced a lower TNF-mediated cytotoxicity. Jn contrast, application o f mitochondrial 

complex i n inhibitor antimycin A, that blocked the electron flow from mitochondrial 

complex I I I to cyt Ci, enhanced the production of 62*" and induced a higher TNP-

mediated cytotoxicity. Moreover，the mitochondrial uncoupler DNP reduced ATP 

production and TNF-mediated cytotoxicity. 
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3.4 The Role of Calcium in Tumor Necrosis Factor-Alpha Treatment 

3.4.1 Introduction 

Since [Ca^^]i plays an important role in cell death, researchers try to consider the 

relationship between TNF and [Ca^^]i level. It was found that TNF increases [Ca^^]i level 

in L929 ceUs (Kong et al., 1997). However，Hasegawa and Bonavida reported that TNF-

induced ceU death was Ca^^-independent in human PBL (Hasegawa and Bonavida, 1989). 

In this project, the [Ca^^]i level was examined by different approaches. 

Two fluorescence dyes for monitoring [Ca^"]i level were appUed，fluo-3/AM and 

fura-red/AM. Fluo-3/AM is a commonly used fluorescence indicator for free Ca^^ (Merritt 

et al., 1990). Fluo-3 contains five negative charges and it cannot pass through the plasma 

membrane. Hence, the uncharged acetoxymethyl (AM) ester form of fluo-3 was employed. 

The advantage in using f luo-3/AM is that it is distributed rather homogeneously within the 

cytosol and nucleus ONicotera et al., 1994). On the other hand, the acetoxymethyl ester 

form of fura-red was employed for detecting [Ca^^]i level by chelating free Ca^^ also. The 

difference between fluo-3/AM and fura-redy'AM is that the fluorescence intensity of fluo-

3 /AM increases as [Ca】+] increases whereas the fluorescence intensity o f fura-red^AM 

decreases. Since the emission wavelengths for fluo-3/AM and fUra-redMM are different, 

they can be loaded and assayed simultaneously that wi l l not interfere with each other. 

L i this section，several techniques such as CLSM and FCM were applied to 

monitor the release of [Ca^^]i inside L929 cells. 
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3.4.2 Release of Intracellular Calcium in TNF-Treated L929 Cells 

[Ca2+]i was detected by a CLSM p^eridian). Figure 3.32 shows the confocal 

images. It was found that addition of Ca^^-free buffer did not produce Ca^^ release in a 

short time course (the time interval for each scan was 5 sec). Figure 3.33 shows the 

change of [Ca^^]i quantitatively with the replacement of normal buffer by Ca^^-free buffer 

and the addition of 40 ^ig/ml ionomycin. It is obviously that addition o f ionomycin to cells 

induced a sharp [Ca^^]i rise. The increase in [Ca^^]i by ionomycin confirmed that the Ca:+ 

system did not impair under the experimental conditions and the Ca^^ released by 

ionomycin were from intracellular stores. 

Figure 3.34 and Figure 3.35 illustrate that 50 ngAnl TNF did not cause [Ca^^]i 

increase in a short incubation time (~ 400 sec) while ionomycin produced an abrupt 

increase in Ca^^ fluorescence intensity. These imply that application o f TNF for a short 

time period did not cause the release of Ca^^ from intracellular stores. 

For a longer time period，Ca^^-free buffer did not cause an increase in [Ca^^]i while 

the addition o f ionomycin (40 ^ig/ml) induced Ca^^ release (Figure 3.36 and 3.37). 

Interestingly, addition o f 50 ng/ml TNF caused a slow rise in [Ca^^]j in Ca^^-free buffer 

(Figure 3.38). Figure 3.39 summaries the results of Figure 3.38 quantitatively. It is clear 

that the replacement o f Ca^^-containing buffer with a Ca^^-free buffer reduced the fluo-3 

fluorescence in the early phase of the experiment. After the addition of TNF (50ng/ml), 

the [Ca2+]i increased slowly. This increase was not observed in the Ca^^-free buffer in the 

absence o f T N F (Figure 3.37). These results suggest that TNF could mobiHze the Ca^^ 
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Figu re 3.32 
T h e confocal images show t h a t add i t ion of Ca^.- f ree b u f f e r d id no t cause Ca!+ 
release in L929 ceUs in a sho r t t ime course . L929 cells (2 x lOVml) were seeded on 
cover glass and incubated at 37。C and 5 % CO: for 3 days. Cells were mounted on a 
home-made holder and washed twice by Na+-HEPES buffer. Cells were loaded with 10 
^ iM f luo-3/AM for 1 hr and then washed twice by Ca^^-free buffer. Confocal scanning was 
made with a 5-second-interval at room temperature. Ca^^-free buffer and 40 p,g/ml 
ionomycin were added at the 75'*" and 475^^ sec, respectively (n = 3). 
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Figure 3.33 
Ca2+-free buffer d id not cause Ca=+ release in L929 ceUs in a short t ime course. This 
graph summaries quantitatively the results of the confocal images o f cell number 1 and 2 
from figure 3.32. Ca^^-free buffer and ionomycin (40^ig/ml) were introduced to the cells at 
the 1^ and 2"^ hairline, respectively. The y-axis, F/Fo, represented the normalized 
fluorescence intensity from cells. 
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Figure 3.34 
T h e confocal images show t h a t add i t ion of T N F did no t cause Ca�+ release in L929 
ceUs in a s h o r t t ime course. L929 cells (2 x lOVml)were seeded on cover glass and 
incubated at 37。C and 5 % CO: for 3 days. Cells were mounted on a home-made holder 
and washed twice by Na+-HEPES buffer and cells were loaded with 10 ^ iM f luo-3/AM 
for 1 hr and then washed twice by Ca^^-free buffer. Confocal scanning was made with a 5-
second-interval at room temperature. 50 ng/ml TNF in Ca^^-free buffer and 40 p,g/ml 
ionomycin were added at the 55^̂  and 505'^ sec, respectively (n = 3). 
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Figure 3.35 
Addi t ion of T N F did not cause Ca:+ release in a short t ime assay. This graph 
summaries quantitatively the results o f the confocal images of cell number 1 and 2 from 
figure 3.34. TNF (50 ng/ml) in Ca^^-free buffer and ionomycin (40^ig/ml) were introduced 
to the cells at the 1欢 and 2"^ hairline, respectively. The initial decrease in fluorescence 
intensity might be due to the effect ofCa^^-free buffer. 
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Figu re 3.36 
T h e confocal images show t h a t add i t ion of Ca^^-free b u f f e r d id no t cause Ca�+ 
increase in L929 ceUs in a long t ime course . L929 cells (2 x lOVml) were seeded on 
cover glass and incubated at 37。C and 5 % CO: for 3 days. Cells were mounted on a 
home-made holder and washed twice by Na+-HEPES buffer. Cells were loaded with 10 
^ iM f luo-3/AM for 1 hr and then washed twice by Ca^^-free buffer. Confocal scanning was 
made with a 60-second-interval. Ca^^-free buffer and 40 |xg/ml ionomycin were added at 
the 600th and 6695'^ sec, respectively (n : 3). 
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Figure 3.37 
Addi t ion of Ca^^-free bu f f e r d id not cause Ca!+ release in L929 cells in a long t ime 
course. This graph summaries quantitatively the results of the confocal images of cell 
number 1 and 2 from figure 3.36. Ca^^-free buffer and ionomycin (40pig/ml) were 
introduced to the cells at the 1^ and 2^ hairline, respectively. The initial decrease in 
fluorescence intensity might be due to the effect of Ca^^-free buffer. 
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Figu re 3.38 
T h e confocal images show t h a t add i t ion of T N F p r o d u c e d a slow rise in [Ca"]^ in 
L929 ceUs in a long t ime course. L929 cells (2 x lOVml) were seeded on cover glass and 
incubated at 37 °C and 5 % COj for 3 days. Cells were mounted on a home-made holder 
and washed twice by Na+-HEPES buffer. Cells were loaded with 10 ^ iM f luo-3/AM for 1 
hr and then washed twice by Ca^^-free buffer. Confocal scanning was made with a 60-
second-interval. 50 ng/ml TNF was added at the 1200'^ (n = 5). 
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Figure 3.39 
Addi t ion of T N F p roduced t h e release of Ca=+ in a long t ime assay. This graph 
summaries quantitatively the results of the confocal images of cell number 2 and 3 from 
Figure 3.38. 50 ng/ml TNF was added at the 1200^ sec and produced a slow rise in 
[Ca2+]i. The initial decrease in fluorescence intensity might be due to the effect of Ca^^-free 
buffer. 
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inside the Ca^+ store. 

The release of Ca^^ in TNF-treated L929 cells was examined by FCM also. Two 

Ca2+ fluorescence dyes, f luo-3/AM and fura-red/AM were loaded into L929 cells 

simultaneously and the ratio of their fluorescence (fluo-3/fura-red) gave a more accurate 

and sensitive measurement. Figure 3.40 shows the dot plots from such experiment. The x-

axis and y-axis represent the intensity of fluo-3 and fura-red, respectively. It was found 

that incubation of cells with 50 ngy'ml TNF for 3 hr did not increase the release of Ca^^ as 

compare to control group (Figure 3.40a and b). In the control group, addition of 40 ^ig/ml 

ionomycin induced the release of Ca^^ ^Figure 3.40c，Figure 3.41c). In contrast, incubation 

of cells with 50 ng/ml TNF for 6 hr did produce a significant increase in [Ca^^]i fFigure 

3.41a and b). Addition of ionomycin induced a further release of Ca:+. Furthermore, 

addition of TNF for 10 hr produced a drastic release of Ca!+ (Figure 3.42a and b). To 

fiirther analyze these results, the cell population was divided into two groups arbitrarily, 

region 1 (R1) and region 2 (R2) as mentioned in section 2.2.4. Since the [Ca^^]i level 

increased, fluorescence of fluo-3 increased whereas fluorescence of fura-red decreased, 

the cell population shifted anti-clockwisely to the upper-left. I f the [Ca^^]i level was high in 

L929 cells, more dots should occur in R2 and vice versa in R1. Table 3.1 summarizes the 

above results, as the incubation time with TNF increased, the release of Ca^^ in L929 cells 

was increased also. It was found that in the incubation o fL929 cells wi th TNF for 3 hr did 

not cause a significant shift of dots from R1 to R2. However, in 6-hour-incubation o f T N F 

with L929 cells caused a shift of dots from R1 to R2. Furthermore, in 10-hour-inucbation, 

TNF caused a drastic shift o f cells from R1 to R2. h i another experiment, 
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Figure 3.40 
Incubation of L929 cells with TNF for 3 hr did not produce a significant change in 
[Ca^^i. L929 cells (10Vml) were seeded in 6-well plate and were incubated ovemight at 
37 X, 5 % CO2. Subsequently, cells were treated with or without 50 ngAnl TNF at 37 X 
for 3 hr and then loaded with 10 p M fluo-3/AM and 10 ^iM fura-red/AM for another hr. 
Cells were then trypsinized. After washing, cells were re-suspended in the Na+-HEPES 
buffer and the fluorescence of fluo-3 and fura-red were determined by FCM with an argon 
laser. Y-axis represents the fluorescence intensity of fluo-3 whereas x-axis represents the 
fluorescence intensity o f fura-red. Dots shift to the upper-left, that is，an increase in fluo-3 
fluorescence with a decrease in fiira-red imply an increase in [Ca^^]i. (a) Control group, (b) 
L929 cells were incubated with 50 ngŷ ml TNF. Note that there was no difference in the 
pattem of dots as compared to the control group, (c) CeUs were activated by 40 p.g/ml 
ionomycin 10 min before measurement, (d) Addition o f 40 ^ig/ml ionomycin 10 min before 
measurement in the TNF-treated group. Note that a shift in the ceU population at the 
upper-left indicates there was no impairment in Ca^^ measurement system. The population 
o f cells were divided into two groups (R1 and R2) by the diagonal line arbitrarily and the 
number of cells in each region was determined. 
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Figure 3.41 
Incubat ion o f L 9 2 9 cells with TNF for 6 hr produced a significant change in [Ca^^j. 
(a) Control group, (b) L929 cells were incubated with 50 ng/ml TNF for 6 hr. Note that 
there was an increase in [Ca^^]i as compared to the control group. More dots occurred at 
the upper-left region and there was an decrease in the fluorescence intensity of fura-red. 
(c) Cells were loaded with 40 M>gAnl ionomycin 10 min before measurement, (d) Addition 
of 40 pig/ml ionomycin in the TNF-treated group caused a shift in the cell population also. 
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Figure 3.42 
I n c u b a t i o n o f L 9 2 9 ceUs wi th T N F fo r 10 h r p r o d u c e d a dras t ic change in [Ca'^]i. (a) 
Control group. 0>) L929 cells were incubated with 50 ng/ml TNF for 10 hr. Note that 
there was an increase in [Ca^^]i as compared to the control group. More dots occurred at 
the upper-left region and there was an decrease in the fluorescence intensity of fura-red. 
(c) Cells were loaded with 40 n>gAnl ionomycin 10 min before measurement, (d) Addition 
o f 40 pig/ml ionomycin in the TNF-treated group caused a shift in the cell population also. 
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Table 3.1 
TNF-mediated Ca=+ release is proportional to the incubation time. 

Incubation time 3 hr 6 hr 10 hr 

T r e a t m e n t control 50 ng/ml control 50 ng/ml control 50 ng/ml 
TOF TOT TNF 

Fluo-3 intensity 74.68 8 ^ 6 s H 81.42 89.49 126.56 
(arbitrary unit) 

Fura-red 406.65 442.00 274.39 214.27 304.80 87.96 
intensity 

(arbitrary unit) 
Fluo-3 yTura-red 0.18 0.18 0.24 0.38 一 0.29 1.44 

% ofcontrol * 100 158 496 
(%) ： 

Number ofcells 9684 9686 9176 8712 9550 2803 
in R1 

Number ofcells s l 6 ~ ~ 314 824 1288 450 7197 
inR2 

Results from Figure 3.40 - Figure 3.42 were summarized and the peak fluorescences at the 

X- and y-axis were acquired. The ratio of fluo-3 to fura-red was then calculated and the % 

of control was obtained according to the following formula: 

* % ofcontrol (%) 

=[ f luo-3 / fura-red (TNF treatment)] / [fluo-3 / fura-red (control)] x 100 % 

Moreover, the number of dots in R1 and R2 were determined. 
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addition of large dose of TNF (500 ngAnl) for 3 hr produced a small increase in [Ca^^]i 

(Figure 3.43 and Table 3.2). There was a little shift of the cell population from R1 to R2 in 

3-hour-incubation of 500 ng/ml TNF with L929 ceUs. b i the ionomycin experiment, the 

distribution of dots is quite homogeneous as compared to the one with TNF treatment 

(Figure 3.40 - 3.43). When compared the responses mediated by ionomycin and TNF, it 

can be seen in Figure 3.41b and Figure 3.42b that cells responded to TNF differently. 

Basically, two populations o f cells can be visuaUzed in terms of the slope of the graph (i.e. 

the ratio of fluo-3/fura-red). In the upper left population, cells produced a relatively high 

[Ca^^]i after TNF addition, while the lower right gave a low [Ca^^]i rise.. 

3.4.3 Effect ofCalcium-Inducing Agents on TNF-Treated L929 Cells 

Thapsigargin is a sesquiterpene lactone originaUy isolated from the umbreUiferous 

plant Thapsia gargancia (Christensen and Norup, 1985). It acts as an irreversible inhibitor 

o f the Ca2+-ATPase in the endoplasmic reticulum (ER Ca^^-ATPase) (Lytton et aL, 1991; 

Thastrup et al., 1990).When the ER pump is inhibited, for example by thapsigargin, Ca^^ 

can no longer be returned from the cytosol to the ER and therefore, led to a prolonged 

rise in [Ca^^]i (Vercesi et al., 1996). However, thapsigargin is not a universal Ca?+-

releasing agent in all cell types (Vercesi et al,, 1996). 

In this experiment, the effect of thapsigargin (2 [ M ) on TNF-mediated release of 

Ca2+ was examined. Figure 3.44 shows the dot plots from FCM and it indicated that 

thapsigargin itself did not induce the release of Ca^^ after 6-hour-treatment OFigure 3 .44a 

and b). However, incubation o f ceUs with 50 ng/ml TNF together with 2 ^iM thapsigargin 
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Figure 3.43 
Incubation of L929 cells with high concentration of TNF for 3 hr caused a small 
increase in [Ca^^i. (a) Control group, (b) L929 cells were incubated with 50 ng/ml TNF 
for 3 hr. It shows that there was no significant change in [Ca^^]i as compared to control 
group, (c) Cells were incubated with 500 ng/ml TNF for 3 hr and it caused a smaU 
increase in [Ca^^]i since the fluorescence intensity of fura-red decreased. Addition of 40 
^igAnl ionomycin 10 min before measurement in the (d) control, (e)TNF-treated group, 
and (f) high concentration ofTNF-treated group caused a shift in the cell population also. 
The number o f cells in the region R1 and R2 is also determined. 
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Table 3.2 
Addition ofhigh concentration ofTNF caused a small increase in [Ca'^i. 

Incubation time 3 hr 

T r e a t m e n t control 50 ng/ml TNF 500 ng/ml TNF 
Fluo-3 intensity 78.40 93.55 78.18 
(arbitrary unit) 

Fura-red intensity 273.72 359.50 231.44 
(arbitrary unit) 

Fluo-3 yTura-red 0.28 0.26 0.34 
^ o f c o n t r o l * ( % ) / 92 121 

Number ofcells in 9 m 9713 9 ^ 
m 

Number ofcells in i ^ 287 3 ^ 
R2 

Results from Figure 3.43 were summarized and the peak fluorescences at the x- and y-axis 

were acquired. The ratio of fluo-3 to fura-red was then calculated and the % of control 

was obtained according to the following formula: 

* % ofcontrol (%) 

=[ f luo-3 / fura-red (TNF treatment)] / [fluo-3 / fura-red (control)] x 100 % 

Moreover, the number of dots in R1 and R2 were determined. 
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Figure 3.44 
Incubation of TNF with thapsigargin produced a drastic increase in [Ca^^i. (a) 
Control group, (b) L929 cells were incubated with 2 p M thapsigargin for 6 hr. I t shows 
that there was no significant change in [Ca +]i as compared to control group, (c) Cells 
were incubated with 50 ngAnl TNF for 6 hr and it produced an increase in [Ca^^i. (d) 
Addition o f 50 ng/ml TNF with 2 \xM thapsigargin produced a drastic release of Ca^^. 
Addition o f 40 pig/ml ionomycin 10 min before measurement in the (e) control and (f) 
thapsigargin-treated group caused a shift in the cell population also. The number o f cells in 
the region R1 and R2 is also determined. 
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for 6 hr produced a drastic increase in [Ca^^]i (Figure 3.44a and d) as evidenced by the 

shifting of cells from R1 to R2 as compared to TNF treatment. This may be due to the fact 

that the [Ca^^]i released by TNF could not be uptaken into Ca^^ stores as the activity of 

Ca^^-ATPases were blocked by thapsigargin. Obivously, two populations o f ceUs were 

also seen when cells were treated with TNF in the presence of thapsigargin fFigure 3.44d). 

The rise of [Ca^^i are also found in the group with ionomycin treatment in the absence 

(Figure 3.44e) and presence of thapsigargin (Figure 3.44f). These results therefore suggest 

that TG potentiated TNF-mediated release of Ca^^. 

Another Ca^^-inducing agent, thimerosal, was also used. Thimerosal, a thiol-

reactive reagent, has been shown to increase the cytosolic Ca^^ concentration in a variety 

of cells (MichelangeU et al., 1995) by sensitizing EP3 receptors (Bemdge, 1991). Figure 

3.45 shows the effect of 20 [ M thimerosal on TNF-mediated cytotoxicity. Addition of 

thimerosal increased about 10 % in TNF-mediated cytotoxicity. 

In conclusion, TNF produced a slow rise in [Ca^^]i that may involve in cell death 

since sustained Ca^^ in cytosol may cause apoptosis O^Jicotera et al., 1994). Addition of 

Ca2:inducing agent potentiated the release of Ca】+ and increased the TNF-mediated 

cytotoxicity. 

Since TNF increased the release of ROS and Ca^^ in L929 ceUs, their relationship 

was examined in the next section. 
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Figure 3.45 
Addition of thimerosal enhanced TNF-mediated cytotoxicity. L929 ceUs were seeded 
at 3 X 10^/well in complete medium in a 96-well plate and incubated for 20 hr at 37。C，5 
% CO2. 100 ^1 o fTNF of various concentrations in the presence ( • ) or absence ( • ) of 
thimerosal (20 pM) in serum-free medium was added and incubated for 20 hr at 37 °C, 5 
% CO2. Neutral red assay was then applied (n = 7). 
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3.5 Relationship between Reactive Oxygen Species and Calcium in 

Tumor Necrosis Factor-Alpha-Mediated Cytotoxicity 

3.5.1 Introduction 

In previous experiments, we have found that TNF increased the release of ROS 

and Ca2+ in L929 cells. However, their relationship is not clear and therefore we attempted 

to investigate the possible mechanisms behind by FCM. Moreover, the effect of 

mitochondrial Ca!+ (Ca^^)m was examined also. 

3.5.2 Effect ofIntracelluIar Calcium Chelator on TNF-Mediated ROS Release and 

Cytotoxicity 

BAPTA7AM is one of the commonly used Ca^^-chelators (Kong et al.’ 1996; Pahl 

and Baeuerle, 1996). In the cytotoxicity assay, appUcation of 10 ^ M BAPTA; 'AM reduced 

TNF-mediated cytotoxicity by about 5 - 10 % (Figure 3.46). Similar to the results in 

section 3.4.2，challenge of ceUs with TNF (50 ng/ml) for 3 hr did not produce any change 

in [Ca2+]i ^"igure 3.47a). However，an increase in the [Ca^^i was observed when cells 

were treated with TNF (50 ng/ml) for 6 hr OFigure 3.47b). As expected, BAPTAy^AM 

could block the rise of Ca?+ in the 6-hour-incubation group 5^igure 3.47). There was no 

significant change in the number of dots in R1 and R2 in 3-hour-incubation as compared 

to control group OFigure 3.47a) whereas addition of BAPTA>'AM in the 6-hour TNF 

treatment reduced the number of dots in R2 as compared to the one with 6-hour TNF 

treatment alone. Figure 3.48 shows the effect o f 10 j i M BAPTA7AM on the release of 



Chapter 3. Resutis Page 134 

100 n 

80 - control ^ ^ 

1 6 。 - y ^ ^ ^ 
g , / y / pre-treated with 
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Figure 3.46 
Addit ion of BAPTA/AM reduced TNF-mediated cytotoxicity. L929 cells (3 x 
loVweU) were seeded in a 96-well plate and incubated for 20 hr at 37 °C, 5 % CO2. In the 
treatment group, BAPTA/AM (10 pM) in serum-free medium was added to each weU and 
incubated at 37 °C for another 120 min. Subsequently, 100 ^il of TNF of various 
concentrations was added and the cells were incubated for 20 hr at 37 °C, 5 % CO2. 
Neutral red assay was then applied (n = 3, expt. = 3). 



Chapter 3. Resutis Page 135 

(a) 0)) 
control control 
(R1 = 9897’ R2 = 103) (R1 = 8891, R2 = 1109) 

S| R2~7| S| 
0 / Oi 

0 Q 
」 j 4 . : , , ^ ; . 、 . . | J j i # i P ^ ^ - & ' 

0 1023 0 1023 
+ 50 ng/ml TNF for 3 hr +50ng/mlTNFfor6hr . 
(% of control = 88 %) (% of control = 158 %) ‘ 
(R1 = 9926, R2 = 74) (R1 = 8369,R2 = 1631) S| S |~ ‘ 

o o T— T— • 

、.•:••' . 

_ . : . . . . -

^ 」肩_1.||丨::..-. i ^ 0 0 e - -
^ 0 1023 0 1023 
g + 10 fiM BAPTA/AM for 3 hr + 10 fiM BAPTA/AM for 6 hr 
« (% of control = 88 %) ( � / � o f control = 105 %) 
. s (R1 = 9915，R2 = 85) (R1 = 9122，R2 = 878) f? 
i S ?5 a o o 
E ^ ^ 

— . i — — v J J j i i a f e t e 
0 1023 0 1023 

+ 50 ng/ml TNF and + 50 ng/ml TNF and 
10 f]iM BAPTA/AM for 3 hr 10 fiM BAPTA/AM for 6 hr 
(% of control = 81 %) (% of control = 124 %) 
(R1 =• 9929, R2 = 71) (R1 - 8737, R2 - 1263) 

S | § 1 
2 2 

1 

•• . ‘ ‘ . •‘ 
. . : < . : , • 
..',；.. • •• . • V i . . . . 
.%•••/ » - . . ： 

: 塵 _ : : “ 」 J & f e ) : . . 
0 1023 0 1023 

Fura-red intensity 

Figu re 3.47 
Addi t ion of B A P T A / A M chelated T N F - m e d i a t e d Ca '^ release in t h e 6 - h o u r -
incuba t ion b u t not t he 3 - h o u r - t r e a t m e n t . (a) Neither TNF (50 ng/ml) nor BAPTA (10 
\ M ) produced any changes in [Ca^i i in L929 ceUs. (b) Addition o f 10 [ M BAPTA /AM 
for 6 hr reduced TNF-mediated Ca^^ release. 
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Figure 3.48 
Addition of BAPTAM^M reduced TNF-mediated H2O2 release. L929 cells (10Vml) 
were seeded in a 6-well plate and were incubated ovemight at 37 °C, 5 % CO2. Cells were 
treated with 10 ^iM B A P T A M M in the presence (orange line) or absence (green line) o f 
50 ngAnl TNF for 15 min (a), 3 hr (b), 6 hr (c) and 10 hr (d). Cells were then trypsinized. 
DCF (10 pM) was added and measurements were made with a FCM at the time indicated. 
The black and the purple lines represent the control and the TNF (50 ng/ml)-treated 
group, respectively. It was found that cells incubation with BAPTA/AM reduced the 
release of H2O2 in treatment with TNF. These results suggest that the release of Ca^+ 
preceded H2O2. 
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ROS in L929 cells that were incubated for 15 min, 3，6 and 10 hr. It was found that 

addition o f B A P T A / A M did reduce the release ofROS in TNF-treated cells in the 6- and 

10-hour-treatment. Therefore, it seems Ukely that the release o fROS may be mediated by 

[Ca2+]i because i f the release ofROS was independent on [Ca^"]i, it would not be inhibited. 

Figure 3.49 summaries the results from Figure 3.48 quantitatively. On the other hand, 

addition of 1 m M H2O2 did not cause the release of Ca^^ at the 3，6 or 10 hr time point 

(Figure 3.50). Figure 3.51 shows the confocal images (from CLSM, Meridian) of the early 

response of TNF on H2O2 treatment. AppUcation of 1 or 5 m M H2O2 did not cause a 

spontaneous increase in the level of [Ca^^]i (Figure 3.52) whereas addition o f ionomycin 

(40 ^ig/ml) indicates that there was no Ca^^ impairment. 

However, someone may wonder that there are two possibiHties that BAPTAy'AM 

reduced TNF-mediated release of ROS in the long time treatment (i.e. 6- or 10-hour 

incubation). First, BAPTA/AM reduced the TNP-mediated release of ROS actuaUy by 

chelating Ca!+. Second，BAPTA>^AM induced cell death, thereby reducing the release of 

ROS from dead ceUs. From the dot plots of DCF against PI, one may differentiate these 

possibilities. CeU death was examined simultaneously by applying propidium iodide (J>I). 

PI is one of the D N A chelators that can be used for detecting ceU death. PI difiuses into 

dead ceUs and chelates DNA. Therefore, dead cells give fluorescence. As the number of 

dead ceUs increased, the PI intensity increased also. Figures 3.53 - 3.56 show the dot plots 

o f incubation o f T N F for 15 min, 3，6 and 10 hr, respectively. The x-axis indicates the 

fluorescence intensity of DCF whereas the y-axis represents the PI intensity. The first 

column indicates the fluorescence o fDCF and PI in the control ceUs measured at the time 
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Figure 3.49 
Addition of BAPTA/AM caused a reduction in TNF-mediated H2O2 release. These 
graphs summarize the results from Figure 3.48 (mean 土 S.D. from 3 expt, except the one 
with 15 min TNF treatment (1 expt)). 
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Figure 3.50 
Addi t ion of H2O2 did not p r o d u c e Ca^^ release in 3，6 or 10 h r incuba t ion . Addition 
o f 1 m M H2O2 for (a) 3 hr, (b) 6 hr or (c) 10 hr did not produce Ca:+ release. 
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Figure 3.51 
T h e confocal images show t h a t add i t ion of H ^ O j d id no t p r o d u c e a s p o n t a n e o u s 
release of Ca!+ in L929 ceUs. L929 cells (2 x lOVml) were seeded on cover glass and 
incubated at 37。C and 5 % CO2 for 3 days. Cells were mounted on a home-made holder 
and washed twice by Na+-HEPES buffer. Cells were loaded with 10 ^ iM f luo-3/AM for 1 
hr and then washed twice by Ca^^-free buffer. Confocal scanning was made with a 5-
second-interval at room temperature. 1 m M and 5 m M H P 2 were added at the 100'^ and 
250出 sec, respectively. 40 ^ig/ml ionomycin was added at the 375'^ sec (n = 3). 
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Figure 3.52 
H2O2 did no t cause C a � + release in L929 cells in a shor t t ime course. This graph 
summaries the results of the confocal images of cell number 1 and 2 from figure 3.5l. 1 
m M and 5 m M H2O2 were introduced to the cells at the 1^ and 2°^ hairline, respectively. 
40 ^ig/ml ionomycin was introduced to the cells at the 3^ hairline. The y-axis, F/Fo, 
represented the noraiaUzed fluorescence intensity from ceUs. 
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^ 
•5 § 
B 30 min 30 min 30 min 30 min 
•二 i s s a 
E 1̂ “ “ ^ ~1 —1 ~ ~ ^ ~ n '1 ~ ~ ^ '1 ~~~^ ：~ 

a a a a 
r f ” ^ 
a . . y a .:,^ a ^> a .^. 
： ^ z ： - V : / : : / 
s ？ ’. • ？ ° , 
& & a & 

10" 101 1Q2 103 10* ^ 10» 101 1Q2 103 1Q4 ^ 10» 10' 102 103 10« ^ 10» 10' Iff 103 10< 
45 min 45 min 45 min 45 min 
s a a & 
‘~~W\ 1̂ W^~~^ '1 ^ ”1 ~M 
a a a a 
T- r- 产 T-

‘ : , / ‘ - M . - X ‘ , ‘ ,: r 
o • “‘ o . . . o & j . , ' 
»- «- »~ ^ 

& & a a 
^ 10" 10' 1Q2 103 10* ^ 10» 1fli 10̂  103 10» 10" 10̂  1Q2 10̂  10« ^W~~W~iff~Tv~10< 

DCFH ~ • DCF 
Figure 3.53 
Incubat ion of L929 ceUs with T N F for 15 min did not p roduce the release of H2O2 
and cell death. L929 cells (10Vml) were treated with TNF (50 ng/ml) for 15 min at 37 
T , 5 % CO2. After washing, ceUs were labeUed with DCF (10 pM) and PI (8 jj,g/ml) and 
the fluorescences were measured with a FCM at the time indicated. X-axis and y-axis 
represent the fluorescence intensity of DCF and PI, respectively, (a) It represents the 
control group, (b) 50 ng/ml TNF was added, (c) 10 \ M BAPTAy'AM was added, (d) 50 
ng/ml TNF and 10 ^iM BAPTA/AM were added. There was no significant difference 
among groups. 
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Figure 3.54 
Incubation of L929 celIs with TNF for 3 hr did not produce the release of H2O2 and 
cell death. L929 cells (10Vml) were treated with TNF (50 ng/ml) for 3 hr at 37 °C，5 % 
CO2. After washing, cells were labelled with DCF (10 pM) and PI (8 ^ig/ml) and the 
fluorescences were measured with a FCM at the time indicated. X-axis and y-axis 
represent the fluorescence intensity o f DCF and PI, respectively, (a) I t represents the 
control group, (b) 50 ng/ml TNF was added, (c) 10 [iM BAPTA /AM was added, (d) 50 
ng/ml TNF and 10 p M BAPTA/AM were added. There was no significant difference 
among groups. 
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Figure 3.55 
Incubation of L929 ceUs with TNF for 6 hr produced the release of H2O2 and cell 
death, (a) I t represents the control group. ¢ ) 50 ng/ml TNF was added. The lower 
population moved faster to the right than that o f the control group (column 1) (c) 10 piM 
BAPTAy'AM was added. No significant difference was found when compared to the 
control group, (d) 50 ngAnl TNF and 10 [ M BAPTA/AM were added. The lower 
population moved slower to the right than that o f the TNF-treated group (column 2). It 
implied that addition o f B A P T A / A M reduced the release ofH2O2 by chelating Ca^^. 
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Figure 3.56 
Incubation of L929 cells with TNF for 10 hr produced the release of H2O2 and ceU 
dea th , (a) It represents the control group, (b) 50 ng/ml TNF was added. The lower 
population moved faster to the right than that o f the control group (colunm 1). Moreover, 
a population in the R2 region was found in the 10 hr treatment but not in the 6 hr group, 
(c) 10 n M BAPTA/AM was added, (d) 50 ngAnl TNF and 10 p M B A P T A M M were 
added. The lower population moved slower to the right than that of the TNF-treated 
group (column 2). Moreover, addition of B A P T A / A M reduced the population in R2 
region as compared to the TNF-treated group. Therefore, it implied that addition of 
BAPTA/AM reduced the release ofH2O2 and ceU death by chelating Ca^^ 
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after the addition of the fluorescent indicators. The second column represents the 

corresponding data in the TNF (50 ng/ml) treated cells. The third and the fourth columns 

correspond to the one in cells with BAPTAy'AM or BAPTA/AM plus TNF, respectively. 

For each dot plot, it could be divided into three regions, R1, R2 and R3, as 

mentioned in section 2.2.4. The lower position (R1) on the y-axis indicates the viable ceUs 

whereas the ones on the middle ¢12) and upper region (R3) of the y-axis shows the dead 

cells. Several conclusions can be obtained from these dot plots. First, a few dots were 

found in the middle region of the y-axis (i.e. only a few ceUs labeUed with PI) in the 

control and BATPA/AM-treated group (Figure 3.53 - 3.56). These indicate that 

BAPTAy^AM itself did not induce cell death. However, BAPTA/AM was able to reduce 

the release ofH2O2 by chelating Ca^+rather than induced cell death. Second, TNF induced 

an intermediate population (column 2 in Figure 3.55 and Figure 3.56) in the R2 region in 

the 6- and 10-hour TNF treatment. The appearance of this population is due to the effect 

o f T N F on the membrane lesion. This effect was more obvious in the 10-hour incubation 

(Figure 3.55 vs Figure 3.56). These results indicate that TNF induced cell death 6-hour 

after the addition o fTNF. Third, Figure 3.56 also shows that addition o fBAPTA; 'AM for 

10 hr reduced the number of TNF-induced ceU population in R2 region as compared the 

column 2 with the column 4. These observations suggest that BAPTA/AM may reduce the 

initiation ofcel l death by reducing the production ofH2O2 after 6-hour-treatment o fTNF. 

Fourth, TNF-treated cells gave a higher redox rate in terms of DCF fluorescence in the 

right-shifting population than the control ceUs in Figure 3.55 and Figure 3.56 and this 

implied that the redox rate is higher in the TNF treated group. Finally, addition of 
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BAPTA/AM reduced TNF-mediated redox rate by comparing the column 2 with column 4 

in Figure 3.55 and Figure 3.56. Figure 3.57 further shows that addition of BAPTA/AM 

reduced PI intensity. It implied that chelation of Ca^^ could reduce the ceU death mediated 

byTNF. 

Table 3.3 shows the proportion of cells in the 10-hour incubation with TNF (data 

were from the 45^-minute-plot of each treatment). Only the data from 10-hour incubation 

were analyzed since they gave a distinct response among these treatments. It was found 

that addition o f TNF induced more cell deaths since the number of cells in R2 and R3 was 

double as compared to the control group. Addition of BAPTAy'AM did not induce cell 

death since the number of cells in R2 and R3 is fewer than control group. Moreover，TNF 

with BAPTA /AM reduced the ceU number in R2. It indicates that B A P T A / A M may block 

the cell death mediated by TNF 

In the cytotoxicity assay, it was found that addition of BAPTA (10 ^iM) in the 

presence of 4-OH-TEMPO (5 mM) reduced TNF-mediated cytotoxicity to a great extent 

(Figure 3.58). These results suggest that Ca^^-chelator with antioxidant might have 

additive effect on the reduction ofTNF-mediated cytotoxicity. 

3.5.3 Effect ofMitochondrial Calcium on TNF-Mediated ROS Release and 

Cytotoxicity 

I t is still controversial that mitochondrion acts as a Ca:+ store (Somlyo et al., 

1985). The concentration o f mitochondrial free Ca?+ is found to be low (< 100 nM) in 
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Figure 3.57 
Addi t ion of B A P T A / A M reduced cell death in TNF treatment. L929 cells ( loVml) 
were seeded in a 6-well plate and were incubated overnight at 37 °C, 5 % CO2. Cells were 
treated with 10 ^iM BAPTA/AM in the presence (orange line) or absence (green line) o f 
50 ng/ml TNF 10 hr. Cells were then trypsinized. PI (8 pig/ml) was added and 
measurement was made with a FCM at the time indicated. The black and the purple lines 
represent the control and the TNF (50 ng/ml)-treated group, respectively. I t was found 
that cells incubation with BAPTA/AM reduced the cell death. 
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Table 3.3 
Addi t ion ofBAPTA>^AM reduced TNF-med ia t ed cell dea th . 

T r e a t m e n t N u m b e r of N u m b e r of N u m b e r of * % o f C e U dea th ( % ) 
ceUs in R 1 cells in R 2 cells in R 3 

— C o n t r o l 8998 91 911 — 10.02 
50 ng/ml TNF 7618 一 1161 “ 1221 23.82 

10 MM 9216 115 669 T ^ 
B A P T A M M 
50 n g M TNF ^ ^ 1 ^ 20.40 

+ 10 n M 
B A P T A M M 

Results were from the 45^-minute-plot o f each treatment in Figure 3 .56. The number of 

ceUs in R1, R2 and R3 were recorded and % of cell death was obtained according to the 

foUowing formula: 

* % ofcel l death (%) 

=pS[umber ofceUs in (R2 + R3) + Number ofceUs in (R1 + R2 + R3)] x 100 % 
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Figure 3.58 
Addition of BAPTA/AM and 4 -OH-TEMPO fur the r reduced TNF-mediated 
cytotoxicity. L929 cells (3 x 10Vwell) were seeded in a 96-weU plate and incubated for 20 
hr at 37 X, 5 % CO2 In the treatment group, BAPTAMM (10 _ in serum-free 
medium was added to each well and incubated at 37 °C for another 120 min. 
Subsequently, 100 ^il of 4-OH-TEMPO (5 mM) with TNF of various concentrations in 
serum-free medium were added and the cells were incubated for 20 hr at 37 °C, 5 % CO2. 
Neutral red assay was then applied (n = 3). * p < 0.05 and • * p < 0.005 indicate that there 
was a significant difference between 4-OH-TEMPO and BAPTA/AM with 4-OH-TEMPO 
group. 
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unstimulated cells (Miyata et al., 1991). The ER, rather than the mitochondria, is the main 

organelle regulating the [Ca^^]i (Somlyo etal., 1985). 

Three pathways for Ca^^ transport have been described in respiring mitochondria 

that maintain a high transmembrane electrical potential: (1) the Ca!+ uniporter; (2) the 

putative HVCa^+ antiporter; and (3) NaVCa^^ antiporter (review: Gunter and Pfeiffer， 

1990) that maintain the Ca^^-cycling between cytosol and mitochondria (Figure 1.6c). 

Similar to the role in cytosol, Ca^+ also acts as a second messenger in mitochondria 

(review: Denton and McCormack, 1990). I t regulates intra-mitochondrial metabolism by 

regulating different mitochondrial enzymes such as dehydrogenases (Denton et al., 1980; 

McCormack and Denton, 1980) thus affecting oxidative phosphorylation ^4oreno-

Sanchez, 1985). Moreover, the mitochondrial matrix volume is regulated by Ca^+ as well 

(Davidson and Halestrap, 1987). 

The mitochondrial Ca^^-cycling can be inhibited by some drugs such as ruthenium 

red and diltiazem. Ruthenium red，a hexavalent, inorganic dye that prevents mitochondrial 

Ca2+ uptake by inhibiting the mitochondrial Ca:+ uniporter (Chacon and Acosta, 1991; 

FauUc et al., 1995). Jn contrast, diltiazem prevents the release of Ca^^ from mitochondria 

by inhibiting Na+-dependent and H^-dependent pathways (Rizzuto et al., 1987). 

b i L929 cells, addition o f 25 [ j M ruthenium red reduced TNF-mediated 

cytotoxicity by about 5 - 10 % (Figure 3.59). Furthermore, addition o f250 \ i M diltiazem 
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Figure 3.59 
Addition of ru thenium red reduced TNF-mediated cytotoxicity. L929 cells were 
seeded at 3 x 10Vwell in complete medium in a 96-weU plate and incubated for 20 hr at 37 
°C, 5 % CO2. 100 p.1 TNF of various concentrations in the presence ( _ or absence (參）of 
ruthenium red (25 ^iM) in semm-free medium was added and incubated for 20 hr at 37 °C, 
5 % CO2. MTT assay was then appUed (n = 3, expt = 3). Similar results were obtained in 
neutral red assay (data not shown). 
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also reduced TNP-mediated cell death ( by about 5 - 10 %) (Figure 3.60). It implies that 

inhibition of Ca^^ cycling in the mitochondria inhibited the TNF-mediated cell death. 

The dot plots from FCM indicated that addition of ruthenium red (25 pJvI) or 

diltiazem (250 |oM) for 6 hr without TNF showed a small modification of the [Ca^^i level. 

As shown in Figure 3.61c, treating of cells with ruthenium red reduced the cell number in 

the lower-right corner. This may be due to the effect of ruthenium red that the Ca^^ re-

uptake into mitochondria was suppressed. For the effect of diltiazem (Figure 3.61e), more 

cells were found in the lower right comer indicating a lower [Ca^^]i in these cells. These 

may due to the action o f diltiazem that the release of Ca^^ from the mitochondria was 

blocked. However, the effect o f ruthenium red and diltiazem on the [Ca^^]i was not so 

significant. Nevertheless, pre-treatments of cells with ruthenium red and diltiazem reduced 

the TNF-mediated Ca^^ release (Figure 3.61). Furthermore, the number of ceUs did not 

increase in R2 (Figure 3.61c - f) as compared to control whereas 6-hour incubation o f 

TNF induced a shift o f cells from R1 to R2. These results imply that prevention of Ca^^ 

cycling in mitochondria inhibited the rise o f [Ca^^]i release. Our results also suggest that 

one o f the sources o f Ca^^ after TNF treatment is from the mitochondria. 

The confocal images from CLSM-MD also indicated that addition of 25 [ j M 

ruthenium red reduced both H2O2 (Figure 3.62) and Oi*" (Figure 3.64) release. The 

quantitative measurements from both experiments were summarized in Figure 3.63 and 

Figure 3.65，respectively. Furthermore, data from FCM also indicated that diltiazem could 

reduce the TNF-mediated H2O2 release O^igure 3.66). These results therefore suggested 
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Figure 3.60 
Addition of diltiazem reduced TNF-mediated cytotoxicity. L929 cells were seeded at 3 
X 10Vwell in complete medium in a 96-well plate and incubated for 20 hr at 37。C，5 % 
CO2. 100 |il TNF of various concentrations in the presence ( • ) or absence ( # ) of 
diltiazem (250 | iM) in serum-free medium was added and incubated for 20 hr at 37 °C, 5 
% CO2. MTT assay was then appUed (n = 3, expt = 3). Similar results were obtained in 
neutral red assay (data not shown). 
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Figure 3.61 
Addition ofnithenium red or diltiazem for 6 hr reduced TNF-mediated Ca�+ release, 
(a) Control group, (b) TNF increased the release of Ca^^. (c) Addition of 25 | i M 
ruthenium red did not change the release of [Ca^^]i. (d) Addition o f 50 ng/ml TNF with 25 
HM ruthenium red reduced TNF-mediated Ca^^ release as compare to TNF-treated group, 
(e) Addition o f 250 p M diltiazem did not cause the release of Ca^^. (f) AppUcation of 50 
ng/ml TNF and 250 p M diltiazem reduced TNF-mediated Ca^^ release. 
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Figu re 3.62 
T h e confocal images show t h a t r u t h e n i u m red r educed the a m o u n t of T N F -
media ted H2O2 p r o d u c t i o n in L929 ceUs. L929 cells (2 x lOVml) were seeded on a cover 
glass and incubated at 37 °C, 5 % COj for 4 days. Cells were then incubated with Na+-
HEPES buffer (a), 50 ng/ml TNF for 15 min (b), 25 j i M ruthenium red for 15 min (c), 
and 50 ng/ml TNF and 25 p-M ruthenium red for 15 min (d) at room temperature and the 
abiUty of cells to produce Hf>2 was then detected by DCF (final concentration 10 | i M ) 
with a CLSM-MD at time zero. 
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Figure 3.63 
Ruthen ium red reduced the ra te of TNF-mediated H2O2 product ion in L929 cells. 
This graph summaries the results of the confocal images from figure 3.62. The y-axis, 
F/Fiast, represented the summation of fluorescence intensity from aU ceUs at each time 
interval that was divided by the total fluorescence intensity ofthe last image. 
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Figure 3.64 
The confocal images show that ruthenium red reduced the amount of TNF-
mediated 02 . - production in L929 ceUs. L929 cells (2 x lOVml) were seeded on a cover 
glass and incubated at 3 7 � C , 5 % CO2 for 4 days. Cells were then incubated with Na+-
HEPES buffer (a), 50 ng/ml TNF for 15 min (b), 25 |iM ruthenium red for 15 min (c), 
and 50 ng/ml TNF and 25 ^iM ruthenium red for 15 min (d) at room temperature and the 
abiUty of cells to produce 62*" was then detected by HE (final concentration 10 p.M) with 
a CLSM-MD at time zero. 
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Figure 3.65 
Ruthenium red reduced the rate of TNF-mediated 02*" production in L929 cells. 
This graph summaries the results of the confocal images from figure 3.64. The y-axis, 
F/Fiast, represented the summation of fluorescence intensity from aU ceUs at each time 
interval that was divided by the total fluorescence intensity of the last image. 
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Figure 3.66 
Addition of diltiazem reduced TNF-mediated H2O2 release. L929 cells (10Vml) were 
seeded in a 6-well plate and were incubated ovemight at 37 °C, 5 % CO2. Cells were 
treated with 250 piM diltiazem in the presence (orange line) or absence (green line) of 50 
ng/ml TNF for 6 hr. Cells were then trypsinized. DCF (10 ^iM) was added and 
measurement was made with a FCM at the time indicated. The black and the purple lines 
represent the control and the TNF (50 ng/ml)-treated group, respectively. It was found 
that cells incubation with diltiazem reduced the release ofH2O2 in treatment with TNF. 
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that both ruthenium red and diltiazem may impair the formation of ROS during the TNF 

challenge because of theirs inhibitory effect on the mitochondrial Ca^^ cycling. 

In conclusion, TNF-induced cell death was inhibited by Ca!+ chelator such as 

BAPTA/AM and it implied that Ca?+ plays an important role in TNF-mediated 

cytotoxicity. Moreover，BAPTA/AM was capable of reducing the TNF-mediated H2O2 

release. This suggested that Ca^^ may be one of the mediators for the release of ROS. 

However, the site of the release of Ca^^ is unknown. Jn the experiments with the use of 

mthenium red and diltiazem, the source of Ca!+ for the TNF-effect was found to be 

mitochondria although we could not eUminate the contribution from ER. The ability of 

BAPTA/AM, ruthenium red and diltiazem in the reduction of TNF-mediated ROS release 

further suggest that [Ca^ ]̂m fluxes, probably the [Câ ]̂m cycling, may be responsible for 

the formation ofROS. 
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3.6 Effect of Tumor Necrosis Factor-Alpha on pH 

3.6.1 Introduction 

It was found that intracellular acidification may be involved in apoptosis (Barry 

and Eastman, 1992). Under the conditions where endonuclease activation occurred in HL-

60 ceUs, Barry and Eastman observed a decrease in cytosoHc pH on the order of0 .2 - 0.3 

pH units, that may lead to apoptosis. For monitoring pH inside L929 cells，the 

fluorescence indicator SNARF-l/AM was applied. An increase in the fluorescence 

intensity indicates that there is an increase in pH. 

3.6.2 Effect o f T N F on pH 

Figure 3.67 shows the confocal images (from CLSM, Meridian) that addition of 

Na+-HEPES buffer or 50 ngAnl TNF did not cause a spontaneous change in pH whereas 

application of 50 mM NH4Cl induced an increase in the fluorescence intensity. NH4Cl 

increased intraceUular pH inside the cells, therefore, it was used for the positive control. 

Figure 3.68 summaries the results form Figure 3.67. 

In conclusion, addition of TNF did not change the intracellular pH in L929 cells 

immediately after the addition of TNF. However, the long-term effect of TNF on 

intracellular pH remains to be investigated. 
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Figure 3.67 
The confocal images show that addition of Na+-HEPES and TNF did not change 
the pH in L929 ceUs. L929 cells (2 x lOVml) were seeded on cover glass and incubated at 
37 °C and 5 % CO^ for 3 days. Cells were mounted on a home-made holder and washed 
twiceby Na+-HEPES buffer. Cells were loaded with 10 ^iM SNARF-l/AM for 1 hr and 
then washed twice by Na^-HEPES buffer. Confocal scanning was made with a 5-second-
interval. Na+-HEPES buffer and 50 ng/ml TNF were added at the 150出 and 425^' sec, respectively. There was no change in the fluorescence intensity. Addition of 50 mM NH4Cl induced a significant increase in the fluorescence and it indicated the increase in the pH inside L929 cells (n = 2). 
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Figure 3.68 
Na+-HEPES buffer and TNF did not change the pH in L929 ceUs. This graph 
summaries the results of the confocal images ofcell number 1 and 2 from figure 3.67. Na+-
HEPES buffer, TNF (50 ng/ml) and NH4Cl (50 mM) were introduced to the cells at the 
1功，2"d and 3'̂  hairline, respectively. 
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3.7 Effect of Tumor Necrosis Factor-Alpha on Mitochondrial Membrane 

Potential 

3.7.1 Introduction 

The positively charged rhodamine analogue rhodamine 123 accumulates 

specifically in the mitochondria of living cells. The high electronegativity of the intact 

mitochondrial membrane may be responsible for the specific dye binding (Johnson et al., 

1980). The mitochondrial electron transport chain develops and maintains a potential 

across the inner mitochondrial membrane (Av|/m) of the order of -150 to -200 mV by 

expulsion of protons from the matrix. The intensity of mitochondrial staining may 

correlate with the activity of the oxidoreductive complexes responsible for the 

maintenance of the electronegativity of the mitochondrial membrane, and thus the 

rhodamine 123 may be a direct marker of the energy-supplying metabolic processes. 

Moreover, the balance of Ca^^ between the cytosol and the mitochondrial matrix ([Ca^ ]̂m 

cycling) is determined by the electrochemical potential for Ca�+ across the inner 

mitochondrial membrane, and predominantly by A\|/m. Blockade of electron transport by 

mitochondrial inhibitors such as rotenone increased rhodamine 123 fluorescence ^Duchen 

and Biscoe, 1992), while fluorescence can be reduced by uncouplers such as DNP ^maus 

etal., 1986). 

3.7.2 Effect of TNF and Some Drugs on Mitochondrial Membrane Potential 

Figure 3.69 shows that addition of TNF (50 ng/ml) for 3，6 or 10 hr did not 
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Figure 3.69 
Addition of TNF for 3，6 or 10 hr did not cause any change in rhodamine 123 
intensity. L929 cells (10Vml) were seeded in a 6-well plate and were incubated overnight 
at 37 X , 5 % CO2. Cells were treated with p-RPMI (black line)，50 ng/ml TNF (purple 
line) for (a) 3 hr, (b) 6 hr and (c) 10 hr. Moreover，cells were treated with (d) 30 [iM DNP 
(green line) and (e) 50 pM rotenone (orange line). Cells were then trypsinized. After 
washing, rhodamine 123 (final concentration = 2 ^iM) was added and incubated at 37 °C 
for 15 min. Measurement was made by FCM. 
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cause any change in the Av|v. AppUcation ofDNP (30 îM) induced a smaU decrease in the 

fluorescence intensity of rhodamine 123 since it is one of the uncouplers that may 

depolarize the Av|/m. The depolarization of A /̂m reduced the binding of positively charged 

rhodamine 123. In contrast, addition of rotenone (50 pM) induced a drastic increase in the 

fluorescence intensity of rhodamine 123. It impUes that rotenone hyperpolarize the A^m. 

Table 3.4 shows the data from FCM and indicated that addition of 50 ng/ml TNF for 3, 6 

or 10 hr did not induce a significant change in the mitochondrial membrane potential. As 

expected, there was a reduction in the fluorescence intensity in the treatment of ceUs with 

DNP or ruthenium red. There was no change in the rhodamine 123 intensity in the 

treatment of TNF plus DNP or ruthenium red. However, it is interesting that addition of 

TNF reduced the rhodamine 123 intensity with treatment of rotenone and antimycin A in 

the 3 and 6 hr incubation. The mechanism of the reduction of rhodamine 123 fluorescence 

intensity in the treatment ofTNF plus rotenone or antimycin A is stiU unknown. 

In conclusion, TNF did not change the Av|/m but reduced the hyperpolarization of 

Avj/m in the treatment of ceUs with rotenone and antimycin A. 
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Table 3.4 
The effect ofTNF and other drugs on A /̂m. 

Treatment Incubation time Rhodamine 123 * % of control 
Oyj intensity (arbitrary unit) ( ^ 

control 3 148.36 / 
50ngAnlTNP 3 160.71 — 108 

50 îM rotenone 3 600.81 “ 404 
50 [ M antimycin A 3 449.73 303 

30MMDNP 3 128.43 “ 86 
25 [iM ruthenium red 3 — 139.53 — 94 

50 ngAnl TNF 3 473.20 JT8 
+ 50 fjM rotenone 

50 ng/ml TNF 3 224.23 YTl 
+ 50 |iM antimycin A 

50 ng/ml TNF 3 129.31 ^9 
+ 30 |iM DNP 
50 ngAnl TNF 3 140.25 ^ 

+ 25 |iM ruthenium red 
control 6 127.16 / 

— 5 0 ng/ml TNF 6 125.58 “ 98 
50 |iM rotenone — 6 415.23 326 

50 îM antimycin A — 6 234.11 184 
30pMDNP 6 112.36 88 

2 5 _ r u t h e n i u m r e d 一 6 一 10164 80 — 
50 ng/ml TNF 6 316.41 ^ 

+ 50 |iM rotenone 
50 ng/ml TNF 6 156.25 m 

+ 50 îM antimycin A 
50 ng/ml TNF 6 110.74 ^ 
+ 30 [ M DNP 
50 ng/ml TNF 6 99.91 ^ 

+ 25 îM ruthenium red 
control 10 93.53 / 

— 5 0 ng/ml TNF 10 89.65 96 — 

% of control was obtained according to the following formula: 

* % ofcontrol (%) 

=[rhodamine 123 (TNF treatment)] + [rhodamine (control)] x 100 % 
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3.8 Comparison of Effects of Tumor Necrosis Factor-Alpha on 

Susceptible Cell Line, L929 and Resistant Cell Lines，rL929, rL929-

11E and rL929-4F 

3.8.1 Introduction 

The resistant cell lines, rL929, rL929-llE and rL929-4F were developed by Prof. 

K. P. Fung and H. K. Cheng (Department ofBiochemistry, CUHK). The resistant cell line 

was defined by their inert response to TNF cytotoxicity and was developed by Kwan as 

mentioned in section 2.1.4.2 (Kwan，1995). Kwan concluded that there was no distinctive 

morphological change in TNF-resistant cells (rL929, rL929-llE and rL929-4F) as 

compared to the parental cells (Kwan, 1995). Moreover，several conclusions are obtained 

from his study: (1) There is no difference in growth rate between L929 and rL929 cells; 

(2) Expression ofTNFRl in rL929 cells is the same as L929 (the expression ofTNFRl in 

rL929-llE and rL929-4F was not identified); (3) the resistance to TNF in rL929 ceUs is 

not due to a higher capacity of scavenging of TNF-generated free radicals. The actual 

mechanism is still unknown and may be due to a lack of the ability of rL929 cells to 

generate free radicals. 

In light of this, the differences between TNF-sensitive and resistant ceU Unes and 

the possible mechanisms account for the resistance to TNF were examined in this project. 

The effect ofTNF on the (1) cytotoxicity，(2) release ofROS, (3) release ofCa^\ and (4) 
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cell cycle were investigated and the responses to TNF in both sensitive and resistant L929 

cells were compared. 

3.8.2 Effect ofTNF on the Cytotoxicity ofResistant Cell Lines 

Figure 3.70 shows that TNF did not induce a significant cell death in rL929 cells as 

compared with the parental Une, L929 cells. Moreover, rL929-llE OFigure 3.71) and 

rL929-4F ^*igure 3.72) did not show a distinct cytotoxicity after TNF treatment. 

3.8.3 Effect ofTNF on the Release ofROS in Resistant Cell Lines 

Figure 3.73 shows that addition of 50 ng/ml TNP for 6 hr caused an increase in the 

H2O2 release in the TNP-sensitive L929 ceU line whereas there was no increase in the rate 

of production of H2O2 in resistant ceU lines. Figure 3.74 and Figure 3.75 show the dot 

plots of TNF-treated sensitive and resistant cells. It is obvious that treatment of resistant 

cells with TNF did not show any difference from the one without TNF treatment. At the 

same time, TNF increased the production of H2O2 and ceU death in sensitive ceU lines 

(Figure 3.74b). Table 3.5 shows the population of cell of TNF-sensitive and resistant cell 

lines in R1, R2 and R3 as described previously (Figure 2.4) after the TNF treatment. As 

shown in the Table 3.5, an increase in the cell number in the R2 region in the group with 

6-hour-incubation of TNF was observed. This indicates that dead ceUs were formed after 

TNF treatment in the parental cell line, L929. bi contrast, only a few number of ceUs in 

region R2 was observed in the resistant ceU lines, rL929 (Figure 3.74d), rL929-llE 

f igure 3.75b) and rL929-4F (Figure 3.75d) (Table 3.5) after 6-hour TNF treatment. 



Chapter 3. Results Page 171 

100 n 
** p < 0.005 

8 0 -

___-_>>""""^"^"^^^^^^"^ 
f^ 60 - ^ ^ ^ ' - ' ^ ^ 一 

0 40 - J ^ 

1 i 

i 2 0 - / 
o L 1 T rL929 丁 

§ i ^ ^ ^ " ^ ^ > > ^ > U ^ _ _ ^ ^ ^ ^ ^ ^ ^ ^ " ^ ^ 0 - ^ 

- 2 0 -

-40 1 1 1 1 1 1 1 
0 2 4 6 8 10 12 14 

Concentration of TNF (ng/ml) 

Figure 3.70 
TNF did not induce a significant ceU death in rL929. L929 and rL929 ceUs were 
seeded at 3 x 10Vwell in complete RPMI 1640 medium and incubated for 20 hr at 37 °C, 5 
% CO2. After incubation, spent medium was discarded and washed twice by serum-free 
medium. 100 p,l of serum-free medium with various concentrations ofTNF was added to 
each well and incubated for 20 hr at 37 X, 5 % CO2. MTT assay was appUed (n = 7). 
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Figure 3.71 
TNF did not induce a significant ceU death in rL929-llE. L929 and rL929-llE ceUs 
were seeded at 3 x 10Vwell in complete RPMI 1640 medium and incubated for 20 hr at 37 
°C, 5 % CO2. After incubation, spent medium was discarded and washed twice by serum-
free medium. 100 jj,l of serum-free medium with various concentrations ofTNF was added 
to each well and incubated for 20 hr at 37 °C, 5 % CO2. MTT assay was appHed (n = 7). 
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Figure 3.72 
TNF did not induce a significant cell death in rL929-4F. L929 and rL929-4F ceUs 
were seeded at 3 x 10Vwell in complete RPMI 1640 medium and incubated for 20 hr at 37 
°C, 5 % CO2. After incubation, spent medium was discarded and washed twice by serum-
free medium. 100 d̂ of serum-free medium with various concentrations ofTNF was added 
to each well and incubated for 20 hr at 37�C，5 % CO2. MTT assay was applied (n = 7). 
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Figure 3.73 
Addition of TNF for 6 hr did not increase the release of H2O2 from resistant cell 
lines, rL929, rL929-llE and rL929-4F cells. (a) Application of 50 ng/ml TNF (purple 
line) for 6 hr in L929 cells increased the release ofH2O2. However, addition of 50 ngAnl 
TNF for 6 hr in (b) rL929, (c) rL929-llE and (d) rL929-4F did not increase the 
production of H2O2 as compared to control group (black line). The time on the left 
indicates the incubation period of cells with DCF. 



Chapter 3. Results Page 175 

� � （c) (d) 
0 min 0 min 0 min 0 min 
s & & i 
—j 一 . . 一 o 
a :_:• a # a # a | ^ 
*• .1 . — .i-\ ； ^ o ,.、 v,'../ ，：：. 
2b : . a> i,': : & :•: .:.': ^ -' 
; • ; , . ； 家 ; , 

&|̂  a ；;;； & a .’ 
，10» 10' 102 ioa 10« "lO» 10' 102 103 10* ”^~"?o5~"î ~î ““o< "^o~f^i~~^^~J^~,g< 
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Figure 3.74 
Incubation of L929 ceIls with TNF for 6 hr produced the release of H2O2 and cell 
death in L929 cells but not in rL929 cells, (a) It represents the L929 control group, (b) 
50 ng/ml TNF was added with L929 cells. The lower population moved faster to the right 
than that of the L929 control group (column 1) (c) It represents the rL929 control group, 
(d) 50 ng/ml TNF was added with rL929 ceUs. There was no increase in the rate ofright-
shifting of lower population in rL929 cells (column 4) as compared to rL929 control 
group (column 3). Little intermediate population was obtained in the rL929 control and 
TNF-treated rL929 group. 
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Figure 3.75 
Incubation of L929 cells with TNF for 6 hr did not produce the release of H2O2 and 
cell death in rL929-llE and rL929-4F cells, (a) It represents the rL929-llE control 
group, (b) 50 ng/ml TNF was added with rL929-llE ceUs. (c) It represents the rL9294F 
control group, (d) 50 ng/ml TNF was added with rL929-4F cells. There was no increase in 
the rate of right-shifting of lower population in rL929-llE and rL929-4F ceUs (column 2 
and column 4, respectively) as compared to rL929-llE and rL929-4F control group, 
respectively (column 1 and column 3). Little intermediate population was obtained in the 
all four columns. 
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Table 3.5 
Addition ofTNF induced cell death in L929 whereas there was no effect on resistant 
ceil line. 

Treatment Number of Number of Number of * % ofCeIl death 
cells in R1 ceUs in R2 cells in R3 r ^ 

L929 control 9 ^ ^ ^ ^ 
L 9 ^ 8 ^ ^ 443 I53I 

+ 50 ng/ml TNF 
rL929 control 9 ^ m 303 4.44 

rL929 95ls i l s ^ 4 M 
+ 50 ngAnl TNF 

rL929-llE control 9639 88 273 一 3.61 
rL929-llE 9 ^ ^ 3 ^ 456 

+ 50 ng/ml TNP 
rL929-4F control 9604 104 一 292 3.96 

rL929-4F ^ % W l ^ B 
+ 50 ng/ml TNF 

Results were from the 45^-minute-plot of each treatment in Figure 3.74 - 3.75. The 

number of cells in R1, R2 and R3 were recorded and % of cell death was obtained 

according to the foUowing formula: 

* % ofcell death (%) 

=pS[umber ofcells in (R2 + R3) + Number of ceUs in (R1 + R2 + R3)] x 100 % 
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From the assay in measuring the release of 02*", it was found that challenge of the 

L929, rL929, rL929-llE and rL929-4F ceUs for 6 hr with TNF (50 ng/ml) did not 

increase the rate of 02*" release (Figure 3.76). However, addition of 2 pig/ml AMD 

produced more 02*" release in rL929-llE and rL929-4F ceUs (Figure 3.77c and Figure 

3.77d). This might be due to the inhibition of SOD production by AMD and therefore, 

TNF could potentiate the release of Oz*". In contrast, addition of AMD did not change the 

rate of the release of 02*" in the TNF resistant Hne, rL929 cells ^"igure 3.77b). In L929 

cells, addition ofTNF with AMD induced cell death OFigure 3.78a) and therefore, there 

was no shift in the peak (Figure 3.77a). These results suggest that rL929 ceUs were the 

most resistant to TNF action even in the presence ofTNF plus AMD. Figure 3.78 shows 

the PI intensity in L929, rL929, rL929-llE and rL929-4F ceUs after the treatment with 

TNF plus AMD that eUcited an extent of cell death in L929, rL929-l lE and rL929-4F but 

not in rL929 cells. The release of 02*" in L929, rL929-llE and rL929-4F might act on 

plasma membrane and change the membrane permeabiHty. Therefore, PI diffused into the 

ceUs and the PI intensity was high in L929, rL929-llE and rL929-4F ceUs ^^igure 3.78). 

3.8.4 Effect ofTNF on the Release of Calcium in Resistant CeU Lines 

Figure 3.79 shows that addition of 50 ng/ml TNF for 10 hr produced a drastic 

increase in [Ca^^]i level in L929 ceUs while it only caused a smaU change in rL929 ceUs. It 

was found that the population of L929 cells shifted from R1 to R2 whereas no distinct 

migration of rL929 ceUs from R1 to R2. Figure 3.80 and Figure 3.81 indicate that 

appUcation of 50 ng/ml TNF for 10 hr did not produced an increase in [Ca^^]i level in 

rL929-l lE cells and it caused a Uttle increase in rL929-4F cells. Moreover，there was stiU 
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Figure 3.76 
Addition of TNF for 6 hr did not produce the release of Oz*" from L929, rL929, 
rL929-llE and rL929-4F cells. Application of 50 ngAnl TNF (purple line) for 6 hr in (a) 
L929 cells, (b) rL929, (c) rL929-l lE and (d) rL929-4F did not increase the production of 02*" as compared to control (black line). The time on the left indicates the incubation period ofcells with DCF. 
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o一fî !̂ ^̂ f!!!i*̂ *r̂ ^̂ (!f̂ •“••, o ....•’.1̂¾((̂ *̂̂*!¾!!(̂ >̂¾ o ,-''^^'^f^^^._ 
10° 10̂  1Q2 103 10^ 10° 10̂  1Q2 1Q3 10^ 10M0^r02l0M0 4 

H E ~ • EtBr 

Figure 3.77 
Addition ofTNF plus AMD for 6 hr produced the release of Oz*" from L929, rL929-
11E and rL929-4F but not in rL929 cells, (a) Application of 50 ng/ml TNF plus AMD 
(purple line) for 6 hr in L929 cells increased the production of 02*" as compared to the 
control group (AMD only, black line), (b) rL929 cells treated with TNF plus AMD did not 
produce an increase in the production of 02*". Addition of TNF plus AMD with (c) 
rL929-llE and (d) rL929-4F increased the production of 02*". The time on the left 
indicates the incubation period of cells with DCF. 



Chapter 3. Results Page 181 

0 min 35 min 70 min 

o o o 
m t tf> i tf) 
" * " " * " ^ 

o J j Z V ^ � | l x S M o J j u ^ 
100 101 102 103 104 10° 101 102 103 104 10° 101 10 2 10 3 10 4 

0 min 35 min 70 mm 

o o o in tf> tf5 
•T" T - T -

0>) 

o -̂•丨 L_i__, _".., o ..>..j"Lf_-. o •"••—�_.i_,..,,Nk, 
100 101 102 103 104 100 101 102 103 104 10 0 101 102 103 10 4 J2 § 

^ 0 min 35 mm 70 min 
o o o 

iO tf) tf> , 
^ ^ ^ i 

(c) » 
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Figure 3.78 
Addition of TNF plus AMD for 6 hr induced cell death in L929, rL929-llE and 
rL929-4F but not in rL929 cells. The results show the PI intensity in (a) L929, (b) 
rL929, (c) rL929-llE and (d) rL929-4F. It was found that addition ofTNF plus AMD 
(purple line) induced cell death in L929, rL929-llE and rL929-4F cells as compared to 
their control group (AMD only, black line) but not in rL929 ceUs. The time on the left 
indicates the incubation period of cells with DCF. 
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Figure 3.79 
Addition of TNF for 10 hr did not produce a significant change in [Ca^^i level in 
rL929. (a) It shows the control group of L929 cells, (b) L929 cells were incubated with 
50 ng/ml TNF for 10 hr. It shows that there was a drastic change in [Ca^^]i level as 
compared to control group, (c) It shows the control of rL929 ceUs. (d) rL929 cells were 
treated with 50 ng/ml TNF for 10 hr did not produce a drastic change in [Ca^^]i level, (e) 
and (f) show that addition of 40 ^ig/ml ionomycin (10 min before measurement) induce the 
release of Ca:+ in control and TNF-treated rL929 ceUs. 
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Figure 3.80 
Addition of TNF for 10 hr did not cause a significant change in [ C a = � l e v e l in 
rL929-llE. (a) It shows the control group of rL929-llE cells. ¢ ) rL929-llE ceUs were 
incubated with 50 ng/ml TNF for 10 hr. It shows that there was no change in [Ca^^]i level 
as compared to control group, (c) and (d) show that addition of 40 îgAnl ionomycin (10 
min before measurement) induce the release of Ca^^ in control and TNF-treated rL929-
llEcells. 
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Figure 3.81 
Addition of TNF for 10 hr did not cause a significant change in [Ca^^i level in 
rL929-4F. (a) It shows the control group of rL929-4F ceUs. (b) rL929-4F cells were 
incubated with 50 ng/ml TNF for 10 hr. It shows that there a smaU change in [Ca^^i level 
as compared to control group, (c) and (d) show that addition of 40 pig/ml ionomycin (10 
min before measurement) induce the release of Câ ^ in the control and TNF-treated 
rL929-4F ceUs. 
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no distinct shifting ofpopulation ofrL929-l lE or rL929-4F ceUs from R1 to R2. Addition 

of 40 ^ig/ml ionomycin was used to confirm that there was no impairment in the Ca^^ 

system of the cells being investigated. 

3.8.5 Effect ofTNF on Cell Cycle in Resistant Cell Lines 

Since there was no increase in the release of ROS and Ca^ ,̂ it was expected that 

there was no apoptosis in TNF-treated resistant cells and it was examined by cell cycle 

analysis. Only the ceU cycle of resistant ceU Une rL929 was shown. Figure 3.82 shows that 

addition of 50 ng/ml TNF with rL929 ceUs for 10 hr did not induce a smaU peak before the 

G0/G1 phase. This result impUed that there was no apoptotic cell after the TNF treatment. 

Actually, by the observation, there was no non-adherent cells after the 10 hr incubation 

with TNF. Furthermore, in the presence of serum, it induced more accumulation ofrL929 

cells in the S phase as compared with the serum-free condition, that was similar to the 

results in section 3.2.2. 

Li conclusion, the differences between TNF-sensitive ceU Une L929 and TNF-

resistant cell lines, rL929, rL929-llE and rL929-4F were (1) TNF increased cytotoxicity 

in sensitive ceU line but not in resistant ceU Unes; (2) TNF increased the release of ROS 

and Ca2+ in sensitive ceU Une whereas there was no response in resistant cell Unes; (3) TNF 

plus AMD produced more 02«" release and ceU death in L929, rL929-llE and rL929-4F 

but not in rL929 cells; (4) TNF induced apoptosis in L929 ceUs but not in rL929 by cell 

cycle analysis. 
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Figure 3.82 
DNA histograms of TNF-treated rL929 cells in the presence and absence of serum. 
(a) rL929 cells were treated with complete RPML (b) rL929 cells were treated with 
complete RPMI plus 50 ng/ml TNF for 10 hr. (c) t i addition, rL929 ceUs were treated 
with serum-free RPMI. (d) rL929 cells were treated with serum-free RPMI plus 50 ng/ml 
TNP for 10 hr. 
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Chapter 4. General Discussion 
\ 

Several biochemical pathways have been suggested for the ceU death.These include 

the activation of proteases and phospholipases (Orrenius et al., 1989)，the generation of 

ROS (Tsujimoto et al., 1986), and/or the degradation of DNA (Jones et al., 1989). 

However, the exact mechanism ofTNF cytotoxicity is still largely unknown. 

4.1 Tumor Necrosis Factor Induced Apoptosis in L929 Cells 

TNF can induce both apopotic and necrotic forms of cell lysis (Laster et al., 1988). 

Our study showed that rMuTNF-a induced DNA fragmentation in murine fibroblast cell 

line L929 (Figure 3.4). It was found that addition of TNF (50 ng/ml) for 3 hr did not 

induce cell death whereas in the 6- or 10-hr incubation, some of them become DNA 

fragmented cells. These results strongly indicate that TNF caused apoptosis in L929 cells, 

although necrosis was found in the same cell line after incubation with TNF in other 

laboratories (Vercammen et al., 1997; Grooteen et al., 1993). Our conclusion that TNF 

elicits apoptosis in L929 cells was further confirmed by the analysis of cell cycle (Figure 

3.6). It was found that in the 10-hr TNF treatment, a small peak occurred before the 

G0/G1 phase (Figure 3.6e). This hypodiploid peak was the cells with fragmented DNA. 

Moreover, these apoptotic activities arose as a rather late event after the addition of TNF 

to L929 ceUs further indicate the requirement of time to initiate the apoptotic pathway. 
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After TNF treatment, two types of cells were found, the adherent cells attached to 

the bottom of plate, and the non-adherent cells. Our results show that the non-adherent 

cells were mainly the DNA fragmented cells whereas the adherent ceUs were viable cells 

even they were treated with TNF for 10 hr. These observations can be found in the 

agarose gel electrophoresis (Figure 3.4) and the flow cytometric assay ^"igure 3.7). At 

present, we do not know the role of matrix adherence on the TNF-mediated cytotoxicity. 

However, recent reports indicate that surface adherence is an important factor to keep ceU 

survival and the disruption of extracellular matrix results in apoptosis (Chen et al,, 1998). 

4.2 Tumor Necrosis Factor Increased the Release ofReactive Oxygen 

Species in L929 Cells 

Our study showed that treatment ofL929 ceUs with TNF produced an increase in 

the level of intracellular ROS ROS is produced continuously inside the ceUs in respiring 

cells. However, about 1 - 3 % of electrons leak out from the inner mitochondrial 

membrane and react with molecular oxygen directly to form ROS O^igure 1.5). Jn the 

experiment of flow cytometry, TNF increased the release of H2O2 and was in a time 

dependent mamier (Figure 3.14). For a short time course such as 15-min or 3-hr 

incubation of L929 ceUs with TNF (50 ng/ml), the rate of H2O2 production did not 

increase as compared to control group in the flow cytometry study f igure 3.12). 

However, the incubation of L929 ceUs with TNF for a longer time (e.g. 6 or 10 hr) 

produced a significant increase in the rate of H2O2 release ^"igure 3.13). This indicates 

that TNF produced a slow rise in the H2O2 level. 
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On the other hand, addition ofTNF (50 ng/ml) for 15 min, 3 or 6 hr did not cause 

an increase in the rate of 02*" release (Figure 3.15a - c). For the 10-hr incubation, there 

was only a small increase in the rate of Oz*" release (Figure 3.15d). Addition of metaboUc 

inhibitor, AMD, with TNF for 15 min did not cause more Oz*" production in L929 cells 

(Figure 3 .16). However, incubation of TNF with AMD for 3 or 6 hr produced more 

intracellular Oz*" production fFigure 3.17). 

It is interesting to note in the experiments of CLSM that incubation of ceUs with 

TNF (50 ng/ml) for 15 min could increase the rate of intracellular H2O2 production as 

compared to control (Figure 3.9) whereas in that ofFCM, no such increase was observed 

at 15 min. However, the production ofH2O2 was found when ceUs were incubated with 

TNF for 6 and 10 hr. These discrepancies in responses may be due to the difference in the 

number of cells in the assay. Therefore, application of the same concentration ofTNF may 

exert a greater effect on the cells in CLSM. In fact, when ceUs were treated with a high 

dose ofTNF (500 ng/ml) for 3 hr, Ca?+ rise was observed ^"igure 3.43c) and no such 

effect was found when ceUs were challenged with a lower dose ofTNF (50 ng/ml) (Figure 

3.43b). Moreover, similar results were obtained in the case of detection of 62*". bi the 

assay from CLSM, incubation of TNF for 15 min could increase the rate of 02®" 

production but not in the FCM assay. 

As indicated in Figure 1.5，02*" is converted into H2O2 by MnSOD inside 

mitochondria. It was shown previously that TNF induced the production of MnSOD 

mRNA in all cell Hnes (Wong and Goeddel, 1988). Wong and Goeddel (1988) further 
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indicated that one hr of TNF treatment was sufficient to induce substantial level of 

transcript ofMnSOD that remained high for 24 hr. This explains why addition ofTNF did 

not increase the release of 02*~ in the 3- or 6- hr TNF treatment in the FCM assay. In this 

connection, AMD, a transcriptase blocker (Ostrove and Gifford, 1979) was found to block 

the expression of MnSOD mRNA (Wong and Goeddel, 1988). Therefore, addition of 

TNF with AMD should produce more 02*" release. Li fact, our results have indicated this 

point and our results thus illustrated that release of ROS is one of the mechanisms of 

TNF-mediated cytotoxicity. 

The effect of antioxidants on TNF-mediated cytotoxicity was investigated in this 

study. It was found that antioxidants such as cataIase, MnSOD, NAc and 4-OH-TEMPO 

reduced TNF-mediated cytotoxicity OFigure 3.19 - Figure 3.22). Both catalase and 

MnSOD are not cell-permeable QVCtchell et al., 1990). The reduction of cytotoxicity is 

probably due to an extracellular removal of H2O2 and 62*" by cataiase and MnSOD, 

respectively, from the culture medium that promotes the efflux ofH2O2 and 02*~ from the 

cellular cytoplasm to the external environment. When NAc was added to TNF-treated 

cells, a marked reduction in cytotoxicity was observed. Since the actions of NAc involve 

the replenishment of GSH stores, scavenging ROS and prevention of mitochondrial 

membrane depolarization (Cossarizza et al., 1995), it is very possible that NAc removes 

the ROS thereby reducing the TNF-mediated cytotoxicity. Antioxidant 4-OH-TEMPO 

also produced a lower TNF-mediated cytotoxicity. A likely sequence of reactions (1 - 4) 

shown below explains the possible protective effect of4-OH-TEMPO on the TNF elicited 

ROS (Mitchelle^a/., 1991). 
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H2O2 + Fe2+ ~> OH* + OH"+Fe^^ (1) 

Fe3+ + 02*" — Fe2+ + O2 (2) 

\ «^ \ 
02.- + z N — O H 0 2 + ^ N - O H (3) 

\ ^ \ 
^ N - O H + 02*~ ^ H2O2 + ^ N - 0 * (4) 

The first two reactions are the Haber-Weiss reaction for the iron-catalyzed production of 

OH«. 02*" acts to recycle the iron from Fe�+ to Fe^^ and it is therefore critical to the 

production of the OH* In reactions (3) and (4), 62*" is converted to H2O2 and O2 by the 

catalytic reaction with 4-OH-TEMPO. 

The first oxygen reduction product generated in mitochondria under both 

physiological and pathological conditions appears to be the 02*", which can subsequently 

be converted into H2O2 (Figure 1.5). Dismutation of 02*" and H2O2 can result in the 

production of the OH*. Conversion of 62*" and H2O2 into OH* is catalyzed by transition 

metals such as iron ions in the Haber-Weiss reaction fDawson and Dawson, 1996). 

Oxygen radicals escaping detoxifying enzymes are capable of inducing various damage. 

Attack by radicals can result in lipid peroxidation and DNA degradation. Results from our 

study indicate that ROS induced membrane lesion and therefore, the influx of PI into the 

cells was observed (Figure 3.57). 

Inhibition of mitochondrial electron transport at specific sites can differentiaUy 

interfere with TNF-mediated cytotoxicity. Inhibition of the electron transport at complex I 
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with rotenone or at complex II with TTFA significantly protected the cells against TNF 

(Figure 3.24 and Figure 3.25). On the other hand, inhibition of the electron transport at 

the site behind the ubiquinone region with antimycin A potentiated TNF cytotoxicity 

(Figure 3.26). These results suggest that oxidative events generated in mitochondria are 

crucial in TNF-mediated cytotoxicity. The enhancement of TNF cytotoxicity with 

antimycin A and the inhibition with rotenone and TTFA, strongly indicate that TNF 

activates radical production in mitochondria at the ubiquinone site. However, it remains 

unclear from our results in what way TNF affects the mitochondrial electron transport. 

Similar results were obtained from Schuke-Osthoff et al. (Schuke-Osthofif et aL, 1992). 

However, 0'Donnell et al. (1995) demonstrated in rMuTNF-treated L929 cells that 

mitochondrial-derived radicals or respiratory chain did not involve in the lytic pathway. 

They even show that significant ROS generation was not observed in TNF-treated L929 

ceUs using other assays such as DCF assay for H2O2 in a 96-weU plate measured by 

Cytofluor 2300 plate reader and cytochrome c reduction assay. On the other hand, they 

suggest a central role of Upoxygenase in the TNF-mediated ceU lysis. The differences 

between our data and theirs were that in their DCF assay, they treated the cells with 250 

pg/ml TNF and incubated for about 140 min only. The low concentration of TNF and 

short incubation time may not increase the release of H2O2 in L929 cells. On the other 

hand, they did not show the result of cytochrome c reduction assay and therefore, we 

cannot compare our results with theirs. 

Furthermore, addition of the protonophorous uncoupler DNP aUows electron 

transport in mitochondria to occur but prevents the phosphorylation of ADP to ATP and 
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therefore, the supply of energy was Umited. Depletion of intracellular ATP blocked 

apoptosis since apoptosis is ATP-dependent (review: Nicotera and Leist, 1997). 

Therefore, addition of uncoupler DNP may block apoptosis and reduced TNF-mediated 

cytotoxicity O îgure 3.31). However, Schulze-OsthofF et al. (1992) found that DNP did 

not exert effect on TNF-eUcited cytotoxicity. Moreover, they demonstrated that 

oUgomycin, which directly blocks the ATP synthesis by inhibiting the Fi-ATPase subunit, 

did not influence the activity ofTNF on L929 ceUs. These imply that ATP did not involve 

in the TNF-mediated cell death. 

4.3 Tumor Necrosis Factor Increased the Release of Calcium in L929 

Cells 

In this study, we also found that TNF caused a slow rise in [Ca^ ]̂i. In the 

experiment of FCM, it was found that application of TNF (50 ngAnl) for 3 hr did not 

change [Ca^ ]̂i in L929 ceUs ^"igure 3.40). Contrary to these observations, data from 

CLSM shows a faster (30 min after TNF application) release of [Ca^ ]̂i ^"igure 3.38). 

Again, the number of cells in the assay may account for this discrepancy. In fact, 

application ofhigher dose ofTNF (500 ng/ml) for 3 hr in the assay from FCM did produce 

a smaU increase in the level of [Ca^ ]̂i ^Figure 3.43). However, in the 6- or 10-hr 

incubation of L929 cells with TNF, a significant increase in the [Ca^^i was visuaUzed 

(Figure 3.41 and Figure 3.42). Therefore, TNP caused a slow release of Ca^ .̂ Similar 

conclusion was obtained in BT-20 ceUs (BeUomo et al., 1992) and gUal ceUs (KoUer et al., 
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1996) after TNF treatment. In contrast，TNF causes a rapid release of [Ca^ ]̂i in human 

neutrophils (Schumann et al.’ 1993). 

It seems that in L929 cells, the release of Câ + is not due to the IP3 system. Stored 

Ca2+ within intraceUular pools is released to the cytotsol when rP3 binds to its receptor. 

When embedded in a Upid membrane, the JP3 receptor responds Uke a conventional 

channel, displaying an increase in open frequency in response to IP3. The mean open time 

was less than 10 msec (review: Berridge, 1993). Since TNF caused a slow rise in Ca^ ,̂ we 

concluded that the release of Ca?+ in TNF-treated L929 ceUs was not due to the transient 

activation 0fn*3 system. 

Since Ca:+ cannot be generated or degraded, the level of Ca:+ is tightly regulated 

OFigure 1.6). However, the site of TNF-mediated Ca�+ release is stiU poorly understood. 

The data from the study with Ca^^-free buffer suggests that the source of Câ ^ released by 

TNF should be intracellular. Our results further indicate that the Ca^^ may come from 

mitochondria since addition of ruthenium red or diltiazem reduced the TNF-mediated Ca?+ 

release ffigure 3.61) and at the same time, cells were viable. As mitochondrial Ca^ -̂

cyclings can be inhibited by ruthenium red and diltiazem, it is possible that ruthenium red 

prevents mitochondrial Ca!+ uptake by inhibiting mitochondrial Ca:+ uniporter (Chacon 

and Acosta, 1991; Faulk et al., 1995) and diltiazem prevents the release of Câ ^ from 

mitochondria by inhibiting Na+-dependent and H%dependent pathways (Rizzuto et al., 

1987). It impUes that prevention of Ca!+ cycling in mitochondria inhibited the rise of 

[Ca2+]i and therefore reduced TNF-mediated cytotoxicity (Figure 3.59 and Figure 3.60). 
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Another Une of evidence shows that addition of Ca^^-inducing agent such as 

thimerosal produced a higher TNF-mediated cell death ^"igure 3.45). Thimerosal has been 

shown to increase the cytosolic [Ca�+] (Michelangeli et al., 1995) by sensitizing H^ 

receptors. On the other hand, application of Ca^^-chelator BAPTA/AM reduced the TNF-

mediated cytotoxicity (Figure 3.46). 

These results suggest that an elevation of [Ca^ ]̂i level, that may come from 

mitochondria or ER, may induce TNF-mediated cell death. It has long been demonstrated 

that sustained increase in the [Ca^ ]̂i induces the activation of Ca^^-dependent proteases, 

phospholipases and endonucleases (review: Orrenius et al.’ 1989). All these enzymes 

induce ceU death. The major target for proteases are the cytoskeletal proteins such as a -

actinin and actin-binding protein. A stimulation of intracellular proteolysis and the 

appearance of plasma membrane blebs ON îcotera et al., 1986) is one of the characteristics 

of apoptosis. PLA2 catalyzes the hydrolysis of membrane phospholipids that requires Ca?+ 

for activation，which could cause cell damage (Chien et al, 1979). Ca?+ activates 

endonucleases that cleaves cell chromatin into oUgonucleosomal fragments. Accumulation 

of [Ca2+] induced DNA fragmentation in rat liver nuclei (Jones et al, 1989). Since there 

were some DNA fragments observed in L929 cells 6 or 10 hr after the addition of TNF 

and the [Ca^ ]̂i was very high at that time, it is very possible that Ca^^ played a role in the 

TNF-mediated cytotoxicity. With the use of BAPTA/AM, a Ca:+ chelator, the TNF-

meidated cytotoxicity was reaUy reduced. 
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Apart from the release of Ca^^ from intracellular store，Ca^^ may entry from the 

extraceUular environment. Ca^^ entry into cells can be regulated by a number of 

mechanisms, for example through channels operated by voltage or by receptors (review: 

Berridge, 1993). In L929 cells, TNF was able to open Câ ^ channels on the cell surface 

(Kong et al., 1997). Our results also indicate that in the absence of external Ca^ ,̂ the 

release of intracellular Câ ^ still occurred in TNF-treated L929 ceUs. 

4.4 Calcium Induced Reactive Oxygen Species Release in TNF-Treated 

L929 Cells 

A sustained level of ROS and/or Câ ^ can induce ceU death. Our study indicates 

that TNF increased both ROS and Ca^^ release in L929 ceUs but their relationship is still 

unknown. It was found that H2O2 did not induce Ca:+ release ^"igure 3.50 and Figure 

3.51). On the other hand, in the assay from FCM, appUcation of Ca^^-chelator 

BAPTA/AM reduced the rate ofTNF-mediated H2O2 release fFigure 3.48). A reduction in 

cell death in the 10-hr incubation with TNF was also observed (Figure 3.57). Moreover, 

addition of diltiazem, that prevents the release of Ca^^ from mitochondria, reduced the rate 

ofH2O2 release in TNF-treated ceUs O^igure 3.66). t i the assay from CLSM, appUcation 

of ruthenium red reduced the rate of both H2O2 and 02*" release too ^Figure 3.62 and 

Figure 3.64). Therefore, TNF-mediated ROS production requires mitochondrial Câ + 

cyding because they are suppressed by the omission of Câ ^ in the presence of ruthenium 

red and diltiazem. These observations imply that TNF may cause the release of Câ ^ from 
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mitochondria firstly and then somehow induces the release ofROS. Our findings provide 

evidence for the correlation between the elevation of [Ca^ ]̂i and the formation ofROS in 

response to TNF. Both elevation of[Ca^^]i and ROS have been shown to be messengers in 

the initiation of process such as apoptosis. Several findings indicate that disruption in Ca?+ 

homeostasis may be involved in the release ofROS (Goldman et a/.，1998，Chacon and 

Acosta, 1991; Malis and Bonventre, 1986). Chacon and Acosta (1991) suggested that in 

doxorubicin-treated myocardial cells, Câ ^ fluxes through the mitochondrial membrane 

may be linked to the formation of ROS which results in the permeabiUzation of the 

membrane ofa Ca^^-induced permeabilization which then aUows the release ofOz*" to the 

cytosolic side of the membrane. In contrast，Richter (1993) suggested that pro-oxidants 

induce Câ + release from mitochondria, which may be foUowed by Câ ^ cycling, coUapse 

of A^m, and ATP depletion. Under these conditions the ceUular Ca:+ homeostasis cannot 

be maintained, the cytosolic Câ ^ level rises, and cells go into apoptosis. Moreover, recent 

study found that TNF-mediated ROS release may relate to ceramide (Garcia-Ruiz et al., 

1997). The enzyme PC-PLC appears to be involved in the activation of acidic SMase 

through 1,2-DAG. This enzyme generates a functional distinct pool of ceramide, that acts 

on mitochondria, enhancing the production of ROS (review: Femandez-Checa et al., 

1997) and therefore, induces apoptosis ^Hartfield etal., 1997). 
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4.5 Tumor Necrosis Factor Did Not Change the pH and 

Mitochondrial Membrane Potential in TNF-Treated L929 Cells 

A decrease in cytosolic pH on the order of0.2 - 0.3 pH unit may lead to apoptosis 

by endonuclease activation (Barry and Eastman, 1992). In this study, it was found that 

TNF did not change the pH in L929 cells immediately after the addition of TNF to ceUs 

(figure 3.67). In addition, collapse of A^m induces Câ ^ release from mitochondria 

(review: Vercesi, 1993). However, our study shows that TNF did not change the A?min 

the 6- and 10-hr assay (Table 3.4). This implies that in L929 cells； TNF-mediated Câ ^ 

release from mitochondria is independent on the coUapse ofATm. However, recent finding 

indicates that L929 cells treated with TNP and AMD resulted in the loss of 80 % of 

rhodamine 123 fluorescence within 6 hr (Pastorino et aL, 1996). As mentioned before, 

AMD inhibits the expression ofMnSOD and therefore, increases the release of 62*", that 

may cause damage on mitochondrial membrane in TNF-treated ceUs. hi our experiments, 

L929 cells were treated with TNF alone. Therefore, the discrepancy between our result 

and theirs may be due to the additive effect of AMD on the TNF-induced change of zVFm. 

Another finding in human hepatoma-derived HuH-7 ceUs indicates that geranylgeranoic 

acid induced a rapid loss ofthe mitochondrial inner membrane potential that finaUy led to 

apoptosis (Shidoji et aL, 1997). It seems that dysfunction of A^^ is one of the most Ukely 

candidates to induce apoptosis. Moreover, using the UpophiHc dye JC-1 to determine 

A^^n，Polla et al. (1996) showed that TNF induces time-dependent alterations in A^m in 

L929 cells. 
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Figure 4.1 shows the proposed mechanism of TNF-mediated cytotoxicity in L929 

ceUs. At first, TNP binds to TNFR1 and stimulates the unknown messenger(s) in the 

cytosol. The unknown messenger(s) then stimulates the Câ ^ release from mitochondria, ln 

consequence, the level of [Ca^ ]̂i increases. The increase in the [Ca^"]i level induces more 

ROS release from mitochondria and the site of action may be on the ubiquinone site 

(complex ni). It is still unknown how the cytoplasmic or mitochondrial Ca:+ acts on 

electron transport chain. The release of ROS can be prevented by the application of 

BAPTA/AM, ruthenium red, diltiazem, MnSOD, catalase, NAc or 4-OH-TEMPO. hi 

contrast, appUcaction of AMD enhances the release of 02*" by inhibiting the MnSOD 

expression. This causes an increase in the level of intraceUular ROS. A sustained increase 

in [Ca2+]i level induces the activation of proteases, phosphoUpases or endonucleases that 

leads to cell death. On the other hand, an increase in intraceUlular ROS leads to Upid 

peroxidation and base damage on DNA or RNA (Park et al., 1998; Wiseman and 

HaUiweU, 1996)，that results in ceU death also. This model is based on the findings from 

this project. Of course, TNF may utilize some other signal molecules to execute its 

cytotoxicity in L929 cells. In fact, the use of blockers, or inhibitors to block the Câ ^ 

andy'or ROS activity could not totally eUminate the killing effect of TNF. These suggest 

that some other biochemical pathways may involve in the TNF-mediated cytotoxicity. 
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Figure 4.1 
A proposed model for TNF-mediated cell death in L929 cells. Note that TNF 
increased the release ofboth Ca^^ and ROS that eventually lead to cell death. 
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4.6 Tumor Necrosis Factor Did Not Increase the Release of Reactive 

Oxygen Species or Calcium in Resistant Cell Lines 

TNP resistant ceU Unes such as rL929, rL929-llE and rL929-4F gave an inert 

response to TNF cytotoxicity. To produce resistant L929 cells, parental L929 cells were 

subcultured in the presence of TNF (20 units/ml). The cells were maintained in this 

medium for two weeks with a change of fresh medium every 3 days. Dead cells were 

washed away and living cells were aUowed to grow to confluence again. TNF 

concentration was then increased to 50, 100，200，1000，and 2000 units/ml in a stepwise 

manner. Finally, three cell clones, rL929, rL929-l lE and rL929-4F, were isolated. 

Someone may wonder that the absence of TNFR1 in resistant cell lines may make 

them resistant to TNF action. Although the expression of TNFR1 in rL929-llE and 

rL929-4F was not identified，Kwan found that the expression of TNFR1 in rL929 cells is 

the same as parental ceU line (Kwan, 1995). Therefore, the characteristic of resistant to 

TNF is not due to the absence ofTNFRl. Moreover, Kwan found that TNF resistant of 

rL929 ceUs is not due to a higher capacity of the ceU to scavenge ROS generated by TNF 

since there was no difference between the expression of rescue genes (such as glutathione 

reductase) in L929 and rL929 cells. The actual mechanism is currently unknown and may 

be due to a lack of the ability of rL929 cells to generate ROS. 

Cell cycle analysis indicates that there was no DNA fragmentation in the 10-hr 

TNF treatment in rL929 ceU (Figure 3 .82). Moreover, the 6 hr treatment ofaU resistant 
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cell Unes with TNF (50 ng/ml) did not cause a higher rate in the release of H2O2 as 

compared to the parental cell line ^"igure 3.73b - d). However, when rL929-llE and 

rL929-4F were treated with TNF with AMD, more 62*" release was observed whereas no 

response was found in rL929 cells (Figure 3.77b - d). These results suggest that rL929 

cells were the most resistant line to TNF action. Moreover, addition ofTNF for 10 hr did 

not cause the release of Câ ^ in rL929 and rL929-llE cells, whereas there was a smaU 

increase in rL929-4F cells ^"igure 3.80 and Figure 3.81). Since there was no sustained 

increase in [Ca^ ]̂i and ROS in the resistant cell Unes, TNF did not produce cytotoxicity in 

these cell lines (Tigure 3.70 - Figure 3.72). According to our proposed model, TNT" should 

not increase the release ofROS without the rise of [Ca^ ]̂i. To our surprise, TNF, together 

with AMD, produced more 02*~ release in rL929-llE and rL929-4F but not accompanied 

with a significant increase in [Ca^ ]̂i. These imply that the rise of [Ca^ ]̂i is not the only 

inducer to produce ROS. Therefore, the cytotoxic mechanism mediated by TNF in 

resistent L929 cells remains to be elucidated. 



Chapter 4. Genera l Discussion Page 204 

Chapter 5 

Future Perspective 



Chapter 4. Genera l Discussion Page 205 

Chapter 5. Future Perspective 

This study found that TNF increased the release of Ca^^ and ROS from 

mitochondria thus induced cell death. However, the connection among TNF-TNFR1 

complex, mitochondria and [Ca^ ]̂i is still unknown. Further information about their 

relationship should be investigated. Moreover, the mechanism of resistant ceU Unes on 

TNP is still unknown. To decode this unknown mechanism of resistant cell lines may be 

one of the best ways to understand why some tumor ceU Unes are resistant to TNF. 

Actually, to study the mechanisms ofTNF-mediated cell death is virtually unlimited and is 

under exploration by several groups of research. 

5.1 The Relationship Between Tumor Necrosis Factor and Cytochrome c 

Recently, it was found that the migration of cytochrome c from mitochondria to 

cytosol may involve in cell apoptosis (Yang et aL, 1997; Kluck et al., 1997). Cytochrome 

c is localized on the outer surface of the inner mitochondrial membrane (review: 

Skulachev, 1998). Cells undergoing apoptosis were found to have an elevation of 

cytochrome c in the cytosol and a corresponding decrease in the mitochondria. It is 

interesting to investigate whether there is a relationship among TNF, cytochrome c and 

apoptosis. By the application of the antibody technique, the localization of cytochrome c 

can be traced after the application ofTNF on sensitive cell line such as L929. 
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5.2 The Relationship Between Tumor Necrosis Factor and Mitochondrial 

DNA Damage 

The mitochondrial respiratory system is the major intraceUular source ofthe ROS. 

The mitochondrial DNA (mtDNA), while not protected by histones or DNA-binding 

proteins，is continually exposed to a high steady state level of ROS in the matrix of the 

mitochondria (Wei, 1998). The oxidative modification and mutation of mtDNA occur with 

great ease. The respiratory enzymes containing the defective mtDNA-encoded protein 

subunits exhibit impaired electron transport function and thereby increase the electron leak 

and ROS production, which in tum elevate the oxidative stress and oxidative damage to 

mitochondria. Therefore, the effect of TNF on mtDNA damage should be investigated, to 

see whether there is another mechanism on TNF-mediated ROS release from 

mitochondria. 

5.3 Clinical studies with Tumor Necrosis Factor 

The in vivo antitumor effects of TNF may be related to direct cytotoxicity, 

immunomodulatory effects or endothelial effects on tumor vasculature (Spriggs et al., 

1987). The clinical trials of rHuTNF are under way in Japan and the USA as early as 1992 

(Taguchi et aL, 1992; Spriggs and Yates，1992). rHuTNF is directly cytotoxic to some but 

not all human tumor cell lines (Old, 1985). This cytotoxicity is dose-dependent. Moreover, 
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TNF is much less toxic to normal ceUs, suggesting that this agent could have a high 

therapeutic index. 

Since there is about 79 % homology between rHuTNF and rMuTNF, application 

of rMuTNF is possible for clinical studies. At first, the effect of rMuTNF on human cell 

line such as human breast carcinoma MCF-7 should be investigated. It was found that 

MCF-7 is sensitive to rHuTNF (Sugarman et al., 1985) and therefore, rMuTNF is 

expected to give similar effect on MCF-7 (Kramer et al., 1988). 

On the other hand, the effect of rHuTNF on human cell lines can also be studied by 

similar methods that are mentioned in this study. The investigation of the release of Câ + 

and ROS should be examined. Combination studies have been initiated utilizing rHuTNF 

with y-interferon, in an attempt to exploit the synergy seen in the pre-cUnical tumor studies 

(Williamson et al., 1983). Combination studies with established antitumor agents such as 

metabolic inhibitor (AMD), Ca^^-inducing agent (thapsigargin or thimerosal) can also be 

expected. 
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external free Câ ^ concentrations. J, Biol Chem. 260:4028-4034 

Morgan, J. L.，and Curran, T. (1986) Role of ion flux in the control of c-fos 
expression. Nature 322:552-555 



References Page 219 

Mosmann, T. (1983) Rapid colorimetric assay for ceUular growth and survival: appUcation 
to proUferation and cytotoxicity assays. J. Immunol. Methods 65:55-63 

Murakami, K., and Routtenberg, A. (1985) Direct activation of purified protein kinase C 
by unsaturated fatty acids (oleate and arachidonate) in the absence of 
phospholipids and Ca^^ FEBSLett. 192:189-193 

Nagata, S. (1997) Apoptosis by death factor. Cell 88:355-365 

Naume, B., Shalaby, R., Lesslauer, W., and Espevik, T. (1991) Involvement of the 55-
and 75-kDa tumor necrosis factor receptors in the generation of lymphokine-
activted killer cell activity and proliferation of natural killer cells. J. Immunol. 
146:3045-3048 

Neale, M. 1.，Fiera，R. A.，and Matthews，N. (1988) Involvement of phosphoUpase A2 
activation in tumor ceU killing by tumor necrosis factor. Immunology 64:81-85 

Nicotera, P., Hartzell, P., Davis, G., and Orrenius, S. (1986) The formation of plasma 
membrane blebs in hepatocytes expose to agents that increase cytosolic Câ ^ is 
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