
Interacting with a virtually deformable object using an 
instrumented glove 

Ma Mun Chung 

Thesis for the Degree of 
MASTER OF PHILOSOPHY 

Mechanical and Automation Engineering 

Chinese University of Hong Kong 

June 1998 



V 

l ^ ^ % 
p ( 1 5 i J ^ J ^ J S 

•—�u_sir?""""^“^/M/J 
3 , : ^ ^ ^ : ^ ¾ ^ 
- % ^ R | ^ ^ 



Last minute changes 

According to the valuable comments from the examiners, changes have been made to 

the thesis. Four sections have been added to the draft, they are, 

a. Section 1.3 - Contribution 

b. Section 4.6 - Repeating deformation in different orientation 

c. Section 6.3 - An operation example 

d. Appendix C - Derivation of (6.2) 

In addition, an example ofdeforming a toothpaste with the virtual hand have been 

added to section 6.3 and a reference ([HUA95]) is added when the use ofhand 

approximation is explained in section 4.4.1. 



摘要 

此論文描述一個利用儀器手套操控虛擬可變形物件的系統°此系 

統共分三部分，分別爲物件模型建立、碰撞檢測及資料通訊。 

此系統應用有限元分析作爲可變形虛擬物件的線性彈性模型。虛 

擬物件被分解爲四面體單元。依循有限元分析的程序，虛擬物件 

因被虛擬手干涉的變形形狀就可計算出來。 

球體樹被用作虛擬物件與虛擬手間碰撞檢測的方法，此球體樹爲 

一棵於不同解像層次逼近物件形狀的八分樹(001:66)，而虛擬物件 

與虛擬手於不同解像層次的碰撞可用圓柱體與球體干涉測試，及 

球體與球體干涉測試的聯合結果檢測出來。 

爲了改善有限元分析的效能，此程序被轉栘至一部並行計算機中 

執行。因應此程序轉移的需要，一資料通訊演算法被導出，作爲 

主體計算機與並行計算機間的資料互傳工具。 

當虛擬手使虛擬物件變形時，此合成系統造出合理的互動反應。 



Abstract 

A system for interacting with virtually deformable objects by using an instrumented 

glove is developed. The system is mainly divided into three parts. They are object 

. m o d e l l i n g , collision detection and data communication. 

Finite element analysis (FEA) is adopted for modelling the linear elastic behaviour of 

the deformable virtual object. The virtual objects are discretised into tetrahedral solid 

elements. The deformed shape of the virtual object can hence be computed when the 

virtual hand is manipulating the virtual object. 

A sphere tree approach is adopted for the collision detection between the virtual 

object and the virtual hand. The sphere tree is an octree of overlapping spheres that 

approximates the object shape in different resolution levels. The collision between the 

virtual hand and the virtual object is detected at different levels by the combined 

result ofcylinder-sphere interference tests and sphere-sphere interference tests. 

In order to improve the performance of FEA, this procedure is executed on a parallel 

computer. A data communication algorithm is developed for data transfer between the 

host computer and the parallel computer. 

The resulting system gives reasonable interactive response when the virtual hand is 

deforming the virtual object. 
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1_lntroduction 

Modelling of objects in virtual environment is a fundamental problem in virtual reality 

(VR) applications. Objects in existing VR systems are usually assumed to be rigid bodies. 

The problem becomes apparent when the user interact with a virtual object. Real objects 

are deformable to different extend and cannot be assumed rigid when accurate object 

behaviour is required. Modelling of the deformed shape of a virtual object based on 

physical laws is thus essential. 

11 Motivation 

Computer aided design (CAD) is one of the computer applications that requires high 

precision. Existing CAD systems allow engineering analysis and assembly tests to be 

performed in addition to the visualisation of product shape. 

With the rapid development in VR and CAD technology, designers can manipulate 

virtual products by three-dimensional input devices. However, the behaviour of the 

virtual product remains different from the real prototype. One improvement is to make 

the virtual product deformable by applying physical laws to the object since the real 

products are deformed when subjected to applied force. 

There are several methods for incorporating physical laws to deformable virtual objects. 

Terzopoulos et al [TER87] proposed a method based on an elastic model. Finite 

difference method was used for calculating the potential energy of deformation. Kang and 

- Kak [KAN96] proposed a hybrid finite element (FE) model using cube element inside the 

object and plate element on the surface of the object. Gourret et al [GOU89] proposed a 

method using eight nodes solid element. Unknown displacements were calculated based 

on given node displacements on the body. Bro-Nielsen and Cotin [BR096] proposed to 

use tetrahedron model for discretization of a solid model and using condensation method 

to calculate the deformation ofthe object. Rappoport et al [RAP96] proposed a volume-

1 



preserving solid model which determines the deformation based on free-form 

deformations (FFD). 

In order to allow the use of instrumented glove for manipulating virtual object, collision 

detection and object response have to be considered. Since real-time response is critical in 

a virtual environment, real-time collision detection and object response is essential. Some 

time saving algorithms for collision detection thus have to be employed in order to attain 

interactive response. 

Several methods have been developed for collision detection between objects. Bandi and 

Thalmann [BAN95] used digital differential analyser to adaptively discretise the space 

into voxels for collision detection. Palmer and Grimsdale [PAL96] used a three stage 

process for the detection, namely construction of an initial bounding box, construction of 

a sphere tree hierarchy and polygonal intersection tests. Smith et al [SMI95] used a 

bounding box octree for approximating potential collision node location. Hubbard 

[HUB96] used a tightly bounded sphere tree for collision detection. Liu et al [LIU91] 

used HSM (hierarchical sphere model) for detecting the collision of robot arm and an 

object. These are all stimulating insight for the collision detection algorithm developed in 

this thesis. 

Most existing VR systems allow the use of instrumented glove without any force-

feedback. This makes the interaction with virtual object very difficult. It is difficult to 

decide whether a virtual hand and a virtual object are in contact simply by visual 

observation. Evaluation of deformation with the finite element model usually requires 

‘ force input. As this information is not available with an instrumented glove. The force 

applying on the object when the virtual hand is in contact with the object is not known. A 

modification of the problem is thus required. 

The evaluation of deformation using the FE method is a computation intensive process. 

In order to improve the performance of the system, it is desirable to perform deformation 

computation on a high-speed computer while graphics display can be performed on an 
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ordinary graphics workstation. It is thus essential to develop algorithms for data transfer 

between computers. 

The objective of this project is to develop a system that allows interaction with virtual 

objects in real time. Finite element method is adopted for simulating the shape of virtual 

object. Tetrahedral solid elements are employed for finite element computation. 

Interference between the virtual hand and the virtual object in the virtual space is 

evaluated by approximating the virtual object with a hierarchy of overlapping spheres. 

Virtual fingers are approximated as cylinders and spheres. A coarse estimate of any 

possible interference is obtained by performing cylinder-sphere interference test and 

sphere-sphere interference test. Exact interference test is performed at the leaf node. The 

number ofinterference tests is thus reduced and interactive performance can be achieved. 

A major time lag affecting the performance of the system is the time required for the FE 

analysis. In order to improve the performance of the system, the computation of 

deformation is performed on a parallel machine (ONYX) while the user interacts with the 

virtual object through a graphics workstation (an Indigo2). 

1.2. Thesis Roadmap 

In chapter 2, the system architecture used in this project will be introduced. The glove 

system, the VR system and the tracker system will be introduced individually. The 

integration ofthese components into the final system will be described briefly. 

, In chapter 3, the deformable model used in the system will be described. Previous works 

on deformable body animation are described in the first part. The virtual object model 

and the force-displacement relations will be introduced. The method for evaluating model 

displacement will be presented. 

In chapter 4，the collision detection problem will be addressed. Previous works on 

collision detection algorithm are described in the first part, followed by a description of 

the technique. The method for constructing the tree structure and search method will be 
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introduced. Lastly, the grasping mode for attaching the virtual object to the virtual hand 

and the condition for performing finite element analysis will be described. 

In chapter 5, the method for enhancing the speed of finite element analysis will be 

discussed. The algorithms for data communication and the parallel tools for improving 

the efficiency ofthe algorithms will be described. 

The test results of the system will be described in chapter 6. The menu functions that 

control the program flow are described. Then, the hand interaction with virtual objects are 

described. Finally, the performance of parallel algorithm is discussed with experimental 

results. 

In chapter 7, the conclusion ofthe whole project will be drawn and some suggestions for 

future work will be discussed. 

4 



1.3. Contribution 

The contributions of this thesis are, 

1. A workable system for interacting virtual deformable object using an instrumented 

glove is developed. In the system, the virtual objects can be deformed repeatedly by 

the virtual hand in different orientations. 

2. Cylinders and spheres are used in the approximation of the virtual hand instead of 

spheres on the joints in the existing system. The whole finger segment instead ofthe 

joints can be detected in the collision detection. 

3. Parallel algorithm is employed for the improvement of speed of finite element 

analysis. A study ofthe effect of parallel algorithm is presented in the thesis and 

estimation based on the results are given. 

• 
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2 System Architecture 

The system for interaction is composed of two sub-systems. The tracker system 

provides spatial information of the physical hand. The glove system collects and 

digitises information of joint angles at the finger joints. By collecting these 

information in Indigo2 workstation, the exact position, orientation and gesture ofthe 

physical hand in three-dimensional space is obtained. A virtual hand model can thus 

be constructed in the virtual world. 

2.1 Trackersystem 

The PolhemusTM pASTRAK tracking system is used to estimate the three-dimensional 

position and orientation of the glove [POL94]. The tracking system uses 

electromagnetic fields to determine the position and orientation of a remote object, 

i.e., the glove in the current system. The system generates a low frequency magnetic 

field by a transmitter (Xmtr). The system detects the field vectors with a receiver 

(Recvr). The signals are then used to compute the receiver's position and orientation 

relative to the transmitter. 

The FASTRAK system consists of a spatial information processing unit (SIPU), a 

receiver and a transmitter. 

2.1.1 Spatial Information Processing Unit (SIPU) 

SIPU is the central part of the tracker system. This is a printed circuit board that 

controls all the I/O of the system. The receiver input, transmitter input and power 

, input receptacles are located on the SIPU. The processing unit provides switches for 

selecting the customised mode of operation for the system. Receiver selector switch, 

and I/O configuration switches are located on the SIPU. Please refer to the manual 

[POL94] for hardware detail of SPIU. 

2.1.2 Transmitter (Xmtr) 

The resolution ofthe transmitter is 0.0005 cm, and 0.025°. The instrument provides 

the specified accuracy when the receivers are located within 76cm ofthe Transmitter. 

Operation up to 305cm is possible with reduced accuracy. 

6 . 



2.1.3 Receiver (Recvr) 

The static accuracy ofthe receiver ofthe system is 0.08cm RMS (root mean square 

value) for X, Y, and Z Receiver position, and 0.24cm RMS for receiver orientation. 

There is a latency of 4.0ms from centre of receiver measurement period to beginning 

of transfer from output port. 

2.2 Glove System 

In the glove system, there are 22 sensors for measuring the gesture of the physical 

hand. The sensors send signals to the CyberGlove Interface Unit (CGIU) that 

amplifies and digitises the signal of the sensors. Then, CGIU sends the digitised 

information to the host computer via an RS-232 interface. The computer then 

calculates the angle offlexure ofeach fingerjoints that will be used for the display of 

the virtual hand based on the hand model [VIR94]. 

2.2.1 CyberGlove Interface Unit (CGIU) 

The CyberGlove Interface Unit (CGIU) houses amplification and digitisation circuitry 

for the CyberGlove. CyberGlove sensor values are amplified and digitised to data of 

8-bit resolution inside CGIU. The digitised data are polled by the host, or is directed 

to the host automatically ifacontinuous sampling mode is set by a command from the 

host. For example, to request a single record of 22 sensor values, the host computer 

sends an ASCII ‘G, (which stands for Glove data). All sensor values are then digitised 

in the CGIU and sent back to the host. The default protocol for the record returned in 

response to a 'G' command is: first a 'G' is echoed, followed by 22 joint data bytes, 

followed finally by a trailing NULL character (70'). 

A NULL character that appears in a data stream signifies termination of information. 

The host computer may use the trailing NULL to verify that all data was properly 

received. The CyberGlove sensor values are truncated at their lower limits to a value 

of one. 

2.2.2 Bend Sensors 

There are 22 sensors in the CyberGlove to capture the motions of the physical hand 

and finger. The sensors are located over or near the joints of the hand and wrist. The 
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CyberGlove is designed to best fit an average-sized hand. A property of the 

CyberGlove's sensor design is that whenever the sensor completely covers the arc of 

the joint between adjacent bone segments, the sensor will provide an output 

proportional to the angle between the bones, independent of where the sensor lies 

relative to the joint and the joint radius. 

There are three bend sensors on each of the five fingers on the glove. On the thumb, 

there are two sensors that measure the metacarpophalangeal joint and interphalangeal 

joint (MPJ and IJ) (i.e., the outer two thumb joints). On the remaining four fmgers, 

there are three bend sensors to measure the MPJ, proximal IJ (PIJ) and distal IJ (DIJ). 

Thejoints are defined as follows: 

MPJ = Metacarpophalangeal Joint. This is the joint where the finger connects to the 

palm. 

PIJ = Proximal Interphalangeal Joint. This is the nextjoint towards the fingertip from 

the MPJ. 

DIJ = Distal Interphalangeal Joint. This is the outermost joint, i.e. nearest to the 

fingertip. 

TMJ 二 Tmpeziometacarpal Joint. This is the joint where the thumb connects to the 

palm. 

Abduction sensors are provided for the thumb, the middle-index, ring-middle and 

pinkie-ring fingers. These are the horseshoe-shaped ridges sticking up from the 

surface ofthe glove. An abduction sensor measures the amount that the corresponding 

fmger moves laterally in the plane of the palm. 

, The thumb has an additional sensor that measures how much the thumb rotates across 

the palm toward the pinkie fmger. Similarly, the pinkie has a sensor that measures 

how much the pinkie rotates across the palm toward the thumb, i.e., the arch of the 

palm near the pinkie fmger when the hand is cupped. Finally, there are two wrist 

sensors, one to measure wrist pitch and one to measure wrist yaw. 

The output voltage ofeach sensor varies with the change in bend angle so that there is 

no loss ofresolution atjoint extremes. The linear conversion from digitised output (0-

255) to degree is accomplished in the VirtualHand software using linear equation with 
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two parameters, a gain (slope) and an offset (y-intercept). Details can be found in 

[VIR94]. 

2.3 Integrating the tracker and glove system 

The tracker and glove systems are integrated to give a system with position sensing 

and finger gesture sensing. The two systems are linked together by using the 

VirtualHand software a workstation. A virtual hand model is built which can be used 

to interact with the virtual environment displayed on the workstation screen. 

Calibration of the virtual hand is required to obtain proper alignment between the 

physical hand and the virtual hand. 

A Silicon Graphics Indigo2 workstation with one R-4400 processor and 128MB 

memory is used for the integration. 

2.3.1 System layout 

The layout ofthe system is shown in Figure 2.1. 

Indigo2 Transmitter 

^ Z Z 3 ^ y / Q > 
Information 0 ~ Receiver ^^^ / ^ ^ ^ ' ^ ^ ' ^ ^ ^ ^ ^ 
Processing A _^=n y ^ 

^ Unit(IPU) ^ ^ _ y 

/ CyberGlov 
〒、乂v^.v^,w ™ — — ^ 

Interface Unit / 
(CGIU) / 

Figure 2.1: Hardware connection of the glove system 
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The position and orientation ofthe glove is detected by the three dimensional tracking 

system located at the wrist position ofthe glove. The receiver detects magnetic field 

vectors sent by the transmitter. The transmitter generates a low frequency magnetic 

field. The signal received is directed to the information-processing unit (IPU). The 

IPU interprets the signal received and calculate the three-dimensional position and 

orientation ofthe glove relative to the transmitter. The position and orientation values 

are then sent to the computer for the display of the virtual hand. 

The relative positions ofthe fingers are determined by the joint angles between each 

joint of the fmgers since the geometric model of the fingers is known. The sensors 

are responsible for determining the joint angles between the various sections of the 

fingers. 

The digitised signal is passed to the Indigo2 workstation where the joint angles are 

calculated and the virtual hand is constructed and displayed. The position and 

orientation ofthe virtual hand thus follow the actual movement of the glove, allowing 

the hand to interact with the virtual environment, as shown in Figure 2.2. 

t ^ ^ M 
^ i l ^ l ^ ^ ^ H ^ ^ H ^ H H I 

Figure 2.2: The resulting hand in the virtual world 
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3 Deformable Model 

The shape of virtual objects in the proposed system can be changed subjected to force 
applied by the virtual hand. The relation between the shape of the virtual object and the 
applied force is defined by a deformable model. Since there is no force feedback device 
in the current system, the applied force is not known. The applied force thus cannot be 
used directly in the force-displacement relation. The force-displacement relations have to 
be modified and a displacement-displacement relation has to be developed so that the 
displacement of the nodes based on the known displacements can be calculated. As an 
elastic model is used to model the virtual objects, the displacement-displacement relation 
is reduced to a system of linear equations. By inverting the relation matrix between the 
displacements, unknown displacements can be calculated from the known displacements 
that acted as input ofthe system. By displaying the deformed shape ofthe virtual object 
and the virtual hand, a simulation of the virtual hand deforming a virtual object can be 
obtained. 

3.1 Elastic models in computer 

In the past, computer animation usually adopted the key-frame interpolation technique to 
simulate deformation of objects. Artists produce static key pictures to pre-define the 
change in shape and motion ofthe deformable bodies. Animators then create intermediate 
pictures between key pictures (key-frame) by interpolation so as to produce continuous 
motion in animation. Using this technique, artists are required to produce large number of 
key-frames to describe the motions of the objects in the animation. No interaction with 
the animated figures or objects can be attained using this kind oftechnique. 

The use of physically based model provides a solution to the above problem. Once the 
natural shape (shape before deformation) is developed, the deformed shape of the object 
can be calculated using physical laws. This is especially useful for interactive 
applications because the response of the virtual object and the applied force cannot be 
predicted. 

Among various physical models for describing deformable solid objects, the simplest 
model is the elastic model. Elastic model contains a system oflinear equations containing 
the force-displacement relation. Therefore, standard techniques for solving linear 
equations in linear algebra can be applied to develop force-displacement relation. Hence, 
the displacement ofobject nodes can be calculated from the input of external forces. 

11 



In theUterature, there are several methods to model elastic objects for animation that can 
be used for modelling elastic object in a virtual environment. Terzopoulos et al [TER87] 
developed an elastic model based on energy approach. The strain energy s(r) of a 
deformable solid is given by, 

2 
s{r)= ^G-G\da,da^da^ (3.1) 

In the relation, G is the metric tensor or first fundamental form of the deformed object 

defined by the relation, 

G , j _ = l ^ (3.2) 

where r(a) is the position of a particle a, and 

a is a material point in a body. 

GO is the fundamental form of the natural, undeformed body. 

卜||“ is a weighted matrix norm. 

Q is the space where the integration takes place. 

aj, a2, as are the variables of co-ordinate axes. 

iJ are the parametric indices of the material point. 

The finite difference method is used for the numerical computation. For a deformable 
surface, the forward and backward cross difference operators are defined as, 

at,ufm, n] = A>[w, n] = D:D2+u[m, n ’ 
(3.3) 

D^2^j\jn, n\ = D^^Vi\m, n\ = D^ D^ u[m, n\, 

where u[m,n] is a grid function. 

D^ 1 is the forward difference operator. 

D_i is the backward difference operator. 

D+12 is the forward cross difference operator. 
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D'12 is the backward cross difference operator. 

Using the grid function x[m,n] to represent the continuous counterparts and applying the 

above difference operators for discretising functions, we have, 

a. [m,n] = w\[m,n\D;x[m,n]• D]x[m,n]- G|j [m,«]} (3 斗） 

b" [m, n\ = wjj [m, w](n[m, n]. Z^+)x[m, n] - B^ [m,«,]) 

where a \m n] and b \m,n] are constitutive functions describing the elastic properties 
y L ， J y L J 

of the material, 

w\\m n] and w^m,n\ are the weighting functions describing the deformation 
ij L , J U L J 

resistant of the material, 

By is the natural curvature of the surface, 

the (+) superscript indicates that the forward cross difference operator is used 
when i ^ i , 

n[m,n] is the surface normal grid function, 

The elastic force can then be approximated by, 

s[m,"] = X [- A- [a,D]x{m^"])+ 4_) (^对)如,4 (丄5) 

By assembling all the equations of elastic forces, the stiffness matrix can be constructed 
to define the force-displacement relation and the deformed shape ofthe virtual object can 
be calculated. 

‘ j. p. Gourret et al [GOU89,GOU91] used a finite element model based on the virtual 
displacement principle to represent deformable balls. Virtual displacement principle 
states that the internal work resulting from internal stresses is equal to the external work 
resulting from forces such as gravity, pressure and contacts. All components are the 
integral over the surface of the ball. After the ball is discretised into elements, these 
integrals are calculated over the element volume Vg or over element surface Sg that can be 
stated as follow, 
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internal work = {strain)^ {stress)^dV^ 
K 

external work = {force per unit volume)^ {displacement)^ dV^ 
•K 

+ [force per unit surface)^ {displacement)^ dS^ (3.6) 
•,e 

+ [concentrated force\�displacement\ 

As each component depends on the (displacement)e, each element can be assembled, and 
the equilibrium equation can be written in the form KU = R, which can be viewed as a 
stiffness matrix K, displacement U and external force R. 
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<Calculate prescribed \ ^ 

bone displacements � 

/ 
1 r 

Yes ^ ^ ^ ^ ^ \ 
<;;;^ Equilibrium? j;>.^ 

No ' 
j r 

Repel ball nodes to prevent 
overlapping, and to 
prescribe displacements U^ 
of repelled ball nodes. 

^ 

Obtain displacement V^ on ball 
and reactive forces Ru at contact 
points of the ball. 

1 r 
Apply an equal and opposite 
reactive forces of the ball Ru on 
contact points of the skin. 

5 

Assign the contact forces R„ to 
be the prescribed forces R^ of the 
skin. 

1 r 

Obtain displacements Uu ofball 
and skin, and reactive forces R^ 

. on the bones. 

——( End ) 

Figure 3.1: Flowchart of contact forces and displacement calculation 
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To simulate the deformation ofthe object and the virtual hand, Gourret have developed 
an iterative method to calculate the deformation of the object based on displacement 
input, as shown in Figure 3.1 

In the calculation prior to the iterative process, the displacement of the hand is calculated 
based on kinematics. The displacements are put into the known displacement vector (Uk) 
of the hand. 

In the iteration loop, the nodes ofthe ball is firstly repelled against the hand to prevent 
overlapping ofthe ball and the hand. The resulting node displacements after repelling are 
put into the known displacement vector (Uk) of the ball. By partitioning the stiffness 
matrix and rearranging the linear equations, unknown values, Uu and Ru, of the ball can 
be obtained by the equations, 

U „ = K i , . ( R � K i 2 . r J (3 7) 

R u = K n U „ + K , , U , • 

Applying the reactive force (-Ru) to the skin, the force becomes known forces Rk ofthe 
hand. Solving the linear equations using known displacement U^ ofthe skin obtained by 
repelling nodes, the node displacements of the skin can be calculated. Afterwards, the 
reactive force on the skin can be calculated. 

The iteration terminates when the reactive forces on the bones are in equilibrium with the 

forces on the ball. 

Kang and Kak [KAN96] used a hybrid model for discretization of the virtual objects and 
analyse the objects with linear elastic models. For each virtual object model, cubic 
elements are used in the core ofthe object and cylindrical shell element layers are used on 
the surface ofthe object. A sample meshing for a virtual cylinder is shown in Figure 3.2. 
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Cylindrical 
Layer ^ ^ 厂 Cubiccore 

^¾ 
^ ^ ^ ^ ¾ 卜卞斗巧 
^ U J L i > 

Figure 3.2: Cylindrical Sample ofhybrid model 

The hybrid model can reduce the time for finite element analysis (FEA) by reducing the 
number ofnodes ofavirtual object. For the cubic core, the elements are coarser than the 
shell elements on the surface of the object. The surface is described by the finer shell 
elements on the surface ofthe object. The shape of the object is calculated by performing 
FEA using plate elements. This helps to produce a finer surface detail with less 
computational effort. 

Rappoport et al [RAP96] addressed the volume preservation problem in free form 
deformation. In general, solid models should have a constant volume during deformation. 
Uzawa algorithm is used for non-linear optimisation, with an objective function based on 
deformation energy. The input of the algorithm include a set of primitives defined with 
node points, the primitive volume sizes and a set of linear constraints based on continuity 
of the control points. The resulting algorithm is a control point configuration closest to 
the given one such that the volume of the solid is conserved while the linear constraints 
are obeyed. Hence, a solid can be deformed with constant volume while still obeying the 
physical law of minimum energy within the solid. After careful tuning, the algorithm 
becomes interactive for manipulations of solid elements. 

Bro-Nielsen and Cotin [BR096] proposed a finite element based approach for real-time 
deformation applications. The approach uses volumetric solid elements for discretization 
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ofthe virtual objects. This discretization method computes the 3-dimensional volumetric 
behaviours of a real solid object. Condensation method borrowed from Gourret et al 
[GOU89] is used for the calculation ofthe object nodes displacements and the unknown 
external forces. This method produces real-time simulation of solid deformation based on 
linear elastic finite elements using a Silicon Graphics ONYX computer for analysis, and 
the SGI Performer graphics library for display. 

3.2 Virtual object model 

In the proposed system, linear elastic model is used for simulating the deformable 
behaviour of virtual objects by finite element method (FEM). Tetrahedral solid elements 
are used for analysing the relationship between the external forces and the nodal 
displacement of the object. 

A tetrahedral solid element is shown in Figure 3.3. 

qi2 

N3=<=0 ^ i o j ^ X 

\ < i i K ^ ^ M N̂  
\ i P r .. 3 \ 

^mi \ ] / " " 
Q̂  •^jS.y-TTS"™�'^�. ¾̂ \ Z 

J ^ ^ ^ ^ S P � - -•, ].-. --B X^̂  y^ iWiK̂ Ŝ ^̂ ?™'，'、* '^ '3a ^v 声 Qc 
丨‘ iOiBKSSSZlB^̂ Si. 'r 々 - ^a 一 一 ^ ^ ^ 

j^m'Tm^f^^^.....“ ̂ 1 一一一----一一//^ 
i E r , ^ * , S 2 ^ 4 . : 1 -一 y7 
JKIBiSni rSĴ ^̂ T̂ iSS:î i- %fwwf�'<wj8̂ xii 

./^^^^^^ z 
^ ¾ ^ 1 / " ^ , ’ 

Figure 3.3: Tetrahedral element 
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In the figure, qi to q^ are the displacements of the respective nodes, qi to q3 are the 
displacement ofnode 1 along the x, y, z-axis respectively. There are four shape functions, 
namely, Ni to N4, defined as follow, 

N̂  = ^ N^ =r j N, = ^ N, =1-^-7]-(； (3.8) 

The value ofthe shape function Q̂；) is equal to 1 at the vertex (vertex i) and is equal to 0 
on the opposite face of the respective vertex, as shown in Figure 3.3. For example, the 
value 0fN3 is equal to 1 at node 3 and is equal to 0 at the opposite face (the shaded face 
in Figure 3.3) ofnode 3. Since the opposite face of node 3 contains nodes 1, 2, and 4, the 
value 0fN3 is equal to zero at nodes 1, 2 and 4. In other words, N3 is zero at the other 
nodes ofthe tetrahedral element. 

3.3 Force displacement relationship 

The force displacement relationship defines the relation between the external applied 
force to the nodal displacement ofthe virtual object. Since the current model is a linear 
elastic model, the relationship between the applied forces and the displacement of object 
nodes are linear. Hence, a system of linear equations can be set up for solving the 
unknown nodal displacements based on the applied force. The coefficients of the linear 
equations can be summarised into a matrix called stiffness matrix. This relationship is 
applicable to each element of the virtual object. 

3.3.1 Stress-strain relationship 

Based on the three dimensional elastic model, there are two parameters for measuring the 
material properties for isotropic material. They are modulus of elasticity (E) and 
Poisson's ratio (v) [CHA91]. Considering an elemental cube inside a body, strains can be 
expressed in terms of stresses by Hooke's law, 
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CT^ (^y cr, 
6 = — - V — - V — 

^ E E E 
CT^ 0-y CT^ 

s =-V — + — - V — 
� E E E 

c^y CT cr 
s, =-V — -V — + — 

z E E E 

= 1 ^ (3.9) 

"少 G 
^Z 

y = - ^ 
� G 

= I ^ 
L — G 

where the modulus of rigidity, G is given by, 

G 二 E (3.10) 

2(l + v) 

Sx, Sy, Sz and a^, Gy, a^ are nominal strain and stress of the element in nominal x, y 

and z direction respectively, and 
Yxy, Yyz, Yxz and Xxy, Xŷ , x̂ z are the shear strain and stress of the element 

respectively. 

Adding all the nominal strains gives the following relation, 

( l - 2v ) / � (3.11) 
^. +s, +^. = ^ ^ ^ ^ K + ^ . + ^ J 

Using this relation to solve for the stresses, the following relation is obtained, 

a = D s (3.12) 

where a is the stress applying on the element given by 
“ T 

C = kx ^y Gz ^xy ^yz ^xA , P * 1 � 

s is the strain of the element given by 
^ ~ ^X ^y ^2 Yxy Yyz 7xz.， ^ ^ 
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D is a (6 X 6) symmetric matrix given by, 

"1-V V V 0 0 0 ‘ 
V l-v V 0 0 0 

p _ E V V l - v 0 0 0 _ 
" ( l + vXl -2v ) 0 0 0 0 . 5 - v 0 0 

0 0 0 0 0 . 5 - v 0 
0 0 0 0 0 0 . 5 - v 

3.3.2 Stiffness matrix formulation 

The strain-displacement relations is given by, 

� ] r 
du 次 dw d^ dw du dw du d\> ,_ . , � 

s =————————+————+————+—— (3.16) 
dx, dy dz dz dy dz dx, dy <^� 

where s is the strain of the element, and 

u, V，w are the displacements in x, y, z directions respectively. 

Using (3.8), the displacement u=[u v wf at arbitrary position x = [x y zf within the 
element can be written in terms of the unknown nodal values as, 

u = Nq (3.17) 

'N, 0 0 N, 0 0 N, 0 0 N, 0 0 “ 

where N = 0 N, 0 0 N^ 0 0 N, 0 0 N, 0 , (3 i8) 
0 0 N, 0 0 N^ 0 0 N, 0 0 i v J 

q is the local displacement vector of the nodes given by 

• T 

q = k ^2 ^3 ^4 ^5 ^6 ^7 ^8 ^9 �10 "11 "i2J , (3.19) 

In addition, the arbitrary position x at which the displacement u is interpolated can be 

expressed as, 

X = N,\ + N2X2 + A/3X3 + Â 4X4 

少二乂少1+^^2少2+^^3少3+^^4少4 (丄20) 

z 二 N�Z\ + N2Z2 + A^3Z3 + A/4Z4 
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where xj, yu z/ are the co-ordinates of the /th vertex along x, y and z-axis respectively, 

f o r i = l , 2 , 3 , 4 . 

Substituting (3.8) into (3.20) and using the notation x.j =x,. -Xj,少“二兄 一>^ 

Zy = z,. 一 Zj, equation (3.20) becomes， 

x = x4 +X14^ + X24/7 + X34̂  

y =少4 + yi4^ + y24^ + J^34^ (121) 

z = z4+z14^ + z2477 + z34^ 

Using chain rule for partial derivatives, the relationship for a displacement derivatives 
with respect to different basis can be obtained, take u as an example, the relation is, 

f � ^ {^ ^ ^ 
du T du (3.22) 

< =OS ——> 

df] dy 
du du 

^\ fej 

where J is the Jacobian of the transformation, which is given by, 

_ 一 

dx dy dz 

財 1̂  y � ^ 少14 ^ ' 
T OX oy oz 
J= — ^ — = 2̂4 少24 2̂4 (3.23) drj drj drj 

dx _ ^ _ ^ 1¾ 3̂4 3̂4_ 
_交 ^ ^ _ 

Hence, the following relation can be found, 

'生] \^ 
^ 殘 

< ^ U J ^ (3.24) 
dy dri 
du du 
^] 玄 

V *^ y 

where A is the inverse of the Jacobian J, which is given by, 
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1 y24^34-yS4^24 3̂ 34½ ">'l4^34 Ĵ 14̂ 24 ">^24^ 
A = J~̂  = -~~- ^24¾ "^34¾ 3̂4̂ 14 "^14¾ ^14¾ "̂ 24̂ 14 (3.25) 

detJ _ 

_^24y34 ~ 3̂̂ 24 3̂̂ 14 "̂ 14>̂ 34 î4Ĵ 24 ~^24^14_ 

where det J is the determinant of Jacobean J. 

Combining (3.16), (3.17) and (3.24) the relation between strain and displacement is 
5w 

obtained, take ——as an example, from (3.24), 
dx 

^ = 々 ！ + ̂ • + 4 3 ， (3.26) 
dx “对 12 dTJ 13 己（ 

where Ay is a element of matrix A in the /th row and the jth column. 

From (3.17), 

w = N,q, + N^q, + N,q, + N,q,, (^ ̂ 7) 
=^qi + m, + Ĉ 7 + (1 - � - V - <^ko • 

where qi is the /th element in the local displacement vector q of the tetrahedral element. 

Hence, (3.26) becomes, 

5w 
^ = AM\ -^10)+42(^4-^10)+43(^7-^10) dx 

= A , q , + ^2^4 + ^3^7 一 U l + Al + ^3 k o (3.28) 
r^ 

=4i^i + Ai^A + A3q7 - A^io 

f-mf 

where A^ 二 為1 + A^2 + ^13 • 

Similarly, other equations can be obtained and the strain-displacement relation becomes, 

^ = Bq (3.29) 
where B is a (6 x 12) matrix given by, 
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_4i 0 0 為2 0 0 成3 0 0 - A , 0 0 
0 4 i 0 0 為2 0 0 為3 0 0 - ¾ 0 

B = 0 0 為1 0 0 為2 0 0 ^33 0 0 〜 - ¾ (3.30) 

一 0 3̂1 Ai 0 為2 為2 0 為3 As 0~ - ¾ - ¾ 
為1 0 4 l 3̂2 0 ^2 As 0 為3 - ¾ 0 � - ¾ 

A i 4 i 0 A , ,為2 0 ^23 As 0 - ¾ - A 0 _ 
/m^ r»*^ 

where A^ = ^ ^ + 為2 + 為3, ^2 = ^21 + ^22 + ^ 3 , ^3 = ^31 + ^32 + 為3. 

The element strain energy is given by, 

U = - {s^BedV 
2 

= -q^B^DBq[jF 
2 (3.31) 

= - q V , B ^ B q 
2̂  
1 Ti e 

= p k q 

where the element stiffness matrix k® is given by, 

k® = F,B^DB (3.32) 

V̂  is the volume of the element given by 

1 (3.33) 
- d e t J 
6 

Using the result of(3.27), the force-displacement relation in the element becomes, 

f e = k V P.34) 

where f is the force vector describing the force adding on the element given by 

r = [ f , / 2 /3 /4 /5 f e /7 / s /9 /10 / n f u J - ( 3 . 3 5 ) 

By assembling the elemental stiffness matrix together, the global force-displacement 

relation is obtained, 

f 4 k V 0.36) 
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where f is the global force vector applied to the object with N nodes, given by, 

f'=[fo … / 3 ^ , ] (3.37) 

q8 is the global displacement vector of the object, given by, 

g g � g Y (3.38) 
q^ = m … ^ 3 V i J • ^ ， 

k® is the global stiffness matrix, given by, 

^ (3.39) 

k g = 5 > e ^ ， 

The process ofassembling of global stiffness matrix is described in 3.5.2. 

3.4 Solving the linear system 

From (3.36), external forces can be calculated by multiplying the displacements with the 
global stiffness matrix or the inverse relation can be obtained, 

q - ( k O " P (3.40) 

Unknown nodal displacements can thus be computed from the input of external forces. 
However, since there is no force feedback devices in the current system, the displacement 
vector cannot be computed by (3.40). 

Since there are some known displacements with unknown forces and there are some 
unknown displacements with known forces, the complementary relations of forces and 
displacements make the number of equations sufficient for solving the unknowns. Since 
the number of equations is equal to the number of unknowns, all the unknowns can be 
solved by rearranging the system of equations and the order ofvariables. 

By considering the relation between the virtual hand and the virtual object, there is no 
external applied force at the nodes having no constraint or no contact with the virtual 
hand. Therefore, all the known external forces are zero. 

After the rearrangement, the relation between displacements and forces is given by 

relation (3.41), 

_ 0 ] j K f i K f j r Q j l (3.41) 

r A m . K ! j Q � _ 
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where F̂® is the unknown force vector, Q̂® is the unknown displacement, 

Qk® is the known displacement, and 

K"®，Ki2®, K21g, K22® are the submatrices of the rearranged global stiffness matrix 

(kg). 

Multiplying the matrix partitions and the displacement vectors, a system of linear 
equations can be found, 

' 0 = K f i Q h K ^ (3.42a) 

^!=^l,Ql+^l2Ql (3.42b) 

Rearranging equations, (3.42) gives, 

\Ql=-{K\,yK\,Ql ( 她 ） 
] \ r3 43b^ 
[^!=^lrQl+^l2Ql 卜 ) 

Unknown displacements and forces can hence be found by relation (3.43). 

In the current application, it is only required to obtain the nodal displacement. Hence, it is 
only necessary to compute the unknown displacement in (3.43a). In addition, K12̂  is 
known after the rearrangement of the equations. Only (Kn®)"̂  is required to compute and 
the unknown displacements. (The process of computing the matrix inverse is described in 
Appendix A) 

The rearrangement improves the computation efficiency in two ways. The size of Kn® is 
smaller than k® so that the time that is required for computing inverse is reduced. The size 
of (Kn^"^Ki2^ is smaller comparing with (k®)"' in (3.40) so that the computation of 
unknown displacement becomes more efficient. 

3.5 Implementation 

There are three problems in the implementation of the modelling algorithm. The first 
problem is the development of a special data structure for providing efficient data 
extraction. The second problem is the process of global stiffness matrix formulation and 
the assembly of global stiffness matrix. The third problem is how to re-assemble the 
nodal displacement vector so that the result of modelling virtual object can be used for 
displaying the deformed object. 
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3.5.1 Data structure 

The data structure for the virtual objects is specially designed for the ease of retrieving 
relevant information for the analysis of the virtual object. There are three lists under the 
data structure of a virtual object. They are summarised in Table 3.1. 

List no. Data type Description 
1 Q^x3) floating points Vertex co-ordinates 
2 (Mx4) integers Element nodes 
3 (Px3) integers Display list 

Table 3.1: Data structure of a virtual object 

The first list is the vertices of the object. All the virtual objects in the system are 
polyhedral objects. This facilitates the modelling and rendering of the virtual object in the 
virtual environment. For each vertex, there is a 3D-array that contains the x, y and z local 
co-ordinate of the object. Therefore, the first list is an N by 3 array of floating points 
where N is the number of vertices in the object. 

The second list describes the elements of the virtual object. As tetrahedral elements are 
used, there are four vertices for each element. The indices to the corresponding vertices 
are represented by four integers. Therefore, the second list is an M by 4 array ofintegers, 
where M is the number of tetrahedral elements in the virtual object. 

The third list is the display list of the object. The list is to be used for rendering and 
displaying the virtual object. The surfaces of the virtual objects in the system are 
triangular facets. The three vertices of a facets have to be specified in counter-clockwise 
order so as to give a consistent surface normal for rendering. Therefore, the third list is a 
P by 3 array ofintegers, where P is the number of faces to be displayed. 

3.5.2 Global stiffness matrix formulation 

From (3.34), the force-displacement relation in element; is given by, 

r = k V 

Multiplying the matrix with the vector, a system of linear equations is found. 
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/ o = « + ^ S > f + - + ^S,iWn 
f,'=Kl,ql+Klql^-^Kl,,ql, 

(3.44) 

f n =^n,o^o +^u,i^f +--- + ^u,ii^n 

Taking/o^ as an example, replacing the indices in the equation with global indices, 

ff*h(jX) = ^lh(j,\).^*h(j,\)^l-h(JX) + ^lh(j,\),3*h(jX)^\^l*h(j\)^\ +••• + ^h(jA)+2^l*h(jAh2 (3.45) 

where h{j, i) is the index in the jth row and the /th column of the element list. 

(see section 3.5.1 for detail description of the element list) 

As there are N nodes in a virtual object, the element force-displacement relation can be 
expanded to a system of 3N linear equations. Expressing (3.44) in matrix form with 
replaced index like the example in (3.45), the relation becomes, 
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“ 0 1 � 0 ... 0 0 0 0 ] � 0 
i : … : : : 丨 … … ： 
0 ! . . . ： 0 0 0 0 

ff*h(j,X) ‘‘ “‘ '• ^^*h(jX),l,*h(j,X) ^l*h(j.\),3*h(j\)+\ ^!*h(j,\),3*h(j\)+l ^3*h(j,l)l 

fs*h(j,l)+l ‘‘ “‘ ‘‘ ^h(j,l)+l3*h(j.l) ^3*h(j.l)+l3*h(j,l)+l ^!*h(j,l)+U*h(j.l)+2 ^3*h(j,l)+l 

f3*h(j,l)+2 '• “‘ : ^3*h(j.l)+2,3*h(i.l) ^3*h(j,l)+23*h(j,l)+l ^3*h(j,l)+2yh(j,l)+2 ^3*h(j,l)+2 
0 ： . . . ： 0 0 0 0 

• • : : •• : : : : … : : • • • 
0 ： . . . ： 0 0 0 0 

f r h ( j , 2 ) ‘ ‘ … • ^3*h(j,2),3*h(j,l) ^3*h(j,2)3*h(j.l)+l ^3*h(J,2)3*h(j,l)+2 ^3*h(j,2) 

ffih(j,2)+l ‘‘ “‘ '• ^3*h(j,2)+l3*h(j,l) ^3*h(J,2)+U*h(j,X)+l ^!*h(j,2)+l3*h(j,l)+2 ^3*h(j,2)+\ 

ff*h(j,2)+2 ‘‘…：^!*h(j,2)+2.3*h(J,l) ^3*h(J,2)+2,3*h(j,l)+l ^3*h(J,2)+2.3*h(j.l)+2 ^3*h(j,2)+2 
0 ： . . . ： 0 0 0 0 

. • : : : : : 
: = : … : . . . . 
0 ... 0 0 0 0 (3.46) 

fh(j.3) :•…'• ^i*h(j.3).3*h(J.l) ^3*h(J3).3*h(J,\)+l ^!*h(j,3),3*h(j.\)+2 ^i*h(j.3) 
f3*h(j.3 )+l •…• ^3*h(j,3)+l,3*h(J,l) ^i*h(J.3)+l2*h(j,l)+l ^!*h(j,3)+l3*h(j,l)+2 ^3*h(j,3)+l 
f3*h(j,3 )+2 ‘‘ “‘ • ^3*h(j,3)+2.3*h(j,l) ^3*h(j.3)+2.3*h(j.l)+l ^3*h(J,3)+2.3*h(j.l)+2 ^3*h(j,3)+2 

0 ： ... i 0 0 0 0 
. • : : : : : 
: : • • • : : • • • 
0 ； . . . ： 0 0 0 0 

f3*h(jA) '•…• ^3*h(jA),3*h(j,l) ^3*h(JA).3*h(J,l)+l ^3*h(jA).3*h(j,l)+2 ^3*h(jA) 
ff*h(jA ;+l • • … • ^f*h(jA)+X,3*h(j,X) ^l*h(jA)+\,3*h(j,\)+\ ^f*h(jA)+X,2,*h(jX)+l ^2>*h(jA)+X 

ff*h(jA)+2 '• ... : ^!*h(jA)^2,7>*h(jX) ^3V7.4;+2.3W7.i;+l ^l*h(jA)+2,3*h(j.X)+2 ^3*h(jA)+2 
0 : . . . ： 0 0 0 0 

； : … i i 丨 : …… = 
0 J [0 ... 0 0 0 0 丄 0 

Adding all the element force-displacement relations together，the global force-

displacement relation results, 

_尸/1 r 巧。…^ 3 N - ^ ir Qo'-
二 (3.47) 

^3^^-1 ^3N-l,0 ... ^3N-l,3N-l Q^N-l 
_ 」 L. 」L J 

where FjS is a global force vector element, (3.48) 

K^. is an element of the global stiffness matrix, and (3.49) '，•/ 

Q. g is a global displacement vector element. (3.50) 
* 
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(3.36) gives the matrix equation of this relation. 

3.5.3 Re-assemble of nodal displacements 

In (3.43), all the displacement vectors are column vectors. After the unknown 
displacement vector is computed, the nodal displacements are computed by re-assembling 
into an array with three columns. The element displacement vectors are arranged so that 
three consecutive displacement vectors are in a group. The three components of the 
displacement vectors of the ith node are then copied into the /th entry of an array with 
three columns. The process is illustrated in Figure 3.4. 

/ ^ /|_~|\ 
^ 

t d 〜 _ t J 

R v 目 
[ = ^ A""""^-f~ 

g V I 

• 、 ^ 0 、 J M _ _ _ _ _ _ ^ ^ ^ l ^ / 
Computed displacement vector Array to be Known displacement vector 

re-assembled 

Figure 3.4: Process of displacement re-assembly 

Then, the displacements are added to the original mesh points. The deformed shape ofthe 
virtual object is then computed. Figure 3.5 gives an example of displaying the deformed 
shape with the hand. 

•% 
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1 9 l H | WBB^ 
• • • 

Figure 3.5a - An object Figure 3.5b - Fingers Figure 3.5c - Fingers 
attached to the virtual hand collided with the object and moved further resulting in 

the object undergo small large deformation of the 
deformation object. 
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4. Collision Detection 

The points of contact between the virtual hand and the virtual objects are required for 

estimating the response of the virtual object. Therefore, interference test has to be 
� 

^ performed between the virtual object and the virtual hand. However, if the 
c" 
；•' interference test is performed for each pair of facets of the virtual object and that of 

f ,j ;;p 

< ； the virtual hand, the computation time required will not be acceptable for interactive 
I 丁 
C d applications. Since most of the face pairs are not colliding, the time required for 
s ^ 
^ r collision detection can be reduced by restricting the interference test to the pairs of 

object faces which may possibly intersect. 

4.1 Related work 

There are several methods for interactive collision detection application. Youn and 

Wohn [YOU93] suggested a hierarchical object (HO) for detecting collision between 

complex objects. An object is first divided into several major parts and the parts are 

further sub-divided so that the object is represented by a hierarchy of object parts. 

Figure 4.1 is a human HO example. 

付 h u 
Z ^ t i ^ h . 3 

hi2 
hi 

=令 = d hi3i 

hi2i ŷ  _ / 

h ° P 

^ V { / ~ ~ 

h2 
h3 

U 4 y 4 h . 
h3i Q / ^ L K 

Figure 4.1: A human hierarchical object 
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In the object, hip {h) is the root ofthe HO. As the trunk and the legs are connected to 

the hip (root ofHO), the descendent ofhip is the trunk {hi\ left leg (¾) and right leg 

Qi3). Similarly, the head (hu), left arm (h12) and the right arm (//75) is the descendent 

ofthe trunk. Left forearm {h121) and right forearm (h131) is the descendent of left arm 

and right arm respectively. 

. K ^ X K h \ 
h2 h21 h3 h31 h12 h12] hi hii hi3 hi3i 

Figure 4.2: C-tree of the human HO 

Using the HO, a C-tree is developed for locating the region of collision and reduces 

the number of comparisons required for detecting the collision of the HO and other 

virtual objects. There are two types of nodes in the tree. The filled nodes represent 

pointer to a part of the human HO. The empty nodes represent intermediate nodes 

within the hierarchy and there is no valid value within such nodes. The C-tree 

representing the human in Figure 4.1 is shown in Figure 4.2 as an example. 

Bandi and Thalmann [BAN95] used digital differential analyser as an adaptive spatial 

subdivision technique and digitise a virtual object into voxels. Based on an octree 

structure, the virtual object is subdivided into voxels for collision detection tests. 

During collision detection tests, the virtual object voxels are supersampled so as to 

increase the number of tests required to be performed. This technique is used when 

the objects are close to each other. The voxels of the virtual objects are supersampled 

at a higher level of resolution than an octree does. If the objects are found to be not 

colliding with each other before the highest level of resolution is reached, they are not 

considered to be colliding. 

"* 
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Collision test using face octree 
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Face pair intersection test 
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< ; ; ^ ^ Interfering? J ^ > • 

^ ^ ^ ^ ^ ^ N o I 

es ^ Draw images 
Objects colliding 

Figure 4.3: Collision detection procedure 

Smith et. al. [SMI95] used bounding boxes to approximate a virtual'object for 
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collision detection. The overlapping region of two objects is considered only to 

reduce the collision detection test. Faces intersecting within the region are determined 

to exhaust the possible intersecting faces. Octree subdivision is performed so that 

overlapping region is subdivided and the region contains different object faces are 

sorted out. Face-face intersection tests are performed for faces of the sorted regions. 

The colliding faces are then located. The process is shown in Figure 4.3. 
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Figure 4.4: Decomposition of a sphere 

Several researchers used hierarchical sphere tree structure for approximating objects 

in collision detection algorithm. Liu et. al. [LIU91] used a solid model called 

Hierarchical Sphere Model (HSM) for approximating the objects in the virtual 

environment. The root node of the tree is a sphere that surrounds the object to be 

approximated. Then, for each level, the corresponding sphere is decomposed into 13 

overlapping descendent spheres, as shown in Figure 4.4. The descendent spheres are 

divided into three types, namely "white" node, “black” node and “mix” node. Among 

the three types, white nodes represent nodes that are outside the object. Black nodes 

represent nodes that are inside the object whereas mix nodes are nodes that are on the 

surface ofthe object. Both black and white nodes are leaf nodes ofthe tree and only 

mix nodes require further subdivision. As all the nodes are spheres, collision can be 

detected by performing sphere-sphere intersection test. � 
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Figure 4.5: A 2D analogy of a sphere tree 
Palmer et. al. [PAL96] used a three-stage process for efficient collision detection. In 

the first stage, a global bounding volume of the object is used as a reference for 

constructing the sphere at the root node of the hierarchy. In the second stage, 

potentially colliding regions are detected by searching down the sphere tree. The 

sphere tree is a tree of overlapping spheres constructed with an octree-type spatial 

subdivision technique. A 2D analogy is shown in Figure 4.5. The final stage in the 

process is to perform face interference tests when the spheres at the leaf nodes of the 

objects collide with each others. 

Hubbard [HUB96] used medial-axis surfaces to construct sphere-tree for 

approximating the objects that may collide with each other. The tree is constructed 

such that a progressively refining accuracy of object approximation can be attained. 

This technique can support time-critical collision detection algorithms that trade time 

and accuracy for collision detection. Using medial-axis surfaces for construction of 

the sphere hierarchy, a tight bound of object approximation can be attained. The 

nodes are then merged to create the ancestor nodes. Hence, a multi-resolution 

approximation of the object is obtained. This technique can be used to create a 

progressively refining approximation of the virtual objects. This can improve the 

accuracy of the collision detection but the computation overhead for constructing the 

hierarchy is increased substantially (about 400 times slower than the construction of 

octree). 
% 
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4.2 Spatial Subdivision 

In the proposed system, the virtual hand and the virtual objects are polyhedra 

represented as lists of vertices and faces. However, most face, edge and vertex pairs 

do not collide either because they are very far apart from each other or they are 

^ 
t 

Figure 4.6: The shaded faces are unlikely to collide 

geometrically impossible to have collision (e.g., the shaded face pair in Figure 4.6). 

These trivial pairs are eliminated in an efficient way such that only those possibly 

colliding pairs are tested for intersection. 

One of the effective ways to eliminate those trivial pairs is to construct a hierarchy 

that subdivides the virtual objects into several parts in different resolutions. By 

searching down the hierarchy from the root node, collision is detected at different 

resolution levels. The region for performing interference test is reduced by going 

down the hierarchy. Only the finest region, i.e. the lowest level of the hierarchy, is 

tested for interference. 

Apart from the search for collision detection, the time for constructing the hierarchy 

have to be considered as well. Most existing algorithms 

[PAL96,HUB96,LIU91,MOR88] assumed the colliding bodies to be rigid so that the 

tree can be constructed offline. Therefore, the time for constructing the hierarchy does 

not affect the interactive performance of the system. Unfortunately, the assumption is 

not applicable for deformable objects. The shape of a deformable object changes over 

time and the hierarchy has to be changed in order to represent the object geometry 

correctly. The time for constructing the hierarchy is thus critical for interactive 

performance [SMI95]. 

Taking both the times for efficient tree search and effective construction of the 

hierarchy into account, a sphere octree structure is adopted. A typical octree structure 

is shown in Figure 4.7. At each node of the tree, there are eight descenHent nodes 
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(including some NULL nodes). If all the descendent nodes of a node are NULL, the 

node is a leaf node. In the sphere tree, each level {n) represents a different level of 

approximation of the virtual objects by a collection of spheres. In other words, the 

collection ofnodes in the same level {n) within the hierarchy represents the collection 

ofspheres at the same level of resolution approximating the virtual object. 

^ ^ & k = 

^ ¾ ¾ ¾ ^ ¾ ¾ ¾ n=level of hierarchy 

Figure 4.7: An octree structure 

4.3 Hierarchy construction 

The sphere tree is constructed by means of spatial subdivision. A bounding sphere 

enclosing the virtual object completely is constructed. This is the root node of the 

hierarchy. A tree is constructed by overlapping spheres that divides the current sphere 

into eight equal regions. Nodes are retained if the nodes represent spheres on the 

surface of the object, and are discarded if the spheres are not on the surface of the 

object. This subdivision process is repeated until a predefined number of polygon 

vertices ofthe object lie within one single sphere. In the proposed system, only one 

vertex is allowed in a sphere since the goals of the collision detection algorithm is to 

locate the colliding point between the object and the fingertips. The pseudo-code of 

the algorithm is shown in Figure 4.8. 

% 
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Tree_structure is a pointer to a node. (The definition of a node is described in 4.3.1) 

Tree_structure root_node =NULL; 
Tree—structure parent_node; 
Tree_structure current_node; 
integer n; (the maximum number of vertices in the sphere) 

procedure hierarchy (parent_node, current_node, root_node) 
{ 一 

integer i; 

Construct hounding sphere ifit is the root node, i.e. ifroot_node = NULL 

Calculate the radius and centre of current_node. 

if(the number of vertices in the sphere > n) 
{ 

for i = 1 to 8 by 1 
Create the iV^_child_node of the current_node. 

for i = 1 to 8 by l " 
hierarchy (current_node, iY^_child_node, root_node) 

} “ -

if (the number of vertices < n) 
Save the vertex information of the object in the current—node. 

if (there is no vertex in the current_node) 
Discard current_node. 

retum root_node. 

^ Figure 4.8: Pseudo-code of sphere hierarchy construction algorithm 

4.3.1 Data structure 

There are two types of information stored in a node of the hierarchy: they are pointers 

to the descendent nodes and the data describing the characteristic ofthe current node, 

as shown in Figure 4.9. 

Eight pointers are stored in a node pointing to its descendent nodes. One exception is 

a leafnode where all the pointers to the descendent nodes are NULL. 
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Radius, 
Centre 

X 
Figure 4.9: A node structure 

In addition to the pointers to the descendent nodes, there is a data region for 

describing the characteristics of the node. The characteristics represented in the data 

region is summarised in Table 4.1. 

"Characteristics Data Type Description — 

R ^ A = i E o i n t The radius ofthe sphere. 

Centre A 3D vector — The centre position of the sphere. 
‘ A floating point The maximum length of a bounding box. 

Maximum length number See section 4.3.3. 
； ； This data is valid only in the leaf node. 

Vertex An integer number ^ section 4.3.3. 

Table 4.1: Characteristic description of data in each node 

In the sphere tree, each node represents a sphere in virtual space. A sphere can be 

accurately described by its radius and its centre position, where the radius describes 

the size ofthe sphere and the centre position describes the location ofthe sphere. 

The maximum length describes the length of the bounding cube in a node. The 

bounding cube is the largest cube enclosed by the sphere in the node. An example is 

shown in Figure 4.10. As the space is subdivided based on the bounding cube (See 

section 4.3.3), the maximum length is used for evaluating the centres of the spheres of 

the descendent nodes. 

% 
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_ 

Figure 4.10: The bounding box and bounding sphere 

In order to perform tests other than tree search (e.g. retrieving information for finite 

element analysis), the position of the polygon vertex enclosed in the leaf node is 

stored as well (See section 4.3.3). 

4.3.2 Initialisation 

Initialisation of a sphere tree is the construction of the root node of the tree. The root 

node ofthe tree is the bounding sphere of the virtual object. In order to ensure that 

the virtual object is enclosed completely by the sphere, a bounding box is first created 

by locating the vertices of the object with the maximum and minimum co-ordinate 

values. The box is then covered by the smallest sphere enclosing it. 

The centre ofthe sphere at the root node can be found by the equation, 

f \ 
^max + ^min ^max + 3'̂ min ^max + ^min ( 4 . 1 ) 

V 2 2 2 ) 

where the subscript max and min represents the maximum and minimum values of 

the vertices co-ordinates. 

^ 
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The length ofthe bounding box is calculated by the difference between the maximum 

and minimum value of the vertices co-ordinates. The radius of the sphere is 

determined by the maximum length among the three lengths ofthe box. 

max_len = max{x^,, 一 x^j^，>^max — 7min, ^max — ^min} (4.2) 

where max_len is the length of the bounding cube. 

A bounding cube with its length equals the maximum length of the bounding box and 

its centre locates at the centre of the sphere is constructed. The radius ofthe root node 

sphere is determined from the length of the bounding cube by the equation, 

Radius = max lenJ— (4.3) 
- V4 

where max_len is the length of the bounding cube. 

Result ofthe initialisation step is illustrated in Figure 4.10. 

4.3.3 Expanding the hierarchy 

Similar to the construction ofan octree, each edge of the bounding cube is subdivided 

into two equal parts. Hence, the cube is divided into 8 or 2̂  descendent cubes as 

shown in Figure 4.11. For each bounding cube, the smallest possible sphere is created 

to enclose the cube. Therefore, eight overlapping spheres are created for the second 

/ ^ ¾ 
. E B 1 

^ ^ 

Figure 4.11: Spatial subdivision of bounding box 
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level of approximation, as shown in Figure 4.12. 

• 
Figure 4.12: Sphere in the second level ofhierarchy 

As the space is subdivided evenly, the location of the spheres in the second level can 

be calculated from the vertices of the cube. 

In the spatial subdivision process, the bounding cube is subdivided into eight equal 

descendent cubes. As all the cubes are axis aligned, the length of the descendent cubes 

are half the length of the cube. Similarly, the co-ordinates of the centre of the 

descendent cube are offset b y � / � o f the length of the cube. Hence, the centre of the 

descendent cubes can be summarised by the equation, 

max len, 
X) = X, 土 =~~-

2 1 4 

1 max lerii 
< _ y 2 = J ^ i i ~ ~ = ^ (4.4) 

max len, 
2 2 = ;土 ~ ^ 

where {xi, yi, zi) is the centre of the current bounding cube, 

{x2, y2, z2) is the centre of the descendent bounding cube, and 

max_leni is the length of the bounding cube. 
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Observing that the centre of each descendent cube is equi-distance from the comer 

vertices ofthe cube, the centre ofthe descendent cube is the centre ofthe descendent 

sphere. 

The length of the descendent bounding cube is given by, 

1 max len, . . c\ 
max len,=——=~~^ (4.5) 

— 2 

where max_len2 is the length of the descendent cube, and 

max_leni is the length of the cube. 

From (4.3) and (4.5), the radius of the descendent sphere is given by, 

[3 

RadiuS2 = max_len2J-

_ max—leni p 
= ~ 2 " ^ U 

,. Radius, , . ^ =^ Radius, = (4.6) 
2 2 

where max_len2 is the length of the descendent cube, 

max_leni is the length of the current cube, 

Radius2 is the radius of the descendent sphere, and 

Radiusi is the radius of the sphere. 

The spatial subdivision is repeated recursively in a similar way until the termination 

condition is reached. As illustrated in Figure 4.8, there are two termination conditions 

for the process. The first termination condition is when the descendent sphere does 

not lie on the surface of the object, i.e. there is no polygon vertex enclosed by the 

sphere. The node will be discarded when this condition is satisfied. The second 

termination condition is when there is only one polygon vertex enclosed by the 

descendent sphere. This implies that the node is a leaf node. The corresponding vertex 

number is stored in the leaf node. As the termination conditions are associated with 

44 



the number ofvertices in the bounding sphere, the test for the termination condition is 

attained by comparing the distance between each polygon vertex ofthe object and the 

centre ofthe sphere with the radius of the bounding sphere. By counting the number 

ofvertices in the sphere, the termination condition can be detected. 

The result of sphere tree construction is shown in Figure 4.13. 

_ 春 眷 
(a) Level 1 (b) Level 2 (c) Leaf nodes 

Figure 4.13: Construction of a sphere tree 

4.4 Collision detection 

The collision detection algorithm is performed in two stages. In the first stage, the 

algorithm searches the sphere tree to locate possible collision region. This is achieved 

by performing cylinder-sphere interference test (finger segments are approximated by 

cylinders). Since the fingertips are approximated by spheres, additional sphere-sphere 

interference test has to be performed for detecting interference between the distal 

segments and the object. When a fingertip approaches further to the object and finally 

goes into the sphere of the leaf node of the sphere tree, exact interference test is 

performed for detecting interference between the fingertip and the surface of the 

object. This is the second stage of the algorithm. Details of the algorithm are 

discussed in the following sections. 
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4.4.1 Hand approximation for collision detection 

The hand model, which is assumed to be a rigid object, is approximated by a union of 

cylinders and spheres. An example of the approximated hand model is shown in 

Figure 4.14. 

H | ^ P H 
m i ^ B k ^ M ^ ^ ^ ^ ^ ^ ^ p g g i i ^ ! ! ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ ^ | | H ^ ^ ^ ^ ^ ^ ^ ^ ^ 

1 ^ ^ ¾ ¾ 
Figure 4.14: The simplified hand model 

The simplified hand here is different from the hand approximation taken by Huang et. 

al. [HUA95] as the hand can approximate the whole finger segment instead of the 

joints of the fingers. 

In Figure 4.14, the metacarpophalangeal, proximal interphalangeal and distal 

interphalangeal segments are represented by cylinders. The sizes of the cylinders are 

selected so that they are the smallest cylinders enclosing the respective finger 

segments. At each fingertip, a hemisphere is attached to the distal end of the finger 

segment. In addition, one vertex on the faceted model of each fingertip is selected to 

be the point on the finger to be in contact with the virtual object. The box enclosing 

the palm is not considered in the collision detection algorithm. 

Since the approximation ofthe virtual object and virtual hand only involve cylinders 

and spheres, tests for cylinder-sphere interference and sphere-sphere interference are 

sufficient for locating possible collision. 

«» 
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4.4.2 Interference tests 

There are two types of interference tests performed on different parts of the fmger 

colliding with the virtual object. For the metacarpophalangeal and proximal 

interphalangeal segment of the fmger, the cylinder-sphere interference test is used 

since the fmger segments are approximated by a cylinder. On the distal 

interphalangeal segment, both cylinder-sphere interference and sphere-sphere 

interference tests are performed. The results of both tests are combined to determine 

the interference result between the fingers and the virtual object. 

Z Sphere 

A <zzzuk^ / 
乙 ' ^ I Z ^ ~ 

• ‘ z ^ ^ ^ Cylinder 

^ ^ 

Figure 4.15: Sphere intersecting the cylindrical surface 

Cylinder-sphere interference test 

As shown in Figure 4.15, interference between the cylinder and the sphere is detected 

by estimating the minimum distance between the cylindrical surface and the sphere. 

Assuming the centre of cylinder is the origin and the axis of the cylinder is the z-axis, 

the minimum distance is calculated by (4.7), 
* 
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d-=y[^JW (4.7) 

where dmin is the minimum distance between the cylindrical and the sphere, 

Sŷ  and Sy are the x and y co-ordinates of the centre of the sphere. 

Ifthe minimum distance {dmm) is larger than the sum of the radius of the cylinder (厂。） 

and the radius of the sphere (r), then they are not colliding with each other. 

Otherwise, further test is required. 

For sphere that intersect with the cylindrical surface, three cases for detecting 

interference with the bounds of the cylinder have to be considered depending on the 

position of the sphere along the z-axis. An example for testing against the upper 

bound is illustrated in Figure 4.16-18. Similar tests are performed against the lower 

bound of the cylinder. 

Denote ^ as the z co-ordinate of the centre of the sphere, 

cuz as the z co-ordinate of the upper bound of the cylinder, and 

clz as the z co-ordinate of the lower bound of the cylinder. 

^ \ f 

D 

Figure 4.16: Sphere located between cylinder 
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Case 1: ck ̂  Sz < cu^ (Figure 4.16) 

This is the same as intersecting the sphere with the infinite cylindrical surfaces. Since 

the sphere is found to intersect with the cylindrical surface before this test is 

Q — i — 
… ^ - — — I 

~ ~ • y— I 
lnradr 

z • 

Figure 4.17: Az < rs 
performed, the sphere must collide with the cylinder. 

Case 2: Az < r, (Figure 4.17) 

Az is defined by the difference in z co-ordinates between the centre ofthe sphere and 

the upper bound of the cylinder, i.e. 

Az = s: - cUz (4.8) 

In this case, the semi-chord length (nrad) of the intersecting circle as shown in Figure 

4.17 is given by (4.9), 

nrad = ^Jr^Az' (4.9) 

The semi-chord is constructed by intersecting the plane containing the upper bound of 

the cylinder and the sphere. Considering the plane containing the upper bound of the 
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cylinder, the semi-chord is actually the radius of a circle which intersects the cylinder 

where the sphere intersects the cylinder. 

As both the sphere-plane intersection and the upper bound of the cylinder are circles, 

the distance Jmin (obtained by 4.7) between the centre of these circles can be used for 

detecting interference. If ŝfmin is larger than the sum of the radius of the cylinder and 

the circle {rc+nrad), the sphere and the cylinder are not colliding. Otherwise, the 

^ ~ A 

W 
r r " " ^ 
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A 

Figure 4.18: Az > rs 
sphere and the cylinder collide with each other. 

Case 3: Az > r^ (Figure 4.18) 

In this case, the sphere is well above the plane containing the upper bound of the 

cylinder. The sphere does not collide with the cylinder even it collides with the 

infinite cylindrical surface. 

Sphere-sphere interference test 

� 
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As spheres are orientation free, the only information required to test the interference 

between spheres is the distance, d, between the centre of the spheres, as shown in 

Figure 4.19. I f d is larger than the sum of the radii of the spheres, the spheres are not 

colliding. Otherwise, they collide with each other. 

® ^ ^ ^ ^ 
1 ^ ^ y 

X 

Figure 4.19: Sphere-sphere intersection test 

4.4.3 Searching the hierarchy 

For each fmger segment, interference test between the cylinders approximating the 

fmger and the bounding sphere of the virtual object is performed. If the interference 

test gives positive result, the fmger segment is tested with the descendent spheres of 

the bounding sphere. Whenever there is interference between the cylinder 

approximating the fmger segment and the sphere of a node, the corresponding 

descendent nodes are retrieved and tested. If positive result persists when the sphere 

representing a leafnode in the hierarchy is tested, the fmger segment is reported to be 

“near the virtual object" and the exact interference test is performed. Otherwise, the 

fmger segment is reported to be “not colliding with the virtual object". 

4.4.4 Exact interference test 

As described in section 4.4.3, the fmger segment is near the virtual object if the 

cylinder and sphere approximating the object collides with the sphere at a leafnode of 

the hierarchy. The distal interphalangeal segments are assumed to deform the virtual 

object. Therefore, further interference test between the fingertip and the object vertex 

has to be performed. The test ensures that the virtual object is only deformed when 

there is collision between the fingertip and the object. � 
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For each fmger, a point on the distal interphalangeal segment is assumed to be the 

fingertip. A vector D is constructed from the simple vertex of the leaf node to the 

fingertip. In addition, a normal N at the vertex of the leaf node of the virtual object is 

constructed by averaging all the neighbouring face normal of the vertex. The vectors 

are shown in Figure 4.20. Scalar product is performed on the two vectors, 

i? = D#N (4.10) 

where R is the result of the scalar product. 

丄 
Figure 4.20: Point normal and displacement 

Ifthe result R is greater than zero, D is in the same direction as N and the fingertip is 
4 

outside in the virtual object. Hence, there is no collision between the finger and the 

object. Otherwise, the fingertip penetrates into the virtual object. 

An example ofthe collision detection process is shown in Figure 4.21. 

• • • • 

WMw^mmmm 
(a) First level collision (b) Second level collision (c) Finger collided with (d) Finger collided 

a non-leaf node with leaf node 

Figure 4.21: Process of collision detection 

* 

52 . 



4.5 Grasping mode 

In the proposed system, there is no depth information about the position of the hand 

and the virtual object. It is difficult for the user to grasp an object in the virtual 

environment effectively. In the absence of gesture recognition and stereo 

visualisation, some rules have to be developed so that the object can be grasp by the 

hand in an effective way. 

4.5.1 Conditions for Finite Element Analysis (FEA) 

Since it is assumed that the virtual object is deformed by the fingertips only, there are 

thus five points exerting external forces to the virtual object. In the collision detection 

process, it is essential to detect simultaneously the five points where the fingertips are 

in contact with the object so that FEA can be performed. 

4.5.2 Attaching condition 

It is difficult to manipulate the virtual hand to touch the object with five fingertips 

simultaneously. In order to simplify the problem, the object is first attached to the 

hand when three fingers collide with the object simultaneously. The three fmgers are 

the first finger, the middle finger, and the ring finger. The contact points for the thumb 

and the last finger are detected after attaching the object to the hand. 
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The attachment is made by keeping the relative position and orientation ofthe object 

with respect to the hand at the instance of contact. An object attached to the virtual 

hand is shown in Figure 4.22. 

• 

Figure 4.22: Relative position and orientation of the object 
with respect to the palm. 

4.5.3 Collision avoidance 

In the grasping operation, the object is assumed rigid so that no finger is allowed to 

penetrate the object. 
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Whenever the finger segments collides with the object, penetration into the object 

may occur. This is avoided by recalling the position of the fmger segmentjust before 

the collision. The fmger segments are then displayed at the position and orientation 

just before collision with the object. Furthermore, the previous positions and 

orientations ofthe lower parts are recalled when the upper part ofthe fmger collides 

with the virtual object. For example, the positions and orientations of the proximal 

interphalangeal segment and the metacarpophalangeal segment have to be recalled 

when the distal interphalangeal segment of the fmger collides with the object, as 

shown in Figure 4.23. 

^ Q 3 S ^ I ^ ^ ^ I 

^ H H 
m m ^ M 
^ H ^ .嘱 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H l f e % : • • '^^m^M ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ ^ “ ^mS^m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ • 1 ^ ^ , . -^MlM 

^ ^ ^ H ^ 

Figure 4.23: The effect ofcollision avoidance for the approximated hand 
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4.6 Repeating deformation in different orientation 

When the collision detection algorithm is applied to the system and the tree is 

constructed in mn-time, the virtual object can be deformed by the virtual hand 

repeatedly in different orientation. The process is shown in Figure 4.24 to Figure 

4.29 using a virtual strawberry as an example. 

• 
Figure 4.24: The virtual hand deforming an attached cube 

^^^^^^^^^^^^^^^^^^^^^H^^W^^^^^I 
^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ BH|Krft̂  ：«'' =':sĵ .̂ [̂̂ Q̂ ^̂ ^̂ ^̂ ^̂ Ĥ 
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I ^ ^ ^ ^ ^ B ^ ^ 1 
Figure 4.25: The deformed cube is detached from the hand 
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Figure 4.26: The hand tries to approach to the new object from another direction 

^ ^ ^ P | | ^ | 
^ ^ ^ J H 

V I 
Figure 4.27: The new object is attached to the hand again with another orientation 
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• mm 
Figure 4.28: The new object is deformed again by the hand 

mm 
^^^^^^^^^^^^^^^^^^^^^^^^^^^nnmn^^^^^^^^^^^^^^. ;;:ir.%^^^^^^^^^^ |̂ 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H 

Figure 4.29: The object is detached from the hand for the second time. 

* 

58 



5 Enhancing performance 

By comparing the time required for various processes in the system (Figure 5.1), the 

finite element analysis (FEA) as described in chapter 3 is found to be the bottleneck. 

The time required for executing the FEA procedure on an SGI Indigo2 workstation is 

280 seconds for a virtual object with 267 nodes. Among the different stages in the 

finite element analysis process, matrix inversion takes the longest time for execution. 

With a virtual object composed of 267 nodes, the time required for matrix inversion 

amount to 99% ofthe total execution time of the FEA process (Figure 5.2). 

x̂i~一 “ • Program 
60 ^ -_̂̂EZZg initialization 
5Q / ^ I ^Tree building 

40 z • QDisplaying 
Time (sec.) 30 ^ _̂___ I graphics 

20 —/̂ ^ ĵ • • Performing FEM 

o i ^ f t t o H i i ^ ^ K ^ 3 ^ ^ ^ ^ P ^ 

Figure 5.1: Time for various procedures in system 

Matrix inversion _-~̂~；——-~~, 
g90/0 m Sorting displacment 

• Matrix initialisation 
"̂̂ ^ ^ ^ 口 Constructing K 
^̂^ ^̂^ ^̂̂A nConstructing K ̂  
^̂̂^̂̂ m̂îHft̂̂^̂H • 
^̂̂^̂̂^̂̂^̂̂^̂̂^̂̂  ̂Caluclating 

Figure 5.2: Comparison of execution time of procedures in 
FEA 
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In order to reduce the execution time ofthe matrix inversion procedure, one approach 

is to perform the FEA procedure on a parallel machine. This requires parallelising the 

FEA procedure for more efficient execution on a parallel computer. 

In the proposed system, the matrix inversion procedure is executed on an ONYX 

Power Challenge 10000 machine (ONYX). The ONYX Power Challenge 10000 

machine is a workstation with four R10000 processors. These four processors allow 

parallel processing ofthe FEA procedure. However, the system performance can only 

be improved if the computation power of the processors is properly utilised. In 

addition, data communication procedures have to be developed for transferring data 

between the Indigo2 and the ONYX machine. 

5.1 Data communication 

The data communication between Indigo2 and ONYX is accomplished by using the 

client-server model, the TCP/IP Internet protocol and the Berkeley socket. 

5.1.1 Client-server model 

The standard client-server model [STE91] is adopted in the current system. A server 

is a process waiting to be contacted by a client process so that the server can perform 

the task requested by the client. 

In the data communication procedure of the current system, the server process is 

started on the ONYX machine before the client process in the Indigo2 starts. After 

initialisation, the server is put to sleep waiting for a client process to awake it. The 

client process on the Indigo2 is initialised to establish a connection. The client process 

then sends a connection request across the network to the server. After the connection 

is established, the client sends input data to the server. The server receives the data 

and performs the FEA procedures. When the server finishes performing the FEA 

procedures, data are directed back to the Inidgo2. The server then goes to sleep again 

and waits for the next client request. This model can be described as a connection-

oriented model as shown in Figure 5.3. 
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” ^\ 

Z \ Vertices, Display I i s t ^ / \ ^ 
< Read data ^ ^ ^ ： < Write data ^ 

ŝ̂ ^^^ î̂ î jî ^^ Contact locations ^̂ *̂mmmmmm̂^̂  
FEM procedure ^̂  “ 

^ Relation Matrix ^^-^~~, , ‘ \ ^ Write da ta^ ^<^Readdata^^ 

Figure 5.3: Connection-oriented Data Transfer 

5.1.2 Internet protocol suite 

The use of TCP/IP protocol originates from a military research project in US. It is 

developed by a DARPA-funded research (DARPA is Defence Advanced Research 

Projects Agency) that has led to an interconnection of many different individual 

networks into a single large network called Internet. 

TCP and IP are actually two protocols in different layers of a communication model. 

Internet Protocol (IP) is the protocol that provides the packet delivery service. 

Transmission Control Protocol (TCP) is a connection-oriented protocol that provides 

a reliable, full-duplex, byte stream for a user process. Most Internet application 

programs use TCP. Since TCP uses IP in the network layer, the entire Internet 

protocol suite is often called TCP/IP protocol family. 

5.1.3 Berkeley socket 

The Berkeley socket used in the current system was first provide with the 4.1cBSD 

(Berkeley Software Distribution) for the VAX in 1982. The current interface 

corresponds to the original 4.3BSD release from 1986. 

Socket is a form of interprocess communication provided by 4.3BSD that maintain 

communication between processes on different systems. In the socket, the server is 
� 

initialised by first creating an endpoint, then binding the address, specifying ihe queue 
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and finally waits for connection from client. It also initialises the client by creating an 

endpoint, binding the address, connecting the server. The socket also handles the data 

transfer and the termination of the connection. 

5.1.4 Checksum problem 

The socket may read or write fewer bytes than requested, but the system does not 

report any error messages. Actually, this is not an error if the buffer limit of the 

socket in the kernel is reached. All the caller has to do is to invoke the read or write 

system call again and read or write the remaining bytes. In the current system, a 

checkpoint is set after each read and write process and remedial action, such as re-

invoking the read/write call, processed after each checksum error. 

5.2 Use ofparallel tool 

Parallelising the FEA procedures is accomplished by using the IRIS Power C 

compiler [GRAOO]. The IRIS Power C is a C compiler that analyses sequential codes 

to determine where loops can be parallelised automatically. The existing sequential 

codes are recompiled so that the codes can be run efficiently on the multiprocessing 

ONYX computers. In order to enhance the efficiency of the system, the parallel codes 

are optimised using different skills so that the processors can be utilised effectively 

during run time. 

� 

62 



5.2.1 Parallel code generation 

Using IRIS Power C, the parallel codes are generated automatically. The process of 

parallel code generation is summarised in Figure 5.4. 

Source code 

i 
Pjeprocessing 

i 
Compiling 

• 

Linking 

i 
Executable 

Figure 5.4: Flowchart ofparallel executable generation 

In the preprocessing stage, the Power C Analyzer (PCA, a C code optimisation pre-

processor) manipulates the sequential C code by, 

1. Parses the source into an internal representation. 

2. Performs data dependency analysis and transformations 

3. Generates C source code from the internal representation. 

4. Produces C code with parallel directives. 

After preprocessing, the multiprocessing compiler generates the object file by, 

1. Identifies parallel directives. 

2. Rewrites the parallel codes with explicit runtime calls. 

3. Processes the C code. 

4. Generates the executable object. 
> 
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After linking the multiprocessing libraries, an executable file is created which can be 

run on the ONYX system. The executable will adapt to the number of processors 

present in the system being used. 

5.2.2 Optimising parallel code 

As most ofthe optimiser and compilers do, the default options of the multiprocessing 

compiler are conservative. This prevents undesirable effects resulting from aggressive 

code optimisation such as elimination of useful codes. In the current system, the most 

aggressive optimisation option is used. The optimisation at this level generally seeks 

the highest-quality generated code even if it requires extensive compilation time. In 

addition, the optimised code may degrade performance occasionally. From the result 

ofthe experiments, however, this option proved beneficial to the performance ofthe 

system. (See chapter 7 for detail.) 

In addition, parallel directives can be used to further optimise the performance. A 

data-dependency analysis is performed when PCA is running. During the analysis, 

PCA looks for for-loops with the property that each iteration is data independent. 

When PCA finds a loop that has the property of data independence, parallel for-loop 

directive is inserted. Otherwise, the iterations will be performed sequentially. When 

PCA encounters a nested for-loop, it assumes data-dependency of all the outer loops 

so that the parallel for-loop directives are only inserted to the innermost loop. 

Revisiting the Gauss-Jordan elimination algorithm (Figure 3.8), data independent 

loops are notjust the innermost loops for performing row operation. The outer loop G-

loop) is also data independent as the update of row j only depends on the subtraction 

of the row elements with a constant. The parallel for-loop can be extended to the j-

loop. This extension of parallel for-loop improved the performance of FEA by about 

five times. The time for performing FEA is reduced to 13 seconds for modelling a 

267-node object. A 20 times sped up is obtained since the original time for the FEA 

procedure is 280 seconds for modelling the same object. 
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6 Implementation and Results 

The current system is implemented on a SGI Indigo2 workstation with a R4400 

processor, except the finite element analysis (FEA) procedure which is implemented 

on a SGI Power Challenge 10000 ONYX machine with four R10000 processors. 

The system allows the virtual hand to interact with the virtual object by approaching 

and grasping it from different angles and orientations. The virtual hand is allowed to 

deform the grasped virtual object until a desired shape is created. Other functions are 

provided for inspecting the deformed virtual object using a mouse. The virtual object 

model can be saved or retrieved through the menu functions. 

Experiments are performed to evaluate the performance of the FEA procedures. The 

results of experiments showed that performing the FEA procedure on the ONYX is 

not always beneficial. The number of vertices of the virtual object has to be limited in 

order to achieve interactive response. 

6.1 Supporting functions 

In the proposed system, supporting functions that are not directly related to the 

interaction are provided through a set of pop-up menu. For example, a "read file" 

process is invoked by selecting a menu option or by typing in a command from a 

terminal. Though the process may not be directly related to the interaction between 

the hand and the virtual object, it is necessary for recording and retrieving the shape 

of the deformed object. 
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The pop-up menu in the current system is invoked by clicking the right mouse button. 

There are several options on the pop-up menu, namely, “read file”, “keep shape”, 

''save OS，，and ‘‘exif,. The appearance ofthe pop-up menu in the graphics window is 

shown in Figure 6.1. 

.… .i-<ji>ii.if rtnithiinoiifl,i ̂  >W lm r« 1 liiMtfinnH'iil *i »i> WMti1 Blitnitil llriMllffTtrtiMfff iifliirtl^tfl 

^ ^ ^ ^ ^ ^ ^ ^ ^ m i i L i ^ ^ ^ ^ R m ^ ^ i 

• P K i i ^ ^ ' 
^ • i ^ ^ ^ ^ ^ 

! • M 
Figure 6.1: Pop-up menu in the graphics window 

6.1.1 Read file 

The function ofthis option is to read in a file specified by the user in the command 

prompt. The file being read contains vertices, elements and display information ofthe 

virtual object. Then, a sphere tree for collision detection between the virtual object 

and the virtual hand is constructed. (See chapter 4 for detail) The virtual object is then 

displayed in the virtual environment. 
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6.1.2 Keep Shape 

Ifthe shape ofthe deformed object is to be used as an undeformed object, the shape of 

the object can be kept in memory by choosing the option ‘‘keep shape，，in the pop-up 

menu. The sphere-tree for collision detection will be reconstructed. Then, the object 

with its new shape will be detached from the virtual hand and will be returned to the 

origin while the vertex list is saved in the memory. The new object can be rotated by 

clicking and dragging the left mouse button. 

6.1.3 Save as 

When the "save as” option is invoked, the vertex, element and display list of the 

deformed object are saved to a file. The system will convert the current virtual object 

model into text format which is then written to a file. If the file to be saved does not 

exist, the process will create one. Ifthe file exists, the process will overwrite the file 

by the current information. 

6.1.4 Exit 

This is a process invoked by selecting the option “exit” in the main menu. This 

process controls the termination ofthe program and closes all the graphics windows. 
« 

The program will be terminated immediately after all the graphics windows are 

closed. 

6.2 Visual results 

Figure 6.2 to Figure 6.4 shows the snapshots of the virtual hand deforming different 

virtual objects. 
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(a) Cube with no deformation 
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(b) Cube with small deformation 
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(c) Cube with medium deformation 

W^^M 
mM 

(d) Cube with large deformation 

Figure 6.2: The interaction with a virtual cube 
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(c) A strawberry with large deformation 

Figure 6.4: The interaction with a virtual strawberry 
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6.3 An operation example 

Figure 6.6 to 6.12 shows an example of operation ofthe system performing repeating 

deformation, read and write action, and the keep shape fimction. 

^ B & A ^ V 
^ ^ ^ | i ^ s r T ^ ^ ^ ^ ^ ^ ^ | | ^ i B 
^ ^ ^ ^ _ , > ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M 
^ ^ ^ ^ B mm^t;, > ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ | 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M 
^̂B̂^̂^̂^̂Hî^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^ 

Figure 6.6: A toothpaste is imported from the read file option of the pop-up menu. 
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Figure 6.7: The system will prompt the user to enter an object name for the object to 
be retrieved 
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Figure 6.8: The hand tries to approach to the object 
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Figure 6.9: The object is attached to the hand 
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Figure 6.10: The object is deformed by the hand 
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Figure 6.11: The shape of the new object is saved by the save as option in the pop-up 
menu 
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Figure 6.12 The system will prompt the user to enter a name for the object 
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Figure 6.13 The hand tries to approach to the new object from another direction 
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Figure 6.11: The shape ofthe new object is saved by the save as option in the pop-up 
menu 
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Figure 6.12 The system will prompt the user to enter a name for the object 
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6.4 Performance of parallel algorithm 

Comparisons have been made to compare the performance for different optimisation 

techniques and different number of object vertices. 

Time for FEM with different optimizations 
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Figure 6.13: The comparison ofFEA computation time 

From Figure 6.13, it is observed that the computation time required on the ONYX 

system is much shorter than that of the Indigo2 when the codes are run sequentially 

with the same optimisation level. The difference is due to the hardware limit of 

Indigo2. The computation time required for executing the parallel codes is shorter 

than that ofthe optimised sequential codes on the ONYX system. 

The shape ofthe virtual object does not affect the computation time ofthe algorithm. 

In the computation ofmatrix inverse, the computation time depends on the matrix size 

and hence the number of vertices of the virtual object. 
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Performance of system 
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Figure 6.14: The comparison ofcomputation time for different number ofprocessors 

From Figure 6.14, the computation time required for FEA decreases with increasing 

number of processors. The rate of reduction of computation time decreases with the 

increasing number of processors. 
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Figure 6.15: Logarithmic relation of computation time and number ofprocessors 

When the logarithm of the time for FEA and the number of processors is plotted, 

linear relationships are observed. 

Another observation is that the trendlines are nearly parallel for the series representing 

the number of vertices larger than 300. In Figure 6.16, the slopes of trendlines are 

plotted against the number of vertices. 
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Slope of trendlines with differentvertex numbers 
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Figure 6.16; Relation ofslope oftrendlines in Figure 6.15 and the number ofvertices 

The slope of the trendlines decreases from 0.18 to a minimum value of about 1.5 

when the number ofvertices increases from about 50 to 200. Then the slope increases 

again and reaches a steady value of about 0.9 when the number of vertices is larger 

than 400. 

When the log-log relation between the computation time of FEA and the number of 

processors used in the procedure is approximated by a straight line, the actual function 

approximating the time and number of processors in normal scale is given by, 

(derivation see Appendix B) 

T = kN"' (6.1) 

where T is the computation time of FEA, 

k is a constant, 
• 

N is the number of processors, 

m is the slope of the trendline when the time- processor relation is plotted in 

log scale. 
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From Figure 6.16, the value o fm is nearly zero when the number ofvertices is small. 

From (6.1), the value ofN^ is about one when m is about zero and the value ofTwill 

be independent ofthe value ofN. In other words, the computation time is independent 

ofthe number ofprocessors used in the procedure. Hence, the parallel algorithm is not 

efficient when the number of vertices is small. 

When the number of vertices is larger than 100, the value m decreases and becomes 

negative. The negative value of m, from (6.1), implies a decrease in time for 

performing FEA when the number of processors is increased. Therefore, the 

efficiency of the parallel algorithm continues to improve with increasing number of 

vertices. The improvement of efficiency is due to the declining effect of computation 

overhead for parallel processing when the number ofvertices increases. 

When the number ofvertices is larger than 400, the value of m comes to a steady state 

and is equal to -0.9 approximately. If the time for FEA procedure is inversely 

proportional to the number of processors used, the value o f m should be equal to -1. 

The value -0.9 implies that the time-processors relation is nearly inversely 

proportional since the time complexity for performing FEA is given by, 

2n^{7^n-X) 
N 

where n is the size of the global stiffness matrix k^. 

N is the number of processors. 
/ 1 \ 

For fixed n’ the time complexity is thus 0 — ’ an inversely proportional relation. 
V N j 

To sum up, several variables are affecting the performance of the FEA procedures, 

• Parallel algorithm - the algorithm becomes more efficient when there are 

more parallel loops in the procedure. 

• Computation overheads for parallel processing — this is a competing factor 

with the parallel algorithm, the computation overhead increases with the 

increase in the number of parallel loops in the procedure. 
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• Number of processors - the efficiency of the system is expected to increase 

with increasing number of processors. However, this is not always true. There 

is not much improvement when the number of processors increases to certain 

level. Fortunately, the decay of improvement is predictable in the current 

system. The number of processors used for the task can be optimised using the 

existing trend of performance. For example, performing FEA for an object 

with 216 vertices within 0.5 seconds, 27 processors should be used by 

extrapolating the log-log relation trendline with 216 vertices in Figure 6.15. 
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7. Conclusion and Future Work 

7.1 Conclusion 
A system for interacting with virtual objects in the virtual world by using an instrumented glove has 

been developed. The system is found to provide interactive response in the manipulation of virtual 

objects. The performance of the most time consuming task of finite element analysis (FEA) is 

improved by porting the analysis algorithm to the Power Challenge 10000 multi-processor 

computer (ONYX). 

Tetrahedral solid elements are adopted for modelling the deformable virtual object. The stiffness 

matrix is partitioned and the linear equations describing the force-displacement relation is 

rearranged so that deformation ofthe object can be estimated according to movement ofthe fmgers. 

Gauss-Jordan elimination is adopted for computing the inverse ofthe relation matrix. 

A sphere tree is employed for detecting collision between the virtual object and the virtual hand. 

Collision is detected by locating the leafnodes of the tree where sphere of the node collides with an 

approximation ofthe virtual hand. Decision rules for attachment of the virtual object to the virtual 

hand are developed. 

A data communication algorithm is also developed for distributing the tasks ofFEA computation to 

the parallel machine. This algorithm transfers data between the client computer, an Indigo2 

machine, and the server computer (the ONYX). The matrix inversion procedures are parallelised by 

using IRIS Power C. The speed for performing FEA is 22 times faster than the serial version 

running on the Indigo2 for 200 to 300 node. 

Experiments showed that the time for performing FEA is inversely proportional to the number of 

processors used. The system performance is thus expected to be improved if more processors are 

available in the server computer (the ONYX). The time for performing FEA decreases 

exponentially when more processors are added to the system. 

7.2 Future Work 

The algorithm adopted for matrix inversion in the FEA procedure is the Gauss-Jordan algorithm. It 

is expected that performance ofthe system can be improved by taking the band-symmetric matrix 

property into consideration, e.g., using LU-decomposition for matrix inversion. 
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In the current system, parallelisation relies on the compiler of the ONYX system that mainly attains 

data parallel operations. It is envisaged that higher degree of parallelism can be attained by 

parallelising the algorithms. 

The same approach can be extended to include elasto-plastic and plastic behaviour of virtual 

objects. In this case, model capable of describing the behaviour of the virtual object under large 

deformation has to be used. However, this will lead to non-linear equations so that iterative 

methods have to be adopted for solving the equations. This will have adverse effect on the 

performance and accuracy of the system. 

Different analysis methods, e.g., finite difference method, may be adopted to explore possible 

alternatives for modelling deformable object. Head mount and force feedback devices may be 

employed to improve the user-interface. 
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Appendix A - Matrix inversion 

From (3.40), Kn is required to be inverted so that the unknown displacements can be 

computed by (3.40). In this thesis, Gauss-Jordan elimination is used to compute the 

inverse o f K n . The algorithm is summarised in Figure A.1. 

nxn_matrix global; 
nxn_matrix 
procedure matrix_inverse(global) 
{ 一 

integer i , j ,k; 
nxn—matrix inverse; 

Initialise inverse as identity matrix 

for i = 1 to n by 1 
Normalise row i o/global by dividing it with diagonal element global(i,i) 
Divide row i o/inverse by global(i,i) 
for j = 1 to n by 1 

i f ( i^ j ) ^ 
1. Eliminate ith element of row J in global by: 

Row j o/global = row j of global - &lobal(j,j)_raw i o/global； 

2. Rowj o/inverse = row j of inverse 一 ^globalO,j)*row i o/inverse) 
end if 

end for Q-loop) 
end for (i-loop) 

return inverse; 

^ Figure A.1: Pesudo-code of Gauss-Jordan elimination 

Before the elimination, an identity matrix (matrix 2) is created for computing the 

inverse. This matrix is written side by side with the stiffness matrix as shown in 

Figure A.2. 

_Xii x,2 Xi,,l 0 0 
• • • • • • 

2̂1 2̂2 � 0 1 0 • • • • • • 
• . • • • • 

• . • • • • 
I,,1 x"2 … � 0 0 … 1 

Figure A.2: Matrix initialization 
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Two processes are performed repeatedly from the first row (row 1) to the last row 

(row n) ofboth matrices, which are illustrated in Figure A.3. 

K �1 0 0 Ĵi!/：*：" iXn � 0 
I \ • • • . . . • • • 

'1 0 ŵ 1̂- '̂ 11 &12 0 0 \ 0 1 ； JC2,/̂21 &22 •: 0 
... .• . • • • • • • \ • . . • 7 • • • • • 

0 1 ； 义2,�i^22 ; • 0 \ : •• • .• •• : •• • . . . 
•： . . . ; , ; ； '•• ; •• • \ 0 ••• 1 ••• 乂丨,iX;, a ,2 … i x " ••• 0 
0 … X , ... 乂丨丨 a,, /x,2 ••• 1 ••• 0 / ； ••. •： ••. •： ； • . . … . . .•： 
： , . • ： • • . •： ； . . . … . . . ； / 0 0 • • • 0 … x „ ix„, ix„2 ••• i^ni ... 1 

0 0 ... x„ ... ^J ix„, ix„, ••• 0 ••• 1 ~ | / [ _ 
1 Matrix 1 Matrix2 � ‘ Matrixl Matnx2 

Figure A.3: Row operations and normalisation 

a. Normalise the current row (row i) of matrix 1 by dividing the row elements by 

the diagonal element at column i of matrix 1. Divide each elements ofrow i in 

matrix 2 by the same value, i.e. the of diagonal element of matrix 1 of row i. 

The equation describing this process is given as, 

x(i 
^ij = — 

^ii 
. 〜 （A.1) 
zx,, 二 —— 

^ii 

where j = 1, 2, ... , n is the column number of the matrices, 

b. Eliminate the other elements of column i in matrix 1 by row operation. For 

example, ifrow k is to be eliminated, the first step is to multiply row i by the 

value of the element at column i, row k {xkd- Then, subtract the whole row 

from row k. The element at column i in row k {xkd will be eliminated. Perform 

the same operation for matrix 2. The equation describing this process is, 

^kj 二 ^ki — ^ki X ^ij 
/ X , . = ^ . - X , , X / X , y ( A * 2 ) 

where j 二 1, 2, . •. , n is the column number of the matrices. 

k = 1, 2, •. • , i-\, /+1, •.. , n is the row number of the matrices. 
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When the processes are completed, matrix 1 will be eliminated to an identity matrix. 

Meanwhile, matrix 2 will be the inverted matrix of the global stiffness matrix. 

"1 0 0 -

0 1 … 0 Kii_i • • • 
• • • 

蠢 « « 

0 0 ... 1 

Figure A.4: Final status of matrix 1 and 2 

91 , 



Appendix B - Derivation of (6.1) 

Suppose the time of performing FEM is T, 

the number of processors is N, 

the slope of a trendline in Figure 6.13 is m, 

the constant ofthe actual time-processors relation is k, 

the intercept of a trendline in Figure 6.13 is c 二 log k. 

From Figure 6.13, the equation of trendlines are given by, 

log T = m log N + c (B.1) 

Rearranging (B.1), 

logr = logiV'" +c 

= logAT+logA (B.2) 
=log(iV'" X k) • 
= XogkN"' 

Anti-loging both sides, the relation becomes, 

T = kN'" 

which is the equation (6.1). 
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Appendix C - Derivation of (6.2) 

The time complexity for performing FEA in parallel machine can be derived from the 

parallel algorithm itself, which is summarised in Figure C.1. 

Denote?? - the size of the global stiffness matrix k^. 

N - the number of processors. 

G - a nxn matrix 

R — the resulting matrix (becomes inverse of G finally) 

nxn matrix procedure matrix_inverse(G) 
{ 

Initialise R as identity matrix 

tor 1 = 1 to n by 1 i 

# DO in parallel loops with Nprocessors \ 

\Normalise row i ofG by dividing it with diagonal element G(i,i) “ r ( 2 n ) \ 
Divide row i ofR by G(i,i) , .’‘^处 fI(2n) \ 
•gim_MiWMI_iimM̂ M#tifrt#¥¥̂ ™̂ ^̂ #̂ P̂ ^̂ ^̂ +̂L�'b~—’,仇叫：。•̂ 〜 产 ° ^ ^ „ 一 ? 4 ； ^ 左 : : : - . . ^ 1 丨 , ^ -̂ r-̂ -̂ w*®' \ 

| for j = 1 t o n b y 1 |v \ 
i f ( i ^ j ) | \ \ 
11. Eliminate ith element ofrowj in G by: | (3n) | (n-l) (n) 

Row j ofG - row j ofG - (G{]j)*row i ofG) ^ | / | 
2. Row i ofR 二 row/ ofinverse - fG(jj).row i ofR) _ _ | ^ n ) |y/ / 

e|tjpjp!_,—_i||'||||![|||||____̂ ,̂_“_—1一》^—一一-_映-—""—"輕_—种购_̂ "̂  I / 

| e^f^^^;^^S2SL-MMM-ife^JMJ^iJ^ L''丄,，』“：1仏」川』.‘.丄,」1二“」山孤啪讀»«1«1 / 

# END OF parallel loops with Nprocessors / 

end for (i-loop) | 

return R; 

^ Figure C.1: Pesudo-code of current matrix inverse algorithm 

From the figure, there are 3 operations performed in the row operation ofthe matrix G 

and the matrix R in the j-loop. Since there are n elements for a row in each matrix (G 

and R), there are 3xn operations for one row operation step in the j-loop. As there are 

two such row operation steps in the j-loop, the number of operations are added 
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together and the total number of operations for each iteration in the j-loop is 6n 

operations. 

In the j-loop, the elimination process is omitted for the normalized row as it is already 

updated. Therefore, the number of iteration that row operations are performed is n-1 

and the total number ofoperation performed in the nestedj-loop is, 

(n-l)(6n) (C.1) 

Apart from the j-loop, the i-th row in the matrix G is normalized. The step takes 2 

operations and there are 2n operations. Similarly, updating the i-th row in matrix R 

takes 2n operations. The number of steps taken is, 

4n (C.2) 

As the j-loop and the steps of updating the i-th row are in the i-loop, the steps are 

added together and the total number ofsteps is, 

(n-1) (6n) + 4n = 6rf - 2n (C.3) 

The operations in the i-loop are performed in parallel with N processors, the time 

taken for the operations should be divided by the number of processors and becomes, 

6 " 2 - 2 " (C.4) 
N 

Simplifying (C.4), the expression becomes, 

2 如 - 1 ) (C.5) 
N 

The outermost loop in the elimination process is the i-loop. There are n iterations in 

the loop which are performed sequentially. The time complexity for the whole 
elimination process is thus, 

2n(3n-l) 
nx 

N 
2n^{3n-l) 

- N 
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