
Interacting with a virtually deformable object using an
instrumented glove

Ma Mun Chung

Thesis for the Degree of
MASTER OF PHILOSOPHY

Mechanical and Automation Engineering

Chinese University of Hong Kong

June 1998

V

l ^ ^ %
p (1 5 i J ^ J ^ J S

•—�u_sir?""""^“^/M/J
3 , : ^ ^ ^ : ^ ¾ ^
- % ^ R | ^ ^

Last minute changes

According to the valuable comments from the examiners, changes have been made to

the thesis. Four sections have been added to the draft, they are,

a. Section 1.3 - Contribution

b. Section 4.6 - Repeating deformation in different orientation

c. Section 6.3 - An operation example

d. Appendix C - Derivation of (6.2)

In addition, an example ofdeforming a toothpaste with the virtual hand have been

added to section 6.3 and a reference ([HUA95]) is added when the use ofhand

approximation is explained in section 4.4.1.

摘要

此論文描述一個利用儀器手套操控虛擬可變形物件的系統°此系

統共分三部分，分別爲物件模型建立、碰撞檢測及資料通訊。

此系統應用有限元分析作爲可變形虛擬物件的線性彈性模型。虛

擬物件被分解爲四面體單元。依循有限元分析的程序，虛擬物件

因被虛擬手干涉的變形形狀就可計算出來。

球體樹被用作虛擬物件與虛擬手間碰撞檢測的方法，此球體樹爲

一棵於不同解像層次逼近物件形狀的八分樹(001:66)，而虛擬物件

與虛擬手於不同解像層次的碰撞可用圓柱體與球體干涉測試，及

球體與球體干涉測試的聯合結果檢測出來。

爲了改善有限元分析的效能，此程序被轉栘至一部並行計算機中

執行。因應此程序轉移的需要，一資料通訊演算法被導出，作爲

主體計算機與並行計算機間的資料互傳工具。

當虛擬手使虛擬物件變形時，此合成系統造出合理的互動反應。

Abstract

A system for interacting with virtually deformable objects by using an instrumented

glove is developed. The system is mainly divided into three parts. They are object

. m o d e l l i n g , collision detection and data communication.

Finite element analysis (FEA) is adopted for modelling the linear elastic behaviour of

the deformable virtual object. The virtual objects are discretised into tetrahedral solid

elements. The deformed shape of the virtual object can hence be computed when the

virtual hand is manipulating the virtual object.

A sphere tree approach is adopted for the collision detection between the virtual

object and the virtual hand. The sphere tree is an octree of overlapping spheres that

approximates the object shape in different resolution levels. The collision between the

virtual hand and the virtual object is detected at different levels by the combined

result ofcylinder-sphere interference tests and sphere-sphere interference tests.

In order to improve the performance of FEA, this procedure is executed on a parallel

computer. A data communication algorithm is developed for data transfer between the

host computer and the parallel computer.

The resulting system gives reasonable interactive response when the virtual hand is

deforming the virtual object.

• 1

Declaration

I hereby declare that the Master of Philosophy thesis titled “Interacting a virtually

deformable object using an instrumented glove" represents my own work. I also

declare that the work reported in the thesis has not been previously included in a

thesis, dissertation or report submitted to this university or to my any other institutions

for a degree, diploma or other qualifications.

(j j ^ t/jyU^ Cil.L^^
(.

Ma Mun Chung

• • 11

Acknowledgements

Thanks God Almighty for creating this universe and giving us Christ Jesus so that I can

discover the knowledge given by Him and carry on my research. My all the praises and

glory goes to His name.

My sincere appreciation goes to Prof. Hui Kin Chuen, my project supervisor, who guided

my research towards the correct direction and provided full academic, spiritual and

financial support. He also gives me valuable suggestions and improvements on my work.

Thanks to my thesis committee members, Prof. Y.H. Lui , Prof. H.Q. Sun and Prof.

M.M.F. Yuen, for spending their time reading my thesis draft and giving me valuable

comments.

I must express my acknowledge to the Chinese University of Hong Kong and the

Department of Mechanical and Automation Engineering in providing the financial

support and computer facilities to me.

I also thanks Mr. Mr. Lee Sau-leung, Alex, Mr. Yip Hoi-Man, Johnny, Ms. Chan Yuk-

kuen, Ms. Djin Kie, Karina, Mr. Mok Wai-kit, Allan, Mr. Lee Yuk-keung, Philip and Mr.

Tong Hing for their technical support in the project. Thanks Ms. Kan Yuet-lin，Ms. Chan

Miu-ling, Maggie and Ms. Wong Mei-ha, Joyce for their administrative support and

solve the coordination problems for me.

Thanks to my colleagues Mr. Lam Pak Chio, Eric, Mr. Yang Chi Tin, Stephen, Dr.

Yueng Wai Leung, Mr. Tang Kai Hung, Duncan, Mr. Winston Sun, Mr. Chan Chun

Kwong, Joseph, Mr. Fung Wai Keung and Mr. Leung Yun-yee, Martin for their

- accompany throughout the project

I also want to express my gratitude towards the members in my church for their prayers

and encouragements when I found difficulties during the past three years. They are Ms.

Chum Yuen Mei, Tomi, Ms. Lai Pui Shan, Ada, Rev. Wong Kwok Yiu, Salias, Mr. Lam

Wai Sze, Stanley, Ms. Cheung Suk Ling, Shirley, Mr. Chu Man Chung, Carl, Mr. Kong

Wai Kei, Joe, Mr. Tsui Yip Wing, Timothy, Ms. Wong Wai Ling, Elaine, Ms. Chan Suk

Yee, Moody, Ms. Lo Suk Ching, Queenie, Mr. Chiu Wai Chor and my cell group

members in my fellowship.

iii

List of Figures

Figure 2.1: Hardware connection of the glove system

Figure 2.2: The resulting hand in the virtual world

Figure 3.1: Flowchart of contact forces and displacement calculation

Figure 3.2: Cylindrical Sample ofhybrid model

Figure 3.3: Tetrahedral element

Figure 3.4: Process of displacement re-assembly

Figure 3.5a: An object attached to the virtual hand

Figure 3.5b: Fingers collided with the object and the object undergo small

deformation

Figure 3.5c: Fingers moved further resulting in large deformation ofthe object.

Figure 4.1: A human hierarchical object

Figure 4.2: C-tree of the human HO

Figure 4.3: Collision detection procedure

‘ Figure 4.4: Decomposition of a sphere

Figure 4.5: A 2D analogy of a sphere tree

iv

Figure 4.6: The shaded faces are unlikely to collide

Figure 4.7: An octree structure

Figure 4.8: Pseudo-code ofsphere hierarchy construction algorithm

Figure 4.9: A node structure

Figure 4.10: The bounding box and bounding sphere

Figure 4.11: Spatial subdivision ofbounding box

Figure 4.12: Sphere in the second level ofhierarchy

Figure 4.13: Construction of a sphere tree

Figure 4.14: The simplified hand model

Figure 4.15: Sphere intersecting the cylindrical surface

Figure 4.16: Sphere located between cylinder

Figure 4.17: Az < rs

Figure 4.18: Az > rs

Figure 4.19: Sphere-sphere intersection test

- Figure 4.20: Point normal and displacement

Figure 4.21: Process of collision detection

V

Figure 4.22: Relative position and orientation of the object with respect to the

palm

Figure 4.23: The effect ofcollision avoidance for the approximated hand

Figure 4.24: The virtual hand deforming an attached strawberry

Figure 4.25: The deformed strawberry is detached from the hand

Figure 4.26: The hand tries to approach to the new object from another direction

Figure 4.27: The new object is attached to the hand again with another orientation

Figure 4.28: The new object is deformed again by the hand

Figure 4.29: The object is detached from the hand for the second time

Figure 5.1: Time for various procedures in system

Figure 5.2: Comparison of execution time of procedures in FEA

Figure 5.3: Connection-oriented Data Transfer

Figure 5.4: Flowchart of parallel executable generation

Figure 6.1: Pop-up menu in the graphics window

- Figure 6.2: The interaction with a virtual cube

Figure 6.3: The interaction with a virtual sphere

vi

Figure 6.4: The interaction with a virtual strawberry

Figure 6.5 The interaction with a toothpaste

Figure 6.6: A toothpaste is imported from the read file option ofthe pop-up menu.

Figure 6.7: The system will prompt the user to enter an object name for the object

to be retrieved

Figure 6.8: The hand tries to approach to the object

Figure 6.9: The object is attached to the hand

Figure 6.10: The object is deformed by the hand

Figure 6.11: The shape of the new object is saved by the save as option in the

pop-up menu

Figure 6.12 The system will prompt the user to enter a name for the object

Figure 6.13: The comparison ofFEA computation time

Figure 6.14: The comparison of computation time for different number of

processors

Figure 6.15: Logarithmic relation of computation time and number of processors

, Figure 6.16: Relation of slope of trendlines in Figure 6.13 and the number of

vertices

vii

Figure A.1: Pesudo-code of Gauss-Jordan elimination

Figure A.2: Matrix initialization

Figure A.3: Row operations and normalisation

Figure A.4: Final status of matrix 1 and 2

Figure C.1: Pesudo-code of current matrix inverse algorithm

viii

«

List of Tables

Table 3.1: Data structure of a virtual object

Table 4.1: Characteristic description of data in each node

•

ix

•

Table of Contents

Abstract •

Declaration “

Acknowledgement ""

List of Figures iv

List of Tables "*

Table of Contents *

1. Introduction 1

1.1. Motivation 1

1.2. Thesis Roadmap 3

1.3. Contribution

2. System Architecture 6
2.1. Tracker system 6

2.1.1. Spatial Information 6

2.1.2. Transmitter (Xmtr) 6

2.1.3. Receiver (Recvr) 7

2.2. Glove System 7

’ 2.2.1. CyberGlove Interface Unit (CGIU) 7

2.2.2. Bend Sensors 7

2.3. Integrating the tracker and the glove system 9

2.3.1. System Layout 9

3. Deformable Model 11

V

3.1. Elastic models in computer 11

3.2. Virtual object model 17

3.3. Force displacement relationship 18

3.3.1. Stress-strain relationship 19

3.3.2. Stiffness matrix formulation 20

3.4. Solving the linear system 24

3.5. Implementation 26

3.5.1. Data structure 26

3.5.2. Global stiffness matrix formulation 27

3.5.3. Re-assemble of nodal displacement 30

4. Collision Detection 32
4.1. Related Work 31

4.2. Spatial Subdivision 37

4.3. Hierarchy construction 38

4.3.1. Data structure 39

4.3.2. Initialisation 41

4.3.3. Expanding the hierarchy 42

4.4. Collision detection 45

4.4.1. Hand Approximation 45

4.4.2. Interference tests 47

4.4.3. Searching the hierarchy 51

4.4.4. Exact interference test 51

‘ 4.5. Grasping mode 53

4.5.1 • Conditions for Finite Element Analysis (FEA) 53

4.5.2. Attaching conditions 53

4.5.3. Collision avoidance 54

4.6. Repeating deformation in different orientation 56

xi

5. Enhancing performance 59
5.1. Data communication 60

5.1.1. Client-server model 60

5 • 1.2. Internet protocol suite 61

5.1.3. Berkeley socket 61

5.1.4. Checksum problem 62

5.2. Use ofparallel tool 62

5.2.1. Parallel code generation 63

5.2.2. Optimising parallel code 64

6. Implementation and Results 65
6.1. Supporting functions 65

6.1.1. Read file 66

6.1.2. Keep shape 67

6.1.3. Save as 67

6.1.4. Exit 67

6.2. Visual results 67

6.3. An operation example 75

6.4. Performance of parallel algorithm 78

7. Conclusion and Future Work 84
7.1. Conclusion 84

7.2. Future Work 84

Reference ^6

Appendix A Matrix Inversion 89

Appendix B Derivation of Equation 6.1 92

Appendix C Derivation of (6.2) 93

xii

1_lntroduction

Modelling of objects in virtual environment is a fundamental problem in virtual reality

(VR) applications. Objects in existing VR systems are usually assumed to be rigid bodies.

The problem becomes apparent when the user interact with a virtual object. Real objects

are deformable to different extend and cannot be assumed rigid when accurate object

behaviour is required. Modelling of the deformed shape of a virtual object based on

physical laws is thus essential.

11 Motivation

Computer aided design (CAD) is one of the computer applications that requires high

precision. Existing CAD systems allow engineering analysis and assembly tests to be

performed in addition to the visualisation of product shape.

With the rapid development in VR and CAD technology, designers can manipulate

virtual products by three-dimensional input devices. However, the behaviour of the

virtual product remains different from the real prototype. One improvement is to make

the virtual product deformable by applying physical laws to the object since the real

products are deformed when subjected to applied force.

There are several methods for incorporating physical laws to deformable virtual objects.

Terzopoulos et al [TER87] proposed a method based on an elastic model. Finite

difference method was used for calculating the potential energy of deformation. Kang and

- Kak [KAN96] proposed a hybrid finite element (FE) model using cube element inside the

object and plate element on the surface of the object. Gourret et al [GOU89] proposed a

method using eight nodes solid element. Unknown displacements were calculated based

on given node displacements on the body. Bro-Nielsen and Cotin [BR096] proposed to

use tetrahedron model for discretization of a solid model and using condensation method

to calculate the deformation ofthe object. Rappoport et al [RAP96] proposed a volume-

1

preserving solid model which determines the deformation based on free-form

deformations (FFD).

In order to allow the use of instrumented glove for manipulating virtual object, collision

detection and object response have to be considered. Since real-time response is critical in

a virtual environment, real-time collision detection and object response is essential. Some

time saving algorithms for collision detection thus have to be employed in order to attain

interactive response.

Several methods have been developed for collision detection between objects. Bandi and

Thalmann [BAN95] used digital differential analyser to adaptively discretise the space

into voxels for collision detection. Palmer and Grimsdale [PAL96] used a three stage

process for the detection, namely construction of an initial bounding box, construction of

a sphere tree hierarchy and polygonal intersection tests. Smith et al [SMI95] used a

bounding box octree for approximating potential collision node location. Hubbard

[HUB96] used a tightly bounded sphere tree for collision detection. Liu et al [LIU91]

used HSM (hierarchical sphere model) for detecting the collision of robot arm and an

object. These are all stimulating insight for the collision detection algorithm developed in

this thesis.

Most existing VR systems allow the use of instrumented glove without any force-

feedback. This makes the interaction with virtual object very difficult. It is difficult to

decide whether a virtual hand and a virtual object are in contact simply by visual

observation. Evaluation of deformation with the finite element model usually requires

‘ force input. As this information is not available with an instrumented glove. The force

applying on the object when the virtual hand is in contact with the object is not known. A

modification of the problem is thus required.

The evaluation of deformation using the FE method is a computation intensive process.

In order to improve the performance of the system, it is desirable to perform deformation

computation on a high-speed computer while graphics display can be performed on an

2

ordinary graphics workstation. It is thus essential to develop algorithms for data transfer

between computers.

The objective of this project is to develop a system that allows interaction with virtual

objects in real time. Finite element method is adopted for simulating the shape of virtual

object. Tetrahedral solid elements are employed for finite element computation.

Interference between the virtual hand and the virtual object in the virtual space is

evaluated by approximating the virtual object with a hierarchy of overlapping spheres.

Virtual fingers are approximated as cylinders and spheres. A coarse estimate of any

possible interference is obtained by performing cylinder-sphere interference test and

sphere-sphere interference test. Exact interference test is performed at the leaf node. The

number ofinterference tests is thus reduced and interactive performance can be achieved.

A major time lag affecting the performance of the system is the time required for the FE

analysis. In order to improve the performance of the system, the computation of

deformation is performed on a parallel machine (ONYX) while the user interacts with the

virtual object through a graphics workstation (an Indigo2).

1.2. Thesis Roadmap

In chapter 2, the system architecture used in this project will be introduced. The glove

system, the VR system and the tracker system will be introduced individually. The

integration ofthese components into the final system will be described briefly.

, In chapter 3, the deformable model used in the system will be described. Previous works

on deformable body animation are described in the first part. The virtual object model

and the force-displacement relations will be introduced. The method for evaluating model

displacement will be presented.

In chapter 4，the collision detection problem will be addressed. Previous works on

collision detection algorithm are described in the first part, followed by a description of

the technique. The method for constructing the tree structure and search method will be

3

introduced. Lastly, the grasping mode for attaching the virtual object to the virtual hand

and the condition for performing finite element analysis will be described.

In chapter 5, the method for enhancing the speed of finite element analysis will be

discussed. The algorithms for data communication and the parallel tools for improving

the efficiency ofthe algorithms will be described.

The test results of the system will be described in chapter 6. The menu functions that

control the program flow are described. Then, the hand interaction with virtual objects are

described. Finally, the performance of parallel algorithm is discussed with experimental

results.

In chapter 7, the conclusion ofthe whole project will be drawn and some suggestions for

future work will be discussed.

4

1.3. Contribution

The contributions of this thesis are,

1. A workable system for interacting virtual deformable object using an instrumented

glove is developed. In the system, the virtual objects can be deformed repeatedly by

the virtual hand in different orientations.

2. Cylinders and spheres are used in the approximation of the virtual hand instead of

spheres on the joints in the existing system. The whole finger segment instead ofthe

joints can be detected in the collision detection.

3. Parallel algorithm is employed for the improvement of speed of finite element

analysis. A study ofthe effect of parallel algorithm is presented in the thesis and

estimation based on the results are given.

•

5
«

2 System Architecture

The system for interaction is composed of two sub-systems. The tracker system

provides spatial information of the physical hand. The glove system collects and

digitises information of joint angles at the finger joints. By collecting these

information in Indigo2 workstation, the exact position, orientation and gesture ofthe

physical hand in three-dimensional space is obtained. A virtual hand model can thus

be constructed in the virtual world.

2.1 Trackersystem

The PolhemusTM pASTRAK tracking system is used to estimate the three-dimensional

position and orientation of the glove [POL94]. The tracking system uses

electromagnetic fields to determine the position and orientation of a remote object,

i.e., the glove in the current system. The system generates a low frequency magnetic

field by a transmitter (Xmtr). The system detects the field vectors with a receiver

(Recvr). The signals are then used to compute the receiver's position and orientation

relative to the transmitter.

The FASTRAK system consists of a spatial information processing unit (SIPU), a

receiver and a transmitter.

2.1.1 Spatial Information Processing Unit (SIPU)

SIPU is the central part of the tracker system. This is a printed circuit board that

controls all the I/O of the system. The receiver input, transmitter input and power

, input receptacles are located on the SIPU. The processing unit provides switches for

selecting the customised mode of operation for the system. Receiver selector switch,

and I/O configuration switches are located on the SIPU. Please refer to the manual

[POL94] for hardware detail of SPIU.

2.1.2 Transmitter (Xmtr)

The resolution ofthe transmitter is 0.0005 cm, and 0.025°. The instrument provides

the specified accuracy when the receivers are located within 76cm ofthe Transmitter.

Operation up to 305cm is possible with reduced accuracy.

6 .

2.1.3 Receiver (Recvr)

The static accuracy ofthe receiver ofthe system is 0.08cm RMS (root mean square

value) for X, Y, and Z Receiver position, and 0.24cm RMS for receiver orientation.

There is a latency of 4.0ms from centre of receiver measurement period to beginning

of transfer from output port.

2.2 Glove System

In the glove system, there are 22 sensors for measuring the gesture of the physical

hand. The sensors send signals to the CyberGlove Interface Unit (CGIU) that

amplifies and digitises the signal of the sensors. Then, CGIU sends the digitised

information to the host computer via an RS-232 interface. The computer then

calculates the angle offlexure ofeach fingerjoints that will be used for the display of

the virtual hand based on the hand model [VIR94].

2.2.1 CyberGlove Interface Unit (CGIU)

The CyberGlove Interface Unit (CGIU) houses amplification and digitisation circuitry

for the CyberGlove. CyberGlove sensor values are amplified and digitised to data of

8-bit resolution inside CGIU. The digitised data are polled by the host, or is directed

to the host automatically ifacontinuous sampling mode is set by a command from the

host. For example, to request a single record of 22 sensor values, the host computer

sends an ASCII ‘G, (which stands for Glove data). All sensor values are then digitised

in the CGIU and sent back to the host. The default protocol for the record returned in

response to a 'G' command is: first a 'G' is echoed, followed by 22 joint data bytes,

followed finally by a trailing NULL character (70').

A NULL character that appears in a data stream signifies termination of information.

The host computer may use the trailing NULL to verify that all data was properly

received. The CyberGlove sensor values are truncated at their lower limits to a value

of one.

2.2.2 Bend Sensors

There are 22 sensors in the CyberGlove to capture the motions of the physical hand

and finger. The sensors are located over or near the joints of the hand and wrist. The

7 ,

CyberGlove is designed to best fit an average-sized hand. A property of the

CyberGlove's sensor design is that whenever the sensor completely covers the arc of

the joint between adjacent bone segments, the sensor will provide an output

proportional to the angle between the bones, independent of where the sensor lies

relative to the joint and the joint radius.

There are three bend sensors on each of the five fingers on the glove. On the thumb,

there are two sensors that measure the metacarpophalangeal joint and interphalangeal

joint (MPJ and IJ) (i.e., the outer two thumb joints). On the remaining four fmgers,

there are three bend sensors to measure the MPJ, proximal IJ (PIJ) and distal IJ (DIJ).

Thejoints are defined as follows:

MPJ = Metacarpophalangeal Joint. This is the joint where the finger connects to the

palm.

PIJ = Proximal Interphalangeal Joint. This is the nextjoint towards the fingertip from

the MPJ.

DIJ = Distal Interphalangeal Joint. This is the outermost joint, i.e. nearest to the

fingertip.

TMJ 二 Tmpeziometacarpal Joint. This is the joint where the thumb connects to the

palm.

Abduction sensors are provided for the thumb, the middle-index, ring-middle and

pinkie-ring fingers. These are the horseshoe-shaped ridges sticking up from the

surface ofthe glove. An abduction sensor measures the amount that the corresponding

fmger moves laterally in the plane of the palm.

, The thumb has an additional sensor that measures how much the thumb rotates across

the palm toward the pinkie fmger. Similarly, the pinkie has a sensor that measures

how much the pinkie rotates across the palm toward the thumb, i.e., the arch of the

palm near the pinkie fmger when the hand is cupped. Finally, there are two wrist

sensors, one to measure wrist pitch and one to measure wrist yaw.

The output voltage ofeach sensor varies with the change in bend angle so that there is

no loss ofresolution atjoint extremes. The linear conversion from digitised output (0-

255) to degree is accomplished in the VirtualHand software using linear equation with

8 .

two parameters, a gain (slope) and an offset (y-intercept). Details can be found in

[VIR94].

2.3 Integrating the tracker and glove system

The tracker and glove systems are integrated to give a system with position sensing

and finger gesture sensing. The two systems are linked together by using the

VirtualHand software a workstation. A virtual hand model is built which can be used

to interact with the virtual environment displayed on the workstation screen.

Calibration of the virtual hand is required to obtain proper alignment between the

physical hand and the virtual hand.

A Silicon Graphics Indigo2 workstation with one R-4400 processor and 128MB

memory is used for the integration.

2.3.1 System layout

The layout ofthe system is shown in Figure 2.1.

Indigo2 Transmitter

^ Z Z 3 ^ y / Q >
Information 0 ~ Receiver ^^^ / ^ ^ ^ ' ^ ^ ' ^ ^ ^ ^ ^
Processing A _^=n y ^

^ Unit(IPU) ^ ^ _ y

/ CyberGlov
〒、乂v^.v^,w ™ — — ^

Interface Unit /
(CGIU) /

Figure 2.1: Hardware connection of the glove system

9 _

The position and orientation ofthe glove is detected by the three dimensional tracking

system located at the wrist position ofthe glove. The receiver detects magnetic field

vectors sent by the transmitter. The transmitter generates a low frequency magnetic

field. The signal received is directed to the information-processing unit (IPU). The

IPU interprets the signal received and calculate the three-dimensional position and

orientation ofthe glove relative to the transmitter. The position and orientation values

are then sent to the computer for the display of the virtual hand.

The relative positions ofthe fingers are determined by the joint angles between each

joint of the fmgers since the geometric model of the fingers is known. The sensors

are responsible for determining the joint angles between the various sections of the

fingers.

The digitised signal is passed to the Indigo2 workstation where the joint angles are

calculated and the virtual hand is constructed and displayed. The position and

orientation ofthe virtual hand thus follow the actual movement of the glove, allowing

the hand to interact with the virtual environment, as shown in Figure 2.2.

t ^ ^ M
^ i l ^ l ^ ^ ^ H ^ ^ H ^ H H I

Figure 2.2: The resulting hand in the virtual world

10 .

3 Deformable Model

The shape of virtual objects in the proposed system can be changed subjected to force
applied by the virtual hand. The relation between the shape of the virtual object and the
applied force is defined by a deformable model. Since there is no force feedback device
in the current system, the applied force is not known. The applied force thus cannot be
used directly in the force-displacement relation. The force-displacement relations have to
be modified and a displacement-displacement relation has to be developed so that the
displacement of the nodes based on the known displacements can be calculated. As an
elastic model is used to model the virtual objects, the displacement-displacement relation
is reduced to a system of linear equations. By inverting the relation matrix between the
displacements, unknown displacements can be calculated from the known displacements
that acted as input ofthe system. By displaying the deformed shape ofthe virtual object
and the virtual hand, a simulation of the virtual hand deforming a virtual object can be
obtained.

3.1 Elastic models in computer

In the past, computer animation usually adopted the key-frame interpolation technique to
simulate deformation of objects. Artists produce static key pictures to pre-define the
change in shape and motion ofthe deformable bodies. Animators then create intermediate
pictures between key pictures (key-frame) by interpolation so as to produce continuous
motion in animation. Using this technique, artists are required to produce large number of
key-frames to describe the motions of the objects in the animation. No interaction with
the animated figures or objects can be attained using this kind oftechnique.

The use of physically based model provides a solution to the above problem. Once the
natural shape (shape before deformation) is developed, the deformed shape of the object
can be calculated using physical laws. This is especially useful for interactive
applications because the response of the virtual object and the applied force cannot be
predicted.

Among various physical models for describing deformable solid objects, the simplest
model is the elastic model. Elastic model contains a system oflinear equations containing
the force-displacement relation. Therefore, standard techniques for solving linear
equations in linear algebra can be applied to develop force-displacement relation. Hence,
the displacement ofobject nodes can be calculated from the input of external forces.

11

In theUterature, there are several methods to model elastic objects for animation that can
be used for modelling elastic object in a virtual environment. Terzopoulos et al [TER87]
developed an elastic model based on energy approach. The strain energy s(r) of a
deformable solid is given by,

2
s{r)= ^G-G\da,da^da^ (3.1)

In the relation, G is the metric tensor or first fundamental form of the deformed object

defined by the relation,

G , j _ = l ^ (3.2)

where r(a) is the position of a particle a, and

a is a material point in a body.

GO is the fundamental form of the natural, undeformed body.

卜||“ is a weighted matrix norm.

Q is the space where the integration takes place.

aj, a2, as are the variables of co-ordinate axes.

iJ are the parametric indices of the material point.

The finite difference method is used for the numerical computation. For a deformable
surface, the forward and backward cross difference operators are defined as,

at,ufm, n] = A>[w, n] = D:D2+u[m, n ’
(3.3)

D^2^j\jn, n\ = D^^Vi\m, n\ = D^ D^ u[m, n\,

where u[m,n] is a grid function.

D^ 1 is the forward difference operator.

D_i is the backward difference operator.

D+12 is the forward cross difference operator.

12

D'12 is the backward cross difference operator.

Using the grid function x[m,n] to represent the continuous counterparts and applying the

above difference operators for discretising functions, we have,

a. [m,n] = w\[m,n\D;x[m,n]• D]x[m,n]- G|j [m,«]} (3 斗）

b" [m, n\ = wjj [m, w](n[m, n]. Z^+)x[m, n] - B^ [m,«,])

where a \m n] and b \m,n] are constitutive functions describing the elastic properties
y L ， J y L J

of the material,

w\\m n] and w^m,n\ are the weighting functions describing the deformation
ij L , J U L J

resistant of the material,

By is the natural curvature of the surface,

the (+) superscript indicates that the forward cross difference operator is used
when i ^ i ,

n[m,n] is the surface normal grid function,

The elastic force can then be approximated by,

s[m,"] = X [- A- [a,D]x{m^"])+ 4_) (^对)如,4 (丄5)

By assembling all the equations of elastic forces, the stiffness matrix can be constructed
to define the force-displacement relation and the deformed shape ofthe virtual object can
be calculated.

‘ j. p. Gourret et al [GOU89,GOU91] used a finite element model based on the virtual
displacement principle to represent deformable balls. Virtual displacement principle
states that the internal work resulting from internal stresses is equal to the external work
resulting from forces such as gravity, pressure and contacts. All components are the
integral over the surface of the ball. After the ball is discretised into elements, these
integrals are calculated over the element volume Vg or over element surface Sg that can be
stated as follow,

13

internal work = {strain)^ {stress)^dV^
K

external work = {force per unit volume)^ {displacement)^ dV^
•K

+ [force per unit surface)^ {displacement)^ dS^ (3.6)
•,e

+ [concentrated force\�displacement\

As each component depends on the (displacement)e, each element can be assembled, and
the equilibrium equation can be written in the form KU = R, which can be viewed as a
stiffness matrix K, displacement U and external force R.

14

*

<Calculate prescribed \ ^

bone displacements �

/
1 r

Yes ^ ^ ^ ^ ^ \
<;;;^ Equilibrium? j;>.^

No '
j r

Repel ball nodes to prevent
overlapping, and to
prescribe displacements U^
of repelled ball nodes.

^

Obtain displacement V^ on ball
and reactive forces Ru at contact
points of the ball.

1 r
Apply an equal and opposite
reactive forces of the ball Ru on
contact points of the skin.

5

Assign the contact forces R„ to
be the prescribed forces R^ of the
skin.

1 r

Obtain displacements Uu ofball
and skin, and reactive forces R^

. on the bones.

——(End)

Figure 3.1: Flowchart of contact forces and displacement calculation

15

_

To simulate the deformation ofthe object and the virtual hand, Gourret have developed
an iterative method to calculate the deformation of the object based on displacement
input, as shown in Figure 3.1

In the calculation prior to the iterative process, the displacement of the hand is calculated
based on kinematics. The displacements are put into the known displacement vector (Uk)
of the hand.

In the iteration loop, the nodes ofthe ball is firstly repelled against the hand to prevent
overlapping ofthe ball and the hand. The resulting node displacements after repelling are
put into the known displacement vector (Uk) of the ball. By partitioning the stiffness
matrix and rearranging the linear equations, unknown values, Uu and Ru, of the ball can
be obtained by the equations,

U „ = K i , . (R � K i 2 . r J (3 7)

R u = K n U „ + K , , U , •

Applying the reactive force (-Ru) to the skin, the force becomes known forces Rk ofthe
hand. Solving the linear equations using known displacement U^ ofthe skin obtained by
repelling nodes, the node displacements of the skin can be calculated. Afterwards, the
reactive force on the skin can be calculated.

The iteration terminates when the reactive forces on the bones are in equilibrium with the

forces on the ball.

Kang and Kak [KAN96] used a hybrid model for discretization of the virtual objects and
analyse the objects with linear elastic models. For each virtual object model, cubic
elements are used in the core ofthe object and cylindrical shell element layers are used on
the surface ofthe object. A sample meshing for a virtual cylinder is shown in Figure 3.2.

16

禽

Cylindrical
Layer ^ ^ 厂 Cubiccore

^¾
^ ^ ^ ^ ¾ 卜卞斗巧
^ U J L i >

Figure 3.2: Cylindrical Sample ofhybrid model

The hybrid model can reduce the time for finite element analysis (FEA) by reducing the
number ofnodes ofavirtual object. For the cubic core, the elements are coarser than the
shell elements on the surface of the object. The surface is described by the finer shell
elements on the surface ofthe object. The shape of the object is calculated by performing
FEA using plate elements. This helps to produce a finer surface detail with less
computational effort.

Rappoport et al [RAP96] addressed the volume preservation problem in free form
deformation. In general, solid models should have a constant volume during deformation.
Uzawa algorithm is used for non-linear optimisation, with an objective function based on
deformation energy. The input of the algorithm include a set of primitives defined with
node points, the primitive volume sizes and a set of linear constraints based on continuity
of the control points. The resulting algorithm is a control point configuration closest to
the given one such that the volume of the solid is conserved while the linear constraints
are obeyed. Hence, a solid can be deformed with constant volume while still obeying the
physical law of minimum energy within the solid. After careful tuning, the algorithm
becomes interactive for manipulations of solid elements.

Bro-Nielsen and Cotin [BR096] proposed a finite element based approach for real-time
deformation applications. The approach uses volumetric solid elements for discretization

17

ofthe virtual objects. This discretization method computes the 3-dimensional volumetric
behaviours of a real solid object. Condensation method borrowed from Gourret et al
[GOU89] is used for the calculation ofthe object nodes displacements and the unknown
external forces. This method produces real-time simulation of solid deformation based on
linear elastic finite elements using a Silicon Graphics ONYX computer for analysis, and
the SGI Performer graphics library for display.

3.2 Virtual object model

In the proposed system, linear elastic model is used for simulating the deformable
behaviour of virtual objects by finite element method (FEM). Tetrahedral solid elements
are used for analysing the relationship between the external forces and the nodal
displacement of the object.

A tetrahedral solid element is shown in Figure 3.3.

qi2

N3=<=0 ^ i o j ^ X

\ < i i K ^ ^ M N̂
\ i P r .. 3 \

^mi \] / " "
Q̂ •^jS.y-TTS"™�'^�. ¾̂ \ Z

J ^ ^ ^ ^ S P � - -•,].-. --B X^̂ y^ iWiK̂ Ŝ ^̂ ?™'，'、* '^ '3a ^v 声 Qc
丨‘ iOiBKSSSZlB^̂ Si. 'r 々 - ^a 一 一 ^ ^ ^

j^m'Tm^f^^^.....“ ̂ 1 一一一----一一//^
i E r , ^ * , S 2 ^ 4 . : 1 -一 y7
JKIBiSni rSĴ ^̂ T̂ iSS:î i- %fwwf�'<wj8̂ xii

./^^^^^^ z
^ ¾ ^ 1 / " ^ , ’

Figure 3.3: Tetrahedral element

18

In the figure, qi to q^ are the displacements of the respective nodes, qi to q3 are the
displacement ofnode 1 along the x, y, z-axis respectively. There are four shape functions,
namely, Ni to N4, defined as follow,

N̂ = ^ N^ =r j N, = ^ N, =1-^-7]-(； (3.8)

The value ofthe shape function Q̂；) is equal to 1 at the vertex (vertex i) and is equal to 0
on the opposite face of the respective vertex, as shown in Figure 3.3. For example, the
value 0fN3 is equal to 1 at node 3 and is equal to 0 at the opposite face (the shaded face
in Figure 3.3) ofnode 3. Since the opposite face of node 3 contains nodes 1, 2, and 4, the
value 0fN3 is equal to zero at nodes 1, 2 and 4. In other words, N3 is zero at the other
nodes ofthe tetrahedral element.

3.3 Force displacement relationship

The force displacement relationship defines the relation between the external applied
force to the nodal displacement ofthe virtual object. Since the current model is a linear
elastic model, the relationship between the applied forces and the displacement of object
nodes are linear. Hence, a system of linear equations can be set up for solving the
unknown nodal displacements based on the applied force. The coefficients of the linear
equations can be summarised into a matrix called stiffness matrix. This relationship is
applicable to each element of the virtual object.

3.3.1 Stress-strain relationship

Based on the three dimensional elastic model, there are two parameters for measuring the
material properties for isotropic material. They are modulus of elasticity (E) and
Poisson's ratio (v) [CHA91]. Considering an elemental cube inside a body, strains can be
expressed in terms of stresses by Hooke's law,

19

CT^ (^y cr,
6 = — - V — - V —

^ E E E
CT^ 0-y CT^

s =-V — + — - V —
� E E E

c^y CT cr
s, =-V — -V — + —

z E E E

= 1 ^ (3.9)

"少 G
^Z

y = - ^
� G

= I ^
L — G

where the modulus of rigidity, G is given by,

G 二 E (3.10)

2(l + v)

Sx, Sy, Sz and a^, Gy, a^ are nominal strain and stress of the element in nominal x, y

and z direction respectively, and
Yxy, Yyz, Yxz and Xxy, Xŷ , x̂ z are the shear strain and stress of the element

respectively.

Adding all the nominal strains gives the following relation,

(l - 2v) / � (3.11)
^. +s, +^. = ^ ^ ^ ^ K + ^ . + ^ J

Using this relation to solve for the stresses, the following relation is obtained,

a = D s (3.12)

where a is the stress applying on the element given by
“ T

C = kx ^y Gz ^xy ^yz ^xA , P * 1 �

s is the strain of the element given by
^ ~ ^X ^y ^2 Yxy Yyz 7xz.， ^ ^

20

啡

D is a (6 X 6) symmetric matrix given by,

"1-V V V 0 0 0 ‘
V l-v V 0 0 0

p _ E V V l - v 0 0 0 _
" (l + vXl -2v) 0 0 0 0 . 5 - v 0 0

0 0 0 0 0 . 5 - v 0
0 0 0 0 0 0 . 5 - v

3.3.2 Stiffness matrix formulation

The strain-displacement relations is given by,

�] r
du 次 dw d^ dw du dw du d\> ,_ . , �

s =————————+————+————+—— (3.16)
dx, dy dz dz dy dz dx, dy <^�

where s is the strain of the element, and

u, V，w are the displacements in x, y, z directions respectively.

Using (3.8), the displacement u=[u v wf at arbitrary position x = [x y zf within the
element can be written in terms of the unknown nodal values as,

u = Nq (3.17)

'N, 0 0 N, 0 0 N, 0 0 N, 0 0 “

where N = 0 N, 0 0 N^ 0 0 N, 0 0 N, 0 , (3 i8)
0 0 N, 0 0 N^ 0 0 N, 0 0 i v J

q is the local displacement vector of the nodes given by

• T

q = k ^2 ^3 ^4 ^5 ^6 ^7 ^8 ^9 �10 "11 "i2J , (3.19)

In addition, the arbitrary position x at which the displacement u is interpolated can be

expressed as,

X = N,\ + N2X2 + A/3X3 + Â 4X4

少二乂少1+^^2少2+^^3少3+^^4少4 (丄20)

z 二 N�Z\ + N2Z2 + A^3Z3 + A/4Z4

21
_

where xj, yu z/ are the co-ordinates of the /th vertex along x, y and z-axis respectively,

f o r i = l , 2 , 3 , 4 .

Substituting (3.8) into (3.20) and using the notation x.j =x,. -Xj,少“二兄 一>^

Zy = z,. 一 Zj, equation (3.20) becomes，

x = x4 +X14^ + X24/7 + X34̂

y =少4 + yi4^ + y24^ + J^34^ (121)

z = z4+z14^ + z2477 + z34^

Using chain rule for partial derivatives, the relationship for a displacement derivatives
with respect to different basis can be obtained, take u as an example, the relation is,

f � ^ {^ ^ ^
du T du (3.22)

< =OS ——>

df] dy
du du

^\ fej

where J is the Jacobian of the transformation, which is given by,

_ 一

dx dy dz

財 1̂ y � ^ 少14 ^ '
T OX oy oz
J= — ^ — = 2̂4 少24 2̂4 (3.23) drj drj drj

dx _ ^ _ ^ 1¾ 3̂4 3̂4_
_交 ^ ^ _

Hence, the following relation can be found,

'生] \^
^ 殘

< ^ U J ^ (3.24)
dy dri
du du
^] 玄

V *^ y

where A is the inverse of the Jacobian J, which is given by,

22
*

1 y24^34-yS4^24 3̂ 34½ ">'l4^34 Ĵ 14̂ 24 ">^24^
A = J~̂ = -~~- ^24¾ "^34¾ 3̂4̂ 14 "^14¾ ^14¾ "̂ 24̂ 14 (3.25)

detJ _

^24y34 ~ 3̂̂ 24 3̂̂ 14 "̂ 14>̂ 34 î4Ĵ 24 ~^24^14

where det J is the determinant of Jacobean J.

Combining (3.16), (3.17) and (3.24) the relation between strain and displacement is
5w

obtained, take ——as an example, from (3.24),
dx

^ = 々 ！ + ̂ • + 4 3 ， (3.26)
dx “对 12 dTJ 13 己（

where Ay is a element of matrix A in the /th row and the jth column.

From (3.17),

w = N,q, + N^q, + N,q, + N,q,, (^ ̂ 7)
=^qi + m, + Ĉ 7 + (1 - � - V - <^ko •

where qi is the /th element in the local displacement vector q of the tetrahedral element.

Hence, (3.26) becomes,

5w
^ = AM\ -^10)+42(^4-^10)+43(^7-^10) dx

= A , q , + ^2^4 + ^3^7 一 U l + Al + ^3 k o (3.28)
r^

=4i^i + Ai^A + A3q7 - A^io

f-mf

where A^ 二 為1 + A^2 + ^13 •

Similarly, other equations can be obtained and the strain-displacement relation becomes,

^ = Bq (3.29)
where B is a (6 x 12) matrix given by,

23
«

- \

_4i 0 0 為2 0 0 成3 0 0 - A , 0 0
0 4 i 0 0 為2 0 0 為3 0 0 - ¾ 0

B = 0 0 為1 0 0 為2 0 0 ^33 0 0 〜 - ¾ (3.30)

一 0 3̂1 Ai 0 為2 為2 0 為3 As 0~ - ¾ - ¾
為1 0 4 l 3̂2 0 ^2 As 0 為3 - ¾ 0 � - ¾

A i 4 i 0 A , ,為2 0 ^23 As 0 - ¾ - A 0 _
/m^ r»*^

where A^ = ^ ^ + 為2 + 為3, ^2 = ^21 + ^22 + ^ 3 , ^3 = ^31 + ^32 + 為3.

The element strain energy is given by,

U = - {s^BedV
2

= -q^B^DBq[jF
2 (3.31)

= - q V , B ^ B q
2̂
1 Ti e

= p k q

where the element stiffness matrix k® is given by,

k® = F,B^DB (3.32)

V̂ is the volume of the element given by

1 (3.33)
- d e t J
6

Using the result of(3.27), the force-displacement relation in the element becomes,

f e = k V P.34)

where f is the force vector describing the force adding on the element given by

r = [f , / 2 /3 /4 /5 f e /7 / s /9 /10 / n f u J - (3 . 3 5)

By assembling the elemental stiffness matrix together, the global force-displacement

relation is obtained,

f 4 k V 0.36)

24
^

where f is the global force vector applied to the object with N nodes, given by,

f'=[fo … / 3 ^ ,] (3.37)

q8 is the global displacement vector of the object, given by,

g g � g Y (3.38)
q^ = m … ^ 3 V i J • ^ ，

k® is the global stiffness matrix, given by,

^ (3.39)

k g = 5 > e ^ ，

The process ofassembling of global stiffness matrix is described in 3.5.2.

3.4 Solving the linear system

From (3.36), external forces can be calculated by multiplying the displacements with the
global stiffness matrix or the inverse relation can be obtained,

q - (k O " P (3.40)

Unknown nodal displacements can thus be computed from the input of external forces.
However, since there is no force feedback devices in the current system, the displacement
vector cannot be computed by (3.40).

Since there are some known displacements with unknown forces and there are some
unknown displacements with known forces, the complementary relations of forces and
displacements make the number of equations sufficient for solving the unknowns. Since
the number of equations is equal to the number of unknowns, all the unknowns can be
solved by rearranging the system of equations and the order ofvariables.

By considering the relation between the virtual hand and the virtual object, there is no
external applied force at the nodes having no constraint or no contact with the virtual
hand. Therefore, all the known external forces are zero.

After the rearrangement, the relation between displacements and forces is given by

relation (3.41),

_ 0] j K f i K f j r Q j l (3.41)

r A m . K ! j Q � _

25
鬼

where F̂® is the unknown force vector, Q̂® is the unknown displacement,

Qk® is the known displacement, and

K"®，Ki2®, K21g, K22® are the submatrices of the rearranged global stiffness matrix

(kg).

Multiplying the matrix partitions and the displacement vectors, a system of linear
equations can be found,

' 0 = K f i Q h K ^ (3.42a)

^!=^l,Ql+^l2Ql (3.42b)

Rearranging equations, (3.42) gives,

\Ql=-{K\,yK\,Ql (她 ）
] \ r3 43b^
[^!=^lrQl+^l2Ql 卜)

Unknown displacements and forces can hence be found by relation (3.43).

In the current application, it is only required to obtain the nodal displacement. Hence, it is
only necessary to compute the unknown displacement in (3.43a). In addition, K12̂ is
known after the rearrangement of the equations. Only (Kn®)"̂ is required to compute and
the unknown displacements. (The process of computing the matrix inverse is described in
Appendix A)

The rearrangement improves the computation efficiency in two ways. The size of Kn® is
smaller than k® so that the time that is required for computing inverse is reduced. The size
of (Kn^"^Ki2^ is smaller comparing with (k®)"' in (3.40) so that the computation of
unknown displacement becomes more efficient.

3.5 Implementation

There are three problems in the implementation of the modelling algorithm. The first
problem is the development of a special data structure for providing efficient data
extraction. The second problem is the process of global stiffness matrix formulation and
the assembly of global stiffness matrix. The third problem is how to re-assemble the
nodal displacement vector so that the result of modelling virtual object can be used for
displaying the deformed object.

26

3.5.1 Data structure

The data structure for the virtual objects is specially designed for the ease of retrieving
relevant information for the analysis of the virtual object. There are three lists under the
data structure of a virtual object. They are summarised in Table 3.1.

List no. Data type Description
1 Q^x3) floating points Vertex co-ordinates
2 (Mx4) integers Element nodes
3 (Px3) integers Display list

Table 3.1: Data structure of a virtual object

The first list is the vertices of the object. All the virtual objects in the system are
polyhedral objects. This facilitates the modelling and rendering of the virtual object in the
virtual environment. For each vertex, there is a 3D-array that contains the x, y and z local
co-ordinate of the object. Therefore, the first list is an N by 3 array of floating points
where N is the number of vertices in the object.

The second list describes the elements of the virtual object. As tetrahedral elements are
used, there are four vertices for each element. The indices to the corresponding vertices
are represented by four integers. Therefore, the second list is an M by 4 array ofintegers,
where M is the number of tetrahedral elements in the virtual object.

The third list is the display list of the object. The list is to be used for rendering and
displaying the virtual object. The surfaces of the virtual objects in the system are
triangular facets. The three vertices of a facets have to be specified in counter-clockwise
order so as to give a consistent surface normal for rendering. Therefore, the third list is a
P by 3 array ofintegers, where P is the number of faces to be displayed.

3.5.2 Global stiffness matrix formulation

From (3.34), the force-displacement relation in element; is given by,

r = k V

Multiplying the matrix with the vector, a system of linear equations is found.

27
^

/ o = « + ^ S > f + - + ^S,iWn
f,'=Kl,ql+Klql^-^Kl,,ql,

(3.44)

f n =^n,o^o +^u,i^f +--- + ^u,ii^n

Taking/o^ as an example, replacing the indices in the equation with global indices,

ff*h(jX) = ^lh(j,\).^*h(j,\)^l-h(JX) + ^lh(j,\),3*h(jX)^\^l*h(j\)^\ +••• + ^h(jA)+2^l*h(jAh2 (3.45)

where h{j, i) is the index in the jth row and the /th column of the element list.

(see section 3.5.1 for detail description of the element list)

As there are N nodes in a virtual object, the element force-displacement relation can be
expanded to a system of 3N linear equations. Expressing (3.44) in matrix form with
replaced index like the example in (3.45), the relation becomes,

28
為

“ 0 1 � 0 ... 0 0 0 0] � 0
i : … : : : 丨 … … ：
0 ! . . . ： 0 0 0 0

ff*h(j,X) ‘‘ “‘ '• ^^*h(jX),l,*h(j,X) ^l*h(j.\),3*h(j\)+\ ^!*h(j,\),3*h(j\)+l ^3*h(j,l)l

fs*h(j,l)+l ‘‘ “‘ ‘‘ ^h(j,l)+l3*h(j.l) ^3*h(j.l)+l3*h(j,l)+l ^!*h(j,l)+U*h(j.l)+2 ^3*h(j,l)+l

f3*h(j,l)+2 '• “‘ : ^3*h(j.l)+2,3*h(i.l) ^3*h(j,l)+23*h(j,l)+l ^3*h(j,l)+2yh(j,l)+2 ^3*h(j,l)+2
0 ： . . . ： 0 0 0 0

• • : : •• : : : : … : : • • •
0 ： . . . ： 0 0 0 0

f r h (j , 2) ‘ ‘ … • ^3*h(j,2),3*h(j,l) ^3*h(j,2)3*h(j.l)+l ^3*h(J,2)3*h(j,l)+2 ^3*h(j,2)

ffih(j,2)+l ‘‘ “‘ '• ^3*h(j,2)+l3*h(j,l) ^3*h(J,2)+U*h(j,X)+l ^!*h(j,2)+l3*h(j,l)+2 ^3*h(j,2)+\

ff*h(j,2)+2 ‘‘…：^!*h(j,2)+2.3*h(J,l) ^3*h(J,2)+2,3*h(j,l)+l ^3*h(J,2)+2.3*h(j.l)+2 ^3*h(j,2)+2
0 ： . . . ： 0 0 0 0

. • : : : : :
: = : … :
0 ... 0 0 0 0 (3.46)

fh(j.3) :•…'• ^i*h(j.3).3*h(J.l) ^3*h(J3).3*h(J,\)+l ^!*h(j,3),3*h(j.\)+2 ^i*h(j.3)
f3*h(j.3)+l •…• ^3*h(j,3)+l,3*h(J,l) ^i*h(J.3)+l2*h(j,l)+l ^!*h(j,3)+l3*h(j,l)+2 ^3*h(j,3)+l
f3*h(j,3)+2 ‘‘ “‘ • ^3*h(j,3)+2.3*h(j,l) ^3*h(j.3)+2.3*h(j.l)+l ^3*h(J,3)+2.3*h(j.l)+2 ^3*h(j,3)+2

0 ： ... i 0 0 0 0
. • : : : : :
: : • • • : : • • •
0 ； . . . ： 0 0 0 0

f3*h(jA) '•…• ^3*h(jA),3*h(j,l) ^3*h(JA).3*h(J,l)+l ^3*h(jA).3*h(j,l)+2 ^3*h(jA)
ff*h(jA ;+l • • … • ^f*h(jA)+X,3*h(j,X) ^l*h(jA)+\,3*h(j,\)+\ ^f*h(jA)+X,2,*h(jX)+l ^2>*h(jA)+X

ff*h(jA)+2 '• ... : ^!*h(jA)^2,7>*h(jX) ^3V7.4;+2.3W7.i;+l ^l*h(jA)+2,3*h(j.X)+2 ^3*h(jA)+2
0 : . . . ： 0 0 0 0

； : … i i 丨 : …… =
0 J [0 ... 0 0 0 0 丄 0

Adding all the element force-displacement relations together，the global force-

displacement relation results,

_尸/1 r 巧。…^ 3 N - ^ ir Qo'-
二 (3.47)

^3^^-1 ^3N-l,0 ... ^3N-l,3N-l Q^N-l
_ 」 L. 」L J

where FjS is a global force vector element, (3.48)

K^. is an element of the global stiffness matrix, and (3.49) '，•/

Q. g is a global displacement vector element. (3.50)
*

29
%

(3.36) gives the matrix equation of this relation.

3.5.3 Re-assemble of nodal displacements

In (3.43), all the displacement vectors are column vectors. After the unknown
displacement vector is computed, the nodal displacements are computed by re-assembling
into an array with three columns. The element displacement vectors are arranged so that
three consecutive displacement vectors are in a group. The three components of the
displacement vectors of the ith node are then copied into the /th entry of an array with
three columns. The process is illustrated in Figure 3.4.

/ ^ /|_~|\
^

t d 〜 _ t J

R v 目
[= ^ A""""^-f~

g V I

• 、 ^ 0 、 J M _ _ _ _ _ _ ^ ^ ^ l ^ /
Computed displacement vector Array to be Known displacement vector

re-assembled

Figure 3.4: Process of displacement re-assembly

Then, the displacements are added to the original mesh points. The deformed shape ofthe
virtual object is then computed. Figure 3.5 gives an example of displaying the deformed
shape with the hand.

•%

30
^

1 9 l H | WBB^
• • •

Figure 3.5a - An object Figure 3.5b - Fingers Figure 3.5c - Fingers
attached to the virtual hand collided with the object and moved further resulting in

the object undergo small large deformation of the
deformation object.

%

31
負

4. Collision Detection

The points of contact between the virtual hand and the virtual objects are required for

estimating the response of the virtual object. Therefore, interference test has to be
�

^ performed between the virtual object and the virtual hand. However, if the
c"
；•' interference test is performed for each pair of facets of the virtual object and that of

f ,j ;;p

< ； the virtual hand, the computation time required will not be acceptable for interactive
I 丁
C d applications. Since most of the face pairs are not colliding, the time required for
s ^
^ r collision detection can be reduced by restricting the interference test to the pairs of

object faces which may possibly intersect.

4.1 Related work

There are several methods for interactive collision detection application. Youn and

Wohn [YOU93] suggested a hierarchical object (HO) for detecting collision between

complex objects. An object is first divided into several major parts and the parts are

further sub-divided so that the object is represented by a hierarchy of object parts.

Figure 4.1 is a human HO example.

付 h u
Z ^ t i ^ h . 3

hi2
hi

=令 = d hi3i

hi2i ŷ _ /

h ° P

^ V { / ~ ~

h2
h3

U 4 y 4 h .
h3i Q / ^ L K

Figure 4.1: A human hierarchical object

�

32 .

In the object, hip {h) is the root ofthe HO. As the trunk and the legs are connected to

the hip (root ofHO), the descendent ofhip is the trunk {hi\ left leg (¾) and right leg

Qi3). Similarly, the head (hu), left arm (h12) and the right arm (//75) is the descendent

ofthe trunk. Left forearm {h121) and right forearm (h131) is the descendent of left arm

and right arm respectively.

. K ^ X K h \
h2 h21 h3 h31 h12 h12] hi hii hi3 hi3i

Figure 4.2: C-tree of the human HO

Using the HO, a C-tree is developed for locating the region of collision and reduces

the number of comparisons required for detecting the collision of the HO and other

virtual objects. There are two types of nodes in the tree. The filled nodes represent

pointer to a part of the human HO. The empty nodes represent intermediate nodes

within the hierarchy and there is no valid value within such nodes. The C-tree

representing the human in Figure 4.1 is shown in Figure 4.2 as an example.

Bandi and Thalmann [BAN95] used digital differential analyser as an adaptive spatial

subdivision technique and digitise a virtual object into voxels. Based on an octree

structure, the virtual object is subdivided into voxels for collision detection tests.

During collision detection tests, the virtual object voxels are supersampled so as to

increase the number of tests required to be performed. This technique is used when

the objects are close to each other. The voxels of the virtual objects are supersampled

at a higher level of resolution than an octree does. If the objects are found to be not

colliding with each other before the highest level of resolution is reached, they are not

considered to be colliding.

"*

33 .

< — — —

] r
Extraction of rotation and translation

T
Collision test using bounding box of objects

< C ^ ^ Interfering? ^ ^ >
^ ^ ^ ^ ^ ^ ^ ^ ^ No

Yes I
i

Generation of overlapping region

i
Determination of faces intersecting
the overlapping region

< ^ ^ ^ Any faces? J ^ ^
^ ^ ^ ^ ^ ^ No

Yes +

Generation of face octrees

i
Collision test using face octree

< ^ ^ Interfering? J] |^> •
^ ^ ^ ^ ^ ^ ^ ^ ^ " ^ ^ No

Yes +

Face pair intersection test

^ _ i _ ^
< ; ; ^ ^ Interfering? J ^ > •

^ ^ ^ ^ ^ ^ N o I

es ^ Draw images
Objects colliding

Figure 4.3: Collision detection procedure

Smith et. al. [SMI95] used bounding boxes to approximate a virtual'object for

34 .

collision detection. The overlapping region of two objects is considered only to

reduce the collision detection test. Faces intersecting within the region are determined

to exhaust the possible intersecting faces. Octree subdivision is performed so that

overlapping region is subdivided and the region contains different object faces are

sorted out. Face-face intersection tests are performed for faces of the sorted regions.

The colliding faces are then located. The process is shown in Figure 4.3.

/ " … � \ \ .

, ? 丫 々
丨 / \ j
\ ! � y
\ i i /

. K ^ � … A
丨 ^ ~ ^
: ‘ i

� k j �
w

Figure 4.4: Decomposition of a sphere

Several researchers used hierarchical sphere tree structure for approximating objects

in collision detection algorithm. Liu et. al. [LIU91] used a solid model called

Hierarchical Sphere Model (HSM) for approximating the objects in the virtual

environment. The root node of the tree is a sphere that surrounds the object to be

approximated. Then, for each level, the corresponding sphere is decomposed into 13

overlapping descendent spheres, as shown in Figure 4.4. The descendent spheres are

divided into three types, namely "white" node, “black” node and “mix” node. Among

the three types, white nodes represent nodes that are outside the object. Black nodes

represent nodes that are inside the object whereas mix nodes are nodes that are on the

surface ofthe object. Both black and white nodes are leaf nodes ofthe tree and only

mix nodes require further subdivision. As all the nodes are spheres, collision can be

detected by performing sphere-sphere intersection test. �

35 .

X X y^-"""~"N/^"~^ >̂=¾¾ ?̂;̂ ^̂ ^̂ ;:?̂
/ t r = ^ ^ ^ ^ ^ ^ y ^ ^ ^ Q ^ ^

广 / ^ ̂ ^P^^\ / w # © \
V , ^tr ^m! y |̂̂ ^ J ^»»»»»»»»»^^mtmttt»tt»tff^»*»**»t*ttty^^»»Jk»»»9iM^

\ / i ^ ^ z : : ^ ^ : ^ y \^m^<\
% \ # ； \ I • I M \] *>at*ft*i*a^ r " _ " " _ " " ^ " " _ " " M i ^ " " _ " " " j g

Vv^ J %Wy ^G®y
^ .V^ "y >̂ - **̂ "J^^ —jf Ŝ>̂ _iXVJ.̂ <<̂ ^̂ ^ ,-f
\ ^ / >5； Z <^

^ ^ - ^ ^ _ _ ^ ^ ^
a. Level 1 of tree b. Level 2 of tree c. Level 3 of tree

Figure 4.5: A 2D analogy of a sphere tree
Palmer et. al. [PAL96] used a three-stage process for efficient collision detection. In

the first stage, a global bounding volume of the object is used as a reference for

constructing the sphere at the root node of the hierarchy. In the second stage,

potentially colliding regions are detected by searching down the sphere tree. The

sphere tree is a tree of overlapping spheres constructed with an octree-type spatial

subdivision technique. A 2D analogy is shown in Figure 4.5. The final stage in the

process is to perform face interference tests when the spheres at the leaf nodes of the

objects collide with each others.

Hubbard [HUB96] used medial-axis surfaces to construct sphere-tree for

approximating the objects that may collide with each other. The tree is constructed

such that a progressively refining accuracy of object approximation can be attained.

This technique can support time-critical collision detection algorithms that trade time

and accuracy for collision detection. Using medial-axis surfaces for construction of

the sphere hierarchy, a tight bound of object approximation can be attained. The

nodes are then merged to create the ancestor nodes. Hence, a multi-resolution

approximation of the object is obtained. This technique can be used to create a

progressively refining approximation of the virtual objects. This can improve the

accuracy of the collision detection but the computation overhead for constructing the

hierarchy is increased substantially (about 400 times slower than the construction of

octree).
%

36 .

4.2 Spatial Subdivision

In the proposed system, the virtual hand and the virtual objects are polyhedra

represented as lists of vertices and faces. However, most face, edge and vertex pairs

do not collide either because they are very far apart from each other or they are

^
t

Figure 4.6: The shaded faces are unlikely to collide

geometrically impossible to have collision (e.g., the shaded face pair in Figure 4.6).

These trivial pairs are eliminated in an efficient way such that only those possibly

colliding pairs are tested for intersection.

One of the effective ways to eliminate those trivial pairs is to construct a hierarchy

that subdivides the virtual objects into several parts in different resolutions. By

searching down the hierarchy from the root node, collision is detected at different

resolution levels. The region for performing interference test is reduced by going

down the hierarchy. Only the finest region, i.e. the lowest level of the hierarchy, is

tested for interference.

Apart from the search for collision detection, the time for constructing the hierarchy

have to be considered as well. Most existing algorithms

[PAL96,HUB96,LIU91,MOR88] assumed the colliding bodies to be rigid so that the

tree can be constructed offline. Therefore, the time for constructing the hierarchy does

not affect the interactive performance of the system. Unfortunately, the assumption is

not applicable for deformable objects. The shape of a deformable object changes over

time and the hierarchy has to be changed in order to represent the object geometry

correctly. The time for constructing the hierarchy is thus critical for interactive

performance [SMI95].

Taking both the times for efficient tree search and effective construction of the

hierarchy into account, a sphere octree structure is adopted. A typical octree structure

is shown in Figure 4.7. At each node of the tree, there are eight descenHent nodes

37 .

(including some NULL nodes). If all the descendent nodes of a node are NULL, the

node is a leaf node. In the sphere tree, each level {n) represents a different level of

approximation of the virtual objects by a collection of spheres. In other words, the

collection ofnodes in the same level {n) within the hierarchy represents the collection

ofspheres at the same level of resolution approximating the virtual object.

^ ^ & k =

^ ¾ ¾ ¾ ^ ¾ ¾ ¾ n=level of hierarchy

Figure 4.7: An octree structure

4.3 Hierarchy construction

The sphere tree is constructed by means of spatial subdivision. A bounding sphere

enclosing the virtual object completely is constructed. This is the root node of the

hierarchy. A tree is constructed by overlapping spheres that divides the current sphere

into eight equal regions. Nodes are retained if the nodes represent spheres on the

surface of the object, and are discarded if the spheres are not on the surface of the

object. This subdivision process is repeated until a predefined number of polygon

vertices ofthe object lie within one single sphere. In the proposed system, only one

vertex is allowed in a sphere since the goals of the collision detection algorithm is to

locate the colliding point between the object and the fingertips. The pseudo-code of

the algorithm is shown in Figure 4.8.

%

38 <

Tree_structure is a pointer to a node. (The definition of a node is described in 4.3.1)

Tree_structure root_node =NULL;
Tree—structure parent_node;
Tree_structure current_node;
integer n; (the maximum number of vertices in the sphere)

procedure hierarchy (parent_node, current_node, root_node)
{ 一

integer i;

Construct hounding sphere ifit is the root node, i.e. ifroot_node = NULL

Calculate the radius and centre of current_node.

if(the number of vertices in the sphere > n)
{

for i = 1 to 8 by 1
Create the iV^_child_node of the current_node.

for i = 1 to 8 by l "
hierarchy (current_node, iY^_child_node, root_node)

} “ -

if (the number of vertices < n)
Save the vertex information of the object in the current—node.

if (there is no vertex in the current_node)
Discard current_node.

retum root_node.

^ Figure 4.8: Pseudo-code of sphere hierarchy construction algorithm

4.3.1 Data structure

There are two types of information stored in a node of the hierarchy: they are pointers

to the descendent nodes and the data describing the characteristic ofthe current node,

as shown in Figure 4.9.

Eight pointers are stored in a node pointing to its descendent nodes. One exception is

a leafnode where all the pointers to the descendent nodes are NULL.

%

39

Radius,
Centre

X
Figure 4.9: A node structure

In addition to the pointers to the descendent nodes, there is a data region for

describing the characteristics of the node. The characteristics represented in the data

region is summarised in Table 4.1.

"Characteristics Data Type Description —

R ^ A = i E o i n t The radius ofthe sphere.

Centre A 3D vector — The centre position of the sphere.
‘ A floating point The maximum length of a bounding box.

Maximum length number See section 4.3.3.
； ； This data is valid only in the leaf node.

Vertex An integer number ^ section 4.3.3.

Table 4.1: Characteristic description of data in each node

In the sphere tree, each node represents a sphere in virtual space. A sphere can be

accurately described by its radius and its centre position, where the radius describes

the size ofthe sphere and the centre position describes the location ofthe sphere.

The maximum length describes the length of the bounding cube in a node. The

bounding cube is the largest cube enclosed by the sphere in the node. An example is

shown in Figure 4.10. As the space is subdivided based on the bounding cube (See

section 4.3.3), the maximum length is used for evaluating the centres of the spheres of

the descendent nodes.

%

40 ,

_

Figure 4.10: The bounding box and bounding sphere

In order to perform tests other than tree search (e.g. retrieving information for finite

element analysis), the position of the polygon vertex enclosed in the leaf node is

stored as well (See section 4.3.3).

4.3.2 Initialisation

Initialisation of a sphere tree is the construction of the root node of the tree. The root

node ofthe tree is the bounding sphere of the virtual object. In order to ensure that

the virtual object is enclosed completely by the sphere, a bounding box is first created

by locating the vertices of the object with the maximum and minimum co-ordinate

values. The box is then covered by the smallest sphere enclosing it.

The centre ofthe sphere at the root node can be found by the equation,

f \
^max + ^min ^max + 3'̂ min ^max + ^min (4 . 1)

V 2 2 2)

where the subscript max and min represents the maximum and minimum values of

the vertices co-ordinates.

^

41 .

The length ofthe bounding box is calculated by the difference between the maximum

and minimum value of the vertices co-ordinates. The radius of the sphere is

determined by the maximum length among the three lengths ofthe box.

max_len = max{x^,, 一 x^j^，>^max — 7min, ^max — ^min} (4.2)

where max_len is the length of the bounding cube.

A bounding cube with its length equals the maximum length of the bounding box and

its centre locates at the centre of the sphere is constructed. The radius ofthe root node

sphere is determined from the length of the bounding cube by the equation,

Radius = max lenJ— (4.3)
- V4

where max_len is the length of the bounding cube.

Result ofthe initialisation step is illustrated in Figure 4.10.

4.3.3 Expanding the hierarchy

Similar to the construction ofan octree, each edge of the bounding cube is subdivided

into two equal parts. Hence, the cube is divided into 8 or 2̂ descendent cubes as

shown in Figure 4.11. For each bounding cube, the smallest possible sphere is created

to enclose the cube. Therefore, eight overlapping spheres are created for the second

/ ^ ¾
. E B 1

^ ^

Figure 4.11: Spatial subdivision of bounding box

42

level of approximation, as shown in Figure 4.12.

•
Figure 4.12: Sphere in the second level ofhierarchy

As the space is subdivided evenly, the location of the spheres in the second level can

be calculated from the vertices of the cube.

In the spatial subdivision process, the bounding cube is subdivided into eight equal

descendent cubes. As all the cubes are axis aligned, the length of the descendent cubes

are half the length of the cube. Similarly, the co-ordinates of the centre of the

descendent cube are offset b y � / � o f the length of the cube. Hence, the centre of the

descendent cubes can be summarised by the equation,

max len,
X) = X, 土 =~~-

2 1 4

1 max lerii
< _ y 2 = J ^ i i ~ ~ = ^ (4.4)

max len,
2 2 = ;土 ~ ^

where {xi, yi, zi) is the centre of the current bounding cube,

{x2, y2, z2) is the centre of the descendent bounding cube, and

max_leni is the length of the bounding cube.

�

43

Observing that the centre of each descendent cube is equi-distance from the comer

vertices ofthe cube, the centre ofthe descendent cube is the centre ofthe descendent

sphere.

The length of the descendent bounding cube is given by,

1 max len, . . c\
max len,=——=~~^ (4.5)

— 2

where max_len2 is the length of the descendent cube, and

max_leni is the length of the cube.

From (4.3) and (4.5), the radius of the descendent sphere is given by,

[3

RadiuS2 = max_len2J-

_ max—leni p
= ~ 2 " ^ U

,. Radius, , . ^ =^ Radius, = (4.6)
2 2

where max_len2 is the length of the descendent cube,

max_leni is the length of the current cube,

Radius2 is the radius of the descendent sphere, and

Radiusi is the radius of the sphere.

The spatial subdivision is repeated recursively in a similar way until the termination

condition is reached. As illustrated in Figure 4.8, there are two termination conditions

for the process. The first termination condition is when the descendent sphere does

not lie on the surface of the object, i.e. there is no polygon vertex enclosed by the

sphere. The node will be discarded when this condition is satisfied. The second

termination condition is when there is only one polygon vertex enclosed by the

descendent sphere. This implies that the node is a leaf node. The corresponding vertex

number is stored in the leaf node. As the termination conditions are associated with

44

the number ofvertices in the bounding sphere, the test for the termination condition is

attained by comparing the distance between each polygon vertex ofthe object and the

centre ofthe sphere with the radius of the bounding sphere. By counting the number

ofvertices in the sphere, the termination condition can be detected.

The result of sphere tree construction is shown in Figure 4.13.

_ 春 眷
(a) Level 1 (b) Level 2 (c) Leaf nodes

Figure 4.13: Construction of a sphere tree

4.4 Collision detection

The collision detection algorithm is performed in two stages. In the first stage, the

algorithm searches the sphere tree to locate possible collision region. This is achieved

by performing cylinder-sphere interference test (finger segments are approximated by

cylinders). Since the fingertips are approximated by spheres, additional sphere-sphere

interference test has to be performed for detecting interference between the distal

segments and the object. When a fingertip approaches further to the object and finally

goes into the sphere of the leaf node of the sphere tree, exact interference test is

performed for detecting interference between the fingertip and the surface of the

object. This is the second stage of the algorithm. Details of the algorithm are

discussed in the following sections.

*

45

4.4.1 Hand approximation for collision detection

The hand model, which is assumed to be a rigid object, is approximated by a union of

cylinders and spheres. An example of the approximated hand model is shown in

Figure 4.14.

H | ^ P H
m i ^ B k ^ M ^ ^ ^ ^ ^ ^ ^ p g g i i ^ ! ! ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ ^ | | H ^ ^ ^ ^ ^ ^ ^ ^ ^

1 ^ ^ ¾ ¾
Figure 4.14: The simplified hand model

The simplified hand here is different from the hand approximation taken by Huang et.

al. [HUA95] as the hand can approximate the whole finger segment instead of the

joints of the fingers.

In Figure 4.14, the metacarpophalangeal, proximal interphalangeal and distal

interphalangeal segments are represented by cylinders. The sizes of the cylinders are

selected so that they are the smallest cylinders enclosing the respective finger

segments. At each fingertip, a hemisphere is attached to the distal end of the finger

segment. In addition, one vertex on the faceted model of each fingertip is selected to

be the point on the finger to be in contact with the virtual object. The box enclosing

the palm is not considered in the collision detection algorithm.

Since the approximation ofthe virtual object and virtual hand only involve cylinders

and spheres, tests for cylinder-sphere interference and sphere-sphere interference are

sufficient for locating possible collision.

«»

46 .

4.4.2 Interference tests

There are two types of interference tests performed on different parts of the fmger

colliding with the virtual object. For the metacarpophalangeal and proximal

interphalangeal segment of the fmger, the cylinder-sphere interference test is used

since the fmger segments are approximated by a cylinder. On the distal

interphalangeal segment, both cylinder-sphere interference and sphere-sphere

interference tests are performed. The results of both tests are combined to determine

the interference result between the fingers and the virtual object.

Z Sphere

A <zzzuk^ /
乙 ' ^ I Z ^ ~

• ‘ z ^ ^ ^ Cylinder

^ ^

Figure 4.15: Sphere intersecting the cylindrical surface

Cylinder-sphere interference test

As shown in Figure 4.15, interference between the cylinder and the sphere is detected

by estimating the minimum distance between the cylindrical surface and the sphere.

Assuming the centre of cylinder is the origin and the axis of the cylinder is the z-axis,

the minimum distance is calculated by (4.7),
*

47

d-=y[^JW (4.7)

where dmin is the minimum distance between the cylindrical and the sphere,

Sŷ and Sy are the x and y co-ordinates of the centre of the sphere.

Ifthe minimum distance {dmm) is larger than the sum of the radius of the cylinder (厂。）

and the radius of the sphere (r), then they are not colliding with each other.

Otherwise, further test is required.

For sphere that intersect with the cylindrical surface, three cases for detecting

interference with the bounds of the cylinder have to be considered depending on the

position of the sphere along the z-axis. An example for testing against the upper

bound is illustrated in Figure 4.16-18. Similar tests are performed against the lower

bound of the cylinder.

Denote ^ as the z co-ordinate of the centre of the sphere,

cuz as the z co-ordinate of the upper bound of the cylinder, and

clz as the z co-ordinate of the lower bound of the cylinder.

^ \ f

D

Figure 4.16: Sphere located between cylinder

�

48

Case 1: ck ̂ Sz < cu^ (Figure 4.16)

This is the same as intersecting the sphere with the infinite cylindrical surfaces. Since

the sphere is found to intersect with the cylindrical surface before this test is

Q — i —
… ^ - — — I

~ ~ • y— I
lnradr

z •

Figure 4.17: Az < rs
performed, the sphere must collide with the cylinder.

Case 2: Az < r, (Figure 4.17)

Az is defined by the difference in z co-ordinates between the centre ofthe sphere and

the upper bound of the cylinder, i.e.

Az = s: - cUz (4.8)

In this case, the semi-chord length (nrad) of the intersecting circle as shown in Figure

4.17 is given by (4.9),

nrad = ^Jr^Az' (4.9)

The semi-chord is constructed by intersecting the plane containing the upper bound of

the cylinder and the sphere. Considering the plane containing the upper bound of the

49 .

cylinder, the semi-chord is actually the radius of a circle which intersects the cylinder

where the sphere intersects the cylinder.

As both the sphere-plane intersection and the upper bound of the cylinder are circles,

the distance Jmin (obtained by 4.7) between the centre of these circles can be used for

detecting interference. If ŝfmin is larger than the sum of the radius of the cylinder and

the circle {rc+nrad), the sphere and the cylinder are not colliding. Otherwise, the

^ ~ A

W
r r " " ^

z
A

Figure 4.18: Az > rs
sphere and the cylinder collide with each other.

Case 3: Az > r^ (Figure 4.18)

In this case, the sphere is well above the plane containing the upper bound of the

cylinder. The sphere does not collide with the cylinder even it collides with the

infinite cylindrical surface.

Sphere-sphere interference test

�

50

As spheres are orientation free, the only information required to test the interference

between spheres is the distance, d, between the centre of the spheres, as shown in

Figure 4.19. I f d is larger than the sum of the radii of the spheres, the spheres are not

colliding. Otherwise, they collide with each other.

® ^ ^ ^ ^
1 ^ ^ y

X

Figure 4.19: Sphere-sphere intersection test

4.4.3 Searching the hierarchy

For each fmger segment, interference test between the cylinders approximating the

fmger and the bounding sphere of the virtual object is performed. If the interference

test gives positive result, the fmger segment is tested with the descendent spheres of

the bounding sphere. Whenever there is interference between the cylinder

approximating the fmger segment and the sphere of a node, the corresponding

descendent nodes are retrieved and tested. If positive result persists when the sphere

representing a leafnode in the hierarchy is tested, the fmger segment is reported to be

“near the virtual object" and the exact interference test is performed. Otherwise, the

fmger segment is reported to be “not colliding with the virtual object".

4.4.4 Exact interference test

As described in section 4.4.3, the fmger segment is near the virtual object if the

cylinder and sphere approximating the object collides with the sphere at a leafnode of

the hierarchy. The distal interphalangeal segments are assumed to deform the virtual

object. Therefore, further interference test between the fingertip and the object vertex

has to be performed. The test ensures that the virtual object is only deformed when

there is collision between the fingertip and the object. �

51

For each fmger, a point on the distal interphalangeal segment is assumed to be the

fingertip. A vector D is constructed from the simple vertex of the leaf node to the

fingertip. In addition, a normal N at the vertex of the leaf node of the virtual object is

constructed by averaging all the neighbouring face normal of the vertex. The vectors

are shown in Figure 4.20. Scalar product is performed on the two vectors,

i? = D#N (4.10)

where R is the result of the scalar product.

丄
Figure 4.20: Point normal and displacement

Ifthe result R is greater than zero, D is in the same direction as N and the fingertip is
4

outside in the virtual object. Hence, there is no collision between the finger and the

object. Otherwise, the fingertip penetrates into the virtual object.

An example ofthe collision detection process is shown in Figure 4.21.

• • • •

WMw^mmmm
(a) First level collision (b) Second level collision (c) Finger collided with (d) Finger collided

a non-leaf node with leaf node

Figure 4.21: Process of collision detection

*

52 .

4.5 Grasping mode

In the proposed system, there is no depth information about the position of the hand

and the virtual object. It is difficult for the user to grasp an object in the virtual

environment effectively. In the absence of gesture recognition and stereo

visualisation, some rules have to be developed so that the object can be grasp by the

hand in an effective way.

4.5.1 Conditions for Finite Element Analysis (FEA)

Since it is assumed that the virtual object is deformed by the fingertips only, there are

thus five points exerting external forces to the virtual object. In the collision detection

process, it is essential to detect simultaneously the five points where the fingertips are

in contact with the object so that FEA can be performed.

4.5.2 Attaching condition

It is difficult to manipulate the virtual hand to touch the object with five fingertips

simultaneously. In order to simplify the problem, the object is first attached to the

hand when three fingers collide with the object simultaneously. The three fmgers are

the first finger, the middle finger, and the ring finger. The contact points for the thumb

and the last finger are detected after attaching the object to the hand.

«»

53 .

The attachment is made by keeping the relative position and orientation ofthe object

with respect to the hand at the instance of contact. An object attached to the virtual

hand is shown in Figure 4.22.

•

Figure 4.22: Relative position and orientation of the object
with respect to the palm.

4.5.3 Collision avoidance

In the grasping operation, the object is assumed rigid so that no finger is allowed to

penetrate the object.

«»

54 .

Whenever the finger segments collides with the object, penetration into the object

may occur. This is avoided by recalling the position of the fmger segmentjust before

the collision. The fmger segments are then displayed at the position and orientation

just before collision with the object. Furthermore, the previous positions and

orientations ofthe lower parts are recalled when the upper part ofthe fmger collides

with the virtual object. For example, the positions and orientations of the proximal

interphalangeal segment and the metacarpophalangeal segment have to be recalled

when the distal interphalangeal segment of the fmger collides with the object, as

shown in Figure 4.23.

^ Q 3 S ^ I ^ ^ ^ I

^ H H
m m ^ M
^ H ^ .嘱
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H l f e % : • • '^^m^M ^ H ^ ^ “ ^mS^m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ • 1 ^ ^ , . -^MlM

^ ^ ^ H ^

Figure 4.23: The effect ofcollision avoidance for the approximated hand

«»

55 .

4.6 Repeating deformation in different orientation

When the collision detection algorithm is applied to the system and the tree is

constructed in mn-time, the virtual object can be deformed by the virtual hand

repeatedly in different orientation. The process is shown in Figure 4.24 to Figure

4.29 using a virtual strawberry as an example.

•
Figure 4.24: The virtual hand deforming an attached cube

^^^^^^^^^^^^^^^^^^^^^H^^W^^^^^I
^̂ BH|Krft̂ ：«'' =':sĵ .̂ [̂̂ Q̂ ^̂ ^̂ ^̂ ^̂ Ĥ
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ • B R . ' -" ‘ � i ^ ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B p i ^ #^^^^^g ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^� � Î̂ ^̂ ^̂ ^̂ H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ K ，1^^^^^

I ^ ^ ^ ^ ^ B ^ ^ 1
Figure 4.25: The deformed cube is detached from the hand

^

56

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ||lî ",. •,�̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ |
^ ^ ^ ^ ^ ^ ^ ^ H H i i M I I I ^ ^ ^ ^ ^ ^ ^ ^ I
^ ^ ^ ^ • P ^ ' ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ H
^^^^^^^^^•p^< • ‘ ‘ ^^ja^K^^^^^^^^^^^^^^^^^^^M
^ H f ^ r . . J ^ H

^^^^^^^^^^^K\' ‘ JS^^^^^^^^^^^^^^^^^^^^^^^^^^
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ ‘ ' f j | | ^ | ^^^^^^^^^^H|g| | | |^^^H^^^^^^^^^^^^^^^^^^^^^^^^

Figure 4.26: The hand tries to approach to the new object from another direction

^ ^ ^ P | | ^ |
^ ^ ^ J H

V I
Figure 4.27: The new object is attached to the hand again with another orientation

«»

57 .

• mm
Figure 4.28: The new object is deformed again by the hand

mm
^^^^^^^^^^^^^^^^^^^^^^^^^^^nnmn^^^^^^^^^^^^^^. ;;:ir.%^^^^^^^^^^ |̂

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H

Figure 4.29: The object is detached from the hand for the second time.

*

58

5 Enhancing performance

By comparing the time required for various processes in the system (Figure 5.1), the

finite element analysis (FEA) as described in chapter 3 is found to be the bottleneck.

The time required for executing the FEA procedure on an SGI Indigo2 workstation is

280 seconds for a virtual object with 267 nodes. Among the different stages in the

finite element analysis process, matrix inversion takes the longest time for execution.

With a virtual object composed of 267 nodes, the time required for matrix inversion

amount to 99% ofthe total execution time of the FEA process (Figure 5.2).

x̂i~一 “ • Program
60 ^ -_̂̂EZZg initialization
5Q / ^ I ^Tree building

40 z • QDisplaying
Time (sec.) 30 ^ _̂___ I graphics

20 —/̂ ^ ĵ • • Performing FEM

o i ^ f t t o H i i ^ ^ K ^ 3 ^ ^ ^ ^ P ^

Figure 5.1: Time for various procedures in system

Matrix inversion _-~̂~；——-~~,
g90/0 m Sorting displacment

• Matrix initialisation
"̂̂ ^ ^ ^ 口 Constructing K
^̂^ ^̂^ ^̂̂A nConstructing K ̂
^̂̂^̂̂ m̂îHft̂̂^̂H •
^̂̂^̂̂^̂̂^̂̂^̂̂^̂̂ ̂Caluclating

Figure 5.2: Comparison of execution time of procedures in
FEA

�

59

In order to reduce the execution time ofthe matrix inversion procedure, one approach

is to perform the FEA procedure on a parallel machine. This requires parallelising the

FEA procedure for more efficient execution on a parallel computer.

In the proposed system, the matrix inversion procedure is executed on an ONYX

Power Challenge 10000 machine (ONYX). The ONYX Power Challenge 10000

machine is a workstation with four R10000 processors. These four processors allow

parallel processing ofthe FEA procedure. However, the system performance can only

be improved if the computation power of the processors is properly utilised. In

addition, data communication procedures have to be developed for transferring data

between the Indigo2 and the ONYX machine.

5.1 Data communication

The data communication between Indigo2 and ONYX is accomplished by using the

client-server model, the TCP/IP Internet protocol and the Berkeley socket.

5.1.1 Client-server model

The standard client-server model [STE91] is adopted in the current system. A server

is a process waiting to be contacted by a client process so that the server can perform

the task requested by the client.

In the data communication procedure of the current system, the server process is

started on the ONYX machine before the client process in the Indigo2 starts. After

initialisation, the server is put to sleep waiting for a client process to awake it. The

client process on the Indigo2 is initialised to establish a connection. The client process

then sends a connection request across the network to the server. After the connection

is established, the client sends input data to the server. The server receives the data

and performs the FEA procedures. When the server finishes performing the FEA

procedures, data are directed back to the Inidgo2. The server then goes to sleep again

and waits for the next client request. This model can be described as a connection-

oriented model as shown in Figure 5.3.

�

60

^^^ ĵ|ĵ ll̂ ^^^^ ĵ|̂ ^^^ T«BB«jii!iî !iî î iiiii™Jl
，r

B̂Iocks until connection X
^ from client ^

] r
_ Connection establishment _ � g>nnectî reque^T^

” ^\

Z \ Vertices, Display I i s t ^ / \ ^
< Read data ^ ^ ^ ： < Write data ^

ŝ̂ ^^^ î̂ î jî ^^ Contact locations ^̂ *̂mmmmmm̂^̂
FEM procedure ^̂ “

^ Relation Matrix ^^-^~~, , ‘ \ ^ Write da ta^ ^<^Readdata^^

Figure 5.3: Connection-oriented Data Transfer

5.1.2 Internet protocol suite

The use of TCP/IP protocol originates from a military research project in US. It is

developed by a DARPA-funded research (DARPA is Defence Advanced Research

Projects Agency) that has led to an interconnection of many different individual

networks into a single large network called Internet.

TCP and IP are actually two protocols in different layers of a communication model.

Internet Protocol (IP) is the protocol that provides the packet delivery service.

Transmission Control Protocol (TCP) is a connection-oriented protocol that provides

a reliable, full-duplex, byte stream for a user process. Most Internet application

programs use TCP. Since TCP uses IP in the network layer, the entire Internet

protocol suite is often called TCP/IP protocol family.

5.1.3 Berkeley socket

The Berkeley socket used in the current system was first provide with the 4.1cBSD

(Berkeley Software Distribution) for the VAX in 1982. The current interface

corresponds to the original 4.3BSD release from 1986.

Socket is a form of interprocess communication provided by 4.3BSD that maintain

communication between processes on different systems. In the socket, the server is
�

initialised by first creating an endpoint, then binding the address, specifying ihe queue

61 .

and finally waits for connection from client. It also initialises the client by creating an

endpoint, binding the address, connecting the server. The socket also handles the data

transfer and the termination of the connection.

5.1.4 Checksum problem

The socket may read or write fewer bytes than requested, but the system does not

report any error messages. Actually, this is not an error if the buffer limit of the

socket in the kernel is reached. All the caller has to do is to invoke the read or write

system call again and read or write the remaining bytes. In the current system, a

checkpoint is set after each read and write process and remedial action, such as re-

invoking the read/write call, processed after each checksum error.

5.2 Use ofparallel tool

Parallelising the FEA procedures is accomplished by using the IRIS Power C

compiler [GRAOO]. The IRIS Power C is a C compiler that analyses sequential codes

to determine where loops can be parallelised automatically. The existing sequential

codes are recompiled so that the codes can be run efficiently on the multiprocessing

ONYX computers. In order to enhance the efficiency of the system, the parallel codes

are optimised using different skills so that the processors can be utilised effectively

during run time.

�

62

5.2.1 Parallel code generation

Using IRIS Power C, the parallel codes are generated automatically. The process of

parallel code generation is summarised in Figure 5.4.

Source code

i
Pjeprocessing

i
Compiling

•

Linking

i
Executable

Figure 5.4: Flowchart ofparallel executable generation

In the preprocessing stage, the Power C Analyzer (PCA, a C code optimisation pre-

processor) manipulates the sequential C code by,

1. Parses the source into an internal representation.

2. Performs data dependency analysis and transformations

3. Generates C source code from the internal representation.

4. Produces C code with parallel directives.

After preprocessing, the multiprocessing compiler generates the object file by,

1. Identifies parallel directives.

2. Rewrites the parallel codes with explicit runtime calls.

3. Processes the C code.

4. Generates the executable object.
>

63

After linking the multiprocessing libraries, an executable file is created which can be

run on the ONYX system. The executable will adapt to the number of processors

present in the system being used.

5.2.2 Optimising parallel code

As most ofthe optimiser and compilers do, the default options of the multiprocessing

compiler are conservative. This prevents undesirable effects resulting from aggressive

code optimisation such as elimination of useful codes. In the current system, the most

aggressive optimisation option is used. The optimisation at this level generally seeks

the highest-quality generated code even if it requires extensive compilation time. In

addition, the optimised code may degrade performance occasionally. From the result

ofthe experiments, however, this option proved beneficial to the performance ofthe

system. (See chapter 7 for detail.)

In addition, parallel directives can be used to further optimise the performance. A

data-dependency analysis is performed when PCA is running. During the analysis,

PCA looks for for-loops with the property that each iteration is data independent.

When PCA finds a loop that has the property of data independence, parallel for-loop

directive is inserted. Otherwise, the iterations will be performed sequentially. When

PCA encounters a nested for-loop, it assumes data-dependency of all the outer loops

so that the parallel for-loop directives are only inserted to the innermost loop.

Revisiting the Gauss-Jordan elimination algorithm (Figure 3.8), data independent

loops are notjust the innermost loops for performing row operation. The outer loop G-

loop) is also data independent as the update of row j only depends on the subtraction

of the row elements with a constant. The parallel for-loop can be extended to the j-

loop. This extension of parallel for-loop improved the performance of FEA by about

five times. The time for performing FEA is reduced to 13 seconds for modelling a

267-node object. A 20 times sped up is obtained since the original time for the FEA

procedure is 280 seconds for modelling the same object.

64 .

6 Implementation and Results

The current system is implemented on a SGI Indigo2 workstation with a R4400

processor, except the finite element analysis (FEA) procedure which is implemented

on a SGI Power Challenge 10000 ONYX machine with four R10000 processors.

The system allows the virtual hand to interact with the virtual object by approaching

and grasping it from different angles and orientations. The virtual hand is allowed to

deform the grasped virtual object until a desired shape is created. Other functions are

provided for inspecting the deformed virtual object using a mouse. The virtual object

model can be saved or retrieved through the menu functions.

Experiments are performed to evaluate the performance of the FEA procedures. The

results of experiments showed that performing the FEA procedure on the ONYX is

not always beneficial. The number of vertices of the virtual object has to be limited in

order to achieve interactive response.

6.1 Supporting functions

In the proposed system, supporting functions that are not directly related to the

interaction are provided through a set of pop-up menu. For example, a "read file"

process is invoked by selecting a menu option or by typing in a command from a

terminal. Though the process may not be directly related to the interaction between

the hand and the virtual object, it is necessary for recording and retrieving the shape

of the deformed object.

%

65

The pop-up menu in the current system is invoked by clicking the right mouse button.

There are several options on the pop-up menu, namely, “read file”, “keep shape”,

''save OS，，and ‘‘exif,. The appearance ofthe pop-up menu in the graphics window is

shown in Figure 6.1.

.… .i-<ji>ii.if rtnithiinoiifl,i ̂ >W lm r« 1 liiMtfinnH'iil *i »i> WMti1 Blitnitil llriMllffTtrtiMfff iifliirtl^tfl

^ ^ ^ ^ ^ ^ ^ ^ ^ m i i L i ^ ^ ^ ^ R m ^ ^ i

• P K i i ^ ^ '
^ • i ^ ^ ^ ^ ^

! • M
Figure 6.1: Pop-up menu in the graphics window

6.1.1 Read file

The function ofthis option is to read in a file specified by the user in the command

prompt. The file being read contains vertices, elements and display information ofthe

virtual object. Then, a sphere tree for collision detection between the virtual object

and the virtual hand is constructed. (See chapter 4 for detail) The virtual object is then

displayed in the virtual environment.

�

66 .
«»

6.1.2 Keep Shape

Ifthe shape ofthe deformed object is to be used as an undeformed object, the shape of

the object can be kept in memory by choosing the option ‘‘keep shape，，in the pop-up

menu. The sphere-tree for collision detection will be reconstructed. Then, the object

with its new shape will be detached from the virtual hand and will be returned to the

origin while the vertex list is saved in the memory. The new object can be rotated by

clicking and dragging the left mouse button.

6.1.3 Save as

When the "save as” option is invoked, the vertex, element and display list of the

deformed object are saved to a file. The system will convert the current virtual object

model into text format which is then written to a file. If the file to be saved does not

exist, the process will create one. Ifthe file exists, the process will overwrite the file

by the current information.

6.1.4 Exit

This is a process invoked by selecting the option “exit” in the main menu. This

process controls the termination ofthe program and closes all the graphics windows.
«

The program will be terminated immediately after all the graphics windows are

closed.

6.2 Visual results

Figure 6.2 to Figure 6.4 shows the snapshots of the virtual hand deforming different

virtual objects.

%

67
«

f^m
u K ^ m

(a) Cube with no deformation

mm
m n

(b) Cube with small deformation

%

68 .

p M p H
^ ^ ^ ^ ^ . . ^ h f c ‘ u ^ ^ p ^ , � , •

_

(c) Cube with medium deformation

W^^M
mM

(d) Cube with large deformation

Figure 6.2: The interaction with a virtual cube
%

69 .

B P P P 1
^ H ^ ^ ^ j i i j ^ ^ - , ^ | ^ ^ ^ ^ l l |

e 4 @ ^ ^ ^ ^ l
^̂ ^̂ ^̂ ^̂ ^̂ K̂ ' ,.̂ ĴP7̂ ^̂ %-<>̂ ^̂ ^̂ ^̂ *̂̂ ^̂ ^̂ ^̂ ^̂ 7̂ ^̂

K i ^ ^ H
(a) Sphere with no deformation

• 广 ^ J
K ^ _ i H i i
UkihSP^^^^M
M M ^ I ^ H

M i ^ l
(b) Sphere with small deformation

%

70 .

• | ; g M | ^ ^ ^ ^ ^ K ^ ^ H

� •
I ^ ^ 8 | i •

| ^ ^ f B i W l |

• WmHn^^ ^ H
^ ^ H ^ i m s a B 8 ^ ^ ^ ^ H

• r * T ^ ^ H
^ ^ ^ 1 ^ ^ ^ ^ ^ H

|

_ n n w i u _

^ , f ^ F ^ ^ M

mmmm m|m^^m
^ ^ K ^ ^ ^ ^ i i i p ^ > * > ^ ^ > " ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |

1 ^ ^ ^ ^ ^
(c) A strawberry with large deformation

Figure 6.4: The interaction with a virtual strawberry

^ B H H

^ H | - ' ; : - . : ^ J

^ H ^ ^ H t 〜 i > j ^ | ^ H
^ ^ ^ ^ ^ g p � j ^ ^ ^ ^ ^

^ H I H H E ^ ^ ^ > ^ ^ ^ ^ ^ ^ ; ^ ^ j | ^ I H H H
(a) A toothpaste without deformation

%

73 .

H | ^ ^ ^ ^ ^ ^ ^ H

I 1 ^^^m
• , _ - - 蕭 邏

Ii i •

r ^ ; i i ^ H
'i - ^ ^ ^ ^ ^ ^ '1 \ ^ ^ ^ H

^ ^ ^ ^ : f ' - ' ^ ^ ^ ^ H \ ^m I • •--..— - - -^#1麵_:蟲」 ^ ^ ^ ^ ^ ^ 1 ^ _ ^ ^ ^

6.3 An operation example

Figure 6.6 to 6.12 shows an example of operation ofthe system performing repeating

deformation, read and write action, and the keep shape fimction.

^ B & A ^ V
^ ^ ^ | i ^ s r T ^ ^ ^ ^ ^ ^ ^ | | ^ i B
^ ^ ^ ^ _ , > ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M
^ ^ ^ ^ B mm^t;, > ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ |
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M
^̂B̂^̂^̂^̂Hî^

Figure 6.6: A toothpaste is imported from the read file option of the pop-up menu.

| i i ^ B |

^ ^ ^ ^ ^ ^ ^ ^ H

J I ^ ^ ^ ^ ^ ^ ^ H
\ M ^ ^ n ^ H ‘^9^^^^^^^H|^|H^HmHH^P^^^^^^^^^^^^^^^^^^^^^^^^^H
\ ;̂ ĝ̂nmiBinimmiBmmiiiBmpi(wiB̂iBf̂ iiî ĵî ^̂pjjjjm;gl̂ iĵ iiPPsŝ ip̂sp̂B!̂SBSiisjŝ ŝssssssŝ ^̂ ^̂Rŝs

Figure 6.7: The system will prompt the user to enter an object name for the object to
be retrieved

75 .

WM
^ m v

Figure 6.8: The hand tries to approach to the object

^^^^^^^^^^K|fr^'. ''" ' r^^^^^^^^^Wlj^H

^ ^ f t r ' t ^ ^ ^ f l

Figure 6.9: The object is attached to the hand

M !
^^^^^^"^ M
^^^^^^<<^^^<^i^^jj||
HHI^^^HIi^^Hl^llB^^B^'^^ jSfll̂ ^HHlî ^HHHH
Figure 6.10: The object is deformed by the hand

76 .

H ^ ^ 9
^ ^ ^ H ~ ^ ^ ^ ^ ~ ^ ^ ^ ^ ^ ^ ^ ^ m k ^if^^^
^ H ^ ^ S 7 T ^ ^ ^ ^ B k ^ M
^ ^ H A ^ 4 ^ ^ ^ ^ ^ ^ ^ ^ ^ ' - V
^ H r ") ^ ^ ^ ^ H k 1
^^^^^^^^^^^^^^^^^^^K^^^M

Figure 6.11: The shape of the new object is saved by the save as option in the pop-up
menu

fflSr>_TM-M_m w;-_-__M-wi_ff_MMw*MnMi___,r,̂ rfwiiii • ini iii . i ._yijy_^;w,ij .̂̂ .j;;ig^^jg;^M; ,̂f^;My w rTwiim

- K ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ B S

•

î̂̂ M!̂RfîHB̂H!̂̂ ^̂i!̂̂ Hn!̂̂ Ŵ^̂ Ĥ̂ Ĥ?̂^̂5î̂ Ŝ̂^̂Ĥ^̂^̂^̂H5̂^̂^̂^̂^̂^̂ Ĥ̂^̂^̂®̂®̂^̂ ®̂̂^̂^̂^̂ ®̂̂^̂^̂ ®̂®̂®̂ ®̂̂
Figure 6.12 The system will prompt the user to enter a name for the object

^ H
^ ^ ^ ^ ^ ^ ^ • r ^ s ^ y ^ ^ ^ ^ ^ ^ ^ H
^ ^ ^ ^ K ^ ^ ^ ^ ^ H
^ ^ • ^ S ^ ^ ^ H
• K ^ I H I

Figure 6.13 The hand tries to approach to the new object from another direction

77 .

‘ .

^ ^ ^ ^ ^ ^ ^ ^ ^ H H B | ^ ^ 2 ^ ^ ^ H

^^^M^^^J^^^^^^BfL ^ | | ^ H

• ^ T ^ ^ m ^
H r i , : ^ ^ ^ B k J
^̂ j|̂ ĝ

Figure 6.11: The shape ofthe new object is saved by the save as option in the pop-up
menu

|^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^|^^^^^^j^^^^2^J^2||
^ i i j j i u u j i j j i i i j i n i i n i j i i i j m i j i i j i j j i u j i j j j u j j j i m

i i ^ n m ^ ^ ^ ^
| ^ ^ H ^ H

| ^ ^ H
丨 ^B^^m
S(BP̂ HiPH!̂ P̂HBBHSî BPiSiBiBfc?̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ "̂

Figure 6.12 The system will prompt the user to enter a name for the object

77 .

6.4 Performance of parallel algorithm

Comparisons have been made to compare the performance for different optimisation

techniques and different number of object vertices.

Time for FEM with different optimizations

4000 _p

3 5 0 0 - /

/ • No opt. on lndigo2 |
3 0 0 0 - /

1 / • No opt. on ONYX
丨 2 5 0 0 /

^ / . Optimized on ONYX
i : 2000 .. /

P / y ^ X Parallelized on ONYX w ith 4
/ y T processors

I ::. y^,^^^^
o J _ _ . ^ ^ ^ _ r ^ ^ " " t P ^ 1 i ^ = = " ^ f " ^ ^ ~ ~

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

No. of vertices

'； - - - - - . • • ‘

Figure 6.13: The comparison ofFEA computation time

From Figure 6.13, it is observed that the computation time required on the ONYX

system is much shorter than that of the Indigo2 when the codes are run sequentially

with the same optimisation level. The difference is due to the hardware limit of

Indigo2. The computation time required for executing the parallel codes is shorter

than that ofthe optimised sequential codes on the ONYX system.

The shape ofthe virtual object does not affect the computation time ofthe algorithm.

In the computation ofmatrix inverse, the computation time depends on the matrix size

and hence the number of vertices of the virtual object.

78 .

Performance of system

2000 . ~ 1 _ ^ 8 4 3
丨 _ « _ 7 2 9

: 1800 ft.c
\ _ ^ 6 1 5

1600 \ : ^ ^ 5 1 2
\ : ^ 4 2 3 II

1 4 0 0 \ - • - 3 9 2

\ +343丨
< 1200 \ — 2 6 7
出 V \ 一 2 1 6
I 1000 X ^ ^ ^ ^ V + 1 8 0 :

I 800 X ^ ^ : + 150
\ \ ^ + 1 4 7

6 0 0 ^ ^ \ ^ ^ ^ ^ N ^ ^ ^ ^ ^ ^ _ _ _ _ ^ ^ ^ + 1 2 5

^ v > ^ ^ ^^^^^^^^^^^^^ """"""""“^ + 1 0 0
400 x , ^ ^ ^ ^ " ^ N y - - > _ ^ " ~ ^ ^ - - > _ _ _ ^ + 8 0

^ ^ “ ^ ^ ^ ^ — 6 4
2 � � — — ^ “ ^ — 6 3

0 0 ^ J ~ ~ t = ^ £ — 4 8

1 2 3 4
Number of Processors

Figure 6.14: The comparison ofcomputation time for different number ofprocessors

From Figure 6.14, the computation time required for FEA decreases with increasing

number of processors. The rate of reduction of computation time decreases with the

increasing number of processors.

79 .

Logarithmic performance of the system
. I
I ,

3.5

3 ; ^ : : : : : n : : : r — - ^ ^ _ _ ^
I |̂ ^^^^ ÎII:::r-̂ ^^^^^^^^^===::=r"-̂ "^""^^ -729

^ _ _ r ^ A615
丨 " ^ H H E ^ ^ = = = ： = ： ^ = ^ = ： ： X512

1 ^ = = = = ^ ^ ^ ^ ^ T l i r " ^ " " ^ " ^ - " ^ ^ ^ ^ ^ ^ : :423
2 : ^ ~ ^ ^ ^ ^ ^ ^ ^ = = ^ ^ ^ ^ = = ^ ： ^ ^ :*392

I < - ~ ^ _ _ : : : : : : : 3 ^ ^ ; ; ^ ^ = = ¾ +343
S 1.5：：：：：^ > > > _ _ I 3 3 ^ ^ ^ ^ " " ^ ^ " " " ^ H -267：

丨 £ ‘ ^ — - 2 1 6

丨 I 1 ^ ^ ^ ^ = ^ ^ •
_ '•' ' ~ ^ ^ ^ ^ " ^ ^ ^ ^ ^ r ^ 二二

>： X Z ! ^ ^ ^ ^ ^ x100

Ojl 0:1 0.2 r # ^^ h ' ^ 07 二
-0.5 • . 63

丨 • 4 8

-1
log(no. of processors)

Figure 6.15: Logarithmic relation of computation time and number ofprocessors

When the logarithm of the time for FEA and the number of processors is plotted,

linear relationships are observed.

Another observation is that the trendlines are nearly parallel for the series representing

the number of vertices larger than 300. In Figure 6.16, the slopes of trendlines are

plotted against the number of vertices.

80 .

Slope of trendlines with differentvertex numbers

0.5 ̂
D)
o
fc* ^ ^ ^ ^ . . — — — 1 — 一 “
0 u ^ I 1

W < 0 \ 200 400 600 800 1000
1 ^ -0.5 \
=一 \
c f \ ^ • • • •

p ; ; : z i z ^ z z z z z z z z :
a o
w -2 J

no. of vertices

Figure 6.16; Relation ofslope oftrendlines in Figure 6.15 and the number ofvertices

The slope of the trendlines decreases from 0.18 to a minimum value of about 1.5

when the number ofvertices increases from about 50 to 200. Then the slope increases

again and reaches a steady value of about 0.9 when the number of vertices is larger

than 400.

When the log-log relation between the computation time of FEA and the number of

processors used in the procedure is approximated by a straight line, the actual function

approximating the time and number of processors in normal scale is given by,

(derivation see Appendix B)

T = kN"' (6.1)

where T is the computation time of FEA,

k is a constant,
•

N is the number of processors,

m is the slope of the trendline when the time- processor relation is plotted in

log scale.

81 .

From Figure 6.16, the value o fm is nearly zero when the number ofvertices is small.

From (6.1), the value ofN^ is about one when m is about zero and the value ofTwill

be independent ofthe value ofN. In other words, the computation time is independent

ofthe number ofprocessors used in the procedure. Hence, the parallel algorithm is not

efficient when the number of vertices is small.

When the number of vertices is larger than 100, the value m decreases and becomes

negative. The negative value of m, from (6.1), implies a decrease in time for

performing FEA when the number of processors is increased. Therefore, the

efficiency of the parallel algorithm continues to improve with increasing number of

vertices. The improvement of efficiency is due to the declining effect of computation

overhead for parallel processing when the number ofvertices increases.

When the number ofvertices is larger than 400, the value of m comes to a steady state

and is equal to -0.9 approximately. If the time for FEA procedure is inversely

proportional to the number of processors used, the value o f m should be equal to -1.

The value -0.9 implies that the time-processors relation is nearly inversely

proportional since the time complexity for performing FEA is given by,

2n^{7^n-X)
N

where n is the size of the global stiffness matrix k^.

N is the number of processors.
/ 1 \

For fixed n’ the time complexity is thus 0 — ’ an inversely proportional relation.
V N j

To sum up, several variables are affecting the performance of the FEA procedures,

• Parallel algorithm - the algorithm becomes more efficient when there are

more parallel loops in the procedure.

• Computation overheads for parallel processing — this is a competing factor

with the parallel algorithm, the computation overhead increases with the

increase in the number of parallel loops in the procedure.

82 .

• Number of processors - the efficiency of the system is expected to increase

with increasing number of processors. However, this is not always true. There

is not much improvement when the number of processors increases to certain

level. Fortunately, the decay of improvement is predictable in the current

system. The number of processors used for the task can be optimised using the

existing trend of performance. For example, performing FEA for an object

with 216 vertices within 0.5 seconds, 27 processors should be used by

extrapolating the log-log relation trendline with 216 vertices in Figure 6.15.

83 .

7. Conclusion and Future Work

7.1 Conclusion
A system for interacting with virtual objects in the virtual world by using an instrumented glove has

been developed. The system is found to provide interactive response in the manipulation of virtual

objects. The performance of the most time consuming task of finite element analysis (FEA) is

improved by porting the analysis algorithm to the Power Challenge 10000 multi-processor

computer (ONYX).

Tetrahedral solid elements are adopted for modelling the deformable virtual object. The stiffness

matrix is partitioned and the linear equations describing the force-displacement relation is

rearranged so that deformation ofthe object can be estimated according to movement ofthe fmgers.

Gauss-Jordan elimination is adopted for computing the inverse ofthe relation matrix.

A sphere tree is employed for detecting collision between the virtual object and the virtual hand.

Collision is detected by locating the leafnodes of the tree where sphere of the node collides with an

approximation ofthe virtual hand. Decision rules for attachment of the virtual object to the virtual

hand are developed.

A data communication algorithm is also developed for distributing the tasks ofFEA computation to

the parallel machine. This algorithm transfers data between the client computer, an Indigo2

machine, and the server computer (the ONYX). The matrix inversion procedures are parallelised by

using IRIS Power C. The speed for performing FEA is 22 times faster than the serial version

running on the Indigo2 for 200 to 300 node.

Experiments showed that the time for performing FEA is inversely proportional to the number of

processors used. The system performance is thus expected to be improved if more processors are

available in the server computer (the ONYX). The time for performing FEA decreases

exponentially when more processors are added to the system.

7.2 Future Work

The algorithm adopted for matrix inversion in the FEA procedure is the Gauss-Jordan algorithm. It

is expected that performance ofthe system can be improved by taking the band-symmetric matrix

property into consideration, e.g., using LU-decomposition for matrix inversion.

84
^

«

In the current system, parallelisation relies on the compiler of the ONYX system that mainly attains

data parallel operations. It is envisaged that higher degree of parallelism can be attained by

parallelising the algorithms.

The same approach can be extended to include elasto-plastic and plastic behaviour of virtual

objects. In this case, model capable of describing the behaviour of the virtual object under large

deformation has to be used. However, this will lead to non-linear equations so that iterative

methods have to be adopted for solving the equations. This will have adverse effect on the

performance and accuracy of the system.

Different analysis methods, e.g., finite difference method, may be adopted to explore possible

alternatives for modelling deformable object. Head mount and force feedback devices may be

employed to improve the user-interface.

85
.«

Reference:
[BAN95] Srikanth Bandi and Daniel Thalmann, "An Adaptive Spatial

Subdivision of the Object Space for Fast Collision Detection of

Animated Rigid Bodies", in Eurographics ,95，pp.C-239-270.

[BR096] Morten Bro-Nielsen, Stephane Cotin, “Real-time Volumetric

Deformable Models for Surgery Simulation using Finite Elements and

Condensation", pp. C57-C66, Eurographics '96, volume 15, number 3,

1996.

[CHA91] Tirupathi R. Chandmpatla, Ashoh D. Belegindu, "Introduction to

Finite Elements in Engineering", Prentice Hall Inc., New Jersey, 1991.

[GOU89] Jean-Paul Gourret, Nadia Magnanat Thalmann, Daniel Thalmann,

"Simulation of Object and Human Skin Deformations In a Grasping

Task", pp. 21-30, Computer Graphics, volume 23, number 4, 1989.

[GOU91] Jean-Paul Gourret, Nadia Magnanat Thalmann, Daniel Thalmann,

"Modeling of contact deformations between a synthetic human and its

environment", pp. 514-520, Computer Aided Design, volume 23,

number 7, 1991.

[GRAOO] David Graves, “IRIS Power C User's Guide", Silicon Graphics, Inc.,

Mountain View, California.

[HUA95] Zhiyong Huang, Oman Boulic, Nadia Magnenat Thalmann, Daniel

Thalmann, “A Multi-sensor Approach for grasping and 3D

Interaction", conference proceedings of CGI'95, June 1995, Leeds UK,

pp. 235-254.

86 .

[HUB96] Philip M. Hubbard, “Approximating Polyhedra with Spheres for Time-

Critical Collision Detection", ACM Transactions on Graphics, volume

“ 15, number 3, July 1996, pp.179-210.

[HUI97] K. C. Hui, M. C. Ma, “Interacting with a virtually elastic object",

pp.243-248, Proceedings of International Conference on

Maunfacturing Automation, number 1, 1997.

[KAN96] HoSeok Kang, Avi Kak, “Deforming virtual objects interactively in

accordance with an elastic model", pp. 251-262, Computer Aided

Design, volume 29, number 4, 1996.

[LIU91] Yun-Hui Liu, Saguru Arimoto and Hiroshi Noborio, “A New Solid

HSM and Its Application to Interference Detection between Moving

Objects", Journal ofRobotic Systems, 1991, pp. 39-54.

[MCL92] Patricia McLendon, "Graphics Library Programming Guide", Silicon

Graphics Inc., Mountain View, California, 1992.

[MOR88] M. Moore and J. Wilhelms, "Collision Detection and Response for

Computer Animation", Computer Graphics (Proceedings of Siggraph),

volume 22, number 4, August, 1988, pp.289-298.

[PAL96] I. J. Palmer and R. L. Grimsdale, "Collision Detection for Animation

using Sphere-Trees", Computer Graphics Forum, volume 14, number

2, pp.105-116.

[POL94["Polhemus 3Space® Users Manual", Polhemus Incorporated

Colchester, Vermount, 1994.

[RAP96] Avi Rappoport, Alla Sheffer, Michel Bercovier, "Volume-Preserving

Free-Form Solids", IEEE Transactions on Visualization and Computer

Graphics, volume 2, number 1, 1996.

87 .

[SMI95] Andrew Smith, Yoshifumi Kitamura, Haruo Rakemura and Fumio

Kishino, “A Simple and Efficient Method for Accurate Collision

Detection Among Deformable Polyhedral Objects in Arbitrary

Motion", Proceedings of IEEE Virtual Reality Annual International

Symposium '95, pp.136-145.

[STE91] W. Richard Stevens, “UNIX® Network Programming", Prentice Hall

International, New Jersey, 1991.

[TER87] Demetri Terzopouluos, John Platt, Alan Barr, Kurt Fleischer,

“Elastically Deformable Models", pp. 205-214, Computer Graphics,

volume 21, number 4, 1987.

[THA95] Nadia Magnanat Thalmann, Daniel Thalmann, "Finite elements in

task-level animation", pp. 227-242, Finite Elements in Analysis and

Design, volume 19, 1995.

[VIR94] " C y b e r G l o v e ™ User's Manual", Virtual Technologies, Palo Alto,

1994.

[YOU93] Ji-Hoon Youn and K. Wohn, "Realtime Collision Detection for Virtual

Reality Applications", in Proceedings of IEEE Virtual Reality Annual

International Symposium '93, pp.415-421.

88
^

Appendix A - Matrix inversion

From (3.40), Kn is required to be inverted so that the unknown displacements can be

computed by (3.40). In this thesis, Gauss-Jordan elimination is used to compute the

inverse o f K n . The algorithm is summarised in Figure A.1.

nxn_matrix global;
nxn_matrix
procedure matrix_inverse(global)
{ 一

integer i , j ,k;
nxn—matrix inverse;

Initialise inverse as identity matrix

for i = 1 to n by 1
Normalise row i o/global by dividing it with diagonal element global(i,i)
Divide row i o/inverse by global(i,i)
for j = 1 to n by 1

i f (i^ j) ^
1. Eliminate ith element of row J in global by:

Row j o/global = row j of global - &lobal(j,j)_raw i o/global；

2. Rowj o/inverse = row j of inverse 一 ^globalO,j)*row i o/inverse)
end if

end for Q-loop)
end for (i-loop)

return inverse;

^ Figure A.1: Pesudo-code of Gauss-Jordan elimination

Before the elimination, an identity matrix (matrix 2) is created for computing the

inverse. This matrix is written side by side with the stiffness matrix as shown in

Figure A.2.

_Xii x,2 Xi,,l 0 0
• • • • • •

2̂1 2̂2 � 0 1 0 • • • • • •
• . • • • •

• . • • • •
I,,1 x"2 … � 0 0 … 1

Figure A.2: Matrix initialization

89
^

Two processes are performed repeatedly from the first row (row 1) to the last row

(row n) ofboth matrices, which are illustrated in Figure A.3.

K �1 0 0 Ĵi!/：*：" iXn � 0
I \ • • • . . . • • •

'1 0 ŵ 1̂- '̂ 11 &12 0 0 \ 0 1 ； JC2,/̂21 &22 •: 0
... .• . • • • • • • \ • . . • 7 • • • • •

0 1 ； 义2,�i^22 ; • 0 \ : •• • .• •• : •• • . . .
•： . . . ; , ; ； '•• ; •• • \ 0 ••• 1 ••• 乂丨,iX;, a ,2 … i x " ••• 0
0 … X , ... 乂丨丨 a,, /x,2 ••• 1 ••• 0 / ； ••. •： ••. •： ； • . . … . . .•：
： , . • ： • • . •： ； . . . … . . . ； / 0 0 • • • 0 … x „ ix„, ix„2 ••• i^ni ... 1

0 0 ... x„ ... ^J ix„, ix„, ••• 0 ••• 1 ~ | / [_
1 Matrix 1 Matrix2 � ‘ Matrixl Matnx2

Figure A.3: Row operations and normalisation

a. Normalise the current row (row i) of matrix 1 by dividing the row elements by

the diagonal element at column i of matrix 1. Divide each elements ofrow i in

matrix 2 by the same value, i.e. the of diagonal element of matrix 1 of row i.

The equation describing this process is given as,

x(i
^ij = —

^ii
. 〜 （A.1)
zx,, 二 ——

^ii

where j = 1, 2, ... , n is the column number of the matrices,

b. Eliminate the other elements of column i in matrix 1 by row operation. For

example, ifrow k is to be eliminated, the first step is to multiply row i by the

value of the element at column i, row k {xkd- Then, subtract the whole row

from row k. The element at column i in row k {xkd will be eliminated. Perform

the same operation for matrix 2. The equation describing this process is,

^kj 二 ^ki — ^ki X ^ij
/ X , . = ^ . - X , , X / X , y (A * 2)

where j 二 1, 2, . •. , n is the column number of the matrices.

k = 1, 2, •. • , i-\, /+1, •.. , n is the row number of the matrices.

90
«

When the processes are completed, matrix 1 will be eliminated to an identity matrix.

Meanwhile, matrix 2 will be the inverted matrix of the global stiffness matrix.

"1 0 0 -

0 1 … 0 Kii_i • • •
• • •

蠢 « «

0 0 ... 1

Figure A.4: Final status of matrix 1 and 2

91 ,

Appendix B - Derivation of (6.1)

Suppose the time of performing FEM is T,

the number of processors is N,

the slope of a trendline in Figure 6.13 is m,

the constant ofthe actual time-processors relation is k,

the intercept of a trendline in Figure 6.13 is c 二 log k.

From Figure 6.13, the equation of trendlines are given by,

log T = m log N + c (B.1)

Rearranging (B.1),

logr = logiV'" +c

= logAT+logA (B.2)
=log(iV'" X k) •
= XogkN"'

Anti-loging both sides, the relation becomes,

T = kN'"

which is the equation (6.1).

92 .

Appendix C - Derivation of (6.2)

The time complexity for performing FEA in parallel machine can be derived from the

parallel algorithm itself, which is summarised in Figure C.1.

Denote?? - the size of the global stiffness matrix k^.

N - the number of processors.

G - a nxn matrix

R — the resulting matrix (becomes inverse of G finally)

nxn matrix procedure matrix_inverse(G)
{

Initialise R as identity matrix

tor 1 = 1 to n by 1 i

DO in parallel loops with Nprocessors \

\Normalise row i ofG by dividing it with diagonal element G(i,i) “ r (2 n) \
Divide row i ofR by G(i,i) , .’‘^处 fI(2n) \
•gim_MiWMI_iimM̂ M#tifrt#¥¥̂ ™̂ ^̂ #̂ P̂ ^̂ ^̂ +̂L�'b~—’,仇叫：。•̂ 〜 产 ° ^ ^ „ 一 ? 4 ； ^ 左 : : : - . . ^ 1 丨 , ^ -̂ r-̂ -̂ w*®' \

| for j = 1 t o n b y 1 |v \
i f (i ^ j) | \ \
11. Eliminate ith element ofrowj in G by: | (3n) | (n-l) (n)

Row j ofG - row j ofG - (G{]j)*row i ofG) ^ | / |
2. Row i ofR 二 row/ ofinverse - fG(jj).row i ofR) _ _ | ^ n) |y/ /

e|tjpjp!_,—_i||'||||![|||||____̂ ,̂_“_—1一》^—一一-_映-—""—"輕_—种购_̂ "̂ I /

| e^f^^^;^^S2SL-MMM-ife^JMJ^iJ^ L''丄,，』“：1仏」川』.‘.丄,」1二“」山孤啪讀»«1«1 /

END OF parallel loops with Nprocessors /

end for (i-loop) |

return R;

^ Figure C.1: Pesudo-code of current matrix inverse algorithm

From the figure, there are 3 operations performed in the row operation ofthe matrix G

and the matrix R in the j-loop. Since there are n elements for a row in each matrix (G

and R), there are 3xn operations for one row operation step in the j-loop. As there are

two such row operation steps in the j-loop, the number of operations are added

93 .

together and the total number of operations for each iteration in the j-loop is 6n

operations.

In the j-loop, the elimination process is omitted for the normalized row as it is already

updated. Therefore, the number of iteration that row operations are performed is n-1

and the total number ofoperation performed in the nestedj-loop is,

(n-l)(6n) (C.1)

Apart from the j-loop, the i-th row in the matrix G is normalized. The step takes 2

operations and there are 2n operations. Similarly, updating the i-th row in matrix R

takes 2n operations. The number of steps taken is,

4n (C.2)

As the j-loop and the steps of updating the i-th row are in the i-loop, the steps are

added together and the total number ofsteps is,

(n-1) (6n) + 4n = 6rf - 2n (C.3)

The operations in the i-loop are performed in parallel with N processors, the time

taken for the operations should be divided by the number of processors and becomes,

6 " 2 - 2 " (C.4)
N

Simplifying (C.4), the expression becomes,

2 如 - 1) (C.5)
N

The outermost loop in the elimination process is the i-loop. There are n iterations in

the loop which are performed sequentially. The time complexity for the whole
elimination process is thus,

2n(3n-l)
nx

N
2n^{3n-l)

- N

94 .

-
 .

 •

 \

J
'
^
-

M

<
.
.
 v.
.

 .

 ,

.

 ̂
^
¾

,
;

、
-
.
.
,
.
 -

 •

 •

 ,1’

 ,

 ,-
f
,
,
；

o
 ,.

 :

 .
 .

 _

-
.

.

/
)
，
,

 ̂

,
¾
>
:
 ,

 .

 .
.
.
.

 :

 V

 s
w
>
i

s

.
,
 ..

 .

 V

 t

 i
?
6
.

、

.

.

 .
"
.
1

、
5

,
 *-

 .t

 A
*
%
;
s

『J/....:

“

 。
身
0

.
 .‘

 I

 -
r
v
^

、
,
 :
.
.

、

B

•
 ,

 ,

 :
r

 .
j

:

 #
?
處

J
:
〈
/
」
.
-
.
,

 ..

,

、

•

"

.

‘

 。；

.
 “

 ̂

 ,

 c

 ̂

：

"

 X

 .

 j

 .

、

，

 .
，
、
」
么

.
 .

 #

 .

 .‘

 f

 ,̂
r

 <
0

;
-

W

:

」

 ：
v
.
:
,
r

 i

-̂
,n"̂
.rŝ
-
 .

 >

 ,

 -—

 •.,..

 V

 ̂

 *
 ̂

,、

.

 .
.
：
.
.
.
.
0
‘
.
：
/
乂
2
應

：：

.

’

”：,..•-.:

 -~,、y

1
.
 J

CUHK L i b r a r i e s

00370431fi

