
A LAGRANGIAN RECONSTRUCTION OF A CLASS
OF LOCAL SEARCH METHODS

••'̂ ŝ 、
广；

/ , ‘
/ ' • / • •

gi A.: / "".

u
• :%
•_• 5
...广- . \

: (: . ’ ‘ ...
\ .

B Y

CHOI M 0 FUNG KENNETH

*

A DlSSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

DlVISION OF COMPUTER SCIENCE AND ENGINEERING

THE CHINESE UNIVERSITY OF HONG KONG

JUNE 1 9 9 8

*

/^^^^
' 4 1 6JU^J^;J[J •

V ' UNIVERSITY"""""“̂ /̂ J/
; ; ^ L I B _ SYSTEM^^
< ^ ^ ^

摘要

近年來，愈來愈多數據顯示，局部搜尋法中的試探性修復算法能夠有效地解

決一些大型及困難的約束滿足問題（。3卩，3)。在這篇論文中，我們嘗試把試探性

修復法與離散拉格朗日乘數法聯系起來。我們提供了 一種二步的變換方法，

它能夠將任何二元約束滿足問題轉換成零一整數約束極小化問題。根據變換

所得的極小化問題，我們提出了一個名叫〔SV^L的離散拉格朗日搜尋方案。

LSVL包含五種不同的自由度，只要代入不同的參數，我們便能獲得不同效率

及不同特性的離散拉格朗日搜尋算法。我們更證明了能夠利用〔SVH重建一個

試探性修復的典型算法一GENET。這結果不但對了解GENET提供了一些理

論基礎，更指出GENET的雙重觀點一一方面是試探性修復法，另一方面是離

散拉格朗日乘數法。此雙重觀點使我們能夠進一步分析及研究GENET的各

種變種。實驗結果證實我們重建的GENET與其他文獻上記載的GENET有著

相同的迅速收欽特性°另外，我們的最好的GENET變種亦比重建的GENET

更有效率。此外，我們更擴展CSVL去解決一般的約束滿足問題。我們發現

• 只要將一般的約束滿足問題轉換成整數約束極小化問題，我們的•[便能

直接地運用在這些問題上°實驗指出我們擴展的csv[在大部份的問題上都與

一個擴展GENET的算法一E-GENET—有著相似的效率。

ii

Abstract

I n recent years, heurist ic repair algori thms, a class of local search methods, have

demonstrated certain success on solving some large-scale and computat ional ly

hard constraint satisfaction problems (CSP's). I n this thesis, we establish a con-

nection between heurist ic repair methods and the discrete Lagrange mul t ip l ie r

method. We present a two-step t ransformat ion for convert ing b inary CSP's into

zero-one integer constrained min imiza t ion problems. Based on the resultant min-

imiza t ion problem, a generic discrete Lagrangian search scheme CSVC is pro-

posed. CSVC has five degrees of freedom. By instant ia t ing i t w i t h different

parameters, algori thms w i t h different efficiency and behavior can be obtained.

We show that the G E N E T model, a representative heurist ic repair a lgor i thm, can

be reconstructed by our CSVC f ramework. This result not only provides a theo-

ret ical foundat ion for better understanding of G E N E T , bu t also suggests a dual

v iewpoint of G E N E T : as a heurist ic repair method and as a discrete Lagrange

mul t ip l ie r method. Variants of G E N E T derived f rom bo th perspectives are exam-

ined. Benchmarking results conf i rm that our reconstructed G E N E T has the same

fast convergence behavior as other G E N E T implementat ions reported in the l i t -

erature, and our best variant is more efficient than the reconstructed G E N E T . In

addi t ion, we fur ther extend our CSVC f ramework for tackl ing general CSP's. By

t ransforming any general CSP into an integer constrained min imiza t ion problem,

the discrete Lagrangian search procedure CSVC can be applied directly. Experi-

ments show that the performance of our extended CSVC is comparable w i t h that

of E - G E N E T , an extended G E N E T for efficient general CSP's solving, in most

problems.

iii

Contents

1 Introduction 1

1.1 Constraint Satisfaction Problems 2

1.2 Constraint Satisfaction Techniques 2

1.3 Mot ivat ion of the Research 4

1.4 Overview of the Thesis 5

2 Related Work ^

2.1 Min-confl icts Heuristic 7

2.2 GSAT 8

2.3 Breakout Method 8

2.4 G E N E T 9

2.5 E - G E N E T 9

2.6 D L M 10

2.7 Simulated Annealing 11

2.8 Genetic Algor i thms 12
b

2.9 Tabu Search 12

2.10 Integer Programming 13

3 Background 15

3.1 G E N E T 15

3.1.1 Network Architecture 15

3.1.2 Convergence Procedure 18

3.2 Classical Opt imizat ion 22

iv

3.2.1 Opt imizat ion Problems 22

3.2.2 The Lagrange Mul t ip l ie r Method 23

3.2.3 Saddle Point of Lagrangian Funct ion 25

4 Binary CSP's as Zero-One Integer Constrained Minimization Prob-

lems 27

4.1 From CSP to SAT 27

4.2 From SAT to Zero-One Integer Constrained Min im iza t ion 29

5 A Continuous Lagrangian Approach for Solving Binary CSP's 33

5.1 From Integer Problems to Real Problems 33

5.2 The Lagrange Mul t ip l ie r Method 36

5.3 Exper iment 37

6 A Discrete Lagrangian Approach for Solving Binary CSP's 39

6.1 The Discrete Lagrange Mul t ip l ie r Method 39

6.2 Parameters of CSVC 43

6.2.1 Object ive Function 43

6.2.2 Discrete Gradient Operator 44

6.2.3 Integer Variables In i t ia l izat ion . . . • 45

6.2.4 Lagrange Mul t ip l iers In i t ia l izat ion 46

6.2.5 Condit ion for Updat ing Lagrange Mul t ip l iers 46

6.3 A Lagrangian Reconstruction of G E N E T 46

‘ 6.4 Experiments 52

6.4.1 Evaluation of £<Sr>£(GENET) 53

6.4.2 Evaluation of Various Parameters 55

6.4.3 Evaluation of CSVC{UAX) 63

6.5 Extension of CSVC 66

6.5.1 Arc Consistency 66

6.5.2 Lazy Arc Consistency 67

6.5.3 Experiments 70

V
考

7 Extending CSVC for General CSP's : Initial Results 77

7.1 General CSP's as Integer Constrained M in im iza t i on Problems . . 77

7.1.1 Formulat ion 78

7.1.2 Incompat ib i l i t y Functions 79

7.2 The Discrete Lagrange Mu l t i p l i e r Method 84

7.3 A Comparison between the B inary and the General Formulat ion . 85

7.4 Exper iments 87

7.4.1 The A^-queens Problems 89

7.4.2 The Graph-coloring Problems 91

7.4.3 The Car-Sequencing Problems 92

7.5 Inadequacy of the Formulat ion 94

7.5.1 Insufficiency of the Incompat ib i l i t y Functions 94

7.5.2 Dynamic I l legal Constraint 96

7.5.3 Exper iments 97

8 Concluding Remarks 100

8.1 Contr ibut ions 100

8.2 Discussions 102

8.3 Future Work 103

Bibliography 105

vi

List of Figures

3.1 A CSP {U,D,C), where U = {ui,U2,us),Du, = Du, = Du, 二

{ 1 , 2 , 3 } and C = { | u 1 - u 2 | = 2,u2 < u3} 17

3.2 The G E N E T network of the CSP in Figure 3.1 17

3.3 A osci l lat ing G E N E T network in synchronous update 19

3.4 The network convergence of G E N E T 21

4.1 A simple CSP and its corresponding G E N E T network 28

6.1 A n arc inconsistent CSP and its corresponding G E N E T network • 68

• •

Vll

List of Algorithms

3.1 Convergence procedure of G E N E T 18

6.1 The CSVC[N, A_?, h, /乂，U)̂ procedure 43

6.2 A modi f ied input calculat ion procedure, that can detect lazy arc

consistency, for G E N E T 68

6.3 The h?.zy-CSVC{N, Z ^ , h, / - , U^) procedure 69

•

viii

List of Tables

5.1 Results of continuous Lagrangian approach on the N-qneens problems 38

6.1 Results of CSVC{GENET) on the 7V-queens problems 53

6.2 Results of CSVC{GENET) on the hard graph-coloring problems . . 54

6.3 Results of N 、 — and N—iation} on the iV-queens problems . . . 56

6.4 Results of N — o } and N、——、on the hard graph-coloring problems 57

6.5 Results of N—。、and N—iation] on the t ight random CSP's . • . 57

6.6 Results of l^^{many} and A^{one} on the iV-queens problems . . • • 58

6.7 Results of A^{rnany} and Ag{one} OH the hard graph-coloring problems 58

6.8 Results of A^^rnany} and Af{one} on the t ight random CSP's 59

6.9 Results of h{random} and I^{greedy} OH thc iV-queens problems . . . 60

6.10 Results of h{random} and h{greedy} oD. the hard graph-coloring prob-

lems GO

6.11 Results of h{random} and Ig{greedy} OH the t ight landom CSP's . . . 60

6.12 Results of 〜―；已} and 〜明） o n the iV-queens problems . • . 62

. 6.13 Results of t / xo - /e } and f ^ { e ^ y } on the hard graph-coloring problems 62

6.14 Results of U^^^^^^^y and t ^ { e ^ y } on the t ight random CSP's . . . 62

6.15 Results of CSVC{UAX) on the iV-queens problems 64

6.16 Results of CSVC{UAX) on the hard graph-coloring problems • . . 64

6.17 T iming results of CSVC{MAX) on the t ight random CSP's . . . • 65

6.18 Number of iterations and Lagrange mult ipl ier updates of CSVC{UAX)

on the t ight random CSP's 66

6.19 Results of Lazy-£«SP£(GENET) on the iV-queens problems . • • • 71

ix

6.20 Results of Lazy-£<SX>£(MAX) on the A^-queens problems 71

6.21 Results of Lazy-£5X>>C(GENET) on the random permuta t ion gener-

at ion problems 72

6.22 Results of L a z y - £ 5 P £ (M A X) on the random permuta t ion genera-

t ion problems 73

6.23 Results of Lazy-£<Sr>£(GENET) on the art i f ic ia l problems 73

6.24 Results of Lazy-£<Sr>£(MAX) on the art i f ic ia l problems 74

6.25 Results of Lazy -£5P£(GENET) on the t igh t random CSP's w i t h

arc inconsistency 75

6.26 Results of Lazy-£<SX>£(MAX) on the t ight random CSP's w i t h arc

inconsistency 75

6.27 Results of Lazy-£5X>£(GENET) on the insoluble random CSP's . • 76

6.28 Results of Lazy-£<SP£(MAX) on the insoluble random CSP's . . . 76

7.1 Results of >C5X>£(GENERAL) on the A/"-queens problems modeled

w i t h the + constraint 90

7.2 Results of >C<S7^£(GENERAL) on the N-qneens problems modeled

w i t h the among constraint 91

7.3 Results of £5X>£(GENERAL) on the hard graph-coloring problems 92

7.4 Results of >C5P>C(GENERAL) on the car-sequencing problems . . • 93
—

7.5 The value of the Lagrangian funct ion L{z, X) for different integer

variables z and Lagrange mul t ip l iers A of a CSP 96

7.6 Results of V>-CSVC(GENERAL) on the iV-queens problems . • • . 99

7.7 Results of Ti-CSVC(GENERAL) on the hard graph-coloring problems 99

*

X

Chapter 1

Introduction

Many problems found in art i f icial intelligence and computer science, such as tem-

poral reasoning, resource allocation, scheduling, t ime-tabl ing, configuration, di-

agnosis and satisfiabil i ty problems, can be formulated as constraint satisfaction

problems (CSP,s). Because of the generality of CSP's, efficient algorithms for

tackl ing CSP's are very important . Tree search methods and local search meth-

ods are two common classes of constraint satisfaction techniques. Experience

shows that local search methods are more efficient than tree search methods for

a number of large-scale and computat ional ly hard CSP's. However, local search

methods are easily trapped in local min ima and fai l to return a solution. This

thesis aims to explore a class of local search methods for solving CSP's and pro-

vide a connection between the local search methods and the Lagrange mult ip l ier

method, a well-known constrained opt imizat ion technique.

We show that the G E N E T model [66, 60, 7, 6]，a representative member of

the class of heuristic repair methods, is closely related to the saddle point search

of the Lagrange mult ip l ier method. This result not only gives us a formal char-

acterization of the heuristic repair methods, but also allows us to gain important

insights into the various design issues of heuristic repair algorithms. In addit ion,

the dual viewpoint of GENET, as a heuristic repair method and as a discrete La-

grange mult ip l ier method, suggests many possible modifications for the algorithm.

By exploring different variants of G E N E T derived f rom both perspectives, better

1

Chapter 1 Introduction

heurist ic repair a lgor i thms are derived.

1.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) [37] is a tup le [U,D,C), where U is a

finite set of variables, D defines a domain Du wh ich contains a set of possible

values for each u G U, and C is a f in i te set of constraints. Each constraint c G C

is a relat ion defined over a subset of variables (i.e. c C Du^ X Du2 x . •. x ^¾¾)?

restr ic t ing the combinat ion of values that can be assigned to the variables in this

subset. A solution is an assignment of values f rom the domains to their respective

variables so tha t al l constraints are satisfied simultaneously. We call such an

assignment a consistent assignment of the CSP. I n th is thesis, we are concerned

w i t h an impor tan t subclass of CSP's, i n which the domains are finite.

The arity of a constraint is the number of variables involved in the constraint.

A constraint is said to be n-ary i f i t is on n variables. I n general, a CSP may

have constraints of any arity. A b inary CSP is one which contains unary and

b inary constraints only. A label {u,v) [66] is a variable-value pair which repre-

sents the assignment of the value v to the variable u. Simi lar ly, a compound la-

bel {{ui,Vi), {u2,v2),..., {un,Vn)) [66] denotes the simultaneous assignment of the

values v i , V2,. • . , ”n to the dist inct variables u i , u 2 , . . . , Un respectively. Hence, a

solut ion of a CSP is a compound label containing al l variables and satisfying al l

constraints in the CSP.

1.2 Constraint Satisfaction Techniques

CSP,s are, in general, NP-hard [5]. Any a lgor i thm for solving CSP's is l ikely to

require exponential t ime in problem size in the worst case. Two different kinds

of algori thms, namely tree search algori thms and local search algori thms, are

used to tackle CSP's. Tree search algori thms are usually based on extension of

par t ia l assignments and backtracking technique, where a partial assignment is an

2

Chapter 1 Introduction

assignment of values to a subset of variables in the CSP. Ini t ia l ly, a tree search

algori thm starts w i th an empty part ial assignment and extends incrementally the

part ia l assignment by selecting an unassigned variable and assigning a value to

the selected variable f rom its domain. I f the current part ia l assignment cannot

be extended without violat ing any constraints, the algori thm backtracks to one

of the previous variables and instantiates the variable w i th another untr ied value

f rom its domain. As the process continues, the algori thm wi l l eventually either

find a solution for the problem, or prove that the CSP has no solution. Since tree

search algorithms are guaranteed to either return a solution i f one exists or prove

the insolubil i ty of a CSP, they are sound and complete.

Many tree search algorithms have been developed for solving CSP's. Exam-

ples are simple backtracking [42, 29], backjumping [42] and backmarking [42.

In order to improve the performance, constraint propagation techniques, such as

consistency algorithms [37, 29] and forward checking [21], are incorporated in tree

search algorithms to reduce the search space of the algorithms. Various variable

and value ordering heuristics [21, 29] are also used to further speed up the search

process. Al though tree search algorithms can successfully solve many real-life

problems, they become inefficient when the problem size increases.

Another approach for constraint satisfaction is local search. Unlike tree search

algorithms, local search algorithms are usually incomplete. In other words, they

may not return a solution even i f one exists. Given a CSP {U, L>, C) , a local search

algorithm operates as follows. The algorithm first generates an in i t ia l assignment

(or state), which assigns each variable u G U a value f rom its domain Du, for the

CSP. I t then continues to make local adjustments, which depend on specific local

search algorithm, to the assignment unt i l a solution is obtained. Various local

search algorithms, such as the min-conflicts heuristic [39, 40], GSAT [52, 49, 51,

13], the breakout method [41], GENET [66, 60, 7, 6], E -GENET [32，33, 69] and

D L M [62，54, 53], are developed in recent years. They have been found to be

effective in solving certain large-scale and computationally hard CSP,s.

A n important property of local search algorithms is that they can be trapped in

3

Chapter 1 Introduction

a non-solution state, called a local min imum, in which no further local adjustment

can be made. Either random restart [39, 40，52] or modif ication of the landscape

of search surface [41] are proposed for escaping f rom local minima. In chapter 2,

we review a number of these local search methods.

1.3 Motivation of the Research

Although a number of efficient local search algorithms are developed for solving

CSP's, l i t t le work has been done on understanding why these methods have such a

good performance. Min ton et al. [40] provided a statistical model and probabilistic

analysis for the min-conflicts heuristic for random CSP's. Gent and Walsh [15,

16] investigated various features of the GSAT algorithm. They evaluated the

importance of greediness [15, 16], randomness [15] and hi l l -c l imbing [15, 16] of

GSAT on some random SAT problems. Since different local search algorithms

always have certain degrees of variation, analysis based on one method may not

be applicable to the others.

Local search methods, such as the breakout method, GENET and E-GENET,

rely on modify ing the landscape of the search surface to escape f rom local minima.

Al though the idea is simple and intui t ive, l i t t le is known theoretically about why

and how they work so well. Based on the breakout method, Morris [41] gave some

insights on the advantage of this approach and provided a physical analogy for

the algorithm. However, a theoretical explanation does not exist.

These situations motivate us to analyze the local search methods for CSP's

and to provide some theoretical foundations for these methods. In our research,

we concentrate our attention on a class of local search algorithms derived from

the heuristic repair method. These algorithms include the min-conflicts heuristic,

GSAT, the breakout method, GENET and E-GENET. The energy perspective of

GENET [35, 36], a representative of heuristic repair methods, suggest an optimiza-

t ion approach for constraint satisfaction. This observation motivates us to inves-

tigate the relation between heuristic repair methods and constrained optimization

4

Chapter 1 Introduction

techniques. By exploring the s imi lar i ty between these two methods, a connection

between G E N E T and a fo rm of the Lagrange mul t ip l ie r method [24, 55], a well-

known technique for solving constrained opt imizat ion problems, is established. As

a result, better understanding of the local search methods is achieved.

1.4 Overview of the Thesis

The thesis is organized as follows. Chapter 2 gives a br ief review of various lo-

cal search methods. The min-confl icts heuristic, GSAT, the breakout method,

G E N E T , E - G E N E T , D L M , simulated annealing, genetic algori thms, tabu search

and integer programming are considered. Chapter 3 provides the necessary back-

ground for the thesis. The G E N E T model and the Lagrange mul t ip l ier method

are described.

Based on the G E N E T model, we present a two-step transformat ion for con-

vert ing any binary CSP into a zero-one integer constrained min imizat ion problem

in chapter 4. The first step of the transformation gives a SAT representation

of the G E N E T network, while the second step constructs the resultant zero-one

integer constrained min imizat ion problem f rom the transformed SAT problem.

In chapter 5, we further transform the zero-one integer constrained min imizat ion

problem into one in the real space, and apply the Lagrange mul t ip l ier method to

solve the resultant problem. Al though this approach is viable, i t is computation-

ally expensive.

Chapter 6 describes the discrete Lagrange mul t ip l ier method [62，54, 53] for

solving binary CSP's. A generic scheme CSVC, which defines a class of discrete

Lagrangian search algorithms, is introduced. We show that the G E N E T model is

equivalent to an instance of CSVC. Variants and possible extension of CSVC are

investigated. The performance of the variants on different CSP's are also evalu-

ated. In chapter 7, we extend CSVC for tackl ing general CSP's. The difference

between the binary and the general formulat ion is discussed. Various experiments

5

Chapter 1 Introduction

are performed to evaluate our proposed formulation. Some in i t ia l results are ob-

tained. A n inadequacy of the general formulat ion and a possible solution are also

considered.

Chapter 8 concludes the thesis by summarizing our contributions and l isting

some possible directions for future research.

6

Chapter 2

Related Work

This chapter briefly reviews some local search methods related to our research.

The min-confl icts heuristic, GSAT, the breakout method, G E N E T , E - G E N E T

and D L M are well-known local search methods for solving SAT and CSP's. In the

following, we describe these methods according to their chronological appearances.

In addit ion, other opt imizat ion techniques based on local search, such as simulated

annealing, genetic algorithms, tabu search and integer programming, are presented

at the end of this chapter.

2.1 Min-conflicts Heuristic

Based on the Guarded Discrete Stochastic (GDS) network [1], M in ton et aL pro-

posed a heuristic repair method for CSP's. The method starts w i t h an in i t ia l ,

possibly inconsistent, assignment and continues to repair the assignment unt i l a

solution is obtained or some terminat ing conditions, such as CPU t ime l im i t , are

met. A t each point of the search, the method repairs the assignment according

to the min-conflicts heuristic [39, 40], which selects a variable currently violat ing

some constraints and assigns i t a value that minimizes the number of constraint

violations w i t h ties being broken randomly.

The min-conflicts heuristic has been found to be very successful on certain

7

Chapter 2 Related Work

CSP's, such as the scheduling problem for the Hubble Space Telescope, the N-

queens problems and graph-coloring problems [39, 40]. Experiments show that

i t is much better than existing backtracking tree search algorithms. However, a

potential problem of the min-conflicts heuristic is that the search can settle on an

assignment in which no further repair can be made. Such an assignment is usually

referred to as a local m in imum of the search space. The min-conflicts heuristic

does not have any special mechanism to resolve this situation. I t relies on random

restart to bring the search out of local minima.

2.2 GSAT

GSAT [52] is a greedy local search method for solving SAT problems. The al-

gor i thm begins w i th a randomly generated t ru th assignment. I t then flips the

assignment of variables to maximize the total number of satisfied clauses. The

process continues unt i l a solution is found. Similar to the min-conflicts heuristic,

GSAT can be trapped in a local min imum. In order to overcome this weakness,

GSAT simply restarts itself after a predefined max imum number of flips are tried.

GSAT has been found to be efficient on hard SAT problems and on some

CSP's, such as the A^-queens problems and graph-coloring problems [52]. Various

extensions to the basic GSAT algorithm include mix ing GSAT w i th a random

walk strategy [49, 51], clause weight learning [49, 13], averaging in previous as-

signments [49] and tabu-like move restrictions [16]. These modifications are shown

to boost the performance of GSAT on certain kinds of problems.

2.3 Breakout Method

The breakout method [41], which has mechanism for escaping f rom local minima,

is an iterative improvement method for solving CSP's. In this method, each

constraint of a CSP is considered as a set of incompatible tuples. A weight, in i t ia l ly

set to 1, is associated w i th each incompatible tuple. The cost of an assignment is

8

Chapter 2 Related Work

the sum of the weights of violated tuples in that assignment. Similar to the min-

conflicts heuristic [39, 40], the breakout method minimizes the cost of assignment

unt i l i t reaches a local min imum. A t that point, the weights of current violating

tuples are increased to allow the search to continue.

Since the breakout method modifies the cost of an assignment, i t may get

trapped in inf inite loops. However, experiments on SAT problems and graph-

coloring problems show that breakout almost always finds a solution i f one ex-

ists [41:.

2.4 GENET

The GENET model is a generic neural network, first proposed by Wang and

Tsang [66, 60], for solving binary CSP's. In this model, a binary CSP is repre-

sented by a network. Each possible label of CSP is denoted by a label node and

each incompatible tuple of a binary constraint is represented by a weighted con-

nection. A convergence procedure, based on the min-conflicts heuristic [39, 40],

is used to search for a solution. As in the breakout method [41], GENET modi-

fies the weight of violated connections to help escaping f rom local maxima. This

technique is referred to as the heuristic learning rule of GENET.

Davenport et al. [7, 6] extended GENET for handling general constraints.

Three types of general constraints, namely the i l l e g a l constraint, the atmost

constraint and the no tequa l constraint, are implemented. Experimental results

of the hard graph-coloring problems, the randomly generated CSP's and the car

sequencing problems confirm that GENET is more efficient than existing iterative

improvement methods, such as GSAT and the heuristic repair method [7, 6]. A

detailed description of the binary subset of GENET is given in chapter 3.

2.5 E-GENET

E-GENET [32, 69] extends the GENET model [66, 60, 7, 6] for solving general

CSP's. I t uses a different network architecture for problem representation. Unlike

9

Chapter 2 Related Work

the GENET model, each variable of a CSP is represented by a single variable node

and each constraint is represented by a constraint node. The penalty value of each

incompatible tuple is stored in corresponding constraint node. A convergence

procedure and a heuristic learning rule similar to that in G E N E T are used for

solution searching.

Since E -GENET induces the problem of storing a large number of penalty

value in a constraint node, Lee et aL [32, 69] introduced different storage schemes

for different types of constraints to overcome this weakness. Several optimiza-

tions [33，69], such as the introduction of intermediate node, the new assignment

scheme of in i t ia l penalty values, the concept of contr ibut ion and the new learning

heuristic, are also proposed to further improve the performance. A comprehen-

sive constraint l ibrary [34, 69], which consists of linear ari thmetic constraints, the

atmost constraint, the disjunctive constraint and a set of global constraints f rom

CHIP [2] are constructed. The performance of E -GENET compares favorably

against that of CHIP [8], a state of the art implementation of tree search algo-

r i thms, in various benchmarks, such as the iV-queens problems, the graph-coloring

problems, the scheduling problems, the channel assignment problems, the Hamil-

tonian cycle problems and the Mystery Shopper Problem [32, 33, 34, 69 .

2.6 DLM

D L M [62, 54, 53] is a discrete Lagrangian-based global search method of solving

SAT problems. In this method, a SAT problem is first transformed into a discrete

constrained optimization problem. The discrete Lagrange mult ipl ier method is

then applied to solve the resultant opt imization problem. W i t h the help of La-

grange multipl iers, D L M can escape from local min ima and continue the search

without restarting the entire algorithm. D L M generally outperforms the best ex-

isting methods and can achieve an order of magnitude speedup for some SAT

problems [62，54, 53]. I t also gives certain success in other problems, such as the

MAX-SAT problems [63，53] and the design problem of multiplierless Q M F filter

10

Chapter 2 Related Work

banks [64，53].

Wu [70] further generalized the discrete Lagrange mult ip l ier method for solving

discrete opt imizat ion problems. In this extension, the necessary conditions for

saddle points, and the relation between constrained local m in ima and saddle points

of the Lagrangian function are given. Hence, a strong mathematical foundation

for the discrete Lagrange mult ipl ier method is provided.

2.7 Simulated Annealing
*

Simulated annealing [28] is an opt imizat ion technique inspired by the annealing

process of solids. I t can escape from local min ima by allowing a certain amount of

worsening moves. Consider an optimization problem, every possible state of the

problem is associated w i th an energy E. In each step of simulated annealing, the

algori thm displaces f rom current state to a random neighboring state and com-

putes the resulting change in energy AE. I f AE < 0, the new state is accepted.

Otherwise, the new state is accepted w i th a Boltzmann probabi l i ty e~^^ /^ where

T is a temperature parameter of the process. A t high temperature T , the Boltz-

mann probabil i ty approaches 1 and the algori thm searches randomly. As the

temperature decreases, movements which improve the quality of the search are

favored. The temperature usually decreases gradually according to an annealing

schedule. I f the annealing schedule cools slowly enough, the algori thm is guaran-

teed to find a global minimum. However, this theoretical result usually requires

an infinite amount of t ime.

Some work has been carried out on using simulated annealing to solve CSP's.

Johnson et al. [27] investigated the feasibility of applying simulated annealing

for solving graph-coloring problems. Selman and Kautz [50] compared the per-

formance of simulated annealing and that of GSAT on the SAT problems. Since

much effort expended by simulated annealing in the in i t ia l high temperature phase

is wasted, simulated annealing usually takes a longer t ime to reach a solution.

11

Chapter 2 Related Work

2.8 Genetic Algorithms

Genetic algorithms [26] are heuristic search techniques for tackl ing combinatorial

opt imizat ion problems. They are derived f rom the evolution processes in nature.

In genetic algorithms, a population of chromosomes, which represent states o f the

problem, is used to explore the search space of the problem. A fitness function

is associated w i th the population to determine how fit a chromosome is. During

each generation, new chromosomes are reproduced by crossover and mutat ion,

and added to the population. Chromosomes are selected to survive f rom one

generation to another by a selection function. Unf i t chromosomes are discarded

during this selection phase. As the process proceeds, the algorithms wi l l eventually

obtain the fittest chromosome, which corresponds to the opt imal solution of the

problem.

Eiben et aL [11, 10] evaluated the performance of genetic algorithms on some

CSP's, such as the N-qneens problems, the graph-coloring problems, the traffic

lights problems and the Zebra problems. Rif f [46] developed new fitness func-

t ion and genetic operator to improve the performance of genetic algorithms for

solving CSP's. Warwick and Tsang apply genetic algorithms for solving the car

sequencing problems [68] and the processors configuration problems [67]. Lau and

Tsang [30] also introduced a mutation-based genetic algori thm to tackle proces-

sors configuration problems. Their approach is shown to be more efficient than

other published techniques.

2.9 Tabu Search

Tabu search [18, 19, 20] is a sophisticated local search method that can escape

from local minima. I t maintains a tabu list of prohibited search states to prevent

the algorithm from visit ing the same search states twice. W i t h the help of the

tabu l ist, non-improving moves are allowed. In general, a tabu search algorithm

can be realized as follows. Init ial ly, a state of the problem is selected randomly

12

Chapter 2 Related Work

as the starting point of the search. This state is regarded as the best solution

obtained so far. A set of states which are in the neighborhood of the current state

and are not in the tabu list is collected. The best state in this set is selected as the

next state of the search. I f the new state improves upon the best solution found

so far, i t becomes the new best solution. The tabu list is also updated according

to some predefined criteria. The search continues unt i l an acceptable solution is

found.

Tabu search has been applied for solving different CSP's. Some examples are

the graph-coloring problems [23], the radio links frequency assignment problems [3

and the SAT problems [38].

2.10 Integer Programming

Lagrangian relaxation [17, 12] is a well-known approach for integer programming.

Consider an integer linear programming problem P,

rj • —T ~*

Zp 二 m m c x

subject to

h l < 6,

^x<d,

X > 0 and integral

. where 6, c, d^ x are vectors, A , B are matrices of conformable dimensions and the

constraints B ^ > d have some special structure which allow the corresponding

integer linear programming problem to be solved efficiently. The Lagrangian re-

laxation method defines a Lagrangian problem LR,

^LR{u) 二 m in c^x + u^[Ax — b)

subject to

Bx < d,

X > 0 and integral

13

Chapter 2 Related Work

where u > 0 is a vector of Lagrange multipl iers. Because of the special structure

of the constraints B f < d, the resultant Lagrangian problem LR is easier to solve

than the original problem P. Since the opt imal value ZLn{u) of the Lagrangian

problem LR is guaranteed to be less than or equal to the opt imal value Zp of

the original problem P, the Lagrangian relaxation method can be used to provide

lower bounds in branch and bound algorithms for solving the integer linear pro-

gramming problem. In addition, Lagrangian relaxation can be used as a medium

for selecting branching variables and choosing the next branch to explore.

Freuder [14] pointed out that there are many possible paths to constraint

satisfaction. Besides backtracking, h i l l cl imbing, neural networks and genetic

algorithms, integer programming is also a possible approach for solving CSP's.

R iv in and Zabih [47] developed an algebraic method for solving CSP's. In their

approach, a CSP is converted into an integer linear programming problem wi th

zero-one integer variables. The constraints of the CSP is represented by a set of

linear inequalities. The transformed integer programming problem is then solved

by polynomial mult ipl icat ion.

f

14 .

Chapter 3

Background

This chapter provides the background to the thesis. A local search method, called

G E N E T , for solving CSP's is reviewed. Furthermore, a descript ion of opt imiza-

t ion problem is given. The classical Lagrange mul t ip l ie r method for handl ing

constrained opt imiza t ion problem is also presented.

3.1 GENET

The G E N E T model [66, 60, 7, 6] is a connectionist architecture for solving CSP's.

I t consists of two components, namely a network architecture and a convergence

procedure. The network architecture gives the network representation of a CSP,

whi le the convergence procedure is an i terat ive improvement a lgor i thm for solution

searching. I n the fol lowing, we l im i t our discussion to the G E N E T model for

solving b inary CSP's.

3.1.1 Network Architecture

A G E N E T network M [66, 60, 7, 6] is constructed by a set of label nodes and node

connections. Consider a CSP (U,D,C). Each variable i G U is represented by a

cluster of label nodes〈i,j), one for each value j G D{. Since there is a one-one

correspondence between a label and a label node, we use the same notat ion to

15

Chapter 3 Background

denote them. Each label node (z , j) is associated w i t h an output V{i,j), which is 1

i f value j is assigned to variable i , and 0 otherwise. A label node is said to be on

i f i ts ou tput is 1; otherwise, i t is off.

A binary constraint c on variables ii and i2 is represented by weighted con-

nections between incompat ib le label nodes in clusters ii and i<i. Two label nodes

{ i i J i) and {i2J2) are connected i f ii = ji and “ = j2 violates c. The weight

W(^ij){k,i) of each connection ((i , j) , (A ; , /)) , in i t ia l l y set to - 1 , is always a negative

integer. The weights are modif ied dur ing the learning process described later.

The input /〈, j》to a label node { i J) is defined as the weighted sum of output

of al l i ts connected label nodes. Let A{Af, { i J)) be the set of al l label nodes

connected to { i , j) i n network Af. The input /〈‘，)> is

hi , j) = Y ^ ^{ i j){k, i)y{k, i) ' (3.1)
{k,i)eA{Af,{ij))

A state S of a G E N E T network M is a tuple (V , W), where V = (. . •, V(ij),...) is

a vector of outputs for al l label nodes (i , j) in J^ and W = (. • •，W〈i，j〉〈fc，/》,.• .）is a

vector of weights for al l connections ((z , j) , {k,l)). A state is valid i f exactly one

label node in each cluster is on. A solution state is a val id state w i t h the input to

al l on label nodes being zero.

A n energy function of a G E N E T network N and a state S is defined as

E[M,S)= Y . y{i.)W^^.m,l)V^k^)• (3.2)
((i,j),(k,l))6Af

I n other words, the funct ion returns the sum of weight of al l v io lated connections.

I t also gives a measure of the "goodness" of a state <S i n terms of the to ta l weight

of v iolated connections. Al ternat ively, the energy funct ion can also be defined as

the sum of input to al l on label nodes [35, 36]. Let 0{Af,S) be the set of al l on

label nodes of a network M and a state S. We have

E'{M,S)= Y . I(i,j). (3.3)
{i,j)eo{M,s)

Since every violated connections is summed twice in (3.3)，E'{Af^ S) 二 2E(J^,S).

I n subsequent discussion, def ini t ion (3.2) is adopted.

16

Chapter 3 Background

£ { 1 , 2 , 3 }

^ir&
{ 1 ,2 ,3 } { 1 , 2 ,3 }

Figure 3.1: A CSP (U, D, C), where U = { u i , u2, w3}, Du, = Du^ 二 Du, = {1 ,2 ’ 3}
and C = {\ui — u2| = 2,u2 < u3}

Variable: ^ i ^2 U3

A A A
..1 ^v><M J ^
g V?< ^ ^ ^ ^ 〜?,"； Z / "wf.
I 2 S O ^ ^ t

3 *f^^^^^^^^f^^
\J \J \J

• - on label node
〇 - o f f label node

Figure 3.2: The GENET network of the CSP in Figure 3.1

For a GENET network w i th negative weights, E{Af,S) is always non-positive.

A t a solution state 5o, all constraints are satisfied. The energy E{Af, So) is 0, which

is a global max imum value. Hence, a CSP is solved when the energy E{Af,S) is

equal to zero.

Figure 3.1 shows a CSP w i th three variables W1,W2,W3, each w i th a domain

{ l , 2 , 3 } , and two constraints \ui — U2| = 2 and U2 < u3. The corresponding

GENET network is shown in Figure 3.2. The network consists of three clusters of

label nodes, one for each of the variables u i , U2 and u3. Connections are established

between any two incompatible label nodes. For example, since the assignment

u i = l,U2 = 1 violates the constraint \ui — U2| = 2, there is a connection between

17

Chapter 3 Background

label nodes (u i , l) and (w2, l) . The weights of al l connections are set to - 1

in i t ia l ly . The state i l lustrated, w i t h the label nodes (w i , 3) , (u 2 , l) and (w3,2) on,

represents the assignment Ui = 3, U2 二 1 and u3 二 2. Since the energy of this

state is zero, i t is a solut ion state of the network.

3.1.2 Convergence Procedure

The G E N E T convergence procedure [66, 60, 7, 6] out l ined i n A l g o r i t h m 3.1 is

defined for solving CSP's. I t changes the state of a G E N E T network continuously

un t i l a solut ion state is reached.

procedure GENET-Convergence
begin

in i t ia l ize the network to a random val id state
loop

{State update rule}
for each cluster i n paral lel do

calculate the input of each label nodes
select the label node w i t h m a x i m u m input to be on next

end for
i f al l label nodes' output remain unchanged t h e n

if the input to al l on label nodes is zero then
terminate and re turn the solut ion

else
{Heuristic learning rule}
update al l connection weights by Ŵ〈1=j〈、0 = ^ (i j) (k , i) — ^{ i , j)^ {h)

end if
end if

end loop
end

Algo r i t hm 3.1: Convergence procedure of G E N E T

In i t ia l ly , a label node in each cluster is selected to be on randomly; others are

off. This corresponds to assigning arb i t rar i ly a value to each variable in a CSP.

Next , the state update rule transforms the G E N E T network f rom one val id state

to another by min imiz ing the number of constraint violat ions. A solut ion is found

when al l on label nodes have zero input . Effectively, the state update rule carries

18

Chapter 3 Background

Variable: Ui U2 Variable: Ui u2

"1 P\~~P\ , 1 A ~ " A j j
5 《
^ 2 ld——p 2 m—\0

\J \J \J \J
眷 - o n label node • — on label node
〇 - off label node 〇 - off label node

(a) State 1 (b) State 2

Figure 3.3: A osci l lat ing G E N E T network i n synchronous update

out an op t im iza t ion process for the energy funct ion E { J ^ , S) un t i l a zero energy

is obtained.

Dur ing the state updat ing process, the clusters can be updated in paral lel

either synchronously or asynchronously. I n synchronous update, al l clusters cal-

culate the input and update the state of their label nodes at the same t ime.

A l ternat ive ly , each cluster can per form input calculat ion and state update inde-

pendent ly in asynchronous update. Synchronous update can cause oscillations

between a number of states indef ini tely [7, 6]. For instance, consider a G E N E T

network w i t h four label nodes {u i , 1), (u i , 2) , (u2,1) and (w2,2), and two connec-

tions ({ u i , 1〉，(U2,1)) and ((u i , 2) , (w2,2)) shown in Figure 3.3. The weight of each

connection is - 1 . Suppose the G E N E T network is i n state 1 (Figure 3.3(a)), w i t h

. label nodes (u i , l) and (w2, l) on, in i t ia l ly . I n synchronous update, we calculate

the inputs to each label node at the same t ime, and get I(ui,i) 二 —1, ^(ui,2) = 0,

/〈以2，1〉= - 1 and I(u2,2) = 0. Hence, the network changes its state to state 2 (Fig-

ure 3.3(b)), w i t h label nodes {ui,2) and {u2,2) on. Further state update w i l l br ing

the network back to state 1 again. The whole process repeats and the G E N E T

network oscillates between these two states indefinitely. On the other hand, in

our experience, asynchronous update always find a solut ion i f one exists. I n a

sequential implementat ion, asynchronous update can be simulated by updat ing

19

Chapter 3 Background

each cluster i n sequence in a predefined order.

The state of the label nodes in each cluster are updated according to their

inputs. Basically, the label node w i t h the m a x i m u m input is selected to be on

next. However, there could be more than one label node w i t h the m a x i m u m

input . I n this case, the fol lowing heurist ic rule is adopted. Let P be the set

of label nodes w i t h the m a x i m u m input . I f the current on label node is in P ,

i t remains on. Otherwise, a random label node returned by r a n d (P) is selected

to be on, where r a n d (F) is a funct ion re turn ing a random element f rom a set

Y, Since the label node w i t h m a x i m u m input corresponds to an assignment w i t h

fewer constraint violat ions, this updat ing strategy is a direct appl icat ion of the

min-confl icts heurist ic [39，40].

A G E N E T network can be t rapped in a local maximum, wh ich is a stable state

in which the state updat ing process fails to make fur ther improvement and yet

some constraints are violated [66, 60, 7, 6]. I n other words, at a local m a x i m u m

Si, E{Af, Si) < 0 and E{Af,Si) > E{Af,Sn) for al l i ts neighboring states Sn-

Obviously, a local m a x i m u m does not correspond to a solut ion of a CSP. In order

to escape f r om a local max imum, the heurist ic learning rule is used. Let an

iteration of the convergence procedure constitutes one pass over the outermost

loop of A lgo r i t hm 3.1. The heuristic learning rule adjusts the connection weights

as follows [66, 60, 7, 6],

^(i : -) (M) 二 W“、k , i、 - l 〉 V ^ 〉 （3.4)

where W^-力〈知,》is the weight of the connection ((z , j) , {k, l)) and V〈:，》is the output

of the label node { i , j) i n the 5th i terat ion. This heurist ic learning rule has two

effects on the convergence procedure. F i rs t , weight update decreases the energy

associated w i t h the local max imum. Hence, perhaps w i t h more than one weight

updates, the local max ima l i t y is destroyed. Second, since the weights of v iolated

connections become more negative after learning, these connections are less l ikely

to be violated again in future state update. Note that this heurist ic learning rule

is similar to the breakout method [41].

20

Chapter 3 Background

Variable: ^ i ^2 u3 Variable: ^ i ^2 u3

1 Q i A 1 A A A

! 1 ¾ ! ¾ 1 ! ^ ^ ¾
� ^ ^ ' ^ y

• - on label node • - on label node
〇 - off label node 〇 - o f f label node

(a) State 1 (b) State 2

Figure 3.4: The network convergence of G E N E T

Connection weight learning not only affects the local max imum, but also af-

fects other states w i t h constraints v io lated in the max imum. Hence, new local

m a x i m u m may be created [7]. Furthermore, learning may block potent ia l paths

to a solut ion [41]. However, i t is observed that this requires the constraints to

interact local ly i n a specific "un lucky" manner and the probabi l i ty of this k ind of

interact ion for large CSP's is very small [41 •

We use the G E N E T network of the CSP shown i n Figure 3.1 to i l lustrate the

network convergence of the G E N E T model. Figure 3.4 shows a state t ransi t ion

f rom state 1 to state 2 of the G E N E T network. State 1 (Figure 3.4(a)), w i t h an

energy —2, has the label nodes (wi, 1), (^2,2) and (w3,1) on, and the weights of

al l connections being equal to —1. In sequential implementat ion, the convergence

procedure, which repairs each cluster U1,U2 and u3 in sequence, works as follows.

Since al l label nodes in cluster Ui share the same inpu t , label node (u i , 1) remains

on in state 2. I n cluster U2, the inputs to each label node are I{u2,1) = —2,1{u2,2)=

—2 and I{u2,3) = _ 1 . Hence, label node (^2,3) is selected to be on next. Af ter

tha t , al l label nodes in cluster u3 get the same input . The state updat ing process

ends w i t h cluster U3 unaltered. The result ing state shown in Figure 3.4(b) has

an energy —1 and is a local max imum. Since any fur ther state update w i l l result

21

Chapter 3 Background

i n no state change, the heurist ic learning rule is act ivated to mod i fy the weight

^<w2,3>(w3,1> to —2. The stabi l i ty of the G E N E T network is thus destroyed and the

state update rule can again be applied to maximize the energy of the network.

3.2 Classical Optimization

Opt im iza t ion problems belong to a class of impor tan t problems i n our dai ly life.

Many complex problems arising in business or i n industry, such as decision mak-

ing, resource al locat ion and scheduling, can be regarded as opt imiza t ion problems.

These problems usually require a decision maker to choose f r om many possible

alternatives the one that y ie ld an op t ima l performance. I n this section, a formal

descript ion of op t imiza t ion problems is given. Furthermore, the Lagrange mu l t i -

pl ier method, a classical method for solving constrained opt imiza t ion problems,

is described.

3.2.1 Optimization Problems

A n optimization problem is a problem of min imiz ing (or max imiz ing) a mathe-

mat ica l funct ion of one or more variables [24, 55]. W i t h o u t loss of generality, only

m in im iza t ion problems are discussed. I n a min imiza t ion problem, the mathemat i -

cal funct ion to be min imized is known as the objective function of the problem. A

local minimum is an assignment of values to the variables which gives the smallest

value of the object ive funct ion among its neighborhoods. A global minimum is an

assignment which minimizes the objective funct ion [24, 55].

I n general, any min imiza t ion problem can be classified in to two different types,

namely unconstrained minimization problem and constrained minimization prob-

lem [24, 55]. I n unconstrained min imiza t ion problems, there are no restrictions

on the values assigned to the variables. This k ind of problems always have the

form,

m i n f (x) (3.5)

22 ,

Chapter 3 Background

where x = { x i , . . .,Xn) is a vector of variables, "m in " is the abbreviat ion for

m in im iza t ion and f { x) is the object ive funct ion to be min imized.

Constrained min im iza t ion problems are represented as follows,

m i n f { x) (3.6)

subject to gi{x){<^ = , > } 0 , i = 1 , . . . , m (3.7)

where x = (a ; i , . . . , Xn) is a vector of variables, "m in " is the abbreviat ion for min i -

mizat ion and f { x) is the object ive funct ion to be min imized. The equations and/or

inequalit ies in (3.7) are the constraints of the problem, restr ic t ing the values that

the variables x can take. A n assignment which satisfies al l constraints is said

to be feasible] otherwise, i t is infeasible [24, 55]. A constrained global minimum

is a feasible assignment which minimizes the object ive funct ion of the problem.

Throughout the discussion, we concentrate our a t tent ion on min imiza t ion w i t h

equal i ty constraints (i.e. gi{x) 二 0, i = 1,...，m).

3.2.2 The Lagrange Multiplier Method

A min imiza t ion problem w i t h equali ty constraints is formulated as,

m i n f { x) (3.8)

subject to 9i{x) = 0, i — 1 , . . . , m (3.9)

where x = { x i , . . . , Xn) is a vector of variables. Since the equal i ty constraints

• in (3.9) only reduce dimensionali ty, they do not establish any boundaries. A

t r i v ia l way to solve the problem is to reduce i t to an unconstrained min imizat ion

problem w i t h n — m variables. I n other words, we first express any m variables

in terms of the other n — m variables by the equal i ty constraints (3.9). Then, we

subst i tute the result in to the objective funct ion (3.8) to el iminate the m variables.

Consider an example taken f rom [55].

m i n x\ + x\ + x\ (3.10)

subject to x i + X2 + Xz — 10 = 0. (3.11)

23 ,

k

Chapter 3 Background

I n th is problem, we have n = 3 and m = 1. From (3.11), we get

xz — 10 — x i — X2. (3.12)

Subst i tute (3.12) in to (3.10), we get an unconstrained m in im iza t ion problem in

Xi and X2：

m i n x l ^ - x l ^ { l ^ - x i - x 2 f . (3.13)

Subsequently, we obta in the m i n i m u m at x i = x2 = x3 = y .

A l though the above approach is simple, the computa t ion is very complex or

impract ica l when the equal i ty constraints are complicated, non-l inear and the

number of variables involved are large. Therefore, a more systematic and efficient

method, called the Lagrange multiplier method [24, 55], has been developed. I n the

Lagrange mul t ip l ie r method, the equal i ty constraints are not considered expl ic i t ly.

They are combined w i t h the object ive funct ion to fo rm a Lagrangian funct ion.

Consider the constrained min im iza t ion problem in (3.8 - 3.9), the Lagrangian

function [24, 55] is defined as

m

L { x , X) = f { x) ^ Y . X i g i { x) (3.14)
i=i

where A = (Ai , •. • , A^) is a vector oi Lagrange multipliers. The necessary condi-

tions [24, 55] for constrained local m i n i m u m are

V ^ L { x , A) = 0 (3.15)

V x L { x , A) = 0 (3.16)

where V is the gradient operator. The condit ions i n (3.15 — 3.16) fo rm a system
—

of n + m equations, l inear or non-l inear, w i t h n + m unknowns x and A. Solu-

tions X of this system of n + m equations are the constrained local m in ima of

the or iginal problem (3.8 — 3.9). I f there is a finite number of constrained local

m in ima, a constrained global m i n i m u m can be obtained by comparing the value

of the object ive funct ion of each local m in imum. Note that the set of m equal i ty

constraints (3.9) is imp l i c i t l y included in condi t ion (3.16).

24 _

Chapter 3 Background

Consider the previous example (3.10 - 3.11). The Lagrangian funct ion is

L{xi, X2, X3, A) = x^ + X2 + X^ + A(a:i + x2 + x3 - 10). (3.17)

The necessary condit ions are

叫 工 1 , 严 〜 = 2 . , + A = 0 (3.18)
axi

d L (x , , X 2 , x s , A) 二 2z2 + A = 0 (3.19)
dx2

d L { x u x , , x s ^) 二 2 % + A = o (3.20)
0x3

dL{x1,x2,x3,X) , 、
_ ^ — — — =0；1 + 0； 2 +幻 - 1 0 = 0 (cJ.21)

oX

B y solving the system of equations (3.18 - 3.21), we get the constrained local

m i n i m u m at x i = X2 = X3 = y and the Lagrange mul t ip l ie r A =—警，w h i c h

agrees w i t h previous calculation.

3.2.3 Saddle Point of Lagrangian Function

Since the system of equations generated f rom the necessary condit ions (3.15 -

3.16) may be very complex or h ighly non-l inear, i t can be di f f icul t to solve them

analyt ical ly. I n this case, a constrained local m i n i m u m can be obtained by f inding
— ~*

a saddle point (x* , A*) [55] of the Lagrangian funct ion L{x, A), defined by the

relat ion,
L (r , X) < L{x\ A*) < L{x, A*) (3.22)

for al l (x*, A) and al l {x , A*) sufficiently close to (£*, A*). I n other words, a saddle

point is a local m i n i m u m of the Lagrangian funct ion L { x , A) i n the x-space and a

local m a x i m u m of L{x, X) in the A-space. The relat ion between a local m i n i m u m

of the min imiza t ion problem w i t h only equal i ty constraints and a saddle point of

the associated Lagrangian funct ion is stated in the fol lowing theorem.

Theorem 3.1 (Saddle Point Theorem) [62，54] x* is a local minimum ofthe
—

minimization problem (3,8 - 3.9) ifand only if there exists Lagrange multipliers X*

such that {x*, A*) constitutes a saddle point of the associated Lagrangian function

L{x, A).

25 _

Chapter 3 Background

The definit ion of saddle point and the saddle point theorem provide an algo-

r i thmic approach for finding a constrained local min imum. A saddle point, which

corresponds to a constrained local min imum, can be identified by performing de-

scent in the ^r-space and ascent in the A-space. This method is equivalent to a

dynamic system constructed w i th the following differential equations [43],

r| ̂ _•#

^ 二 -•她入） （3.23)
—

§ = V x ^ X) (3.24)

where t is an independent t ime variable of the system. As the system evolves

over t ime t, i t performs gradient descent in the f-space and gradient ascent in the

A-space. A t equil ibr ium, all gradients vanish and a saddle point of the Lagrangian —
function L {x , A) is obtained.

Under this algorithmic point of view, the Lagrange mult ipl ier method can be

understood as follows [43]. The Lagrange multipl iers A are the penalties associated
— •

wi th the constraints and the Lagrangian function L {x , A) is a penalty function.

When certain constraints are violated, their corresponding Lagrange multipl iers

are modified to increase the penalties. These penalties w i l l eventually force the

constraints to be satisfied. A t the same t ime, the gradient descent of L{x, X) in

the £-space searches for a constrained local min imum.

26 ,

Chapter 4

Binary CSP,s as Zero-One

Integer Constrained

Minimization Problems

The convergence procedure of the G E N E T model suggests an opt imizat ion ap-

proach to constraint satisfaction. I n this chapter, we present a two-step transfor-

mat ion for convert ing any CSP into a zero-one integer constrained min imiza t ion

problem. The first step of the t ransformat ion converts a G E N E T network direct ly

to a Boolean satisf iabi l i ty (SAT) problem, whi le the second step derives the re-

sultant zero-one integer constrained min im iza t ion problem f rom the intermediate

SAT problem.

4.1 From CSP to SAT

A Boolean satisf iabi l i ty (SAT) problem consists of a set of Boolean variables and

a Boolean formula. Given a CSP [U,D,C). I ts corresponding G E N E T network

Af can be viewed as a graphical representation of a SAT problem. Each label node

(z , j) is associated w i t h a Boolean variable z(i，j), which is t r u e i f {i-,j) is on and

f a l s e otherwise.

The Boolean formula is a conjunct ion of two types of formulae, namely cluster

27

Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems

£ ^ 1 , 2 } Variable: u i u^ U3

fh><M]
{1,2} - 4 2 WY^

(a) The CSP (b) The GENET network

Figure 4.1: A simple CSP and its corresponding GENET network

formulae and connection formulae. Each cluster formula is used to represent a

cluster of label nodes, which enforces the valid states of the GENET network.

The cluster formula of each cluster (variable) i
((w

Ci 二 V 外，乃 A 八 1<2，&》 （41)

jeDi \ VfcGA,A:^j / /

ensures that exactly one label node in cluster i is on. Each connection ((i , j) , {k^ l))

in the GENET network induces a connection formula
C{i,j){k,i) = ^^{i,j) V，z(k,V), (4 . 2)

which states that the label nodes (z , j) and {k, 1) cannot be both on simultaneously.

Hence, solving the CSP is equivalent to finding a t ru th assignment that satisfies

the Boolean formula

B = f \ C i A 八 C (i , _) . (4.3)

ieu ((iMk,i))eAf

Taking a simple CSP as an example, we have three variables Wi, U2 and u3,

and two constraints. A uniform domain Du‘ = {1 ,2 } is associated w i th each

variable U{ for all i = 1,2,3. The two constraints are ui 二 U2 and U2 < w3.

The corresponding CSP network and GENET network is shown in Figure 4.1.

The induced SAT problem of the GENET network is formulated as follows. The

label nodes of the GENET network is represented by the Boolean variables Z(̂ ui,i)̂

28 «

Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems

Z{u,,2),之〈以2,1》,Hu2,2), Z(^m,i) and 2r(̂ 3,2>. The cluster formulae are

Cu, = {z{uui) A ^z^uu2)) V {^z^uui) A ^(u1,2>), (4.4)

Cu2 = (、^，i》A，、tz2，2》)V(~"、M，i〉A、^2〉), (4.5)

Cm = (、U3，l》八，、̂ 3̂，2〉)V卜、̂ 3̂，l》八、U3,2》). (4.6)

The connection formulae are

C{uul){u2,2) = ^^{uul) V -^(t/2,2), (4.7)

C { U I , 2) { U 2 , 1) = ^^(ni,2) V ^Z^U2,1)^ (4.8)

C'(n2,1>(̂ 3,1> = ^^{n2,1) V ^^(n3,1>, (4.9)

C'(n2,2>(̂ 3,1> = -^(^2,2)V-^(^3,1), (4.10)

C(̂ 2,2>(̂ 3,2> = -̂ {̂U2,2) ^ ^^{U3,2)' (4.11)

Combining these two types of formulae, we obtain the resultant Boolean formula

of the SAT problem,

B 二 Cui A Cu2 八 Cuz A C(̂ 1,1)(u2,2> 八 Ĉ<ui，2>〈u2,i〉
(4.12)

八 C^〈％l><t/3，l〉A C(^2,2>(iX3,l> A C{U2,2){U3,2)-

4.2 From SAT to Zero-One Integer Constrained

Minimization

We now complete the transformation by converting the SAT problem obtained

previously to a z e r o - o n e i n t e g e r c o n s t r a i n e d m i n i m i z a t i o n p r o b l e m , a constrained

minimizat ion problem wi th zero-one integer variables. Each Boolean variable in

the SAT problem is converted to a zero-one integer variable. Since a Boolean

variable can be regarded as a zero-one integer variable, we abuse notation by

naming a zero-one integer variable also by its associated Boolean variable Z(^ijy

The value of a zero-one integer variable z(i’j) is 1 i f value j is assigned to variable

i, and 0 otherwise.

29
•%

Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems

Each cluster fo rmula Ci for al l i G U is t ransformed to the fol lowing equation,

E 外,力=1. (4.13)
j€Di

These equations impose a space for proper instant ia t ion of z, which corresponds

to val id assignments of CSP (val id state of G E N E T) . For each connection formula

C(^ij){k,i)-) we define an incompatibility function

9{i,j){k,i){^) 二 ^{i.j)Hk,i) (4.14)

where z = (. . . , z (i j) , • . .) is a vector of zero-one integer variables. The funct ion

g{i,j){k,i){^) returns 1 i f bo th :〈‘’)〉and Z(^k,i) are 1, and 0 otherwise. Hence, equating

g{i,j){k,i)i^) to 0 is equivalent to forb idding two connected label nodes (z , j) and

{k,l) i n the G E N E T network to be on at the same t ime. The incompat ib i l i t y

funct ions are used as indicators of constraint violat ions.

The resultant zero-one integer constrained min im iza t ion problem has the form,

m i n N{z) (4.15)

subject to

E ^(^^) = 1' V i G t / (4.16)
jeDi

卯，力〈从(勾=0, V ((z , i) , (^ , /)) G X (4.17)

where z = (. . . , z(i’j〉,...) is a vector of zero-one integer variables and X is the set

of al l incompat ib le label pairs ((z , j) , {k, /)) . Since the solut ion space of a CSP is

defined entirely by the constraints (4.16 - 4.17), i t is equal to the feasible space of

the associated zero-one integer constrained min imiza t ion problem. The objective

funct ion N{z) serves only to exert addi t ional force to guide solut ion searching.

The object ive funct ion N{z) is defined in such a way that every solution of

the CSP must correspond to a constrained global minimum of the associated zero-

one integer constrained minimization problem (4.15 — 4-^V- This is called the

correspondence requirement. I n the fol lowing, we present two appropriate objec-

t ive functions that fu l f i l l the correspondence requirement. The goal of solving a

30 ,

Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems

CSP is to find an assignment that satisfies al l constraints. One possible objec-

t ive funct ion, adapted f r om Wah and Chang [61], is to count the to ta l number of

constraint violat ions. B y measuring the to ta l number of incompat ib le label pairs

((z , j) , {k, l)) i n an assignment, the object ive funct ion can be expressed as

W ~) = Y . H i , j) H k , i)

((i,j>,(fc,/))GJ

= Ŷ 9{i,m.i){̂) (4.18)
((t,i),(fc,0)6X

where z = (. . •, :〈‘j〉’.. .）is a vector of zero-one integer variables. Two properties

of th is object ive funct ion are stated as follows.

Property 4.1 z* is a constrained global minimum of the objective function N{z)

defined in (4.18) subjected to the constraints (4-16 — ^ J 7 j ifand only ifN{z*) = 0

and all constraints (4.16 - 4.17) are satisfied.

Proof: “=>，，part: I f z* is a constrained global m i n i m u m of the object ive func-

t ion N{z) defined in (4.18) subjected to the constraints (4.16 - 4.17), al l con-

straints (4.16 - 4.17) are satisfied. Furthermore, by the def in i t ion of the object ive

funct ion N{z), N{z*) = 0.

"<^=" par t : Since the object ive funct ion N{z) cannot be less than zero, z* is

a constrained global m i n i m u m i f N{z*) = 0 and al l constraints (4.16 - 4.17) are

satisfied. 口

Property 4.2 If z* represents a solution of the CSP, it is a constrained global

minimum of the objective function N{z) defined in (4.18) subjected to the con-

straints (4.16 - 4.17).

Proof: I f z* represents a solution of the CSP, al l constraints (4.16 - 4.17) are

satisfied. I n addi t ion, by the def ini t ion of the object ive funct ion N{z), N{z*) = 0.

B y proper ty 4.1, z* is a constrained global m i n i m u m of the object ive funct ion N{z)

subjected to the constraints (4.16 - 4.17). 口

31 ,

Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems

The first property suggests a condition for constrained global minima, while the

second property satisfies the correspondence requirement.

Another possibility is the constant objective funct ion

N{z) = 0. (4.19)

The objective funct ion satisfies the correspondence requirement tr iv ial ly. Basi-

cally, this t r iv ia l objective function does not help in the search of solution. We

shall show later, however, that this function is related to the GENET model.

To i l lustrate the transformation, consider again the same CSP shown in Fig-

ure 4.1. The Boolean variables are now converted to a vector of zero-one integer

variables

Z = {z{ui,l),Z(^ui,2), Z{U2,1), Z{u2,2), Z{us,l), ^{u3,2))- (4.20)

The cluster formulae (4.4 - 4.6) become the equations

^(ui,i> + ^(^i,2> == 1, (4.21)

Z{U2,1) + ^(^2,2) = 1, (4.22)

Z{us,i) + ^us,2) = 1. (4.23)

Similarly, the incompatibi l i ty functions

5̂ 1，1》〈以2，2〉(幻=̂ {UI,1)Z{U2,2), (4.24)

g{u,,2){u2,l)i^) = Huu2)^{u2,l)^ (4-25)

^(^2,1)(^3,1>(^) = (̂U2,1)̂ (US,1}̂ (4.26)

g(u2,2)(u3,l}(^) = (̂U2,2)Z(U3,1}̂ (4.27)

g(u2,2)(us,2}(^) = ^(U2,2)^(U3,2), (4.28)

are obtained from the connection formulae (4.7 - 4.11). The equations (4.21 — 4.23)

and the incompatibi l i ty functions (4.24 - 4.28) are the constraints of the zero-one

integer constrained minimizat ion problem. The transformation is completed by

choosing either (4.18) or (4.19) as the objective function. Hence, solving the CSP

now becomes finding a constrained global m in imum of the associated zero-one

integer constrained minimization problem.

32

.

Chapter 5

A Continuous Lagrangian

Approach for Solving Binary

CSP,s

I n this chapter, we show how to use the Lagrange mul t ip l ier method [24, 55] to

solve zero-one integer constrained min imizat ion problems transformed f rom CSP's.

Since the gradient of the Lagrangian funct ion is defined over the real space only,

the Lagrange mul t ip l ier method cannot be applied directly. We further transform

the zero-one integer constrained minimizat ion problem into a real constrained

min imizat ion problem, and apply the Lagrange mul t ip l ier method to the real

problem [4]. A simple experiment is also presented to evaluate the feasibility of

this approach.

5.1 From Integer Problems to Real Problems

The zero-one integer constrained minimizat ion problem (4.15 - 4.17) associated

w i t h a CSP {U, D, C) can be further transformed into a real constrained mini-

mizat ion problem. Each integer variable z(i,j) is converted to a real variable x(i,j),

which can take any value in the interval (- o o , + o o) . Among all possible values,

only 0 and 1 are feasible for each variable X(^ij). This integral restr ict ion is imposed

33

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

by the fo l lowing equal i ty constraints [4

Hi, j) iHi,3) - 1) = 0. ^ i e U J e D i . (5.1)

A real variable cc(i，j〉is 1 i f and only i f the corresponding zero-one integer variable

z(i,j) is 1. Simi lar ly, x^ij^ is 0 i f and only i f z(i，j) equals 0.

The constraints (4.16 - 4.17) are converted to their real counterparts. The

equations (4.16), which ensure val id assignment of CSP, are now replaced by

_ n (i _ z � 2 .，》) + 5 > � ‘ ’ � = i ,、则 . 關

jeDi jeDi

Since, i n the real space, there exist x(i，j〉+ 0 and cc(i,j) + 1 for a l l j G Di such that

Y j jeDi ^{hj) = 1, the ext ra t e rm - n j e L) - (l - ^ (i , j)) is in t roduced to guarantee that

only one value can be assigned to each variable of the CSP. Note that al though

the constraints (5.1) already enforce the real variable cc(i’j〉to be either 0 or 1, this

ext ra t e rm can provide addi t ional force to guide the search. Furthermore, since

the ext ra t e r m itself is not enough to ensure the val id assignment of CSP, i t is

not considered as a separate constraint. The incompat ib i l i t y funct ion g(ij)(k,i}(^)

becomes

9(i,mi}(^) = ^{i,j)^{k,i)^ V (��i〉，〈、0) ̂ 工 （5-3)
where X is the set of al l incompat ib le label pairs { { i J) , {k,l)). Simi lar to its

integer counterpart , g{i,j){k,i){x) returns 0 only when either X(^ij) or X(^k,i) are 0.

However, when a constraint is violated, g{i,j){k,i){x) returns a non-zero, possibly

negative, value.
The resultant real constrained min imiza t ion problem is

m i n " ⑷ (5.4)

subject to

xii,j){x^ij) - 1) = 0, V i e u,j e Di (5.5)

-n(i i2.， i>)+5><。〉=i ,、… (5.6)
jeDi jeDi

m) i k , i) { ^) = 0. V ((z , i) , (A : , /)) G X (5.7)

34
•

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP's

where N{x) is a converted object ive funct ion such tha t x* is a constrained global

minimum ofthe real constrained minimization problem (5-4 - 5.7) ifand only if its

corresponding zero-one integer variables z* is a constrained global minimum of the

associated zero-one integer constrained minimization problem (4.15 — 4-^V- We

called this the equivalence requirement. Simi lar to the zero-one integer constrained

m in im iza t ion problem (4.15 - 4.17), the solut ion space of a CSP is equal to the

feasible space of the associated real constrained min im iza t ion problem (5.4 - 5.7).

I n order to fu l f i l l the equivalence requirement, the object ion funct ion defined

in (4.18) is converted to

N{x) 二 Y^ (M，j〉z〈fc’0)2
{{i,j),{km^

= Y^ {ki.3)mi^)f (5.8)

{{i,j),{kmi

This t ransformat ion ensures that N{x) is always non-negative. Hence, any x that

satisfies the constraints (5.5 — 5.7) is a constrained global m in imum. On the other

hand, the constant object ive funct ion (4.19) does not require any modif icat ion.

Based on the equivalence requirement, the relat ion between a CSP and its as-

sociated real constrained min imiza t ion problem is stated in the fol lowing theorem.

Theorem 5.1 Ifx* is a vector of real variables represents a solution ofthe CSP,

then X* is a constrained global minimum of the associated real constrained mini-

mization problem (5.4 — 5,7).

Proof: Since there is a one-one correspondence between real variables x and zero-

one integer variables B, i f the real variables x* represents a solut ion of the CSP, its

corresponding zero-one integer variables z * also represents the same solution of the

CSP. By the correspondence requirement, z* is a constrained global m i n i m u m of

the zero-one integer constrained min imizat ion problem (4.15 - 4.17) transformed

f rom the CSP. Thus, by the equivalence requirement, x* is a constrained global

m i n i m u m of the associated real constrained min imiza t ion problem (5.4 - 5.7). •

Consider the same CSP in Figure 4.1 as an example. The corresponding real

35
•

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP’s

constrained m in im iza t ion is

m i n N{x) (5.9)

subject to

^^i,i>(^(^i,i> 一 1) = 0 (5.10)

x{u^,2){x(uu2) - 1) = 0 (5.11)

^{^2,i>(^(t^2,i> - 1) = 0 (5.12)

X{U2,2){X{U2,2) - 1) = 0 (5.13)

(̂tx3,i>(̂ 3̂,i> 一 1) 二 0 (5.14)

X{us,2){X{us,2) - 1) = 0 (5.15)

一(1 - a:(^i, i))(l - X{uu2)) + ^(^1,1) + ^{ui,2) = 1 (5.16)

- (1 - ^(^2,1))(1 - ^(^2,2)) + ^<^2,1) + ^{U2,2) = 1 (5.17)

- (1 - ^(n3,l>)(l - ^{us,2)) + X(̂ us,l) + ^(u3,2) = 1 (5.18)

5(^1,1)^2,2>(^) = X(^uul)^{u2,2) = 0 (5.19)

^(^1,2)(7.2,1)(^) = X{U1,2)X{U2,1) = 0 (5.20)

^(^2,l)(t^3,l>(^) = X|̂ U2,1)X{US,1) = 0 (5.21)

9{u2,2){us,l)i^) = X{U2,2)X{US,1) = 0 (5.22)

g{u2,2){us,2){x) = X^U2,2)^{us,2) = 0 (5.23)

where N{x) is the object ive funct ion defined in either (5.8) or (4.19), equa-

tions (5.10 - 5.15) are the integral restrict ions, equations (5.16 - 5.18) are the

constraints for val id assignments and equations (5.19 — 5.23) are the constraints

for the incompat ib i l i ty functions.

5.2 The Lagrange Multiplier Method

As the CSP is now transformed into a real constrained min imiza t ion problem (5.4

- 5 . 7) , the Lagrange mul t ip l ier method [24, 55] can be used to solve i t . The

36
*

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

Lagrangian funct ion is expressed as follows,

L{x, a , /?, 7) = N{x) + ^ a(i,j) [x{ij){x^ij) 一 1)
ieu,jeDi

mm •

+Y^Pi -1[(1一^^,力）+ 1] ^ “ 一 1
ieu L jeD, jeDi .

+ Y1 l{iJ){k,m,j){kM^) (5.24)
{{iMk,i))ei

where d = (. . •, a〈ij〉，. • .)，fi = (. • . , /¾, •. •) and 7 = (. . •, ^{i,j){k,i), •. •) are vectors

of Lagrange mult ipl iers.

According to the saddle point theorem, finding a constrained global m in imum

of the original minimizat ion problem (5.4 - 5.7) is equivalent to f inding a saddle

point of the Lagrangian function (5.24). Hence, the following dynamic system is

constructed:

fj^ _ +

i = - V , L { x , d , p , ^) (5.25)

§ = V , L { x , a J , j) (5.26) —

f = V ^ M ^ , a , M) (5.27)

§ 二 V , ^ L (x , a , A 7) (5.28)

where t is an independent t ime variable. As the system evolves over t ime t, i t

descends in the x-space and ascends in the space of Lagrange multipl iers. When
—

the system converges, all gradients vanish. Hence, a saddle point of L(x, a, /?, 7),

which corresponds to a constrained global m in imum of (5.4 - 5.7), is obtained.

Since a constrained global min imum of (5.4 - 5.7) must satisfy all constraints (5.5

- 5 . 7) , we get a solution of the associated CSP.

5.3 Experiment

In order to verify the feasibility of this approach, an experiment on the iV-queens

problems is performed. The iV-queens problem states that N queens are placed

37 .

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

N No. of Differential Equations CPU T ime (sec)
" 4 88 0.49 —
~ ^ 165 “ 1.50
~ 278 5.70 “

7 434 14.84
8 640 52.19
9 903 124.05
10 1230 267.83

Table 5.1: Results of continuous Lagrangian approach on the iV-queens problems

onto an N x N chessboard such that no two queens attack each other. In this

experiment, the objective funct ion defined in (5.8) is used. The resultant dynamic

system (5.25 — 5.28) is solved using the Livermore Solver for Ordinary Differential

Equation (LSODE), a Fortran package of ODEPACK [25] for solving differential

equations. Benchmark results are taken on a SUN U l t ra SPARCstation.

Table 5.1 summaries the results of the experiment. In this table, the first

column corresponds to the number of queens in the problem, the second column

represents the number of differential equations of the dynamic system, and the

th i rd column gives the average CPU t ime in seconds over 5 runs. From the re-

sults, we find that the number of differential equations and the CPU t ime grows

exponentially as the problem size increases. In addit ion, since an originally dis-

crete problem is transformed into a real problem, the computat ion becomes more

expensive [62, 54]. Hence, the performance is several order of magnitudes worse

than existing constraint satisfaction techniques. In other words, the continuous

Lagrangian approach is not a feasible technique for solving binary CSP's. In the

next chapter, we investigate a discrete Lagrangian approach for binary CSP's.

38 .

Chapter 6

A Discrete Lagrangian Approach

for Solving Binary CSP's

Shang and Wah [62, 54, 53] extended the exist ing Lagrange mul t ip l ie r method

to the discrete Lagrange mul t ip l ie r method and apply i t to solve SAT problems.

I n this chapter, we adopt this discrete Lagrange mul t ip l ie r method to tackle the

resultant zero-one integer constrained min im iza t ion problems obtained f rom the

t ransformat ion of CSP's. Based on the discrete Lagrange mul t ip l ie r method, we

propose CSVC, a generic discrete Lagrangian search scheme w i t h five degrees of

freedom. The G E N E T model is shown to be an instance of the CSVC frame-

work. Dua l viewpoints of G E N E T , as a heurist ic repair method and as a discrete

Lagrange mul t ip l ie r method, enable us to investigate G E N E T variants f rom both

perspectives. Exper imenta l results conf i rm that our best variant is always more

efficient than the reconstructed G E N E T .

6.1 The Discrete Lagrange Multiplier Method

The discrete Lagrange mul t ip l ie r method [62, 54, 53] for the zero-one integer con-

strained min imiza t ion problem (4.15 - 4.17) t ransformed f rom the CSP [U, D, C)

is described as follows. Similar to the continuous case, the Lagrangian funct ion

39 ,

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

—
L[z^ A) is

L{z, A) = N{z) + Y^ h,mmiMKi){^) (6.1)
{{i,j),{k,l))el

where A = (• . . , ^{ij){k,i), •. •) is a vector of Lagrange mul t ip l iers. Note that the

constraints defined by (4.16), which serve only to define val id assignments of CSP,

are not included in the Lagrangian funct ion. The constraints w i l l be incorporated

in the discrete gradient operator discussed below.

A constrained m i n i m u m of the zero-one integer constrained min im iza t ion prob-

lem (4.15 — 4.17) can be obtained by finding a saddle point of the Lagrangian

— — -
funct ion L{z, A). As in the continuous case, a saddle point (z * , A*) [62, 54, 53] of

—
the Lagrangian funct ion L{z^ A) is defined by the condi t ion

L (r , A) < L (r , A *) < L (^ , A *) (6.2)

— — —
for al l (£* , A) and {z, A*) sufficiently close to (i^*,A*). I n other words, a saddle — — —*

point (z * , A*) of the Lagrangian funct ion L{z, X) is a m i n i m u m of L{z^ X) in the
— —

i'-space and a m a x i m u m of L{z^ A) in the A-space. The relat ionship between

a constrained m i n i m u m of an integer constrained min im iza t ion problem and a

saddle point of i ts associated Lagrangian funct ion is established by the discrete

saddle point theorem, which is restated as follows.

Theorem 6.1 (Discrete Saddle Point Theorem) [70] A vector of integer vari-

ables z* is a constrained minimum ofthe integer constrained minimization problem

m i n f { z)

subject to 9i{^) = 0, i = 1 , . . . , m

with gi{z), for all i = 1,..., m, is non-negative for all possible value of z if and
— —

only if there exists Lagrange multipliers X* such that (z * , A*) constitutes a saddle

point of the corresponding Lagrangian function L(B, X) 二 /(i*) + Yl^i ^i9i{^)-

Since the incompat ib i l i ty funct ion g{i,j){k,i){^)^ for al l ((z , j) , {k^ l)) G X, of the

zero-one integer constrained min imizat ion problem (4.15 - 4.17) are always non-

negative, the discrete saddle point theorem is applicable to the zero-one integer

40 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

constrained m in im iza t ion problem (4.15 - 4.17). Note tha t , under this theorem,
_̂ — — ~f —

L{z*, A) is always equal to L{z*^ A*). Hence, any point {z*, A') w i t h A' > A* is
—

also a saddle point of the Lagrangian funct ion L[B, A).
—

A saddle point of the Lagrangian funct ion L { z , A) can be obtained by per-

fo rming descent i n the discrete variable space of z and ascent i n the Lagrange

mul t ip l ie r space of A [43]. Instead of using dif ferent ial equations, the discrete

Lagrange mul t ip l ie r method uses difference equations [62, 54, 53

£s+i 二 r-AgL{z%X') (6.3)

Xs+i = y + ^ (£^) (6.4)

where x^ denotes the value of x i n the 5th i terat ion, A ^ is a discrete gradient

operator and g(z) = (. . . ,9{i,j){k,i){^)^...) is a vector of incompat ib i l i t y functions.

I n general, the discrete gradient operator is not unique. A n y operator that

can per form descent i n the F-space can be used. We give one such operator as

follows. Let rrii be the size of the domain of variable i, Given a vector of zero-one

integer variables z = (. . . , :<i, j>,. . .) , we define the zero-one projection operator n^

for al l i G U,

7r'(^)=(邻，…，.•.，^{i,vj), •. •，^{i,vrm))^ (6.5)

which gives the ith-component of z. Hence, n^ returns the vector of zero-one

integer variables corresponding to variable i i n U. The ith partial discrete gradient

operator d^ for al l i G U is defined as

d'L{z,X) = 7r\z)-7r\z') (6.6)

i f the fol lowing conditions hold

• X is a set of vectors of zero-one integer variables such that Wx G X,

(Y 1 ^{iJ) = 1) N (vA: + i e U V/ G Dk x(k,i) = z(k,V|)

^jeDi) 、)

A W " [(Y^ z%.^ = 1 A V/c + i e U V/ G Dk 4 乃 = z (、 o)

^^jeDi y

=^ L(x, A) < L(F〃，A)

41 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

• z' is selected f r om X by

f

z, i f z G X
•^ ‘
^ =

r a n d (X) , otherwise
、

where r a n d (y) returns a random element f rom a set Y.

The i t h par t ia l discrete gradient operator d^L{z^ A) returns a differential vector

cTfor the i t h component of zhy (1) comput ing a set X of vectors x tha t cause the

most reduct ion in the value of the Lagrangian funct ion and (2) selecting a vector

z' f r om X. Note that the selection process in (2) is based on that of the state

update rule of G E N E T w i t h the same random selection funct ion r a n d (y) . Note

also that the constraints defined in (4.16) are incorporated in the par t ia l discrete

gradient operators d% for al l i G U, enforcing the sum of al l z(i,j) for each variable

i to be 1. I f d'L{z^ A) = 0, there is no change in the zth component of the vector z.

The corresponding discrete gradient operator A ^ is represented by the equations

7T%A^L{z, A)) = d'L{z, A), V i € U. (6.7)

When A^L{z, A) = 0, either a saddle point or a stationary point, at which the

update of z terminates, is reached.

The Lagrange mul t ip l iers A are updated according to the incompat ib i l i t y func-

tions. I f an incompat ib le tuple is violated, its corresponding incompat ib i l i t y func-

t ion returns 1 and the Lagrange mul t ip l ie r is incremented accordingly. In this
—

formulat ion, the Lagrange mul t ip l iers A are non-decreasing.

A generic discrete Lagrangian search procedure CSDC[N, A^, " , / - , U^) for

solving the zero-one integer constrained min imiza t ion problems transformed f rom

CSP's is given in A lgo r i t hm 6.1. The CSVC (pronounced as "L isdal ") procedure

performs local search using the discrete Lagrange mul t ip l ie r method. I t has five

degrees of freedom, namely [N) the objective funct ion, (A^^) the discrete gradi-

ent operator, (/ f) how the integer vector z is in i t ia l ized, (/ -) how the Lagrange
~t . . ~*

mul t ip l iers A are in i t ia l ized and (U^) when to update the Lagrange mult ip l iers A.
Where appropriate, we annotate the a lgor i thm w i t h the parameters in brackets

42 ,

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

procedure CSVC{N, A^-, /^, I^, U^)
begin

(/^) init ial ize the value of z
—

(/j^) init ial ize the value of A
while (AO L{z, A) - N{z) > 0 {z is not a solution) do

(A^) update z\ z — z — A^L{z^ A)
if {U£) condition for updating A holds then ~* — —

update A: A <r- X + g{z)
end if

end while
end

Algor i thm 6.1: The CSVC[N, A^ , h, 1。U^) procedure

to show where the parameters take effect. The role of each parameter is discussed

in the next section.

6.2 Parameters of CSVC

CST>C defines a general scheme for a class of algorithms based on the discrete

Lagrange mult ipl ier method. By instantiating CSVC w i th different parameters,

different Lagrangian search algorithms w i th different efficiency are obtained. In

this section, we discuss the various parameters of CST>C in details.

6.2.1 Objective Function

The objective function N{z) is one of the degrees of freedom of the CSVC algo-

r i thm. As stated before, any function that satisfies the correspondence require-

ment can be used. However, a good objective function can direct the search

towards the solution region more efficiently [65]. Two possible objective func-

tions, presented in chapter 4, are summarized as follows. First, since the goal of

solving a CSP is to find an assignment that satisfies all constraints, the objective

43 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

funct ion, defined in (4.18),

M ^) = Y^ Hi,j)Hk,i)
{{i,Mkm^

= X) 9{i,j){k,l){^)
分 {{i,j),{k,i))e^

\

where X is the set of incompat ib le tuples, reflects the to ta l number of v iolated

tuples. Second, the constant object ive funct ion

N{z) = 0

can also be used.

6.2.2 Discrete Gradient Operator

The discrete gradient operator A ^ , which performs gradient descent in the z-

space, is not unique. One possible discrete gradient operator is defined in (6.6 -

6.7). This operator performs gradient descent i n al l variables i n the CSP at once.

The s i tuat ion is simi lar to that of synchronous update in the G E N E T convergence

procedure. I n practice, this can also lead to oscil lat ion. We define another discrete

gradient operator, the effect of which is specified by the fo l lowing pseudo-code,

for each variable i G U do

update T:\z): 7T^'(i) — i^\z) 一 d'L{z, A) (6 g)

end for

where d^ is the par t ia l discrete gradient operator defined in (6.6). This new opera-

tor corresponds to the updat ing strategy used in most sequential implementat ions

of G E N E T .

Another possible discrete gradient operator is defined as

l l ^ L { z , X) = z - z ' (6.9)

i f the fol lowing conditions are satisfied

44

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

• X is a set of vectors of zero-one integer variables such that V f G X,

3i € U [J2 (̂̂ -,i> = 1 八 V& + ‘ e U V/ G Dk x(^k,i) = z(^k,i) j

^j£Di)

A W " 3m G U (Y^ 么;'爪’„〉= 1 八 Vp + m G U Vg G D, z"、_ =、，?〉
- \ neDm

=^ L{x, X) < L{z\A)

• z' is selected f rom X by

‘ z , if z G X
z'= ，

r a n d (X) , otherwise
w

where rand (F) returns a random element f rom a set Y.

The discrete gradient operator computes a set X of zero-one integer vectors x

which reduce the Lagrangian function most, and returns a differential vector by

selecting a vector z' f rom X according to the state update rule of GENET. Since

each zero-one integer vector x in the set X can have at most one component 7r'(x),

for some i G U, being different f rom the current value of z, only one variable of the
— —

CSP is updated by this discrete gradient operator. When A^L{z, X) = 0, there

is no change in z. Note that this new discrete gradient operator is similar to the

one defined in D L M [62, 54, 53] for solving the SAT problems.

6.2.3 Integer Variables Initialization

A good in i t ia l assignment of the zero-one integer variables z can speed up search.

As in most local search techniques, the simplest way is to init ial ize the zero-

one integer variables z randomly in such a way that the constraints (4.16) are

satisfied. On the other hand, Minton et al [40] suggest that a greedily generated

in i t ia l assignment can boost the performance of the search. Morris [41] points

out that a greedy init ial ization can generally shorten the t ime required to reach

the first local minimum. In this case, the init ial ization procedure iterates through

each component 7r^(f) of the zero-one integer vector £, and selects the assignment

which conflicts w i th the fewest previous selections.

45

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

6.2.4 Lagrange Multipliers Initialization
—

Similar to the ini t ia l izat ion of integer variables, the Lagrange mult ipl iers A can

also be init ial ized arbitrari ly. Since the update of Lagrange mult ipl iers is non-

decreasing, in general, any non-negative number can be used as the in i t ia l value.

One possible way is to init ial ize all Lagrange mult ipl iers to 1. In this case, all

incompatible tuples have the same in i t ia l penalty. Another possibility is to ini-

tialize each Lagrange mult ipl ier differently. For example, different in i t ia l values

can be used to reflect the relative importance of constraints in the CSP [33]. I f a

constraint is known to be more important than the others, its associated Lagrange

mult ipl iers can be assigned a larger in i t ia l value.

6.2.5 Condition for Updating Lagrange Multipliers
—

Unlike the continuous case, the updating frequency of the Lagrange mult ipl iers A

can affect the performance of the discrete Lagrange mult ipl ier method [62, 54, 53 .

Thus, the condition for updating the Lagrange mult ipl iers is left unspecified in

CSVC. The Lagrange multipl iers can be updated either (1) at each iteration

of the outermost while loop, or (2) when Ai^L(i ' ,A) = 0. Note that the former

condition is a direct application of the strategy used in the continuous case while

the later corresponds to Morris's breakout method [41 .

6.3 A Lagrangian Reconstruction of GENET

In this section, we show how we can reconstruct GENET using our discrete La-

grangian approach. Given a CSP {U,D,CT}. The two-step transformation estab-

lishes a one-one correspondence between the GENET network of {JJ, D, C) and

the associated zero-one integer constrained minimizat ion problem of (U,D,C).

The GENET convergence procedure (Algor i thm 3.1) can be obtained by instan-

t iat ing CSVC w i th proper parameters. This instance of CST>C, denoted by

£<SX>£(GENET), has the following parameters:

46

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

• N.. the constant object ive funct ion defined in (4.19),

• Af： the discrete gradient operator defined in (6.8),

• " : the zero-one integer vector z is in i t ia l ized randomly, provided that the

in i t i a l values correspond to a val id state in G E N E T ,

• / - : the values of Lagrange mul t ip l iers A are al l in i t ia l ized to 1, and

— — —
• U^\ the Lagrange mul t ip l ie r A are updated when d'L{z, A) = 0 for al l i 6 U.

I n the fol lowing, we prove the equivalence between £5X>£(GENET) and the

G E N E T convergence procedure. Recall tha t a state S of a G E N E T network M is

a tuple (y , W), where V = (. . . , V{i,j),...) is a vector of outputs for al l label nodes

(i , j) i n M and W = (. . . , l%j〉〈fc,/〉，.. •）is a vector of weights for al l connections

((z , j) , [k , l)) i n M . Based on the state update rule of the convergence procedure

of G E N E T and the def ini t ion of the discrete gradient operator (6.8), we derive

the fol lowing lemma.

Lemma 6.1 Consider a CSP {U,D,C), and its corresponding GENET network

J\f and zero-one integer constrained minimization problem. Suppose both GENET

and CSVC{GENET) use the same random selection function rand(l^), and, in the

sth iteration, V' = P and W' = -X% and 7r'{P+^) = n'{P) — d'L{P,X'). In

the update of variable i from the sth to the (s + l)st iteration，

V^i = 1 and V<U; = 0,Vk + j G A.分：(¾ = 1 — < , �= 0 , V k — j G A .

Proof: Consider updat ing cluster i of the G E N E T network Af f rom the 5th to

the (s + l) s t i terat ion. Let A{M, { i J)) be the set of al l label nodes connected

to { i J) i n G E N E T network N\ and Li be the set of al l label nodes in cluster

i i n G E N E T network M. Furthermore, let i ^ be the zero-one integer variable

vector in the 5th i terat ion w i t h z!。』)=1, z^ k) — • for al l k + j G A , and <2；&，”》

unchanged for al l u + i G U and v G A i .

ŷ ^̂ = iandv̂ ^ = o,VMieA-
47

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

分 ni.3) > ̂ (̂-,M' ^k^jeDi

^ E .̂>(̂ .>̂ ;̂ > > E 〜，叫 ¥ > % + vfc+j ̂ Dt
{u,v)eA{Af,{i,j)) {u,v)eA{Af,{i,k))

(\
^ 1 X E ^ ^ 3) M V M + E • X E 〜乃—》%，”〉

{u,v)eA{jsf,{i,j)) ii^jeDi \ {u,v)eA{M,{i^)) /

+ X I y{a,h)^{a,h){c4)^{c4) ^
(<a,b),<c,d>)eAT
{a,b),{c,d)^Li

I X E ^ 〈 — ” ; > + E (O x E n M u .) ^ { u , v)
{u,v)eA{Af,{i,k)) l^k£Di \ {u,v)eA{Af,{i,l)))

+ E ^(a,)^lmA^U^ VÂ ĴGA
((a ,6> ,<c ,d))eAT
{a,b),{c,d)^Li

^ 1 X Y^ ->'{i,j){u,v)^{u,v) + Y1 (0 X Y , -X\iMu’v、Z(u，v、

{u,v)eA{Af,{i,j)) ¥jeDt \ {u,v)eA{M,{i,i)) /

+ X I ^{a,b){-^{a,b){c,d))^{c,d) ^
{{a,b),{c,d))eU
<a,b>,<c,d>gi>i

/ s s \

1 X Y1 ->'{i,k){u,v)^{u,v) + Y1 0 X Y^ ->^{i,l){u,v)^{u,v)
{u,v)eA(Af,{i,k)) ii:keDi \ {u,v)eA{M,{i,i)) /

+ Y . ^(a,6>(-^(a,6)M>)4,rf), ^^ ^ 3 ^ A
(<a,b>,<c,d))eA^
{a,b),{c,d)^Li

分 L(̂ ,A)̂<L(̂ ,A)̂, yk^jeDi

分 d'L{z%y) = 7 r ^ n - ^ ' { ^ - j)

Since bo th G E N E T and £<SX>£(GENET) use the same random selection funct ion

r a n d (y) , and 7r%P+i) = 7r^'(P) - d ' L { P , X ') , we have

乂芯〉1 = 1 and V < 3 = Oyk — j G A 分 ^ (¾ = 1 and ^ ^ ¾ 二 O^k — j G A -

•

The lemma states that when updat ing variable i f r om the 5th i terat ion to the

(5 + l) s t i terat ion, the same value j G A w i l l be selected by bo th G E N E T and

CSVC{GENET). By applying the lemma repeatedly to each variable i G U, we

get the fol lowing corollary.

48 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

Corollary 6.1 Consider a CSP {U,D,C), and its corresponding GENET net-

work M and zero-one integer constrained minimization problem. Suppose both

GENET and CSVC{GENET) use the same random selection function rand(y),

and, in the sth iteration，V' = z' and W' 二 -X〜and 7r^'(P+^) = 7r%z')—

d'L{z% X^) for all i G U. In the {s + l)st iteration，we have

T^+ i = i^s+i.

Proof: According to lemma 6.1, for each variable i G U, we have

l/〈^》i = 1 and y^ f4 = 0,VA: + j G D, ^ ^ ¾ = 1 and ^ ^ ¾ 二 0,VA; + j e A .

H e n c e , t > + i = i^s+i. •

The relat ion between the weights W of the G E N E T network JV and the La-

grange mul t ip l iers A of £«SX>£(GENET) is given by the fol lowing lemma.

Lemma 6.2 Consider a CSP {U,D,C), and its corresponding GENET network

M and zero-one integer constrained minimization problem. Suppose, in the sth

iteration, V' = z', W' = - A �a n d , in the {s + l)st iteration, V'+^ 二 P + i .

^s+i=_Xs+i.

Proof: We consider the lemma in two different cases. F i rs t , i f V"^+^ + V^ and

P + 1 + -S, the conditions for updat ing the weights W and the Lagrange mul t ip l ier
-̂

A are false. Therefore,

S + 1 二 ^s = _ p = — p + 1 .

Second, i f i > + i = V' and P + i = P , then, for each ((i , j) , {k, l)) e Af,

^iCmi) = ^ ^ , m o - ^ M o

= - ^ { i , j) { k , i) - ^{i,j)^{k,i)

= - ^ h w) - 9 { i J) { k , i) i ^ ')

=-(^(i,i>{fc,0+^^"'j)(^'0(^'))
_ _ \ 5 + l
_ ^{i,j){k,l)

49 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

Combin ing these two cases, we get W^^^ = —A^^^. 口

Now, a simple appl icat ion of corol lary 6.1 and lemma 6.2 results i n the fol-

lowing theorem, which establishes the equivalence of the G E N E T convergence

procedure and £<SX>£(GENET).

Theorem 6.2 Consider a CSP (JJ, D, C), and its corresponding GENET network

J\f and zero-one integer constrained minimization problem. Suppose both GENET

and CSVC{GENET) use the same random selection function rand(y) and they

share the same initial state. For all iteration s，V^ = z^ and W^ = -A^. If they

terminate, they return the same solution for the CSP.

Proof: We prove the theorem by mathemat ica l induct ion. In i t ia l ly , at s — 0,

since bo th G E N E T and CSVC{GENET) share the same in i t i a l state,

V ° 二 z ^

Furthermore, since W ^ = —1 and A° = 1,

W' = -A®.

Therefore, the theorem is t rue at s = 0.

Now, suppose at s — t, V^ = z* and W^ = —XK B y corol lary 6.1 and

lemma 6.2, we have

\?力+1 =玄计1 and I ^ ^ i = - X ^ i

at s = t + 1.

By mathemat ica l induct ion, the theorem is t rue for al l i terat ion s. Conse-

quently, i f bo th G E N E T and CSVC{GENET) terminate, they re turn the same

solut ion for the CSP. 口

Based on this theorem, we get the fol lowing two corollaries. The first corollary

states the relat ion between the energy of G E N E T and the Lagrangian funct ion

of CSVC{GENET), whi le the second corollary gives the te rminat ing properties of

G E N E T and CSVC{GENET).

50

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

Corollary 6.2 Consider a CSP (U, D，C)，and its corresponding GENET net-

work Af and zero-one integer constrained minimization problem. The energy of

GENET is equal to the negative of the Lagrangian function of CSVC{GENET).

Math ematically,

E{Af,S) = -L{lX).

Proof: Consider the G E N E T network Af and its associated zero-one integer

constrained min im iza t ion problem. Let X be the set of al l incompat ib le tuples.

(̂AT,A = ^ V(.-,i)Ĥ (..)(.,0̂ (.,0
{{i,j),{k,i))eM

= Y 1 Hid) (->'{iJ){k,l)) Hk,l)
{{i,j),{k,i))ei

= 一 X] ^i,j){k,l)9{i,j){k,l)i^
({i,j),{k,l))el

= - m ^)

•

Corollary 6.3 Consider a CSP (̂ 7, J9, C), and its corresponding GENET net-

work M and zero-one integer constrained minimization problem. GENET termi-

nates if and only if CSVC(GENET) terminates.

Proof: Consider the G E N E T network J\f and its associated zero-one integer

constrained min imiza t ion problem. Let 0(A/ ' , S) be the set of al l on label nodes
«

of the G E N E T network Af and a state S.

G E N E T terminates <^ /(,•,) = 0, V (z , j) G 0{Af,S)

<^ E{JV,S) = 0

<^ L{z, X) = 0

分 CSVC{GENET) terminates

•

51 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

Similar results can be proven if, in CSVC, we use instead the objective function

N{z) defined in (4.18) and init ial ize A to 0. If, however, we use N{z) defined

in (4.18) and init ial ize A to 1, the Lagrangian function becomes

L{z, A) = Y1 HiJ)Hk,i) + Y^ \iMkmiMk.i){^)
[(i,j),[k,i))a: {{i,j),{k,i))ei

= Y . (1 + >'{iJ){k,i)) 9{iJ){k,i)i^) (6.10)
{{i,j),{k,l))el

where X is the set of all incompatible tuples. As a result, we have

W = - (r + X) . (6.11)

This version of CSVC is equivalent to GENET w i th all connection weights ini-

t ialized to —2 instead of —1.

6A Experiments

Three experimental settings are used to evaluate our discrete Lagrangian ap-

proach. First, £5X>£(GENET) is compared w i th GENET to verify i f i t has the

same fast convergence behavior as other GENET implementations. Second, sev-

eral experiments are performed to evaluate the effect of different parameters of

CSVC. Parameters which give good performance in most CSP's are identified.

Thi rd, our best variant CSVC{UKX) is tested against CSVC{GE^ET).

The A^-queens problems, a set of hard graph-coloring problems from the DI-

MACS archive [27], an instance of exceptionally hard problems (EHP's) [45], and

a set of randomly generated CSP's are used in our experiments. Results of all

CSVC implementations are taken on a SUN SPARCstation 10 model 40. Unless

otherwise specified, the unbracketed and the bracketed t iming results represent

the CPU t ime in seconds for the average and the median of 10 runs respectively.

Note that the results of all CSVC implementations are the t ime for finding one

solution only.

52

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

P R O C L A N N CSVC{GENET) l-CSVC{GENET)

N Average CPU Average (Median) Average (Median)
T ime (sec) CPU T ime (sec) CPU T ime (sec)

10 0.065 0.005 (0.000) — 0.027 (0 . 0 2 5] ~
‘ ~ W 0.218 ~ " a 0 0 3 (0.000) 0.288 (0.283)

~ W 0.637 — 0.020 (Q.Q17) — 1.005 (L O O O l ~
~ W 2.145 — 0.028 (0.033) — 2.388 (2 . 3 8 3 ^ ~
" ^ Q ~ 4.719 — 0.040 (0.033) — 4.627 (4.617)~~
~ ^ ~ 7.711 — 0.068 (0.067) 8.002 (7 .975)—
~ W ~ 13.292 ~ ~ 0.090 (0.092) 12.818 (1 2 . 7 9 ^
~ W 20.629 — 0.178 (0.175) —19.698 (1 9 . 6 9 ^
~ W ~ 33.150 — 0.642 (0.633) —28.283 (2 8 . 2 6 7 ^
~T00~' 152.795 — 1.078 (1.108) 39.348 (39.400) ~
~ n 6 ~ ' 261.026 — 1.588 (1.583) " ^ . 5 8 5 (52.608) ~
"1^1 144.709 2.033 (2.058) 68.907 (68 .950^"

Table 6.1: Results of >C«5I>£(GENET) on the iV-queens problems

6.4.1 Evaluation of £5P£(GENET)

The performance of £<SP£(GENET) is evaluated on the N-queens problems, a

set of hard graph-coloring problems, and an instance of EHP's designed to defeat

tree search algorithms. These experiments have two purposes. First, they serve to

verify i f £<SP£(GENET) exhibits the same fast convergence behavior as GENET

as reported in the literature. Second, they serve as a control to compare against

other variants. Wherever possible, the performance figures of two implementations

of GENET are provided.

Table 6.1 shows the results of 10- to 120-queens problems for CSVC{GENET),

l-CSVC{GENET) and PROCLANN [36], a constraint logic programming language

w i th GENET as the constraint solver. I-£Sr>£(GENET) and PROCLANN are

incremental implementations of £<SX>£(GENET) and GENET respectively. In

these implementations, everytime new constraints are generated and posted into

the constraint store, the CSVC procedure or the GENET solver is activated to

solve the part ial problem containing all constraints available in the constraint

store. The benchmarking results of PROCLANN are the average of 10 runs on a

53

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

GENET PROCLANN ~~£5P£(GENET)~~
Nodes Colors Median Average Average (Median)

CPU T ime CPU T ime CPU T ime
125 ~~~fr 2.6 h r ~ ~ 2.3 hr — 4.7 m in (3.7 m i n 「

~ ~ 1 ^ l 8 23 s e c ~ ~ 2.5 m i n 一 4 .5 sec (2 .9 s e c) 一

~ 2 ^ l 5 ^ 4.2 sec 1.1 hr 0.418 sec (0.408 s e ^
250 29 — 1.1 hr “ 4.6 hr 14.6 m in (15.7 min)~

Table 6.2: Results of £52>£(GENET) on the hard graph-coloring problems

SUN SPARCstation 10 model 30. Since P R O C L A N N generates the constraints

of a CSP from a program, the t iming results of l-CSVC{GENET) include the

t ime for reading constraints to compensate the difference. The performance of

CSVC{GENET) is order of magnitudes better than that of PROCLANN. The

large difference in performance is due to the fact that £<SP£(GENET) collects all

constraints in the problem init ial izat ion phase and activates the Lagrangian search

algori thm once. Hence, much work is saved. This effect is more prominent as the

size of the problems increase. On the other hand, l-CSVC{GENET) shows similar

performance as that of PROCLANN. The difference in performance on the large

problems is due to the difference in their interface.

The graph-coloring problem is to assign a color f rom a fixed set of colors

to each vertex of the graph such that no two adjacent vertices share the same

color. A set of hard graph-coloring problems f rom the D IMACS archive [27] are

tested. T iming results of the hard graph-coloring problems for CSVC{GENET),

P R O C L A N N [36] and GENET described in [7] are shown in Table 6.2. Again

the results of P R O C L A N N are the average of 10 runs taken on a SUN SPARC-

station 10 model 30. The results of GENET, quoted f rom [7], represented the

median of 10 runs collected on a SUN Sparc Classic, which is about 2 to 3 times

slower than a SPARCstation 10 model 40. The hard graph-coloring problems are

relatively small in size and the constraints are available to P R O C L A N N all at

once. Therefore, most t ime is spent in actual searching in all implementations.

Both l-CSVC{GENET) and £«SX^C(GENET) have the same performance since they

54 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

are equivalent when all constraints are available and posted to the constraint

store at once. £<SX>£(GENET) improves substantially on both implementations

of GENET. This might be related to the difference in the implementations. In

CSVC{GENET), the contr ibution of each incompatibi l i ty funct ion 9{i,j){k,i)i^) to

the Lagrangian function L{z^ X) is calculated incrementally during the update of

the zero-one integer variables z. When a zero-one integer variable z(i,j) is updated,

the contributions of previously violated incompatibi l i ty functions g{i,j){k,i)(^ are

subtracted f rom the Lagrangian function L(z, A), while the contributions of newly

violated incompatibi l i ty functions are added to the Lagrangian function. Hence,

a large amount of computation is saved.

Prosser [45] designed a specific instance of EHP's to defeat forward-checking

algori thm w i th dynamic variable ordering (fc-dvo) [44], which always chooses vari-

ables w i th the smallest current domain. The problem consists of 50 variables,

each w i th a domain {1 ,2 ,3 ,4 ,5 ,6 , 7,8} . The associated constrained graph is con-

nected. Each pair of connected variables contains 4 incompatible tuples. The

tightness [60] of the problem is 0.06. Unlike tree search algorithms [44], the per-

formance of>C<SI>r(GENET) seems not to be affected by this EHP. jCSVC(GENET)

solves the EHP wi th 2.2 iterations in 0.002 seconds on average over 10 runs. I t is

much better than that of PROCLANN, which required 2448 convergence cycles

in 3.24 seconds to solve the same problem.

In conclusion, £ST>£(GENET) exhibits similar fast convergence behavior to

GENET. The difference in performance may be due to the difference in imple-

mentations.

6.4.2 Evaluation of Various Parameters

The experiments are used to evaluate the effect of various parameters of CST>C.

In each experiment, the parameter under test is varied in the CST>C implemen-

tation. Other parameters remains the same as that of £<SP£(GENET). The

AT-queens problems, the set of hard graph-coloring problems f rom the DIMACS

archive [27], and a set of randomly generated CSP's, ranging f rom 100 to 150

55

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

^{zero} ^{violation}

N CPU Time (sec) CPU T ime (sec)
10 0.005 (0.000) 0.000 (0.000)

~ W 0.003 (0.000) — 0.003 (0 . 0 0 0) ~
30 0.020 (0.017) 一 0.013 (0.017)

~40 a028 (0.033) 0.027 (0.033)
~ ^ 0.040 (0.033) 0.045 (Q.05Q)
~ ^ 0.068 (0.067) 0.058 (0.058)
~ 7 0 ~ 0.090 (0.092) 0.090 (0.083)
~ m g i 7 8 (0.175) 0.147 (0.150)

90 0.642 (0.633) “ 0.657 (0.642)
~ m 1.078 (1.108) 1.098 (1.067)

110 1.588 (1.583) 1.522 (1.533)
120 2.033 (2.058) 2.068 (2.142)

Table 6.3: Results of N — o } and N^vioiation} on the iV-queens problems

variables, are used. Each t ight random CSP has a uni form domain of size 10,

constraint tightness [60], the proportion of pairs of values which are inconsistent

in a binary constraint, 0.15, and constraint density [60], the proport ion of pairs

of variables which have a constraint between them, varying f rom 0.165 to 0.25.

Objective Function

This experiment investigates the effect of the objection function N{z), Two ob-

jective functions are tested. They are

• N^zero}'- the objective function defined in (4.19)，and

• N{vioiation}'' the objective function defined in (4.18).

Experimental results for the 7V-queens problems are reported in Table 6.3.

The results of N{yioiation} is similar to that of N{zero} since only a small amount

of CPU t ime is spent on solution searching. For the results of the hard graph-

coloring problems shown in Table 6.4, except the problem w i th 125 nodes and

17 colors, the objective function N{yioiation} improves the performance of CST>C.

The poor performance for the problem wi th 125 nodes and 17 colors is due to an

56

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

^{zero) N{violation}

Nodes Colors CPU Time CPU T ime
~1[25 17 4 7 m in (3.7 min) 8.0 m in (3.1 m i ^ ^

125 18 4.5 sec (2.9 sec) 1.2 sec (1.0 sec)
250 15 — 0.418 sec (0.408 sec) 0.415 sec (0.417 sec)

" ^ Q 29 14.6 min (15.7 min) 11.9 m in (11.8 min)

Table 6.4: Results of N 、 — and N — i a — on the hard graph-coloring problems

N^zero} ^{violation}

Problem CPU Time (sec) CPU T ime (sec)
^sp-100-lQ-25-15 2.742 (2.483) 1.852 (1.475)一

"7^sp-110-10-23-15 11.253 (10.992) 一6.950 (2.108)一

^sp-120 - lQ-21 - I^ 7.983 (5.433) 一5.375 (4.083)一

^sp-13Q-10-19-T5~ 9.077 (8.308) —4.322 (3.500)—
"^sp-140-lQ-18-15 11.000 (10.058) —9.167 (7.975)一

^p-150- lQ-16 .5 -15 7.935 (8.692) 2.458 (2.100)—

Table 6.5: Results of N — o } and N—iation} on the t ight random CSP's

exceptionally bad t iming result in one of the runs. Table 6.5 shows the results of

N{zero} and N{yioiation} OH the t ight random CSP's. In this set of problems, the

objective function N^vioiation} improves the performance substantially.

Since the effect of an objective function is to exert addit ional force to guide the

search, a good objective function can improve the overall performance of CST>C.

From the experiment, we f ind that N(vioiation} usually gives better performance

than N{zero}'

Discrete Gradient Operator

The efficiency of two discrete gradient operators are evaluated. The operators

• l^s{many}'' the one defined in (6.8)，and

• A^{o7ie}' the one defined in (6.9)

57 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

^z{many} ^z{one}

N I ter. CPU Time (sec) Iter. CPU T ime (sec)
10 51.6 0.005 (0.000) 13.8 0.000 (0.000)

" ^ 0 ~ 14.8 0.003 (0.Q00^~ 62.2 0.005 (0.000)
~ ^ 51.2 0.020 (0.017) 50.2 0.020 (0.017)
~ W 38.5 0.028 (0.033) 42.2 0.027 (0.025)—
~ W 40.3 0.040 (0.033) — 62.5 0.063 (0.067)—
~ W 35.1 0.068 (0.067) — 69.0 0.100 (0.100)—
" T T " 34.9 0.090 (0.092) — 58.3 0.135 (0.133)—
~ ^ 31.2 0.178 (0.175) 84.8 0.280 (0.275)
~ % 30.6 0.642 (0.633) 89.5 0.777 (0.767)
T o o 49.2 1.078 (1.108) 86.5 1.378 (1.375)
T T 0 43.2 1.588 (1.583) 80.1 1.958 (1.942)
丁20 41.9 2.033 (2.058) 129.2 2.752 (2.683)—

Table 6.6: Results of Ag^rnany} and A^^one} on the A^queens problems

^z{many} ^z{one}

Nodes Colors Iter. CPU Time Iter. CPU Time
—125 17 708.4 k 4.7 m in (3.7 min) T ^ 7 . 3 k 8.1 m in (5.0 m i n) =
T 2 5 l 8 ~ 6125.8 4.5 sec (2.9 sec) 6119.3 2.4 sec (1.6 sec)
~ m l 5 ~ ~ 24.0 0.418 sec (0.408 sec) 455.1 1.122 sec (l.lQQ secJ"

250 29 337.5 k 14.6 min (15.7 min) 1060.8 k 21.0 m in (19.9 min)

Table 6.7: Results of A^{rnany} and A^{one} on the hard graph-coloring problems

are tested. Table 6.6 shows the CPU t ime and the average number of iterations of

the two discrete gradient operators on the A^-queens problems. The performance

of A^{one} is slightly worse than that of A^^^any}- However, since the iV-queens

problems are relatively easy for CSVC^ the results are not very significant. The

t iming results and the average number of iterations of the hard graph-coloring

problem and the t ight random CSP's are shown in Tables 6.7 and 6.8 respectively.

Except some problem instances, the discrete gradient operator A f { _ } is not as

efficient as /^^{many]- This difference in performance can be accounted as follows.

Although both discrete gradient operators perform the same amount of work in

each iteration, only one variable is updated by A^{o^e}- On the other hand, in

58

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

^z{many} ^z{one}
Problem Iter. CPU T ime (sec) Iter. CPU Time (sec)

rcsp-lOO-lQ-25-15 7245.5 2.742 (2.483) 18512.4 3.640 (3.325)
-rcsp-l lQ-10-23-15 "3^34.4 11.253 (10.992) 74856.4 14.545 (14.158)

"rcsp-12Q-10-21-15 23589.6 7.983 (5.433) 38491.3 8.260 (7.433)
-rcsp-130-lQ-19-15 22570.8 9.077 (8.308) 39774.2 8.687 (5.983)

rcsp-140-10-18-15 "27l3Q.4 11.000 (10.058) 80936.9 18.877 (21.342)
"rcsp-150-lQ-16.5-15 17389.3 7.935 (8.692) 27473.5 6.945 (6.975)

Table 6.8: Results of A^rnany} and Ag{one} on the t ight random CSP's

each iteration, A^{rnany} can update more than one variable. Hence, as reflected

in the benchmarking results, Ag{rnany} usually requires more iterations to solve a

problem.

Al though the performance of different discrete gradient operators seems to be

problem dependent, our experiments suggest that Ag{rnany} is l ikely to perform

better than A^^ (_ } , which is similar to the one defined in D L M [62, 54, 53] for

solving SAT problem.

Integer Variables Initialization

Two schemes for ini t ial izing the zero-one integer variables are investigated in this

experiment. They are

• I^{random}' landomly init ialize the zero-one integer vector 玄,provided that

the set of constraints (4.16) is satisfied, and

• h{greedy} • greedily initialize the zero-one integer vector z according to the

following procedure [40]: init ialize each component 7r^(i') of the zero-one

integer vector z one by one, and select the assignment which gives the fewest

violations against previous selections.

The results of the A^-queens problems, the hard graph-coloring problems and

the t ight random CSP's are given in Tables 6.9, 6.10 and 6.11 respectively. The

greedy in i t ia l assignment h{greedy} gives us better performance in most of our test

59

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

Iz{random} Iz{greedy}
N C P U T i m e (sec) C P U T i m e (sec)
10 0.005 (0.000) 0.002 (0 . 0 0 0) ~

^ 5 0.003 (Q.OQO) 0.012 (0.017)
^ 0.020 (0.017) 0.013 (0.017)

40 0.028 (0.033) — 0.017 (0.017)
~ ^ 0.040 (0.033) 0.032 (0.033)
~ m 0.068 (0.067) 0.038 (0.033)
~7Q"一 0.090 (0.092) 0.065 (0.067)

80 0.178 (0.175) - 0.113 (0.117)
90 0.642 (0.633) — 0.483 (0.475)

~ m 1.078 (1.108) 0.777 (0.775)
110 1.588 (1.583) 1.055 (1.058)
120 2.033 (2.058) 1.447 (1.383)

Table 6.9: Results of /_r{r^and^} and h{greedy} on the A^-queens problems

^z{random) Iz{greedy}
Nodes Colors C P U T ime C P U T i m e

~ T 2 5 17 4.7 m i n (3.7 m in) 6.2 m i n (4.4 m in)
125 18 — 4.5 sec (2.9 sec) 2.9 sec (2.3 sec)
250 15 — 0.418 sec (0.408 sec) 0.307 sec (Q.30Q sec)
250 29 14.6 m i n (15.7 m in) 14.2 m i n (13.3 m in)

Table 6.10: Results of I^{random} and h{greedy} on the hard graph-coloring problems

^z{random) Iz{greedy}
Problem C P U T ime (sec) C P U T i m e (sec)

=rcsp-100-10-25-15 2.742 (2.483) 3.050 (2.375)
^csp - l lQ-10-23-15 11.253 (10.992) 11.967 (10.5587"
~ c s p - 1 2 0 - 1 0 - 2 1 - l ^ 7.983 (5.433) —4.850 (3.883)一
—rcsp-130-10-19-15 9.077 (8.308) 5.185 (3.975)

rcsp-14Q-10-18-15 "TT.000 (lQ.Q58)~ 9.335 (10.333)
Tcsp-150-lQ-16.5-15 7.935 (8.692) 7.160 (6.508)

Table 6.11: Results of h{random} and h{greedy} on the t ight random CSP's

60 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

problems. Since h{greedy} generates an assignment which is closer to a solution of

a CSP, less effort is required for solution searching. Thus, the in i t ia l assignment

scheme h{greedy} seems to have advantage over h{random}'

Condition for Updating Lagrange Multipliers
—

As stated before, the condition for updating the Lagrange mult ipl iers A can affect

the efficiency of the discrete Lagrangian search [62, 54, 53]. In this experiment,

two common strategies for updating the Lagrange mult ipl iers are tested. These

two strategies are

• Ux{every}: update the Lagrange mult ipl iers A in every iteration, (i.e. after

each update of the zero-one integer vector z), and

— ~^\ —
• ^x{stabie}' update the Lagrange mult ipl iers A when AgL{z, A) = 0.

Table 6.12 shows the results of the iV-queens problems. Due to the fact that

only a small amount of CPU t ime is used for solution searching, the effect of the

different updating strategies is not significant. However, the results of the hard

graph-coloring problems in Table 6.13 show that the updating strategy ^e^;ery}

gives us certain improvement. Similarly, the results in Table 6.14 show that

^X{every} ^̂ more efficient than Ux^ t̂abie} ^^ most of the t ight random CSP's. Re-

call that the Lagrange multipl iers A are the penalty values of the violated tuples.

Therefore, updating the Lagrange mult ipl iers w i l l eventually guide the search to a

solution. I f we update the Lagrange mult ipl iers earlier, the algori thm wi l l search

for other promising regions earlier.

In summary, the experiment suggests that the updating frequency of the La-

grange multipl iers can affect the efficiency of the discrete Lagrange mult ipl ier

method. The updating strategy t/x{every} i® in general better than ^^^at/e} ac-

cording to our experiments.

61

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

UX{stable} ^X{every}
N CPU Time (sec) CPU T ime (sec)
10 0.005 (0.000) 二 0.003 (0.0007^
20 0.003 (0.000) 0.007 (0 . 0 0 0) ~

^ 5 0.020 (0.017) 0.020 (0.017)
40 0.028 (0.033) — 0.023 (0.017)

" ^ 0 ~ 0.040 (0.033) — 0.045 (0 . 0 5 0) ~
~ W 0.068 (0.067) 0.065 (0.067)

70 0.090 (0.092) 一 0.087 (0.083)
~ ^ 0.178 (0.175) 0.180 (0.175)
~ ^ 0.642 (0.633) 0.635 (0.617)

100 1.078 (1.108) 一 1.185 (1.183)
110 1.588 (1.583) — 1.630 (1.608)
120 2.033 (2.058) 2.175 (2.183)

Table 6.12: Results of ^7x_We} and U^every}^^ the iV-queens problems

^X{stable} ^X{every}

Nodes Colors CPU Time CPU T ime
125 17 “ 4.7 m in (3.7 min) 3.3 m in (2.7 min)
125 18 — 4.5 sec (2.9 sec) 4.4 sec (4.183 sec)

" ~ W ~ 15 0.418 sec (0.408 sec) ^ . 5 2 2 sec (0.500 sec)
250 29 14.6 m in (15.7 min) 12.3 m in (12.1 min)

Table 6.13: Results of t^{waWe} and ^{e^;er2/} on the hard graph-coloring problems

^X{stable} ^X{every}

Problem CPU Time (sec) CPU Time (sec)
^ s p - l Q 0 - l Q - 2 5 - T r ^ 2.742 (2.483) 3.238 (1.833)一
"^sp- l lQ-10-23-15 11.253 (10.992) 一9.225 (6 . 4 6 7) ~
"7csp-120-10-21-T^ 7.983 (5.433) ~ 5 . 9 5 5 (6 . 6 6 7) ~
^csp-13Q-10-19-15 9.077 (8.308) —7.768 (6 . 5 0 0) ~

rcsp-140-10-18-15 11.000 (10.058) 11.182 (8.000)
^sp-150-10-16.5-15 7.935 (8.692) 6.220 (5.600)一

Table 6.14: Results of Ux{stabie} and f̂ X{every} on the t ight random CSP's

62

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

6.4.3 Evaluation of CSVC{uAx)

In the previous experiments, different parameters of CSVC are evaluated. Some

parameters are found to be better than the others in most problems. Com-

bining these identified parameters, we construct our best CSVC variant, called

CSVC{UAX), which has:

• N: the objective function defined in (4.18),

• Af： the discrete gradient operator defined in (6.8)，

• If. greedily init ial ize the zero-one integer vector z according to the procedure

described in [40],

. . ~* ~*

• I^: init ial ize the Lagrange multipl iers A to 1, and
~f

• U^: update the Lagrange multipl iers A in every iteration.

We perform the experiments on the iV-queens problems, a set of hard graph-

coloring problem from DIMACS [27] and a set of randomly generated CSP's. The

performance of CSVC{UAX) is compared w i th that of CSVC{GENET).

Table 6.15 shows the benchmarking results of the iV-queens problems for

CSVC{MAX) and >C5X>>C(GENET). Since only a small amount of CPU t ime is

spent on actual searching, the performance of CSVC{UAX) is only slightly better

than that of CSVC{GENET).

The experimental results of the hard graph-coloring problems for CSVC{UAX),

CSVC{GENET), and also D L M described in [62, 54, 53] are presented in Ta-

ble 6.16. The results of D L M represent the average CPU t ime of 10 runs taken on

a SUN SPARCstation 10 model 51. The efficiency of CSVC{UAX) over that of

£<Sr>£(GENET) is well demonstrated in this set of experiments. When comparing

CSVC{MAX) w i th D L M , CSVC{UAX) is found to be more efficient than DLM.

Besides the t iming results, CSVC{UAX) is better than D L M in the following as-

pects. First, given a predefined maximum number of iterations, say five mil l ion,

CSVC{UAX) produces solutions successfully on every run. On the other hand,

63

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

CSVC{GENET) ~~CSVC{MAX)~~

N CPU Time (sec) CPU T ime (sec)
10 0.005 (0.000) 0.003 (0.000)

~ W 0.003 (0.000) — 0.007 (0.000)~"
30 0.020 (0.017) — 0.010 (0.017)

" 1 5 0.028 (0.033) 0.018 (0.017)
~ ^ 0.040 (0.033) 0.030 (0.033)
~ ^ 0.068 (0.067) 0.047 (0.050)
~70 0.090 (0.092) 0.067 (0.058)

80 0.178 (0.175) — 0.132 (0.125)
90 0.642 (0.633) — 0.493 (0.475)

~ m rp78 (1.108) 0.858 (0.833)
~ m L588 (1.583) 1.062 (1.033)

120 2.033 (2.058) 1.532 (1.492)

Table 6.15: Results of CSVC{UAX) on the iV-queens problems

~~DLM~~~~CSVC{GENET)~~ CSVC{MAX)

Nodes Colors Average Average (Median) Average (Median)
CPU Time CPU Time CPU Time

125 17 23.2 min 4.7 min (3.7 min) 3.2 m in (2.6 min)
~ ^ 2 5 l 8 " " 3.2 sec 4.5 sec (2.9 sec) “ 1.1 sec (0.925 sec)

250 ~ ~ l 5 ~ 2.8 sec 0.418 sec (0.408 sec) 0.328 sec (0.325 sec)—
250 29 20.3 min 14.6 min (15.7 min) 11.3 m in (12.6 min)~

Table 6.16: Results of CSVC{UAX) on the hard graph-coloring problems

64

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

CSVC{GENET) CSVC{UAX)^

Problem CPU Time (sec) CPU T ime (sec)
"^-100-10-25-15 2.742 (2.483) 2.577 (1.658)

rcsp-llQ-10-23-15 "H7253 (10.992) 7.038 (6 .19¾" "
rcsp-120-lQ-21-15 — 7.983 (5.433) 4.248 (2.825)

"7^sp-13Q-10-19-ir" 9.077 (8.308) 一2.452 (1.883)
~7csp-140-10-18"^l5~ 11.000 (10.058) _ 5.475 (4.200)
"^p-150-10-16.5-15 7.935 (8.692) 2.923 (L400)

Table 6.17: T iming results of CSVC{UAX) on the t ight random CSP's

D L M gives only a 9/10 success ratio on the problem w i th 250 nodes and 29 col-

ors. Second, the SAT versions of the graph-coloring problems in the DIMACS

archive lack the set of constraints defined by (4.16) [48]. Therefore, answers to

these easier problems can have a vertex assigned w i th more than one color. Thi rd,

D L M employs, on top of the discrete Lagrange mult ipl ier method, a number of

tuning heuristics and an additional tabu list to remember states that are vis-

i ted [62, 54, 53]. For example, the Lagrange multipl iers are reset by a factor of

2/3 after every 10000 iterations, and the Lagrange mult ipl iers are updated by a

different constants for different graph-coloring problems. However, our results are

obtained by CST>C{MAX) w i th no special tuning and addit ional machineries.

Table 6.17 shows the results of a set of t ight random CSP's, ranging f rom 100

to 150 variables. Each random CSP has a uniform domain of size 10, constraint

tightness 0.15, and constraint density varying f rom 0.165 to 0.25. Besides the

CPU t ime, we also show the average number of iterations and Lagrange mult i -

plier updates (in square bracket) in Table 6.18. The CSVC{UAX) implementa-

t ion performs about 6 - 73% better than the £SV£(GENET) implementation in

all problem instances. Furthermore, jCSV£(MAX) uses many fewer iterations to

obtain a solution.

65

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

CSVC{GENET) ~ ~ C S V C { M A X) ^

Problem Iter. [A Updates] Iter. [A Updates]
"7csp-100-10-25-15 7245.5 [2747.3] 4978.4 [4978.4]

rcsp-110-lQ-23-15 33634.4 [13387.4T 12150.0 [12150.0]
rcsp-120-10-21-"H 23589.6 [9760.4] 6665.5 [6665.5]

^ ^ - 1 3 0 - 1 0 - 1 9 - 1 5 — 22570.8 [8681.4] 3290.3 [3290.3]
" ^ p - 1 4 Q - 1 0 - 1 8 - l ^ 27130.4 [10622.4] ~ 0 7 2 . 7 [7072.7f"
"7^-150-10-16.5-15 17389.3 [6508.7] 3968.7 [3 9 6 8 7 f "

Table 6.18: Number of iterations and Lagrange mult ipl ier updates of CSVC{UAX)

on the t ight random CSP's

6.5 Extension of CSVC

In the previous discussion, we establish a surprising connection between CSVC

and the GENET model. This connection also suggests a dual viewpoint of GENET,

as a heuristic repair method and as a discrete Lagrange mult ip l ier method. Hence,

we can improve GENET by exploring the space of parameters available in the

CSVC framework. Alternatively, techniques developed f rom GENET can be used

to extend our CSVC framework. Lazy arc consistency [56, 59, 57], a consistency

method that speeds up the search of GENET, is incorporated in CSVC. Exper-

iments show that lazy arc consistency gives significant improvement for discrete

Lagrangian search.

6.5.1 Arc Consistency

Arc consistency [37] is a well known technique for reducing the search space of a

CSP. A CSP {U,D,C) is arc consistent i f and only i f for all variables x,y G U

and for all value u G D^ there exists a value v G Dy such that the constraint

c on variables x and y is satisfied. In the terminology of GENET, a CSP, or a

GENET network M, is arc consistent i f and only i f for all clusters i,j G U and for

all label nodes (z, k) G Af there exists a label node (j , /) G Af such that there is no

connection between {i,k) and (j , 1) [56, 59，57]. Obviously, values which are arc

inconsistent cannot appear in any solution of CSP. Hence, we are guaranteed that

66

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

any solution of the original CSP is a solution of the corresponding arc consistent

CSP. We say that the original CSP and its associated arc consistent CSP are

equivalent.

Arc consistency gives us a way to remove useless values f rom the domains of

variables. Algori thms, such as AC-3 [37], are usually combined w i th backtracking

tree search to increase the efficiency. Similar algorithms can be used to preprocess

a given GENET network Af to produce an equivalent arc consistent network.

The algorithms remove a label node (z , j) and its associated connections f rom the

GENET network Af i f (i , j) is arc inconsistent. Once a label node is found to be

arc inconsistent and removed f rom the GENET network, we need to re-check all

other label nodes which may no longer be arc consistent.

6.5.2 Lazy Arc Consistency

Preprocessing a GENET network w i th arc consistency algori thm can improve the

search because of the reduction in the search space. However, since arc consistency

is in general a fair ly expensive operation, i t is beneficial only i f the improvement in

efficiency is greater than the overhead of the arc consistency preprocessing phase.

Stuckey and Tam [56, 59, 57] develop lazy arc consistency for the GENET model.

Let o(5, i) be the on label node of cluster i in state S of a GENET network

M. A GENET network M in a state S is lazy arc consistent i f and only i f

for all clusters i,j G U there exists a label node (j , k) G Af such that there is

no connection between o(<S,i) and (j , k) [56，59, 57]. Since lazy arc consistency

only enforces arc consistency for the current on label nodes, i t can readily be

incorporated in the convergence procedure of GENET.

Algor i thm 6.2 gives a modified input calculation procedure for cluster i of

the GENET network Af in a state S [56, 59, 57]. The algori thm detects lazy

arc inconsistency during the calculation of inputs of each cluster. For example,

consider an arc inconsistent CSP and its corresponding GENET network shown

in Figure 6.1. When calculating the inputs of cluster Ui, we found that each label

node (i i i , 1〉，(ui,2) and (u i ,3) are connected to label node {u2,1〉，the current on

67

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

p r o c e d u r e input(A/*, 5 , i)
begin

if inconsistent(<) then
M — M - { o (5 , 0 } - { {o{S, 0，〈…”〉）I W<̂，0，〈…”〉）^ ^ }

end if
for each cluster j + i do

possibly」nconsistent(j) — true
end for
for each label node (¾, k) G J^ do

hi.k) — 0 .
for each cluster j + i do

if {{i,k),o{SJ)) e M then
hi,k) <- I{i,k) + W(^i^k)o{S,3)

else
possibly」nconsistent(j) <— fa l se

end if
end for

end for
for each cluster j • i do

inconsistent(j) f - inconsistent(j) V possibly」nconsistent(j)
end for

end

Algor i thm 6.2: A modified input calculation procedure, that can detect lazy arc
consistency, for GENET

Variable: ^ i 购 ^3

{1，2’3} , 1 k j i j]

户 I 2 1:̂多。多二
w < … / 3 mT Q f ^ ~ \ o

/ u V \J
© u 2 < u s ® • - on label node

{1 ,2 ,3 } {1 ,2 ,3 } 0 - off label node

(a) The CSP (b) The GENET network

Figure 6.1: An arc inconsistent CSP and its corresponding GENET network

68 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

procedure Ldizy-CSVC{N, A^, h, /又，U£)
begin

[Ig) in i t ia l ize the value of z
(1又) initialize the value of A
while (N) L(z, A) - N(z) > 0 {z is not a solut ion) do

for each variable i G U do
if V j ^ i e U $k e Dj such that ((i , a{z, i)), (j , k))贫 X then

D i ^ D i - { a { z , i) }
end if

end for 一

(A f) update z: z <— z — A^L{z^ A)
if {U^) condi t ion for updat ing A holds then

update A: A 卜 A + g{z)
end if

end while
end

A l g o r i t h m 6.3: The Lazy-£5X>£(iV, A ^ , Ig, /乂，U)̂ procedure

label node of cluster U2. Hence, (u2,1) and its associated connections should be

removed f rom the G E N E T network.

Since lazy arc consistency is targeted at values that are selected dur ing the

search, which may be much fewer than the entire search space, i ts overhead is

smaller than that of arc consistency. Exper iments show that lazy arc consistency

improves G E N E T substantial ly for CSP's which are arc inconsistent and does

not degrade the performance signif icantly for problems which are already arc

consistent [56, 59, 57].

Lazy arc consistency can be incorporated in CSVC i n a simi lar manner. Let

a(i*, i) be the current assignment of variable i such that z〈i，a(̂ t)》二 1 and z(i,j) = 0

for al l j + a{z,i) G Di, and X be the set of al l incompat ib le tuples ((z , j) , {k,l)).

The modif ied discrete Lagrangian search a lgor i thm Lazy-CSVC is shown in Algo-

r i t h m 6.3. Similar to G E N E T , the procedure for detecting lazy arc inconsistency

can be integrated in the discrete gradient operator t \ ^ . For example, lazy arc

inconsistency can be detected dur ing the calculat ion of the set X i n the evalua-

t ion of the par t ia l discrete gradient operator d\ We state exp l ic i t ly the detection

69

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

procedure in LdJzy-CSVC to show that lazy arc consistency is independent of the

discrete gradient operator used. I n other words, any discrete gradient operator

defined for CSVC can be used in Lazy-£5X>£ w i thou t any special modif icat ion.

6.5.3 Experiments

I n order to demonstrate the efficiency of LdJiy-CSVC, we implement bo th Lazy-

£«SP£(GENET) and Lazy-£«SX>£(MAX), which are instances of Lazy->C<SP>C w i t h

the same parameters as those of CSVC{GENET) and CSVC{MAX) respectively.

I n bo th Ldizy-CSVC implementat ions, the procedure for detect ing lazy arc incon-

sistency is integrated in the discrete gradient operator to improve the efficiency.

The performance of Lazy-£«SD£(GENET) and Lazy-£<SP£(MAX) on the iV-queens

problems, a set of randomly generated permuta t ion generation problems [31], a

set of ar t i f ic ia l problems [56，59] and a set of random CSP's is compared against

the non-lazy versions. T i m i n g results of al l CSVC and Lsizy-CSVC implementa-

tions are taken on a SUN SPARCstat ion 10 model 40. The unbracketed and the

bracketed results are the average and the median C P U t ime in second of 10 runs

respectively.

The N-queens Problems

Tables 6.19 and 6.20 show the exper imental results of Lazy-£<Sr>£(GENET) and

Lazy-£<SX>£ (MAX) on the 10- to 120-queens problems respectively. Since the N-

queens problems are arc consistent, noth ing is gained f rom the detection of lazy

arc inconsistency. However, the overhead of the addi t ional calculat ion is almost

negligible.

The Permutation Generation Problems

The permutat ion generation problem [31] is a combinator ia l problem. Its a im

is to construct a permutat ion on integers f rom 1 to n satisfying the conditions

of monotonies and advances. A detailed description of model ing the problem

70

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

CSVC{GENET) Lazy->C5Pr(GENET)
N CPU Time (sec) CPU T ime (sec)
10 0.005 (Q.OQQ) 0.002 (0.000)
20 0.003 (0.000) 0.005 (0.000)
30 0.020 (Q.Q17) 0.023 (0.017)
40 0.028 (0.033) 0.028 (0.033)
50 0.040 (0.033) 0.048 (0.050)
60 0.068 (0.067) 0.078 (0.067)
70 0.090 (0.092) 0.098 (0.100)
80 0.178 (0.175) 0.273 (0.267)
90 0.642 (0.633) 0.787 (0.758)
100 1.078 (1.108) 1.285 (1.267)
110 1.588 (1.583) 1.748 (1.742)
120 2.033 (2.058) 2.330 (2.367)

Table 6.19: Results of Lazy-£«SP£(GENET) on the iV-queens problems

~~CSVC{MAX)~~ Lazy-r<SP^(MAX)
N CPU Time (sec) CPU Time (sec)
10 0.003 (0.000) 0.000 (0.000)
20 0.007 (0.000) — 0.003 (0.000)
30 0.010 (0.017) 一 0.010 (0.017)
40 0.018 (0.017) 一 0.018 (0.017)

~ ^ 0.030 (0.033) 0.032 (0.033)
60 0.047 (0.050) “ 0.047 (Q.Q50)
70 0.067 (0.058)一 0.068 (0.067)
80 0.132 (0.125) 一 0.242 (0.233)

~ m 0493 (0.475) 0.557 (0.525)
100 0.858 (0.833) — 0.920 (0 . 8 9 2) “
110 1.062 (1.033) - 1.193 (1.175)
120 1.532 (1.492) 1.563 (L533)

Table 6.20: Results of Lazy-£<SI>£(MAX) on the A^-queens problems

71

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

CSVC{GENET) ~~~Lazy-£52>>C(GENET)
n C P U T i m e (sec) C P U T i m e (sec) Pruned

~10 0.002 (0.000) 0.002 (0.000) 1.2
~ 2 0 ~ 0.007 (O.OOQ) 0.008 (0.008) 1.0 —
l 0 0.153 (0.083) ~ X 0 5 5 (0.017) 2.6
~40 0.047 (0.042) —0.050 (0.033) 0.9
~ W 0.052 (Q.Q50) 0.048 (0.050) 0.7 一
~ ^ 0.098 (0.092) 0.112 (0.108) 0.7 “
—70 0.138 (0.117) ~ 0 7 l 6 8 (0.150) 0.9
~ W 0.398 (0.383) 一 0.392 (0.367) 0.6 一
~ ~ ^ 0.813 (0.800) 一 0.873 (0.850) 0.5 —
~lOQ 1.192 (1.217) 1.162 (1.192) 0.6

Table 6.21: Results of Lazy-£<SP£(GENET) on the random permuta t ion genera-
t ion problems

as a CSP can be found in [22]. I n the exper iment, we randomly generate the

monotonies and advances for n varying f rom 10 to 100. These problems involve

arc inconsistency. Tables 6.21 and 6.22 show the results of Lazy->C<SP£(GENET)

and Lazy->C<SX>£(MAX) respectively. Bo th the C P U t imes and the average number

of values pruned by the lazy arc consistency versions are presented. Since the

problems are relat ively easy for CSVC^ al l implementat ions can solve the problems

w i t h l i t t l e search. Therefore, few values are pruned before a solut ion is found.

However, the experiment confirms that the overhead of lazy arc consistency is

small, even when there is l i t t l e advantage.

The Artificial Problems

The set of art i f ic ia l problems [56, 59] is used to i l lustrate the advantages of Lazy-

CSVC. A n art i f ic ia l problem of size n is a CSP w i t h n + 1 variables Ui, W2,...，Un+i

and n constraints Ui < U2, U2 < w3,. • . , Un < Wn+i- The domain size of each

variable is either n + 1 or 2n. Note that the art i f ic ia l problems w i t h domain size n +

1 are special instances of the permutat ion generation problem [31]. Benchmarking

results of Lazy-£SV£ (GENET) and Lazy-CSVC (MAX) on the artificial problems

are shown in Tables 6.23 and 6.24 respectively. Besides the C P U t ime, we also

72

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

~~CSVC{MAX)~~ Lazy-r<SP>C(MAX)
n C P U T i m e (sec) C P U T i m e (sec) Pruned

• 10 0.005 (0.000) = 0.002 (0.000) 3.9 =
~ W 0.010 (0.008) 一 0.008 (0.008) 1.9 “
" ^ 0 ~ 0.015 (0.017) — 0.057 (0.017) 3.1 “
“ ^ 0.020 (0.017) — 0.028 (0.025) 2.1 “
- 5 0 0.053 (0.050) 0.040 (0.042) 2.0 “
- 6 0 0.075 (0.067) 0.100 (0.075) 2.8 “
- 7 0 0.180 (0.167) — 0.182 (0.183) 1.3 “
- 8 0 0.408 (0.392) — 0.400 (0.350) 1.7 “
~ 9 0 ~ 0.782 (0.733) 0.770 (0.792) 0.4 “
-100 1.043 (1.008) 1.132 (1.092) 3.1 •

Table 6.22: Results of Lazy-£<SI>£(MAX) on the random permuta t ion generation
problems

Prob. £SVjC(GENET) Lazy-£<SP£(GENET)
Size n C P U T i m e (sec) C P U T i m e (sec) Pruned

Domain Size 二 n + 1
~~10 0.033 (0.033) 1 0.008 (0.008) 31.8
- 2 0 1.065 (1.075) 0.260 (0.258) 261.8
~ ~ ^ ~ 8.318 (7.800) 1.492 (1.517) 638.5—
~ 4 0 ~ 36.267 (35.583) “ 5.552 (5.617) 1234.7~
~ 5 0 107.372 (105.542) 15.678 (15.675) 2 0 0 7 . ^

Domain Size 二 2n
— 1 0 0.030 (0.017) I 0.052 (Q.Q50) 44 .0一

~ ~ 2 0 ~ 2.008 (1.792) 0.787 (0.825) . 144.1—
30 15.837 (13.225) “ 8.438 (9.008) 480.6—

— 4 0 80.680 (82.925) 一 34.383 (35.000) 873.5
一50 306.522 (314.100) 109.290 (111.625) 1482.5~

Table 6.23: Results of Lazy-£<SX>£(GENET) on the art i f ic ia l problems

73

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

Prob. ~ ~ C S V C {MAX)~~ Lazy-r<Sr>r(MAX)

Size n C P U T i m e (sec) C P U T i m e (sec) Pruned
Domain Size = n + 1

10 0.017 (0.017) 0.005 (0.000) 24.2
~ 20 0.865 (0.867) “ 0.123 (0.142) 227.4 —
— 3 0 6.965 (6.750) “ 0.713 (0.675) 520.9一

40 " ^ ^ 7 5 (25.892) 1.860 (1.842) 779.7 —
— 5 0 85.592 (86.058) 4.507 (4.525) 1275.7—

Domain Size = 2n

- 1 0 0.045 (0.050) I 0.000 (0.000) 0 . 0 ~
- 2 0 ~ ~ 0 3 0 (0.000) 0.077 (0.017) 51.8 —

30 6.430 (7.017) —0.407 (0.200) 142.7
— 4 0 41.175 (49.725) “ 3.530 (1.167) 367.0 —
— 5 0 97.852 (110.825) 11.507 (3.258) 677.9 —

Table 6.24: Results of Lazy-£<Sr>£(MAX) on the ar t i f ic ia l problems

give the average number of values pruned by Lazy-£<5P£(GENET) and Lazy-

CST>C[UAy.). Bo th \jdJzy-CSVC implementat ions give significant improvement

for the discrete Lagrangian search. Since Lazy-£<SX>£(MAX) search a smaller

space than that of hdJLy-CSVC(GENEX), it prunes fewer values from domains.

Simi lar ly, as the domain size grows, the number of lazy arc inconsistencies found

by bo th LdiZy-CST>C is reduced since some values are never searched. These

properties clearly i l lustrate the targeted nature of lazy arc consistency.

Random CSP's

A set of randomly generated CSP's is used to test our LdJzy-CSVC implemen-

tations. The random CSP's, w i t h variable size ranging f rom 120 to 170，have

domain size 10, constraint density 0.6, and constraint tightness 0.75. A high con-

straint density and a high constraint tightness are chosen to ensure that each

generated CSP is arc inconsistent. I n order to guarantee that each random CSP

is soluble, the fol lowing procedure is used. A f te r generating a CSP w i t h vari-

able size n and a set of chosen parameters, we randomly generate a tuple, say

74

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP，s

CSVC{GENET) Lazy-£5X>£(GENET)
Problem Iter. CPU Time (sec) Iter. CPU Time (sec) Pruned

^ r c s p - 1 2 0 - l Q - 6 0 ^ 152.4 7.638 (7.683) 11.0 2.602 (2.600) 1011.4"
"rcsp-13Q-10-6Q-75 162.0 9.135 (9.142) 11.0 3.055 (3.058) 1099.8"
" r c s p - 1 4 0 - 1 0 - 6 0 ^ 147.3 9.690 (9.708) 11.0 3.607 (3.608) 1183.0
" r c s p - 1 5 0 - l Q - 6 0 ^ 173.4 12.645 (12.717) 8.6 3.177 (4.083) 918.2
"rcsp-160-10-6Q-75 167.4 14.208 (13.925) 11.0 4.930 (4.908) 1 3 5 P "
"rcsp-170-10-6Q-75 176.2 21.820 (22.183) 11.0 7.418 (7.325) 1433.5_

Table 6.25: Results of La,zy-CSVC{GENET) on the t ight random CSP's w i th arc
inconsistency

CSVC{UAX) La,zy-CSVC{UAX)
Problem Iter. CPU Time (sec) Iter. CPU Time (sec) Pruned

rcsp-12Q-10-60-75 26.6 5.728 (7.208) 11.0 2.652 (2.650) 1 0 1 ^
"rcsp-130-10-6Q-75 27.4 6.983 (7 . 2 5 ^ ~ 8.8 2.530 (3.117) 884.2 _
rcsp-140-lQ-60-75 27.1 8.198 (9.617) 8.0 2.727 (3.792) 83 l7T "
rcsp-150-10-60-75 ~ W I 10.198 (11.442) 6.6 2.667 (4.250) 7 6 8 T "

" r c s p - 1 6 0 - l Q - 6 0 ^ 23.0 9.565 (12.650) 8.8 4.100 (5.042) 1101.1 “
rcsp-170-10-6Q-75 31.9 20.058 (20.200) 11.0 7.393 (7.358) 1 4 5 ^

Table 6.26: Results of Lazy-£5P£(MAX) on the t ight random CSP's w i th arc
inconsistency

({u i ,V i) , {u2,V2), . . . , (wn, ^n)), and regard i t as a solution of the CSP. I f a con-

straint on variables U{ and Uj contains、、Ui,Vi、, {uj^ Vj)), the one in the generated

solution, as an incompatible tuple, the incompatible tuple is removed from the

constraint. Two new incompatible tuples (〈w‘，V{)̂ {uj, Wj)) and {{ui, Wi), {uj, Vj)),

where W{ + Vi and Wj + Vj are values chosen randomly f rom Du‘ and Du^ respec-

tively, are added.

Tables 6.25 and 6.26 show the t iming results and the average number of itera-

tions of various CST>C implementations. The average number of values removed is

also recorded for Lazy-£<Sr>£(GENET) and Lazy-£5P£(MAX). The lazy versions

are much more efficient than the non-lazy versions. In particular, the number of

iterations is substantially reduced by the L3,zy-CSVC.

75 .

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP's

Lazy-£<SP£(GENET)
Problem I ter. C P U T i m e (sec) Pruned

"rcsp-lQ0-lQ-7Q-90 10.0 2.347 (2.342) 934.6 —
r c s p - 1 1 0 - 1 0 - 7 0 ^ 10.0 2.835 (2.842) 1025.5"

"rcsp-120-10-70-90 10.0 3.387 (3.375) 1116.4 —

Table 6.27: Results of Lazy-£5P£(GENET) on the insoluble random CSP's

Lazy-£5P£(MAX)
Problem I ter. C P U T i m e (sec) Pruned

rcsp-10Q-lQ-7Q-90 10.0 2.345 (2.342) 9 0 7 X "
" r c s p - 1 1 0 - 1 0 - 7 0 ^ 10.0 2.855 (2.850) 10Q0.6"

rcsp-120-10-70-9Q 10.0 3.428 (3.433) 1 0 9 O "

Table 6.28: Results of Lazy-£5X>£(MAX) on the insoluble random CSP's

Table 6.27 and 6.28 show the results of each LdJiy-CSVC implementat ions on

some insoluble random CSP's. The insoluble CSP's, ranging f rom 100 to 120 vari-

ables, have a un i fo rm domain of size 10, constraint density 0.7, constraint t ight-

ness 0.9. Since these problems have no solution, £<SX>£(GENET) and CSVC{UAX)

execute forever. On the other hand, h^zy-CSVC can terminate and report insol-

ub i l i t y when a variable domain becomes empty.

76

Chapter 7

Extending CSVC for General

CSP's: Initial Results

I n this chapter, we extend CSVC for solving general CSP's. A general CSP

is t ransformed in to an integer constrained min im iza t ion problem. New incom-

pa t ib i l i t y funct ions are defined for different constraints. By construct ing a new

discrete gradient operator to accommodate the change of formulat ion, the dis-

crete Lagrangian search scheme CSVC can be applied direct ly. We implement

£<SX>£(GENERAL)，an instance of CSVC for general CSP's, to ver i fy our ap-

proach. Exper iments show that the performance of £<S2^£(GENERAL) is compa-

rable to that of E - G E N E T [32, 33, 69], an extended G E N E T for efficient general

CSP's solving, i n some problems. However, £<SX>£(GENERAL) performs much

worse than £<SX>£(GENET) and CSVC[yiAX). The inadequacy of our general

formulat ion and a possible solution are explored at the end of the chapter.

7.1 General CSP's as Integer Constrained Min-

imization Problems

I n this section, the t ransformat ion of a general CSP into an integer constrained

min imiza t ion problem is presented. The def ini t ion of the incompat ib i l i t y functions

77 ,

Chapter 1 Extending CSVC for General CSP's: Initial Results

for various constraints are also given.

7.1.1 Formulation

Given a CSP {U, D, C). We assume that each domain Di for i G U is a set of inte-

gers. The corresponding integer constrained min im iza t ion prob lem is formulated

as follows. Each variable i G U is represented by an integer variable Zi, which

can take values f r om a domain Di. The integer variable Zi is equal to j G A

i f and only i f value j is assigned to variable i. I n other words, z = (• . . , Zi,...)

corresponds to a variable assignment for {U, D^ C). Each constraint c G C is de-

noted by an incompat ib i l i t y funct ion gc{z)^ which returns 0 when the constraint

c is satisfied; otherwise, i t returns a posit ive integer to represent the amount of

v io la t ion of the current assignment. I n general, the incompat ib i l i t y funct ion gc(z)

for different constraints could be different.

Simi lar to the zero-one integer constrained min im iza t ion problem of a binary

CSP, the resultant integer constrained min im iza t ion problem of a general CSP

(U,D,C) is

m i n N(z) (7.1)

subject to

ZieDi, Vi e U (7.2)

gc{z) = 0， V c G C (7.3)

where z = (. . . , Z{,...) is a vector of integer variables and N{z) is an objective

funct ion satisfying the correspondence requirement, wh ich stated that every solu-

tion ofthe CSP must correspond to a constrained global minimum ofthe associated

integer constrained minimization problem (7.1 — 7.3). Note that the solution space

of a CSP is defined entirely by the constraints (7.2 - 7.3). The object ive funct ion

is used to guide the search only.

The object ive functions defined for b inary CSP's can be extended directly.

78 ,

Chapter 1 Extending CSVC for General CSP,s: Initial Results

The object ive funct ion (4.18) becomes

m = ^ g c { z) . (7.4)
cec

Unl ike the b inary counterpart , the object ive funct ion (7.4) does not measure con-

straint violat ions in terms of number of v io lated tuples. I t s imply returns the

to ta l amount of constraint v io lat ion given by the incompat ib i l i t y functions. The

object ive funct ion, which counts the to ta l number of constraint violat ions, can be

constructed as,

N { z) = Y , f { g c { ^) (7.5)
cec

where f { x) is a funct ion which returns 1 when x + 0, and 0 otherwise. On the

other hand, the constant object ive funct ion

N{z) = 0 (7.6)

can be used w i thou t any modif icat ion. Note that al l these object ive functions

have the property that any assignment which satisfies constraints (7.2 - 7.3) is a

constrained global m in imum. In other words, they al l satisfy the correspondence

requirement.

7.1.2 Incompatibility Functions

As stated before, the incompat ib i l i t y functions g d ^) are designed specifically for

different constraints. I n this section, we present the incompat ib i l i t y functions for

l inear ar i thmet ic constraints, the i l l e g a l constraint, the a tmost constraint and

the among constraint [2 .

Linear Arithmetic Constraints

A linear ar i thmet ic constraint is of the fo rm X o V, where X and Y are linear

ar i thmet ic expressions and o G { = , + , < , < ,〉，>}. The linear expressions X and

Y can be wr i t t en as Ao + AiUi + . . . + AkUk, where each A{ is an integer for

i = 0 , 1 , . . . , k and each Uj is a variable for j = 1 , 2 , . . . , k. A linear ar i thmet ic

79

Chapter 1 Extending CSVC for General CSP,s: Initial Results

constraint is satisfied i f X o Y is satisfied. Let 6 = { . • .，Ui |zm^ . . . } be a substi-

tut ion, where each Ui is a variable, each z^ is an integer variable corresponding

to Ui and all the U{ are distinct. A n expression E0 is an instance of E obtained

by simultaneously replacing each occurrence of Ui by Zu、. The incompatibi l i ty

functions Qo{z)^ for each o G { = , —, <，<,〉，>}, are defined as follows,

g={z) = \X0 - Ye\ (7.7)

1, i f xe = Y0
g ^ z) = . (7.8)

0, otherwise
\

’ xe - Y0 + 1 , i f xe > Y0 , 、
9<{z) = - (7.9)

0, otherwise
\

f xe - Y0, i f xe > Y6 , 、
9<[z) = (7.10)

0, otherwise
\

f Y0-X0^1, i f xe < Y6 , 、
9>{z) = - (7.11)

0, otherwise
‘

ve - xe, i f xe < ve , 、
9>{z) = (7.12)

0, otherwise
、

These incompatible functions simply return the amount of constraint violations

based on the difference between the linear expressions X0 and Y0.

The illegal Constraint

The i l l e g a l ((w i , u < i , . . . , U k) , {v1^v2^...,i^A：)) constraint disallows the simultane-

ous assignment of values Vî v2^...，Vk to variables Wi, U2,...，Uk- Since any con-

straint can be expressed as a set of incompatible tuples, the i l l e g a l constraint can

be regarded as a fundamental constraint. The incompatibi l i ty function 5^inegai(^)

is
/

1, i f (Z u i , ~ 2 , . . . ’ Z w) = (W,〜，...，”fc) ,7 1<̂ 、
5'illegal(2^) = . (7.1c{)

0, otherwise
、

where, by definition, (2^1^^,¾, • • •，̂¾¾) = (u1,u2,. . •,Uk).

80

Chapter 1 Extending CSVC for General CSP,s: Initial Results

The atmost Constraint

The a tmost constraint is of the fo rm atmost(A^, V a r , Val), where N is a natura l

number, Var is a set of variables and Val is a set of values. I t specifies that no

more than N variables in Var can take values f r om Val. Let n{Svar:Syai) be the

funct ion which returns the number of variables in the set Syar current ly assigned

w i t h values in the set Svai. Obviously, i f n (V a r , Val)〉N, a smaller difference

n{Var, Val) — N would be preferred. Hence, the corresponding incompat ib i l i t y

funct ion 5'atmost(^) is defined as

n{VarO, Val) — N, i f n{Var6, Val) > N
5'atmost(i') = . (7.14)

0, otherwise
\

where 6 = { . . . , Ui|zui,...} is a subst i tu t ion and Var9 is the set of integer variables

obtained by simultaneously replacing each U{ i n Var w i t h z^.

The a t l e a s t (A ^ , Var, Val) constraint, which specifies that no fewer than N

variables taken f rom the variable set Var are having values in the value set Val,

can be handled simi lar ly. Thus, the incompat ib i l i t y funct ion 5'atieast(^) is

N-n{VarO,Val), i f n{Vare, Val) < N
5'atleast(^) = . (7.15)

0, otherwise
、

where 0 = {..., U{|zui,...} is a subst i tut ion and Var9 is the set of integer variables

obtained by simultaneously replacing each U{ i n Var w i t h z^.

The among Constraint

The among constraint is a global constraint int roduced in C H I P [2]. I t can be

regarded as a combinat ion of the a tmost and the a t l e a s t constraints. Among

the five variants of the among constraint, we consider the first and the second

variants only. The first variant has the fo rm

among(wo, [w1,w2,.. •, Wfc], [ci, c2,. • •, c^], [t̂ i, v2^. •.，vi]),

where uo, U1,U2,. • •, Uk are variables, c i , c 2 , . . . , Ck are integers and Vi, V2, - • •, vi are

domain values. I t specifies that exactly Uo terms among Ui + Ci, u2 + c 2 , . . . , Uk + Ck

81 ,

Chapter 1 Extending CSVC for General CSP,s: Initial Results

having values in the l ist [v1^v2,.. .，t̂ /]. The incompat ib i l i ty funct ion 5̂ among(̂) is

defined as follows. Let n[Lt, Ly) be the funct ion which returns the number of terms

Ui + Ci in the l ist Lt current ly having values in the l ist Ly. The incompat ib i l i ty

funct ion is

5W>ng(^ = 1¾ - n (L t0 , L 』 （7.16)

where Lt 二 [Wi + C1,U2 + C2, . . . , Uk + c^], Lt = [vi , v2,...，vi], Zuo is the integer

variable corresponding to variable uo, 0 = { . . . , Ui|zui, • • •} is a subst i tut ion, and

LfO is a list of terms obtained by simultaneously replacing each U{ in Lt w i t h

Zui. Note that the incompat ib i l i ty funct ion is similar to the one defined for the 二

constraint.

The second variant

among([iVzo<u;, Nup], [^ i , w2 , . . . , ^k], [ci, C2, . . . , Ck], [vi, V2,.. •, ”/])，

where Nio^j, Nup are natural numbers, ^ 1 , ^ 2 , . . . , Uk are variables, Ci, C2,. • . , Ck are

integers and ” i , i ^ 2 , . . . , vi are values, specifies that at least Niow and at most Nup

terms among Ui + C1,W2 + C2,. •.，Uk + Ck can have values in [vi , V2,. • . , vi]. Similar

to the first variant, let n (L t , Ly) be the funct ion which returns the number of terms

Ui + Ci in the list Lt current ly having values in the list Ly. The incompat ib i l i ty

funct ion for the second variant is defined as
/

Niow — n [L t0 , Ly), i f n{LtO, Ly) < Niow

5'among(^ = n{Lt9, Ly) - Nup, i f n{LtO, Ly) > Nup (7.17)

0, otherwise
\

where Lt = [ui + C1,u2 + c 2 , . . . , Uk + Ck], Lt 二 [i;i, V2,...，vi], 0 = {.. •, U{/z^,...}

is a substi tut ion, and LtO is a list of terms obtained by simultaneously replacing

each Ui in Lt w i t h z ^ . A l though the atmost and the a t l e a s t constraints can

be simulated by the second variant of the among constraint, an extra compari-

son is required to evaluate the incompat ib i l i ty funct ion 5'among(̂)- Therefore, we

construct the atmost and the a t l e a s t constraints to improve efficiency.

The other three variants can be stated as a combination of the second variants.

82

Chapter 1 Extending CSVC for General CSP's: Initial Results

They are described as follows. The t h i r d variant is

dMOng{[Niow, Nup, *S], [wi ,^2, . . .,l^A:], [C1,C2, . • . ,CA；]，bl,”2, . . • ,Vi]),

where S < k is a posit ive integer. I t is equivalent to the fo l lowing set of among

constraints

among([yV/o^, A ^ , [ui,.. •, us], [c i , . • . , c5], [vi, •. •, vi]),

among{[Niouj, Nup], [u 2 , . . . , us+i], [c2,...，c^+i], [t ; i , .. •，”/]),

•

among{[Niow, Nup], [uks+i^..., ^k], [c^^-^+i,.. •, Cfc], b i , • • •, ” /]) .

The four th variant is of the fo rm

3m0ng{[Nl0vj, Nup, S, Nleast, Nmost], [^1, ^2, . • . , Uk], [^1, C2, • . • , Ck], [vi, ”2，. . .，”d)，

where Nieast and Nmost are natura l numbers. This constraint is a combinat ion of

the second and the t h i r d variants, namely

among([A^/oti;, iV^p, S], [wi, •. • ’ Uk], [ci, • • . , c^], [^^i, • . . , ^^/]),

among([iV/east, Nmost], [ui, . . . , Wfc], [ci, . • . , Ck], [”1’ • . .，1^/])-

Hence, i t can be handled as a number of the second variants. The last variant is

Qjaong{[Niow, Nup, S, 1— Iup, Is], [ui,购,...，似],[ci, c2, • . . , o；], [t>i, v2,.. •, ？̂/]),

where Iiow, Iup are natura l numbers and I s is a posit ive integer. I t is an abstraction

of the fol lowing set of second variants

ajnong{[Niow, Nup], [w i , . . . ,w5], [c i , . . . ,c5] , b i , •..’仍])，

among{[Niow + Iiow, Nup + hp]^ [^ i , . •. , w5+/5], [c i , . . •, c^+/^], [t> i , . . . , t̂ ^J),

among{[Nionj + rn x Iiow,Nup + m x / ^p] jw i , . . . ,w f c] , [c i , . . . , c f c] , [^ ; i , . . . , t ; /]) ,

where m = (k — S)/Is-

83
«

Chapter 1 Extending CSVC for General CSP,s: Initial Results

7.2 The Discrete Lagrange Multiplier Method

The discrete Lagrange mul t ip l ie r method for general CSP's is simi lar to the one

for b inary CSP's. The Lagrangian funct ion L{z, A) for the integer constrained

min im iza t ion problem (7.1 — 7.3) is

L { z , X) = N { z) + Y l X M ^) (7.18)

cGC

where z = (. . . , Z{,...) is a vector of integer variables and A = (• • . , A^ . . .) is a

vector of Lagrange mul t ip l iers, one Ac for each constraint c G C. The constraints

in (7.2), which enforce val id assignments for a CSP, are not incorporated in the

Lagrangian funct ion. They are included in the discrete gradient operator for the

search process.

According to the discrete saddle point theorem [70], a constrained m i n i m u m of

the integer constrained min imizat ion problem can be obtained by f inding a saddle
—

point of the Lagrangian funct ion L{z^ A). Since the saddle point can be located
~f

by per forming descent in the i*-space and ascent in the A-space [43], we use the

same difference equations [62, 54, 53] defined for the b inary case

z^+i = z ' - A ^ L { z % X ') (7.19)

Xs+i = A^ + g { r) (7.20)

where g = (. . . ^gc{z),...) is a vector of incompat ib i l i t y functions and A ^ is a

discrete gradient operator.

Similar to the binary case, the discrete gradient operator is not unique. The

discrete gradient operator (6.6 - 6.7) for binary CSP's is now redefined as follows.

Given a vector of integer variables z = (. . . , Zi,...), the projection operator ni

7Ti{z) = Zi (7.21)

gives the ith-component of z. The ith partial discrete gradient operator d{ for al l

i G U is given by

d i L [z ,X) = i : i { z) - i ^ i { z ') (7.22)

when the fol lowing conditions hold:

84

Chapter 1 Extending CSVC for General CSP，s: Initial Results

• X is a set of integer variables vector such that W G X , we have

X{ G Di 八 V j + i e U Xj = Zj

八 W " \{z'； e Di 八 V j — i e U z'； = Zj) ^ L{x, X) < L{z", X) • •

• z' is selected f rom X by

— , f 《 i f z e x
z = <

r a n d (X) , otherwise
‘

where r a n d (F) returns a random element f rom a set Y.

—

Effectively, the i t h part ial discrete gradient operator diL{z, A) returns a differential

vector diox the ith-component of z which decreases the Lagrangian function most.

Note that d is selected according to the GENET (or E -GENET) state update

rule [66, 60, 7, 6, 32]. Now, the discrete gradient operator A^^ is defined by the

following set of equations

7Ti(ZwL(i; A)) 二 diL{l A), V i G U. (7.23)

When A^L{z, A) = 0, there is no change in the vector z. In this case, either a

solution is found or a stationary point is reached.
—

The Lagrange multipliers A are updated according to the incompatibi l i ty func-

tions. Since the incompatibi l i ty function returns the amount of violation of a

violated constraint, the magnitude of the update can be greater than 1. This is a

major difference f rom the binary case.

W i t h the above modifications, the discrete Lagrangian search procedure CSVC

in A lgor i thm 6.1 can be applied directly for solving general CSP's.

7.3 A Comparison between the Binary and the

General Formulation

The general formulation is also applicable to binary CSP's. In order to compare

the difference between the binary and the general formulations, we consider the

85 *

Chapter 1 Extending CSVC for General CSP,s: Initial Results

same simple CSP shown in Figure 4.1. In this problem, we have three variables

wi, U2 and w3, each w i th a domain {1 ,2 } , and two constraints Ui = U2 and U2 < u3.

As described in chapter 4, the binary formulat ion gives us the following zero-one

integer constrained minimizat ion problem:

m in N{z) (7.24)

subject to

Z{uui) + Z{m,2) = 1， （7.25)

Z{u2,1) + Z{U2,2) = 1, (7.26)

Z{us,i) + Z{m,2) = 1, (7.27)

g{u1,1){u2,2){z) = Z(^U,,1)^{U2,2) = 0, (7.28)

g{uu2){u2,i)i^) = Z{uu2)^{u2,i) = 0, (7.29)

9{u2,i){us,i){z) = Z{U2,1)Z{US,1) = 0, (7.30)

9{u2,2){u3,l)i^) = ^{U2,2)Z{US,1) = 0, (7.31)

9{u2,2){u3M^) = Z{u2,2)Z{m,2) = 0, (7.32)

where z = {z^uui)y ^(t.1,2), ̂ ,1)^^(^2,2), Z{us,i), ^(u3,2)) is a vector of zero-one integer

variables, N{z) is the objective function defined in either (4.18) or (4.19), equa-

tions (7.25 — 7.27) are the constraints for enforcing valid assignments for the CSP,

and equations (7.28 - 7.32) are the constraints for the incompatibi l i ty functions.

In the general formulation, the same problem is represented by the following

integer constrained minimization problem:

min N{z) (7.33)

subject to

^ G Du,, (7.34)

^ e Du,, (7.35)

& e A ^ 3 , (7.36)

9m=u2{^ = 0, (7.37)

丨 gu,<us{^ = 0, (7.38)

86

Chapter 1 Extending CSVC for General CSP,s: Initial Results

where z = (2 :^ ,1 ,¾,¾) is a vector of integer variables, N{z) is the objective

funct ion defined in (7.4)，(7.5) or (7.6), and constraints (7.34 - 7.36) and (7.37 一

7.38) are the constraints to ensure valid assignments and the constraints for the

incompatibi l i ty functions respectively.

From this simple example, we f ind that the two formulations are different in five

aspects. First, in the binary formulation, the zero-one integer variables are used to

represent each possible label of a CSP. On the other hand, the general formulation

denotes each variable of a CSP by an integer variable. Hence, the tota l number

of integer variables of the resultant integer constrained minimizat ion problem is

greatly reduced. Second, because of the different representation of variables of a

CSP, the constraints for restricting valid assignments for a CSP are different in

the two formulations. Thi rd, instead of breaking down every constraint of a CSP

into a set of incompatible tuples and defining an incompatibi l i ty function for each

incompatible tuple, the general formulat ion uses a single incompatibi l i ty func-

t ion for each constraint of a CSP. Therefore, the storage requirement is lowered.

Fourth, the discrete gradient operators are defined differently to accommodate

the difference in the two formulations. F i f th , since the incompatibi l i ty functions

defined in the general formulation return the amount of constraint violation, the

Lagrange multipl iers A can be updated w i th a magnitude greater than 1.

Al though there are quite a number of differences between the binary and the

general formulation, the same discrete Lagrangian search procedure CSVC can

be applied without any modification.

7.4 Experiments

In order to evaluate our formulation, especially our definition of the incompat-

ib i l i ty functions, we implement an instance of CSVC for general CSP's. This

instance, denoted by £<SX>£(GENERAL), has the following parameters:

• N: since the role of an objective function is to guide the search, the objective

function N{z) defined in (7.5) is used.

87

Chapter 1 Extending CSVC for General CSP,s: Initial Results

• A f . the discrete gradient operator is specified by

for each variable i E U do

update iTi{z): ni{z) — T^i{z) — diL{z, X)

end for

where di is the part ial gradient operator defined in (7.22).

• If. unlike the binary case, the procedure for ini t ial iz ing the integer variables

z greedily is quite computationally expensive. Hence, we choose to randomly

init ial ize the value of z in such a way that Zi G A， for all i G U.

• I^: the value of each A。，for all c G C, is init ial ized as follows,

^ = f 9c(^% '^^9c{z')^0

I 1 , otherwise

where z^ is the in i t ia l value of the integer vector z. Note that this approach

is similar to the assignment scheme of in i t ia l penalty values of the optimized

E -GENET [33，69].

• U^: because of the definition of incompatibi l i ty functions, the value of a sin-

gle Lagrange mult ipl ier may afFect many possible states of the search space.
— —

Therefore, the Lagrange multipliers A are updated only when diL{z^ A) = 0,

for all i G U.

Various benchmark problems, such as the iV-queens problems, the graph-

coloring problems and the car-sequencing problems, are used in our experiments.

We compare our results w i th that of E -GENET [32, 33, 69], an extension of

GENET for general CSP's. Whenever possible, we quote results of both original

E -GENET and optimized E-GENET from [32, 33, 34，69], results of which are

average and median CPU t ime of 10 runs obtained on a SUN SPARCstation 10

model 30. Our experiments are performed on a SUN SPARCstation 10 model 40.

Both average and median CPU t ime of 10 runs are presented. Unless otherwise

specified, unbracketed and bracketed results represent the average and median

CPU t ime respectively.

88

Chapter 1 Extending CSVC for General CSP,s: Initial Results

7.4.1 The N-qaeens Problems

The N-qneens problems is used to ver i fy our def in i t ion of the + constraint, a

l inear ar i thmet ic constraint, and the among constraint.

When the iV-queens problem is expressed by the + constraints, the problem

is modeled as follows. Each row z, for i - 1，2,. . . , N, of an N x N chessboard is

represented by a variable qi w i t h domain Dq- = {1 ,2 , • . . , N}. The constraints

Qi + qj, V i + j and iJ = 1 ,2 , . . .，N (7.39)

\qi - qj\ + \i 一 i | , V i + j and i , j = 1，2，...，N (7.40)

state that no two queens can be on the same column or on the same (posit ive

or negative) diagonal respectively. Benchmarking results are summarized in Ta-

ble 7.1. From the experiment, we find that £<Sr^C(GENERAL) outperforms the

or iginal E - G E N E T . This promising results conf i rm the feasibi l i ty of handl ing a

constraint as a whole, instead of breaking i t down in to a set of incompat ib le tuples,

which is the case in E - G E N E T . Hence, the storage requirement can be greatly re-

duced. We do not compare £<SP£(GENERAL) against the opt imized E - G E N E T

since the results of the opt imized E - G E N E T are obtained by model ing the N-

queens problems w i t h the n o a t t a c k constraints, instead of the + constraints. On

the other hand, the performance of £5P£(GENERAL) is much worse than those

of CSVC{GENET) and CSVC{UAX). The great difference in efficiency may be

due to the difference in the two formulat ions. Since each incompat ib i l i t y funct ion

defined in the b inary formulat ion represent an incompat ib le tuple, i t can guide

the search in a more refined fashion.

I n order to model the iV-queens problem w i t h the among constraint, we use a

Boolean formulat ion. Each square {i<,j) of the chessboard is denoted by a variable

qij, for al l iJ = 1 ,2 , . . .，N, w i t h domain { 0 , 1 } . The variable qij is 1 i f a queen

is placed on the square (z , j) ; otherwise, i t is 0. The constraints are

• for each row of the chessboard,

among(l, [variables of the row], [0,...，0], [1]). (7.41)

89
«

Chapter 1 Extending CSVC for General CSP,s: Initial Results

~ ~ O r i g i n a l E-GENET~~~ £<Sr>£(GENERAL)
N Median CPU Time (sec) Average (Median) CPU T ime (sec)
10 一 0.046 “ 0.025 (0.033)
20 0.165 0.155 (0.150)
30 0.510 — 0.457 (0.392)
40 1.222 1.060 (1.050)

~ ^ 3.582 — 2.095 (1.725)
~ ^ 6.840 3.513 (3.375)

70 9.902 4.122 (4.183)
~80 19.752 7.180 (7.092)
~90 28.467 11.663 (11.375)

100 37.582 — 15.145 (15.883)
T T 0 “ ― 42.211 20.945 (20.833)

120 61.672 24.657 (23.208)
T W 86.083 29.430 (27.575)
" W 94.377 41.405 (42.550)

150 152.001 — 50.047 (52.283)
1 ^ ~ _ 188.033 60.047 (55.817)

170 219.317 56.083 (53.742)
180 264.543 71.040 (73.333)

~ m ~ — 316.562 86.517 (83.642)
200 439.952 96.715 (89.458)

Table 7.1: Results of >C<SP>C(GENERAL) on the N-queens problems modeled with
the + constraint

90

Chapter 1 Extending CSVC for General CSP,s: Initial Results

Optimized E -GENET CSVC{GE^ERAL)

N CPU Time (sec) CPU T ime (sec)
10 0.009 (0.010) 0.018 (0.017)

~ W 0.129 (0.125) 0.083 (0.083)
~ W ~ 0.255 (0.270) 0.242 (0.242)

40 0.493 (0.460) 0.550 (0 . 6 0 0) —
50 1.580 (1.540) 0.958 (0 . 8 5 0) —

~ ^ i.256 (1.125) 1.888 (1.758)
" T o " 2.792 (2.788) 1.930 (1.883)

80 2.209 (2.454) 2.952 (3.142)
90 4.136 (4.053) — 4.490 (3.808)
100 4.660 (4.905) 7.357 (6.092)

Table 7.2: Results of £<SD£(GENERAL) on the iV-queens problems modeled w i th
the among constraint

• for each column of the chessboard,

among(l, [variables of the column], [0 , . . . , 0], [1]). (7.42)

• for each diagonal of the chessboard,

among([0,1], [variables of the diagonal], [0, •. •, 0], [1]). (7.43)

Table 7.2 shows the results for 10- to 100-queens problems. Except some problem

instances, the performance of >C<SX̂ C(GENERAL) is comparable to that of the opti-

mized E-GENET. The poor performance of CSVC{GENERAL) on some problems

can be accounted for as follows. In the optimized E-GENET, a contribution func-

t ion [33, 69] is defined for the among constraint to speed up the search. However,

£«SX>£(GENERAL) does not have this k ind of search information. Therefore, the

optimized E-GENET is more efficient.

7.4.2 The Graph-coloring Problems

We use the graph-coloring problem to further evaluate the + constraint. In the ex-

periment, the set of hard graph-coloring problems f rom the DIMACS archive [27] is

91

Chapter 1 Extending CSVC for General CSP,s: Initial Results

Original E -GENET CSVC{GENERAL)

Nodes Colors Median Average (Median) Success
CPU Time CPU T ime Ratio

125 17 2.5 hr - 0/10
125 “ 18 一 2.6 m in 1.2 m in (1.0 min) 10/10

~ 2 ^ r 5 “ “ 7.4 sec T 4 . 1 sec (12.6 sec) 10 / lQ~
250 29 5 hr - 0/10

Table 7.3: Results of £<SD£(GENERAL) on the hard graph-coloring problems

used. The execution limit of £<SI>£(GENERAL) is set to one million iterations. The

benchmarking results are shown in Table 7.3. Besides the CPU t ime, we also re-

port the success ratio of £5X>£(GENERAL). The performance of £<SX>£(GENERAL)

is found to be worse than that of the original E -GENET. Among the four problem

instances, £<SX>£(GENERAL) fails to find any solution for the problem wi th 125

nodes 17 colors and the problem w i th 250 nodes 29 colors w i th in the execution

limit. On the other hand, £5X>£(GENERAL) outperforms the original E-GENET

on the problem w i th 125 nodes 18 colors. Since the results of the optimized E-

GENET are not available, the performance of £5X>£(GENERAL) and that of the

optimized E-GENET is not compared. The performance of >C5X>^(GENERAL) is

also worse than that of CSVC{UAX). Since £<Sr>£(GENERAL) represents a con-

straint w i th a single incompatibi l i ty function, useful information that guides the

search is lost. As a result, the performance is degraded.

7.4.3 The Car-Sequencing Problems

The goal of the car-sequencing problem is to schedule cars into an assembly line

so that different options can be installed on the cars and the ut i l izat ion con-

straints are satisfied [9]. The problem is used to test the incompatibi l i ty func-

t ion of the atmost constraint. In the experiment, a set of randomly generated

problems described in [7] is used. A l l problems consist of 200 variables w i th do-

mains varying f rom 17 to 28 values and approximately 1000 atmost constraints

92

Chapter 1 Extending CSVC for General CSP,s: Initial Results

% Succ. Runs (Median Repairs)
1 二 - Non-binary ~~Original~~ Optimized . “

t ion % GENET E-GENET E -GENET >^<^"MGENERAL)

60 84 (463) 74 (223.5) 100 (282.5) 100 (301.5)
65 87 (426) 80 (223.5) “ 99 (262) “ 99 (322.0)
70 83 (456) 81 (241) 100 (280.5) “ 100 (348.5)
75 85 (730) 84 (339) “ 97 (331) “ 98 (424.5)
80 50 (4529) 53 (576) 73 (537) 75 (643.0)

Table 7.4: Results of >C5X>£(GENERAL) on the car-sequencing problems

of various number of variables. Total ly 50 problems, 10 for each ut i l izat ion per-

centage ranging f rom 60% to 80%, are tested. We compare the performance of

CSVC{GENERAL) w l th the original E -GENET, the optimized E -GENET and the

non-binary GENET [7], which is an extended GENET model for handling the

i l l e g a l constraint, the atmost constraint and the no tequa l constraint. The ex-

ecution l im i t of the non-binary GENET is set to one mi l l ion repairs, while the

execution limit of >C5Pi2(GENERAL), the original E -GENET and the optimized

E-GENET is 1000 repairs.

The results are listed in Table 7.4. A l l successful runs of CSVC{GENERAL)

terminate in less than 15 seconds. £5r>£(GENERAL) is better than the non-binary

GENET both in terms of the successful percentage and the median number of

repairs. When comparing the results between £5P£(GENERAL) and the original

E -GENET, we found that £<SX>£(GENERAL) always gives a higher percentage

of successful runs. This performance is comparable to that of the optimized E-

GENET. Therefore, we can conclude that £<SX>£(GENERAL) is at least as efficient

as the optimized E-GENET on handling the atmost constraint. On the other

hand, the median number of repairs of £5X>£(GENERAL) is slightly higher than

those of the original E -GENET and the optimized E-GENET.

93

Chapter 1 Extending CSVC for General CSP,s: Initial Results

7.5 Inadequacy of the Formulation

As confirmed by £<SX>£(GENERAL), the proposed formulat ion shows certain suc-

cess on extending CST>C for general CSP's. In some cases, however, the defined

incompatibi l i ty function, such as the one for the + constraint, is not sufficient to

guide the search. In this section, we first point out the weaknesses of the incom-

pat ib i l i ty functions. A possible improvement is then given. Experiments show

that the modif ication can significantly boost the search efficiency.

7.5.1 Insufficiency of the Incompatibility Functions

Given an integer constrained minimizat ion problem, the discrete Lagrange mul-

t ipl ier method performs saddle point search on the cost surface defined by the

Lagrangian function

L { l X) = N{z) + Y.XMz).
cec

Apart f rom the objective function N{z), the incompatibi l i ty functions gc{z) also

provide additional force to guide the search. However, the incompatibi l i ty func-

tions defined for general CSP's are not sufficient.

In the general formulation, instead of decomposing a constraint into a set of

incompatible tuples, we define a single incompatibi l i ty function for each constraint.

Al though this approach can significantly reduce the storage requirement, useful

search information is lost. Since an incompatibi l i ty function o f a constraint defines

the cost of an assignment, a set of incompatible tuples is weighted by the same

cost. Therefore, a number of large plateaus are generated in the cost surface. As

a result, the search process is easily trapped in plateaus, which are difficult to

escape.

Furthermore, unlike the binary case, the set of incompatible tuples of a con-

straint is associated w i th a single Lagrange mult ipl ier. When a Lagrange mult i -

plier is updated, instead of penalizing the current assignment, the whole set of all

incompatible tuples is affected. Hence, a potential path to the solution may be

blocked more easily [41]. For example, consider a CSP w i th 4 variables, a, b, c and

94

Chapter 1 Extending CSVC for General CSP,s: Initial Results

d, each w i t h a domain { 1 , 2 } , and 15 constraints

Ci : a + b + c + d, C2 : a + c + b + d, C3 : a + d + b + c,

C4 : a + b 7̂ c, c5 : a + b + d, Ce : a + c • b,

c7 : a + c + d, cs : a + d + b, cg : a + d + c,

Cio : b + c + a, Cii : b + c + d, C12 ： b + d — a,

Ci3 : b + d + c, ci4 : c + d — a, C15 : c + d + b.
—

The vector of integer variables z and the vector of Lagrange mult ip l iers A for

the associated integer constrained min imizat ion problem are z = {za, Zb, Zc, Zd)

and A = (A^ , Xc2, ĉ3，^C4, ̂ c5，^ce, ^c7, ^cg, ^c9, ^cio, ^cn，^ci2, ^ci3, ^ci4, ^ci5) respec-

tively. Among al l possible assignments of z, only (1,2,2，2), (2 ,1 ,2 ’ 2), (2,2,1 ’ 2)
and (2 ,2 ,2 ,1) are solutions of the problem.

. . . . , ~* ~* "•
Suppose the objective funct ion (7.5) is used, and in i t ia l ly A = Ao = 1 and —

z = (1 ,1 ,1 ,1) . The values of the Lagrangian funct ion L{z^ Ao) for each z are

given in the second column of Table 7.5. Since (1,1，1,1) has the same Lagrangian

value as its neighboring point (2,1,1,1)，（1,2,1,1), (1,1,2,1) and (1,1,1,2), i t
— is a stationary point. Therefore, the Lagrange mult ip l iers A are updated once to _̂ —

get Ai = (2，2,2,1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1) . The new Lagrangian values L{z^ Ai)

for each z are shown in the th i rd column of Table 7.5. Note that since a sin-
—

gle Lagrange mul t ip l ier is associated w i th a set of incompatible tuples, Ai not

only affects the Lagrangian value of current assignment (1,1，1，1), i t also changes

the Lagrangian value of (2 ,2 ,1,1) , (2 ,1 ,2 ,1) , (2 ,1 ,1 ,2) , (1 ,2 ,2 ,1) , (1 ,2,1,2) ,

(1 ,1 ,2 ,2) and (2 ,2 ,2 ,2) . Now, (1 ,1 ,1 ,1) is no longer a stationary point. The in-

teger vector z can change to one of (2 ,1 ,1 ,1) , (1，2,1，1), (1 ,1 ,2 ,1) and (1,1,1,2) .

Suppose (2 ,1 ,1 ,1) is chosen. Again, (2 ,1 ,1 ,1) is a stationary point. The La-
—

grange mult ipl iers are updated twice to increase the penalty. The new A becomes

X2 = (2 ,2 ,2 ,1 ,1 ,1 ,1 ,1 ,1 ,3 ,1 ,3 ,1 ,3 ,1) and the new Lagrangian values L{z^ X2) for

different z are given in the four th column of Table 7.5. Further update changes

z back to (1,1,1,1) . Similarly, vectors (1 ,2 ,1 ,1) , (1 ,1 ,2 ,1) and (1,1,1,2) are
~ *

t r ied and then back to (1,1,1,1) in turn. Af ter these transit ions, A becomes

A3 = (2 , 2 , 2 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3) and the Lagrangian values L{z, A3) for
95

Chapter 1 Extending CSVC for General CSP,s: Initial Results

z L{z,Xo) L{^Xi) L{z,X2) L{z,X^
(1.1.1.1) 6 ~ " ~ 9 9 9
(2 ,1 ,1 ,1) 6 6 12 12
(1 ,2 ,1 ,1) 6 6 6 12
(1,1,2,1) 6 6 6 12

(1.1.1.2) 6 6 6 12

(2,2,1,1) 8 10 12 14
(2.1.2.1) 8 10 12 14
(2.1.1.2) 8 10 12 14
(1.2.2.1) 8 10 10 14
(1.2.1.2) 8 10 10 14
(1,1,2,2) 8 10 10 14
(1 ,2 ,2 ,2) 0 0 0 0
(2 ,1 ,2 ,2) 0 0 0 0
(2 ,2 ,1 ,2) 0 0 0 0
(2 ,2 ,2 ,1) 0 0 0 0
(2,2,2,2) 6 9 9 9

—
Table 7.5: The value of the Lagrangian function L{z, A) for different integer vari-—
ables z and Lagrange multipl iers A of a CSP

each z are shown in the f i f th column of Table 7.5. The whole process repeats and

the algori thm oscillates between (1,1,1,1) , (2,1,1,1) , (1,2,1,1) , (1,1,2,1) and

(1，1,1,2) indefinitely.

In order to obtain a solution, the algorithm must pass through an integer vector

w i th two integer variables equal to 2. However, since the Lagrangian values of

(2.2.1.1) , (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2) and (1,1,2,2) are affected

by previous updates of Lagrange multipliers, they are always greater than those

of (2,1,1,1), (1，2,1,1), (1，1,2,1) and (1,1,1，2). Therefore, (2,2,1,1)，（2,1,2,1),

(2.1.1.2), (1,2,2,1), (1,2,1,2) and (1,1,2,2) are never visited. In other words,

potential paths to the solutions are blocked.

7.5.2 Dynamic Illegal Constraint

In order to overcome the above weaknesses, we propose the following scheme.

When a constraint is violated, an i l l e g a l constraint of current incompatible tuple

96

Chapter 1 Extending CSVC for General CSP,s: Initial Results

is added to the problem. We call this newly added i l l e g a l constraint a dynamic

illegal constraint. Af ter this modification, the integer constrained minimizat ion

problem becomes

min N{z) (7.44)

subject to

ZieDi, V i G U (7.45)

gc{z) = 0, V c e C (7.46)

gd {^ = 0, ydeD (7.47)

where D is the set of dynamic illegal constraints and gd{^) are the incompatibi l i ty

function of the i l l e g a l constraint. Obviously, the new minimizat ion problem

is equivalent to the original one. However, the Lagrangian function for the new

problem is reconstructed as

L{z, A, A) = N{z) + ^ XM^) + Y^ kM^) (7.48)
cGC deD

where A = (. . . , A^ , . . .) is a vector of Lagrange mult ipl iers associated w i th the

dynamic illegal constraints. The cost surface is modified by the extra term

Y^d£D ^d9d{z). As a result, the dynamic illegal constraints provide an additional

force to guide the search.

7.5.3 Experiments

A variant of CSVC, called T>-CSVC(GENERAL), is implemented to verify the

effectiveness of the proposed scheme. D-£«Sr^C(GENERAL)’ where "D" stands for

"dynamic," has the same parameters as £5r>£(GENERAL). The only difference is

the abi l i ty to generate dynamic illegal constraints. In D-CSVC(GENERAL), when

a certain constraint is violated, the corresponding dynamic illegal constraint gd{z)

of the violated tuple is introduced to the system, and the in i t ia l value of kd is

set to 1. The iV-queens problems and the hard graph-coloring problems from the

DIMACS archive [27] are used to compare the performance ofD-£<SX>£(GENERAL)

97

Chapter 1 Extending CSVC for General CSP,s: Initial Results

and £<SX>£(GENERAL). A l l experiments are performed on a SUN SPARCstat ion

10 model 40. B o t h average (unbracketed) and median (bracketed) C P U t ime of

10 runs are presented.

Benchmark ing results for the N-qneens problems are shown in Table 7.6. D -

£<SX>£(GENERAL) improves the performance of CSVC{GENERAL) significantly.

For the graph-coloring problems, the execution l i m i t of bo th T>-CSVC(GENERAL)

and £5X>£(GENERAL) is set to one mi l l i on i terat ions. T i m i n g results as wel l as

the success ratios are reported in Table 7.7. B-CSVC(GENERAL) outperforms

£<SX>£(GENERAL) bo th in terms of the C P U t ime and the success rat io. As a

result, the usefulness of dynamic i l legal constraints is confirmed.

i

•

98

Chapter 1 Extending CSVC for General CSP,s: Initial Results

CSVC{GENERAL) B-CSVC{GENERAh)
N CPU T ime (sec) CPU T ime (sec)
10 0.025 (0.033) 0.007 (0.000) —
20 " ~ P 5 5 (0.150) 0.097 (0.092)
30 0.457 (0.392) 0.250 (0.233) “

~ W 1.060 (1.050) 0.463 (0.425)
~ ^ 27095 (1.725) 1.332 (L392)

60 3.513 (3.375) — 1.958 (1.658)
70 4.122 (4.183) — 3.228 (3.225)

~ ^ ^180 (7.092) 4.848 (4.642)
90 11.663 (11.375) 6.588 (6.533) 一

~ m f5.145 (15.883) 9.337 (9 . 6 3 3) —
T l 0 ~ 20.945 (20.833) 12.830 (1 2 . 1 0 0) —

120 24.657 (23.208) — 16.463 (16.575)
130 29.430 (27.575) — 21.563 (22.542)
140 41.405 (42.550) — 24.137 (23.125)
150 "T0.Q47 (52.283) 34.307 (3 3 . 0 0 0) —
160 60.047 (55.817) 37.605 (3 7 . 3 4 2) —

T f O ~ 56.083 (53.742) 44.308 (4 5 . 6 0 0) —
~ J W 71.040 (73.333) 53.705 (5 2 . 0 8 3) —
" l W 86.517 (8 3 . 6 4 2 ^ 59.192 (5 8 . 9 4 2) —
200 96.715 (89.458) 67.098 (65.358) 一

Table 7.6: Results of B-CST>C(GENERAL) on the A^queens problems

r<SX>>C(GENERAL) D-r<S:OC(GENERAL)
Nodes Colors Average (Median) Success Average (Median) Success

CPU T ime Ratio C P U T ime Ratio
125 ~ U ~ - 0/10 4.8 hr (4.8 hr) 2/10
125 ~~18 1.2 m i n (1.0 min) 10/10 1.0 m in (46.9 sec) 10/10
250 — 1 5 14.1 sec (12.6 sec) 10/10 6.1 sec (6.3 sec) 1 0 / l Q ~

~ ~ ^ ^ ^ - 0/10 18.9 hr (13.0 hr) 8/10

Table 7.7: Results of T>-CSVC(GENERAL) on the hard graph-coloring problems

99

Chapter 8

Concluding Remarks

We conclude the thesis by giv ing our contr ibut ions and possible directions for

fu ture research.

8.1 Contributions

The contr ibut ions of our work can be summarized as follows. We derive f rom the

G E N E T model a two-step t ransformat ion for convert ing any b inary CSP into a

zero-one integer constrained min imiza t ion problem. W i t h the help of this trans-

format ion, wel l -known constrained opt imizat ion techniques, such as the Lagrange

mul t ip l ie r method, can be applied direct ly for tackl ing CSP's. Based on the trans-

formed zero-one integer constrained min imiza t ion problems, we propose a generic

discrete Lagrangian search scheme CST>C for solving b inary CSP's. CSDC, which

has five degrees of freedom, represents a class of discrete Lagrangian search al-

gori thms. By instant iat ing CSVC w i t h different parameters, algori thms w i t h

different efficiency and behavior can be generated. •

We formal ly establish the equivalence between the G E N E T model, a repre-

sentative of the class of heuristic repair methods, and an instance of CSVC.

This result not only provides a theoretical foundat ion for better understanding

of G E N E T , but also suggests a dual v iewpoint of G E N E T : as a heurist ic repair

method and as a discrete Lagrange mul t ip l ier method. As a result, the discrete

100

Chapter 8 Concluding Remarks

Lagrangian search scheme CSVC provides various important guidance for the de-

sign of better heuristic repair algorithms. In order to evaluate our approach, we

implement £<SD£(GENET), a discrete Lagrangian reconstruction of GENET. Var-

ious experiments show that £5X>£(GENET) exhibits the same good convergence

behavior as other GENET implementations found in the l i terature. Variants of

£<Sr>£(GENET) obtained from the dual viewpoints are also examined. Our best

variant £<SX>£(MAX) is found to be more efficient than £<S2>£(GENET). By in-

corporating lazy arc consistency to CSVC^ we can achieve addit ional order of

magnitude improvements for problems w i th arc inconsistency, and suffer f rom

l i t t le overhead for the problems which are already arc consistent.

We also extend CSVC for general CSP's. In this extension, we convert a

general CSP into an integer constrained minimizat ion problem and define a new

discrete gradient operator for CSVC. The main difference between the general

and the binary formulat ion is that, instead of defining an incompatibi l i ty function

for each incompatible tuple, we use a single incompatibi l i ty function to represent

a constraint. Hence, the storage requirement is greatly reduced. W i t h the new

discrete gradient operator defined to accommodate the change of formulation,

the discrete Lagrangian search scheme CSVC can be applied without any special

modification. We implement £<Sr>£(GENERAL), an instance of CSVC for solving

general CSP's, to verify our approach. The performance of £<SX>£(GENERAL) is

found to be comparable w i th that of E -GENET in most test problems. Although

this straightforward generalization gives us some promising results, i t does not

work so well in general. In our experiments, £«SP£(GENERAL) performs much

worse than £<S7^£(GENET) and CSVC[MAX). Therefore, much work is required in

the future. In addition, since a constraint is represented by a single incompatibi l i ty

function, large plateaus, which make the search more diff icult, are generated.

We propose dynamic illegal constraints to overcome this weakness. Experiments

confirm that the addition of dynamic illegal constraints can substantially improve

the performance of CSVC{GENERAh).

101

Chapter 8 Concluding Remarks

8.2 Discussions

D L M [62，54，53] is a discrete Lagrangian search a lgor i thm for solving SAT prob-

lems. Our CSVC f ramework is constructed according to D L M for solving CSP's.

A l though bo th D L M and CSVC apply the discrete Lagrange mu l t ip l ie r method

to solve SAT problems or CSP's, there are some differences between them. Fi rst ,

the CSVC procedure consists of five degrees of freedom. For example, any objec-

t ive funct ions that satisfy the correspondence requirement can be used, and each

Lagrange mul t ip l ie r can be in i t ia l ized differently. Hence, different parameters can

be chosen for tack l ing different problems. On the other hand, D L M does not

emphasize this k ind of freedom. I t always chooses the to ta l number of unsatisfied

clauses of the SAT problem as the object ive funct ion, and always init ial izes the

Lagrange mul t ip l iers w i t h a f ixed value. However, D L M employs, on top of the

discrete Lagrangian search, a number of different tun ing heuristics for different

problems. For instance, i t uses an addi t ional tabu l ist to remember states visited,

and resets the Lagrange mul t ip l iers after a number of i terat ions.

Second, CSVC searches on a smaller search space than D L M . Since CSVC is

targeted for solving CSP's, the set of constraints, which restr ict val id assignments

for CSP's, is incorporated in the discrete gradient operator. Thus, only val id

assignments are searched in CSVC. On the contrary, D L M lacks this k ind of

restr ict ion. A n y possible assignments, inc luding those are inval id for CSP's, are

considered. As a result, the efficiency of D L M is affected.

Th i rd , the two algori thms use different discrete gradient operators to per form

saddle point search. I n D L M , the discrete gradient operator considers al l Boolean

variables of the SAT problem as a whole and modifies one Boolean variable in each

update. However, in CST>C^ the zero-one integer variables which correspond to a

variable of the CSP are grouped together and updated at the same t ime. Hence,

the discrete gradient operator used in CSVC is more suitable for solving CSP's.

I n addi t ion, the discrete gradient operator of D L M uses the h i l l -c l imbing strategy

to update the Boolean variables. I n this strategy, the f irst assignment which

102

Chapter 8 Concluding Remarks

leads to a decrease in the Lagrangian funct ion is selected to update the current

assignment. I n C S V C , the discrete gradient operator always modifies the zero-

one integer variables such that there is a m a x i m u m decrease in the Lagrangian

funct ion.

I n summary, since the CSVC f ramework explores the structure of CSP's, i t

can be regarded as a specialization of D L M for solving CSP's.

8.3 Future Work

Our work represents a major step toward the understanding of heurist ic repair

methods. Interest ing problems remain. On the theoret ical side, at least one im-

por tant property of CSVC and other heurist ic repair methods is s t i l l unknown.

Our experience suggests that G E N E T and CSVC te rminate for solvable CSP's.

However, under what condition(s), do the algorithms always terminate, if at all?

A possible approach to tackle this question is to investigate whether the conver-

gence properties of the continuous Lagrange mul t ip l ie r method can be extended

for the discrete case. Furthermore, the five degrees of freedom of CSVC suggest

many possibil it ies for new heuristic repair algori thms. I n our research, only a small

number of parameter combinations are investigated. Other parameters and their

interact ion should be explored in the future. The new variable ordering heuristic

developed for G E N E T [58] should also be included in our CSVC f ramework . .

Our extension of CSVC for general CSP's is prel iminary. On ly a few general

constraints are implemented. I n the future, we should define new incompat ib i l -

i t y functions for new constraints, such as the c u m u l a t i v e constraint, the d i f f n

constraint and the c y c l e constraint [2]. These general constraints are useful

for model ing complex real-life applications. Our proposed general formulat ion is

straightforward. However, its performance is much worse than that of the binary

formulat ion. We should fur ther investigate other possible approach in the future.

The idea of dynamic i l legal constraints is new. A l though experiments show that

they can improve the performance of the search, the results are purely empir ical.

103

Chapter 8 Concluding Remarks

Hence, we should fur ther examine the theoret ical aspect of this idea. I n addi-

t ion, the possibi l i ty of apply ing dynamic i l legal constraints to other constraint

satisfaction techniques should be investigated.

Last but not least, the opt imizat ional nature of the CSVC f ramework suggests

apply ing CSVC to tackle constraint satisfaction op t im iza t ion problems and over-

constrained systems. A constraint satisfaction optimization problem (CSOP) is

a CSP w i t h an object ive funct ion to be opt imized. I n CSVC^ since a CSP can

be completely defined by the incompat ib i l i t y funct ions, we can s imply replace

the object ive funct ion of CSVC w i t h the one required in CSOP. Hence, when

CSVC terminates, the solution returned w i l l be an assignment that satisfies al l

constraints and min imized the object ive funct ion. I n an over-constrained system,

constraints are usually classified in to hard constraints and soft constraints. Hard

constraints are the constraints that must be satisfied by the solution, whi le soft

constraints are those that can be violated. The goal is to find an assignment that

satisfies al l hard constraints and minimizes the number (or cost) of violations of

soft constraints. I n C S V C , an over-constrained system can be modeled as follows.

The incompat ib i l i t y functions, which must be satisfied, is used to represent al l

hard constraints of the system, and the object ive funct ion is constructed by the

soft constraints. I n this way, over-constrained systems are handled in the same

manner as CSOP,s. A l though these approaches for CSOP's and over-constrained

systems are qui te straightforward, the feasibi l i ty should be fur ther confirmed.

104
•

Bibliography

1] H. M . Ador f and M . D. Johnston. A discrete stochastic neural network algo-

r i t h m for constraint satisfaction problems. I n Proceedings ofthe International

Joint Conference on Neural Networks, San Diego, C A , 1990.

2] N. Beldiceanu and E. Contejean. In t roduc ing global constraints in CHIP.

Journal of Mathematical and Computer Modeling, 20(12):97-123, 1994.

3] J. F. Boyce, C. H. D. Dimi t ropoulos, G. vom Scheidt, and J. G. Taylor.

G E N E T and tabu search for combinator ia l op t imiza t ion problems. In World

Congress on Neural Networks, Washington D. C., 1995.

4] Y . J. Chang and B. W . Wah. Lagrangian techniques for solving a class of

zero-one integer linear problems. In Proceedings of International Conference

on Computer Software and Applications, IEEE, pages 156-161, 1995.

5] T . H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

The M I T Press, 1990.

6] A . Davenport. Extensions and Evaluation of GENET in Constraint Satis-

faction. PhD thesis, Department of Computer Science, Universi ty of Essex,

1997.

'7] A . Davenport, E. Tsang, C. Wang, and K . Zhu. G E N E T : A connection-

ist architecture for solving constraint satisfaction problems by i terat ive im-

provement. I n Proceedings of the Twelfth National Conference on Artificial

Intelligence (Seattle, WA), pages 325-330, 1994.

105 ,

:8] M . Dincbas, P. Van Hentenryck, H. Simonis, A . Aggoun, T . Graf, and

F. Berthier . The constraint logic programming language CHIP . In Proceed-

ings of the International Conference on Fifth Generation Computer' Systems,

pages 693-702, 1988.

9] M . Dincbas, H. Simonis, and P. V . Hentenryck. Solving the car-sequencing

problem in constraint logic programming. I n Proceedings of the Eighth Eu-

ropean Conference on Artificial Intelligence, pages 290-295, 1988.

10] A . E. Eiben, P - E Raue, and Zs. Ruttkay. GA-easy and GA-hard constraint

satisfaction problems. I n Proceedings ofthe ECAP94 Workshop on Constraint

Processing, 1994.

11] A . E. Eiben, P - E Raue, and Zs. Ruttkay. Solving constraint satisfaction

problems using genetic algori thms. In Proceedings ofthe First IEEE Congress

on Evolutionary Computing, pages 542-547. A A A I P ress /M IT Press, 1994.

12] M . L. Fisher. The lagrangian relaxat ion method for solving integer program-

ming problems. Management Science, 27(1):1-18, 1981.

13] J. Frank, P. Cheeseman, and J. Al len. Weight ing for godat: Learning heuris-

tics for GSAT. In Proceedings of the Thirteenth National Conference on

Artificial Intelligence (AAAI-96), pages 338-343. A A A I P ress /MIT Press,

1996.

. [14] E. C. Freuder. The many paths to satisfaction. I n M . Meyer, editor, Con-

straint Processing, LNCS 923, pages 103-119. Springer-Verlag, 1995.

15] 1. P. Gent and T . Walsh. The enigma of SAT h i l l -c l imbing procedures. Tech-

nical report , Department of Ar t i f i c ia l Intell igence, Universi ty of Edinburgh,

1992.

16] I . P. Gent and T . Walsh. Towards an understanding of h i l l -c l imbing pro-

cedures. I n Proceedings of the Eleventh National Conference on Artificial

Intelligence (AAAI-93), pages 28-33. A A A I P ress /MIT Press, 1993.

106

17] A . M . Geoffrion. Lagrangian relaxat ion for integer programming. Mathemat-

ical Programming Study, 2:82-114, 1974.

18] F. Glover. Tabu search part I . Operations Research Society of America

(ORSA) Journal on Computing, 1(3):109-206, 1989.

19] F. Glover. Tabu search part 11. Operations Research Society of America

(ORSA) Journal on Computing, 2(1):4-32, 1989.

20] F. Glover and M . Laguna. Tabu Search. K luwer Academic Publishers, 1997.

21] R. M . Haral ick and G. L. E l l io t . Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

22] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The M I T

Press, 1989.

23] A . Hertz and D. de Werra. Using tabu search techniques for graph coloring.

Computing, 39:345-351, 1987.

24] M . R. Hestenes. Optimization Theory — The Finite Dimensional Case. Wi ley

k Sons, N Y , 1975.

25] A . C. Hindmarsh. O D E P A C K , a systematized col lection of O D E solvers.

I n R. S. Stepleman et al., editor, Scientific Computing, pages 55-64. Nor th-

Hol land, Amsterdam, 1983.

26] J. H. Hol land. Adaptation in Natural and Artificial Systems. The Universi ty

of Michigan Press, 1975.

27] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Opt imiza t ion by

simulated annealing: an experimental evaluation; part 2 graph coloring and

number par t i t ioning. Operations Research, 39(3):378-406, 1991.

28] S. K i rkpa t r i ck , C. D. Gelat t , and M . P. Vecchi. Opt im iza t ion by simulated

annealing. Science, 220(4598):671-680, 1983.

107

'29] V . Kumar . A lgor i thms for constraint-satisfaction problems: A survey. AI

Magazine, 13:32-44, 1992.

30] T . L. Lau and E. P. K . Tsang. App ly ing a mutat ion-based genetic a lgor i thm

to processor configurat ion problems. In Proceedings of the Eighth Interna-

tional Conference on Tools with Artificial Intelligence, pages 17-24, 1996.

31] J-L. Lauriere. A language and a program for stat ing and solving combinato-

r ia l problems. Artificial Intelligence, 10(1):29-127, 1978.

32] J. H. M . Lee, H. F. Leung, and H. W . Won. Extend ing G E N E T for non-

binary CSP's. I n Proceedings of the Seventh IEEE International Conference

on Tools with Artificial Intelligence, pages 338-343, Washington D.C., USA,

November 1995. I E E E Computer Society Press.

33] J. H. M . Lee, H. F. Leung, and H. W . Won. Towards a more efficient stochas-

t ic constraint solver. I n Proceedings of the Second International Conference

on Principles and Practice of Constraint Programming, pages 338-352, Cam-

bridge, Massachusetts, USA, August 1996. Springer-Verlag, LNCS 1118.

34] J. H. M . Lee, H. F. Leung, and H. W . Won. A comprehensive and efficient

constraint l ib rary using local search. I n Proceedings ofthe Eleventh Australian

Joint Conference on Artificial Intelligence, Ju ly 1998. (To appear).

35] J. H. M . Lee and V . W . L. Tam. Towards the integrat ion of art i f ic ia l neural

networks and constraint logic programming. I n Proceedings of the Sixth In-

ternational Conference on Tools with Artificial Intelligence, pages 446-452,

1994.

36] J. H. M . Lee and V . W . L. Tam. A framework for integrat ing art i f ic ial

neural networks and logic programming. International Journal of Artificial

Intelligence Tools, 4 (l&2) :3 -32 , 1995.

37] A . K . Mackworth. Consistency in networks of relations. AI Journal, 8(1):99-

118， 1977.

108 ,

38] B. Mazure, L. Sais, and E. Gregoire. Tabu search for SAT. In Proceedings

of the Fourteenth National Conference on Artificial Intelligence (AAAI-97)^

pages 281-285. A A A I P ress /MIT Press, 1997.

39] S. M in ton , M . D. Johnston, A . B. Phi l ips, and P. Laird. Solving large-

scale constraint satisfaction and scheduling problems using a heurist ic repair

method. I n Proceedings of the Eighth National Conference on Artificial In-

telligence, pages 17-24. A A A I Press/The M I T Press, 1990.

•40] S. M in ton , M . D. Johnston, A . B. Phi l ips, and P. Laird. M in im iz ing conflicts:

a heurist ic repair method for constraint satisfaction and scheduling problems.

Artificial Intelligence, 58:161-205, 1992.

41] P. Morr is . The breakout method for escaping f r om local m in ima . In Proceed-

ings of the Eleventh National Conference on Artificial Intelligence (Washing-

ton, DC), pages 40-45, 1993.

'42] B. A . Nadel. Constraint satisfaction algori thms. Computational Intelligence,

5:188-224, 1989.

43] J. P la t t and A . Barr . Constrained dif ferential opt imizat ion. I n Proceedings

of Neural Information Processing System Conference, 1987.

44] P. Prosser. Domain f i l ter ing can degrade intel l igent backtracking search. In

Proceedings of the International Joint Conference on Artificial Intelligence,

pages 262-267, 1993.

45] P. Prosser. Except ional ly hard problems. The comp.constraints newsgroup,

September 1994. ‘

46] M . C. Rif f . From quasi-solutions to solution: A n evolut ionary a lgor i thm to

solve csp. I n Proceedings ofthe Second International Conference on Principles

and Practice of Constraint Programming, pages 367-381. Springer-Verlag,

1996.

109

47] I . R i v i n and R. Zabih. A n algebraic approach to constraint satisfaction prob-

lems. I n Proceedings of the International Joint Conference on Artificial In-

telligence (IJCAI-89), pages 284-289, 1989.

'48] B. Selman. Pr ivate Communicat ion, Ju ly 1997.

'49] B. Selman and H. Kautz . Domain-independent extensions to GSAT: Solv-

ing large structured satisf iabi l i ty problems. In Proceedings of the Thirteenth

International Joint Conference on Artificial Intelligence (IJCAI-93), pages

290-295, 1993.

'50] B. Selman and H. Kautz . A n empir ical study of greedy local search for

satisf iabi l i ty testing. I n Proceedings of the Eleventh National Conference on

Artificial Intelligence (AAAI-93), pages 46-51, 1993.

51] B. Selman, H. A . Kautz , and B. Cohen. Noise strategies for improv ing lo-

cal search. I n Proceedings of the Twelfth National Conference on Artificial

Intelligence (AAAI-94), pages 337-343. A A A I P ress /M IT Press, 1994.

52] B. Selman, H. Levesque, and D. G. Mi tchel l . A new method for solving hard

satisf iabi l i ty problems. In Proceedings of the Tenth National Conference on

Artificial Intelligence (AAAI-92), pages 440-446. A A A I P ress /MIT Press,

1992.

53] Y . Shang. Global Search Methods for Solving Nonlinear Optimization Pro6-

lems. PhD thesis, Department of Computer Science, Univers i ty of I l l inois,

1997.

54] Y . Shang and B. W . Wah. A discrete lagrangian-based global-search method

for solving satisf iabi l i ty problems. Journal of Global Optimization, 12(1):61-

100, 1998.

55] D. M Simmons. Nonlinear Programming for Operations Research. Prentice-

Hal l , Englewood Cliffs, NJ, 1975.

110

.56] P. J. Stuckey and V . Tam. Extending G E N E T w i t h lazy arc consistency.

Technical report , Department of Computer Science, Univers i ty of Melbourne,

1996.

.57] P. J. Stuckey and V . Tam. Extending E - G E N E T w i t h lazy constraint consis-

tency. I n Proceedings of the Ninth IEEE International Conference on Tools

with Artificial Intelligence (ICTAFQl), 1997.

58] P. J. Stuckey and V . Tam. Improv ing G E N E T and E - G E N E T by new vari-

able ordering strategies. I n Proceedings of the International Conference on

Computational Intelligence and Multimedia Applications (ICCIMA，98), 1998.

59] P. J. Stuckey and V . Tam. Extending G E N E T w i t h lazy arc consistency.

IEEE Transactions on Systems, Man, and Cybernetics, (To appear).

60] E. P. K Tsang and C. J. Wang. A generic neural network approach for

constraint satisfaction problems. In J. G. Taylor, edi tor, Neural Network

Applications, pages 12-22. Springe-Verlag, 1992.

61] B. W . Wah and Y . J. Chang. Trace-based methods for solving nonlinear

global op t imizat ion and satisf iabi l i ty problems. Journal of Global Optimiza-

tion, 10(2):107-141, 1997.

62] B. W . Wah and Y . Shang. A discrete lagrangian-based global-search method

for solving satisf iabi l i ty problems. In Proceedings ofDIMACS Workshop on

Satisfiability Problem: Theory and Applications, 1996.

63] B. W . Wah and Y . Shang. Discrete lagrangian-based search for solving M A X -

SAT problems. I n Proceedings ofthe Fifteenth International Joint Conference

on Artificial Intelligence, pages 378-383, 1997.

64] B. W . Wah, Y . Shang, and Z. Wu. Discrete lagrangian method for opt i-

miz ing the design of mult ipl ierless qmf f i l ter banks. I n Proceedings of the

Fifteenth International Conference on Application Specific Array Processors,

pages 529-538. IEEE, 1997.

111

•65] B. W . Wah, T . Wang, Y . Shang, and Z. Wu. Improv ing the performance of

weighted lagrange-mult ip l ier methods for nonlinear constrained opt imizat ion.

I n Proceedings of the Ninth International Conference on Tools with Artificial

Intelligence, pages 224-231. IEEE , 1997.

'66] C. J. Wang and E. P. K . Tsang. Solving constraint satisfaction problems

using neural networks. I n Proceedings ofthe IEE 2nd Conference on Artificial

Neural Networks, pages 295-299, 1991.

•67] T . Warwick and E. P. K . Tsang. Using a genetic a lgor i thm to tackle the

processors configurat ion problem. I n Proceedings of ACM Symposium on

Applied Computing, pages 217-221, 1994.

.68] T . Warwick and E. P. K . Tsang. Tackl ing car sequencing problems using a

generic genetic a lgor i thm. Evolutionary Computation, 3(3):267-298, 1995.

•69] H. W . Won. E - G E N E T : A stochastic constraint solver. Master's thesis,

Department of Computer Science and Engineering, The Chinese Universi ty

of Hong Kong, 1997.

70] Z. Wu. The discrete lagrangian theory and its appl icat ion to solve nonlin-

ear discrete constrained opt imizat ion problems. MSc thesis, Department of

Computer Science, Universi ty of I l l inois, 1998.

112

.

.

 /

 :
.
,
,
4
,
v

,

 .」.！.-•

 .•

 t

"
‘

._r

 .
 .

 f
-

 -

 i

-

 .
.
；
.
.

:

...

 i

 .

 ̂

-
.

 •

。

.
 、

 .

 ,

 :
:
:
;
:
.
:
.
£
.
‘

.

.

.

.

.
,

:
\
i

.

.

.

.
,
,

u
.
.

r

 ;

.

 ••

 ;
.
:

-

 —.？：•

.

 •

 ..

 •

 .

 _•
?
-
.

\

.

 .

 .

.,.

 f

,

 .

 .

 .
.
,
.

f

•
:
.
.
:

•_
 *

.
-

.

.

.

.

.

..
 ...:v“.

P
^
K
.
_
:

」

 -

 -.

-

 „

 .

 “’

 _.-

 .

 ,

-
d

 -,

 .

 .

 #
.

^

.

 .f-

 ,

.

.

,

-

,

,

.

 ,.

、
 .

 ,

,
.
-

,

,
 ,

 ,

,
.
.
.

V
.

 .

广

:
.

.

.
 -

 -

.
r

.

.
 •
:

 .

\
:

.
 .

 .

 ,-
.
.
.
.
:
.
?
•

•
 :
•

 i

 ..

 .;

 •
•
•
•
•
•
.
；

..

 .,

 _-
.

 -•
"
.
.
.

.

J
 -

 ,

 •.

 .
 *

.
•

.
,
 -

 •

 .

 -.

%
.
.
.
.
.
.

•

;

‘

」

.

.

.

 ：
u

 -

 •

 •

 ..
.
¾
¾

厂

.

.

.

.

 、.

“

 ..._

 :
.
:
?
¾
,

一

..
 .._..

 I
>
?

 •_

 r

\

•

 /

,
 .,

 .

 .

 •
•
,

 :

 .

 ,

 >
 -

 i

-
-
v
»
 J

 ,
 ,.

 ̂

 .

 .;

.

.

 “

 .
.
:
:
.
.
.
.

—

 .
-

:
.
.

 .

 :

 .

 .
-
-
.
.
:
*
X

 一.

 (

、
.

 ..

 •

 .
-

 t.
-

 1,

r
l

 •

 «
^

 f

 .

 I

 ̂
 ,.

-...
 •,

 .,

^
i
 ,.

.
 •
-

 .

,
-
f
.
.

•

’

•
‘

•.,

 .

 ‘

 .
-

 .M

 f
,

 «
 .,

 •

 ‘

.
广

；

r
;
.
 ..

 .
 ,

 .

 :

 H

 V

 I

一

<

 .
:
.
=

.._

 .:

 T
a

 .

 :
 .
 --¢.

 j

.,

 •

 ,

 .

 "

 .

 ,,

\

...,;¾

 :.
:
/
.

「

 «

 、

 ,.

 s

 •
-

 J.

一

t
 ̂

x

 -
 :

 .

 ..

 .
.
.
:
.
:
.
-

 i
.
.

,.̂
 <
f
.

 ̂

 ;
.
.
i
l

 .
 -
,
f
.

 、
-
A

 f--、」-•.-

.,

1

,

-

*

^

-
.
 .
•

.

.

:

一

^
«
.
.
.

•
 ..

 *,

.

 ..

-

 ...

.

.

-
f

—
}

.

.

.

.
,
.
.
.
:
s
£
-

一

<
"

.

.

.

.

.

.
 、

 A

 y

^
y
f

^

 .

 .

 .

 i,

 .

 ̂

 »
r

/
;
•

,

 ,,

 •.

 ...

.
 —..‘

 ：：.=

 .,,•

.
i
^
,
.
i

‘

.

.

.

 .
/

,

一

n
i
-
^

.

r

.

 ,

:
 .

 ,
"

 .

 ,

 ,

 ...>-.

 .

 f-
.
^
.
v
v
l

 i

^

 .

 •

 .

 -

\

i
r

 ..,

 .

 :

N

 .

二

.

.

 \
.

.

 "
•

一

.

 ̂.

i

广
¥

.

•

 .,

.

.

.

 :..

 ,—

%

 \
、

I
 >
 .

 ’

 .

 .

 .

 、

 ̂

 ̂

 /

B
.

？

...

 -,.„

 .

1

h

 %
-

 V

 ,
f
.

 .•--

 :
〜
J
L

 ̂

&

/

 -
^
.
:
¢
-
:
:
-
.
:

 ;
.
(

 ，
.
.

」

^

^

4
 ̂.,.

..」.-•

.

:
y
.

.

,

？

S

 u

 r

 /-.

 .
.
.

 ..

 -.

 .r

 .

 .

 ,

 ..

 i
:
.
-
.

 A,

 -.-....yf..>.->

 ̂-
 .A
-

 •
 ,«„.

 _

v
s
 w

 v

 .

 -.

 .

 .

 -

 V

z
 ̂

^̂

®̂̂
..
 :V
.
.
J
;
/
.
;
,
:
?
.

 V

 T

 、.

 -’.

 •

 ̂

 ~̂

î\,̂
»,̂
-.>-..

？
*
 ̂

 -

 r
 .

 .

 ,

 -

 .

 ,.

 ̂

 \

0
f
.

『
4

 n

 .

 ...

 I

 .

 .

 t
 ,

 ̂
f

 -

^
»
(
k

飞

-

.

1

 ,
1

 I
 .
办

,
.
r
 ̂.

 ,

 .>

 I

 t
.
^
^
f
f

 1

^
 #
M
V

 .

 .

 :
 -

 .

 .

 .

 n
.
.
;
.

餘

^
.
K
f

 ̂

 ̂

 ̂

 .

 .

,
 -

 >

 t

 V.

 -?
<
,
-
,
:
.
.

.

^
^
^
¾
;
^
 :..

 ..."

 .

 .

 I
V

 \

一

_..
 :
:
 V

 :)
_

藝
.
：
.
3
:

.

.
 :
「
.
。
.
義

^
-
^
^
^
^
y
i
^
i
^
^
i
a
J
1
.
^
4
J
f
,
i
T
.
4
c
,
 -

 :
?
.

,
i

"
.

.

.
k
.
.

.
.
.
.
丨
.
.

 >

 >
-
-
.
,

 .

 .
i
.

 -
L
r
:
s
;
,
.
:
r
a
:
-
f
:
"
.
J

 、

i
^
h
,
^
t
t
n
t
t
r

L
^
i
^
r

、

C U H K L i b r a r i e s

lllllllllllllllll
DD37DMEflS

