A LAGRANGIAN RECONSTRUCTION OF A CLASS
OF LOCAL SEARCH METHODS

By

CHol Mo Fung KENNETH

A DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF PHILOSOPHY
DivisioN oF COMPUTER SCIENCE AND ENGINEERING
THE CHINESE UNIVERSITY OF HONG KONG

JUNE 1998

1§ L

~ T UNIVERSITY

LIBRARY SYSTEM

i %

HER > REARS RIET > HIWF kP IR S I & 5 A 2L
e — 3k k7 B $h 4G 49 k% R P (CSP’s) o £ BB HX P » &A1 H e
EEERERERAD REGEHARE o KM/ T T R®KTE>
AR S AT 7T # % % R P S R — % 38 1B M B o R4E 23
AT eAE MR > KA T — B4 LSDL thiEBp aRFFTR
LSDL 4 EMAFRFAMAEGE » RERATRR M S KNERESTRAZE
EARARG SNBSS HE c AMEEATRIHAM LSDL TR
SIEMEE IR ik —GENET o 34 R 112# T/ GENET R4t 7 — %=
A > FI54 GENET B Eme—— 5 @ ARG RE > F—FTEAH
#E AR B REE o WE EREBEARMENE— T2 EAHE GENET &5
FERAE o RS R BT RN ERL GENET s 460k b e #key GENET A 3%
8 Fl ey R BRI o B4 > BAeRkETey GENET 2487 b Ea& ey GENET
B kE o b0 KA BB LSDL M k— e MR B o KMELR
2B — iR 6h 49k 5% R PR R A B4 R B MU > K6 LSDL RAE
B E A AL o KRS B RAMIRR Y LSDL & R34y el B M EARR
— 183 /& GENET #4 % —E-GENET —# ¥4ad a4 % o

11

Abstract

In recent years, heuristic repair algorithms, a class of local search methods, have
demonstrated certain success on solving some large-scale and computationally
hard constraint satisfaction problems (CSP’s). In this thesis, we establish a con-
nection between heuristic repair methods and the discrete Lagrange multiplier
method. We present a two-step transformation for converting binary CSP’s into
zero-one integer constrained minimization problems. Based on the resultant min-
imization problem, a generic discrete Lagrangian search scheme LSDL is pro-
posed. LSDL has five degrees of freedom. By instantiating it with different
parameters, algorithms with different efficiency and behavior can be obtained.
We show that the GENET model, a representative heuristic repair algorithm, can
be reconstructed by our LSDL framework. This result not only provides a theo-
retical foundation for better understanding of GENET, but also suggests a dual
viewpoint of GENET: as a heuristic repair method and as a discrete Lagrange
multiplier method. Variants of GENET derived from both perspectives are exam-
ined. Benchmarking results confirm that our reconstructed GENET has the same
fast convergence behavior as other GENET implementations reported in the lit-
erature, and our best variant is more efficient than the reconstructed GENET. In
addition, we further extend our LSDL framework for tackling general CSP’s. By
transforming any general CSP into an integer constrained minimization problem,
the discrete Lagrangian search procedure LSDL can be applied directly. Experi-
ments show that the performance of our extended LSDL is comparable with that
of E-GENET, an extended GENET for efficient general CSP’s solving, in most

problems.

il

Contents

1 Introduction 1
1.1 Constraint Satisfaction Problems 2
1.2 Constraint Satisfaction Techniques 2
1.3 Motivation of the Research 4
1.4 Overviewofthe Thesis oo o v v v v v oo oo v v 5

2 Related Work T
2.1 Min-conflicts Heuristic« v v v v v vt v v v v oo o 7
09 BOAT v ¢ cown wimmn s smms = saimi s sEEHT 3 EWEE ¥ o 8
2.3 Breakout Method v v v it 8
94 GENET & « sicnn x vmmn somms s s mid 8.6 6@ s & q@wiss 9
o8 FEGBNET' : ; s s s 555 5 smws ¢ v me & wiwmn o xaema s 9
D6 DLM : o5 ¢ comomu o mmo o smms = s@iaid @6 S s WHs S 10
2.7 Simulated Annealing i |
2.8 Genetic Algorithms oo 12
29 TabiiSeafeh s ¢ cwws smms 5§ amwe & o wols ¥ wmmn ¢ 5w 12
2.10 Integer Programmingo e e 13

3 Background 15
3] GENET' 55 o smas o wmrs 5 ¢mms @ o n wommm s nwm o 15

3.1.1 Network Architecture oo 15
3.1.2 Convergence Procedure 18
3.2 Classical Optimization v ¢ v o v v v v oo v v v v o v an 22

v

3.2.1 Optimization Problems
3.2.2 The Lagrange Multiplier Method
3.2.3 Saddle Point of Lagrangian Function

lems

4.1 From CSP to SAT v i e e e e e e e e e e e e e e e

4.2 From SAT to Zero-One Integer Constrained Minimization.

A Continuous Lagrangian Approach for Solving Binary CSP’s
5.1 From Integer Problems to Real Problems

5.2 The Lagrange Multiplier Method
53 EXPerimefit « ¢ oo wiv s s v v smw's 5 6 nwme s wowmn s v

A Discrete Lagrangian Approach for Solving Binary CSP’s

6.1 The Discrete Lagrange Multiplier Method

6.2 Paramietets of LEDL 5 « v s s s mws s smwms s 0w v & 0w
6.2.1 'Objective Pumeion: + « v o s cmmmn s v ama s o
6.2.2 Discrete Gradient Operator
6.2.3 Integer Variables Initialization
6.2.4 Lagrange Multipliers Initialization
6.2.5 Condition for Updating Lagrange Multipliers

6.3 A Lagrangian Reconstruction of GENET

64 ERDEFIMCHEs ; o v swwa v swwse sawn s 2 6w w e «omo s
6.4.1 Evaluation of LSDL(GENET) v v v v v v v v v o
6.4.2 Evaluation of Various Parameters
6.4.3 Evaluation of LSDL(MAX) v v v v v v v oot o

6.0 Extensiotiof LEPL « ¢ v v s wmn o« xwwa s smon & wwmma s
B.51 ArcConsistency :ws : s s @38 sows g smaa v
6.5.2 Lazy Arc Comsistency
853 Bapelments: « s v s swws s swas sow v aw s 8

4 Binary CSP’s as Zero-One Integer Constrained Minimization Prob-

27

33

39

7 Extending LSDL for General CSP’s: Initial Results 77

7.1 General CSP’s as Integer Constrained Minimization Problems . . 77
7.1.1 Formulationo v v i vt 78

7.1.2 Incompatibility Functions 79

7.2 The Discrete Lagrange Multiplier Method 84
7.3 A Comparison between the Binary and the General Formulation . 85
74 Experiments « « v v v o v v vt o v v oo ot a o e e e 87
7.4.1 The N-queens Problems 89

7.4.2 The Graph-coloring Problems 91

7.4.3 The Car-Sequencing Problems 92

7.5 Inadequacy of the Formulation. 94
7.5.1 Insufficiency of the Incompatibility Functions 94

7.5.2 Dynamic Illegal Constraint 96

7.5.3 Experiments. 97

8 Concluding Remarks 100
81 Contributions« cvis oo oomasosons oo 100
B2 DISCUSBIONE & oo 6:% % s w5 o x suwma » simdg v oow e p 102
83 PutureWork . , s swiaié s oajo s smms s smis & oow e 103
Bibliography 105

vi

List of Figures

3.1 A CSP (U,D,C), where U = {uy,uz,uz}, Dy, = Dy, = Dy =

{1,2,3} and C = {|us —uz| =2,up <wua}. 17
3.2 The GENET network of the CSP in Figure 3.1 17
3.3 A oscillating GENET network in synchronous update 19
3.4 The network convergence of GENET 21
4.1 A simple CSP and its corresponding GENET network 28

6.1 An arc inconsistent CSP and its corresponding GENET network . 68

vii

List of Algorithms

3.1
6.1
6.2

6.3

Convergence procedure of GENET 18
The LSDL(N, Az, Iz, I5,Us) procedure oo v e 43
A modified input calculation procedure, that can detect lazy arc

consistency, for GENET 68
The Lazy-LSDL(N, Az, Iz, 13,Uz) procedure 69

viil

List of Tables

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

6.19

Results of continuous Lagrangian approach on the N-queens problems 38

Results of LSDL(GENET) on the N-queens problems 53
Results of LSDL(GENET) on the hard graph-coloring problems. . 54
Results of Nizero} and Nyviolation} O the N-queens problems . .. 56
Results of Ni.ero) and Nyyiotation} ON the hard graph-coloring problems 57
Results of Nizero) and Niyiolation} ON the tight random CSP’s . . . &7
Results of Az{many) and Az{one} On the N-queens problems 58
Results of Az{many} and Dz{one} ON the hard graph-coloring problems 58
Results of Az{many} and ODz{one} On the tight random CSP’s. . . . 59
Results of Iz{random} and Iz(greedy} ON the N-queens problems . . . 60
Results of Iz{random} and Iz{greedy} ON the hard graph-coloring prob-

0=+ o Y- 60
Results of Iz{andom} and Iz{greeay) on the tight random CSP’s. .. 60
Results of Usapicy @04 Usfeveryy On the N-queens problems . .. 62
Results of Usqp1¢) a0d Us(eyeryy OO0 the hard graph-coloring problems 62
Results of Us;qpe) and Ug, ey OD the tight random CSP’s . .. 62
Results of LSDL(MAX) on the N-queens problems 64
Results of LSDL(MAX) on the hard graph-coloring problems . . . 64
Timing results of LSDL(MAX) on the tight random CSP’s 65
Number of iterations and Lagrange multiplier updates of LSDL(MAX)

on the tight random CSP’s 66
Results of Lazy-LSDL(GENET) on the N-queens problems 71

X

6.20
6.21

6.22

6.23

6.24

6.25

6.26

6.27
6.28

71

7.2

7.3

7.4

7.5

7.6
ry i

Results of Lazy-LSDL(MAX) on the N-queens problems
Results of Lazy-LSDL(GENET) on the random permutation gener-
ation problems
Results of Lazy-LSDL(MAX) on the random permutation genera-
tion problems « ¢ v wws ¢ cww x v wmeie s w8 b B E G E
Results of Lazy-LSDL(GENET) on the artificial problems
Results of Lazy-LSDL(MAX) on the artificial problems
Results of Lazy-LSDL(GENET) on the tight random CSP’s with
aFC INCONSISHENCY o o o w5 s wwn s swws « 6 wwaw o wwmms
Results of Lazy-LSDL(MAX) on the tight random CSP’s with arc
MNCONBIBHENCY & o 5 w5 s swmws o« 6 Gon o« Swmms o wwiwn o o
Results of Lazy-LSDL(GENET) on the insoluble random CSP’s . .
Results of Lazy-LSDL(MAX) on the insoluble random CSP’s . . .

Results of LSDL(GENERAL) on the N-queens problems modeled
with the = constraint ; s vic s cwis s s swws s owws ¥ owws s
Results of LSDL(GENERAL) on the N-queens problems modeled
with the among constraint
Results of LSDL(GENERAL) on the hard graph-coloring problems
Results of LSDL(GENERAL) on the car-sequencing problems . . .
The value of the Lagrangian function L(Z, X) for different integer

variables Zz and Lagrange multipliers XofGC8P : s v vums

Results of D-LSDL(GENERAL) on the N-queens problems

72

73
73
74

75

75

76
76

90

91
92
93

96
99

Results of D-LSDL(GENERAL) on the hard graph-coloring problems 99

Chapter 1

Introduction

Many problems found in artificial intelligence and computer science, such as tem-
poral reasoning, resource allocation, scheduling, time-tabling, configuration, di-
agnosis and satisfiability problems, can be formulated as constraint satisfaction
problems (CSP’s). Because of the generality of CSP’s, efficient algorithms for
tackling CSP’s are very important. Tree search methods and local search meth-
ods are two common classes of constraint satisfaction techniques. Experience
shows that local search methods are more efficient than tree search methods for
a number of large-scale and computationally hard CSP’s. However, local search
methods are easily trapped in local minima and fail to return a solution. This
thesis aims to explore a class of local search methods for solving CSP’s and pro-
vide a connection between the local search methods and the Lagrange multiplier
method, a well-known constrained optimization technique.

We show that the GENET model [66, 60, 7, 6], a representative member of
the class of heuristic repair methods, is closely related to the saddle point search
of the Lagrange multiplier method. This result not only gives us a formal char-
acterization of the heuristic repair methods, but also allows us to gain important
insights into the various design issues of heuristic repair algorithms. In addition,
the dual viewpoint of GENET, as a heuristic repair method and as a discrete La-
grange multiplier method, suggests many possible modifications for the algorithm.

By exploring different variants of GENET derived from both perspectives, better

Chapter 1 Introduction

heuristic repair algorithms are derived.

1.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) [37] is a tuple (U, D,C), where U is a
finite set of variables, D defines a domain D, which contains a set of possible
values for each u € U, and C is a finite set of constraints. Each constraint c € C
is a relation defined over a subset of variables (i.e. ¢ C Dy, X Dy, X ... X Dy,),
restricting the combination of values that can be assigned to the variables in this
subset. A solution is an assignment of values from the domains to their respective
variables so that all constraints are satisfied simultaneously. We call such an
assignment a consistent assignment of the CSP. In this thesis, we are concerned
with an important subclass of CSP’s, in which the domains are finite.

The arity of a constraint is the number of variables involved in the constraint.
A constraint is said to be n-ary if it is on n variables. In general, a CSP may
have constraints of any arity. A binary CSP is one which contains unary and
binary constraints only. A label (u,v) [66] is a variable-value pair which repre-
sents the assignment of the value v to the variable u. Similarly, a compound la-
bel ((u1,v1), (Uz,v2), -, (Un,vn)) [66] denotes the simultaneous assignment of the
values vy,vs,...,v, to the distinct variables uy,us,...,un respectively. Hence, a
solution of a CSP is a compound label containing all variables and satisfying all

constraints in the CSP.

1.2 Constraint Satisfaction Techniques

CSP’s are, in general, NP-hard [5]. Any algorithm for solving CSP’s is likely to
require exponential time in problem size in the worst case. Two different kinds
of algorithms, namely tree search algorithms and local search algorithms, are
used to tackle CSP’s. Tree search algorithms are usually based on extension of

partial assignments and backtracking technique, where a partial assignment is an

Chapter 1 Introduction

assignment of values to a subset of variables in the CSP. Initially, a tree search
algorithm starts with an empty partial assignment and extends incrementally the
partial assignment by selecting an unassigned variable and assigning a value to
the selected variable from its domain. If the current partial assignment cannot
be extended without violating any constraints, the algorithm backtracks to one
of the previous variables and instantiates the variable with another untried value
from its domain. As the process continues, the algorithm will eventually either
find a solution for the problem, or prove that the CSP has no solution. Since tree
search algorithms are guaranteed to either return a solution if one exists or prove
the insolubility of a CSP, they are sound and complete.

Many tree search algorithms have been developed for solving CSP’s. Exam-
ples are simple backtracking [42, 29], backjumping [42] and backmarking [42].
In order to improve the performance, constraint propagation techniques, such as
consistency algorithms [37, 29] and forward checking [21], are incorporated in tree
search algorithms to reduce the search space of the algorithms. Various variable
and value ordering heuristics [21, 29] are also used to further speed up the search
process. Although tree search algorithms can successfully solve many real-life
problems, they become inefficient when the problem size increases.

Another approach for constraint satisfaction is local search. Unlike tree search
algorithms, local search algorithms are usually incomplete. In other words, they
may not return a solution even if one exists. Given a CSP (U, D, C), a local search
algorithm operates as follows. The algorithm first generates an initial assignment
(or state), which assigns each variable u € U a value from its domain Dy, for the
CSP. It then continues to make local adjustments, which depend on specific local
search algorithm, to the assignment until a solution is obtained. Various local
search algorithms, such as the min-conflicts heuristic [39, 40], GSAT [52, 49, 51,
13], the breakout method [41], GENET [66, 60, 7, 6], E-GENET [32, 33, 69] and
DLM [62, 54, 53], are developed in recent years. They have been found to be
effective in solving certain large-scale and computationally hard CSP’s.

An important property of local search algorithms is that they can be trapped in

Chapter 1 Introduction

a non-solution state, called a local minimum, in which no further local adjustment
can be made. Either random restart [39, 40, 52] or modification of the landscape
of search surface [41] are proposed for escaping from local minima. In chapter 2,

we review a number of these local search methods.

1.3 Motivation of the Research

Although a number of efficient local search algorithms are developed for solving
CSP’s, little work has been done on understanding why these methods have such a
good performance. Minton et al. [40] provided a statistical model and probabilistic
analysis for the min-conflicts heuristic for random CSP’s. Gent and Walsh 15,
16] investigated various features of the GSAT algorithm. They evaluated the
importance of greediness [15, 16], randomness [15] and hill-climbing [15, 16] of
GSAT on some random SAT problems. Since different local search algorithms
always have certain degrees of variation, analysis based on one method may not
be applicable to the others.

Local search methods, such as the breakout method, GENET and E-GENET,
rely on modifying the landscape of the search surface to escape from local minima.
Although the idea is simple and intuitive, little is known-theoretically about why
and how they work so well. Based on the breakout method, Morris [41] gave some
insights on the advantage of this approach and provided a physical analogy for
the algorithm. However, a theoretical explanation does not exist.

These situations motivate us to analyze the local search methods for CSP’s
and to provide some theoretical foundations for these methods. In our research,
we concentrate our attention on a class of local search algorithms derived from
the heuristic repair method. These algorithms include the min-conflicts heuristic,
GSAT, the breakout method, GENET and E-GENET. The energy perspective of
GENET [35, 36], a representative of heuristic repair methods, suggest an optimiza-
tion approach for constraint satisfaction. This observation motivates us to inves-

tigate the relation between heuristic repair methods and constrained optimization

Chapter 1 Introduction

techniques. By exploring the similarity between these two methods, a connection
between GENET and a form of the Lagrange multiplier method [24, 55], a well-
known technique for solving constrained optimization problems, is established. As

a result, better understanding of the local search methods is achieved.

1.4 Overview of the Thesis

The thesis is organized as follows. Chapter 2 gives a brief review of various lo-
cal search methods. The min-conflicts heuristic, GSAT, the breakout method,
GENET, E-GENET, DLM, simulated annealing, genetic algorithms, tabu search
and integer programming are considered. Chapter 3 provides the necessary back-
ground for the thesis. The GENET model and the Lagrange multiplier method
are described.

Based on the GENET model, we present a two-step transformation for con-
verting any binary CSP into a zero-one integer constrained minimization problem
in chapter 4. The first step of the transformation gives a SAT representation
of the GENET network, while the second step constructs the resultant zero-one
integer constrained minimization problem from the transformed SAT problem.
In chapter 5, we further transform the zero-one integer constrained minimization
problem into one in the real space, and apply the Lagrange multiplier method to
solve the resultant problem. Although this approach is viable, it is computation-
ally expensive.

Chapter 6 describes the discrete Lagrange multiplier method [62, 54, 53] for
solving binary CSP’s. A generic scheme LSDL, which defines a class of discrete
Lagrangian search algorithms, is introduced. We show that the GENET model is
equivalent to an instance of LSDL. Variants and possible extension of LSDL are
investigated. The performance of the variants on different CSP’s are also evalu-
ated. In chapter 7, we extend LSDL for tackling general CSP’s. The difference

between the binary and the general formulation is discussed. Various experiments

Chapter 1 Introduction

are performed to evaluate our proposed formulation. Some initial results are ob-
tained. An inadequacy of the general formulation and a possible solution are also

considered.

Chapter 8 concludes the thesis by summarizing our contributions and listing

some possible directions for future research.

Chapter 2

Related Work

This chapter briefly reviews some local search methods related to our research.
The min-conflicts heuristic, GSAT, the breakout method, GENET, E-GENET
and DLM are well-known local search methods for solving SAT and CSP’s. In the
following, we describe these methods according to their chronological appearances.
In addition, other optimization techniques based on local search, such as simulated
annealing, genetic algorithms, tabu search and integer programming, are presented

at the end of this chapter.

2.1 Min-conflicts Heuristic

Based on the Guarded Discrete Stochastic (GDS) network [1], Minton et al. pro-
posed a heuristic repair method for CSP’s. The method starts with an initial,
possibly inconsistent, assignment and continues to repair the assignment until a
solution is obtained or some terminating conditions, such as CPU time limit, are
met. At each point of the search, the method repairs the assignment according
to the min-conflicts heuristic [39, 40], which selects a variable currently violating
some constraints and assigns it a value that minimizes the number of constraint
violations with ties being broken randomly.

The min-conflicts heuristic has been found to be very successful on certain

Chapter 2 Related Work

CSP’s, such as the scheduling problem for the Hubble Space Telescope, the N-
queens problems and graph-coloring problems [39, 40]. Experiments show that
it is much better than existing backtracking tree search algorithms. However, a
potential problem of the min-conflicts heuristic is that the search can settle on an
assignment in which no further repair can be made. Such an assignment is usually
referred to as a local minimum of the search space. The min-conflicts heuristic
does not have any special mechanism to resolve this situation. It relies on random

restart to bring the search out of local minima.

2.2 GSAT

GSAT [52] is a greedy local search method for solving SAT problems. The al-
gorithm begins with a randomly generated truth assignment. It then flips the
assignment of variables to maximize the total number of satisfied clauses. The
process continues until a solution is found. Similar to the min-conflicts heuristic,
GSAT can be trapped in a local minimum. In order to overcome this weakness,
GSAT simply restarts itself after a predefined maximum number of flips are tried.

GSAT has been found to be efficient on hard SAT problems and on some
CSP’s, such as the N-queens problems and graph-coloring problems [52]. Various
extensions to the basic GSAT algorithm include mixing GSAT with a random
walk strategy [49, 51], clause weight learning [49, 13], averaging in previous as-
signments [49] and tabu-like move restrictions [16]. These modifications are shown

to boost the performance of GSAT on certain kinds of problems.

2.3 Breakout Method

The breakout method [41], which has mechanism for escaping from local minima,
is an iterative improvement method for solving CSP’s. In this method, each
constraint of a CSP is considered as a set of incompatible tuples. A weight, initially

set to 1, is associated with each incompatible tuple. The cost of an assignment is

Chapter 2 Related Work

the sum of the weights of violated tuples in that assignment. Similar to the min-
conflicts heuristic [39, 40], the breakout method minimizes the cost of assignment
until it reaches a local minimum. At that point, the weights of current violating
tuples are increased to allow the search to continue.

Since the breakout method modifies the cost of an assignment, it may get
trapped in infinite loops. However, experiments on SAT problems and graph-
coloring problems show that breakout almost always finds a solution if one ex-

ists [41].

2.4 GENET

The GENET model is a generic neural network, first proposed by Wang and
Tsang [66, 60], for solving binary CSP’s. In this model, a binary CSP is repre-
sented by a network. Each possible label of CSP is denoted by a label node and
each incompatible tuple of a binary constraint is represented by a weighted con-
nection. A convergence procedure, based on the min-conflicts heuristic [39, 40],
is used to search for a solution. As in the breakout method [41], GENET modi-
fies the weight of violated connections to help escaping from local maxima. This
technique is referred to as the heuristic learning rule of GENET.

Davenport et al. [7, 6] extended GENET for handling general constraints.
Three types of general constraints, namely the illegal constraint, the atmost
constraint and the notequal constraint, are implemented. Experimental results
of the hard graph-coloring problems, the randomly generated CSP’s and the car
sequencing problems confirm that GENET is more efficient than existing iterative
improvement methods, such as GSAT and the heuristic repair method [7, 6]. A
detailed description of the binary subset of GENET is given in chapter 3.

2.5 E-GENET

E-GENET [32, 69] extends the GENET model [66, 60, 7, 6] for solving general
CSP’s. It uses a different network architecture for problem representation. Unlike

9

Chapter 2 Related Work

the GENET model, each variable of a CSP is represented by a single variable node
and each constraint is represented by a constraint node. The penalty value of each
incompatible tuple is stored in corresponding constraint node. A convergence
procedure and a heuristic learning rule similar to that in GENET are used for
solution searching.

Since E-GENET induces the problem of storing a large number of penalty
value in a constraint node, Lee et al. [32, 69] introduced different storage schemes
for different types of constraints to overcome this weakness. Several optimiza-
tions [33, 69], such as the introduction of intermediate node, the new assignment
scheme of initial penalty values, the concept of contribution and the new learning
heuristic, are also proposed to further improve the performance. A comprehen-
sive constraint library [34, 69], which consists of linear arithmetic constraints, the
atmost constraint, the disjunctive constraint and a set of global constraints from
CHIP [2] are constructed. The performance of E-GENET compares favorably
against that of CHIP [8], a state of the art implementation of tree search algo-
rithms, in various benchmarks, such as the N-queens problems, the graph-coloring
problems, the scheduling problems, the channel assignment problems, the Hamil-

tonian cycle problems and the Mystery Shopper Problem [32, 33, 34, 69].

2.6 DLM

DLM [62, 54, 53] is a discrete Lagrangian-based global search method of solving
SAT problems. In this method, a SAT problem is first transformed into a discrete
constrained optimization problem. The discrete Lagrange multiplier method is
then applied to solve the resultant optimization problem. With the help of La-
grange multipliers, DLM can escape from local minima and continue the search
without restarting the entire algorithm. DLM generally outperforms the best ex-
isting methods and can achieve an order of magnitude speedup for some SAT
problems [62, 54, 53]. It also gives certain success in other problems, such as the

MAX-SAT problems [63, 53] and the design problem of multiplierless QMF filter

10

Chapter 2 Related Work

banks [64, 53].

Wau [70] further generalized the discrete Lagrange multiplier method for solving
discrete optimization problems. In this extension, the necessary conditions for
saddle points, and the relation between constrained local minima and saddle points
of the Lagrangian function are given. Hence, a strong mathematical foundation

for the discrete Lagrange multiplier method is provided.

2.7 Simulated Annealing

Simulated annealing [28] is an optimization technique inspired by the annealing
process of solids. It can escape from local minima by allowing a certain amount of
worsening moves. Consider an optimization problem, every possible state of the
problem is associated with an energy E. In each step of simulated annealing, the
algorithm displaces from current state to a random neighboring state and com-
putes the resulting change in energy AE. If AE < 0, the new state is accepted.

—AEIT where

Otherwise, the new state is accepted with a Boltzmann probability e
T is a temperature parameter of the process. At high temperature 7', the Boltz-
mann probability approaches 1 and the algorithm searches randomly. As the
temperature decreases, movements which improve the quality of the search are
favored. The temperature usually decreases gradually according to an annealing
schedule. If the annealing schedule cools slowly enough, the algorithm is guaran-
teed to find a global minimum. However, this theoretical result usually requires
an infinite amount of time.

Some work has been carried out on using simulated annealing to solve CSP’s.
Johnson et al. [27] investigated the feasibility of applying simulated annealing
for solving graph-coloring problems. Selman and Kautz [50] compared the per-
formance of simulated annealing and that of GSAT on the SAT problems. Since

much effort expended by simulated annealing in the initial high temperature phase

is wasted, simulated annealing usually takes a longer time to reach a solution.

11

Chapter 2 Related Work

2.8 Genetic Algorithms

Genetic algorithms [26] are heuristic search techniques for tackling combinatorial
optimization problems. They are derived from the evolution processes in nature.
In genetic algorithms, a population of chromosomes, which represent states of the
problem, is used to explore the search space of the problem. A fitness function
is associated with the population to determine how fit a chromosome is. During
each generation, new chromosomes are reproduced by crossover and mutation,
and added to the population. Chromosomes are selected to survive from one
generation to another by a selection function. Unfit chromosomes are discarded
during this selection phase. As the process proceeds, the algorithms will eventually
obtain the fittest chromosome, which corresponds to the optimal solution of the
problem.

Eiben et al. [11, 10] evaluated the performance of genetic algorithms on some
CSP’s, such as the N-queens problems, the graph-coloring problems, the traffic
lights problems and the Zebra problems. Riff [46] developed new fitness func-
tion and genetic operator to improve the performance of genetic algorithms for
solving CSP’s. Warwick and Tsang apply genetic algorithms for solving the car
sequencing problems [68] and the processors configuration problems [67]. Lau and
Tsang [30] also introduced a mutation-based genetic algorithm to tackle proces-
sors configuration problems. Their approach is shown to be more efficient than

other published techniques.

2.9 Tabu Search

Tabu search [18, 19, 20] is a sophisticated local search method that can escape
from local minima. It maintains a tabu list of prohibited search states to prevent
the algorithm from visiting the same search states twice. With the help of the
tabu list, non-improving moves are allowed. In general, a tabu search algorithm

can be realized as follows. Initially, a state of the problem is selected randomly

12

Chapter 2 Related Work

as the starting point of the search. This state is regarded as the best solution
obtained so far. A set of states which are in the neighborhood of the current state
and are not in the tabu list is collected. The best state in this set is selected as the
next state of the search. If the new state improves upon the best solution found
so far, it becomes the new best solution. The tabu list is also updated according
to some predefined criteria. The search continues until an acceptable solution is
found.

Tabu search has been applied for solving different CSP’s. Some examples are
the graph-coloring problems [23], the radio links frequency assignment problems (3]
and the SAT problems [38].

2.10 Integer Programming

Lagrangian relaxation [17, 12] is a well-known approach for integer programming.

Consider an integer linear programming problem P,

14

Zp=min ¢'Z

subject to

1

A

8y
IA
o

1

B

81
IA

~

Z > 0 and integral

where 3, c, d-; # are vectors, A, B are matrices of conformable dimensions and the
constraints BZ > d have some special structure which allow the corresponding
integer linear programming problem to be solved efficiently. The Lagrangian re-

laxation method defines a Lagrangian problem LR,

Zir(@) = min &7% + @T(AZ — b)
subject to
Bi < d,
> 0 and integral

13

Chapter 2 Related Work

where @ > 0 is a vector of Lagrange multipliers. Because of the special structure
of the constraints B# < d, the resultant Lagrangian problem LR is easier to solve
than the original problem P. Since the optimal value Zpr(@) of the Lagrangian
problem LR is guaranteed to be less than or equal to the optimal value Zp of
the original problem P, the Lagrangian relaxation method can be used to provide
lower bounds in branch and bound algorithms for solving the integer linear pro-
gramming problem. In addition, Lagrangian relaxation can be used as a medium
for selecting branching variables and choosing the next branch to explore.
Freuder [14] pointed out that there are many possible paths to constraint
satisfaction. Besides backtracking, hill climbing, neural networks and genetic
algorithms, integer programming is also a possible approach for solving CSP’s.
Rivin and Zabih [47] developed an algebraic method for solving CSP’s. In their
approach, a CSP is converted into an integer linear programming problem with
zero-one integer variables. The constraints of the CSP is represented by a set of
linear inequalities. The transformed integer programming problem is then solved

by polynomial multiplication.

14

Chapter 3

Background

This chapter provides the background to the thesis. A local search method, called
GENET, for solving CSP’s is reviewed. Furthermore, a description of optimiza-
tion problem is given. The classical Lagrange multiplier method for handling

constrained optimization problem is also presented.

3.1 GENET

The GENET model [66, 60, 7, 6] is a connectibnist architecture for solving CSP’s.
It consists of two components, namely a network architecture and a convergence
procedure. The network architecture gives the network representation of a CSP,
while the convergence procedure is an iterative improvement algorithm for solution
searching. In the following, we limit our discussion to the GENET model for

solving binary CSP’s.

3.1.1 Network Architecture

A GENET network N [66, 60, 7, 6] is constructed by a set of label nodes and node
connections. Consider a CSP (U, D,C). Each variable : € U is represented by a
cluster of label nodes (i,j), one for each value j € D;. Since there is a one-one

correspondence between a label and a label node, we use the same notation to

15

Chapter 8 Background

denote them. Each label node (i,) is associated with an output VJ;;y, which is 1
if value j is assigned to variable i, and 0 otherwise. A label node is said to be on
if its output is 1; otherwise, it is off .

A binary constraint ¢ on variables i; and i, is represented by weighted con-
nections between incompatible label nodes in clusters 7; and ¢3. Two label nodes
(i1,71) and (i3, J2) are connected if ¢; = j1 and 13 = j2 violates ¢. The weight
Wi jykay of each connection ((3,7), (k, 1)), initially set to —1, is always a negative
integer. The weights are modified during the learning process described later.

The input I;; ;) to a label node (i, j) is defined as the weighted sum of output
of all its connected label nodes. Let A(N,(i,j)) be the set of all label nodes
connected to (i,) in network A. The input I; ; is

Iiy= Y, WeaaknVien- (3.1)
(kEA(N (i.7))
A state S of a GENET network A is a tuple (V, W), where V = (..., Vjijy,...) is
a vector of outputs for all label nodes (i, j) in V' and w=(.., Wi iykys - --) 18 @
vector of weights for all connections ((z,7), (k,{)). A state is valid if exactly one
label node in each cluster is on. A solution state is a valid state with the input to
all on label nodes being zero.

An energy function of a GENET network N and a state S is defined as

EWN,8) = > VisWeiwnVien- (3:2)
(.3) (k1)) EN

In other words, the function returns the sum of weight of all violated connections.
It also gives a measure of the “goodness” of a state S in terms of the total weight
of violated connections. Alternatively, the energy function can also be defined as
the sum of input to all on label nodes [35, 36]. Let O(N,S) be the set of all on

label nodes of a network A and a state S. We have
EWN,S)= Y. L (3.3)

(i,4)EO(N,S)

Since every violated connections is summed twice in (3.3), E'(NV,S) = 2E(N, S).

In subsequent discussion, definition (3.2) is adopted.

16

Chapter 8 Background

{1,2,3}

Ul—U2|=2

u
Uz < U3 @

{1’2’3} {1’2’3}

Figure 3.1: A CSP (U, D, C), where U = {uy, u3,us}, Dy, = Dy, = Dy, ={1,2,3}
and C = {|u; — uz| = 2,u; < us}

Variable: %1 Ug u3

@ - on label node
QO - off label node

Figure 3.2: The GENET network of the CSP in Figure 3.1

For a GENET network with negative weights, E(N,S) is always non-positive.
At a solution state Sp, all constraints are satisfied. The energy E(NV,So) is 0, which
is a global maximum value. Hence, a CSP is solved when the energy E(N,S) is
equal to zero.

Figure 3.1 shows a CSP with three variables uj,us,us, each with a domain
{1,2,3}, and two constraints |u; — uz] = 2 and u; < us. The corresponding
GENET network is shown in Figure 3.2. The network consists of three clusters of
label nodes, one for each of the variables u;, u; and uz. Connections are established
between any two incompatible label nodes. For example, since the assignment

uy = 1,uy = 1 violates the constraint |u; —uz| = 2, there is a connection between

17

Chapter 38 Background

label nodes (uj,1) and (uz,1). The weights of all connections are set to —1
initially. The state illustrated, with the label nodes (u1,3), (u2,1) and (us,2) on,
represents the assignment u; = 3,u; = 1 and uz = 2. Since the energy of this

state is zero, it is a solution state of the network.

3.1.2 Convergence Procedure

The GENET convergence procedure [66, 60, 7, 6] outlined in Algorithm 3.1 is
defined for solving CSP’s. It changes the state of a GENET network continuously

until a solution state is reached.

procedure GENET-Convergence
begin
initialize the network to a random valid state
loop
{State update rule}
for each cluster in parallel do
calculate the input of each label nodes
select the label node with maximum input to be on next
end for
if all label nodes’ output remain unchanged then
if the input to all on label nodes is zero then
terminate and return the solution
else ‘
{Heuristic learning rule}
update all connection weights by W&E;(k,,) = Weivkey = Vi Vi
end if
end if
end loop
end

Algorithm 3.1: Convergence procedure of GENET

Initially, a label node in each cluster is selected to be on randomly; others are
off. This corresponds to assigning arbitrarily a value to each variable in a CSP.
Next, the state update rule transforms the GENET network from one valid state
to another by minimizing the number of constraint violations. A solution is found

when all on label nodes have zero input. Effectively, the state update rule carries

18

Variable: i Ug

Value:

@ - on label node
O - off label node

(a) State 1

Chapter 8 Background

Variable: uq Usg

@ - on label node
O - off label node

(b) State 2

Figure 3.3: A oscillating GENET network in synchronous update

out an optimization process for the energy function E (NV,S) until a zero energy
is obtained. |
During the state updating process, the clusters can be updated in parallel
either synchronously or asynchronously. In synchronous update, all clusters cal-
culate the input and update the state of their label nodes at the same time.
Alternatively, each cluster can perform input calculation and state update inde-
pendently in asynchronous update. Synchronous update can cause oscillations
between a number of states indefinitely [7, 6]. For instance, consider a GENET
network with four label nodes (u,1), (u1,2), (uz,1) and (uz,2), and two connec-
tions ((uy,1), (uz,1)) and ({u1,2), (u2,2)) shown in Figure 3.3. The weight of each
connection is —1. Suppose the GENET network is in state 1 (Figure 3.3(a)), with
label nodes (uy,1) and (ug,1) on, initially. In synchronous update, we calculate
the inputs to each label node at the same time, and get I1y,,1y = —1, J(u,2y = 0,
Lup,1y = —1 and Iy, 5y = 0. Hence, the network changes its state to state 2 (Fig-
ure 3.3(b)), with label nodes (u1,2) and (uz,2) on. Further state update will bring
the network back to state 1 again. The whole process repeats and the GENET
network oscillates between these two states indefinitely. On the other hand, in
our experience, asynchronous update always find a solution if one exists. In a

sequential implementation, asynchronous update can be simulated by updating

19

Chapter 3 Background

each cluster in sequence in a predefined order.

The state of the label nodes in each cluster are updated according to their
inputs. Basically, the label node with the maximum input is selected to be on
next. However, there could be more than one label node with the maximum
input. In this case, the following heuristic rule is adopted. Let P be the set
of label nodes with the maximum input. If the current on label node is in P,
it remains on. Otherwise, a random label node returned by rand(P) is selected
to be on, where rand(Y) is a function returning a random element from a set
Y. Since the label node with maximum input corresponds to an assignment with
fewer constraint violations, this updating strategy is a direct application of the
min-conflicts heuristic [39, 40].

A GENET network can be trapped in a local mazimum, which is a stable state
in which the state updating process fails to make further improvement and yet
some constraints are violated [66, 60, 7, 6]. In other words, at a local maximum
S, E(N,8) < 0 and E(N,S8)) > E(N,S,) for all its neighboring states S.
Obviously, a local maximum does not correspond to a solution of a CSP. In order
to escape from a local maximum, the heuristic learning rule is used. Let an
iteration of the convergence procedure constitutes one pass over the outermost

loop of Algorithm 3.1. The heuristic learning rule adjusts the connection weights

as follows [66, 60, 7, 6],
s+1 " s s s
Wetnwny = Wik — Vi Vika | (3.4)

where W(: .,y is the weight of the connection ((¢,7) (k,1)) and V} ;y is the output
of the label node (i, 7) in the sth iteration. This heuristic learning rule has two
effects on the convergence procedure. First, weight update decreases the energy
associated with the local maximum. Hence, perhaps with more than one weight
updates, the local maximality is destroyed. Second, since the weights of violated
connections become more negative after learning, these connections are less likely
to be violated again in future state update. Note that this heuristic learning rule

is similar to the breakout method [41].

20

Chapter 8 Background

Variable: U1 Uz us Variable: U1 Uz U3

1
—_— 2 —
S S
3
@ - on label node @ - on label node
QO - off label node QO - off label node
(a) State 1 (b) State 2

Figure 3.4: The network convergence of GENET

Connection weight learning not only affects the local maximum, but also af-
fects other states with constraints violated in the maximum. Hence, new local
maximum may be created [7]. Furthermore, learning may block potential paths
to a solution [41]. However, it is observed that this requires the constraints to
interact locally in a specific “unlucky” manner and the probability of this kind of
interaction for large CSP’s is very small [41].

We use the GENET network of the CSP shown in Figure 3.1 to illustrate the
network convergence of the GENET model. Figure 3.4 shows a state transition
from state 1 to state 2 of the GENET network. State 1 (Figure 3.4(a)), with an
energy —2, has the label nodes (uj,1),(uz,2) and (us,1) on, and the weights of
all connections being equal to —1. In sequential implementation, the convergence
procedure, which repairs each cluster u;,u; and u3 in sequence, works as follows.
Since all label nodes in cluster u; share the same input, label node (u;, 1) remains
on in state 2. In cluster u, the inputs to each label node are I(y, 1) = —2, [(u,,2) =
—2 and Iy, 3 = —1. Hence, label node (us,3) is selected to be on next. After
that, all label nodes in cluster us get the same input. The state updating process
ends with cluster uz unaltered. The resulting state shown in Figure 3.4(b) has

an energy —1 and is a local maximum. Since any further state update will result

21

Chapter 8 Background

in no state change, the heuristic learning rule is activated to modify the weight
Wius,3)(us,1) t0 —2. The stability of the GENET network is thus destroyed and the

state update rule can again be applied to maximize the energy of the network.

3.2 Classical Optimization

Optimization problems belong to a class of important problems in our daily life.
Many complex problems arising in business or in industry, such as decision mak-
ing, resource allocation and scheduling, can be regarded as optimization problems.
These problems usually require a decision maker to choose from many possible
alternatives the one that yield an optimal performance. In this section, a formal
description of optimization problems is given. Furthermore, the Lagrange multi-
plier method, a classical method for solving constrained optimization problems,

is described.

3.2.1 Optimization Problems

An optimization problem is a problem of minimizing (or maximizing) a mathe-
matical function of one or more variables [24, 55]. Without loss of generality, only
minimization problems are discussed. In a minimization problem, the mathemati-
cal function to be minimized is known as the objective function of the problem. A
local minimum is an assignment of values to the variables which gives the smallest
value of the objective function among its neighborhoods. A global minimum is an
assignment which minimizes the objective function [24, 55].

In general, any minimization problem can be classified into two different types,
namely unconstrained minimization problem and constrained minimization prob-
lem [24, 55]. In unconstrained minimization problems, there are no restrictions
on the values assigned to the variables. This kind of problems always have the

form,

min f(&) (3.5)

22

Chapter 3 Background

where Z = (z1,...,%,) is a vector of variables, “min” is the abbreviation for
minimization and f(&) is the objective function to be minimized.

Constrained minimization problems are represented as follows,

min f(&) (3.6)
subject to g(@®{<=2)0, 2=1,....,;m (3.7)
where 7 = (z1,...,2,) is a vector of variables, “min” is the abbreviation for mini-

mization and f(Z) is the objective function to be minimized. The equations and /or
3

inequalities in (3.7) are the constraints of the problem, restricting the values that

(
the variables ¥ can take. An assignment which satisfies all constraints is said
to be feasible; otherwise, it is infeasible [24, 55]. A constrained global minimum
is a feasible assignment which minimizes the objective function of the problem.
Throughout the discussion, we concentrate our attention on minimization with

equality constraints (i.e. g;(Z) =0, =1,...,m).

3.2.2 The Lagrange Multiplier Method

A minimization problem with equality constraints is formulated as,

min f(&) (3.8)
subject to ¢i(Z) =0, i=1,...,m (3.9)
where ¥ = (&1,...,%,) is a vector of variables. Since the equality constraints

in (3.9) only reduce dimensionality, they do not establish any boundaries. A
trivial way to solve the problem is to reduce it to an unconstrained minimization
problem with n — m variables. In other words, we first express any m variables
in terms of the other n — m variables by the equality constraints (3.9). Then, we
substitute the result into the objective function (3.8) to eliminate the m variables.

Consider an example taken from [55].
min z? + 22 + 22 (3.10)
subject to z1+ 2+ 23— 10 =0. (3.11)

23

Chapter 8 Background
In this problem, we have n = 3 and m = 1. From (3.11), we get
T3 = 10 — Iy — Ta. (312)

Substitute (3.12) into (3.10), we get an unconstrained minimization problem in
z; and z3:
min z? + 22 + (10 — z; —)% (3.13)

Subsequently, we obtain the minimum at z; = 2z = z3 = %.

Although the above approach is simple, the computation is very complex or
impractical when the equality constraints are complicated, non-linear and the
number of variables involved are large. Therefore, a more systematic and efficient
method, called the Lagrange multiplier method [24, 55|, has been developed. In the
Lagrange multiplier method, the equality constraints are not considered explicitly.
They are combined with the objective function to form a Lagrangian function.

Consider the constrained minimization problem in (3.8 — 3.9), the Lagrangian

function [24, 55] is defined as

L(Z,X) = f(&) +) _ Xigi(@) (3.14)
1=1
where X = (A1,...,Am) is a vector of Lagrange multipliers. The necessary condi-

tions [24, 55] for constrained local minimum are

V:L(Z,X)

0 (3.15)
V:L(Z,X) =0 (3.16)

where V is the gradient operator. The conditions in (3.15 — 3.16) form a system
of n + m equations, linear or non-linear, with n + m unknowns Z and X. Solu-
tions Z of this system of n + m equations are the constrained local minima of
the original problem (3.8 — 3.9). If there is a finite number of constrained local
minima, a constrained global minimum can be obtained by comparing the value
of the objective function of each local minimum. Note that the set of m equality

constraints (3.9) is implicitly included in condition (3.16).

24

Chapter 3 Background

Consider the previous example (3.10 — 3.11). The Lagrangian function is
L(z1, 29,23, A) = 22 + 22 + 22 4+ A\(21 + z2 + 23 — 10). (3.17)

The necessary conditions are

6L(ac1, T, T3, A)

O0L(z1, 22,23, A) = 2, +A=0 (3.19)
3:52

al/(zl, T, T3, A) - 2$ + A — 0 (3 20)
81‘3 : '

aL(a:l,ax;,xs,)\) 21+ zy4+23—10=0 (3.21)

By solving the system of equations (3.18 — 3.21), we get the constrained local

minimum at ¢; = 3 = 23 = % and the Lagrange multiplier A = —%, which

agrees with previous calculation.

3.2.3 Saddle Point of Lagrangian Function

Since the system of equations generated from the necessary conditions (3.15 -
3.16) may be very complex or highly non-linear, it can be difficult to solve them
analytically. In this case, a constrained local minimum can be obtained by finding
a saddle point (a':'*,X*) [55] of the Lagrangian function L(Z, X), defined by the
relation,

L(z*,X) < L(&, X) < L(Z,X*) (3.22)
for all (2, X) and all (Z, X*) sufficiently close to (Z*, X*). In other words, a saddle
point is a local minimum of the Lagrangian function L(Z, X) in the #-space and a
local maximum of L(Z, X) in the X-space. The relation between a local minimum
of the minimization problem with only equality constraints and a saddle point of

the associated Lagrangian function is stated in the following theorem.

Theorem 3.1 (Saddle Point Theorem) [62, 54] Z* is a local minimum of the
minimization problem (3.8 — 3.9) if and only if there exists Lagrange multipliers X

such that (Z*, X*) constitutes a saddle point of the associated Lagrangian function

L(Z,X).

25

Chapter 3 Background

The definition of saddle point and the saddle point theorem provide an algo-
rithmic approach for finding a constrained local minimum. A saddle point, which
corresponds to a constrained local minimum, can be identified by performing de-
scent in the Z-space and ascent in the X—space. This method is equivalent to a

dynamic system constructed with the following differential equations [43],

‘fl—f = —V:L(&,N) (3.23)
dX g
= = ViL(EX) (3.24)

where ¢ is an independent time variable of the system. As the system evolves
over time ¢, it performs gradient descent in the Z-space and gradient ascent in the
X-space. At equilibrium, all gradients vanish and a saddle point of the Lagrangian
function L(Z, X) is obtained.

Under this algorithmic point of view, the Lagrange multiplier method can be
understood as follows [43]. The Lagrange multipliers X are the penalties associated
with the constraints and the Lagrangian function L(Z, X) is a penalty function.
When certain constraints are violated, their corresponding Lagrange multipliers
are modified to increase the penalties. These penalties will eventually force the
constraints to be satisfied. At the same time, the gradient descent of L(Z, X) in

the Z-space searches for a constrained local minimum.

26

Chapter 4

Binary CSP’s as Zero-One
Integer Constrained

Minimization Problems

The convergence procedure of the GENET model suggests an optimization ap-
proach to constraint satisfaction. In this chapter, we present a two-step transfor-
mation for converting any CSP into a zero-one integer constrained minimization
problem. The first step of the transformation converts a GENET network directly
to a Boolean satisfiability (SAT) problem, while the second step derives the re-

sultant zero-one integer constrained minimization problem from the intermediate

SAT problem.

4.1 From CSP to SAT

A Boolean satisfiability (SAT) problem consists of a set of Boolean variables and
a Boolean formula. Given a CSP (U, D,C). Its corresponding GENET network
N can be viewed as a graphical representation of a SAT problem. Each label node
(i,7) is associated with a Boolean variable z; jy, which is true if (7, j) is on and
false otherwise.

The Boolean formula is a conjunction of two types of formulae, namely cluster

27

Chapter 4 Binary CSP’s as Zero-One Integer Constrained Minimization Problems

{1,2} Variable: u; Usg U3
Uy = Ug 5 1
=
<
>
2
<
L2y~ T L9
(a) The CSP (b) The GENET network

Figure 4.1: A simple CSP and its corresponding GENET network

formulae and connection formulae. Each cluster formula is used to represent a
cluster of label nodes, which enforces the valid states of the GENET network.

The cluster formula of each cluster (variable) ¢

Ci=\ (Za,j)/\(A “Z(i,k))) (4.1)
JED; k€D k#j

ensures that exactly one label node in cluster i is on. Each connection ((¢,), (k,[))

in the GENET network induces a connection formula

Cliiykd) = TZGi,h) V 7Z(k,0) (4.2)

which states that the label nodes (z, j) and (k, () cannot be both on simultaneously.
Hence, solving the CSP is equivalent to finding a truth assignment that satisfies

the Boolean formula

B=N\C:i A A Chixen- ()
€U ((1,]),(k,1))€N

Taking a simple CSP as an example, we have three variables u;, u; and us,
and two constraints. A uniform domain D,, = {1,2} is associated with each
variable u; for all ¢ = 1,2,3. The two constraints are u; = us and us < us.
The corresponding CSP network and GENET network is shown in Figure 4.1.

The induced SAT problem of the GENET network is formulated as follows. The
label nodes of the GENET network is represented by the Boolean variables z(, 1),

28

Chapter 4 Binary CSP’s as Zero-One Integer Constrained Minimization Problems

Z(u1,2)s Z(uz,1)s Z(uz,2)s Z(us,1) and 2(y,2)- The cluster formulae are

Cux s (z(ul,l) A _‘Z(u1,2)) \ (-'z(ul,l) A z(u112))7 (4'4)
Cuo = (Zupt) A "Z(2,2) V (TZ(uz1) A Z(u22)), (4.5)
C‘us = (z(ua,l) A ﬁz(uaﬂ)) \% (_'z(us,l) A 2(03,2))' (46)

The connection formulae are

Clun) w2y = "Zur1) Y 7%(w22)s (4.7)
Clur2)(uat) = "Zur2) V "Z(ua,1)s (4.8)
ClusYust) = "Zuz,1) V "%us 1) (4.9)
Cluz 2)us,l) = TZ(uz,2) V 7Z(us 1) (4.10)
Cluz2)(s,2) = “Z(uz,2) V 7Z(us,2)- (4.11)

Combining these two types of formulae, we obtain the resultant Boolean formula

of the SAT problem,

B = Cu K G, N Cu A C(ul,l)(u2,2) A C(‘ul,Z)(ug,l) (412)
A Cluzyust) N Cluz2)(ust) N Cluz,2)(us,2)-

4.2 From SAT to Zero-One Integer Constrained
Minimization

We now complete the transformation by converting the SAT problem obtained
previously to a zero-one integer constrained minimization problem, a constrained
minimization problem with zero-one integer variables. Each Boolean variable in
the SAT problem is converted to a zero-one integer variable. Since a Boolean
variable can be regarded as a zero-one integer variable, we abuse notation by
naming a zero-one integer variable also by its associated Boolean variable z(; ;).
The value of a zero-one integer variable z(; ;) is 1 if value j is assigned to variable

2, and 0 otherwise.

29

Chapter 4 Binary CSP’s as Zero-One Integer Constrained Minimization Problems

Each cluster formula C; for all 2 € U is transformed to the following equation,

Z 265 = 1. (4.13)

JED;
These equations impose a space for proper instantiation of Z, which corresponds
to valid assignments of CSP (valid state of GENET). For each connection formula

Cli,j)(k,1), We define an incompatibility function

963y k) () = 2(i.3)Z (k) (4.14)

where Z = (..., 2(,),...) is a vector of zero-one integer variables. The function
9i,j) (k) (Z) returns 1 if both 2; ;) and 2z are 1, and 0 otherwise. Hence, equating
96.i)ky(Z) to 0 is equivalent to forbidding two connected label nodes (i, j) and
(k,l) in the GENET network to be on at the same time. The incompatibility
functions are used as indicators of constraint violations.

The resultant zero-one integer constrained minimization problem has the form,

min N(Z2) (4.15)

subject to
Y zpp=1, VieU (4.16)

JED;
g(i,j)(k,l)(g) = 07 v (<za.7>a (ka l)) €l (417)

where Z = (..., 2), .) is a vector of zero-one integer variables and Z is the set
of all incompatible label pairs ({z,), (k,!)). Since the solution space of a CSP is
defined entirely by the constraints (4.16 — 4.17), it is equal to the feasible space of
the associated zero-one integer constrained minimization problem. The objective
function N(Z) serves only to exert additional force to guide solution searching.
The objective function N(2) is defined in such a way that every solution of
the CSP must correspond to a constrained global minimum of the associated zero-
one integer constrained minimization problem (4.15 — 4.17). This is called the
correspondence requirement. In the following, we present two appropriate objec-

tive functions that fulfill the correspondence requirement. The goal of solving a

30

Chapter 4 Binary CSP’s as Zero-One Integer Constrained Minimization Problems

CSP is to find an assignment that satisfies all constraints. One possible objec-
tive function, adapted from Wah and Chang [61], is to count the total number of
constraint violations. By measuring the total number of incompatible label pairs

((i,7), (k,1)) in an assignment, the objective function can be expressed as

N(Z) = Z Z(i,j) (k1)

((Ga) (k1) €T

= Y Guawn(® (4.18)

((2.3): (k1)) ET
where Z = (..., 2(,),...) is a vector of zero-one integer variables. Two properties

of this objective function are stated as follows.

Property 4.1 Z* is a constrained global minimum of the objective function N(Z)
defined in (4.18) subjected to the constraints (4.16 — 4.17) if and only if N(2*) = 0
and all constraints (4.16 — 4.17) are satisfied.

Proof: “=” part: If Z* is a constrained global minimum of the objective func-
tion N(Z) defined in (4.18) subjected to the constraints (4.16 — 4.17), all con-
straints (4.16 — 4.17) are satisfied. Furthermore, by the definition of the objective
function N(Z), N(2*) = 0.

“«<” part: Since the objective function N(Z) cannot be less than zero, Z* is
a constrained global minimum if N(Z*) = 0 and all constraints (4.16 — 4.17) are

satisfied. O

Property 4.2 If Z* represents a solution of the CSP, it is a constrained global
minimum of the objective function N(Z) defined in (4.18) subjected to the con-
straints (4.16 — 4.17).

Proof: If Z* represents a solution of the CSP, all constraints (4.16 — 4.17) are
satisfied. In addition, by the definition of the objective function N(Z), N(Z*) = 0.
By property 4.1, Z* is a constrained global minimum of the objective function N(2)

subjected to the constraints (4.16 — 4.17). m]

31

Chapter 4 Binary CSP’s as Zero-One Integer Constrained Minimization Problems

The first property suggests a condition for constrained global minima, while the
second property satisfies the correspondence requirement.

Another possibility is the constant objective function
N(Z)=0. (4.19)

The objective function satisfies the correspondence requirement trivially. Basi-
cally, this trivial objective function does not help in the search of solution. We
shall show later, however, that this function is related to the GENET model.

To illustrate the transformation, consider again the same CSP shown in Fig-
ure 4.1. The Boolean variables are now converted to a vector of zero-one integer
variables

Z = (Z(u1,1> Z(u1,2)> Zuz,1)s Z(u2,2)» Z(u,1)s Z(us,2))- (4.20)

The cluster formulae (4.4 — 4.6) become the equations

Zu) T 2wz = 1, (4.21)
Zup 1) T Z(w22) = 1, (4.22)
Zus,1) T Z(us2) = L. (4.23)

Similarly, the incompatibility functions

I) w22)(2) = Z(ur1)Z(u2.2)s (4.24)
9(u1,2)(uz,1)(5) = Z(uy,2)%(uz,1)) (4.25)
Yz us)(2) = Z(up,1)Z(us 1) (4.26)
Yz 2)us,)(2) = Z(uz,2)Z(us 1) (4.27)
Yz 2)ws2)(2) = Z(ur,2)%(us 2} (4.28)

are obtained from the connection formulae (4.7 - 4.11). The equations (4.21 —4.23)
and the incompatibility functions (4.24 — 4.28) are the constraints of the zero-one
integer constrained minimization problem. The transformation is completed by
choosing either (4.18) or (4.19) as the objective function. Hence, solving the CSP
now becomes finding a constrained global minimum of the associated zero-one

integer constrained minimization problem.

32

Chapter 5

A Continuous Lagrangian

Approach for Solving Binary
CSP’s

In this chapter, we show how to use the Lagrange multiplier method [24, 55] to
solve zero-one integer constrained minimization problems transformed from CSP’s.
Since the gradient of the Lagrangian function is defined over the real space only,
the Lagrange multiplier method cannot be applied directly. We further transform
the zero-one integer constrained minimization problem into a real constrained
minimization problem, and apply the Lagrange multiplier method to the real
problem [4]. A simple experiment is also presented to evaluate the feasibility of

this approach.

5.1 From Integer Problems to Real Problems

The zero-one integer constrained minimization problem (4.15 — 4.17) associated
with a CSP (U, D,C) can be further transformed into a real constrained mini-
mization problem. Each integer variable z; jy is converted to a real variable z; j;,
which can take any value in the interval (—oo,4+00). Among all possible values,

only 0 and 1 are feasible for each variable z(; jy. This integral restriction is imposed

33

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP’s
by the following equality constraints [4]
:v(,',j)(a:(,-,j) - 1) =0, VieUje€D,. (5.1)

A real variable z(; j) is 1 if and only if the corresponding zero-one integer variable
z(i,jy is 1. Similarly, z(; ;) is 0 if and only if z(; ;) equals 0.
The constraints (4.16 — 4.17) are converted to their real counterparts. The

equations (4.16), which ensure valid assignment of CSP, are now replaced by

—_ H (1 — .’L‘(,‘,j)) + z Z(ij) = 1, VieUl. (52)

JED; JED;
Since, in the real space, there exist z(; jy # 0 and z(; j) # 1 for all j € D; such that
> iep; Tiij) = 1, the extra term — [T;cp (1— (;,jy) is introduced to guarantee that
only one value can be assigned to each variable of the CSP. Note that although
the constraints (5.1) already enforce the real variable z(; ;) to be either 0 or 1, this
extra term can provide additional force to guide the search. Furthermore, since
the extra term itself is not enough to ensure the valid assignment of CSP, it is
not considered as a separate constraint. The incompatibility function g ;) (Z)

becomes
J6ykn(E) = zanzwy, Y ((5,0),(k, 1) €L (5.3)

where Z is the set of all incompatible label pairs ((z,7),(k,l)). Similar to its
integer counterpart, g (k) (Z) returns 0 only when either z(; ;) or z(, are 0.
However, when a constraint is violated, §(; jy(k(Z) returns a non-zero, possibly
negative, value.

The resultant real constrained minimization problem is

min N(Z) ' (5.4)
subject to
zigy(zeny—1) =0, VieUjeD; (5.5)
-[[-2+ D wan=1 VieU (5.6)
jED; jeD;
g(i,.’i)(k,l)(i) =0, v ((%])? <k, l)) €l (57)

34

Chapter 5§ A Continuous Lagrangian Approach for Solving Binary CSP’s

where N (&) is a converted objective function such that Z* is a constrained global
minimum of the real constrained minimization problem (5.4 — 5.7) if and only if its
corresponding zero-one integer variables Z* is a constrained global minimum of the
associated zero-one integer constrained minimization problem (4.15 — 4.17). We
called this the equivalence requirement. Similar to the zero-one integer constrained
minimization problem (4.15 — 4.17), the solution space of a CSP is equal to the
feasible space of the associated real constrained minimization problem (5.4 - 5.7).

In order to fulfill the equivalence requirement, the objection function defined

in (4.18) is converted to

NE) = Y (eeazwn)’

((523) (k1)) €T

= Y (Geawn®) (5.8)

((5,9),(ko1))ET

This transformation ensures that N (Z) is always non-negative. Hence, any Z that

satisfies the constraints (5.5 — 5.7) is a constrained global minimum. On the other

hand, the constant objective function (4.19) does not require any modification.
Based on the equivalence requirement, the relation between a CSP and its as-

sociated real constrained minimization problem is stated in the following theorem.

Theorem 5.1 If Z* is a vector of real variables represents a solution of the CSP,
then T* is a constrained global minimum of the associated real constrained mini-

mization problem (5.4 — 5.7).

Proof: Since there is a one-one correspondence between real variables Z and zero-
one integer variables 2, if the real variables Z* represents a solution of the CSP, its
corresponding zero-one integer variables Z* also represents the same solution of the
CSP. By the correspondence requirement, z* is a constrained global minimum of
the zero-one integer constrained minimization problem (4.15 — 4.17) transformed
%"

from the CSP. Thus, by the equivalence requirement, £* is a constrained global

minimum of the associated real constrained minimization problem (5.4 — 5.7). O

Consider the same CSP in Figure 4.1 as an example. The corresponding real

35

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP’s

constrained minimization is

min N(Z) (5.9)

subject to
@ (uy,1)(Tuy,1) —1) =0 (5.10)
T(u;,2)(T(u,2) — 1) = 0 (5.11)
Z(u 1) (T(up1) — 1) = 0 (5.12)
Z(up,2)(T(un2) — 1) =0 (5.13)
(ug1)(Tus1) = 1) = 0 (5.14)
T(u3,2)(T(us2) —1) = 0 (5.15)
—(1 — 2(uy,1)(1 = T(uy,2) + T(ug 1) + Tguy,2) = 1 (5.16)
—(1 = 2) (1 = T(uz,2)) + T(ug1) + T(uz2) = 1 (5.17)
—(1 = 2(us1) (1 = T(ua,2)) + T(ua,1) + T(ug2) = 1 (5.18)
Glur 1) (u2,2)(E) = T(uy,1)T(uz,2) = 0 (5.19)
ur 2)u2,1) () = T(uy 2)T (1) = 0 (5.20)
ua 1) s, 1) (Z) = T(uz,1)T(us,1) = 0 (5.21)
F(uz,2)(us 1) (£) = T(up,2)T(ug,1y = 0 (5.22)
Guz 2)(us,2)(T) = T(u,2)T(u,2) = 0 (5.23)

where N(Z) is the objective function defined in either (5.8) or (4.19), equa-
tions (5.10 — 5.15) are the integral restrictions, equations (5.16 — 5.18) are the
constraints for valid assignments and equations (5.19 — 5.23) are the constraints

for the incompatibility functions.

5.2 The Lagrange Multiplier Method

As the CSP is now transformed into a real constrained minimization problem (5.4

- 5.7), the Lagrange multiplier method [24, 55] can be used to solve it. The

36

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP’s

Lagrangian function is expressed as follows,

L(#a8,7) = N@+), aulewness—1)]

+3 8 |- [T =2ea) + Y wan —1
€U JED; jED;
Y YVinknIeaen () (5.24)

((49): (k1)) ET

—

where @ = (..., j),---), 8= (..., Bi,...) and 7 = (..., Y(,5) (k1) - - -) ar€ vectors
of Lagrange multipliers.

According to the saddle point theorem, finding a constrained global minimum
of the original minimization problem (5.4 — 5.7) is equivalent to finding a saddle

point of the Lagrangian function (5.24). Hence, the following dynamic system is

constructed:
d:-c‘ - = 3 =
E — —V;,?L(x,a,ﬁ,’)’) (525)
da -
= = Val(#,6,6,7) (5.26)
dt
dﬂ - = 7 -
E - VﬁL($7a’ﬂ77) (527)
T - Vi85, (5.29)

where t is an independent time variable. As the system evolves over time ¢, it
descends in the Z-space and ascends in the space of Lagrange multipliers. When
the system converges, all gradients vanish. Hence, a saddle point of L(Z, &, ,5 +%)s
which corresponds to a constrained global minimum of (5.4 — 5.7), is obtained.
Since a constrained global minimum of (5.4 — 5.7) must satisfy all constraints (5.5

- 5.7), we get a solution of the associated CSP.

5.3 Experiment

In order to verify the feasibility of this approach, an experiment on the N-queens

problems is performed. The N-queens problem states that N queens are placed

37

Chapter 5 A Continuous Lagrangian Approach for Solving Binary CSP’s

N | No. of Differential Equations | CPU Time (sec)
4 88 0.49

d 165 1.50

6 278 5.70

(4 434 14.84

8 640 52.19

9 903 124.05

10 1230 267.83

Table 5.1: Results of continuous Lagrangian approach on the N-queens problems

onto an N x N chessboard such that no two queens attack each other. In this
experiment, the objective function defined in (5.8) is used. The resultant dynamic
system (5.25 — 5.28) is solved using the Livermore Solver for Ordinary Differential
Equation (LSODE), a Fortran package of ODEPACK [25] for solving differential
equations. Benchmark results are taken on a SUN Ultra SPARCstation.

Table 5.1 summaries the results of the experiment. In this table, the first
column corresponds to the number of queens in the problem, the second column
represents the number of differential equations of the dynamic system, and the
third column gives the average CPU time in seconds over 5 runs. From the re-
sults, we find that the number of differential equations and the CPU time grows
exponentially as the problem size increases. In addition, since an originally dis-
crete problem is transformed into a real problem, the computation becomes more
expensive [62, 54]. Hence, the performance is several order of magnitudes worse
than existing constraint satisfaction techniques. In other words, the continuous
Lagrangian approach is not a feasible technique for solving binary CSP’s. In the

next chapter, we investigate a discrete Lagrangian approach for binary CSP’s.

38

Chapter 6

A Discrete Lagrangian Approach
for Solving Binary CSP’s

Shang and Wah [62, 54, 53] extended the existing Lagrange multiplier method
to the discrete Lagrange multiplier method and apply it to solve SAT problems.
In this chapter, we adopt this discrete Lagrange multiplier method to tackle the
resultant zero-one integer constrained minimization problems obtained from the
transformation of CSP’s. Based on the discrete Lagrange multiplier method, we
propose LSDL, a generic discrete Lagrangian search scheme with five degrees of
freedom. The GENET model is shown to be an instance of the LSDL frame-
work. Dual viewpoints of GENET, as a heuristic repair method and as a discrete
Lagrange multiplier method, enable us to investigate GENET variants from both
perspectives. Experimental results confirm that our best variant is always more

efficient than the reconstructed GENET.

6.1 The Discrete Lagrange Multiplier Method

The discrete Lagrange multiplier method [62, 54, 53] for the zero-one integer con-
strained minimization problem (4.15 — 4.17) transformed from the CSP (U, D, C)

is described as follows. Similar to the continuous case, the Lagrangian function

39

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

L(Z,) is
L) =NE+ Y, Magykd e (?) (6.1)
((i.3) (k1)) ET
where X = (.. <3 A(i,j)(k), - - -) 18 a vector of Lagrange multipliers. Note that the
constraints defined by (4.16), which serve only to define valid assignments of CSP,
are not included in the Lagrangian function. The constraints will be incorporated
in the discrete gradient operator discussed below.
A constrained minimum of the zero-one integer constrained minimization prob-
lem (4.15 — 4.17) can be obtained by finding a saddle point of the Lagrangian
function L(Z, X) As in the continuous case, a saddle point (Z*, X*) [62, 54, 53] of

the Lagrangian function L(Z, X) is defined by the condition

>4

L(z*,X) < L(2*,3*) < L(Z,) (6.2)

for all (2 * X) and (Z, X*) sufficiently close to (Z * X*). In other words, a saddle
point (Z*,X*) of the Lagrangian function L(Z, X) is a minimum of L(Z, X) in the
Z-space and a maximum of L(Z,X) in the X-space. The relationship between
a constrained minimum of an integer constrained minimization problem and a
saddle point of its associated Lagrangian function is established by the discrete

saddle point theorem, which is restated as follows.

Theorem 6.1 (Discrete Saddle Point Theorem) [70] A vector of integer vari-

ables Z* is a constrained minimum of the integer constrained minimization problem

min f(2)
subject to 8(2)=0;, 1=1l.um
with g;(%), for all i = 1,...,m, is non-negative for all possible value of Z if and

only if there exists Lagrange multipliers X* such that (Z *,X*) constitutes a saddle

point of the corresponding Lagrangian function L(Z,X) = f(Z) + Som, Xigi(Z).

Since the incompatibility function gy, (Z2), for all ((7,7),(k,l)) € Z, of the
zero-one integer constrained minimization problem (4.15 — 4.17) are always non-

negative, the discrete saddle point theorem is applicable to the zero-one integer

40

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

constrained minimization problem (4.15 — 4.17). Note that, under this theorem,
L(E*,X) is always equal to L(E*,X*). Hence, any point (Z*,X’) with X > X* is
also a saddle point of the Lagrangian function L(Z, X).

A saddle point of the Lagrangian function L(Z, X) can be obtained by per-
forming descent in the discrete variable space of Z and ascent in the Lagrange
multiplier space of X [43]. Instead of using differential equations, the discrete

Lagrange multiplier method uses difference equations [62, 54, 53]

2 = 7 AL(F5,0°) (6.3)

X=X 432 (6.4)

where Z* denotes the value of Z in the sth iteration, Az is a discrete gradient

operator and §(Z) = (..., g,y (k1y(Z), - -) is a vector of incompatibility functions.

In general, the discrete gradient operator is not unique. Any operator that

can perform descent in the Z-space can be used. We give one such operator as

follows. Let m; be the size of the domain of variable . Given a vector of zero-one

integer variables Z = (..., z(;),...), we define the zero-one projection operator T
forallz € U,

m(2) = (2(im)s - - R T om— I (6.5)

which gives the ith-component of 7. Hence, 7 returns the vector of zero-one

integer variables corresponding to variable i in U. The 2th partial discrete gradient

operator O for all 1 € U is defined as
OL(Z N =ri(3) — n'(Z) (6.6)
if the following conditions hold

e X is a set of vectors of zero-one integer variables such that VZ € X,
(Z T) = 1) A (Vk #1 €UVl e Dy T(k1y = z(k,l))

JED;
> 2y =1AVk#i€ UVl € Dy 2y = z(k'”)

nove |

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

e 7' is selected from X by

Z, if Z7e X
rand(X), otherwise

where rand(Y) returns a random element from a set Y.

The sth partial discrete gradient operator 8'L(Z, X) returns a differential vector
d for the ith component of Z by (1) computing a set X of vectors & that cause the
most reduction in the value of the Lagrangian function and (2) selecting a vector
Z' from X. Note that the selection process in (2) is based on that of the state
update rule of GENET with the same random selection function rand(Y’). Note
also that the constraints defined in (4.16) are incorporated in the partial discrete
gradient operators &', for all 7 € U, enforcing the sum of all z(; ;) for each variable
i to be 1. If 8'L(Z, X) = 0, there is no change in the ith component of the vector Z.

The corresponding discrete gradient operator Az is represented by the equations
m(A:L(Z X)) = 8 L(Z,)), Viel. (6.7)

When A:L(Z, X) = 0, either a saddle point or a stationary point, at which the
update of 2’ terminates, is reached.

The Lagrange multipliers X are updated according to the incompatibility func-
tions. If an incompatible tuple is violated, its corresponding incompatibility func-
tion returns 1 and the Lagrange multiplier is incremented accordingly. In this
formulation, the Lagrange multipliers X are non-decreasing.

A generic discrete Lagrangian search procedure LSDL(N, Az, Iz, Iz,Us) for
solving the zero-one integer constrained minimization problems transformed from
CSP’s is given in Algorithm 6.1. The LSDL (pronounced as “Lisdal”) procedure
performs local search using the discrete Lagrange multiplier method. It has five
degrees of freedom, namely (N) the objective function, (Az) the discrete gradi-
ent operator, (Iz) how the integer vector 7' is initialized, (I;) how the Lagrange
multipliers X are initialized and (Us) when to update the Lagrange multipliers X

Where appropriate, we annotate the algorithm with the parameters in brackets

42

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

procedure LSDL(N, Az, Iz, 15,Us)
begin
(Iz) initialize the value of 7
(I3) initialize the value of X
while (N) L(Z,X)— N(Z) > 0 (7 is not a solution) do
(Az) update 7t 7« 7 — AzL(Z,)
if (U;) condition for updating X holds then
update X: X « X + 3(%)
end if
end while
end

Algorithm 6.1: The LSDL(N, Az, Iz, I3, U;) procedure

to show where the parameters take effect. The role of each parameter is discussed

in the next section.

6.2 Parameters of LSDL

LSDL defines a general scheme for a class of algorithms based on the discrete
Lagrange multiplier method. By instantiating LSDL with different parameters,
different Lagrangian search algorithms with different efficiency are obtained. In

this section, we discuss the various parameters of LSDL in details.

6.2.1 Objective Function

The objective function N(Z) is one of the degrees of freedom of the LSDL algo-
rithm. As stated before, any function that satisfies the correspondence require-
ment can be used. However, a good objective function can direct the search
towards the solution region more efficiently [65]. Two possible objective func-
tions, presented in chapter 4, are summarized as follows. First, since the goal of

solving a CSP is to find an assignment that satisfies all constraints, the objective

43

W ..
e

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

function, defined in (4.18),

NE) =) Zaie)

((Ga) (k1)) €T

= Y guiwkn?)

(5.3, (k 1)) ET
where T is the set of incompatible tuples, reflects the total number of violated

tuples. Second, the constant objective function
N(Z) =0

can also be used.

6.2.2 Discrete Gradient Operator

The discrete gradient operator Az, which performs gradient descent in the z-
space, is not unique. One possible discrete gradient operator is defined in (6.6 -
6.7). This operator performs gradient descent in all variables in the CSP at once.
The situation is similar to that of synchronous update in the GENET convergence
procedure. In practice, this can also lead to oscillation. We define another discrete

gradient operator, the effect of which is specified by the following pseudo-code,

for each variable z € U do
update 7i(2): 7(2) « ='(Z) — & L(Z,) (6.8)
end for

where &' is the partial discrete gradient operator defined in (6.6). This new opera-

tor corresponds to the updating strategy used in most sequential implementations
of GENET.

Another possible discrete gradient operator is defined as
A:L(Z,X)=Z— 7' (6.9)

if the following conditions are satisfied

44

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

e X is a set of vectors of zero-one integer variables such that VZ € X,

di € U(Z T(ij) = 1AVE#1€UVle Dy, Z (k1) = z(k,l))
JED;

A VZ" [3m € U(D Zmm =1NVp#mEUVGE Dy 2 = z(’”"))

= L(Z,X) < L(Z", X)]

o 7' is selected from X by
zZ, ifze X
rand(X), otherwise

where rand(Y) returns a random element from a set Y.

The discrete gradient operator computes a set X of zero-one integer vectors &
which reduce the Lagrangian function most, and returns a differential vector by
selecting a vector Z’ from X according to the state update rule of GENET. Since
each zero-one integer vector Z in the set X can have at most one component (&),
for some i € U, being different from the current value of Z, only one variable of the
CSP is updated by this discrete gradient operator. When AzL(Z, X) = 0, there
is no change in Z. Note that this new discrete gradient operator is similar to the

one defined in DLM [62, 54, 53] for solving the SAT problems.

6.2.3 Integer Variables Initialization

A good initial assignment of the zero-one integer variables Z can speed up search.
As in most local search techniques, the simplest way is to initialize the zero-
one integer variables 7 randomly in such a way that the constraints (4.16) are
satisfied. On the other hand, Minton et al. [40] suggest that a greedily generated
initial assignment can boost the performance of the search. Morris [41] points
out that a greedy initialization can generally shorten the time required to reach
the first local minimum. In this case, the initialization procedure iterates through
each component 7(Z) of the zero-one integer vector Z, and selects the assignment

which conflicts with the fewest previous selections.

45

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

6.2.4 Lagrange Multipliers Initialization

Similar to the initialization of integer variables, the Lagrange multipliers X can
also be initialized arbitrarily. Since the update of Lagrange multipliers is non-
decreasing, in general, any non-negative number can be used as the initial value.
One possible way is to initialize all Lagrange multipliers to 1. In this case, all
incompatible tuples have the same initial penalty. Another possibility is to ini-
tialize each Lagrange multiplier differently. For example, different initial values
can be used to reflect the relative importance of constraints in the CSP [33]. If a
constraint is known to be more important than the others, its associated Lagrange

multipliers can be assigned a larger initial value.

6.2.5 Condition for Updating Lagrange Multipliers

Unlike the continuous case, the updating frequency of the Lagrange multipliers X
can affect the performance of the discrete Lagrange multiplier method [62, 54, 53].
Thus, the condition for updating the Lagrange multipliers is left unspecified in
LSDL. The Lagrange multipliers can be updated either (1) at each iteration
of the outermost while loop, or (2) when A;L(Z, X) = 0. Note that the former
condition is a direct application of the strategy used in the continuous case while

the later corresponds to Morris’s breakout method [41].

6.3 A Lagrangian Reconstruction of GENET

In this section, we show how we can reconstruct GENET using our discrete La-
grangian approach. Given a CSP (U, D,C). The two-step transformation estab-
lishes a one-one correspondence between the GENET network of (U, D,C) and
the associated zero-one integer constrained minimization problem of (U, D, C).
The GENET convergence procedure (Algorithm 3.1) can be obtained by instan-
tiating LSDL with proper parameters. This instance of LSDL, denoted by
LSDL(GENET), has the following parameters:

46

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

N: the constant objective function defined in (4.19),

Az the discrete gradient operator defined in (6.8),

I the zero-one integer vector 7 is initialized randomly, provided that the

initial values correspond to a valid state in GENET,
e I;: the values of Lagrange multipliers X are all initialized to 1, and
e U;: the Lagrange multiplier X are updated when O'L(Z, X) =0forallieU.

In the following, we prove the equivalence between LSDL(GENET) and the
GENET convergence procedure. Recall that a state S of a GENET network A is
a tuple (17, W), where V = (-.., Vi)) is a vector of outputs for all label nodes
(i,7) in N and W = (..., Wi jyk),-- -) is a vector of weights for all connections
((i,3),(k,1)) in V. Based on the state update rule of the convergence procedure
of GENET and the definition of the discrete gradient operator (6.8), we derive

the following lemma.

Lemma 6.1 Consider a CSP (U, D,C), and its corresponding GENET network
N and zero-one integer constrained minimization problem. Suppose both GENET
and LSDL(GENET) use the same random selection function rand(Y), and, in the
sth iteration, V° = Z° and W* = —X*, and mi(Z°H) = n'(2°) — & L(Z%,X°). In
the update of variable i from the sth to the (s + 1)st iteration,

V(f"]')l =1 and V(f*,;; =0,Vk#£j5€D; & z(’f]l) =1 and z(’:kl) =0,Vk#j € D,

Proof: Consider updating cluster ¢ of the GENET network N from the sth to
the (s 4 1)st iteration. Let A(N,(z,7)) be the set of all label nodes connected
to (i,7) in GENET network N, and L; be the set of all label nodes in cluster
i in GENET network A. Furthermore, let Z?; be the zero-one integer variable
vector in the sth iteration with Zin =1 2 = 0 for all £ # 7 € D;, and Z{u)
unchanged for all u # ¢ € U and v € D,.

V(:’*;)l =1 and V(f*,;; =0,Vk # 75 € D;

47

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

¢

Iy 2 Iy, VE#j €D

At Z Wity Vw2 Z Wi iy Viuwy Yk # 3 € Di
(uw)EAWN (i,5)) (u,w)EA(N,(i,k))
& 1x Y WipwaVimt D (0 x> Wines Ve
(uw) EAN \(i,)) I#5€D; (u)EAWN,(4,1))

- Z VeaoWeneaVesy 2
((a,b),(c,d)) EN
(a,b),(c,d)EL;

Ix Y WimeaVomt 2 [0 D WinwsVaw
(u) EAN (i.k)) 1#£keD; (0 EAN i)

+ Y VewWamea Vs, VE#5 €D

((a,b),(c,d)) EN
(a,b),(c,d)€L;

& Lx Z — Ali i) vy Zu) T Z 0 % Z — A1) (4,0 Z(uy0)
(uw)EAWN (i5)) I#j€D; (uw)EAN,(5,1))

+ Z 2 ny (—Napyed)) ey 2

((@,b),(c,d)) EN
(a,b),(c,d)€L;

1x Y Migeamt 2 (0% DL NapweHew
(u W) EAN, (i k) I#k€D; (u) EAN(i,1))

+ Z 2wy (=M ap)ed)) 2y VEF# 5 € D;

((a,b),(c,d))EN
(a,b),(c,d)&L;

& L(Z5,X) < L(Z3,X°), Vk#j€ D

4,J?
2y

& O'L(z%,)°) = n'(2°) — n'(22)

]
Since both GENET and LSDL(GENET) use the same random selection function

rand(Y), and 7¢(Z*+!) = n'(Z°) — 9'L(Z", X’), we have

V(f“;)l =1 and V(f*,;; =0Vk#53€D; & szjl) =.1 and z(sz.‘fkl)'= 0,Vk # 5 € D;.

O

The lemma states that when updating variable ¢ from the sth iteration to the
(s + 1)st iteration, the same value j € D; will be selected by both GENET and
LSDL(GENET). By applying the lemma repeatedly to each variable : € U, we
get the following corollary.

48

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Corollary 6.1 Consider a CSP (U,D,C), and its corresponding GENET net-
work N and zero-one integer constrained minimization problem. Suppose both
GENET and LSDL(GENET) use the same random selection function rand(Y),
and, in the sth iteration, V° = Z° and We = =X, and m(Z°1) = 7i(2°) —

& L(Z%,X*) for all i € U. In the (s + 1)st iteration, we have

V’s+l — gs+1

Proof: According to lemma 6.1, for each variable : € U, we have

Vet =1and Vi = 0,Vk #j € D; & 23 = 1 and 231 = 0,Vk # j € Ds.

(i,k) (id) = (k) =

Hence, V?*1! = 7241, 0

The relation between the weights W of the GENET network A and the La-
grange multipliers X of LSDL(GENET) is given by the following lemma.

Lemma 6.2 Consider a CSP (U, D,C), and its corresponding GENET network
N and zero-one integer constrained minimization problem. Suppose, in the sth

iteration, V°® = 75, W* = —X*, and, in the (s + 1)st iteration, Vel = g4l

Wet! — _)5+t

Proof: We consider the lemma in two different cases. First, if Vetl £ V¢ and
Z5t1 =4 7 the conditions for updating the weights W and the Lagrange multiplier

X are false. Therefore,
Ws+l — Ws — _Xs — _;\'s+1.
Second, if V*+! = V* and z°*! = 7*, then, for each ((i,j), (k,l)) € N,

s+1 - s 3 7
W(ivi)(k,l) = Wikt = Vi Vien
= =ikt ~ i) (k)

= =Nig)kt) ~ k) (Z°)

= — (M + 96awn(Z)

— _\st+1
= =ik

49

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s
Combining these two cases, we get W*+! = —J#+1,]

Now, a simple application of corollary 6.1 and lemma 6.2 results in the fol-
lowing theorem, which establishes the equivalence of the GENET convergence

procedure and LSDL(GENET).

Theorem 6.2 Consider a CSP (U, D,C), and its corresponding GENET network
N and zero-one integer constrained minimization problem. Suppose both GENET
and LSDL(GENET) use the same random selection function rand(Y) and they
share the same initial state. For all iteration s, Ve = 7% and W* = —)°. If they

terminate, they return the same solution for the CSP.

Proof: We prove the theorem by mathematical induction. Initially, at s = 0,

since both GENET and LSDL(GENET) share the same initial state,

VO e EO
Furthermore, since W° = —T and \° = 1,
WO = —X°,

Therefore, the theorem is true at s = 0.
Now, suppose at s = t, V! = Z* and Wt = —Xt. By corollary 6.1 and

lemma 6.2, we have
P = gt g Pt —)t

at s=1t+4+1.

By mathematical induction, the theorem is true for all iteration s. Conse-
quently, if both GENET and LSDL(GENET) terminate, they return the same
solution for the CSP. O

Based on this theorem, we get the following two corollaries. The first corollary
states the relation between the energy of GENET and the Lagrangian function

of LSDL(GENET), while the second corollary gives the terminating properties of
GENET and LSDL(GENET).

50

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Corollary 6.2 Consider a CSP (U,D,C), and its corresponding GENET net-
work N and zero-one integer constrained minimization problem. The energy of
GENET is equal to the negative of the Lagrangian function of LSDL(GENET).
Mathematically,

E(N,S) = —L(Z,X).

Proof: Consider the GENET network N and its associated zero-one integer

constrained minimization problem. Let Z be the set of all incompatible tuples.

EWN,S) = Y VeiWainenVir)
(i) (kD)) EN

= Z Z(i.5) (—’\(i,j)(k,l)) Z(k,l)
((4:3):(k,1)) €T

= - Z i) (k) 96.) ki (Z)
((1.3), (k1)) ET

= —L(z,X)

Corollary 6.3 Consider a CSP (U,D,C), and its corresponding GENET net-
work N and zero-one integer constrained minimization problem. GENET termi-

nates if and only if LSDL(GENET) terminates.

Proof: Consider the GENET network A and its associated zero-one integer
constrained minimization problem. Let O(N,S) be the set of all on label nodes

of the GENET network A and a state S.

GENET terminates & I;;y =0, VY(i,j) € ON,S)
& EWN,8)=0
& LEZXN=0

< LSDL(GENET) terminates

51

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Similar results can be proven if, in LSDL, we use instead the objective function
N(Z) defined in (4.18) and initialize X to 0. If, however, we use N(Z) defined

in (4.18) and initialize X to 1, the Lagrangian function becomes

L(ZX) = Y zgzeat Y MakhIeawn(?)
(e (B ET

= Y (1 Aaien) e () (6.10)
(Gin(BD) €T

where Z is the set of all incompatible tuples. As a result, we have
W=-(T+%). (6.11)

This version of LSDL is equivalent to GENET with all connection weights ini-
tialized to —2 instead of —1.

6.4 Experiments

Three experimental settings are used to evaluate our discrete Lagrangian ap-
proach. First, LSDL(GENET) is compared with GENET to verify if it has the
same fast convergence behavior as other GENET implementations. Second, sev-
eral experiments are performed to evaluate the effect of different parameters of
LSDL. Parameters which give good performance in most CSP’s are identified.
Third, our best variant LSDL(MAX) is tested against LSDL(GENET).

The N-queens problems, a set of hard graph-coloring problems from the DI-
MACS archive [27], an instance of exceptionally hard problems (EHP’s) [45], and
a set of randomly generated CSP’s are used in our experiments. Results of all
LSDL implementations are taken on a SUN SPARCstation 10 model 40. Unless
otherwise specified, the unbracketed and the bracketed timing results represent
the CPU time in seconds for the average and the median of 10 runs respectively.
Note that the results of all LSDL implementations are the time for finding one

solution only.

52

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

PROCLANN | LSDL(GENET) | -LSDL(GENET)
N | Average CPU | Average (Median) | Average (Median)
Time (sec) CPU Time (sec) | CPU Time (sec)
10 0.065 0.005 (0.000) 0.027 (0.025)
20 0.218 0.003 (0.000) 0.288 (0.283)
30 0.637 0.020 (0.017) 1.005 (1.000)
40 2.145 0.028 (0.033) 2.388 (2.383)
50 4.719 0.040 (0.033) 4.627 (4.617)
60 7.711 0.068 (0.067) 8.002 (7.975)
70 13.292 0.090 (0.092) 12.818 (12.792)
80 20.629 0.178 (0.175) 19.698 (19.692)
90 33.150 0.642 (0.633) 28.283 (28.267)
100 152.795 1.078 (1.108) 39.348 (39.400)
110 261.026 1.588 (1.583) 52.585 (52.608)
120 144.709 2.033 (2.058) 68.907 (68.950)

Table 6.1: Results of LSDL(GENET) on the N-queens problems

6.4.1 Evaluation of LSDL(GENET)

The performance of LSDL(GENET) is evaluated on the N-queens problems, a
set of hard graph-coloring problems, and an instance of EHP’s designed to defeat
tree search algorithms. These experiments have two purposes. First, they serve to
verify if LSDL(GENET) exhibits the same fast convergence behavior as GENET
as reported in the literature. Second, they serve as a control to compare against
other variants. Wherever possible, the performance figures of two implementations
of GENET are provided.

Table 6.1 shows the results of 10- to 120-queens problems for LSDL(GENET),
I-LSDL(GENET) and PROCLANN ([36], a constraint logic programming language
with GENET as the constraint solver. I-LSDL(GENET) and PROCLANN are
incremental implementations of LSDL(GENET) and GENET respectively. In
these implementations, everytime new constraints are generated and posted into
the constraint store, the LSDL procedure or the GENET solver is activated to
solve the partial problem containing all constraints available in the constraint

store. The benchmarking results of PROCLANN are the average of 10 runs on a

53

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

GENET | PROCLANN LSDL(GENET)
Nodes | Colors | Median Average Average (Median)
CPU Time | CPU Time CPU Time
125 17 2.6 hr 2.3 hr 4.7 min (3.7 min)
125 18 23 sec 2.5 min 4.5 sec (2.9 sec)
250 15 4.2 sec 1.1 hr 0.418 sec (0.408 sec)
250 29 1.1 hr 4.6 hr 14.6 min (15.7 min)

Table 6.2: Results of LSDL(GENET) on the hard graph-coloring problems

SUN SPARCstation 10 model 30. Since PROCLANN generates the constraints
of a CSP from a program, the timing results of I-LSDL(GENET) include the
time for reading constraints to compensate the difference. The performance of
LSDL(GENET) is order of magnitudes better than that of PROCLANN. The
large difference in performance is due to the fact that LSDL(GENET) collects all
constraints in the problem initialization phase and activates the Lagrangian search
algorithm once. Hence, much work is saved. This effect is more prominent as the
size of the problems increase. On the other hand, I-LSDL(GENET) shows similar
performance as that of PROCLANN. The difference in performance on the large
problems is due to the difference in their interface.

The graph-coloring problem is to assign a color from a fixed set of colors
to each vertex of the graph such that no two adjacent vertices share the same
color. A set of hard graph-coloring problems from the DIMACS archive [27] are
tested. Timing results of the hard graph-coloring problems for LSDL(GENET),
PROCLANN [36] and GENET described in [7] are shown in Table 6.2. Again
the results of PROCLANN are the average of 10 runs taken on a SUN SPARC-
station 10 model 30. The results of GENET, quoted from [7], represented the
median of 10 runs collected on a SUN Sparc Classic, which is about 2 to 3 times
slower than a SPARCstation 10 model 40. The hard graph-coloring problems are
relatively small in size and the constraints are available to PROCLANN all at
once. Therefore, most time is spent in actual searching in all implementations.

Both I-LSDL(GENET) and LSDL(GENET) have the same performance since they

54

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

are equivalent when all constraints are available and posted to the constraint
store at once. LSDL(GENET) improves substantially on both implementations
of GENET. This might be related to the difference in the implementations. In
LSDL(GENET), the contribution of each incompatibility function g jyx,n(%) to
the Lagrangian function L(Z, X) is calculated incrementally during the update of
the zero-one integer variables . When a zero-one integer variable z(; ;) is updated,
the contributions of previously violated incompatibility functions g jyx,(Z) are
subtracted from the Lagrangian function L(Z, X), while the contributions of newly
violated incompatibility functions are added to the Lagrangian function. Hence,
a large amount of computation is saved.

Prosser [45] designed a specific instance of EHP’s to defeat forward-checking
algorithm with dynamic variable ordering (fc-dvo) [44], which always chooses vari-
ables with the smallest current domain. The problem consists of 50 variables,
each with a domain {1,2,3,4,5,6,7,8}. The associated constrained graph is con-
nected. Each pair of connected variables contains 4 incompatible tuples. The
tightness [60] of the problem is 0.06. Unlike tree search algorithms [44], the per-
formance of LSDL(GENET) seems not to be affected by this EHP. LSDL(GENET)
solves the EHP with 2.2 iterations in 0.002 seconds on average over 10 runs. It is
much better than that of PROCLANN, which required 2448 convergence cycles
in 3.24 seconds to solve the same problem.

In conclusion, LSDL(GENET) exhibits similar fast convergence behavior to
GENET. The difference in performance may be due to the difference in imple-

mentations.

6.4.2 Evaluation of Various Parameters

The experiments are used to evaluate the effect of various parameters of LSDL.
In each experiment, the parameter under test is varied in the LSDL implemen-
tation. Other parameters remains the same as that of LSDL(GENET). The
N-queens problems, the set of hard graph-coloring problems from the DIMACS
archive [27], and a set of randomly generated CSP’s, ranging from 100 to 150

%)

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

N{zero} N{violation}
N | CPU Time (sec) | CPU Time (sec)
10 | 0.005 (0.000) | 0.000 (0.000)
50 | 0.003 (0.000) | 0.003 (0.000)
30 0.020 (0.017) 0.013 (0.017)
40 | 0.028 (0.033) 0.027 (0.033)
50 | 0.040 (0.033) 0.045 (0.050)
60 | 0.068 (0.067) 0.058 (0.058)
70 | 0.090 (0.092) | 0.090 (0.083)
80 | 0.178 (0.175) | 0.147 (0.150)
90 | 0.642 (0.633) | 0.657 (0.642)
100 | 1.078 (1.108) 1.098 (1.067)
110 | 1.588 (1.583) | 1.522 (1.533)
120 | 2.033 (2.058) | 2.068 (2.142)

Table 6.3: Results of Nieroy and Niyiolationy On the N-queens problems

variables, are used. Each tight random CSP has a uniform domain of size 10,
constraint tightness [60], the proportion of pairs of values which are inconsistent
in a binary constraint, 0.15, and constraint density [60], the proportion of pairs

of variables which have a constraint between them, varying from 0.165 to 0.25.

Objective Function

This experiment investigates the effect of the objection function N(Z). Two ob-

jective functions are tested. They are
® N{.ero}: the objective function defined in (4.19), and
® Niyiolation): the objective function defined in (4.18).

Experimental results for the N-queens problems are reported in Table 6.3.
The results of Nyyiotation} is similar to that of N(,er,) since only a small amount
of CPU time is spent on solution searching. For the results of the hard graph-
coloring problems shown in Table 6.4, except the problem with 125 nodes and
17 colors, the objective function N{yiolation} improves the performance of LSDL.

The poor performance for the problem with 125 nodes and 17 colors is due to an

36

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

N{zero} N{violation}
Nodes | Colors CPU Time CPU Time
125 17 4.7 min (3.7 min) 8.0 min (3.1 min)
125 18 4.5 sec (2.9 sec) 1.2 sec (1.0 sec)
250 15 | 0.418 sec (0.408 sec) | 0.415 sec (0.417 sec)
250 29 14.6 min (15.7 min) | 11.9 min (11.8 min)

Table 6.4: Results of Ni,er0y and Nyyiotation) on the hard graph-coloring problems

N{zero} N{violation}
Problem CPU Time (sec) | CPU Time (sec)

resp-100-10-25-15 | 2.742 (2.483) | 1.852 (LA75)
resp-110-10-23-15 | 11.253 (10.992) | 6.950 (2.108)
resp-120-1021-15 | 7.083 (5.433) | 5.375 (4.083)
rcsp-130-10-10-15 | 9.077 (8.308) | 4.322 (3.500)
resp-140-10-18-15 | 11.000 (10.058) | 9.167 (7.975)
rcsp-150-10-16.5-15 | 7.935 (8.692) | 2.458 (2.100)

Table 6.5: Results of Nizero} and Niyiolation} On the tight random CSP’s

exceptionally bad timing result in one of the runs. Table 6.5 shows the results of
N{zero} and N{violation} ON the tight random CSP’s. In this set of problems, the
objective function Nyyislation}y improves the performance substantially.

Since the effect of an objective function is to exert additional force to guide the
search, a good objective function can improve the overall performance of LSDL.
From the experiment, we find that Nyyioation} usually gives better performance

than Nigersh

Discrete Gradient Operator

The efficiency of two discrete gradient operators are evaluated. The operators
® Az{many}: the one defined in (6.8), and

® Azone): the one defined in (6.9)

37

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Az‘{many} A,'Zv'{o'ne}
N |Iter. CPU Time (sec) | Iter. CPU Time (sec)
10 | 51.6 0.005 (0.000) 13.8 0.000 (0.000)
20 | 14.8 0.003 (0.000) 62.2 0.005 (0.000)
30 | 51.2 0.020 (0.017) 50.2 0.020 (0.017)
40 | 38.5 0.028 (0.033) 42.2 0.027 (0.025)
50 | 40.3 0.040 (0.033) 62.5 0.063 (0.067)
60 | 35.1 0.068 (0.067) | 69.0 0.100 (0.100)
70 | 349 0.090 (0.092) | 58.3 0.135 (0.133)
80 [31.2 0.178 (0.175) | 84.8 0.280 (0.275)
90 |30.6 0.642 (0.633) 89.5 0.777 (0.767)
100 492 1.078 (1.108) | 86.5 1.378 (1.375)
110 | 432 1588 (1.583) | 80.1 1.958 (1.942)
120 [41.9 2.033 (2.058) | 129.2 2.752 (2.683)

Table 6.6: Results of Azimany} and Az{oney on the N-queens problems

A22"{m¢my} Az."'{one}
Nodes | Colors | Iter. CPU Time Iter. CPU Time
125 17 [708.4k 4.7min (3.7 min) |1737.3k 8.1 min (5.0 min)
125 18 6125.8 4.5 sec (2.9 sec) 6119.3 2.4 sec (1.6 sec)
250 15 24.0 0.418 sec (0.408 sec) | 455.1 1.122 sec (1.100 sec)
950 | 29 | 337.5k 14.6 min (15.7 min) | 1060.8 k 21.0 min (19.9 min)

Table 6.7: Results of Az{many} and Az(oney on the hard graph-coloring problems

are tested. Table 6.6 shows the CPU time and the average number of iterations of

the two discrete gradient operators on the N-queens problems. The performance

of Az{one} is slightly worse than that of Az(many). However, since the N-queens

problems are relatively easy for LSDL, the results are not very significant. The

timing results and the average number of iterations of the hard graph-coloring

problem and the tight random CSP’s are shown in Tables 6.7 and 6.8 respectively.

Except some problem instances, the discrete gradient operator Ajz{one} is not as

efficient as Az{many}. This difference in performance can be accounted as follows.

Although both discrete gradient operators perform the same amount of work in

each iteration, only one variable is updated by Azne}. On the other hand, in

38

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

A,é‘{ma-ny} A;."’{one}

Problem Iter. CPU Time (sec) | Iter. CPU Time (sec)
resp-100-10-25-15 | 7245.5 2.742 (2.483) | 18512.4 3.640 (3.325)
resp-110-10-23-15 | 33634.4 11.253 (10.992) | 74856.4 14.545 (14.158)
resp-120-10-21-15 | 23589.6 7.983 (5.433) | 38491.3 8.260 (7.433)
resp-130-10-19-15 | 22570.8 9.077 (8.308) | 39774.2 8.687 (5.983)
rcsp-140-10-18-15 | 27130.4 11.000 (10.058) | 80936.9 18.877 (21.342)

rcsp-150-10-16.5-15 | 17389.3 7.935 (8.692) | 27473.5 6.945 (6.975)

Table 6.8: Results of Az{many} and Dz{one} on the tight random CSP’s

each iteration, Az{many) can update more than one variable. Hence, as reflected
in the benchmarking results, Az(many} usually requires more iterations to solve a
problem.

Although the performance of different discrete gradient operators seems to be
problem dependent, our experiments suggest that Azmany) is likely to perform

better than Az,ne}, which is similar to the one defined in DLM [62, 54, 53] for
solving SAT problem.

Integer Variables Initialization

Two schemes for initializing the zero-one integer variables are investigated in this

experiment. They are

® I:{random): randomly initialize the zero-one integer vector Z, provided that

the set of constraints (4.16) is satisfied, and

® I:(greeay): greedily initialize the zero-one integer vector Z according to the
following procedure [40]: initialize each component 7*(Z) of the zero-one
integer vector 7 one by one, and select the assignment which gives the fewest

violations against previous selections.

The results of the N-queens problems, the hard graph-coloring problems and
the tight random CSP’s are given in Tables 6.9, 6.10 and 6.11 respectively. The

greedy initial assignment Iz(greedy} gives us better performance in most of our test

59

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Iz';'{random} I;’:’{greedy}
N | CPU Time (sec) | CPU Time (sec)
10 [0.005 (0.000) 0.002 (0.000)
20 | 0.003 (0.000) 0.012 (0.017)
30 0.020 (0.017) 0.013 (0.017)
40 0.028 (0.033) 0.017 (0.017)
50 | 0.040 (0.033) 0.032 (0.033)
0.067) 0.038 (0.033)
) (
) (
)

60 0.068
70 0.090 (0.092 0.065 (0.067)
80 0.178 (0.175 0.113 (0.117)

100 | 1.078 (1.108) | 0.777 (0.775)
110 | 1.588 (1.583) 1.055 (1.058)
120 | 2.033 (2.058) 1.447 (1.383)

(
E
90 | 0.642 (0.633 0.483 (0.475)
(
(
(

Table 6.9: Results of Iz{random} and Iz{greedy) On the N-queens problems

IZ{random} Ié’{greedy}
Nodes | Colors CPU Time CPU Time
125 17 4.7 min (3.7 min) 6.2 min (4.4 min)
125 18 4.5 sec (2.9 sec) 2.9 sec (2.3 sec)
950 | 15 | 0.418 sec (0.408 sec) | 0.307 sec (0.300 sec)
250 29 14.6 min (15.7 min) | 14.2 min (13.3 min)

Table 6.10: Results of Iz(random} and Iz{grecdy) on the hard graph-coloring problems

IZ{random} Ii{greedy}
Problem CPU Time (sec) | CPU Time (sec)
resp-100-10-25-15 2.742 (2.483) 3.050 (2.375)
rcsp-110-10-23-15 11.253 (10.992) | 11.967 (10.558)
resp-120-10-21-15 7.983 (5.433) 4.850 (3.883)
rcesp-130-10-19-15 9.077 (8.308) 5.185 (3.975)
(
(

rcsp-140-10-18-15 | 11.000 (10.058) | 9.335 (10.333)
rcsp-150-10-16.5-15 | 7.935 (8.692) 7.160 (6.508)

Table 6.11: Results of Iz{random} and Iz{greedy) On the tight random CSP’s

60

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

problems. Since Iz{greedy} generates an assignment which is closer to a solution of
a CSP, less effort is required for solution searching. Thus, the initial assignment

scheme Iz(greedy) seems to have advantage over La{random)

Condition for Updating Lagrange Multipliers

As stated before, the condition for updating the Lagrange multipliers X can affect
the efficiency of the discrete Lagrangian search [62, 54, 53]. In this experiment,
two common strategies for updating the Lagrange multipliers are tested. These

two strategies are

o Us

Bl update the Lagrange multipliers X in every iteration, (i.e. after

each update of the zero-one integer vector z), and
® Us(stabley’ update the Lagrange multipliers X when AzL(Z, X) = 0.

Table 6.12 shows the results of the N-queens problems. Due to the fact that
only a small amount of CPU time is used for solution searching, the effect of the
different updating strategies is not significant. However, the results of the hard
graph-coloring problems in Table 6.13 show that the updating strategy Ug(,,ery)
gives us certain improvement. Similarly, the results in Table 6.14 show that
Us{everyy is more efficient than Uy, ;) in most of the tight random CSP’s. Re-
call that the Lagrange multipliers X are the penalty values of the violated tuples.
Therefore, updating the Lagrange multipliers will eventually guide the search to a
solution. If we update the Lagrange multipliers earlier, the algorithm will search
for other promising regions earlier.

In summary, the experiment suggests that the updating frequency of the La-
grange multipliers can affect the efficiency of the discrete Lagrange multiplier

method. The updating strategy Ux{euew} is in general better than Ux{mble} ac-

cording to our experiments.

61

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Us

UX{stable} {every}
N | CPU Time (sec) | CPU Time (sec)
10 | 0.005 (0.000) | 0.003 (0.000)
50 | 0.003 (0.000) | 0.007 (0.000)
30 | 0.020 (0.017) 0.020 (0.017)
20 | 0.028 (0.033) | 0.023 (0.017)
50 | 0.040 (0.033) | 0.045 (0.050)
60 | 0.068 (0.067) 0.065 (0.067)
70 | 0.090 (0.092) | 0.087 (0.083)
80 0.178 (0.175) 0.180 (0.175)
90 | 0.642 (0.633) | 0.635 (0.617)
100 | 1.078 (1.108) | 1.185 (1.183)
110 | 1.588 (1.583) | 1.630 (1.608)
120 | 2.033 (2.058) | 2.175 (2.183)

Table 6.12: Results of U %{stable} and U Sisvsryy Ol the N-queens problems

UX{stable} UX{euery}
Nodes | Colors CPU Time CPU Time
125 17 4.7 min (3.7 min) 3.3 min (2.7 min)
125 18 4.5 sec (2.9 sec) 4.4 sec (4.183 sec)
250 15 | 0.418 sec (0.408 sec) | 0.522 sec (0.500 sec)
250 29 14.6 min (15.7 min) | 12.3 min (12.1 min)

Table 6.13: Results of Uy {stable} and U S{every} O the hard graph-coloring problems

UX{stable} UX{every}
CPU Time (sec) | CPU Time (sec)

2.742 (2.483) | 3.233 (1.833)

Problem
rcsp-100-10-25-15

resp-110-10-23-15 | 11.253 (10.992) | 9.225 (6.467)
rosp-120-10-21-15 | 7.983 (5.433) | 5.955 (6.667)
rcsp-130-10-19-15 7.768 (6.500)

rcsp-140-10-18-15
rcsp-150-10-16.5-15

11.000 (10.058)
7.935 (8.692)

11.182 (8.000)
6.220 (5.600)

(
(
9.077 (8.308)
(
(

Table 6.14: Results of Ugy ¢ and Us } on the tight random CSP’s

{every

62

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

6.4.3 Evaluation of LSDL(MAX)

In the previous experiments, different parameters of LSDL are evaluated. Some
parameters are found to be better than the others in most problems. Com-

bining these identified parameters, we construct our best LSDL variant, called

LSDL(MAX), which has:
e N: the objective function defined in (4.18),
e /\; the discrete gradient operator defined in (6.8),

e I; greedily initialize the zero-one integer vector Z according to the procedure

described in [40],
e I;: initialize the Lagrange multipliers X to I, and
e Us;: update the Lagrange multipliers X in every iteration.

We perform the experiments on the N-queens problems, a set of hard graph-
coloring problem from DIMACS [27] and a set of randomly generated CSP’s. The
performance of LSDL(MAX) is compared with that of LSDL(GENET).

Table 6.15 shows the benchmarking results of the N-queens problems for
LSDL(MAX) and LSDL(GENET). Since only a small amount of CPU time is
spent on actual searching, the performance of LSDL(MAX) is only slightly better
than that of LSDL(GENET).

The experimental results of the hard graph-coloring problems for LSDL(MAX),
LSDL(GENET), and also DLM described in [62, 54, 53] are presented in Ta-
ble 6.16. The results of DLM represent the average CPU time of 10 rﬁns taken on
a SUN SPARCstation 10 model 51. The efficiency of LSDL(MAX) over that of
LSDL(GENET) is well demonstrated in this set of experiments. When comparing
LSDL(MAX) with DLM, £LSDL(MAX) is found to be more efficient than DLM.
Besides the timing results, LSDL(MAX) is better than DLM in the following as-
pects. First, given a predefined maximum number of iterations, say five million,

LSDL(MAX) produces solutions successfully on every run. On the other hand,

63

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(GENET) | LSDL(MAX)
N | CPU Time (sec) | CPU Time (sec)

10 | 0.005 (0.000) | 0.003 (0.000)

20 0.003 (0.000) 0.007 (0.000
30 0.020 (0.017) 0.010 (0.017
40 0.028 (0.033) 0.018 (0.017
50 0.040 (0.033) 0.030 (0.033

80 0.178 (0.175) 0.132 (0.125
90 0.642 (0.633) 0.493 (0.475
100 | 1.078 (1.108) 0.858 (0.833
110 | 1.588 (1.583) 1.062 (1.033
120 | 2.033 (2.058) 1.532 (1.492)

((0.000)
((0.017)
((0.017)
((0.033)
60 | 0.068 (0.067) | 0.047 (0.050)
70 | 0.090 (0.092) | 0.067 (0.058)
((0.125)
((0.475)
((0.833)
((1.033)
((

Table 6.15: Results of LSDL(MAX) on the N-queens problems

DLM LSDL(GENET) LSDL(MAX)
Nodes | Colors | Average Average (Median) Average (Median)
CPU Time CPU Time CPU Time
125 17 23.2 min 4.7 min (3.7 min) 3.2 min (2.6 min)
125 18 3.2 sec 4.5 sec (2.9 sec) 1.1 sec (0.925 sec)
250 15 2.8 sec | 0.418 sec (0.408 sec) | 0.328 sec (0.325 sec)
250 29 20.3 min | 14.6 min (15.7 min) | 11.3 min (12.6 min)

Table 6.16: Results of LSDL(MAX) on the hard graph-coloring problems

64

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(GENET) | LSDL(MAX)
Problem CPU Time (sec) | CPU Time (sec)
rcsp-100-10-25-15 2.742 (2.483) 2.577 (1.658)
resp-110-10-23-15 | 11.253 (10.992) 7.038 (6.192)
rcsp-120-10-21-15 7.983 (5.433) 4.248 (2.825)
rcsp-130-10-19-15 9.077 (8.308) 2.452 (1.883)
resp-140-10-18-15 | 11.000 (10.058) | 5.475 (4.200)
rosp-150-10-16.5-15 | 7.035 (3.692) | 2.923 (1.400)

Table 6.17: Timing results of LSDL(MAX) on the tight random CSP’s

DLM gives only a 9/10 success ratio on the problem with 250 nodes and 29 col-
ors. Second, the SAT versions of the graph-coloring problems in the DIMACS
archive lack the set of constraints defined by (4.16) [48]. Therefore, answers to
these easier problems can have a vertex assigned with more than one color. Third,
DLM employs, on top of the discrete Lagrange multiplier method, a number of
tuning heuristics and an additional tabu list to remember states that are vis-
ited [62, 54, 53]. For example, the Lagrange multipliers are reset by a factor of
2/3 after every 10000 iterations, and the Lagrange multipliers are updated by a
different constants for different graph-coloring problems. However, our results are
obtained by LSDL(MAX) with no special tuning and additional machineries.
Table 6.17 shows the results of a set of tight random CSP’s, ranging from 100
to 150 variables. Each random CSP has a uniform domain of size 10, constraint
tightness 0.15, and constraint density varying from 0.165 to 0.25. Besides the
CPU time, we also show the average number of iterations and Lagrange multi-
plier updates (in square bracket) in Table 6.18. The LSDL(MAX) implementa-
tion performs about 6 — 73% better than the LSDL(GENET) implementation in
all problem instances. Furthermore, LSDL(MAX) uses many fewer iterations to

obtain a solution.

65

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(GENET) LSDL(MAX)

Problem Iter. [A Updates] | Iter. [A Updates]
rcsp-100-10-25-15 7245.5 [2747.3] 4978.4 [4978.4]
resp-110-10-23-15 | 33634.4 [13387.4] | 12150.0 [12150.0]
resp-120-10-21-15 | 23589.6 [9760.4] 6665.5 [6665.5]
resp-130-10-19-15 | 22570.8 [8681.4] 3290.3 [3290.3]
rcsp-140-10-18-15 | 27130.4 [10622.4] | 7072.7 [7072.7]
rcsp-150-10-16.5-15 | 17389.3 [6508.7] | 3968.7 [3968.7]

Table 6.18: Number of iterations and Lagrange multiplier updates of LSDL(MAX)
on the tight random CSP’s

6.5 Extension of LSDL

In the previous discussion, we establish a surprising connection between LSDL
and the GENET model. This connection also suggests a dual viewpoint of GENET,
as a heuristic repair method and as a discrete Lagrange multiplier method. Hence,
we can improve GENET by exploring the space of parameters available in the
LSDL framework. Alternatively, techniques developed from GENET can be used
to extend our LSDL framework. Lazy arc consistency [56, 59, 57], a consistency
method that speeds up the search of GENET, is incorporated in LSDL. Exper-
iments show that lazy arc consistency gives significant improvement for discrete

Lagrangian search.

6.5.1 Arc Consistency

Arc consistency [37] is a well known technique for reducing the search space of a
CSP. A CSP (U,D,C) is arc consistent if and only if for all variables z,y € U
and for all value v € D, there exists a value v € D, such that the constraint
¢ on variables z and y is satisfied. In the terminology of GENET, a CSP, or a
GENET network N, is arc consistent if and only if for all clusters 7,7 € U and for
all label nodes (i, k) € N there exists a label node (7,!) € N such that there is no
connection between (i, k) and (7,0) [56, 59, 57]. Obviously, values which are arc

inconsistent cannot appear in any solution of CSP. Hence, we are guaranteed that

66

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

any solution of the original CSP is a solution of the corresponding arc consistent
CSP. We say that the original CSP and its associated arc consistent CSP are
equivalent.

Arc consistency gives us a way to remove useless values from the domains of
variables. Algorithms, such as AC-3 [37], are usually combined with backtracking
tree search to increase the efficiency. Similar algorithms can be used to preprocess
a given GENET network A to produce an equivalent arc consistent network.
The algorithms remove a label node (i, j) and its associated connections from the
GENET network A if (i,) is arc inconsistent. Once a label node is found to be
arc inconsistent and removed from the GENET network, we need to re-check all

other label nodes which may no longer be arc consistent.

6.5.2 Lazy Arc Consistency

Preprocessing a GENET network with arc consistency algorithm can improve the
search because of the reduction in the search space. However, since arc consistency
is in general a fairly expensive operation, it is beneficial only if the improvement in
efficiency is greater than the overhead of the arc consistency preprocessing phase.
Stuckey and Tam [56, 59, 57] develop lazy arc consistency for the GENET model.

Let o(S,1) be the on label node of cluster ¢ in state S of a GENET network
N. A GENET network N in a state S is lazy arc consistent if and only if
for all clusters 7,7 € U there exists a label node (j,k) € N such that there is
no connection between o(S,1) and (j, k) [56, 59, 57]. Since lazy arc consistency
only enforces arc consistency for the current on label nodes, it can readily be
incorporated in the convergence procedure of GENET.

Algorithm 6.2 gives a modified input calculation procedure for cluster ¢ of
the GENET network N in a state S [56, 59, 57]. The algorithm detects lazy
arc inconsistency during the calculation of inputs of each cluster. For example,
consider an arc inconsistent CSP and its corresponding GENET network shown
in Figure 6.1. When calculating the inputs of cluster u;, we found that each label

node (u;,1), (u1,2) and (u;,3) are connected to label node (us, 1), the current on

67

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

procedure input(N,S,1)
begin
if inconsistent(i) then
N N —{0(8,1)} — {(0(S,),) | (o(S,), (u,0)) € N}
end if
for each cluster 7 # : do
possibly_inconsistent(j) « true
end for
for each label node (i,k) € N do
I(,',k) «0
for each cluster 7 # : do
if ((i,k),0(S,7)) € N then
Ligy < gy + Wiikyo(s.i)
else
possibly_inconsistent(j) < false
end if
end for
end for
for each cluster j # 1 do
inconsistent(j) < inconsistent(j) V possibly_inconsistent(s)
end for
end

Algorithm 6.2: A modified input calculation procedure, that can detect lazy arc
consistency, for GENET

Ug < Us @ - on label node
{1,2,3} {1,2.3} O - off label node

(a) The CSP (b) The GENET network

Figure 6.1: An arc inconsistent CSP and its corresponding GENET network

68

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

procedure Lazy-LSDL(N, Az Iz,13,Us)
begin
(I3) initialize the value of 7
(I3) initialize the value of)
while (N) L(Z,X) — N(Z) > 0 (is not a solution) do
for each variable : € U do
if Vj # 1 € U Pk € D; such that ((i,a(Z,1)),(j,k)) ¢ Z then
D,’ — D,’ - {a(z"',z)}
end if
end for)
(Az) update z: 7« Z— AzL(Z,))
if (Us) condition for updating X holds then
update X: X « X + (%)
end if
end while
end

Algorithm 6.3: The Lazy-LSDL(N, Az, Iz, Iy, Us) procedure

label node of cluster u,. Hence, (ug,1) and its associated connections should be
removed from the GENET network.

Since lazy arc consistency is targeted at values that are selected during the
search, which may be much fewer than the entire search space, its overhead is
smaller than that of arc consistency. Experiments show that lazy arc consistency
improves GENET substantially for CSP’s which are arc inconsistent and does
not degrade the performance significantly for problems which are already arc
consistent [56, 59, 57].

Lazy arc consistency can be incorporated in LSDL in a similar manner. Let
a(Z,1) be the current assignment of variable 7 such that z(;.(z:)) = 1 and z(,;) =0
for all j # a(Z,1) € D;, and T be the set of all incompatible tuples ((z, 5), (k,[)).
The modified discrete Lagrangian search algorithm Lazy-LSDL is shown in Algo-
rithm 6.3. Similar to GENET, the procedure for detecting lazy arc inconsistency
can be integrated in the discrete gradient operator Az. For example, lazy arc
inconsistency can be detected during the calculation of the set X in the evalua-

tion of the partial discrete gradient operator 9'. We state explicitly the detection

69

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

procedure in Lazy-LSDL to show that lazy arc consistency is independent of the
discrete gradient operator used. In other words, any discrete gradient operator

defined for LSDL can be used in Lazy-LSDL without any special modification.

6.5.3 Experiments

In order to demonstrate the efficiency of Lazy-LSDL, we implement both Lazy-
LSDL(GENET) and Lazy-LSDL(MAX), which are instances of Lazy-LSDL with
the same parameters as those of LSDL(GENET) and LSDL(MAX) respectively.
In both Lazy-LSDL implementations, the procedure for detecting lazy arc incon-
sistency is integrated in the discrete gradient operator to improve the efficiency.
The performance of Lazy-LSDL(GENET) and Lazy-LSDL(MAX) on the N-queens
problems, a set of randomly generated permutation generation problems [31], a
set of artificial problems [56, 59] and a set of random CSP’s is compared against
the non-lazy versions. Timing results of all LSDL and Lazy-LSDL implementa-
tions are taken on a SUN SPARCstation 10 model 40. The unbracketed and the
bracketed results are the average and the median CPU time in second of 10 runs

respectively.

The N-queens Problems

Tables 6.19 and 6.20 show the experimental results of Lazy-LSDL(GENET) and
Lazy-LSDL(MAX) on the 10- to 120-queens problems respectively. Since the N-
queens problems are arc consistent, nothing is gained from the detection of lazy
arc inconsistency. However, the overhead of the additional calculation is almost

negligible.

The Permutation Generation Problems

The permutation generation problem [31] is a combinatorial problem. Its aim
is to construct a permutation on integers from 1 to n satisfying the conditions

of monotonies and advances. A detailed description of modeling the problem

70

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(GENET) | Lazy-LSDL(GENET)
N | CPU Time (sec) CPU Time (sec)
10 | 0.005 (0.000) 0.002 (0.000)
20 | 0.003 (0.000) 0.005 (0.000)
30 | 0.020 (0.017) 0.023 (0.017)
20 | 0.028 (0.033) 0.028 (0.033)
50 | 0.040 (0.033) 0.048 (0.050)
60 | 0.068 (0.067) 0.078 (0.067)
70 | 0.090 (0.092) 0.098 (0.100)
80 | 0.178 (0.175) 0.273 (0.267)
90 | 0.642 (0.633) 0.787 (0.758)
100 | 1.078 (1.108) 1.285 (1.267)
110 | 1.588 (1.583) 1.748 (1.742)
120 | 2.033 (2.058) 2.330 (2.367)

Table 6.19: Results of Lazy-LSDL(GENET) on the N-queens problems

LSDL(MAX) | Lazy-LSDL(MAX)
N | CPU Time (sec) | CPU Time (sec)
10 | 0.003 (0.000) 0.000 (0.000)
20 | 0.007 (0.000) 0.003 (0.000)
30 | 0.010 (0.017) 0.010 (0.017)
40 | 0.018 (0.017) 0.018 (0.017)
50 | 0.030 (0.033) 0.032 (0.033)
60 | 0.047 (0.050) 0.047 (0.050)
70 | 0.067 (0.058) 0.068 (0.067)
80 | 0.132 (0.125) 0.242 (0.233)
90 | 0.493 (0.475) 0.557 (0.525)
100 | 0.858 (0.833) 0.920 (0.892)
110 | 1.062 (1.033) 1.193 (1.175)
120 | 1.532 (1.492) 1.563 (1.533)

Table 6.20: Results of Lazy-LSDL(MAX) on the N-queens problems

71

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(GENET) Lazy-LSDL(GENET)
n | CPU Time (sec) | CPU Time (sec) Pruned

10 [0.002 (0.000) | 0.002 (0.000) 1.2

20 | 0.007 (0.000) | 0.008 (0.008) 1.0
30 | 0.153 (0.083) | 0.055 (0.017) 2.6
40 | 0.047 (0.042) | 0.050 (0.033) 0.9
50 | 0.052 (0.050) | 0.048 (0.050) 0.7
60 | 0.098 (0.092) | 0.112 (0.108) 0.7
70 | 0.138 (0.117) | 0.168 (0.150) 0.9
80 | 0.398 (0.383) | 0.392 (0.367) 0.6
90 | 0.813 (0.800) | 0.873 (0.850) 0.5
100 | 1.192 (1.217) 1.162 (1.192) 0.6

Table 6.21: Results of Lazy-LSDL(GENET) on the random permutation genera-
tion problems

as a CSP can be found in [22]. In the experiment, we randomly generate the
monotonies and advances for n varying from 10 to 100. These problems involve
arc inconsistency. Tables 6.21 and 6.22 show the results of Lazy-LSDL(GENET)
and Lazy-LSDL(MAX) respectively. Both the CPU times and the average number
of values pruned by the lazy arc consistency versions are presented. Since the
problems are relatively easy for LSDL, all implementations can solve the problems
with little search. Therefore, few values are pruned before a solution is found.
However, the experiment confirms that the overhead of lazy arc consistency is

small, even when there is little advantage.

The Artificial Problems

The set of artificial problems [56, 59] is used to illustrate the advantages of Lazy-
LSDL. An artificial problem of size n is a CSP with n+1 variables uy, ug, ..., Un41
and n constraints u; < ug,us < U3y...,Up < Upy1. The domain size of each
variable is either n+1 or 2n. Note that the artificial problems with domain size n+
1 are special instances of the permutation generation problem [31]. Benchmarking
results of Lazy-LSDL(GENET) and Lazy-LSDL(MAX) on the artificial problems
are shown in Tables 6.23 and 6.24 respectively. Besides the CPU time, we also

72

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(MAX) Lazy-LSDL(MAX)
n | CPU Time (sec) | CPU Time (sec) Pruned
10 | 0.005 (0.000) | 0.002(0.000) 3.9
20 | 0.010 (0.008) 0.008 (0.008) 1.9
30 | 0.015 (0.017) | 0.057 (0.017) 3.1
40 0.020 (0.017) 0.028 (0.025) 2.1
50 | 0.053 (0.050) | 0.040 (0.042) 2.0
60 | 0.075 (0.067) 0.100 (0.075) 2.8
70 | 0.180 (0.167) | 0.182 (0.183) 1.3
80 | 0.408 (0.392) | 0.400 (0.350) 1.7
90 | 0.782 (0.733) | 0.770 (0.792) 0.4
100 | 1.043 (L.008) | L132(1.092) 3.1

Table 6.22: Results of Lazy-LSDL(MAX) on the random permutation generation

problems

Prob. | LSDL(GENET) Lazy-LSDL(GENET)
Size n | CPU Time (sec) | CPU Time (sec) Pruned
Domain Size = n + 1
10 0.033 (0.033) 0.008 (0.008) 31.8
20 1.065 (1.075) 0.260 (0.258) 261.8
30 8.318 (7.800) 1.492 (1.517) 638.5

40 36.267 (35.583) 5.552 (5.617) 1234.7
50 | 107.372 (105.542) | 15.678 (15.675) 2007.3
Domain Size = 2n
10 0.030 (0.017) 0.052 (0.050) 44.0
20 2.008 (1.792) 0.787 (0.825) . 144.1
30 15.837 (13.225) 8.438 (9.008) 480.6
40 80.680 (82.925) 34.383 (35.000) 873.5
50 | 306.522 (314.100) | 109.290 (111.625) 1482.5

Table 6.23: Results of Lazy-LSDL(GENET) on the artificial problems

73

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Prob. | LSDL(MAX) Lazy-LSDL(MAX)
Size n | CPU Time (sec) | CPU Time (sec) Pruned
Domain Size = n +1
10 0.017 (0.017) 0.005 (0.000) 24.2
20 0.865 (0.867) 0.123 (0.142) 227.4
30 6.965 (6.750) 0.713 (0.675) 520.9
40 26.775 (25.892) 1.860 (1.842) 779.7
50 85.592 (86.058) 4.507 (4.525) 1275.7
Domain Size = 2n

10 0.045 (0.050) 0.000 (0.000) 0.0

20 0.330 (0.000) 0.077 (0.017) 51.8
30 6.430 (7.017) 0.407 (0.200) 142.7
40 41.175 (49.725) 3.530 (1.167) 367.0
50 | 97.852 (110.825) | 11.507 (3.258) 677.9

Table 6.24: Results of Lazy-LSDL(MAX) on the artificial problems

give the average number of values pruned by Lazy-LSDL(GENET) and Lazy-
LSDL(MAX). Both Lazy-LSDL implementations give significant improvement
for the discrete Lagrangian search. Since Lazy-LSDL(MAX) search a smaller
space than that of Lazy-LSDL(GENET), it prunes fewer values from domains.
Similarly, as the domain size grows, the number of lazy arc inconsistencies found
by both Lazy-LSDL is reduced since some values are never searched. These

properties clearly illustrate the targeted nature of lazy arc consistency.

Random CSP’s

A set of randomly generated CSP’s is used to test our Lazy-LSDL implemen-
tations. The random CSP’s, with variable size ranging from 120 to 170, have
domain size 10, constraint density 0.6, and constraint tightness 0.75. A high con-
straint density and a high constraint tightness are chosen to ensure that each
generated CSP is arc inconsistent. In order to guarantee that each random CSP
is soluble, the following procedure is used. After generating a CSP with vari-

able size n and a set of chosen parameters, we randomly generate a tuple, say

74

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

LSDL(GENET) Lazy-LSDL(GENET)
Problem Iter. CPU Time (sec) | Iter. CPU Time (sec) Pruned
rcsp-120-10-60-75 | 152.4 7.638 (7.683) 11.0 2.602 (2.600) 1011.4
rcsp-130-10-60-75 | 162.0 9.135 (9.142) 11.0 3.055 (3.058) 1099.8
rcsp-140-10-60-75 | 147.3 9.690 (9.708) | 11.0 3.607 (3.608) 1183.0
rcsp-150-10-60-75 | 173.4 12.645 (12.717) | 8.6 3.177 (4.083) 918.2
((4.908)
((7.325)

rcsp-160-10-60-75 | 167.4 14.208 (13.925) | 11.0 4.930 (4.908 1355.3
rcsp-170-10-60-75 | 176.2 21.820 (22.183) | 11.0 7.418 (7.325 1433.5

Table 6.25: Results of Lazy-LSDL(GENET) on the tight random CSP’s with arc
inconsistency

LSDL(MAX) Lazy-LSDL(MAX)
Problem Iter. CPU Time (sec) | Iter. CPU Time (sec) Pruned
rcsp-120-10-60-75 | 26.6 5.728 (7.208) | 11.0 2.652 (2.650) 1018.1
resp-130-10-60-75 | 27.4 6.983 (7.250) 8.8 2.530 (3.117) 884.2
rcsp-140-10-60-75 | 27.1 8.198 (9.617) 8.0 2.727 (3.792) 831.7
rcsp-150-10-60-75 | 28.5 10.198 (11.442) | 6.6 2.667 (4.250) 768.7
(5.042)
(7.358)

resp-160-10-60-75 | 23.0 9.565 (12.650) 8.8 4.100 (5.042 1101.1
rcsp-170-10-60-75 | 31.9 20.058 (20.200) | 11.0 7.393 (7.358 1456.9

Table 6.26: Results of Lazy-LSDL(MAX) on the tight random CSP’s with arc

inconsistency

({(u1,v1), (ug,v2),. .., (Un,v,)), and regard it as a solution of the CSP. If a con-
straint on variables u; and u; contains ({u;,v;), (u;j,v;)), the one in the generated
solution, as an incompatible tuple, the incompatible tuple is removed from the
constraint. Two new incompatible tuples ({u;,v;), (u;,w;)) and ({ui, w;), (u;j,v;)),
where w; # v; and w; # v; are values chosen randomly from D,; and D,; respec-
tively, are added.

Tables 6.25 and 6.26 show the timing results and the average number of itera-
tions of various LSDL implementations. The average number of values removed is
also recorded for Lazy-LSDL(GENET) and Lazy-LSDL(MAX). The lazy versions
are much more efficient than the non-lazy versions. In particular, the number of

iterations is substantially reduced by the Lazy-LSDL.

75

Chapter 6 A Discrete Lagrangian Approach for Solving Binary CSP’s

Lazy-LSDL(GENET)
Problem Iter. CPU Time (sec) Pruned
rcsp-100-10-70-90 | 10.0 2.347 (2.342) 934.6
resp-110-10-70-90 | 10.0 2.835 (2.842) 1025.5
rcsp-120-10-70-90 | 10.0 3.387 (3.375) 1116.4

Table 6.27: Results of Lazy-LSDL(GENET) on the insoluble random CSP’s

Lazy-LSDL(MAX)
Problem Iter. CPU Time (sec) Pruned
rcsp-100-10-70-90 | 10.0 2.345 (2.342) 907.8
rcsp-110-10-70-90 | 10.0 2.855 (2.850) 1000.6
rcsp-120-10-70-90 | 10.0 3.428 (3.433) 1093.0

Table 6.28: Results of Lazy-LSDL(MAX) on the insoluble random CSP’s

Table 6.27 and 6.28 show the results of each Lazy-LSDL implementations on
some insoluble random CSP’s. The insoluble CSP’s, ranging from 100 to 120 vari-
ables, have a uniform domain of size 10, constraint density 0.7, constraint tight-
ness 0.9. Since these problems have no solution, LSDL(GENET) and LSDL(MAX)
execute forever. On the other hand, Lazy-LSDL can terminate and report insol-

ubility when a variable domain becomes empty.

76

Chapter 7

Extending LSDL for General
CSP’s: Initial Results

In this chapter, we extend LSDL for solving general CSP’s. A general CSP
is transformed into an integer constrained minimization problem. New incom-
patibility functions are defined for different constraints. By constructing a new
discrete gradient operator to accommodate the change of formulation, the dis-
crete Lagrangian search scheme LSDL can be applied directly. We implement
LSDL(GENERAL), an instance of LSDL for general CSP’s, to verify our ap-
proach. Experiments show that the performance of LSDL(GENERAL) is compa-
rable to that of E-GENET (32, 33, 69], an extended GENET for efficient general
CSP’s solving, in some problems. However, LSDL(GENERAL) performs much
worse than LSDL(GENET) and LSDL(MAX). The inadequacy of our general

formulation and a possible solution are explored at the end of the chapter.

7.1 General CSP’s as Integer Constrained Min-
imization Problems

In this section, the transformation of a general CSP into an integer constrained

minimization problem is presented. The definition of the incompatibility functions

7

Chapter 7 Extending LSDL for General CSP’s: Initial Results

for various constraints are also given.

7.1.1 Formulation

Given a CSP (U, D,C). We assume that each domain D; for 7 € U is a set of inte-
gers. The corresponding integer constrained minimization problem is formulated
as follows. Each variable 1 € U is represented by an integer variable z;, which
can take values from a domain D;. The integer variable z; is equal to 7 € D;
if and only if value j is assigned to variable 7. In other words, z = (..., z,...)
corresponds to a variable assignment for (U, D,C). Each constraint ¢ € C' is de-
noted by an incompatibility function g.(Z), which returns 0 when the constraint
c is satisfied; otherwise, it returns a positive integer to represent the amount of
violation of the current assignment. In general, the incompatibility function g.(Z)
for different constraints could be different.

Similar to the zero-one integer constrained minimization problem of a binary

CSP, the resultant integer constrained minimization problem of a general CSP

(U,D,C) is

min N(Z) (7.1)
subject to
zeD;, VieU (7.2)
9.(2) =0, VceC (7.3)
where 7 = (...,2;,...) is a vector of integer variables and N(Z) is an objective

function satisfying the correspondence requirement, which stated that every solu-
tion of the CSP must correspond to a constrained global minimum of the associated
integer constrained minimization problem (7.1 — 7.3). Note that the solution space
of a CSP is defined entirely by the constraints (7.2 — 7.3). The objective function
is used to guide the search only.

The objective functions defined for binary CSP’s can be extended directly.

78

Chapter 7 Extending LSDL for General CSP’s: Initial Results

The objective function (4.18) becomes

NE@) =) g(?. (7.4)

ceC
Unlike the binary counterpart, the objective function (7.4) does not measure con-
straint violations in terms of number of violated tuples. It simply returns the
total amount of constraint violation given by the incompatibility functions. The
objective function, which counts the total number of constraint violations, can be

constructed as,

NE) =Y flo(2) (7.5)

ceC

where f(z) is a function which returns 1 when z # 0, and 0 otherwise. On the

other hand, the constant objective function
N(Z)=0 (7.6)

can be used without any modification. Note that all these objective functions
have the property that any assignment which satisfies constraints (7.2 - 7.3) is a
constrained global minimum. In other words, they all satisfy the correspondence

requirement.

7.1.2 Incompatibility Functions

As stated before, the incompatibility functions g.(Z) are designed specifically for
different constraints. In this section, we present the incompatibility functions for
linear arithmetic constraints, the illegal constraint, the atmost constraint and

the among constraint [2].

Linear Arithmetic Constraints

A linear arithmetic constraint is of the form X o Y, where X and Y are linear
arithmetic expressions and o € {=,#,<,<,>,>}. The linear expressions X and
Y can be written as Ag + Aju; + ...+ Axux, where each A; is an integer for

i =0,1,...,k and each u; is a variable for j = 1,2,...,k. A linear arithmetic

79

Chapter 7 Extending LSDL for General CSP’s: Initial Results

constraint is satisfied if X oY is satisfied. Let § = {...,ui/zy;,...} be a substi-
tution, where each u; is a variable, each z,, is an integer variable corresponding
to u; and all the u; are distinct. An expression Ef is an instance of E obtained
by simultaneously replacing each occurrence of u; by z,,. The incompatibility

functions go(Z), for each o € {=,#, <,<,>,>}, are defined as follows,

g=(3) = |X0-Y0) (7.7)
. (1, fX0=Y0

9£(2) = 1 , (7.8)
{ 0, otherwise
[X60—Y0+1, if X0>Y0

9<(2) = o . (7.9)
\ 0, otherwise
[X6—Y0, if X0>Y0

9<(2) = (7.10)
0, otherwise

. YO—-X0+1, if XO0<Y0O

9>(2) = _ (7.11)

0, otherwise

. Yo — X0, if X0 <Y
g>(2) = A (7.12)
0, otherwise

\
These incompatible functions simply return the amount of constraint violations

based on the difference between the linear expressions X6 and Y.

The illegal Constraint

The illegal((uq,uz,...,uk), (v1,vs,...,vk)) constraint disallows the simultane-
ous assignment of values vq,vs,...,v to variables u;,us,...,u;. Since any con-
straint can be expressed as a set of incompatible tuples, the i11egal constraint can
be regarded as a fundamental constraint. The incompatibility function gi11egai(2)
is

Lis T i Bugass g B) == (019850 vy k)

(7.13)

0, otherwise

gillegal(z) = {

where, by definition, (2u,, Zuyy« -+ 2y,) = (U1, U2y .., Uk).

80

Chapter 7 Extending LSDL for General CSP’s: Initial Results

The atmost Constraint

The atmost constraint is of the form atmost(N, Var, Val), where N is a natural
number, Var is a set of variables and Val is a set of values. It specifies that no
more than N variables in Var can take values from Val. Let n(Syar, Svai) be the
function which returns the number of variables in the set S,q, currently assigned
with values in the set S,.. Obviously, if n(Var,Val) > N, a smaller difference
n(Var,Val) — N would be preferred. Hence, the corresponding incompatibility

function gatmost(Z) is defined as

Var0,Val) — N, if n(Var6,Val) > N
gatmost(g)= n(o a) l n(“ a) (714)

0, otherwise

where § = {...,u;/zy,,...} is a substitution and Varf is the set of integer variables
obtained by simultaneously replacing each u; in Var with z,;.

The atleast(N,Var,Val) constraint, which specifies that no fewer than N
variables taken from the variable set Var are having values in the value set Val,

can be handled similarly. Thus, the incompatibility function gatieast(Z) is

N —n(Var8,Val), if n(Varé,Val) < N
gatleast(z) _ () () (715)
0, otherwise

where § = {...,u;/zy,,...} is a substitution and Var@ is the set of integer variables

obtained by simultaneously replacing each u; in Var with z,,.

The among Constraint

The among constraint is a global constraint introduced in CHIP [2]. It can be
regarded as a combination of the atmost and the atleast constraints. Among
the five variants of the among constraint, we consider the first and the second

variants only. The first variant has the form

among(uo, [u1, Uz, . . ., uk), [c1, €2y -« -y k], [V1, V2, - - -, 1)),

where ug, u1, ug, . .., ux are variables, ¢, ¢y, . .., ¢ are integers and vy, vy, ..., v; are

domain values. It specifies that exactly uo terms among u; +c1,uz+c¢2, ..., Up+Ck

81

Chapter 7 Extending LSDL for General CSP’s: Initial Results

having values in the list [vy,vs,...,v)]. The incompatibility function gameng(2) is
defined as follows. Let n(L;, L,) be the function which returns the number of terms
u; + ¢; in the list L; currently having values in the list L,. The incompatibility

function is

gamons(g) = |2, — n(L4Y, L,)| (7.16)

where L; = [uy + ¢1,u2 + ¢3y. .., uk + ¢k}, Lt = [v1,2,...,v1], 2y, is the integer
variable corresponding to variable ug, 8 = {...,u;/zy;,...} is a substitution, and
L0 is a list of terms obtained by simultaneously replacing each u; in L; with
z,;. Note that the incompatibility function is similar to the one defined for the =
constraint.

The second variant

among([Niow, Nup), [W1, U2, - - - y Uk, [€1, €2, - - - k], [V1, V25 - - -, 01]),

where Ni,y, Nyup are natural numbers, uy, ug, . .., ux are variables, ¢, ¢z, ..., c; are
integers and vy, vy,...,v; are values, specifies that at least N, and at most Ny,
terms among u; + ¢, ug + Cz, . . . , Ug + ¢k can have values in [vy, vy, ... ,vg]. Similar
to the first variant, let n(L, L,) be the function which returns the number of terms
u; + ¢; in the list L; currently having values in the list L,. The incompatibility

function for the second variant is defined as

Nlow == n(Lta’ L'u)7 if n(Ltaa Lv) < Nlow
Ganong(Z) = § n(L:b, Ly) — Nup, if n(Le8, L) > Nup (7.17)

0, otherwise

where L; = [u; + ¢1,ug + Cay. . - Uk + ¢k, Le = [01,02,...,01], 0 = {..., ui/2u;,.. .}
is a substitution, and L0 is a list of terms obtained by simultaneously replacing
each u; in L; with z,,. Although the atmost and the atleast constraints can
be simulated by the second variant of the among constraint, an extra compari-
son is required to evaluate the incompatibility function gameng(Z). Therefore, we
construct the atmost and the atleast constraints to improve efficiency.

The other three variants can be stated as a combination of the second variants.

82

Chapter 7 Eztending LSDL for General CSP’s: Initial Results

They are described as follows. The third variant is
among([Nlow’ Nupa S]a [ul) U2y 7uk]a [cl, C2yevny ck]) [vl, UV2y. e ,'U[]),

where S < k is a positive integer. It is equivalent to the following set of among

constraints

among([Niow, Nup), [U1, - - -y us), [c1, - - -y €s], [V1, - - -, 1)),

among([Niow, Nup, [Uz, - - - s Ust1], [€2, - - -, €s41), [V1, -+ - ,u),

a.mong([Nlow, Nup], [uk_s+1, W ,uk], [ck_s+1, sy ,Ck], [vl, 52 & ,vl]).
The fourth variant is of the form
among([Nlowv Nup, 57 Nleast, Nmost], [ula U2y ey uk], [Cl, Cdy:s ooy Ck], [’01, V2y e ,v;]),

where Niegst and Ny,os: are natural numbers. This constraint is a combination of

the second and the third variants, namely

among([Nlowa N’MP, S]’ [ul’ v)uk]a [Cl, v ’ck]’ [vl, s ,'Uz]),

among([Nieast; Nmost], [U1s - - « s k], [€15 - - « s k], [V1, - - -, 01]).

Hence, it can be handled as a number of the second variants. The last variant is
among([Nlow, NUP’ Sa Ilow, IUP, IS]) [uly Uy - - - 7uk]a [Cla C2yenny ck]a ['01, V2y -0y ’U[]),

where I}y, I, are natural numbers and I is a positive integer. It is an abstraction

of the following set of second variants

a'mong([Nlowa Nup], [ul, v ,US], [cl, v)CS]7 [vla v ,vl]))

a'mong([Nlow + Ilow’ Nup 5 IuP]a [ul, sy uS+Is]; [Cl, SR ’CS+IS]’ ['01, vis 039 vl])’

among([Niow + m X liow, Nup +m X L), [u1, ..., ukl, [c1y- -+ 5 €], [V1, -),

where m = (k — S)/Is.

83

Chapter 7 Extending LSDL for General CSP’s: Initial Results

7.2 The Discrete Lagrange Multiplier Method

The discrete Lagrange multiplier method for general CSP’s is similar to the one
for binary CSP’s. The Lagrangian function L(Z, X) for the integer constrained

minimization problem (7.1 — 7.3) is

L(Z,X) = N(®) + Y _ Aege(?) (7.18)
ceC
where 2 = (..., z;,...) is a vector of integer variables and X=(.);,...) s 2

vector of Lagrange multipliers, one A, for each constraint ¢ € C'. The constraints
in (7.2), which enforce valid assignments for a CSP, are not incorporated in the
Lagrangian function. They are included in the discrete gradient operator for the
search process.

According to the discrete saddle point theorem [70], a constrained minimum of
the integer constrained minimization problem can be obtained by finding a saddle
point of the Lagrangian function L(Z X) Since the saddle point can be located
by performing descent in the Z-space and ascent in the X-space [43], we use the

same difference equations [62, 54, 53] defined for the binary case

7t = 75— AZL(Z°,X°) (7.19)

X=X 4 gz (7.20)

where § = (...,g:(%),...) is a vector of incompatibility functions and Az is a
discrete gradient operator.

Similar to the binary case, the discrete gradient operator is not unique. The

discrete gradient operator (6.6 — 6.7) for binary CSP’s is now redefined as follows.

Given a vector of integer variables 2 = (..., z;,...), the projection operator =;
mi(%) = 2 (7.21)

gives the ith-component of Z. The ith partial discrete gradient operator 0; for all
1 € U is given by
&:L(Z,X) = mi(2) — mi(Z") (7.22)

when the following conditions hold:

84

Chapter 7 Extending LSDL for General CSP’s: Initial Results

e X is a set of integer variables vector such that VZ € X, we have

z; € D; A Vj;éiEU:I:j:Zj
A V" [(z;.' € D;AVj i€ U2 = z) = L(E) < L(Z",)

o Z' is selected from X by
Z, ifze X
rand(X), otherwise

where rand(Y) returns a random element from a set Y.

Effectively, the ith partial discrete gradient operator d;L(Z, X) returns a differential
vector d for the ith-component of Z which decreases the Lagrangian function most.
Note that d is selected according to the GENET (or E-GENET) state update
rule [66, 60, 7, 6, 32]. Now, the discrete gradient operator Az is defined by the

following set of equations
m(A:L(Z, X)) = 8;L(Z,X), Viel. (7.23)

When A:L(Z, X) = 0, there is no change in the vector 7. In this case, either a
solution is found or a stationary point is reached.

The Lagrange multipliers X are updated according to the incompatibility func-
tions. Since the incompatibility function returns the amount of violation of a
violated constraint, the magnitude of the update can be greater than 1. This is a
major difference from the binary case.

With the above modifications, the discrete Lagrangian search procedure LSDL
in Algorithm 6.1 can be applied directly for solving general CSP’s.

7.3 A Comparison between the Binary and the
General Formulation

The general formulation is also applicable to binary CSP’s. In order to compare

the difference between the binary and the general formulations, we consider the

85

Chapter 7 Extending LSDL for General CSP’s: Initial Results

same simple CSP shown in Figure 4.1. In this problem, we have three variables
u1,ug and uz, each with a domain {1,2}, and two constraints u; = uz and uy < ua.
As described in chapter 4, the binary formulation gives us the following zero-one

integer constrained minimization problem:

min N(Z) (7.24)
subject to

Z(ur1) 2wy 2) = 1, (7.25)

Zup,1) T Z(uz2) = 1, (7.26)

Z(ug,1) t Z(us2) = L, (7.27)

Glur 1)(u2,:2) () = Z(ur 1) Z(uz,2) = 0, (7.28)

Iur 2)(u2,1)(2) = Z(u1,2)Z(ua,1) = 0, (7.29)
g(uzyl)(us,l)(g) = Z(up,1)%(us,1) = 0, (7.30)

Gluz 2)(us 1)(Z) = Z(u3,2)Z(us,1) = 0, (7.31)
I(u2,2)(us,2)(Z) = Z(up,2)%(us 2) = 0, (7.32)

where Z' = (2(u;,1), Z(u1,2)> Z(uz,1)> Z(u2,2)> Z(us,1)s Z(us,2)) 1S @ vector of zero-one integer
variables, N(Z) is the objective function defined in either (4.18) or (4.19), equa-
tions (7.25 — 7.27) are the constraints for enforcing valid assignments for the CSP,
and equations (7.28 — 7.32) are the constraints for the incompatibility functions.

In the general formulation, the same problem is represented by the following

integer constrained minimization problem:

min N(Z) (7.33)
subject to
Zy, € D,,, (7.34)
I (7.35)
Zug € Dy, (7.36)
Gur=u,(?) = 0, (7.37)
Guy<us (2) = 0, ()

86

Chapter 7 Extending LSDL for General CSP’s: Initial Results

where Z = (2u,, Zuy, Zus) 18 a vector of integer variables, N(Z) is the objective
function defined in (7.4), (7.5) or (7.6), and constraints (7.34 — 7.36) and (7.37 -
7.38) are the constraints to ensure valid assignments and the constraints for the
incompatibility functions respectively.

From this simple example, we find that the two formulations are different in five
aspects. First, in the binary formulation, the zero-one integer variables are used to
represent each possible label of a CSP. On the other hand, the general formulation
denotes each variable of a CSP by an integer variable. Hence, the total number
of integer variables of the resultant integer constrained minimization problem is
greatly reduced. Second, because of the different representation of variables of a
CSP, the constraints for restricting valid assignments for a CSP are different in
the two formulations. Third, instead of breaking down every constraint of a CSP
into a set of incompatible tuples and defining an incompatibility function for each
incompatible tuple, the general formulation uses a single incompatibility func-
tion for each constraint of a CSP. Therefore, the storage requirement is lowered.
Fourth, the discrete gradient operators are defined differently to accommodate
the difference in the two formulations. Fifth, since the incompatibility functions
defined in the general formulation return the amount of constraint violation, the
Lagrange multipliers X can be updated with a magnitude greater than 1.

Although there are quite a number of differences between the binary and the
general formulation, the same discrete Lagrangian search procedure LSDL can

be applied without any modification.

7.4 Experiments

In order to evaluate our formulation, especially our definition of the incompat-
ibility functions, we implement an instance of LSDL for general CSP’s. This

instance, denoted by LSDL(GENERAL), has the following parameters:

e N: since the role of an objective function is to guide the search, the objective

function N(Z) defined in (7.5) is used.

87

Chapter 7 Extending LSDL for General CSP’s: Initial Results

Az the discrete gradient operator is specified by

for each variable : € U do
update m;(2): mi(2) ¢ mi(2) — BiL(Z,N)
end for

where 0; is the partial gradient operator defined in (7.22).

Iz unlike the binary case, the procedure for initializing the integer variables
7 greedily is quite computationally expensive. Hence, we choose to randomly

initialize the value of 7 in such a way that z; € D;, for all 2 € U.

I;: the value of each A, for all ¢ € C, is initialized as follows,

9.(2°%), if g.(Z°) #0

1 , otherwise

Ao =

where Z° is the initial value of the integer vector Z. Note that this approach

is similar to the assignment scheme of initial penalty values of the optimized

E-GENET [33, 69].

Us: because of the definition of incompatibility functions, the value of a sin-
gle Lagrange multiplier may affect many possible states of the search space.
Therefore, the Lagrange multipliers X are updated only when 8;L(Z, X) =0,
forallz € U.

Various benchmark problems, such as the N-queens problems, the graph-

coloring problems and the car-sequencing problems, are used in our experiments.

We compare our results with that of E-GENET [32, 33, 69], an extension of

GENET for general CSP’s. Whenever possible, we quote results of both original
E-GENET and optimized E-GENET from (32, 33, 34, 69], results of which are
average and median CPU time of 10 runs obtained on a SUN SPARCstation 10
model 30. Our experiments are performed on a SUN SPARCstation 10 model 40.

Both average and median CPU time of 10 runs are presented. Unless otherwise

specified, unbracketed and bracketed results represent the average and median

CPU time respectively.

88

Chapter 7 Extending LSDL for General CSP’s: Initial Results

7.4.1 The N-queens Problems

The N-queens problems is used to verify our definition of the # constraint, a
linear arithmetic constraint, and the among constraint.

When the N-queens problem is expressed by the # constraints, the problem
is modeled as follows. Each row ¢, for 2 =1,2,...,N, of an N x N chessboard is

represented by a variable ¢; with domain Dy, = {1,2,..., N}. The constraints

qi:/éq.h vz#] and i>j= 172"",N (739)
lgi—aqij| #i—3j, VYi#jandi,j=1,2,...,N (7.40)

state that no two queens can be on the same column or on the same (positive
or negative) diagonal respectively. Benchmarking results are summarized in Ta-
ble 7.1. From the experiment, we find that LSDL(GENERAL) outperforms the
original E-GENET. This promising results confirm the feasibility of handling a
constraint as a whole, instead of breaking it down into a set of incompatible tuples,
which is the case in E-GENET. Hence, the storage requirement can be greatly re-
duced. We do not compare LSDL(GENERAL) against the optimized E-GENET
since the results of the optimized E-GENET are obtained by modeling the N-
queens problems with the noattack constraints, instead of the # constraints. On
the other hand, the performance of LSDL(GENERAL) is much worse than those
of LSDL(GENET) and LSDL(MAX). The great difference in efficiency may be
due to the difference in the two formulations. Since each incompatibility function
defined in the binary formulation represent an incompatible tuple, it can guide
the search in a more refined fashion.

In order to model the N-queens problem with the among constraint, we use a
Boolean formulation. Each square (i, 7) of the chessboard is denoted by a variable
¢j, for all 2,7 = 1,2,..., N, with domain {0,1}. The variable g¢;; is 1 if a queen

is placed on the square (¢, j); otherwise, it is 0. The constraints are

e for each row of the chessboard,

among(1, [variables of the row], [0, ..., 0], [1]). (7.41)

89

Chapter 7 Extending LSDL for General CSP’s: Initial Results

Original E-GENET LSDL(GENERAL)

N | Median CPU Time (sec) | Average (Median) CPU Time (sec)
10 0.046 0.025 (0.033)
20 0.165 0.155 (0.150)
30 0.510 0.457 (0.392)
40 1.222 1.060 (1.050)
50 3.582 2.095 (1.725)
60 6.840 3.513 (3.375)
70 9.902 4.122 (4.183)
80 19.752 7.180 (7.092)
90 98.467 11.663 (11.375)
100 37.582 15.145 (15.883)
110 42.211 20.945 (20.833)
120 61.672 24.657 (23.208)
130 86.083 29.430 (27.575)
140 94.377 41.405 (42.550)
150 152.001 50.047 (52.283)
160 188.033 60.047 (55.817)
170 219.317 56.083 (53.742)
180 964.543 71.040 (73.333)
190 316.562 86.517 (83.642)
200 439.952 96.715 (89.458)

Table 7.1: Results of LSDL(GENERAL) on the N-queens problems modeled with
the # constraint

90

Chapter 7 Extending LSDL for General CSP’s: Initial Results

Optimized E-GENET | LSDL(GENERAL)
N CPU Time (sec) CPU Time (sec)
10 0.009 (0.010) 0.018 (0.017)
20 0.129 (0.125) 0.083 (0.083)
30 0.255 (0.270) 0.242 (0.242)
40 0.493 (0.460) 0.550 (0.600)
50 1.580 (1.540) 0.958 (0.850)
60 1.256 (1.125) 1.888 (1.758)
70 5792 (2.788) 1.930 (1.883)
80 9,209 (2.454) 9.952 (3.142)
90 4.136 (4.053) 4.490 (3.808)
100 4.660 (4.905) 7.357 (6.092)

Table 7.2: Results of LSDL(GENERAL) on the N-queens problems modeled with

the among constraint

e for each column of the chessboard,

among(1, [variables of the column], [0,...,0],[1]). (7.42)

e for each diagonal of the chessboard,

among([0, 1], [variables of the diagonall, [0, ...,0],[1]). (7.43)

Table 7.2 shows the results for 10- to 100-queens problems. Except some problem
instances, the performance of LSDL(GENERAL) is comparable to that of the opti-
mized E-GENET. The poor performance of LSDL(GENERAL) on some problems
can be accounted for as follows. In the optimized E-GENET, a contribution func-
tion [33, 69] is defined for the among constraint to speed up the search. However,
LSDL(GENERAL) does not have this kind of search information. Therefore, the
optimized E-GENET is more efficient.

7.4.2 The Graph-coloring Problems

We use the graph-coloring problem to further evaluate the # constraint. In the ex-

periment, the set of hard graph-coloring problems from the DIMACS archive [27] is

91

Chapter 7 Extending LSDL for General CSP’s: Initial Results

Original E-GENET LSDL(GENERAL)
Nodes | Colors Median Average (Median) Success
CPU Time CPU Time Ratio
125 17 2.5 hr - 0/10
125 18 2.6 min 1.2 min (1.0 min) 10/10
250 15 7.4 sec 14.1 sec (12.6 sec) 10/10
250 29 5 hr - 0/10

Table 7.3: Results of LSDL(GENERAL) on the hard graph-coloring problems

used. The execution limit of LSDL(GENERAL) is set to one million iterations. The
benchmarking results are shown in Table 7.3. Besides the CPU time, we also re-
port the success ratio of LSDL(GENERAL). The performance of LSDL(GENERAL)
is found to be worse than that of the original E-GENET. Among the four problem
instances, LSDL(GENERAL) fails to find any solution for the problem with 125
nodes 17 colors and the problem with 250 nodes 29 colors within the execution
limit. On the other hand, LSDL(GENERAL) outperforms the original E-GENET
on the problem with 125 nodes 18 colors. Since the results of the optimized E-
GENET are not available, the performance of LSDL(GENERAL) and that of the
optimized E-GENET is not compared. The performance of LSDL(GENERAL) is
also worse than that of LSDL(MAX). Since LSDL(GENERAL) represents a con-
straint with a single incompatibility function, useful information that guides the

search is lost. As a result, the performance is degraded.

7.4.3 The Car-Sequencing Problems

The goal of the car-sequencing problem is to schedule cars into an assembly line
so that different options can be installed on the cars and the utilization con-
straints are satisfied [9]. The problem is used to test the incompatibility func-
tion of the atmost constraint. In the experiment, a set of randomly generated
problems described in [7] is used. All problems consist of 200 variables with do-

mains varying from 17 to 28 values and approximately 1000 atmost constraints

92

Chapter 7 Extending LSDL for General CSP’s: Initial Results

- % Succ. Runs (Median Repairs)
Utiliza- Nonbi Orizinal | Optimmized
tion % on-binary rigina ptimized | .., . —
GENET E-GENET | E-GENET
60 | 84 (463) | 74 (223.5) | 100 (282.5) | _ 100 (301.5)
65 | 87 (426) | 80 (223.5) | 99 (262) 99 (322.0)
70 | 83 (456) | 8L (241) | 100 (280.5) | 100 (348.5)
75 | 85 (730) | 24 (339) | 97 (331) 08 (424.5)
80 | 50 (4529) | 53 (576) | 73 (537) 75 (643.0)

Table 7.4: Results of LSDL(GENERAL) on the car-sequencing problems

of various number of variables. Totally 50 problems, 10 for each utilization per-
centage ranging from 60% to 80%, are tested. We compare the performance of
LSDL(GENERAL) with the original E-GENET, the optimized E-GENET and the
non-binary GENET [7], which is an extended GENET model for handling the
illegal constraint, the atmost constraint and the notequal constraint. The ex-
ecution limit of the non-binary GENET is set to one million repairs, while the
execution limit of LSDL(GENERAL), the original E-GENET and the optimized
E-GENET is 1000 repairs.

The results are listed in Table 7.4. All successful runs of LSDL(GENERAL)
terminate in less than 15 seconds. LSDL(GENERAL) is better than the non-binary
GENET both in terms of the successful percentage and the median number of
repairs. When comparing the results between LSDL(GENERAL) and the original
E-GENET, we found that LSDL(GENERAL) always gives a higher percentage
of successful runs. This performance is comparable to that of the optimized E-
GENET. Therefore, we can conclude that LSDL(GENERAL) is at least as efficient
as the optimized E-GENET on handling the atmost constraint. On the other
hand, the median number of repairs of LSDL(GENERAL) is slightly higher than
those of the original E-GENET and the optimized E-GENET.

93

Chapter 7 Extending LSDL for General CSP’s: Initial Results
7.5 Inadequacy of the Formulation

As confirmed by LSDL(GENERAL), the proposed formulation shows certain suc-
cess on extending LSDL for general CSP’s. In some cases, however, the defined
incompatibility function, such as the one for the # constraint, is not sufficient to
guide the search. In this section, we first point out the weaknesses of the incom-
patibility functions. A possible improvement is then given. Experiments show

that the modification can significantly boost the search efficiency.

7.5.1 Insufficiency of the Incompatibility Functions

Given an integer constrained minimization problem, the discrete Lagrange mul-
tiplier method performs saddle point search on the cost surface defined by the

Lagrangian function

L(7,%) = N(2) + 3 Aegel2).

ceC
Apart from the objective function N(Z), the incompatibility functions g.(Z) also

provide additional force to guide the search. However, the incompatibility func-
tions defined for general CSP’s are not sufficient.

In the general formulation, instead of decomposing a constraint into a set of
incompatible tuples, we define a single incompatibility function for each constraint.
Although this approach can significantly reduce the storage requirement, useful
search information is lost. Since an incompatibility function of a constraint defines
the cost of an assignment, a set of incompatible tuples is weighted by the same
cost. Therefore, a number of large plateaus are generated in the cost surface. As
a result, the search process is easily trapped in plateaus, which are difficult to
escape.

Furthermore, unlike the binary case, the set of incompatible tuples of a con-
straint is associated with a single Lagrange multiplier. When a Lagrange multi-
plier is updated, instead of penalizing the current assignment, the whole set of all
incompatible tuples is affected. Hence, a potential path to the solution may be

blocked more easily [41]. For example, consider a CSP with 4 variables, a, b, c and

94

Chapter 7 Extending LSDL for General CSP’s: Initial Results

d, each with a domain {1,2}, and 15 constraints

ci:a+b#c+d, ca:a+c#b+d, cz:a+d#b+ec,
cs:a+b#ec, cs:a+b#d, cg:a+c#b,
cr:a+c#d, cg:a+d#b, co:a+d#ec,
co:b+c#a, ci1:b+c#d, c12:b+d # a,
ci3:b+d#c, ci4:c+d#a, cis:c+d#b.

The vector of integer variables Z and the vector of Lagrange multipliers X for
the associated integer constrained minimization problem are z' = (z,, 2, 2c, Za)
and X = (Ae;; Ae Ae> Acgs Acss Acos Aers Aess Acgs Aetos Aert » Aerzs At s Aers s Acys) TESPEC-
tively. Among all possible assignments of Z, only (1,2,2,2),(2,1,2,2),(2,2,1,2)
and (2,2,2,1) are solutions of the problem.

Suppose the objective function (7.5) is used, and initially X=X =1 and
Z = (1,1,1,1). The values of the Lagrangian function L(Z, Xo) for each Z' are
given in the second column of Table 7.5. Since (1,1, 1,1) has the same Lagrangian
value as its neighboring point (2,1,1,1), (1,2,1,1), (1,1,2,1) and (1,1,1,2), it
is a stationary point. Therefore, the Lagrange multipliers X are updated once to
get X = 2,2,2,1,1,1,1,1,1,1,1,1,1,1,1). The new Lagrangian values L(Z, Xl)
for each 2z’ are shown in the third column of Table 7.5. Note that since a sin-
gle Lagrange multiplier is associated with a set of incompatible tuples, X1 not
only affects the Lagrangian value of current assignment (1,1, 1,1), it also changes
the Lagrangian value of (2,2,1,1), (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2),
(1,1,2,2) and (2,2,2,2). Now, (1,1,1,1) is no longer a stationary point. The in-
teger vector Z can change to one of (2,1,1,1), (1,2,1,1), (1,1,2,1) and (1,1,1,2).
Suppose (2,1,1,1) is chosen. Again, (2,1,1,1) is a stationary point. The La-
grange multipliers are updated twice to increase the penalty. The new X becomes
X2 = 2,2,2,1,1,1,1,1,1,3,1,3,1,3,1) and the new Lagrangian values L(Z, Xg) for
different Z' are given in the fourth column of Table 7.5. Further update changes
Z back to (1,1,1,1). Similarly, vectors (1,2,1,1), (1,1,2,1) and (1,1,1,2) are
tried and then back to (1,1,1,1) in turn. After these transitions, X becomes

Xa = (2,2,2,3,3,3,3,3,3,3,3,3,3,3,3) and the Lagrangian values L(Z, X3) for

95

Chapter 7 Extending LSDL for General CSP’s: Initial Results

Z L(Z,%) [L(Z,X) | L(Z,A) | L(Z, X9)
(1, 1:4:T) 6 9 9 9
(2,1,1,1) 6 6 12 12
(1,2,1,1) 6 6 6 12
(1,1,2,1) 6 6 6 12
(1,1,1,2) 6 6 6 12
(3,2:1,1) 8 10 12 14
(2,1,2,1) 8 10 12 14
(2,1,1,2) 8 10 12 14
(1:2,2.1) 8 10 10 14
(1,2,1,2) 8 10 10 14
(1,1,2,2) 8 10 10 14
(1,2,2,2) 0 0 0 0
(2,1,2,2) 0 0 0 0
(2,2,1,2) 0 0 0 0
(2,2,2,1) 0 0 0 0
(2,2,2,2) 6 9 9 9

Table 7.5: The value of the Lagrangian function L(Z, X) for different integer vari-
ables 2 and Lagrange multipliers A of a CSP

each Z are shown in the fifth column of Table 7.5. The whole process repeats and
the algorithm oscillates between (1,1,1,1), (2,1,1,1), (1,2,1,1), (1,1,2,1) and
(1,1,1,2) indefinitely.

In order to obtain a solution, the algorithm must pass through an integer vector
with two integer variables equal to 2. However, since the Lagrangian values of
2,2,1,1), (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2) and (1,1,2,2) are affected
by previous updates of Lagrange multipliers, they are always greater than those
of (2,1,1,1), (1,2,1,1), (1,1,2,1) and (1,1,1,2). Therefore, (2,2,1,1), (2,1,2,1),
(2,1,1,2), (1,2,2,1), (1,2,1,2) and (1,1,2,2) are never visited. In other words,
potential paths to the solutions are blocked. ‘

7.5.2 Dynamic Illegal Constraint

In order to overcome the above weaknesses, we propose the following scheme.

When a constraint is violated, an illegal constraint of current incompatible tuple

96

Chapter 7 Extending LSDL for General CSP’s: Initial Results

is added to the problem. We call this newly added illegal constraint a dynamic
illegal constraint. After this modification, the integer constrained minimization

problem becomes

min N(Z) (7.44)

subject to
z€D;, VieU (7.45)
9.(9)=0, VceC (7.46)
g(?)=0, VdeD (7.47)

where D is the set of dynamic illegal constraints and g4(Z) are the incompatibility
function of the illegal constraint. Obviously, the new minimization problem
is equivalent to the original one. However, the Lagrangian function for the new

problem is reconstructed as

>l

L(Z, ’K) = N(E) + Z)\cgc(f) + Z Adgd(z) (748)

ceC deD

where A = (...,A4,...) is a vector of Lagrange multipliers associated with the
dynamic illegal constraints. The cost surface is modified by the extra term
Y aep Naga(Z). As a result, the dynamic illegal constraints provide an additional

force to guide the search.

7.5.3 Experiments

A variant of LSDL, called D-LSDL(GENERAL), is implemented to verify the
effectiveness of the proposed scheme. D-LSDL(GENERAL), where “D” stands for
“dynamic,” has the same parameters as LSDL(GENERAL). The only difference is
the ability to generate dynamic illegal constraints. In D-LSDL(GENERAL), when
a certain constraint is violated, the corresponding dynamic illegal constraint gy(Z)
of the violated tuple is introduced to the system, and the initial value of A4 is
set to 1. The N-queens problems and the hard graph-coloring problems from the
DIMACS archive [27] are used to compare the performance of D-LSDL(GENERAL)

97

Chapter 7 Extending LSDL for General CSP’s: Initial Results

and LSDL(GENERAL). All experiments are performed on a SUN SPARCstation
10 model 40. Both average (unbracketed) and median (bracketed) CPU time of
10 runs are presented.

Benchmarking results for the N-queens problems are shown in Table 7.6. D-
LSDL(GENERAL) improves the performance of LSDL(GENERAL) significantly.
For the graph-coloring problems, the execution limit of both D-LSDL(GENERAL)
and LSDL(GENERAL) is set to one million iterations. Timing results as well as
the success ratios are reported in Table 7.7. D-LSDL(GENERAL) outperforms
LSDL(GENERAL) both in terms of the CPU time and the success ratio. As a

result, the usefulness of dynamic illegal constraints is confirmed.

98

Chapter 7 Extending LSDL for General CSP’s: Initial Results

Table 7.6:

LSDL(GENERAL) | D-LSDL(GENERAL)
N | CPU Time (sec) CPU Time (sec)
10 0.025 (0.033) 0.007 (0.000)
20 0.155 (0.150) 0.097 (0.092)
30 0.457 (0.392) 0.250 (0.233)
40 1.060 (1.050) 0.463 (0.425)
50 2.095 (1.725) 1.332 (1.392)
60 3.513 (3.375) 1.958 (1.658)
70 4.122 (4.183) 3.228 (3.225)
80 7.180 (7.092) 4.848 (4.642)
90 | 11.663 (11.375) 6.588 (6.533)
100 | 15.145 (15.883) 9.337 (9.633)
110 | 20.945 (20.833) 12.830 (12.100)
120 | 24.657 (23.208) 16.463 (16.575)
130 | 29.430 (27.575) 21.563 (22.542)
140 | 41.405 (42.550) 24.137 (23.125)
150 | 50.047 (52.283) 34.307 (33.000)
160 | 60.047 (55.817) 37.605 (37.342)
170 | 56.083 (53.742) 44.308 (45.600)
180 | 71.040 (73.333) 53.705 (52.083)
190 | 86.517 (83.642) 59.192 (58.942)
200 | 96.715 (89.458) 67.098 (65.358)

Results of D-LSDL(GENERAL) on the N-queens problems

LSDL(GENERAL) D-LSDL(GENERAL)
Nodes | Colors | Average (Median) Success | Average (Median) Success
CPU Time Ratio CPU Time Ratio
125 17 -~ 0/10 4.8 hr (4.8 hr) 2/10
125 18 1.2 min (1.0 min) 10/10 | 1.0 min (46.9 sec) 10/10
250 15 | 14.1 sec (12.6 sec) 10/10 | 6.1 sec (6.3 sec) 10/10
250 29 - 0/10 18.9 hr (13.0 hr) 8/10

Table 7.7: Results of D-LSDL(GENERAL) on the hard graph-coloring problems

99

Chapter 8

Concluding Remarks

We conclude the thesis by giving our contributions and possible directions for

future research.

8.1 Contributions

The contributions of our work can be summarized as follows. We derive from the
GENET model a two-step transformation for converting any binary CSP into a
zero-one integer constrained minimization problem. With the help of this trans-
formation, well-known constrained optimization techniques, such as the Lagrange
multiplier method, can be applied directly for tackling CSP’s. Based on the trans-
formed zero-one integer constrained minimization problems, we propose a generic
discrete Lagrangian search scheme LSDL for solving binary CSP’s. LSDL, which
has five degrees of freedom, represents a class of discrete Lagrangian search al-
gorithms. By instantiating LSDL with different parameters, algorithms with
different efficiency and behavior can be generated.

We formally establish the equivalence between the GENET model, a repre-
sentative of the class of heuristic repair methods, and an instance of LSDL.
This result not only provides a theoretical foundation for better understanding
of GENET, but also suggests a dual viewpoint of GENET: as a heuristic repair

method and as a discrete Lagrange multiplier method. As a result, the discrete

100

Chapter 8 Concluding Remarks

Lagrangian search scheme LSDL provides various important guidance for the de-
sign of better heuristic repair algorithms. In order to evaluate our approach, we
implement LSDL(GENET), a discrete Lagrangian reconstruction of GENET. Var-
ious experiments show that LSDL(GENET) exhibits the same good convergence
behavior as other GENET implementations found in the literature. Variants of
LSDL(GENET) obtained from the dual viewpoints are also examined. Our best
variant LSDL(MAX) is found to be more efficient than LSDL(GENET). By in-
corporating lazy arc consistency to LSDL, we can achieve additional order of
magnitude improvements for problems with arc inconsistency, and suffer from
little overhead for the problems which are already arc consistent.

We also extend LSDL for general CSP’s. In this extension, we convert a
general CSP into an integer constrained minimization problem and define a new
discrete gradient operator for LSDL. The main difference between the general
and the binary formulation is that, instead of defining an incompatibility function
for each incompatible tuple, we use a single incompatibility function to represent
a constraint. Hence, the storage requirement is greatly reduced. With the new
discrete gradient operator defined to accommodate the change of formulation,
the discrete Lagrangian search scheme LSDL can be applied without any special
modification. We implement LSDL(GENERAL), an instance of LSDL for solving
general CSP’s, to verify our approach. The performance of LSDL(GENERAL) is
found to be comparable with that of E-GENET in most test problems. Although
this straightforward generalization gives us some promising results, it does not
work so well in general. In our experiments, LSDL(GENERAL) performs much
worse than LSDL(GENET) and LSDL(MAX). Therefore, much work is required in
the future. In addition, since a constraint is represented by a single incompatibility
function, large plateaus, which make the search more difficult, are generated.
We propose dynamic illegal constraints to overcome this weakness. Experiments
confirm that the addition of dynamic illegal constraints can substantially improve

the performance of LSDL(GENERAL).

101

Chapter 8 Concluding Remarks
8.2 Discussions

DLM (62, 54, 53] is a discrete Lagrangian search algorithm for solving SAT prob-
lems. Our £LSDL framework is constructed according to DLM for solving CSP’s.
Although both DLM and £LSDL apply the discrete Lagrange multiplier method
to solve SAT problems or CSP’s, there are some differences between them. First,
the LSDL procedure consists of five degrees of freedom. For example, any objec-
tive functions that satisfy the correspondence requirement can be used, and each
Lagrange multiplier can be initialized differently. Hence, different parameters can
be chosen for tackling different problems. On the other hand, DLM does not
emphasize this kind of freedom. It always chooses the total number of unsatisfied
clauses of the SAT problem as the objective function, and always initializes the
Lagrange multipliers with a fixed value. However, DLM employs, on top of the
discrete Lagrangian search, a number of different tuning heuristics for different
problems. For instance, it uses an additional tabu list to remember states visited,
and resets the Lagrange multipliers after a number of iterations.

Second, LSDL searches on a smaller search space than DLM. Since LSDL is
targeted for solving CSP’s, the set of constraints, which restrict valid assignments
for CSP’s, is incorporated in the discrete gradient operator. Thus, only valid
assignments are searched in LSDL. On the contrary, DLM lacks this kind of
restriction. Any possible assignments, including those are invalid for CSP’s, are
considered. As a result, the efficiency of DLM is affected.

Third, the two algorithms use different discrete gradient operators to perform
saddle point search. In DLM, the discrete gradient operator considers all Boolean
variables of the SAT problem as a whole and modifies one Boolean variable in each
update. However, in LSDL, the zero-one integer variables which correspond to a
variable of the CSP are grouped together and updated at the same time. Hence,
the discrete gradient operator used in LSDL is more suitable for solving CSP’s.
In addition, the discrete gradient operator of DLM uses the hill-climbing strategy

to update the Boolean variables. In this strategy, the first assignment which

102

Chapter 8 Concluding Remarks

leads to a decrease in the Lagrangian function is selected to update the current
assignment. In LSDL, the discrete gradient operator always modifies the zero-
one integer variables such that there is a maximum decrease in the Lagrangian
function.

In summary, since the LSDL framework explores the structure of CSP’s, it

can be regarded as a specialization of DLM for solving CSP’s.

8.3 Future Work

Our work represents a major step toward the understanding of heuristic repair
methods. Interesting problems remain. On the theoretical side, at least one im-
portant property of LSDL and other heuristic repair methods is still unknown.
Our experience suggests that GENET and LSDL terminate for solvable CSP’s.
However, under what condition(s), do the algorithms always terminate, if at all?
A possible approach to tackle this question is to investigate whether the conver-
gence properties of the continuous Lagrange multiplier method can be extended
for the discrete case. Furthermore, the five degrees of freedom of LSDL suggest
many possibilities for new heuristic repair algorithms. In our research, only a small
number of parameter combinations are investigated. Other parameters and their
interaction should be explored in the future. The new variable ordering heuristic
developed for GENET [58] should also be included in our LSDL framework. .
Our extension of LSDL for general CSP’s is preliminary. Only a few general
constraints are implemented. In the future, we should define new incompatibil-
ity functions for new constraints, such as the cumulative constraint, the diffn
constraint and the cycle constraint [2]. These general constraints are useful
for modeling complex real-life applications. Our proposed general formulation is
straightforward. However, its performance is much worse than that of the binary
formulation. We should further investigate other possible approach in the future.
The idea of dynamic illegal constraints is new. Although experiments show that

they can improve the performance of the search, the results are purely empirical.

103

Chapter 8 Concluding Remarks

Hence, we should further examine the theoretical aspect of this idea. In addi-
tion, the possibility of applying dynamic illegal constraints to other constraint
satisfaction techniques should be investigated.

Last but not least, the optimizational nature of the LSDL framework suggests
applying LSDL to tackle constraint satisfaction optimization problems and over-
constrained systems. A constraint satisfaction optimization problem (CSOP) is
a CSP with an objective function to be optimized. In LSDL, since a CSP can
be completely defined by the incompatibility functions, we can simply replace
the objective function of LSDL with the one required in CSOP. Hence, when
LSDL terminates, the solution returned will be an assignment that satisfies all
constraints and minimized the objective function. In an over-constrained system,
constraints are usually classified into hard constraints and soft constraints. Hard
constraints are the constraints that must be satisfied by the solution, while soft
constraints are those that can be violated. The goal is to find an assignment that
satisfies all hard constraints and minimizes the number (or cost) of violations of
soft constraints. In LSDL, an over-constrained system can be modeled as follows.
The incompatibility functions, which must be satisfied, is used to represent all
hard constraints of the system, and the objective function is constructed by the
soft constraints. In this way, over-constrained systems are handled in the same
manner as CSOP’s. Although these approaches for CSOP’s and over-constrained

systems are quite straightforward, the feasibility should be further confirmed.

104

Bibliography

1]

2]

8]

4]

[5]

H. M. Adorf and M. D. Johnston. A discrete stochastic neural network algo-
rithm for constraint satisfaction problems. In Proceedings of the International

Joint Conference on Neural Networks, San Diego, CA, 1990.

N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP.
Journal of Mathematical and Computer Modeling, 20(12):97-123, 1994.

J. F. Boyce, C. H. D. Dimitropoulos, G. vom Scheidt, and J. G. Taylor.
GENET and tabu search for combinatorial optimization problems. In World
Congress on Neural Networks, Washington D. C., 1995.

Y. J. Chang and B. W. Wah. Lagrangian techniques for solving a class of
zero-one integer linear problems. In Proceedings of International Conference

on Computer Software and Applications, IEEFE, pages 156-161, 1995.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, 1990.

[6] A. Davenport. FEztensions and Evaluation of GENET in Constraint Satis-

faction. PhD thesis, Department of Computer Science, University of Essex,

1997.

[7] A. Davenport, E. Tsang, C. Wang, and K. Zhu. GENET: A connection-

ist architecture for solving constraint satisfaction problems by iterative im-
provement. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (Seattle, WA), pages 325-330, 1994.

105

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In Proceed-

ings of the International Conference on Fifth Generation Computer Systems,

pages 693-702, 1988.

M. Dincbas, H. Simonis, and P. V. Hentenryck. Solving the car-sequencing
problem in constraint logic programming. In Proceedings of the Eighth Eu-

ropean Conference on Artificial Intelligence, pages 290-295, 1988.

A. E. Eiben, P-E Raue, and Zs. Ruttkay. GA-easy and GA-hard constraint
satisfaction problems. In Proceedings of the ECAI’94 Workshop on Constraint
Processing, 1994.

A. E. Eiben, P-E Raue, and Zs. Ruttkay. Solving constraint satisfaction
problems using genetic algorithms. In Proceedings of the First IEEE Congress
on Evolutionary Computing, pages 542-547. AAAI Press/MIT Press, 1994.

M. L. Fisher. The lagrangian relaxation method for solving integer program-

ming problems. Management Science, 27(1):1-18, 1981.

J. Frank, P. Cheeseman, and J. Allen. Weighting for godat: Learning heuris-
tics for GSAT. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pages 338-343. AAAI Press/MIT Press,
1996.

E. C. Freuder. The many paths to satisfaction. In M. Meyer, editor, Con-
straint Processing, LNCS 923, pages 103-119. Springer-Verlag, 1995.

I. P. Gent and T. Walsh. The enigma of SAT hill-climbing procedures. Tech-
nical report, Department of Artificial Intelligence, University of Edinburgh,
1992.

I. P. Gent and T. Walsh. Towards an understanding of hill-climbing pro-
cedures. In Proceedings of the Eleventh National Conference on Artificial
Intelligence (AAAI-93), pages 28-33. AAAI Press/MIT Press, 1993.

106

[17] A. M. Geoffrion. Lagrangian relaxation for integer programming. Mathemat-

ical Programming Study, 2:82-114, 1974.

[18] F. Glover. Tabu search part I. Operations Research Society of America
(ORSA) Journal on Computing, 1(3):109-206, 1989.

[19] F. Glover. Tabu search part II. Operations Research Society of America
(ORSA) Journal on Computing, 2(1):4-32, 1989.

[20] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[21] R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

[22] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT
Press, 1989.

[23] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring.
Computing, 39:345-351, 1987.

[24] M. R. Hestenes. Optimization Theory — The Finite Dimensional Case. Wiley
& Sons, NY, 1975.

[25] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers.
In R. S. Stepleman et al., editor, Scientific Computing, pages 55-64. North-
Holland, Amsterdam, 1983.

[26] J. H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, 1975.

[27] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization by
simulated annealing: an experimental evaluation; part 2 graph coloring and

number partitioning. Operations Research, 39(3):378-406, 1991.

[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

107

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

37]

V. Kumar. Algorithms for constraint-satisfaction problems: A survey. A[

Magazine, 13:32-44, 1992.

T. L. Lau and E. P. K. Tsang. Applying a mutation-based genetic algorithm
to processor configuration problems. In Proceedings of the Eighth Interna-

tional Conference on Tools with Artificial Intelligence, pages 17-24, 1996.

J-L. Lauriere. A language and a program for stating and solving combinato-

rial problems. Artificial Intelligence, 10(1):29-127, 1978.

J. H. M. Lee, H. F. Leung, and H. W. Won. Extending GENET for non-
binary CSP’s. In Proceedings of the Seventh IEEE International Conference
on Tools with Artificial Intelligence, pages 338-343, Washington D.C., USA,
November 1995. IEEE Computer Society Press.

J. H. M. Lee, H. F. Leung, and H. W. Won. Towards a more efficient stochas-
tic constraint solver. In Proceedings of the Second International Conference
on Principles and Practice of Constraint Programming, pages 338-352, Cam-

bridge, Massachusetts, USA, August 1996. Springer-Verlag, LNCS 1118.

J. H. M. Lee, H. F. Leung, and H. W. Won. A comprehensive and efficient
constraint library using local search. In Proceedings of the Eleventh Australian

Joint Conference on Artificial Intelligence, July 1998. (To appear).

J. H. M. Lee and V. W. L. Tam. Towards the integration of artificial neural
networks and constraint logic programming. In Proceedings of the Sizth In-

ternational Conference on Tools with Artificial Intelligence, pages 446-452,
1994.

J. H. M. Lee and V. W. L. Tam. A framework for integrating artificial
neural networks and logic programming. International Journal of Artificial

Intelligence Tools, 4(1&2):3-32, 1995.

A. K. Mackworth. Consistency in networks of relations. AI Journal, 8(1):99-
118, 1977.

108

[38]

[39]

[40]

[41]

[42]

[43]

[44]

B. Mazure, L. Sais, and E. Gregoire. Tabu search for SAT. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence (AAAI-97),
pages 281-285. AAAI Press/MIT Press, 1997.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-
scale constraint satisfaction and scheduling problems using a heuristic repair
method. In Proceedings of the Eighth National Conference on Artificial In-
telligence, pages 17-24. AAAI Press/The MIT Press, 1990.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts:
a heuristic repair method for constraint satisfaction and scheduling problems.

Artificial Intelligence, 58:161-205, 1992.

P. Morris. The breakout method for escaping from local minima. In Proceed-
ings of the Eleventh National Conference on Artificial Intelligence (Washing-
ton, DC), pages 40-45, 1993.

B. A. Nadel. Constraint satisfaction algorithms. Computational Intelligence,

5:188-224, 1989.

J. Platt and A. Barr. Constrained differential optimization. In Proceedings

of Neural Information Processing System Conference, 1987.

P. Prosser. Domain filtering can degrade intelligent backtracking search. In
Proceedings of the International Joint Conference on Artificial Intelligence,

pages 262-267, 1993.

[45] P. Prosser. Exceptionally hard problems. The comp.constraints newsgroup,

September 1994.

[46] M. C. Riff. From quasi-solutions to solution: An evolutionary algorithm to

solve csp. In Proceedings of the Second International Conference on Principles

and Practice of Constraint Programming, pages 367-381. Springer-Verlag,
1996.

109

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

I. Rivin and R. Zabih. An algebraic approach to constraint satisfaction prob-
lems. In Proceedings of the International Joint Conference on Artificial In-

telligence (IJCAI-89), pages 284-289, 1989.
B. Selman. Private Communication, July 1997.

B. Selman and H. Kautz. Domain-independent extensions to GSAT: Solv-
ing large structured satisfiability problems. In Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI-93), pages
290-295, 1993.

B. Selman and H. Kautz. An empirical study of greedy local search for
satisfiability testing. In Proceedings of the Eleventh National Conference on
Artificial Intelligence (AAAI-93), pages 46-51, 1993.

B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving lo-
cal search. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), pages 337-343. AAAI Press/MIT Press, 1994.

B. Selman, H. Levesque, and D. G. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the Tenth National Conference on
Artificial Intelligence (AAAI-92), pages 440-446. AAAI Press/MIT Press,
1992.

Y. Shang. Global Search Methods for Solving Nonlinear Optimization Prob-
lems. PhD thesis, Department of Computer Science, University of Illinois,

1997.

Y. Shang and B. W. Wah. A discrete lagrangian-based global-search method

for solving satisfiability problems. Journal of Global Optimization, 12(1):61-
100, 1998.

D. M Simmons. Nonlinear Programming for Operations Research. Prentice-

Hall, Englewood Cliffs, NJ, 1975.

110

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. J. Stuckey and V. Tam. Extending GENET with lazy arc consistency.

Technical report, Department of Computer Science, University of Melbourne,

1996.

P. J. Stuckey and V. Tam. Extending E-GENET with lazy constraint consis-
tency. In Proceedings of the Ninth IEEE International Conference on Tools
with Artificial Intelligence (ICTAI’97), 1997.

P. J. Stuckey and V. Tam. Improving GENET and E-GENET by new vari-
able ordering strategies. In Proceedings of the International Conference on

Computational Intelligence and Multimedia Applications (ICCIMA’98),1998.

P. J. Stuckey and V. Tam. Extending GENET with lazy arc consistency.
IEEE Transactions on Systems, Man, and Cybernetics, (To appear).

E. P. K Tsang and C. J. Wang. A generic neural network approach for
constraint satisfaction problems. In J. G. Taylor, editor, Neural Network

Applications, pages 12-22. Springe-Verlag, 1992.

B. W. Wah and Y. J. Chang. Trace-based methods for solving nonlinear
global optimization and satisfiability problems. Journal of Global Optimiza-
tion, 10(2):107-141, 1997.

B. W. Wah and Y. Shang. A discrete lagrangian-based global-search method
for solving satisfiability problems. In Proceedings of DIMACS Workshop on
Satisfiability Problem: Theory and Applications, 1996.

B. W. Wah and Y. Shang. Discrete lagrangian-based search for solving MAX-
SAT problems. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pages 378-383, 1997.

B. W. Wah, Y. Shang, and Z. Wu. Discrete lagrangian method for opti-
mizing the design of multiplierless qmf filter banks. In Proceedings of the

Fifteenth International Conference on Application Specific Array Processors,

pages 529-538. IEEE, 1997.

111

[65]

[66]

[67]

[68]

[69]

[70]

B. W. Wah, T. Wang, Y. Shang, and Z. Wu. Improving the performance of
weighted lagrange-multiplier methods for nonlinear constrained optimization.
In Proceedings of the Ninth International Conference on Tools with Artificial
Intelligence, pages 224-231. IEEE, 1997.

C. J. Wang and E. P. K. Tsang. Solving constraint satisfaction problems
using neural networks. In Proceedings of the IEE 2nd Conference on Artificial
Neural Networks, pages 295-299, 1991.

T. Warwick and E. P. K. Tsang. Using a genetic algorithm to tackle the
processors configuration problem. In Proceedings of ACM Symposium on

Applied Computing, pages 217-221, 1994.

T. Warwick and E. P. K. Tsang. Tackling car sequencing problems using a
generic genetic algorithm. Evolutionary Computation, 3(3):267-298, 1995.

H. W. Won. E-GENET: A stochastic constraint solver. Master’s thesis,
Department of Computer Science and Engineering, The Chinese University

of Hong Kong, 1997.

Z. Wu. The discrete lagrangian theory and its application to solve nonlin-
ear discrete constrained optimization problems. MSc thesis, Department of

Computer Science, University of Illinois, 1998.

112

CUHK Libraries

NRNTAm

DD3704285

