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摘要 

近年來，愈來愈多數據顯示，局部搜尋法中的試探性修復算法能夠有效地解 

決一些大型及困難的約束滿足問題（。3卩，3)。在這篇論文中，我們嘗試把試探性 

修復法與離散拉格朗日乘數法聯系起來。我們提供了 一種二步的變換方法， 

它能夠將任何二元約束滿足問題轉換成零一整數約束極小化問題。根據變換 

所得的極小化問題，我們提出了一個名叫〔SV^L的離散拉格朗日搜尋方案。 

LSVL包含五種不同的自由度，只要代入不同的參數，我們便能獲得不同效率 

及不同特性的離散拉格朗日搜尋算法。我們更證明了能夠利用〔SVH重建一個 

試探性修復的典型算法一GENET。這結果不但對了解GENET提供了一些理 

論基礎，更指出GENET的雙重觀點一一方面是試探性修復法，另一方面是離 

散拉格朗日乘數法。此雙重觀點使我們能夠進一步分析及研究GENET的各 

種變種。實驗結果證實我們重建的GENET與其他文獻上記載的GENET有著 

相同的迅速收欽特性°另外，我們的最好的GENET變種亦比重建的GENET 

更有效率。此外，我們更擴展CSVL去解決一般的約束滿足問題。我們發現 

• 只要將一般的約束滿足問題轉換成整數約束極小化問題，我們的•[便能 

直接地運用在這些問題上°實驗指出我們擴展的csv[在大部份的問題上都與 

一個擴展GENET的算法一E-GENET—有著相似的效率。 
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Abstract 

I n recent years, heurist ic repair algori thms, a class of local search methods, have 

demonstrated certain success on solving some large-scale and computat ional ly 

hard constraint satisfaction problems (CSP's). I n this thesis, we establish a con-

nection between heurist ic repair methods and the discrete Lagrange mul t ip l ie r 

method. We present a two-step t ransformat ion for convert ing b inary CSP's into 

zero-one integer constrained min imiza t ion problems. Based on the resultant min-

imiza t ion problem, a generic discrete Lagrangian search scheme CSVC is pro-

posed. CSVC has five degrees of freedom. By instant ia t ing i t w i t h different 

parameters, algori thms w i t h different efficiency and behavior can be obtained. 

We show that the G E N E T model, a representative heurist ic repair a lgor i thm, can 

be reconstructed by our CSVC f ramework. This result not only provides a theo-

ret ical foundat ion for better understanding of G E N E T , bu t also suggests a dual 

v iewpoint of G E N E T : as a heurist ic repair method and as a discrete Lagrange 

mul t ip l ie r method. Variants of G E N E T derived f rom bo th perspectives are exam-

ined. Benchmarking results conf i rm that our reconstructed G E N E T has the same 

fast convergence behavior as other G E N E T implementat ions reported in the l i t -

erature, and our best variant is more efficient than the reconstructed G E N E T . In 

addi t ion, we fur ther extend our CSVC f ramework for tackl ing general CSP's. By 

t ransforming any general CSP into an integer constrained min imiza t ion problem, 

the discrete Lagrangian search procedure CSVC can be applied directly. Experi-

ments show that the performance of our extended CSVC is comparable w i t h that 

of E - G E N E T , an extended G E N E T for efficient general CSP's solving, in most 

problems. 

iii 



Contents 

1 Introduction 1 

1.1 Constraint Satisfaction Problems 2 

1.2 Constraint Satisfaction Techniques 2 

1.3 Mot ivat ion of the Research 4 

1.4 Overview of the Thesis 5 

2 Related Work ^ 

2.1 Min-confl icts Heuristic 7 

2.2 GSAT 8 

2.3 Breakout Method 8 

2.4 G E N E T 9 

2.5 E - G E N E T 9 

2.6 D L M 10 

2.7 Simulated Annealing 11 

2.8 Genetic Algor i thms 12 
b 

2.9 Tabu Search 12 

2.10 Integer Programming 13 

3 Background 15 

3.1 G E N E T 15 

3.1.1 Network Architecture 15 

3.1.2 Convergence Procedure 18 

3.2 Classical Opt imizat ion 22 

iv 



3.2.1 Opt imizat ion Problems 22 

3.2.2 The Lagrange Mul t ip l ie r Method 23 

3.2.3 Saddle Point of Lagrangian Funct ion 25 

4 Binary CSP's as Zero-One Integer Constrained Minimization Prob-

lems 27 

4.1 From CSP to SAT 27 

4.2 From SAT to Zero-One Integer Constrained Min im iza t ion 29 

5 A Continuous Lagrangian Approach for Solving Binary CSP's 33 

5.1 From Integer Problems to Real Problems 33 

5.2 The Lagrange Mul t ip l ie r Method 36 

5.3 Exper iment 37 

6 A Discrete Lagrangian Approach for Solving Binary CSP's 39 

6.1 The Discrete Lagrange Mul t ip l ie r Method 39 

6.2 Parameters of CSVC 43 

6.2.1 Object ive Function 43 

6.2.2 Discrete Gradient Operator 44 

6.2.3 Integer Variables In i t ia l izat ion . . . • 45 

6.2.4 Lagrange Mul t ip l iers In i t ia l izat ion 46 

6.2.5 Condit ion for Updat ing Lagrange Mul t ip l iers 46 

6.3 A Lagrangian Reconstruction of G E N E T 46 

‘ 6.4 Experiments 52 

6.4.1 Evaluation of £<Sr>£(GENET) 53 

6.4.2 Evaluation of Various Parameters 55 

6.4.3 Evaluation of CSVC{UAX) 63 

6.5 Extension of CSVC 66 

6.5.1 Arc Consistency 66 

6.5.2 Lazy Arc Consistency 67 

6.5.3 Experiments 70 

V 
考 



7 Extending CSVC for General CSP's : Initial Results 77 

7.1 General CSP's as Integer Constrained M in im iza t i on Problems . . 77 

7.1.1 Formulat ion 78 

7.1.2 Incompat ib i l i t y Functions 79 

7.2 The Discrete Lagrange Mu l t i p l i e r Method 84 

7.3 A Comparison between the B inary and the General Formulat ion . 85 

7.4 Exper iments 87 

7.4.1 The A^-queens Problems 89 

7.4.2 The Graph-coloring Problems 91 

7.4.3 The Car-Sequencing Problems 92 

7.5 Inadequacy of the Formulat ion 94 

7.5.1 Insufficiency of the Incompat ib i l i t y Functions 94 

7.5.2 Dynamic I l legal Constraint 96 

7.5.3 Exper iments 97 

8 Concluding Remarks 100 

8.1 Contr ibut ions 100 

8.2 Discussions 102 

8.3 Future Work 103 

Bibliography 105 

vi 



List of Figures 

3.1 A CSP {U,D,C), where U = {ui,U2,us),Du, = Du, = Du, 二 

{ 1 , 2 , 3 } and C = { | u 1 - u 2 | = 2,u2 < u3} 17 

3.2 The G E N E T network of the CSP in Figure 3.1 17 

3.3 A osci l lat ing G E N E T network in synchronous update 19 

3.4 The network convergence of G E N E T 21 

4.1 A simple CSP and its corresponding G E N E T network 28 

6.1 A n arc inconsistent CSP and its corresponding G E N E T network • 68 

• • 

Vll 



List of Algorithms 

3.1 Convergence procedure of G E N E T 18 

6.1 The CSVC[N, A_?, h, /乂，U )̂ procedure 43 

6.2 A modi f ied input calculat ion procedure, that can detect lazy arc 

consistency, for G E N E T 68 

6.3 The h?.zy-CSVC{N, Z ^ , h, / - , U^) procedure 69 

• 

viii 



List of Tables 

5.1 Results of continuous Lagrangian approach on the N-qneens problems 38 

6.1 Results of CSVC{GENET) on the 7V-queens problems 53 

6.2 Results of CSVC{GENET) on the hard graph-coloring problems . . 54 

6.3 Results of N 、 — and N—iation} on the iV-queens problems . . . 56 

6.4 Results of N — o } and N、——、on the hard graph-coloring problems 57 

6.5 Results of N—。、and N—iation] on the t ight random CSP's . • . 57 

6.6 Results of l^^{many} and A^{one} on the iV-queens problems . . • • 58 

6.7 Results of A^{rnany} and Ag{one} OH the hard graph-coloring problems 58 

6.8 Results of A^^rnany} and Af{one} on the t ight random CSP's . . . . 59 

6.9 Results of h{random} and I^{greedy} OH thc iV-queens problems . . . 60 

6.10 Results of h{random} and h{greedy} oD. the hard graph-coloring prob-

lems GO 

6.11 Results of h{random} and Ig{greedy} OH the t ight landom CSP's . . . 60 

6.12 Results of 〜―；已} and 〜明） o n the iV-queens problems . • . 62 

. 6.13 Results of t / xo - /e } and f ^ { e ^ y } on the hard graph-coloring problems 62 

6.14 Results of U^^^^^^^y and t ^ { e ^ y } on the t ight random CSP's . . . 62 

6.15 Results of CSVC{UAX) on the iV-queens problems 64 

6.16 Results of CSVC{UAX) on the hard graph-coloring problems • . . 64 

6.17 T iming results of CSVC{MAX) on the t ight random CSP's . . . • 65 

6.18 Number of iterations and Lagrange mult ipl ier updates of CSVC{UAX) 

on the t ight random CSP's 66 

6.19 Results of Lazy-£«SP£(GENET) on the iV-queens problems . • • • 71 

ix 



6.20 Results of Lazy-£<SX>£(MAX) on the A^-queens problems 71 

6.21 Results of Lazy-£5X>>C(GENET) on the random permuta t ion gener-

at ion problems 72 

6.22 Results of L a z y - £ 5 P £ ( M A X ) on the random permuta t ion genera-

t ion problems 73 

6.23 Results of Lazy-£<Sr>£(GENET) on the art i f ic ia l problems 73 

6.24 Results of Lazy-£<Sr>£(MAX) on the art i f ic ia l problems 74 

6.25 Results of Lazy -£5P£(GENET) on the t igh t random CSP's w i t h 

arc inconsistency 75 

6.26 Results of Lazy-£<SX>£(MAX) on the t ight random CSP's w i t h arc 

inconsistency 75 

6.27 Results of Lazy-£5X>£(GENET) on the insoluble random CSP's . • 76 

6.28 Results of Lazy-£<SP£(MAX) on the insoluble random CSP's . . . 76 

7.1 Results of >C5X>£(GENERAL) on the A/"-queens problems modeled 

w i t h the + constraint 90 

7.2 Results of >C<S7^£(GENERAL) on the N-qneens problems modeled 

w i t h the among constraint 91 

7.3 Results of £5X>£(GENERAL) on the hard graph-coloring problems 92 

7.4 Results of >C5P>C(GENERAL) on the car-sequencing problems . . • 93 
— 

7.5 The value of the Lagrangian funct ion L{z, X) for different integer 

variables z and Lagrange mul t ip l iers A of a CSP 96 

7.6 Results of V>-CSVC(GENERAL) on the iV-queens problems . • • . 99 

7.7 Results of Ti-CSVC(GENERAL) on the hard graph-coloring problems 99 

* 

X 



Chapter 1 

Introduction 

Many problems found in art i f icial intelligence and computer science, such as tem-

poral reasoning, resource allocation, scheduling, t ime-tabl ing, configuration, di-

agnosis and satisfiabil i ty problems, can be formulated as constraint satisfaction 

problems (CSP,s). Because of the generality of CSP's, efficient algorithms for 

tackl ing CSP's are very important . Tree search methods and local search meth-

ods are two common classes of constraint satisfaction techniques. Experience 

shows that local search methods are more efficient than tree search methods for 

a number of large-scale and computat ional ly hard CSP's. However, local search 

methods are easily trapped in local min ima and fai l to return a solution. This 

thesis aims to explore a class of local search methods for solving CSP's and pro-

vide a connection between the local search methods and the Lagrange mult ip l ier 

method, a well-known constrained opt imizat ion technique. 

We show that the G E N E T model [66, 60, 7, 6]，a representative member of 

the class of heuristic repair methods, is closely related to the saddle point search 

of the Lagrange mult ip l ier method. This result not only gives us a formal char-

acterization of the heuristic repair methods, but also allows us to gain important 

insights into the various design issues of heuristic repair algorithms. In addit ion, 

the dual viewpoint of GENET, as a heuristic repair method and as a discrete La-

grange mult ip l ier method, suggests many possible modifications for the algorithm. 

By exploring different variants of G E N E T derived f rom both perspectives, better 
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Chapter 1 Introduction 

heurist ic repair a lgor i thms are derived. 

1.1 Constraint Satisfaction Problems 

A constraint satisfaction problem (CSP) [37] is a tup le [U,D,C), where U is a 

finite set of variables, D defines a domain Du wh ich contains a set of possible 

values for each u G U, and C is a f in i te set of constraints. Each constraint c G C 

is a relat ion defined over a subset of variables (i.e. c C Du^ X Du2 x . •. x ^¾¾)? 

restr ic t ing the combinat ion of values that can be assigned to the variables in this 

subset. A solution is an assignment of values f rom the domains to their respective 

variables so tha t al l constraints are satisfied simultaneously. We call such an 

assignment a consistent assignment of the CSP. I n th is thesis, we are concerned 

w i t h an impor tan t subclass of CSP's, i n which the domains are finite. 

The arity of a constraint is the number of variables involved in the constraint. 

A constraint is said to be n-ary i f i t is on n variables. I n general, a CSP may 

have constraints of any arity. A b inary CSP is one which contains unary and 

b inary constraints only. A label {u,v) [66] is a variable-value pair which repre-

sents the assignment of the value v to the variable u. Simi lar ly, a compound la-

bel {{ui,Vi), {u2,v2),..., {un,Vn)) [66] denotes the simultaneous assignment of the 

values v i , V2,. • . , ”n to the dist inct variables u i , u 2 , . . . , Un respectively. Hence, a 

solut ion of a CSP is a compound label containing al l variables and satisfying al l 

constraints in the CSP. 

1.2 Constraint Satisfaction Techniques 

CSP,s are, in general, NP-hard [5]. Any a lgor i thm for solving CSP's is l ikely to 

require exponential t ime in problem size in the worst case. Two different kinds 

of algori thms, namely tree search algori thms and local search algori thms, are 

used to tackle CSP's. Tree search algori thms are usually based on extension of 

par t ia l assignments and backtracking technique, where a partial assignment is an 

2 



Chapter 1 Introduction 

assignment of values to a subset of variables in the CSP. Ini t ia l ly, a tree search 

algori thm starts w i th an empty part ial assignment and extends incrementally the 

part ia l assignment by selecting an unassigned variable and assigning a value to 

the selected variable f rom its domain. I f the current part ia l assignment cannot 

be extended without violat ing any constraints, the algori thm backtracks to one 

of the previous variables and instantiates the variable w i th another untr ied value 

f rom its domain. As the process continues, the algori thm wi l l eventually either 

find a solution for the problem, or prove that the CSP has no solution. Since tree 

search algorithms are guaranteed to either return a solution i f one exists or prove 

the insolubil i ty of a CSP, they are sound and complete. 

Many tree search algorithms have been developed for solving CSP's. Exam-

ples are simple backtracking [42, 29], backjumping [42] and backmarking [42. 

In order to improve the performance, constraint propagation techniques, such as 

consistency algorithms [37, 29] and forward checking [21], are incorporated in tree 

search algorithms to reduce the search space of the algorithms. Various variable 

and value ordering heuristics [21, 29] are also used to further speed up the search 

process. Al though tree search algorithms can successfully solve many real-life 

problems, they become inefficient when the problem size increases. 

Another approach for constraint satisfaction is local search. Unlike tree search 

algorithms, local search algorithms are usually incomplete. In other words, they 

may not return a solution even i f one exists. Given a CSP {U, L>, C) , a local search 

algorithm operates as follows. The algorithm first generates an in i t ia l assignment 

(or state), which assigns each variable u G U a value f rom its domain Du, for the 

CSP. I t then continues to make local adjustments, which depend on specific local 

search algorithm, to the assignment unt i l a solution is obtained. Various local 

search algorithms, such as the min-conflicts heuristic [39, 40], GSAT [52, 49, 51, 

13], the breakout method [41], GENET [66, 60, 7, 6], E -GENET [32，33, 69] and 

D L M [62，54, 53], are developed in recent years. They have been found to be 

effective in solving certain large-scale and computationally hard CSP,s. 

A n important property of local search algorithms is that they can be trapped in 
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Chapter 1 Introduction 

a non-solution state, called a local min imum, in which no further local adjustment 

can be made. Either random restart [39, 40，52] or modif ication of the landscape 

of search surface [41] are proposed for escaping f rom local minima. In chapter 2, 

we review a number of these local search methods. 

1.3 Motivation of the Research 

Although a number of efficient local search algorithms are developed for solving 

CSP's, l i t t le work has been done on understanding why these methods have such a 

good performance. Min ton et al. [40] provided a statistical model and probabilistic 

analysis for the min-conflicts heuristic for random CSP's. Gent and Walsh [15, 

16] investigated various features of the GSAT algorithm. They evaluated the 

importance of greediness [15, 16], randomness [15] and hi l l -c l imbing [15, 16] of 

GSAT on some random SAT problems. Since different local search algorithms 

always have certain degrees of variation, analysis based on one method may not 

be applicable to the others. 

Local search methods, such as the breakout method, GENET and E-GENET, 

rely on modify ing the landscape of the search surface to escape f rom local minima. 

Al though the idea is simple and intui t ive, l i t t le is known theoretically about why 

and how they work so well. Based on the breakout method, Morris [41] gave some 

insights on the advantage of this approach and provided a physical analogy for 

the algorithm. However, a theoretical explanation does not exist. 

These situations motivate us to analyze the local search methods for CSP's 

and to provide some theoretical foundations for these methods. In our research, 

we concentrate our attention on a class of local search algorithms derived from 

the heuristic repair method. These algorithms include the min-conflicts heuristic, 

GSAT, the breakout method, GENET and E-GENET. The energy perspective of 

GENET [35, 36], a representative of heuristic repair methods, suggest an optimiza-

t ion approach for constraint satisfaction. This observation motivates us to inves-

tigate the relation between heuristic repair methods and constrained optimization 

4 



Chapter 1 Introduction 

techniques. By exploring the s imi lar i ty between these two methods, a connection 

between G E N E T and a fo rm of the Lagrange mul t ip l ie r method [24, 55], a well-

known technique for solving constrained opt imizat ion problems, is established. As 

a result, better understanding of the local search methods is achieved. 

1.4 Overview of the Thesis 

The thesis is organized as follows. Chapter 2 gives a br ief review of various lo-

cal search methods. The min-confl icts heuristic, GSAT, the breakout method, 

G E N E T , E - G E N E T , D L M , simulated annealing, genetic algori thms, tabu search 

and integer programming are considered. Chapter 3 provides the necessary back-

ground for the thesis. The G E N E T model and the Lagrange mul t ip l ier method 

are described. 

Based on the G E N E T model, we present a two-step transformat ion for con-

vert ing any binary CSP into a zero-one integer constrained min imizat ion problem 

in chapter 4. The first step of the transformation gives a SAT representation 

of the G E N E T network, while the second step constructs the resultant zero-one 

integer constrained min imizat ion problem f rom the transformed SAT problem. 

In chapter 5, we further transform the zero-one integer constrained min imizat ion 

problem into one in the real space, and apply the Lagrange mul t ip l ier method to 

solve the resultant problem. Al though this approach is viable, i t is computation-

ally expensive. 

Chapter 6 describes the discrete Lagrange mul t ip l ier method [62，54, 53] for 

solving binary CSP's. A generic scheme CSVC, which defines a class of discrete 

Lagrangian search algorithms, is introduced. We show that the G E N E T model is 

equivalent to an instance of CSVC. Variants and possible extension of CSVC are 

investigated. The performance of the variants on different CSP's are also evalu-

ated. In chapter 7, we extend CSVC for tackl ing general CSP's. The difference 

between the binary and the general formulat ion is discussed. Various experiments 
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Chapter 1 Introduction 

are performed to evaluate our proposed formulation. Some in i t ia l results are ob-

tained. A n inadequacy of the general formulat ion and a possible solution are also 

considered. 

Chapter 8 concludes the thesis by summarizing our contributions and l isting 

some possible directions for future research. 
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Chapter 2 

Related Work 

This chapter briefly reviews some local search methods related to our research. 

The min-confl icts heuristic, GSAT, the breakout method, G E N E T , E - G E N E T 

and D L M are well-known local search methods for solving SAT and CSP's. In the 

following, we describe these methods according to their chronological appearances. 

In addit ion, other opt imizat ion techniques based on local search, such as simulated 

annealing, genetic algorithms, tabu search and integer programming, are presented 

at the end of this chapter. 

2.1 Min-conflicts Heuristic 

Based on the Guarded Discrete Stochastic (GDS) network [1], M in ton et aL pro-

posed a heuristic repair method for CSP's. The method starts w i t h an in i t ia l , 

possibly inconsistent, assignment and continues to repair the assignment unt i l a 

solution is obtained or some terminat ing conditions, such as CPU t ime l im i t , are 

met. A t each point of the search, the method repairs the assignment according 

to the min-conflicts heuristic [39, 40], which selects a variable currently violat ing 

some constraints and assigns i t a value that minimizes the number of constraint 

violations w i t h ties being broken randomly. 

The min-conflicts heuristic has been found to be very successful on certain 
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Chapter 2 Related Work 

CSP's, such as the scheduling problem for the Hubble Space Telescope, the N-

queens problems and graph-coloring problems [39, 40]. Experiments show that 

i t is much better than existing backtracking tree search algorithms. However, a 

potential problem of the min-conflicts heuristic is that the search can settle on an 

assignment in which no further repair can be made. Such an assignment is usually 

referred to as a local m in imum of the search space. The min-conflicts heuristic 

does not have any special mechanism to resolve this situation. I t relies on random 

restart to bring the search out of local minima. 

2.2 GSAT 

GSAT [52] is a greedy local search method for solving SAT problems. The al-

gor i thm begins w i th a randomly generated t ru th assignment. I t then flips the 

assignment of variables to maximize the total number of satisfied clauses. The 

process continues unt i l a solution is found. Similar to the min-conflicts heuristic, 

GSAT can be trapped in a local min imum. In order to overcome this weakness, 

GSAT simply restarts itself after a predefined max imum number of flips are tried. 

GSAT has been found to be efficient on hard SAT problems and on some 

CSP's, such as the A^-queens problems and graph-coloring problems [52]. Various 

extensions to the basic GSAT algorithm include mix ing GSAT w i th a random 

walk strategy [49, 51], clause weight learning [49, 13], averaging in previous as-

signments [49] and tabu-like move restrictions [16]. These modifications are shown 

to boost the performance of GSAT on certain kinds of problems. 

2.3 Breakout Method 

The breakout method [41], which has mechanism for escaping f rom local minima, 

is an iterative improvement method for solving CSP's. In this method, each 

constraint of a CSP is considered as a set of incompatible tuples. A weight, in i t ia l ly 

set to 1, is associated w i th each incompatible tuple. The cost of an assignment is 
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Chapter 2 Related Work 

the sum of the weights of violated tuples in that assignment. Similar to the min-

conflicts heuristic [39, 40], the breakout method minimizes the cost of assignment 

unt i l i t reaches a local min imum. A t that point, the weights of current violating 

tuples are increased to allow the search to continue. 

Since the breakout method modifies the cost of an assignment, i t may get 

trapped in inf inite loops. However, experiments on SAT problems and graph-

coloring problems show that breakout almost always finds a solution i f one ex-

ists [41:. 

2.4 GENET 

The GENET model is a generic neural network, first proposed by Wang and 

Tsang [66, 60], for solving binary CSP's. In this model, a binary CSP is repre-

sented by a network. Each possible label of CSP is denoted by a label node and 

each incompatible tuple of a binary constraint is represented by a weighted con-

nection. A convergence procedure, based on the min-conflicts heuristic [39, 40], 

is used to search for a solution. As in the breakout method [41], GENET modi-

fies the weight of violated connections to help escaping f rom local maxima. This 

technique is referred to as the heuristic learning rule of GENET. 

Davenport et al. [7, 6] extended GENET for handling general constraints. 

Three types of general constraints, namely the i l l e g a l constraint, the atmost 

constraint and the no tequa l constraint, are implemented. Experimental results 

of the hard graph-coloring problems, the randomly generated CSP's and the car 

sequencing problems confirm that GENET is more efficient than existing iterative 

improvement methods, such as GSAT and the heuristic repair method [7, 6]. A 

detailed description of the binary subset of GENET is given in chapter 3. 

2.5 E-GENET 

E-GENET [32, 69] extends the GENET model [66, 60, 7, 6] for solving general 

CSP's. I t uses a different network architecture for problem representation. Unlike 
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Chapter 2 Related Work 

the GENET model, each variable of a CSP is represented by a single variable node 

and each constraint is represented by a constraint node. The penalty value of each 

incompatible tuple is stored in corresponding constraint node. A convergence 

procedure and a heuristic learning rule similar to that in G E N E T are used for 

solution searching. 

Since E -GENET induces the problem of storing a large number of penalty 

value in a constraint node, Lee et aL [32, 69] introduced different storage schemes 

for different types of constraints to overcome this weakness. Several optimiza-

tions [33，69], such as the introduction of intermediate node, the new assignment 

scheme of in i t ia l penalty values, the concept of contr ibut ion and the new learning 

heuristic, are also proposed to further improve the performance. A comprehen-

sive constraint l ibrary [34, 69], which consists of linear ari thmetic constraints, the 

atmost constraint, the disjunctive constraint and a set of global constraints f rom 

CHIP [2] are constructed. The performance of E -GENET compares favorably 

against that of CHIP [8], a state of the art implementation of tree search algo-

r i thms, in various benchmarks, such as the iV-queens problems, the graph-coloring 

problems, the scheduling problems, the channel assignment problems, the Hamil-

tonian cycle problems and the Mystery Shopper Problem [32, 33, 34, 69 . 

2.6 DLM 

D L M [62, 54, 53] is a discrete Lagrangian-based global search method of solving 

SAT problems. In this method, a SAT problem is first transformed into a discrete 

constrained optimization problem. The discrete Lagrange mult ipl ier method is 

then applied to solve the resultant opt imization problem. W i t h the help of La-

grange multipl iers, D L M can escape from local min ima and continue the search 

without restarting the entire algorithm. D L M generally outperforms the best ex-

isting methods and can achieve an order of magnitude speedup for some SAT 

problems [62，54, 53]. I t also gives certain success in other problems, such as the 

MAX-SAT problems [63，53] and the design problem of multiplierless Q M F filter 
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banks [64，53]. 

Wu [70] further generalized the discrete Lagrange mult ip l ier method for solving 

discrete opt imizat ion problems. In this extension, the necessary conditions for 

saddle points, and the relation between constrained local m in ima and saddle points 

of the Lagrangian function are given. Hence, a strong mathematical foundation 

for the discrete Lagrange mult ipl ier method is provided. 

2.7 Simulated Annealing 
* 

Simulated annealing [28] is an opt imizat ion technique inspired by the annealing 

process of solids. I t can escape from local min ima by allowing a certain amount of 

worsening moves. Consider an optimization problem, every possible state of the 

problem is associated w i th an energy E. In each step of simulated annealing, the 

algori thm displaces f rom current state to a random neighboring state and com-

putes the resulting change in energy AE. I f AE < 0, the new state is accepted. 

Otherwise, the new state is accepted w i th a Boltzmann probabi l i ty e~^^ /^ where 

T is a temperature parameter of the process. A t high temperature T , the Boltz-

mann probabil i ty approaches 1 and the algori thm searches randomly. As the 

temperature decreases, movements which improve the quality of the search are 

favored. The temperature usually decreases gradually according to an annealing 

schedule. I f the annealing schedule cools slowly enough, the algori thm is guaran-

teed to find a global minimum. However, this theoretical result usually requires 

an infinite amount of t ime. 

Some work has been carried out on using simulated annealing to solve CSP's. 

Johnson et al. [27] investigated the feasibility of applying simulated annealing 

for solving graph-coloring problems. Selman and Kautz [50] compared the per-

formance of simulated annealing and that of GSAT on the SAT problems. Since 

much effort expended by simulated annealing in the in i t ia l high temperature phase 

is wasted, simulated annealing usually takes a longer t ime to reach a solution. 
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2.8 Genetic Algorithms 

Genetic algorithms [26] are heuristic search techniques for tackl ing combinatorial 

opt imizat ion problems. They are derived f rom the evolution processes in nature. 

In genetic algorithms, a population of chromosomes, which represent states o f the 

problem, is used to explore the search space of the problem. A fitness function 

is associated w i th the population to determine how fit a chromosome is. During 

each generation, new chromosomes are reproduced by crossover and mutat ion, 

and added to the population. Chromosomes are selected to survive f rom one 

generation to another by a selection function. Unf i t chromosomes are discarded 

during this selection phase. As the process proceeds, the algorithms wi l l eventually 

obtain the fittest chromosome, which corresponds to the opt imal solution of the 

problem. 

Eiben et aL [11, 10] evaluated the performance of genetic algorithms on some 

CSP's, such as the N-qneens problems, the graph-coloring problems, the traffic 

lights problems and the Zebra problems. Rif f [46] developed new fitness func-

t ion and genetic operator to improve the performance of genetic algorithms for 

solving CSP's. Warwick and Tsang apply genetic algorithms for solving the car 

sequencing problems [68] and the processors configuration problems [67]. Lau and 

Tsang [30] also introduced a mutation-based genetic algori thm to tackle proces-

sors configuration problems. Their approach is shown to be more efficient than 

other published techniques. 

2.9 Tabu Search 

Tabu search [18, 19, 20] is a sophisticated local search method that can escape 

from local minima. I t maintains a tabu list of prohibited search states to prevent 

the algorithm from visit ing the same search states twice. W i t h the help of the 

tabu l ist, non-improving moves are allowed. In general, a tabu search algorithm 

can be realized as follows. Init ial ly, a state of the problem is selected randomly 
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as the starting point of the search. This state is regarded as the best solution 

obtained so far. A set of states which are in the neighborhood of the current state 

and are not in the tabu list is collected. The best state in this set is selected as the 

next state of the search. I f the new state improves upon the best solution found 

so far, i t becomes the new best solution. The tabu list is also updated according 

to some predefined criteria. The search continues unt i l an acceptable solution is 

found. 

Tabu search has been applied for solving different CSP's. Some examples are 

the graph-coloring problems [23], the radio links frequency assignment problems [3 

and the SAT problems [38]. 

2.10 Integer Programming 

Lagrangian relaxation [17, 12] is a well-known approach for integer programming. 

Consider an integer linear programming problem P, 

rj • —T ~* 

Zp 二 m m c x 

subject to 

h l < 6, 

^x<d, 

X > 0 and integral 

. where 6, c, d^ x are vectors, A , B are matrices of conformable dimensions and the 

constraints B ^ > d have some special structure which allow the corresponding 

integer linear programming problem to be solved efficiently. The Lagrangian re-

laxation method defines a Lagrangian problem LR, 

^LR{u) 二 m in c^x + u^[Ax — b) 

subject to 

Bx < d, 

X > 0 and integral 
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where u > 0 is a vector of Lagrange multipl iers. Because of the special structure 

of the constraints B f < d, the resultant Lagrangian problem LR is easier to solve 

than the original problem P. Since the opt imal value ZLn{u) of the Lagrangian 

problem LR is guaranteed to be less than or equal to the opt imal value Zp of 

the original problem P, the Lagrangian relaxation method can be used to provide 

lower bounds in branch and bound algorithms for solving the integer linear pro-

gramming problem. In addition, Lagrangian relaxation can be used as a medium 

for selecting branching variables and choosing the next branch to explore. 

Freuder [14] pointed out that there are many possible paths to constraint 

satisfaction. Besides backtracking, h i l l cl imbing, neural networks and genetic 

algorithms, integer programming is also a possible approach for solving CSP's. 

R iv in and Zabih [47] developed an algebraic method for solving CSP's. In their 

approach, a CSP is converted into an integer linear programming problem wi th 

zero-one integer variables. The constraints of the CSP is represented by a set of 

linear inequalities. The transformed integer programming problem is then solved 

by polynomial mult ipl icat ion. 

f 
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Chapter 3 

Background 

This chapter provides the background to the thesis. A local search method, called 

G E N E T , for solving CSP's is reviewed. Furthermore, a descript ion of opt imiza-

t ion problem is given. The classical Lagrange mul t ip l ie r method for handl ing 

constrained opt imiza t ion problem is also presented. 

3.1 GENET 

The G E N E T model [66, 60, 7, 6] is a connectionist architecture for solving CSP's. 

I t consists of two components, namely a network architecture and a convergence 

procedure. The network architecture gives the network representation of a CSP, 

whi le the convergence procedure is an i terat ive improvement a lgor i thm for solution 

searching. I n the fol lowing, we l im i t our discussion to the G E N E T model for 

solving b inary CSP's. 

3.1.1 Network Architecture 

A G E N E T network M [66, 60, 7, 6] is constructed by a set of label nodes and node 

connections. Consider a CSP (U,D,C). Each variable i G U is represented by a 

cluster of label nodes〈i,j), one for each value j G D{. Since there is a one-one 

correspondence between a label and a label node, we use the same notat ion to 
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denote them. Each label node ( z , j ) is associated w i t h an output V{i,j), which is 1 

i f value j is assigned to variable i , and 0 otherwise. A label node is said to be on 

i f i ts ou tput is 1; otherwise, i t is off. 

A binary constraint c on variables ii and i2 is represented by weighted con-

nections between incompat ib le label nodes in clusters ii and i<i. Two label nodes 

{ i i J i ) and {i2J2) are connected i f ii = ji and “ = j2 violates c. The weight 

W(^ij){k,i) of each connection ( ( i , j ) , (A ; , / ) ) , in i t ia l l y set to - 1 , is always a negative 

integer. The weights are modif ied dur ing the learning process described later. 

The input /〈, j》to a label node { i J ) is defined as the weighted sum of output 

of al l i ts connected label nodes. Let A{Af, { i J ) ) be the set of al l label nodes 

connected to { i , j ) i n network Af. The input /〈‘，)> is 

hi , j ) = Y ^ ^{ i j ){k, i )y{k, i ) ' (3.1) 
{k,i)eA{Af,{ij)) 

A state S of a G E N E T network M is a tuple ( V , W), where V = ( . . •, V(ij),...) is 

a vector of outputs for al l label nodes ( i , j ) in J^ and W = (. • •，W〈i，j〉〈fc，/》,.• .）is a 

vector of weights for al l connections ( ( z , j ) , {k,l)). A state is valid i f exactly one 

label node in each cluster is on. A solution state is a val id state w i t h the input to 

al l on label nodes being zero. 

A n energy function of a G E N E T network N and a state S is defined as 

E[M,S)= Y . y{i.)W^^.m,l)V^k^)• (3.2) 
((i,j),(k,l))6Af 

I n other words, the funct ion returns the sum of weight of al l v io lated connections. 

I t also gives a measure of the "goodness" of a state <S i n terms of the to ta l weight 

of v iolated connections. Al ternat ively, the energy funct ion can also be defined as 

the sum of input to al l on label nodes [35, 36]. Let 0{Af,S) be the set of al l on 

label nodes of a network M and a state S. We have 

E'{M,S)= Y . I(i,j). (3.3) 
{i,j)eo{M,s) 

Since every violated connections is summed twice in (3.3)，E'{Af^ S) 二 2E(J^,S). 

I n subsequent discussion, def ini t ion (3.2) is adopted. 
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£ { 1 , 2 , 3 } 

^ir& 
{ 1 ,2 ,3 } { 1 , 2 ,3 } 

Figure 3.1: A CSP (U, D, C), where U = { u i , u2, w3}, Du, = Du^ 二 Du, = {1 ,2 ’ 3} 
and C = {\ui — u2| = 2,u2 < u3} 

Variable: ^ i ^2 U3 

A A A 
..1 ^v><M J ^ 
g V?< ^ ^ ^ ^ 〜?,"； Z / "wf. 
I 2 S O ^ ^ t 

3 *f^^^^^^^^f^^ 
\J \J \J 

• - on label node 
〇 - o f f label node 

Figure 3.2: The GENET network of the CSP in Figure 3.1 

For a GENET network w i th negative weights, E{Af,S) is always non-positive. 

A t a solution state 5o, all constraints are satisfied. The energy E{Af, So) is 0, which 

is a global max imum value. Hence, a CSP is solved when the energy E{Af,S) is 

equal to zero. 

Figure 3.1 shows a CSP w i th three variables W1,W2,W3, each w i th a domain 

{ l , 2 , 3 } , and two constraints \ui — U2| = 2 and U2 < u3. The corresponding 

GENET network is shown in Figure 3.2. The network consists of three clusters of 

label nodes, one for each of the variables u i , U2 and u3. Connections are established 

between any two incompatible label nodes. For example, since the assignment 

u i = l,U2 = 1 violates the constraint \ui — U2| = 2, there is a connection between 
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label nodes ( u i , l ) and (w2, l ) . The weights of al l connections are set to - 1 

in i t ia l ly . The state i l lustrated, w i t h the label nodes ( w i , 3 ) , ( u 2 , l ) and (w3,2) on, 

represents the assignment Ui = 3, U2 二 1 and u3 二 2. Since the energy of this 

state is zero, i t is a solut ion state of the network. 

3.1.2 Convergence Procedure 

The G E N E T convergence procedure [66, 60, 7, 6] out l ined i n A l g o r i t h m 3.1 is 

defined for solving CSP's. I t changes the state of a G E N E T network continuously 

un t i l a solut ion state is reached. 

procedure GENET-Convergence 
begin 

in i t ia l ize the network to a random val id state 
loop 

{State update rule} 
for each cluster i n paral lel do 

calculate the input of each label nodes 
select the label node w i t h m a x i m u m input to be on next 

end for 
i f al l label nodes' output remain unchanged t h e n 

if the input to al l on label nodes is zero then 
terminate and re turn the solut ion 

else 
{Heuristic learning rule} 
update al l connection weights by Ŵ〈1=j〈、0 = ^ ( i j ) (k , i ) — ^{ i , j )^ {h) 

end if 
end if 

end loop 
end 

Algo r i t hm 3.1: Convergence procedure of G E N E T 

In i t ia l ly , a label node in each cluster is selected to be on randomly; others are 

off. This corresponds to assigning arb i t rar i ly a value to each variable in a CSP. 

Next , the state update rule transforms the G E N E T network f rom one val id state 

to another by min imiz ing the number of constraint violat ions. A solut ion is found 

when al l on label nodes have zero input . Effectively, the state update rule carries 
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Variable: Ui U2 Variable: Ui u2 

"1 P\~~P\ , 1 A ~ " A j j 
5 《 
^ 2 ld——p 2 m—\0 

\J \J \J \J 
眷 - o n label node • — on label node 
〇 - off label node 〇 - off label node 

(a) State 1 (b) State 2 

Figure 3.3: A osci l lat ing G E N E T network i n synchronous update 

out an op t im iza t ion process for the energy funct ion E { J ^ , S ) un t i l a zero energy 

is obtained. 

Dur ing the state updat ing process, the clusters can be updated in paral lel 

either synchronously or asynchronously. I n synchronous update, al l clusters cal-

culate the input and update the state of their label nodes at the same t ime. 

A l ternat ive ly , each cluster can per form input calculat ion and state update inde-

pendent ly in asynchronous update. Synchronous update can cause oscillations 

between a number of states indef ini tely [7, 6]. For instance, consider a G E N E T 

network w i t h four label nodes {u i , 1), ( u i , 2 ) , (u2,1) and (w2,2), and two connec-

tions ( { u i , 1〉，(U2,1)) and ( ( u i , 2 ) , (w2,2)) shown in Figure 3.3. The weight of each 

connection is - 1 . Suppose the G E N E T network is i n state 1 (Figure 3.3(a)), w i t h 

. label nodes ( u i , l ) and (w2, l ) on, in i t ia l ly . I n synchronous update, we calculate 

the inputs to each label node at the same t ime, and get I(ui,i) 二 —1, ^(ui,2) = 0, 

/〈以2，1〉= - 1 and I(u2,2) = 0. Hence, the network changes its state to state 2 (Fig-

ure 3.3(b)), w i t h label nodes {ui,2) and {u2,2) on. Further state update w i l l br ing 

the network back to state 1 again. The whole process repeats and the G E N E T 

network oscillates between these two states indefinitely. On the other hand, in 

our experience, asynchronous update always find a solut ion i f one exists. I n a 

sequential implementat ion, asynchronous update can be simulated by updat ing 
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each cluster i n sequence in a predefined order. 

The state of the label nodes in each cluster are updated according to their 

inputs. Basically, the label node w i t h the m a x i m u m input is selected to be on 

next. However, there could be more than one label node w i t h the m a x i m u m 

input . I n this case, the fol lowing heurist ic rule is adopted. Let P be the set 

of label nodes w i t h the m a x i m u m input . I f the current on label node is in P , 

i t remains on. Otherwise, a random label node returned by r a n d ( P ) is selected 

to be on, where r a n d ( F ) is a funct ion re turn ing a random element f rom a set 

Y, Since the label node w i t h m a x i m u m input corresponds to an assignment w i t h 

fewer constraint violat ions, this updat ing strategy is a direct appl icat ion of the 

min-confl icts heurist ic [39，40]. 

A G E N E T network can be t rapped in a local maximum, wh ich is a stable state 

in which the state updat ing process fails to make fur ther improvement and yet 

some constraints are violated [66, 60, 7, 6]. I n other words, at a local m a x i m u m 

Si, E{Af, Si) < 0 and E{Af,Si) > E{Af,Sn) for al l i ts neighboring states Sn-

Obviously, a local m a x i m u m does not correspond to a solut ion of a CSP. In order 

to escape f r om a local max imum, the heurist ic learning rule is used. Let an 

iteration of the convergence procedure constitutes one pass over the outermost 

loop of A lgo r i t hm 3.1. The heuristic learning rule adjusts the connection weights 

as follows [66, 60, 7, 6], 

^( i : - ) (M) 二 W“、k , i、 - l 〉 V ^ 〉 （3.4) 

where W^-力〈知,》is the weight of the connection ( ( z , j ) , {k, l)) and V〈:，》is the output 

of the label node { i , j ) i n the 5th i terat ion. This heurist ic learning rule has two 

effects on the convergence procedure. F i rs t , weight update decreases the energy 

associated w i t h the local max imum. Hence, perhaps w i t h more than one weight 

updates, the local max ima l i t y is destroyed. Second, since the weights of v iolated 

connections become more negative after learning, these connections are less l ikely 

to be violated again in future state update. Note that this heurist ic learning rule 

is similar to the breakout method [41]. 
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Variable: ^ i ^2 u3 Variable: ^ i ^2 u3 

1 Q i A 1 A A A 

! 1 ¾ ! ¾ 1 ! ^ ^ ¾ 
� ^ ^ ' ^ y 

• - on label node • - on label node 
〇 - off label node 〇 - o f f label node 

(a) State 1 (b) State 2 

Figure 3.4: The network convergence of G E N E T 

Connection weight learning not only affects the local max imum, but also af-

fects other states w i t h constraints v io lated in the max imum. Hence, new local 

m a x i m u m may be created [7]. Furthermore, learning may block potent ia l paths 

to a solut ion [41]. However, i t is observed that this requires the constraints to 

interact local ly i n a specific "un lucky" manner and the probabi l i ty of this k ind of 

interact ion for large CSP's is very small [41 • 

We use the G E N E T network of the CSP shown i n Figure 3.1 to i l lustrate the 

network convergence of the G E N E T model. Figure 3.4 shows a state t ransi t ion 

f rom state 1 to state 2 of the G E N E T network. State 1 (Figure 3.4(a)), w i t h an 

energy —2, has the label nodes (wi, 1), (^2,2) and (w3,1) on, and the weights of 

al l connections being equal to —1. In sequential implementat ion, the convergence 

procedure, which repairs each cluster U1,U2 and u3 in sequence, works as follows. 

Since al l label nodes in cluster Ui share the same inpu t , label node (u i , 1) remains 

on in state 2. I n cluster U2, the inputs to each label node are I{u2,1) = —2,1{u2,2)= 

—2 and I{u2,3) = _ 1 . Hence, label node (^2,3) is selected to be on next. Af ter 

tha t , al l label nodes in cluster u3 get the same input . The state updat ing process 

ends w i t h cluster U3 unaltered. The result ing state shown in Figure 3.4(b) has 

an energy —1 and is a local max imum. Since any fur ther state update w i l l result 
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i n no state change, the heurist ic learning rule is act ivated to mod i fy the weight 

^<w2,3>(w3,1> to —2. The stabi l i ty of the G E N E T network is thus destroyed and the 

state update rule can again be applied to maximize the energy of the network. 

3.2 Classical Optimization 

Opt im iza t ion problems belong to a class of impor tan t problems i n our dai ly life. 

Many complex problems arising in business or i n industry, such as decision mak-

ing, resource al locat ion and scheduling, can be regarded as opt imiza t ion problems. 

These problems usually require a decision maker to choose f r om many possible 

alternatives the one that y ie ld an op t ima l performance. I n this section, a formal 

descript ion of op t imiza t ion problems is given. Furthermore, the Lagrange mu l t i -

pl ier method, a classical method for solving constrained opt imiza t ion problems, 

is described. 

3.2.1 Optimization Problems 

A n optimization problem is a problem of min imiz ing (or max imiz ing) a mathe-

mat ica l funct ion of one or more variables [24, 55]. W i t h o u t loss of generality, only 

m in im iza t ion problems are discussed. I n a min imiza t ion problem, the mathemat i -

cal funct ion to be min imized is known as the objective function of the problem. A 

local minimum is an assignment of values to the variables which gives the smallest 

value of the object ive funct ion among its neighborhoods. A global minimum is an 

assignment which minimizes the objective funct ion [24, 55]. 

I n general, any min imiza t ion problem can be classified in to two different types, 

namely unconstrained minimization problem and constrained minimization prob-

lem [24, 55]. I n unconstrained min imiza t ion problems, there are no restrictions 

on the values assigned to the variables. This k ind of problems always have the 

form, 

m i n f ( x ) (3.5) 
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where x = { x i , . . .,Xn) is a vector of variables, "m in " is the abbreviat ion for 

m in im iza t ion and f { x ) is the object ive funct ion to be min imized. 

Constrained min im iza t ion problems are represented as follows, 

m i n f { x ) (3.6) 

subject to gi{x){<^ = , > } 0 , i = 1 , . . . , m (3.7) 

where x = ( a ; i , . . . , Xn) is a vector of variables, "m in " is the abbreviat ion for min i -

mizat ion and f { x ) is the object ive funct ion to be min imized. The equations and/or 

inequalit ies in (3.7) are the constraints of the problem, restr ic t ing the values that 

the variables x can take. A n assignment which satisfies al l constraints is said 

to be feasible] otherwise, i t is infeasible [24, 55]. A constrained global minimum 

is a feasible assignment which minimizes the object ive funct ion of the problem. 

Throughout the discussion, we concentrate our a t tent ion on min imiza t ion w i t h 

equal i ty constraints (i.e. gi{x) 二 0, i = 1,...，m). 

3.2.2 The Lagrange Multiplier Method 

A min imiza t ion problem w i t h equali ty constraints is formulated as, 

m i n f { x ) (3.8) 

subject to 9i{x) = 0, i — 1 , . . . , m (3.9) 

where x = { x i , . . . , Xn) is a vector of variables. Since the equal i ty constraints 

• in (3.9) only reduce dimensionali ty, they do not establish any boundaries. A 

t r i v ia l way to solve the problem is to reduce i t to an unconstrained min imizat ion 

problem w i t h n — m variables. I n other words, we first express any m variables 

in terms of the other n — m variables by the equal i ty constraints (3.9). Then, we 

subst i tute the result in to the objective funct ion (3.8) to el iminate the m variables. 

Consider an example taken f rom [55]. 

m i n x\ + x\ + x\ (3.10) 

subject to x i + X2 + Xz — 10 = 0. (3.11) 
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I n th is problem, we have n = 3 and m = 1. From (3.11), we get 

xz — 10 — x i — X2. (3.12) 

Subst i tute (3.12) in to (3.10), we get an unconstrained m in im iza t ion problem in 

Xi and X2： 

m i n x l ^ - x l ^ { l ^ - x i - x 2 f . (3.13) 

Subsequently, we obta in the m i n i m u m at x i = x2 = x3 = y . 

A l though the above approach is simple, the computa t ion is very complex or 

impract ica l when the equal i ty constraints are complicated, non-l inear and the 

number of variables involved are large. Therefore, a more systematic and efficient 

method, called the Lagrange multiplier method [24, 55], has been developed. I n the 

Lagrange mul t ip l ie r method, the equal i ty constraints are not considered expl ic i t ly. 

They are combined w i t h the object ive funct ion to fo rm a Lagrangian funct ion. 

Consider the constrained min im iza t ion problem in (3.8 - 3.9), the Lagrangian 

function [24, 55] is defined as 

m 

L { x , X ) = f { x ) ^ Y . X i g i { x ) (3.14) 
i=i 

where A = (Ai , •. • , A^ ) is a vector oi Lagrange multipliers. The necessary condi-

tions [24, 55] for constrained local m i n i m u m are 

V ^ L { x , A) = 0 (3.15) 

V x L { x , A) = 0 (3.16) 

where V is the gradient operator. The condit ions i n (3.15 — 3.16) fo rm a system 
— 

of n + m equations, l inear or non-l inear, w i t h n + m unknowns x and A. Solu-

tions X of this system of n + m equations are the constrained local m in ima of 

the or iginal problem (3.8 — 3.9). I f there is a finite number of constrained local 

m in ima, a constrained global m i n i m u m can be obtained by comparing the value 

of the object ive funct ion of each local m in imum. Note that the set of m equal i ty 

constraints (3.9) is imp l i c i t l y included in condi t ion (3.16). 

24 _ 



Chapter 3 Background 

Consider the previous example (3.10 - 3.11). The Lagrangian funct ion is 

L{xi, X2, X3, A) = x^ + X2 + X^ + A(a:i + x2 + x3 - 10). (3.17) 

The necessary condit ions are 

叫 工 1 , 严 〜 = 2 . , + A = 0 (3.18) 
axi 

d L ( x , , X 2 , x s , A ) 二 2z2 + A = 0 (3.19) 
dx2 

d L { x u x , , x s ^ ) 二 2 % + A = o (3.20) 
0x3 

dL{x1,x2,x3,X) , 、 
_ ^ — — — =0；1 + 0； 2 +幻 - 1 0 = 0 (cJ.21) 

oX 

B y solving the system of equations (3.18 - 3.21), we get the constrained local 

m i n i m u m at x i = X2 = X3 = y and the Lagrange mul t ip l ie r A =—警，w h i c h 

agrees w i t h previous calculation. 

3.2.3 Saddle Point of Lagrangian Function 

Since the system of equations generated f rom the necessary condit ions (3.15 -

3.16) may be very complex or h ighly non-l inear, i t can be di f f icul t to solve them 

analyt ical ly. I n this case, a constrained local m i n i m u m can be obtained by f inding 
— ~* 

a saddle point (x* , A*) [55] of the Lagrangian funct ion L{x, A), defined by the 

relat ion, 
L ( r , X) < L{x\ A*) < L{x, A*) (3.22) 

for al l (x*, A) and al l {x , A*) sufficiently close to (£*, A*). I n other words, a saddle 

point is a local m i n i m u m of the Lagrangian funct ion L { x , A) i n the x-space and a 

local m a x i m u m of L{x, X) in the A-space. The relat ion between a local m i n i m u m 

of the min imiza t ion problem w i t h only equal i ty constraints and a saddle point of 

the associated Lagrangian funct ion is stated in the fol lowing theorem. 

Theorem 3.1 (Saddle Point Theorem) [62，54] x* is a local minimum ofthe 
— 

minimization problem (3,8 - 3.9) ifand only if there exists Lagrange multipliers X* 

such that {x*, A*) constitutes a saddle point of the associated Lagrangian function 

L{x, A). 
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Chapter 3 Background 

The definit ion of saddle point and the saddle point theorem provide an algo-

r i thmic approach for finding a constrained local min imum. A saddle point, which 

corresponds to a constrained local min imum, can be identified by performing de-

scent in the ^r-space and ascent in the A-space. This method is equivalent to a 

dynamic system constructed w i th the following differential equations [43], 

r| ̂  _•# 

^ 二 -•她入） （3.23) 
— 

§ = V x ^ X ) (3.24) 

where t is an independent t ime variable of the system. As the system evolves 

over t ime t, i t performs gradient descent in the f-space and gradient ascent in the 

A-space. A t equil ibr ium, all gradients vanish and a saddle point of the Lagrangian — 
function L {x , A) is obtained. 

Under this algorithmic point of view, the Lagrange mult ipl ier method can be 

understood as follows [43]. The Lagrange multipl iers A are the penalties associated 
— • 

wi th the constraints and the Lagrangian function L {x , A) is a penalty function. 

When certain constraints are violated, their corresponding Lagrange multipl iers 

are modified to increase the penalties. These penalties w i l l eventually force the 

constraints to be satisfied. A t the same t ime, the gradient descent of L{x, X) in 

the £-space searches for a constrained local min imum. 
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Chapter 4 

Binary CSP,s as Zero-One 

Integer Constrained 

Minimization Problems 

The convergence procedure of the G E N E T model suggests an opt imizat ion ap-

proach to constraint satisfaction. I n this chapter, we present a two-step transfor-

mat ion for convert ing any CSP into a zero-one integer constrained min imiza t ion 

problem. The first step of the t ransformat ion converts a G E N E T network direct ly 

to a Boolean satisf iabi l i ty (SAT) problem, whi le the second step derives the re-

sultant zero-one integer constrained min im iza t ion problem f rom the intermediate 

SAT problem. 

4.1 From CSP to SAT 

A Boolean satisf iabi l i ty (SAT) problem consists of a set of Boolean variables and 

a Boolean formula. Given a CSP [U,D,C). I ts corresponding G E N E T network 

Af can be viewed as a graphical representation of a SAT problem. Each label node 

( z , j ) is associated w i t h a Boolean variable z(i，j), which is t r u e i f {i-,j) is on and 

f a l s e otherwise. 

The Boolean formula is a conjunct ion of two types of formulae, namely cluster 
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£ ^ 1 , 2 } Variable: u i u^ U3 

fh><M] 
{1,2} - 4 2 WY^ 

(a) The CSP (b) The GENET network 

Figure 4.1: A simple CSP and its corresponding GENET network 

formulae and connection formulae. Each cluster formula is used to represent a 

cluster of label nodes, which enforces the valid states of the GENET network. 

The cluster formula of each cluster (variable) i 
( ( w 

Ci 二 V 外，乃 A 八 1<2，&》 （41) 

jeDi \ VfcGA,A:^j / / 

ensures that exactly one label node in cluster i is on. Each connection ( ( i , j ) , {k^ l)) 

in the GENET network induces a connection formula 
C{i,j){k,i) = ^^{i,j) V，z(k,V), ( 4 . 2 ) 

which states that the label nodes (z , j ) and {k, 1) cannot be both on simultaneously. 

Hence, solving the CSP is equivalent to finding a t ru th assignment that satisfies 

the Boolean formula 

B = f \ C i A 八 C ( i , _ ) . (4.3) 

ieu ((iMk,i))eAf 

Taking a simple CSP as an example, we have three variables Wi, U2 and u3, 

and two constraints. A uniform domain Du‘ = {1 ,2 } is associated w i th each 

variable U{ for all i = 1,2,3. The two constraints are ui 二 U2 and U2 < w3. 

The corresponding CSP network and GENET network is shown in Figure 4.1. 

The induced SAT problem of the GENET network is formulated as follows. The 

label nodes of the GENET network is represented by the Boolean variables Z(̂ ui,i)̂  
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Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems 

Z{u,,2),之〈以2,1》,Hu2,2), Z(^m,i) and 2r(̂ 3,2>. The cluster formulae are 

Cu, = {z{uui) A ^z^uu2)) V {^z^uui) A ^(u1,2>), (4.4) 

Cu2 = (、^，i》A，、tz2，2》)V(~"、M，i〉A、^2〉), (4.5) 

Cm = (、U3，l》八，、̂ 3̂，2〉)V卜、̂ 3̂，l》八、U3,2》). (4.6) 

The connection formulae are 

C{uul){u2,2) = ^^{uul) V -^(t/2,2), (4.7) 

C { U I , 2 ) { U 2 , 1 ) = ^^(ni,2) V ^Z^U2,1)^ (4.8) 

C'(n2,1>(̂ 3,1> = ^^{n2,1) V ^^(n3,1>, (4.9) 

C'(n2,2>(̂ 3,1> = -^(^2,2)V-^(^3,1), (4.10) 

C(̂ 2,2>(̂ 3,2> = -̂ {̂U2,2) ^ ^^{U3,2)' (4.11) 

Combining these two types of formulae, we obtain the resultant Boolean formula 

of the SAT problem, 

B 二 Cui A Cu2 八 Cuz A C(̂ 1,1)(u2,2> 八 Ĉ<ui，2>〈u2,i〉 
(4.12) 

八 C^〈％l><t/3，l〉A C(^2,2>(iX3,l> A C{U2,2){U3,2)-

4.2 From SAT to Zero-One Integer Constrained 

Minimization 

We now complete the transformation by converting the SAT problem obtained 

previously to a z e r o - o n e i n t e g e r c o n s t r a i n e d m i n i m i z a t i o n p r o b l e m , a constrained 

minimizat ion problem wi th zero-one integer variables. Each Boolean variable in 

the SAT problem is converted to a zero-one integer variable. Since a Boolean 

variable can be regarded as a zero-one integer variable, we abuse notation by 

naming a zero-one integer variable also by its associated Boolean variable Z(^ijy 

The value of a zero-one integer variable z(i’j) is 1 i f value j is assigned to variable 

i, and 0 otherwise. 
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Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems 

Each cluster fo rmula Ci for al l i G U is t ransformed to the fol lowing equation, 

E 外,力=1. (4.13) 
j€Di 

These equations impose a space for proper instant ia t ion of z, which corresponds 

to val id assignments of CSP (val id state of G E N E T ) . For each connection formula 

C(^ij){k,i)-) we define an incompatibility function 

9{i,j){k,i){^) 二 ^{i.j)Hk,i) (4.14) 

where z = ( . . . , z ( i j ) , • . . ) is a vector of zero-one integer variables. The funct ion 

g{i,j){k,i){^) returns 1 i f bo th :〈‘’)〉and Z(^k,i) are 1, and 0 otherwise. Hence, equating 

g{i,j){k,i)i^) to 0 is equivalent to forb idding two connected label nodes ( z , j ) and 

{k,l) i n the G E N E T network to be on at the same t ime. The incompat ib i l i t y 

funct ions are used as indicators of constraint violat ions. 

The resultant zero-one integer constrained min im iza t ion problem has the form, 

m i n N{z) (4.15) 

subject to 

E ^(^^) = 1' V i G t / (4.16) 
jeDi 

卯，力〈从(勾=0, V ( ( z , i ) , ( ^ , / ) ) G X (4.17) 

where z = ( . . . , z(i’j〉,...) is a vector of zero-one integer variables and X is the set 

of al l incompat ib le label pairs ( ( z , j ) , {k, / ) ) . Since the solut ion space of a CSP is 

defined entirely by the constraints (4.16 - 4.17), i t is equal to the feasible space of 

the associated zero-one integer constrained min imiza t ion problem. The objective 

funct ion N{z) serves only to exert addi t ional force to guide solut ion searching. 

The object ive funct ion N{z) is defined in such a way that every solution of 

the CSP must correspond to a constrained global minimum of the associated zero-

one integer constrained minimization problem (4.15 — 4-^V- This is called the 

correspondence requirement. I n the fol lowing, we present two appropriate objec-

t ive functions that fu l f i l l the correspondence requirement. The goal of solving a 
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CSP is to find an assignment that satisfies al l constraints. One possible objec-

t ive funct ion, adapted f r om Wah and Chang [61], is to count the to ta l number of 

constraint violat ions. B y measuring the to ta l number of incompat ib le label pairs 

( ( z , j ) , {k, l)) i n an assignment, the object ive funct ion can be expressed as 

W ~ ) = Y . H i , j ) H k , i ) 

((i,j>,(fc,/))GJ 

= Ŷ  9{i,m.i){̂ ) (4.18) 
((t,i),(fc,0)6X 

where z = ( . . •, :〈‘j〉’.. .）is a vector of zero-one integer variables. Two properties 

of th is object ive funct ion are stated as follows. 

Property 4.1 z* is a constrained global minimum of the objective function N{z) 

defined in (4.18) subjected to the constraints (4-16 — ^ J 7 j ifand only ifN{z*) = 0 

and all constraints (4.16 - 4.17) are satisfied. 

Proof: “=>，，part: I f z* is a constrained global m i n i m u m of the object ive func-

t ion N{z) defined in (4.18) subjected to the constraints (4.16 - 4.17), al l con-

straints (4.16 - 4.17) are satisfied. Furthermore, by the def in i t ion of the object ive 

funct ion N{z), N{z*) = 0. 

"<^=" par t : Since the object ive funct ion N{z) cannot be less than zero, z* is 

a constrained global m i n i m u m i f N{z*) = 0 and al l constraints (4.16 - 4.17) are 

satisfied. 口 

Property 4.2 If z* represents a solution of the CSP, it is a constrained global 

minimum of the objective function N{z) defined in (4.18) subjected to the con-

straints (4.16 - 4.17). 

Proof: I f z* represents a solution of the CSP, al l constraints (4.16 - 4.17) are 

satisfied. I n addi t ion, by the def ini t ion of the object ive funct ion N{z), N{z*) = 0. 

B y proper ty 4.1, z* is a constrained global m i n i m u m of the object ive funct ion N{z) 

subjected to the constraints (4.16 - 4.17). 口 
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Chapter 4 Binary CSP's as Zero-One Integer Constrained Minimization Problems 

The first property suggests a condition for constrained global minima, while the 

second property satisfies the correspondence requirement. 

Another possibility is the constant objective funct ion 

N{z) = 0. (4.19) 

The objective funct ion satisfies the correspondence requirement tr iv ial ly. Basi-

cally, this t r iv ia l objective function does not help in the search of solution. We 

shall show later, however, that this function is related to the GENET model. 

To i l lustrate the transformation, consider again the same CSP shown in Fig-

ure 4.1. The Boolean variables are now converted to a vector of zero-one integer 

variables 

Z = {z{ui,l),Z(^ui,2), Z{U2,1), Z{u2,2), Z{us,l), ^{u3,2))- (4.20) 

The cluster formulae (4.4 - 4.6) become the equations 

^(ui,i> + ^(^i,2> == 1, (4.21) 

Z{U2,1) + ^(^2,2) = 1, (4.22) 

Z{us,i) + ^us,2) = 1. (4.23) 

Similarly, the incompatibi l i ty functions 

5̂ 1，1》〈以2，2〉(幻=̂ {UI,1)Z{U2,2), (4.24) 

g{u,,2){u2,l)i^) = Huu2)^{u2,l)^ (4-25) 

^(^2,1)(^3,1>(^) = (̂U2,1)̂ (US,1}̂  (4.26) 

g(u2,2)(u3,l}(^) = (̂U2,2)Z(U3,1}̂  (4.27) 

g(u2,2)(us,2}(^) = ^(U2,2)^(U3,2), (4.28) 

are obtained from the connection formulae (4.7 - 4.11). The equations (4.21 — 4.23) 

and the incompatibi l i ty functions (4.24 - 4.28) are the constraints of the zero-one 

integer constrained minimizat ion problem. The transformation is completed by 

choosing either (4.18) or (4.19) as the objective function. Hence, solving the CSP 

now becomes finding a constrained global m in imum of the associated zero-one 

integer constrained minimization problem. 
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Chapter 5 

A Continuous Lagrangian 

Approach for Solving Binary 

CSP,s 

I n this chapter, we show how to use the Lagrange mul t ip l ier method [24, 55] to 

solve zero-one integer constrained min imizat ion problems transformed f rom CSP's. 

Since the gradient of the Lagrangian funct ion is defined over the real space only, 

the Lagrange mul t ip l ier method cannot be applied directly. We further transform 

the zero-one integer constrained minimizat ion problem into a real constrained 

min imizat ion problem, and apply the Lagrange mul t ip l ier method to the real 

problem [4]. A simple experiment is also presented to evaluate the feasibility of 

this approach. 

5.1 From Integer Problems to Real Problems 

The zero-one integer constrained minimizat ion problem (4.15 - 4.17) associated 

w i t h a CSP {U, D, C) can be further transformed into a real constrained mini-

mizat ion problem. Each integer variable z(i,j) is converted to a real variable x(i,j), 

which can take any value in the interval ( - o o , + o o ) . Among all possible values, 

only 0 and 1 are feasible for each variable X(^ij). This integral restr ict ion is imposed 
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by the fo l lowing equal i ty constraints [4 

Hi, j ) iHi,3) - 1) = 0. ^ i e U J e D i . (5.1) 

A real variable cc(i，j〉is 1 i f and only i f the corresponding zero-one integer variable 

z(i,j) is 1. Simi lar ly, x^ij^ is 0 i f and only i f z(i，j) equals 0. 

The constraints (4.16 - 4.17) are converted to their real counterparts. The 

equations (4.16), which ensure val id assignment of CSP, are now replaced by 

_ n ( i _ z � 2 .，》 ) + 5 > � ‘ ’ � = i ,、则 . 關 

jeDi jeDi 

Since, i n the real space, there exist x(i，j〉+ 0 and cc(i,j) + 1 for a l l j G Di such that 

Y j jeDi ^{hj) = 1, the ext ra t e rm - n j e L ) - ( l - ^ ( i , j ) ) is in t roduced to guarantee that 

only one value can be assigned to each variable of the CSP. Note that al though 

the constraints (5.1) already enforce the real variable cc(i’j〉to be either 0 or 1, this 

ext ra t e rm can provide addi t ional force to guide the search. Furthermore, since 

the ext ra t e r m itself is not enough to ensure the val id assignment of CSP, i t is 

not considered as a separate constraint. The incompat ib i l i t y funct ion g(ij)(k,i}(^) 

becomes 

9(i,mi}(^) = ^{i,j)^{k,i)^ V (��i〉，〈、0) ̂  工 （5-3) 
where X is the set of al l incompat ib le label pairs { { i J ) , {k,l)). Simi lar to its 

integer counterpart , g{i,j){k,i){x) returns 0 only when either X(^ij) or X(^k,i) are 0. 

However, when a constraint is violated, g{i,j){k,i){x) returns a non-zero, possibly 

negative, value. 
The resultant real constrained min imiza t ion problem is 

m i n " ⑷ (5.4) 

subject to 

xii,j){x^ij) - 1) = 0, V i e u,j e Di (5.5) 

-n( i i2.， i>)+5><。〉=i ,、… (5.6) 
jeDi jeDi 

m ) i k , i ) { ^ ) = 0. V ( ( z , i ) , ( A : , / ) ) G X (5.7) 
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where N{x) is a converted object ive funct ion such tha t x* is a constrained global 

minimum ofthe real constrained minimization problem (5-4 - 5.7) ifand only if its 

corresponding zero-one integer variables z* is a constrained global minimum of the 

associated zero-one integer constrained minimization problem (4.15 — 4-^V- We 

called this the equivalence requirement. Simi lar to the zero-one integer constrained 

m in im iza t ion problem (4.15 - 4.17), the solut ion space of a CSP is equal to the 

feasible space of the associated real constrained min im iza t ion problem (5.4 - 5.7). 

I n order to fu l f i l l the equivalence requirement, the object ion funct ion defined 

in (4.18) is converted to 

N{x) 二 Y^ (M，j〉z〈fc’0)2 
{{i,j),{km^ 

= Y^ {ki.3)mi^)f (5.8) 

{{i,j),{kmi 

This t ransformat ion ensures that N{x) is always non-negative. Hence, any x that 

satisfies the constraints (5.5 — 5.7) is a constrained global m in imum. On the other 

hand, the constant object ive funct ion (4.19) does not require any modif icat ion. 

Based on the equivalence requirement, the relat ion between a CSP and its as-

sociated real constrained min imiza t ion problem is stated in the fol lowing theorem. 

Theorem 5.1 Ifx* is a vector of real variables represents a solution ofthe CSP, 

then X* is a constrained global minimum of the associated real constrained mini-

mization problem (5.4 — 5,7). 

Proof: Since there is a one-one correspondence between real variables x and zero-

one integer variables B, i f the real variables x* represents a solut ion of the CSP, its 

corresponding zero-one integer variables z * also represents the same solution of the 

CSP. By the correspondence requirement, z* is a constrained global m i n i m u m of 

the zero-one integer constrained min imizat ion problem (4.15 - 4.17) transformed 

f rom the CSP. Thus, by the equivalence requirement, x* is a constrained global 

m i n i m u m of the associated real constrained min imiza t ion problem (5.4 - 5.7). • 

Consider the same CSP in Figure 4.1 as an example. The corresponding real 
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constrained m in im iza t ion is 

m i n N{x) (5.9) 

subject to 

^^i,i>(^(^i,i> 一 1) = 0 (5.10) 

x{u^,2){x(uu2) - 1) = 0 (5.11) 

^{^2,i>(^(t^2,i> - 1) = 0 (5.12) 

X{U2,2){X{U2,2) - 1) = 0 (5.13) 

(̂tx3,i>(̂ 3̂,i> 一 1) 二 0 (5.14) 

X{us,2){X{us,2) - 1) = 0 (5.15) 

一(1 - a:(^i, i))(l - X{uu2)) + ^(^1,1) + ^{ui,2) = 1 (5.16) 

- ( 1 - ^(^2,1))(1 - ^(^2,2)) + ^<^2,1) + ^{U2,2) = 1 (5.17) 

- ( 1 - ^(n3,l>)(l - ^{us,2)) + X(̂ us,l) + ^(u3,2) = 1 (5.18) 

5(^1,1)^2,2>(^) = X(^uul)^{u2,2) = 0 (5.19) 

^(^1,2)(7.2,1)(^) = X{U1,2)X{U2,1) = 0 (5.20) 

^(^2,l)(t^3,l>(^) = X|̂ U2,1)X{US,1) = 0 (5.21) 

9{u2,2){us,l)i^) = X{U2,2)X{US,1) = 0 (5.22) 

g{u2,2){us,2){x) = X^U2,2)^{us,2) = 0 (5.23) 

where N{x) is the object ive funct ion defined in either (5.8) or (4.19), equa-

tions (5.10 - 5.15) are the integral restrict ions, equations (5.16 - 5.18) are the 

constraints for val id assignments and equations (5.19 — 5.23) are the constraints 

for the incompat ib i l i ty functions. 

5.2 The Lagrange Multiplier Method 

As the CSP is now transformed into a real constrained min imiza t ion problem (5.4 

- 5 . 7 ) , the Lagrange mul t ip l ier method [24, 55] can be used to solve i t . The 
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Lagrangian funct ion is expressed as follows, 

L{x, a , /?, 7) = N{x) + ^ a(i,j) [x{ij){x^ij) 一 1) 
ieu,jeDi 

mm • 

+Y^Pi -1[(1一^^,力）+ 1 ] ^ “ 一 1 
ieu L jeD, jeDi . 

+ Y1 l{iJ){k,m,j){kM^) (5.24) 
{{iMk,i))ei 

where d = ( . . •, a〈ij〉，. • .)，fi = (. • . , /¾, •. •) and 7 = ( . . •, ^{i,j){k,i), •. •) are vectors 

of Lagrange mult ipl iers. 

According to the saddle point theorem, finding a constrained global m in imum 

of the original minimizat ion problem (5.4 - 5.7) is equivalent to f inding a saddle 

point of the Lagrangian function (5.24). Hence, the following dynamic system is 

constructed: 

fj^ _ + 

i = - V , L { x , d , p , ^ ) (5.25) 

§ = V , L { x , a J , j ) (5.26) — 

f = V ^ M ^ , a , M ) (5.27) 

§ 二 V , ^ L ( x , a , A 7 ) (5.28) 

where t is an independent t ime variable. As the system evolves over t ime t, i t 

descends in the x-space and ascends in the space of Lagrange multipl iers. When 
— 

the system converges, all gradients vanish. Hence, a saddle point of L(x, a, /?, 7), 

which corresponds to a constrained global m in imum of (5.4 - 5.7), is obtained. 

Since a constrained global min imum of (5.4 - 5.7) must satisfy all constraints (5.5 

- 5 . 7 ) , we get a solution of the associated CSP. 

5.3 Experiment 

In order to verify the feasibility of this approach, an experiment on the iV-queens 

problems is performed. The iV-queens problem states that N queens are placed 
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N No. of Differential Equations CPU T ime (sec) 
" 4 88 0.49 — 
~ ^ 165 “ 1.50 
~ 278 5.70 “ 

7 434 14.84 
8 640 52.19 
9 903 124.05 
10 1230 267.83 

Table 5.1: Results of continuous Lagrangian approach on the iV-queens problems 

onto an N x N chessboard such that no two queens attack each other. In this 

experiment, the objective funct ion defined in (5.8) is used. The resultant dynamic 

system (5.25 — 5.28) is solved using the Livermore Solver for Ordinary Differential 

Equation (LSODE), a Fortran package of ODEPACK [25] for solving differential 

equations. Benchmark results are taken on a SUN U l t ra SPARCstation. 

Table 5.1 summaries the results of the experiment. In this table, the first 

column corresponds to the number of queens in the problem, the second column 

represents the number of differential equations of the dynamic system, and the 

th i rd column gives the average CPU t ime in seconds over 5 runs. From the re-

sults, we find that the number of differential equations and the CPU t ime grows 

exponentially as the problem size increases. In addit ion, since an originally dis-

crete problem is transformed into a real problem, the computat ion becomes more 

expensive [62, 54]. Hence, the performance is several order of magnitudes worse 

than existing constraint satisfaction techniques. In other words, the continuous 

Lagrangian approach is not a feasible technique for solving binary CSP's. In the 

next chapter, we investigate a discrete Lagrangian approach for binary CSP's. 
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Chapter 6 

A Discrete Lagrangian Approach 

for Solving Binary CSP's 

Shang and Wah [62, 54, 53] extended the exist ing Lagrange mul t ip l ie r method 

to the discrete Lagrange mul t ip l ie r method and apply i t to solve SAT problems. 

I n this chapter, we adopt this discrete Lagrange mul t ip l ie r method to tackle the 

resultant zero-one integer constrained min im iza t ion problems obtained f rom the 

t ransformat ion of CSP's. Based on the discrete Lagrange mul t ip l ie r method, we 

propose CSVC, a generic discrete Lagrangian search scheme w i t h five degrees of 

freedom. The G E N E T model is shown to be an instance of the CSVC frame-

work. Dua l viewpoints of G E N E T , as a heurist ic repair method and as a discrete 

Lagrange mul t ip l ie r method, enable us to investigate G E N E T variants f rom both 

perspectives. Exper imenta l results conf i rm that our best variant is always more 

efficient than the reconstructed G E N E T . 

6.1 The Discrete Lagrange Multiplier Method 

The discrete Lagrange mul t ip l ie r method [62, 54, 53] for the zero-one integer con-

strained min imiza t ion problem (4.15 - 4.17) t ransformed f rom the CSP [U, D, C) 

is described as follows. Similar to the continuous case, the Lagrangian funct ion 
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— 
L[z^ A) is 

L{z, A) = N{z) + Y^ h,mmiMKi){^) (6.1) 
{{i,j),{k,l))el 

where A = ( • . . , ^{ij){k,i), •. •) is a vector of Lagrange mul t ip l iers. Note that the 

constraints defined by (4.16), which serve only to define val id assignments of CSP, 

are not included in the Lagrangian funct ion. The constraints w i l l be incorporated 

in the discrete gradient operator discussed below. 

A constrained m i n i m u m of the zero-one integer constrained min im iza t ion prob-

lem (4.15 — 4.17) can be obtained by finding a saddle point of the Lagrangian 

— — -
funct ion L{z, A). As in the continuous case, a saddle point ( z * , A*) [62, 54, 53] of 

— 
the Lagrangian funct ion L{z^ A) is defined by the condi t ion 

L ( r , A ) < L ( r , A * ) < L ( ^ , A * ) (6.2) 

— — — 
for al l (£* , A) and {z, A*) sufficiently close to ( i^*,A*). I n other words, a saddle — — —* 

point ( z * , A*) of the Lagrangian funct ion L{z, X) is a m i n i m u m of L{z^ X) in the 
— — 

i'-space and a m a x i m u m of L{z^ A) in the A-space. The relat ionship between 

a constrained m i n i m u m of an integer constrained min im iza t ion problem and a 

saddle point of i ts associated Lagrangian funct ion is established by the discrete 

saddle point theorem, which is restated as follows. 

Theorem 6.1 (Discrete Saddle Point Theorem) [70] A vector of integer vari-

ables z* is a constrained minimum ofthe integer constrained minimization problem 

m i n f { z ) 

subject to 9i{^) = 0, i = 1 , . . . , m 

with gi{z), for all i = 1,..., m, is non-negative for all possible value of z if and 
— — 

only if there exists Lagrange multipliers X* such that ( z * , A*) constitutes a saddle 

point of the corresponding Lagrangian function L(B, X) 二 /(i*) + Yl^i ^i9i{^)-

Since the incompat ib i l i ty funct ion g{i,j){k,i){^)^ for al l ( ( z , j ) , {k^ l ) ) G X, of the 

zero-one integer constrained min imizat ion problem (4.15 - 4.17) are always non-

negative, the discrete saddle point theorem is applicable to the zero-one integer 
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constrained m in im iza t ion problem (4.15 - 4.17). Note tha t , under this theorem, 
_̂  — — ~f — 

L{z*, A) is always equal to L{z*^ A*). Hence, any point {z*, A') w i t h A' > A* is 
— 

also a saddle point of the Lagrangian funct ion L[B, A). 
— 

A saddle point of the Lagrangian funct ion L { z , A) can be obtained by per-

fo rming descent i n the discrete variable space of z and ascent i n the Lagrange 

mul t ip l ie r space of A [43]. Instead of using dif ferent ial equations, the discrete 

Lagrange mul t ip l ie r method uses difference equations [62, 54, 53 

£s+i 二 r-AgL{z%X') (6.3) 

Xs+i = y + ^ (£^) (6.4) 

where x^ denotes the value of x i n the 5th i terat ion, A ^ is a discrete gradient 

operator and g(z) = ( . . . ,9{i,j){k,i){^)^...) is a vector of incompat ib i l i t y functions. 

I n general, the discrete gradient operator is not unique. A n y operator that 

can per form descent i n the F-space can be used. We give one such operator as 

follows. Let rrii be the size of the domain of variable i, Given a vector of zero-one 

integer variables z = ( . . . , :<i, j>,. . .) , we define the zero-one projection operator n^ 

for al l i G U, 

7r'(^)=(邻，…，.•.，^{i,vj), •. •，^{i,vrm))^ (6.5) 

which gives the ith-component of z. Hence, n^ returns the vector of zero-one 

integer variables corresponding to variable i i n U. The ith partial discrete gradient 

operator d^ for al l i G U is defined as 

d'L{z,X) = 7r\z)-7r\z') (6.6) 

i f the fol lowing conditions hold 

• X is a set of vectors of zero-one integer variables such that Wx G X, 

( Y 1 ^{iJ) = 1 ) N (vA: + i e U V/ G Dk x(k,i) = z(k,V|) 

^jeDi ) 、 ) 

A W " [ ( Y^ z%.^ = 1 A V/c + i e U V/ G Dk 4 乃 = z ( 、 o ) 

^^jeDi y 

=^ L(x, A) < L(F〃，A) 
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• z' is selected f r om X by 

f 

z, i f z G X 
•^ ‘ 
^ = 

r a n d ( X ) , otherwise 
、 

where r a n d ( y ) returns a random element f rom a set Y. 

The i t h par t ia l discrete gradient operator d^L{z^ A) returns a differential vector 

cTfor the i t h component of zhy (1) comput ing a set X of vectors x tha t cause the 

most reduct ion in the value of the Lagrangian funct ion and (2) selecting a vector 

z' f r om X. Note that the selection process in (2) is based on that of the state 

update rule of G E N E T w i t h the same random selection funct ion r a n d ( y ) . Note 

also that the constraints defined in (4.16) are incorporated in the par t ia l discrete 

gradient operators d% for al l i G U, enforcing the sum of al l z(i,j) for each variable 

i to be 1. I f d'L{z^ A) = 0, there is no change in the zth component of the vector z. 

The corresponding discrete gradient operator A ^ is represented by the equations 

7T%A^L{z, A)) = d'L{z, A), V i € U. (6.7) 

When A^L{z, A) = 0, either a saddle point or a stationary point, at which the 

update of z terminates, is reached. 

The Lagrange mul t ip l iers A are updated according to the incompat ib i l i t y func-

tions. I f an incompat ib le tuple is violated, its corresponding incompat ib i l i t y func-

t ion returns 1 and the Lagrange mul t ip l ie r is incremented accordingly. In this 
— 

formulat ion, the Lagrange mul t ip l iers A are non-decreasing. 

A generic discrete Lagrangian search procedure CSDC[N, A^, " , / - , U^) for 

solving the zero-one integer constrained min imiza t ion problems transformed f rom 

CSP's is given in A lgo r i t hm 6.1. The CSVC (pronounced as "L isdal " ) procedure 

performs local search using the discrete Lagrange mul t ip l ie r method. I t has five 

degrees of freedom, namely [N) the objective funct ion, (A^^) the discrete gradi-

ent operator, ( / f ) how the integer vector z is in i t ia l ized, ( / - ) how the Lagrange 
~t . . ~* 

mul t ip l iers A are in i t ia l ized and (U^) when to update the Lagrange mult ip l iers A. 
Where appropriate, we annotate the a lgor i thm w i t h the parameters in brackets 
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procedure CSVC{N, A^-, /^, I^, U^) 
begin 

( /^) init ial ize the value of z 
— 

(/j^) init ial ize the value of A 
while (AO L{z, A) - N{z) > 0 {z is not a solution) do 

(A^ ) update z\ z — z — A^L{z^ A) 
if {U£) condition for updating A holds then ~* — — 

update A: A <r- X + g{z) 
end if 

end while 
end 

Algor i thm 6.1: The CSVC[N, A^ , h, 1。U^) procedure 

to show where the parameters take effect. The role of each parameter is discussed 

in the next section. 

6.2 Parameters of CSVC 

CST>C defines a general scheme for a class of algorithms based on the discrete 

Lagrange mult ipl ier method. By instantiating CSVC w i th different parameters, 

different Lagrangian search algorithms w i th different efficiency are obtained. In 

this section, we discuss the various parameters of CST>C in details. 

6.2.1 Objective Function 

The objective function N{z) is one of the degrees of freedom of the CSVC algo-

r i thm. As stated before, any function that satisfies the correspondence require-

ment can be used. However, a good objective function can direct the search 

towards the solution region more efficiently [65]. Two possible objective func-

tions, presented in chapter 4, are summarized as follows. First, since the goal of 

solving a CSP is to find an assignment that satisfies all constraints, the objective 
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funct ion, defined in (4.18), 

M ^ ) = Y^ Hi,j)Hk,i) 
{{i,Mkm^ 

= X) 9{i,j){k,l){^) 
分 {{i,j),{k,i))e^ 

\ 

where X is the set of incompat ib le tuples, reflects the to ta l number of v iolated 

tuples. Second, the constant object ive funct ion 

N{z) = 0 

can also be used. 

6.2.2 Discrete Gradient Operator 

The discrete gradient operator A ^ , which performs gradient descent in the z-

space, is not unique. One possible discrete gradient operator is defined in (6.6 -

6.7). This operator performs gradient descent i n al l variables i n the CSP at once. 

The s i tuat ion is simi lar to that of synchronous update in the G E N E T convergence 

procedure. I n practice, this can also lead to oscil lat ion. We define another discrete 

gradient operator, the effect of which is specified by the fo l lowing pseudo-code, 

for each variable i G U do 

update T:\z): 7T^'(i) — i^\z) 一 d'L{z, A) (6 g) 

end for 

where d^ is the par t ia l discrete gradient operator defined in (6.6). This new opera-

tor corresponds to the updat ing strategy used in most sequential implementat ions 

of G E N E T . 

Another possible discrete gradient operator is defined as 

l l ^ L { z , X ) = z - z ' (6.9) 

i f the fol lowing conditions are satisfied 
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• X is a set of vectors of zero-one integer variables such that V f G X, 

3i € U [ J2 (̂̂ -,i> = 1 八 V& + ‘ e U V/ G Dk x(^k,i) = z(^k,i) j 

^j£Di ) 

A W " 3m G U ( Y^ 么;'爪’„〉= 1 八 Vp + m G U Vg G D, z"、_ =、，?〉 
- \ neDm 

=^ L{x, X) < L{z\A) 

• z' is selected f rom X by 

‘ z , if z G X 
z'= ， 

r a n d ( X ) , otherwise 
w 

where rand (F ) returns a random element f rom a set Y. 

The discrete gradient operator computes a set X of zero-one integer vectors x 

which reduce the Lagrangian function most, and returns a differential vector by 

selecting a vector z' f rom X according to the state update rule of GENET. Since 

each zero-one integer vector x in the set X can have at most one component 7r'(x), 

for some i G U, being different f rom the current value of z, only one variable of the 
— — 

CSP is updated by this discrete gradient operator. When A^L{z, X) = 0, there 

is no change in z. Note that this new discrete gradient operator is similar to the 

one defined in D L M [62, 54, 53] for solving the SAT problems. 

6.2.3 Integer Variables Initialization 

A good in i t ia l assignment of the zero-one integer variables z can speed up search. 

As in most local search techniques, the simplest way is to init ial ize the zero-

one integer variables z randomly in such a way that the constraints (4.16) are 

satisfied. On the other hand, Minton et al [40] suggest that a greedily generated 

in i t ia l assignment can boost the performance of the search. Morris [41] points 

out that a greedy init ial ization can generally shorten the t ime required to reach 

the first local minimum. In this case, the init ial ization procedure iterates through 

each component 7r^(f) of the zero-one integer vector £, and selects the assignment 

which conflicts w i th the fewest previous selections. 
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6.2.4 Lagrange Multipliers Initialization 
— 

Similar to the ini t ia l izat ion of integer variables, the Lagrange mult ipl iers A can 

also be init ial ized arbitrari ly. Since the update of Lagrange mult ipl iers is non-

decreasing, in general, any non-negative number can be used as the in i t ia l value. 

One possible way is to init ial ize all Lagrange mult ipl iers to 1. In this case, all 

incompatible tuples have the same in i t ia l penalty. Another possibility is to ini-

tialize each Lagrange mult ipl ier differently. For example, different in i t ia l values 

can be used to reflect the relative importance of constraints in the CSP [33]. I f a 

constraint is known to be more important than the others, its associated Lagrange 

mult ipl iers can be assigned a larger in i t ia l value. 

6.2.5 Condition for Updating Lagrange Multipliers 
— 

Unlike the continuous case, the updating frequency of the Lagrange mult ipl iers A 

can affect the performance of the discrete Lagrange mult ipl ier method [62, 54, 53 . 

Thus, the condition for updating the Lagrange mult ipl iers is left unspecified in 

CSVC. The Lagrange multipl iers can be updated either (1) at each iteration 

of the outermost while loop, or (2) when Ai^L( i ' ,A) = 0. Note that the former 

condition is a direct application of the strategy used in the continuous case while 

the later corresponds to Morris's breakout method [41 . 

6.3 A Lagrangian Reconstruction of GENET 

In this section, we show how we can reconstruct GENET using our discrete La-

grangian approach. Given a CSP {U,D,CT}. The two-step transformation estab-

lishes a one-one correspondence between the GENET network of {JJ, D, C) and 

the associated zero-one integer constrained minimizat ion problem of (U,D,C). 

The GENET convergence procedure (Algor i thm 3.1) can be obtained by instan-

t iat ing CSVC w i th proper parameters. This instance of CST>C, denoted by 

£<SX>£(GENET), has the following parameters: 
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• N.. the constant object ive funct ion defined in (4.19), 

• Af： the discrete gradient operator defined in (6.8), 

• " : the zero-one integer vector z is in i t ia l ized randomly, provided that the 

in i t i a l values correspond to a val id state in G E N E T , 

• / - : the values of Lagrange mul t ip l iers A are al l in i t ia l ized to 1, and 

— — — 
• U^\ the Lagrange mul t ip l ie r A are updated when d'L{z, A) = 0 for al l i 6 U. 

I n the fol lowing, we prove the equivalence between £5X>£(GENET) and the 

G E N E T convergence procedure. Recall tha t a state S of a G E N E T network M is 

a tuple ( y , W), where V = ( . . . , V{i,j),...) is a vector of outputs for al l label nodes 

( i , j ) i n M and W = ( . . . , l%j〉〈fc,/〉，.. •）is a vector of weights for al l connections 

( ( z , j ) , [k , l ) ) i n M . Based on the state update rule of the convergence procedure 

of G E N E T and the def ini t ion of the discrete gradient operator (6.8), we derive 

the fol lowing lemma. 

Lemma 6.1 Consider a CSP {U,D,C), and its corresponding GENET network 

J\f and zero-one integer constrained minimization problem. Suppose both GENET 

and CSVC{GENET) use the same random selection function rand(l^), and, in the 

sth iteration, V' = P and W' = -X% and 7r'{P+^) = n'{P) — d'L{P,X'). In 

the update of variable i from the sth to the (s + l)st iteration， 

V^i = 1 and V<U; = 0,Vk + j G A.分：(¾ = 1 — < , �= 0 , V k — j G A . 

Proof: Consider updat ing cluster i of the G E N E T network Af f rom the 5th to 

the (s + l ) s t i terat ion. Let A{M, { i J ) ) be the set of al l label nodes connected 

to { i J ) i n G E N E T network N\ and Li be the set of al l label nodes in cluster 

i i n G E N E T network M. Furthermore, let i ^ be the zero-one integer variable 

vector in the 5th i terat ion w i t h z!。』)=1, z^ k) — • for al l k + j G A , and <2；&，”》 

unchanged for al l u + i G U and v G A i . 

ŷ ^̂  = iandv̂ ^ = o,VMieA-
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分 ni.3) > ̂ (̂-,M' ^k^jeDi 

^ E .̂>(̂ .>̂ ;̂ > > E 〜，叫 ¥ > % + vfc+j ̂  Dt 
{u,v)eA{Af,{i,j)) {u,v)eA{Af,{i,k)) 

( \ 
^ 1 X E ^ ^ 3 ) M V M + E • X E 〜乃—》%，”〉 

{u,v)eA{jsf,{i,j)) ii^jeDi \ {u,v)eA{M,{i^)) / 

+ X I y{a,h)^{a,h){c4)^{c4) ^ 
(<a,b),<c,d>)eAT 
{a,b),{c,d)^Li 

I X E ^ 〈 — ” ; > + E ( O x E n M u . ) ^ { u , v ) 
{u,v)eA{Af,{i,k)) l^k£Di \ {u,v)eA{Af,{i,l)) ) 

+ E ^(a,)^lmA^U^ VÂ ĴGA 
( ( a ,6> ,<c ,d ) )eAT 
{a,b),{c,d)^Li 

^ 1 X Y^ ->'{i,j){u,v)^{u,v) + Y1 ( 0 X Y , -X\iMu’v、Z(u，v、 

{u,v)eA{Af,{i,j)) ¥jeDt \ {u,v)eA{M,{i,i)) / 

+ X I ^{a,b){-^{a,b){c,d))^{c,d) ^ 
{{a,b),{c,d))eU 
<a,b>,<c,d>gi>i 

/ s s \ 

1 X Y1 ->'{i,k){u,v)^{u,v) + Y1 0 X Y^ ->^{i,l){u,v)^{u,v) 
{u,v)eA(Af,{i,k)) ii:keDi \ {u,v)eA{M,{i,i)) / 

+ Y . ^(a,6>(-^(a,6)M>)4,rf), ^^ ^ 3 ^ A 
(<a,b>,<c,d))eA^ 
{a,b),{c,d)^Li 

分 L(̂ ,A )̂<L(̂ ,A )̂, yk^jeDi 

分 d'L{z%y) = 7 r ^ n - ^ ' { ^ - j ) 

Since bo th G E N E T and £<SX>£(GENET) use the same random selection funct ion 

r a n d ( y ) , and 7r%P+i) = 7r^'(P) - d ' L { P , X ' ) , we have 

乂芯〉1 = 1 and V < 3 = Oyk — j G A 分 ^ ( ¾ = 1 and ^ ^ ¾ 二 O^k — j G A -

• 

The lemma states that when updat ing variable i f r om the 5th i terat ion to the 

(5 + l ) s t i terat ion, the same value j G A w i l l be selected by bo th G E N E T and 

CSVC{GENET). By applying the lemma repeatedly to each variable i G U, we 

get the fol lowing corollary. 
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Corollary 6.1 Consider a CSP {U,D,C), and its corresponding GENET net-

work M and zero-one integer constrained minimization problem. Suppose both 

GENET and CSVC{GENET) use the same random selection function rand(y), 

and, in the sth iteration，V' = z' and W' 二 -X〜and 7r^'(P+^) = 7r%z')— 

d'L{z% X^) for all i G U. In the {s + l)st iteration，we have 

T^+ i = i^s+i. 

Proof: According to lemma 6.1, for each variable i G U, we have 

l/〈^》i = 1 and y^ f4 = 0,VA: + j G D, ^ ^ ¾ = 1 and ^ ^ ¾ 二 0,VA; + j e A . 

H e n c e , t > + i = i^s+i. • 

The relat ion between the weights W of the G E N E T network JV and the La-

grange mul t ip l iers A of £«SX>£(GENET) is given by the fol lowing lemma. 

Lemma 6.2 Consider a CSP {U,D,C), and its corresponding GENET network 

M and zero-one integer constrained minimization problem. Suppose, in the sth 

iteration, V' = z', W' = - A �a n d , in the {s + l)st iteration, V'+^ 二 P + i . 

^s+i=_Xs+i. 

Proof: We consider the lemma in two different cases. F i rs t , i f V"^+^ + V^ and 

P + 1 + -S, the conditions for updat ing the weights W and the Lagrange mul t ip l ier 
-̂  

A are false. Therefore, 

# S + 1 二 ^s = _ p = — p + 1 . 

Second, i f i > + i = V' and P + i = P , then, for each ( ( i , j ) , {k, l)) e Af, 

^iCmi) = ^ ^ , m o - ^ M o 

= - ^ { i , j ) { k , i ) - ^{i,j)^{k,i) 

= - ^ h w ) - 9 { i J ) { k , i ) i ^ ' ) 

=-(^(i,i>{fc,0+^^"'j)(^'0(^')) 
_ _ \ 5 + l 
_ ^{i,j){k,l) 
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Combin ing these two cases, we get W^^^ = —A^^^. 口 

Now, a simple appl icat ion of corol lary 6.1 and lemma 6.2 results i n the fol-

lowing theorem, which establishes the equivalence of the G E N E T convergence 

procedure and £<SX>£(GENET). 

Theorem 6.2 Consider a CSP (JJ, D, C), and its corresponding GENET network 

J\f and zero-one integer constrained minimization problem. Suppose both GENET 

and CSVC{GENET) use the same random selection function rand(y) and they 

share the same initial state. For all iteration s，V^ = z^ and W^ = -A^. If they 

terminate, they return the same solution for the CSP. 

Proof: We prove the theorem by mathemat ica l induct ion. In i t ia l ly , at s — 0, 

since bo th G E N E T and CSVC{GENET) share the same in i t i a l state, 

V ° 二 z ^ 

Furthermore, since W ^ = —1 and A° = 1, 

W' = -A®. 

Therefore, the theorem is t rue at s = 0. 

Now, suppose at s — t, V^ = z* and W^ = —XK B y corol lary 6.1 and 

lemma 6.2, we have 

\?力+1 =玄计1 and I ^ ^ i = - X ^ i 

at s = t + 1. 

By mathemat ica l induct ion, the theorem is t rue for al l i terat ion s. Conse-

quently, i f bo th G E N E T and CSVC{GENET) terminate, they re turn the same 

solut ion for the CSP. 口 

Based on this theorem, we get the fol lowing two corollaries. The first corollary 

states the relat ion between the energy of G E N E T and the Lagrangian funct ion 

of CSVC{GENET), whi le the second corollary gives the te rminat ing properties of 

G E N E T and CSVC{GENET). 
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Corollary 6.2 Consider a CSP (U, D，C)，and its corresponding GENET net-

work Af and zero-one integer constrained minimization problem. The energy of 

GENET is equal to the negative of the Lagrangian function of CSVC{GENET). 

Math ematically, 

E{Af,S) = -L{lX). 

Proof: Consider the G E N E T network Af and its associated zero-one integer 

constrained min im iza t ion problem. Let X be the set of al l incompat ib le tuples. 

(̂AT,A = ^ V(.-,i)Ĥ (..)(.,0̂ (.,0 
{{i,j),{k,i))eM 

= Y 1 Hid) (->'{iJ){k,l)) Hk,l) 
{{i,j),{k,i))ei 

= 一 X ] ^i,j){k,l)9{i,j){k,l)i^ 
({i,j),{k,l))el 

= - m ^ ) 

• 

Corollary 6.3 Consider a CSP (̂ 7, J9, C), and its corresponding GENET net-

work M and zero-one integer constrained minimization problem. GENET termi-

nates if and only if CSVC(GENET) terminates. 

Proof: Consider the G E N E T network J\f and its associated zero-one integer 

constrained min imiza t ion problem. Let 0(A/ ' , S) be the set of al l on label nodes 
« 

of the G E N E T network Af and a state S. 

G E N E T terminates <^ /(,•,) = 0, V ( z , j ) G 0{Af,S) 

<^ E{JV,S) = 0 

<^ L{z, X) = 0 

分 CSVC{GENET) terminates 

• 
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Similar results can be proven if, in CSVC, we use instead the objective function 

N{z) defined in (4.18) and init ial ize A to 0. If, however, we use N{z) defined 

in (4.18) and init ial ize A to 1, the Lagrangian function becomes 

L{z, A) = Y1 HiJ)Hk,i) + Y^ \iMkmiMk.i){^) 
[(i,j),[k,i))a: {{i,j),{k,i))ei 

= Y . (1 + >'{iJ){k,i)) 9{iJ){k,i)i^) (6.10) 
{{i,j),{k,l))el 

where X is the set of all incompatible tuples. As a result, we have 

W = - ( r + X) . (6.11) 

This version of CSVC is equivalent to GENET w i th all connection weights ini-

t ialized to —2 instead of —1. 

6A Experiments 

Three experimental settings are used to evaluate our discrete Lagrangian ap-

proach. First, £5X>£(GENET) is compared w i th GENET to verify i f i t has the 

same fast convergence behavior as other GENET implementations. Second, sev-

eral experiments are performed to evaluate the effect of different parameters of 

CSVC. Parameters which give good performance in most CSP's are identified. 

Thi rd, our best variant CSVC{UKX) is tested against CSVC{GE^ET). 

The A^-queens problems, a set of hard graph-coloring problems from the DI-

MACS archive [27], an instance of exceptionally hard problems (EHP's) [45], and 

a set of randomly generated CSP's are used in our experiments. Results of all 

CSVC implementations are taken on a SUN SPARCstation 10 model 40. Unless 

otherwise specified, the unbracketed and the bracketed t iming results represent 

the CPU t ime in seconds for the average and the median of 10 runs respectively. 

Note that the results of all CSVC implementations are the t ime for finding one 

solution only. 
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P R O C L A N N CSVC{GENET) l-CSVC{GENET) 

N Average CPU Average (Median) Average (Median) 
T ime (sec) CPU T ime (sec) CPU T ime (sec) 

10 0.065 0.005 (0.000) — 0.027 ( 0 . 0 2 5 ] ~ 
‘ ~ W 0.218 ~ " a 0 0 3 (0.000) 0.288 (0.283) 

~ W 0.637 — 0.020 (Q.Q17) — 1.005 ( L O O O l ~ 
~ W 2.145 — 0.028 (0.033) — 2.388 ( 2 . 3 8 3 ^ ~ 
" ^ Q ~ 4.719 — 0.040 (0.033) — 4.627 (4.617)~~ 
~ ^ ~ 7.711 — 0.068 (0.067) 8.002 (7 .975 )— 
~ W ~ 13.292 ~ ~ 0.090 (0.092) 12.818 ( 1 2 . 7 9 ^ 
~ W 20.629 — 0.178 (0.175) —19.698 ( 1 9 . 6 9 ^ 
~ W ~ 33.150 — 0.642 (0.633) —28.283 ( 2 8 . 2 6 7 ^ 
~T00~' 152.795 — 1.078 (1.108) 39.348 (39.400) ~ 
~ n 6 ~ ' 261.026 — 1.588 (1.583) " ^ . 5 8 5 (52.608) ~ 
"1^1 144.709 2.033 (2.058) 68.907 (68 .950^" 

Table 6.1: Results of >C«5I>£(GENET) on the iV-queens problems 

6.4.1 Evaluation of £5P£(GENET) 

The performance of £<SP£(GENET) is evaluated on the N-queens problems, a 

set of hard graph-coloring problems, and an instance of EHP's designed to defeat 

tree search algorithms. These experiments have two purposes. First, they serve to 

verify i f £<SP£(GENET) exhibits the same fast convergence behavior as GENET 

as reported in the literature. Second, they serve as a control to compare against 

other variants. Wherever possible, the performance figures of two implementations 

of GENET are provided. 

Table 6.1 shows the results of 10- to 120-queens problems for CSVC{GENET), 

l-CSVC{GENET) and PROCLANN [36], a constraint logic programming language 

w i th GENET as the constraint solver. I-£Sr>£(GENET) and PROCLANN are 

incremental implementations of £<SX>£(GENET) and GENET respectively. In 

these implementations, everytime new constraints are generated and posted into 

the constraint store, the CSVC procedure or the GENET solver is activated to 

solve the part ial problem containing all constraints available in the constraint 

store. The benchmarking results of PROCLANN are the average of 10 runs on a 
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GENET PROCLANN ~~£5P£(GENET)~~ 
Nodes Colors Median Average Average (Median) 

CPU T ime CPU T ime CPU T ime 
125 ~~~fr 2.6 h r ~ ~ 2.3 hr — 4.7 m in (3.7 m i n 「 

~ ~ 1 ^ l 8 23 s e c ~ ~ 2.5 m i n 一 4 .5 sec (2 .9 s e c ) 一 

~ 2 ^ l 5 ^ 4.2 sec 1.1 hr 0.418 sec (0.408 s e ^ 
250 29 — 1.1 hr “ 4.6 hr 14.6 m in (15.7 min)~ 

Table 6.2: Results of £52>£(GENET) on the hard graph-coloring problems 

SUN SPARCstation 10 model 30. Since P R O C L A N N generates the constraints 

of a CSP from a program, the t iming results of l-CSVC{GENET) include the 

t ime for reading constraints to compensate the difference. The performance of 

CSVC{GENET) is order of magnitudes better than that of PROCLANN. The 

large difference in performance is due to the fact that £<SP£(GENET) collects all 

constraints in the problem init ial izat ion phase and activates the Lagrangian search 

algori thm once. Hence, much work is saved. This effect is more prominent as the 

size of the problems increase. On the other hand, l-CSVC{GENET) shows similar 

performance as that of PROCLANN. The difference in performance on the large 

problems is due to the difference in their interface. 

The graph-coloring problem is to assign a color f rom a fixed set of colors 

to each vertex of the graph such that no two adjacent vertices share the same 

color. A set of hard graph-coloring problems f rom the D IMACS archive [27] are 

tested. T iming results of the hard graph-coloring problems for CSVC{GENET), 

P R O C L A N N [36] and GENET described in [7] are shown in Table 6.2. Again 

the results of P R O C L A N N are the average of 10 runs taken on a SUN SPARC-

station 10 model 30. The results of GENET, quoted f rom [7], represented the 

median of 10 runs collected on a SUN Sparc Classic, which is about 2 to 3 times 

slower than a SPARCstation 10 model 40. The hard graph-coloring problems are 

relatively small in size and the constraints are available to P R O C L A N N all at 

once. Therefore, most t ime is spent in actual searching in all implementations. 

Both l-CSVC{GENET) and £«SX^C(GENET) have the same performance since they 
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are equivalent when all constraints are available and posted to the constraint 

store at once. £<SX>£(GENET) improves substantially on both implementations 

of GENET. This might be related to the difference in the implementations. In 

CSVC{GENET), the contr ibution of each incompatibi l i ty funct ion 9{i,j){k,i)i^) to 

the Lagrangian function L{z^ X) is calculated incrementally during the update of 

the zero-one integer variables z. When a zero-one integer variable z(i,j) is updated, 

the contributions of previously violated incompatibi l i ty functions g{i,j){k,i)(^ are 

subtracted f rom the Lagrangian function L(z, A), while the contributions of newly 

violated incompatibi l i ty functions are added to the Lagrangian function. Hence, 

a large amount of computation is saved. 

Prosser [45] designed a specific instance of EHP's to defeat forward-checking 

algori thm w i th dynamic variable ordering (fc-dvo) [44], which always chooses vari-

ables w i th the smallest current domain. The problem consists of 50 variables, 

each w i th a domain {1 ,2 ,3 ,4 ,5 ,6 , 7,8} . The associated constrained graph is con-

nected. Each pair of connected variables contains 4 incompatible tuples. The 

tightness [60] of the problem is 0.06. Unlike tree search algorithms [44], the per-

formance of>C<SI>r(GENET) seems not to be affected by this EHP. jCSVC(GENET) 

solves the EHP wi th 2.2 iterations in 0.002 seconds on average over 10 runs. I t is 

much better than that of PROCLANN, which required 2448 convergence cycles 

in 3.24 seconds to solve the same problem. 

In conclusion, £ST>£(GENET) exhibits similar fast convergence behavior to 

GENET. The difference in performance may be due to the difference in imple-

mentations. 

6.4.2 Evaluation of Various Parameters 

The experiments are used to evaluate the effect of various parameters of CST>C. 

In each experiment, the parameter under test is varied in the CST>C implemen-

tation. Other parameters remains the same as that of £<SP£(GENET). The 

AT-queens problems, the set of hard graph-coloring problems f rom the DIMACS 

archive [27], and a set of randomly generated CSP's, ranging f rom 100 to 150 
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^{zero} ^{violation} 

N CPU Time (sec) CPU T ime (sec) 
10 0.005 (0.000) 0.000 (0.000) 

~ W 0.003 (0.000) — 0.003 ( 0 . 0 0 0 ) ~ 
30 0.020 (0.017) 一 0.013 (0.017) 

~40 a028 (0.033) 0.027 (0.033) 
~ ^ 0.040 (0.033) 0.045 (Q.05Q) 
~ ^ 0.068 (0.067) 0.058 (0.058) 
~ 7 0 ~ 0.090 (0.092) 0.090 (0.083) 
~ m g i 7 8 (0.175) 0.147 (0.150) 

90 0.642 (0.633) “ 0.657 (0.642) 
~ m 1.078 (1.108) 1.098 (1.067) 

110 1.588 (1.583) 1.522 (1.533) 
120 2.033 (2.058) 2.068 (2.142) 

Table 6.3: Results of N — o } and N^vioiation} on the iV-queens problems 

variables, are used. Each t ight random CSP has a uni form domain of size 10, 

constraint tightness [60], the proportion of pairs of values which are inconsistent 

in a binary constraint, 0.15, and constraint density [60], the proport ion of pairs 

of variables which have a constraint between them, varying f rom 0.165 to 0.25. 

Objective Function 

This experiment investigates the effect of the objection function N{z), Two ob-

jective functions are tested. They are 

• N^zero}'- the objective function defined in (4.19)，and 

• N{vioiation}'' the objective function defined in (4.18). 

Experimental results for the 7V-queens problems are reported in Table 6.3. 

The results of N{yioiation} is similar to that of N{zero} since only a small amount 

of CPU t ime is spent on solution searching. For the results of the hard graph-

coloring problems shown in Table 6.4, except the problem w i th 125 nodes and 

17 colors, the objective function N{yioiation} improves the performance of CST>C. 

The poor performance for the problem wi th 125 nodes and 17 colors is due to an 
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^{zero) N{violation} 

Nodes Colors CPU Time CPU T ime 
~1[25 17 4 7 m in (3.7 min) 8.0 m in (3.1 m i ^ ^ 

125 18 4.5 sec (2.9 sec) 1.2 sec (1.0 sec) 
250 15 — 0.418 sec (0.408 sec) 0.415 sec (0.417 sec) 

" ^ Q 29 14.6 min (15.7 min) 11.9 m in (11.8 min) 

Table 6.4: Results of N 、 — and N — i a — on the hard graph-coloring problems 

N^zero} ^{violation} 

Problem CPU Time (sec) CPU T ime (sec) 
^sp-100-lQ-25-15 2.742 (2.483) 1.852 (1.475)一 

"7^sp-110-10-23-15 11.253 (10.992) 一6.950 (2.108)一 

^sp-120 - lQ-21 - I^ 7.983 (5.433) 一5.375 (4.083)一 

^sp-13Q-10-19-T5~ 9.077 (8.308) —4.322 (3.500)— 
"^sp-140-lQ-18-15 11.000 (10.058) —9.167 (7.975)一 

^p-150- lQ-16 .5 -15 7.935 (8.692) 2.458 (2.100)— 

Table 6.5: Results of N — o } and N—iation} on the t ight random CSP's 

exceptionally bad t iming result in one of the runs. Table 6.5 shows the results of 

N{zero} and N{yioiation} OH the t ight random CSP's. In this set of problems, the 

objective function N^vioiation} improves the performance substantially. 

Since the effect of an objective function is to exert addit ional force to guide the 

search, a good objective function can improve the overall performance of CST>C. 

From the experiment, we f ind that N(vioiation} usually gives better performance 

than N{zero}' 

Discrete Gradient Operator 

The efficiency of two discrete gradient operators are evaluated. The operators 

• l^s{many}'' the one defined in (6.8)，and 

• A^{o7ie}' the one defined in (6.9) 
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^z{many} ^z{one} 

N I ter. CPU Time (sec) Iter. CPU T ime (sec) 
10 51.6 0.005 (0.000) 13.8 0.000 (0.000) 

" ^ 0 ~ 14.8 0.003 (0.Q00^~ 62.2 0.005 (0.000) 
~ ^ 51.2 0.020 (0.017) 50.2 0.020 (0.017) 
~ W 38.5 0.028 (0.033) 42.2 0.027 (0.025)— 
~ W 40.3 0.040 (0.033) — 62.5 0.063 (0.067)— 
~ W 35.1 0.068 (0.067) — 69.0 0.100 (0.100)— 
" T T " 34.9 0.090 (0.092) — 58.3 0.135 (0.133)— 
~ ^ 31.2 0.178 (0.175) 84.8 0.280 (0.275) 
~ % 30.6 0.642 (0.633) 89.5 0.777 (0.767) 
T o o 49.2 1.078 (1.108) 86.5 1.378 (1.375) 
T T 0 43.2 1.588 (1.583) 80.1 1.958 (1.942) 
丁20 41.9 2.033 (2.058) 129.2 2.752 (2.683)— 

Table 6.6: Results of Ag^rnany} and A^^one} on the A^queens problems 

^z{many} ^z{one} 

Nodes Colors Iter. CPU Time Iter. CPU Time 
—125 17 708.4 k 4.7 m in (3.7 min) T ^ 7 . 3 k 8.1 m in (5.0 m i n ) = 
T 2 5 l 8 ~ 6125.8 4.5 sec (2.9 sec) 6119.3 2.4 sec (1.6 sec) 
~ m l 5 ~ ~ 24.0 0.418 sec (0.408 sec) 455.1 1.122 sec (l.lQQ secJ" 

250 29 337.5 k 14.6 min (15.7 min) 1060.8 k 21.0 m in (19.9 min) 

Table 6.7: Results of A^{rnany} and A^{one} on the hard graph-coloring problems 

are tested. Table 6.6 shows the CPU t ime and the average number of iterations of 

the two discrete gradient operators on the A^-queens problems. The performance 

of A^{one} is slightly worse than that of A^^^any}- However, since the iV-queens 

problems are relatively easy for CSVC^ the results are not very significant. The 

t iming results and the average number of iterations of the hard graph-coloring 

problem and the t ight random CSP's are shown in Tables 6.7 and 6.8 respectively. 

Except some problem instances, the discrete gradient operator A f { _ } is not as 

efficient as /^^{many]- This difference in performance can be accounted as follows. 

Although both discrete gradient operators perform the same amount of work in 

each iteration, only one variable is updated by A^{o^e}- On the other hand, in 
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^z{many} ^z{one} 
Problem Iter. CPU T ime (sec) Iter. CPU Time (sec) 

rcsp-lOO-lQ-25-15 7245.5 2.742 (2.483) 18512.4 3.640 (3.325) 
-rcsp-l lQ-10-23-15 "3^34.4 11.253 (10.992) 74856.4 14.545 (14.158) 

"rcsp-12Q-10-21-15 23589.6 7.983 (5.433) 38491.3 8.260 (7.433) 
-rcsp-130-lQ-19-15 22570.8 9.077 (8.308) 39774.2 8.687 (5.983) 

rcsp-140-10-18-15 "27l3Q.4 11.000 (10.058) 80936.9 18.877 (21.342) 
"rcsp-150-lQ-16.5-15 17389.3 7.935 (8.692) 27473.5 6.945 (6.975) 

Table 6.8: Results of A^rnany} and Ag{one} on the t ight random CSP's 

each iteration, A^{rnany} can update more than one variable. Hence, as reflected 

in the benchmarking results, Ag{rnany} usually requires more iterations to solve a 

problem. 

Al though the performance of different discrete gradient operators seems to be 

problem dependent, our experiments suggest that Ag{rnany} is l ikely to perform 

better than A^^ (_ } , which is similar to the one defined in D L M [62, 54, 53] for 

solving SAT problem. 

Integer Variables Initialization 

Two schemes for ini t ial izing the zero-one integer variables are investigated in this 

experiment. They are 

• I^{random}' landomly init ialize the zero-one integer vector 玄,provided that 

the set of constraints (4.16) is satisfied, and 

• h{greedy} • greedily initialize the zero-one integer vector z according to the 

following procedure [40]: init ialize each component 7r^(i') of the zero-one 

integer vector z one by one, and select the assignment which gives the fewest 

violations against previous selections. 

The results of the A^-queens problems, the hard graph-coloring problems and 

the t ight random CSP's are given in Tables 6.9, 6.10 and 6.11 respectively. The 

greedy in i t ia l assignment h{greedy} gives us better performance in most of our test 
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Iz{random} Iz{greedy} 
N C P U T i m e (sec) C P U T i m e (sec) 
10 0.005 (0.000) 0.002 ( 0 . 0 0 0 ) ~ 

^ 5 0.003 (Q.OQO) 0.012 (0.017) 
^ 0.020 (0.017) 0.013 (0.017) 

40 0.028 (0.033) — 0.017 (0.017) 
~ ^ 0.040 (0.033) 0.032 (0.033) 
~ m 0.068 (0.067) 0.038 (0.033) 
~7Q"一 0.090 (0.092) 0.065 (0.067) 

80 0.178 (0.175) - 0.113 (0.117) 
90 0.642 (0.633) — 0.483 (0.475) 

~ m 1.078 (1.108) 0.777 (0.775) 
110 1.588 (1.583) 1.055 (1.058) 
120 2.033 (2.058) 1.447 (1.383) 

Table 6.9: Results of /_r{r^and^} and h{greedy} on the A^-queens problems 

^z{random) Iz{greedy} 
Nodes Colors C P U T ime C P U T i m e 

~ T 2 5 17 4.7 m i n (3.7 m in ) 6.2 m i n (4.4 m in ) 
125 18 — 4.5 sec (2.9 sec) 2.9 sec (2.3 sec) 
250 15 — 0.418 sec (0.408 sec) 0.307 sec (Q.30Q sec) 
250 29 14.6 m i n (15.7 m in ) 14.2 m i n (13.3 m in ) 

Table 6.10: Results of I^{random} and h{greedy} on the hard graph-coloring problems 

^z{random) Iz{greedy} 
Problem C P U T ime (sec) C P U T i m e (sec) 

=rcsp-100-10-25-15 2.742 (2.483) 3.050 (2.375) 
^csp - l lQ-10-23-15 11.253 (10.992) 11.967 (10.5587" 
~ c s p - 1 2 0 - 1 0 - 2 1 - l ^ 7.983 (5.433) —4.850 (3.883)一 
—rcsp-130-10-19-15 9.077 (8.308) 5.185 (3.975) 

rcsp-14Q-10-18-15 "TT.000 (lQ.Q58)~ 9.335 (10.333) 
Tcsp-150-lQ-16.5-15 7.935 (8.692) 7.160 (6.508) 

Table 6.11: Results of h{random} and h{greedy} on the t ight random CSP's 
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problems. Since h{greedy} generates an assignment which is closer to a solution of 

a CSP, less effort is required for solution searching. Thus, the in i t ia l assignment 

scheme h{greedy} seems to have advantage over h{random}' 

Condition for Updating Lagrange Multipliers 
— 

As stated before, the condition for updating the Lagrange mult ipl iers A can affect 

the efficiency of the discrete Lagrangian search [62, 54, 53]. In this experiment, 

two common strategies for updating the Lagrange mult ipl iers are tested. These 

two strategies are 

• Ux{every}: update the Lagrange mult ipl iers A in every iteration, (i.e. after 

each update of the zero-one integer vector z), and 

— ~^\ — 
• ^x{stabie}' update the Lagrange mult ipl iers A when AgL{z, A) = 0. 

Table 6.12 shows the results of the iV-queens problems. Due to the fact that 

only a small amount of CPU t ime is used for solution searching, the effect of the 

different updating strategies is not significant. However, the results of the hard 

graph-coloring problems in Table 6.13 show that the updating strategy ^e^;ery} 

gives us certain improvement. Similarly, the results in Table 6.14 show that 

^X{every} ^̂  more efficient than Ux^ t̂abie} ^^ most of the t ight random CSP's. Re-

call that the Lagrange multipl iers A are the penalty values of the violated tuples. 

Therefore, updating the Lagrange mult ipl iers w i l l eventually guide the search to a 

solution. I f we update the Lagrange mult ipl iers earlier, the algori thm wi l l search 

for other promising regions earlier. 

In summary, the experiment suggests that the updating frequency of the La-

grange multipl iers can affect the efficiency of the discrete Lagrange mult ipl ier 

method. The updating strategy t/x{every} i® in general better than ^^^at/e} ac-

cording to our experiments. 
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UX{stable} ^X{every} 
N CPU Time (sec) CPU T ime (sec) 
10 0.005 (0.000) 二 0.003 (0.0007^ 
20 0.003 (0.000) 0.007 ( 0 . 0 0 0 ) ~ 

^ 5 0.020 (0.017) 0.020 (0.017) 
40 0.028 (0.033) — 0.023 (0.017) 

" ^ 0 ~ 0.040 (0.033) — 0.045 ( 0 . 0 5 0 ) ~ 
~ W 0.068 (0.067) 0.065 (0.067) 

70 0.090 (0.092) 一 0.087 (0.083) 
~ ^ 0.178 (0.175) 0.180 (0.175) 
~ ^ 0.642 (0.633) 0.635 (0.617) 

100 1.078 (1.108) 一 1.185 (1.183) 
110 1.588 (1.583) — 1.630 (1.608) 
120 2.033 (2.058) 2.175 (2.183) 

Table 6.12: Results of ^7x_We} and U^every}^^ the iV-queens problems 

^X{stable} ^X{every} 

Nodes Colors CPU Time CPU T ime 
125 17 “ 4.7 m in (3.7 min) 3.3 m in (2.7 min) 
125 18 — 4.5 sec (2.9 sec) 4.4 sec (4.183 sec) 

" ~ W ~ 15 0.418 sec (0.408 sec) ^ . 5 2 2 sec (0.500 sec) 
250 29 14.6 m in (15.7 min) 12.3 m in (12.1 min) 

Table 6.13: Results of t^{waWe} and ^{e^;er2/} on the hard graph-coloring problems 

^X{stable} ^X{every} 

Problem CPU Time (sec) CPU Time (sec) 
^ s p - l Q 0 - l Q - 2 5 - T r ^ 2.742 (2.483) 3.238 (1.833)一 
"^sp- l lQ-10-23-15 11.253 (10.992) 一9.225 ( 6 . 4 6 7 ) ~ 
"7csp-120-10-21-T^ 7.983 (5.433) ~ 5 . 9 5 5 ( 6 . 6 6 7 ) ~ 
^csp-13Q-10-19-15 9.077 (8.308) —7.768 ( 6 . 5 0 0 ) ~ 

rcsp-140-10-18-15 11.000 (10.058) 11.182 (8.000) 
^sp-150-10-16.5-15 7.935 (8.692) 6.220 (5.600)一 

Table 6.14: Results of Ux{stabie} and f̂ X{every} on the t ight random CSP's 
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6.4.3 Evaluation of CSVC{uAx) 

In the previous experiments, different parameters of CSVC are evaluated. Some 

parameters are found to be better than the others in most problems. Com-

bining these identified parameters, we construct our best CSVC variant, called 

CSVC{UAX), which has: 

• N: the objective function defined in (4.18), 

• Af： the discrete gradient operator defined in (6.8)， 

• If. greedily init ial ize the zero-one integer vector z according to the procedure 

described in [40], 

. . ~* ~* 

• I^: init ial ize the Lagrange multipl iers A to 1, and 
~f 

• U^: update the Lagrange multipl iers A in every iteration. 

We perform the experiments on the iV-queens problems, a set of hard graph-

coloring problem from DIMACS [27] and a set of randomly generated CSP's. The 

performance of CSVC{UAX) is compared w i th that of CSVC{GENET). 

Table 6.15 shows the benchmarking results of the iV-queens problems for 

CSVC{MAX) and >C5X>>C(GENET). Since only a small amount of CPU t ime is 

spent on actual searching, the performance of CSVC{UAX) is only slightly better 

than that of CSVC{GENET). 

The experimental results of the hard graph-coloring problems for CSVC{UAX), 

CSVC{GENET), and also D L M described in [62, 54, 53] are presented in Ta-

ble 6.16. The results of D L M represent the average CPU t ime of 10 runs taken on 

a SUN SPARCstation 10 model 51. The efficiency of CSVC{UAX) over that of 

£<Sr>£(GENET) is well demonstrated in this set of experiments. When comparing 

CSVC{MAX) w i th D L M , CSVC{UAX) is found to be more efficient than DLM. 

Besides the t iming results, CSVC{UAX) is better than D L M in the following as-

pects. First, given a predefined maximum number of iterations, say five mil l ion, 

CSVC{UAX) produces solutions successfully on every run. On the other hand, 
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CSVC{GENET) ~~CSVC{MAX)~~ 

N CPU Time (sec) CPU T ime (sec) 
10 0.005 (0.000) 0.003 (0.000) 

~ W 0.003 (0.000) — 0.007 (0.000)~" 
30 0.020 (0.017) — 0.010 (0.017) 

" 1 5 0.028 (0.033) 0.018 (0.017) 
~ ^ 0.040 (0.033) 0.030 (0.033) 
~ ^ 0.068 (0.067) 0.047 (0.050) 
~70 0.090 (0.092) 0.067 (0.058) 

80 0.178 (0.175) — 0.132 (0.125) 
90 0.642 (0.633) — 0.493 (0.475) 

~ m rp78 (1.108) 0.858 (0.833) 
~ m L588 (1.583) 1.062 (1.033) 

120 2.033 (2.058) 1.532 (1.492) 

Table 6.15: Results of CSVC{UAX) on the iV-queens problems 

~~DLM~~~~CSVC{GENET)~~ CSVC{MAX) 

Nodes Colors Average Average (Median) Average (Median) 
CPU Time CPU Time CPU Time 

125 17 23.2 min 4.7 min (3.7 min) 3.2 m in (2.6 min) 
~ ^ 2 5 l 8 " " 3.2 sec 4.5 sec (2.9 sec) “ 1.1 sec (0.925 sec) 

250 ~ ~ l 5 ~ 2.8 sec 0.418 sec (0.408 sec) 0.328 sec (0.325 sec)— 
250 29 20.3 min 14.6 min (15.7 min) 11.3 m in (12.6 min)~ 

Table 6.16: Results of CSVC{UAX) on the hard graph-coloring problems 
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CSVC{GENET) CSVC{UAX)^ 

Problem CPU Time (sec) CPU T ime (sec) 
"^-100-10-25-15 2.742 (2.483) 2.577 (1.658) 

rcsp-llQ-10-23-15 "H7253 (10.992) 7.038 (6 .19¾" " 
rcsp-120-lQ-21-15 — 7.983 (5.433) 4.248 (2.825) 

"7^sp-13Q-10-19-ir" 9.077 (8.308) 一2.452 (1.883) 
~7csp-140-10-18"^l5~ 11.000 (10.058) _ 5.475 (4.200) 
"^p-150-10-16.5-15 7.935 (8.692) 2.923 (L400) 

Table 6.17: T iming results of CSVC{UAX) on the t ight random CSP's 

D L M gives only a 9/10 success ratio on the problem w i th 250 nodes and 29 col-

ors. Second, the SAT versions of the graph-coloring problems in the DIMACS 

archive lack the set of constraints defined by (4.16) [48]. Therefore, answers to 

these easier problems can have a vertex assigned w i th more than one color. Thi rd, 

D L M employs, on top of the discrete Lagrange mult ipl ier method, a number of 

tuning heuristics and an additional tabu list to remember states that are vis-

i ted [62, 54, 53]. For example, the Lagrange multipl iers are reset by a factor of 

2/3 after every 10000 iterations, and the Lagrange mult ipl iers are updated by a 

different constants for different graph-coloring problems. However, our results are 

obtained by CST>C{MAX) w i th no special tuning and addit ional machineries. 

Table 6.17 shows the results of a set of t ight random CSP's, ranging f rom 100 

to 150 variables. Each random CSP has a uniform domain of size 10, constraint 

tightness 0.15, and constraint density varying f rom 0.165 to 0.25. Besides the 

CPU t ime, we also show the average number of iterations and Lagrange mult i -

plier updates ( in square bracket) in Table 6.18. The CSVC{UAX) implementa-

t ion performs about 6 - 73% better than the £SV£(GENET) implementation in 

all problem instances. Furthermore, jCSV£(MAX) uses many fewer iterations to 

obtain a solution. 
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CSVC{GENET) ~ ~ C S V C { M A X ) ^ 

Problem Iter. [A Updates] Iter. [A Updates] 
"7csp-100-10-25-15 7245.5 [2747.3] 4978.4 [4978.4] 

rcsp-110-lQ-23-15 33634.4 [13387.4T 12150.0 [12150.0] 
rcsp-120-10-21-"H 23589.6 [9760.4] 6665.5 [6665.5] 

^ ^ - 1 3 0 - 1 0 - 1 9 - 1 5 — 22570.8 [8681.4] 3290.3 [3290.3] 
" ^ p - 1 4 Q - 1 0 - 1 8 - l ^ 27130.4 [10622.4] ~ 0 7 2 . 7 [7072.7f" 
"7^-150-10-16.5-15 17389.3 [6508.7] 3968.7 [ 3 9 6 8 7 f " 

Table 6.18: Number of iterations and Lagrange mult ipl ier updates of CSVC{UAX) 

on the t ight random CSP's 

6.5 Extension of CSVC 

In the previous discussion, we establish a surprising connection between CSVC 

and the GENET model. This connection also suggests a dual viewpoint of GENET, 

as a heuristic repair method and as a discrete Lagrange mult ip l ier method. Hence, 

we can improve GENET by exploring the space of parameters available in the 

CSVC framework. Alternatively, techniques developed f rom GENET can be used 

to extend our CSVC framework. Lazy arc consistency [56, 59, 57], a consistency 

method that speeds up the search of GENET, is incorporated in CSVC. Exper-

iments show that lazy arc consistency gives significant improvement for discrete 

Lagrangian search. 

6.5.1 Arc Consistency 

Arc consistency [37] is a well known technique for reducing the search space of a 

CSP. A CSP {U,D,C) is arc consistent i f and only i f for all variables x,y G U 

and for all value u G D^ there exists a value v G Dy such that the constraint 

c on variables x and y is satisfied. In the terminology of GENET, a CSP, or a 

GENET network M, is arc consistent i f and only i f for all clusters i,j G U and for 

all label nodes (z, k) G Af there exists a label node ( j , /) G Af such that there is no 

connection between {i,k) and ( j , 1) [56, 59，57]. Obviously, values which are arc 

inconsistent cannot appear in any solution of CSP. Hence, we are guaranteed that 
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any solution of the original CSP is a solution of the corresponding arc consistent 

CSP. We say that the original CSP and its associated arc consistent CSP are 

equivalent. 

Arc consistency gives us a way to remove useless values f rom the domains of 

variables. Algori thms, such as AC-3 [37], are usually combined w i th backtracking 

tree search to increase the efficiency. Similar algorithms can be used to preprocess 

a given GENET network Af to produce an equivalent arc consistent network. 

The algorithms remove a label node (z , j ) and its associated connections f rom the 

GENET network Af i f ( i , j ) is arc inconsistent. Once a label node is found to be 

arc inconsistent and removed f rom the GENET network, we need to re-check all 

other label nodes which may no longer be arc consistent. 

6.5.2 Lazy Arc Consistency 

Preprocessing a GENET network w i th arc consistency algori thm can improve the 

search because of the reduction in the search space. However, since arc consistency 

is in general a fair ly expensive operation, i t is beneficial only i f the improvement in 

efficiency is greater than the overhead of the arc consistency preprocessing phase. 

Stuckey and Tam [56, 59, 57] develop lazy arc consistency for the GENET model. 

Let o(5, i) be the on label node of cluster i in state S of a GENET network 

M. A GENET network M in a state S is lazy arc consistent i f and only i f 

for all clusters i,j G U there exists a label node ( j , k) G Af such that there is 

no connection between o(<S,i) and ( j , k) [56，59, 57]. Since lazy arc consistency 

only enforces arc consistency for the current on label nodes, i t can readily be 

incorporated in the convergence procedure of GENET. 

Algor i thm 6.2 gives a modified input calculation procedure for cluster i of 

the GENET network Af in a state S [56, 59, 57]. The algori thm detects lazy 

arc inconsistency during the calculation of inputs of each cluster. For example, 

consider an arc inconsistent CSP and its corresponding GENET network shown 

in Figure 6.1. When calculating the inputs of cluster Ui, we found that each label 

node ( i i i , 1〉，(ui,2) and (u i ,3 ) are connected to label node {u2,1〉，the current on 
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p r o c e d u r e input(A/*, 5 , i) 
begin 

if inconsistent(<) then 
M — M - { o ( 5 , 0 } - { {o{S, 0，〈…”〉）I W<̂，0，〈…”〉）^ ^ } 

end if 
for each cluster j + i do 

possibly」nconsistent(j) — true 
end for 
for each label node (¾, k) G J^ do 

hi.k) — 0 . 
for each cluster j + i do 

if {{i,k),o{SJ)) e M then 
hi,k) <- I{i,k) + W(^i^k)o{S,3) 

else 
possibly」nconsistent(j) <— fa l se 

end if 
end for 

end for 
for each cluster j • i do 

inconsistent(j) f - inconsistent(j) V possibly」nconsistent(j) 
end for 

end 

Algor i thm 6.2: A modified input calculation procedure, that can detect lazy arc 
consistency, for GENET 

Variable: ^ i 购 ^3 

{1，2’3} , 1 k j i j ] 

户 I 2 1:̂多。多二 
w < … / 3 mT Q f ^ ~ \ o 

/ u V \J 
© u 2 < u s ® • - on label node 

{1 ,2 ,3 } {1 ,2 ,3 } 0 - off label node 

(a) The CSP (b) The GENET network 

Figure 6.1: An arc inconsistent CSP and its corresponding GENET network 
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procedure Ldizy-CSVC{N, A^, h, /又，U£) 
begin 

[Ig) in i t ia l ize the value of z 
(1又) initialize the value of A 
while (N) L(z, A) - N(z) > 0 {z is not a solut ion) do 

for each variable i G U do 
if V j ^ i e U $k e Dj such that ( ( i , a{z, i)), ( j , k))贫 X then 

D i ^ D i - { a { z , i ) } 
end if 

end for 一 

( A f ) update z: z <— z — A^L{z^ A) 
if {U^) condi t ion for updat ing A holds then 

update A: A 卜 A + g{z) 
end if 

end while 
end 

A l g o r i t h m 6.3: The Lazy-£5X>£(iV, A ^ , Ig, /乂，U )̂ procedure 

label node of cluster U2. Hence, (u2,1) and its associated connections should be 

removed f rom the G E N E T network. 

Since lazy arc consistency is targeted at values that are selected dur ing the 

search, which may be much fewer than the entire search space, i ts overhead is 

smaller than that of arc consistency. Exper iments show that lazy arc consistency 

improves G E N E T substantial ly for CSP's which are arc inconsistent and does 

not degrade the performance signif icantly for problems which are already arc 

consistent [56, 59, 57]. 

Lazy arc consistency can be incorporated in CSVC i n a simi lar manner. Let 

a(i*, i) be the current assignment of variable i such that z〈i，a(̂ t)》二 1 and z(i,j) = 0 

for al l j + a{z,i) G Di, and X be the set of al l incompat ib le tuples ( ( z , j ) , {k,l)). 

The modif ied discrete Lagrangian search a lgor i thm Lazy-CSVC is shown in Algo-

r i t h m 6.3. Similar to G E N E T , the procedure for detecting lazy arc inconsistency 

can be integrated in the discrete gradient operator t \ ^ . For example, lazy arc 

inconsistency can be detected dur ing the calculat ion of the set X i n the evalua-

t ion of the par t ia l discrete gradient operator d\ We state exp l ic i t ly the detection 
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procedure in LdJzy-CSVC to show that lazy arc consistency is independent of the 

discrete gradient operator used. I n other words, any discrete gradient operator 

defined for CSVC can be used in Lazy-£5X>£ w i thou t any special modif icat ion. 

6.5.3 Experiments 

I n order to demonstrate the efficiency of LdJiy-CSVC, we implement bo th Lazy-

£«SP£(GENET) and Lazy-£«SX>£(MAX), which are instances of Lazy->C<SP>C w i t h 

the same parameters as those of CSVC{GENET) and CSVC{MAX) respectively. 

I n bo th Ldizy-CSVC implementat ions, the procedure for detect ing lazy arc incon-

sistency is integrated in the discrete gradient operator to improve the efficiency. 

The performance of Lazy-£«SD£(GENET) and Lazy-£<SP£(MAX) on the iV-queens 

problems, a set of randomly generated permuta t ion generation problems [31], a 

set of ar t i f ic ia l problems [56，59] and a set of random CSP's is compared against 

the non-lazy versions. T i m i n g results of al l CSVC and Lsizy-CSVC implementa-

tions are taken on a SUN SPARCstat ion 10 model 40. The unbracketed and the 

bracketed results are the average and the median C P U t ime in second of 10 runs 

respectively. 

The N-queens Problems 

Tables 6.19 and 6.20 show the exper imental results of Lazy-£<Sr>£(GENET) and 

Lazy-£<SX>£ (MAX) on the 10- to 120-queens problems respectively. Since the N-

queens problems are arc consistent, noth ing is gained f rom the detection of lazy 

arc inconsistency. However, the overhead of the addi t ional calculat ion is almost 

negligible. 

The Permutation Generation Problems 

The permutat ion generation problem [31] is a combinator ia l problem. Its a im 

is to construct a permutat ion on integers f rom 1 to n satisfying the conditions 

of monotonies and advances. A detailed description of model ing the problem 
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CSVC{GENET) Lazy->C5Pr(GENET) 
N CPU Time (sec) CPU T ime (sec) 
10 0.005 (Q.OQQ) 0.002 (0.000) 
20 0.003 (0.000) 0.005 (0.000) 
30 0.020 (Q.Q17) 0.023 (0.017) 
40 0.028 (0.033) 0.028 (0.033) 
50 0.040 (0.033) 0.048 (0.050) 
60 0.068 (0.067) 0.078 (0.067) 
70 0.090 (0.092) 0.098 (0.100) 
80 0.178 (0.175) 0.273 (0.267) 
90 0.642 (0.633) 0.787 (0.758) 
100 1.078 (1.108) 1.285 (1.267) 
110 1.588 (1.583) 1.748 (1.742) 
120 2.033 (2.058) 2.330 (2.367) 

Table 6.19: Results of Lazy-£«SP£(GENET) on the iV-queens problems 

~~CSVC{MAX)~~ Lazy-r<SP^(MAX) 
N CPU Time (sec) CPU Time (sec) 
10 0.003 (0.000) 0.000 (0.000) 
20 0.007 (0.000) — 0.003 (0.000) 
30 0.010 (0.017) 一 0.010 (0.017) 
40 0.018 (0.017) 一 0.018 (0.017) 

~ ^ 0.030 (0.033) 0.032 (0.033) 
60 0.047 (0.050) “ 0.047 (Q.Q50) 
70 0.067 (0.058)一 0.068 (0.067) 
80 0.132 (0.125) 一 0.242 (0.233) 

~ m 0493 (0.475) 0.557 (0.525) 
100 0.858 (0.833) — 0.920 ( 0 . 8 9 2 ) “ 
110 1.062 (1.033) - 1.193 (1.175) 
120 1.532 (1.492) 1.563 (L533) 

Table 6.20: Results of Lazy-£<SI>£(MAX) on the A^-queens problems 
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CSVC{GENET) ~~~Lazy-£52>>C(GENET) 
n C P U T i m e (sec) C P U T i m e (sec) Pruned 

~10 0.002 (0.000) 0.002 (0.000) 1.2 
~ 2 0 ~ 0.007 (O.OOQ) 0.008 (0.008) 1.0 — 
l 0 0.153 (0.083) ~ X 0 5 5 (0.017) 2.6 
~40 0.047 (0.042) —0.050 (0.033) 0.9 
~ W 0.052 (Q.Q50) 0.048 (0.050) 0.7 一 
~ ^ 0.098 (0.092) 0.112 (0.108) 0.7 “ 
—70 0.138 (0.117) ~ 0 7 l 6 8 (0.150) 0.9 
~ W 0.398 (0.383) 一 0.392 (0.367) 0.6 一 
~ ~ ^ 0.813 (0.800) 一 0.873 (0.850) 0.5 — 
~lOQ 1.192 (1.217) 1.162 (1.192) 0.6 

Table 6.21: Results of Lazy-£<SP£(GENET) on the random permuta t ion genera-
t ion problems 

as a CSP can be found in [22]. I n the exper iment, we randomly generate the 

monotonies and advances for n varying f rom 10 to 100. These problems involve 

arc inconsistency. Tables 6.21 and 6.22 show the results of Lazy->C<SP£(GENET) 

and Lazy->C<SX>£(MAX) respectively. Bo th the C P U t imes and the average number 

of values pruned by the lazy arc consistency versions are presented. Since the 

problems are relat ively easy for CSVC^ al l implementat ions can solve the problems 

w i t h l i t t l e search. Therefore, few values are pruned before a solut ion is found. 

However, the experiment confirms that the overhead of lazy arc consistency is 

small, even when there is l i t t l e advantage. 

The Artificial Problems 

The set of art i f ic ia l problems [56, 59] is used to i l lustrate the advantages of Lazy-

CSVC. A n art i f ic ia l problem of size n is a CSP w i t h n + 1 variables Ui, W2,...，Un+i 

and n constraints Ui < U2, U2 < w3,. • . , Un < Wn+i- The domain size of each 

variable is either n + 1 or 2n. Note that the art i f ic ia l problems w i t h domain size n + 

1 are special instances of the permutat ion generation problem [31]. Benchmarking 

results of Lazy-£SV£ (GENET) and Lazy-CSVC (MAX) on the artificial problems 

are shown in Tables 6.23 and 6.24 respectively. Besides the C P U t ime, we also 
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~~CSVC{MAX)~~ Lazy-r<SP>C(MAX) 
n C P U T i m e (sec) C P U T i m e (sec) Pruned 

• 10 0.005 (0.000) = 0.002 (0.000) 3.9 = 
~ W 0.010 (0.008) 一 0.008 (0.008) 1.9 “ 
" ^ 0 ~ 0.015 (0.017) — 0.057 (0.017) 3.1 “ 
“ ^ 0.020 (0.017) — 0.028 (0.025) 2.1 “ 
- 5 0 0.053 (0.050) 0.040 (0.042) 2.0 “ 
- 6 0 0.075 (0.067) 0.100 (0.075) 2.8 “ 
- 7 0 0.180 (0.167) — 0.182 (0.183) 1.3 “ 
- 8 0 0.408 (0.392) — 0.400 (0.350) 1.7 “ 
~ 9 0 ~ 0.782 (0.733) 0.770 (0.792) 0.4 “ 
-100 1.043 (1.008) 1.132 (1.092) 3.1 • 

Table 6.22: Results of Lazy-£<SI>£(MAX) on the random permuta t ion generation 
problems 

Prob. £SVjC(GENET) Lazy-£<SP£(GENET) 
Size n C P U T i m e (sec) C P U T i m e (sec) Pruned 

Domain Size 二 n + 1 
~~10 0.033 (0.033) 1 0.008 (0.008) 31.8 
- 2 0 1.065 (1.075) 0.260 (0.258) 261.8 
~ ~ ^ ~ 8.318 (7.800) 1.492 (1.517) 638.5— 
~ 4 0 ~ 36.267 (35.583) “ 5.552 (5.617) 1234.7~ 
~ 5 0 107.372 (105.542) 15.678 (15.675) 2 0 0 7 . ^ 

Domain Size 二 2n 
— 1 0 0.030 (0.017) I 0.052 (Q.Q50) 44 .0一 

~ ~ 2 0 ~ 2.008 (1.792) 0.787 (0.825) . 144.1— 
30 15.837 (13.225) “ 8.438 (9.008) 480.6— 

— 4 0 80.680 (82.925) 一 34.383 (35.000) 873.5 
一50 306.522 (314.100) 109.290 (111.625) 1482.5~ 

Table 6.23: Results of Lazy-£<SX>£(GENET) on the art i f ic ia l problems 
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Prob. ~ ~ C S V C {MAX)~~ Lazy-r<Sr>r(MAX) 

Size n C P U T i m e (sec) C P U T i m e (sec) Pruned 
Domain Size = n + 1 

10 0.017 (0.017) 0.005 (0.000) 24.2 
~ 20 0.865 (0.867) “ 0.123 (0.142) 227.4 — 
— 3 0 6.965 (6.750) “ 0.713 (0.675) 520.9一 

40 " ^ ^ 7 5 (25.892) 1.860 (1.842) 779.7 — 
— 5 0 85.592 (86.058) 4.507 (4.525) 1275.7— 

Domain Size = 2n 

- 1 0 0.045 (0.050) I 0.000 (0.000) 0 . 0 ~ 
- 2 0 ~ ~ 0 3 0 (0.000) 0.077 (0.017) 51.8 — 

30 6.430 (7.017) —0.407 (0.200) 142.7 
— 4 0 41.175 (49.725) “ 3.530 (1.167) 367.0 — 
— 5 0 97.852 (110.825) 11.507 (3.258) 677.9 — 

Table 6.24: Results of Lazy-£<Sr>£(MAX) on the ar t i f ic ia l problems 

give the average number of values pruned by Lazy-£<5P£(GENET) and Lazy-

CST>C[UAy.). Bo th \jdJzy-CSVC implementat ions give significant improvement 

for the discrete Lagrangian search. Since Lazy-£<SX>£(MAX) search a smaller 

space than that of hdJLy-CSVC(GENEX), it prunes fewer values from domains. 

Simi lar ly, as the domain size grows, the number of lazy arc inconsistencies found 

by bo th LdiZy-CST>C is reduced since some values are never searched. These 

properties clearly i l lustrate the targeted nature of lazy arc consistency. 

Random CSP's 

A set of randomly generated CSP's is used to test our LdJzy-CSVC implemen-

tations. The random CSP's, w i t h variable size ranging f rom 120 to 170，have 

domain size 10, constraint density 0.6, and constraint tightness 0.75. A high con-

straint density and a high constraint tightness are chosen to ensure that each 

generated CSP is arc inconsistent. I n order to guarantee that each random CSP 

is soluble, the fol lowing procedure is used. A f te r generating a CSP w i t h vari-

able size n and a set of chosen parameters, we randomly generate a tuple, say 
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CSVC{GENET) Lazy-£5X>£(GENET) 
Problem Iter. CPU Time (sec) Iter. CPU Time (sec) Pruned 

^ r c s p - 1 2 0 - l Q - 6 0 ^ 152.4 7.638 (7.683) 11.0 2.602 (2.600) 1011.4" 
"rcsp-13Q-10-6Q-75 162.0 9.135 (9.142) 11.0 3.055 (3.058) 1099.8" 
" r c s p - 1 4 0 - 1 0 - 6 0 ^ 147.3 9.690 (9.708) 11.0 3.607 (3.608) 1183.0 
" r c s p - 1 5 0 - l Q - 6 0 ^ 173.4 12.645 (12.717) 8.6 3.177 (4.083) 918.2 
"rcsp-160-10-6Q-75 167.4 14.208 (13.925) 11.0 4.930 (4.908) 1 3 5 P " 
"rcsp-170-10-6Q-75 176.2 21.820 (22.183) 11.0 7.418 (7.325) 1433.5_ 

Table 6.25: Results of La,zy-CSVC{GENET) on the t ight random CSP's w i th arc 
inconsistency 

CSVC{UAX) La,zy-CSVC{UAX) 
Problem Iter. CPU Time (sec) Iter. CPU Time (sec) Pruned 

rcsp-12Q-10-60-75 26.6 5.728 (7.208) 11.0 2.652 (2.650) 1 0 1 ^ 
"rcsp-130-10-6Q-75 27.4 6.983 ( 7 . 2 5 ^ ~ 8.8 2.530 (3.117) 884.2 _ 
rcsp-140-lQ-60-75 27.1 8.198 (9.617) 8.0 2.727 (3.792) 83 l7T " 
rcsp-150-10-60-75 ~ W I 10.198 (11.442) 6.6 2.667 (4.250) 7 6 8 T " 

" r c s p - 1 6 0 - l Q - 6 0 ^ 23.0 9.565 (12.650) 8.8 4.100 (5.042) 1101.1 “ 
rcsp-170-10-6Q-75 31.9 20.058 (20.200) 11.0 7.393 (7.358) 1 4 5 ^ 

Table 6.26: Results of Lazy-£5P£(MAX) on the t ight random CSP's w i th arc 
inconsistency 

( {u i ,V i ) , {u2,V2), . . . , (wn, ^n)), and regard i t as a solution of the CSP. I f a con-

straint on variables U{ and Uj contains、、Ui,Vi、, {uj^ Vj)), the one in the generated 

solution, as an incompatible tuple, the incompatible tuple is removed from the 

constraint. Two new incompatible tuples (〈w‘，V{)̂  {uj, Wj)) and {{ui, Wi), {uj, Vj)), 

where W{ + Vi and Wj + Vj are values chosen randomly f rom Du‘ and Du^ respec-

tively, are added. 

Tables 6.25 and 6.26 show the t iming results and the average number of itera-

tions of various CST>C implementations. The average number of values removed is 

also recorded for Lazy-£<Sr>£(GENET) and Lazy-£5P£(MAX). The lazy versions 

are much more efficient than the non-lazy versions. In particular, the number of 

iterations is substantially reduced by the L3,zy-CSVC. 
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Lazy-£<SP£(GENET) 
Problem I ter. C P U T i m e (sec) Pruned 

"rcsp-lQ0-lQ-7Q-90 10.0 2.347 (2.342) 934.6 — 
r c s p - 1 1 0 - 1 0 - 7 0 ^ 10.0 2.835 (2.842) 1025.5" 

"rcsp-120-10-70-90 10.0 3.387 (3.375) 1116.4 — 

Table 6.27: Results of Lazy-£5P£(GENET) on the insoluble random CSP's 

Lazy-£5P£(MAX) 
Problem I ter. C P U T i m e (sec) Pruned 

rcsp-10Q-lQ-7Q-90 10.0 2.345 (2.342) 9 0 7 X " 
" r c s p - 1 1 0 - 1 0 - 7 0 ^ 10.0 2.855 (2.850) 10Q0.6" 

rcsp-120-10-70-9Q 10.0 3.428 (3.433) 1 0 9 O " 

Table 6.28: Results of Lazy-£5X>£(MAX) on the insoluble random CSP's 

Table 6.27 and 6.28 show the results of each LdJiy-CSVC implementat ions on 

some insoluble random CSP's. The insoluble CSP's, ranging f rom 100 to 120 vari-

ables, have a un i fo rm domain of size 10, constraint density 0.7, constraint t ight-

ness 0.9. Since these problems have no solution, £<SX>£(GENET) and CSVC{UAX) 

execute forever. On the other hand, h^zy-CSVC can terminate and report insol-

ub i l i t y when a variable domain becomes empty. 
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Chapter 7 

Extending CSVC for General 

CSP's: Initial Results 

I n this chapter, we extend CSVC for solving general CSP's. A general CSP 

is t ransformed in to an integer constrained min im iza t ion problem. New incom-

pa t ib i l i t y funct ions are defined for different constraints. By construct ing a new 

discrete gradient operator to accommodate the change of formulat ion, the dis-

crete Lagrangian search scheme CSVC can be applied direct ly. We implement 

£<SX>£(GENERAL)，an instance of CSVC for general CSP's, to ver i fy our ap-

proach. Exper iments show that the performance of £<S2^£(GENERAL) is compa-

rable to that of E - G E N E T [32, 33, 69], an extended G E N E T for efficient general 

CSP's solving, i n some problems. However, £<SX>£(GENERAL) performs much 

worse than £<SX>£(GENET) and CSVC[yiAX). The inadequacy of our general 

formulat ion and a possible solution are explored at the end of the chapter. 

7.1 General CSP's as Integer Constrained Min-

imization Problems 

I n this section, the t ransformat ion of a general CSP into an integer constrained 

min imiza t ion problem is presented. The def ini t ion of the incompat ib i l i t y functions 
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for various constraints are also given. 

7.1.1 Formulation 

Given a CSP {U, D, C). We assume that each domain Di for i G U is a set of inte-

gers. The corresponding integer constrained min im iza t ion prob lem is formulated 

as follows. Each variable i G U is represented by an integer variable Zi, which 

can take values f r om a domain Di. The integer variable Zi is equal to j G A 

i f and only i f value j is assigned to variable i. I n other words, z = ( • . . , Zi,...) 

corresponds to a variable assignment for {U, D^ C). Each constraint c G C is de-

noted by an incompat ib i l i t y funct ion gc{z)^ which returns 0 when the constraint 

c is satisfied; otherwise, i t returns a posit ive integer to represent the amount of 

v io la t ion of the current assignment. I n general, the incompat ib i l i t y funct ion gc(z) 

for different constraints could be different. 

Simi lar to the zero-one integer constrained min im iza t ion problem of a binary 

CSP, the resultant integer constrained min im iza t ion problem of a general CSP 

(U,D,C) is 

m i n N(z) (7.1) 

subject to 

ZieDi, Vi e U (7.2) 

gc{z) = 0， V c G C (7.3) 

where z = ( . . . , Z{,...) is a vector of integer variables and N{z) is an objective 

funct ion satisfying the correspondence requirement, wh ich stated that every solu-

tion ofthe CSP must correspond to a constrained global minimum ofthe associated 

integer constrained minimization problem (7.1 — 7.3). Note that the solution space 

of a CSP is defined entirely by the constraints (7.2 - 7.3). The object ive funct ion 

is used to guide the search only. 

The object ive functions defined for b inary CSP's can be extended directly. 
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The object ive funct ion (4.18) becomes 

m = ^ g c { z ) . (7.4) 
cec 

Unl ike the b inary counterpart , the object ive funct ion (7.4) does not measure con-

straint violat ions in terms of number of v io lated tuples. I t s imply returns the 

to ta l amount of constraint v io lat ion given by the incompat ib i l i t y functions. The 

object ive funct ion, which counts the to ta l number of constraint violat ions, can be 

constructed as, 

N { z ) = Y , f { g c { ^ ) (7.5) 
cec 

where f { x ) is a funct ion which returns 1 when x + 0, and 0 otherwise. On the 

other hand, the constant object ive funct ion 

N{z) = 0 (7.6) 

can be used w i thou t any modif icat ion. Note that al l these object ive functions 

have the property that any assignment which satisfies constraints (7.2 - 7.3) is a 

constrained global m in imum. In other words, they al l satisfy the correspondence 

requirement. 

7.1.2 Incompatibility Functions 

As stated before, the incompat ib i l i t y functions g d ^ ) are designed specifically for 

different constraints. I n this section, we present the incompat ib i l i t y functions for 

l inear ar i thmet ic constraints, the i l l e g a l constraint, the a tmost constraint and 

the among constraint [2 . 

Linear Arithmetic Constraints 

A linear ar i thmet ic constraint is of the fo rm X o V, where X and Y are linear 

ar i thmet ic expressions and o G { = , + , < , < ,〉，>}. The linear expressions X and 

Y can be wr i t t en as Ao + AiUi + . . . + AkUk, where each A{ is an integer for 

i = 0 , 1 , . . . , k and each Uj is a variable for j = 1 , 2 , . . . , k. A linear ar i thmet ic 
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constraint is satisfied i f X o Y is satisfied. Let 6 = { . • .，Ui |zm^ . . . } be a substi-

tut ion, where each Ui is a variable, each z^ is an integer variable corresponding 

to Ui and all the U{ are distinct. A n expression E0 is an instance of E obtained 

by simultaneously replacing each occurrence of Ui by Zu、. The incompatibi l i ty 

functions Qo{z)^ for each o G { = , —, <，<,〉，>}, are defined as follows, 

g={z) = \X0 - Ye\ (7.7) 

1, i f xe = Y0 
g ^ z ) = . (7.8) 

0, otherwise 
\ 

’ xe - Y0 + 1 , i f xe > Y0 , 、 
9<{z) = - (7.9) 

0, otherwise 
\ 

f xe - Y0, i f xe > Y6 , 、 
9<[z) = (7.10) 

0, otherwise 
\ 

f Y0-X0^1, i f xe < Y6 , 、 
9>{z) = - (7.11) 

0, otherwise 
‘ 

ve - xe, i f xe < ve , 、 
9>{z) = (7.12) 

0, otherwise 
、 

These incompatible functions simply return the amount of constraint violations 

based on the difference between the linear expressions X0 and Y0. 

The illegal Constraint 

The i l l e g a l ( ( w i , u < i , . . . , U k ) , {v1^v2^...,i^A：)) constraint disallows the simultane-

ous assignment of values Vî  v2^...，Vk to variables Wi, U2,...，Uk- Since any con-

straint can be expressed as a set of incompatible tuples, the i l l e g a l constraint can 

be regarded as a fundamental constraint. The incompatibi l i ty function 5^inegai(^) 

is 
/ 

1, i f ( Z u i , ~ 2 , . . . ’ Z w ) = (W,〜，...，”fc) ,7 1<̂ 、 
5'illegal(2^) = . (7.1c{) 

0, otherwise 
、 

where, by definition, (2^1^^,¾, • • •，̂¾¾) = (u1,u2,. . •,Uk). 
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The atmost Constraint 

The a tmost constraint is of the fo rm atmost(A^, V a r , Val), where N is a natura l 

number, Var is a set of variables and Val is a set of values. I t specifies that no 

more than N variables in Var can take values f r om Val. Let n{Svar:Syai) be the 

funct ion which returns the number of variables in the set Syar current ly assigned 

w i t h values in the set Svai. Obviously, i f n ( V a r , Val)〉N, a smaller difference 

n{Var, Val) — N would be preferred. Hence, the corresponding incompat ib i l i t y 

funct ion 5'atmost(^) is defined as 

n{VarO, Val) — N, i f n{Var6, Val) > N 
5'atmost(i') = . (7.14) 

0, otherwise 
\ 

where 6 = { . . . , Ui|zui,...} is a subst i tu t ion and Var9 is the set of integer variables 

obtained by simultaneously replacing each U{ i n Var w i t h z^. 

The a t l e a s t ( A ^ , Var, Val) constraint, which specifies that no fewer than N 

variables taken f rom the variable set Var are having values in the value set Val, 

can be handled simi lar ly. Thus, the incompat ib i l i t y funct ion 5'atieast(^) is 

N-n{VarO,Val), i f n{Vare, Val) < N 
5'atleast(^) = . (7.15) 

0, otherwise 
、 

where 0 = {..., U{|zui,...} is a subst i tut ion and Var9 is the set of integer variables 

obtained by simultaneously replacing each U{ i n Var w i t h z^. 

The among Constraint 

The among constraint is a global constraint int roduced in C H I P [2]. I t can be 

regarded as a combinat ion of the a tmost and the a t l e a s t constraints. Among 

the five variants of the among constraint, we consider the first and the second 

variants only. The first variant has the fo rm 

among(wo, [w1,w2,.. •, Wfc], [ci, c2,. • •, c^], [t̂ i, v2^. •.，vi]), 

where uo, U1,U2,. • •, Uk are variables, c i , c 2 , . . . , Ck are integers and Vi, V2, - • •, vi are 

domain values. I t specifies that exactly Uo terms among Ui + Ci, u2 + c 2 , . . . , Uk + Ck 

81 , 



Chapter 1 Extending CSVC for General CSP,s: Initial Results 

having values in the l ist [v1^v2,.. .，t̂ /]. The incompat ib i l i ty funct ion 5̂ among(̂ ) is 

defined as follows. Let n[Lt, Ly) be the funct ion which returns the number of terms 

Ui + Ci in the l ist Lt current ly having values in the l ist Ly. The incompat ib i l i ty 

funct ion is 

5W>ng(^ = 1¾ - n (L t0 , L 』 （7.16) 

where Lt 二 [Wi + C1,U2 + C2, . . . , Uk + c^], Lt = [vi , v2,...，vi], Zuo is the integer 

variable corresponding to variable uo, 0 = { . . . , Ui|zui, • • •} is a subst i tut ion, and 

LfO is a list of terms obtained by simultaneously replacing each U{ in Lt w i t h 

Zui. Note that the incompat ib i l i ty funct ion is similar to the one defined for the 二 

constraint. 

The second variant 

among([iVzo<u;, Nup], [ ^ i , w2 , . . . , ^k], [ci, C2, . . . , Ck], [vi, V2,.. •, ”/])， 

where Nio^j, Nup are natural numbers, ^ 1 , ^ 2 , . . . , Uk are variables, Ci, C2,. • . , Ck are 

integers and ” i , i ^ 2 , . . . , vi are values, specifies that at least Niow and at most Nup 

terms among Ui + C1,W2 + C2,. •.，Uk + Ck can have values in [vi , V2,. • . , vi]. Similar 

to the first variant, let n (L t , Ly) be the funct ion which returns the number of terms 

Ui + Ci in the list Lt current ly having values in the list Ly. The incompat ib i l i ty 

funct ion for the second variant is defined as 
/ 

Niow — n [L t0 , Ly), i f n{LtO, Ly) < Niow 

5'among(^ = n{Lt9, Ly) - Nup, i f n{LtO, Ly) > Nup (7.17) 

0, otherwise 
\ 

where Lt = [ui + C1,u2 + c 2 , . . . , Uk + Ck], Lt 二 [i;i, V2,...，vi], 0 = {.. •, U{/z^,...} 

is a substi tut ion, and LtO is a list of terms obtained by simultaneously replacing 

each Ui in Lt w i t h z ^ . A l though the atmost and the a t l e a s t constraints can 

be simulated by the second variant of the among constraint, an extra compari-

son is required to evaluate the incompat ib i l i ty funct ion 5'among(̂ )- Therefore, we 

construct the atmost and the a t l e a s t constraints to improve efficiency. 

The other three variants can be stated as a combination of the second variants. 
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They are described as follows. The t h i r d variant is 

dMOng{[Niow, Nup, *S], [wi ,^2, . . .,l^A:], [C1,C2, . • . ,CA；]，bl,”2, . . • ,Vi]), 

where S < k is a posit ive integer. I t is equivalent to the fo l lowing set of among 

constraints 

among([yV/o^, A ^ , [ui,.. •, us], [c i , . • . , c5], [vi, •. •, vi]), 

among{[Niouj, Nup], [ u 2 , . . . , us+i], [c2,...，c^+i], [ t ; i , .. •，”/]), 

• 

among{[Niow, Nup], [uks+i^..., ^k], [c^^-^+i,.. •, Cfc], b i , • • •, ” / ] ) . 

The four th variant is of the fo rm 

3m0ng{[Nl0vj, Nup, S, Nleast, Nmost], [^1, ^2, . • . , Uk], [^1, C2, • . • , Ck], [vi, ”2，. . .，”d)， 

where Nieast and Nmost are natura l numbers. This constraint is a combinat ion of 

the second and the t h i r d variants, namely 

among([A^/oti;, iV^p, S], [wi, •. • ’ Uk], [ci, • • . , c^], [^^i, • . . , ^^/]), 

among([iV/east, Nmost], [ui, . . . , Wfc], [ci, . • . , Ck], [”1’ • . .，1^/])-

Hence, i t can be handled as a number of the second variants. The last variant is 

Qjaong{[Niow, Nup, S, 1— Iup, Is], [ui,购,...，似],[ci, c2, • . . , o；], [t>i, v2,.. •, ？̂/]), 

where Iiow, Iup are natura l numbers and I s is a posit ive integer. I t is an abstraction 

of the fol lowing set of second variants 

ajnong{[Niow, Nup], [w i , . . . ,w5], [ c i , . . . ,c5] , b i , •..’仍])， 

among{[Niow + Iiow, Nup + hp]^ [ ^ i , . •. , w5+/5], [ c i , . . •, c^+/^], [ t> i , . . . , t̂ ^J), 

among{[Nionj + rn x Iiow,Nup + m x / ^p ] jw i , . . . ,w f c ] , [ c i , . . . , c f c ] , [ ^ ; i , . . . , t ; / ] ) , 

where m = (k — S)/Is-
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7.2 The Discrete Lagrange Multiplier Method 

The discrete Lagrange mul t ip l ie r method for general CSP's is simi lar to the one 

for b inary CSP's. The Lagrangian funct ion L{z, A) for the integer constrained 

min im iza t ion problem (7.1 — 7.3) is 

L { z , X ) = N { z ) + Y l X M ^ ) (7.18) 

cGC 

where z = ( . . . , Z{,...) is a vector of integer variables and A = (• • . , A^ . . . ) is a 

vector of Lagrange mul t ip l iers, one Ac for each constraint c G C. The constraints 

in (7.2), which enforce val id assignments for a CSP, are not incorporated in the 

Lagrangian funct ion. They are included in the discrete gradient operator for the 

search process. 

According to the discrete saddle point theorem [70], a constrained m i n i m u m of 

the integer constrained min imizat ion problem can be obtained by f inding a saddle 
— 

point of the Lagrangian funct ion L{z^ A). Since the saddle point can be located 
~f 

by per forming descent in the i*-space and ascent in the A-space [43], we use the 

same difference equations [62, 54, 53] defined for the b inary case 

z^+i = z ' - A ^ L { z % X ' ) (7.19) 

Xs+i = A^ + g { r ) (7.20) 

where g = ( . . . ^gc{z),...) is a vector of incompat ib i l i t y functions and A ^ is a 

discrete gradient operator. 

Similar to the binary case, the discrete gradient operator is not unique. The 

discrete gradient operator (6.6 - 6.7) for binary CSP's is now redefined as follows. 

Given a vector of integer variables z = ( . . . , Zi,...), the projection operator ni 

7Ti{z) = Zi (7.21) 

gives the ith-component of z. The ith partial discrete gradient operator d{ for al l 

i G U is given by 

d i L [ z ,X ) = i : i { z ) - i ^ i { z ' ) (7.22) 

when the fol lowing conditions hold: 
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• X is a set of integer variables vector such that W G X , we have 

X{ G Di 八 V j + i e U Xj = Zj 

八 W " \{z'； e Di 八 V j — i e U z'； = Zj) ^ L{x, X) < L{z", X) • • 

• z' is selected f rom X by 

— , f 《 i f z e x 
z = < 

r a n d (X ) , otherwise 
‘ 

where r a n d (F ) returns a random element f rom a set Y. 

— 

Effectively, the i t h part ial discrete gradient operator diL{z, A) returns a differential 

vector diox the ith-component of z which decreases the Lagrangian function most. 

Note that d is selected according to the GENET (or E -GENET) state update 

rule [66, 60, 7, 6, 32]. Now, the discrete gradient operator A^^ is defined by the 

following set of equations 

7Ti(ZwL(i; A)) 二 diL{l A), V i G U. (7.23) 

When A^L{z, A) = 0, there is no change in the vector z. In this case, either a 

solution is found or a stationary point is reached. 
— 

The Lagrange multipliers A are updated according to the incompatibi l i ty func-

tions. Since the incompatibi l i ty function returns the amount of violation of a 

violated constraint, the magnitude of the update can be greater than 1. This is a 

major difference f rom the binary case. 

W i t h the above modifications, the discrete Lagrangian search procedure CSVC 

in A lgor i thm 6.1 can be applied directly for solving general CSP's. 

7.3 A Comparison between the Binary and the 

General Formulation 

The general formulation is also applicable to binary CSP's. In order to compare 

the difference between the binary and the general formulations, we consider the 
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same simple CSP shown in Figure 4.1. In this problem, we have three variables 

wi, U2 and w3, each w i th a domain {1 ,2 } , and two constraints Ui = U2 and U2 < u3. 

As described in chapter 4, the binary formulat ion gives us the following zero-one 

integer constrained minimizat ion problem: 

m in N{z) (7.24) 

subject to 

Z{uui) + Z{m,2) = 1， （7.25) 

Z{u2,1) + Z{U2,2) = 1, (7.26) 

Z{us,i) + Z{m,2) = 1, (7.27) 

g{u1,1){u2,2){z) = Z(^U,,1)^{U2,2) = 0, (7.28) 

g{uu2){u2,i)i^) = Z{uu2)^{u2,i) = 0, (7.29) 

9{u2,i){us,i){z) = Z{U2,1)Z{US,1) = 0, (7.30) 

9{u2,2){u3,l)i^) = ^{U2,2)Z{US,1) = 0, (7.31) 

9{u2,2){u3M^) = Z{u2,2)Z{m,2) = 0, (7.32) 

where z = {z^uui)y ^(t.1,2), ̂ ,1)^^(^2,2), Z{us,i), ^(u3,2)) is a vector of zero-one integer 

variables, N{z) is the objective function defined in either (4.18) or (4.19), equa-

tions (7.25 — 7.27) are the constraints for enforcing valid assignments for the CSP, 

and equations (7.28 - 7.32) are the constraints for the incompatibi l i ty functions. 

In the general formulation, the same problem is represented by the following 

integer constrained minimization problem: 

min N{z) (7.33) 

subject to 

^ G Du,, (7.34) 

^ e Du,, (7.35) 

& e A ^ 3 , (7.36) 

9m=u2{^ = 0, (7.37) 

丨 gu,<us{^ = 0, (7.38) 
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where z = (2 :^ ,1 ,¾,¾) is a vector of integer variables, N{z) is the objective 

funct ion defined in (7.4)，(7.5) or (7.6), and constraints (7.34 - 7.36) and (7.37 一 

7.38) are the constraints to ensure valid assignments and the constraints for the 

incompatibi l i ty functions respectively. 

From this simple example, we f ind that the two formulations are different in five 

aspects. First, in the binary formulation, the zero-one integer variables are used to 

represent each possible label of a CSP. On the other hand, the general formulation 

denotes each variable of a CSP by an integer variable. Hence, the tota l number 

of integer variables of the resultant integer constrained minimizat ion problem is 

greatly reduced. Second, because of the different representation of variables of a 

CSP, the constraints for restricting valid assignments for a CSP are different in 

the two formulations. Thi rd, instead of breaking down every constraint of a CSP 

into a set of incompatible tuples and defining an incompatibi l i ty function for each 

incompatible tuple, the general formulat ion uses a single incompatibi l i ty func-

t ion for each constraint of a CSP. Therefore, the storage requirement is lowered. 

Fourth, the discrete gradient operators are defined differently to accommodate 

the difference in the two formulations. F i f th , since the incompatibi l i ty functions 

defined in the general formulation return the amount of constraint violation, the 

Lagrange multipl iers A can be updated w i th a magnitude greater than 1. 

Al though there are quite a number of differences between the binary and the 

general formulation, the same discrete Lagrangian search procedure CSVC can 

be applied without any modification. 

7.4 Experiments 

In order to evaluate our formulation, especially our definition of the incompat-

ib i l i ty functions, we implement an instance of CSVC for general CSP's. This 

instance, denoted by £<SX>£(GENERAL), has the following parameters: 

• N: since the role of an objective function is to guide the search, the objective 

function N{z) defined in (7.5) is used. 
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• A f . the discrete gradient operator is specified by 

for each variable i E U do 

update iTi{z): ni{z) — T^i{z) — diL{z, X) 

end for 

where di is the part ial gradient operator defined in (7.22). 

• If. unlike the binary case, the procedure for ini t ial iz ing the integer variables 

z greedily is quite computationally expensive. Hence, we choose to randomly 

init ial ize the value of z in such a way that Zi G A， for all i G U. 

• I^: the value of each A。，for all c G C, is init ial ized as follows, 

^ = f 9c(^% '^^9c{z')^0 

I 1 , otherwise 

where z^ is the in i t ia l value of the integer vector z. Note that this approach 

is similar to the assignment scheme of in i t ia l penalty values of the optimized 

E -GENET [33，69]. 

• U^: because of the definition of incompatibi l i ty functions, the value of a sin-

gle Lagrange mult ipl ier may afFect many possible states of the search space. 
— — 

Therefore, the Lagrange multipliers A are updated only when diL{z^ A) = 0, 

for all i G U. 

Various benchmark problems, such as the iV-queens problems, the graph-

coloring problems and the car-sequencing problems, are used in our experiments. 

We compare our results w i th that of E -GENET [32, 33, 69], an extension of 

GENET for general CSP's. Whenever possible, we quote results of both original 

E -GENET and optimized E-GENET from [32, 33, 34，69], results of which are 

average and median CPU t ime of 10 runs obtained on a SUN SPARCstation 10 

model 30. Our experiments are performed on a SUN SPARCstation 10 model 40. 

Both average and median CPU t ime of 10 runs are presented. Unless otherwise 

specified, unbracketed and bracketed results represent the average and median 

CPU t ime respectively. 
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7.4.1 The N-qaeens Problems 

The N-qneens problems is used to ver i fy our def in i t ion of the + constraint, a 

l inear ar i thmet ic constraint, and the among constraint. 

When the iV-queens problem is expressed by the + constraints, the problem 

is modeled as follows. Each row z, for i - 1，2,. . . , N, of an N x N chessboard is 

represented by a variable qi w i t h domain Dq- = {1 ,2 , • . . , N}. The constraints 

Qi + qj, V i + j and iJ = 1 ,2 , . . .，N (7.39) 

\qi - qj\ + \i 一 i | , V i + j and i , j = 1，2，...，N (7.40) 

state that no two queens can be on the same column or on the same (posit ive 

or negative) diagonal respectively. Benchmarking results are summarized in Ta-

ble 7.1. From the experiment, we find that £<Sr^C(GENERAL) outperforms the 

or iginal E - G E N E T . This promising results conf i rm the feasibi l i ty of handl ing a 

constraint as a whole, instead of breaking i t down in to a set of incompat ib le tuples, 

which is the case in E - G E N E T . Hence, the storage requirement can be greatly re-

duced. We do not compare £<SP£(GENERAL) against the opt imized E - G E N E T 

since the results of the opt imized E - G E N E T are obtained by model ing the N-

queens problems w i t h the n o a t t a c k constraints, instead of the + constraints. On 

the other hand, the performance of £5P£(GENERAL) is much worse than those 

of CSVC{GENET) and CSVC{UAX). The great difference in efficiency may be 

due to the difference in the two formulat ions. Since each incompat ib i l i t y funct ion 

defined in the b inary formulat ion represent an incompat ib le tuple, i t can guide 

the search in a more refined fashion. 

I n order to model the iV-queens problem w i t h the among constraint, we use a 

Boolean formulat ion. Each square {i<,j) of the chessboard is denoted by a variable 

qij, for al l iJ = 1 ,2 , . . .，N, w i t h domain { 0 , 1 } . The variable qij is 1 i f a queen 

is placed on the square (z , j ) ; otherwise, i t is 0. The constraints are 

• for each row of the chessboard, 

among(l, [variables of the row], [0,...，0], [1]). (7.41) 
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~ ~ O r i g i n a l E-GENET~~~ £<Sr>£(GENERAL) 
N Median CPU Time (sec) Average (Median) CPU T ime (sec) 
10 一 0.046 “ 0.025 (0.033) 
20 0.165 0.155 (0.150) 
30 0.510 — 0.457 (0.392) 
40 1.222 1.060 (1.050) 

~ ^ 3.582 — 2.095 (1.725) 
~ ^ 6.840 3.513 (3.375) 

70 9.902 4.122 (4.183) 
~80 19.752 7.180 (7.092) 
~90 28.467 11.663 (11.375) 

100 37.582 — 15.145 (15.883) 
T T 0 “ ― 42.211 20.945 (20.833) 

120 61.672 24.657 (23.208) 
T W 86.083 29.430 (27.575) 
" W 94.377 41.405 (42.550) 

150 152.001 — 50.047 (52.283) 
1 ^ ~ _ 188.033 60.047 (55.817) 

170 219.317 56.083 (53.742) 
180 264.543 71.040 (73.333) 

~ m ~ — 316.562 86.517 (83.642) 
200 439.952 96.715 (89.458) 

Table 7.1: Results of >C<SP>C(GENERAL) on the N-queens problems modeled with 
the + constraint 
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Optimized E -GENET CSVC{GE^ERAL) 

N CPU Time (sec) CPU T ime (sec) 
10 0.009 (0.010) 0.018 (0.017) 

~ W 0.129 (0.125) 0.083 (0.083) 
~ W ~ 0.255 (0.270) 0.242 (0.242) 

40 0.493 (0.460) 0.550 ( 0 . 6 0 0 ) — 
50 1.580 (1.540) 0.958 ( 0 . 8 5 0 ) — 

~ ^ i.256 (1.125) 1.888 (1.758) 
" T o " 2.792 (2.788) 1.930 (1.883) 

80 2.209 (2.454) 2.952 (3.142) 
90 4.136 (4.053) — 4.490 (3.808) 
100 4.660 (4.905) 7.357 (6.092) 

Table 7.2: Results of £<SD£(GENERAL) on the iV-queens problems modeled w i th 
the among constraint 

• for each column of the chessboard, 

among(l, [variables of the column], [ 0 , . . . , 0], [1]). (7.42) 

• for each diagonal of the chessboard, 

among([0,1], [variables of the diagonal], [0, •. •, 0], [1]). (7.43) 

Table 7.2 shows the results for 10- to 100-queens problems. Except some problem 

instances, the performance of >C<SX̂ C(GENERAL) is comparable to that of the opti-

mized E-GENET. The poor performance of CSVC{GENERAL) on some problems 

can be accounted for as follows. In the optimized E-GENET, a contribution func-

t ion [33, 69] is defined for the among constraint to speed up the search. However, 

£«SX>£(GENERAL) does not have this k ind of search information. Therefore, the 

optimized E-GENET is more efficient. 

7.4.2 The Graph-coloring Problems 

We use the graph-coloring problem to further evaluate the + constraint. In the ex-

periment, the set of hard graph-coloring problems f rom the DIMACS archive [27] is 
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Original E -GENET CSVC{GENERAL) 

Nodes Colors Median Average (Median) Success 
CPU Time CPU T ime Ratio 

125 17 2.5 hr - 0/10 
125 “ 18 一 2.6 m in 1.2 m in (1.0 min) 10/10 

~ 2 ^ r 5 “ “ 7.4 sec T 4 . 1 sec (12.6 sec) 10 / lQ~ 
250 29 5 hr - 0/10 

Table 7.3: Results of £<SD£(GENERAL) on the hard graph-coloring problems 

used. The execution limit of £<SI>£(GENERAL) is set to one million iterations. The 

benchmarking results are shown in Table 7.3. Besides the CPU t ime, we also re-

port the success ratio of £5X>£(GENERAL). The performance of £<SX>£(GENERAL) 

is found to be worse than that of the original E -GENET. Among the four problem 

instances, £<SX>£(GENERAL) fails to find any solution for the problem wi th 125 

nodes 17 colors and the problem w i th 250 nodes 29 colors w i th in the execution 

limit. On the other hand, £5X>£(GENERAL) outperforms the original E-GENET 

on the problem w i th 125 nodes 18 colors. Since the results of the optimized E-

GENET are not available, the performance of £5X>£(GENERAL) and that of the 

optimized E-GENET is not compared. The performance of >C5X>^(GENERAL) is 

also worse than that of CSVC{UAX). Since £<Sr>£(GENERAL) represents a con-

straint w i th a single incompatibi l i ty function, useful information that guides the 

search is lost. As a result, the performance is degraded. 

7.4.3 The Car-Sequencing Problems 

The goal of the car-sequencing problem is to schedule cars into an assembly line 

so that different options can be installed on the cars and the ut i l izat ion con-

straints are satisfied [9]. The problem is used to test the incompatibi l i ty func-

t ion of the atmost constraint. In the experiment, a set of randomly generated 

problems described in [7] is used. A l l problems consist of 200 variables w i th do-

mains varying f rom 17 to 28 values and approximately 1000 atmost constraints 
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% Succ. Runs (Median Repairs) 
1 二 - Non-binary ~~Original~~ Optimized . “ 

t ion % GENET E-GENET E -GENET >^<^"MGENERAL) 

60 84 (463) 74 (223.5) 100 (282.5) 100 (301.5) 
65 87 (426) 80 (223.5) “ 99 (262) “ 99 (322.0) 
70 83 (456) 81 (241) 100 (280.5) “ 100 (348.5) 
75 85 (730) 84 (339) “ 97 (331) “ 98 (424.5) 
80 50 (4529) 53 (576) 73 (537) 75 (643.0) 

Table 7.4: Results of >C5X>£(GENERAL) on the car-sequencing problems 

of various number of variables. Total ly 50 problems, 10 for each ut i l izat ion per-

centage ranging f rom 60% to 80%, are tested. We compare the performance of 

CSVC{GENERAL) w l th the original E -GENET, the optimized E -GENET and the 

non-binary GENET [7], which is an extended GENET model for handling the 

i l l e g a l constraint, the atmost constraint and the no tequa l constraint. The ex-

ecution l im i t of the non-binary GENET is set to one mi l l ion repairs, while the 

execution limit of >C5Pi2(GENERAL), the original E -GENET and the optimized 

E-GENET is 1000 repairs. 

The results are listed in Table 7.4. A l l successful runs of CSVC{GENERAL) 

terminate in less than 15 seconds. £5r>£(GENERAL) is better than the non-binary 

GENET both in terms of the successful percentage and the median number of 

repairs. When comparing the results between £5P£(GENERAL) and the original 

E -GENET, we found that £<SX>£(GENERAL) always gives a higher percentage 

of successful runs. This performance is comparable to that of the optimized E-

GENET. Therefore, we can conclude that £<SX>£(GENERAL) is at least as efficient 

as the optimized E-GENET on handling the atmost constraint. On the other 

hand, the median number of repairs of £5X>£(GENERAL) is slightly higher than 

those of the original E -GENET and the optimized E-GENET. 
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7.5 Inadequacy of the Formulation 

As confirmed by £<SX>£(GENERAL), the proposed formulat ion shows certain suc-

cess on extending CST>C for general CSP's. In some cases, however, the defined 

incompatibi l i ty function, such as the one for the + constraint, is not sufficient to 

guide the search. In this section, we first point out the weaknesses of the incom-

pat ib i l i ty functions. A possible improvement is then given. Experiments show 

that the modif ication can significantly boost the search efficiency. 

7.5.1 Insufficiency of the Incompatibility Functions 

Given an integer constrained minimizat ion problem, the discrete Lagrange mul-

t ipl ier method performs saddle point search on the cost surface defined by the 

Lagrangian function 

L { l X ) = N{z) + Y.XMz). 
cec 

Apart f rom the objective function N{z), the incompatibi l i ty functions gc{z) also 

provide additional force to guide the search. However, the incompatibi l i ty func-

tions defined for general CSP's are not sufficient. 

In the general formulation, instead of decomposing a constraint into a set of 

incompatible tuples, we define a single incompatibi l i ty function for each constraint. 

Al though this approach can significantly reduce the storage requirement, useful 

search information is lost. Since an incompatibi l i ty function o f a constraint defines 

the cost of an assignment, a set of incompatible tuples is weighted by the same 

cost. Therefore, a number of large plateaus are generated in the cost surface. As 

a result, the search process is easily trapped in plateaus, which are difficult to 

escape. 

Furthermore, unlike the binary case, the set of incompatible tuples of a con-

straint is associated w i th a single Lagrange mult ipl ier. When a Lagrange mult i -

plier is updated, instead of penalizing the current assignment, the whole set of all 

incompatible tuples is affected. Hence, a potential path to the solution may be 

blocked more easily [41]. For example, consider a CSP w i th 4 variables, a, b, c and 
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d, each w i t h a domain { 1 , 2 } , and 15 constraints 

Ci : a + b + c + d, C2 : a + c + b + d, C3 : a + d + b + c, 

C4 : a + b 7̂  c, c5 : a + b + d, Ce : a + c • b, 

c7 : a + c + d, cs : a + d + b, cg : a + d + c, 

Cio : b + c + a, Cii : b + c + d, C12 ： b + d — a, 

Ci3 : b + d + c, ci4 : c + d — a, C15 : c + d + b. 
— 

The vector of integer variables z and the vector of Lagrange mult ip l iers A for 

the associated integer constrained min imizat ion problem are z = {za, Zb, Zc, Zd) 

and A = (A^ , Xc2, ĉ3，^C4, ̂ c5，^ce, ^c7, ^cg, ^c9, ^cio, ^cn，^ci2, ^ci3, ^ci4, ^ci5) respec-

tively. Among al l possible assignments of z, only (1,2,2，2), (2 ,1 ,2 ’ 2), (2,2,1 ’ 2) 
and (2 ,2 ,2 ,1) are solutions of the problem. 

. . . . , ~* ~* "• 
Suppose the objective funct ion (7.5) is used, and in i t ia l ly A = Ao = 1 and — 

z = (1 ,1 ,1 ,1) . The values of the Lagrangian funct ion L{z^ Ao) for each z are 

given in the second column of Table 7.5. Since (1,1，1,1) has the same Lagrangian 

value as its neighboring point (2,1,1,1)，（1,2,1,1), (1,1,2,1) and (1,1,1,2), i t 
— is a stationary point. Therefore, the Lagrange mult ip l iers A are updated once to _̂  — 

get Ai = (2，2,2,1,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1) . The new Lagrangian values L{z^ Ai) 

for each z are shown in the th i rd column of Table 7.5. Note that since a sin-
— 

gle Lagrange mul t ip l ier is associated w i th a set of incompatible tuples, Ai not 

only affects the Lagrangian value of current assignment (1,1，1，1), i t also changes 

the Lagrangian value of (2 ,2 ,1,1) , (2 ,1 ,2 ,1) , (2 ,1 ,1 ,2) , (1 ,2 ,2 ,1) , (1 ,2,1,2) , 

(1 ,1 ,2 ,2) and (2 ,2 ,2 ,2) . Now, (1 ,1 ,1 ,1) is no longer a stationary point. The in-

teger vector z can change to one of (2 ,1 ,1 ,1) , (1，2,1，1), (1 ,1 ,2 ,1) and (1,1,1,2) . 

Suppose (2 ,1 ,1 ,1) is chosen. Again, (2 ,1 ,1 ,1) is a stationary point. The La-
— 

grange mult ipl iers are updated twice to increase the penalty. The new A becomes 

X2 = (2 ,2 ,2 ,1 ,1 ,1 ,1 ,1 ,1 ,3 ,1 ,3 ,1 ,3 ,1 ) and the new Lagrangian values L{z^ X2) for 

different z are given in the four th column of Table 7.5. Further update changes 

z back to (1,1,1,1) . Similarly, vectors (1 ,2 ,1 ,1) , (1 ,1 ,2 ,1) and (1,1,1,2) are 
~ * 

t r ied and then back to (1,1,1,1) in turn. Af ter these transit ions, A becomes 

A3 = ( 2 , 2 , 2 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ,3 ) and the Lagrangian values L{z, A3) for 
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z L{z,Xo) L{^Xi) L{z,X2) L{z,X^ 
(1.1.1.1) 6 ~ " ~ 9 9 9 
(2 ,1 ,1 ,1 ) 6 6 12 12 
(1 ,2 ,1 ,1 ) 6 6 6 12 
(1,1,2,1) 6 6 6 12 

(1.1.1.2) 6 6 6 12 

(2,2,1,1) 8 10 12 14 
(2.1.2.1) 8 10 12 14 
(2.1.1.2) 8 10 12 14 
(1.2.2.1) 8 10 10 14 
(1.2.1.2) 8 10 10 14 
(1,1,2,2) 8 10 10 14 
(1 ,2 ,2 ,2 ) 0 0 0 0 
(2 ,1 ,2 ,2 ) 0 0 0 0 
(2 ,2 ,1 ,2 ) 0 0 0 0 
(2 ,2 ,2 ,1 ) 0 0 0 0 
(2,2,2,2) 6 9 9 9 

— 
Table 7.5: The value of the Lagrangian function L{z, A) for different integer vari-— 
ables z and Lagrange multipl iers A of a CSP 

each z are shown in the f i f th column of Table 7.5. The whole process repeats and 

the algori thm oscillates between (1,1,1,1) , (2,1,1,1) , (1,2,1,1) , (1,1,2,1) and 

(1，1,1,2) indefinitely. 

In order to obtain a solution, the algorithm must pass through an integer vector 

w i th two integer variables equal to 2. However, since the Lagrangian values of 

(2.2.1.1) , (2,1,2,1), (2,1,1,2), (1,2,2,1), (1,2,1,2) and (1,1,2,2) are affected 

by previous updates of Lagrange multipliers, they are always greater than those 

of (2,1,1,1), (1，2,1,1), (1，1,2,1) and (1,1,1，2). Therefore, (2,2,1,1)，（2,1,2,1), 

(2.1.1.2), (1,2,2,1), (1,2,1,2) and (1,1,2,2) are never visited. In other words, 

potential paths to the solutions are blocked. 

7.5.2 Dynamic Illegal Constraint 

In order to overcome the above weaknesses, we propose the following scheme. 

When a constraint is violated, an i l l e g a l constraint of current incompatible tuple 
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is added to the problem. We call this newly added i l l e g a l constraint a dynamic 

illegal constraint. Af ter this modification, the integer constrained minimizat ion 

problem becomes 

min N{z) (7.44) 

subject to 

ZieDi, V i G U (7.45) 

gc{z) = 0, V c e C (7.46) 

gd {^ = 0, ydeD (7.47) 

where D is the set of dynamic illegal constraints and gd{^) are the incompatibi l i ty 

function of the i l l e g a l constraint. Obviously, the new minimizat ion problem 

is equivalent to the original one. However, the Lagrangian function for the new 

problem is reconstructed as 

L{z, A, A) = N{z) + ^ XM^) + Y^ kM^) (7.48) 
cGC deD 

where A = ( . . . , A^ , . . . ) is a vector of Lagrange mult ipl iers associated w i th the 

dynamic illegal constraints. The cost surface is modified by the extra term 

Y^d£D ^d9d{z). As a result, the dynamic illegal constraints provide an additional 

force to guide the search. 

7.5.3 Experiments 

A variant of CSVC, called T>-CSVC(GENERAL), is implemented to verify the 

effectiveness of the proposed scheme. D-£«Sr^C(GENERAL)’ where "D" stands for 

"dynamic," has the same parameters as £5r>£(GENERAL). The only difference is 

the abi l i ty to generate dynamic illegal constraints. In D-CSVC(GENERAL), when 

a certain constraint is violated, the corresponding dynamic illegal constraint gd{z) 

of the violated tuple is introduced to the system, and the in i t ia l value of kd is 

set to 1. The iV-queens problems and the hard graph-coloring problems from the 

DIMACS archive [27] are used to compare the performance ofD-£<SX>£(GENERAL) 
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and £<SX>£(GENERAL). A l l experiments are performed on a SUN SPARCstat ion 

10 model 40. B o t h average (unbracketed) and median (bracketed) C P U t ime of 

10 runs are presented. 

Benchmark ing results for the N-qneens problems are shown in Table 7.6. D -

£<SX>£(GENERAL) improves the performance of CSVC{GENERAL) significantly. 

For the graph-coloring problems, the execution l i m i t of bo th T>-CSVC(GENERAL) 

and £5X>£(GENERAL) is set to one mi l l i on i terat ions. T i m i n g results as wel l as 

the success ratios are reported in Table 7.7. B-CSVC(GENERAL) outperforms 

£<SX>£(GENERAL) bo th in terms of the C P U t ime and the success rat io. As a 

result, the usefulness of dynamic i l legal constraints is confirmed. 

i 

• 
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CSVC{GENERAL) B-CSVC{GENERAh) 
N CPU T ime (sec) CPU T ime (sec) 
10 0.025 (0.033) 0.007 (0.000) — 
20 " ~ P 5 5 (0.150) 0.097 (0.092) 
30 0.457 (0.392) 0.250 (0.233) “ 

~ W 1.060 (1.050) 0.463 (0.425) 
~ ^ 27095 (1.725) 1.332 (L392) 

60 3.513 (3.375) — 1.958 (1.658) 
70 4.122 (4.183) — 3.228 (3.225) 

~ ^ ^180 (7.092) 4.848 (4.642) 
90 11.663 (11.375) 6.588 (6.533) 一 

~ m f5.145 (15.883) 9.337 ( 9 . 6 3 3 ) — 
T l 0 ~ 20.945 (20.833) 12.830 ( 1 2 . 1 0 0 ) — 

120 24.657 (23.208) — 16.463 (16.575) 
130 29.430 (27.575) — 21.563 (22.542) 
140 41.405 (42.550) — 24.137 (23.125) 
150 "T0.Q47 (52.283) 34.307 ( 3 3 . 0 0 0 ) — 
160 60.047 (55.817) 37.605 ( 3 7 . 3 4 2 ) — 

T f O ~ 56.083 (53.742) 44.308 ( 4 5 . 6 0 0 ) — 
~ J W 71.040 (73.333) 53.705 ( 5 2 . 0 8 3 ) — 
" l W 86.517 ( 8 3 . 6 4 2 ^ 59.192 ( 5 8 . 9 4 2 ) — 
200 96.715 (89.458) 67.098 (65.358) 一 

Table 7.6: Results of B-CST>C(GENERAL) on the A^queens problems 

r<SX>>C(GENERAL) D-r<S:OC(GENERAL) 
Nodes Colors Average (Median) Success Average (Median) Success 

CPU T ime Ratio C P U T ime Ratio 
125 ~ U ~ - 0/10 4.8 hr (4.8 hr) 2/10 
125 ~~18 1.2 m i n (1.0 min) 10/10 1.0 m in (46.9 sec) 10/10 
250 — 1 5 14.1 sec (12.6 sec) 10/10 6.1 sec (6.3 sec) 1 0 / l Q ~ 

~ ~ ^ ^ ^ - 0/10 18.9 hr (13.0 hr) 8/10 

Table 7.7: Results of T>-CSVC(GENERAL) on the hard graph-coloring problems 
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Concluding Remarks 

We conclude the thesis by giv ing our contr ibut ions and possible directions for 

fu ture research. 

8.1 Contributions 

The contr ibut ions of our work can be summarized as follows. We derive f rom the 

G E N E T model a two-step t ransformat ion for convert ing any b inary CSP into a 

zero-one integer constrained min imiza t ion problem. W i t h the help of this trans-

format ion, wel l -known constrained opt imizat ion techniques, such as the Lagrange 

mul t ip l ie r method, can be applied direct ly for tackl ing CSP's. Based on the trans-

formed zero-one integer constrained min imiza t ion problems, we propose a generic 

discrete Lagrangian search scheme CST>C for solving b inary CSP's. CSDC, which 

has five degrees of freedom, represents a class of discrete Lagrangian search al-

gori thms. By instant iat ing CSVC w i t h different parameters, algori thms w i t h 

different efficiency and behavior can be generated. • 

We formal ly establish the equivalence between the G E N E T model, a repre-

sentative of the class of heuristic repair methods, and an instance of CSVC. 

This result not only provides a theoretical foundat ion for better understanding 

of G E N E T , but also suggests a dual v iewpoint of G E N E T : as a heurist ic repair 

method and as a discrete Lagrange mul t ip l ier method. As a result, the discrete 
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Lagrangian search scheme CSVC provides various important guidance for the de-

sign of better heuristic repair algorithms. In order to evaluate our approach, we 

implement £<SD£(GENET), a discrete Lagrangian reconstruction of GENET. Var-

ious experiments show that £5X>£(GENET) exhibits the same good convergence 

behavior as other GENET implementations found in the l i terature. Variants of 

£<Sr>£(GENET) obtained from the dual viewpoints are also examined. Our best 

variant £<SX>£(MAX) is found to be more efficient than £<S2>£(GENET). By in-

corporating lazy arc consistency to CSVC^ we can achieve addit ional order of 

magnitude improvements for problems w i th arc inconsistency, and suffer f rom 

l i t t le overhead for the problems which are already arc consistent. 

We also extend CSVC for general CSP's. In this extension, we convert a 

general CSP into an integer constrained minimizat ion problem and define a new 

discrete gradient operator for CSVC. The main difference between the general 

and the binary formulat ion is that, instead of defining an incompatibi l i ty function 

for each incompatible tuple, we use a single incompatibi l i ty function to represent 

a constraint. Hence, the storage requirement is greatly reduced. W i t h the new 

discrete gradient operator defined to accommodate the change of formulation, 

the discrete Lagrangian search scheme CSVC can be applied without any special 

modification. We implement £<Sr>£(GENERAL), an instance of CSVC for solving 

general CSP's, to verify our approach. The performance of £<SX>£(GENERAL) is 

found to be comparable w i th that of E -GENET in most test problems. Although 

this straightforward generalization gives us some promising results, i t does not 

work so well in general. In our experiments, £«SP£(GENERAL) performs much 

worse than £<S7^£(GENET) and CSVC[MAX). Therefore, much work is required in 

the future. In addition, since a constraint is represented by a single incompatibi l i ty 

function, large plateaus, which make the search more diff icult, are generated. 

We propose dynamic illegal constraints to overcome this weakness. Experiments 

confirm that the addition of dynamic illegal constraints can substantially improve 

the performance of CSVC{GENERAh). 
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8.2 Discussions 

D L M [62，54，53] is a discrete Lagrangian search a lgor i thm for solving SAT prob-

lems. Our CSVC f ramework is constructed according to D L M for solving CSP's. 

A l though bo th D L M and CSVC apply the discrete Lagrange mu l t ip l ie r method 

to solve SAT problems or CSP's, there are some differences between them. Fi rst , 

the CSVC procedure consists of five degrees of freedom. For example, any objec-

t ive funct ions that satisfy the correspondence requirement can be used, and each 

Lagrange mul t ip l ie r can be in i t ia l ized differently. Hence, different parameters can 

be chosen for tack l ing different problems. On the other hand, D L M does not 

emphasize this k ind of freedom. I t always chooses the to ta l number of unsatisfied 

clauses of the SAT problem as the object ive funct ion, and always init ial izes the 

Lagrange mul t ip l iers w i t h a f ixed value. However, D L M employs, on top of the 

discrete Lagrangian search, a number of different tun ing heuristics for different 

problems. For instance, i t uses an addi t ional tabu l ist to remember states visited, 

and resets the Lagrange mul t ip l iers after a number of i terat ions. 

Second, CSVC searches on a smaller search space than D L M . Since CSVC is 

targeted for solving CSP's, the set of constraints, which restr ict val id assignments 

for CSP's, is incorporated in the discrete gradient operator. Thus, only val id 

assignments are searched in CSVC. On the contrary, D L M lacks this k ind of 

restr ict ion. A n y possible assignments, inc luding those are inval id for CSP's, are 

considered. As a result, the efficiency of D L M is affected. 

Th i rd , the two algori thms use different discrete gradient operators to per form 

saddle point search. I n D L M , the discrete gradient operator considers al l Boolean 

variables of the SAT problem as a whole and modifies one Boolean variable in each 

update. However, in CST>C^ the zero-one integer variables which correspond to a 

variable of the CSP are grouped together and updated at the same t ime. Hence, 

the discrete gradient operator used in CSVC is more suitable for solving CSP's. 

I n addi t ion, the discrete gradient operator of D L M uses the h i l l -c l imbing strategy 

to update the Boolean variables. I n this strategy, the f irst assignment which 

102 



Chapter 8 Concluding Remarks 

leads to a decrease in the Lagrangian funct ion is selected to update the current 

assignment. I n C S V C , the discrete gradient operator always modifies the zero-

one integer variables such that there is a m a x i m u m decrease in the Lagrangian 

funct ion. 

I n summary, since the CSVC f ramework explores the structure of CSP's, i t 

can be regarded as a specialization of D L M for solving CSP's. 

8.3 Future Work 

Our work represents a major step toward the understanding of heurist ic repair 

methods. Interest ing problems remain. On the theoret ical side, at least one im-

por tant property of CSVC and other heurist ic repair methods is s t i l l unknown. 

Our experience suggests that G E N E T and CSVC te rminate for solvable CSP's. 

However, under what condition(s), do the algorithms always terminate, if at all? 

A possible approach to tackle this question is to investigate whether the conver-

gence properties of the continuous Lagrange mul t ip l ie r method can be extended 

for the discrete case. Furthermore, the five degrees of freedom of CSVC suggest 

many possibil it ies for new heuristic repair algori thms. I n our research, only a small 

number of parameter combinations are investigated. Other parameters and their 

interact ion should be explored in the future. The new variable ordering heuristic 

developed for G E N E T [58] should also be included in our CSVC f ramework . . 

Our extension of CSVC for general CSP's is prel iminary. On ly a few general 

constraints are implemented. I n the future, we should define new incompat ib i l -

i t y functions for new constraints, such as the c u m u l a t i v e constraint, the d i f f n 

constraint and the c y c l e constraint [2]. These general constraints are useful 

for model ing complex real-life applications. Our proposed general formulat ion is 

straightforward. However, its performance is much worse than that of the binary 

formulat ion. We should fur ther investigate other possible approach in the future. 

The idea of dynamic i l legal constraints is new. A l though experiments show that 

they can improve the performance of the search, the results are purely empir ical. 
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Chapter 8 Concluding Remarks 

Hence, we should fur ther examine the theoret ical aspect of this idea. I n addi-

t ion, the possibi l i ty of apply ing dynamic i l legal constraints to other constraint 

satisfaction techniques should be investigated. 

Last but not least, the opt imizat ional nature of the CSVC f ramework suggests 

apply ing CSVC to tackle constraint satisfaction op t im iza t ion problems and over-

constrained systems. A constraint satisfaction optimization problem (CSOP) is 

a CSP w i t h an object ive funct ion to be opt imized. I n CSVC^ since a CSP can 

be completely defined by the incompat ib i l i t y funct ions, we can s imply replace 

the object ive funct ion of CSVC w i t h the one required in CSOP. Hence, when 

CSVC terminates, the solution returned w i l l be an assignment that satisfies al l 

constraints and min imized the object ive funct ion. I n an over-constrained system, 

constraints are usually classified in to hard constraints and soft constraints. Hard 

constraints are the constraints that must be satisfied by the solution, whi le soft 

constraints are those that can be violated. The goal is to find an assignment that 

satisfies al l hard constraints and minimizes the number (or cost) of violations of 

soft constraints. I n C S V C , an over-constrained system can be modeled as follows. 

The incompat ib i l i t y functions, which must be satisfied, is used to represent al l 

hard constraints of the system, and the object ive funct ion is constructed by the 

soft constraints. I n this way, over-constrained systems are handled in the same 

manner as CSOP,s. A l though these approaches for CSOP's and over-constrained 

systems are qui te straightforward, the feasibi l i ty should be fur ther confirmed. 
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