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Abstract 

In designing the assembly process, the significance of uncertain arrival of materials has 

not reasonably addressed in the literature despite its significant impact on the on-time 

delivery performance of the eiid products. In this dissertation, we study a problem of 

process re-engineering with the concern for the effect of stochastic arrival of components 

011 the assembly line. The objective is to minimize the overall impacts of uncertainty to 

the on-time delivery performance of the end product. It turns out that the problem can 

be formulated as a sequential optimization problem. To the best of our knowledge, no 

previous study has dealt with the similar problem. We show that the structure of the 

associated mathematical model is very similar to the single-machine problem, which aims 

at minimizing the total cost with respect to the completion-time of each job. It is unlikely to 

solve the problem optimally in polynomial time, in general. However, we are able to obtain 

solutions to some special cases. These solutions provide some insights in developing efficient 

heuristic algorithms. The performance of the heuristics is tested through solving several 

sets of problems. Satisfactory results of the heuristics are obtained in oiir experiment. 
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摘要 

在安排產品的裝配過程時，設計者往往沒有考慮到原料的不確定到達時間對產 

品的準時交貨所帶來的影響。這篇論文主要就是要針對原料的不確定到達這個 

因素，從而研究如何能夠通過流程重新設計來減底它對產品準時交貨的影響。 

這其實是一個順序優化問題，據我們所知，到現時爲止並未有相類似的研究 

發表過。然而，當把問題轉化成數學模型後，我們發現它在數學結構上與一 

個 N P -完備的單機器問題很相似，那個單機器問題的目標是把由各個工序的完 

成時間所決定的成本減至最低。由於那個單機器問題己被證明是 N P -完備，我 

們相信這裡所提出的問題也未能找到任何多項式算法可以解決。然而，有某些 

特例是可以很快找到解決方案的’這些特例的解決方案更給我們提供了一些提 

示，讓我們可以建立一些有效的啓發式算法。我們通過電腦程式去測試所建立 

的啓發式算法的效能，實驗結果顯示我們的啓發式算法有滿意的表現。 
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Chapter 1 

Introduction 

Scheduling is concerned with the allocation of resources over time to perform a col-

lection of tasks that exists in most manufacturing and production environments. The 

sequencing problem is a specialized scheduling problem in which the ordering o f jobs 

completely determines the schedule concerned. Moreover, the sequencing problem is 

one concerning a single resource, or machine [1]. As simple as it is, however, the single-

machine scheduling problem is still very important for several reasons. It illustrates 

a variety of scheduling topics in a tractable riiodel. It provides a context in which we 

rnay investigate many different performance measures and several solution techniques. 

It is also a building block for the development of a comprehensive understanding of 

scheduling concepts, an understanding that should ultimately facilitate the modeling 

of complicated systems. In order to understand completely the behavior of a complex 

system, it is vital to understand the working of its components and quite often the 
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CHAPTER 1. INTRODUCTION 2 

single-machine problem appears as an elementary component in a large scheduling 

problem. Sometimes it may even be possible to solve the embedded single-machine 

problem in dependently and then to incorporate the result into a larger problem. For 

example, in multiple-operation processes there is often a bottleneck stage, and the 

treatment of the bottleneck itself with single-machine analysis may determine the 

properties of the entire schedule. At other times, the level at which decisions must 

be made may dictate that the processing facility should be treated in the aggregate, 

as a single resource. 

This dissertation investigates a sequencing problem of scheduling the assembly 

process of a set of components, which aims at maximizing the chance of on-time 

delivery of the end product subject to a fixed due date and uncertain release times 

of the components. This study is motivated by the design of assembly process in 

the assembly lines of the manufacturer of electronic devices in China, where the on-

time delivery of the end product is sometimes suffered from the late arrival of raw 

components, such as electronic components and sub-assemblies. 

1.1 Motivation 
The assembly lines are one of the essential parts in the manufacturing process. Semi-

finished products are transferred from the upstream to the assembly lines for accom-

plishment by adding various components. On-time delivery of the end products in 
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the assembly lines in real life are subject to many sources of uncertainty. Among the 

sources with major impact are unstable release of the components and sub-assemblies. 

Having visited a manufacturer of electronic devices in China, we learned from 

their experience that the on-time delivery of end product is adversely affected by the 

late arrival of the components from the overseas. Moreover, in the electronic industry, 

some components are commonly needed by many electronic devices, which are highly 

demanded throughout the year. Therefore, the transportation uncertainty and supply 

shortage of the components make the release times unstable. 

A good schedule avoiding or reducing the probability of late delivery of the end 

products is highly desirable. Any lateness of delivery of the end product can be very 

costly because extra money should be paid for the expensive air transportation to 

cover the rnissing of the shipping schedule. Considering the major resources of uncer-

tainty, one may add more machines to cope with the uncertainty arising from machine 

breakdowns. On the other hand, to tackle the uncertain arrival of the components 

one may build up high safety stocks. However, higher safety stocks incur higher in-

ventory cost and take higher risk of obsolescence due to short product life cycles of 

electronic components. 

We are interested in investigating whether the effect of the uncertain arrival of 

the components may be reduced through process re-engineering of the current assem-

bly process. Basically, first-come-first-serve (FCFS) policy seems to be a reasonable 

policy to process the components to the semi-finished products. However, the fact 
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is that there exists precedence relations in the operations of the components due to 

the physical structure of the semi-finished products and the design of the assembly 

lines. In addition, the sequence of operations of the components is always decided 

in advance. This practice rnay obviously lead to higher chance of late delivery of 

the end product. For example, without considering the distribution of component 

arrivals, a component with high arrival uncertainty may be scheduled to process first. 

This means even though the chance of late release of this component is very high, 

the operations of other ready components still have to wait upon the completion of 

this component. We are strongly motivated to study the scheduling of the assembly 

process with respect to the arrival distribution of components. 

Another example similar to the assembly process problem is the loading of goods 

to a ship. Goods are first transported by trucks or trains from various locations 

to ports for shipment. The arrival time of the goods varies due to transportation 

uncertainty. On the other hand, since the goods are shipped to different countries, 

for the convenience of unloading, those goods to be unloaded earlier should be placed 

on top of others in the ship. Therefore, the placement of goods in the ship as well as 

the order of loading of goods are decided in advance. However, lots of time may be 

taken for waiting the late goods if the goods are loaded in an order that is scheduled 

without considering the uncertain arrival of the goods. We hope to find a sequence 

of loading of goods such that the chance of waiting for any late goods is minimized. 

The problem of our study is generalized as below. 
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1.2 Problem Description 
A series of operations are needed to produce a product. For each operation, one 

specific material (component) should be added to the semi-finished product. The 

processing time of each operation is fixed while the arrival time of material is a 

randorn variable which may be described by a probability distribution. Given a due 

date for the delivery of the end product, we should schedule the operations sequence 

such that the probability of on-time delivery is maximized. 

In our case, we do not need to consider the precedence of the operations because 

we assumed that once the optimal schedule of the operations is obtained, the setting of 

the semi-finished product and the assembly can be adjusted according to the sequence 

of the operations. Moreover, without loss of generality, we assume that the expected 

(mean) arrival time of each material is the same. Furthermore, the distribution of 

any material arrival and the processing time of any operation are known. 

The fitness of a schedule is evaluated by the overall probability of on-time delivery 

of the end product. This is determined by the product of a series of individual prob-

abilities which represent the chance that a material is available before its originally 

scheduled production time. In this dissertation, the statement "overall probability of 

a sequence" is equivalent to the fitness of a sequence (or schedule). 
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1.3 Contributions 
111 this dissertation, we study a sequencing problem of assembly process where the 

objective is to minimize the overall impact of the uncertain arrival of components 

ori the on-tirne delivery of the end product. We also demonstrate that the assembly 

process scheduling problem is very similar to the single-machine scheduling problem 

which aims at minimizing the total cost associated with the completion time of each 

job. Moreover, we construct aii effective heuristic algorithm to find the solution of 

the general problem. In addition, some approaches are suggested to determine the 

upper-bound of the optimal solution, which is useful for evaluating the performance 

of heuristic algorithms. We hope this study will be a step towards more studies of the 

evaluation of the significance of uncertain supplies in assembly process scheduling. 

1.4 Thesis Organization 
This dissertation is organized as follows. A general introduction is presented in Chap-

ter 1. In Chapter 2 we mathematically formulate the problem and illustrate the dif-

ficulties in solving it, which is followed by a literature review. Chapter 3 provides 

the solutions to some special cases of our problem. In addition, the approaches to 

finding the upper-bound of the optimal solution are discussed in this chapter as well. 

Chapter 4 presents a heuristic algorithm to solve the problem. Moreover, the ex-

perimental and analytical results of the heuristic algorithm are given in Chapter 5. 
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Finally, concluding remarks are given in Chapter 6. We summarize the results and 

provide further research directions in Chapter 6. 



Chapter 2 

Problem Formulation and Solution 
Approaches 

In this chapter, we firstly formulate the problem mathematically. Second, we com-

pare our problem with a known NP-complete single-machine problem. Finally, the 

difficulties of solving the problem are discussed. 

2.1 Mathematical Modeling 
A series of operations are required to produce the end product. Each operation has 

a deterministic processing time and is non-preemptive. One specific material with 

uncertain arrival time is required to carry out the operation. In other words, an 

operation can only be started after the appropriate material is available. We are 

8 
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trying to find a sequence such that, with respect to the uncertain material arrivals, 

the probability of on-time delivery of the end product is maximized. This problem is 

mathematically defined as follows: 

Notat ions 

Af = set of the operation index, {1, 2，...，n} 

i = index of operation, i 二 1,2, •. • , n 

ti = processing time of operation i, which is a constant, 

Pi{t) = distribution function of the material arrival for operation i, 

Pi{t) = probability density function of the material arrival for operation i at time t, 

|^i, of 二 meaii and variance of the distribution of the material arrival for operation i 

respectively, 

^ = set of all permutations of n jobs, 

s = a sequence in S, 

D = due date of the end product, 

了0 = starting time of a sequence, 

Ti(s) = starting time of operation i in the sequence s, 

7r(s) = probability of on-time delivery of the end product associated by sequence s. 
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The objective is to find an optimal sequence s* such that 
n 

7r(5*) = m a x { n P , ( T , ( s ) ) } (2.1) 
s i=l 

where we assume that all distribution functions are independent. 

Initial Time of A Sequence 
Lemma 2.1. The initial time ofa sequence To should be delayed as much as possible, 

n 
To = D - J 2 u (2.2) 

i=l 
which is a constant without depending on the order of the operations. 

Proof. Suppose an optimal sequence s* is initialized at T' which is earlier than To, 

i.e. T' < To. The appropriate probability of 5* is， 

n i—l 
7 T T ' ( ^ * ) - n ^ w ( ^ ' + E ^ ] ) (2.3) 

i==l j=l 
where [i] is the operation in the i-th position of sequence s. I fwe shift the initial time 

from T' to To, we get another probability as 
n i—\ 

%(A=r[pw(TQ+Eb]) (2.4) i=l j=l 
Since P^(t) is non-decreasing function and To > T', from (2.3) and (2.4), we have 

7TTo(S*) > nT>(s*) 

On the other hand, we should not start the sequence after To； otherwise, the delivery 

of the end product will be late. i.e. 
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If the initial time T' > To, then 
n 

T' > D-Y^U 
i=i n 

T'^YlU > D 
i=l 

which implies the existence of lateness. • 

Above Lemma also implies that the any idle time in the operation sequence does not 

improve the overall probability of on-time delivery of the end product. 

2.2 Transformation of Problem 
To the best of our knowledge, no study has dealt with the similar problem. The most 

relevant literature appears to be the single-machine problem. In the single-machine 

problem, the objective is to minimize the total cost with respect to the completion 

time of each job. By using our notations, the objective of the single-machine problem 

can be expressed as 
n 

m m { ^ / . ( T , ( 5 ) + tO} (2.5) 
i=l 

where fi{t) for t > 0 is the individual cost function of job i, which is assumed to be 

non-decreasing and differentiable. Therefore, instead of maximizing the product of a 

series of non-decreasing functions used in our problem, the single-machine problem 

aims at minimizing the sum of a series of non-decreasing functions. 
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Now, by taking logarithm, our objective function in (2.1) becomes 
n n 

l n J ] [ P , ( T A ) ) ] = ^ ln [P , (T , (5 ) ) ] (2.6) 
i=l i=l 

Since ln(2;) is rnonotonic increasing for all real x, we have: 

if a sequence s* G S maximizes l r 1 [ 7 r ( s ) ] ; it also maximizes 7 r ( 5 ) , \/s G S. 

Furthermore, by substituting ln[Pi(t)] in (2.6) by /,(t), we express our objective func-

tion as: 
n 

m a x { ^ / , ( T , ( . ) ) } 
s i=l 

Now, we see that the objective function of our problem is very similar to that of 

the singe machine problem. In the literature, however, it has been proved that the 

above single-machine problem is NP-complete [3]. In other words, it is unlikely for 

an algorithm to solve the single-machine problem optimally in a reasonable time. 

Bearing the similarity of oiir problem and the single-machine problem in mind, we 

strongly believe that our problem is also NP-complete. Thus, in our study, we tackle 

the problem by developing some heuristics to find near-optimal solutions. Before 

constructing our heuristic, we have to study sorne special structures of our problem 

for more insights into developing a better heuristic algorithm. 

2.3 Problem Analysis 
In this section, we discuss the difficulties we encountered in the investigation of a 

solution methodology. The first part is difficulty finding the optimality criteria. The 



CHAPTER 2. PROBLEM FORMULATION AND SOLUTION APPROACHES 13 

second difficulty is the construction the effective heuristic. 

2.3.1 Optimality Criteria 
In our problem, when we try to find the optimality criteria of a set of operations, one 

of the major difficulties comes from the correlation of the associated parameters of 

each operation. This is just like the common difficulty faced in some NP-complete 

scheduling problems which is explained as follows. 

We consider two operations i and j in a sequences. Let s' = {A, i,j, B} be a 

sequence in which operation j follows operation i immediately, where A and B are 

the sets of operations scheduled before operation i and after operation j respectively 

in s'. Let s" = {AJ, z, B} be the sequence obtained by switching position of the 

operation i and j in s'. We have, 

兀⑷= P . ( T ) P , ( T + t.) 

n{s")-p,{T)P,(T + t,) (2-7) 

whereT = ^ , ^ ^ t , . 

From (2.7), we also have 

7T(S') > 7T(<S") 
if and only if 

Pj{T + U)�P“T + t j) 
Pj{T) - P^(T) (2.8) 

We cannot use (2.8) as the global optimality criteria for the two operations because 

the quantities in the left- and right-hand sides of the inequality in (2.8) depend on 



CHAPTER 2. PROBLEM FORMULATION AND SOLUTION APPROACHES 14 

both the processing times of operations i and j , and the current state T. This means, 

given two operations, we can only decide the optimal order of i and j at the instant 
T. However, we cannot guarantee that this order remains at other instants. This 

Prob 

^ ^ " " " • ^ m 
y ^ ^ ^ ^ " " ^ m 1 ^ 

1 ~ I ~ h 1 ~ I ~ I   
TT + U \ r T' + U \ Time 

T + tj T' + t] 
Figure 2.1: Optimal Orders in Two Instants 

scenario is depicted in Figure 2.1 in which the curves are the distributions P-(t) and 

Pj{t). Since 

P,(T)P,(T + U)<P,(T)P,{T^t,) 

and, 

HT')P,{T + U) > P,{T')P,[T' + t,) 

the orders {j,i} is better than {i,j} at instant T, however {iJ} is better than {j,i} 



CHAPTER 2. PROBLEM FORMULATION AND SOLUTION APPROACHES 15 

at instant T'. Therefore, in our problem, we can only find the local optimal criteria 
of the two operations. 

2.3.2 Heuristic Solutions 
The effective heuristic procedures are needed to solve difficult problems. Some heuris-

tics attempt to solve a dual problem of the original problem to obtain a near-optimal 

solution. For example, to solve the previous single-machine problem, the heuristics 

usually transform the cost functions to the approximate linear functions and the op-

timal solution associated by the linear cost functions can be achieved by a simple rule 

2]. Although the quality of the approximate solution may be affected by a poor choice 

of the approximate functions, this approach at least acts as the basis for generating 

the heuristics. 

In our problem, however, it is not easy to find such a relaxation. The difficulties 

of finding the relaxation are: 

1. Our objective function is the product of a series of distribution functions each 

of which has a fixed form. 

2. Some distribution functions do not have closed forms and some of them are 

mathematically intractable. 
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Object ive Function 

By considering the single-machine scheduling problem which consists of only two jobs, 

i and j. Let s' = {i,j) and s" = {j,z} we have 

Z{s') - Z{s") = [/.(To) + /,(To + U)] — [/,(To) + /,(To + t,)] (2.9) 

where Z{s) is the total cost associated by the jobs sequence s. 

Now, let the cost function f(t) in the single-machine problem be linear, i.e. for 

k 二 i,j, 

f k { t ) = a k t + pk (2.10) 

where a^. and ft are constant. Then we have 

^(s') - Z(s") = [K(To + tO + ft)-(^To + /?,)] 

-[(Q^2(7i) + t^) + ft)-(a,T�+ ft)] 

— O^jtj^ C^j^tj 

Thus, 

z ( s ' ) ^ n ^ ^ > ^ (2.11) 

Cj ti 
Therefore, when the cost functions are linear and the objective is to minimize Z(s), 

then the optimal solution of the single-machine problem can be obtained by sequenc-

ing the jobs in descending order of the ration at/tk, where k is the job index. 
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On the other hand, for our problem, suppose we consider the two sequence s' and 

s" too, we have 

^(5') - As") = mPj(To + U) — Pj{To)P,(To + t,) (2.12) 

When the distribution functions are linear, i.e. the distribution Pi(t) is uniform, we 

have 

Pr(t) = f ^ for a, < t < b, 
bi — CLi , \ 

(2.13) = c q t + Pi 
where a^ = l/(bi - ai) and ft 二 —CLil�bi - a,). 

From (2.12), if 
7T(S') > 7T(S") 

(2.14) 
=> (a,To + ft)(a,(To + t,) + /¾) > (a,To + ft)K(To + t j ) + /¾) 

From the above inequality, we see that the distribution functions lose the linearity 

after the production in the objective function. So that we cannot obtain any benefits 

from the linearity of the uniform distribution. Conclusively, the structure (produc-

tion) of the objective function has added extra difficulty iii solving the problem. 

Distr ibut ion Functions 

Mathematically, when Pi(t) = e " “ + � when we take logarithm to the objective func-

tion as in (2.6), we can transform the objective function as follows, 
n 

ln[7r(5)] = ^ ( a , T , ( 5 ) + A) (2.15) 
i=l 
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which is equivalent to the single-machine problem with linear cost functions. However, 

we cannot find such a distribution which can be approximately expressed as e"^+^. 

Since Pi(t) can only be expressed by various distributions which have fixed forms or 

even no closed forms, the characters of distribution functions sometimes limit us to 

investigate the optimality of the solution. For example, normal distribution which is 

a commonly used distribution function. However, note that the cumulative density 

function (cdf) of normal is expressed as the integral of the density function which 

is hard to investigate. Considering another distribution, the exponential, which is a 

member of the large Exponential family. Let Pi{t) 二（1 - e—A"), the quantity of the 

objective function associated by a series of operations is 
n 

7T(s) = Yl{l — e_A'Ws)) 
i=l 

The computation of above expression is very complicated. As the reasons, the char-

acters of the distribution functions also put us extra difficulties to investigate the 

problem. 

2.4 Literatures Review on Single-Machine Schedul-
ing 

Research on minimizing the general non-linear problem has primarily concentrated on 

techniques to find an optimal solution. The solution methodology used by researchers 
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is either dynamic programming [3]-[6] or branch and bound [7]-[14 . 

Heuristics procedures for special cases (e.g. minimizing the total tardiness) are 

considered by Wilkerson and Irwin [15] which utilize an Adjacent Pairwise Inter-

change (API) methodology incorporating the dominance properties developed by 

Emmons [16]. The API algorithm chooses a sequence of jobs as a basis, for ex-

ample (1，2’.. .,n), it considers every pair of adjacent jobs and switches them if the 

total cost is lowered as the result of this switch. This method gives a locally opti-

mal solution. One of the difficulties of the API algorithm is finding a sequence as 

a starting solution, see [1] and [17]. Fry et al. [17] develop a heuristic procedure 

based on Wilkerson and Irwin's method for the mean tardiness problem. They use 

three different sequences as the starting basis. Another heuristic procedure, called 

the modified due date (MDD) algorithm, for mean tardiness is given by Baker and 

Bertrand [18]. The MDD chooses a job at each iteration based on the smallest due 

date or completion time of a job whichever is the minimum. 

The heuristic methods for the general non-linear problem is very limited. Fisher 

and Kreiger [19] theoretically analyze a heuristic solution based on the ratio rule 

of Smith [2]. They consider approximating the sum of non-linear concave profit 

functions and provide an algorithm which always obtains at least 2/3 of the optimal 

profit. This bound is only valid for maximizing total profit and does not hold for 

minimizing total cost which is the objective of the single-machine problem. However, 

Fisher and Kreiger's algorithm is easily applicable to the total cost problem. Alidaee 
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recently presents several techniques for general non-linear cost functions, see [20 

and [21]. In [20] Alidaee proposes the Dynamic Algorithm (DA) through utilizing 

the differentials of the cost functions. The algorithm is empirically compared with 

the linearized algorithm by Fisher and Kreiger in [19]. In [21] Alidaee proposes two 

algorithms. One is the evolution of DA and the other is based on a linear least square 

approximation of the cost functions. These algorithms are also compared empirically 

with Fisher and Kreiger's algorithm and the DA. 

Although the algorithms suggested in the literatures cannot be used to solve our 

problem, they provide us some insights in constructing any feasible heuristics. For 

example, the API algorithm is adopted as a part of our two level heuristic in this 

dissertation. 



Chapter 3 

Discussion of Some Special Cases 

In last chapter, we have demonstrated that oiir problem is very similar to the single-

machine scheduling problem which is NP-Complete. Therefore, finding an polynomial 

time algorithm to solve our problem to the optimality is impractical at this stage. 

However, in this chapter, we will show that under some special problem structures, 

the optimal scheduling policies of our problems can be achieved. In the first section, 

we discuss the two operations problem. From the result of this problem, we construct 

the Smallest Rate of Probability Increasing Potential First (PIPF) rule, which is one 

of the bases of our heuristics. In the second section, the problem with identical 

distributions is discussed. We establish the Largest Processing Time First (LPTF) 

rule to solve this sort of problems. In addition, the error bound of using LPTF rule 

to solve the general problem is also discussed. In the last section, the problems with 

large initial time and special processing times structure are introduced. To solve this 

21 
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type of problems, the Smallest Variance First (SVF) rule is developed. Moreover, 

error bound of SVF rule is also discussed. Lastly, we discuss the error bound of the 

heuristics. 

3.1 Two Operations 
We consider a sequence which consists only two operations i and j. Obviously, the 

possible schedules are 
s' = {^,i}, 

and 

s" = {j,i}. 

With reference to Figure 3.1，we can express the overall probabilities of these two 

sequences as 

7r(s') = P“To)P;(To + t,)， (3.1) 

and 

7T(s")=Pj{To)Pj{To + tj). (3.2) 

Note that To = D - U — tj, we have 

To + U = D - tj, 

and 
To + tj = D — ti. 
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Prob 
• 糊 ' r ^ \ f/^^'' 

/ To +1] 0.5 __ y 
> i"H 1 ^ Time 

To To + U D 
s': I z 丨 j I 
s''-. I j I ‘ = 

Figure 3.1: Distributions of Two Operations 

Thus, we express (3.1) and (3.2), respectively, as 

7T(s') = i ^ r o ) ^ ( i ^ - i g , (3.3) 

and 

7r(s") = P^_(ro)P,(D-t , ) . (3.4) 

Note that if i is scheduled at the end of the sequence, the starting time of i should 

be D 一 ti, and the appropriate probability Pi{D - U) should be the maximum value 

that Pi{t) can attain in any sequence. Since the probability of i at time T � i s P,(To), 

the ratio 

PdDjJ^ 
P.(To) (3.5) 
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can be interpreted as the rate of probability increasing potential of i at time To. 

Whereas,户“^芯巧.)is the rate of probability increasing potential o f j at time To. 

Now, by (3.3) and (3.4), if 
7T(S') > 7T(S") 

then 

P^o)PAD — t,) > 明0)柳-U) 
P,{D-t,)�P,{D-U) (3.6) 

P j { T o ) - 聊 

This directly implies that the operation with a smaller rate of probability increasing 

potential should be processed first. We summarize above discussions as a proposition 

as follows. 

Propos i t ion 3.1. The sequence generated by the Smallest Rate of Probability In-

creasing Potential First (PIPF) rule is optimal. 

Proof. See (3.1) to (3.6). • 

3.2 Identical Distributions 
For the second special problem structure, we consider a set of operations Af = 

{1, 2 , . . •，n}. For any operation i,j e M, we have 

Pdt) = P ^ = P{t), V t > 0 . (3.7) 
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where P(t) is a cumulative density function. 

We depict P(f) in Figure 3.2, where the initial time of the sequence is 
n 

To = D-J^ti. 
i=l 

Note that P[t) is non-decreasing function, i.e. for A > 0, 

P( t + A) > P(t). (3.8) 

Iri this case, the optimal sequence can be obtained according to Lemma 3.2 as given 
Pro6 P(t) 
A / 
厂 

/ 
/ 

/ 
丨 T + t. T + ti 

0.5 -- V Z 
^~<"^ 1^ ^——^ Time 

T T' T" D 

s* : I A I j I B I i I C 
s' ： I A I i I B I j I C 

Figure 3.2: Identical Distributions 

below. 

L e m m a 3.2. When all distributions are identical, the operations in the optimal se-

quence should follow the Largest Processing Tirne First rule, i.e. the optimal sequence 
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is 
s* = { l , 2 , " . , n } 

if and only if 
tji > tn-i > • . . > ti 

Proof. (By Contradiction) 

With reference to Figure 3.2, suppose that there exists an optimal sequence s* which 

is not scheduled by the Largest Processing Time First (LPTF) rule. Therefore, the 

optimal sequence is 
S — {vJ^^'^'>s:^^'^'C^;^} 

A B C 

when L > t” The overall probability associated with s* is 
1 J 

n{s*) = PAPAT)PBPdT')Pc 

二 PU^i^P(T)P(r) 
where P^, P^ and Pc are the probabilities contributed by the subsequences A, B and 

C respectively, and T and T' are the starting times of j and i respectively. Now, by 

interchanging the position o f i a n d j in s*, we obtain another sequence 

S' 二 {s_:^^，"^，^l^’*^'，C_^} 
A B C 

In this new sequence, the starting time of the subsequence B is T + U instead o f T + t j 

in s*. Therefore, the probability contributed by the subsequence B now is P^ which 
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is obviously larger than P s as T + U > T + tj. Now, the appropriate probability of 

the alternative sequence is 

兀⑷ 二 PAPr{T)P'sPj(T")Pc 

= PAP'BPcP{T)P(T") 

> PAPBPcP{T)P{T") 

> PAPBPcP(T)P(T') (..• T" > T') 

= As') 

=^ Contradiction! 

• 

Therefore, the sequence obtained by LPTF rule is optimal when the distributions are 

identical. 

3.2.1 Error Bound of LPTF — Maximum Distribution Ap-

proach 
Given a problem with non-identical distributions, the sequence of operations can still 

be obtained by LPTF rule. However, the overall probability of the sequence must not 

be as good as the optimal solution and is bounded in certain percentage of the optimal 

solution This error bound largely depends on the variation of each distribution which 

is discussed in the following. 
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Suppose we are given a set of operations Af, where neither the processing times 

nor the variance is identical. However, we assume that the means of all distributions 

are equal. Note that the assumption of equal means is applicable to all our discussions 

except that when the distribution P^(t) are exponential. Let s* and s be the global 

optimal sequence and the sequence obtained by LPTF rule, respectively. We first 

define the following function 

FrnaxW = m^x{P,(t)} for To < t < D 

which is just the distribution function with the smallest variance, and the difference 

between Pi{t) and Pmax{t) in the time interval [To,D] as 

5,{t) = Pmax(t) - m ) for To < t < D 

By the principle of optimality, we have 

7r(s) < 7T(s*) < 7T(sL.J < 7v{Smax) 

where 3*丽 and Smax are the sequences identical to s* and s respectively, but the 

distribution 尸“亡)is replaced by Fmax(i) in 4 a x and W - Thus, we have 
7T(g) < 7r(s) 

7r(Smax) 一 7̂ (S*) 
which is the error bound of the solution associated by the LPTF rule in solving the 

general problems. 
By expressing the error bound in terms of Si(t), we have 

l i ! l > f r M _ A m _ i (3 9) 
7T(.*) - i_V P m a A m r ^ ^^ 2— 1 
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We see from (3.9) that the error associated by LPTF rule in solving the general 

problem increases as 6i(t) increases. For example, consider the 5-operation problem in 

which the distributions are not identical. Suppose S^(T^{s)) = 0.01 and P m a A T ^ = 

0.8 for all i. The error bound of the solution associated by LPTF rule is determined 

by (1 — 0.01/0.8)5 二 0.94. Obviously, if the distributions are identical such that 

6^{Ti(s)) = 0 for all i, the solution associated by LPTF is the optimal. 

Remarks 

Finding a reasonable upper bound of the optimal solution such as 7r(s^ax) is very 

important for testing the performance of any heuristic algorithm in solving the general 

problems. For example, let S* is the sequence generated by the heuristics. Since 

we cannot determine 7r(s*), the error bound of the heuristic solution can only be 

determined by TT(S*)/7r{smax)-

3.3 Large Initial Time and Special Processing Times 

Structure 
The last special problem structure is that, for a set of operations N = {1,2, • . . , n] 

which have equal mean of the material arrival distributions, the special structure of 



CHAPTER 3. DISCUSSION OF SOME SPECIAL CASES 2J_ 

the processing times is specified as 

ti > h > • •. > tn (3.10) 

for cTi < 0"2 < •. • < 0"n- Note that ti = t2 = •. • = t^ is a special case of this structure. 

For easy exposition, we assume that the material arrivals are normally distributed 

such that each distribution is distinguished by the appropriate variance. Note that 

the assumption of distributions does not affect the generality of our discussion about 

the optimal scheduling policy to this sort of problem structure. 

Assume aj < cr^+i for j = 1, •. •, n — 1, such that we have ij > tj+i. Now suppose 

1 and j be any two operations in N where a, < cr̂  and U > tj. The distributions 

and densities of the material arrivals of i and j are graphically shown in Figure 3.3, 

where |d is the common rnean of the distributions. According to the properties of the 

normal density functions, there always exists a point m ( < ’ �> |i such that the density 

Pi{rri(^ij)) = Pj{m(^i,j))- Geometrically, we can say that Pi(t) and Pj(t) have the same 

slope at m(ij). For the normal distributions, m(i,)) can be determined by the following 

expression, 

|2ln(aJai) 
^ (⑶ = ^ + 。 叫 ^2_^2 (3.11) 

Moreover, when a j is approaching to a^, the limit of m(;，》is 

lim rri(^ij) = f i + cTi (3.12) (Tj^CTi 
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Prob i 
1 - - - ^ 糊 

'^f^^^-"^^^^^^^^ 

' ' • • ^ ^ 

1——I ^ 
/i m(i j) Time 

iA^ 
____7 乂 Mt) 1——I ^ 

/i 77i(jj) Time Figure 3.3: Two Operations with Equal Means and Equal Processing Times 
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The proof are given in Appendix A. Note that 

Pj(t)>Mt) for t > m(,,,). (3.13) 

Therefore, for t > m(i,j), the distribution function which has larger variance such as 

Pj(t) always increases faster than Pi{t) which has smaller variance. In general, we 

can find a point m* > fĴ  such that, for all iJ G Af, 

爪* = max{m(,j)} 

Now considering above two operations i and j again, suppose the sequences s' is 

defined as {••• ,i,." , j , • • •}. By interchanging the position of i and j in s', we 

obtain another sequence s" = {... ,j,... ,¾, • • • }• These sequences are shown in 

Figure 3.4. Let T be the common starting time of i and j in s' and s", respectively 

and, T' and T" are the starting times of i in s" and j in s' respectively. We have 

P^’）— PAT)SP3[T〃）— Pj(T) 

. ^ ^ ; ^ ¾ ^ ( • • 鲁 聊 

^ m < ^ (3.14) 
_ — Pj{T) 

m)p,(T") > Pj{m(T') 

=> 7T(S') > 7T(S") 

which implies that i should always precedes to j whenever the starting time time 

T > m*. Thus, ifTo > m*, we can obtain the optimal sequence by firstly assigning 

the operation which has the smallest variance and largest processing time. To this 

end, we can give a Lemma as follows. 



CHAPTER 3. DISCUSSION OF SOME SPECIAL CASES 2J_ 

Prob 

A P , ( T ) 尸“了‘) … � 
^ ^ Pi{t) 

X ^ ^ ^ Pj � 
/ ^ ^ ^ ^ ^ ^ Pj(T") / ^ n ^ ) 

hH 1 H 1 • 
m* To T T'T" D Time 

/ f 一 一 — — I I 一 ~ " 一 - T "• I — — 

S • [ i |jJ  

S" ： [ “ “ _ I j I I i I 

Figure 3.4: Combinations of i and j 

L e m m a 3.3. If the initial time of a sequence is not less than m* and the processing 

tirne structure is as specified in (3.10), then the optimal sequence should be obtained 

by using the Smallest Variance First (SVF) rule. 

: e . For To 二 D - J2ieM ^^ ^ 肌*，仇已 optimal sequence is 

? = {l，2,. . . ,n} 

if and only if 
al < al < • . • < al 

Note that , in our example, normal distributions are used and the order of variance 

are af < of+i for i = 1 to n - 1. From Figure 3.5, we observe that the maximum 
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J 晨） 

�̂JH^“,� 
—— hH I ^ 

/^m(i,2) m(„_i，„) Time Figure 3.5: Largest Crossing Point m* 
point m* should be the crossing point of Pn(t) and Pn-i(t), i.e. m* = m(„—i，„). See 

Appendix A for a formal proof. 
3.3.1 Application of SVF to Exponential Distribution 
It is very restricted to assume that the initial time of the sequence is not less than m* 

when we consider normal or uniform as the material arrival distributions. However, 

if we consider exponential distribution as the material arrivals, then SVF rule can 

be applied with less restriction. Now, suppose we are given a set of operations Af in 

which the processing times satisfy the special processing time structure in (3.10), and 

the material arrival of the operations are exponentially distributed. Note that the 

mean and variance of a exponential distribution, P( t ) = (1 - e"^^), are 1/A and l/A^ 

respectively. If the problem with exponential distributions satisfies the assumption 
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of the special processing times structure, we have 

h > t2 > . •. > tn and ^ < 各 < •. • < ^ 
/\l A2 An 

With reference to Figure 3.6, we give lemma below. 
Prob 

z I 
1丨丨 jiS^ ' ^ 入1  

[ 
^ Time An 

Figure 3.6: Exponential Distributions 

Lemma 3.4. For t > l|K, the order of the density functions (or slope) of Pi(t) 

should be, 
P l ( t ) � W S " . 9 n ( t ) 
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Proof. Let 女 < ^ , for t > ^ 

Pj(t) = Xje-�t 
Mt) _ Xie-�t 

一 ^p(A-A,)i 
— \ 

^ l n ^ = (A. - A,)t - ln ^ Pi[t) 入] 

> r - i — i n r ( . . . ^ r ) Aj Aj ^3 

Assume Â 二 aXj, where a > 1. 

Let 

/ ( a ) = a — 1 — l n a 

< l n _ 
- M t ) 

Since 
/ v ) = 1 - i > 0 

and, at a — 1, 

/ ( l ) = l - l - l n l = 0 

Thus, f(a) > 0 for a > 1. Moreover, we can conclude that, for t > 六， 

P j j t ) �1 
M t ) -

=> Pj{t) > Mt) 

• 
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Obviously, l/Xn in this scenario can be interpreted as m* in the SVF rule. Moreover, 

as we assume the initial time of the sequence being not less than the mean of any 

arrival distributions, i.e. T �> l/A^, Vi G M\ we have T �> m*. So that SVF rule can 

be applied to solve the problem of exponential distributions. 

3.3.2 Error Bound of SVF — Switching Processing Times Ap-

proach 
When SVF is applied to solve the problem without assuming any special structure 

of the processing times, in the case of T �> m*, the associated solution will not 

be as good as the optimal solution. In what follows, we propose an approach to 

determine the error bound of the solution associated with the SVF rule, with respect 

to the optimal solution. Since we cannot find the optimal solution directly, we can 

only use some approximate upper bound of the optimal solution to determine the 

error bound. The question is how to find a reasonable approximation of the optimal 

solution. Obviously, we can use the Maximum Distribution Approach which has 

been proposed in Sec. 3.2，to determine the upper bound of the optimal solution. 

However, we can expect that the appropriate upper bound will not be very close to 

the optimal solution when the deviation of the variance of the distributions are large. 

Therefore, we suggest an effective approach to find the bound through switching the 

processing times. For instance, let (P^, U) be the operation associated with the arrival 
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distribution P“Z) and the processing tirne 才小 For two operations (Pi,U) and (Pj,t^), 
the appropriate operations obtained by switching the processing times are (P^, tj) and 

[Pj, t'i)-

Suppose we are now allowed to freely switch the processing times between the 

operations. Obviously, the new optimal solution under this relaxation should be at 

least as good as the original optimal solution. Moreover, we can get the new optimal 

solution by the following lemma. 

Lemma 3.5. IfTo > m\ and 

Ĉ1 < CT2 < • • • < Cr„, 

the7i the processing times t[i\ should be assigned to operation with the distribution Pi{t) 

such that the order of t[i^ is 

t[l] > t[2] > . . • > t[n]-

And, according to the SVF rule, the new optimal sequence is 

5 = {(A,^[l]),(A,^[2]),---,(Pn,t[n])}, 

where (/̂ “力⑷)is the newly defined operation which is associated with the material 

Q,rrival Pi{t) and processing time t[^, such that 

AS) > 7T(5*) 

Proof. (By Contradiction) 
By considering the two distributions Pi{t) and Pj{t) and the two processing times t^ 
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and ti. Suppose ¢7̂  < aj and tk < U- If the new optimal sequence S is not scheduled 

according to Lemma 3.5, then there exists one of the following three scenario: 

1. 5i-M,[PM.^.{Pj.t i) .c} 
2. 5 2 - M , {PjM).B. {Pr.tl).C) 
3. Ss = {A. ( P j A ) . ^ . (P^：tk),C} 

where A, B, C are three sub-sequences of the remaining operations. Let 

T is the completion time of the sub-sequence A, 

T' is the starting time of the sub-sequence C, 

K is the probability contributed by both A and C, 

p^ and Fg are the probability contributed by the sub-sequence B with the 

starting times at (T + tk) and (T + t/) respectively. Note that /¾ < P^ as 

t/ > tk. 

case 1 : 

7T(5i) = KP,(T)P^Pj(T'-ti) 

= K P B P i ( T ) R j ( T ' - t i ) 

Now, by switching the position of the processing times t^ and U, we can obtain 

another sequence 
5" = {乂，{Pi,tj),B, (Pj,U),C} 
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So that 

7T(5) = KP^P,{T)P,{T'-h) 

> ASi) 

^ Contradiction 

case 2 : Let S is defined as in Case 1. According to Lemma 3.3, we have 

n{S) > 7r(S2) 

^ Contradiction 

Case 3 : 
AS3) = KP,(T)P'^P,{T'-t,) 

Now, by switching the position of Pi{t) and Pj(t) in S^ we have the new sequence 

S as the one defined in Case 1. 

Since 

_ ^ = m)P,(T'-tk) 
顽 — Pj(T)P,(T'-t,) 

= P,cn Pj(T' - h) 
— Pi{T' - 1 , ) P , (T) 
� PzCn P,(T'-t,) 
- Pr(T' - k) PiCn 

= 1 

=^ 7T(5) > 7T(^) 
=^ Contradiction 
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Therefore, the sequence scheduled according to Lemma 3.5 is optimal under the re-

laxation of processing times. • 

If s is the sequence obtained by SVF rule, then by the principle of optimality we have 

7r(s) < 7T(s*) < 7T(S) 

J[i^ < 兀 ⑷ 

7T(5) - 7r(s*) 

Therefore, the error bound of applying SVF rule to solve the problem without assum-

ing the special structure of the processing times can be determined by 7r(s)/7r(5). 

3.3.3 Extended Error Bound Analysis 
Finding a closer upper bound to the optimal solution is very important for us to 

evaluate the performance of any heuristic algorithm. In the previous section, we have 

described an approach to determine the upper bound of the optimal solution under 

the assumption of To > m*. However, this assumption is still very restrictive when 

the distributions are normal or uniform. Therefore, in this section, we extend the 

Switching Prvccssing Times Approach to the problem in which /i < To < m* • 

The idea of our approach is replacing Pi(t) by an approximate function Hi(t) for 

all i, such that 

1. Hi(t) > _ and 
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2. the order of i^-(t), the first derivative of Hi{t), can be expressed as 

Hl{t)<H'^{t), (3.15) 

if cFi < <Tj，for t > |J,. 

Since Hi(t) > Pi{t), the optimal solution associated with Hi{t) should be at least as 

good as the optimal solution of the original problem. Moreover, by the property of 

H'.(t) in (3.15), we can apply Lemma 3.5 to find the upper bound of the new optimal 

solution associated with H^t ) . Moreover, this upper bound is also used as the upper 

bound of the original optimal solution. In the following, we give the methodology to 

construct the appropriate approximate function Hi(t) for Pi{t) in normal and uniform 

distributions. 

Approx imat ion of Normal Distr ibut ion 

When the distributions are normal, there exists a maximum crossing point m* which 

can be determined by 

* , /2 ln(cr„/cr„_i) m = / ^ + ^ n - l ^ n W o _ ^ 2 " ^ ， 
V � n — <^n-l 

where the order of the variance are a? < cr| < • . . < cr^. 

At t = m*, the slope of Pn(t) is 

r = p „ ( m * ) = ^ ^ e — ( ^ * — " ) 2 / 2 < 
\I^T^On 
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Let m* > jJi is the time at which the slope of Pi[t) is equal to /*, i.e. 

MmD = 1* 
^ 1 ^-(m;-M)V2a,? = i* 

\f^Gi 
m* = |J, + V2 Gi [ln -^=J 1*. V^ai 1*^ 

Note that mJ < ra\ < . • • < m*n as ^i < (J2 < . . . < < • 

Now, the approximate function for normal distribution can be constructed as following 
‘ 

Pi(m*) 一 /*(m- - t) ，for |i < t < m*; 
精 )二 (3.16) 

Pi{t) , for t > m*. 
V 

Let h^{t) be the first derivative (or slope) of Hi(t), we obtain 
f 
1* , for !_i < t < m*; 

h{t) = (3.17) 
P i ( t ) ， for t > m*. 

\ 

Since hi{t) < h2(t) < • •. < hn{t), for t > /i, Lemma 3.5 is applicable for generating 

a new optimal sequence Sn such that 7r(5//) > 7r(s*). Then 7r(5//) acts as the upper 

bound of the optimal solution of the original problem. 

Approximat ion of Uniform Distr ibut ion 

The idea of constructing the approximate function Hi(t) for the uniform distribution 

p.(t) is similar to the normal distribution case. Note that the distributions have the 

common mean /i. Thus, if the order of variance is af < o\ < • . . < cr^, then the order 



CHAPTER 3. DISCUSSION OF SOME SPECIAL CASES 2J_ 

of the upper bounds of the uniform distributions U{ai, bi) should be 

bi < b2 < • • • < K. 

To construct the approximate function Hi ( t ) , bi can be adopted as m* as defined in 

the normal distribution case. Moreover, the corresponding slope 1* can be determined 

by the uniform density of the distribution with the largest variance, i.e. 

r = _ J _ _ 
2(&n-/i)" 

Now, the approximate function can be expressed as 
f 

1 - l*(bi - t) ，for |i < t < b“ 
_ = (3.18) 

1 , for t > k. 
V 

The first derivative (or slope) of Hi{t) is 
‘ 

1* ， for jjL < t < bi; 
fh[t) = (3.19) 

0 ， for t > bi. 
\ 

From the definition of hS) we have, for t > ", 

/ ^ ⑴ 仏 ⑴ ； … 仏 ⑴ . 

Thus, we have constructed the approximate functions of Pi(t). We can apply Lemma 

3.5 to generate the new optimal sequence Sn- And 7T[Sjf) acts as the upper bound 

of the optimal solution of the original problem. 
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In summary, suppose that the order of the variance are a^ < a j < • • • < a^, and 

the order of the processing times are t[i] > 力间 > . • . > ^n]- In Tables 3.1 to 3.3, 

we list above three approaches for determining the appropriate upper bound for the 

problem with different distributions. 

Exponential Dis tr ibut ions 

Approximate Function, Hi(t) Pz(t), for all t 

Optimal Sequence, Sn {(^i,^[i]),(丑2�亡[2])’ • . . ’ (^n, t[n])} 

Table 3.1: Finding Upper Bound for Exponential Distributions 

Normal Distr ibut ions 
• 

Pi{m-) 一 r(m* - t) ，for ^ < t < m* 
Approximate Function, Hi(t) < 

Pr(t) , for t > m* 
\ 

Crossing Point, m* M + V^ cr, [ln ^^^]全 

Maximum Slope, /* ^ ^-{m*-,)V2al 

Optimal Sequence, Sn {(^i,([i]), ( ^ 2 , ¾ ] ) , . . • , (^n,t[n])} 

Table 3.2: Finding Upper Bound for Normal Distributions 

Concluding Remarks 

According to above results, we have some intuitions regarding scheduling the assembly 

process of the components with uncertain release times. In some circumstances, the 
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Uniform Distributions 
- -

l-l*{b^-t) , for |i < t < 6, 
Approximate Function, Hi{t) 

1 ，for t > h, 
\ 

Crossing Point, m* ĥ  

Maximum Slope, 1* W ^ ^ 

Optimal Sequence, Sn {(丑1,力[1]),(付2,力阅)，...,(//n,̂ n])} 

Table 3.3: Finding Upper Bound for Uniform Distributions 

sequence of operations is important for scheduling the assembly process that are 

summarized as follows. 

1. when the distributions are identical and the difference between the processing 

times are large, the operation with the smallest processing time should not 

scheduled first. 

2. When the initial time of a sequence is large relative to the mean of the distribu-

tions and, the processing times are close, whereas the distributions are variant, 

we should avoid scheduling the operation associated with the distribution with 

large variance first. 

3. When the distributions are exponential and the processing times are close, we 

should also avoid scheduling the operation associated with the distribution with 

large variance first. 



Chapter 4 

Heuristics to Solve the General 
Problems 

In this chapter, we present a heuristic algorithm to solve general problems. The idea of 

the heuristics is based on the results of the three special problem structures which have 

been discussed in Chapter 3. The heuristic algorithm basically consists of two levels. 

Level 1 combines both PIPF and LPTF rules to achieve a preliminary sequence. The 

reason is that using either PIPF or LPTF individually to find a preliminary sequence 

may not be effective. This is because PIPF rule overlooks the importance of the 

processing times while LPTF rule does not consider the significance of the probability 

increasing potential. In Level 2，we perform Adjacent Pairwise Interchanging (API) 

to improve the preliminary sequence. Finally, the computational complexity of the 

heuristic procedures is also discussed. We first discuss the heuristics in detail. 

47 



CHAPTER 4. HEURISTICS TO SOLVE THE GENERAL PROBLEMS 48 

4.1 Level 1 — PIPF and LPTF Rules 
In the first level of the heuristics, we apply both the PIPF and LPTF rules to achieve 

a preliminary sequence. We have discussed PIPF and LPTF rules in Chapter 3. The 

idea of PIPF is that we should process a operation first, if it has less probability 

increasing potential of material arrival than others. On the other hand, we have used 

LPTF rule to solve the problem with identical distributions. The intuition of LPTF 

is that if we process the operation with larger processing time first, then the other 

operations should have more time to wait the non-arrival materials such that the 

overall probability of the operations sequence will be higher. The details of Level 1 

are further explained as follows. 

Suppose we are given a set of operations Af, where U and af are the processing 

time and the variance of the material arrival of operation i respectively. Now, assume 

that we have scheduled some operations and formed an immediate sequence, which 

are represented by J C Af, and J � i s the set of the remaining unscheduled operations. 

Let T is the total completion time of the J. Note that T is also the starting time of 

the next operation following J . According to the definition of the initial time of a 

sequence, T can be determined by 

To + Y , { U } or D- J2{U}. 
ieJ ie jc 

Since, for any operation i G J ^ , the maximum probability that i can attain is Pi{D-
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ti), the probability increasing potential of i at T is 

g,{T) = P,(D-U)-P,(T), (4.1) 

and the associated rate of probability increasing potential is 

n ( ” = 锻 （4.2) 
P^(D-ti) 

二 ~ ^ - l . (4.¾ 

Suppose that j is another operation in J ^ , where 

rj{t) > n{T) 
P j ( D - t j ) �P d D - t i ) 

Pj{T) - p m P,{T)Pj(D-t,) > P,{T)P,(D-U) 

which implies that the operation with larger rate of probability increasing potential 

should be processed later. So that scheduling a operation with larger r!(T) latter can 

utilize larger potential of probability of material arrival of the operation i than tha t 

of other operations. 

Apart from the rate of probability increasing potential, the length of processing 

times should be also considered as the criteria of the scheduling. Especially when the 

rates of probability increasing potential of two operations are equal or very close. If 

we apply L P T F as another criteria to schedule the operations, then we can utilize 

larger probability increasing potential during processing the operation with longer 

processing time. However, when we apply both P IPF and LPTF rules at the same 
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time, there may exist conflicts between these two rules at some instants. To tackle the 

conflict, we simply compute the product of ri(t) and l/ti, and then use the numerical 

value of ri(t)/U to determine the sequencing criteria o f the operations. In such way, we 

can combine both PIPF and LPTF to form the scheduling criteria of the preliminary 

sequence in Level 1. The criteria is defined as follows: 

Select the operation i from J�such that 

n ( T ) . . r , (T) ~ - ~ = min j ———-̂ , ti jGJC�tj ” 

then add i to the rear of J. 

The algorithm of Level 1 is given below: 

Algor i thm 1. (Level 1 - PIPF and LPTF) 

Step 1 : Initialize J �= {1, 2，...，n}’ 

J = 0, 

T = D - E : i f t } . 
Step 2 : (a) Choose i € J^ such that 

I f l = m i n - { f } . 

If there is a tie choose the least index, 

(b) Add i to the rear of J, 

Delete i from J^, 

SetT = T + ti. 

Step 3 : If JC 二 0 then stop and J is the sequence chosen be the algorithm 
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of Level 1. Otherwise go to Step 2. 

4.2 Level 2 — Adjacent Pairwise Interchange 
Having obtained the preliminary sequence J by the Algorithm 1, we try to improve 

J in Level 2 by switching any pair of adjacent operations if the switch brings up the 

overall probability. This approach is referred as adjacent pairwise interchange (API). 

The idea of API approach comes from the criteria of local optimality of two adjacent 

operations and, this method gives us a local optimal solution. One of difficulties of 

applying API algorithm usually is that the sequence should be chosen as the starting 

base since a good starting base of the API algorithm may lead to the better solution, 

even a global optimal solution. This is the reason for us to construct Level 1 to 

generate a preliminary sequence J. The API approach is discussed in details below. 

Let J = {..., [i], [i + 1],. • • }, and the starting tirne of [z] in J be T, where [i] is 

the 2-th operation in J. The idea of API is that if 

P[z](T)P[^+i](T + 力⑷）< P[.+i](T)P[,](T + 力丨终1]) (4.4) 

we can switch the positions of [i] and [z + 1] to achieve a better schedule. Therefore, 

we can perform API recursively to achieve a local optimal sequence according to the 

criteria in (4.4). However, a disadvantage of API is that polynomial computational 

time of API is not guaranteed. Thus, to avoid this, our approach is designed as 

follows: 
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We consider n iterations. For each iteration, API is performed to the operations [i' 

and [i + 1] for i = 1 to n — 1 provided that the condition in (4-4) is satisfied. 

Thus, there are at most (n — 1) interchanges in each iterations. And the maximum 

iiurnber of pairwise interchanges is n{n - 1). Now we give the algorithm of Level 2 as 

below: 

Algor i thm 2. (Adjacent Pairwise Interchange) 

Step 1 : Obtain J from Level 1, 

Initialize T = D — ^^=i{ti}, 

Set Count=0. 

Step 2 : Flag 二 1, 

For i 二 1 to n — 1, do the following: 

//P[,](T)P[,+i](T + ^ ) < i V i j ( r ) P w ( r + f[,+i]) 
then temp=[i + 1]； 

'i + 1] -—- [i\, 
i] = temp, 

T = T + t[,], 
Flag = 0. 

where [z] is the i-th operation in the sequence J. 

Count=Count+l. 

Step 3 : If Flag=l or Count=n then stop and J is the final sequence of our heuristics. 
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Otherwise go to Step 2. 

We have discussed the approaches of finding the upper-bound of optimal solution 

for various problems in Chapter 3. Note that for different type of problems, we can 

generate the sequence Sn such that 7r(5W) > 7r(s*), where s* is the optimal sequence. 

To determine the error bound of S*, the sequence associated by above heuristics, we 

can compute the ratio 7r(5"*)/7r(5V/). In such way, we can evaluate the effectiveness 

of the heuristics. This is further discussed in Chapter 5. 

4.3 Computational Complexity 
The complexity of the proposed heuristics is polynomial, 0{n^) which is demonstrated 

as follows. To achieve the preliminary sequence J in Level 1, we have to perform at 

most ( n - l ) comparisons to select the minimum rj(T)/tj for n iterations. So that the 

computational complexity of Algorithm 1 is bounded by 0(n^). On the other hand, 

for Algorithm 2, we have to perform at most (n — 1) pairwise interchanging for each 

iteration. And we have limited the number of iterations by n. Thus, the complexity 

of Algorithm 2 is also 0(n^). Therefore, the overall computational complexity of our 

heuristics is 0(n^). 



Chapter 5 

Experimental Results 

The two level heuristic is implemented. In this chapter, we present the experimental 

results of the heuristic in solving the problems using three types of material arrival 

distributions, including normal, exponential and uniform. Moreover, the performance 

of the heuristic in tackling each distribution is evaluated through comparing the 

results to the upper bound of the appropriate optimal sequences. Before giving the 

numerical results, we firstly introduce the design of our experiment. And we also 

describe the approaches used to evaluate the heuristic in solving each type ofproblems. 

5.1 Design of Experiments 
Basically, when the experiment is designed, we have to consider two aspects, i.e., 

(i) generating the representative samples, and (ii) evaluating the performance of the 
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heuristic accurately. For each of these two aspects, we go through the details as 

follows. 

5.1.1 Design of Problem Parameters 
In the experiment, for each type of distributions, we consider six different problem 

sizes including n = 6, 8, 10, 15, 20, 30 and 50. For the problems size n = 6, 8 and 

10, we can evaluate our heuristic by comparing the heuristic result with the optimal 

solution, which is obtained by the enumeration. However, for the problem sizes which 

are greater than 10 operations, it will be difficult to obtain the global optimal solution. 

Thus, we only evaluate the heuristic by comparing the results with the approximate 

upper bound of the optimal solution for the large problems. 

As we have assumed that the means are equal for all material arrival distribu-

tions, we can fix the mean /x for all sample problems except those using exponential 

distribution, for which the means are equal to the appropriate standard deviation. 

To generate a problem, without loss of generality the standard deviation a^ as well as 

the processing time U of each operation are uniformly generated from a given ranges. 

Furthermore, the starting tirne of the sequence are also uniformly generated from 

the range [iJ. + (Jmin,l^ + ^max\ for the problems using normal or uniform distributions, 

where a^m and Gmax are the minimum and maximum standard deviations respectively 

of the distributions in the samples. For exponential distribution, since the starting 

time is assumed to be greater than the means, T � i s uniformly generated from the 
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range [amax + cfmin,^(^max]- We prefer to generate the starting time in such range 

because it leads to the reasonable overall probability of the sequence. For example, if 

the initial time is less than ĴL+cFmin, then the magnitude of most individual probability 

p.(t) will be in the range 0.5 to 0.9. If the number of operations in the problem is 10, 

and the probabilities in an optimal sequence are, says 0.8 for each, then the overall 

probability is (0.8)1° 二 0.1074 for which the chance of on-time delivery of the end 

product is too small and unreasonable. On the other hand, if the initial time are 

very large, the probability of most material arrivals is close to 1 so that the overall 

probability is very large. In such a case, the importance of finding a optimal sequence 

will not be very significant. Therefore, to emphasis the significance of the optimal 

sequence in a problem, we chose above range to generate the initial time of the 

sequence. Having generated To, the due date D can be determined by To + [二 U. 

Conclusively, to generate a sample problem, we should give the following informa-

tion: 

1. Type of distributions, 

2. Problem size, 

3. Mean of distribution functions (for normal and uniform distribution function), 

4. Range of standard deviation of the material arrival distributions, and 

5. Range of processing time of the operations. 
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Finally, 50 samples for each type of problems are generated. In the next section we 

will describe the approach of the evaluation of heuristic. 

5.1.2 Evaluation Methods 
We evaluate the heuristic by two approaches. The first one is performed through 

comparing the results of the heuristic with the global optimal solutions. This method 

can only be used when the problem sizes are small, i.e. n = 6, 8 and 10. For n > 10， 

it is impractical to find the global optimal solution by the global search methods. So 

that other attempts should be used. Note that, in the last chapter, some approaches 

are suggested to find the upper bound of the optimal solutions for normal, exponential 

and uniform distribution functions. Thus, according to the upper bounds obtained by 

those approaches, we can evaluate the results of our heuristic through determine the 

ratio of our results to the associated upper bounds. However, under some problem 

structures, when the upper bound is not close to the real optimal solution, the evalua-

tion of the heuristic will not be very accurate. Therefore, we want to find some upper 

bounds which are close to the real optimal solutions. Note that, for the problem of 

normal or uniform distribution, the approximate function H^(t) is close to the original 

distribution function Pi(t), if the deviation of the variance of distribution functions 

is narrow. On the other hand, when the deviation of the processing times is narrow, 

the optimal solution associated by the switching processing times approach will ap-

proximate to the original optimal solution since the difference between the switched 
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processing time and the original processing time in not significant. Therefore, a better 

approximation of the upper bound can be achieved by assigning the processing times 

and standard deviations with narrow deviations. In the following we will describe 

how to assign the problem parameters of the sets of general problem as well as the 

sets of additional problems such that the better approximate upper bounds can be 

generated. 

Exponent ia l 

When the type of distributions in a problem is exponential, we can obtain the upper 

bound of the optimal solution by using Lemma 3.5. With reference to Lemma 3.5, we 

see that the difference between the upper bound and the optimal solution decreases 

as the deviation of the processing tirnes of the operations decreases. Therefore, other 

than the set of general problem parameters, we also introduce another set of param-

eters in which the range of the processing times is 1/3 of the general parameters. 

The set of general problem parameters and the additional problem parameters are 

presented in Table 5.1. 

Normal and Uni form 

For the problems of normal and uniform distribution functions, we use the approxi-

mate function Hi(t), as defined in (3.16) and (3.18) respectively to replace the original 

distributions Pi(t), and apply Lemma 3.5 to find the upper bound of the optimal so-
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General Problems Additional Problems 

problem size n 6, 8, 10, 15，20, 30, 50 

mean |M ĉ i 

range of cr, [10, 50] [10, 50] 

range of U [3，9] [5, 7] 

Table 5.1: Summary of Problems Parameters for Exponential 

lution. However, the approximation is suffered from the large deviations of both the 

processing times and the standard deviation of the distributions. Therefore, for the 

problems using these two distributions, we introduce two additional sets of problem 

parameters to improve the accuracy of the upper bounds. In the first set, the range 

of the standard deviations is 3/40 of the general problems. And, in the second set, 

the range of the processing times is 1/3 of the general problems. The parameters of 

the general problem and the two additional problems are summarized in Table 5.2. 

5.2 Results Analysis 
To test the effectiveness of the proposed heuristic in finding the optimal or near-

optimal schedules, we use the heuristic to solve the sets of problems with the pa-

rameters presented as in Table 5.1 and 5.2. For the problem sizes n = 6, 8 and 10, 

the optimal schedules can be found by a global search method. Thus, to evaluate 

• 
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General Problems 1st Additional Probs 2rid Additional Probs. 

problem size n 6, 8，10, 15, 20, 30, 50 

mean |M 刚 

range of a, [10,50] [30,33] [10,50] 

range of U [3, 9] [3, 9] [5,7] 

Table 5.2: Summary of Problems Parameters for Normal and Uniform 

the heuristic, neither upper bounds of the optimal solution nor any additional sets 

of problems are needed. For other problem sizes n > 10，we need to solve both the 

general and additional sets of problems for each type of distributions. The evaluations 

are given below. 

5.2.1 Evaluation for Problems with Small Size 
For the problems with the sizes n 二 6，8 and 10, we test the effectiveness of the 

heuristic by comparing the results with the global optimal schedule. A set of 50 

problems was generated from each set of problem parameters. For each problem, 

suppose 5* is the schedule generated by our heuristic and s* is the optimal schedule 

obtained by global searching method. The effectiveness of the heuristic Qg is defined 

as, 
Q _ ® % - 7T(S*) 
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Therefore, if Qg is equal to 1，the probability associated by S* equals the probability 

of the optimal sequence. Table 5.3 presents the number of optimal solution (OPT-

NUM), the minimum (MIN), average (AVR) and maximum (MAX) values of Qg for 

each set of problems. 

Distribution Exponential Normal Uniform 

Prob Size n = 6 n = 8 n 二 10 n = 6 n = 8 n = 10 n = 6 n = 8 n = 10 

OPT-NUM 50 50 50 49 48 43 38 39 39 

AVR 1.0 1.0 1.0 0.9997 0.9992 0.9967 0.9898 0.9877 0.9814 
MIN 1.0 1.0 1.0 0.9869 0.9747 0.9515 0.8593 0.8839 0.7118 

MAX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Table 5.3: Comparative Evaluation of heuristic with Global Optimal 

Considering Table 5.3 our heuristic gives optimal solutions to all problems of expo-

nential distribution. For the problems of normal distribution, the heuristic generated 

49 and 48 optimal solutions out of 50 in the problems with sizes 6 and 8 respectively. 

While 43 optimal solutions are generated for the problems with size 10. And the 

associated average values of Qg are all greater than 0.995. Moreover the worst cases 

are not less than 0.95 for all problem sizes. Although the results for the problems of 

uniform distribution are not as good as the others, the heuristic still generated 4/5 of 

the optimal solutions for the problems with sizes 6，8 and 10. Moreover, the average 

values of Qg in uniform problems are not less than 0.98. Therefore, we have presented 
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that, for each distribution, the heuristic generally give satisfactory results in solving 

the problems with small sizes. 

With reference to Table 5.3, we see that the uniform results are the worst, whereas 

the exponential results are the best. This is because the PIPF rule used in the 

heuristic can determine the fitness of a job in a sequence accurately only when the 

rate of increasing of the appropriate distribution is continuous and gentle. For uniform 

distribution, the rate of increasing is not continuous and sometimes very sharp. So 

that the results of uniform problems are not as good as others. This can be illustrated 

by the following example. 

Consider a problem of uniform distribution. Let i and j be any two operations 

out of n operations, where U = tj = t, and P^(D 一 t) = Pj{D — t) = 1. At instant T, 

where T > To, let 

P,{T) = 0.8，P^T + 1 ) = 1 and P , ( T ) = 0.7, P , ( T + 1 ) = 0.8 

Since 
r m _ i — o.8 — i 
训 - “ ^ — 4 

and, 
/ … 1 — 0.7 3 ,如 

。⑷二 i = 7 � 训 

According to the criteria of the heuristic, i is scheduled before j. And the associated 

probability is 0.8 x 0.8 = 0.64. However, by switching the order of the i and j, the 

associated probability is 0.7 x 1 = 0.7. Thus, the selection of the heuristic is wrong. 
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The value of ri(t) only reflects the ultimate increasing potential of a distribution. 

However, when we apply n(t) as a part of the criteria to select the operations, we 

assume that the probability is increasing gradually and the heuristic refer rj(t) as the 

indicator of the increasing potential throughout the time interval. This is incorrect 

if the slope of distribution jurnp at sorne instants. This is why the results of uniform 

are not as satisfactory as that of normal and exponential. 

5.2.2 Evaluation for Problems with Large Size 
For n > 10, we test the effectiveness of the heuristic by comparing the results with 

the upper bounds of the appropriate optimal solutions. A set of 50 problems was 

generated from each set of the parameters including the additional sets of problems. 

For each problem, suppose S* is still the schedule obtained by the heuristic and Sn is 

the new optimal schedule associated by the approximate function Hi(t) and Theorem 

3.5. The effectiveness of the heuristic Qn is defined as, 

n 明 Qn = / e \ ^{SH) 

Therefore, the closer Qn to 1, the better result is obtained by the heuristic. Tables 

5.4 to 5.6 present the average (AVR), minimum (MIN) and maximum (MAX) values 

of Qn in both the general and additional problems with the sizes n = 15, 20，30 and 

50. 

Considering Table 5.4 the average values of Qn for the general problems with the 
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General Problems Additional Problems 

¢7, 二 [10，50], U = [3’ 9] a , = [10，50], U = [5, 7] 

n AVR MIN MAX AVR MIN MAX 

15 0.9486 0.8611 0.9940 0.9810 0.9223 0.9968 

20 0.9514 0.8666 0.9923 0.9754 0.9413 0.9931 

30 0.9484 0.8380 0.9903 0.9788 0.9089 0.9961 

50 0.9812 0.9508 0.9980 0.9899 0.9596 0.9974 

Table 5.4: Comparative Evaluation of heuristic with Upper Bounds - Exponential 

sizes n = 15, 20 and 30, and n = 50 are about 0.95 and 0.98 respectively. Although 

the average of Qn for the additional problems are not improved significantly, the 

minimum values of Qn in the additional problems are much better than that in 

the general problem. The reason is that the design of the additional problems have 

avoided to generate the problems which might lead to extremely inaccurate upper 

bounds of the optimal solution. 

Considering Table 5.5 the average values of Qn for the general problems increase 

as the problem sizes increase. However, for the first additional problems in which the 

range of cr̂  are narrow, the average as well as the minimum values of Qu are very 

stable for all problem sizes, where the average and minimum values are greater than 

0.97 and 0.94 respectively. Moreover, for the sizes n = 15，20 and 30, the heuristic 

gives a better results in the the 2nd additional problems than the general problems. 
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General Problems 1st Additional Problems 2nd Additional Problems 

Oi = [10,50], U = [3，9] a, = [30, 33], U = [3，9] a, = [10, 50], U = [5, 7] 

n AVR MIN MAX AVR MIN MAX AVR MIN MAX 

15 0.9006 0.7145 0.9956 0.9746 0.9560 0.9906 0.9456 0.7819 0.9983 

20 0.9267 0.5912 0.9998 0.9713 0.9443 0.9886 0.9729 0.8626 0.9994 

30 0.9749 0.7506 0.9999 0.9738 0.9423 0.9914 0.9890 0.8890 0.9999 

50 0.9874 0.9136 0.9999 0.9759 0.9568 0.9941 0.9803 0.8503 0.9999 

Table 5.5: Comparative Evaluation of heuristic with Upper Bounds - Normal 

But, for n 二 50, the results of general problems are better. 

Considering Table 5.6 the average values o f Q ^ are about 0.95 for n = 15 and 20, 

and 0.99 for n = 30 and 50. In the 1st additional problems, the average and minimum 

values of Qn are greater than 0.97 and 0.94 respectively. Similar to the results in the 

problems of normal distribution, the result of the 2rid additional problems are not 

significantly better than that of the general problems. 

With reference to the overall results in Table 5.4 to 5.6, we can conclude that 

the results of the heuristic are generally better for the problems with the largest size 

50. The reason is that if the size of a problem is large, then the effect of any non-

approximate function Hi{t) on the accuracy of the upper bound of the optimal solution 

will be diminished. Combining the results of the heuristic in solving the problems 

with small and large sizes, we have demonstrated that the two level heuristic generate 
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General Problems 1st Additional Problems 2nd Additional Problems 

cr, = [10, 50], u = [3,9] C7, = [30, 33]，U == [3，9] a, = [10,50], t, - [5, 7] 

11 AVR MIN MAX AVR MIN MAX AVR MIN MAX 

15 0.9619 0.7001 1.0 0.9743 0.9457 0.9942 0.9509 0.4547 1.0 

20 0.9463 0.5967 1.0 0.9710 0.9444 0.9956 0.9907 0.7978 1.0 

30 0.9935 0.8755 1.0 0.9759 0.9573 0.9960 0.9954 0.9103 1.0 

50 0.9967 0.9271 1.0 0.9812 0.9582 0.9963 0.9978 0.9566 1.0 

Table 5.6: Comparative Evaluation of heuristic with Upper Bounds - Uniform 

satisfactory results for the general problems. 



Chapter 6 

Conclusion 

6.1 Summary 
This thesis studies an assembly process scheduling problem. We have formulated 

the problem to the mathematical rnodel. Moreover, an NP-Complete single-machine 

problem is illustrated and compared with the problem. We have demonstrated their 

similarity in the mathematical structure. 

To solve the problem, we firstly investigate some special cases of the problem. 

Afterwards, according to the results of these special cases, we construct a heuristic 

algorithm to solve the general problem. We also develop some approaches to deter-

mine the upper-bound of the optimal solutions of the problem using various types of 

distribution. The upper-bounds are used to evaluate the performance of the heuris-

tics in solving the general problems. Finally, a Java program is written to implement 
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the heuristic algorithm and the experimental results show that our heuristics gen-

erate satisfactory solutions to the problems with Exponential, Normal and Uniform 

Distributions. 

6.2 Future Extension 
In this study, we consider that the components are needed by a single product only. 

However, in practice, some components are shared by various products. Moreover the 

due dates of different products are also varying. Therefore, studying the problem of 

multiple products with different due dates is definitely worthy of pursuit. 

On the other hand, the current objective of our problem is maximizing the overall 

probability of on-time delivery of the end product. We rnay also consider another 

objective of minimizing the deviation of material arrival probabilities in a schedule. 

We believe that the result obtained by this objective should also give a satisfactory 

overall probability of on-time delivery of the end product. This is illustrated by 

0.7 X 0.9 = 0.63 and 0.8 x 0.8 二 0.64. We see that the product of the numbers with 

less deviation is larger than the other, even though the sums of both pairs of numbers 

are equal. We believe that the new objective can lead to a new objective function 

which provides us another direction to investigate the problem. So that an effective 

solution might be obtainable. 



Appendix A 

Crossing Point of Normal Density 
Functions 

Let of and o j are the variance of the two Normal Distributions with the cdf P,(-) 

and Pj(-) respectively, where a^ < aj, and /i is the common mean of these two 

distributions. Suppose x is the crossing point of the density functions p,(-) and pj[-), 

where x > /i. We have 

Pi{^) = Pj(x) 
_J_g-(x-/x)2/2a2 = _J_^-{x-|,f/2a] 
V^o"i \ f ^ o � 

(x-M)^"j-^j 
^2 2 V 2̂ 2 ) — — e Ji C^i 

( P " ) 2 = 2 ^ I n ( ^ ) (A.1) 
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Thus, the value of the crossing point can be obtained by 

|2afa]Ha,/a,) 
“ = V . 2 _ , 2 ’ (A.2) 

|2afa^ ln(aJa,) 

or . = 叫 j � j Z , . (A.3) 

Now, let 

y = {^ - ")2. (A.4) 
By (A.1), 

dy _ 4 a ^ l n ( ^ ) g . V , g . y i n ( ^ ) 
5 ^ - ( a , - a , 2 ) a / - a,^ - ( � 2 _ 明2 . 网 

Note that , by (A.4), we have 

dy — d{x — /z)2 
d<jj doj 

� \ dx 
= 2 ( P " ) ^ 

dx — 1 dy 
^ ^ j = 2(x-|i)^^- (A.6) 

By (A.2) and (A.5), we have 

^ — a A ( a / - a , 2 ( l + 2 1 n ( _ 
" � _ 0 a M 2 i n ( 9 ( a , 2 — �2)-i(。？ — A2)2 

= J < f { ^ j )， (A.7) 

where 

K= I 咖 ’ 

2 V ^ � n ( 3 ) ( a ? — a | i ( a ? - a 2 � 
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and 
f ( a , ) = a / - a , ' ( l + 2 l n ( ^ ) ) . ^i 

Since 

^ = 2a,-2^ 
d CTj Gj 

2 
= - ( f T j + f J z ) ( c r j - f 7 , ) 

^3 
> 0 , 

and when a j 二 口“ 

f{cJi) = 0. 

We have, for Oj > cr̂ , 

f{<Jj) > 0 

which further implies, by (A.7), 
d x �0 
dcjj 
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Thus, we cari say that x is monotonically increasing as aj increases. 

On the other hand, by taking the limit to (A.1) 
i 

�o cr?cr,̂  ln(aJa,) lim (x - ^if = Iim 2 ] \ �̂ ; ' �  (Tj4(H ^J ^^i cr| — crf 
= 诚 U m " , 1广々 ) 

<^i^oi aj — af 
2 a , l n ( a , M ) + g | ( ^ ) = 2 c r ^ lim L CTj^(Ti 20j 

2 / 0 + ^ x 
二 2 � ( i ) 
=〜 2 

=» lim X = ji + Gi (A.8) 
( ^ j � i ‘ 

Thus, the limit of the crossing point x, as cr] approaching to a^, is (a^ + /j). 

Therefore, we can conclude that for any two Normal Distributions, which are 

specified by the common mean // and variance a� and of with the order cr̂  < a” if x 

is the crossing point of the the appropriate density functions, where x > …then 

工 … 、 / ^ ^ ^ 

V 巧-〜 

which has the lower bound at /i + ai. Moreover, if cr̂  is fixed then x increases as aj 

increases. 



Appendix B 

Probaiblity Distributions 

B.1 Uniform Distribution 
f 

占， f o r a < X < b ； 
Density : f(x)= < 

0 , elsewhere. 
\ 

, , a + 6 Mean : /i = ~ - ~ ^ 

Variance : a^ 二 • ( & - a)^ 
丄丄 

73 
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B.2 Exponent ia l D ist r ibut ion 

f 

* e _ " " , f o r x > 0 , / ? > 0 ; 
Density : f { x ) = 

0 , elsewhere. 
s. 

Mean : / i -―二 P 

Variance : a^ = p^ 

B.3 Normal Distribution 

Density : f(x) = _ ^ e - ( T - " ) 2 " " ，for — 00 < x < 00 . 
VZTTcr 

Mean : /̂  

Variance : o^ 
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