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摘 要 

本畢業論文包括了兩項關於圖像改進和圖像恢復的最新工作。第一篇文章 

硏究如何從多個低解像度的，帶有位移和小像素擾動誤差的粗糖圖像，重 

新構造出高解像度的圖像。這問題對應之構造算子^是一個空間變分算 

子。在此文章中，與通常之零邊値條件(對應於漆黑背景)不同，我們考慮 

了Nemnann邊値條件(對應於原像在邊界上的反射）。邵勺離散矩陣是一個 

塊-106卩1^(3113)矩陣。我們應用以餘弦變換爲預處理算子的預條件共軛 

梯度法(?�0)解其離散問題。初步結果顯示，由Neumaml邊値條件所重造 

之圖像比零邊値條件所重造之圖像淸晰，而且？〔0方法的收斂速度非常 

快。 

在第二篇文章中，我們提出了新的圖像恢復模型。在零邊値條件下，對應 

之歪曲矩陣在一維情況下是一個106?1^2矩陣，而在二維情況下則是一個 

3^8矩陣。求解此矩陣的逆，計算量非常大(尤其在二維情況）。使用週 

期邊値條件，對應之歪曲矩陣爲循環矩陣，這種矩陣能被快速離散?0口1161 

變換所對角化。但是,這兩種邊値條件都容易引致邊値_誤。在本文中， 

我們提出使用Neumann邊値條件，其對應之歪曲矩陣爲106口1^2力日1^111(61矩 

陣。對於對稱的歪曲函數，我們證明了其歪曲矩陣能被離散餘弦變換所對 

角化。因此求這種矩陣的逆的計算量比零或週期邊値條件小的多。況且， 

實驗結果也顯示這種邊値條件所引致的邊値_誤大大小於其他兩種邊値條 

件所弓丨致的邊値旨翏誤。 

本畢業論文由下列兩篇文章組成，在本畢業論文中稱作文章八及文章3。 

文章 A: Raymond H. Chan, Tony F. Chan, Michael K. Ng, Wun-Cheung Tang 
and Chiu-Kwong Wong. Preconditioned Iterative Methods for High-
resolution Image Reconstruction with Multismsors, published in the 
proceedings of SPIE Symposium on Advace Signal Processing 
Algorithms, Archietectures and Implementations, Vol. 3461, San 
Diego CA, July 1998, Ed: F. Luk 

文章 B: Raymond H. Chan, Michael K. Ng and Wun-Cheung Tang. Deblurring 
Models with Neumann Boundary Conditions, submitted to SIAM J. 
Sci. Comput. 



Abstract 

This thesis contains two recent works on image enhancement and image deblurring. 
In the first paper, we study the problem of reconstructing a high-resolution image from 
multiple undersampled, shifted, degraded frames with subpixel displacement errors. 
The corresponding reconstruction operator % is a spatially variant operator. In this 
paper, instead of using the usual zero boundary condition (corresponding to a dark 
background outside the scene), the Neumann boundary condition (corresponding to a 
reflection of the original scene at the boundary) is imposed on the images. The result-
ing discretization matrix of % is a block-Toeplitz-Toeplitz-block-like matrix. We apply 
the preconditioned conjugate gradient (PCG) method with cosine transform precondi-
tioners to solve the discrete problems. Preliminary results show that the image model 
under the Neumann boundary condition gives better reconstructed high-resolution im-
ages than that under the zero boundary condition, and the PCG method converges 
very fast. 

In the second paper, we propose a new model in image deblurring. The blur-
ring matrices obtained by using the zero boundary condition are Toeplitz matrices for 
1-dimensional problems and block-Toeplitz-Toeplitz-block matrices for 2-dimensional 
cases. They are computationally intensive to invert especially in the block case. Us-
ing periodic boundary conditions, the matrices become (block) circulant and can be 
diagonalized by discrete Fourier transform matrices. However, both boundary condi-
tions easily lead to boundary artifacts. In this paper, we propose to use the Neumann 
boundary condition. The resulting matrices are (block) Toeplitz-plus-Hankel matrices. 
We show that for symmetric blurring functions, these blurring matrices can always be 
diagonalized by discrete cosine transform matrices. Thus the cost of inversion is much 
cheaper than that of using zero or periodic boundary conditions. Moreover, experimen-
tal results also show that the boundary artifacts are much less prominent than that of 
using the other two boundary conditions. 

The thesis is based on the following two papers, which will be referred in the text 

1 



Abstract 2 

as Paper A and Paper B. 

Paper A Raymond H. Chan, Tony F. Chan, Michael K. Ng, Wun-Cheung Tang and 
Chiu-Kwong Wong, Preconditioned Iterative Methods for High-resolution Image 

Reconstruction with Multisensors, published in the Proceedings of SPIE Sympo-
sium on Advance Signal Processing Algorithms, Architectures, and Implementa-
tions, Vol 3461, San Diego CA, July 1998, Ed: F. Luk. 

Paper B Raymond H. Chan, Michael K. Ng and Wun-Cheung Tang, Dehlurring Mod-

els with Neumann Boundary Conditions, submitted to SIAM J. Sci. Comput. 



Introduction 

In this thesis, we present two recent works in image enhancement and image de-
blurring. Most image processing problems require solving a Toeplitz system, so we will 
first give an introduction on Toeplitz matrices. Fast algorithms for solving Toeplitz 
systems by the preconditioned conjugate gradient (PCG) method will then be dis-
cussed. In particular, we will introduce the optimal cosine transform preconditioner in 
§3. Since most problems in signal and image processing are ill-conditioned, we should 
apply regularization techniques to regularize the solution. We will discuss in §4 clas-
sical Tikhonov regularization and the L-curve method for choosing the regularization 
parameter. Finally, we will give a summary on the two papers in §5. 

1 Toeplitz and Circulant Matrix 

An n X n matrix A^ is said to be a Toeplitz matrix if 

< o^o o,-i cL-{n-i)� 

ai ao a_i • • • • • • : 

: ai ao ... ••. : 
A n = : .. •• .• .. ： • ⑴ 

• • “ • • , 

• . . . : • • • • . • ttg Cl—i 

\ 0,n-l CLi ao / 

That is, a Toeplitz matrix is constant along its diagonals. Mathematically, if aij is the 
element of the z-th row and the j-th column of the matrix A^, then G^ = a,_j. 

Two-dimensional case can be defined similarly. Let us consider an n^ x n? block 
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Introduction • 4 

matrix with the following structure: 

(Ai,i Ai，2 . . . . . . A i , n � 

A2,1 A2,2 •. .. •• 

A _ = 丨 ••• •.. ... ； , (2) 
A A • • . ^n-l,n-l ^n-l,n 

\ A^-1 A^^^_i P^n,n / 

where ki,j are n x n matrices. A^^ is called a block- Toeplitz- Toeplitz-hlock (BTTB) 

matrix if A^^ are Toeplitz matrices and A^j = A^_j. A linear system Ax = b is said 
to be a Toeplitz system if A is a one-dimensional or two-dimensional Toeplitz matrix. 

Now, let us consider a special type of Toeplitz matrix. An n x n matrix B^ is said 
to be a circulant matrix if 

(60 b—i . . . ^ - ( n - i ) � 

61 bo 6—1 ••• ••• : 

_ ； h bo ... ... : 
^n — 5 

• 争 • • » • 
• • “ • • . 

： ••• ••• bi bo 6—1 

\ ^n-l 1̂ 0̂ 

where bi 二 bi—n. As in the two-dimensional case for Toeplitz matrices, an n^xn^ matrix 
is said to be a block-circulant-circulant-block (BCCB) matrix if it has the structure as 
in (2), where each block is an n x n circulant matrix and it is also circulant in the block 
sense. 

Circulant matrices B^ can be diagonalized by the Fourier matrix F^ = [fjk] where 

1 2wijk 

fjk 二 ; ^ e " - , 0 < j, k < n. 

That is, 

Bn = F ;A,F , , � 

where A^ is a diagonal matrix, see Davis [10]. The two-dimensional case of circulant 
matrices can be factorized similarly. That is, an n̂  x n̂  BCCB matrices can be 
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diagonalized by the two-dimensional Fourier matrices F^ 0 F„, where (g) denotes the 
tensor product. 

We note that the diagonal entries of A^ can be obtained in 0(nlogn) operations 
by taking the fast Fourier transform on the first column of B^. In fact, the diagonal 
entries Â  of A^ are given by 

n-l 
h = Y. bje"^\ k 二 0,..., n - 1. 

j=0 

Once An is obtained, the product B^y and B ~ V for any vector y can be computed by 
FFTs in 0{n logn) operations using (3). 

Actually, multiplication of an n x n Toeplitz matrix and an n-vector can also be 
done in the order of 0{n logn) operations, see Strang [17], by embedding the Toeplitz 
matrix in a circulant matrix with twice the size as shown below: 

( . \ ( \ ( . \ ^n X X A77,X 

V X A . ) \ 0 ) 1̂  * ) 

Here 0 is the zero vector of length n. The required product is then obtained. Thus, the 
computational cost of the multiplication of an n x n Toeplitz matrix and an n-vector 
is also of the order 0[n logn) operations. 

For the two-dimensional case, an n? x n^ BCCB matrix can be multiplied by a vector 
in the order ofO(n^ log n) operations only. By the similar idea, an n̂  x n? BTTB matrix 
can be enlarged to a 4n^ x 4n^ BCCB matrix, so it can also be multiplied by a vector in 
the order of 0{n^ logn) operations. By using such a nice result, a Toeplitz system can 
be solved fast by using an iterative method, such as the conjugate gradient method. 
This will be discussed in the next section. 

Toeplitz systems can be found in a variety of practical applications, like signal 
and image processing, time series analysis, integral equations and queueing problems. 
In signal and image deblurring, if the blurring function is spatially invariant, then 
the blurring matrix corresponding to this blurring function is Toeplitz in the one-
dimensional case and BTTB in the two-dimensional case. To deblur the image, we 
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need to solve a Toeplitz system. It is well-known that an n x n linear system can be 
solved by the Gaussian elimination method in 0{n^) operations. Recent research on 
solving Toeplitz systems have reduced the complexity to only 0{n logn) for a large 
class of Toeplitz matrices, see [4 . 

V 

2 Conjugate Gradient Method 

The conjugate gradient method is an iterative method for solving Hermitian positive 
definite matrix system. The algorithm of the method can be found in Golub and Van 
Loan [11, p.523]. In each iteration, it requires two inner products of n-vectors and one 
multiplication of the coefficient matrix with an n-vector. For Toeplitz systems, since 
we can perform the matrix-vector multiplication in 0{n logn) iterations, the cost per 
iteration is reduced from 0{n^) to 0(nlogn). 

The convergence rate of the conjugate gradient method is well studied, see Axelsson 
and Barker [2]. It depends on the condition number of the matrix A^ and how clustered 
the spectrum of A^ is. It is shown in [4, P.7] that the convergence rate for Toeplitz 
system is usually linear. Moreover, we can see in [4，P.7] that the convergence rate 
depends on the ratio of the largest eigenvalue to the smallest eigenvalue. If the ratio 
is large, then the convergence will be very slow. To speed up the convergence rate, we 
can precondition the Toeplitz matrices. Thus, instead of solving A^x = b, we solve 
the preconditioned system 

P/i ^nX = P^ ̂ b. 

The matrix P^ is called the preconditioner. 
In 1986, Strang [17] and Olkin [15] independently proposed the use of circulant ma-

trices to precondition Toeplitz matrices in conjugate gradient iterations. With circulant 
matrices as preconditioners, in each iteration, we have to solve a circulant system. From 
(3), we see that circulant matrices can be diagonalized by the Fourier matrix, and hence 
the inversion of an n x n circulant system can be done in 0{n logn) operations by using 
FFTs of size n. Therefore, the cost per iteration using a circulant matrix as precondi-
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tioner is still 0(nlogn). Theoretical and numerical results [7, 18, 15] suggested that 
the method converges very fast for a wide range of Toeplitz matrices. 

There are many circulant preconditioners proposed. One of the most popular cir-
culant preconditioners is the one proposed by T. Chan in [8]. For an n x n Toeplitz 
matrix A„, T. Chan's circulant preconditioner cir(A^) is defined to be the minimizer 
of 

| B n - A J ^ (4) 

over all n x n circulant matrices B„. Here || . Wp denotes the Frobenius norm. More 
explicitly, the j-th diagonals of cir(A^) for an n x n Toeplitz matrix A^ are equal to 

({n-j)a,^ja,_ 
bj = n -

y K+j, 0 < - j < n, 

which are just the average of the diagonals of A^ with the diagonals being extended 
to length n by a wrap around. Note that when A^ is not a Toeplitz matrix, T. Chan's 
circulant preconditioner can still be obtained by taking the arithmetic average of the 
entries of A^. i.e. its diagonals are given by 

bi = - ^ ajk, 1 = 0,.. . , n - 1, 
77/ j-fc=/(mod n) 

see [22]. We observe that a matrix is circulant if and only if it can be diagonalized by 
the Fourier matrix. From this observation, we can construct preconditioners that can 
be diagonalized by the cosine transform matrix and minimize the Frobenius norm in 
(4). Such a preconditioner is called the cosine transform preconditioner. 

3 Cosine Transform Preconditioner 

3.1 Construction of One-dimensional Preconditioner 

The (j, A:)-th entry of the n x n discrete cosine transform matrix C^ is given by 

/2 fe / ( z - l ) ( 2 j - l ) 7 r \ 
V ^ c o s ( � �: ) , 1 < 2，] < n. (5) 
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where 6ij is the Kronecker delta. We note that for any n-vector y, the matrix-vector 
multiplication C^y can be computed in 0{n logn) real operations, see Sorensen and 
Burrus [16 . 

Let (tnxn be the vector space containing all n x n matrices that can be diagonalized 
by Cn- For an n x n matrix A^, the cosine transform preconditioner cos(A�) of A^ is 
defined to be the matrix C^AC^ that minimizes 

|ClACyj — A � i ?， 

where A is a diagonal matrix. Recall that T. Chan's circulant preconditioner is the 
minimizer of (4) over all matrices that can be diagonalized by the Fourier matrix. The 
cosine transform preconditioner is defined similarly, but the preconditioner is diagonal-
ized by the cosine transform matrix. 

We now give the explicit formula for cos(A^). In the first place, we have the 
following result: 

Theorem 1 (Boman and Koltracht [3]) Let Qi, i = 1，.. . ,n, be n x n matrices 
with the (h,k)-th entry given by 

f 
1 if \h — k\ = i — 1, 

1 ifh + k = 2n-i + 2, 
Qi[n,k) 二 

1 if h + k = i, 

0 otherwise. 
\ 

Then {Qi|f=i is a basis for ^nxn-

For any matrix A^ = {aij), let r^ be an n-vector with the A;-th component given by 

(̂ n)fc = X ! aij, 
{Qk)i,j^Q 

which is the sum of those aij for which the corresponding entries of Qk are nonzero. The 
first column of the cosine transform preconditioner is given by the following theorem: 
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Theorem 2 (Chan, Chan and Wong [5]) Let A^ be an n x n matrix and cos(A^) 

be the minimizer of (4) over all B^ G ^nxn- Denote by q = fei,...,gn, the first 

column of cos(A^). Ifs�and Sg are defined respectively to be the sum of the odd and 

even index entries ofrn, then we have, for n even, 

Qi = ^ ( 2 n ( r ^ ) i + n(r^)2 - 2se), 

Qi = ^ ( n ( ^ n ) i + n{rn)i+i - 2se), z = 2 , . . . , n - l , 

Qn 二 ^ ( - 2 n 5 o + (2n - 2)sg + n(r^)n), 

and for n odd, 

Qi = ^ ( 2 n ( r ^ ) i + n(r")2 - 25^), 

Qi = ^(^(^n)z + n{rn)i+i - 2So), i = 2 , . . . ,n - 1, 

Qn = ^ { - 2 n s e + (2n - 2)5« + n(r^)^). 

Once we get the first column of cos(A^), its eigenvalues can be obtained by taking a 
fast cosine transform (FCT) of the first column of cos(A^). In particular, any matrix 
in dnxn is uniquely determined by its first column. We remark that the cost of con-
structing cos(A^) is 0(n^) if A„ has no special structure. However, if A„ is Toeplitz, 
then the cost of constructing cos(A^) is just 0{n). Since most of the problems in 
image processing are two-dimensional problems, we should extend the construction to 
two-dimensional cases. 

3.2 Construction of Two-dimensional Preconditioner 

We now construct cosine transform preconditioners for the block matrix A„^ with 
the same structure as (2). In [9], T. Chan and Olkin proposed the two-dimensional 
circulant preconditioners for such matrices. R. Chan, T. Chan and Wong [5] use the 
same approach to define the two-dimensional cosine transform preconditioner for A^^. 
We describe the method of construction here. First, we take the cosine transform 
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approximation to each block of A ^ , 

(cos(Ai, i ) cos(Ai,2) .. • cos(Ai ,^)� 

cos(A2,1) cos(A2,2) . . . c0s(A2,n) 
COSi(Ann)= . 

\ z . • . • 

• 雄 警 • 
• • “ _ 

\ cos(A^,i) c0s(A^,2) . . . cos(A^,^) y 

Denote (Ann)i,j-,k,i to be the {iJ)-th entry of the (A;,/)-th block of A^^. Let P be a 
permutation matrix that reorders A^nn in another coordinate direction, i.e. P satisfies 

{P^AnnP)i,j-,k,l = i^nn)kMiJ^ 1 < ^J < 几,1 < k, 1 < 71. 

Then the cosine transform preconditioner cos2(A^^) for ]^態 is defined by 

c0s2(Ann) = Pcosi (pTcosi (A^)P)pT 

It can be shown easily that c0s2(A^^) can be diagonalized by 0^00^. Hence, cos2(A^) 
can be inverted in 0{n^ logn) operations. 

4 Regularization 

4.1 Tikhonov regularization 

In many image processing problems, we need to solve an ill-conditioned system. This 
means that small changes in the data can cause large changes in the solution. It is 
necessary to incorporate further information about the desired solution in order to 
stabilize the problem and to filter out the influence of the noise. This is the purpose 
of regularization. 

Let A' and y be Hilbert spaces. Suppose A : 1 ~> y is a linear and bounded 
operator and y^ is the noisy data. If we would like to solve the system Ax : y under 
the information that ||̂ ^ - y\\ < 5, we have to accept any x G A' with 

| 乂 工 - / 1 1 < ^̂  (6) 
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as an approximate solution. Since the system is ill-conditioned, the set of x satisfying 
(6) is unbounded. Therefore, we look for the solution of Ax — y with minimal norm. It 
makes sense to use this requirement also as a selection criterion. Instead, we consider 
the problem 

min \\x\\ subject to \\Ax — y^\\ < S. (7) 

Suppose ||ŷ|| > S, then the minimum is attained on the boundary of the feasible set, 
and thus (7) is equivalent to 

min ||x|p subject to \\Ax — y^\\^ = S^. (8) 

Using a Lagrange multiplier, this in turn is equivalent to 

min{||x|P + A||Ar - ŷ  ^} 
X 

or min{a||x|p + ||̂ x - ŷ \\̂ }. (9) 

The functional \\Ax - y^\\^ + a\\x\\^ in (9) is called the Tikhonov functional Thus, 
instead of solving Ax = y\ we solve for (9). The method is called Tikhonov regulariza-

tion [19, 20]. The following theorem gives a precise method in solving for the minimizer 
in (9): 

Theorem 3 ([10],p.ll7 Theorem 5.1) Let x^ he the solution of the following sys-
tem: 

{A*A + aI)x = A*y^. (10) 

Then x^ is the unique minimizer of the Tikhonov functional \\Ax — y^\\^ + a||x|P. 

It is also possible to minimize the seminorm \\Cx\\ instead of ||x|| in (7). Here C is 
usually chosen to be the k-th. order differential operator. In this case, the minimizer is 
the solution of the equation 

{A*A + aC*C)x = A*y^. 

We remark that when C equals the identity operator, it returns to the classical Tikhonov 
regularization described above. Let A, L, x and y^ be respectively the discretization 
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of A, £, X and y .̂ The discretized problem becomes 

(A*A + aL*L)x 二 A * / . 

In this thesis, we choose L to be the identity operator or the first order differential 
operator. Correspondingly, the discretization matrix L*L will be the identity matrix 
or the two-dimensional Laplacian matrix. 

The regularization parameter a controls how much weight is given to the minimiza-
tion of ||Lx|| relative to the minimization of the residual norm. Clearly, a large a 
(equivalent to a large amount of regularization) favors a solution of small seminorm 
at the cost of a large residual norm, while a small a (i.e. a small amount of regu-
larization) has the opposite effect. Therefore, it is important to find a regularization 
parameter that gives a good balance, filtering out enough noise without losing too 
much information in the computed solution. 

4.2 The L-curve 

L-curve is the most convenient graphical tool for analysis of discrete ill-conditioned 
problems. It was used by Lawson and Hanson [14] and further studied by Hansen [13 . 
Given a system Ax = b + r], where 77 is the noise vector. Let b = b + rj and x— 
be the regularized solution. The L-curve is a plot of the (semi)norm ||Lx̂ ey|| versus 
the corresponding residual norm ||Axrê  - b||. In this way, the L-curve displays the 
compromise between minimization of these two quantities. 

For discrete ill-conditioned problems it turns out that the L-curve, when plotted in 
log-log scale, almost always has a characteristic L-shaped appearance with a distinct 
corner separating the vertical and horizontal parts of the curve. We now explain 
how this happens. Let Xtme denote the exact solution corresponding to the original 
problem Ax = b, then the error Xreg - ŷ true in the regularized solution consists of 
two components, namely, a perturbation error from the noise r] in the given right-hand 
side b, and a regularization error due to the regularization of the noise-free component 
b in the right-hand-side. The vertical part of the L-curve corresponds to solutions 
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� 

0 too little filtering 

log ||Lx||2 

too much filtering 
^ ^ ^ 

optimal choice ^ 

log||Ax - b||2 

Figure 1: A typical L-curve 

where ||Lx̂ ep||2 is very sensitive to changes in regularization parameter because the 
noise vector rj dominates r̂eg- The horizontal part of the L-curve corresponds to 
solutions where their residual norm ||Ax êp-b||2 is most sensitive to the regularization 
parameter, because x̂ ĝ  is dominated by the regularization error. In other words, by 
locating the corner of the L-curve, one can compute a regularized solution with a 
good balance between the perturbation error and the regularization error, and so the 
corresponding regularization parameter is a good one. Figure 1 shows the generic form 
of L-curves. 

5 Summary 

5.1 Paper A 

In many electronic imaging applications, a high-resolution image is desired from avail-
able multiple undersampled image frames. The observed undersampled images are 
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often degraded by blur and noise. Thus reconstruction of a high-resolution image is of 
great interest and has been studied extensively, see for instance [21, 4 . 

Multiple undersampled images are obtained by using multiple identical image sen-
sors shifted from each other by subpixel displacements. To obtain a high-resolution 
image from these undersampled frames, the simplest approach is to combine the low-
resolution images and rearrange their entries alternately. However, the high-resolution 
image obtained in this way will be blurred and we need to deblur the image by solving 
a linear system. 

There may be subpixel displacements errors between sensors. If the image sensors 
are shifted from each other by exact subpixel values, then the subpixel displacement 
errors equal to zero in all the sensors. In this case, the blur function will be spatially 
invariant. However, as perfect subpixel displacements are practically impossible, the 
blur function obtained should be spatially variant. 

Since we do not have any information about the scene outside the frames, a common 
approach is to impose zero boundary condition outside the scene. However, when this 
assumption is not satisfied by the images, ringing effect will occur at the boundary of 
the reconstructed image, see for instance Bose and Boo [4]. One of the main results in 
this paper is that we assume Neumann boundary conditions in our problem. Imposing 
Neumann boundary condition means that we assume the scene immediately outside is 
a reflection of the original scene at the boundary. In most of the cases, this boundary 
assumption is more reasonable and the error of the reconstructed image under this 
boundary condition is less than that reconstructed by zero boundary condition, see the 
numerical results in Paper A. 

The blurring operator in our problem is ill-conditioned, thus regularization tech-
nique should be applied to regularize the solution. In this paper, classical Tikhonov 
regularization [19] will be applied. The discretized problem becomes: 

(H*H + aR)f = H*g (11) 

where H is the discretization matrix ofthe blurring operator under Neumann boundary 
condition, and R is the discretization matrix of the regularization functional. We 



Introduction • 15 

choose R to be the identity matrix and Laplacian matrix in this paper. 
We prove that when the image is reconstructed from a 2 x 2 sensor array, the blurring 

matrix H can be diagonalized by a two-dimensional cosine transform. We thus propose 
to solve (19) by using PCG with the cosine transform preconditioner discussed in §3. 
Numerical results will be given to illustrate the sound recovery of the high-resolution 
images and the fast convergence of the cosine transform preconditioned system. 

5.2 Paper B 

Blur removal is an important problem in signal and image processing. Given a portion 
of the blurred signal or image g and the blurring function h, our goal is to recover the 
corresponding portion of the original signal or image / . Since g is the convolution of 
h and / , the given portion of g is not completely determined by the same portion of 
f. Indeed, an entry of g near the boundary is also affected by the values of f that lie 
outside and close to the interested portion. Thus the problem of recovering f from g 

is underdetermined and we need to make assumptions on the values of f outside the 
interested portion. These assumptions are called boundary conditions. 

The most classical approach is to assume the zero boundary condition [2, p.211-
220], which assumes that all the values of f outside the interested portion are equal 
to zero. The blurring matrix becomes a Toeplitz matrix in one-dimensional cases and 
a BTTB matrix in two-dimensional cases. However, the cost of solving such systems 
is expensive, especially in two-dimensional cases. To lower the computational costs, 
we may assume periodic boundary condition [2，p.l26]. This means that the data 
outside the interested portion are exact copies of data inside. Under this boundary 
condition, the blurring matrix becomes a circulant matrix in one-dimensional cases 
and a BCCB matrix in two-dimensional cases. It is well known that these matrices can 
be diagonalized by the Fourier matrix, see §1. Thus we can find their inverses easily by 
using fast Fourier transforms (FFTs). However, practical signals and images usually 
do not satisfy these two assumptions and ringing effects will appear on the boundary 
of the recovered signals or images. 
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The main result in this paper is that we propose the Neumann boundary condition. 

It assumes that the data outside f are reflections of data inside f. The resulting 

blurring matrix becomes a Toeplitz-plus-Hankel matrix in one-dimensional cases and a 

block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks in two-dimensional 

cases. We show that such matrices can be diagonalized by the discrete cosine transform 

matrix when the blurring function is symmetric. Therefore, their inverses can be found 

by using three FCTs. Since the FCT requires only real operations and is about twice 

as fast as FFT, solving a problem with Neumann boundary conditions is twice as fast 

as solving a problem with periodic boundary conditions. Also, numerical results show 

that such boundary assumptions produce less ringing effects than that of the zero or 

periodic boundary assumptions. We believe that this work will have great impact in 

the field of digital image processing. 
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Preconditioned Iterative Methods for 
High-resolution Image Reconstruction 

with Multisensors 

Abstract 

W e study the problem of reconstructing a high-resolution image from mul-

tiple undersampled, shifted, degraded frames with subpixel displacement errors. 

The corresponding reconstruction operator % is a spatially variant operator. 

In this paper, instead of using the usual zero boundary condition (correspond-

ing to a dark background outside the scene), the Neumann boundary condi-

tion (corresponding to a reflection of the original scene at the boundary) is 

imposed on the images. The resulting discretization matrix of % is a block-

Toeplitz-Toeplitz-block-like matrix. W e apply the preconditioned conjugate gra-

dient (PCG) method with cosine transform preconditioners to solve the discrete 

problems. Preliminary results show that the image model under the Neumann 

boundary condition gives better reconstructed high-resolution images than that 

under the zero boundary condition, and the P C G method converges very fast. 

1 Introduction 

High-resolution image reconstruction has many electronic imaging applications, in-
cluding aerial or facilities surveillance, consumer, commercial, medical, forensic, and 
scientific imaging. The observed images often have low resolution and are degraded 
by blur and noise. Increasing the image resolution by using digital signal processing 
technique [2, 6, 7, 8, 10, 12] is therefore of great interest. 

19 
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We consider the reconstruction of a high resolution image f from multiple under-
sampled, shifted, degraded and noisy images. Multiple undersampled images are often 
obtained by using multiple identical image sensors shifted from each other by subpixel 
displacements. If the image sensor arrays are shifted from each other by an exact 
subpixel displacement in the ideal case, then the task of reconstructing high resolu-
tion images reduces to solving a spatially invariant linear system, Hof 二 g. Here g, 
the so-called observed high-resolution image, is a combination of all the low-resolution 
frames. However, exact subpixel displacements are not practical, and we usually obtain 
a spatially variant system %f — g instead. 

Since the system is ill-conditioned and generally not positive definite, we solve it 
by using a minimization and regularization technique: 

mm{||7^/-^||2 + a7^( / ) } . (1) 

Here 1Z{f) is a functional which measures the regularity of f and the regularization 
parameter a is used to control the degree of regularity of the solution. Previous works 
(for instance Bose and Boo [2]) did not emphasize the boundary condition of the 
problem (1). Since we do not have any information about the scene outside the frames, a 
natural approach is to impose zero boundary condition outside the scene, i.e., assuming 
a dark background outside the scene [2]. However, when this assumption is not satisfied 
by the images, ringing effect will occur at the boundary of the reconstructed image (see 
the numerical results in Bose and Boo [2]). The problem is more severe if the image 
is reconstructed from a large sensor array since the number of pixel values of the 
image affected by the sensor array increases. We propose here using the Neumann 
boundary condition on the image, which assumes that the scene immediately outside 
is a reflection of the original scene at the boundary. Our numerical results show that 
the error of the image under the Neumann boundary condition is less than that under 
the zero boundary condition. 

The discretization matrix of 7i is a block-Toeplitz-Toeplitz-block-like matrix. The 
preconditioned conjugate gradient (PCG) method is commonly used in solving the 
system, see Chan and Ng [4]. We observe that for a 2 x 2 sensor array with exact 
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subpixel displacement, the matrix can be diagonalized by the discrete cosine transform 

matrix. We thus propose using the PCG method with cosine transform precondition-

ers for solving the system. Numerical results show that our preconditioners perform 

significantly better than other preconditioners. 

The main results of this paper are to propose (i) a novel approach of using Neu-

mann boundary conditions for image reconstruction and (ii) PCG methods with cosine 

transform based preconditioners to solve large linear systems arising from image re-

construction. In Section 2, we give a mathematical formulation of the problem. The 

Neumann boundary condition and a brief introduction on cosine transform precondi-

tioners will be given there. Finally, numerical results are given in Section 3. 

2 High-resolution Image Reconstruction 

2.1 Mathematical Model 

Suppose we have an Li x L2 sensor array, each sensor has Ni x N2 sensing elements, 
and the size of each sensing element is 7\ x T2. Our aim is to reconstruct an image 
of resolution Mi x M2, where Mi = Li x Ni and M2 二 L] x N�.The sampled base 
interval for the high-resolution image is therefore equal to Ti/Li x T2|L2. To maintain 
the aspect ratio of the reconstructed image, we consider the case where Li = L2 — L 

only. 

In order to have enough information to resolve the high resolution image, there 
are subpixel displacements between the sensors. In the ideal case, the sensors are 
shifted from each other by a value proportional to the sampled base interval Ti /L x 
T2|L. However, in practice there can be small perturbations around the ideal subpixel 
locations due to imperfection of the mechanical imaging system. Thus, for /̂ , /3 二 

0,1，...，L — 1 with (k,k) ^ (0, 0), the horizontal and vertical displacements df* and 
c^/2 are given by 

d f - = ^ ( h + efiiJ and < , , = ^ ( / 2 + 6f^J, 
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where ef̂ î  and ef̂；̂  denote respectively the normalized horizontal and vertical displace-
ment errors. Here we assume that 

Khl<l and k � J < ^ . 

Since these can be set by users during camera calibration, the parameters ef"? and 

e�“2 may be assumed to be known. We remark that the displacement errors cannot be 

greater than or equal to 1/2 since the image sensor arrays are shifted from each other 

described by the rectangularly sampled base interval Ti/L x T2/L. 

Let f be the original scene, the observed low-resolution image 切山 for the (/1,/2)-th 
sensor is modeled by: 

rT2(n2 + |)+dl,^ ^Ti(ni + |)+d-̂ ^ 
"«“2[几1,叱]=/ / f{x1,x2)dx1dx2 + r]hi2[n1,n2], (2) 

Jr2(n2-|)+<1,2 «/Ti(ni-|)+d�i,2 
for ni = 1，•.., Ni and ri2 — 1,.. •, iV2. Here 7]1山 is the noise corresponding to the 
(Zi, /2)-th sensor. We intersperse the low-resolution images to form an Mi x M2 image 
by assigning 

9[L{rt1 - 1) + /1,L(n2 — 1) + /2] = 5'/i/2 [n1,n2_. 

Here g is an Mi x M2 image and is called the observed high-resolution image. Figure 
1 shows the method of forming a 4 x 4 image g with a 2 x 2 sensor array each having 
a 2 X 2 sensing elements (L = 2, Mi = M2 = 4，7Vi = N2 二 2 and Ti = T2 = 2). 

Using a lexicological ordering for g, we obtain 

9 = nf^rj 

where H is a spatially variant operator [2] . Since ?i is ill-conditioned due to averaging 
of pixel values in the image model in (2), classical Tikhonov regularization is used and 
the minimization problem (1) is solved. In this paper, we use regularization functionals: 

n f ) = ll/ll2 and 7^(/) = WVfWl 

where V is the first order differential operator. In these cases, the Euler-Lagrange 
equation of (1) becomes 

CH*7i + aT)f = n*g and {Wn + aV*V)f = Wg, 
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Figure 1: Construction of the observed high-resolution image 

where X is the identity operator and V*V is the Laplacian operator. 

2.2 Neumann Boundary Condition 

The usual way of formulating the model with the zero boundary condition [2] will 
produce ringing effect at the boundary of the reconstructed image, see the numerical 
results in Bose and Boo [2] . We therefore propose to use the Neumann boundary 
condition, i.e., the scene immediately outside the frames are a reflection of the original 
frames at the boundary. 

The continuous image model in (2) can be discretized by the rectangular rule and 
approximated by a discrete image model as follows. Let g, f and H be respectively the 
discretization of 仏 f and U using a lexicological ordering. For simplicity, we discuss 
the case L = 2 here. Other cases can be derived similarly. For L = 2, under the zero 
boundary condition, the blurring matrix corresponding to the (/1,/2)-th sensor can be 
written as 

^hi.=可山� Hfi,2 
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where Hf“2 is the Mi x Mi tridiagonal matrix 

( 1 h^ \ 丄 �l2 
h^- 1 •. ^hh i • 

TTX — . . . 

n,"2 = 2 .. .. . • . 

••• 1 K t 
V h i i 1 y 

Here hl% = | 士 ef^. The M2 x M2 blurring matrix H^^ is defined similarly. We 
remark that the condition numbers of Hf^ and Hf̂ ^̂  are of 0 {Mf ) . For L � 2 , the 
matrices Hf̂ ^̂  and Hf^ are band matrices with bandwidth L + 1. 

Under the Neumann boundary condition, Hf^ and Hf^ ^re still tridiagonal ma-
trices, but the entries on the upper left corner and the lower right corner are changed. 
The resulting matrix, denoted by 銜“？ and 断“之 are given by 

f 1 + Kl Kt \ 

• Kl 1 ..• 
~ I 

TTX — . . . 

^hh — 2 . • .. . • • 
••. 1 Kt 

\ Kl 1 + ¾ / 
The matrix Hf̂ ^̂  can be similarly derived. The blurring matrix corresponding to the 
(/i, l2)-th sensor under the Neumann boundary condition is 

^ . - ¾ ^ ¾ . 

Our discretization problem becomes: 

(H*H + aR)f = H*g (3) 

where 
L-1 L-l 

fi = E E D , i , 2 & , i , 2 . (4) 
/ 1 = 0 / 2 = 0 

Here D/̂ /2 are diagonal matrices with diagonal elements equal to 1 if the corresponding 
component of g comes from the (/i, /2)-th. sensor and zero otherwise. In (3), R is the 
discretization matrices corresponding to the regularization functional 7Z{f). 
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2.3 Cosine Transform Preconditioners 

Let C^ be the n x n discrete cosine transform matrix, i.e. the (z,j)-th entry of Ĉ ^ is 
given by 

/2 - ^1 f{i-l){2j-l)^\ 1 ^ . . z 
V ^ c o s ( > ^ > ^ - ^ ) , 1 � � 

where ^ is the Kronecker delta. Note that the matrix-vector product C^x can be 
computed in 0{n logn) operations, see Sorensen and Burrus [9, p.557]. For an m x 
m block matrix B with the size of each block equal to n x n, the cosine transform 
preconditioner c(B) of B is defined to be the matrix (C^ 0 C^)^A(C^ 0 C^) that 
minimizes 

||(C^ 0 CyTA(Cm 0 C^) - B||̂  

in the Frobenius norm [3] . Clearly, the cost of computing c(B)"^|/ for any vector y is 
0{mn log mn) operations. For banded matrices, like the one we have in (4), the cost 
of constructing c(B) is of 0{mn) only [3 . 

When there is no subpixel displacement error, the matrix Hî î  are the same for all 
/i and l2. Thus the blurring matrix H can be written as 

H = H^ 0 H" 

where for L = 2, H^ is an Mi x Mi tridiagonal matrix: 

/ 3 1 \ 
1 2 1 

1 
• • • 

4 •• •• •. 
1 2 1 

V 1 3； 

and H^ is an M2 x M2 matrix with the same structure. It is easy to show that in this 
case, the matrices H^ and H^ can be diagonalized by 0^1 and C^a respectively. Thus 
H can be diagonalized by CMi <8) ^M2-

When there are subpixel displacement errors, the blurring matrix H is almost the 
same as that without errors, but with some entries slightly perturbed. We thus propose 
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to use the cosine transform preconditioner for the BTTB-like matrix H. Our numerical 
results show that the cosine transform preconditioners can speed up the convergence 
much faster than other preconditioners. Since H is banded, the matrix-vector product 
Hx can be done in O((L1 + L2)M1M2), thus the total cost per each iteration is 0((Li + 
L2)M1M2 + M1M2 log(M1M2)) operations. 

3 Numerical Results 

In this section, we illustrate the effectiveness of the cosine transform based precon-
ditioners by solving the high-resolution image reconstruction problem with a 2 x 2 
sensor array and a 4 x 4 sensor array. In the tests, we use the zero vector as the 
initial guess in the preconditioned conjugate gradient method. The stopping criteria 
is ||r(W||2/||r(o)||2 < 10—6, where r(j) is the normal equations residual after j iterations. 
In the tests, the parameters ef̂ ^̂  are set to be 0.1. 
(i) 2 X 2 sensor array 

Here we reconstruct a 128 x 128 image from four 64 x 64 images. The source 
image "Lena" is shown in Figure 9, Image A. It is a woman's face with background, 
and contains a high degree of contrast and detail. We first illustrate the need of 
regularization for this problem. In Figure 2, the left one is a low resolution image. The 
right one is the reconstructed image at 9 iterations, with ||/||̂  as the regularization 
operator when the PCG method converges. However, when no regularization is used, 
the PCG method does not converge to a visually recognizable image. The middle one 
is the image solution we obtained at 9 iterations with no regularization. The SNR here 
is 40dB. We see that all the details of the original image are lost in the middle figure. 

Next we test the effectiveness of using Neumann boundary conditions. Figure 3 
shows the error of the first row of the image "Lena" recovered by using different bound-
ary conditions. We used SNR=40dB and R{f) = ||/|||. We perform the experiment 
in the following way: we first generate the random noise, then reconstruct the image 
by imposing different boundary conditions, the pair of errors (e ,̂ e^) is plotted on the 
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graph, where ê  is the error by imposing zero boundary condition and Cn is the error by 

imposing Neumann boundary condition. We repeat the same experiment 50 times. In 

each case the random noise we added into the observed low resolution image is differ-

ent. The optimal regularization parameter is chosen such that it minimizes the relative 

error. Here the relative error of the reconstructed image f � t o the original image f is 

defined as: 
||f-fc||2 

||f||2 • 

From the graph, we can see that all the points are lying under the diagonal line, which 

means that the error by imposing the Neumann boundary condition is significantly less 

than that of the zero boundary condition in all of the cases. In Figure 4, we also show 

the reconstructed image under the zero boundary condition from the low resolution 

image in Figure 2 (left). We can compare Figures 2 (right) and 4. It is clear that 

the hair and the hat are reconstructed much better under the Neumann boundary 

condition than that under the zero boundary condition. We see that the boundary 

artifacts under the Neumann boundary condition are less prominent than that under 

the zero boundary condition. 

In Figures 5 and 6, we show the observed and reconstructed images of the image 
"Lena" for SNR=40dB and 20dB respectively. Here the optimal regularization param-
eter a is chosen. We see from Figures 5c，5d, 6c and 6d that the hair and the hat 
are restored much better than the observed high resolution image (Figures 5b, 6b). 
In order to compare the performance of different regularization methods, we show the 
relative errors of the reconstructed images. The relative errors for ||/||2 and ||r>/||2 are 
almost the same. Visually, their reconstructed images also look similar, 
(ii) 4 X 4 sensor array 

We perform the same test with the same scenes as in (i), but for a 4 x 4 sensor array. 
We use sixteen 32 x 32 images as the low-resolution images. The reconstructed image 
is of resolution 128 x 128. Figures 7-8 show the observed and reconstructed images 
with SNR=40dB and 20dB respectively. Again, the hair and the hat are restored much 
better in Figures 7c, 7d, 8c and 8d than those in Figures 7b and 8b. The optimal OL 
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II ll̂ |l̂  II W f̂Wl 
Image a cos sin cir none a cos sin cir none 

A 2.7 X 10_3 9 19 48 74 7.1 x 10-4 9 18 47 70 

B 1 X 10-2 7 14 24 38 1.9 x 10-3 7 14 27 42 

C 2.4 X 10-2 7 12 17 28 7.1 x lO-^ 6 11 16 26 
Table 1: No. of iterations with optimal a and L = 2. 

I 11/i2 II w ^ m 
Image a cos sin cir none a cos sin cir none 

A 1.1 X 10-2 6 24 33 44 4.1 x 10_3 6 27 35 48 

B 8.1 X 10_3 6 27 35 43 2.6 x 10"^ 6 32 41 49 

C 5.6 X 10-2 5 14 16 21 1.7 x IO-2 5 16 18 26 
Table 2: No. of iterations with optimal a and L = 4. 

is chosen in the testing. Again, the functionals ||/||_ and ||X>/||2 perform more or less 
the same when an optimal a is chosen. 

Finally, we test the convergence performance of the cosine transform based pre-
conditioners. We will apply our method on 3 different 128x128 scenes, see Figure 
9. Table 1 shows the performance of different preconditioners with R{f) 二 ||/||̂  and 
|X>/||2. The SNR here is 40dB. In the table, the a that minimizes the relative error 

is chosen. We test the best a up to 2 significant digit. In the tables, "cos", "sin", 
"cir", and "none" denote respectively the cosine transform preconditioner, the sine 
transform preconditioner [5], the T. Chan circulant preconditioner [11] and no precon-
ditioner. We see from the tables that the cosine transform preconditioner converges 
significantly faster than the other preconditioners. Table 2 shows the performance of 
different preconditioners with different regularization functions. Optimal a is used in 
the table. The SNR is 40dB. Again, the cosine transform preconditioner is the best. 
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_ 彻 _ 
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Figure 2: Low resolution 64 x 64 image (left), reconstructed 128 x 128 image (middle) 
without regularization (at 9 iter.) and (right) with regularization (at 9 iter under the 
Neumann boundary condition.) 
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Figure 3: Errors by zero boundary conditions and Neumann boundary conditions. 
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Figure 4: Reconstructed 128 x 128 image under the zero boundary condition. 
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L = 2, SNR = 40db 

_ _ 

Fig. 5a: Low resolution 64 x 64 Fig. 5b: Observed high-resolution 
image from the (0,0) sensor. 128 x 128 image, rel. err .= 

1.301 X 10-1. 
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Fig. 5c: Reconstructed 128 x 128 Fig. 5d: Reconstructed 128 x 128 
image by aI regularization, image by aA regularization, 
rel. err. = 1.104 x 10_i. rel. err. = 1.156 x 10"^ 
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L = 2, SNR = 20db 
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Fig. 6a: Low resolution 64 x 64 Fig. 6b: Observed high-resolution 
image from the (0,0) sensor. 128 x 128 image, rel. err. 二 

1.502 X 10-1. 

_ _ 

Fig. 6c: Reconstructed 128 x 128 Fig. 6d: Reconstructed 128 x 128 
image by aI regularization, image by aA regularization, 
reL err. = 1.476 x 10"^ reL err. =： 1.497 x lO—i. 
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L = 4, SNR = 40db 
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Fig. 7a: Low resolution 32 x 32 Fig. 7b: Observed high-resolution 
image from the (0,0) sensor. 128 x 128 image, reL err .= 

1.861 X 10_i. 

圓 _ l 

_層 1 l l P I 1 

Fig. 7c: Reconstructed 128 x 128 Fig. 7d: Reconstructed 128 x 128 

image by aI regularization, image by aA regularization, 
reL err. = 1.624 x 10_i. reL err. 二 1.696 x 10_i. 
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L = 4, SNR = 20db 

m^ _| 
Fig. 8a: Low resolution 32 x 32 Fig. 8b: Observed high-resolution 

image from the (0,0) sensor. 128 x 128 image, rel. err .= 
1.932 X 10-1. 

• : i ^ 1 
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Fig. 8c: Reconstructed 128 x 128 Fig. 8d: Reconstructed 128 x 128 
image by aI regularization, image by aA regularization, 
rel. err. 二 1.765 x 10_i. rel. err. = 1.811 x lO—i. 
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B i ^ J - ¾ f 4 4 | ' 
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Figure 9: Original 128 x 128 images: Image A (left), Image B (middle) and Image C 
(right). 
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Deblurring Models with Neumann 
Boundary Conditions 

Abstract 

Blur removal is an important problem in signal and image processing. The 

blurring matrices obtained by using the zero boundary condition (correspond-

ing to assuming dark background outside the scene) are Toeplitz matrices for 1-

dimensional problems and block-Toeplitz-Toeplitz-block matrices for 2-dimensional 

cases. They are computationally intensive to invert especially in the block case. 

Using periodic boundary conditions, the matrices become (block) circulant and 

can be diagonalized by discrete Fourier transform matrices. However, both 

boundary conditions easily lead to boundary artifacts. In this paper, we pro-

pose to use the Neumann boundary condition (corresponding to a reflection of 

the original scene at the boundary). The resulting matrices are (block) Toeplitz-

plus-Hankel matrices. W e show that for symmetric blurring functions, these 

blurring matrices can always be diagonalized by discrete cosine transform ma-

trices. Thus the cost of inversion is much cheaper than that of using zero or 

periodic boundary conditions. Moreover, experimental results also show that 

the boundary artifacts are much less prominent than that of using the other two 

boundary conditions. 

1 Introduction 

A fundamental issue in signal and image processing is blur removal. The signal or 
image obtained from a point source under the blurring process is called the impulse 

36 
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response function or the point spread function. The observed signal or image g is 
just the convolution of this blurring function h with the "true" signal or image f. 

The deblurring problem is to recover f from the blurred function g given the blurring 
function h. This basic problem appears in many forms in signal and image processing 
2, 4, 12, 14 . 

In practice, the observed signal or image g is of finite length (and width) and we 
use it to recover a finite section of f. Because of the convolution, g is not completely 
determined by f in the same domain where g is defined. More precisely, if g is defined 
on the interval [a, h] say, then g is not completely determined by the values of f on 
a, b]. It is also affected by the values of f close to the boundary of [a, b] because of 

the convolution. How far away from [a, b] will these values of f affect g depends on the 
support of the blurring function h. Thus in solving f from a finite length g, we need 
some assumptions on the values of f outside the domain where g is defined. These 
assumptions are called boundary conditions. 

The natural and classical approach is to use the zero (Dirichlet) boundary condition 
:2, pp.211-220]. This means that the values of f outside the domain of consideration 
are zero. This results in a blurring matrix which is a Toeplitz matrix in 1-dimensional 
cases and a block-Toeplitz-Toeplitz-block matrix in 2-dimensional cases, see [2, p.71 . 
However, these matrices are known to be computationally intensive to invert, especially 
in 2-dimensional cases, see [2, p.l26]. Also ringing effect will appear at the boundary 
if the data are indeed not close to zeros outside the domain. 

One way to alleviate the computational cost is to assume the periodic boundary 
condition, i.e., data outside the domain of consideration are exact copies of data inside 
12, p.258]. The resulting blurring matrix is a circulant matrix in 1-dimensional cases 

and a block-circulant-circulant-block matrix in 2-dimensional cases. These matrices 
can be diagonalized by discrete Fourier matrices and hence their inverses can easily 
be found by using Fast Fourier Transforms, see [12, p.258]. However, ringing will 
also appear at the boundary unless f is close to periodic, and that is not common in 
practice. 
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An analysis on this problem can be found in [19], it proposed two methods to reduce 
the effect of boundary distortion, but the resulting matrix cannot be inverted in a fast 
way. In this paper, we propose to use the Neumann (reflective) boundary condition. 
It sets the data outside the domain of consideration as reflection of data inside. The 
resulting blurring matrix is a Toeplitz-plus-Hankel matrix in 1-dimensional cases and 
a block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks in 2-dimensional 
cases. We show that although these matrices have more complicated structures, they 
can always be diagonalized by discrete cosine transform matrices provided that the 
blurring function h is symmetric. Thus their inverses can be obtained by using three 
fast cosine transforms (FCTs) (one for finding the eigenvalues of the blurring matrix 
and two for solving the system, see (14) below). Because an FCT requires only real 
multiplications and can be done at half of the cost of an FFT, see [20, pp.59-60], 
inversion of these matrices is faster than that of those matrices obtained from zero or 
periodic boundary conditions. Moreover, experimental results show that the boundary 
artifacts are much less prominent by using the Neumann boundary condition, see §5. 
We remark that blurring functions are usually symmetric, see [14，p.269] and Figure 4 
in §5. 

The outline of the paper is as follows. In §2, we introduce the three different 
boundary conditions. In §3, we show that blurring matrices obtained from the Neu-
mann boundary condition can be diagonalized by discrete cosine transform matrices. 
In §4, we recall Tikhonov regularization, which is to be used in §5，the section on nu-
merical experiments. In §5, we illustrate by numerical examples from signal and image 
restorations that boundary artifacts are minimized by using the Neumann boundary 
condition. Concluding remarks are given in §6. 

2 One-Dimensional Deblurring Problem 

We begin with the 1-dimensional deblurring problem. Consider the original signal 

f = (. • .，/-m+l, . . .，/o，/l, • . • , f n , fn+l, . . . , /n+m, . . •), 
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and the blurring function given by 

h = (. • • , 0, 0, h—m, h-m+l, . . . , ho, . . . , hm-l, hm, 0, 0, •..),. (1) 

The blurred signal is the convolution of h and f, i.e., the z-th entry gi of the blurred 
signal is given by 

oo 
9i = X ! hi—jfj. ( 2 ) 

j=-oo 

The deblurring problem is to recover the vector ( / i , • • •, fnY given the blurring 
function h and a blurred signal (pi,. • •, g^Y of finite length. From (2), we have 

�/-m+i、 

f-m+2 

( h m . . . ho • . . h-m � f 

hm ho h—m 0 
. . . . •• .. .. /l "1 

• 二 ‘ 

• • • 

n . . . fn \ 9n ) U rim 0̂ fl-m 
h . . . hn … h “ 1 \ '^m '̂ 0 '^-m J . 

fn+m_l 

\ fn+m j 

(3) 

Thus the blurred signal g =(仍,•..,"几” is determined not only by f = (/i , •..,九)亡, 

but by (/_m+i,...，/o, / i , •.., /n, fn+i, • •., f n + m ) � T h e linear system (3) is underde-
termined. To deal with it, we make certain assumptions (called boundary conditions) 
on the unknown data /—m+i,..., /o, and fn+i, • •., fn+m so as to reduce the number of 
unknowns. 

Before we discuss the boundary conditions, let us first rewrite (3) as 

m + Tf + TX = g, (4) 
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where 

hm . . . hi f-m+1 
.• . . • . f-m+2 

Ti = hm , fi = : , (5) 
/ - i 

V 0 ) V / o 
( h o .…h—m 0 \ ( /i \ 

“ • • • p 

: • . . . •. /2 
T= hm ... ... ••• h—m ， f = ： , (6) 

• • • • J* 

• • • • • • • /n-l 
\ 0 hm • • • ho ) \ fn ) 
i 0 \ / “ 1 \ 

fn+2 
Tr = h—m , and f； = ： . (7) 

. • /n+m-l 
\ h-l . . . h-m / \ fn+m / 

Here and in the following, we assume for simplicity that m < n. The case where m > n 

can be treated similarly. We note that T], T and Tr above are n-hy-m, n-hy-n and 
n-hy-m Toeplitz matrices respectively. (If m > n, they all will be n-hy-n Toeplitz 
matrices.) 

2.1 The Zero (Dirichlet) Boundary Conditions 

The zero (or Dirichlet) boundary condition assumes that the signal outside the domain 
of the observed vector g is zero [2, pp.211-220], i.e., 

f/ = fr = 0, 

the zero vector. The matrix system in (4) becomes 

Tf = g. (8) 
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We see from (6) that the coefficient matrix T is a Toeplitz matrix. 
There are many iterative or direct Toeplitz solvers that can solve the Toeplitz system 

(8) in cost ranging from 0(nlogn) to 0{n?) operations depending on the matrix T, 

see for instance [18, 16, 1, 7]. However, boundary artifacts will in general appear near 
the two ends of f as we have ignored the contribution of f outside f by setting them 
to zero, see the numerical results in §5 for instance. 

2.2 Periodic Boundary Conditions 

Besides boundary artifacts, another drawback of the zero boundary condition is that 
the resulting Toeplitz system (8) is computationally intensive to solve, especially in 
2-dimensional cases, see [2, p.l26]. For practical applications, where we need to solve 
the system efficiently, one usually resorts to the periodic boundary condition, i.e., 

fj = fn-j for all j, 

see [12, p.258]. The matrix system in (4) becomes 

M - [ ( O | T 0 + T + ( T , | O ) ] f = g, (9) 

where (0 | T]) and (T^ | 0) are n-hy-n Toeplitz matrices obtained by augmenting {n-m) 

zero columns to T/ and T̂  respectively. (If m > n, then no augmentation is required.) 
One important observation is that B thus obtained is a circulant matrix. Hence 

B can be diagonalized by the discrete Fourier matrix and (9) can be solved by using 
three fast Fourier transforms (FFTs) (one for finding the eigenvalues of the matrix B 

and two for solving the system, cf (14) below). However practical signals and images 
usually do not satisfy the periodic assumptions and ringing effects will appear on the 
boundary, see the numerical results in §5 for instance. 

2.3 Neumann Boundary Conditions 

In this paper, we propose to deal with the underdetermined system (3) by reflection 
of the data at the boundary, i.e., we assume that the data outside f are a reflection of 
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data inside f. More precisely, we assume that 
< • 

/ o = / l fn+l — fn 

< : : : and ： ： ： 

�f - m + l — fm �f n + m — fn—m+1 

Thus (4) becomes 
Af = [(0 I Ti)J + T + {Tr I 0)J] f = g， (10) 

where J is the n-by-n reversal matrix. 
We remark that the coefficient matrix A in (10) is neither Toeplitz nor circulant. 

It is a Toeplitz-plus-Hankel matrix. Although these matrices have more complicated 
strcutures, we will show in §3 that the matrix A can always be diagonalized by discrete 
cosine transform matrices provided that the blurring function h is symmetric, i.e., 
hj — h_j for all j in (1). It follows that (10) can be solved by using three fast 
cosine transforms (FCTs) in 0{n logn) operations, see (14) below. This approach 
is computationally attractive as the FCT requires only real operations and is about 
twice as fast as the FFT, see [20, pp.59-60]. Thus solving a problem with Neumann 
boundary conditions is twice as fast as solving a problem with periodic boundary 
conditions. Experimental results in §5 show that it produces less ringing effects than 
that of the zero or periodic boundary assumptions. 

3 Diagonalization of the Neumman Blurring Ma-

trices 

3.1 One-Dimensional Problems 

We first review some definitions and properties of discrete cosine transform matrices. 
Let C be the n-by-n discrete cosine transform matrix with entries 

/ 2 - 6n f ( z - l ) ( 2 j - l ) 7 r \ 1 , . . , P L — ^ c o s ( ^ ) , l < ^ , ^ < n , 
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where 6ij is the Kronecker delta, see Jain [14, p.l50]. We note that C is orthogonal, 

i.e., C^C 二 CCt — 1. Also, for any n-vector v, the matrix-vector multiplications Cv 

and C V can be computed in 0 (n logn) real operations by FCTs; see [20, pp.59-60 . 

Let C be the space containing all matrices that can be diagonalized by C, i.e. 

C — {C^KC I A is an n-by-n real diagonal matrix}. (11) 

Let Q = C^KC G C. By multiplying (1 ,0 , . . . , 0)̂  to both sides of CQ = AC, we see 

that the eigenvalues [A]̂ ^̂  of Q are given by 

1 
A]2-,i = 7~~T[Cqi]h z = l , . . . ， n ， (12) 

QiJz 
where qi is the first column vector of Q. Hence, the eigenvalues of Q can be obtained 

by taking an FCT of the first column of Q. In particular, any matrix in C is uniquely 

determined by its first column. 

Next we give a characterization of this C class of matrices. Let us define the shift 

of any vector v = (^ ,̂. . . ,^_i) , as a(v)三(i;i,?;2，-..,”n-i，0),. Define T(v) to be 
the n-by-n symmetric Toeplitz matrix with v as the first column and H{v) to be the 

n-by-n Hankel matrix with v as the first column and Jv as the last column. 

Lemma 1 (Chan, Chan, and Wong [6], and Kailath and Olshevsky [15]) Let 

C be the class of all matrices that can be diagonalized by the discrete cosine transform 

matrix C. Then 

C = {T{v) + H{a{v)) |v = ( � ^ . , ” , — i ) f e � } . 

It follows from Lemma 1 that matrices that can be diagonalized by C are some 
special Toeplitz-plus-Hankel matrices. 

Theorem 1 Let the blurring function h given in (1) he symmetric, i.e., hj 二 h—j for 

all \j\ < m. Then the matrix A given in (10) can be written as 

A = T(u) + i/(a(u)) (13) 

where u = ("o，^i,..., ^m, 0,...，0),. In particular, A can be diagonalized by C. 
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Proof: From (10) and (6), it is clear that T in (10) is equal to T(u). From the 
definitions of T/ and T̂  in (5) and (7), it is also obvious that 

(0|Tz) + (T,|0) = T(Ja(u)). 

Hence 

( 0 | 7 ) ) J + ( 7 ; | 0 ) J = ^(a(u)) . • 

By Theorem 1, the solution f of (10) is given by 

f = CA-'C'g, (14) 

where A is the diagonal matrix holding the eigenvalues of A. By (12), A can be obtained 
in one FCT. Hence f can be obtained in three FCTs. 

We remark that from (13), it is straightforward to construct the Neumann blurring 
matrix A from the Dirichlet blurring matrix T = T(u) in (6). All we need is to reflect 
the first column of T to get the Hankel matrix H{a(u)) and add it to T. Clearly the 
storage requirement of both matrices A and T are the same — we need only to store 
the first column. However, the ringing effect at the boundary is much less than that 
of using T, see §5. 

3.2 Two-Dimensional Problems 

The results of §3.1 can be extended in a natural way to 2-dimensional image restoration 
problems. In this case, one is still concerned with solving a least squares problem 
similar to that in (3), except that the matrix is now a block matrix. For zero boundary 
condition, the resulting blurring matrix is a block-Toeplitz-Toeplitz-block matrix of 
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the form 
/ 7̂ (0) . . . J"(-m) Q \ 

• • 參 • . • • • 
T = 了 (爪） . . . ••• ... T(-— (15) 

• • • • 

• • • • 
乂 0 r(m) ... r(o) j 

where each block T^ is a Toeplitz matrix. The first column and row of T in (15) is 
completely determined by the point spread function of the blurring process. 

With the Neumann boundary condition, the resulting matrix A is a block Toeplitz-
plus-Hankel matrix with Toeplitz-plus-Hankel blocks. More precisely, 

( _ A ( o ) … A ( - _ 0 \ ( (̂1) . . . A—-1) 0 \ 
• . • • • . • • • • • • 

• • • • . • 

A = yl(m) • • . • • . • . • y^(-^) + y^(^-l) A(-m+l) 
• • • • • • 

• • • - • ！ 

\ 0 _A(— ... yl(o) y \ 0 A(-m+i) ... 乂 ⑴ 》 

(16) 

with each block 乂(力 being an n-hy-n matrix of the form given in (10). We note that the 
义⑴ in (16) and the T ( � i n (15) are related by (13). Thus again it is straightforward to 
construct the blurring matrix A from the matrix T or from the point spread function 
directly. Obviously, storage requirements of A and T are the same. We next show 
that for a symmetric point spread function, the blurring matrix A in (16) can be 
diagonalized by the 2-dimensional discrete cosine transform matrix. Hence inversion 
of A can be done by using only three 2-dimensional FCTs. 

Theorem 2 If the point-spread function is symmetric, i.e., A in (16) is symmetric, 

then A can he diagonalized by the 2-dimensional discrete cosine transform matrix (C^ 

C)； where 0 is the tensor product. 

Proof: We note that C 0 C = (C 0 /)(/ 0 C). Since each block 乂⑴ in (16) is of the 
form given by (13), by Theorem 1,义⑴ can be diagonalized by C, i.e., 

CA^'^C' = A^'\ j = l,...,m. 
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It follows that 

{C 0 C)A{C' (8) C') 二 {C 0 /)(/ 0 C)A{10 C'){C' 0 I) 

={C 0 I)A{C' 0 I) 

where 

( A ( o ) . . . A(— 0 \ ( A(i) . . . A——1) 0 \ 
• . • . • • 
• • • • • • 

• • • • . • 
A = AW ••• ••• ••. AM + A(m-i) A(m-i) . (17) 

. . • • • “ 
• • • • • • 

\ 0 A(m) . . . A(o) / \ 0 A(m-i) . . . A(o) j 

Let P be the permutation matrix that satisfies 

'P^^P]̂ ,j•X^ = [A]fc，#，j, 1 < hj < n, 1 < kJ< n, 

i.e. the (z,j)th entry of the {k, i)th block in A is permuted to the (A:, £)th entry of the 
(z, i)th block. Then we have P*(C 0 I)P = (I 0 C) and 

(i(i) 0 � 

, ~ 剩 
P^AP 二 A = . 

\ 0 i(w y 

From (17), each matrix 舶）has the same form as A in (13). In particular, for all j, 

CA^^^C* 二 A。)，a diagonal matrix. Thus 

{C 0 C)A{C' (8) C') = �c®l�^ct<^l�=^ppt�c^l�pptkpp\ct®l�ppt 

广 ^ ^ ⑴ 0 \ 

~ 入⑵ 
二 P{I^C)A[I^C')P' = P P\ 

\ 0 A(W / 

which is a permutation of a diagonal matrix and hence is still a diagonal matrix. • 
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In §5, we will present examples in signal and image restoration to illustrate that 
the Neumann boundary condition produces less boundary artifacts than the periodic 
and zero boundary conditions. 

4 Tikhonov Regularization 

Besides the issue of boundary conditions, it is well-known that blurring matrices are in 
general ill-conditioned and deblurring algorithms can be extremely sensitive to noise 
12, p.282]. The ill-conditioning of the blurring matrices stems from the wide range 

of the magnitudes of their eigenvalues [10, p.31]. Therefore, excess amplification of 
the noise at small eigenvalues can occur. The method of regularization can be used 
to achieve stability for deblurring problems. In the classical Tikhonov regularization 
10，p.ll7], stability is attained by introducing a regularization operator D which re-

stricts the set of admissible solutions. More specifically, the regularized solution f(/i) 

is computed as the solution to 

min{M||î f(yu)||2 + ||g-^f(^)||2}. (18) 
t(AO 

The term ||L)f(/i)||| is added in order to regularize the solution. The regularization 
parameter jji controls the degree of regularity (i.e., degree of bias) of the solution. 

One can find the solution f(//) in (18) by solving the normal equations 

[^D'D + A'A)i{^ji) = A'g. (19) 

In most applications [14，8, 12], ||Df||2 is chosen to be the L2 norm ||f||2 or the Bi norm 
|Lf||2 where L is the first order difference operator matrix. Correspondingly, the matrix 

D^D in (19) is the identity matrix or the 2-dimensional discrete Laplacian matrix 
with some boundary conditions. In the latter case, if the zero boundary condition is 
imposed, D^D is just the 2-dimensional discrete Laplacian with the Dirichlet boundary 
condition. For periodic boundary conditions, D^D is circulant and can be diagonalized 
by the FFTs, see for instance [12，p.283]. For the Neumann boundary condition, D ^ D 
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is the 2-dimensional discrete Laplacian with the Neumann boundary condition, which 
can be diagonalized by the discrete cosine transform matrix, see for instance [3 . 

Thus if we use the Neumann boundary condition for both the blurring matrix A 

and the regularization operator D^D, then the matrix in (19) can be diagonalized by 
the discrete cosine transform matrix and hence its inversion can still be done in three 
FCTs. 

5 Numerical Experiments 

In this section, we illustrate by numerical tests from signal and image restoration 
problems, the usefulness of employing Neumann boundary conditions over the other 
two boundary conditions. All our tests were done using Matlab. The data we used 
are generated from two images, see Figure 1. The first source image Lena is a woman 
face with background, and contains a high degree of contrast and details. The second 
source image, a satellite, has a dark background, so the Neumann, periodic and zero 
boundary conditions should all work well. 

From (4), we see that to construct the right hand side vector g correctly, we need 
the vectors f/ and f̂ , i.e. we need to know the signal or image outside the given domain. 
Thus we start with the 256-by-256 images of Lena and the satellite and cut out a 128-
by-128 portion from each of them. For Lena's image, we choose the portion where 
her face is at the center and for the satellite image, we just choose the center portion. 
Figure 1 gives the 128-by-128 images of both pictures. 

5.1 Signal Restoration 

We try restoring signals blurred by the following two blurring functions, see [14, p.269]: 

(i) a truncated Gaussian blur: 
f 

, c e - o i<2, if u < 8， 
hi = 一 

0, otherwise, 
\ 
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v ^ p ^ J I I H H I 

^̂ IQ 
Figure 1: True image: Lena (left) and the satellite (right), 

(ii) a rectangular scanning aperture: 

j c, if |z'| < 4， 

hi 二 

0, otherwise, 
V 

where c is the normalization constant such that J2i î = 1. We remark that the blurring 
functions are 1-D analog of the 2-D Gaussian blur and out-of-focus blur, see Figure 4. 
Clearly both blurring functions are symmetric. 

The source signals are generated from the columns in the 128-by-128 images in 
Figure 1. Thus each column in the images gives a signal of 128 entries. We note that 
the values of the images outside the 128-by-128 range are known as the images are cut 
out from 256-by-256 images. Hence we can use these values to generate the correct 
blurred signals (right hand side vectors) g in (4). Measurement noise n is then added 
to g using a Gaussian white noise generator. For simulation purposes, the blurred 
signal-to-noise (SNR) ratio, lOlogio(||i7f|| /̂||n||!), is set to 30 dB. 

We restore the signal by solving the regularized least squares problem (18) where 
the regularization functional is the L2 norm. The normal equations (19) become 

{fiI^A'A)f{fi) = A^g + n). (20) 
The regularization parameter jj. is chosen automatically by the L-curve method using 
the routine l_corner.m in [13]. To measure the accuracy of the results, we compute the 
relative errors ê  of the restored signals, which are defined as ê  = \%{fj) — f||2/||f||2 
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Figure 2: Lena with Gaussian blur (left) and out-of-focus blur (right). 

where f is the original signal and ((/^) is the restored signal of (20) with the given 
boundary condition (r = z,p,n for zero, periodic and Neumann boundary conditions 
respectively). In Figures 2-3，the symbol "x" represents (e^ — e^) whereas the symbol 
"o" represents (ep — e^). Thus in the figures, if the point is above the line (the difference 
in relative error = 0), then using the Neumann boundary condition is a better method 
for restoring that signal. We clearly see from the figures that in most of the cases, the 
Neumann boundary condition gives the best results. 

As for the computational cost, we only need to apply three FFTs and FCTs to 
compute the restored signals for the periodic and the Neumann boundary condition 
respectively, see (14). Thus the costs are both of 0(nlogn) operations, though FCT 
is about twice as fast as FFT, see [20, pp.59-60]. For the zero boundary condition, we 
have to solve Toeplitz systems. The fastest direct solvers require 0{n log^ n) opera-
tions, see [1]. If we use iterative methods, such as the conjugate gradient method with 
or without preconditioning [7], then the cost per iteration is more than two 2n-length 
FFTs, i.e., about 4 n-length FFTs, see [7]. Thus the cost of using zero boundary condi-
tions is larger than those of using the periodic and the Neumann boundary condition. 
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Figure 3: Satellite with Gaussian blur (left) and out-of-focus blur (right). 

5.2 Image Restoration 

Next we consider restoring the two images in Figure 1 blurred by the following two 
blurring functions, see [14, p.269]: 

(i) a truncated Gaussian blur: 

— I ce -o . i ( "A , if | 2 - j | < 8 , 
hi,j — \ 

I 0, otherwise, 

(ii) an out-of-focus blur: 

/ c, if 2 ^ + j 2 < 4 , 
^,j = 

0， otherwise, 
V 

where hij is the jth entry of the first column of T(” in (15) and c is again the nor-
malization constant such that Yl-^ hij = 1. We remark that the Gaussian blur is 
symmetric and separable and the out-of-focus blur is symmetric but not separable, see 
Figure 4. 

The blurred images (right hand side vector) g are generated by using a block version 
of (4) and exact values of f； and f； outside the 128-by-128 region are used. (Recall 
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Figure 4: Gaussian (atmospheric turbulence) blur (left) and out-of-focus blur (right). 

i ^ ^ � ' ,� �^ ^ ^ : ' , : : � 

l K ' ^ i W ^ : ， 
Figure 5: Noisy and blurred Lena image by Gaussian (left) and out-of-Focus blur 
(right). 

that the images in Figure 1 are cut from the 256-by-256 images.) Gaussian white 
noise n with signal-to-noise ratio of 30dB is then added to the blurred images. The 
noisy blurred images are shown in Figures 5-6. Again, we use the L2 norm as the 
regularization functional and we get (20), except the matrix A is now in block form. 

We remark that we cannot use the routine l_corner.m in [13] to automatically 
locate the corner points (the regularization parameter fi) of the L-curves as the routine 
requires the S V D of the blurring matrices which is computationally infeasible. W e 

therefore choose the corner points manually. As a comparison, we also choose the yU 
that gives the best restored picture visually. In Figures 7-14, we present restorations 
with three different boundary conditions and these two different choices of ^. 

Recall that we only need to apply three 2-dimensional FFTs and FCTs to compute 
the restored images for the periodic and the Neumann boundary condition respectively. 
Thus the costs for both approaches are about 0{n^ logn) operations though the Neu-
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Figure 6: Noisy and Blurred satellite image by Gaussian (left) and out-of-Focus blur 
(right). 
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Figure 7: Restoring Gaussian blur with zero boundary (left), periodic boundary (mid-
dle) and Neumann boundary (right) conditions, and \JL chosen by L-curve. 

ittlil 
Figure 8: Restoring Gaussian blur with zero boundary (left), periodic boundary (mid-
dle) and Neumann boundary (right) conditions, and // chosen visually. 
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Figure 9: Restoring out-of-focus blur with zero boundary (left), periodic boundary 
(middle) and Neumann boundary (right) conditions, and jjL chosen by L-curve. 

iliifl 
Figure 10: Restoring out-of-focus blur with zero boundary (left), periodic boundary 
(middle) and Neumann boundary (right) conditions, and /2 chosen visually. 

m B i m 
^ J ^ g ^ J 

Figure 11: Restoring Gaussian blur with zero boundary (left), periodic boundary (mid-
dle) and Neumann boundary (right) conditions, and /i chosen by L-curve. 
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BBB 
Figure 12: Restoring Gaussian blur with zero boundary (left), periodic boundary (mid-
dle) and Neumann boundary (right) conditions, and fjL chosen visually. 

mmm 
Figure 13: Restoring out-of-focus blur with zero boundary (left), periodic boundary 
(middle) and Neumann boundary (right) conditions, and fj, chosen by L-curve. 

M M M 

^ M ^ 3 ^ 3 
Figure 14: Restoring out-of-focus blur with zero boundary (left), periodic boundary 
(middle) and Neumann boundary (right) conditions, and p chosen visually. 
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mann one will be twice as fast. For the zero boundary condition, we have to solve 
large block-Toeplitz-Toeplitz-block systems. The fastest direct Toeplitz solvers require 
0{n^) operations, see [17]. In our tests, the systems are solved by the preconditioned 
conjugate gradient method [11, p.516]. We note that the cost per iteration is more 
than four 2-dimensional FFTs [7]. To speed up the convergence, we have used the 
optimal cosine-transform preconditioners, see [6]. It is defined as the matrix in C (cf. 
(11)) that is closest to the blurring matrix in the Frobenius norm. Numerical results 
show that they perform better than the optimal circulant preconditioners proposed by 
T. Chan, see [7]. The restored images in Figures 7-14 (left ones) require 40, 7, 16, 
20, 21, 20, 17，and 13 iterations respectively for a stopping tolerance of 10"^. Thus as 
in the 1-dimensional cases, the cost of using zero boundary conditions is significantly 
larger than those of using the periodic and the Neumann boundary conditions. We see 
from the Figures 7—10 that the restored images using the Neumann image boundary 
conditions are better than the others. For the satellite image, the restored images by 
three different boundary conditions look similar, see Figures 11-14. 

In summary, these experiments suggest that the Neumann boundary condition pro-
vides an effective model for signal and image restoration problems, both in terms of 
the computational cost and the quality of the restored signals and images. 

6 Concluding Remarks 

In this paper, we have shown that discrete cosine transform matrices can diagonalize 
dense (block) Toeplitz-plus-Hankel blurring matrices arising from using the Neumann 
(reflective) boundary condition. It is interesting to observe that discrete sine transform 
matrices can diagonalize Toeplitz matrices with at most 3 bands (such as the discrete 
Laplacian with zero boundary conditions) but not dense Toeplitz matrices in general, 
see [9] for instance. 

Because any matrices in C are symmetric (see (11)), discrete cosine transform ma-
trices can only diagonalize blurring matrices from symmetric blurring functions. For 
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nonsymmetric blurring functions, matrices in C may be used as preconditioners to 
speed up the convergence of iterative methods, see for instance [5 . 
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