
A P r o b a b i l i s t i c C o o p e r a t i v e - C o m p e t i t i v e H i e r a r c h i c a l S e a r c h M o d e l 

by 

Wong Yin Bun, Terence 

A thesis submitted in partial fulfilment of the 
requirements for the degree of 

Master of Philosophy 

in the 

Division of Computer Science and Engineering 
Graduate School 

of 

The Chinese University of Hong Kong 

August 1998 



^ --r̂ "̂̂ '̂̂ iî ^^^ ^^^^^ 
N l 8 J O L 1 S 8 M S | 

^ ^ —^““iivERsiTY"^^yMJ 
^&vLIBRARY smmy^ 
^ ^ ^ ^ 

V 



© Copyright by 

THE CHINESE UNIVERSITY OF HONG KONG 

1 9 9 8 



ADVISORS 

Professor Leung, Kwong Sak k Professor King, Irwin Kuo Chin 



.
 .

 -

.

 .

 、、

 .
 

-
 .
-

 、.
 

.
 ._

 V.

 
.
 

.
*
 

-
 
J

 
.

 
»
 

,

 
•

.

 
曹
 

.
 <
:
 

.
 
•

 
-

 f
.

 ,
.
,
,
 

.

.

 
.

 

.

,

 :
.
%

 
；
 

.
 ••

 

1
 
..

 .
 

:
-
 

.

•

 ,

 -
•

 .

 %,

 •

 
..
 

r

 -

 -

 ,:
 

.

 t
"

 
;

 
.

 
.

 
_
 

..
 
..

 .

 .
-

 

J
.
 

极
-

 
.
 

.,-

 •
-

.

.
 

二
 

.
i
 

-

,

.

.
 ,

 ,

 .

 .

 -

 -

 ,

 •

,
.

 -

V

 
-

 
1

 -.

 
.

 ,
.

 -
.
 

.t,

 
*

 .
i
 

t
 
-

脈
 
；
 

.
 
^
 

..
 
.

 
.

 
•

 
•

 .o

 .,
 

-
•
-
:
.

 

.
:
 
-

 「「-

 
.

 
.

 
‘

 
"
 

I

 .

 •

 .

 .
.
 

•

 
.

 
.

 
V

 
.
 ..
 

,

 
,

 
:

 
•

 
-

 
；

 .
“

 
.
 

-

 .

 ....•.
 

;
.
 
.

 
-

 
.

 
^

 
.

 
,

 ...

 
.

 ！..

 “
.
：
：
 

.
-
 
.

 
-

 
,

 
.

 
,

 
-

 
,
 

>..

 
,
,
,

 
.

 --

 .
.
-
.
.
.
 

^
.
.
 -
.

 
.

 -
.
 

.

.

 

^
 

,
.
 

.
 

.

.
 

.
 ”v.
 

^
 ..

 、
-

 
.

 
V

 .
-

广
:
.
 
,

 
.

 .
i
-
-
.
.
.
.
-
.
 

;
-
^
.
:

 _
:
.
.
.
 

-
.
 

I
 

.

.

.
 

>
 
.
 

•
卜
一
 

.

.
-
.
•
:
.
-

 •
.

 
.

 
.

 
.

 ....

 
.

 ..

 .
.
-

 
’
 
-

”
\

 、r./、

 ，.

 L
-

 
•

 ...

 
,

 f
—

 
.
 

/
 
.

 

.
,
.
 
.

 ,:.-

•」-v
 .
，

 -
.

 .,

 
,

 
.

 ,I
 

’，、.；、>
 ..

 

.
,
 

.
.
 
t

 :
-
•
;
-

t
 
.

 
,

 :.

 .:,

 y
.
.

 
,

 :
.
;
:

 

二
 

,
i
,
-
.
 .
.
V

 
.
 w
>
.
„

 
.

 
r

 ...

 
厂

 ,
-
•
.

 -、.

 
-

 
.

 -
.
 
,

 
.
 .
;
.

 

.
f
 

.
 
.

 
,

 
,

 v...

 ,~

 ....

 
„

 
_
 
.

 
f

 
一
 

A

 
,
 
^

 
.

 .、

 
.

 
.

 
.

 
.
 
•

 
.

 

\
 

,
s
i
>
 -
-
¾

 -,,

 .
-

 
.
 
,

 

.

.
 
,

 
.

 .,

 

.

.

.

.
 
.

 
-

 v
i

 .¾,¾-,-.

 

I
 

？
‘
 
.

 
.
 
.

 
\
 
,

 
,

 
.

 
-

 
.

 ...

 
1

 ，.

 
.

 
-

 
j
 

“
 
^

 
-

 
.

 ...

 
.

 
.

 .
-
 ..

 “
、
 .7:."fiv.i;v....-

,
 

J
y
 i
^

 
,

 :
•

 -
.

 
i

 ,..一

 -
:
-

 
‘
 v̂
.̂-.--t

 '..
 

¢.

 
»

 ..

 
.

 
.

 
、

 
•

 
•

 ：
i

 >»../

 
_
 

?~=--s.
 -
:
;
-
:
.
“

 .‘.，

 p,

 
’

 i.

 

i
 .
 ’‘•-

 ̂
¾

 K,

 -
A
V

 .M

 .
-

了
 
-

 
.

 .
-

 

:
 
w

 
.

 .,:v
 

;
1
4
 v
w
"

 
,

 
:

 
•

 
.

 
.

 
.
 
.

 
.

 
.

 
.

 
:

 
-
 

I

 •；,
 
.

 ;
M
 

d
-
l
 
:

 .
-
L
.
;
.
.

 .
-

 ..-

 
、

 V
-

 .p.

 
>

 
.
 
-

 .
d

 ,
¾
?
.
 

r
 
t

 .”.-’"

 
•

 
.
 
.

 
,

 

L
.
 

J
 
A

 
-
 
.

 --

 .,:.-¾,̂

 _f
 

r
i
々
 
.
r

 
.

 "•

 
.

 
.
/
-
 

^
^
 
•

 ...

 ,
\
,
^

 
V

 
^
 

c
/
 

^
J
 

.
 
.

 .̂

 
.

 
,

 
.

 
.

 
1

 
，

 
V

 ,g.

 .
1

 
,

 ..

 -
;
;
j
 

J
 
t

 S
f

 
:

 ,J.

 :
¾
.
.

 :
:
.
^

 .,

 
.

 k
v
^
^

 .....l-l

 t
H
^
^
%
^
.
-
^
^
 

f

 ；
“
、
/
二

 
-

 
‘

 _.

 
:

 

•
 -

 

/
 ,

 r

 .

 .
 f
^
 

t
 
f

 ,,

 
.

 
.

 
.

 .,

 
,

 
,

 
•

 
1

 
i

 1
,
r

 
.

 r
%
 

1
.
 

r

 
。
 
.

 ..

 
.

 
；

 
•

 
.

 
.

 
.

 
.

 
.

 
-
 4
h
^
^
u
 

,
J

 

.
/

 ..

 --
 •
-
-

 
,

 
.

 ...

 
-

 
.

 

:
 

.

 
,

 1
4
¾
¾
 

罵
 ..‘，..

 
.

 ；，：，.v#
 

〒
c
;
、
.
 ;,

 
,

 
.

 .。

 
、

 
,

 .:

 
-

 .
-

 ,,.

 
.

 ‘-

 
.

 
V

 
^
 

t

 
,
 ..

 
J

 、
.
、

 .：-

 
,

 
.

 
-

 
.

 ..

 
.

 .
,
"

 
%

 
V

 
.

 
h

 
£
 

臂
！
 
1

 
-

 
.

 
,

 ....

 --;

 、-

 
-

 -
,

 i
^

 ̂
r
v
^

 ̂

7
,
r
 

^
 
I
 
V

 
,
 
t

 .,

 
.

 
.

 
,

 
.

 
.
 
\

 
;

 、：

 
，

 
.

 V
.
"

 ..

 ”，
 
一
 

£
 

i
 
^

 
.
 
-

 

(
 

1
 
r

 
、
-
例

 
r

 

.
 
V

 
」

 

f
 
-
 

/
 #
v
 

R
F
f
c
l
N
N
R
l
 
^

 
f
l
 k
J

 :
:
T
;
-

 "
-
i
.
e

 ..

 
s

 .r

 
,
 •
•

 
.
 
.

 
“

 ,
4

 V.

 
•

 ,
r

 
.

 
‘

 
.

 
.
 
.

 
.

 .
-
.
:
-
#

 I
I

 
<

 
^

 ̂
f

 £
^
 



A B S T R A C T 

A P r o b a b i l i s t i c C o o p e r a t i v e - C o m p e t i t i v e H i e r a r c h i c a l S e a r c h M o d e l 

by 

W o n g Y i n B u n , T e r e n c e 

Master of Philosophy 

The Chinese University of Hong Kong 

Stochastic searching methods have been widely applied to areas such as global op-
timization and combinatorial optimization problems in a vast number of disciplines. To 
name a few, science, engineering, and operations researches. Representatives of these 
methods are Simulated annealing (SA)^ Evolution type algorithms like Genetic algo-
rithms/programming (GA/GP), Evolution programming/strategy (EP/ES), and so on. 
Their developments are all inspired from nature: physical annealing process, genetic, 
evolution, and ecology. Interestingly enough, they put little emphasis on the impor-
tance of the past searching information and the property of the landscape at the time 
of searching. 

Motivated by this, a new probabilistic searching model is developed. On the struc-
tural aspect, the search space is divided into finite number of n-dimensional partitions. 
These partitions are then organized into a hierarchy. Subordinates are said to be rep-
resenting the finer details of the landscape while the superordinates are said to be 
representing the gross structure of the landscape. This structural organization of the 
search space provides a foundation for the development of algorithms exploiting the 
dynamic viewing of landscape. On the algorithmic side, a population-based bottom-up 
self-feedback algorithm coupled with two key ideas stemmed from the nature: Cooper-
ation and Competition is adopted. Although they are not new ideas in computational 
intelligence, they were used separately without emphasing their complementary nature. 

In this thesis, the results on evaluating this algorithm empirically are presented. 
Numerical function optimization is used as the test bed owing to the simplicity and the 
ease of manipulation. Numerical functions of different characteristics are used to show 
its robustness. The first part of this thesis covers the current research done in the field. 
The second part of this thesis present the basic algorithm and illustrating its behavior. • 
The third part of the thesis concentrates on the use of cooperation and competition to 
equip the basic algorithm. Finally, we show with experimental results that our model is 
versatile enough to work cooperatively with genetic algorithms. 



合作與競爭並存之樹狀搜尋方法 

黃 彦 斌 

‘ 哲學硬士 

計算機科學與工程學条 

香港中文大學 

隨機搜尋方法經已被廣泛地利用於不同學術領域之廣域性優化上，例如，自然科學， 

工程學，及蓮籌學。具代表性之隨機搜尋方法有模擬退火法，模擬遣傳法，模擬進化 

法。總的來說，這些方法之發展皆是敗發自大自然：自然退火法，遣傳學，及生態學 

等。 

這些方法皆存有一個共同的特點。他們忽略了從過去搜尋得來的資料及問題本身之地 

勢之變動性。因此，本論文將會談論一個針對此問題而開發的隨機搜尋方法。從結構 

上來說，整個多維搜尋空間會被切割成若干個次元相同的小空間。不斷重複相同的切 

割，但每次小空間的大小不一。若把較大的空間放在高位，而較小的放在低位，這樣 

一樹狀結構便能構成。此結構之重要性在於建立基礎與將要開展之方法。從方法的層 

面看，它是一個多個體、從零碎到整體、及自我反饋的方法。再者，此方法採納了兩 

個重要之要素：合作與競爭。雖然它們並不是新意念，它們大多數被獨立地採用。因 

此，它們的互補能力將被論述。 

此論文之第一部分概括了與此論題有關之硏究。此論文之第二部分說明了此方法之基 

本要素，並展示其表現。此論文之第三部分集中說明合作與競爭怎樣增強在第二部分 

提出的基本方法。此論文之第四部分，亦即最後的一部分，將會介紹一個把本方法與 

模擬遣傳法結合的模型，及顯示其好處。 



A C K N O W E L D G E M E N T S 

Here, I especially want to thanks those who have helped, supported and 
influenced me, those who have given me chances to explore, those who were 
patient in waiting for my improvement, those who have provided excellent 
research environment and facilities, in particular computing facilities, those 

, who have introduced me the technically excellent operating system — Linux, 
and those who have understood and have backed me up psychologically. 

They are the Computer Science and Engineering department of my Univer-
sity, my supervisors Professor Leung Kwong Sak and Professor King Irwin 
Kuo Chin, the staff members of the department, my MPhil. colleagues — 
Mr. Hsieh Arthur, Mr. Cheung King Lum, Mr. Szeto Tom, Mr. Cheung 
Chi Chiu, Ms. Chan Polly, Mr. Wong Jason, Mr. Lam Sze Kin, Mr. Cheung 
Shing Kwong, Mr. Wong Yuk Chung, Mr. Fong Cedric, Mr. Kwok Chan 
Man, Ms. Leung Mary, and Mr. Chu Kam Wing, the course lecturer of 
my tutorial class Professor Moon Yiu Sang and Professor Leung's research 
fellow Professor Xu Zong Ben. Last but not least, I whole-heartedly thank 
my family, in particular my parents. 

I sincerely thank for their help and support throughout my MPhil study! 

This article was processed using the M^]X macro package. 



TABLE OF CONTENTS 
• 

L is t o f F igures ix 

L is t o f Tables x i 

I P r e l i m i n a r y 1 

1 I n t r o d u c t i o n 2 
1.1 Thesis themes 4 

1.1.1 Dynamical view of landscape 4 
1.1.2 Bottom-up self-feedback algorithm with memory 4 
1.1.3 Cooperation and competition 5 
1.1.4 Contributions to genetic algorithms 5 

1.2 Thesis outline 5 
1.3 Contribution at a glance 6 

1.3.1 Problem 6 
1.3.2 Approach 7 
1.3.3 Contributions 7 

2 B a c k g r o u n d 8 
2.1 Iterative stochastic searching algorithms 8 

2.1.1 The algorithm 8 
2.1.2 Stochasticity 10 

2.2 Fitness landscapes and its relation to neighborhood 12 
2.2.1 Direct searching 12 
2.2.2 Exploration and exploitation 12 
2.2.3 Fitness landscapes 13 
2.2.4 Neighborhood 16 

2.3 Species formation methods 17 
2.3.1 Crowding methods 17 
2.3.2 Deterministic crowding 18 
2.3.3 Sharing method 18 
2.3.4 Dynamic niching 19 

2.4 Summary 21 

vi 



I I P r o b a b i l i s t i c B i n a r y H i e r a r c h i c a l S e a r c h 22 

3 T h e basic a l g o r i t h m 23 
3.1 Introduction 23 
3.2 Search space reduction with binary hierarchy 25 
3.3 Search space modeling 26 
3.4 The information processing cycle 29 

3.4.1 Local searching agents 29 
• 3.4.2 Global environment 30 

3.4.3 Cooperative refinement and feedback 33 
3.5 Enhancement features 34 

3.5.1 Fitness scaling 34 
3.5.2 Elitism 35 

3.6 Illustration of the algorithm behavior 36 
3.6.1 Test problem 36 
3.6.2 Performance study . 38 
3.6.3 Benchmark tests 45 

3.7 Discussion and analysis 45 
3.7.1 Hierarchy of partitions 45 
3.7.2 Availability of global information 47 
3.7.3 Adaptation 47 

3.8 Summary 48 

I I I C o o p e r a t i o n a n d C o m p e t i t i o n 50 

4 H i g h - d i m e n s i o n a l i t y 51 
4.1 Introduction 51 

4.1.1 The challenge of high-dimensionality • . . 51 
4.1.2 Cooperation - A solution to high-dimensionality 52 

4.2 Probabilistic Cooperative Binary Hierarchical Search 52 
4.2.1 Decoupling 52 
4.2.2 Cooperative fitness 53 
4.2.3 The cooperative model 54 

4.3 Empirical performance study 56 
4.3.1 pBHS versus pcBHS 56 
4.3.2 Scaling behavior of pcBHS 60 
4.3.3 Benchmark test 62 

4.4 Summary 63 

5 Decep t i on 65 
5.1 Introduction 65 

5.1.1 The challenge of deceptiveness 65 
5.1.2 Competition: A solution to deception 67 

5.2 Probabilistic cooperative-competitive binary hierarchical search 67 
5.2.1 Overview 68 
5.2.2 The cooperative-competitive model , . . 68 

vii 



5.3 Empirical performance study 70 
5.3.1 Goldberg's deceptive function 70 
5.3.2 Shekel family — S5, S7, and S10 73 

5.4 Summary 74 

I V F i n a l e 78 

6 A new genet ic o p e r a t o r 79 
6.1 Introduction 79 
6.2 Variants of the integration 80 

6.2.1 Fixed-fraction-of-all 83 
6.2.2 Fixed-fraction-of-best 83 
6.2.3 Best-from-both 84 

6.3 Empricial performance study 84 
6.4 Summary 88 

7 Conc lus ion a n d F u t u r e w o r k 89 

A T h e p B H S A l g o r i t h m 91 
A.1 Overview 91 
A.2 Details 91 

B Test p r o b l e m s 96 

B i b l i o g r a p h y 99 



LlST OF FlGURES 

2.1 Iterative stochastic search 9 
2.2 Landscapes of different modalities, (a) Unimodal. It consists of a single 

optimum, (b) Multimodal. It consists of more than one optima, (c) 
Highly (massively) multimodal. It consists of numerous optima. It should 
be noted that there is no clear cutting points between the three categories 
of modalities 14 

2.3 Four kinds of landscapes classified according to shape, (a). Unimodal. 
(b). Smooth surface composed of several big and distinct local optima. 
(c). Surface with many well-correlated local optima (the correlation is 
not shown in precise and accurate way), (d). Golf-hole (inverted) like. 15 

2.4 (a). Landscape shown with ascending x order, (b). Landscape shown 
with ascending odd x order and the ascending even x order 16 

3.1 Dynamics of emergent computation 25 
3.2 Search space reduction (First view) 25 
3.3 Search space reduction (Second view) 26 
3.4 Labeling of partitions: Partitioning 27 
3.5 Labeling of partitions: (b) Formation of hierarchy 28 
3.6 Correspondence of binary string and the retained component fitness list 30 
3.7 Remembrance for different bits under different stages of convergence . . 33 
3.8 The artificial one-dimensional function AF1 37 
3.9 Average raw fitness under different remembrances 38 
3.10 Average raw fitness under different population size 39 
3.11 Convergence of five selected a^+i 40 

4.1 Decoupling 53 
4.2 pcBHS vs. pcBHS on Rastrigin (n=2): (a) Average iterations and Aver-

age (b) number of function evaluations 59 
4.3 pcBHS vs. pcBHS on Hartman (n=3): (a) Average iterations and Aver-

age (b) number of function evaluations 59 
4.4 pcBHS vs. pcBHS on Michalewitz (n=5): (a) Average iterations and 

Average (b) number of function evaluations 60 
4.5 pcBHS vs. pcBHS on Sphere (n=8): (a) Average iterations and Average 

(b) number of function evaluations 60 
4.6 Scaling behavior of pcBHS on Ackley family 61 
4.7 Scaling behavior of pcBHS ori Sphere family 62 

/ 

ix 



4.8 Scaling behavior of pcBHS on Rastrigin family 62 

5.1 A simple trap function 66 
5.2 Re-modeling of function landscape 68 
5.3 Overlapping of two subgroups 69 
5.4 8-bit bipolar deceptive function (unitation view): a=0.6, 6=1.0，z=3 . • 71 
5.5 8-bit Bipolar deceptive function, (a) This graph shows f(u) in an in-

creasing X order showing its multi-modality, (b) This graph groups all x 
• with same unitation together and order them in an increasing unitation 

order, i.e. the unitation of neighboring groups differ by 1 only. Any neigh-
bor can then be reached by one mutation. The unitation u are labeled 
correspondingly 72 

5.6 Modified 16-bit deceptive function 72 
5.7 Shekel family S5: (a) Graph showing the effect of different number of 

subgroups on the percentage of runs getting the global optimum, (b) 
Graph showing the computational expenses on using different number of 
subgroups 77 

5.8 Shekel family S7: (a) Graph showing the effect of different number of 
subgroups on the percentage of runs getting the global optimum, (b) 
Graph showing the computational expenses on using different number of 
subgroups 77 

5.9 Shekel family S10: (a) Graph showing the effect of different number of 
subgroups on the percentage of runs getting the global optimum, (b) 
Graph showing the computational expenses on using different number of 
subgroups 77 

6.1 Integration of GAs and pBHS. Left hand side of the figure is an overview 
of the integration model. The shaded region at the bottom is the newly in-
troduced operator pBHS. This is the first module of the integration model. 
The algorithm becomes a plain GA when the operator is removed. The 
diagram on the right hand side is the detail of the pBHS operator. • . . 82 

A . 1 BASIC PBHS ALGORITHM OVERVIEW 91 



LlST OF TABLES 

3.1 Objective function values and locations of the first 3 optima 37 
3.2 Percentage of trials getting the global optimum 41 
3.3 Percentage of trials getting the first sub-optima 41 
3.4 Average iterations required to reach the global optimum 42 
3.5 Average iterations required to reach the first sub-optima 42 
3.6 Percentage of trials getting the global optimum - large remembrance. 

(Shaded entries: > 95%)) 43 
3.7 Percentage of trials getting the first sub-optima - large remembrance. • . 44 
3.8 Average iterations required to reach the global optimum - large remem-

brance 44 
3.9 Average iterations required to reach the first sub-optima - large remem-

brance 44 
3.10 Percentage of trials getting the global optimum and the first sub-optima 

-Lump sum 45 
3.11 Benchmark test for pBHS: Test problems 46 
3.12 Percentage of trials getting the global optimum for S1, R2, GP2, and H3 47 
3.13 Average number of function evaluations required to reach the global op-

timum for S1, R2, GP2, and H3 47 

4.1 pBHS versus pcBHS: Test problems 57 
4.2 pBHS vs. pcBHS: Success rate (%) for Rastrigin (n=2) 57 
4.3 pBHS vs. pcBHS: Success rate (%) for Hartman (n=3) 58 
4.4 pBHS vs. pcBHS: Success rate (%) for Michalweitz (n=5) 58 
4.5 pBHS vs. pcBHS: Success rate (%) for Sphere (n=8) 58 
4.6 Scaling pcBHS: Test problems 61 
4.7 Scaling pcBHS: Experimental conditions and Results 61 
4.8 Benchmark: Test problems 63 
4.9 Benchmark test: Results 63 

5.1 Result on the modified 16-bit deceptive function and the Goldberg's bipo-
lar deceptive function: Success rate (%) 73 

5.2 Result on the modified 16-bit deceptive function and the Goldberg's bipo-
lar deceptive function: Number of function evaluations 73 

5.3 Shekel family: Problems 73 
5.4 Shekel family: Conditions 74 
5.5 Shekel family: Results 76 

xi 



6.1 Performance study on the Integration model: Experimental setup . . . . 86 
6.2 Performance of the hybrid model - Rastrigin function (n=2) 86 
6.3 Performance of the hybrid model - Hartman function (n=3) 87 
6.4 Performance of the hybrid model - Shubert function (n=3) 87 
6.5 Performance of the hybrid model - Shekel function (n=4) 87 



PART I 

Preliminary 

• 



CHAPTER 1 

Introduction 

Stochastic searching is a category of techniques commonly used in tackling large-
scaled global optimization problems in many disciplines such as engineering, science 
and operations research. VLSI layout design, scheduling [31], resource/task allocation 
32, 29], network optimization [54], optimal management [23] and even the complex op-

timizations of physical and biological systems are typical applications. Global optimiza-
tion is to find an optimal set of objective variable instances in a search space constructed 
by enumerating the objective variables. Here is a definition of global optimization: 

Given V : X ~> 0, where X is the set of all instances of the domain input 
variables (objective variables), 0 is the set of all output of the domain, and a 
criterion/evaluation T : 0 ~> 7 ,̂ where 7^ is set of all 'scores' of the domain 
outputs, a global optimization problem Q � T � V is defined as finding x G X 
such that r G TZ is maximized/minimized. 

Usually, a fitness landscape/cost surface is said to be formed by the objective variables 
and their evaluated scores. This landscape/surface is usually huge and high dimensional, 
making the optimization task difficult. The difficulty is further increased by the high 
ruggedness (modality) of the landscape. 

Different stochastic searching methods are proposed to handle global optimization 
problems. To name a few, Monte Carlo method (commonly known as pure random 
search), greedy descent/ascent with random multi-start methods, simulated annealing, 
and evolutionary methods. All these methods explore the search space directly to lo-
cate the optimal solution. Monte Carlo method is the simplest one which explores the 
landscape by taking samples from the solution space one in each iteration in a random 
fashion. Since this method is purely random, the global convergence of this method is 
guaranteed by keeping the best-so-far solution. This method is quite slow, though global 
optimal is guaranteed given infinite long time. Contrary to the Monte Carlo method, 
greedy descent/ascent methods are very fast local deterministic optimization technique 
exploiting local advantages only. Since the moves made by these methods are always 

2 



'downhiir or 'uphill', they end up at the local optima only. Hence, an iterative random 
restart strategy is used whenever a local optimum is reached, in order to jump out of 
the local optimum. Simulated annealing is a method simulating the physical annealing 
process that a sample obtained with less score is accepted with a certain probability (ac-
ceptance probability) while higher score samples are accepted with probability 1.0. The 
acceptance probability is subject to change monotonically by a cooling schedule. Again, 
global convergence is guaranteed given infinite amount of time. Evolutionary methods 
are originated from biological genetics and evolution that in each iteration, a new pop-
ulation is generated by successively applying genetic operators on the individuals of the 
old population. The standard set of genetic operators consists of crossover, mutation, 
and selection operators. Basically, all these methods keep solving the static landscape 
representing the whole search space of the problem at the highest resolution, and search 
without memorizing the past information obtained. 

In this thesis, a new stochastic searching model is presented. It quantizes the 
continuous search space into partitions, which are organized into a binary hierarchy. 
Partitions located upper in the hierarchy represent larger portions of the landscape, 
and hence the gross details of the landscape. Partitions located lower in the hierarchy 
represent the landscape in finer details. By doing so, the benefits are twofold. Firstly, 
the rugged problem landscape can be smoothed, as the hierarchy allows different levels of 
resolution. The difficulty due to the ruggedness can be decreased. Secondly, it provides 
a basis to implement algorithms which dynamically change the 'view' of the landscape 
on the way of searching. The property of the landscape at different resolutions can be 
very different. For example, at low resolution (the macroscopic view), the landscape 
may be roughly unimodal, but at high resolution (the microscopic view), it may be 
highly multimodal. Thus, it is reasonable to adopt appropriate searching strategies at 
different resolutions. This involves the development of an algorithm capable of zooming 
at different resolutions dynamically. In this thesis, a stochastic bottom-up (population-
based cooperative) self-feedback algorithm with memory developed to serve this purpose 
is presented. Moreover, this algorithm is designed to be general enough to rely on 
minimal a prior information about the problem. Hence, information is going to be 
gathered, memorized and used on the course of searching. The information gathering 
process is achieved cooperatively by a population of agents which sample the solution 
space simultaneously, in order to reduce the stochastic error. 

When facing the high-dimensional problems and deceptive problems, the model 
is further equipped with two complementary strategies: cooperation and competition. 
By cooperation, we mean the cooperation among various objective variables to seek 
an optimum. Simply speaking, an objective variable instance, the presence of which 
can promote the score of a solution gets higher cooperative fitness than the one which 
cannot. Under this strategy, the searching is no longer a simple landscape traversal, 

3 



but a number of cooperative single-objective-variable traversal. In other words, the 
global optimization problem becomes finding a set of objective variable instances which 
have the highest cooperative fitness. However, it is a single-optimum-seeking method 
that only one global solution will be found. It would fail in the deceptive problems. 
Briefly, deceptive problem is defined as the presence of one or more than one deceptive 
attractors which mislead the search algorithm that they are the true global solution(s). 
From this definition, we can see that deceptive problem consists of a minimum of two 
optima. Tackling this kind of problem, redundancy and competition are introduced. 
By redundancy, we mean the presence of more than one population (subpopulation) to 
gather the landscape information separately. By competition, we mean the competition 
among these subpopulations. In the presence of competition, different subpopulations 
are forced to search diversely to occupy different areas of the landscape. The occupancy 
of a certain area of the landscape by a subpopulation is said to mask out that area. If 
there are several subpopulations, some of them will be attracted to and mask out the 
deceptive optima, leaving the global optimum prominent. 

1.1 Thesis themes 

1 . 1 . 1 D y n a m i c a l v i e w o f l a n d s c a p e 

Observer staying outside of the searching process would conclude that he got the 
landscape o f the problem. What they get is the static view of the whole problem space. 
However, as the algorithm converges, the region of interest gets more restricted and 
finer details o f the landscape should be revealed. In other words, if we define landscape 
as the view of the algorithm on the problem at particular time, the landscape is said 
to be dynamically changing. In the rest of this thesis, we keep using this meaning for 
the word landscape. On referring to the original and the widely accepted meaning of 
landscape, ‘static landscape, is used instead. An immediate implication of this definition 
of landscape is that the property of the landscape is also changing dynamically. This is 
one of the motivations of this work. 

1.1 .2 B o t t o m - u p s e l f - f e e d b a c k a l g o r i t h m w i t h m e m o r y 

The search property of the memoryless algorithms would stay unchanged regard-
less of the changes in the landscape view. Take genetic algorithm as an example, the 
transition matrix which defines the probability transiting from one configuration to its 
neighbor stays unchanged throughout the evolution. That means how the algorithm 
act given a particular landscape is static and the information about the landscape is 
assumed to be available. This motivates the second theme of this thesis: gathering of 
landscape information on the course of searching, and using this information (feedback) 

4 



to further guide the searching. The use of bottom-up approach (cooperative work of a 
population of agents) is to increase the robustness. 

1.1 .3 C o o p e r a t i o n a n d c o m p e t i t i o n 

High-dimensional problems pose a challenge to the searching algorithms. Besides 
the exponential raise in the search space size, the dependency among dimensions de-
creases the extend of reducing search space size by heuristic. In the context of genetics, 
the phenotype of two genes can only be revealed when they come together. Existing 
technique dedicated to exploit this dependency is cooperation. In evolutionary compu-
tation, fitness is the sole measure to qualify the individuals in a population. Fitness in 
the context of the problem can be defined differently. To accomplish the dependency 
of dimensions, the fitness measure should be defined in such a way to promote the 
cooperative improvement. 

Deception is another challenge to searching algorithms. This is a concept of relative 
sense. Roughly, a problem can either be deceptive or non-deceptive. It depends on 
the algorithm to be used. Pure random search is an exception, since it is the only 
one stochastic algorithm which can be classified as non-heuristic in nature. Any other 
algorithms are said to be heuristic and is bound to be deceived. Competition which 
originates in nature is employed in evolutionary computation to deal with this challenge. 
To fit into the model developed based on the first two themes mentioned above, a kind 
of competition is developed sharing some similarities to the sharing methods in genetic 
algorithms. One of the advantages of the developed competition model is the removal 
of the niche radius parameter. 

1.1 .4 C o n t r i b u t i o n s t o g e n e t i c a l g o r i t h m s 

The motivation of this work comes from the missing characters found on some 
existing stochastic algorithms (GAs, SA, and MGDs). Thus, the model is designed to 
provide these missing characters. It is believed that the integration of the developed 
model and any one of the evaluated algorithms is beneficial. The last theme of this 
thesis is going to integrate them so as to gain the strengths from both. 

1.2 Thesis outline 

C h a p t e r 2 The research of stochastic searching/optimization algorithms and related 
techniques are so mature that a complete survey involves huge amount of the relevant 
literatures. Hence, in this chapter, we only provide reviews on those aspects which are 
relevant to our main theme in large extend: several commonly used optimization algo-
rithms namely pure random search, simulated annealing, multistart greedy approaches, 

5 



and genetic algorithms are discussed. 

C h a p t e r 3 The first half of the chapter is devoted to the model developed to serve 
the purpose mentioned previously: how the search space is partitioned and organized in 
a hierarchical way; how the self-feedback algorithm is designed with dynamic landscape 
view in mind; and what essential enhancement features are used. In another half ofthe 
chapter, experimental results are presented to illustrate the behaviors of the algorithm, 
giving some basic ideas of how the algorithm can be tuned. Finally, the strengths and 
the weaknesses of the algorithm is discussed. 

C h a p t e r 4 a n d 5 These two chapters covers two complementary techniques, which 
are cooperation and competition. The reasons why these two techniques are employed 
are stated separately in these two chapters. Experimental results dedicated to illustrate 
the usefulness of them are shown. 

C h a p t e r 6 Instead of contrasting the features of our model to the existing techniques, 
we look for the possibility of integration by making use of their similarities. In this 
chapter, we present how integration of our model and genetic algorithms (GA) is made 
possible. Experimental results are presented to show that the integration is beneficial. 

1.3 Contribution at a glance 

1 .3 .1 P r o b l e m 

• Many problems in engineering, science, operation research, scheduling, planning 
and so on can be considered as optimization problems. 

• Stochastic methods to optimization is found to be effective in handling large-scale 
problem with lots of local optima. Examples are simulated annealing, genetic 
algorithms, and multi-start greedy methods. 

• These methods, however, have common drawbacks: 

1. They search (optimize) the solution space at the highest resolution. 

2. They search (optimize) without memorizing past information (or with weak 
memory only). 

• The objective of this research is to tackle these drawbacks by providing a new 
model and methodology. 

6 



1.3 .2 A p p r o a c h 

To achieve the stated objective, a new model called Probabilistic Cooperative-
Competitive Hierarchical Search (pccBHS) is proposed. The main features are as follows: 

• Partitioning of search space and organizing the partitions into a hierarchical struc-

ture. 

• Exploitation of the partition hierarchy by an iterative stochastic bottom-up algo-
rithm. The algorithm features feedback and memory. 

參 Incorporation of cooperation and competition simultaneously to cater for high-
dimensionality and deceptiveness, in addition to making use of their complemen-
tary nature. 

1.3 .3 C o n t r i b u t i o n s 

• Provided 1) a basis for resolution control, 2) search space smoothing and 3) search 
space reduction by hierarchically organizing the search space and algorithmically 
utilizing the hierarchy. 

• Introduced memory into stochastic search. 

• Enhanced canonical GA by integrating the model with the GA. 

7 



CHAPTER 2 

Background 

2.1 Iterative stochastic searching algorithms 

Iterative stochastic search is one of the important paradigms in global optimiza-
tion. Pure random search (PRS), multistart/singlestart greedy descent/ascent, simulated 
annealing (SA) [39, 38] and evolutionary methods [33, 26, 21, 10, 40, 4] are well-known 
approaches of this paradigm. Before discussing their characteristics and the internal 
details, we show in Figure 2.1 the overview of this paradigm. 

2 .1 .1 T h e a l g o r i t h m 

Search algorithms of this paradigm consist of four main parts sequenced in a cyclic 
way——the generation of new candidate solutions, the evaluation o fthe new solutions, the 
selection of solutions from both the current and the new solutions, and the checking for 
termination conditions. 

• G e n e r a t i o n o f new cand ida te so lu t ions 

The first part of the paradigm is the generation of new candidate solution set 
given a current one. New solution can be generated in two ways: (1) transforming 
the current solution(s) by specially designed operators, and (2) picking up from 
the solution space regardless of the what the current solution(s) is/are. Among 
the mentioned approaches, it is only the PRS that belongs to the later case. For 
evolutionary approaches, new solutions are generated by means of various genetic 
operators such as crossover and mutation. SA lies somewhat in-between PRS and 
evolutionary approaches that new solution is generated randomly similar to PRS, 
but it is only the solutions that belong to the neighborhood of the current solution 
are considered. It should be noted that the generation can be biased if heuristic 
about the problem to be solved is available (see [1, 2]). 

• Eva lua t i on o f t h e new cand ida te so lu t ions 

8 



A l g o r i t h m ITERATIVE STOCHASTIC SEARCH 

Initialize S 
W h i l e true 

S' <r- generate a new solution set of size N given S 
Tl'卜 evaluate each of the solutions in the new solution set S'. 
S 卜 select totally N solutions from both S and S' based on U and W. 
i f stopping criteria are met t h e n 

s top 
E n d i f 

E n d w h i l e 
E n d a l g o r i t h m 

FlGURE 2 . 1 : ITERATIVE STOCHASTIC SEARCH 

The second part of the paradigm is the evaluation of the new candidate solution set. 
This evaluation process reveals the quality of the solutions by giving score to each 
solution in the population. Strictly speaking, the evaluation process consists of 
two separate processes. The first of these two processes, which is compulsory, is to 
evaluate how good the solutions are in solving the objective problem. This process 
generates what we call raw fitness. Raw fitness is usually problem-specific and is 
meaningful within the context of the problem. Giving solely the raw fitness without 
associating it with a problem has no idea of how good the solution is. The second 
of the two processes which is optional (but commonly used) is to assign fitness 
values f e [0.0,1.0] to the solutions. The range of this fitness is arbitrary, but the 
usual practise is to choose a range from 0.0 to 1.0 with 0.0 representing the worst 
and 1.0 the best. However, this fitness assignment process is employed only in 
evolutionary approaches which use fitness proportionate selection scheme, because 
algorithms such as SA and greedy descent/ascent do not normally need a quantified 
solution quality in the third process (discussed later): the selection process. In 
evolutionary approaches, there are various fitness assignment methods [5], such as 
fitness ranking, fitness shifting, and fitness windowing. 

• Select ion o f r i gh t candidates fo r t h e nex t i t e r a t i o n 

The third part ofthe paradigm is a process which selects right candidates from both 
the new and the current solution sets. With the presence of the selection force, any 
mentioned search approaches will be able to converge to any optimum, as it is the 
ultimate convergence force generator. It should be noted that selection does not 
generate new solutions. It just provides a bias towards some solution instances. 

, > 

9 



Thus, designing an appropriate selection scheme for the problem at hand would 
become the design to compromise the convergence speed and the solution quality, 
i.e. the balance between exploration and exploitation. A scheme with strong bias 
(highly greedy) would increase the convergence speed and at the same time reduce 
the diversity. Premature convergence would be resulted. A scheme with weak 
bias would slow down the convergence speed, favoring diversification and hence 
the chance to converge to the global optimum. In both the evolutionary and 
greedy descent/ascent approaches, the convergence force is fixed once the scheme 
is chosen. However, it is not the case for SA. The cooling schedule used in it is a 
selection scheme which increases the greediness monotonically. 

• Check ing fo r t e r m i n a t i o n cond i t i ons 

The final part of the paradigm is to check for the termination condition. T6rn 
and Zilinskas [58] has given a detailed description of how stopping condition can 
be designed. As the name suggested, it is used to decide when the algorithm 
is going to be terminated. The design of the termination condition is crucial to 
the performance of all iterative stochastic searching algorithms in practise. It is 
because this kind of algorithms have no solution quality guarantee in finite time, 
so conditions have to be defined to determine the computation that is allowed 
to expense. The common termination condition is or-ing any of the following 
commonly used conditions: 

- C o n d i t i o n 1: The specified number of iterations is reached. 

一 C o n d i t i o n 2: The prescribed error bound is reached. 

- C o n d i t i o n 3: The prescribed solution is reached. 

- C o n d i t i o n 4: The best-so-far solution persists for a fixed number of itera-
tions. 

一 C o n d i t i o n 5: The expectation (probability) of improving the best-so-far 
solution is too low to be realized by a reasonable amount of computation. 

2.1 .2 S t o c h a s t i c i t y 

As the name suggested, iterative stochastic algorithms are modeled in a probabilis-
tic way. Generally speaking, the 'decisions' made in the algorithm, such as selecting, 
accepting and rejecting candidate solutions, are done in a probabilistic way. Since ran-
domness is introduced in the algorithms, different results would be obtained given the 
same condition (except the random number seed). In devising general algorithm to 
tackle global optimization problems, we consider the target optimization problems as 
black-boxes with little or even no problem-specific information. It is very likely that the 

10 



problem to be solved are multimodal. Stochasticity would be a better approach over 
deterministic methods (such as greedy descent/ascent), owing to the fact that it is more 
capable of and effective in jumping out of the local optima. 

• In simulated annealing, stochasticity is used in generating new candidate solution. 
In the unbiased case, all solutions belonging to the neighborhood of the current 
solution have equal chance of being selected. In the biased case, heuristic is used 
to favor for some solutions. Besides, the selection of the new generated candidate 
solution or the keeping of the current solution is subject to the current acceptance 
probability. The acceptance rule is generally specified as follows. Denote x and x' 
as the current and the new solutions, 

/ _ W ) _ c ( x ) } \ , � i � 
Fro6{keeping x } = exp [ ^ � ^ ~ — j . (2-1) 

Fro6{accepting x ' } = 1 - Fro6{keeping x } 

where c(.) gives the cost/fitness of the solution, Tg is the temperature at the iter-

ation g. 

• In evolutionary approaches, stochasticity is extensively used in the genetic opera-
tors. Crossover operators which mimic the exchange of genetic materials between 
two chromosomes determine crossover points (positions where crossover are taking 
place) in a probabilistic way. For example, in one-point crossover, two chromo-
somes picked out from the population will cross with each other with probability 
p^_ the crossover probability—at a position along both chromosomes. If the chro-
mosome length is /, crossover point may be any one from 1 to 1 - 1. In the simplest 
case, this crossover point is chosen in a random uniform way. It is only when the 
heuristic is available or the way the problems are formulated that crossover points 
are chosen non-uniformly. Mutation is another operator that generates new chro-
mosomes by transforming the genes of the chromosomes in the population. The 
transformation is determined by a mutation probability P^. It is usually set equal 
to l/l where 1 is the chromosome length such that each chromosome of the popu-
lation will be transformed into any one of its neighborhood probabilistically. Se-
lection is another genetic operator with probabilistic nature. As discussed before, 
it provides a convergence force towards the desired area of the search space. Oper-
ating in a deterministic way would immediately turns it into a greedy method, so 
all selection operators, such as proportionate selection and tournament selection, 
are designed in such a way that the probability of a chromosome being selected 
depends on the chromosome fitness. 

• The basic optimization method used in single-start/multi-start greedy descent/ascent 
can only find local optimal point owing to their greedy nature. In order to find 

11 



the global optimal point without exhaustive search, they randomly generate new 
starting point whenever local optimum is reached. 

2.2 Fitness landscapes and its relation to neighborhood 

2 . 2 . 1 D i r e c t s e a r c h i n g 

When the searching is achieved by transforming a (set of) sample(s) from the sample 
space into another (set of) sample(s) by means of operators in a successive way (see 
Figure 2.1), it is said to be a direct search method. Greedy descent/ascent, simulated 
annealing, and evolutionary methods all belong to this paradigm. It should be noted 
that pure random search does not strictly have any operator to transform the samples 
obtained to samples elsewhere is the sample space, but it is also classified as a direct 
search method. It is because it is also a method that searches for the global solution by 
explicit sample space navigation. T6rn and Zilinskas [58] also classifies random search 
methods (pure random search and its variants), simulated annealing and descent/ascent 
methods as direct search methods owing to the fact that these methods utilize only 
local information (function value, for function optimization problems). To elaborate, 
given the obtained samples, these algorithms traverse the sample space by using only 
the information available to generate samples in the next iteration. For simple (not 
necessarily easy) problems, such as function optimization, the samples plus their function 
values are the local information to be used by the direct search methods. The samples 
are used in the transformational process in generating new samples. While their function 
values are used in the acceptance (selection) process. Continuously repeating this process 
produces a trajectory from the initial sample points to the final one. The samples are 
said to be navigated explicitly by the operator(s) on the search space. Hence, search 
methods that are iterative, having operators to transform samples and the use of local 
information are direct search methods. 

2.2 .2 E x p l o r a t i o n a n d e x p l o i t a t i o n 

One of the central issues in direct search methods is the compromise between two 
contradictory search strategies: exploration and exploitation. Exploration means visit-
ing of the untouched areas of the search space. It is essential to all search algorithms 
looking for global solution. Given finite time, there is no guarantee on no better result 
that can be found in the next (several) iterations. Usually, methods of this kind guar-
antee infinite time global optimality only [46]. In practical applications, constrained by 
the maximum allowed computation time, the optimal strategy is to maximize the chance 
of locating the global solution. To achieved this, maximizing the search coverage, i.e., 
exploration, is the most common way employed by the direct search methods to max-

12 



imize the solution quality using no or minimal a-prior knowledge about the problem. 
Although this strategy is crucial to the problem-solving in global sense, the speed ofgen-
erating better solution is rather slow. Exploitation, which is a greedy strategy, means 
making use of the information currently available to search for the best possible solution 
locally. The local search component of the searching algorithms are all considered as 
exploitation. For instances, hillclimbing, crossover operators of genetic algorithms, and 
greedy descent/ascent in single-start and multi-start random search are all components 
providing exploitation features. Exploitation can locate the local best solution very fast 
(compared to the exploration strategy). However, this strategy deals nothing to the 
optimality in global sense, unless the problem consists of one single optimum. We can 
see that the strengths of one strategy is the weakness of the another strategy. They have 
to be compromised to benefit from both. In fact, the compromise is difficult to make 
and is problem-dependent. Research was done in revealing the properties of the various 
implementations of exploration and exploitation, providing guidelines for practical use 
only. 

2.2 .3 F i t n e s s l a n d s c a p e s 

Given a search problem, a landscape representing all the possible outputs of the 
problem can be constructed. In appendix B, there shows several landscapes of the test 
problems used in this thesis. For one-dimensional problems (with one objective vari-
able) ,their landscapes are lines with x-axis representing the objective variable values 
and y-axis representing the corresponding function values. For two-dimensional prob-
lems (with two objective variables), their landscapes are surfaces. The landscape of 
a problem tells several pieces of information. It illustrates not only the mapping of 
function variables and function values, but also the characteristics of the problem in 
relevance to searching, such as the modality and the deceptiveness. This information is 
normally used to describe the difficulty of the search problems. Generally, the higher 
the modality and the higher the deceptiveness of the problem, the more difficult the 
problem is. Modality describes the ruggedness of the landscape. Smooth landscape 
usually composes of one (unimodal) or a few modals (multimodal). Landscape that is 
highly or even massively multimodal consists of many or numerous modals. Figure 2.2 
shows examples of landscapes of different modalities. 

13 



A W V ^ 
(a) (b) (c) 

FlGURE 2.2： LANDSCAPES OF DIFFERENT MODALITIES. ( A ) UNIMODAL. l T CONSISTS 
OF A SINGLE OPTIMUM. ( B ) MULTIMODAL. lT CONSISTS OF MORE THAN ONE OPTIMA. 
( C ) HlGHLY (MASSIVELY) MULTIMODAL. lT CONSISTS OF NUMEROUS OPTIMA. l T 
SHOULD BE NOTED THAT THERE IS NO CLEAR CUTTING POINTS BETWEEN THE THREE 
CATEGORIES OF MODALITIES. 

Search problems with landscapes of high modality are difficult to solve by direct 
search methods. Recall that direct search methods search for the optimal solution by 
traversing the landscape explicitly. In the presence of many local optima, extensive 
exploration is required to avoid trapping in the local optima (due to exploitation) • As 
mentioned before, exploration is a slow process, hence long searching time is expected 
to be spent to attain solution of reasonably high quality. Deceptive problems are those 
having local optima which are more favorable than the global optima. Since all practical 
searching algorithms are heuristic algorithms that some of them are more suitable in 
solving some kinds of problems, they would easily be deceived if the heuristic used 
is inappropriate. Besides the modality and the deceptiveness of the landscapes, the 
general shape of the landscape would also pose difficulty to search algorithms. To be 
more precise, some algorithms are more suitable to solve problems with landscape in 
certain shapes while some other algorithms are suitable for landscapes of another shape. 
In [7], landscapes are roughly classified into four different categories according to their 
shapes (see Figure 2.3): 

• C a t e g o r y 1 Big-valley with one single optimum. 

• C a t e g o r y 2 Smooth surface (with mid fluctuations) composed of several big and 
distinct local optima. 

• C a t e g o r y 3 Surface with many well-correlated local optima. 

• C a t e g o r y 4 Golf-hole (inverted) like. 

14 



/ ^ M V ^ W 
(a) (b) (c) � 

FlGURE 2 . 3 : F o U R KINDS OF LANDSCAPES CLASSIFIED ACCORDING TO SHAPE. ( A ) . 
UNIMODAL. ( B ) . SMOOTH SURFACE COMPOSED OF SEVERAL BIG AND DISTINCT LO-
CAL OPTIMA. ( C ) . SURFACE WITH MANY WELL-CORRELATED LOCAL OPTIMA (THE 
CORRELATION IS NOT SHOWN IN PRECISE AND ACCURATE W A Y ) . ( D ) . GOLF-HOLE 
(INVERTED) LIKE. 

It is obvious that greedy methods, such as simple hillclimbing, are the most effective 
method in tackling problems in category 1, since the landscape has one single opti-
mum that hillclimbing algorithms guarantee finite time optimality. It is because any 
better samples are definitely nearer to the global optimum. Although exploitation-only 
method (which is the common practise in hillclimbing algorithms) is enough in solving 
the problem, exploration is believed to be useful at the early stage of an optimization 
run when the initial sample(s) is/are poor. Landscapes of the second category favor for 
multistart strategies, since they consists of a few distinct and connected optima which 
make a few restarts to reach the true global optimum. Landscapes of the third category 
favor for simulated annealing and evolutionary methods, but not greedy methods. The 
presence of the numerous local optima makes greedy methods impossible to reach the 
global solutions without exhausting the search space. Simulated annealing and evolu-
tionary methods are different. Simulated annealing is capable of escaping local optima 
by the random jump at high temperature and home in the (possibly) global optimum at 
the final stage of the cooling schedule. The forth category is the hardest to all search-
ing algorithms. As the name suggested, landscapes of this category have uncorrelated 
optima resting on a relatively flat surface. The experience (in whatever way) obtained 
in the course of searching would have little helps in the future search. In other words, 
heuristics are not applicable in this kind of problems. Exhaustive search and random 
search are the last resorts. 

Strictly speaking, the possible outputs of a problem is simply a set and the ele-
ments of which are unordered. Jones [37] pointed out that the formation of a landscape 
requires an ordering of the set in some way, otherwise, the landscape of a problem is 
undefined. So far, we have assumed the presence of the ordering, although it is not 

15 



X H 
K： ^ 

0 1 2 3 4 5 6 7 8 9 1011121314 15 ° 2 4 6 8 10 12 14 1 3 5 7 9 1113 15 

X X 

(a) (b) 

FlGURE 2 . 4： ( A ) . LANDSCAPE SHOWN WITH ASCENDING X ORDER. ( B ) . LANDSCAPE 
SHOWN WITH ASCENDING ODD X ORDER AND THE ASCENDING EVEN X ORDER. 

important to know what the ordering is as far as the previous discussion is concerned. 
For numerical problems such as function optimization, the numerical ascending order 
is normally adopted. However, it is possible to have more than one ordering for a set 
and hence, more than one landscape for a single problem. In Figure 2.4, we show two 
different landscapes representing the same problem by two different orderings. 

2 .2 .4 N e i g h b o r h o o d 

Neighborhood is an important concept in iterative stochastic search. It lays the 
basis for the design and operation of the search operators. It also defines a landscape 
for the problem. In fact, neighborhood is essential to the performance of a searching 
algorithm. It is because neighborhood defines the landscape and hence, the modality, 
deceptiveness and the various landscape properties. The landscape of a problem can be 
multimodal (see Figure 2.4(a)), and at the same time be unimodal (see Figure 2.4(b)) 
depending on how neighborhood is defined. Simply speaking, given the set X of all 
solutions constituting the whole sample space, defining neighborhood is to define for 
each solution x G ^ a solution set • C X which are admissible from x in one operation. 
The neighborhood defined for the problem shown in Figure 2.4(a) is i>a = {Rx{x 一 

l )^Rx{x + 1)} while that in Figure 2.4(b) is a bit complicated. It is basically ¢^ = 
{Rx(x - 2), Rx{x + 2}. Special handling of the boundary cases as required. The 
function Rx(.) is a remainder function. 

Given the sample space of size V^, there are V^ number of neighborhoods. The 
neighborhoods are overlapped meaning that some members of a neighborhood are the 
members of other neighborhoods. The cardinalities |V'a| and |V̂ | are 2. In many cases, 
the cardinalities are larger than 2, particularly when the problems are of high dimension. 

16 



• P u r e r a n d o m search The neighborhood defined for pure random search is sim-
ple: 喻=A^ i.e., all samples are admissible in one single step. 

• G r e e d y decen t /ascen t The neighborhood definition for greedy descent/ascent 
methods are the same as the generic one described before. The neighborhood size 
of a usual definition equals the dimensionality of the problem, i . e . ,冲= n . Things 
become complicated when it goes to the multistart case. The size is n for the 
greedy part while that for the multistart is X. 

• S imu la ted annea l ing The neighborhood size depends on how the neighborhood 

is defined. 

• E v o l u t i o n a r y me thods Evolutionary methods are more complicated. Some 
members like genetic algorithms and genetic programming, use more than one 
operator in each iteration. The operators are crossover and mutation. Some prac-
tical implementations even use more than these. Designing an operator means 
defining a neighborhood for the whole sample space, and hence the landscape. 
The presence of more than one operator in action means introducing more than 
one neighborhood/landscape. Fortunately the operators are operated in a sequen-
tial manner with the input and output drawn from the same set of samples. Thus, 
the operators can be added together generating one single landscape only. 

2.3 Species formation methods 

Speciation can be thought of as a phenomenon of the formation of groups of indi-
viduals having distinct characteristics to the individuals in other groups. The formation 
of species is made possible by the genetic differentiation plus the selection force from 
the environment. The idea of speciation is borrowed by GA community to cater for the 
problems with landscapes that are multi-modal or deceptive in nature. A number of 
speciation algorithms were proposed, namely, crowding [11], deterministic crowding [43], 
sharing [28, 44], and dynamic niching [45]. 

2 .3 .1 C r o w d i n g m e t h o d s 

C r o w d i n g 

Crowding [11] is a competition model to maintain population diversity to prevent 
premature convergence rather than a species formation method. It is an extension to the 
preselection method of Cavicchio [9]. Different varieties of individuals are maintained in 
the population, but the differentiation among individuals in not very distinct. Crowd-
ing is achieved as follows: for each offspring, parents from a set of size CF (crowding 

17 



factor) chosen randomly from the old population are compared for similarity. The most 
similar one with lower fitness than the offspring is replaced by the offspring. The ratio-
nale behind this method is that individuals which are similar are said to share similar 
niche and compete for the same resources. Expelling the similar individuals with lower 
fitness away from the niche effectively maintains a high quality and diverse population. 
Although less fit (and similar) individuals are kept replacing, only mild speciation ef-
fect is produced and it is empirically shown to be not effective in solving multimodal 
problems [12]. The computational complexity of this method is 0{nm). 

2.3 .2 D e t e r m i n i s t i c c r o w d i n g 

Developed by Mahfond [43] to improve the high computational requirement of De-
Jong's crowding method. One of the weaknesses of DeJong's crowding method is the 
expensive computation used in the replacement of parents by offsprings. The replace-
ment method of deterministic crowding is that only parents and their direct descendants 
are compared for similarity and replaced, when the descendants have higher fitness. Gen-
erally, there are two offsprings that are produced for each pair of parents and hence two 
different parent-offspring pairings are possible. The one that has higher total similarity 
is used for replacement. The computational complexity is reduced from nm to 2n. 

2.3 .3 S h a r i n g m e t h o d 

With sharing (firstly introduced by Holland [33] and expanded by Goldberg and 
Richardson [28]), species are formed according to the similarity among individuals in 
the population and the pre-set niche radius. Similar to all other speciation methods 
presented so far, it is achieved by the competition of limited resources among individ-
uals within the same niche. Individuals sharing the same (or similar) features, either 
genotypically or phenotypically, belong to the same niche and their fitness should be 
shared based on the following sharing function. 

释 ， , ) = { 1 - ( 狄 i ? ’ , � e 
� ’ ” 1̂  0, otherwise 

where dij is the similarity distance between individuals i and j. This similarity distance 
is defined such that the more similar they are, the shorter the distance between them. 
This sharing function defines a symmetric niche area (e.g. circular niche area for two-
dimensional function) with ashare the radius and individual i the center. The parameter 
a allows the sharing function to have different shape. However, there is no literature 
reporting research result about this parameter and intuitively, this parameter should 
have limited usefulness and is normally set to 1.0. 

Based on this sharing function, a set of individuals can be identified as sharing 
the same niche with an individual. Summing up all the sharing values of this set of 

18 



individuals become a niche count. This niche count determines the resulting fraction of 
the fitness remained: 

, = l r ^ (2.2) 
rui 

We can see that the resulting shared fitness depends on i) how many individuals falling 
in the niche of the individual in consideration; and ii) the similarity distance of those 
individuals. 

Regardless of the popularity and effectiveness of the sharing method, there are 
several issues that should be mentioned. 

1. Estimation of the number of peaks of the function is difficult. It accounts for the 
availability of domain knowledge. This leads directly to the difficulty of determin-
ing niche radius cTshare. 

2. The single fixed-value ashare implies that niches are all of same size and at the 
same resolution level. In fact, most of the functions that people are interested in 
are highly unstructured with peaks of different sizes positioned irregularly. 

3. The computational complexity required in calculating shared fitness and deter-
mining niche count is 0{n^). These computation expenses sustain throughout the 
evolution. 

2.3 .4 D y n a m i c n i c h i n g 

Dynamic niching is developed by Miller and Shaw [45] to reduce computational 
requirement of the standard sharing method. The two assumptions that are used in 
the standard sharing method apply in this method: (1) the number of niches q can be 
estimated; (2) niches are separated (non-overlapped) and located at the same resolution 
level. The model is based on an observation on GA with sharing that individuals tend 
to populate the niches as time passes by. This phenomenon can be explained by the fact 
that once the niche radius a—re is set, the number of niches is more or less fixed. Dy-
namic niching identifies these niches and uses these niches to categories the individuals, 
i.e., either belonging or not belonging to the niches. In the standard sharing method, all 
individuals in the population are considered as niche centers. For population of size iV, 
there are fixed number of N niches. Similarity measurement will be taken by every pair 
of individuals. The complexity due to this exhaustive similarity measurement is 0{n^). 
Based on the observation mentioned above, dynamic niche sharing firstly identifies q 
niches at the time concerned (that is why this method is named), and categorizes the 
individuals which belongs to the niches using the same similarity measurement. Since 
the number of niches is now q but not N, the complexity will be dropped to 0{nq), 

19 



q < N. A greedy approach is used to identify the niches (see Algorithm 2.1 for de-
tail) .Instead of having one niche count for each individual, there is one common niche 
count for each dynamic niche. Standard fitness reduction is then applied to each of the 
dynamic niches using their respective common niche counts. Those individuals which 
cannot be categorized are catered for by the standard sharing method. 

A l g o r i t h m 2.1 Dynamic niche sharing: Greedy dynamic peak identification. The aim 
of this part of the algorithm is to identify a dynamic niche set, i.e., the set of top q 

number of peaks. 
A l g o r i t h m Dynamic niching: Greedy dynamic peek identification 
/ * ps is the sorted population. 
* Sort<,F(P) sorts P in decreasing F order. 
* q is a pre-set parameter indicating the number of dynamic niches. 
* cTshare is the pie-set niche radius. 
* y is the dynamic niche set, the elements of which are individuals of the current population. 
* da,b is the similarity distance between a and b. 

*/ 
ps 卜 Sort<,F(P) / * Sor t i n decreas ing f i t n e s s order * / 
y 二 0, y = 0 / * I n i t i a l dynamic n iche set i s n u l l * / 
i = l 
L o o p 

i = i 
L o o p 

if dps y^j>| > (Tshare then 
Insert F / into y 

end if 
j = 3 + 1 
y = y+ 1 

u n t i l j = N o r Pf G y 
i 二 i + 1 

u n t i l y = q o r i > N 

end A l g o r i t h m 

The method is more efficient than the standard sharing method. The computa-
tional requirement in each generation is those required to identify the dynamic niche 
set plus the similarity measurements needed to categorize the population. Both of them 
have 0(nq) complexity. Generally, the initial population should be more or less evenly 

20 

4h 



distributed over the sample space. Most of them should be categorized as not belonging 
to the dynamic niches. Thus, the overall computational complexity should be 0{n^) 
as if the standard sharing. Later, clusters begin to form and more and more individu-
als are being classified as belonging to the dynamic niches. The overall computational 
complexity should be dropped to 0{nq). 

2.4 Summary 

In this chapter, centering around three important algorithms, namely greedy de-
scent, simulated annealing, and evolutionary algorithms, a brief overview of iterative 
stochastic searching algorithm is given. Iterative stochastic searching algorithm is a 
probabilistic algorithm which does not guarantee an optimal solution in finite time. 
There are three main components, namely the generation, the evaluation, the selection 
of candidate solutions and the checking of the fulfillment of the termination conditions. 
The important issue of iterative stochastic search lies on the idea of fitness landscape 
and its relation to neighborhood is presented. 

21 



PART II 

Probabilistic Binary Hierarchical 
Search 



CHAPTER 3 

The basic algorithm 

In this chapter, a stochastic searching model called pBHS {Probabilistic Binary Hi-
erarchical Search) [41] is presented. Structurally, it transforms the optimization problem 
into a selection problem by quantizing and organizing the continuous search space into 
a binary hierarchy of partitions. Solving an optimization problem becomes locating the 
partition in which the optimal solution is resided through a series of branch selections 
in a top-down manner. Algorithmically, it is an iterative stochastic bottom-up search-
ing algorithm with feedback and memory. In each iteration, samples obtained from 
the sample space are assembled together forming part of the past experience (mem-
ory). The memory is used in the next iteration as a searching guide to obtain new 
samples. Besides being a searching guide, the memory also acts as a convergence speed 
modeidXoi-adaptive remembrance scheme. Using this iterative stochastic algorithm, in-
formation about the static landscape is accumulated. The behavior and the performance 
of this basic model is illustrated with the use of function optimization problems. 

3.1 Introduction 

Global optimization approaches under the category of stochastic methods such as 
simulated annealing (SA) [39, 38] and evolutionary algorithms (EAs) [33, 26, 21, 6 
and those under the category of heuristic search methods such as multistart greedy 
descent strategies (MGDs) [58, 52, 34] have several characteristics: (i) for SA and MGDs, 
they try to find the global optimal solution by searching the large sample space in the 
finest detail; and (ii) they search without memorizing past global information. These 
characteristics could in some instances be undesirable. Motivated by their shortcomings, 
we provide our model as both an alternative and/or a complementary approach. 

D i r e c t searching fo r g loba l so lu t ion Simulated annealing (SA) traverses a huge 
sample space from one configuration to another neighboring configuration to search 

23 

4h 



for the global optimal solution. Searching of a large sample space in this manner is 
inefficient, although global optimality is theoretically guaranteed given infinite amount of 
time. MGDs search for the global optimal solution simply by pushing every configuration 
picked out (randomly) to the reachable local optimum. The best local optimum obtained 
is treated as the global one. Theoretically, to the limit of trying all samples in the sample 
space, MGDs guarantee global optimality. Since the heuristic used in MGDs is local 
optimization technique, MGDs will have good performance particularly when the fitness 
landscapes of the problems are smooth and have few optima. 

L a c k i n g o f good g loba l i n f o r m a t i o n The difficulty of global optimization lies on 
a facts that global information is not available. Operators in SA, which move the 
existing configurations to the neighbors, can only exploit local advantages. The situation 
is slightly better for methods of population-based searching paradigm such as EAs, 
since they have a population of configurations. The occupancy of the population in 
the sample space is the result of past convergence force acted upon the population. 
Although the occupancy reflects to a certain extend the global picture, they are merely 
the sample points in the space recording limited past searching experience. Hence the 
reliability of which in obtaining global solution is rather limited. Moreover, methods 
that are dedicated to local optimization such as gradient descent and the variants are 
used together with multistart strategy hoping that one of the initial points can reach 
the global optimum. Unfortunately, method to determine initial points in order to 
maximize the expectation of getting the best (not necessarily the optimum) obtained 
solution is quite rare. Distributing uniformly the initial points on the search space 
becomes the best available strategy to maximize the coverage and hence to maximize 
the expectation of global optimization. We consider such approach rather pessimistic, 
despite its robustness and simplicity. Instead of waiting for the solution, we suggest that 
global information should be collected in the course of solution finding. 

To deal with these limitations, we organize the sample space into a binary hierarchy 
separating the huge space into pieces of manageable size and adopt a paradigm called 
emergent computation [22]. Figure 3.1 illustrates the idea of emergent computation. 
The main theme of this paradigm is the emergence of global properties or patterns from 
the collective behaviors of many local interact ions�This paradigm paves the way for 
us to obtain the inaccessible global information. 

24 



Global 
Enyi zronment Local 

灘 ̂
 refinement of global environment 

‘ > feedback to local agent 

FlGURE 3 . 1 : DYNAMICS OF EMERGENT COMPUTATION 

‘‘ Z；：：：^^^^^::、、、 
/ ^^^First level nodes> • � 

m,A 
hierarchy viewed/ ^hierarchy yiewed by 
by root ‘ right first level node 

FlGURE 3 . 2 : SEARCH SPACE REDUCTION ( F l R S T V I E W ) 

3.2 Search space reduction with binary hierarchy 

Given a balanced binary hierarchy (Figure 3.2) of 1 levels^, there are 1 number of 
branch layers, 1 + 1 number of node layers and 2̂  number of leaf nodes. Each non-leaf 
node has two branches radiated out. To locate a leaf node, we go through 1 number of 
branches starting at the root. If we need to make a decision on which branch to traverse 
next, we will have to make 1 number of such decisions. Since a branch of the hierarchy 
leads to a unique non-overlapping sub-hierarchy below it, after making a decision on the 
branch to go, in principle we just need to consider the corresponding sub-hierarchy in the 
next decision. Making decision at the root, we face the whole hierarchy with 2̂  number 
of leaf nodes (the outer region enclosed by the dashed line in Figure 3.2). On deciding 
the subsequent branch at any one of the first level nodes, we just face 2 口 (i.e. half 
of the whole hierarchy) number of leaf nodes (the shaded region in Figure 3.2). It is 
because half of the total leaf nodes are already pruned in the previous decision. It is 
clear that the size of the hierarchy we are facing is diminishing with the decision made 

^Our current investigation modified the paradigm slightly in such a way to suit our problems at hand. 
Details are covered in the rest of the paper. , 

25 



蕩 : _ 
to be considered 

Sixteen leaves 
to be considered 

FlGURE 3.3： SEARCH SPACE REDUCTION (SECOND V I E W ) 

towards the bottom. 

Viewing the hierarchy in another way, if we cut the hierarchy into 2 halves lon-
gitudinally at node level [l/2\ as shown in Figure 3.3, the number of leaf nodes faced 
by all sub-hierarchies at the upper half are reduced to 2 [ " 2 � . T h o s e in the lower half 
are, however, kept unchanged as mentioned before. In general, if we cut the hierarchy 
successively at each node level in a top-down manner, total number of ‘leaf nodes' faced 
are 21. It can be seen that the apparent size of the hierarchy can be reduced drastically. 

The formation of such a hierarchy basically defined 1 + 1 number of resolution 
levels of the solution landscape. Node level upper in the hierarchy represent a coarse 
landscape revealing the general macroscopic view, while node level lower in the hierarchy 
represent a fine landscape revealing the detail. This resolution hierarchy allows an 
algorithm designed to concentrate on the searching at the lower resolution, which is 
easier, locating the promising area first and to drive into the precise optimum later at 
the higher resolution when it is converging. 

3.3 Search space modeling 

In this section, we express our problem in terms of unconstrained function optimiza-
tion (subject to bound constraint only). Given a n-dimensional continuous real-value 
function 

F : X — E where X C R " 

and x^ < X < x^ (3.1) 

to optimize, we need to find x* € X such that F{x*) is maximized (or minimized). 

^We define a ‘level' as a layer of branches but not as a layer of nodes. 

26 



Most-significant 
bit 0 1 

-~~0~"•-~~1~~--~0~~--"~1~~-
产 1 0 , 1 . 0 1 0 , 1 . 0 1 

Least-significany 丨 丨 [ 丨 丨 _丨 丨 

bit 1 ！ |_ Se4rch |spac|e ； 

A ] I N ^ 
P a r t i t i o n s < : ^ L j U 1： / T ^ ^ i 

^ i V i I I I 
1 I I I I ! ！ 

Labels 000 001 010 011 100 101 110 111 

FlGURE 3 . 4： LABELING OF PARTITIONS： PARTITIONING 

Depending on the required solution precision (precision of variables in x*), we quan-
tize the n-dimensional search space into V^ number of partitions (each of them is of 
7i-dimension) of equal size. By creating this sample space with V^ partitions, the op-
timization problem can then be modeled as a searching and approximation problem 
with V^ number of choices. Imposing a restriction on V that it should be equal to 2̂  
where 1 G N, a binary number labeling scheme is then introduced to label the parti-
tions. For the sake of simplicity, we restrict our consideration to the one-dimensional 
case first. Extension to the n-dimensional case, which is fairly straightforward, will be 
done afterwards. 

Denoting S as the set of all binary strings of length 1 in the form of 6/_i &;_2 . . . kh 
where bi G {0,1}，we can label the partitions of the sample space of the one-dimensional 
function by assigning consecutive binary strings from 0 toV-1 to consecutive partitions 
as illustrated in Figure 3.4. For instance, if 1 equals to 3, the partitions are represented 
sequentially as 000, 001, 010, ...，110, and 111 in an increasing x direction. Based 
on this labeling scheme, we noticed that the one-dimensional search space is not only 
divided into V partitions, but also a hierarchy of partitions with each bit demarcating 
the partition inherited from the immediate more-significant bit into two halves (see 
Figure 3.5). (The digits at the upper part of Figure 3.4 show the partition hierarchy 
formed by the different significant bits). The top layer (the most significant bit) consists 
of two bit-values which represent the right and the left half of the whole sample space. 
The second layer consists of four bit-values representing the four partitions divided from 
the two in the previous layer. Partitioning in this way allows us to treat each partition 
as a sequence of bits so that finding an optimal partition can be done by optimizing each 
bit. Then the problem becomes so simple that it accounts for just a series of 1 selections 
between 0 and 1. 

Dealing with the n-dimensional functions, we simply apply the same labeling scheme 
to each of the variables in x. Then, having n number of variables, there are n number 

27 



A A A X 
‘ 1 *8 #9 «10 • ! ! «12 «13 «14 

0 ^ 0 tH 0 lH 0 fH 
0 0 rH fH 0 0 fH f j 
0 0 0 0 fH fH tH «H 

FlGURE 3 . 5： LABELING OF PARTITIONS： ( B ) FORMATION OF HIERARCHY 

of such separate binary hierarchies. The optimization problem would then become n 
simultaneous series of 1 selections. 

To locate the optimal solution, we need a way to explore the hierarchies. Exploring 
in an exhaustive way can give the optimal solution, but computationally it is unrealis-
tically expensive. While exploring in a random fashion has an unacceptably low chance 
of getting the optimal solution. Probabilistic search, then, becomes a reasonable choice. 
To do the probabilistic search, we give scores to the states of each bit bi. Since we are 
considering a binary system, two scores am,k and a^,fc+i, k 二 2 ( / - l - i ) are assigned one 
to each state indicating how well the states perform in that bit position in the past. Us-
ing these scores, a reasonable bit-value selection scheme (probabilistic search) becomes 
possible. We now restate our problem as follows: 

The original problem is to find x* G X where X C K^ such that 

‘ f F(x*) > F(x) if Maximization, , � ^ � 
Vx G X • < 一 (3.2) 

I F{x*) < F{x) if Minimization. 

After the transformation, it becomes a problem to find probabilistically an optimal 
vector of binary strings 5* G S^ to where x^ belongs: 

max Pro6(select s*) 
n - l 

= m a x J J Pro6(select s^) 
m=0 
n - l 0 

= = m a x Y [ n P^ob{select C , i ) (3.3) 
TO=0 i==l-l 

where s^ G S is the m-th component in vector s*, 
b^ . is the i-th significant bit of binary string s : . 

It can then be re-formulated as finding 6^,. such that for 0 < m < n and 0 < i < /， 

6 : • = arg max { am,k : k = 2{l-l-i)十 6m’i }• (3.4) 
‘ k 

28 



3.4 The information processing cycle 

To solve the problem formulated in the last section, we present in this section an 
iterative algorithm based on an information processing cycle characterized by a pop-
ulation of homogeneous searching agents and a searching environment. Specifically, a 
population of N binary string vector s each with n number of components Sm are gener-
ated and tested for optimality in each iteration. In the population, there might be some 
information related to the global picture of the objective function that we can extract. 
The information is gathered in each iteration of search to a reliable extend that the 
agents, based on this global information, can produce the optimal solution. 

3 . 4 . 1 L o c a l s e a r c h i n g a g e n t s 

Each agent is designed to generate in each time step n number of binary strings 
through n sequences of bit-value selection probabilistically. We treat the set of scores 
am,k{t) e [0.0,1.0] at time t stated in Eq. (3.4) as our global information accumulated 
up to time t. For each function variable Xm, we define a vector 

Am{t) = [ am,o{t) am,l{i) “…�…am,2/-lW ] 關 

composed of 21 number of am,k{t) (two consecutive a,n,k{^) for one bit in binary string 
of length /). For an n-dimensional problem, the whole set of scores would be 

A{t) = [ Ao{t) Ai{t) ... An-i{t) f . (3.6) 

In order to make the selection possible, a correspondence is drawn between Am {t) 
and our binary string Sm. Every non-overlapping pair of two consecutive am,k{t) is used 
to represent a single bit. For instance, elements am,o{t) and am,i{t) correspond to the 
most-significant bit 6/_i, a^,2(O and a^,3(O correspond to the second most-significant 
bit bi-2 and so on. For each such pair of elements, we dedicate the former one as the 
score for 6,- 二 0 and the later one as the score for hi 二 1. For instance, am,o{t) is 
the score of 0 in bit 6/_i and a^,i is the score of 1 in bit 6/_i. Figure 3.6 shows the 
correspondence of a binary string and Am{t). In fact, it is not necessarily that Am{t) 
and the correspondence be defined as above. Different applications can have different 
definitions. 

Specifically, the generation of a binary string starts at the most-significant bit and 
proceeds one bit at a time towards the least-significant one, carrying the meaning of 
dividing the search space into half successively following the sample space hierarchy. 
The probability of selecting a bit-value at the i-th bit 6— of the m-th string Sm is 
defined as follows: 

P r o 6 ( 6 . , = . ) = ( : - ^ W ' ^ ^ - 0 , (3.7) 
l l _ a m , f c ( 0 , 托二1. 

29 



1 

^2 b i bp 
b i n a r y S 4 String 

G l o b a l a o a a 
I n f o r _ Am L _ _ _ 
m a t i o n ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ " " \ 

c o m p o n e n t c o m p o n e n t 
f i t n e s s f i t n e s s 
f o r 0 f o r 1 

FlGURE 3.6： CORRESPONDENCE OF BINARY STRING AND THE RETAINED COMPONENT 

FITNESS LIST 

As shown in Eq. (3.7), the selection of bit-value depends in a straightforward way 
on the respective global information complying with Eq. (3.3) and Eq. (3.4). The larger 
the ttm,k value, the higher the chance the corresponding bit-value is selected. 

After generating the binary strings s^ ,0 < m < n for all function variables Xm, we 
have an n-dimensional partition picked out. Since the ultimate goal is to optimize the 
original function stated in Eq. (3.2), practically, we need a function value a; from the 
partition for evaluation. The function value x for the partition is chosen according to: 

^ = ^ ( < ^ - 4 ) + < ^ , (3.8) 

i.e., the minimum, x in the region. Unless specified otherwise, we use Xm and s^ in-
terchangeably. Now we have a means of evaluating the partition by evaluating the 
representative instead. 

3 .4 .2 G l o b a l e n v i r o n m e n t 

Given a reliable global information A*, the searching agents described in the above 
section should be able to find s* with probability approaching 1.0 fulfilling Eq. (3.3), 
i.e., Pro6(select s*) « 1. The question is how to make A* reliable? We approach this 
question as follows. 

Every binary string generated will be evaluated to give a function value F{x). This 
function value is the raw fitness of the binary string vector. Assuming that the good 
performance of a binary string vector is contributed by the underlying components of 
each constituting binary strings, we assign the raw fitness of the binary string vector to 
the constituting components. The previously defiNed correspondence between Am and 
a binary string basically treats each bit as a single constituting component. Then, two 

30 



vectors of length 1 for the raw fitness values of both states gained by a binary string are 
defined. We denote Um = [ Um,o ^m,i • • • ^m,/-i ] as a vector indicating the raw fitness 
of the bits with bit-values equal to 0 for Sm and Wm 二 [ ^m,o ^m,i ‘ • • ̂ m,i-i ] as the 
vector indicating the raw fitness of bits with bit-values equal to 1. Fitness assignment 
to the states of each component is as follows: 

For the m-th binary string Sm of the solution x, and 0 < i < /, 

f Um,i 二 F{x) and Wm,i 二 0 if bm,i-i^ = 0, (3.9) 
[Um, i = 0 and Wm,i = F{x) if bm,i-i^ 二 1. 

It is obvious that a single sample is not reliable enough in terms ofgetting the global 
view. Hence, we distribute a population of searching agents trying different partitions 
simultaneously. Their raw fitness values are added together forming another quantity 
called componentfitness. The more partitions are tried, the more reliable the component 
fitness values are. The assembling is done in the following way. 

For a population of size N, we have two sets of N raw fitness vectors u^ and Wm. 
Summation of all the same components of the N vectors of the respective sets gives the 
component fitness for the respective states. Denoting Uj,m,i and Wj,m,i as the raw fitness 
values for states 0 and 1 in the ( i - l - i ) - t h bit gained from evaluating the j-th binary 
string in the population for variable Xm respectively, the component fitness values for 
both states of the (/ 一 1 - i)-th bit &^j,(/_i_i) resulted from the population are: 

sr^N-i。， Y ^ N - i 

Urn,i 二 ％ ^ , M W = ^ 0 � ' . (3.10) 
^^m,i,0 ^^m,t,l 

where Qm,i,^ = { j G { 0 , 1 , . . . , A ^ - 1 } ： bm,j,i-i-i = ^} and «: = { 0 , 1 } . 
While Um and Wm are vectors with 1 number of vector components: 

t/m = [tAn,0f/m,l . . . Um,l-ll (3.H) 

Wm = [ W^,0 Wm,l . . • W W - 1 ] . (3-12) 

Vectors Um and Wm are normalized such that Um,i + Wm,i = 1, 0 < i < L Putting 
JJ^ and Wm together, we obtain a vector of combined component fitness with the same 
structure as Am' 

Hm = [Um,Q Wm，0 Um,l Wm，l …Um,l-1 Wm,l-1 ]• (3.13) 

Using this current component fitness values to make decision, the searching agents 
should be able to produce better binary strings, as they now have an immediate past 
searching experience to rely on. Continuously using the newly produced component 
fitness means forgetting the past searching experience except the immediate one. Instead 
offorgetting completely the past, we retain all the past information. The past component 

31 



fitness values for the m-th function variable are retained as follows: denote hm,k{t-^) 

as the k-th. component of Hm at time t-1，0 < i < /, 

am,k(i) = M-^)'^rn,k(i-^) + ( l - A n ， i ( t - l ) ) . " m ’ � t - l ) (3.14) 

where k = 2{l - 1 - i) for state 0, and k = 2{l - 1 - i) + 1 for state 1. 
Practically, we keep every antagonistic pair inside Am{t) normalized: am,k{t) + 

am,fc+i(0 = 1. The newly introduced quantity /^^,i(t) is called remembrance. It deter-
mines the fraction of the past collected information am,k{^-l) to be retained in the gen-
eration t. It is defined in such a way that different bits can have different remembrance 
values. There are two reasons why different bits should have different remembrances: 

1. Intuitively, the more significant bits controlling larger common partitions should 
have more reliable information collected than the less significant bits controlling 
smaller shattered partitions given same number of samples tried. Losing more 
past information to accommodate for the new one at the more significant bits to 
increase the speed of convergence becomes plausible. Hence, the more significant 
the bit, the smaller the remembrance it should be. 

2. The hierarchical structure has an advantage on search space reduction (see sec-
tion 3.2). Briefly speaking, reduction occurs at a level of the hierarchy when 
sufficient information is collected at all upper levels. For instance, if the most-
significant bit bm,i-i collected enough information, either am,o{t) or a^,i(i) will 
have very high value. Say if am,i{t) has a higher value, it is highly probable that 
the right partition contains the global optimum. Searching should then be concen-
trated on that region. In other words, the size of the search space is reduced by 
half, suggesting a smaller remembrance value be used to speed up the convergence. 

Therefore, we devised an adaptive remembrance scheme to speedup the convergence. 
Let r denote a threshold value above which means converged and vice versa and f3 denote 
the minimum allowed remembrance. Suppose the r-th bit bm,r of binary string s^ for 
function variable Xm is the first bit encountered starting from the most significant side 
that satisfies the following: 

| 0 . 5 - � 2 ( / - i - r ) W I > r V I 0 . 5 - a ^ , 2 ( / - r ) W I < ^- ( 3 . 1 ¾ 

Then the remembrance value used in each bit of Sm is set according to: 

o , � m I > i > ^ , ” w 
知州=r-ij-m ^ � , � 0 . (3.16) 

‘ r — i + 1 — 

This scheme, basically, keeps the remembrance for the converged bits (6/_i to 6r+i) 
constant at f3, while interpolates the rest from f3 to (r + |3)/{r + 1). Figure 3.7 shows 
the remembrance settings at difference stages of convergence. 

32 



1 p 1 1 < 1 1 . •.•.̂ .̂ •.•.•.•.令-" 

— ^ ―省-^^-一’ 

0.95 - ,-••• Z /'」. 
. / / / 

8 0.9 - / r=31 / r=15 / r=5 -

§ / / f 
I 0朋.丨 I • 

羞 。 . ” I I -
0.75 * —务—务《—‘ 

0.7 L ‘ ‘ ‘ ~ - ~ ~ ‘ ^ “ — i 
30 25 20 15 10 5 0 

bit position 

FlGURE 3 .7： REMEMBRANCE FOR DIFFERENT BITS UNDER DIFFERENT STAGES OF 

CONVERGENCE 

3 .4 .3 C o o p e r a t i v e r e f i n e m e n t a n d f e e d b a c k 

It becomes apparent now that an information processing cycle is formed. The 
pseudo-code shown in Algorithm 3.1 summaries the basic algorithm comprising the two 
components: 1) a group of searching agents who search independently; and 2) a global 
environment. The algorithm starts out without any global information for the searching 
agents to rely on. The most promising searching strategy for the agents would then be 
random search. Gradually, global information emerges due to the interaction between 
the agents and the environment - the feedback from the environment to agents and the 
refinement of the environment by the agents. 

A l g o r i t h m 3.1 THE INFORMATION PROCESSING CYCLE 

P r o c e d u r e iNFORMATIONPROCESSINCCYCLE 

global environment f - Empty 
W h i l e stopping criteria are not met 
Loop 

For each searching agent do 
search result 卜 Search( global environment ) 

E n d For 
global environment <r- Modify(collection of search result, 

global environment ) 
E n d W h i l e 

E n d P rocedu re 

33 



3.5 Enhancement features 

3 . 5 . 1 F i t n e s s s c a l i n g 

The model should be able to handle functions with landscapes of various shapes 
and features at different scales. However, judging from the model described before, we 
noticed that the raw fitness used is not a good choice to achieve the goal just stated. It 
is because in order to better differentiate the excellence of the binary strings, their raw 
fitness should be different distinctively. When their raw fitness values are very similar 
or getting closer to each other, they cannot be distinguished easily. This leads to a 
problem of insufficient convergence power for flat landscape. Having a close minimum 
and maximum raw fitness values, flat landscape will mislead the algorithm that the 
population is converged to an optimum. The same problem exists in sharp landscape 
when the population is converged to a tiny point at the sharp peak. The more the 
population converged (but not yet reached) towards the peak, the more difficult to 
home in the optimal solution. We can see that convergence driven by raw fitness is not 
only landscape dependent, but also depends on the stage of convergence. 

The same problem has already mentioned and tackled by [5, 6]. They analyzed a 
number of fitness re-mapping schemes such as fitness scaling, fitness windowing, and 
fitness ranking. However, their main concern is to find a good fitness re-mapping such 
that the fitness proportionate selection scheme in GAs would work well. They should 
then be very careful about the presence of a super-fit individual in a relatively poor 
population. 

Our concern, as stated above, is to maintain a stable fitness range whatever the 
objective function is and wherever the current population is. Hence, we devised a very 
simple fitness measure capable of zooming at different scales (different resolution levels) 
to cope with both the prominent difference of fitness values in high gradient landscape 
and the nearly indistinguishable fitness values in plateau-like landscape. Even if the 
landscape is mixed with both features, the fitness measure can still provide equal and 
enough convergence power. The fitness measure used is defined as follows: 

二 F f e ) - F - (3.17) 
“ pmax _ prmn 

where F^"^ 二 max o < i < N F{xi)，and F—竹=min o < i < N F{xi). 

Effectively, raw fitness values equal to 严工 will be scaled to 1.0, while those equal 
to F — will be scaled to 0.0. No matter where the population goes and how close the 
population raw fitness values are, the relative fitness of each of the searching agents can 
best be revealed and hence enhancing the effect of information gathering. To achieve 
our goal stated at the beginning of this section, we modify the current component fitness 

34 



stated in Eq. (3.9) by the new scaled fitness f j . 

Um,i = fj and Wm,i = 0 if bm,i-i^ = 0， (3.18) 

\ Um,i = 0 and Wm,i = f j if bm,i-i^ = 1. 

3 . 5 . 2 E l i t i s m 

The generic model depends very much on the small number of searched samples. 
If the samples happen to be very poor, the global information gathered will be poor 
and produce poor and misleading guide to the future search. Successive dependence 
on the poor information would eventually cause the search to get stuck in the poor 
local optimum. Hence, we employ a well-known strategy in evolutionary computation 
to pull the deceived population away from the wrong guidance. The strategy used is 
elitism (see [30, 20, 19, 18] for the importance of this strategy.) which is a heuristic 
making use of the fittest individual found in the course of generations to guide the 
search. This heuristic is used with an assumption that the chance of finding a fitter elite 
is greater or equal at the region of the elite currently obtained than the region currently 
occupying. There are different variants of elitism. We implement ours as follows. 

Throughout the searching process, we keep an elite s^ € S^ which is the best binary 
string vector found so far. 

尸 = F { x ' ) (3.19) 

二 F{{x'),Fmax) 

二 1. 

The elite is used as a reference to evaluate the population. In the presence of the 
adaptive fitness measure mentioned in section 3.5.1, the samples currently found will 
have fitness values relative to this elite: Fmax = F{x^) = 1. Regardless of what the raw 
fitness o f the elite is, its scaled fitness is 1.0 and all other samples will have scaled fitness 
below 1.0. Effectively, this heuristic eliminates poor samples (in a relative sense) by 
giving them low relative fitness values. Poor samples will then share smaller amount of 
percentage in the component fitness hm,k than that revealed by their raw fitness values. 
Guidance provided by the the gathered global information will become more reliable. It 
should be noted that it is not a threshold type of elimination, but a smooth and gradual 
type. We have two reasons why this kind of elimination is a better choice than the 
threshold-type elimination: 

1. Poor samples are not necessarily bad. 

They can be the source of new and better partitions. The presence of poor samples 
would stabilize the population and make the algorithm less greedy. 

35 



2. Avoidance of an extra parameter 

A clear-cut threshold type of elimination requires a parameter to determine where 
to do the elimination. In fact, we have no way to justify the use of any threshold 
value. 

Apart from being a reference point for evaluation, the elite can take an active role in 
shaping the global information A as in [17]. We consider the elite an extra but standing 
searching agent ofthe population. In other words, the elite contributes to the component 
fitness hm,k as if a normal searching agent, i.e., depending on the bit values of the binary 
strings in s% N / i x . p ^ e is added to either one of the component fitness pair: hm,k and 
hm,k+i- The quantity fJ, is the strength of elite. Factor N/fJ, keeps the strength of elite 
unchanged in different population size N. Without this factor, the effect o f the elite will 
be overwhelmed by large population. 

3.6 Illustration of the algorithm behavior 

3 . 6 . 1 T e s t p r o b l e m 

In this section, trying to illustrate the basic properties, we present simulation re-
sults solving an artificial one-dimensional function AF1 (Figure 3.8). The artificial 1-D 
function is designed with the sub-optima and the exceptionally sharp global optimum far 
apart. Also, it has many local optimal points. This problem is designed for illustrating 
the algorithm behavior only. The question on the suitability of using the algorithm to 
solve this problem is out of the consideration. For 0.0 < x < 1.0, 

FAFi{x) = [ l _ | ^ _ 1 . 8 | ] 6 0 + 

0.3(1 - x) sin(307r(a; - a;̂  + 0.01))] + 

[0.05 cos(667T(l - x^) + 2.1))] + 0.35. (3.20) 

The function is composed of three parts. The first part produces the exceptionally 
sharp peak at x = 0.8999999999. It is where the global maximum is located. The second 
and the third part are two amplitude-decreasing and frequency-increasing sine and cosine 
functions respectively. The latter one superimposes on the former one, creating local 
optima on the global landscape. Three optima that are of interest are listed in Table 3.1. 

This experiment demonstrates the basic behavior of the algorithm by showing the 
global information gathering behavior. Since the purpose of this experiment is not going 
to determine the optimal parameter settings nor displaying completely the algorithm 
performance, we tried a set of parameters selected after carrying out the experiment 
described later in section 3.6.2: N = {10，50, 90}, /3 = {0.00, 0.50, 0.95, 1.00}, “ 二 1’ 

T = 0.4, 1 = 32，maximum allowed iterations T is 1500. 

36 



2 i 1 I 1 ‘ ‘ ‘ ^ ‘ 5 

叙 global 

軌 ^ ^ 

0.2- A l f -
nl I I i_ 1 1 ‘ ‘ ‘ •" 
" o 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 

X 

FlGURE 3 . 8： T H E ARTIFICIAL ONE-DIMENSIONAL FUNCTION A F 1 

TABLE 3 . 1： OBJECTIVE FUNCTION VALUES AND LOCATIONS OF THE FIRST 3 OPTIMA 

‘ “ 7+ X 
G l o b a l o p t i m u m 1.9376390000600000 0.8999999999 

0.0365754990, 
F i r s t s u b - o p t i m a 1.8861121654099478 0.0365754992, 

0.0365754995 
0.0511608396, 

Second s u b - o p t i m a 1.8770197336170074 ^ o511608399 
37 

« 



Populat ion s ize=10 Populat ion s ize=50 Populat ion s ize=90 
2 . 1 2| • > 2 ‘ “ 

1.9 - 一 . ̂  ."=_ —_— _z-. — .- 1.9 •• “ ••.—.-〜.•• ”、“ ‘ 一 -• 1.9 ：‘ ~...卞.--，.•• ~ • ~ •' ~-' 
•'•••/ ？ / z 

1.8 i I • 1.8 ^ I - 1.8 ‘ I ~ 7 ^ -
； I - 1.00 i I - 1.00 ：1 I — 100 

； — 0 . 9 5 , - 0.95 , ^ i , - 0.95 
1.7 I - 0.50 • 1.7 ！ ‘ - 0.50 " 1-7 ^ " 0.50 " 

' I 0.00 • I • 0.00 j I |- • 0 00| 
1.6 .丨 _ 1.6 [ ‘ • 1.6 丨 I 

1.5 .丨 - 1 . 5 . 丨 • 1.5 ‘ I 

1.4 •丨 • 1.4 • ‘ • 1.4 L 丨 

1.3 • ‘ • 1.3 • ‘ • 1.3 • , 

1.2 -1 • 1.2 • I - 1.2 • I 

1.1 \̂Â ^̂ \̂ |̂ /yv̂ Â/sr>ÂyvV̂vVi 1.1 >̂"v̂ ^̂ ">A<v/wvWV/V"V̂ ^ 1.1 *̂ v̂A>W"̂^̂>v̂ Ŵ"̂>̂ p̂>̂"/̂ -̂̂  
0 500 1000 0 500 1000 0 500 1000 

FlGURE 3.9： AVERAGE RAW FITNESS UNDER DIFFERENT REMEMBRANCES 

Figure 3.9 shows the convergence under different remembrance. Remembrance 
equals to 1.0 behaves as if a random search that the average raw fitness shows strongjerk-
iness and stays at low values ( « 1.1) without converging. With non-zero remembrance, 
all converge similarly reaching nearly the optimal values. Decreasing the remembrance 
from 0.95 to 0.0, the final converged average raw fitness drops, but the speed of conver-
gence increases, reflecting the role of remembrance being a moderator between quality 
and speed. ‘ 

Figure 3.10 compares the behavior of the algorithm under different population sizes. 
It is just another view of Figure 3.9. Another conclusion that can be drawn from 
Figure 3.10 is that using large population size, better result (on average) can be obtained. 

Figure 3.11 shows the convergence profile of the best run in each of the parameter 
set. Besides supporting the arguments above, the profile demonstrates a resolution con-
trol behavior: convergence starts at the more-significant bit representing the landscape 
in lower resolution and finish at the least-significant bit representing the landscape in 
higher resolution. Proceeding from the 31-th bit to 0-th bit, the values of the global 
information am,k approach to either one of the extremities steadily at the beginning and 
then quickly at the later stage. 

3.6 .2 P e r f o r m a n c e s t u d y 

This experiment demonstrates the algorithm performance: 1) the effect of popula-
tion size on the confidence of getting global optimum; and 2) the effect of remembrance 

38 



Remembrance=1.0 Remembrance=0.95 
1.14| ^ 

一 1 0 广 … ： ： 一 一 〜 

- 5 0 厂 ~ ‘ ‘ 

1.12 ^ ^ 1.92 广 

: | 斷 ： t ^ 
I y ,'i - 50 

1.86 I, • 一 90 
1 Q g I Lu . 

0 500 1000 1500 0 500 1000 1500 

Remembrance=0.50 Remembrance=0.00 
I — i o | — 10 
- 5 0 - 50 

1.92 .一 90 1.92 • - 90 

1 . 9 • ： ： : : 二 ： ： 二 ： : 、 1 . 9 - - • - • - 一 一 一 一 一 一 一 - • - ― 一 一 -

/ ^^"%/ I 

1.88 1.88 j 

1 . 8 6 1 . 8 6 r • “~^^‘ 

0 500 1000 1500 0 500 1000 1500 

FlGURE 3.10： AVERAGE RAW FITNESS UNDER DIFFERENT POPULATION SIZE 

39 



Rem=1.0, N=10 Rem=1.0, N=50 Rem=1.0, N=90 
51 51 — 51 

0, 50.5 0, 50.5 0) 50.5 S) o> S* B B S 
§ 50 i 50 I 50 
P 2 ^ 
0 <D 0> 
4̂9.5 °-49.5 49.5 

49 • 49 49 
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 

Rem=0.95, N=10 Rem=0.95, N=50 Rem=0.95, N=90 
1 0 0 p ^ 100.~"y^ 1 0 0 p y 
80 I ^ 80 / ^ 80 / 

1 60 S 60 / f 60 / … c U--.' c L^j.：^^^^'^^. c ,̂ .̂ :̂ :,:-.:̂ -1̂ ^ ® 卜 o '7̂ % ~̂«-;<_̂  s r ^ • ^ '"->̂ .̂  p ° \ T ^ pof：^.：^^^^>^ po^r^r^\ 
20 \ ’i .. \ 20 \ \ _.. \ 20 � � .. \ 
nl � . . � "•••••••…,-1 o' —•"^•"_ ...….丨 o' ^~~^ ••……..丨 

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 
Rem=0.5, N=10 Rem=0.5, N=50 Rem=0.5, N=90 

1 0 0 n 1 0 0 n 1 0 0 n 

80 80 80 0) ® ® o> o> 2> __ 
I 60 .. I 60 ^ I 60 ^ 

: i l A v J i A ^ :ll:^^y^:WW^r:v^ 2:liL::Gr:(i:nr:::̂ :̂ :i2ihr; 
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 

Rem=0.0, N=10 Rem=0.0, N=50 Rem=0.0, N=90 
1 0 0 n 1 0 0 n 1 0 0 n 

80 80 80 0) <D 0 S) D) D) 
s 60: B 60 I 60 

I 4 o h II I 40l I 40\ 

:yk/̂ ^̂ LyUAi) ^)kc;t^::^:::m!:h^t^^ 2:(î ŵ̂ ^̂ ŝ ^̂ v̂yV̂ :vs/rv̂  
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 

generations generations generations 
i line 

31 
23 

7 
0 

FlGURE 3.11： CONVERGENCE OF FIVE SELECTED ttfc+i 

. • 

40 



on the confidence getting global optimum. The experimental settings are as follows: N 
= { 1 0 ’ 30, 50，70，90}, j3 = {0.00, 0.25，0.50, 0.75, 1.00}, “ = 1，r 二 0.4, and 1 = 32. 
We tried each parameter set 100 times allowing maximally T = 5000 iterations. The 
same 1-D function is used. Tables 3.2 and 3.3 shows the percentage of runs out of 100 
getting the global optimum and the first sub-optima. Throughout the experiment, we 
get none of the second sub-optima. In this experiment, getting the optimum means 
getting exactly the partition to where the optimum resides. In our case with bit-string 
of length 32，our goal is to get a solution with all 32 bits correct, i.e., search for one 
solution out of 2^^. Tables 3.4 and 3.5 shows the average number of iterations taken to 
get the optima. 

TABLE 3 . 2 : PERCENTAGE OF TRIALS GETTING THE GLOBAL OPTIMUM 

^ T ~ N 
^ 10 30 50 70 90 

"Too~~0^~~~0^"""0^~~^~~~0.00 
0.75 13.00 20.00 29.00 45.00 58.00 
0.50 7.00 21.00 22.00 24.00 34.00 
0.25 9.00 13.00 16.00 14.00 18.00 
0.00 9.00 13.00 10.00 11.00 22.00 

TABLE 3.3： PERCENTAGE OF TRIALS GETTING THE FIRST SUB-OPTIMA 

13 N 
^ 10 30 50 70 90 

“1.00 0 ^ 0̂ 00 0̂ 00 0 ^ 0.00 
0.75 70.00 73.00 70.00 54.00 42.00 
0.50 62.00 70.00 76.00 73.00 65.00 
0.25 40.00 77.00 76.00 81.00 79.00 
0.00 34.00 63.00 74.00 78.00 73.00 

Ef fec t o f p o p u l a t i o n size 

Tables 3.2 and 3.4 show that by using a larger population size, the sharp and rela-
tively difficult-to-find global optimum can be found with greater confidence while using 
less iterations. This implies that when large population size is used, each update of 

41 



TABLE 3 . 4 : AVERAGE ITERATIONS REQUIRED TO REACH THE GLOBAL OPTIMUM . N 
^ 10 30 50 70 90 

1.00 - - - - - ~ ~ 
0.75 165.7 172.9 154.7 159.6 152.7 
0.50 91.9 84.5 89.0 87.5 82.8 
0.25 74.9 59.2 64.1 60.9 56.5 
0.00 62.8 47.3 46.7 43.5 45.5 

TABLE 3 . 5： AVERAGE ITERATIONS REQUIRED TO REACH THE FIRST SUB-OPTIMA 

^ 7 ~ N 
^ 10 30 50 70 90 

1.00 - - - - - ~ 
0.75 177.5 165.9 168.7 152.6 147.6 
0.50 99.3 93.4 88.9 88.6 82.9 
0.25 70.0 66.3 63.1 61.7 60.8 
0.00 63.5 49.7 47.7 47.5 46.3 

the global information is more effective in the sense of information quality. Increasing 
population size means increasing sample size per iteration and more information can 
then be gathered before every actual update, making the newly added information more 
reliable. However, greediness as well as convergence speed are reduced owing to the 
removal of bias produced by small population. In spite of this, the algorithm can still 
spend less iterations to produce the level of performance unattainable by small popula-
tion size, reflecting the power of collective behavior. However more function evaluations 
are expected to pay for the low greediness. 

R e m e m b r a n c e 

The result we obtained shows the usefulness of the availability of global information 
on handling global optimization. In general, the performance on getting the sharp and 
narrow global optimum drops on decreasing (5 which can be explained as the decreasing 
dependence of global information. To illustrate this point, we can compare the results 
obtained for |3 equals 0.0 and the rest (except 1.0). With (3 equals 0.0, it is solely the cur-
rent component fitness that is inherited to the next generation while losing completely 
those gathered previously. Having limited guidance provided by the current component 
fitness, the unsatisfactory performance of the algorithm is understandable. Despite the 
total loss of past global information except passing only the currently obtained informa-
tion to the next generation, there is still a weak dependence of each generation to the 
past. This successive dependence explains the level of confidence achieved. Evolutionary 
algorithms (EAs) basically are the methods falling in this scenario. 

42 



TABLE 3 . 6： PERCENTAGE OF TRIALS GETTING THE GLOBAL OPTIMUM - LARGE RE-
MEMBRANCE. (SHADED ENTRIES： > 9 5 % ) ) . N 

P 10 30 50 70 90 
0.99 74.00~~99.00~~"100.00 ~~100.00~~100.00 
0.98 55.00 90.00 97.00 100.00 100.00 
0.97 39.00 82.00 89.00 99.00 100.00 
0.96 38.00 69.00 87.00 95.00 98.00 

" 0 ^ ~ ~ 3 2 . 0 0 ~ ~ 6 3 . 0 0 86 .00 96 .00 97 .00 
0.90 21.00 42.00 59.00 70.00 80.00 
0.85 19.00 27.00 51.00 55.00 73.00 
0.80 11.00 20.00 43.00 49.00 54.00 

Using large /9, say 0.75, a significant portion (75%) of the gathered global informa-
tion is preserved in each generation. In other words, most of the information obtained in 
many previous generations can be accumulated. The information becomes so rich that 
it gives a rather strong and correct guidance for the future search. Generally speaking, 
the larger the j3 value, the stronger the dependence of each generation to the past and 
the more reliable the gathered information will be. Hence the probability of selecting 
s* stated in Eq. (3.3) can be increased. 

R a n d o m search 

The worst performance obtained with f3 二 1.0 is as expected (already illustrated in 
Figure 3.9). Remembrance equals exactly to 1.0 means none of the gathered information 
is lost, and at the same time, no information can be gathered. Since the algorithm starts 
out with equal ak Values for both states, the algorithm ends up selecting the states with 
equal chances, i.e., random search. 

According to our argument on the advantage of using large remembrance, we look 
further into the performance with remembrances between 1.0 and 0.75. Keeping all 
the experimental settings unchanged, we tried another two sets of remembrance val-
ues: P = {0.80, 0.85, 0.90, 0.95} and f3 二 {0.96, 0.97, 0.98，0.99}. The results shown 
in Tables 3.6, 3.7, 3.8 and 3.9 demonstrate the improved solution-finding capability of 
the algorithm, supporting our argument on using large remembrance values. Table 3.10 
summaries the algorithm behavior that using large population and remembrance can 
improve the global solution finding performance of the algorithm. 

43 



TABLE 3 . 7： PERCENTAGE OF TRIALS GETTING THE FIRST SUB-OPTIMA - LARGE 
REMEMBRANCE. 

Q N ~ 

^ 10 30 50 70 90 
" o ^ ~ ~ ^ 1 0 0 ^ 

0.98 45 10 3 0 0 
0.97 61 18 11 1 0 
0.96 62 31 13 5 2 

" 0 ^ 9 5 ~ ~ ^ ~ ~ f 7 ~ ~ l 4 ~ ~ 4 F 
0.90 75 58 41 30 20 
0.85 72 73 49 45 27 
0.80 72 79 56 50 46 

TABLE 3 . 8： AVERAGE ITERATIONS REQUIRED TO REACH THE GLOBAL OPTIMUM -

LARGE REMEMBRANCE 
N 

^ 10 30 50 70 90 
0.99 2,875.9 2,647.8 2,531.0 2,461.7 2,382.4 
0.98 1,601.3 1,521.3 1,399.8 1,378.5 1,319.1 
0.97 1,116.5 1,070.7 976.3 955.5 951.8 
0.96 862.4 839.9 792.2 754.1 737.1 

" 0 ^ 709^ 6 8 ^ 642.8 642.0 606.2 
0.90 382.0 374.0 351.4 340.2 343.1 
0.85 273.7 252.8 260.0 249.5 241.6 
0.80 198.4 206.0 194.7 196.1 193.9 

TABLE 3 . 9： AVERAGE ITERATIONS REQUIRED TO REACH THE FIRST SUB-OPTIMA -

LARGE REMEMBRANCE 
. N = 

^ 10 30 50 70 90 
0.99 2,957.3 2,361.0 - - - ~ ~ 
0.98 1,545.8 1,502.7 1,269.7 - -
0.97 1,077.1 1,052.0 998.0 935.0 -
0,96 859.8 841.7 761.0 708.2 659.5 

^0^95 702.6 651.1 643.1 679.5 609.3 
0.90 386.1 368.7 361.5 333.7 344.6 
0.85 271.6 259.5 256.2 246.6 236.1 
0.80 216.3 202.2 196.6 197.3 182.0 

- ‘ 

44 



TABLE 3 . 1 0： PERCENTAGE OF TRIALS GETTING THE GLOBAL OPTIMUM AND THE 
FIRST SUB-OPTIMA - LUMP SUM . N . N = 

P 10 30 50 70 90 ^ 10 30 50 70 90 
~ T m 0 0 0 0 ^ ~ Q M ~ ~ n ~ ~ I o o ~ " I o o ~ ~ I o o ~ " M ~ 

0.99 100 100 100 100 100 0.80 83 99 99 99 100 
0.98 100 100 100 100 100 0.75 83 93 99 99 100 
0.97 100 100 100 100 100 0.50 69 91 98 99 99 
0.96 100 100 100 100 100 0.25 49 90 92 95 97 
0.95 100 100 100 100 100 0.00 43 76 84 89 95 
0.90 96 100 100 100 100 -

3 . 6 . 3 B e n c h m a r k t e s t s 

In this experiment, we tried another four problems listed in Table 3.11. They are 
commonly used in testing global optimization algorithms. We tried: N = {10, 50，90}, 
/3 = {0.80’ 0.85，0.90, 0.95}, “ = 1, r = 0.4, 1 = 16 for R2, GP2 and H3 problems. For 
S1, we tried: N 二 {10, 20, 30}, /3 = {0.93, 0.94, 0.95, 0.96}, fi = 1, r = 0.4, 1 = 16. 

Tables 3.12 and 3.13 show the percentage of trials and average iterations required 
to get the global optima of the respective functions. We obtained 100% success rate 
(reaching the prescribed / + ) on S1 and GP2 functions under majority of our experi-
mental conditions. While for R2 and H3 functions, the low success rates for some test 
conditions can be explained by their rugged landscapes and the raise in dimensionality. 

3.7 Discussion and analysis 

3 . 7 . 1 H i e r a r c h y o f p a r t i t i o n s 

S o l u t i o n p rec i s i on Apart from the search space reduction, the hierarchical structur-
ing of search space allows function optimization to increase precision without increasing 
the difficulty in the same pace. Any increase in precision by one single bit would double 
the search space size. As shown in Figure 3.11, the convergence is carried out in a more 
or less bit-by-bit fashion. Regardless of doubling of the search space, the convergence of 
a bit concerns only about the two regions separated immediate from the partition under 
its control. The increased precision is the subject matter of the added bit only. In fact, 
the difficulty is mainly determined by the ruggedness of the partition under control. So, 
if it is the partitions under the control of the additional bits that are highly rugged, the 
increased difficulty is attributed to these bits only and the convergence in the rest of the 
hierarchy (the part above the added bits) will not be adversely affected. 

- • 

45 



TABLE 3 . 1 1 : BENCHMARK TEST FOR P B H S : T E S T PROBLEMS 

P r o b l e m s n / * a;* # e v a H 
S1 - Shekel 1 ~~14.5926520 0.6858609 b 
R2 - Rastrigin 2 2.0000 [0 0] b 
GP2 - Goldstein-price 2 -3.00001 [0 -1] 492 [57： 

H3 - Hartman3 3 3.86 [0.4047 0.8828 0.8732] 1,014 [8： 

f : Average number of function evaluations 
jt: Number of iterations 
b: See the entry GA in the table below. 

, . . F u n c t i o n eva lua t ions 
A l g o r i t h m s - 3^ R^ GP2 H3 

~ ~ M ? I U 7 6 4400 2500 
CRS - - 2500 2400 
SA - - 563 1459 
SAsde - - 5439 3416 
HGA - - 146 191 
ARS - - 492 -
NP - - 936 1014 
PE - - 200" -
GA* 1185.9 3676 1644.6 972 

jt: Number of iterations 
• : Experiments carried by ourselves. See the following table for the experimental conditions. 
- : N o results reported. 
MS - Multistart [52, 58； 

CRS - Controlled random search [51] 
SA - Simulated annealing [16: 
SAsde - SA based- on stochastic differential equations [3" 
ASA - Adaptive simulated annealing [36] 
HGA - Hybrid genetic algorithm [35] 
APRS - Adaptive partitioned random search [57: 
NP - New Price's algorithm [8 
PE - Perttunen's method [56] 
GA - Genetic Algorithm 

E x p e r i m e n t a l cond i t i ons fo r t h e G A tes t 
“ S1 R2 GP2 H3 

P o p u l a t i o n size 30 50~~30 9 ^ 
M u t a t i o n p r o b a b i l i t y P^ l/nl , / = 16 
Crossover p r o b a b i l i t y P^ 1.0 (Two-point) 
F i tness Fitness scaling 
Se lec t ion 2-Tournament 
R e p l a c e m e n t Proportional 
Success r a t e 100% 

46 



TABLE 3 . 1 2 : PERCENTAGE OF TRIALS GETTING THE GLOBAL OPTIMUM FOR S1 , R2 , 

GP2, AND H3 
, S1 R2 
P 10 20 30 “ 10 50 90 

" o ^ ~ ~ m ~ ~ ^ 0 ~ ~ m 0 ^ ~ ~ ^ ~ ~ H o ~ ~ 1 6 ^ 
0.95 99 100 100 0.90 69 100 100 
0.84 100 100 100 0.85 56 97 100 
0.93 98 100 100 0.80 44 94 98 

5 GP2 — ~ ~ H3 
P 10 50 90 P 10 50 90 

" o ^ ~ ~ m ~ ~ 1 5 5 ~ ~ H o 0 ^ ~ ~ 1 5 5 ~ ~ " ^ ~ ~ H o " 
0.90 100 100 100 0.90 95 96 98 
0.85 99 100 100 0.85 83 92 98 
0.80 99 100 100 0.80 74 90 95 

TABLE 3.13： AVERAGE NUMBER OF FUNCTION EVALUATIONS REQUIRED TO REACH 
THE GLOBAL OPTIMUM FOR S1 , R2 , G P 2 , AND H3 

5 S1 R2 
P 10 20 30 “ 10 50 90 

" 0 ^ ~ ~ 1 , 2 3 6 1,908 2,510 0.95 1,260 4,565 6,993 
0.95 1,001 1,600 2,174 0.90 704 2,695 4,023 
0.94 915 1,444 2,039 0.85 514 1,925 3,006 
0.93 825 1.331 1.800 0.80 398 1,530 2,412 

. GP2 ~ " H3 = 
^ 10 50 90 “ 10 50 90 

" 0 ^ 951 3,100 4,653 0 ^ 709 1,181~~1,547 
0.90 590 1,890 3,042 0.90 434 724 959 
0.85 405 2,420 2,331 0.85 330 555 766 
0.80 . 329 1,125 1,872 0.80 274 458 563 

3 .7 .2 A v a i l a b i l i t y o f g l o b a l i n f o r m a t i o n 

The hierarchical structuring of search space is essential to our algorithm in global 
optimization. However, in the absence of global information, the structuring is almost 
useless in global problem solving. We know from the hierarchical structure that those 
most-significant bits controlling the main direction of the later search determines the 
possibility of finding the global solution in that run. That means the fate of that run is 
determined to a large extend at the very beginning. Unless in the presence of reliable 
global information, the result obtained cannot be explained satisfactorily. 

3.7 .3 A d a p t a t i o n 

A d a p t i v e r e m e m b r a n c e scheme The successfulness of applying our adaptive re-
membrance scheme as justified by the results obtained lies in the reasons behind the 

47 



design of the scheme. Taking a typical /5 setting: 0.95, we can see the initial fluctuation 
of the convergence curves (Figure 3.11) of those less significant bits. This reflects a 
fact that the information collected in these bits are not reliable enough initially. They 
will converge prematurely and incorrectly if we use small and constant (3 value for all 
bits throughout the generations. Using larger |3m,i for less significant bits, however, can 
prevent the bits from converging too fast to mislead the global information gathering at 
the more significant bits. Only when the most significant bits have converged that the 
/3yn,i values for the remaining bits are allowed to increase. In fact, the maximum allowed 
|3m,i for the less significant bits can be larger than the more significant bits, owing to 
the reduced sample space. However, presently we do not have a good scheme to decide 
how large the (5m,i should be. Therefore, we employed a conservative way which sets the 
maximum allowed f3m,i to f3. 

Fi tness measure The ability to converge to the extend that the optimal binary string 
is generated should be attributed to our fitness measure. Representing numbers ranged 
from 0.0 to 1.0 using 32-bit binary string allows numbers be distinguished in a very 
precise way. Regardless of how powerful the algorithm is in locating the promising area 
where the global solution resides, pushing a nearly converged population, for instance, 
with several least significant bits diverged, to the exact optimum is extremely difficult. 
The sole reason is the weak convergence power generated by the nearly converged popu-
lation. Our fitness measure is designed in such a way to cope with this kind of problem. 
The high percentage of trials reaching the exact optimal regions as shown in Table 3.2 
and 3.6 clearly indicates the power of the fitness measure. 

3.8 Summary 

In this chapter, the basic pBHS algorithm is presented. The algorithm is based on 
a hierarchical view of sample space subdivision. Coupled with this partition hierarchy, 
the information processing cycle created by the collective contribution of samples and 
the global searching environment makes the crucial global information accessible. The 
experimental results proved this point that the computational expenses of pBHS on 
problems of low dimension are similar or even less than the existing advance techniques. 
However, the capability of this model on solving high-dimensional problems are quite 
limited as reported. We attribute this limitation as the inefficiency introduced by the 
one-to-one mapping of the samples among dimensions. In chapter 4, we introduce 
cooperation among the samples of each dimension to overcome this problem. 

This basic model keeps one set of component fitness values as the global infor-
mation. Such fitness values can only indicate the bit values of one optimal solution. 
That means the algorithm is incapable of locating more than one optimum simultane-

48 



ously as required in multi-modal function optimization and deceptive problem-solving. 
A straightforward way to extend the algorithm to overcome this deficiency is to keep 
several sets of component fitness values. Each set should have a separate and inde-
pendent group of searching agents responsible for information gathering. Introducing 
multiple groups of searching agents and component fitness values, we ought to have a 
way to prevent them from converging into the same optimal point (unless the function 
is unimodal). Having multiple number of groups, interactions among them should be 
encouraged to increase the diversity as in GAs. Chapter 5 is devoted to the discussion 
on the introduction of multiple number of groups. 

49 



PART III 

Cooperation and Competition 

« 



CHAPTER 4 

High-dimensionality 
• 

High-dimensionality poses a great challenge to all optimization algorithms, in par-
ticular searching algorithms. It is not only the exponential scale-up of the search space 
size, but also the presence of different degrees of dependency among the dimensions. 
This chapter describes how the pBHS can be extended to become pcBHS {Probabilistic 
Cooperative Binary Hierarchical Search) to handle high-dimensional problems by de-
coupling the dimensions to form subpopulations and by using a cooperation technique. 
Decoupling of dimensions allows individuals in different subpopulations to form solutions 
freely with each other in a cooperative manner. The employed cooperation technique 
is used to provide an appropriate fitness measurement so as to promote good coopera-
tion. This extension is shown empirically to be useful to increase the efficiency over the 
basic pBHS model. The scaling property as well as the performance of the model are 
also studied. The results indicate that the extended model performs satisfactorily when 
compared with the existing advanced stochastic techniques. 

4.1 Introduction 

4 . 1 . 1 T h e c h a l l e n g e o f h i g h - d i m e n s i o n a l i t y 

The basic model presented in chapter 3 is rather limited and inefficient, though it 
can locate the global optimum accurately. The basic pBHS creates a population of N 
complete solutions to the problem. In the one-dimensional case, a complete solution is 
a vector consisting of one element only. While, in multi-dimensional problems, a single 
complete solution consists of a vector of multiple elements. The probability of generating 
n elements (a complete solution) simultaneously so as to optimize a single objective is 
much lower than optimizing them individually^ • The probability of finding the optimum 

/ 

51 



vector X* = [xĴ rJ； • • • x^_^ ] for the two cases are shown respectively as follows: 

‘ n 

J J Frob(x*) Optimize together 
Frob(x*) = n—o (4.1) 

y^ Prob{x*) Optimize individually 
, i = 0 

Optimization of the objective variables together is capable of overcoming the dif-
ficulty imposed by the presence of dependency among variables. The tradeoff is the 
efficiency of the algorithm. To optimize the objective variables separately, we can raise 
the probability dramatically even in the low dimensional cases. What is sacrificed is the 
solution quality when there is a strong dependency among various dimensions. 

4 . 1 . 2 C o o p e r a t i o n - A s o l u t i o n t o h i g h - d i m e n s i o n a l i t y 

In a population of complete solutions, it is possible that some Xi in some solutions 
is X* and some Xj in some other solutions is x*j, where both x* and x*j are optimal 
solution of the “ h and j-th dimension. However, these solutions may have low fitness 
values owing to their recessive nature. Unless in the presence of some specific solution 
composition that their contributions and hence their fitness can be revealed. Since the 
complete solutions in which they reside have low fitness, they are subject to be lost. 
The coupling of the dimensions in the pBHS model then limits the chance of the good 
solutions to reveal their fitness. Extra computation has to be used to regenerate the 
lost solutions. 

If we treat each of the n dimensions as a single subpopulation of size N instead 
of a population of.iV complete solutions, and each individual in a subpopulation does 
not tie with any individual in other subpopulations, they are said to be free and they 
are allowed to join any individual in other subpopulations to form complete solutions. 
By this way, it is easier to have good combinations. In the next section, a probabilistic 
cooperative binary hierarchical search (pcBHS) is presented based on this idea. 

4.2 Probabilistic Cooperative Binary Hierarchical Search 

4 . 2 . 1 D e c o u p l i n g 

In the basic pBHS model, a population is defined as a group of sample points 
consisting of samples from all n sub-spaces. In the following, sample point is referred 
to as a complete solution while a sample from a sub-space is referred to as a solution 
fragment. For instance, a complete solution for a three-dimensional function F{x) is a 
vector [xo xi x2] which consists of three solution fragments: xo^ xi and x2. 

^What is mean by ‘optimizing them individually' does not mean optimizing them separately. 

52 



/^^^ T ~ ^ 0 

厂_圓圓】 
A single ^ ^ ^ ^ 
solution in ；；；̂；；̂  ；；̂；；̂  ^Solution 

• the basic = ― 一 ^ ^ ^ fragments pBHS model ： 

I Z Z Z I I Z Z I Z Z Z Z Z I N - 2 
Z Z Z Z l t Z Z I ^ k - i 

n Subpopulations 

FlGURE 4 . 1： DECOUPLING 

In pcBHS, decoupling is taken such that each sub-space exists as its own and a single 
population becomes n subpopulations. The size of each subpopulation is still kept at N 
in order to maintain the same varieties of solution fragments as in pBHS. The situation 
is illustrated in Figure 4.1. The shaded region enclosed by two dotted lines indicates a 
single complete solution in the basic pBHS model. In pcBHS, all solution fragments in 
a subpopulation are not tied with any solution fragment in other subpopulations. What 
we have are n sets of N solution fragments. 

This decoupling allows a lot of flexibility on the formation of complete solutions. 
The basic pBHS model actually is a special case of pcBHS that the choice of solution 
fragments combination is restricted to a dedicated one fragment from each subpopula-
tion. Enumerating all possibilities is another scheme to fully utilize the information in 
all subpopulations. However, the quality of the information extracted may not justify 
the computational expenses required. Hence, in order to exploit efficiently the advantage 
of the decoupling, complete solutions are generated by employing the scheme in [50 . 

4.2 .2 C o o p e r a t i v e f i t ness 

Before describing how to combine solution fragments, the issue on fitness measure-
ment should be discussed first. The ordinary fitness measurement as used in pBHS 
becomes inappropriate in the cooperative model. Raw fitness is meaningful only when 
a single complete solution exists. After decoupling, fragments representing the problem 
sub-spaces are created. Their fitness values are undefined. Cooperative fitness as de-
fined in [50] is employed to evaluate the solution fragments. Given n arbitrary solution 
fragments {xo, xi, • • - ,Xn- i } from each subpopulation, each of their raw cooperative fit-
ness equals F{x) where x = [^o xi ••• Xn-i]. Suppose that the same set af solution 

53 



fragments are given with Xn-i replaced by < _ i , their raw cooperative fitness become 

F{x') where x' = [a;�a:i ... x'^_^]. 

4 . 2 . 3 T h e c o o p e r a t i v e m o d e l 

The cooperative pcBHS model differs from the basic pBHS model in three aspects: 
fitness evaluation, fitness scaling, and elitism. Owing to the change in the interpretation 
o f the generated solution fragments, the use of cooperative fitness is introduced. Hence, 
we have to define how the fitness is going to be scaled and accumulated. We also have 
to define how elites can be formed and used. Algorithm 4.1 gives an overview on the 
differences between the two models. As shown in the algorithm, it is Steps 3 -5 of the 
basic pBHS model (see Appendix A) that have to be modified. 

A l g o r i t h m 4 .1 PcBHS 0VERViEW 

Step 1: Initialization 
Step 2: Generation of a new population 
Step 3: E v a l u a t i o n / * modified in pcBHS * / See A l g o r i t h m 4.2 
Step 4: F i t ness sca l ing / * modified in pcBHS * / See E q u a t i o n 4.2 
Step 5: I n f o r m a t i o n g a t h e r i n g / * modified in pcBHS */ 
Step 6: Information deposition 
Step 7: Adjustment of remembrance values 
Step 8: Goto Step 2 if 

(i) max. generation is not reached; and 
(ii) stopping criteria not met. 

F i tness m e a s u r e m e n t a n d fitness sca l ing 

As discussed in the previous sections, raw fitness is replaced by cooperative fitness 
owing to the decoupling of solution fragments. Suppose that there is a global elite 
x^ = [ XQ x\ . . . a;^_i ]，the cooperative fitness of each solution fragment Xm,j in each 
subpopulation m is defined as cF{xm,j, x^)- Function cF is simply the objective function 
F applied to a complete solution formed by replacing the m-th element in x^ by Xm,j ‘ 
Algorithm 4.2 shows how it is implemented. Under this scheme, there are n x N number 
of complete solutions centered around x^ formed. These raw cooperative fitness cF of 
each solution fragments are scaled within their subpopulations only. Denoting cf as the 
scaled cooperative fitness, the cf of the j-th individual in the m subpopulation is: 

rf(x . a;e>| 一 cF(xm,j,x^) - cF^'^ ( ) 
CJ{Xm,j,J^ ) — ^pmax _ cF^^^ 

where cF^"^ = max{ F{x^), m a x o < j < N - i cF{xm,j, x^)} 
^pmin ^ J^in{ F{x^), mmo<j<N-lCF{Xm,j,X^)} 

54 



In Equation 3.18, it is f j that is fed back into the system. We now use the scaled 
cooperative fitness cf. Given a binary string Sm of the m-th dimension, and 0 < i < /, 

the component fitness for the (/ - 1 - i)-th bit is determined as follows: 

！ Um,i = cf{xm,j,x^) and w^,i = 0 if bm,i-i-i = 0, (4.3) 
\ Um’i = 0 a n d Wm,i = cf{Xm,j,X^) if bjn,l-l-i = 1. 

A l g o r i t h m 4 .2 PCBHS - C 0 0 P E R A T I V E FITNESS ASSIGNMENT AND local ELITES UP-
DATING. This procedure assigns fitness (cooperative fitness) to all solution fragments. 
In each subpopulation, if the best fragment is better than the elite fragment《，it be-
comes the new elite fragment. It should be noted that the current elite x^ is not changed 
in this procedure. 
P r o c e d u r e C 0 0 P E v A L U A T i 0 N 

For each subpopulation Pm, 0 < m < n 
x'^ ^ x%̂  / * x'^: Elite fragment of the m-th subpopulation * / 
For each solution fragment Xm,i in Pm 

X ^- replace the m-th element of x^ by Xm,i 
cf{Xm,i,X^) f- F{x) 

i f cf{xm,i^x^) > c / K , O t h e n 

^m 卜 ^m,i 

E n d i f 

E n d f o r 

E n d f o r 

E n d P r o c e d u r e 

E l i t i s m 

Under this model, the elitist strategy used in the basic pBHS model have to be 
modified. Since each subpopulation is individually responsible for a single unique di-
mension, elitism is applied separately to each subpopulation (see Algorithm 4.2) in each 
generation producing a set of new local elites {x'^, a^f,. •.，x'^_^}. The new global elite 
x � e is selected from the following: 

• No -change 

The existing global elite x^ with raw fitness F(x^). 

• L o c a l 

Any one of the local elite x'^ in cooperation with the existing global elite x®. 

55 



• R a n d o m 

The best of n complete solutions formed be cooperating randomly picked solution 
fragment x̂ ^ with the global elite x^. The cooperative fitness of a complete so-
lution formed by cooperating a randomly selected solution fragment in the m-th 
subpopulation with the global elite is denoted as c/(a:^, x^). 

• M u l t i p l e 

A complete solution formed by combining the existing global elite x^ and those 
x'^ whose cf is greater than F{x^): 

Vm，0 < m < n • cf(x'^, x') > F{x') (4.4) 

Suppose that the set of local elites satisfies this criterion is 论 = { x i , x ' ^ } , the 
complete solution would be {:cg,xf,a;Lx'3e,. . . , ic^_i} and its cooperative fitness 
is denoted as c / ( ^ , x^). 

The global elite is replaced by any one of them with the maximum cooperative 
fitness: 

F {x " ' ) > max{F(^^), c f [ x ' l , x ' ) , cf{x'^,x^), c f { ^ , x ^ ) } (4.5) 

The inclusion of the last two set of choices (random and multiple) is intended to 
lower the greediness of the simple no-change+local scheme of CCGA-1 as illustrated 
in [50]. Although the replacement scheme is still a winner-take-all strategy, the random 
scheme may introduce new solution fragments which may lead to a new and possibly 
optimal path, while the multiple scheme allows multiple-subspace movement in one single 
step. 

4.3 Empirical performance study 

4.3.1 pBHS versus pcBHS 

In this section, the performance of the basic pBHS model and the cooperative 
pcBHS model are compared. Since the capability of the basic pBHS model on multi-
dimensional problems is not satisfactory enough, the problems used for comparison are 
of low dimensions. They are listed in Table 4.1 with some key information about the 
problems. Details can be found in Appendix B. 

Resul t 

The results of this test are shown in Tables 4.2-4.5 and Figures 4.2-4.5. Judging 
from the result, we have the following conclusion. For all the tests, both the average 

56 



TABLE 4.1： p B H S VERSUS P C B H S : TEST PROBLEMS 

Prob lems^ n / + Cond i t ions^ 
“ N = 10,50,100,150,200 

R2 - Rastrigm 2 1.99950 ^ = o.95,0.925,0.9,0.875,0.85,0.825,0.8 
N = 30,50,100,150, 

H3 - Hartman 3 3.86000 ^ 二 o.95，0.925’0.9,0.875,0.85,0.825 
N = 50,100,150,200 

M5 - Michalweitz 5 4.68700 ^ 二 o.95,0.925,0.9,0.975 
N = 10,30,50,70,100 

SP8 - Sphere 4 -0.0009 ^ = 0.95,0.9,0.85,0.8,0.75,0.70,0.65 

jt: see Appendix B for details 
b: 100 consecutive independent runs, /=16 

TABLE 4 . 2 : p B H S v s . P C B H S : SuCCESS RATE ( % ) FOR RASTRIGIN (N = 2 ) 

pBHS pcBHS 
^ ~ l 0 ~ ~ ^ ~ ~ 1 5 5 " " 1 5 0 200 ~To~~^5~~IU5~~5^~~200 

0 . 9 5 0 ~ ~ ^ ~ ~ ^ ~ ~ 1 ^ ~ ~ l 0 0 ~ " l 0 0 89 1 0 0 ~ ~ l 0 0 ~ ~ 1 ^ ~ ~ H o " 
0.925 50 95 99 100 100 80 99 100 100 100 
0.900 38 91 99 100 100 71 99 99 100 100 
0.875 28 76 95 99 100 66 100 98 99 99 
0.850 27 81 94 95 100 60 95 100 96 99 
0.825 19 66 86 96 99 51 92 96 98 95 
0.800 22 75 85 92 95 43 93 93 95 95 

number of iterations and the average number of function evaluations required to reach 
global optimum using pcBHS is several times lower than those using pBHS under the 
same experimental- conditions. The difference for the number of function evaluations 
required is diminishing towards the smaller population size. This observation tells us 
two things: 

1. pcBHS has higher potential of gaining speedup by parallelization. 

2. pcBHS has better performance compared with pBHS on using large population 
size. That means for large problems that require larger sampling, pcBHS (using 
large population size) would be a better choice. 

The second observation is that pcBHS is comparatively insensitive to the remem-
brance parameter. Decreasing the remembrance value carries the meaning of speeding 
up the convergence. It produces the effect on pBHS that the number of iterations and 
the function evaluations are both decreasing. However, it is not the case for pcBHS. 
Both the number of iterations and function evaluations fluctuate between a small range. 
It is especially true when using large population. 

57 



TABLE 4.3： p B H S v s . P C B H S : SuCCESS RATE ( % ) FOR HARTMAN (N = 3 ) 

pBHS pcBHS 
^ ~ ^ ~ ~ ^ ~ ~ l 0 0 ~ ~ 1 ^ ~ ^ 5 ~ ~ ^ ~ ~ H o ~ ~ 1 5 0 

0.950 100 100~~ l00~~ l00 ^ ~ ~ % ^ ^ 
0.925 100 100 100 100 99 97 97 98 
0.900 99 100 100 100 98 93 96 94 
0.875 98 100 100 100 93 89 92 94 
0.850 97 100 100 100 91 86 88 94 
0.825 96 99 100 100 92 90 92 94 
0.800 92 97 99 100 90 88 89 93 

TABLE 4 . 4 : p B H S v s . P C B H S : SuCCESS RATE ( % ) FOR MlCHALWEITZ (N = 5 ) 

二 pBHS pcBHS = 
^ ~50 100 150 200 50 100 150 200~ 

0.950 7 8 l0 ^ ^ ~ ~ ^ 0 ~ ~ l 0 0 ~ ~ l 0 ^ 
0.925 4 8 11 12 97 100 100 100 
0.900 7 4 5 16 95 99 100 100 
0.875 11 9 9 5 92 97 99 100 

TABLE 4 . 5 : p B H S v s . P C B H S : SuCCESS RATE ( % ) FOR SPHERE (N = 8 ) 

~ ~ pBHS pcBHS ^ ^ ^ 
^ ~To~~30~~^~~~70~~100 ~ T o ~ ~ ~ ^ ~ ~ ^ ~ ~ 7 0 ~ ~ 1 0 0 

" 0 ^ ~ ~ 4 6 ~ ~ ^ ~ ~ ~ n ~ ~ ^ ^ P ~ ~ 9 9 100 1 0 0 ~ ~ M ~ 
0.90 85 99 100 100 100 95 100 100 100 100 
0.85 54 97 100 99 100 95 100 100 100 100 
0.80 24 94 98 100 100 97 99 100 100 100 
0.75 12 91 99 99 100 93 99 100 100 100 
0.70 9 70 95 99 100 88 98 100 100 100 
0.65 2 64 86 96 99 85 100 100 100 100 

58 



pBHS V8. pcBHS on Rastrigin (n=2): Iterations pBHS vs. pcBHS on Rastrigin (n=2): Function evaluations 
80 — 1 1 1 1 ( I 1 1 6000 r- 1 ‘ ‘ ‘ ^ ‘ • ‘ 

/20C 
/ 70 . *10- / 

"pBHS.' •»••• <2 5000 - 'pBHS.'-令… / " 
'pcBHS.' 一 g 'pcBHS.' 一 / 

60 - .--" • 1 / ,*15( 
»-•• « ,.•• ..-•• 

/ S 4000 - ..-' ...-• • 
g 50 - / • = ..•'•' .-••' 1 50 / I ...•-, ...>• ,.*10( 
2 / ,*50 § .....----• ...•- ,•• 
淫 40 • / r 3000 • .. . .-•• ...-• ..-•' • 

I , -• Z Z 。（ I 200̂ >_____________̂ =̂̂ -̂̂ :̂̂ ::"">>C_̂ :̂:::t"t====̂  
i ,„ ....--•' .,---'.V:^15< I ^Sl3:S!n^^2^^I::^^^^^^^-^^^^50 
妾 30- ....Z __̂^̂:：：：：：：：̂:::::::::拿二 1 2000 • 15C7"33T:̂ ;frr :̂:̂ ^^^^^^"^^I^^^^^^^r^ • 

».-•- _̂ __--*"=̂ *̂ =̂ "r::::̂ --:::_-/!--:- 1 100̂ =̂ =̂̂ :̂::̂ nr:r̂ :̂̂ ^̂ *̂"̂ -̂___̂ -̂""̂ """;:::::̂  ^ ^ 
20 — ^^^ :̂:__̂ >^ "̂̂ rrrr:̂ r:::::̂ :::f::::::..' 50" i ,,_^-t r ： ： ^ — ^ 

10 • p ^ ; : : : ; r r g ^ L _ _ | r = : ^ ^ T & 画• 50 ;..^^^22^^2i2j;ZI^;^^|Ii;;ri^^^^^ic; 
^ ‘ “ ~ ~ ^ ~ ~ ~~~~"~~^""^^^H J'f=?""""^"^""^""""""^^"""""""""^"""""""^^ • ^ 
0 78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.78 0.8 0.82 0.84 C^86 0-88 0.9 0.92 0.94 0.96 

Remembrance Remembrance 
(a) (b) 

FlGURE 4 . 2： P C B H S v s . P C B H S ON RASTRIGIN (N = 2 ) : ( A ) A V E R A G E ITERATIONS 
AND A V E R A G E ( B ) NUMBER OF FUNCTION EVALUATIONS 

pBHS vs. pcBHS on Hartman (n=3): Iterations pBHS vs. pcBHS on Hartman (n=3): Function evaluations 
55 , n r • 1 i 4000 1 1 “ ‘ ‘ ‘ ‘ * " 7 ^ 

/ 3 0 ,pBHS.' -»-•• 
50 • • 3500 - 'pcBHS.’ ^ / -

/ / 45 - 'pBHS.,.令”. / - i ,••'.' ,*10( 
,PcBHS., 一 ,.50 1 3000 - ....-•"• ..-••" • 

40 - / ...-" . I >-••• .-•" 
..-• ..-•'' 5 ..-" ..-"___^15( 

I 35 . . . , - ••:, .- ,1�; I 2500 - •.,.- ^ ^ ^ ^ 
i 3�- ...z-.-- , / , . . / . :5: I - • ,::::Z^^^:^^^^^-
S> 25 • ..-••" ..--••• .....•• ...--• ''- 2 ,__-^^^^ ^ - " ^̂ -Ĉ ~~~~~M0( 
I 20 令...........::----̂‘ .,...-•：：-..�Z - I 1500. ^ Z ： ^ ： ： ： ^ - ^ < ^ " / 观 

15- "•-'_ • I 1000. ^ ^ r：^；-..,.•..—。• 
» 冷 S • ^.^^^^ ___-̂ —• ^ �„ 
- <'- . I X^ - : . •""""̂ 30 

10 - < *_ 
_ _ _ _ ^ ； I -[30-150 500 - * • 

5 - I I — 'i r = = = ^ — ‘ “ -
- 0 1 1 • L_ 1 1 1 ‘ 
°0 78 0 8 0 82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 

Remembrance Remembrance 
(a) (b) 

FlGURE 4 . 3 : P C B H S v s . P C B H S ON HARTMAN (N = 3 ) : ( A ) AVERAGE ITERATIONS 
AND AVERAGE ( B ) NUMBER OF FUNCTION EVALUATIONS 

59 



pBHS V8. pcBHS on Michalewitz (n=5): Iterations pBHS vs. pcBHS on MichalewHz (n=5): Function evaluations 
250 . ~ ^ ~ ^ ^ " i ^ . . 1 — — ~ | 40000 1 1 1 ‘ ‘ ‘ ‘ 

35000 - , , . . -..•••' « ..••• 200 - 'pBHS.'-令… .2 200,..- -
, p c B H S . . — ....--•• ...-：：：：：；； | 画 - ’ 二 ： ： 二 . . . / • • 

g ， 二 : : : : : : 5 - . '' I 25000 - , / • • , - •- • • • • • -I 150 - ....-->：：：•-•：.--- • I ........---.•, ....-•• 

I ....---- - •:::•-::::::::::,;••••• I 20000 • .......•...- -.--•- - • ' •. ......• • •••• ..: 
S> •...-•••-•....:::::::..-:.....----•• 2 • ....----- 100...---
S , „ „ • _^必:: 200 . « ...-----I 100 • .....：二二-：^：^^^^ I 15000 - ..........•... _•• ...•--- • 
< %：""："" i • ..., 

I 10000 - ----•..•••..'. 
50 - 50 • I 900^ I _ : 

I 5000 - I i - - — . … . I " ‘ — 
20。 . . 50̂  

n I , . I • • I • • 气 0 ‘ 1 ‘ ‘ ‘ ‘ ‘ 

0 87 0 88 0 89 0.9 0.91 0.92 0.93 0.94 0.95 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 
Remembrance Remembrance 

(a) (b) 

FlGURE 4 . 4 : P C B H S v s . P C B H S ON MlCHALEWITZ (N = 5 ) : ( A ) AVERAGE ITERA-
TIONS AND AVERAGE (B) NUMBER OF FUNCTION- EVALUATIONS 

pBHS vs. pcBHS on Sphere (n=8): Iterations pBHS vs. pcBHS on Sphere (n=8): Function evaluations 
. ^ , . r , , , 30000 — “ I 1 1 r - 1 1 1 

300 • -

•pBHS； • . .1 f 100 
•pcBHS； 一 # « 25000 • 'pBHS; •»-•• " 

250 - !!! • 1 'pcBHS.’ 一 

# I / 
;S S 20000 - / ,„ -

g 200 - •§ • c ？ 70 

I H % / / 
•f 150 . 10-100 / i - I 15000 - / / ，50 • 
I . ^ I / 7 , / 
^ - • .....-::::5^ • I - - ° • , , , . - : . / y .30 -

5。. ; ^ - f .. 乂 1 。 • I 500。. - ^ ^ ^ ^ ^ ^ • 

• ___>^rmIl----""^ 30 I ̂ ^^^^^^Sis^^^^3^i-^........._• 10 
r j I I I ~~r̂ ~^^ 50-70 0 10 ；： ； :::!̂ !̂ -̂--， “̂ 了 , 

°0 6 0 65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 
Remembrance Remembrance 

(a) (b) 

FlGURE 4 . 5 : P C B H S v s . P C B H S ON SPHERE (N = 8 ) : ( A ) AVERAGE ITERATIONS AND 
AVERAGE (B) NUMBER OF FUNCTION EVALUATIONS 

4 .3 .2 S c a l i n g b e h a v i o r o f p c B H S 

The purpose of this experiment is going to show how the cooperative pcBHS model 
scale with the problem size. Two areas that are of interest are: mean iterations and mean 
function evaluations. To serve this purpose, several test problems listed in Table 4.6 are 
used with different dimensionalities ranging from n = 10 to n 二 400. The experimental 
conditions are stated in Table 4.7. 

The results shown in Figures 4.6-4.8 illustrate clearly that the algorithm scales 

60 



TABLE 4 . 6 : SCALING P C B H S： T E S T PROBLEMS 

Problems)J n /+ 
kn - Ackley 30,100,200,400 -0.001843 
SPn - Sphere 8,16,32,64,128 -0.0009 
Rn - Rastrigin 20,50,100,200,400 -0.900 

approximately linearly with the problem dimension of the three test problems. 

TABLE 4 . 7： SCALING P C B H S : EXPERIMENTAL CONDITIONS AND RESULTS 

C o n d i t i o n s " Resu l t s 
P r o b l e m s /3 Succ. r a t e F i g u r e 

An - Ackley 0 ? ^ 8 9 % - 8 2 % ~ ~ ^ 5 
SPn - Sphere 0.90 100% 4.7 
Rn - Rastrigin 0.50 100% 4.8 

jt: 100 consecutive independent runs, 1 = 16, N 二 100, // = 1 

Scaling behavior (iterations) of pcBHS on Ackley family Scaling behavior (function evaluation) of pcBHS on Ackley family 
35 , , 1 — , 1 1 1 ^ 1.6o+06 1 1 I ‘ I ‘ ‘ 

-ackley.scaie.rsut' ̂ r ^ ' ack ley .sca le . rsu t '— 
34 • y ^ 1.4e+06 • / 

：； X : — / 
I 31 Z 1 滅 - / -

I 30 • >^ I 800000 - ^ / • 
i 29 • ^̂ ^̂ ^ - S 600000 - ^̂y"̂ ^̂  
‘ 2 8 - ^^ ^ ^ ^ 

j^ 400000 - ^ ^ -
27 • / ^ ^ / 200000 • ^^ • 
26- Z ^ 
"o 50 100 ia0_̂ 200̂ ^̂ ^̂ a0 300 350 400 ° 0 50 :rage1nlOr̂ e:nction2e=luation=f 挪 咖 

(a) (b) 

FlGURE 4 . 6： SCALING BEHAVIOR OF P C B H S ON ACKLEY FAMILY 

61 



Scaling behavior (iterations) of pcBHS on Sphere family ^ ^ ^ ^ Scaling behavtor (function evaluation) of pcBHS on Sphere family 
32 I , 1 , 1 1 1 1 220000 I 1 1 I T ‘ 

3 ^ , 印 一 7 — . 2 0 0 0 0 0 . 'sphere.sca,e.̂ ^ 
28. / ^ - 1酬. y ^ . 
26. Z . 1_- / 

I ^ ^ I 140000 • Z 
1 24 • ^ ^ I 120000 • / • 

1 设 ^ . iiooooo. Z • 
1 20 • y ^ 1 80000 - 乂 

18 • y ^ 60000 • ^ ^ ^ • 
16 - J 40000 - ^ y ^ • 
14 • / • 20000 - ^ ^ 

" ° 20 ^ Av:age«eJL °̂° ^̂ ° 彳如 ^° 0̂ A v ^ e n u ^ T o _ L v a l u = � ‘ � -

(a) (b) 

FlGURE 4 . 7 : SCALING BEHAVIOR OF PCBHS ON SPHERE FAMILY 

Scaling behavior (iterations) of pcBHS on Rastrigin family Scaling behavior (function evaluation) of pcBHS on Rastrigln family 
3 8 , , , • - I • I I I 160000 I I • ‘ • _ ‘ 

• r as t r i g i n . sca le . r su t>^ Tastrigin.scale.rsuf • * ^ 

3.6 • ^ ^ • 140000 • y ^ . 
3.4 . ^ ^ 120000 • y ^ 

I 3:: ^ ^ • |1画. y ^ 

I 2.8 - y ^ I 80000 - y ^ 

i 2.6 - y^ - 1 60000 _ /<^ 
2.4. / - 1 / ^ 

/ 40000 - ^ ^ • 
2 . Z 20000 - ^ y ^ • 
®̂0 50 iM iso 200 2OT 3M 3M ^ °0 50 100 150 200 , 250 300 350 400 0 50 100 Avoragêrations Average number of functton evaluations 

. ⑷ （b) 

FlGURE 4 . 8 : SCALING BEHAVIOR OF PCBHS ON RASTRIGIN FAMILY 

4.3 .3 B e n c h m a r k t e s t 

In this experiment, several problems with problem size up to 100 dimensions are 
tried. These problems are commonly used in testing global optimization algorithms. 
Each family of problems possesses characteristics quite different from each other. A 
brief summary of the test problems used are listed in Table 4.8. Detailed description of 
these problems can be found in Appendix B. 

The results listed in Table 4.9 shows that the performance of our algorithm is 
comparable with the existing advanced techniques such as Breeder GA (BGA) [47] and 
Evolutionary Algorithm with Soft genetic operators (EASY) [59, 60]. Both variants of 
GAs are said to be highly effective yet a general model for evolutionary algorithms. 
However, the performance of the algorithm on the Shekel family is comparatively poor 

62 



TABLE 4 . 8 : BENCHMARK： TEST PROBLEMS 

Prob lemst l n / + #eval Re f . 
S5 - Shekel 4 ^ 5,403 ； " ~ 

‘ S7 - Shekel 4 9.9 5,386 * 
$10 - Shekel 4 9.9 5,862 * 
H3 - Hartman 3 ~ ~ " 3 ^ 1,014 ； ^ 

A30 - Ackley 30 0.001 13,997/19,420 f ~ 
AlOO - Ackley 100 0.001 57,628/53,860 f 
R20 - Rastrigin ^ 0^~~6,098/3 ,608 f ^ 

‘ RlOO - Rastrigin 100 0.9 45,118/25,040 f 

¢: see Appendix B for the description of the problems 
• : A clustering technique: New Price's algorithm [8: 
t: EA with soft genetic operators/Breeder GA [EASY/BGA] [59] 
/ + : Function values at which the algorithms stop. 
#eval: Number of function evaluations. 

than those from the existing techniques We attribute this poor performance as their 
golf-hole-like landscapes. The figure shows that S5 has 5 prominent optima resting on 
a plateau, all of which has similar basin of attraction. Landscapes of this kind provides 
no useful information for guidance. The reason why the successful rate drops from S5 
to S10 is due to the raise in the number of prominent optima. 

TABLE 4 . 9 : BENCHMARK TEST： RESULTS 

P r o b l e m s / + attained #eval %^ C o n d i t i o n s * 
S5 10.004523~~12,476.40~~34% /3=0.97 N = 5 0 
S7 10.100106 13,168.60 29% j3=0.97 N = 5 0 
S10 10.126623 13,909.30 14% /3=0.97 N = 5 0 
iH3 3.861696 755.80 100% /9=0.90 N = 3 0 

A ^ -0.00078 18,679.68 100% /3=0.40 N = 4 0 
AlOO -0.00074 58,216.17 90% /9=0.35 iV=40 
^ -0.48987 5,413.22 100% /3=0.45 iV=40 
RlOO -0.54718 45,194.86 100% /3=0.45 A^=40 

I： Percentage of runs reaching / + stated in Table 4.8. 
*： 100 independent consecutive runs, 1 二 16. 

4.4 Summary 

High-dimensionality poses a great challenge to all kinds of optimization algorithms, 
including the basic pBHS model. In this chapter, we have presented an extended model-
pcBHS-which is based on the idea of decoupling of dimensions. In principle, it allows the 

63 



solution fragments in each dimension to form complete solution with other dimensions 
freely. The main reason for the decoupling is to increase the chance for good solution 
fragments to come together. The basic pBHS is said to be a special case of the extended 
model, as it allows the formation of complete solution with one single unique solution 
fragment from each subpopulation. Owing to this major extension, three areas of the 
basic model have to be modified, namely the fitness evaluation, the fitness scaling and 
the elitism. 

The improvement on the performance over pBHS have been studied which showed 
that pcBHS can reach the same accuracy with much computation saved. Since pcBHS 
is devised to cater for high-dimensional cases, we have studied its scaling property. The 
results showed that it scales approximately linear with problem dimension in all of the 
functions we have tested. Moreover, pcBHS is compared with the well-known advanced 
stochastic search-based techniques in solving optimization problems. It is comparable 
with (and even outperforms in some cases) those algorithms. 

However, both the basic pBHS model and the cooperative pcBHS model are single-
optimum-seeking models as if SA. The whole population cooperatively constructs a single 
piece ofinformation—the global environment, which indicates where the global optimum 
is. Since both models rely on the information obtained on the course of searching to 
construct the global environment, it is easy for some deceptive problems to mislead the 
algorithm to construct an environment indicating the sub-optima only. To cater for 
this problem, we have to introduce redundancy of some kind. For instance, instead of 
constructing a global environment with one piece of information, we can build one with 
several pieces of information. In chapter 5, we will discuss how to introduce redundancy 
into the model. 

64 



CHAPTER 5 

Deception 

The basic design of both pBHS and pcBHS models are: (1) distribution of a popula-
tion ofindividuals who search cooperatively for a single global optimum, and (2) assump-
tion of no (or minimal) a-prior information about the problem to be solved. However, 
this design would make both algorithms easily be deceived, because (1) when the land-
scape of a problem has multiple number of similar basin of attractions, and (2) the 
landscape of a problem to be solved provide misleading information. In this chapter, we 
will present an extension of the pcBHS model to cater for these two cases by introducing 
redundancy and competition. 

5.1 Introduction 

5 . 1 . 1 T h e c h a l l e n g e o f d e c e p t i v e n e s s 

Deception has" been discussed rigorously in GA community [24, 15，61, 62, 14, 48, 
25，53] in the last decade. Briefly, deceptive problems contain deceptive attractors which 
mislead the algorithm to search for sub-optima. Figure 5.1 shows a typical fully deceptive 
function for simple GAs on a maximization p r o b l e m � A s shown in the figure, the global 
optimum and the suboptimum are located far apart with a big valley in-between. The 
basin of attraction favoring for the suboptimum is much larger than the one favoring 
for the global one, making the problem deceptive. Intensive analysis and the definition 
of deception in the context of GA can be found in [15, 61]. Qualitatively, the degree 
of deception varies according to the comparative size of the global attractor and the 
sub-optimal attractors. 

Full deception occurs when the size of the global attractor approaches zero (one 
global optimum only) when comparing with that of the sub-optimal, while the marginal 
deception occurs when the size of the global attractor is comparable with the deceptive 
attractors. The sufficient conditions for the full deception to occur in the folded-trap 

^The objective variable is the unitation of a chromosome, i.e. number of ' l 's bits. 

65 



A s i m p l e decep t i ve func t i on 

1̂  . ‘ ‘ ‘ ‘ ‘ 
\ Globaloptlmum 

Q g \ Deceptive optimum > • 

!0.5- \ y ^ ‘ 

0.4- \ y ^ . 
Q 3 . \ ^ y ^ Deceptive attractor 

: \ z : °0 1 2 ~3 4 5 6 7 8 
Uni ta t ion u 

FlGURE 5 . 1： A SIMPLE TRAP FUNCTION 
function f (u ) , where u 二 {0 ,1 , . • •, / } is the unitation of binary strings of length 1 shown 
in Figure 5.1 is given in [15] as follows: 

C o n d i t i o n 0: P r i m a r y o p t i m a l i t y 
/ ( o ) > / ( 0 . 

C o n d i t i o n 1: P r i m a r y decep t ion 
/(/) - /(0) > /(1) - /(/ - 1) 

C o n d i t i o n 2: Second decep t ion 
f ( i ) > f ( j ) for [//21 < i < 1 - 1 and 1 一 i < j < i 

These conditions state that the function favors for large unitation (conditions 1 and 2) 
for all unitations except 0 and 1 (condition 0), which are the global optimum and the 
deceptive optimum respectively. 

Deception is, in fact, a relative term. Giving the same problem, some algorithms 
would be deceived while the others would not. All stochastic searching algorithms, 
except pure random search, applied to optimization are classified as heuristic search 
methods. What heuristic here means is not the domain specific knowledge, but the 
characteristics ofthe fitness landscape of the problems (see [7] for the simple classification 
based on landscape characteristic). In the study of the relationship of operators and 
landscapes by Jones [37], it is the operator(s) of the algorithms that deflne(s) the fitness 
landscape to be faced. A stochastic operator • is defined in [37] as 4>: M{U)xM{U) •> 

0."1]，meaning that a set of configurations of the search space is transformed into 
another set of configurations with certain probability by a single application of the 
procedures defined in that operator. In other words, a neighborhood is defined for 
every configuration of the search space. It is this neighborhood that determines the 
shape/appearance of the problem landscape (see Chapter 2 for more information on 
fitness landscape). Hence, a problem is deceptive to an algorithm because the landscape 
constructed by the operators of the algorithm is deceptive. 

In the aforementioned discussion on deception, we can see that the effort to tackle 
deception should not be put on designing operators that can handle both normal and 

66 



deceptive cases, as it seems fruitless. On the contrary, operator design should be con-
centrated in handling the normal cases, leaving the deception problem tackled by other 
techniques. 

5 .1 .2 C o m p e t i t i o n : A s o l u t i o n t o d e c e p t i o n 

Niching [28, 13, 12, 43, 49, 45, 10] is a technique stemmed from the nature to tackle 
multi-modal optimization problems in GA community. Solving the problems having 
multiple number of 'peaks' in their landscapes using simple GAs would end up locating 
one of those peaks (not necessarily the global one). It is because of genetic drift, which 
can be thought of as stochastic fluctuation. Niching was then introduced to extend the 
capability of simple GAs in this kind of problems to locate as many peaks as possible. 
Besides the application to multimodal function optimization, niching is also used to 
cater for the deception problem in GAs. In general, problems that are deceptive to GAs 
comprises of deceptive attractors. By using niching, both the deceptive attractors and 
the true global attractor can be located and exploited simultaneously. 

Existing niching techniques are: crowding [11], deterministic crowding [43], shar-
ing [28, 44], and dynamic niching [45]. The central idea of all these niching techniques is 
competition. Individuals in a populations compete with each other for the occupancy of 
territories. Those who fail to occupy the territories will have smaller chance of survival, 
making the population more diverse. The side-effect of this mechanism is the domi-
nance of individuals who can occupy territories, i.e. locating multiple number of peaks 
simultaneously. 

In the following section, the idea of competition is employed in the cooperative 
pcBHS model to produce what we called probabilistic cooperative-competitive binary 

hierarchical search (pccBHS) model. 

5.2 Probabilistic cooperative-competitive binary hierarchi-
cal search 

In this section, an enhanced model named pccBHS incorporating redundancy and 
competition into the cooperative pcBHS model is presented. The competition model 
shares similarities with the existing sharing mechanism. The strength of the model 
over sharing mechanism is the avoidance of the requirement of specifying niche radius. 
Niche radius inherently limits the niching mechanisms to be applied to problems that 
requires locating niches at different resolution levels simultaneously. The drawback of 
the pccBHS model, at present, is that the number of niches to be occupied is bound by 
a prescribed number. 

67 



广 L a n d s c a p e 

‘ ^ 广 V i v i e w e d b y g 1 

A i < t ^ " ^ 
i M ^ A X L a n d s c a p e 

/ \ ^ _ ^ ^ v i e w e d b y g 2 
FlGURE 5 . 2 : RE-MODELING OF FUNCTION LANDSCAPE 

5 .2 .1 O v e r v i e w 

The main structural characteristic of the pccBHS model is the division of a whole 
population into a number of subpopulation groups {subgroups) to provide redundancy. 
They are allowed to gather their own set of global information. The one with the highest 
fitness is considered as the global solution. 

In the course of searching, these subgroups are allowed to compete with each other 
for exclusive occupancy of territories. The aim of the competition is to force them to 
search different areas by separating them in the n-dimensional space. The competition 
is achieved by generating a repulsive force when two subgroups come together in the n-
dimensional space. The closer the two subgroups, the greater the repulsive force. Once 
they are separated, the force disappears. 

Effectively, pccBHS re-models the function landscape in such a way that the decep-
tive attractor is made hidden by another subgroup (see Figure 5.2). What each subgroup 
faces is a unimodal or non-deceptive landscape. 

5.2 .2 T h e c o o p e r a t i v e - c o m p e t i t i v e m o d e l 

Suppose there are G number of subgroups g” 0 < r < G. Each of these subgroups 
is the same as a single population in pcBHS model. The only difference is the size of 
each subgroup which is equal to [N/G\ • The cooperative pcBHS is a special case of the 
pccBHS model that G = 1. 

For the sake of clarity, the model is presented using two subgroups only. Given two 
subgroups gl and g2, we first check if all of their dimensions are overlapped, since two 
subgroups are said to be overlapped only when they are overlapped in all dimensions. 
Two metrics that are required to calculate the repulsive force are (i) degree ofoverlapping 
and (ii) proximity. 

For each dimension m, we measure the distance Fm which is the maximum distance 
of all pairs of binary strings from the two subgroups in consideration (see Figure 5.3). 

68 



^ _ _ _ ^ g2 

2 ¾ > ^ ？ 
I I ŜSJ|̂ ŵ̂  ^ P ^w^^^^ *̂>^ l I 1 

I 丨 0 _ • 

！ 丨 一 约 — — — — — — * . i 
U Fo 一 0 center 

〇 X j 
- ^ ¾ ^ -

FlGURE 5 . 3 : OVERLAPPING OF T W O SUBGROUPS 

Denote g l^ '^ and gl^^^ as the minimum and the maximum of the m-th dimension so-
lution fragments of gl respectively, g2^'^ and g2=^ as the minimum and the maximum 
of m-th dimension solution fragments of g2m respectively. The distance Fm is： 

Fm = m a x { ^ C - , 夕 2 = } - m i n k l = � , 沒 2 = � } . (5.1) 

Minimum possible value of Fm is 0 when all of the m-th dimension solution fragments in 
gl and g2 are identical, i.e. both gl and g2 are merged together in the m-th dimension. 
Maximum possible value of Fm is ^C 一 ̂ m，i.e. the full range of the m-th dimension of x. 
We also measure the distance Om of the region where they overlap (the shaded region in 
Figure 5.3). Overlapping distance Om equals 0 when gl^^^ < g 2 ^ or g 2 ^ ^ < g l ^ ^ . 
Degree of overlapping Dm{gl,g^) between the same dimension m of gl and g2 is defined 
as: 

Dm{9hg2) = ^ (5.2) 
“m 

There are three distinct situations: 

1. D i s j o i n t 

gl and g2 are totally separated. 

Dm[gl.g^) = 0 when Om == 0 (5.3) 

2. Enc losure 

gl is totally enclosed by g2 or vice versa. 

n , i … 1 , /沒1=.打<沒2；^|_"八双1=工>沒2=� or 
D-(gl,购=1 when I " 2 = < , 1 ^ ^ 八 , 2 = $ > , 1 - ^' ' '^ 

69 



3. O v e r l a p p i n g 

gl and g2 are overlapping. 

n n ( ^ o 、 / 1 . / 众丄，< 3^^'^ < 双1=$ < 9^,。『（5 5) 0 < D ^ [ g l ^ M < 1 when | ^ ^ - - < , 1 ^ < ,2^^^ < , 1 — ^'' '^ 

The quantity Dm serves two purposes: (i) decides whether the repulsion exists; and 
(ii) determines the level offorce required if repulsion exists. However, it does not reflect 
the fact that individuals farther away from the overlapping subgroup should receive less 
repulsive force. Thus, a proximity value is then introduced. 

For the m-th dimension, proximity value Pm{gl, Xm,j) is defined over the j-th indi-
vidual Xm,j of g2 and its overlapping neighbor subgroup gl as the normalized distance 
between Xm,j and the center of gl (see Figure 5.3): 

Pm{9l.xm,) = ' ' % " ' - ' (5.6) 
^m 

where cc^ is the m-th solution fragment of the elite in gl and Pm{9i Xm,j) € [0,1]. Being 
the driving force within a subgroup, the subgroup elite is considered as the center. 

Repulsive force Rm{g^^Xm,j) G [0,1] experienced by the binary string Xm,j of g2 

due to the overlapping with gl is defined as: 

Rm{9l,Xmj) = Dm{gi,g2) X (1 - Pm{9l,Xm,j)). (5.7) 

Finally, another quantity interaction fitness Im{xm,j^ x^) is defined to indicate how 
well an individual performs in the competition: For the mth dimension, 

‘ , • ’ ” ” = S i s 3 (5.8) 
where cf{xm,j,x^) is the cooperative fitness of Xm,j (see Eq. 4.3). Instead of feeding 
back cf into the system, Im should be used: 

I Um,i = Im(xm,j^x^) ^nd w — = 0 if V , / - l - i = 0, (5.9) 

\ Um’i = 0 a n d Wm,i = Im{XmJ,X^) if &m，Z-l-i = l . 

5.3 Empirical performance study 

5 .3 .1 G o l d b e r g ' s d e c e p t i v e f u n c t i o n 

In the discussion of deception problem in GAs [27, 15], the sufficient condition for 
deception and the way to construct deceptive optimization function are presented. One 
of the functions that they have constructed is the 2l-bit bipolar deceptive function (2/ 
is the length of the chromosome). This function is a fully deceptive function for GA. 

70 



8-bi t bipolar deceptive function: f(u),a=0.6,b=1.0,z^3 

f S 2 ^ 
% 1 2 3 4 5 e 7 8 u 

FlGURE 5 . 4 : 8 -BIT BIPOLAR DECEPTIVE FUNCTION (UNITATION V I E W ) : a = 0 . 6 , 6 = 1 . 0 , 

z=3 

However, this function is probably not deceptive to our algorithm. As discussed in 
the following, the deceptive function is basically designed to deceive algorithms using 
bit-mutation operator. Since our algorithm does not have such operator, it will not 
be deceived as if GA. In spite of this, the 2/-bit bipolar deceptive function is still a 
difficult function to our algorithm, because of the misleading information around the 
global optima and its multimodality (see Figure 5.5(a)). The bipolar deceptive function 
f{u) for evaluating the binary strings is defined as follows (see Figure 5.4): 

f{u) = 9(\u-l\), 

-(z - e), if u < z 
g[e) = 'b — (5.10) 

(e — z)， otherwise. 
� 1 — z 

where 1 is half of the length of a binary string. In this experiment, 1 equals to 4 (i.e. 
binary string of 8 bits long). Unitation u of a binary string which is defined as the number 
of ones ( T ) the string contains. For instance, the unitation of a string 00111101 is 5. 
Constants a, b, and z are used to define the shape of the function. The values used are 
a 二 0.6, b = 1.0, and z = 3. The landscapes in the increasing x order and in the grouped 
unitation view are shown in Figure 5.5(a) and (b) respectively. Based on the argument 
in [37] that the landscape of a problem is tied to the operator used, the landscape of the 
function that GAs have to face should be the one shown in 5.5(b), provided that the 
mutation operator probability is 1/2/, chromosome length 二 21 (i.e. Hamming distance 

二1). 

As mentioned, this bipolar function is probably not deceptive to our algorithm, 
we modified it to make it more difficult to our algorithm. The modification is to use 
the binary number equivalent instead of unitation as the function variable value. The 
function variable u in Eq. 5.10 is replaced by u 二 ̂ fjo^ 2'*bi. Accordingly, ^ is changed 
to 32256 so as to keep the ratio of the size of both attractors (the deceptive one and the 
global one) the same as the 2/-bit bipolar deceptive function. This modified function is 
shown in Figure 5.6. 

71 



Landscape of the 8-bit binary string: Increasing x order Landscape of the 8-bit binary string: Grouped by unitation 

r̂ ‘ ‘ ~ ‘ ‘ “ 1 ifII^ ‘ ‘ ‘ ‘ ~ ‘ ^ 
0 . 9 - 0 .9 

〗 | f P P i l , r ^ ^ ^ 
0.1 0.1 

oJr"̂ ~~ ~~go i00 ““?lo ^ 6 ~ ~ 2M °0 50 100 150 200 250 
X 

⑷ （b) 

FlGURE 5 . 5： 8 - B I T B l P O L A R DECEPTIVE FUNCTION. ( A ) THIS GRAPH SHOWS f(u) IN 
AN INCREASING X ORDER SHOWING ITS MULTI-MODALITY, ( s ) THIS GRAPH GROUPS 
ALL X WITH SAME UNITATION TOGETHER AND ORDER THEM IN AN INCREASING UNI-

TATION ORDER, I.E. THE UNITATION OF NEIGHBORING GROUPS DIFFER BY 1 ONLY. 

A N Y NEIGHBOR CAN THEN BE REACHED BY ONE MUTATION. T H E UNITATION U ARE 
LABELED CORRESPONDINGLY. 

T h e modified 16 -b i t deceptive function 

^1 Global optimum ‘ y ^ ‘ Global optimum 

^ r 7 ^ 
S o 5 - / Deceptive Attractor \ 

, : / \ : 

。0 1 2 3 4 5 6 
X X 1 0 ^ 

FlGURE 5 . 6： MODIFIED 16 -BIT DECEPTIVE FUNCTION 

The purpose of this experiment is to examine the global optimization capability of 
the pccBHS model on the modified bipolar function under different number ofsubgroups. 
Experiment on Goldberg's bipolar deceptive function is carried out to support our claim 
that it is not deceptive to our algorithm. Three criteria are used in evaluating this 
capability which are the success rate, the number ofiterations and the number offunction 
evaluations required on locating any one of the two true global optima. For both testings, 
the experimental conditions are set as: N = {10’ 20, 30}, G = {1, 2，3}, /3 = 0.85’ /x 二 1, 

T = 0.4 and all are tried for 100 consecutive independent runs. The results are shown 
in Tables 5.1 and 5.2. Two conclusions can be drawn from the result: (1) Goldberg's 

72 



T A B L E 5 . 1： RESULT ON THE MODIFIED 1 6 - B I T DECEPTIVE FUNCTION AND THE G O L D -

BERG,S BIPOLAR DECEPTIVE FUNCTION： SUCCESS RATE ( % ) 

~ ~ M o d i f i e d f u n c t i o n Go ldberg ,s f u n c t i o ^ 
G 10 20 3 0 " 10 20 30 — 

^ n 26 ^ n P ^ 
2 40 88 96 78 96 99 
3 44 94 99 59 95 98 

T A B L E 5 . 2： RESULT ON THE MODIFIED 1 6 - B I T DECEPTIVE FUNCTION AND THE G O L D -
BERG'S BIPOLAR DECEPTIVE FUNCTION： NUMBER OF FUNCTION EVALUATIONS 

M o d i f i e d f u n c t i o n Go ldberg ,s f u n c t i o n 
G 10 20 ~ W 10 20 30 
1 581.5 1,074.6 1,432.0 109.6 147.7 180.0 
2 657.6 950.5 1,227.7 142.5 302.0 348.8 
3 629.7 1,061.4 1,266.8 160.7 254.3 347.4 

bipolar deceptive function is not deceptive to our algorithm at all, and (2) it is useful to 
introduce multiple number of groups in our algorithm to handle deceptive problems. The 
high success rates obtained on solving Goldberg's function using one subgroup (first row 
of Table 5.1) implies that the function is not deceptive to our algorithm. This argument 
is further supported by the observation that the success rate is immune to the number 
of subgroups used. However, it is not the case for the modified function. The success 
rates obtained on using one subgroup is especially low, but they increase when multiple 
subgroups are used. We attribute the low success rates for the N = 10 case to the 
large stochastic error introduced when small population size is used, in addition to the 
deceptive nature of the function. 

5.3 .2 S h e k e l f a m i l y - S5, S7, a n d S10 

Besides handling GA deceptive problems, pccBHS improves the performance of 
pcBHS on problems having golf-hole-like landscape. Problems selected for testing belong 
to Shekel family -S5, S7 and S10. The landscapes of these three functions share a 
commonality: several sub-optima with similar basin of attractors sitting on a large flat 
plateau. The sizes of these attractors are so similar that no useful information can be 

TABLE 5 . 3 : SHEKEL FAMILY： PROBLEMS 

“ pcBHS r e s u l t ~ ~ ~ ~ ~ ~ ~ ~ 
Problemstt n _ ^ #eval Succ. ra te (%T" 

S5 - Sheke l " "4 10.004523 12,476.40 W o 
S7-Shekel 4 10.100106 13,168.60 29% 
S10-Shekel 4 10.126623 13,909.30 14% 

73 



TABLE 5 . 4 : SHEKEL FAMILY： CONDITIONS 

Prob lems~~J+ G Conditions>^ 
S5 9.9 1,2,3,4,5,6,7.8 N = 100 
S7 9.9 1,2,3,4,5,6,7,8 N = 100 

$10 9.9 1,2,4,6,8,10,12,14 N = 140 

tt: 100 consecutive independent runs, jJi = 1, (3 = 0.05 

obtained about where the global one is. This kind of landscape is normally referred as 

'5f0//-/i0/e'-landscape. 
A summary of these functions can be found in Table 5.3, while the experimental 

conditions are listed in Table 5.4. The purpose of this experiment is to illustrate the 
usefulness ofredundancy with competition in improving the pcBHS model. Moreover, we 
examined the effect of different number of subgroups on the algorithm performance for 
these problems. The result is listed in Table 5.5. It shows clearly that by increasing the 
number ofsubgroup, the success rate can be increased, though using more computation. 

5.4 Summary 

In this chapter, we have discussed the challenges posed by deceptive problems and 
problems with golf-hole-like landscapes. The limitation of the basic pBHS and the 
cooperative pcBHS model in handling these two kinds of problems have been pointed 
out. This limitation is caused by the fact that only a single piece of information is 
carried by the global information. Both redundancy and competition are introduced 
in enhancing the model. By redundancy, we mean gathering of more than one piece of 
information ofthe global environment. By competition, we mean using of more than one 
population (subpopulation) to search for different areas of the landscape. Competition 
is introduced among them such that each subpopulation can search for a single sub-
optimum with other sub-optima being masked out. 

We have demonstrated the capability of this cooperative-competitive model in han-
dling two deceptive problems and the Shekel family. One of the deceptive problems is 
Goldberg's bipolar deceptive function. The other one is the modification of it. We have 
shown that our algorithm can easily solve this GA-deceptive problem, owing to the fact 
that it is probably not deceptive to our algorithm. For the second deceptive function, 
which is especially designed to deceive our algorithm, we have to raise the number of 
subpopulations in order to increase the success rate, demonstrating the usefulness of this 
redundancy and competition model. Using the cooperative pcBHS model in handling 
the Shekel family, we got low success rate, but on using the enhanced model, they can 
be solved with high success rates. 

74 



Our competition model has a limitation. It requires a pre-set value indicating 
the number of sub-populations. It is disastrous that the model cannot be applied to 
problems that require the algorithm to locate all the optima. However, GAs suffer from 
the same difficulty. 

75 
^ 



TABLE 5 .5 : SHEKEL FAMILY： RESULTS 

S5 
G Succ. rate (%) / + # e v a l 

~ I ^ 10.030556 1,860.6 
2 55 10.023210 5,323.7 
3 68 10.012363 6,331.0 
4 86 10.021969 7,487.6 
5 87 10.011920 9,519.9 
6 92 10.013254 11,991.6 
7 99 10.009583 11,196.6 

_ 8 ^ 10.013743 12,717.8 

S7 
G Succ. rate (%) f+ # e v a l 

~ l 3 l 10.171804 1,659.3 
2 47 10.113239 4,885.9 
3 66 10.121162 6,179.5 
4 74 10.113394 6,841.3 
5 89 10.145635 9,574.2 
6 92 10.117482 9,579.1 
7 95 10.098005 11,826.0 
8 ^ 10.100353 10,845.1 

. S10 
G Succ. rate (%) / + # e v a l 

^ 1 1^ 10.358868 2,170.7 
2 31 10.189666 5,868.7 
4 53 10.194831 7,526.4 
6 74 10.135957 11,811.3 
8 88 10.194929 13,040.2 

10 97 10.169039 13,717.1 
12 99 10.164886 13,560.0 
14 ^ 10.173139 12,858.3 

/ + : Average function value reached 
#eval: Number of function evaluations 

76 



Shek0( S5: Average number of function evaluations 
Shekal S5: Suoceaa rate <__>->-^ 14000 . . . 广_. • • i | 

ioo I ‘ ‘ ‘ — ^ :=:̂  
90 • ^ _ _ ^ _ _ - - ' - " ' " ' ' ^ 12000 • ^ ^ - ~ " > > _ _ ^ _ _ _ ^ ^ ^ ^ ^ 

- /"""“^ • s — ^ / ： 
I rO • / 1 8000 • ^ ^ _ ^ 

I - z - i - y ^ ^ 
so . Z 柳• / 
40 . / •甜一 2000 / 畑 - 一 

30 ^ ‘ * i i 0 2 3 4 5 e 7 8 
1 2 3 4 5 6 7 o Number of subgroups 

Number of subgroups 

(a) (b) 

FlGURE 5 . 7： SHEKEL FAMILY S5： ( A ) G R A P H SHOWING THE EFFECT OF DIFFERENT 
NUMBER OF SUBGROUPS ON THE PERCENTAGE OF RUNS GETTING THE GLOBAL OP-

TIMUM. (B) GRAPH SHOWING THE COMPUTATIONAL EXPENSES ON USING DIFFERENT 

NUMBER OF SUBGROUPS. 
Sh,KelS7:Suce«r.«e ’ • . Shek,l S7: Av.r»ge numbero. .unc«on ,v, lu. . lon. 

1��^~~• ~ ~ ‘ ~ _ _ _ ^ ^ ^ j _ X ^ 
90 • ^ 10000 • y ^ 

®0 - > ^ g 8000 - y ^ 

1 ： Z : I 一 ^ ^ ^ 
/ £ 4000 • Z 

5。“ / / 
. 0 . y ^ ,S7, — • 2000 / _ S 7 , — 

30 ̂  \ ； 1 1 i 0 2 3 4 s 6 r B 
1 2 ^ N.mS,ro„u.,8?oup, ® Num.ero.«.b»r=up, 

(a) (b) 

FlGURE 5 . 8 : SHEKEL FAMILY S7 : ( A ) G R A P H SHOWING THE EFFECT OF DIFFERENT 
NUMBER OF SUBGROUPS ON THE PERCENTAGE OF RUNS GETTING THE GLOBAL OP-

TIMUM. (B) GRAPH SHOWING THE COMPUTATIONAL EXPENSES ON USING DIFFERENT 

NUMBER OF SUBGROUPS. 

snekal S10: SucceM fa<e ，减。。。 Shekel S10: Avarage number of function a < M u » ^ ^ 

： [ ~ ~ ^ ~ ^ “ \ ^ ^ ^ - [ X ^ ^ ^ ^ ~ ^ 
70 ^y^ I 1°°°° - Z 

I e。 y ^ I 8000 - / 

I - • / I 7 
40 . y / ^ eooo . 广 

3° • Z 4000 - / 

20 - y S10' — / S 1 0 ' — 

10o = 4 二 „ 。 , 丄 ， - ~ ~ - ~ ~ - 灣。 . ^ .„.S„o.,.̂ ?o... 10 - “ 

(a) (b) 

FlGURE 5 . 9： SHEKEL FAMILY S 1 0 : ( A ) G R A P H SHOWING THE EFFECT OF DIFFERENT 
NUMBER OF SUBGROUPS ON THE PERCENTAGE OF RUNS GETTING THE GLOBAL OP-

TIMUM. (B) GRAPH SHOWING THE COMPUTATIONAL EXPENSES ON USING DIFFERENT 

NUMBER OF SUBGROUPS. 

77 



) 

‘ : ) • • 

PART I V 

Finale 

I 



CHAPTER 6 

A new genetic operator 

Being modeled as a population-based stochastic search using binary encoding, the 
basic pBHS is said to be easily integrated with canonical genetic algorithm. In this 
chapter, how GAs and our model are integrated is presented with experimental results 
to illustrate the benefit of the integration. 

6.1 Introduction 

In chapter 3，we pointed out that although GAs are effective algorithms, they rely on 
a large population size to keep the global information about the problem. By increasing 
the population size, the reliability of the global information can be increased. One of 
the advantages of our model is the use of memory. Generally, the longer the memory, 
the more reliable the global information. It can be seen that the approaches of both 
methods are complementary to each other. Consider the size of the population and the 
length of the convergence as two different dimensions: width and depth, GAs try to be as 
'wide' as possible, while our model tries to be as deep as possible. Being complementary 
in nature, they are integrated so as to gain benefits from both. 

Although GA and pBHS are two full-fledged algorithms, the integration is still 
easy owing to the fact that they are similar in several aspects. Firstly, both of them 
are classified as the same class of algorithm: iterative probabilistic search. Secondly, 
chromosome/binary string is the basic object to be manipulated. Thirdly, they are 
population-based approach. 

In the following, we provided three variants of one integration model [42] which is 
based on the basic pBHS and canonical GA. 

79 



6.2 Variants of the integration 

In this section, three variants ofaGA-pBHS integration model are presented. Before 
describing the integration model, we list below their main characteristics: 

• Merging of populations from both parties are taken. A control parameter called 
mix ratio 7 is introduced to control the proportions of the chromosomes of GA 
and the binary strings of pBHS to be passed to the next generation. 

• The operator pBHS is different in nature to the basic GA operators such as 
crossover and mutation. These basic GA operators can be said to be transfor-
mation functions mapping a population of chromosomes into another population 
ofthe same universal set. pBHS is different in that it generates a complete new set 
of binary strings instead of transforming the set from the last generation. Hence, 
in one aspect, the integration model has two cycles (GA cycle and pBHS cycle) 
running in parallel. In another aspect, pBHS can be viewed as an operator plugged 
into the GA cycle. 

To aid in understanding, we show the integration model in Figure 6.1. On the left 
hand side of the figure, there shows a flowchart illustrating the standard components 
(selection, crossover, and mutation operators) of a typical canonical GA. In addition 
to these, we have pBHS at the end of the GA cycle. Since the basic pBHS model has 
memory effect, the ultimate function of this operator is to memorize/accumulate the 
searching experience gained in the genetic search. How to use the memory is subject to 
the design on specific usage. On the right hand side of the figure, the internal details 
of the pBHS operator is illustrated. The internal details of the operator is the same as 
that of the standalone basic pBHS algorithm except the followings: 

• The introduction of a Merging component. 

• It is the samples coming from both parties that are used for information gathering. 

• The samples from both parties will become the next generation chromosomes of 
the GA, as opposed to the ordinary pBHS that all the samples are discarded. 

This integration is flexible in that it is easy to be adapted to a pure GA, the pure 
pBHS or the integration of both. It is made possible by the mix ratio 7 G [0.0’ 1.0 
mentioned before. This parameter determines the proportions of chromosomes of GA 
and binary strings of pBHS to be merged in the Merging component. Given a 7 and a 
population size N, the merged population, i.e., the output of the Merging component, 
will have 7iV ofchromosomes from GA and ( l-7 )Ar from pBHS. To turn the algorithm 
into a pure GA, one can switch off the pBHS operator totally by using 7 = 1.0. The 
merged population will not have any binary strings generated from pBHS. Similarly, to 

80 . 



turn the algorithm into a pure pBHS, one can switch off GA totally by using 7 = 0.0. 
With any other mix ratio, 0.0 < 7 < 1.0, the integrated model with varying fractions of 
GA chromosomes and pBHS binary strings will be resulted. The integration model is 
summarized in the Algorithm 6.1. 

A l g o r i t h m 6 .1 The integration of GA and pBHS. This algorithm is intended to show 
the logic of the integrated model, so the presence of multiple subpopulations and the 
competition are assumed. 
A l g o r i t h m GA+pBHS 
/• PQj^{t) — Population generated by GA at time t 

* PpBHs{t) — Population generated by pBHS at time t 
*/ 

t = 0 

L o o p 
t = t+l 
/• GA •/ 
P^(t) 4 - Crossover(P(^ - 1)) 
i ^ t ) f " Mutation(PxW) 
FGA(t) <- Evaluation(P^(^)) 
PGA(t)卜 Selection(Pf,(t),FGA(t)) 

/* pBHS */ 
PpBHs(t) <- pBHS_Generat ion(a ( i - 1)) 

FpBHs(t) <- pBHS_Evaluation(PpBHS (t)) 

/• Meeting point */ 
(F(t),F(t))^ Merging(PGA(t), PpBHs(t), FcA, FpBHs) 
a{t) <- Information_gathering(P(^), F{t)) 

u n t i l stopping criteria are met. 

e n d A l g o r i t h m 

So far, we have not discussed the detail of the merging component besides the 
fraction of chromosomes/binary strings from both parties. In the following, we pro-
vided three merging methods: (1) Fixed-fraction-of-all; (2) Fixed-fraction-of-best; and 
(3) Best-from-both. 

81 



start 

, i � _ , g _ g ^ P 
^ Generation of a 1 : Generation of a From GA 
new population | "[ new population 

V rn J TT" 
_^^章_____^^_纏_ 1^¾^¾¾^¾¾¾¾¾^^^¾ 

''V 2 2 S S ; ; ^ 2 i i i i f i S _ S , _ ‘ 
^2 \^__ .………. (a Selection - ^ — ~ Evaluation 
V p _ ^ V / 

4 yr 
r \ 善,'f";-!;̂ -'f̂  冷‘• .;,f •,,• ‘ ̂-! , !；- , B!,-""‘;〒:;％;『、:滿麵缚 
Crossover Merging ^ ― 

4 � ... 倫 讀 一 : : - 鼠 。 画 — ; 

f4 fo ~~：~~ Mutation Information 
n gathering 

V- X 

fevaluation ^^_____^____^^^ i l 
p 广 New >̂  Information 
ff ^ n v i r o n m e n ^ d e p o s i t i o n 

‘ " p B H S 1 H ^ 乂 ^ 

: U „ _ ^ ' : ( tl 

，f L r ^ i i ; ^ - - ^ r u p d a t e 
Finish ^ 乂 remembrance 

• V y 
Key: 

^ Control flow 
^ Mormation flow • 

Ĉ  ^ biformation Back 
( to GA 
I 1 Process 

FlGURE 6 . 1 : INTEGRATION OF G A s AND P B H S . LEFT HAND SIDE OF THE FIGURE IS 
AN OVERVIEW OF THE INTEGRATION MODEL. THE SHADED REGION AT THE BOTTOM 

IS THE NEWLY INTRODUCED OPERATOR pBHS. THIS IS THE FIRST MODULE OF THE 

INTEGRATION MODEL. THE ALGORITHM BECOMES A PLAIN G A WHEN THE OPERATOR 

IS REMOVED. THE DIAGRAM ON THE RIGHT HAND SIDE IS THE DETAIL OF THE pBHS 

OPERATOR. 

82 



6 . 2 . 1 F i x e d - f r a c t i o n - o f - a l l 

The idea behind this variant is to ensure a fixed proportion of contributions from 
both GA and pBHS. Since the samples generated are the main source of information in 
creating the searching environment, contribution is defined as the amount of samples of 
each party (GA and pBHS) injected into the next iteration. In this variant, both GA 
and pBHS will generate the amount of chromosomes/binary strings determined by mix 
ratio 7. The size of the intermediate populations such as 尸乂⑴，PM, and PoA {t) are 
jN, while that of PpBHs{t) is (1 - 7 )见 After merging (see Algorithm 6.2), the size 
of the resultant population P(t) will become N. Since the population generated in the 
current generation will become the population of the GA cycle in the next generation, 
it is necessary to restore the large population back to ^ N . We can either restore it by , 

the crossover operator or by the selection operator. The advantage of the former one 丨 

is saving computation by mutating, evaluating and selecting a smaller population. The 
disadvantage is the loss of some possibly good genes. The advantage and disadvantage 
of the latter one are that the larger gene pool can stay longer in the population and 
the needs of a considerable amount of computation (the manipulation of 7iV versus N) 
respectively. In order to save computation, we chose the former method. 

A l g o r i t h m 6.2 Merging: Fixed fractions of all from both 
/ • PoA{t - 1) - Population from GA at time t-1 
* PpBHs{t - 1) — Population from pBHS at time t-1 
* PoA{t) — New population to GA at time t 

* PGA{i){i) - The i-th element of the new population to GA at time t 

*/ 
F u n c t i o n Merging( PoA{t 一 1), PpBHs{t 一 1 ) ) 

PoAim <- PoAm-i), v i G [ o , 7 i v - i ] 
PGA{j^lN){t) <-PpBHs{j){t-l). V j G [ 0 , ( 1 - 7 ) A T - 1 ] 
r e t u r n PoA{t) 

e n d F u n c t i o n 

6 .2 .2 F i x e d - f r a c t i o n - o f - b e s t 

This merging scheme is similar to the Fixed-fraction-of-all scheme that the param-
eter mix ratio 7 is required to control the relative proportions of GA chromosomes and 
pBHS binary strings. However, the jN chromosomes from GA are the best selected chro-
mosomes from a size N GA population while the 7 ( l 一 N) binary strings from pBHS are 
the best selected chromosomes from a size N pBHS population. To make this scheme 
possible, both GA and pBHS have to maintain a population of size N respectively. This 

83 



merging scheme is shown in Algorithm 6.3. 

A l g o r i t h m 6,3 Merging: Fixed fractions of best from both 

/ * PoA{t — 1) — Population from GA at time t-1 

* PpBHs{t 一 1) — Population from pBHS at time t-1 
* Pa^[t) - New population to GA at time t 

* PGA{i){t) - The i-th element of the new population to GA at time t 

*/ 
F u n c t i o n Merging( PoA{t 一 1)，PpBHs{t 一 1 ) ) 

Sor t PoA{t - 1) in descending order (for maximization) according to raw fitness 
Sor t PpBHs{t - 1) in descending order (for maximization) according to raw fitness 
P G A _ 卜 PoAm-l)： V i G [ 0 , 7 i V - l ] 
PGA{j^jN){t) ^PpBHs{j){t-l), V j G [ 0 , ( l - 7 ) ^ - l ] 
r e t u r n PoA {t) 

e n d F u n c t i o n 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ _ ^ ^ ^ _ _ _ _ ^ ^ _ _ _ ^ ^ _ , . ^ ^ _ „ . , ^ ^ _ ^ ^ ^ _ _ ^ ^ _ « « ^ ^ — ^ ^ ^ — i — ^ ^ — ^ ^ ^ ~ i i - ^ ^ ^ — — ^ — I 

i 

6 . 2 . 3 B e s t - f r o m - b o t h 

This merging method is similar to the Fixed-fraction-of-all scheme with the follow-

ing two differences: 

• Removal of the parameter — mix ratio 7. 

• Each of the two parties (GA and pBHS) have to generate and evaluate N individ-
uals in each iteration as if the Fixed-fraction-of-best scheme. 

The purpose of the removal of the mix ratio parameter is to allow a dynamic mixing of 
chromosomes and binary strings. In the fixed fraction model, some individuals which 
have higher fitness than some individuals are not selected for merging owing to the quota 
imposed by the fraction parameter 7. In order to make use of all the best individuals 
found in both models, the fraction parameter is removed and the best N individuals from 
both populations are selected for the population of the next generation. It is illustrated 
in Algorithm 6.4. 

6.3 Empricial performance study 

The purpose of this study is to illustrate the performance of the integrated model. 
The three variants discussed in the previous sections were tested using a number of 

84 



A l g o r i t h m 6.4 Merging: Best from both 
/• PpBHs{t) — Population of pBHS at time t 

* PoA{t) — Population of GA at time t 

* PGA{i){t) - The i-th element of the new population to GA at time t 

*/ 
F u n c t i o n Merging( PoAit _ 1 )，P p B H s { t 一 1) ) ！ 

Sor t PoA{t - 1) in descending order (for maximization) according to raw fitness ： 

Sor t PpBHs{t 一 1) in descending order (for maximization) according to raw fitness 
k = 0, j = 0, i = 0 
f o r i <r- [0, N - 1 

i f PGA{j){t - 1) < PpBHs{k){t - 1) t h e n 
PoAm) <- PpBHs{k){t-l) 

k = k + l 

else i f PGA{ j ) { i - 1) > P p B H S _ - 1) t h e n 
i w 0 w — PGA{m-^) 

3 = 3 + 1 
elsei fRAND# < 0 . 5 t h e n 

PGA{i){t) <- Pj>BHs{m-^) 
k = k + l 

else 

PGA_ — i W j . ) ( , - l ) 
j = j + 1 

e n d i f 
e n d f o r 
r e t u r n PoA {t) 

e n d F u n c t i o n 

85 



TABLE 6 . 1： PERFORMANCE STUDY ON THE INTEGRATION MODEL： EXPERIMENTAL 
SETUP 

• C o n d i t i o n s f 
Test f u n c t i o n s — j ^ : ^ j^ | Q ~ 

R a s t r i g i n ~ ~ ( l ^ ~ ~ 1 . 9 9 9 5 50 0.85/0.80/0.70~~Y~ 
Hartman (n=3) -3.860 30 0.75/0.70/0.70 1 
Shubert (n=3) 186.73 60 0.90/0.85/0.85 3 
Shekel {n=4) 9.9 96 0.98/0.95/0.95 12 

t： Common condition: 7 二 {0.00, 0.25, 0.50, 0.75’ 1.00} 
I： a/b/c means the |3 values for the fixed-fraction-of-all, the fixed-fraction-of-best and the 

best-from-both merging schemes are a, b, and c respectively. 

TABLE 6 . 2 : PERFORMANCE OF THE HYBRID MODEL - RASTRIGIN FUNCTION (N = 2 ) 

Fixed-fraction-of-all Fixed-fraction-of-best Best-from-both 
1 Succ. rate #eval. Succ. rate #eval. Succ. rate #eval. 

~ O W ^ 1838.1 ^ 2324.2 
0.25 99 1844.5 97 3658.8 
0.50 100 2018.2 99 3493.9 98 3168.4 
0.75 100 2192.5 100 4120.0 
1.00 一 100 3676.0 100 3676.0 
Condition: N = 50, |3 = 0.95 
0.00 99 2364.3 99 2364.3 

commonly used low dimension functions: Rastrigin function (n=2), Hartman func-
tion (n=3), Shubert (n=3) and Shekel (n=4) functions. In order to illustrate the ef-
fect of different proportions of pBHS and GA mixture, we tried 5 different proportions 
7 二 {0.00, 0.25，0.50，0.75,1.00}. As mentioned before, 7 equals 1.0 is a pure GA, while 7 
equals 0.0 is a pure pBHS. The experimental setup is shown in Table 6.1 and the results 
are shown in Tables 6.2-6.5. The five mix ratio 7 used are listed on the leftmost column 
of each of the result tables. Subsequent columns show the success rates (percentage of 
consecutive trials out of 100 trials reached the prescribed / + ) and the average number 
of evaluations required for each of the merging schemes. The results of the two fixed-
fraction schemes for 7 二 0.00 and 7 = 1.00 are the same (unless the f3 values used are 
different), since pure pBHS and pure canonical GA need no merging and hence should 
have no theoretically difference under both schemes. For the Best-from-both merging 
scheme, only one result is reported for each test function. It is because the mix ratio 7 
is not applicable. At the bottom of each result table, there is a row reporting a result 
for 7 = 0.00 and the corresponding experimental condition. This result is reported espe-
cially for comparison. To be more specific, in Table 6.2，the result reported for 7 = 0.00 
is 1838.1 number of function evaluations on average to achieve 93% success rate. Since 

86 
<% 



TABLE 6 . 3： PERFORMANCE OF THE HYBRID MODEL - HARTMAN FUNCTION (N = 3 ) 

Fixed-fraction-of-all Fixed-fraction-of-best Best-from-both 
fy 

Succ. rate #eval. Succ. rate #eval. Succ. rate #eval. 
0.00 % 483.1 % 450.0~~ 

0.25 97 489.6 93 794.8 

0.50 97 554.9 97 792.4 95 876.0 

0.75 96 571.6 99 772.1 

1.00 一 88 1302.6 80 1302.6 
Condition: N =10, P =0.95 “ 

0.00 100 709.9 m 709.9 

TABLE 6 . 4 : PERFORMANCE OF THE HYBRID MODEL - SHUBERT FUNCTION (N = 3 ) 
Fixed-fraction-of-all Fixed-fraction-of-best Best-from-both 

^ Succ. rate #eval. Succ. rate #eval. Succ. rate #eval. 
T o o " 94 4942.3 94 3360.0 

0.25 97 5585.6 96 7322.5 

0.50 93 5729.0 93 7127.8 95 7908.6 

0.75 94 6608.3 96 6356.3 

"T o T " 95 93UX~ 97 9314.5 

the algorithm using 7 = 0.00 is essentially a pure pBHS algorithm, to compare the pure 
pBHS and the hybrid algorithms, we have to report the number of function evaluations 
to achieve the same level of performance as the hybrid algorithms. The bottom row of 
result table is dedicated for this purpose. 

From the experimental results, there are three observations: 

• The canonical GA performed poorly compared to the rest of the hybridized cases 
(7 二 { 0.25, 0.50, 0.75 } ) in all of the functions tested. 

• The hybridized cases (7 = { 0.25, 0.50, 0.75 } ) perform similarly to the pure 
pBHS model. For some tests, the hybridized cases outperformed pBHS. One im-
plication of the result is that the performance of the canonical GA is not good 
enough to dominate the pBHS operator. It is suggested that a good balance of 
the performance of both parties is needed. 

TABLE 6 . 5： PERFORMANCE OF THE HYBRID MODEL - SHEKEL FUNCTION ( N = 4 ) 
Fixed-fraction-of-all Fixed-fraction-of-best Best-from-both 

’ Succ. rate #eval. Succ. rate #eval. Succ. rate #eval. 
0.00 ^ 38653.3 ^ 16445.2 

0.25 89 40518.4 89 32074.8 

0.50 95 44517.7 95 33181.6 94 30244.2 

0.75 90 40129.1 85 27119.4 

1.00 一 46 65027.5 41 69265.2 

87 



• Both the Fixed-fraction-of-best and the Best-from-both merging scheme showed no 
advantages over the Fixed-fraction-of-all scheme. It is because both the pBHS and 
the GA have to generate populations of size N. The number of function evaluations 
required in each iteration is doubled and hence the drop in performance. The result 
indicates that the extra computation used in both the Fixed-fraction-of-best and 
the Best-from-both schemes are not justified. 

• The performance of the Fixed-fraction-of-best is generally outweigh that of the 
Best-from-both merging scheme. It is possibly due to the high greediness of the 
latter approach that extra computation has to be used to overcome local traps. 

6.4 Summary 

In this chapter, the model of incorporating pBHS into the canonical GA as an 
genetic operator has been presented. The role of the pBHS operator is firstly, the 
accumulation of searching experience of the past which includes those from the GA, 
and secondly injecting new and diverse binary strings into GA population. The re-
sult showed that the hybrid model outperformed canonical GA while having similar or 
slightly outperformed the pure pBHS algorithm. This hybridization is a preliminary 
trial and obviously requires substantial improvements. However, the increase in perfor-
mance, though minimal, indicates that the hybridized model worth further investigation. 
For example, different merging techniques besides the fixed-fraction and best-from-both 
schemes are required. 

88 



CHAPTER 7 

Conclusion and Future work 

In this thesis, a new iterative stochastic searching algorithm called probabilistic 
cooperative-competitive binary hierarchical search pccBHS is proposed. It divides the 
n-dimensional search space into partitions and organizes the partitions into a binary 
hierarchy. As discussed, this organization provides a basis for resolution control and 
reduction of search space size. To bring these two features into reality, an algorithm 
has to be designed to take the advantages of the hierarchical organization. Hence, we 
have presented an algorithm which is an information processing cycle. In the cycle, 
a population of searching agents cooperatively search for the best possible result and 
construct a global environment in a collaborative manner. This global environment is 
the information representing the global nature of the problem to be solved. This global 
information is in turn used by the agents in the searching and the global environment 
construction. This cycle goes on continuously until the desired solution is obtained. 
The aim of the .construction of global information is to provide reliable guidance to 
the agents in the future search. In fact, the reliable guidance is made possible by the 
effective pruning of sub-optimal areas of the search space and the smoothing of the 
rugged surface (the local optima are known to be traps of searching algorithms). By 
gathering information to construct the global information, sub-optimal search space can 
be eliminated from consideration. By organizing the search space hierarchically with 
resolution increasing towards the bottom of the hierarchy, the difficulty caused by the 

rugged surface can be lowered. 
The positive feedback nature of the algorithm allows locating the solution very fast. 

However, it makes the algorithm trap inside the local optima easily. Competition has 
been introduced to level off the strong exploitation effect. By competition, we mean 
the use of multiple number of populations to search separately while keeping a repulsive 
force among them. By this way, each population can search in high speed to exploit the 
information gathered and at the same time maintain the solution quality by searching 
diversely. Besides this main purpose, this competition model has one advantage over 

89 
« 



existing techniques is that it does not need a pre-defined radius which inherently limits 
the algorithm from finding optima in different resolutions simultaneously. Nevertheless, 
it has limitations. One of the limitations is that it favors for functions with few big 
optima. It does not mean that it is not applicable to massively multimodal functions. 
In fact, we have demonstrated the performance of the algorithm in solving a massively 
multimodal function. If the functions exhibit correlation among neighboring points, 
the algorithm is still capable of solving it. To remind, our algorithm is designed with 
resolution control in mind. Massively multimodality would not be a difficulty. 

Dealing with high-dimensional functions, we have adopted a decoupling scheme. 
Simply, for a n-dimensional function, each of the n dimensions is handled by a single 
population (subpopulation). A n-dimensional solution is constructed by picking solution 
one from each subpopulation. The function value is no longer the sole and determining 
criterion in evaluating the n-dimensional solutions. Instead, cooperative fitness which 
favors for solutions that can produce better function value is used. The decoupling 
scheme improves the algorithm significantly on solving high-dimensional function. 

Unless the algorithm is fully adaptive, algorithm parameter is not only unavoid-
able, but also vital to the versatility of the algorithm. Our algorithm provides several 
parameters, such as population size, remembrance, and the number of subpopulations, 
for controlling its properties. 

Being categorized in the iterative stochastic search, our algorithm and GA share 
similarities. They have been integrated to form a hybrid algorithm. The hybrid al-
gorithm is designed with GA being the backbone and our algorithm being a special 
genetic operator. Chromosomes injected from GA into the special genetic operator will 
be passed to the global information gathering component in which the information of 
the chromosomes are extracted. New chromosomes are generated by our algorithm. The 
GA chromosomes and those newly generated are mixed in different proportions. They 
are then passed back to the GA in the next generation. The preliminary result reported 
indicates that the hybrid algorithm can improve the performance of GA. 

In this work, we exploited very minimal potential of the resolution control property 
of the hierarchy and the gathered global information. Hence, one of the future work 
would be the design of a better adaptive learning algorithm and a better searching mech-
anism to exploit the potential. Another future work would be the improvement of the 
GA+pBHS integration model such as providing new merging schemes and investigating 
the effect on using different GA algorithms. 

90 

I 



APPENDIX A 

The pBHS Algorithm 

The following is the basic pBHS algorithm in detail. Algorithmic complexity of the 
algorithm is analyzed. For the ease of reading, the algorithm is presented in two levels 
of abstraction. 

A.1 Overview 

Step 1: Initialization 0{nl) 
Step 2: Generation of a new population 0{Nnl) 
Step 3: Evaluation 0{NF{x)) 
Step 4: Fitness scaling 0{N) 
Step 5: Information gathering 0{Nnl) 
Step 6: Information deposition 0{nl) 
Step 7: Adjustment of remembrance values 0{nl) 
Step 8: Goto Step 2 if 

(i) max.generations is not reached; and 
(ii) stopping criteria is not met 

FlGURE A . 1 : BASIC pBHS ALGORITHM OVERVIEW 

As shown in above, steps 2 to 7 are enclosed in a loop running continuously for 
the maximum allowed generations specified or until the stopping criteria are met, so 
the maximum allowed generations T is taken into consideration on analyzing the com-
plexity. On the whole, the algorithmic complexity of the algorithm is 0(TNnI) if the 
algorithmic complexity of the function to be optimized is less than or equal to 0(nl). 
Otherwise, it is equal to 0 (T N F{x)). 

A.2 Details 

91 
» 



A l g o r i t h m A . 1 STEP 1 ALGORITHMIC COMPLEXITY： 0{ri'l) 

/ • Step 1: Initialization * / 

for m = 0 to n -1 

for i = l—l to 0 
am,k = 0.5 

am,k+i 二 0.5 

end for 
end for 

A l g o r i t h m A . 2 STEP 2 ALGORITHMIC COMPLEXITY： 0{N . n . /) 

/ * Step 2: Generation of new population * / 

for j = 0 to N 一 1 

/ * Generate for all variables * / 

for m = 0 to n — 1 
/ • Generate a binary string * / 

for i 二 1-1 to 0 
if RAND# < Gtm,fc 

h,m,i = 0 
else 

bj,m,i = 1 

end if 
end for 

end for 
end for 

A l g o r i t h m A . 3 STEP 3 ALGORITHMIC COMPLEXITY： 0{N ‘ F{x)) 

/ • Step 3: Evaluation * / 

for j = 0 to N - 1 
for m = 0 to n — 1 

Xj^rn = Sj,m/V * [xjnaaxm - xjminm) + xjmirim 

end for 
fj = F{xj) 

end for 

92 



A l g o r i t h m A . 4 STEP 4 ALGORITHMIC COMPLEXITY： 0{N) IF N > m OR 0(m) 
OTHERWISE. 
/ * Step 4: Fitness scaling * / 

/ * Find min. and max. fitness * / 

Fmin = /o; Fmax = /o 
for j = 1 to N - 1 

if fj < Fmin then 
Fmin — fj 

else if fj > Fmax then 
Fmax ~ fj 
best_of_population = j 

end if 
end for 
if elitism is used then 

if /best_of_population > êiite then 
Feiite - /best_of_population 
for m = 0 to n — 1 

Selite,m 二 ^j,m 
end for 

else 
Fmax - Felite 

end if 
end if 

/ * Scale fitness values * / 

for j = 0 to N - 1 
fj = (/j _ Fmin) / (Fmax - Fmin) 

end for 

93 

4h 



A l g o r i t h m A . 5 STEP 5 ALGORITHMIC COMPLEXITY： 0{N • n . /) 

/ * Step 5: Information gathering * / 

for j = 0 to N — 1 
for m = 0 to n — 1 

for i = 1—1 to 0 
i f bj,m,i == 0 

hm,k += fj 
else 

hm,k + l += fj 
end if 

end for 
end for 

end for 
i f elitism i s used 

for m = 0 to n — 1 
for i = 1-1 to 0 

i f belite,m,i ==〇 

hm,k += N//i 
else 

hm,k + l += N/" 
end if 

end for 
end for 

end if 

A l g o r i t h m A . 6 STEP 6 ALGORITHMIC COMPLEXITY： 0{n-l) 

/ * Step 6: Information deposition * / 

for m = 0 to n — 1 
for i = 1-1 to 0 

/ * Normalization * / 

hm,k = hm,k / (hm,k + hm,k + l) 
hm,k + l = 1 - hm,k 
/ * Update * / 

am,k = |3m,i Clm,k + (1 一 ^m,i)hm,k 
end for 

end for 

94 
« 



A l g o r i t h m A . 7 STEP 7 ALGORITHMIC COMPLEXITY： 0{n-l) 

/ * Step 7: Adjustment of remembrance values * / 

for m = 0 to n — 1 
/ * Search for the last converged point * / 

r = l - l 

for i = /-1 to 0 
if |0.5-a^,2(i-i-ol > TM 

I O.b-am,2{i-i)l < T then 
r 二 i 

break 
end if 

end for 
/ * Update Pm,i V 
for i = 1-1 to 0 

if i >= r then 
(3m,i 二 (3 

else 
/?^,, = ( r - z + / ? ) / ( r - z + l ) 

end if 
end for 

end for 

95 



APPENDIX B 

Test problems 

Shekel family 

For 0.0 < Xj < 10.0, 1 < j < n, 

F,{x) = y J^(~^l��2 , , (B.1) 
^Ah{x-ai)Y + Ci 
%^— J. 

• S1, n 二 1 [55, 58] 

The one-dimensional Shekel function has the global optimum Fs{x) = 14.5926520 
located at x = 0.6858609. where m = 10 

i aj kj Cj i aj h Cj 
1 3.040 2.983 0.192 6 8.679 1.236 0.189 
2 1.098 2.378 0.140 7 4.503 2.868 0.187 

‘ 3 0.674 2.439 0.127 8 3.328 1.378 0.171 
4 3.537 1.168 0.132 9 6.937 2.348 0.188 
5 6.173 2.406 0.125 10 0.700 2.268 0.176 

• S m , n = 4 , m = {5 ,7 ,10 } [58] 

There are three members of dimension equal to four in the Shekel family. All have 
global optimum approximately equals to 1/ci at ai. 

i ^ Ci i (M £z 
1 4 4 4 4 0.1 6 ~ 2 ~ ~ 9 ~ ~ 2 ~ ~ 9 " " " O T " 
2 1 1 1 1 0.2 7 5 5 3 3 0.3 
3 8 8 8 8 0.2 8 ~ 8 ~ ~ 1 " " 8 ~ ~ 1 ~ ~ 0 7 T 
4 6 6 6 6 0.4 9 6 2 6 2 0.5 
5 3 7 3 7 0.4 10 7 3.6 7 3.6 0.5 

96 



Ackley family 

Only one member (A30) of dimension 30 {n 二 30) in the family was used. For 

- 3 0 . 0 < Xi < 30.0’ 

F^30 = 20 e x p ( - 2 0 , ^ V x^) + e x p ( - ^ cos[2i^Xi)) 一 20 - e. (B.2) 
>1 几 i=i 几 i=i 

Rastrigin family 

• R2 n = 2 The two-dimensional Rastrigin function is a function having 50 optima 
with one global optimum Fr[x) = 2.000000 located at a; 二 (0, 0). For - 1 . 0 < iCi < 
1.0，i = 1,2, 

FR2{x) = -xl - xl + cos(18xi) + cos(18a^2). (B.3) 

• Rn, n = {20,50,100,200，400} [59； 

For -500 .0 < Xi < 500’ 
n 

FRn(x) 二 lOn + Z ( a : ? - 10cos(27ro^)). (B.4) 
i = i 

Goldstein-Price function 

• G P 2 n 二 2 

For - 2 . 5 < a ^ i < 2 . 0 , i = l , 2 , 

FoP2 二 -[1 + {^1 + ^2 + 1)2(10 - Uxi + 2x1 - 14冗2 + QxiX2 + Sxly . 

[30 + {2xi - 3a:2)2(18 - S2xi + 12xj + 48a^2 - ^QxiX2 + 27a^l)iB.5) 

The global optimum is / * = -3 .000 at x 二 [0 — 1:. 

Michalewitz family 

• M5 n = 5 

For 0 < Xi < 7T, 

FM5 = f ] s i n ( x , ) s i n ( ( i + l ) a : f / 7 r ) 2 - (B.6) 
i=i 

The global optimum is / * = 4.687. 

97 



Sphere family 

Five members ofthis family are used: SP8, SP16, SP32, SP64, SP128. For -5 .12 < 

Xi < 5.12， 

i W ^ i > - l ) 2 . (B.7) 
i=i 

Hartman family 

Only one member of this family [58] is considered: 

• H3, n = 3, For 0.0 < Xj < 1.0, 1 < j < 3, 
4 n 

FH3{x) = - Y , C i e x p { - Y , a i j { x j - P i j f ) . (B.8) 
i=i j=i 

-0.36890 0.11700 0.26730 1 \ 3 10 30 1 
一 0.46990 0.43870 0.74700 二 0.1 10 35 ( = 1.2 (g g) 

a = 0.10910 0.87320 0.55470 卜 3 10 30 _ 3 ‘ 
0.03815 0.57430 0.88280 0.1 10 35 3.2 

_ J L. J 匕 J 

Goldberg's bipolar deceptive function 

Binary strings of eight bits long is used. Given 21 二 8, a 二 0.99, b = 1.00, and 

z — 3, 

• Fbpd{u) = g{\u-l\), 

二 ( f H , if-y 
] j ^ { e - z), otherwise. 

u is the unitation of a binary string. It is defined as the number of ones in the string. 
For a binary string of length 2/, u 二 [0,2/]. Global optimum is 1.0. 

Modified Goldberg's bipolar deceptive function 

Binary strings of eight bits long is used. Given 21 = 16, a = 0.99, b = 1.00, and 

z = 32521, 

Fhpd[u) 二 5 ' ( | ^ - ^ l ) , 

二 ( f H ’ i f * 

y � ) 一 I j ^ [ e - z ) , otherwise. 

u = [0,65535] is the decimal equivalent of the binary number. Global optimum is 1.0. 

98 

4h 



BlBLIOGRAPHY 

[1] A. Albrecht, S.K. Cheung, K.C. Hui, K.S. Leung, and C.K. Wong. Optimal place-
ments offlexible objects, i. analytical results for the unbounded case. IEEE Trans-
actions on Computers, (8):890-904, 8 1997. 

[2] A. Albrecht, S.K. Cheung, K.C. Hui, K.S. Leung, and C.K. Wong. Optimal place-
ments of flexible objects, ii. a simulated annealing approach for the bounded case. 
IEEE Transactions on Computers, (8):905-29, 8 1997. 

•3] F. Aluffi-Pentini, V. Parisi, and F. Zirilli. Global optimization and stochastic differ-
ential equations. Journal of Optimization Theory and Applications, 47:1—16, 1985. 

[4] T. Back. Evolution strategies: an alternative evolutionary algorithm, pages 3-20. 
Springer-Verlag; Berlin, Germany, 1996. 

•5] J.E. Baker. Adaptive selection methods for genetic algorithms. In J.J. Grefen-
stette, editor, Proceedings of the 1st International Conference on Genetic Algo-
rithms, pages 101-111. Lawrence Erlbaum Associates, 1985. 

6] D. Beasley, D.R. Bull, and R.M. Ralph. An overview of genetic algorithms: Part 
1, fundenmental. University Computing, 15(2):58-69, 1993. 

•7] Kenneth Dean Boese. Models for Iterative Global Optimization. PhD dissertation, 
University of California, Los Angeles, 1996. 

•8] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo, and S. Lucidi. A new version of the 
price algorithm for global optimization. J. Global Optimization, 10, 1997. 

•9] D.J. Cavicchio. Adaptive search using simulated evolution. PhD thesis, Ann Arbor, 
MI:University of Michigan, 1970. 

•10] Beasley D., Bull D.R., and Martin R.R. A sequential niche technique for multimodal 
function optimization. Evolutionary Computation, 1(2):101-125, 1993. 

11] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. 

PhD thesis, The University of Michigan, 1975. 

99 
秦 



.12] K. Deb and D.E. Goldberg. An investigation of niche and species formation in 
genetic function optimization. In J.D. Schaffer, editor, Proceedings ofthe 3rd Inter-

national Conference on Genetic Algorithms, pages 42-50. San Mateo, CA: Morgan 
Kaufmann, 1989. 

13] K. Deb and D.E. Goldberg. An investigation of niche and species formation in 
genetic function optimization. In J.D. Schaffer, editor, Proceedings ofthe 3rd Inter-
national Conference on Genetic Algorithms, pages 42-50. San Mateo, CA; Morgan 
Kaufmann, 1989. 

•14] K. Deb and D.E. Goldberg. Sufficient conditions for deceptive and easy binary 
functions. Annals of Mathematics and Artificial Intelligence, 10(4):385-408, 1994. 

•15] K. Deb, J. Horn, and D.E. Goldberg. Multimodal deceptive function. Complex 

Systems, 7:131-153, 1993. 

[16] A. Dekkers and E. Aarts. Global optimization and simulated annealing. Mathe-

matical programming, 50:367-393, 1981. 

•17] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony 
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, 

26(1):29-41,2 1996. 

18] P. Dutta and D.D. Majumder. Convergence of an evolutionary algorithm. In 
T. Yamakawa and G. Matsumoto, editors, Proceedings of the 4th International 
Conference on Soft Computing (IIZUKA ,96) - Methodologies for the Conception, 
Design, and Application of Intelligent Systems, pages 515-518. World Scientific; 
Singapore, 1996. 

19] A.E. Eiben, E.H.L. Aarts, and K.M. Van Hee. Global convergence of genetic algo-
rithms: A markov chain analysis. In H.P. Schwefel and R. Manner, editors, Parallel 
Problem Solvingfrom Nature, pages 4-12. Heidelberg,Berlin: Springer-Verlag, 1991. 

20] D.B. Fogel. Asymptotic convergence properties of genetic algorithms and evolution-
ary programming: Analysis and experiments. Cybernetics and Systems, 25(3):389-
407, 1994. 

•21] D.B. Fogel. An introduction to simulated evolutionary optimization. IEEE Trans-

actions on Neural Networks, 5(1):3-14, 1 1994. 

.22] Stephanie Forrest. Emergent computation: self-organizing, collective, and coop-
erative phenomena in natural and artificial computing networks. Special issue of 
Physica D. Cambridge, Mass; London: MIT Press, 1991. 

100 

秦 



23] A.J. Gaul, E. Handschin, and W. Hoffmann. Optimal management of electrical 
loads using knowledge aware evolutionary strategies. Engineering Intelligent Sys-
tems for Electrical Engineering and Communications, 5(l):21-8, 1997. 

24] D.E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. In 
Lawerance Davis, editor, Genetic algorithms and simulated annealing, pages 74—88. 
London: Pitman, 1987. 

.25] D.E. Goldberg. Genetic algorithms and walsh functions: Part ii. deception and its 
analysis. Complex systems, 3(2):153-171, 1989. 

"26] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. 

Addison-Wesley, 1989. 

•27] D.E. Goldberg, K. Deb, and J Horn. Massive multimodality, deception, and ge-
netic algorithm. In R. Manner and B Manderick, editors, Parallel problem solving 
from nature, 2: Proceedings of the 2nd Conference on Parallel Problem Solving 
from Nature, Brussels, Belgium, 28-30 Sept 1992, pages 37-46. Amsterdam, The 
Netherlands: Elsevier Science, 1992. 

.28] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal 
function optimization. In J.J. Grefenstette, editor, Genetic Algorithms and their 
Applications: Proceedings of the Second International Conference on Genetic Algo-
rithms, pages 41-9. Lawrence Erlbaum Associates; Hillsdale, NJ, USA, 1987. 

"29] G.W. Greenwood, C. Lang, and S. Hurley. Scheduling tasks in real-time systems 
using evolutionary strategies. In Proceedings of the Third Workshop on Parallel 
and Distributed Real-Time Systems, pages 195-6. IEEE Comput. Soc. Press; Los 
Alamitos, CA, USA, 1995. 

30] J.J. Grefenstette. Optimization of control parameters for genetic algiorithms. IEEE 
Transactions on Systems, Man, and Cybernetics, 16(1):122-128, 1986. 

•31] A.K. Gupta and G.W. Greenwood. Applications of evolutionary strategies to fine-
grained task scheduling. Parallel Processing Letters, 6(4):551-61, 1996. 

.32] A.K. Gupta and G.W. Greenwood. Static task allocation using (//, A) evolutionary 
strategies. Information Sciences, 94(l-4):141-50, 1996. 

33] J.H. Holland. Adaptation in Natural and Artificial Systems. The University of 

Michigan Press, 1975. 

•34] R. Horst and P.M. Pardalos. Handbook of Global Optimization, page 832. Kluwer 

Academic Publishers, 1995. 

101 

4h 



35] M.F. Hussain and K.S. Al-Sultan. A hybrid genetic algorithm for nonconvex func-
tion minimization. Journal of Global Optimization, 11:313-324, 1997. 

36] L. Ingber. Simulated annealing: Practice versus theory. Journal of Mathematical 

and Computer Modeling, 18(ll):22-59, 1993. 

.37] Terry Jones. Evolutionary algorithms, fitness landscapes and search. PhD thesis, 
The University of New Mexico, 1995. 

.38] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. J. 

Statistical Physics, 34(5-6):976-986, 1986. 

.39] S. Kirkpatrick, C.D. Gelatt, and M. Vecchi. Optimization by simulated annealing. 
Science, 220(4598):671-680, 1983. 

40] J. R. Koza. Genetic Programming: On the Programming of Computers by Means 
of Natural Selection. Cambridge, Mass : MIT Press, 1992. 

.41] K.S. Leung, Terence Wong, and Irwin King. Probabilistic cooperative-competitive 
hierarchical modeling for global optimization. In Proc. 6th Intl. Conf. Soft Com-

puting (IIZUKA ,98), 1998. 

•42] K.S. Leung, Terence Wong, and Irwin King. Probabilistic cooperative-competitive 
hierarchical modeling as a genetic operator in global optimization. In Proc. 1998 
Intl. Conf. Systems, Man, and Cybernetics (SMC,98), 1998. 

.43] S.W. Mahfoud. Crowding and preselection revisited. In R. Manner and B Mander-
ick, editors, Parallel problem solving from nature, 2: Proceedings of the 2nd Con-
ference on Parallel Problem Solving from Nature, Brussels, Belgium, 28-30 Sept 
1992, pages 27—36. Amsterdam, The Netherlands: Elsevier Science, 1992. 

•44] S.W. Mahfoud. Niching methods for genetic algorithms. PhD thesis, University of 
Illinois at urbana-Champaign, 1995. 

45] B.L. Miller and M.J. Shaw. Genetic algorithms with dynamic niche sharing for 
multimodal function optimization. In Proceedings of the 1996 IEEE International 

Conference on Evolutionary Computation (ICEC,96). IEEE; New York, NY, USA, 
1996. 

•46] Debasis Mitra, Fabio Romeo, and Alberto Sangivanni-vincentelli. Convergence and 
finite-time behavior ofsimulated annealing. Advances in applied probability, 18:747-
771, 1986. 

102 

4h 



•47] H. Miihlenbein and D Schlierkamp-Vosen. Predictive models for the breeder ge-
netic algorithm, i. continuous parameter optimization. Evolutionary Computation, 

1(1):25-49, 1993. 

'48] D.W. Page, S.E.; Richardson. Walsh functions, schema variance, and deception. 

Complex Systems, 6(2):125-135, 1992. 

.49] A. Petrowski. A clearing procedure as a niching method for genetic algorithms. In 
Proceedings of the Third (1996) IEEE International Conference on Evolutionary 
Computation (ICEC,96), pages 798-803. IEEE; New York, NY, USA, 1996. 

50] M.A. Potter and K.A. De Jong. A cooperative coevolutionary approach to func-
tion optimization. In Y. Davidor, H-P Schwefel, and R. Manner, editors, Parallel 
Problem Solving from Nature III. Springer-Verlag; Berlin, Germany, 1994. 

51] W.L Price. A controlled random search procedure for global optimization, pages 

71-84. North Holland, Amsterdam, 1978. 

•52] A.H.G. Rinnooy Kan and G.T. Timmer. Stochastic methods for global optimiza-
tion. American Journal of Mathematical and Management Sciences, 4(1), 1984. 

•53] j . Rowe and I. East. Deception and ga-hardness. In Alander J.T., editor, Proceed-
ings of the First Nordic Workshop on Genetic Algorithms and Their Applications 
(lNWGA), pages 165-172. University ofVaasa; Vaasa, Finland, 1995. 

•54] F. Schweitzer, W. Ebeling, H. Rose, and 0 . Weiss. Network optimization using 
evolutionary strategies. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. 
Schwefel, editors, Parallel Problem Solving from Nature - PPSN IV, pages 940-9. 
Springer-Verlag; Berlin, Germany, 1996. 

55] J. Shekel. Test functions for multimodal search techniques. In Proceedings of 

the 5th Princeton Conference on Infomration Science and Systems, pages 354-359. 
Princeton University Press, Princeton, 1971. 

56] B.E. Stuckman and E.E. Easom. A comparison of bayesian/sampling global op-
timization techniques. IEEE Transactions on Systems, Man, and Cybernetics, 

22(5):1024-1032, 1992. 

•57] Z.B. Tang. Adaptive partitioned random search to global optimization. IEEE 

Transactions on Automatic Control, 39(ll):2235-2244, 1994. 

58] A. T6rn and A. Zilinskas. Global Optimization. Lecture Notes in Computer Science. 
Springer-Varlag Berlin Heidelberg, 1989. 

103 

• 



•59] Hans-Michael Voigt. Soft genetic operators in evolutionary algorithms. In 
W. Banzhaf and F.H. Eeckman, editors, Evolution and Biocomputation. Berlin; 
New York: Springer, 1995. 

•60] Hans-Michael Voigt and Anheyer Thomas. Modal mutations in evolutionary algo-
rithms. In Proceedings ofthe First (1994) IEEE Conference on Evolutionary Com-
putation (ICEC,94). IEEE World Congress on Computational Intelligence, pages 
88-92. IEEE; New York, NY, USA, 1994. 

61] D. Whitley. Fundamental principles of deception in genetic search. In G. Rawlins, 
editor, Foundations of Genetic Algorithms. San Mateo: Morgan Kaufmann, 1991. 

•62] D. Whitley. Deception, dominance and implicit parallelism in genetic search. Annals 

of Mathematics and Artificial Intelligence, 5(l):49-78, 1992. 

104 

為 



x

 ̂.

 .

 f

 
.

产

 >

 i

 r

 >

 t
 

.”「：_
 
.

 

>
 M
,
;
f
^
 

；
-
 .

 ,

 -
.
^
#

 *

 4
"
¾
 

囊
：
、
"
.
 
.

一

"

，

，

 _>

 .
.

、

 d
l
 

瑪：.
 
•

 、
」

 
，

 
.

 "•
 

"
.
-

•
 •

 .
 .

 V

 T

 1
 

:
v
.
-
.
.
 

、

》

>

 ,
 

.
f
 ..../

 .
-

 .

 ,

 ,

 f

 #
^
¾
 

*
.
i
 
.
:
-

 -%
•
-

 .
 „

 
,.

 ̂

 

/
^
f
.
 

，••:..—
 .

 r
i
$
-

-
.
.
.
.

」
M
.
 •

 

:
 :

 ...

 ._-k4-l

 :
/
.
?

 ̂i
.
T
 

•

 :

 i
 -

 .

 ,

 „

 .

 
...

 .

 {
.

 
,.

 f?.-.d

 i
 

“
 .-

“
-

 
..

 ;

 f

 4
 

,
.
.

、
-
^
 ,.

 .
 .

 -
^
^

 :
 

:
.
.
/
.
-

」
.
1
-
:

 ,

 .

 人
一

 
，

 •

 
，

 J.

 s

 .

 n
 

.
-
,

—
•
.

 -
i
_

 I

 r、

 .

 .,...r:.

 ..
"

 :;
-

 :
;
A
,
:
 

；
厂
.
广
 
.

 -.

 
,

 
#

 

》
f
;
-

(〜」：：_
 

.

j

 •

 .

 』

 .

 々
r
>
-

i
s
:

「
n

 

•
 

,
 

,
 

i
/
 

，
>
.

 
,

 ..

 
.

 
-

 
.

 
,
 ?
.
.

 
%

 ,.
,
v
&
'
s
'
"
v
v
'

 l.
^
«
„
^
 

i
:
 -

 -

 •

 .

 .

 

,
.

 
.

 
一

 
-

 :
:
^
¾
 

.,—
 ：
-
”

 ..

 ,

 -
.

 ,

 -

 .

 -

 -

 ̂

 I

 i
T
』
 

；
 
.

 
.

 ’，‘

 
.

 _1

 
\

 X
 

.

 

(
 
.
-

 「..！
 

\
.
 _.

 I

 ,.

 、.：

 ，，：s
 

r
 ,
二
"

 .

 」
-
;

W
L

 

^
&
^
 

？
:
 
.

 
.

 
.

 
-

 ̂.；̂

 

〔
 
.

 
.

 、
.
二

 ：.，A
 

1
¾
^
 
.

 
.

 .
.
.

 •
丨
“
"
>
給
 

I
:
;

。
 
：

 
.

 •“、：？•
 

t-̂
r
 -

 ̂

 

•
 一
.

 
\

 
.

 

:
.
 “̂
？-

p
t

M
,
 
.

 
>

 
.

 
.

 
•

.

 
:

)

.

 ‘〜〔二
 ̂
一
 

學
、
,

 
:

 
.

 
;

.

,

•

 
•

 ：：

 
"

 、：)

 
•
.

 .
-

 ;."w
 

,
:
p
:
 .v
(

 外
：
：
：
義
 

^
^
8
I

M
8
i
l
m
i
i
^
B
i
i
i
i
h
i
l
i
s
s
i
l
^
M
B
i
8
i
B
i
i
B
l
f
i
^
l
^
l
i
i
l
i
^
l
a
f
&
f
i
f
i
^
i
i
y
^
^
^
*
^
*
^
*
^
*
^
"
^
*
^
^
^
^
^
^
-
?
1
g
^
r
a
h
r
f
 Th
:
r
>
.
B
^
i
l
^
t

M
i
i
*
/
i
R
^
r
^
k
-
*
-
^
-
-
^
-
*
^
-
p
^
.
_
:
f
^
M
^
l
^
t
f
^
m
y
T
i
^
g
m
-
r
:
l

 .

 -
g
i
w

 L

 

f
 -f.f̂
.t.,,J:...̂
.,̂
”：.b̂
h.-:s.‘...l.rl£.̂

〜..:-̂
î
<f.̂
pf.-』;*

 

^
 
t
.
i
 

.
 
；

 -

 •
:
.

」
r

 •

 .r
-
^
f
r
-
r
;

 ..
i
s
t

 ..
y
r
i
T
;
>
r
_
/
-
^
^

 :g
F
^
-
-

M
-
>
-
^
,
w
^
l
l
a
?
^
1
i
i
r
r
1
W
B
i
f
#
S
M
g
n
l
^
i
^
^
^
^
i
s
^
^
*
*
^
^
^
s
^
n
a
<
i

M
-
^
^
"
^
^
s
.
*
^
^
^
^
^
3
 



贄 

^ 1 

CUHK L i b r a r i e s 

11111圓圓圓1丨11111 

DD37DMDM7 

f 


