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^ V UNIVERSITY 剧 
�^^^BRARY S Y S T ^ ^ ^ ^ ^ ^ 

4 



簡介 

近來有狠多密5.1系統都採用橢圓曲線，因爲不少學者和用者都相信 
欄圓曲線密碼系統擁用同一樣的保安效能但它的私鎮和公鎮長度卻 
比較其他密縣統驅。 

這篇論文主要研究數碼簽署。在現今的數&1簽署’每一個簽署都需 
要一個新的偽随機數，所以偽随機數產生器對於數碼簽署系統是狠 
重要。論文中會講及如巢D i g i t a l S i g n a t u r e A l g o r i t h m 和 
N y b e r g - R u e p p e l D i g i t a l 319门31口�6這兩個數碼簽署系統的偽随機 

數產生器是 L C G � I C G 或 P N - s e q u e n c e g e n e r a t o r 時 ， 採 用 
_圓曲找出私鎮的時間和採用離散對數的時間差不多0所以無論採 
用橢圍曲線或離散^^數時,用者要注意偽随機數產生器的特質。 
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Abstract 

Recently, there are many cryptosystems which are implemented with elliptic 
curve since many researchers and users believe that elliptic curve cryptosystems 
provide a shorter key length and the same security when comparing with any 
well-known public-key cryptosystem. 

This thesis mainly concerns on the elliptic curve discrete logarithm problem 
based digital signature schemes and discrete logarithm problem based digital 
signature scheme. Many digital signature schemes require the signer to generate 
a new random number with every signature, so pseudorandom number generator 
is a critical factor in these schemes. 

When LCG, ICG or PN-sequence generator is used in Digital Signature Al-
gorithm or Nyberg-Rueppel Digital Signature Schemes, it takes approximately 
equal time to crack the schemes operated in the elliptic curve abelian group and 
the schemes operated in the finite field group given that they use the same key 
sizes. 

Therefore, one should take caution against which pseudorandom number 
generator is used no matter which digital signature scheme is used and which 
implementation is underlied . Although the random number seems to be hidden 
in the digital signature scheme, we also need to pay more attention to it. In other 

iii 



words, this thesis also illustrates the high vulnerability of the digital signature 
schemes to the weaknesses in the random number generation process. 
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Chapter 1 

Introduction 

1.1 Why use cryptography? 
The direction of communication and information exchange has been radically 
altered by emerging computer and communications technologies. Along with 
the speed, efficiency and cost-saving benefits of the digital revolution, come 
new challenges to the security and privacy of communications and information 
traversing the global communications infrastructure. 

In response to these challenges, the security mechanisms of traditional paper-
based communications media — envelopes and locked filing cabinets - are being 
replaced by cryptographic security techniques. 

Through the use of cryptography, communication and information stored 
and transmitted by computers can be protected against interception to a very 
high degree. Recently, non-governmental demand for encryption is increased 
dramatically. Modern encryption technology - a mathematical process involving 
the use of formulas (or algorithms) — was traditionally deployed most widely to 
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Chapter 1 Introduction 

protect the confidentiality of military and diplomatic communications. 
With the advent of the computer revolution, and recent innovations in the 

science of encryption, a new market for cryptographic products was developed. 
Electronic communications are now widely used in the civilian sector and have 
become an integral component of the global economy. Computers store and 
exchange an ever-increasing amount of highly personal information, including 
medical and financial data. In this electronic environment, the need for privacy-
enhancing technologies is apparent. Communications applications such as elec-
tronic mail and electronic fund transfers require secure means of encryption and 
authentication - features that can only be provided if cryptographic know-how 
is widely available and unencumbered by government regulation. 

Encryption ensures the confidentiality of personal records, such as medical 
information, personal financial data, and electronic mail. In a networked envi-
ronment, such information is increasingly at risk of theft or misuse. 

1.2 Why is authentication important ？ 

There is a tremendous potential for fraud in the electronic world. Transactions 
take place at a distance without the benefit of physical clues that permit iden-
tification, making impersonation easy. The ability to make perfect copies and 
undetectable alterations of digitised data complicates the matter. Traditionally 
hand-written signatures serve to determine the authenticity of an original doc-
ument. However, in the electronic world hand-written signatures does not exist 
and we need to provide a method to prevent impersonation. In the electronic 
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world, the concept of an original document is problematic, but a digital signa-
ture can verify data integrity, and provide authentication and non-repudiation 
functions to certify the sender of the data. 

1.3 What is the relationship between authenti-
cation and digital signature? 

A digital signature functions for electronic documents just as a handwritten 
signature does for printed documents. The signature is an unforgeable piece of 
data that asserts that a named person wrote or otherwise agreed to the document 
to which the signature is attached. A digital signature actually provides a greater 
degree of security than a handwritten signature. The recipient of a digitally 
signed message can verify both that the message originated from the person 
whose signature is attached and that the message has not been altered either 
intentionally or accidentally since it was signed. Furthermore, secure digital 
signatures cannot be repudiated; the signer of a document cannot later disown 
it by claiming the signature was forged. In other words, digital signatures enable 
“authentication" of digital messages, assuring the recipient of a digital message 
of both the identity of the sender and the integrity of the message. 

1.4 Why is random number important? 
A cryptographic system can only be as strong as the encryption algorithms, 
digital signature algorithms, one-way hash functions, random number used in 
system and message authentication codes it relies on. Therefore, breaking one of 
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them will imply that the system is broken. The most weak link in cryptographic 
system is the random number used in system. 

In August 1995, Damien Doligez, a student at the Ecole Polytechnique in 
Paris, used a network of 120 computers to crack an encrypted session in eight 
days with generate a Netscape secret key. But, using this brute force techniques, 
the cost to break the encryption of any single credit card transaction far exceeds 
the possible financial reward. 

Several weeks later, when two graduate students at Berkeley, Ian Goldberg 
and David Wagner, tried to figured out a quicker way to crack the Netscape code 
than Damien Doligez did. They discovered that Netscape uses a formula based 
on date, time and other known information to generate a random number to 
create secret key. Therefore, they could find out the secret key easily and could 
read all the data and messages which are transmitted through Netscape. This 
implied that they could break Netscape's security coding system in less than 
a minute. Therefore, no one using the software can be certain of protecting 
credit card information, bank account numbers or other types of information 
that Netscape is supposed to keep private during on-line transactions. 

The Berkeley students identified a basic flaw in the Netscape random number 
generation, were able to narrowly focus their attack to quickly break the code, 
with far less computer power. 

When comparing with the Berkeley students and Ecole Polytechnique stu-
dent, if a cracker focuses on predicting the random number, the system is much 
easily cracked. Moreover, if a weak random number generator is used in the sys-
tem, it will greatly reduce the job of a cracker. In other words, a weak random 
number generator will cause a vital risk in the cryptographic system. 
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Chapter 2 

Background 

2.1 Cryptography 
Cryptography has been used for millenia to safeguard military and diplomatic 
communication. There are two types of cryptography : 1) Symmetric key cryp-
tography, 2) Asymmetric key cryptography. 

2.1.1 Symmetric key cryptography 
Figure 2.1 shows the basic symmetric key cryptography model. 
The original intelligible message (M) , referred to as plaintext, is converted into 
apparently random nonsense, referred to as ciphertext ( ^x(M)) . The encryption 
process consists of an algorithm (E) and a key(K). The key is generated by the 
random source and which is a value independent of the plaintext that controls 
the algorithm. The algorithm will produce a different output depending on the 
specific key being used at the time. Changing the key changes the output of the 
algorithm. 
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Figure 2.1: Basic symmetric key cryptography model 

Once the ciphertext is produced, it is transmitted. Upon, reception, the cipher-
text can be transformed back to the original plaintext by using a decryption 
algorithm and the same key that was used for encryption. 

The security of conventional cryptosystem depends on the several factors. 
First, the encryption algorithm must be powerful enough so that it is imprac-
tical to decrypt a message on the basis of the ciphertext alone. Beyond that, 
the security of the algorithm. That is, it is assumed that it is impractical to 
decrypt a message on the basis of the ciphertext plus knowledge of the encryp-
tion/decryption algorithm. In other words, we do not need to keep the algorithm 
secret; we need to keep only the key secret. 
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Chapter 2 Background 

2.1.2 Asymmetric key cryptography 
Figure 2.2 shows the other cryptography model, asymmetric key cryptography 
model. 

Message ^ , , .. E _ _ _ ^ M ) ) 
Sourc^ • Encryption 9——• Decryption • 

2 T 

1̂  
~> Private Key —— P 

Random ,, 
_ ——• Key pair — 
Source 

" • Public Key 9 

I I 
Enemy Cryptanalyst 

Figure 2.2: Basic asymmetric key cryptography model 

The main problem of symmetric key cryptography is that the key should be 
transmitted in a secure channel. If the sender and the receiver are in separate 
physical locations, they must trust a courier, or a phone system, or some other 
transmission medium to prevent the disclosure of the key being communicated. 
Anyone who overhears or intercepts the key in transit can later read, modify, 
and forge all messages encrypted or authenticated using that key. 
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Chapter 2 Background 

Public-key cryptography was introduced in 1976 by Whitfield Diffie and Mar-
tin Hellman for solving the key management problem in symmetric key cryptog-
raphy. Where, key management means the generation, transmission and storage 
of keys. Each person owns a pair of keys, one is called the public key(P) and 
the other is called the private key(K). Each person's public key is published 
while the private key is kept secret. The need for the sender and receiver to 
share secret information is eliminated since all the communications involve only 
public keys, and no private key is ever transmitted or shared. No longer is it 
necessary to trust some communications channel to be secure against eavesdrop-
ping or betrayal. Anyone can send a confidential message by just using public 
information, but the message can only be decrypted with a private key, which 
is in the sole possession of the intended recipient. 

2.1.3 Authentication 
Figure 2.3 shows how an adversary can decrypt messages intended for a sec-
ond entity without breaking the encryption system. The adversary sends A1-
ice's(sender's) a public key e' which Alice assumes(incorrectly) to be the public 
key of Bob to impersonated Bob. Then, the adversary intercepts encrypted mes-
sages from Alice to Bob, decrypts with its own private key d', re-encryptes the 
message under Bob's public key e, and sends it to Bob. The adversary imper-
sonates Bob successfully. This points out the necessity to authenticate public 
keys to achieve data origin authentication of the public keys themselves. 
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! " “ ^ * i L i Figure 2.3: Scenario of an adversary impersonate a person 2.2 Elliptic curve cryptography 

Elliptic curve cryptosystems were first suggested by Miller [8] and Koblitz [9 . 
And recently elliptic curve has been used in algorithms for factoring integers [10 
11], primality proving [12] , pseudorandom number generation [13], one-way 

permutations [14] and public-key cryptography [15]. Elliptic curve cryptography 
is the highest strength-per-key-bit of any known public-key scheme. That is, it 
provides equivalent security as existing public key schemes but with shorter key 
lengths. Moreover, it provides relatively small block sizes, high-speed software 
and hardware implementation. When elliptic curves cryptosystem is compared 
with RSA, it is regarded as being faster and requires less processing power. It is 
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especially an advantage in the implementation of smartcards and mobile phones 
system. 

2.2.1 Mathematical background for Elliptic curve cryp-
tography 

1. Elliptic curves over Fp 
Let p > 3 be a prime number. Let a, b G Fp be such that 4a^ + 276^ ^ 0 
in Fp. An elliptic curve E(Fp) over Fp defined by the parameters a and h 
is the set of solutions (x,y), x, y G Fp, to the equation: y^ = x^ + ax + b, 
together with an extra point 0 , the point at infinity and serves as the 
identity element. The number of points in E{Fp) is denoted by ^|fE{Fp). 
The Hasse Theorem tells that 

P + 1 - 2VP < # ^ ¾ < P + 1 + 2y^ 

The set of points E{Fp) forms a group with the following addition rules 
16]: Let Pi = {xi,yi), P2 = {x2,y2) and P3 = (x3,^3). where Xi / x2 

(a) 0 + C> = 0 
(b) Pi + 0 = 0 + Pi = Pi 
(c) - P i = {x i , -y i ) 
(d) Pi + ( - P i ) = 0 
(e) Rule for adding two distinct points that are not inverses of each other 

if P3 = Pi + P2, then —P3 is the third point of intersection of the line 
P1P2 and 
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• x3 二 Â  — xi — cc2, ys = A(a;i — x3) — yi，where A 二 似：饥 

272 "~T 1 
(f) Rule for doubling a point if P3 = Pi + Pi, then —P3 is the third point 

of intersection of the tangent line to the curve at Pi and 
• x3 = A2 — 2xi, ys = X{xi - x3) — yi, where A = ^ ^ ~ 

From the last two equations, we can find that the group E{Fp) is abelian, 
that is Pi + P2 = P2 + Pi, for all point Pi and P2 in E{Fp). 

2. Elliptic curves over F2m 
A non-supersingular elliptic curve E{F2m) over i^m defined by the param-
eters a, b G F2m, where b + 0，is the set of solutions (x, y), x G F2m, 
y G F2m, to the equation y^ + xy = x^ + ax^ + b together with an extra 
point 0 , the point at infinity. The number of points in E{F2m) is denoted 
by # E{F2m). The Hasse Theorem tells us that 

q + 1 — 2 v ^ < #E[Fq) < q + 1 + 2^ 

where q = 2"\ Further,#£^(Fp) is even. 

(a) 0 + 0 二 0 

(b) Pi + 0 = 0 + Pi = Pi 
( c ) -Pi = {xi,xi + yi) 

(d) Pi + ( - P i ) = C) 
(e) Rule for adding two distinct points that are not inverses of each other 

if P3 = Pi + 尸2, then - P ^ is the third point of intersection of the line 
P1P2 and 
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• x^ = Â  + A + xi + X2 + a, ^3 = A(a;i + a;3) + x̂ , + yi , where 
\ — y2+y1 x2+x1 

(f) Rule for doubling a point if P3 = Pi + Pi, then —P3 is the third point 
of intersection of the tang ent line to the curve at P\ and 

• x3 = A2 + A + a, ys = +x? + (A + l)x3, where A = xi + ^ 1̂ 
From the last two equations, we can find that the group E{F2m) is abelian, 
that is Pi + P2 = P2 + Pi, for all point Pi and P2 in E{F2m). 

2.3 Pseudorandom number generator 
Cryptographic applications demand much more out of a pseudorandom number 
generator than most applications do. For a source of bits to be cryptographically 
random, it must be computationally impossible to predict what the Nth random 
bit will be given complete knowledge of the algorithm or hardware generating 
the stream and the sequence of 0th through N-lst bits, for all N up to the lifetime 
of the source [19], [20], [21], [22；. 

A software generator (also known as pseudo-random) has the function of ex-
panding a truly random seed to a longer string of apparently random bits. This 
seed must be large enough not to be guessed by the opponent. Ideally, it should 
also be truly random (perhaps generated by a hardware random number source). 

« 
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2.3.1 Linear Congruential Generator 
One of the most popular pseudorandom number generator is linear congruential 
generator(LCG). This type of generator uses a method similar to the folding 
schemes in chaotic maps. The general formula is, 

fe+i = a X ki + b (mod M) Vz > 0 
The values a, b and M are pre-selected constants, a is known as the miltiplier, 
b is the increment, and M is the modulus. The quality of the generator is 
strongly dependent upon the choice of these constants( a significant part of 
1] is described the property of linear congruential generator fully.) The main 

advantage of LCG is that it is very easy to program. When the parameters a, b 
and M are known, given ko all the other ki can be easily computed. Even if the 
parameters a, b and M are unknown, the sequences ki are still predictable when 
some of the ki are given [23]. One fairly obvious goal is to make the period(the 
time before the generator repeats the sequence) long, this implies that M should 
be as large as possible. 

2.3.2 Inversive Congruential Generator 
Inversive congruential generator(ICG) is a very promising new approach to pro-
duce uniform pseudorandom numbers. From [2], the properity of ICG is being 
discussed. For a given prime number p, and for c G Zp, let c is the inverse of c , 
so c = 0 if c = 0 and c = c~^ if c • 0. In other words, c equals the number cP~^ 
(mod p). Inversive congruential generators are due to Eichenauer and Lehn [3]. 
The general formula is, 

ki+i = a X ki + b (mod p) Vz > 0 
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A prominent feature of the ICG with prime modulus is the absence of any 
lattice structure, in sharp contrast to linear congruential generators. 

2.3.3 PN-sequence generator 
PN-sequence generator is a kind of shift register generator. A linear shift register 
is shown in the following figure. PN-sequence has the following properties: 

$ ^ $ ^ 

“ iL 

^ T, • 丁2 • T, T„.2 • T„ , • T„ • 

1. Length of a maximal-length code = 2^ — 1 when generated by n shift 
registers. 

2. Every possible n-bit word exits in the n-stage shift register at some time 
during the generation of a complete code cycle and only once during the 
cycle. 

3. Each period of the sequence contain 2^"^ ones 

4. Each period of the sequence contain 2^"^ — 1 zeros 

2.4 Digital Signature Scheme 
A digital signature is created by running message text through a hashing algo-
rithm. This yields a message digest. The message digest is then encrypted using 
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the private key of the individual who is sending the message, turning it into 
a digital signature. The digital signature can only be decrypted by the public 
key of the same individual. The recipient of the message decrypts the digital 
signature and then recalculates the message digest. The value of this newly 
calculated message digest is compared to the value of the message digest found 
from the signature. If the two match, the message will not have been tampered 
with. Since the public key of the sender was used to verify the signature, the 
text must have been signed with the private key known only by the sender. 
This entire authentication process will be incorporated into any security-aware 
application. The following is an example of how a digital signature is used to 
authenticity. 

Suppose Alice wants to send a signed message to Bob. She creates a message 
digest by using a hash function on the message. The message digest serves as a 
“digital fingerprint" of the message; if any part of the message is modified, the 
hash function returns a different result. Alice then encrypts the message digest 
with her private key. This encrypted message digest is the digital signature for 
the message. Alice sends both the message and the digital signature to Bob. 
When Bob receives them, he decrypts the signature using Alice's public key, 
thus revealing the message digest. To verify the message, he then hashes the 
message with the same hash function Alice used and compares the result to the 
message digest he received from Alice. If they are exactly equal, Bob can be 
confident that the message is indeed sent from Alice and has not changed since 
she signed it. If the message digests are not equal, the message either originated 
elsewhere or was altered after it was signed. Note that using a digital signature 
does not encrypt the message itself. If Alice wants to ensure the privacy of 
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the message, she must also encrypt it using Bob's public key. Then only Bob 
can read the message by decrypting it with his private key. It is not feasible 
for anyone to either find a message which hashes to a given value or to find 
two messages that hash to the same value. If either were feasible, an intruder 
could attach a false message onto Alice's signature. Specific hash functions have 
been designed to have the property that finding a match is not feasible, and are 
therefore considered suitable for use in cryptography. 

2.5 Babai,s lattice vector algorithm 
In this thesis, we will use Babai's lattice vector alogrithm [4] as a part of 
subroutine to solve the simultaneous equations in different moduli. In [4], 
Laszlo Babai suggests two algorithms to find a point of a given lattice. Some 
terms will be introduced first. 

Lattice: Given a set of 1 linear independent vectors in R^ , E = { e i , . . . , e J , 
we define the lattice spanned by E(the basis of the lattice) be the set of all 
the possible linear combinations of e?s with integral coefficients, that is: 

i 
L{E) — {y^ Ci6i such that C{ € Z Vz} 

i=i 

Nearby Lattice Point Problem: Given E and x, find w e L such that ||a:— 
川|| ^ ^W^ — HI, where C is a function of 1 and v is the nearest neighor of 
X in E. 

Lovasz lattice reduction algorithm [5] originally designed to give nearly optimal 
simultaneous diophantine approximation which, in turn, arose, as far as Lo-
vasz was concerned, from the need to eliminate the annoying full-dimensionality 
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condition from the ellipsoid method in linear programming [6]，[7 . 

2.5.1 First Algorithm: Rounding Off 
Let X = Y^[-i jSiCi and let a{ be the integer nearest to j5i. Set w = Xl(=i cx{ei. 

If the basis B is Lovasz-reduced, then the ROUNDING OFF procedure finds a 
lattice point w^ the nearest to x within a factor of C = 1 + 2/(9/2)'/^. 

2.5.2 Second Algorithm: Nearest Plane 
Let U 二 Y!,iZi R^i be the linear subspace generated by ei, e2 , . . . , e/_i and let 
L' — X^f"i Zei be the corresponding sublattice of L. Find u G L such that the 
distance between x and the affine subspace U + u be minimal. Let x' denote the 
orthogonal projection of x on U + u. Recursively, find y G L' near x' — u. Let 
w = y + u. If the basis of E is Lovasz-reduced, then the NEAREST PLANE 
procedure finds a lattice point w, nearest to x within a factor of C 二 2"2. 
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Several Digital Signature 

Schemes 

Every digital signature algorithm contains two parts. One is signature generation 
and the other is signature verification. Moreover, every message m of arbitrary 
length will be as the input of the hash function to product the data f such that 
f G Zp for some integer q. We mainly concern on the following four digital 
signature schemes: 

1. Digital Signature Algorithm (DSA) 

2. Nyberg-Rueppel Signature Scheme 

3. Elliptic Curve Analog of the DSA (EC_DSA) 

4. Elliptic Curve Analog of the Nyberg-Rueppel Signature Scheme (EC_Nyberg-
Rueppel SS) 

18 
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3.1 D S A 
In August of 1991, the US National Institute of Standards and Technology 
(NIST) proposed a digital signature algorithm (DSA) [18]. The DSA has 
become a U.S. Federal Information Processing Standard(FIPS 186) called the 
Digital Signature Standard(DSS). The algorithm is a variant of the ElGamal 
scheme which is based on the hardness of computing the discrete logarithm in 
some finite fields, and DSA is a digital signature with appendix. 
Key Generation : 

1. Select a prime number q such that 2̂ ^̂  < q < 2励. 

2. Select a prime number p such that p > 2̂ ^̂  and {p — 1) is divisible by q . 

3. Select a generator a of the unique cyclic group of order q in Z* 
Z* means the nonzero elements in Zp 

4. Select a random e such that 1 < e < q — 1, e is the signer's private key. 

5. Calculate d = a^ (mod p), d is the signer's public key . 

Signature Generation: 

• Input -
i. The signer's private key e 

ii. The parameters p, a , q associated with e 
where p is the size of the field used 
a^ = 1 (mod p) 

iii. The data, which is an integer f such that 0 < f < q 
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• Output -
The signature, which is a pair of integers (c, /), where 1 < c < q and 
1 < 1 < q. The signature (c, /) shall be computed by the following steps: 

1. Select a random integer k, 1 < k < q — 1 
2. Calculate 1 — {a^ (mod p)) (mod q) 

3. Calculate c — k~^{f + el) (mod q). If c = 0, then go to step (1) 

Signature Verification: 

• Input -
i. The signer's public key d 

ii. The parameters p, a ,q associated with d where p is the size 
of the field used 
a^ 二 1 (mod p) 

iii. The signature (c, /) 
iv. The data, which is an integer f such that 0 < f < q 

• Output -
"Valid" or "Invalid". 
The signature can be verified by the following steps : 

1. Check 1 < 1 < q and 1 < c < q. If not, output "invalid". 
2. Compute w = c—i (mod q) 
3. Compute ui = wf (mod q) and U2 — lw (mod q) 
4. Compute v = {a^^d^^) (mod q) 
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5. Output "Valid" if and only if v = 1 

A random k must be selected for each message. Otherwise, the signer's 
private key can be recovered easily. For example, if two messages are signed 
with the same random k, 

kci = (/i + ell) (mod q) 
kc2 = (/2 + el2) (mod q) 

kci - /1 kc2 - /2 , , � 
e = = (mod q) n h 
k — ^^——^^ (mod q) cih - c2h 

k can be found from the above equation. When k is known, using the equation 
e = kc�:f^^ (mod q) can recover the private key. 

3.2 Nyberg-Rueppel Digital Signature 
Nyberg-Rueppel Digital Signature scheme is a variant of the basic ElGamal 
scheme with message recovery which relies on the difficulty of two related but 
distinct discrete logarithm problems. 
Key Generation : 

1. Select a prime number q 

2. Select a prime number p such that {p — 1) is divisible by q . 

3. Select a generator a of the unique cyclic group of order q in Z* 
Z* means the nonzero elements in Zp 

4. Select a random e such that 1 < e < q — 1, e is the signer's private key. 
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5. Calculate d 二 a^ (mod p), d is the signer's public key . 

Signature Generation: 

• Input -
i. The signer's private key e 

ii. The parameters p, a ,q associated with e 
where p is the size of the field used 
a^ — 1 (mod p) 

iii. The data, which is an integer f such that 0 < f < q 

• Output -
The signature, which is a pair of integers (c, /), where 1 < c < q and 
0 < 1 < q. The signature (c, /) shall be computed by the following steps: 

1. Select a random integer k, 1 < k < q — 1, and compute r = a~^ 
(mod p). 

2. Compute c = fr (mod p). If c — 0, then go to step (1). 
3. Compute 1 — ec + k (mod q) 

Signature Verification : 

• Input -
i. The signer's public key d 
ii. The parameters p, a , q associated with d 

where p is the size of the field used 
a^ — 1 (mod p) 

iii. The signature (c, /) 
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• Output - Data f or "Invalid" 
The data can be recovered by the following steps: 

1. Check 1 < c < p and 0 < 1 < q. If not, output “Invalid" 
2. Compute v = a^d~^ (mod p) and f = vc (mod p) 
3. Output data f . 

A random k must be selected for each message. Otherwise, the signer's 
private key can be recovered easily. For example, if two messages are signed 
with the same random k, 

ci = / i n (mod q) 
/i = eci + k (mod q) 

h - k h — k e = = (mod q) Cl C2 
k 二 - ^ — (mod q) 

C2 — Cl 
k can be found from the above equation. When k is known, using the equation 
e : i~^ (mod q) can recover the private key. 

3.3 EC_DSA 
EC_DSA stands for elliptic curve analog of the DSA. 
Key Generation: 

1. Select a value of q such that q is a prime number or q = 2^，m is a prime 
number 

2. Select the parameters a, b of the elliptic curve E{Fq) over Fq 
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(a) If q is a prime number, then the equation of the elliptic curve E{Fg) 

y^ = x^ + ax + b 

(b) If q is equal to 2^, the equation of the elliptic curve E{Fq): 
2 I 3 I 2 , 7 y + xy = X + ax + o 

3. Select a point G of a prime order r in E{Fq). That is, rG = 0 (The 
identity element) 

4. Select a random s such that 0 < s < r. s is the signer's private key. 

5. Calculate V — sG . V is the signer's public key. 

Signature Generation : 

• Input -
i. The signer's private key s 

ii. The elliptic curve parameters q, a, b, r and G associated with 
s, where r is the order of the generator G 

iii. The data, which is an integer f such that 0 < f < r 

• Output -
The signature, which is a pair of integers (c, ¢/), where 1 < c < r and 
1 < d < r. 

1. Generate a one-time key pair (u, V 二 uG) with the same set of pa-
rameters as the private key s. Let V = {xy^ Vv){V + 0 since V is the 
one time public key) 
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2. Convert Xy into an integer i 
3. Compute an integer c = i (mod r). If c = 0, then go to step 1. 
4. Compute an integer d — u~^{f + <sc) (mod r). If d — 0, then go to 

step 1. 
5. Output the pair (c, d) as the signature. 

Signature Verification: 

• Input -
i. The signer's public key W 

ii. The elliptic curve parameters q, a, b, r and G associated with 
W^ where r is the order of the generator G 

iii. The signature (c, d) 
iv. The data / , which is an integer f such that 0 < f < r 

• Output -
"Valid" or "Invalid". 
The signature can be verified by the following steps: 

1. Check 1 < c < r and 1 < d < r. If not, output "invalid". 
2. Compute integers h = d~^ (mod r), hi — fh (mod r), 

and h2 = ch (mod r). 
3. Compute P = h^G + h2W. If P = 0, output "invalid" and stop. 

Otherwise, P = {xp^yp). . 
4. Convert Xp into an integer j 
5. c' = j (mod r) 
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6. If c = c', then output "Valid". Otherwise, output “Invalid". 

A random number u should be selected for every signature. Otherwise, the 
signer's private key can be recovered easily. For example, two messages are 
signed with the same random number u, 

di = u~^{fi + sci) (modr ) 
d\u — / i d2 — /2 ( j � 

s = = (mod r) Cl C2 d1uc2 — C2/1 = d2uc1 — C1/2 (mod r) 
c2/1 一 Ci/2 ( , 、 

u = (mod r) C2 — ci 

u can be found from the above equation. When u is known, using the equation 
s =吨:~^1 (mod r) can recover the private key. 

3.4 EC_Nyberg-Rueppel Digital Signature Scheme 
EC_Nyberg-Rueppel Digital Signature Scheme stands for elliptic curve analog 
to the Nyberg-Rueppel Digital Signature Scheme. 

The key generation part is the same as the EC_DSA. Signature Generation: 

• Input -
i. The signer's private key s 

ii. The elliptic curve parameters q, a, b, r and G associated with 
s, where r is the order of the generator G 

iii. The data, which is an integer f such that 0 < f < r 
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• Output -
The signature, which is a pair of integers (c, d), where 1 < c < r and 
0 < d < r. 
The signature (c, d) should be computed by the following steps: 

1. Generate a one-time key pair (w, V = uG) with the same set of pa-
rameters as the private key s. Let V = {xy^ yv){y + 0 because V is 
a public key ). 

2. Convert Xy into an integer i 
3. Compute an integer c = i + f (mod r). If c = 0, then go to step 

� . 

4. Compute an integer d = u — sc (mod r). 
5. Output the pair (c, d) as the signature . 

Signature Verification: 

• Input -
i. The signer's public key W 

ii. The elliptic curve parameters q, a, b, r and G associated with 
W^ where r is the order of the generator G 

iii. The signature (c, d) 

• Output -
Data f or "Invalid". ‘ 
The data can be recovered by the following steps : 
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1. Check 1 < c < r and 0 < d < r. If not, output “Invalid". 
2. Compute P = dG^cW. liP = 0, output "Invalid". Let P = (x^, y^) 
3. Convert x^ into an integer j 
4. Compute an integer f — c — j (mod r) 
5. Output f as the data 

A random u should be selected for every signature. Otherwise, the signer's 
private key can be recovered easily. For example, two messages are signed with 
the same random u, 

di — u — sci (mod r) 
d2 = u — sci (mod r) 

u — di u — d2 , , � 
s — = (mod r) 

Cl C2 
uc2 — d1C2 = CiU — Cid2 (mod r) 

d\C2 — d2C1 
u = (mod r) C2 — Ci 

u can be found from the above equation. When u is known, using the equation 
s — ^ ^ ^ (mod r) can recover the private key. 
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Chapter 4 

Miscellaneous Digital Signature 

Schemes and their PRNG 

In this chapter, a simple lattice based algorithm will be used to solve a system 
of linear equations in different moduli and apply in different digital signature 
schemes with different random number generators. This algorithm using the 
nearest lattice vector approximation algorithm as a subroutine. 

Lattice: Given a set of 1 linear independent vectors in R̂  , E = { e i , . . . , e；}, 

we define the lattice spanned by E{the basis of the lattice) be the set of 
all the possible linear combinations of e^'s with integral coefficients, that 
is: 

i 
L{E) = { ^ Ci6i such that Ci G Z Vz} ‘ 

i=i 
Given E and a vector x G R^ not in L(E), the nearest lattice vector problem 
asks for a lattice vector w G L(E) such that ||io — a::|| = rniny^^E)W^ — ^ll-
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In [4], Babai gave a simple polynomial time algorithm to find an appropri-
ate solution to the nearest lattice vector problem : given the basis E and 
the target vector cc, Babai's algorithm returns a lattice vector w such that 
\w — x\\ < c miny^L{E)W^ — z| | , where c = 2"2 jg an approximation factor 

depending only on the dimension of the lattice. 

4.1 D S A with LCG 
17] suggests a method to solve the simulaneous modular equations and use this 

method to find out the secret key in the DSA with LCG case. In this section, 
we will recall [17] result. 

Let Ui^.. . Un be positive integers and let Vu be the set of vectors {x G 
Z^\ Vz|j^i| < Ui]. Let also A = {a^j} be an two vectors in Z^. We want to 
find an integer vector ~x G Vu such that A~x — b (mod M), i.e., \xi\ < U{ for 
all i = 1 , . . . n and the following modular equations are simultaneously satified. 

«1,1^1 + • • • + cLi,nXn = h (mod Ml) 
a2,1X1 + . . . + a2,r1Xn = h ( m o d M2) 

am,lXi + . . . + am,nXn = K (mod Mn) 

We first assume that the above system has a solution x and that a good ap-
proximation to this solution is known and devise a method to find the exact 
solution. 
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Definition : Let ~x and ~^ be two vectors in Vu- We say that vector ^ c-
approximates ~x iff for all i 二 1 , . . . , n we have \xi — yi\ < {Ui — \yi\)l{cy/n). 

Lemma : Let c be a constant greater than 2(財—/2. There exists a polyno-
. . . . ~~> ~> mial time algorithm that on input Ui,...,Un, A, b ,M as above and a 

. . _ y __V _ _ ^ ~ > ~ > c-approximation y to a solution x G Vu to A . x = b (mod M) , . _y _^ ~> ~y 
finds a solution w G Vu to Adots x = b (mod M). 

Proof : Let T = { j i j } be the n x n diagonal matrix defined by 7<，< = 
「」丨紋.丨 and let M be the m x diagonal matrix whose diagonal entries are 
M l , . . . , Mm- Consider the lattice generated by the columns of the matrix 

[A M 1 L = and define the vectors r 0 
^ [ 1 1 X = _ r . ( 

厂 ~ > 1 — b Y = _ r • ^ _ 
, ~~> Notice that X is a lattice vector and 

" 支 - 歹 1 1 = 揭 ( - - 我 . 5 | ^ 4 )t=i \ i—\ 
• 

Running Babai's nearest lattice vector alogrithm on lattice E and target vector 
, • ~> ~>• ~"y ~"> ~~> 1' we obtain a lattice vector W such that || W — Y ||< c || X — Y | |< 1. Since 

the first m elements of W and Y are integers, they must be the same. So, the 
厂 ~ > 1 

— . b vector W is equal to r • lv 
31 
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for some integer vectorT^ satisfyingA • ln = b (mod M). 
Now, for all i — 1,. • . , n we have 

(切,-yif<t < T.{w. - ViTih =11 î ^ - ^ l|2< 1 
i 

SO that \wi — yi\ < l/^i,i = Ui — \yi\ and by triangular inequality 

Wi\ < \yi\ + \wi - yi\ < \yi\ + Ui - \yi\ = Ui 

Therefore, lv G Vu-
For the DSA with LCG case, we combine the two signature equations and 

with the LCG equation k2 = aki + b (mod M). The following equations will 
be given out. 

Ciki = /1 + ell (mod q) 
C2k2 = /2 + el2 (mod q) 

k2 = aki + b (mod M) 

The lattice L should be generated by the columns of the matrix E. 

-h ci 0 q 0 0 
-l2 0 C2 0 q 0 

0 -a 1 0 0 M 
E = 

r-̂  0 0 0 0 0 
0 rll 0 0 0 0 
0 0 r;i 0 0 0 

Using the procedures that described above can find out the secret key easily. 
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4.2 D S A with PN-sequence 
As stated in the previous section, DSA need a random nonce k for each mes-
sage to sign. In this part, we assume the random nonce is produced by the 
PN-sequence generator. Fig 4.2 shows an example of 4 random numbers are 
generated by the PN sequenced generator. 

< n + 4bit • 

Gn+3 Gn+2 Gn+1 Ĝ  G4 ^3 ^2 ^1 

I Xi Z D 
I ~ X, I 

I \ • 
[ X, I 

PN-sequence generates n + 3 bits, i.e. G\ , G2, ...，Gn+s to produce 4 
random number, i.e. Xi, X2, X2, and X^ and each random number contains n 
bits and has the following format: 

^ 1 = GnGn-1Gn-2 •. • G2G1 
X2 = Gn+lGn Gn-1 • . • G3G2 
^3 = Gn+2Gn+lGn • ‘ ‘ G4G3 , 
^4 = Gn+3Gn+2Gn+l . . . Gs G4 
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In general, Xi and 足+1 has the following relationship: 
Xi = Gil Gi2 G{^... Gi^_^ Gin 

^ i + l = * f t l G i 2 . . . ^ t " n - 2 ^ i n - l 

* stands for G{+i^. Since this value is unknown when Xi is generated, we use * 
to represent it. 
The Xi+i，s bits are JC,s bits shifted to right by one bit. In mathematical repre-
sentation : 

\ 

X 足丨化” 1 
Ai+i 二 — + 

乙 0 2几一 1 

w y \ y 

The first brace depends on the values of G{̂  and the second brace depends on 
the property of the PN-sequence generator. 

Now, let us consider the DSA with PN-sequence in mathematical approach. 
For the zth data, the random nonce is k{. So the following equations can be 
obtained. 

U = {a^' (mod p)) (mod q) 
Ci = k'^{fi + eli) (mod q) 

r X ( > , k J I 1 ^ J 0 1 ki+1 = ^ - + 
乙 0 [ 2 “ 

Now, we consider two signatures are received by an adversary. That is the 
adversary knows ci, C2, /1, /2, /1 and /2. 

cih = / i + e/i (mod q) 
C2k2 = /2 + el2 (mod q) 
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f V f V , h I 1 ^ 走 0 1 

«2 = ^ 一 + ) ^ 0 J 2打-1 
We change / i and /2 as object of the equations. 

/1 = c^ki — ell (mod q) (4.1) 
/2 = c2k2 — el2 (mod q) (4.2) 

/ \ / \ 
0 0 - k i + 2k2 = — + (4.3) 1 2̂  

k y \ y 
Solving these equations can obtain the secret key e. However, these equations 

with difference moduli cause they difficult to solve. Using Babai's algorithm to 
find out the solution. 

4.2.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key. 

-h ci 0 q 0 0 
-/2 0 C2 0 q 0 

0 - 1 2 0 0 2" 
E = 

r-i 0 0 0 0 0 
0 r;i 0 0 0 0 
0 0 r:i 0 0 0 

L e t e ' 二 |, k[ = k'^ =等，r̂  二 m i n {e',q — e ' } , rk^ 二 m i n {k[,M — k [ } , % = 

min {^25 ^ — '̂2) and lattice vector I i , I2, I3 and lU. 
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11 = { f u f 2 A - A A f re rk, rk2 
12 二 { f u h ^ - i A A A ) ' 

re rk, rk2 
13 - (/l,/2，2�i’"^,l)T 

re rk, r>2 U = ( / 1 , / 2 , 2 - - l , - A A f 
Te ni rk2 

Let i be 1, 2, 3 or 4. For this particular i, Ii can be obtained by the following 
steps : 

1. The first three columns of the matrix E are multipled by e, ki, k2 respec-
tively. 

2. The remaining columns(the last 3 columns) are subtracted by appropriate 
multiples to perform modular reduction. 

So, the secret key e can be recovered by lattice vector Ii easily. 
Running Babai's nearest lattice vector algorithm on lattice L{E) and target vec-
tor. 

Ji = ( / 1 , / 2 , O , - , ^ , ^ f 
re rk, Vk^ 

e, k' k' J2 = ( / 1 , / 2 , - 1 , - , - , - ) re rk, Tk^ 
e' k' k' 

j 3 = ( / i , / 2 , r , c ^ i ) T j4 = { f u h ^ 2 - - i X A A r re rki Vk2 
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We obtain lattice vector N such that ||Ji — Ni|| < 8||Ji — Ii||. Now, if 
e-e' |< ^ , I ki - k[ |< 吾， | ^ - ¾ |< 爷,then ||Ji - Ni | | < 1 and since the 

first three entries of Ni are integers, they must coincide with the corresponding 
entries in Ji and we have 

p// Uf Uf Ni = ( A , / . , o A A A r re rk, Vk^ 
P � h" h" 

N2 = ( / i , / , , - i A A A f re ni rk2 p � y h" Na = ( / i , / 2， 2 � L， i , i ) T re rk, Tk^ j! yt y N4 = ( / i , / 2 , - l + 2 ^ L , i , i ) T re Tk^ rk^ 

for some e〃，k'{̂  k'2 satisfy the equations 4.1, 4.2 and 4.3. Moreover, 

e" = e" — e' + e' > -r^ + v^ = 0 
e" = e" - e' + e' < r^ + {q — r^) 二 q 
K = K - K + K > -Vk, + r,i = 0 
K = K - K + k[ < n, + {q - Tk,) = M 
K = K — K + K > -vk, + Tk, = 0 
K = K - K + K < ^k, + {q - Tk,) = M 

So, 

0 < e" < q ‘ 
0 < k'l < M 
0 < k'^ < M 
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If the vector N does not have the desired form, this implies that the initial 
guess (e', k[, ^ ) was not so good. At this point, we need to change the value of 
initial guess. Change the initial guess by the following steps: 

1. Let j = 1 

2. e' 二 q|2 + (1 — (1 - lyq|2)) 

3. k[ 二 M/2 + (1 - (1 - |VM/2) ) 

4. J4 = M/2 + (1 — (1 - |y 'M/2)) 

5. Run Babai's algorithm. Check the output N if N is the desired form or 
not. 

• If yes, output N. 
• If no, check e', h'̂  and k,�. 

- I f e' < q, h[ < M or ^ < M, then j = j + 1 and go to step (2) . 
—Otherwise, go to step(6). 

6. Let j 二 1 

7. e' 二 q|2 一 (1 - (1 — lyq|2)) 

8. k[ = M/2 - (1 - (1 — |y 'M/2)) 

9. g = M/2 (1 一 (1 — |y 'M/2)) . 

10. Run Babai's algorithm. Check the output N if N is the desired form. If 
yes, output N. Otherwisej 二 j + 1 and go to step (7) . 

38 



Chapter 4 Miscellaneous Digital Signature Schemes and their PRNG 

Once we have found a solution e', k[ and k'2 to the equations 4.1, 4.2 and 
4.3, we can check that we actually found the secret key e by using the unsed 
formula, d = a® (mod p). Comparing d' 二 a^' (mod p) with d. If they are 
not equal, repeat the subroutine with different initial guess (e', k[̂  ^ ) - So the 
secret key e can be found in this way. 

4.3 D S A with ICG 
In this part, we assume the DSA uses ICG (inversive congruential generator) 
for generating the random nonce k. Therefore, the following equations will be 
obtained. 

ki+i — aki + b (mod M) 
k2 = aki + b (mod M) 
Ci = k'^{fi + eli) (mod q) 

Clki = /1 + ell (mod q) 
c2k2 = /2 + el2 (mod q) 

We change /1 and /2 as objects of the equations. 

/1 = Cl ki — ell (mod q) (4.4) 
/2 = c2k2 — el2 (mod q) (4.5) 

k2h = a + bki (mod M) . (4.6) 

Solving these equations can obtain the secret key e. However, these equations 
with difference moduli cause they difficult to solve. Using Babai's algorithm to 
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find out the solution. 

4.3.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key.. The lattice is generated by the columns 
of the matrix. 

—h ci 0 0 q 0 0 
-h 0 C2 0 0 q 0 
0 —b 0 1 0 0 M 

E= r:i 0 0 0 0 0 0 
0 r̂ / 0 0 0 0 0 
0 0 r:i 0 0 0 0 

_ 0 0 0 r;i,2 0 0 0 
Let e' = | , k[ = k'2 =警，re = min {e',q-e'], r^^ = min {k[,M - k[], r^^ — 

min {k'2, M — k'2] and lattice vector I 
T (r r e ki k2 hh J^ 1 = (/l,/2,tt,-,——，——， j re ni Tk^ Vk^k2 

I can be obtained by the following steps : 
1. The first four columns of the matrix E are multipled by e,知，h>z, ki k2 

respectively. 

2. The remaining columns(the last 3 columns) are subtracted by appropriate 
multiples to perform modular reduction. 

So, the secret key e can be recovered by lattice vector I easily. 
Running Babai's nearest lattice vector algorithm on lattice L{E) and target vec-
tor. 
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p' y y u^ u' J = ( h , h , a : - , W W f ê f̂ci rk2 r-k^k2 

We obtain lattice vector N such that ||J - N | | < 2 " 2 | | J — l | | . Now, if 
e - e' |< 器，I ki - k[ |< 晉，| k2 - k'2 |< 箸，then {|J - N | | < 1 and since the 

first three entries of N are integers, they must coincide with the corresponding 
entries in J and we have 

p" y uf h y, 
ivr ( f r ^ e ^1 ^2 ^1 ^2 \T 

J>J 二 (/i,/2,a,-,——,——， ) 
re rk, rk2 rk,k2 

for some e〃，k'{, k'2 satisfy the equations 4.4, 4.5 and 4.6. Moreover, 

e" 二 e" — e' + e' > -r^ + re = 0 

e" = e" 一 e' + e' < r^ + [q - r^) = q 

K = K - K + K > -n, + � = 0 
K = k';-k[^k[<n,+{q-rk,) = M 
K 二 K — K + K > —n2 + ^k2 二 0 

K = K - K + K < ^2 + {q - rk,) = M 

So, 

0 < e" < q 
0 < k'( < M • 
0 < k'i <M 
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If the vector N does not have the desired form, this implies that the initial guess 
(e', k[, k'2) was n ot so good. At this point, we need to change the value of initial 
guess. Change the initial guess by the following steps: 

1. Let j = 1 

2. e' = q|2 + (1 - (1 - | 細 ） 

3. k[ = M/2 + (1 - (1 — |y_M/2)) 

4. 4 = M/2 + (1 - (1 - l y M / 2 ) ) 

5. Run Babai's algorithm. Check the output N if N is the desired form or 
not. 

• H yes, output N. 
• If no, check e', k[ and k'�. 

- I f e' < q, k[ < M or k'2 < M, then j = j + 1 and go to step (2) . 
—Otherwise, go to step(6). 

6. Let j = 1 

7. e! 二 q|2 - (1 - (1 - lyq|2)) 

8. k[ = M/2 — (1 - (1 - lYM/2)) 

9. K 二 M/2 - (1 — (1 - lYM/2)) 

10. Run Babai's algorithm. Check the output N if N is the desired form. If 
yes, output N. Otherwise, check e' < q, k[ < M or k'2 < M, then j 二 j + 1 
and go to step (7) . 
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Once we have found a solution e', h[ and k') to the equations 4.1, 4.2 and 
4.3, we can ch eck that we actually found the secret key e by using the unsed 
formula, d = a^ (mod p). Comparing d' 二 a^' (mod p) with d. If they are 
not equal, repeat the subroutine with different initial guess (e', k[̂  ^ ) - So the 
secret key e can be found in this way. 

4.4 EC_DSA with PN-sequence 
In this part, we assume the EC_DSA uses PN-sequence to generate the random 
nonce u. Therefore, the following equations will be obtained. 

di — u~^{fi + sci) (modr ) , \ ( > Ui 1 0 
Ui+i = ir — \ + ^ 

乙 0 2"-i 
V / V X diUi = f i + sci (mod r) 

d2U2 = /2 + sci (mod r) 
\ 1̂ I 1 _, ^ 0 1 

U2 = + � 
^ 0 2 几 - 1 

^ / \ J 

We change /1 and /2 as object of the equations. 

/1 = diUi — sci (mod r) 
/2 = d2U2 — sc2 (mod r) 

f � / \ 
0 0 

—Ui + 2u2 二 + ^ 1 2̂  
V / V / 

Solving these equations can obtain the secret key d. However, these equa-
tions with difference moduli cause they difficult to solve. Again, using Babai's 
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algorithm to find out the solution. 

4.4.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key.. 

—ci di 0 r 0 0 
- C 2 0 d2 0 r 0 

0 —1 2 0 0 2^ 
E = r j i 0 0 0 0 0 

0 r : i 0 0 0 0 "1 
0 0 r - i 0 0 0 _ 2 • 

Multiple the first column of the matrix by s, the second column by Ui, the 
third column of U2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

‘ ( � T ( f f 0 0 S Ui U2. 

丄 二 Ul,/2,— 4 + ,—,——，——) 

1 2^ Ts Fui ^U2 
< X \ 4 Using this lattice vector we can recover the secret key s easily. 

The procedures for finding out the solution of secret key s is similar to the 
previous sections. 
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4.5 EC_DSA with LCG 
In this part, we assume the EC_DSA uses LCG to generate the random nonce 
u. Therefore, the following equations will be obtained. 

di = u~^{fi + sci) (mod r) 
Ui+i = aui + b (mod M) 
diUi = f i + sci (mod r) 
d2U2 = /2 + sci (mod r) 

U2 = aui + b (mod M) 

We change /1 and /2 as the object of the equations. 

/1 = diUi — 5Ci (mod r) 
/2 = d2U2 — sc2 (mod r) 

b = U2 — aui (mod M) 

Solving these equations can obtain the secret key s. However, these equa-
tions with difference moduli cause they difficult to solve. Again, using Babai's 
algorithm to find out the solution. 
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4.5.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key.. 

- c i di 0 r 0 0 

-C2 0 d2 0 r 0 

0 —a 1 0 0 M 
E = 

r ; i 0 0 0 0 0 

0 r"i 0 0 0 0 "1 

0 0 r-1 0 0 0 

Multiple the first column of the matrix by 5, the second column by ui, the 
third column of U2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

I =仏，/2，6,丄,’，，） 
厂5 ^ U i 厂《2 Using this lattice vector we can recover the secret key s easily. 

The procedures for finding out the solution of secret key s is similar to the 
previous sections. 

4.6 EC_DSA with ICG 
In this part, we assume the EC_DSA uses ICG to generate the random nonce u. 
Therefore, the following equations will be obtained. 

di = u;i[fi + sci) (mod r) 
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Ui^i 二 aui + b (mod M) 
diUi = / i + sci (mod r) 
d2U2 = /2 + sci (mod r) 
U2U1 = a + hui (mod M) 

We change /1 and /2 as the objects of the equations. 

/1 = diUi — sci (mod r) 
/ 2 = d2U2 — SC2 ( m o d r ) 

a = U2U1 — hu\ (mod M) 

Solving these equations can obtain the secret key d. However, these equations 
with difference moduli cause they difficult to solve. Again, using Babai's algo-
rithm to find out the solution. 

4.6.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key" 

—Cl di 0 0 r 0 0 
- C 2 0 d2 0 0 r 0 

0 —b 0 1 0 0 M 
E = r" i 0 0 0 0 0 0 

0 

0 r-} 0 0 0 0 0 1̂ 
0 0 r-1 0 0 0 0 

_ 0 0 0 r&2 0 0 0 
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Multiple the first column of the matrix by 5, the second column by ui, the 
third column of U2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

S Ui U2 U1U2. 
I = ( / l , / 2 , a , - , — — ， — — ， ) 

^S ^Ui ^U2 ^Ui U2 

Using this lattice vector we can recover the secret key s easily. 

The procedures for finding out the solution of secret key 5 is similar to the 
previous sections. 

4.7 Nyberg-Rueppel Digital Signature with PK-
sequence 

In this part, we assume the Nyberg-Rueppel Digital Signature uses PN-sequence 
to generate random nonce k. Therefore, the following equations will be obtained. 

U — dci + ki (mod q) 
f � ( � ^ k I 0 

ki+i = — - + » 
^ 0 2 " 一 1 

、 y V / 

/1 = dci + ki (mod q) 
/2 = dc2 + k2 (mod q) 

\ 
0 0 . 

- k i + 2k2 = - + • 
i 1 J i 2̂  J 
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Solving these equations can obtain the secret key d. However, these equations 
with difference moduli cause they difficult to solve. Again, using Babai's algo-
rithm to find out the solution. 

4.7.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key.. 

ci 1 0 q 0 0 
C2 0 1 0 q 0 

0 —1 2 0 0 2 " 
E = 

r f 0 0 0 0 0 
0 r;i 0 0 0 0 
0 0 r;i 0 0 0 

Multiple the first column of the matrix by d, the second column by ki, the 
third column of k2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

T n 1 \ • 1 ^ 1 � 1 s ^1 fe� 
1 = [ k , h , - + ,—,——，——) 

1 2^ ŝ ^ki ^k2 

Using this lattice vector we can recover the secret key d easily. 

The procedures for finding out the solution of secret key d is similar to the 
previous sections. 
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4.8 Nyberg-Rueppel Digital Signature with LCG 
In this part, we assume the Nyberg-Rueppel Digital Signature uses LCG to 
generate random nonce k. Therefore, the following equations will be obtained. 

U — dci + ki (mod q) 
ki^i 二 aki + b (mod M) 

/i = dci + ki (mod q) 
h = dc2 + k2 (mod q) 
k2 = aki + b (mod M) 

Solving these equations can obtain the secret key d. However, these equa-
tions with difference moduli cause they difficult to solve. Again, using Babai's 
algorithm to find out the solution. 

4.8.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key. 

ci 1 0 q 0 0 
C2 0 1 0 q 0 

0 -a 1 0 0 M 
E = 

rji 0 0 0 0 0 . 

0 r ; i 0 0 0 0 

0 0 r ; i 0 0 0 
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Multiple the first column of the matrix by d, the second column by ki, the 
third column of k2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

I = ( / 1 , / 2 , 6 , - , - , - ) rs rk^ Tk^ 
Using this lattice vector we can recover the secret key d easily. 

The procedures for finding out the solution of secret key s is similar to the 
previous sections. 

4.9 Nyberg-Rueppel Digital Signature with ICG 
In this part, we assume the Nyberg-Rueppel Digital Signature uses ICG to 
generate random nonce k. Therefore, the following equations will be obtained. 

li = dci + ki (mod q) 
ki+i 二 oiki + b (mod M) 

li = dci + ki (mod q) 
/2 = dc2 + k2 (mod q) 
k2 = aki + b (mod M) 

k2k1 = a + 6^1 (mod M) 

Solving these equations can obtain the secret key d. However, these equations 
with difference moduli cause they difficult to solve. Again, using Babai's algo-
rithm to find out the solution. 
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4.9.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key. 

ci 1 0 0 q 0 0 
C2 0 1 0 0 q 0 

0 -b 0 1 0 0 M 
E = r ; i 0 0 0 0 0 0 

0 r ; i 0 0 0 0 0 
0 0 r ; i 0 0 0 0 

_ 0 0 0 � \ 2 0 0 0 
Multiple the first column of the matrix by d, the second column by ki, the 
third column of k2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

T 门 j <5 ki k2 
I = (/i,/2,a,-,——，——） rs rk, Vk^ 

Using this lattice vector we can recover the secret key d easily. 

The procedures for finding out the solution of secret key d is similar to the 
previous sections. 
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4.10 EC_ Nyberg-Rueppel Digital Signature with 
LCG 

In this part, we will assume using the LCG to produce the random number for 
sign the signature and using EC_Nyberg-Rueppel Digital Signature. 
Let the sequences of the random number be Ui, w2, . . . , ui and the corresponding 
public key are Vi 二 (a:̂ Vi,2A0, ^2 = {xv2,yv2) , . . . , Vi = {xvi,yVi)-
The corresponding integer representation of xy^, xv2̂  . •. , ^Vi be 14： , K2, •. •， 

Vxi' Thus we have the following equations. 

Q = K. + U (modr ) (4.7) 
di — Ui — sCi (mod r) (4.8) 
Ui = a X Ui-i + b ( m o d M) (4.9) 

From (1) and (2), 

di = Ui - 3(T4. + fi) (mod r) 
s{Vxi + fi) = Ui - di (mod r) 

Now, we only consider two signatures are received by an adversary. That is 
the adversary knows /1 , /2 , T4i and V^ .̂ One additional assumption is that the 
parameters a , b and M were known. So the following equations can be obtained 
easily. 

di — Ui — sci (mod r) • 
d2 = U2 — sc2 (mod r) 

b = a X ui — U2 ( m o d M) 
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Solving these equations can obtain the value of secret key s. However, these 
equations with different moduli cause it is difficult to solve them. 

4.10.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key. 

- c i 1 0 r 0 0 
-C2 0 1 0 r 0 

0 —a 1 0 0 M 
E = 

r ; i 0 0 0 0 0 
0 r" i 0 0 0 0 

u>i 0 0 r ; i 0 0 0 
Multiple the first column of the matrix by s, the second column by ui, the 
third column of U2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

T M ^ U ^ Ul U2� 

I = (di,d2,o,-,——，——） 
厂5 ^Ui ^U2 

Using this lattice vector we can recover the secret key s easily. 
The procedures for finding out the solution of secret key s is similar to the 
previous sections. 
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4.11 EC— Nyberg-Rueppel Digital Signature with 
PN-sequence 

In this part, we assume the EC_Nyberg-Rueppel Digital Signature uses PN-
sequence to generate the random nonce u. Therefore, the following equations 
will be obtained. 

Ci = V .̂ + fi (mod r) 
di — Ui — sci (mod r) 

\ 
u, \ 0 î+i = • - + ) z 0 2 打 一 1 V J V J 

We change d\ and d2 as the objects of the equations. 

di = Ui — sci (mod r) 
d2 — U2 — sc2 (mod r) 

> ui J I 1 i J 0 1 
U2 二 — — — + ^ 2 Q 2 “ 

w J \ 

( \ ( \ 
0 0 —Ui + 2u2 = + > 1 T 

V / \ X 

Solving these equations can obtain the secret key d. However, these equations 
with difference moduli cause they difficult to solve. Again, using Babai's algo-
rithm to find out the solution. 
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4.11.1 Solution 
We need to set up a lattice L which is generated by the columns of the mat rix 
E to find out the solution of secret key. 

m • 

— C i 1 0 r 0 0 
-C2 0 1 0 r 0 

0 - 1 2 0 0 2 " 
E = 

r ; i 0 0 0 0 0 

0 r"i 0 0 0 0 
(XI 

0 0 r"i 0 0 0 

Multiple the first column of the matrix by s, the second column by Ui, the 
third column of U2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained. 

‘ , 

T M ^ 0 0 S Ui U2 . 
I 二 {di,d2,- + ,—,——，——) 

1 2 ^ � 3 � U l Tu2 
k y \ / 

Using this lattice vector we can recover the secret key s easily. 
The procedures for finding out the solution of secret key s is similar to the 
previous sections. 

4.12 EC_Nyberg-Rueppel Digital Signature with 
ICG 

In this part, we assume the EC_Nyberg-Rueppel Digital Signature uses ICG 
to generate the random nonce u. Therefore, the following equations will be 
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obtained. 
< 

Q = T4, + fi (mod r) 
di = Ui — sci (mod r) 

Ui^i = aui + b (mod M) 
di 二 ui + sci (mod r) 
d2 = U2 + sc2 (mod r) 

u2U1 = a + bui (mod M) 

Solving these equations can obtain the secret key d. However, these equations 
with difference moduli cause they difficult to solve. Again, using Babai's algo-
rithm to find out the solution. 

4.12.1 Solution 
We need to set up a lattice L which is generated by the columns of the matrix 
E to find out the solution of secret key. 

-ci 1 0 0 r 0 0 
-C2 0 1 0 0 r 0 

0 —b 0 1 0 0 M 
E = r" i 0 0 0 0 0 0 

0 

0 r : i 0 0 0 0 0 1̂ 
0 0 r-1 0 0 0 0 
0 0 0 r : 2 0 0 0 • _ 
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Multiple the first column of the matrix by s, the second column by ui, the 
third column of U2 and subtracting the appropriate multiples of the remaining 
columns to perform modular reduction. After these operations, the following 
lattice vector will be obtained, 

T /7 j 1 ^ ^1 ^2 U1U2. 
I = (di,d2,6,-,——,——, ） 

厂 5 ^Ui ^U2 ^U1U2 
Using this lattice vector we can recover the secret key s easily. 
The procedures for finding out the solution of secret key s is similar to the 
previous sections, 
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Conclusion 

In general, the subexponential algorithm used to tackle the discrete logarithm 
cannot be adapted to the elliptic curve environment. And there are some expo-
nential algorithms to solve the elliptic curve discrete logarithm problem. That 
means, finding a solution to elliptic curve discrete logarithm problem is becom-
ing infeasible much faster than finding a solution to discrete logarithm problem. 
However, some elliptic curve logarithm problem can be reduced to the discrete 
logarithm problem. That is, if an elliptic curve with field size q, the elliptic curve 
discrete logarithm problem can be reduced to the discrete logarithm problem in 
Fqk, where k is an positive integer [24]. From the above, we can conclude that 
elliptic curve discrete logarithm is much more difficult to solve than discrete 
logarithm problem is. Elliptic curve cryptosystem is more secure than discrete 
logarithm problem's cryptosystem is. 
In chapter 4, we showed that two digital signature schemes(Digital Signature 
Algorithm and Nyberg-Rueppel Signature Scheme) are implemented in finite 
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field group and elliptic curve abelian group with different types of pseudoran-
dom number generators. All of these combinations schemes can find out the 
secret key by using the method which described in [17] although the secret key 
appears to be protected by the schemes. If someone thinks that using elliptic 
curve cryptosystem is more secure, then use shorter key sizes and does not take 
caution against which pseudorandom number generator is used, it is more risky 
than discrete logarithm problem's cryptosystem. Therefore, one should stick to 
cryptographically secure pseudorandom number generators. 
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