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簡 介 

圖像和視像壓縮在現今變得愈來愈重要。現今有許多壓縮技術，而其中小波(〜&〃6^0 

壓縮可算是一個不可或缺的工具。在這論文中，所提及到的技術，都是建築在小波壓縮 

的範圍上。 

一向以來，Vector Quantization 比 Scalar Quantization 表現得更好。但是傳統上 kaage 
Transformation的設計和Quantization的設計是分別考慮的。在這篇論文中，將會指出 

假若將這兩個設計一齊考慮會有更好的表現。我們將介紹一個這樣的例子，叫做Vector 
Wavelet Transform ( V W T ) �另外，也會介紹它的改良版，叫作 V e c t o r Wavelet 
Transform-Linear Predictive Coding ( V W T - L P C ) �這兩個技術，都是利用小波壓縮和 

Vector Quantization，而且還有很好的表現。 

此外，這論文也會介紹一個主要用在小波壓縮上的Bit Allocation A l g o r i t h m �它稱爲 

Inter-Band Bit Allocation (ffiBA)�最外，這論文會介紹一個 Finite State Vector Quantizer ° 
它是用 Parent Vector 的 Code Book Index 作爲決定 State 的因素 ° 它稱爲 Parental Finite 
State Vector Quantizer (PFSVQ)�之後也會有一些示範，結果和總結。 
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Abstract 

Image and video coding are becoming more and more important nowadays. There are many 

sophisticated image coding algorithms. Among them, wavelet coding is one of the most 

promising tools. It is expected that it will hold a more important role in the next generation's 

image coding algorithms. In this thesis, all the algorithms are based on wavelet coding. 

By Shannon's rate distortion theory, vector quantization (VQ) has better coding performance 

than scalar quantization. Li fact, vector quantization is a common technique that used by many 

image coding researchers. However, conventionally, we treat the design of image transformation 

and the design of image quantization as two separate problems. In this thesis, we will show that 

by considering these two problems together, both the efficiency of the VQ and the overall coding 

performance can be improved. We will describe an image coding algorithm, in which, the design 

of image transformation is related to the design of vector quantization. This algorithm is called 

Vector Wavelet Transform (VWT). However, there is a drawback in VWT. To further boost the 

coding performance of VWT, another coding algorithm called Vector Wavelet Transform-Linear 

Predictive Coding (VWT-LPC) is developed. It is similar to VWT except that LPC is using 

together with VWT in the new algorithm. It can avoid the drawback of VWT and at the same 

time, make the variance of the vectors smaller so that VQ can be done more efficiently. Both 

VWT and VWT-LPC use wavelet transform and vector quantization as the basic components in 

the algorithms. Experiments shows that VWT-LPC has better performance than many existing 

algorithms. 
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We will also describe a bit allocation algorithm for wavelet subbands. This algorithm is called 

Inter-band Bit Allocation (IBBA) algorithm, lt aims at distribute a total number of bit among 

different subbands of wavelet coefficients. The last part of the thesis is about finite state vector 

quantizer (FSVQ). We developed a finite state vector quantizer, called Parental Finite State 

Vector Quantizer (PFSVQ) especially suitable for wavelet image coding. In PFSVQ, the current 

state of the current vector is determined by the codebook index of its parent vector. It is because 

there is correlation between a vector and its parent vector in wavelet subbands, therefore, in each 

state, the vectors have some similarities. As a consequence, VQ can be done in a more efficient 

way. 

Chapter 1 of this thesis is an introduction to data compression and image coding. Chapter 2 is an 

introduction to subband coding and wavelet transform. Vector Quantization will be discussed in 

chapter 3. The VWT and VWT-LPC will be described in chapter 4. Chapter 5 is a description of 

the IBBA algorithm. Chapter 6 will introduce the PFSVQ. Finally, the simulation results and 

conclusion will be found in chapter 7 and chapter 8 respectively. 
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• Chapler 1 Introduction to Data Compression and Image Coding 

Chapter 1 

Introduction to Data Compression and Image 
Coding 

.1 Introduction 

/ Original Data f \ K| 1 N / 7v f recovered Y \ 

〈 ； e �J = ^ C � � 。 r| ^ Z > ( c � = ” dO [ = ^ j d e c � - . — | ^： ^ ：三 ^ 

Fig. 1.1 Data compression and decompression model 

Today, we are living in an information era. The advance in information technology changes our 

lives so much and makes our daily lives very convenient. Watching films at home comfortably or 

talking to our friends through the Internet are very common today. Information becomes easy to 

handle and process when it is in digital format. However, as the technology growths, the demand 

for faster communication speed, bigger data storage capacity, better data security also increasing 

tremendously [1]. The task of data compression is to reduce to the storage size or bit rate of an 

original data as much as possible. This can save storage space and make communication faster. 

Therefore data compression is an important area in information technology. The block diagram 

of data compression and decompression is shown in fig. 1.1. 
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• Chapler 1 Introduction to Data Compression and Image Coding 

The compressor compresses the original data into a compressed format which has small size 

compared to the original data. To recover the original data, a decompressor decompresses the 

compressed format. There are two categories of data compression, namely lossless compression 

and lossy compression. In lossless compression, the recovered or reconstructed data and the 

original data must be the same, i.e. without any error. On the contrary, lossy compression allows 

controlled amount of error in the recovered data. By carefully controlling lossy of fidelity, lossy 

compression can have higher compression ratio, ratio of the size of the original file to the size of 

the compressed format (1.1). 

. • size of original data , �̂, 
compression ratio = ^ (1.1) 

size of compressed format 

1.2 Fundamental Principle of Data Compression 

If we have a source of data and is modelled as a random process X, the alphabet set of X is 

defined as %. The entropy of X is defined as 

H{X) = - X P(X = x). logp{X 二 x) (1.2) 
A'e% 

The physical meaning of the entropy of X is the minimum number of bits per symbol needed to 

represent X. It is also the theoretical lower bound of the average codeword length of X. The 

average codeword length of X is defined as: 

L(X) = Y,p{X=x)'l{x) (1.3) 
'̂ -ê : 
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• Chapler 1 Introduction to Data Compression and Image Coding 

where l(x) is the codeword length or the number of bits of the alphabet x. It can be easily seen 

that equation (1.3) is actually a weighted sum of the codeword length of each alphabet by its 

probability of occurrence. 

Lossless data compression, sometimes called entropy coding, is able to reduce the data rate and 

at the same time without introducing any error in the decompressed data. This is possible by 

using better organization of the data. That is to reorganize the original data into a more compact 

form. If we use few bits for more frequent alphabets or symbols, and more bits for less frequent 

symbols, by equation (1.3), it is expected that the overall bit rate (which is a weighted sum of the 

codeword length of each alphabet by its probability of occurrence) will be reduced. Therefore we 

come up with the fundamental principle of data compression: 

Encode more frequent symbols by shorter codewords 

Encode less frequent symbols by longer codewords 

On the other hand, the principle of lossy data compression is different from that of lossless data 

compression. It is done by removing the redundancy of the data that is insignificant to people. As 

a consequence, the size of the compressed file can be reduced and at the same time the error is 

not easily noticeable by people. 

1.3 Some Data Compression Algorithms 

Huffman Coding and Arithmetic Coding are the lossless data compression algorithms that we 

used frequently in this thesis. Both are lossless compression algorithms and are commonly used 

today, for example in Joint Photographic Experts Group, JPEG and Motion Picture Experts 
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• Chapler 1 Introduction to Data Compression and Image Coding 

Group, MPEG. Huffman and Arithmetic Coding are also classified as variable rate entropy 

coding which means different symbols are coded with different codeword lengths. 

1.4 Image Coding Overview 

Digital image is a 2 dimensional array of real or complex numbers represented by a finite 

number of bits. Digital image takes up huge amount of storage space. For example, a 512 x 512 

8-bit grayscale image needs 262144 Bytes to store. Color images and high definition images like 

medical images take up even more space. In digital video coding, most of the bits is used to code 

the intra-frame, which is a single frame of digital image. Better digital image coding algorithm 

can improve the coding performance of digital video. Therefore iinage coding is very important. 

Original lr^age Quantization • L^s^less Compressed 

image Transformation ^ Coding image 

Fig. 1.2 Classical TQC model of image coding 

Most of the data compression techniques can be applied to image coding. In addition, our human 

visual system is sensitive to noise in some regions of an image while insensitive to noise in other 

regions. For example, our eyes are more sensitive to noise in constant luminance region than that 

in the edge region. Therefore by carefully allowing some errors in the 

decompressed/reconstructed image, we can achieve higher compression ratio. This is lossy 

image coding. However, if there are too many errors in the reconstructed image, the visual 

quality will be adversely affected. Actually, there is a trade-off between high compression ratio 

and the amount of artifacts in the reconstructed image. 

4 



• Chapler 1 Introduction to Data Compression and Image Coding 

Fig. 1.2 shows the classical model of image coding, namely the Traiisform-Quantization-

Lossless Coding (TQC) model. Obviously in some image coding algorithms not all the three 

components are present. If the second stage, quantization, is omitted, this is lossless image 

coding. It is because, in general, quantization is the only lossy part of the TQC model. (In fact, 

transformation can be a lossy part. For example in wavelet transform，if the filters are not perfect 

reconstruction filters, then the transform is lossy.) Lossless image coding is important in some 

areas, like medical imaging, where the reconstructed image needs to be identical to the original 

image. 

:.5 Image Transformation 

The first component of the TQC model is image transformation. It has been studied extensively 

during the last two decades and has become a very popular compression method for still-image 

coding [5]. The purpose of image transform is to transform an image from spatial domain that is 

difficult to compress to another domain that is easier to compress. The idea behind is to 

decorrelate the image pixels so that spatial redundancy can be remove more efficiently in the 

transform domain. Many transforms have the ability to pack a large fraction of the average 

energy of the image into a relatively few components of the transform coefficients, so that many 

of the transform coefficients will contain very little energy. This is known as the energy 

compactness of the transform. Some common transform algorithms are Discrete Cosine 

Transform (DCT) and wavelet transform. Fig. 1.3a shows the Lena image, and fig. 1.3b shows 

the wavelet coefficients of Lena image after 2-level wavelet transform using 9/7 biorthogonal 

filter. It can be easily seen that in wavelet domain (fig. 1.3b) the energies are grouped in a small 

number of coefficients on the left upper corner. This shows the energy compactness of the 

wavelet transform. 

5 



• Chapler 1 Introduction to Data Compression and Image Coding 

|謹,^^| 
i! ^ B ^ _應 B̂̂ Ĥ 
Fig. 1.3a 512x512 8-bit Lena image Fig. 1.3b Wavelet coefficient of Lena image 

The first step in image transformation normally is to subtract a “d.c.” value or constant value 

from the pixels. We call this step as Amplitude Shift. The d.c. value equals to the 2^'^, where B= 

number of bits per pixel of the original image. This is equivalence to shift the pixels from [0, 2^-

1] to signed integers with range [-2^'^ 2^'^-l]. The amplitude shift affects the overall coding 

performance. We will show this effect through some simulations and comparisons in chapter 7. 

The next step is to split the image into NxN non-overlapping block. The transformation can be 

viewed as a linear, separable, unitary matrix operation on the block h using a transform NxN 

unitary matrix A and obtaining a NxN coefficients c by: 
c = AMT (1.4) 

The reconstruction of block h is done by reverse the transformation process. Mathematically, this 

is described as (1.5): 
/) = A � A ‘ � (1.5) 

6 



• Chapler 1 Introduction to Data Compression and Image Coding 

*7"* 丁 * 

Note that since A is unitary, therefore AA' -J and A A"=I. For example in NxN discrete cosine 

transform (DCT), the transform matrix A-{a(k,n}} is defined as: 

^ , k = 0; 0 < n < N -1 
yjN 

a(k,n) = < _ 
j_cos^(2" + l)A, l<k<N-l 0<n<N-i (1.6) 

J N 2N 

The operation of wavelet transf6mi is similar to DCT. In chapter 2 contains more discussions on 

wavelet tranform. 

1.6 Quantization 

With appropriate choice of which transform coefficients to be coded and which to be removed, 

high compression ratio with relatively high peak signal to noise ratio can be achieved. This is the 

idea of the second stage, Quantization. Peak Signal to Noise Ratio (PSNR) is the method to 

assess the likeliness of the original and the reconstructed images. PSNR is given by: 

1 N M A 2 

歷 = 1 _ i U - \ ： ~ ~ F (1.7) 
删-0,=0 [f{x,y)-f{x,y)l _ 

where NxM 二 image dimension, A= image magnitude, f(x’y)= original image pixel, f^(x,y)= 

reconstructed image pixel. Another quality assessment method is the Mean Square Error (MSE). 

It is given as 

I N M 

MSE = — X X ( f ( I，力 - f (-Y, 3')) 2 (1 • 8) 
MNtif:i 
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• Chapler 1 Introduction to Data Compression and Image Coding 

Quantization is an many to one mapping and is the lossy part of any image coding systems. It 

can remove the subjective redundancy of the pixels or coefficients. The output of quantization is 

an index. In order to achieve compression, the number of possible values of the input must be 

bigger than the number of output indices. Input can be one coefficient or image pixel. In this 

case, this is know as scalar quantization. If the coefficients or pixels are grouped together into a 

vector and outputs an index for each vector, this is known as vector quantization. Chapter 3 

contains more descriptions on vector quantization 

1.7 Lossless Coding 

To further compress the image, lossless coding is used to code the indices of the quantization 

output. Statistical redundancy of the indices is removed in this stage. Commonly used algorithms 

are Huffman Coding and Arithmetic Coding. 

8 
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Chapter 2 

Subband Coding and Wavelet Transform 

2.1 Subband Coding Principle 

Signal expansion or decomposition was first appeared in 19th century since Fourier invented 

harmonic trigonometric series [26][30] and since then many kinds of signal expansion appeared. 

Subband coding (SBC) and wavelet coding is a kind of signal expansion. They were found to be 

very useful in signal processing and compression |7][23][30]. We will discuss SBC in this 

section and wavelet transform in section 2.4. 

Subband coding was first introduced for speech coding [18], and was then applied in image 

coding. The aim is to decompose an image into several frequency bands by filter bank and 

allocate different number of bits to each band according to the human visual perceptual criteria. 

For simplicity, we will first consider the case of one-dimensional signals. SBC for images is 

same as for one dimensional signals, except the filters are becoming 2 dimensional filters or 

simply apply the one dimensional filters to each row and column of the image separately if the 

filters are separable. 
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Cliapler 2 Subband Coding and Wavelet Transform 

Fig. 2.1 shows the block diagram of a subband coding system. In the encoder, the original signal 

x[n], with length N, passes to a bank of K analysis filters Hj, H�’ .,.’ 只尺小 Hj^ . Usually, Hj is a 

low pass filter and H^ is a high pass filter, filter H:, H^, ..’ Hj^_j are band-pass filters. Then each 

output of the filters is decimated by a factor of K. As a result, a set of K signals each of length 

N/K is obtained. Finally, Q!’ Q)，.” Q^ different quantizers are used to quantize the decimation 

output. In the decoder, reconstruction is done firstly by R^, R�，.",Rj^ on each of the K encoded 

signals and then interpolation by a factor of K and filtering by synthesis filters Fj, F �… ， ^ K is 

done ill sequence and finally the K output reconstructed signals are added together to form the 

reconstruction signal x^[n]. 

—— —— 门 门 

——"/"•I< • Qi ~ • • Ri •，/("•尸， J 

— " 2 — i & • Q2 ~ • C 4 R2 4 T / c N F. • 
—— —— H —— L_LI 

_—— ： ： A . . ——^ 
M • • 

: : M ： ： + "nl 
—— E —— 

^ ^ K - / H i ^ | — — 1 QK-1 ~ • L ——•[ R,,——^|/c[^ 厂。——^ 

L H^ ^ ^ K • Q, ~ • — — • R,——•f^ ^ ^ — — J 
LJ — LJ 

V J V ^ ^ 乂 
Y ^ - N ^ 

ENCODER DECODER 

Fig. 2.1 Block diagram of subband coding system 
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Cliapler 2 Subband Coding and Wavelet Transform 

2.2 Perfect Reconstruction 

In addition to the quantization error, the analysis and synthesis filter banks can aLso cause x^[n] 

differ from x[n]. The inability of perfect reconstruction caused by the filter banks can lead to 

frequencies distortion, phase distortion and aliasing in the reconstructed signal. Therefore perfect 

reconstruction filter banks are important in SBC. 

To study perfect construction, first we consider the simple case of two bands SBC system 

without quantizers. Therefore fig. 2.1 is simplifed as fig. 2.2. 

^ ^ : p ^ j 7 ^ 啊 ^ ^ y 7 p ^ ^ q 7 : > _ ^ ^ ” 
x[n] Q • x^[n] 

^^{^;]i^i^^ ViM“^^[P^ ""7丫 

Fig. 2.2 Two bands subband coding system 

Yo(Z) and Yj{ZJ are the z-transform of the yg[n] and yj[n] respectively. 

Y,{Z)^H,{Z)X{Z) 
Y,{Z)^H,{Z)X{Z) (2.1) 

V(/Z) and Vj(Z) is the z-transform of the downsampling output oiy()[n] and yj[n] respectively 

and are actually equal: 

1 1 1 
n ( Z ) = - ( W 2 ) + J^0(-Z2)) 

1 i 1 
V i ( Z ) - - ( F,(Z^) + 7^(-Z^-) ) (2.2) 

二 
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However, the interpolation result, Uo[n] and Uj[n] equaLs: 

U,{Z) = V,{Z') = ^{ Y,{Z) + Y,{-Z)) 

U,{Z) = V,{Z') = j{ Y,{Z) + Y,{-Z) ) (2.3) 
jL/ 

Now, consider the reconstruction signal, x"[n]. It equals the summation of ggln] and gj[n] and 

the z-transform is equal to: 

i[Z] = G�(Z) + Gi(Z) 
= ^ ( Z ) F � ( Z ) + [A(Z)Fi(Z) (2.4) 

Now, substitute equation (2.3) into equation (2.4): 

i (Z)=去[7o (Z) + r�(-z)]Fo (Z) + 去[y, (z) + 7, (-z)]F, (z) 
丄 丄 

二| [H, {Z)F, (Z) + H, {Z)F, (Z)]Z (Z) + 
二 

\ [丑。(-z)î �(Z) + n, {-Z)F, {Z)]x (-Z) (2.5) 
Aj 

It can be easily seen that the first term represents perfect reconstruction and the second term is 

the aliasing term. Therefore if the second term is eliminated, perfect reconstruction can be 

achieved. 

A famous type of filter banks called Quadradiire Mirror Filter (QMF) satisfies the above 

conditions. The requirement of QMF is as follows: 

/7,0[77,] = /7,[/7] • /7,[/7,] = ( - l ) ' 7 7 , [ / ? , ] 

/o[77] = 2h[n] f\[n] = -2(-l)"/7,[/7] (2.6) 
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where h[n] is a FJR, symmetric, even-length low pass filter of length N. More details about QMF 

can be found in [9][30]. 

23 Multi-Channel System 

The above QMF is classified as two-channel system. Multi-channel systems can be built by 

using one low pass filter, one high pass filter and several band pass filters. Alternatively, it can 

be built by using cascade of several sets of two-channel systems. Fig. 2.3 shows an example of 4-

channel system built by cascading of two-channel systems. The output bands are LL, LH, HL and 

HH. This kind of filter band is also called uniform band decomposition system. On the other 

hand, in some cases, further decomposition is done only in the lower band and leave the higher 

bands unchanged (fig. 2.4). This is called octave band decomposition. 

r— H �— — • j 2 ~ • LL  

^[n7^-4^^ — 
L - Hi •，『2 ——• LH — 

x[n] _ _ —— 

^ [ n J • ! 2 ——•HL  

4K)-->J3— ~~ 
~ ~ H i • ! 2 ——• HH 

Fig. 2.3 Cascade of 2-channel system Fig. 2.4 Octave-band 
decomposition 

2.4 Discrete Wavelet Transform 
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Discrete wavelet transform (DWT) or wavelet transform (WT) is a new generation of image 

coding technique. It is identical to subband coding, except it uses special choice of filters. 

Therefore sometimes wavelet coding is aLso called wavelet subband coding. The filters should be 

linear phase, orthogonal or biorthogonal, short, regularity, frequency selective [30]. Linear phase 

filters can be used in cascade to fonn pyramidal structures without the need for phase 

compensation [7]. t i wavelet transform, octave band decomposition is usually used and an image 

is decomposed in row and then in column in sequence if the wavelet filter is separable. For 

example, in fig. 2.5, an image is decomposed into four subbands in the first level of 

decomposition. The four subbands are LL；, LHj, HLj, HHj. For example, LL； means the row and 

column are low frequency and the subscript 1 means in the first level of decomposition. 

Similarly LH^ means column in low frequency and row in high frequency in the 1st level. 

Further decomposition only happens in the lowest (or coarsest) subband (in case of octave band 

decomposition), i.e. the LLj, and obtains another 4 subbands called LL:，LH:’ HL�，HM:. 

LL, HL, 
LLi HLi — — — - H L i 

Original ^Wavelet \ ~~"Wavelet \ ^̂ ^ HH,  
Image transform / transform / 

LHi HHi LHi HHi 

Fig. 2.5 Two levels octave band decomposition of image using wavelet transform 

In most of the traditional signal decomposition techniques, like discrete cosine transform (DCT), 

the decomposed signals are localized in frequency. Wavelet transform has the additional 

properties of localization in space [16], This is very important because typical images have most 

of energy localize in low frequencies and the rest energy of the high frequencies mostly come 

from edges. Wavelet transform provides the ability of compacting most energy into few low-
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frequency coefficients and representing high-frequency energy in a few, spatially-clustered high 

frequency coefficients [17][23]. Figure 2.6 is an example of two-level wavelet transform of Lena 

image. It can be seen easily that most energy is concentrated in those coefficient in the LL: 

frequency band and at the same time the each band is aLso spatially localized. 

� ^ ^ ^ ^ ^ ^ ^ H ^ # " i _ l i iiiii _ l _ 

1 ^ 

"ig. 2.6 Most of the energy is compacted 
in coefficients in LL�subband 

In addition to have good compression performance, wavelet transform is also suitable for 

progressive transmissions and multi-resolution applications. This thesis uses wavelet transform 

for image decomposition and most of the techniques used in this paper exploit the inter and intra 

band correlation of the wavelet subbands. More details will be introduced later. The filters that 

frequently used in this thesis are- Daubechies 4 {DB4) orthononxial filter and the 9/7 biorthogonal 

filter. 
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Chapter 3 

Vector Quantization (VQ) 

3.1 Introduction 

A new video coding standard MPEG-4 is targeted to release in November 1998. In the new 

standard, the bit rate is targeted in two regions. They are the Very Low Bit Rate Core (VLBV 

Core) at 5-64kbit/s and the High Bit Rate Core (HBV Core) at 64-2Mbits/s [5]. Very low bit rate 

image coding is an important area in today's video coding technology. In order to achieve such a 

low bit rate, vector quantization (VQ) is a promising tool for use. 

According to the result of Shannon's rate-distortion theory, the performance in coding a vector of 

information is better than that of coding a scalar of information, in term of rate-distortion criteria, 

even though the information source is memoryless. The performance of coding a vector of 

information improves as the vector dimension increases. This is because the correlation within 

the vector is exploited [27][6]. Image vector quantization bases on this theory to group image 

pixels or transform coefficients into vectors and gives a code or index for each vector. In next 

section, the basic procedure of VQ will be introduced. Section 3.3 gives a description of 

codebook searching and the LBG algorithm. Section 3.4 describes some problems in VQ and 

introduces two variations of VQ. The last section is about VQ on wavelet coefficients. 
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3.2 Basic Vector Quantization Procedure 

To vector quantize an image, the image is first partitioned into non-overlapping blocks of 
2 

dimension NxN. Each block represents a vector in the R Euclidean space. The vector quantizer 

compares each input vector with a set of standard code vectors, called codebook, to find the best 

match. An index from the codebook identifying the best match (called codeword) is the final 

output of the quantizer. Mathematically, codeword i is the output if: 

d{v,r.)<d{v,r.) for i.^j, i,je{l,M] (3.1) 

where v= input vector, r^ , r�are code vectors in the codebook, M= size of the codebook and d is 

any distortion measurement such as Mean Square Error (MSE). To reconstruct the image at the 

receiver end, each codeword i in the input stream is replace by the code vector r- in the codebook 

and the image is reconstructed block by block. Therefore, the bit rate of the coded image is equal 

to [l0g2(M)y{NxN) bits/pixel. The encoding and decoding procedure is summarized in fig 3.1. 

Original ^ Formation of � • output=i ,• 

Image ^ vectors ^ if d( v , r, )<=d( v , r ) wherti=1,2"..,M 

i L 

'1 
�2  
'3 

• 

• 

• 

‘ 厂/W 

codebook of 

size M 

Fig. 3.1a Vector quantization encoding procedure 
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； ‘ T ,, , I 「i ‘ Reconstruct ion of ^ Reconstructed 
I • Table look-up ^ . , ^ • , 

image from vector Image 

ji i 

�1  
^2 
�3 
• 

• 

• 

�M 
codebook of 

size M 

Fig. 3.1b Vector quantization decoding procedure 

3.3 Codebook Searching and the LBG Algorithm 

3.3.1 Codebook 

The VQ routine involves the comparisons of each input vector to all code vectors in the 

codebook. Therefore, the ratio-distortion performance of VQ is highly affected by the codebook. 

In fact, codebook searching is the most important and computationally intensive part of the 

whole VQ procedure. The algorithms for finding the codebook are called clustering algorithms 

because this involves grouping vectors together (from a set of vectors, called training set) to form 

Voronoi cells and find the best representation for each cell as the code vectors. 

Obviously, the best training set for coding an image is all the vectors of the same image. In this 

case, the codebook obtained is called local codebook. However, the use of local codebook is not 

efficient because a new codebook is need to be found for each image to be coded and this 

process requires much memory and computational power. In addition, the transmitter needs to 
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transmit the codebook to the receiver. This adversely affects the efficiency of the transmission. 

For example if the block size is 4x4 (i.e. vector dimension is 16), codebook size is 1024, image 

dimension is 512x512 and each pixel is 8 bit, then the number of bits per pixel needed for 

transmit the codebook equals: 

N^ .M . 8 
二 0.5 hits / pixel 

P 

where N= 4, M: 1024, p= 512 

However, the number of bits per pixel for coding the image equals: 

l0g2j^ =0.625 hits/ pixel 
N^ 

The example reveals that the number of bits required for the transmission of side information, 

that is the codebook, is comparable to that used for the encoded image. Therefore local codebook 

reduces the efficiency of the VQ greatly. 

On the other hand, instead of including the all vectors of the image to be coded in the training 

set, we can use a large enough set of vectors as the training set to obtain a statistically adequate 

description of any arbitrary images. The resultant codebook is called global codebook and is 

stored in a ROM in the encoder and decoder, therefore does not need to be transmitted. 

3.3.2 LBG Algorithm 

There are two main approach for codebook searching. The first approach uses some subset of a 

lattice to form a highly structured codebook. The VQ using this kind of codebook is referred as 
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lattice VQ [25][23][19][20][21]. The second approach is the vector clustering approach that we 

mentioned in section 3.3.1. In this thesis, all VQ used belongs to the second approach. 

The most common and well-known vector clustering algorithm is the Linde-Buzo-Gray (LBG) 

algorithm (sometimes called generalized Lloyd algorithm (GLA)) [6][11][25]. The LBG 

algorithm for a codebook of size M is summarized as follows: 

Step 1. Given a training set S. Initialize M code vectors ( r / ^ \ rJ^^ ...，rJ^^) for the codebook. 

Choose a distortion threshold £ (£>()) and a distortion measurement method d. Set the 

initial average distortion.value D(�) to a very large number. Set counter L:1. 

Step 2. For all vectors v in 5, find d(v，,/¾ If d(v, r/^^J< d(v，r/") where i^j, iJe [7, M], then 

group the vectors v into Voronoi cell C/二) We therefore group all vectors into M Voronoi 

cells and the total number of vectors in cell i is denoted as N(i).Thm it is followed by 

updating the code vectors in the codebook: the new code vector 厂产+" is the centroid of 

Voronoi cell C-^K where /:G [7,M]. Mathematically, it is equal to: 

(L.I) ^ _ L _ y 

A^(0 w , f ^ , -

Find the average distortion value D(L): 

1 M f ^ 

D ' ' ' = i l Z"(v,，v/,-)) 
^ '=1 Vv,eC/'-' 

• V * ‘ J 
where W = total number of vectors in S. 
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II、 

D(L-1) -D(L) 
< c 

D(L-V) 一 

finish and the final code vectors are !�([+”’ i=l,2,...,M. 

Else go to step 3. 

Step 3. Set L=L+I and go to step 2. 

In order to make the training set having good descriptions to any images, normally, the number 

of vectors required in the training set S is at least 40M (M=codebook size) [24]. 

3.4 Problem of VQ and Variations of VQ 

The formation of codebook requires a lot of vector comparisons and hence requires a lot of 

memory and computational power. This is the main drawback of VQ. In addition, the LBG 

algorithm is actually a minimization process, however, it can only find the local minimum [28]. 

Therefore the first step, initialization of code vector is important. There are several methods to 

initialize the codebook [28][29][11]. The VQ used in this thesis uses randomly chosen vectors 

from the training set as the initial codebook. 

Here we are giving an example of VQ. The image under consideration is 512x512, 8-bits Lena 

image. Fig. 3.2a is the reconstructed image. The compression is at 0.5 bits/pixel with PSNR= 

31.29 dB. Fig 3.2b is a close-up of fig. 3.2a. It can be easily seen that the perceptual quality of 

the reconstructed image is good. However, there is blocking effect and staircase effect, around 

the edges of the reconstructed image. 
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i p ; ; - i , J ^ m r ,# w^ 
1 m%M, 
Fig. 3.2a Lena image alter VQ at 0.5bpp Fig. 3.2b Close-up ot Lena image after 

VQ at0.5bpp 

To reduce the complexity, smaller vector dimensions can be used. However, the aim of VQ is to 

exploit the correlation among pixels or coefficients. Reducing the vector dimension means 

sacrifices the intra-vector dependency. Another approach to reduce complexity uses constrained 

VQ which impose some constraints to the codebook. There are many constrained VQ [25][6]. Jn 

addition to reduce the computation complexity, sorae also have other improvements, such as 

reduce saw-tool effect around edges. Here, we will discuss two commonly used constrained VQ. 
3A1 Classified VQ (CVQ) 

In classified VQ (CVQ), the vectors in the training set are first classified into Q different classes 

according to the vectors' properties. For example, the classification can base on texture 

properties, edge directions, features of diagnostic or scientific importance or irrelevance, 

perceptual masking, or a variety of other criteria [23]. Then LBG is done on each class, forming 

Q different codebooks. This method can reduce the computational complexity since for each 

22 



Chapter 3 Vector Quantization (VQ) 

incoming vector, it only needs to compare with the vectors of the same class. For instance, by 

classifying the vectors into shades and edges, the saw-tool effect around the edges can be 

reduced. In the encoder, the incoming vector is first classified into a class, then it is compared 

with the code vectors in the codebook of the corresponding class. Therefore, two parameters are 

needed to transmit for each vector; one is the index specifying the codebook being used and the 

other is the index of the code vector being used. A block diagram of the CVQ is shown in fig. 

3.3. 

3.4.2 Finite State VQ (FSVQ) 

In classified VQ mentioned in the last session, side information specifying which codebook 

being used is need to be transmitted for each input vector. To avoid the transmission of side 

information, finite-state VQ (FSVQ) is a choice for use. FSVQ is similar to CVQ. They both use 

multiple codebooks. However, no side information is needed for FSVQ. The side information is 

replaced by using next state rule. The next state rule can be based on, for example, the energy of 

previously decoded vector, or the texture properties of previously decoded vector. The important 

point is both the encoder and the decoder know the next state function which is used for deciding 

the choice of codebook. Chapter 6 of this thesis will introduce an innovative finite state VQ 

exploiting the inter-vector correlation between vectors in difference wavelet subbands. 
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, ,、， , ^̂  」/ 1 k Code Vector 
Input Vector • d(v,r) • ,^^^^ 

i L 

codebook u 

Codebook 1 

Codebook 2 
Classifier 

^^_>,̂ y^ Codebook Q 

7 ^  
^ U ^ Codebook 
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Fig. 3.3a Classified VQ encoding process 

k 
Code Vector Index • Table-look Up • Output Vector 

Codebook Index “ 

Codebook u 

u  
Codebook 1 

^ • Codebook 2 

Codebook Q 

Fig. 3.3b Classified VQ decoding process 

3.5 Vector Quantization on Wavelet Coefficients 

Vector Quantization on wavelet coefficients or Wavelet VQ is classified as transform VQ. 

Instead of vector quantizing the pixels of an image, it uses the transform coefficients as the input 

of the quantizer. VQ is especially good for encoding wavelet coefficients. Actually, it has the 
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better performance in coding wavelet coefficients than to code image pixels [22]. Li addition, we 

can also exploit the correlation of the wavelet coefficients between different wavelet subbands 

and within the same wavelet subband to boost the performance. We will discuss improvements 

based on these correlations in Chapter 4. By modifying the image transformation into a way that 

'fits, the use of VQ, the traditional TQC model (see chapter 1) of image coding can be improved 

with the use of VQ. Next chapter will have a more detail description on these modifications. 
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Chapter 4 

Vector Wavelet Transform-Linear Predictor 
Coding 

4.1 Image Coding Using Wavelet Transform with Vector 
Quantization 

In chapter one, we introduced the basic concept of image coding. The classical Transform-

Quantization-Lossless Coding (TQC) model is a powerful method to encode an image. In chapter 

2 and 3, wavelet and subband coding and vector quantization were introduced respectively. The 

last section of chapter 3 concluded that vector quantization is especially suitable for coding 

wavelet coefficients. It is expected that image coding using TQC model with wavelet transform 

and vector quantization together will give good coding performance over rate-distortion criteria. 

In fact, there are many literatures and new algorithms based on using wavelet transform and 

vector quantization together and they produce excellent performance. 

4.1.1 Future Standard 

The new video coding standard, ISO Motion Picture Expert Group Phase 4 standard (MPEG-4), 

aims at establishing a universal, efficient coding of different forms of audio-visual data, called 
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audio-visual objects which can be natural or synthetic. This aim will be achieved by defining two 

basic elements. The first is a set of coding tools for audio-visual objects capable of providing 

support to different functionalities such as object based interactivity and scalability, and error 

robustness, in addition to efficient compression. The second is a syntactic description of coded 

audio-visual objects, providing a formal method for describing the coded representation of these 

audio-visual objects and the method used to code them [20]. In real applications, most of the 

codec systems are asymmetric. That means the encoder does much computations than the 

decoder. For example the encoding complexity for digital TV is very high and is done by TV 

stations. However, users can enjoy the digital TV only by using simple decoding circuits in their 

TV sets. The VQ encoding and decoding system is aLso an asymmetric system because the 

decoding complexity is much lower than encoding complexity. There is a very high probability 

that the wavelet transform coding and vector quantization will be included in the coding tools. 

4.1.2 Drawback ofDCT 

Discrete cosine transform (DCT) is being applied in many existing image and video coding 

standards, like JPEG for digital images, MPEG-1 for full-motion video with VHS quality, 

MPEG-2 for full-motion video at various quality levels including broadcasting, studio, and 

HDTV quality. DCT became popular since 1980s because of its low complexity and effective bit 

allocation can be done. Also, the evolution of Fast Fourier Transform (FFT) and Fast Cosine 

Transform (FCT) enables real-time application of DCT. DCT performs well at high bit rate. 

However, at moderate to low bit rate, it suffers severe blocking effects because the basis 

functions of DCT for reconstruction are short [9]. Fig. 4.1a shows a JPEG image of the Lena at 

1.3 bits per pixel. The blocking effect of DCT can be seen easily in fig. 4.1b. It is the close-up of 

fig. 4.1a. The blocking effect makes the image looks blur. 
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4.1.3 Wavelet Coding and VQ, the Future Trend 

Subband coding using wavelets, as mentioned in chapter 2, provides an efficient way to 

decompose an image because both the spatial and frequency aspects of the images are taken into 

considerations. Furthermore, wavelet transform can avoid blocking effect at medium bit rate 

because its basis functions have variable lengths [9]. Long basis functions represent flat 

background, i.e. low frequency. Short basis functions represent regions with texture. Although 

wavelet transform suffers ringing effect especially around edges at low bit rate, there is no doubt 

that wavelet transform will hold an important role in image and video coding. 

Thanks to the development of electronic technology, the price of memory and computational 

power is greatly reduced when compared to the past. This helps the development of VQ. Today, 

we have many advance algorithms for VQ and many of them have very good performance. 

Therefore, wavelet subband coding and vector quantization will be one of the most powerful 

tools for further image and video coding technology. The algorithms introduced in this thesis all 

based on wavelet transform together with the use of vector quantization. 

m W | P ^ _ 

^C^^ 
i l ^ ^ r ^ fc^ / ^ ^ ¢ : . …. 
Fig. 4.1a JPEG image ofLei ia at 1.3 bpp Fig. 4.1b Bloclciiig ettect ot DCT coded image 
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4.2 Mismatch between Scalar Transformation and VQ 

Image transformation is an indispensable part in image coding. Normally, it is done by 

separating the image by blocks and then transform each block one by one. This kind of image 

transform is scalar-based transformation. It works very well together with scalar quantizer and 

works better with vector quantizer. However, we can further boost the power of VQ by using 

image transformation that is vector-based. When people design scalar quantizers, they want to 

make it suitable for scalar-based transform. In other works, the development of scalar-based 

image transformation and scalar quantizers has been an interactive process [15]. On the contrary, 

the use of scalar-based image transform together with vector quantization does not consider the 

requirement of VQ. This means the design of scalar-based image transform and VQ is not an 

interactive process. Therefore, there is much room to boost the power of VQ by making the 

image transform 'fit' for VQ. Here we define this kind of image transformation as vector-based 

image transformation. Thus the development of vector-based image transform and vector 

quantizer is an interactive process. These relationships are shown in fig. 4.2. For simplicity, the 

term vector-based image transformation has the same meaning as vector transformation or vector 

transform (VT). Similarly, scalar-based image transformation and scalar transformation or scalar 

transform (ST) refers to the same meaning. 
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f 7 y Vector 

A K Quantization 

Vector-Based / \ 

Image Transform \ / 

N Interactive [/ 

Process 

Fig. 4.2 Relationship between the design process of scale(vector)-based transform and 
scale(vector) quantizer 

4.3 Vector Wavelet Transform (VWT) 

Vector wavelet transform is a kind of vector transformation developed by Li and Zhang [15]. It 

has the properties and merits ‘ of vector transform. The implementation of vector wavelet 

transform is very simple. To make it easy to understand, it can be considered as a modification of 

scalar wavelet transform. The following block diagrams are the procedures of VWT. Equations 

showing how VWT works can be found in [15]. Here is the procedures of VWT: 

Step 1: Subsample the original image at a rate of M vertically and horizontal to form MxM 

subimages. 

Step 2: Each subimage is transform by wavelet filters. 

Step 3: Regroup the wavelet coefficients (from the siibimages) of the same frequency and spatial 

location into vectors of dimension MxM. And the vectors are input to the vector 

quantizer. 

Fig. 4.3 shows these procedures. 
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X X X X X X X X A =;八2:1八2:2; 

V, = ： Bi,i Bi,2 ： 
B ;B , ,B , ^ : 

Suppose M=2, the re are 

4 sub images. V^ and Vg 

are formed after step 3 
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Fig. 43d Inverse Vector Wavelet Transform 

The first step, image subsampling forms M^ subimages. They look alike. However, within each 

subimage, the pixels are less correlated than that in the original image. Therefore after the 

wavelet transform in the second step, the correlation between coefficients within the same 

subimage is very low but the correlation between coefficients from different subimages at the 

same spatial and frequency location is high. ([12] provides evidence for above arguments.) For 

example, in fig. 4.3c, the correlation among A! i ,八丄二，A�’！，八之二 in V^ and the correlation 

among B^j , B! 2 , B21 , B22 in Vg are high. But correlation between elements in V^ and 

elements in Vg is low. 

This is because the neighbour pixels within the same subimage are originally M pixeLs apart in 

the original image, therefore the wavelet coefficients within the subimage is lower than that in 

case of wavelet transform of the original image. On the contrary, the pixeLs at the same spatial 

location of neighbour subimages are actually neighoiirhoods in the original image. Therefore 
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correlation between wavelet coefficients from different subimages at the same frequency and 

spatial location is high. 

The last step aims at producing vectors that has high intra-vector correlation and low inter-vector 

correlation. This is done by regrouping the wavelet coefficients from different subimages at the 

same frequency and spatial location to form vectors. Since in step 1, the subsampling rate is M 

(vertically and horizontal), therefore, now each vector has dimension MxM. This step can 

achieve our aim because the elements of each vector come from pixels of the original image of 

M pixels apart (horizontally or/and vertically). 

The complete image coding procedure is finished by putting the vectors into vector quantizer, 

converting them to indices and finally losslessly code these indices using algorithms like 

Huffman coding or Arithmetic coding. 

4.4 Example of Vector Wavelet Transform 

To illustrate the use of vector wavelet transform, an example is given in this section using 

512x512 8-bit Lena image. In our example, the subsampling rate M= 4. An subimage is formed 

by taking pixel alternately 4 pixels apart both vertically and horizontally. Therefore after step 1, 

there are 16 subimages (fig. 4.4a). Each subimage has dimension (512/4)x(512/4)= 128x128. 

These 16 subimages are then transformed by 9/7 biorthogonal wavelet filter in 2 levels. Each 

subimage is converted to 7 bands of wavelet subbands (fig. 4.4b). Finally, the wavelet 

coefficients are regrouped together (fig. 4.4c). Each 4x4 coefficients form a vector, which has 

high intra-vector correlation. Each vector is then VQ and losslessly coded. 
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Fig. 4.4c Regrouping of wavelet coefficients 

from the subimages of fig. 4.4b 
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4.5 Vector Wavelet Transform - Linear Predictive Coding 
(VWT-LPC) 

Vector wavelet transform, described in last section, successfully decorrelates the inter-vector 

correlation and preserves the intra-vector correlation. However, in the procedure of VWT, 

although the first step, siibsampling of pixels helps the decorrelation of the inter-vector 

correlation, but at the same time, it produce much energy in the higher wavelet subbands after 

the wavelet transform in the second step. This is because the similarity of neighbour pixels in the 

subimages is smaller than that in the original image. This reduction in similarity causes the 

energy in the lower subbands becomes smaller and that in higher subbands becomes higher. In 

other words, the energy of the wavelet coefficients is less compact. This is shown in fig. 4.5. 

These two figures compare the energy compactness of wavelet coefficients obtained by wavelet 

transform the Lena image directly and wavelet coefficients of VWT (i.e. from fig. 4.4c). The 

vertical axis is the amplitude of the wavelet coefficients and the horizontal axis is the scan line. 

The lower the wavelet subband the coefficients belong to, the more the coefficients near to the 

left side of the scan line. Fig. 4.5a is the scan line of wavelet coefficient of Lena image. Fig. 4.5b 

is the scan line of wavelet coefficient from VWT (from fig 4.4c). It can be easily seen that the 

coefficients in fig. 4.5b have higher amplitudes around the right side of the scan line (i.e. higher 

subbands). This means that the energy of the wavelet coefficient of VWT is less compacted. 

Here we introduce a modification of VWT, called Vector Wavelet Transform-Linear Predictive 

Coding (VWT-LPC). The evolution of VWT-LPC is to alleviate the above problem by adding 

linear predictive coding (LPC) after vector wavelet transfonn. The LPC takes the vectors 

produced by VWT as its input and "filter" each vector by a linear predictor. The "filtering" can 

be viewed as taking difference between the vector and the predictor of the vector. The result is 
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called residual, which is also a vector (in our case) and is the output of the LPC, The residual is 

then vector quantized. The block diagram of VWT-LPC is shown in fig. 4.6. 

500 1 1 1 1 1 400 1 1 i 1 1  

誦^^ ； :|^^ : 
-400'“ Lj 1 1 1 1 1 -400 ‘ 1 1 1 1 i  

0 100 200 300 400 500 600 0 100 200 300 400 500 $00 
Fig. 4.5a Scan line of wavelet coefficient of Fig. 4.5b Scan line of wavelet coefficient 

Lena image from vector wavelet transform 

e V e c t o r Linear Predictive r e s i dua l 
• Wavelet ~ • • Coding (LPC) ^ ^ 

T rans fo rm V 。 

Or ig ina l Vec to r Wave l e t 

Image coeff icient 

Fig. 4.6 Block diagram of Vector Wavelet Transform-Linear Predictive Coding 

In this algorithm, the predictor of the LPC is carefully chosen so that the residual has smaller 

variance than the vector wavelet coefficients. In that case, all the residual vectors are more 

M^ 

clustered in the R Euclidean space (if vector dimension is MxM). As a result with the same 

number of code vectors, the codebook obtained with the use of LPC gives a better representation 
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to the vectors than that without the use of LPC. Therefore the rate-distortion performance will be 

improved by using LPC together with VWT. One may argue that the use of linear predictor on 

the vectors (from VWT) may reduce the intra-vector correlation. Ln previous section, we argued 

that higher intra-vector correlation will enhance the peforraance of VQ. Actually, there is a trade-

off between using LPC to reduce the variance and not using LPC to preserve the intra-vector 

correlation. Our simulation in chapter 7, shows that VWT-LPC has better performance than 

VWT at various bit rates. 

4.6 An Example of VWT-LPC 

VWT-LPC can be implemented using commonly used predictor and it still performs better than 

VWT. In this example, we choose the intra-vector mean as the predictor. Mathematically，the 

predictor p^, (for vector v) can be written as: 

P v = l � i (4.7) 
K x^GV 

where K- total number of coefficients in each vector v 

The difference between each wavelet coefficient (of vector v) and the predictor (of the vector v) 

is taken and the output is a vector and goes to the vector quantizer. The predictor is coded 

separately (Fig. 4.7). 
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A vector form . 」 , 

(rom ;̂  ^ r e s i d ua l To v e c t o r 
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p r ed i c t o r s e p a _ l y 

Fig. 4.7 VWT-LPC using intra-vector mean as predictor 

Again we use 8-bit 512x512 Lena image in this example. VWT is first done on the Lena image. 

The wavelet filter used is 9/7 biorthogonal filter and wavelet transform is done in 2 levels, and 

obtains 7 subbands. The subsampling rate M=4. Fig. 4.8 is the residual after LPC. Comparing to 

fig. 4.4c，the coefficients in fig. 4.8 have smaller variance. Details of the coding performance of 

VWT-LPC can be found in chapter 7. 

^̂ ĵ 
Fig. 4.8 Residual of VWT-LPC using intra-

vector mean predictor 

39 



. Chapter 5 Vector Quantizaton with Inter-band Bit Allocation (lBBA) 

Chapter 5 

Vector Quantizaton with Inter-band Bit 
Allocation (IBBA) 

5.1 Bit Allocation Problem 

In transform coding, the original image is decomposed into different frequencies or subbands. 

Each has different degree of significance to our human visual system. For the best reconstruction 

result, it is obvious to encode all the subbands losslessly. In this case, the encoding system is 

lossless. However, in many cases, the total number of bits available for the encoding is limited 

and /or we want to achieve higher compression ratio, therefore we need to have quantization. 

u(1 ) L i n e a r v (1 ) • ! Q u a n t i z e r 1 “ • v ' (1) = • _ 

u= u(2) — Transform — v= ,(2) - ^ | Quantize「2~| • ^(2) 

u (N ) v (N ) • Q u a n t i z e r N | ^ v ' (N) 

Fig. 5.1 Encoding system with multiple quantizers 

Quantization is a lossy process that removes signal redundancy or removes any signal that is 

insignificance to the receiver. To effectively encode the coefficients according to their degree of 
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significance, an image coding system often contains several different quantizers each of which 

quantizes the transform coefficients in different accuracies (different number of bits) of 

reproduction. In particular, in subband coding, the variances of the transform coefficients of 

different subbands are generally unequal, therefore each subband requires a different number of 

quantization bits. The task of distributing a given quota of bits to various quantizers to optimize 

the overall coding performance is known as bit allocation. Suppose now the transform coefficient 

is denoted as {v^: 0<k^-l} and the number of bits assigned for coefficient v^ is hj^ and hj>0 .Let 

W|^(h|J be the mean square error incurred in optimally quantize v^ with b̂ , bits. Then the problem 

of bit allocation is to minimize 1^ and under the constraint of (5.1), where B is total bits available 

for the encoder. 

^ = ¾ ( ¾ ) 

• k=0 
N-l 

B < J , h (5.1) 
/c=0 

To solve the problem of bit allocation, one can solve the above equations directly. However, this 

requires exhaustive computations. In addition, the optimal distortion functions WjJhj^) are rarely 

known exactly and this will adversely affect the degree of the optimality [25]. Some researchers 

allocate the bits in arbitrary ways and some researchers develop other algorithms for bit 

allocation, for example the equal-slope method [23], Li this chapter, we will present a bit 

allocation algorithm for encoding vector-based wavelet transform coefficients [12], We call it 

Inter-band Bit Allocation (IBBA). 

In next section, we will describe the Inter-band Bit Allocation (IBBA) algorithm. In chapter 6， 

we will describe an algorithm that can improve the coding result of IBBA. 
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5.2 Bit Allocation for Wavelet Subband Vector Quantizer 

5.2.1 Multiple Codebooks 

In wavelet subband coding, the using a single codebook for all the subbands is not as good as 

using multiple codebooks, one codebook for each subband. This is because using multiple 

codebooks, each codebook can be trained to adapt the statistical properties of each individual 

subband. In addition, the number of vectors in each subband is less than the total number of 

vectors in all the subbands and therefore the complexity of codebook training is highly reduced. 

2 

The vectors in each subband are more clustered in the R^ Euclidean space (NxN is the vector 

dimension). Therefore the multiple codebooks give better representations to the vector in their 

corresponding subbands. 

Using multiple codebooks for wavelet subband VQ coding is therefore better than using single 

codebook. These many of codebooks are trained once only, based on a set of training images. 

The encoding and decoding of each subbband do not require a search of more than one codebook 

because each band has its corresponding codebook. Therefore, multiple codebooks wavelet 

subband VQ does not create big efficiency problem. 

5.2.2 Inter-band Bit Allocation (IBBA) 

In this section, the word "bit allocation" is equivalent to "codebook size allocation" in multiple 

codebooks wavelet subband VQ. Each codebook has different size (i.e. different number of code 

vectors). This is necessary because each codebook represents different degree of importance to 

our human visual system. Larger codebook size is assigned to those more "important" codebooks 

and less "important" codebooks are assigned with smaller size. Hence, the total number of bits is 

allocated among different subbands of the same image. Here, we call this kind of bit allocation 
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method as Inter-band Bit Allocation (IBBA). It is first developed by Li and Zhang [12] for 

encoding vector-based wavelet transform coefficients. We are now introducing this bit allocation 

algorithm and apply it to scalar-based wavelet transform coefficients. The algorithm is as 

follows: 

Let: 

d = index indicates wavelet decomposition level. 

(u,v) - index indicates the frequency band. 

RJu,v) 二 number of bits per pixel in subband CJu,v) 

D - total number of subband decomposition levels. 

R = total number of bits available 

(fig. 5.2) 

If the subbands are in the same level of the wavelet pyramid, then they are allocated the same 

number of bits, that is: 

Rd (0,1) 二 Rd ( w ) ) 二 Rd (1,1) 

The bit allocated to the top level R�(0,0) is a factor a times of that for the next level Ro(ii,v). 

The bit allocated to level d, RJu,v) is a factor P times of that for the next level R^^j(u,v), that is: 

Ro(0,0)=a-Ro(u,v) 

Rd (w,v) = P-/^^+|(w,v) 

The formula for bit allocation is [12]: 

1 「 0-丫4〉" 
K = ( l ) D . p D - % _ i ( " , v ) . a + 3 ^ ^ 

4 [ f/=ov P J 
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For example, if we have 7 subbands, that is, we have two wavelet decomposition levels {D-2) or 

3 levels of pyramids. The total bits for allocation, R: 0.25 bpp (bits per pixel). Let a: 2 and P= 

4，the bit allocation is therefore (fig. 5.3): 

Ri (0,1) 二 Ri (1,0) = R^ (1,1) = 0.125 bpp 

Ro(0,1) = Ro(1,0) = Ro(1,1) = 4x0.125 = 0.5 hpp 

i^o(0,0) = 2x0 .5 = l hpp 

R � ( 0 , " � ( 1 ’ � R n � � Ro(0，0) Ro(1,0) 
Ri(1，Q) =1 bpp =0 5 bpp 

R。(0’1 R。(1’1 叩 

R2(1.0) Ri(1，0) 

R,(0,1) Ri(1，1) Ro(0,1) R。（1，1) :Q.125bPP 
1 1 =0.5 bpp =0.5 bpp 

Ri(°，l) R f1 1� R fO 1) R (1 ” =0.125 bpp " iU ,U 
〜、，iJ f V ' ' j ) ^^ =0.125 bpp 

D= 2 

Fig. 5.2 Nomenclature of the bit allocation Fig. 5.3 An example of bit allocation 
when D=2 
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Chapter 6 

Parental Finite State Vector Quantizers 
(PFSVQ) 

6.1 Introduction 

This chapter aims at improving the performance of the fixed-rate wavelet coding using vector 

quantization mentioned in last chapter. In last chapter, we used unconstrained VQ on each 

wavelet subband separately, that is, we used multiple codebooks for each subband. The size 

of each codebook is assigned by using Inter-band Bit Allocation (IBBA) algorithm. Our 

target in this chapter is to boost the fixed-rate wavelet coding performance by using 

constrained VQ instead of unconstrained VQ. 

Many researchers use classified VQ (CVQ) in their coding algorithms. This is one of a good 

choice of constrained VQ because different vectors of the image can be classified into 

different classes according to the features of the vectors and each class has its own codebook. 

However, as stated chapter 3, one of the drawbacks of CVQ is that side information (denoting 

which codebook is being used) is need to be transmitted. This reduces the efficient use of 

bandwidth. 

Finite state VQ (FSVQ) uses the similar principle as CVQ. However, instead of classifying 

the vectors into classes, the vectors are classified into states according to a finite state 
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function which is known to both the encoder and the decoder. In other words, no side-

infonnation is required. The example in this chapter will show how this can be achieved. 

The finite state VQ used in this chapter is called Parental Finite State Vector Quantization 

(PFSVQ). It is designed to use together with wavelet subband coding because the finite state 

function is based on the information of the vectors in the parent subband. 

In the last chapter we use VQ on separate bands and use inter-band bit allocation to assign the 

codebook size. The vectors of one subband do not affect the codebook training of another 

subband. In this chapter, our PFSVQ algorithm, the codebook training of the current subband 

is affected by the vectors of its parent. The VQ using this kind of subband structure is called 

VQ using interband information for intraband vectors. 

Ill the next sections, we will describe the parent-child relationship between subbands. Section 

6.3 will introduce different subband vector structures for VQ. Section 6.4 will introduce the 

Parental Finite State Vector Quantization algorithm. 

6.2 Parent-Child Relationship Between Subbands 

In a wavelet octave subband system, the image is firstly decomposed into four subbands LLj, 

LHi> HLi, and ffi/y by using separable horizontal and vertical filters (assume the wavelet 

filters are separable). These are the finest scales of the wavelet subbands. To obtain next 

coarser scale, the lowest frequency subband, i.e. LLj, is taken for decomposition. LLj is 

decomposed into 4 coarser subbands, LL:’ LH?’ HL], LL:. In the same way, each wavelet 

decomposition at level n results in four subbands ZZ„ , LH^^，HL,̂  , HH^ . To further 

decompose to next coarser level the subbands, LL,^, is taken for decomposition. The n level 

wavelet decomposition is aLso called n-scale wavelet decomposition and results in (n+l) 

levels of wavelet pyramids. Fig. 6.1 gives an example ofn=2. 
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LL„ HL„ HLi 
HLi HL2 

L H p H H p I I I 1 
二 LL_2 + ——p~~1 + 

LH2 HH 2 
LHi HHi  

1 1 LHi HHi 

2 leve l wave l e t wave l e t py ramid wave l e t py ramid 

decompos i t i on leve l number 3 leve l number 2 wave l e t py ramid 
leve l numbe r 1 

Fig. 6.1 Relationship between wavelet decomposition level and wavelet pyramid 
level, given wavelet decomposition level, n, equals 2. 

Now every coefficient at a given scale has a parent-child relationship with a set of 

coefficients at the next finer .scale of similar orientation. The word "parent" refers to the 

coefficient at the coarser scale. The word "child" refers to all coefficients corresponding to 

the same spatial location at the next finer scale of similar orientation. For a given parent, the 

word "descendants" refers to the set of all coefficients at all finer scales of similar orientation. 

Finally, for a given child, the word "ancestors" refers to the set of all coefficients at all 

coarser scales of similar orientation. Fig. 6.2 shows this relationship. 

From the figure, all parents have four children except that in the lowest frequency subband in 

which all the parents have only three children, each one located 011 the higher frequency 

subband within same wavelet level. 

The above gives an overview of the parent-child relationship of a wavelet octave subband 

system. For more detail, please refer to [31]. The PFSVQ algorithms introduced in this 

chapter exploits this relationship to define the next state function. 
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LL3 HL3 

9voT HL>2 

3 S _ H , 

\ H H , 
LH, \ ^ 

LHi ^̂ ""̂ X̂ ^ 

The ar row shows the parent chi ld re la t ionsh ip. 

Each ar row point from the parent to the ch i ld ren 

Fig. 6.2 Parent-Child relationship of an 
octave wavelet subband system 

6.3 Wavelet Subband Vector Structures for VQ 

Wavelet subband structures for VQ refers to how we organize the vectors from the same 

subband or different subbands for the purpose of vector quantization. It is, therefore, obvious 

that wavelet subband vector structure affects the way of how we do the VQ very much and 

hence affects the coding performance very imich. Coding performance will be improved if we 

can organize the vector structure in a way that is suitable for the vector quantization 

algorithm being used. In summary, there are three kinds of structures. They are "VQ on 

Separate Bands", "Interband Information for Intraband Vectors", "Cross Vector Method" 

[23]. We will introduce them in the following sections. 

6.3.1 VQ on Separate Bands 
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In general, there is high correlation between neighbour coefficients within a subband. Vector 

quantization is done on each subband separately. The vectors in one band do not affect the 

VQ on the other band. Vectors are formed by grouping wavelet coefficients frora the same 

subband. Usually, the size of the vectors is 4x4. This can exploit both horizontal and vertical 

correlation of the coefficients. If the size of the vector is too small, the correlation between 

coefficient is not effectively used. On the contrary, if the size is too large, the computational 

complexity is very large. The total number of bits available is allocated among each subband. 

LL , HL , LL, ——• V Q , • 
— _ _ . ^ HL ^ ^ inlorma(ion lroni \  

1 ^ ^ l̂her subbands i 1 
LH, H H , 、… 

‘ ‘ HL , • V Q , • 
J ^ 上 ^ -

i 1 inlornialton trom i  
I I olher subbands [ 

LHi HHi LH2 ^ VQ3 • 
^ ^ in(ormalion lrom I  
I I olher subbands 1  
HH2 • VQ, • 

inlormalfon irom ‘ 

other sLibbancls 

HL i ——> V Q , • 

information (rom I  
other ?Libbancls 

LH, ~ > VQr) • 
inlornialion trom I  
olhei subbaiKls 

HH, > V Q , • 

in(orniation lrom 1̂  
olher sLibbancls 

Fig 6.3 Structure of wavelet subband coding with the use of interband 
information for intraband vectors, for wavelet decomposition level= 2 

6.3.2 InterBand Information for Intraband Vectors 

The correlation between coefficients 111 different subbands is taken into consideration. 

Therefore the VQ of the current subband is affected by the vectors or coefficients of the other 

subbands. Each vectors are still formed from coefficients of the same subband but the VQ use 
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the information from other subbands, that is interband information, for codebook training, 

encoding and decoding. For example finite state vector quantizer with VQ done on each 

subband separately but the state of a vector is obtained from the information of other 

subbands. The Parental Finite State VQ is one of this kind. Fig. 6.3 shows the structure of 

wavelet subband coding using interband information for intraband vectors for wavelet 

decomposition level equals 2. 

6.3.3 Cross band Vector Methods 

Vectors are formed by grouping coefficients from different subbands. We call this kind of 

vectors as cross band vectors, The correlation between coefficients of different subband is 

exploited in each vector. Usually, the lowest frequency subband is encoded separately 

because energy of the coefficients of this band is much bigger than that in the other subbands. 

In addition, the lowest subband has very different characteristics, both perceptually and 

statistically, from the other subbands. If the coefficients from the lowest subband are included 

in the cross band vector, the intra vector correlation of the cross band vector is not as good as 

that without including the lowest subband. 

There are several methods of grouping coefficients from different bands. For example in the 

case of uniform decomposition (section 2.3), the cross band vector is formed by take one 

coefficients from the same orientation of each subband (fig. 6.4a). In case of octave band 

decomposition, cross band vectors can be formed by grouping the childern and the parents 

together (fig. 6.4b) or by grouping the coefficients from the subbands in the same wavelet 

pyramid level and in the same orientation (fig. 6.4c). The last step, regrouping, of the vector 

wavelet transform (VWT) described in chapter 4 is one kind of cross band vector grouping. 
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^ 
16 

_l2 
Fig. 6.4a Cross band vector form from 16 uniform subbands. 

"Hĥ  HL2 

\ H H , ~ ~ 
\ LH2 HH, 

th ： rl4 r  

|\J I I 
For example, a crossband vector is formed by 1 For example, a crossband vector is formed by 1 

coefficient in HH3, 4 coefficient in H H � and 16 coefficient in HL?, 1 coefficient in HH? and 1 coefficients 

coefficients from HH^ from LHg 

Note that they come from subbands of the same wavelet 

pyramid level and at the same orientation 

Fig. 6.4b Cross band vector form by grouping 
parents and children together Fig. 6,4c Cross band vector form from 

coefficients of the same wavelet 
pyramid level at the same 
orientation. 
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6.4 Parental Finite State Vector Quantization Algorithms 

Before describing the Parental Finite State Vector Quantization algorithm, we first define 

some terms for future use. We extend the relationship described in section 6.2 from scalar 

scope to vector scope. For a given subband, the word "parent subband" refer to the subband 

one scale coarser and "child subband" refer to the subband one scale finer. For a given vector, 

the word "parent vector" refers to the vector formed from the all parent coefficients of the 

current vector components and the word "child vector" refers to the vectors formed from all 

child coefficients of the current vector components. 

Therefore except in the lowest frequency subband, all NxN dimensional vectors have one 

parent vector of dimension N/2xN/2 and have one child vector of dimensional 2Nx2N. Each 

NxN dimensional vector in the lowest frequency subband has three child vectors each of 

dimension NxN. 

6.4.1 Scheme I: Parental Finite State VQ with Parent Index Equals 
Child Class Number 

Suppose the codebook size of the VQ of the parent vectors is M，then after encoding, all the 

parent vectors are mapped into one of the M symbols. In other words, the parents vectors are 

all clustered into M different groups and each group is represented by one centroid vector. 

Therefore, we expect that within each group, all vectors have some similarities. This means 

we can group/classify vectors into classes/states according to their similarities. 

These inter vector similarities within each subband exists in both the parent subband and the 

child subband. In addition, there is correlation between parent vector and child vector. As a 

result, we can group child vectors into groups according to the grouping result of the parent 

vectors in the parent subband. That is, vectors can be classified into states according the VQ 

52 



Chaptt>r 6 Parental Finite State Vecior Quantizers (PFSVQ) 

encoding result of the parent vectors. If the codebook size of the VQ in the parent subband is 

M，then the child vectors can be classified into M states. Here is the rule of classifying: 

For the current vector v having parent vector v,” if the VQ encoding output of v^ is x, 

then V belongs to state x. 

In words of finite state VQ, the VQ encoder output of parent vectors give the state of the 

child vectors. If codebook size of the codebook of parent subband is M, there are M states in 

the finite vector quantizer for the child subband. Suppose the VQ encoder output, i.e. that the 

index, of the parent subband is already transmitted to the decoder, then the decoder can easily 

determine the state of the current vector without the need of any transmission of side 

information. 

Now each vector is classified into M states, then a codebook is searched for each state by 

LBG algorithm. In the encoder, the VQ encoding result or index of the parent vector is first 

found. The index determines the state of the current vector. If the index is i, then codebook i 

is used for encoding. In the decoder, from the current input index, we know which vector is 

being decoded, therefore, we know where its parent located. As a result, the parent VQ index 

is also known. The parent VQ index indicates which codebook is going to be used for 

decoding. The codebook training method, encoding and decoding is summarized in fig. 6.5a, 

fig. 6.5b and fig. 6.5c respectively. 

For example (we do not consider the case when the parent subband is the lowest frequency 

subband), if the size of parent subband is pxp and the size of parent vectors is NxN, then 

there are pxp/(NxN) parent vectors. The size of the corresponding child subband is 2px2p and 

the size of child vectors is 2Nx2N and there are totally 2px2p/(2Nx2N)= pxp/(NxN) child 

vectors. If the codebook size of the parent subband is M, then there are M states for the 
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PFSVQ of the child subband. Vectors (of each state) are coded separately by VQ using 

codebooks which are trained from vectors of the corresponding states. 

vector , , 
Y ] r  

Fir̂   
parent State 1 • Tra in ing Set 1 • LBG ——•codebook 1 

一 vector ~ — ~ ~ 

} t State 2 • Training Set 2 • LBG • codebook 2 

一 ^ 
• • . 

V U index - — . 
• • _ 
• • • 

State M • Tra in ing Set M • LBG • c o d e b o o k M 

Fig. 6.5a Codebook training of scheme I of PFSVQ 

• d(v, r) ^ code index 

i ‘ 

vec to r codebook u 

~~丄二 ^ ~"codebook 
paren t 
vecto r 1 

^ ^ / codebook 

r ^ I " ~ " I A — ^ 
Find the vector's ‘ � .，. / • VQ index • l̂assifier f 

state u _ 

codebook 
M 

Fig. 6.5b Scheme I PFSVQ encoding procedure 
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code V table look up output reconst ructed 

index k I ^ vector 

i k 
” codebook u 

~ ~ ^ ^ " ~ c o d e b o o k 
parent 

vector ^ 

} T c o d e b o o k 

^ ^ ^ 

• 

VQ ,ndex - ~ ' • 
state u • 

• 

c o d e b o o k 

M 

Fig. 6.5c Scheme I PFSVQ decoding procedure 

6.4.2 Scheme II: Parental Finite State VQ with Parent Index Larger 
than Child Class Number 

In scheme I，we can classified the current vectors into different states by the VQ encoding 

results of the corresponding parent vectors. For example, if the codebook size of the parent 

subband, M，equals 256 and the size of the parent subband is 128x128, the size of the parent 

vector is 4x4, Then there will have 256 states for the child vectors. This means there are 

totally 256 codebooks for the child subband. If M= 512, the total number of child subband 

codebooks doubles. Sometimes, the encoder and decoder want to keep the number of 

codebooks smaller. In this case, scheme I seems to be undesirable. In the above example, the 

child subband has size 512x512 and the size of child vector is 8x8, then the total number of 

child vector equals 4096. Since the total number of states equaLs 256, therefore the total 

number of child vectors per state equals 16. That means for each image in the training set, 

there are on average 16 training vectors for each state. If we want to train a codebook of size 

256，then we need at least 256*40 (section 3.3.2) training vectors. The total number of 

training image required is 256*40/16= 640 !!! This is unrealistic in most cases. However, the 
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training set for a codebook affects the training result very much. In order to solve this 

problem, we reduce the number of states. 

In scheme II, the number of states is less than the number of code vectors in the codebook of 

parent subband, or in other words, the number of states is less than the number of code index 

of the VQ of parent subband. In order to achieve this aim, the parents vectors are firstly VQ 

encoded and decoded. A large set of training vectors formed by the reconstructed vectors in 

the parent subband and it is used for another LBG codebook training. In this codebook 

training, the number of code vectors is set to the desired number of states (for encoding the 

child vectors using PFSVQ), We call this new codebook as State-Reduced codebook (SR 

codebook). The parent reconstructed vectors are then encoded by the SR codebook. As a 

result, the parent vectors have a new and smaller set of code index. Now in PFSVQ, the state 

of the current vector is based on the new code indices. Similarly, in the encoding and 

decoding process, the states of current vectors are determined by the new VQ encoding result 

of the parent reconstructed vectors (which is based on the SR codebook). Scheme II is 

summarized in fig. 6.6. 
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Chapter 7 

Simulation Result 

7.1 Introduction 

This section gives the simulation results on the algorithms described in early chapters. 

Section 7.2 is the simulation results of Vector Wavelet Transform (VWT). Section 7.3 is the 

simulation results of Vector Wavelet Transform-Linear Predictive Coding (VWT-LPC). 

Section 7.4 is the results of using the Inter-band Bit Allocation (IBBA) on wavelet subband 

image. Section 7.5 is the simulation results of Parental Finite State VQ (PFSVQ). 

Generally, the simulation parameters are as follows unless specially stated. 512x512 Lena 

image and Aeroplane image, 8 bits per pixel are used for the simulations. The training set is a 

set of 18 images (exclude Lena image and Aeroplane image) and global codebook is used in 

the simulation. .The subsampling rate used in step one of the VWT or VWT-LPC procedure 

is 4. The thresholds used in VQ codebook training are 0.1 and 0.01 and the vectors are 

formed by non-overlapping 4x4 blocks. We try two wavelet filters, the Daubechies-4 (DB-4) 

orthonormal filter and the 9/7 biorthogonal filter. All wavelet transforms are done in two 

levels. The output of the VWT and VWT-LPC, are either transmitted directly, i.e. no lossless 

coding, or lossless coded. We simulate the coding performance of five lossless coding 

algorithms: (i) Lempel-Ziv coding; (ii) Arithmetic Coding using Markov order equals 3; (iii) 
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Arithmetic Coding using Markov order equals 2; (iv) Arithmetic Coding using Markov order 

equals 1; (v) Arithmetic Coding using Markov order equals 0. 

7.2 Simulation Result of Vector Wavelet Transform (VWT) 

Table 7.1 is the result of VWT using Lena image. The subsampling rate is 4. The wavelet 

filter is Daiibechies-4. No amplitude shifted is done before wavelet transform. The VQ used 

is unconstrained VQ using threshold 0.1 and codebook sizes are 512, 256, 128 and 64. 

Table 7.2 is the result of VWT using Aeroplane image. The subsampling rate is 4. The 

wavelet filter is Daubechies-4. No amplitude shifted is done before wavelet transform. The 

VQ used is unconstrained VQ using threshold 0.1 and codebook sizes are 512, 256, 128 and 

64. 

Table 7.3 is the result of VWT using Lena image. The subsampling rate is 4. The wavelet 

filter is 9/7 biorthogonal filter. No amplitude shifted is done before wavelet transfomi. The 

VQ used is unconstrained VQ using threshold 0.1 and codebook sizes are 512, 256, 128 and 

64. 

Table 7.4 is the result of VWT using Aeroplane image. The subsampling rate is 4. The 

wavelet filter is 9/7 biorthogonal filter. No amplitude shifted is done before wavelet 

transform. The VQ used is unconstrained VQ using threshold 0.1 and codebook sizes are 512, 

256, 128 and 64� 

Table 7.5 is the result of VWT using Lena image. The subsampling rate is 4. The wavelet 

filter is 9/7 biorthogonal filter. Amplitude shifted is done before wavelet transform. The VQ 

used is unconstrained VQ using threshold 0.1 and codebook sizes are 512, 256, 128, 64 and 

32. 
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Table 7.6 is the result of VWT using Lena image. The subsampling rate is 4. The wavelet 

filter is 9/7 biorthogonal filter. Amplitude shifted is done before wavelet transform. The VQ 

used is unconstrained VQ using threshold 0.01 and codebook sizes are 512, 256, 128, 64 and 

32，16. 

The performance of using Lena image, using different parameters are plotted in lig. 7.1. and 

the performance of using Aeroplane image, using different parameters are plotted in fig. 7.2. 

In both curve, the performance is measured by PSNR versus bit rate (bits per pixel). In each 

curve, for the same PSNR, the smallest bit rate (corresponds to the best lossless coding 

scheme) is taken to be the data point in the performance curve. From example, we take the 

data 0.45 bpp at PSNR=28.43 dB (in table 7.1) to put on the performance curve (fig. 7,1) 

instead of other bit rates at the same PSNR. 

It can been seen clearly that the performance is better when we used smaller threshold for the 

VQ, especially at lower bit rate. 9/7 biorthogonal filter performs better than Daiibechies-4 

filter at lower bit rate, however, their difference becomes smaller at moderate bit rate. The 

amplitude shift before wavelet transform helps to improve the performance at both low bit 

rate and moderate bitrate. The performance of VWT is comparable to other algorithms. At bit 

rate of 0.37 bpp, VWT has PSNR around 28.17 dB while the PSNR stated in [32] is 27.27dB. 

At bit rate of 0.5bpp, VWT has PSNR around 3()dB. 

The reconstructed images of the Aeroplane image using VWT, 9/7 biorthogonal filter, VQ 

threshold = 0.1 and no amplitude shift is shown in fig 7.5. The reconstructed images of Lena 

image using VWT, 9/7 biorthogonal filter, VQ threshold= O.Ol and with amplitude shift is 

shown is fig. 7.6. The reconstructed images have good visual reconstruction performance. 
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7.3 Simulation Result of Vector Wavelet Transform-Linear 
Predictive Coding (VWT-LPC) 

7.3.1 First Test 

In the first test, amplitude shift is done before the wavelet transform and we use Intra-vector 

Mean Predictor for the prediction in LPC. The residual is unconstrained VQ with vector 

dimension 4x4. The threshold of the VQ is 0.01. The predictor is separately coded by uniform 

quantization with step size 10.0, 15.0 and 20.0. The output of the quantizer is then losslessly 

coded. Table 7.7a is the coding result of the predictor of VWT-LPC. Table 7.7b is the overall 

coding result of the VWT-LPC. 

7.3.2 Second Test 

In the second test, no amplitude shift is done before the wavelet transform. We also use Intra-

Vector Mean Predictor for the predictor in LPC. The coding of residual is same as that in the 

first test except the threshold of the VQ is now 0.1. The predictor is coded by uniform 

quantizer with step size 16.0. Table 7.8a is the coding result of the predictor. Table 7.8b is the 

coding result of the residual. Table 7.8c is the overall coding results. In this table, the result is 

obtained by using the best predictor coding scheme (2"'̂  last row of table 7.8a) together with 

the best residual coding scheme in each codebook size of table 7.8b. 

7.3.3 Third Test 

In this test, amplitude shift is done before the wavelet transform and we still use Intra-vector 

Mean Predictor for the prediction in LPC. The residual is unconstrained VQ with vector 

dimension 4x4. The threshold of the VQ is 0.1. The predictor is separately coded by uniform 

quantization with step size 10.0, 15.0 and 20.0. The output of the quantizer is then losslessly 

coded. Table 7.9a is the coding result of the predictor of VWT-LPC. Table 7.9b is the overall 

coding result of the VWT-LPC. 
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We plot the perfomiance curve of VWT-LPC in fig. 7.3. From the diagram, the gain in 

coding performance can be achieved by using amplitude shift before the image transform and 

obtained by using small VQ threshold. This performance gain is nearly constant over a range 

of bit rate. The comparison of VWT and VWT-LPC is plotted in fig. 7.4. It can be seen easily 

that the VWT-LPC has much better performance than VWT. For example at bit rate of 0.3 

bpp, the VWT-LPC has PSNR= 30 dB while for VWT, it achieve PSNR= 30 dB at bit rate of 

0.5 bpp and the PSNR of VWT at 0.3 bpp is only 27.5dB. The most important thing is the 

improvement is obtained by only adding a very little complexity to the VWT. 

Comparing to other coding algorithms, at the bit rate of 0.25 bpp, using Lena image, the 

coding performance of other algorithms are [12]: 

VQ coding = 26.2 dB 
DCT-based transform coding = 27.3 dB 
Subband coding with VQ = 28.3dB 
Subband coding together with DCT and VQ = 27.2 
Subband coding with other vector image transform = 29.2 

Our algorithm using VWT-LPC has PSNR= 29.42 dB at the same bit rate. The most 

important thing is VWT-LPC is very easy to implement. The reconstructed images of Lena 

using VWT-LPC are shown in fig. 7.7. These images have good visual performance. 

7.4 Simulation Result of Vector Quantization Using Inter-
band Bit Allocation (IBBA) 

In this simulation, we use the IBBA algorithm to allocate the total bit rate of 0.25 bpp around 

the seven bands of a 2-level wavelet decomposed Lena image. Lena image is firstly 

transformed by 9/7 biorthogonal filter and is decomposed into seven subbands. The IBBA 

algorithm finds the number of bits for each band, that is the codebook size for the VQ of each 

subband. Then separate VQ are done on each subband. The VQ threshold is 0.01. 
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First, we train the codebook by a training set of 19 images, where the Lena image is also 

included. The result is put in table 7.10. Then we do the saine test, however, this time, Lena 

image is excluded from the training. The result is put in table 7.11. The results show that the 

performance is much better if Lena image is included in the training set. The improve in 

performance is over 5 dB. Result also shows that in case of Leiia image not in the training set, 

the highest level of the pyramid, that is subband LL: has the worse performance. We expect 

that the improve in performance in LL: will greatly improve the overall performance. 

It is because LL: has very large variance and therefore it is difficult to encode LL: using VQ. 

LL2 is the coarsest scale of the subband. To avoid any blocking effect in the image, we code it 

separately using other algorithm. In our experiment, we use the SPIHT algorithm [33]，to 

encode the LL) at the bit rate of 1 bpp. The result is shown 111 table 7.12. The PSNR of using 

S P M T on LL2 at 1 bpp is 21.83 dB. Compare to that obtained by VQ of the LL: with Lena 

image excluded from the training set, the new encoding method has 3 dB improvement. The 

overall PSNR increases from 26.41dB to 29.34dB. Fig. 7.8 shows the reconstructed Lena 

image using IBBA algorithm. 

7.5 Simulation Result of Parental Finite State Vector 
Quantizers (PFSVQ) 

In this part, we use Lena image for testing. It is first wavelet transformed by 9/7 biorthogonal 

filter and each band, except the LLj, is separately VQ coded. The codebook size for the VQ 

in each subband is obtained by IBBA algorithm. The LLj subband is separately coded by 

SPfflT algorithm. The result is shown in table 7.12. 
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The simulation in this part is aimed at improve the result shown in table 7.12. From the result 

in table 7.12，we find that among the subbands in the second wavelet pyramid {HL2, LH� ’ 

HH2), HL2 has the worse coding performance. Among the first wavelet pyramid {HLj, LHj, 

HHj), HLj has the worse coding performance. Therefore, in order to improve the overall 

performance, the performance of the subband HL! and HL: must be improved. 

In addition, we observed that the HL! is the parent subband of HLj. Therefore, in this 

simulation, we try to improve the coding performance of HLj by using Parental Finite State 

Vector Quantizers (PFSVQ), both Scheme I and Scheme II will be used for testing. The 

coding performance ofHLj using PFSVQ Scheme I and PFSVQ Scheme II is shown is table 

7.13. It shows that the PFSVQ Scheme I successfully improve the coding performance of 

HLj from 31.74 dB to 32.29dB and PFSVQ Scheme II also improve the performance to 

32.22dB. However, scheme II achieves this result by using bit rate doubles of that of scheme 

I. This simulation shows that scheme I is good enough in providing the improvement. But 

scheme II does have its merit of require less storage space for codebooks. 
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0.538bpp, 30.27dB • 0.449bpp, 29.29dB 

mm 
i _ : :% i l m ^ 
Fig 7.6c VWT result ot Lena image, Fig 7.6d VWT result ol Lena image, 

0.376bpp, 28.17dB 0.286bpp, 27.17dB 
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I ¥ mf %!_ 
Fig 7.6e VWT result ot Lena image, Fig. 7.6t VWT result ot Lena image 

0.198bpp, 25.70dB (U16bpp, 25.23dB 

K\f _,/ 
%隠 

Fig. 7.7a VWT-LPC result of Lena image Fig. 7.7b VWT-LPC result of Lena 
0.67bpp, 32.76dB image, 0.576bpp, 32.2dB 
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• _ 
Fig. 7.7c VWT-LPC result of Lena image Fig. 7.7d VWT-LPC result of Lena 

().511bpp,31.65dB ’ image, 0.423bpp, 31.04dB 

m m 
1隱％ _ % 
Fig 7.7e VWT-LPC result of Lena image Fig 7.7f VWT-LPC result of Lena image 

0.349bpp, 30.39dB 0.265bpp, 29.83dB 
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1 ^隱 
Fig. 7.8a Coding result of Lena image using Fig. 7.8b Coding result of Lena image, 

IBBA and local codebook, 0.25bpp, using IBBA and global codebook, 
31.62dB 0.25bpp, 26.41dB 

| _ y 

隱_】 
Fig. 7.8c Coding result ol Lena image using IBBA 

and local codebook, the lowest frequency 
subband is coded by SPIHT, 0.25bpp, 
29.34dB 
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Table 7.1 Coding result of VWT of Lena image using subsampling rate of 4, Daubechies-4 
filter in two levels decomposition, no amplitude shift before image transform.  
ThreshQldofVQ=0.1  

Codebook size PSNR bpp bpp 
(no lossless coding) (with lossless coding) 

512 "29.5 Q.5625 “ 

256 28.43 — 0.5 "o.45 (a) 
“ "0.47 (b) 
“ "0.47 (c) 

^ 7 (d) 
"0.486 (e) 

~ m "26.60 一 0.4375 "0.416 (a) 
“ — "0.418 (b) 

0.412 (c) ~ 
“ — "0.398 (cl) 

“ — 0 . 4 0 9 (e) -

~ ^ 24.63 0.375 — 0.3397 (a) “ 
“ "0.33 (b) 

“ 0.32 (c) “ 
“ "0.299 (d) 

"0.32 (e) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) 二 Arithmetic coding using Markov order o f 2 
(d) 二 Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order of 0 
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Table 12 Coding result o f V W T ofAerop lane image using subsampling rate o f 4 , Daubechies-4 filter in two 
levels decomposition, no amplitude shift before image transform. Threshold o f V Q = 0.1 

Codebook size PSNR bpp bpp 
(no lossless coding) (with lossless coding) 

512 "27 .51 一 0.5625 0.547 (a) 
— T . 5 7 (b) 

— 0 . 5 7 (c) 
0.569 (d) 

"0.58 (e) 

256 26.61 0.5 0.438 (a) 
— . 0 . 4 5 (b) 

— 0.45 (c) 
“ 0.44 (d) 
“ 0.47 (e) 

128 “ 25.37 一 0.4375 0.406 (a) 
— "0.3899 (b) 

— 0.385 (c) 
— . 0 . 3 7 7 (d) 
— . 0 . 3 9 9 (e) 

~ ^ _ 23.82 0.375 “ 0.326 (a) 
0.314 (b) — 

— . 0 . 3 0 4 (c) 
. 0 . 2 8 4 (d) 

— “ 一 0.313 (e) — 

(a) 二 Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order of 2 
(d) = Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order of 0 
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Table 7.3 Coding result of V W T of Lena image using subsampling rate o f 4 , 9/7 biorthogonal filter in two 
levels decomposition, no amplitude shift before image transform. Threshold of VQ= 0.1 

use bit file  
Codebook size PSNR bpp bpp 

(no lossless coding) (with lossless coding) 
512 _ 29.59 — 0.5625 0.56 (a) 

— 0 . 6 0 8 (b) — 
“ ~ 0.6073 (c) 
“ — 0.607 (d) 
• — 0.608 (e) 

256 “ 28.43 — 0.5 0.452 (a) 
“ — "0.475 (b) 
‘ — 0.473 (c) 

“ 0.471 (d) -
‘ — • 0.487 (e) 

128 . 27.05 — 0.4375 0.418 (a) 
“ — 0.417 (b) 
“ — 0.411 (c) 

— — 0 . 3 9 5 1 (d) -
“ — 0.410 (e) 

~ ^ “ 24.95 — 0.375 0.356 (a) 
“ 0.348 (b) 

— 0.33 (c) “ 
— 0.31 (d) “ 

0.337 (e) 
(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order o f 2 
(d) = Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order ofO 
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Table 7.4 Coding result o f V W T ofAerop lane image using subsampliiig rate ot�4，9/7 biorthogonal filter in two 
levels decomposition, iio amplitude shift before image transform. Threshold of VQ= 0.1 

Codebook size PSNR bpp bpp 
(110 lossless coding) (with lossless coding) 

512 “ 27.64 — 0.5625 —0.54 (a) 
— 0.57 (b) 

“ 0 . 5 6 9 (c) 
"0.562 (d) 

“ —0.579 (e) 

“ ^ “ 26.63 0.5 _0.438 (a) 
“ _0.448 (b) 
“ "0 .447 (c) 
“ —0.443 (d) 
“ _0.468 (e) 

" T ^ “ 25.31 0.4375 —0.38 (a) 
- "0.382 (b) 
- — "0.376 (c) 

_ 0.366 (d) “ 
- . —0.389 (e) 

~ ^ 22.40 — 0.375 "0.318 (a) 
- — —0.327 (b)  
“ 0.315 (c) 
- —0.29 (d) 

" 0 3 2 1 (e) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) 二 Arithmetic coding using Markov order o f 2 
(cl) = Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order of 0 
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Table 7.5 Coding result of V W T o f L e n a image using subsampling rate o f 4 , 9/7 hiortliogoiial filter in two 
levels decomposition. Threshold of VQ= 0.1  

Codebook Size PSNR bpp . bpp 
(no Lossless Coding) (Widi Lossless Coding) 

512 30.10 " a 5 6 2 5 0.54 (a) 
- 一 "0.69 (b) 
~ — "0.69 (c) 

0.69 (d) — 

256 "29.11 ~Q.5 0.45 (a) ~ ~ ~ 
“ 0.486 (b) 
“ 0.486 (c) 
_ 0.479 (d) — 
- — 0.489 (e) — 

128 —27.86 ^ 4 3 7 5 0.4 (a) 
— — 0 . 4 1 3 (b)  

0.412 (c) 一 

— • 0.395 (d) 
“ 0.395 (e) 

64 ~26.33 " a 3 7 5 "0.33 (a) 
— ‘Q.35 (h) 

“ 0.34 (c) 
— 0.3 (d) 

- “ • 0.32 (e) 

~ ^ 24.18 0.3125 0.29 (a) 
0.27 (b)  
0.257 (c) 

— “().244 (d) 
— 0,26 (e) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order o f 3 
(c) = Arithmetic coding using Markov order of 2 
(d) = Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order of 0 
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Table 7.6 Coding result of V W T o f L e n a image using subsampling rate o f 4 , 9/7 biorthogonal filter in two 
levels decomposition. Threshold of VQ= 0.01 

Codebook PSNR bpp bpp 
size (110 lossless coding) (with lossless coding) 
512 30.27 0.5625 0.538 (a) 一 

0.69 (b) — 
~^69 (c) 

• 0.69 (d) — 
0.69 (e) 

" ^ 29.29 0.5 0.449 (a) — 
— 0.47 (b) — 
— — 0.47 (c) 

0.458 (d) — 
— 0.465 (e) 

" T ^ 28.17 0.4375 0.38 (a) — 
— 0.399 (b) — 
_ — 0.403 (c) 

0.376 (d) — 
“ — 0.378 (e) 

~ ^ ~27.17 0.375 0.311 (a) — 
0.32 (b) — 
0.308 (c) 

— 0.286 (cl) 
— 0.302 (e) 一 

i ^5.70 0.3125 0.229 (a) 一 
— . ~ 2 2 2 (b) 

— “ — 0.2107 (c) 
— “ 0.198 (d) 

0.2185 (e) — 

1 ^ T5.23 0.25 — 0.147 (a) 
— — 0.127 (b) 一 

一 — 0.120 (c) — 
— “ 0.116 (d) 
— 0.135 (e) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order of 2 
(d) = Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order ofO 
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Table 7.7a Coding result of the predictor of VWT-LPC o f L e n a image using subsampling rate o f 4 , 9/7 
biorthogonal filter in two levels decomposition. Prediction is intra-vector mean prediction. 

Uniform Scalar PSNR bpp 
Quantizer Step Size (with lossless coding) 
10.0 40.537 0.16 (a) 

0.14 (b) 
0.14 (c) 
0.13 (d) 

15.0 37.6 0.13 (a) 
0.106 (b) 
0.1 (c) 一 

0.12 (d) 

20.0 35.61 0.11 (a) 
0.09 (b) 
0.09 (c) 
0.09 (d) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order o f 2 
(d) = Arithmetic coding using Markov order of 1 
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Table 7.7b Overall Coding result of VWT-LPC o f L e n a image using subsampling rate o f 4 , 9/7 biorthogonal 
filter ill two levels decomposition. Prediction is intra-vector mean prediction. Threshold of VQ= 
0.01. Predictor is encoder using uniform quantizer, step size of 10.0 and arithmetic coding of Markov 
order 二 1  

Codebook size Overall PSNR bpp 
(residual coded with lossless coding) 

512 32.76 0.67 (a) “ 

256 32.2 0.576 (a) 
0.607 (b) 

‘ 0.607 (c) 
_ 0.604 (d) 
_ 0.604 (e) 

128 31.65 0.519 (a) 
‘ 0.5466 (b) 

0.5391 (c) “ 
‘ 0.519 (d) 

• 0.511 (e) 

64 ‘ 31.04 0.449 (a) 
‘ 0.469 (b) 
“ 0.448 (c) 
“ 0.423 (d) 

0.43 (e) 

~ 3 ^ 30.39 0.386 (a) 
0.379 (b) 
0.367 (c) 
0.349 (d) 

~0J60 (e) 

16 “ 29.83 0.3 (a) 
0.28 (b)  

~ 0.27 (c) 
0.265 (d) 
0.278 (e) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order o f 2 
(ci) = Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order ofO 
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Table 7.8a Coding result of the predictor of VWT-LPC of Lena image using subsampling rate of 4, 9/7 
biorthogonal filter in two levels ckicomposition, no amplitude shift before image transform. 
Prediction is intra-vector mean prediction.  

Uni form Scalar Quantizer Step Size PSNR Bit rate Lossless Compression  
16.0 37.18071 "0.13 ~Lempel Ziv Coding (LZ77) 
16.0 37.18071 0.108 A r i t h m e t i c Coding, Markov Qrder= 3 
16.Q 37.18071 0.104 A r i t h m e t i c Coding, Markov Order= 2 
16.0 37.18071 "5.103 A r i t h m e t i c Coding, Markov Order= 1 
16.0 37.18071 0.119 A r i t h m e t i c C o d i n g , M a r k o v O r d e r = 0 

Table 7.8b Coding result of the residual of VWT-LPC of Lena image using subsampling rate of 4, 9/7 
biorthogonal filter in two levels decomposition, iio amplitude shift before image transform. 
Prediction is intra-vector mean prediction. Threshold of V Q - 0.1 

Codebook size PSNR PSNR (residual) bpp ofres idual bpp of residual 
(overall) (no lossless coding) (no lossless coding)  

512 31.72 _ 33.256 0.5625 一 0.56 (a) 
— — "0.7 (b) 

— “ 0.7 (c)  
0.7 (d)  

256 “ 31.22 32.54 0.5 一 0.458 (a) 
“ — ( ) . 5 (b) 
— • 0.5 (c)  

0.499 (d)  

128 30.75 31.9209 ~ 0 ^ 5 0.402 (a) 
“ 一 0.422 (b) 

- — ~M24 (c) 
“ 0.407 (d) 

“ ^ 30.19 31.17 0.375 0.337 (a) 
— 0 . 4 2 (b) 

— " 0 ^ 2 4 (c) 
0.407 (d) 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order o f 2 
(d) = Arithmetic coding using Markov order of 1 

Table 7.8c Overall coding result of VWT-LPC of Leiia image using subsampling rate o f 4 , 9/7 biorthogonal 
filter in two levels decomposition, no amplitude shift before image transform. Prediction is intra-
vector mean prediction.  

Codebook Size PSNR bpp (with lossless coding) 
^ 2 31.72 — 0.663 
~256 31.22 — 0.561 

128 30.75 “ 0.505 
64 30.19 0.44 一 

Note: The bit rate is obtained by using the best lossless coding schemes that used in the predictor and residual. 
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Table 7.9a Coding result of the predictor of VWT-LPC of Lena image using subsampling rate o f 4 , 9/7 
biorthogonal filter in two levels decomposition. Prediction is intra-vector mean prediction. 

Uniform Scalar PSNR bpp 
Quantizer Step Size (with lossless coding) 
10.0 40.537 . 0.16 (a) 

0.14 (b) — 
0.14 (c) 
0.13* (d) 

15.0 37.6 0.13 (a) — 
0.106 (b) 
0.1* (c) 
0.12 (d) 

20.0 " ^ 6 1 0.11 (a) 
0.09 (b) — 
0.09 (c) 
0.09 (d) 一 

(a) = Lempel-Ziv coding (LZ77) 
(b) = Arithmetic coding using Markov order of 3 
(c) = Arithmetic coding using Markov order of 2 
(d) = Arithmetic coding using Markov order of 1 
The meaning of * and **, please refer to table 7.7b 
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Table 7.9b Overall coding result of VWT-LPC o f L e n a image using subsampling rate of 4, 9/7 biorthogonal 
filter in two levels decomposition. Prediction is intra-vector mean prediction. Threshold o f V Q = 0.1 

Codehook size PSNR (overall) bpp 
(residual code with lossless coding) 

512 32.48* 0.676 # — 

256 31.89* 0.588 (a) 
0.63 (b) 
0.63 (c) 

‘ 0 . 6 2 9 (d) 
0.629 (e) 

128 "31.4* 0.53 (a) 一 

_ 0.551 (b) 
0.554 (c) 
0.537 (d) 
0.527 (e) 

64 30.71* 0.467 (a) 
0.49 (b) 

— 0.476 (c) 
‘ 0.49 (d) 

0.45 (e) 

16 “ 29.42** 0.3 (a) 
0.264 (b) 
0.254 (c) 

� 0.25 (d) 
“ 0.26 (e) 

" X " 28.8* 0.275 (a) 
“ . 0 . 2 3 6 (b) 

0.231 (c) 
0.232 (d) 
0.238 (c) 

(a) = Lempel-Ziv coding (LZ77) 
(b) 二 Arithmetic coding using Markov order o f 3 
(c) = Arithmetic coding using Markov order of 2 
(d) 二 Arithmetic coding using Markov order of 1 
(e) = Arithmetic coding using Markov order of 0 
* = coding ofpredic tor use is uniform quantized of step size 10.0 and using arithmetic coding o f M a r k o v order 

1. 

** = coding ofpredic tor use is uniform quantized of step size 15.0 ancl using aritlimetic coding o f M a r k o v order 
2 . � 

# = 110 lossless coding has been done 
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Table 7.10 Vector Quantization on separate wavelet subband with IBBA, using Lena image, 9/7 biorthgonal 
filter ill two levels and no lossless coding. Lena image is in toe training set. The overall bit rate is 
0.25 bpp. Threshold o f V Q = 0.01 

Band vector size codebook size ^ p PSNR  
LL2 4x4 65536 1.0 41.145167 
HL2 4x4 256 0.5 24.716 
LH2 4x4 256 ~ i ^ 28.672 
HH2 4x4 256 “ 0.5 30.04697 
HL1 4x4 4 “ 0.125 31.559 
LH1 4x4 4 0.125 " ^ 6 5 1 
HH1 4x4 4 0.125 39.0339 
Final overall P S N R - 31.62dB 

Table 7.11 Vector Quantization on separate wavelet siibbaiid with IBBA, using Lena image, 9/7 biorthgonal 
filter in two levels and no lossless coding. Lena is not in the training set. The overall bit rate is 0.25 
bpp. Threshold o f Y Q = 0.01 

Band vector size codebook size bitrate (hpp) PSNR  
T L 2 4x4 65536 1.0 " 1 ^ 4 0 7 3 3 9 
" H L 2 4x4 256 0.5 ^ 3 0 5 8 3 7 
T m 4x4 256 0.5 ^ 2 5 1 1 7 8 
l f f l 2 4x4 256 ().5 " ^ 7 0 8 2 9 1 
~HL1 4x4 4 0.125 " ^ 7 3 5 6 9 4 
" L H l 4x4 4 0.125 ^ 5 3 3 9 6 1 
l f f l l 4x4 4 0.125 38.958959 

Final overall PSNR= 26.405371dB 

Table 7.12 Vector Quantization on separate wavelet subband with IBBA, using Lena image, 9/7 biorthgonal 
filter in two levels and no lossless coding. Lena is not iii the Lraiiiing set. The overall bit rate is 0.25 
bpp. Threshold of VQ = 0.01. The LL2 subband uses SPIHT  

Band vector size codebook size bitrate (bpp) PSNR  
~LL2 use SPIHT nse SPIHT 1.0 21.826818 一 

l i L 2 4x4 256 — ().5 " ^ 3 0 5 8 3 7 ~ ~ 
T H 2 ~^4 256 — 0.5 ^ 2 5 1 1 7 8 ~ ~ 
l f f l 2 4x4 256 “ 0.5 29.708291 
l i L l “ ^ . 4 0.125 T L 7 3 5 6 9 4 ~ ~ ~ 
~LH1 1 ^ 4 — 0.125 ~3^533961 — 
l f f l l 4x4 4 0.125 38.958959 — 

Final overall PSNR= 29.336752dB 

Table 7.13 Parental Finite State VQ on HL1 subband of the Lena image.  
Scheme B a n d ~ No. of vector size codebook size bilrale (bpp) PSNR o f H L l 

states  
_ I HL1 ~ ~ 256 8x8 — 256 l T l 2 5 32.291062 
— I I HL1 4 4x4 16 0.25 32.224610 一 
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Chapter 8 

Conclusion 
In this thesis, we described two image coding algorithms, Vector Wavelet Transform (VWT) 

and Vector Wavelet Transform-Linear Predictive Coding (VWT-LPC). In addition, we 

introduced a bit allocation algorithm, the Inter-band Bit Allocation (EBBA), for wavelet 

subband coefficients. Finally, a constrained vector quantization algorithm, the Parental Finite 

State Vector Quantizer (PFSVQ), is introduced. 

The VWT and VWT-LPC exploit both the intra vector correlation and inter vector correlation 

to improve the performance of image coding using VQ. Both algorithms use wavelet 

transform and vector quantization to encode an image, ln general, the coding performance of 

VQ can be improved if the vectors have small inter-vector correlation and large intra-vector 

correlation. The merit of VWT and VWT-LPC is that they have the ability to increase the 

intra vector correlation and reduce the inter-vector correlation. VWT has reasonably good 

coding performance, for example, at the bit rate of 0.37 bpp, the PSNR is 28.17 dB. Another 

important thing is that this good performance is obtained with very little complexity. 

To further improve the performance of VWT, a linear predicti ve coding is used together with 

VWT. This is the VWT-LPC. Although VWT successfully exploits the intra- and inter-vector 

correlation, however, at the same time, the energy compactness of the wavelet coefficients 

are reduced. This affects the coding performance. In VWT-LPC, a linear predictive coding is 

used to reduce the variance of the coefficients. As a consequence the codebook can give a 
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better representation of all the vectors. Therefore the coding performance can be improved. 

At the bit of 0.3 bpp, the VWT-LPC has PSNR= 3()dB while that of VWT is 27.5 dB. There 

is much improvement of using VWT-LPC. VWT-LPC aLso has good performance when 

compared to other algorithms. At the bit rate of 0.25 bpp, the PSNR of VWT-LPC is 29.42 

dB while that of subband coding with VQ is only 28.3 dB. ALso another important thing of 

VWT-LPC is that it is very easy to implement. 

The Inter-band Bit Allocation (IBBA) algorithm is designed for wavelet subband codings. It 

successfully allocates a total number of bits among different subbands. If each subband is 

encoded by separate VQ, then the number allocated to each subband refers to the codebook 

size for each subband. At the bit rate of 0.25 bpp, two level wavelet decomposition, the IBBA 

algorithm distributes 1 bpp to LL), 0.5 bpp to HL� ’ LH)�HH: and 0.125 bpp to HLj, LHj, 

HHj. The encoding result using this algorithm has a PSNR of31.62 dB at 0.25 bpp. 

The last algorithm introduced in this thesis is the Parental Finite State Vector Quantization 

(PFSVQ) and we aLso described two schemes for it. The PFSVQ algorithm is an innovative 

finite state vector quantization algorithm and is used together with wavelet coding. In this 

algorithm, the state of the finite state vector quantizer for the current vector (under encoding) 

is the codebook index of the vector's parent vector. It is because if the parent vectors are 

coded with same codebook index, then they must have some similarities and there is 

correlation between a vector and its parent vector. Therefore, the PFSVQ can classified 

vectors into states according to their parents' codebook index, so that within each state, the 

vectors will have some similarities and can be coded more efficiently by VQ. Scheme I and 

scheme II are very similar, except in scheme I, the total number of states used in encoding a 

subband is equal to the total number of codebook index of the parent subband, however, in 

scheme II, the total number of states does not need io be equal to the total number of 

codebook index of the parent subband. 
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PFSVQ has reasonably good coding performance. In an experiment using two level wavelet 

transform and IBBA algorithm, applying PFSVQ on the subband HL], the PSNR of the 

subband HLj is 32.29 dB at the bit rate (of HLj) of (). 125bpp. PFSVQ is a fixed-rate coding 

algorithm, therefore it has good error resilience performance. In addition, the decoder of 

PFSVQ is also very simple. This makes PFSVQ suitable for broadcasting or distribution 

applications like digital TV and digital video CD. These applications allow high complexity 

encoders but the decoders must have low complexity. 

Finally, for the VWT-LPC, more research can be done on designing the LPC. It is because in 

our current research, the design of LPC is independent of the design of VWT. If the design of 

LPC and VWT become an inter-related issue, it is expected thal the new LPC can improve 

the overall coding performance. Also, further research can be done on designing more 

sophisticated Parental Finite State VQ so that more information from the parent vector can be 

used for the determination of the state of an vector. It is expected that PFSVQ can give very 

good coding performance especially for wavelet transform coding because the parent-child 

relationship can be exploited in PFSVQ. 
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