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Abstrac t 

Recently, independent component analysis ( ICA) has provided a new tool to analyze 

financial markets (Back and Weigend, 1997), in which the financial data are regarded as 

the linear mixture of a set of independent components (ICs). However, there exist two 

important problems need to be solved: (1) how to arrange the order o f t he obtained ICs 

under certain dominant sense; (2) how to select the appropriate number of dominant ICs 

wKich reflect the major movement of the observed financial data. 

In view of the first problem, we determine the dominant ICs order under measurement 

of the Mean Square Error (MSE) between the original data and the reconstructed data, 

which is wholly different from those existing heuristic methods of sorting the order of 

dominant ICs according to their weights. Based on this criterion, we study a Forward 

Selection approach to sort the WICs into a certain order according to their dominant 

values measured by MSE. Considering of the different practical needs, we also determine 

the dominant ICs order under measurement of Tendency Error (TE) between the origi-

nal data and the reconstructed data. We study a Backward Elimination Tendency Error 

(BETE) approach to implement this criterion. For the second problem, we develop num-

ber determination criterion under MSE and T E measurement respectively. Large number 

of experiments show that the dominant ICs obtained by these order-sorting approaches 
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and number-determination criteria are better than those heuristically obtained in the 

MSE and T E signal reconstruction, which not only reflect the major movement of the 

observed financial data, but also make the reconstruction of non-dominant ICs unbiased. 
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Chapter 1 

In t roduct ion 

Recently, blind source separation (BSS) problem has attracted much attention in the fields 

of neural networks and signal processing. I t has been widely used in speech recognition, 

telecommunication and medical signal processing, etc. For linear mixing cases, i t can be 

formulated as an independent component analysis ( ICA) problem, where the objective is 

to separate mutually independent unknown source signals from their instantaneous linear 

mixtures wi thout the knowledge of the mixing process. 

1.1 ICA Model 

We assume the observed n financial data series (or called sensor signals) {x{t)}^^, wi th 

冲 ) = [ A ( 0 , . . . , Z n ( 0 ] are the instantaneous linear mixture of k unknown statistically 

independent source signals { s ( t ) ) l , wi th � = [ � � ’ … ’ ^ “ ” ] ’ which maybe response 

to any useful information such as polit ical and economical news, investment environment 

as well as some unexplained noise. Hence, the model is: ‘ 

x{t) = As{t), wi th Es{t) = 0 (1.1) 

where A is a n X k mixing matr ix. In the following, we only consider the case of n = k, 

and wi thout ambiguity we wil l omit the time index t. The objective of ICA in this model 

is to recover the source signals (also called independent components) from the observed 

1 
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mixed signals x through a de-mixing process: 

y : y^x (1.2) 

Then we can get the information passage 

s ^ X = As ^ y = Wx = WAs = Fs (l.3) 

We can tune W in such a way that makes y mutually independent and recover s up to a 

unknown constant and a permutation of indices. 

:Independent Obsen/ed Recovered 
: S o u r c e : Signals signals 

Signals y 

: . ‘ ^ ^ ^ ： ^ L _ J ^ 

. 4 0 ^ ^ ^ > ^ : t ^ ^ ^ i ^ 
\ V ^ D e - m i x i n g 

7 > ^ S y s t e m 

： s n 〇 / l _ \ : a A H K ^ 3 
M i x i n g P r o c e s s 

F i g u r e 1.1: ICA Model 
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1.2 ICA Algorithms 

Usually there exists necessary assumption that the separated source signals should be 

statistically independent, so in order to achieve successful separation of the mixture sig-

nals, high-order statistics should be put into consideration. Up to date, different neural 

approaches to BSS and ICA have been proposed. 

As we know, blind separation problems was firstly inspired by Herault and Jutten (1986) 

and much attentions have been focused on this aspect afterwards. In the well-known 

Herault-Jutten (HJ) algorithm, the separating matr ix W is wri t ten as the form as W = 

( / + M ) " \ and M is a matr ix with its diagonal elements keep zero and its off-diagonal 

elements have the iterative equation as 

Mk+ i = M k ^ 7 ] k g { y k ) h { y l ) (1.4) 

where 7]k is the learning rate, g(y) and h{y) are two odd functions. Deville and Andry 

(1995) showed that g{y) = y^ and h{y) = y can separate sub-Gaussian sources signals, 

9{y) = y and h(y) = y^ are suitable for separating super-Gaussian source signals. 

Various kind of modification of this algorithm have been proposed (Cichocki et al. 1995, 

1997), in which the diagonal elements of matr ix M are also updated in each iteration. In 

order to avoid the computation of the inverse of the matr ix, some approximation have also 

been made, such as Wk+i = I - M k + i and performance o f the algorithm keeps unchanged 

and sometimes even better than the original algorithm. 

Comon (1994) first define the concept ofindependent component analysis which measures 

the degree of independence among outputs using contrast functions approximately by the 

Edgeworth expansion of the Kullback-Leibler divergence. The higher order statistics is 

approximated by cummulants up to 4th order and require intensive computation. 

ICA algorithms are usually implemented in either off-line or on-line approach. For batch 

algorithm, usually i t is composed of two procedures. The first step is called decorrelation 

or whitening, in which the covariance matr ix of the input signals is diagonalized. The 
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second step is called rotation, in which a unitary rotation matr ix is used to maximize a 

measure of the higher order statistics which results the non-Gaussian output signals are 

as statistically independent as possible. 

One typical example is the J A D E (Joint Approximate Diagonalization of Eigenmatrices) 

algorithm proposed by Cardoso and Souloumiac in 1993, which is also composed of above 

mentioned two stages. The observed signals are first whitened through eigendecompo-

sition of their covariance matrix, then a rotation matr ix is used to jo int ly diagonalize 

the eigenmatrices got from the fourth order cummulants of the whitened observed data. 

A key advantage of this algorithm is its computational efficiency. One extension of the 

J A D E algorithm can be found in (Pope and Bogner 1994). 

In the equivariant source separation method (Cardoso and Laheld 1996), the de-mixing is 

performed by serial updating of a decorrelation matr ix to produce orthogonal signals. This 

method is based on the method called fourth order blind identification (Cardoso 1989) 

that consists of two steps, orthonormalization and quadratic weighting of the covariances 

that be used to obtain fourth order moments. 

Cardoso (1996) proposed a M L blind source separation algorithm, in which the structure 

of source separation as a multi-dimensional location-scale model, entailing a specific form 

of parameterization and a specific notion of gradient as location-scale transformation form 

a group. The M L estimation of the source signals only depend on the particular realization 

of the source signal, not on the transformation. Batch and adaptive algorithms can be 

obtained and show same performance. 

Bell and Sejnowski (1995) proposed the Maximization Entropy (ME) approach, in which 

some nonlinear transformation functions are suitably chosen to be, the cumulative distri-

bution function o f the sources. The output entropy is maximized to ensure the separation 

of the blind source signals. The adaptive equation for the de-mixing matr ix has the 

following form 

^fc+i = ^fc + Vk[{W^)-' + h{y)x^] (1.5) 

Modified iteration equation is formed as 
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y^k+i = Wk + Vk{I + h{y)y^)Wk (1.6) 

In which the natural gradient algorithm (Amari et al. 1996) is used to accelerate the 

convergence by mult iplying the positive definite matr ix W ^ W to the right of the gradient 

to avoid the computation of the inverse of the de-mixing matr ix . 

Amar i et al. (1996) proposed an adaptive algorithm to minimize the mutual information 

between the output (estimated source signals), which equals to the Kullback-Divergence 

between the joint density of the output signals and the product of marginal densities 

of the output signals. The mutual information is minimized only when the source sig-

nals have already been correctly separated. A truncated Gram-Charlier series is used to 

approximate the mutual information. The de-mixing matr ix had the same form of itera-

tion equation with that of the modified M E algorithm but wi th the different nonlinearity 

function which results in the different separation performance. 

The bigradient algorithm (Wang et al. 1995a,b,c) has the form of 

^A:+i = ^ k + r ]kmkn{y l ) + 0 眞 ( 1 - W ^ W k ) (1.7) 

in which the learning parameter rjk can be either positive or negative. The first update 

term is actually a nonlinear Hebbian term, and the second term keeps the matr ix Wk 

roughly orthonormal. The basic bigradient algorithm can be modified wi th some slightly 

different forms to be able to separate either sub-Gaussian or super-Gaussian source signals. 

Hyvarinen and Oja (1997) proposed a fixed-point algorithm, in which the neural network 

learning rule can be transformed into a fixed-point iteration. The relative algorithm does 

not dependent on any user-defined parameters and can find all non-Gaussian independent 

components at a t ime regardless of their probabil ity distr ibution. The convergence speed 

is cubic, much faster than gradient based algorithms. 

The EASI algorithm (Cardoso and Laheld 1996) can be thought as an adaptive nonlinear 

PCA type algorithm. This algorithm is based on the idea of serial updating by which 
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the uniform performance property of equivariant estimators is directly inherited by the 

corresponding adaptive serial algorithms. In the algorithm, a vector-to-matrix mapping 

is serial defined by let its symmetric part to a second order condition of independence 

(decorrelation) while the skew-symmetric part involves nonlinear function. Experiments 

show that the convergence rate and stability condition depend only on the distribution 

of the source signals. 

Usually the source signals are assumed to be linearly mixed. I t is apparent very limited 

and unsuitable for many practical problems. Some extensions to nonlinear mixing models 

have been proposed. Herrmann and Yang (1996) use self-organizing map (SOM) to extract 

sources from nonlinear mixture. Yang et al. (1996) employed a two-layer perceptron 

model as a de-mixing system by gradient method to minimize the mutual information of 

the outputs. 

Different from above mentioned algorithms, there are sti l l many other approaches. Pearl-

muUer and Parra (1997) proposed a contextual ICA algorithm which is based on maxi-

mum likelihood estimation. The source distribution are modeled and the temporal nature 

of the signal is used to derive the de-mixing matr ix. The density function of the input 

signals are estimated using past values of the outputs. This algorithm is shown to be 

effective in separating signals having colored Gaussian distributions or low kurtosis. In 

(Cichocki et al. 1997) two types of cascade neural networks are applied to extract inde-

pendent source signals from a linear mixture of them when the number of noisy mixed 

signals is equal to or larger than the number of sources. The developed learning algorithm 

can be considered as a generation of extension of Hebbian/anti-Hebbian rules. 

Learned Parametric Mixture Based ICA Algorithm ‘ 

Various approaches have been proposed to separate blind source signals, such as Min imum 

Mutua l Information approach (Amari et al. 1996) and Maximizat ion Entropy approach 

(Bell and Sejnowski 1995), which learn the de-mixing matr ix W adaptively by 1 ^ � = 

V r ' d + r /AW, A W = ( I + 0(y)y^)VT. However, these approaches can only separate 
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sub-Gaussian or super-Gaussian signals due to the fixed separation nonlinearity 0(y). To 

tackle this problem, the learned parametric mixture based ICA (LPM) algorithm has been 

proposed (Xu et al. 1998), which adaptively learns the separation nonlinearity instead 

of f ixing i t wi th the result that this algorithm can separate any combinations of sub-

Gaussian and super-Gaussian signals, this is also in conformity with the actual situation 

of the exchange rate markets. 

Here we briefly introduce the de-mixing process of the L P M algorithm: 

From (Xu et al. 1998), the cost function is 

J{W) = / p W l o g | ^ _ $ ) ( T ,dx 
J^ |det[ty]|n『=i",—/aO 

二 / 她 剛 恋 1 邏 " 3 (1.8) 

where 

Pt 
‘ 9i{yi) =Y^(^ij^{uij) (1.9) 

i = i 

is the form of mixture of densities to be able to approximate any function arbitrari ly, 

where 

_ “ � = 、 0 ' K . ) (1.10) 

^ i j = b^j{y, - a i j ) (1.11) 

exp(7i j) 

� ” � a u 7 ^ (1.12) 
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Here b{j is a scaling factor, a{j is a bias, ^ik can take any real value. 

One selection of cj>(uij) is 

4>(^ij) = log sig(Uij) = — ~ ~ ^ — — - (1.13) 
l + exp(_Wij) 

and 

^ ' {Ui j ) = ¢{u^J)(l - < (̂W,).)) (1.14) 

The natural gradient algorithm derived by Amar i et al (1996) is used : 

^ oc -[VwJ(W)]W^W (1.15) 

its stochastic form is 

AW = e{t)[I + h{y)y^]W ( 1 . 1 6 ) 

where 

h{y) = Mvi).."..’"„("„)]', h,{y,) = ^ (1.17) 
fft{l/t) 

The hj(pi) nonlinearity is wri t ten as 

1 � 

"'(队）= f f t M ^ % b t * y ) (1.18) 

For ^ U i j ) = logs ig{u i j ) , (p'{uij) = 6,^(1 - 2^{u^ j ) )^ ' (u i j ) . 

The parameters {7 ,a,6} are tuned in the gradient descent algorithm together wi th the 

tune of W to minimize the cost function iteratively on the arrival of each data point. 

After simplification, finally, we can get the adaptive algorithm as follows 
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1 P' 
〜 = 7 7 T T E ba<P'(Wk>ik(5kj - c ^ ) (1.19) 

g^y" k=i 

A � = 溫 { 氣 . ) + 作”_ )以”] (1.20) 

A 〜 = - ^ « ” 4 . < A � � (1.21) 

where Sij is the Kroniker delta function. 

1.3 Foreign Exchange Rate Scheme 

As shown in (George and Giddy 1983; Hallwood and MacDonald 1994), the foreign ex-

change markets have been subject to considerable volatility, and to erratic movements in 

recent years. Like other asset prices, exchange rates are affected by an integrated pro-

cess that includes the following elements: change in supply of and demand for money 

and, financial assets; economic and financial conditions and developments (e.g. interest 

rate’ inflation rate, etc.)； monetary and fiscal policy; market expectations; and efficient 

market forces. Usually an increase in the interest rate causes the domestic currency to 

appreciate. A decrease in the interest rate causes the domestic currency to depredate. 

An increase in inflation erodes the currency's purchasing power, causing it to depreciate. 

A decrease in inflation causes the domestic currency to appreciate. Exchange rates react 

to new information in an immediate and unbiased fashion, and since new information 

arrives randomly, exchange rates fluctuate randomly. For example, in the beginning of 

January of 1995, the Mexico encountered a monetary crisis, resulted in the sudden drop 

of US dollar versus other currencies owing to the relationship between Mexico and USA. 

Contrarily, in July of 1995, when the news of Russian president got i l l came out, the 

exchange rate of US dollar versus other currencies rose in a large scale within a very 

short time. I t has been recognized that the currencies rate changing is a complex and 
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intersection process which can not be fully explained by any one factor or any limited set 

of explanatory variables. 

1.4 Problem Motivation 

Now that the financial data such as stock price, foreign exchange rates are always affected 

by an integrated process which includes many factors and it is difficult to directly analyze 

the financial data because what we really know is just the change of the market price 

without any idea what cause such change, by other words, the financial data can be 

regarded as the linear mixture of a set of independent components, a problem is proposed: 

whether we can use one kind of suitable ICA algorithm to separate these independent 

factors that influence or control the change of the financial data. In the following chapters, 

we wil l make some further study on this aspect. 

1.5 Main Contribution of the Thesis 

The main contribution of this thesis can be summarized as follows: 

1. First ly we sort the ICs according to their L i norm as shown in (Back and Weigend 

1997), then we further expand this method as sorting them under Lp norm measure-

ment. We develop a criterion to find out the appropriate number of dominant ICs 

under measurement of the MSE between the original data and the reconstructed 

data by adopting an idea given by Mr . Cheung Yiu-ming. 

2. Following the suggestion of Prof. Xu, we also determine the dominant ICs order 

through measurement of the MSE between the original data and the reconstructed 

data. Because this is a discrete optimization problem and diff icult to implement, 

we study a Forward Selection (FS) approach to sort the weighted ICs into a certain 

order according to their dominant value measured by MSE. 

3. Sometimes MSE measurement is not suitable, similarly, we determine the domi-
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nant ICs order under Tendency Error (TE) measurement between the original data 

and the reconstructed data. As this is also a discrete optimization problem, we 

study a Backward Elimination Tendency Error (BETE) approach to implement our 

criterion. We also develop a corresponding dominant ICs number determination 

criterion. 

4. We have made large number of experiments to compare the performance of FS and 

B E T E approaches based on our proposed criteria wi th some heuristic methods. 

Simulation results show that the dominant ICs obtained by these order-sorting 

approaches and number selection criteria are better than those heuristically obtained 

in the MSE and T E data reconstruction. 

1.6 Other Contribution of the Thesis 

1. We implement the learned parametric mixture based ICA (LPM) algorithm (Xu et 

al. 1998) to separate out the same number of independent components from eight 

foreign exchange rates. 

2. On the basis of the original L P M algorithm, we propose two heuristic modified 

implementation algorithms to improve the convergence speed. 

1.7 Organization of the Thesis 

This thesis consists of six chapters 

In C h a p t e r 2 we firstly sort the ICs according to their L i norm as shown in (Back and 

Weigend 1997), then we further expand this method as sorting ICs by L^ norm 

measurement. We develop a dominant ICs number determination criterion under 

MSE measurement between the original data and the reconstructed data. 

In C h a p t e r 3 we determine the dominant ICs order under measurement of MSE be-

tween the original data and the reconstructed data. Based on this criterion, we 

study a Forward Selection (FS) approach (Lai et al. 1998a). 
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In C h a p t e r 4 we determine the ICs order under measurement of Tendency Error (TE) 

between the original data and the reconstructed data. We implement this criterion 

by studying a Backward Elimination Tendency Error (BETE) (Lai et al. 1998b) 

approach. We also develop a corresponding dominant ICs number determination 

criterion. 

In C h a p t e r 5 we analyze the variance characteristics of the separated independent com-

ponents and compare the reconstruction ability between PCA and ICA. Besides, we 

also study the autocorrelation and rescaIed analysis on the independent components. 

In C h a p t e r 6 we make conclusion and look forward to the further work. 

In A p p e n d i x We firstly give a brief review of selecting subsets from regression variables. 

From which we get some suggestions in proposing Forward Selection and Backward 

Elimination methods. On the other hand, we also give a systematically survey 

on unconstrained gradient based optimization algorithms. Then we introduce two 

heuristic modified implementation algorithms based on the original L P M algorithm 

(Xu et al. 1998). Comparison between those modified algorithms and original L P M 

algorithm and some other fixed nonlinearity ICA algorithms have been made. 



Chapter 2 

Heurist ic Dominant ICs Sort ing 
o 

2.1 Li Norm Sorting 

Recently, independent component analysis has been successfully applied to analyze the 

stock price in Japan market (Back and Weigend 1997), where the observed price data are 

regarded as the linear mixture of a set of weighted independent components (WICs). In 

(Back and Weigend 1997), they use the daily closing price (from 1986 unti l 1989) of 28 

largest firms as the observed data. After separate out the 28 independent components, 

they reconstruct the stock prices of the Bank ofTokyo-Mitsubishi, one o f the largest bank 

in Japan, by using some so-called dominant ICs. In their paper, the dominant ICs order 

is determined by measuring the L i norm of the WICs, and the dominant ICs number is 

arbitrar i ly given. 

The sorting procedure of L i Norm method is described as follows 

Step 1 ‘ 

The L i norm of each W I C is computed as 

N 
N,, = Y . \ W I C , M (2.1) 

t=i 

where the k weighted ICs for the i^^ financial data can be obtained by 

13 
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WIQj{t) = 4 - y , ( 0 , 1 < j < k. (2.2) 

wi th the mixing matr ix A is estimated as A = W~^. 

Step 2 

Dominant ICs are sorted according to the descending order of the L i norm. 

Apparently, by using this method, dominant ICs order is heuristically determined under 

the measurement of the weights of the ICs. 

2.2 Lp Norm (L3 Norm) Sorting 

We can expand above mentioned L i norm sorting method to more general case (suggested 

by Mr . Cheung Yiu-ming), that is, we can sort the dominant ICs under the measurement 

of Lp norm (p < oo). In order to make them easier to be compared, we randomly select 

P = 3 as an example (Actually we also have tried to use p = 2 and some other even 

numbers, we find that the simulation results are very similar wi th that of p = 1 under 

most of the cases, so here we only use p = 3 to represent odd number cases). 

The sorting procedure of L3 norm method is as follows 

Step 1 

N 

N r j = E l ^ I Q M ' (2.3) 
t=l ‘ 

Step 2 

Dominant ICs are sorted according to the descending order of the L3 norm. 

Of course, this is also a weight-determination heuristic sorting method. 
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2.3 Problem Motivation 

Although the sorting of ICs and selecting of dominant ICs have many advantages such as 

1. reveal some underlying structure in the data; 

2. better financial model maybe set up by ignoring some non-dominant WICs, which 

may be some unexplained noise factors such as market expectation; 

However, these existing methods wil l naturally arise two questions: (1) how to sort ob-

tained WICs in a certain dominant order; (2) how to select the appropriate number of 

dominant ICs even if the dominant order of WICs is given. 

2.4 Determination of Dominant ICs 

In order to cope wi th the arbitrar i ly determination o f the dominant ICs number, as shown 

in (Back and Weigend 1997), here we use the Mean Square Error (MSE) between the 

actual value and the reconstructed value as a cost function to select the suitable number 

of dominant ICs. Because the cost function monotonically decreases wi th the increasing 

of the number of dominant ICs, we can not find the suitable dominant ICs number in 

directly using this cost function. Here we define another cost function J{m) as follows: 

J ( m ) = Q(m)-Q{m - 1), m = 2 , . . . ,n (2.4) 

wi th ‘ 

Q(m) = E[x^ - x^f 
1 N 

~ 7 7 E [ ^ ^ W - ^ r W P , a s i V ^ o o , (2.5) 
t = l 

where xJ"{t) is reconstructed by the first m dominant ICs at t ime t as given in Section 

4.6, and m = 2 ,3, . . .，n is the candidate dominant ICs number. 
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The number selection criterion is that the curve of cost function J{m) versus m has 

a global minimum point at m = m*, where m* is the appropriate number of dominant 

components. 

Hence, in the following, as given a IC dominant order, we assume the first m* ICs are 

dominant whereas the remaining (n - m*) are non-dominant. 

2.5 ICA in Foreign Exchange Rate Markets 

Here we use eight exchange rates (for each exchange rate, there are 1112 data points 

from November 26, 1991 to August 31, 1995), which are US dollar versus German mark, 

Australian dollar, Canadian dollar, French franc, Swiss franc, British pound, Japanese 

1/en and Hong Kong dollar as shown in Figure 2.1. The ICA approach we used is the 

Learned Parametric Mixture Based ICA (LPM) Algor i thm (Xu et al. 1998). Before we 

apply L P M in the separation of foreign exchange rate data, we have made large number of 

experiments to test the separation ability ofhigh-dimensional source signals which include 

super-Gaussian (speech) signals and sub-Gaussian signals. The simulation results show 

that even for mixture of 10-channel source signals, the average signal-to-noise ratio can 

reach 30 (db), which means the source signals have been successfully separated. When we 

implement LPM, we firstly normalize a; to fall into the range [-1,1] to remove the scaling 

factor. Such kind of normalization can alleviate the influence of some big shock such as 

that happened in the usd-cad exchange rate data (There is a big shock in the exchange 

rate of usd-cad, we have checked the data carefully, we think maybe this is an original 

print ing error). The separated independent components are shown in Figure 2.2. 

4 

2.6 Comparison of Two Heuristic Methods 

As given a set of independent components, we determine the dominant order of indepen-

dent components based on WICs by two methods, respectively: 
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Figure 2.1: Original eight foreign exchange rates from November 26 , 1991 and August 
31, 1995 
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Figure 2.2: The eight separated ~ndependent components, where the label leA (i) in 
y-axis means independent component 
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M e t h o d 1 Li Norm 

M e t h o d 2 L3 Norm 1 

We have made experiments to reconstruct four kinds of randomly selected foreign ex-

change rates by using above mentioned dominant ICs sorting Methods 1 and 2 respectively. 

Then we determine the suitable dominant ICs number through our proposed dominant 

Number-Determination criterion under orders got from these 2 methods. 

2.6.1 Experiment 1: US Dollar vs Swiss Franc 

In the following, we use USD-SWF exchange rate as an example to show the results under 

the measure of heuristic Methods 1 and 2. 

In table 2.1’ we demonstrate the procedure of sorting the ICs by L i norm and L3 norm 

which corresponding to Method 1 and 2. We can get the orders of dominant ICs are 

[5,6,1,4,7,3,2,8] and [5,6,7,1,4,3,2,8] according to the measurements of Method 1 and 2 

respectively. 

The MSE corresponding to different dominant ICs number under measurement ofMethods 

1 and 2 are listed in table 2.2. The MSE curves of these three Methods are shown in the 

upper row of Figure 2.3. The relative cost function J ( m ) curves are shown in the lower 

row of Figure 2.3. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 6; 

• Method 2: m* = 6; 

In this experiment, these two heuristic methods all select 6 dominant ICs out of total 

iThis method can be generalized into Lp norm with p < 00. 
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Method 1 Method 2 

Loo Norm Dominant Order L3 Norm Dominant Order 

59.6414 5 0 4 3 ^ 5 

31.9571 6 0.0713 6 

25.8310 1 0.0438 7 

25.0965 4 0.0384 1 

24.1964 7 0.0342 4 

20.6934 3 0.0287 3 

8.9500 2 0.0024 2 

4.1311 8 0.0001 8 

T a b l e 2 .1: Norm measurement and corresponding dominant IC under Methods 1 and 2 
(USD-SWF) 

8 independent components. The MSE between the original data and the reconstructed 

data is very small. 
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~ ~ N o . o f ~ ~ 
ICs Method 1 Method 2 

Selected 

1 0.0472 0^^72 

2 0.0485 0.0485 

3 0.0445 0.0434 

4 0.0346 0.0430 

5 0.0298 0.0298 

6 0.0057 0.0057 

7 0.0005 0.0005 

8 0.0000 0.0000 

T a b l e 2 .2 : MSE between original signal and reconstruction signal measured by Method 
1 and 2 under different dominant ICs number (USD-SWF) 
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F i g u r e 2.3: M S E under the measure of Methods 1 and 2 (upper row) and Curve o f J ( m ) 
vs. m under the measure of Methods 1 and 2 (lower row) (USD-SWF) 
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2.6 .2 E x p e r i m e n t 2: U S Dol lar vs Austra l ian Dol lar 

In the following, we use USD-AUD exchange rate as an example to show the results under 

the measure of two heuristic Methods 1 and 2. 

In table 2.3, we demonstrate the procedure of sorting the ICs by L i norm and L3 norm 

which corresponding to Method 1 and 2. We can get the orders of dominant ICs are 

[2,4,7,1,3,5,6,8] and [2,7,4,1,3,5,6,8] according to the measurements of Method 1 and 2 

respectively. 

The MSE corresponding to different dominant ICs number under measurement ofMethods 

1 and 2 are listed in table 2.4. The relative MSE curves of these two Methods are shown 

in the upper row of Figure 2.4. The relative cost function J{m) curves are shown in the 

lower row of Figure 2.4. 

We can see that the nurnber m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 3; 

• Method 2: m* = 4; 

4 
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Method 1 Method 2 

Loo Norm Dominant Order I 3 Norm Dominant Order 

29.9634 2 0 ： ^ 2 

27.0032 4 0.0435 7 

24.1512 7 0.0425 4 

17.7055 1 0.0124 1 

8.9158 3 0.0023 3 

6.2641 5 0.0005 5 

2.9960 6 0.0001 6 

1.1557 8 0.0000 8 

T a b l e 2.3: Norm measurement and corresponding dominant IC under Methods 1 and 2 
(USD-AUD) 

~ ~ N o . o f ~ " 
ICs Method 1 Method 2 

Selected 

1 0.1045 O 4 5 

2 0.1861 0.0445 

3 0.0847 0.0847 

4 0.0189 0.0189 

5 0.0051 0.0051 

6 0.0005 0.0005 

7 0.0001 0.0001 

8 0.0000 0.0000 

T a b l e 2.4: MSE between original signal and reconstruction signal measured by Method 
1 and 2 under different dominant ICs number (USD-AUD) 
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2 .6 .3 E x p e r i m e n t 3: U S Dol lar vs Canadian Dol lar 

In the following, we use USD-CAD exchange rate as an example to show the results under 

the measure of two heuristic Methods 1 and 2. 

In table 2.5’ we demonstrate the procedure of sorting the ICs by h norm and L3 norm 

which corresponding to Method 1 and 2. We can get the orders of dominant ICs are 

[6,7,4,1,3,2,5,8] and [6,7,4,3,1,2,5,8] according to the measurements of Method 1 and 2 

respectively. 

The MSE corresponding to different dominant ICs number under measurement ofMethods 

1 and 2 are listed in table 2.6. The relative MSE curves of these three Methods are shown 

in the upper row of Figure 2.5. The relative cost function J (m) curves are shown in the 

lower row of Figure 2.5. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 5; 

• Method 2: m* = 5; 

These two heuristic methods all select 5 dominant ICs from total 8 independent com-

ponents. We can find the MSE between the original data and the reconstructed data is 

less. 

i 
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Method 1 Method 2 

Loo Norm Dominant Order L3 Norm Dominant Order 

61.2565 6 0 ： ^ 6 

31.0887 7 0.0929 7 

23.5736 4 0.0283 4 

13.5378 1 0.0067 3 

12.7090 3 0.0055 1 

9.8218 2 0.0032 2 

2.7104 5 0.0001 5 

1-3656 8 0.0000 8 

T a b l e 2 .5 : Norm measurement and corresponding dominant IC under Methods 1 and 2 
(USD-CAD) 

^N^r^~~r ~ 
ICs Method 1 Method 2 

“ Selected 

1 0.0707 o m ^ 

2 0.0823 0.0823 

3 0.0610 0.0610 

4 0.0589 0.0424 

5 0.0048 0.0048 

6 0.0003 0.0003 

7 0.0002 0.0002 . 

8 0.0000 0.0000 

T a b l e 2 .6 : MSE between original signal and reconstruction signal measured by Method 
1 and 2 under different dominant ICs number (USD-CAD) 
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2.6 .4 E x p e r i m e n t 4: U S Dol lar vs French Franc 

In the following, we use USD-FRN exchange rate as an example to show the results under 

the measure of two heuristic Methods 1 and 2. 

In table 2.7, we demonstrate the procedure of sorting the ICs by L^ norm and L3 norm 

whid i corresponding to Method 1 and 2. We can get the orders of dominant ICs are 

[5,1,3,2,4,8,7,6] and [5,1,3,2,4,8,7,6] according to the measurements of Method 1 and 2 

respectively. 

The MSE corresponding to different dominant ICs number under measurement ofMethods 

1 and 2 are listed in table 2.8. The relative MSE curves of these three Methods are shown 

in the upper row of Figure 2.6. The relative cost function J{m) curves are shown in the 

lower row of Figure 2,6. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 3; 

• Method 2: m* = 3; 
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Method 1 Method 2 

Loo Norm Dominant Order L3 Norm Dominant Order 

41.6803 5 0.1495 5 

25.5416 1 0.0371 1 

18.5302 3 0.0206 3 

6.2766 2 0.0008 2 

5.2743 4 0.0003 4 

4.6711 8 0.0002 7 

4.0969 7 0.0001 8 

0.5315 6 0.0000 6 

T a b l e 2 .7 : Norm measurement and corresponding dominant IC under Methods 1 and 2 
(USD-FRN) 

~N^r^~~ 
ICs Method 1 Method 2 

Selected 

1 0.0930 O 9 3 O 

2 0.0848 0.0848 

3 0.0269 0.0269 

4 0.0140 0.0140 

5 0.0060 0.0060 

6 0 . 0 0 1 8 0 . 0 0 1 6 

7 0.0000 0.0000 , 

8 0.Q000 0.0000 

T a b l e 2 .8 : MSE between original signal and reconstruction signal measured by Method 
1 and 2 under different dominant ICs number (USD-FRN) 
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Chapter 3 

Forward Selection under M S E 
Measurement 

3.1 Order-Sorting Criterion 

In the above two sections, we introduce two methods which are applied in sorting the 

dominant ICs. The basic idea is to determine the order by measuring the weight magni-

tude of the independent components, as shown in (Back and Weigend, 1997). As we can 

see, they are all heuristic sorting methods, and can not correctly determine the dominant 

ICs order because they can not control the reconstruction error between the original data 

and the reconstructed data. Under such cases, we propose an Order-Sorting criterion: 

the dominant ICs order should be determined under measurement of the MSE between the 

original data and the reconstructed data. 

3.2 Order Sorting Approaches 

Following above mentioned Order-Sorting criterion, large quantities of approaches can 

be applied to determine the dominant ICs order, wi th in which the most basic one is 

the exhaustive-searching method. As we know, although this method can guarantee 

global minimum for the cost function defined as the reconstruction error between the 

original data and the reconstructed data, for high dimension data, i t is usually very time 

30 
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consuming. Branch-and-bound is an optimized searching approach with some complexity 

and its searching efficiency highly depends on the data itself. Compared with some 

optimized but complex approaches, forward and backward searching are two simplified 

and more efficient methods, through which we can get some sub-optimal results. 

3.3 Forward Selection Approach 

In order to cope with the inaccuracy and arbitrariness of sorting dominant ICs by using 

some heuristic methods such as Li Norm and Lp Norm methods, also for simplification 

and fast implementation purpose, from various kinds of searching approaches we study 

a Forward Selection approach (Lai et al. 1998a) and define MSE as the reconstruction 

error between the original data and the reconstructed data. The detailed algorithm is 

described as follows 

Step 1 

Let V = { / Q j | j _ i , and selection-order IC list L = {} 

Step 2 

_' we select that ICimi with 

mi = argmin MSE (â i - WICij), 1 < j < k (3.1) 
j 

as the first dominant IC. We let 

L ^ = LO'd u {IQm：} (3 .2 ) 
4 

乂 腳 = y o / [ { / C ^ } (3.3) 

Step 3 

For each IC{j G V, we let . 
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z“ = WICij + WICi (3.4) 

where WICi = Y1 jQ.^ ^j^ WICij. We calculate the reconstruction MSE between Xi 

and Z i j , then select the ICim2 wi th 

m,2 = arg min MSE {xi - Z^j) (3.5) 

as the second dominant IC. We let 

L ^ = Loid U { I Q m , } (3.6) 

广 = y o i d _ I ^ ^ ^ . ^ J (3.7) 

Step 4 

Similar w i th Step 3，we can sort all the ICs in the list L w i th descending order 

under MSE measure. 

3.4 Comparison of Three Dominant ICs Sorting Methods 

In this section, as given a set of independent components, we determine the dominant 

order of independent components based on WICs by three methods, respectively: 

M e t h o d 1 Li Norm, which is also used in (Back and Weigend 1997); 

M e t h o d 2 L3 Norm 1 

M e t h o d 3 Forward Selection (FS) 

We have made experiments to reconstruct four kinds of randomly selected foreign ex-

change rates by using above mentioned dominant ICs sort ing Methods 1, 2 and 3 re-

spectively. Then we determine the suitable dominant ICs number through our proposed 

dominant Number-Selection criterion in last section. 

^This method can be generalized into Lp norm with p < 00. 
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After we implement Forward Selection method, we also t ry to apply Backward Elimination 

method in our experiment, but we find that the performance is inferior compared with 

that of using Forward Selection method, so in this chapter, we only use Forward Selection 

method on the separation of original foreign exchanger rate data. 

3.4 .1 E x p e r i m e n t 1: U S Dol lar vs Swiss Franc 

In the following, we use USD-SWF exchange rate as an example to show the results 

under the measure of Forward Selection Method and two heuristic Methods 1 and 2. 

As introduced in last section, when we use the forward selection method starting from 

no ICs in the reconstructed signal, each time when we add ICs into the reconstructed 

signal, we should compute and compare the MSE under different choices and select the 

IC that corresponding to the smallest MSE unti l all the ICs have been added into the 

reconstructed signal or some criteria are satisfied. 

The procedure of selecting the dominant ICs by Forward Selection Method is listed in 

table 3.1’ from which we can see that the dominant order is [5,l,3,7,2,6,4,8]. 

The MSE corresponding to different dominant ICs number under measurement of Methods 

1, 2 and 3 are listed in table 3.2. The MSE curves of these three Methods are shown in 

the upper row of Figure 3.1. The relative cost function J ( m ) curves are shown in the 

lower row of Figure 3.1. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 6; 

• Method 2: m* = 6; 

• Method 3: m* = 2; 

In Figure 3.2, we use 2 dominant ICs respectively to reconstruct the USD-SWF data. The 
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No. of “ Selecting 
ICs MSE vs Independent Component Order 
Selected of ICs 

~1 0.1358 0.2745 0.2645 0.5822 0.0472 0.3415 0.1537 0.4318 5 

2 0.0361 0.1144 0.0962 0.2894 0.1365 0.0594 0.2166 _ 1 

3 0.0728 0.0352 0.1845 0.1317 0.0530 0.1286 _ _ 3 

4 0.0989 0.2432 0.1028 0.0387 0.1593 _ _ _ 7 

5 0.0579 0.1242 0.0909 0.0900 _ _ _ _ 2 

6 0.1808 0.0611 0.1213 _ _ _ _ _ 6 

7 0.0584 0.0680 _ _ _ _ _ _ 4 

8 - - - - _ _ _ _ 8 

T a b l e 3.1: Simulation results of sorting the dominant ICs by Forward Selection Method 
(USD-SWF) 

^N^r^~~ 
., ICs Method 1 Method 2 Method 3 

Selected 

1 0.0472 0.0472 ^ M u 

2 0.0485 0.0485 0.0254 

3 0.0445 0.0434 0.0192 

4 0.0346 0.0430 0.0147 

5 0.0298 0.0298 0.0136 

6 0.0057 0.0057 0.0151 

7 0.0005 0.0005 0.0005 

8 O.QOOQ 0.0000 0.0000 

T a b l e 3 .2: MSE between original signal and reconstruction signal measured by Method 
1, 2 and 3 under different dominant ICs number (USD-SWF) 
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MSE between the reconstructed data and the original data are 0.0485, 0.0485 and 0.0254 

under Methods 1，2 and 3 respectively. We can see that Method 3 is the best, which not 

only made the trend of reconstructed data similar with the original financial data, but 

also made the reconstruction of n - m* non-dominant ICs is unbiased. This implies that 

the major movements of financial data have been well controlled by the dominant ICs we 

determined. 
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F i g u r e 3.1: MSE under the measure of Methods 1, 2 and 3 (upper row) and Curve of 
J (m) vs. m under the measure of Methods 1, 2 and 3 (lower row) (USD-SWF) 
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F i g u r e 3.2: Normalized original USD-SWF data (upper low), the reconstructed signals 
(middle low) by using 2 dominant ICs determined by Method 1, 2 and 3 respectively from 
left to right, and the corresponding reconstructed signals by the left non-dominant ICs 
(lower row). 
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3.4 .2 E x p e r i m e n t 2: U S Dol lar vs Austra l ian Dol lar 

In the following, we use USD-AUD exchange rate as an example to show the results under 

the measure of Forward Selection Method and two heuristic Methods 1 and 2. 

The procedure of selecting the dominant ICs by Forward Selection Method is listed in 

table 3.3，from which we can see that the dominant order is [2,7,l,4,3,5,6,8]. 

The MSE corresponding to different dominant ICs number under measurement of Methods 

1，2 and 3 are listed in table 3.4. The relative MSE curves of these three Methods are 

shown in the upper row of Figure 3.3. The relative cost function J(m) curves are shown 

in the lower row of Figure 3.3. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 3; 

• Method 2: m* = 4; 

• Method 3: m* = 2; 

In Figure 3.4, we use 2 dominant ICs respectively to reconstruct the USD-SWF data. 

The MSE between the reconstructed data and the original data are 0.1861, 0.0445 and 

0.0445 under Methods 1, 2 and 3 respectively. We can see that although the result of 

Method 3 is same as that of Method 2 here , but it is much better than Method 1 , By 

using Method 3, we find that which not only make the trend of reconstructed data similar 

w i th the original financial data, but also the reconstruction of n 一 m* non-dominant ICs 

keeps unbiased. We can see that the major movements of financial data have been well 

controlled by the dominant ICs we determined. 
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No. of Selecting 
ICs MSE vs Independent Component Order 
Selected of ICs 

~1 0.1863 0.1045 0.2110 0.3029 0.1759 0.2177 0.1977 0.3338 2 

2 0.0880 0.0945 0.2398 0.0955 0.1732 0.0607 0.1748 _ 7 

3 0.8687 0.9955 1.0689 1.0335 0.9635 1.9160 _ . 1 

4 0.1501 0.0334 0.1237 0.0593 0.2111 _ _ _ 4 

5 0.0298 0.0375 0.1021 0.0624 _ _ _ . 3 

6 0.0417 0.0593 0.1123 _ _ _ _ . 5 

7 0.0438 0.1284 _ _ _ _ _ _ 6 

8 _ _ _ _ _ _ _ _ 8 

T a b l e 3.3: Simulation results of sorting the dominant ICs by Forward Selection Method 
(USD-AUD) 

^No7^~~ 
ICs Method 1 Method 2 Method 3 

” Selected 

1 0.1045 0.1045 0.1045 

2 0.1861 0.0445 0.0445 

3 0.0847 0.0847 0.0578 

4 0.0189 0.0189 0.0189 

5 0.0051 0.0051 0.0051 

6 0.0005 0.0005 0.0005 

7 0.0001 0.0001 0..0001 

8 0.0000 0.0000 0.0000 

T a b l e 3.4: MSE between original signal and reconstruction signal measured by Method 
1，2 and 3 under different dominant ICs number (USD-AUD) 
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F i g u r e 3.3: MSE under the measure of Methods 1, 2 and 3 (upper row) and Curve of 
J (m) vs. m under the measure of Methods 1, 2 and 3 (lower row) (USD-AUD) 
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F i g u r e 3.4: Normalized original USD-AUD data (upper row), the reconstructed signals 
(middle low) by using 2 dominant ICs determined by Method 1，2 and 3 respectively from 

left to r ight, and the corresponding reconstructed signals by the left non-dominant ICs 

(lower row). 
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3 .4 .3 E x p e r i m e n t 3: U S Dol lar vs Canadian Dol lar 

In the following, we use USD-CAD exchange rate as an example to show the results under 

the measure of Forward Selection Method and two heuristic Methods 1 and 2. 

The procedure of selecting the dominant ICs by Forward Selection Method is listed in 

table 3.5. From which we can see that the dominant order is [6,3,l,7,4,2,5,8]. 

The MSE corresponding to different dominant ICs number under measurement of Methods 

1，2 and 3 are listed in table 3.6. The relative MSE curves of these three Methods are 

shown in the upper row of Figure 3.5. The relative cost function J ( m ) curves are shown 

in the lower row of Figure 3.5. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 5; 

• Method 2: m* = 5; 

• Method 3: m* = 2; 

In Figure 3.6，we use 2 dominant ICs respectively to reconstruct the USD-SWF data. The 

MSE between the reconstructed data and the original data are 0.0823，0.0823 and 0.0435 

under Methods 1，2 and 3 respectively. We can see that Method 3 is the best. By using 

Method 3, we find that which not only the make trend of reconstructed data similar w i th 

the original financial data, but also the reconstruction of n - m* non-dominant ICs keeps 

unbiased. So by using Method 3, we can get most of the reconstruction of the original 
» 

data w i th only suitable number of dominant ICs. 
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No. of Selecting 
ICs MSE vs Independent Component Order 
Selected of ICs 

~1 0.0734 0.2434 0.2049 0.4793 0.1480 0.0707 0.0983 0.3622 6 

2 0.0563 0.0644 0.0435 0.0799 0.0741 0.0823 0.0703 _ 3 

3 0.0300 0.0481 0.0888 0.0433 0.0315 0.0441 _ _ 1 

4 0.0323 0.0405 0.0302 0.0258 0.0304 _ _ _ 7 

5 0.0201 0.0048 0.0291 0.0247 _ _ _ _ 4 

6 0.0003 0.0065 0.0041 _ _ _ _ _ 2 

7 0.0001 0.0006 - _ _ _ _ _ 5 

S mm 一 _ _ * — 一 _ _ 8 

Tab le 3.5: Simulation results of sorting the dominant ICs by Forward Selection Method 
(USD-CAD) 

~ ~ N ^ 7 " ^ ~ ~ 
ICs Method 1 Method 2 Method 3 

.. Selected 

1 0.0707 0.0707 00707 

2 0.0823 0.0823 0.0435 

3 0.0610 0.0610 0.0300 

4 0.0589 0.0424 0.0258 

5 0.0048 0.0048 0.0048 

6 0.0003 0.0003 0.0003 

7 0.0002 0.0002 0.0002 
I 

8 O.QOQO Q.OQOQ 0.0000 

Tab le 3.6: MSE between original signal and reconstruction signal measured by Method 
1, 2 and 3 under different dominant ICs number (USD-CAD) 
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F i g u r e 3.6: Normalized original USD-CAD data (upper row), the reconstructed signals 
(middle row) by using 2 dominant ICs determined by Method 1, 2 and 3 respectively from 
left to right, and the corresponding reconstructed signals by the left non-dominant ICs 
(lower row). 
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3 .4 .4 E x p e r i m e n t 4: U S Dol lar vs French Franc 

In the following, we use USD-FRN exchange rate as an example to show the results under 

the measure of Forward Selection Method and two heuristic Methods 1 and 2. 

The procedure of selecting the dominant ICs by Forward Selection Method is listed in 

table 3.7, from which we can see that the dominant order is [5,3,l,2,4,7,8,6]. 

The MSE corresponding to different dominant ICs number under measurement of Methods 

1, 2 and 3 are listed in table 3.8. The relative MSE curves of these three Methods are 

shown in the upper row of Figure 3.7. The relative cost function J(m) curves are shown 

in the lower row of Figure 3.7. 

We can see that the number m* of dominant ICs is different under the different measure 

methods: 

• Method 1: m* = 3; 

• Method 2: m* = 3; 

• Method 3： m* = 2; 

In Figure 3.8’ we use 2 dominant ICs respectively to reconstruct the USD-SWF data. The 

MSE between the reconstructed data and the original data are 0.0848, 0.0848 and 0.0532 

under Methods 1, 2 and 3 respectively. We can see that Method 3 is the best, which not 

only make the trend of reconstructed data similar wi th the original financial data, but 

also make the reconstruction of n - m* non-dominant ICs keeps unbiased. 
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No. of Selecting 
ICs MSE vs Independent Component Order 
Selected of ICs 

~ i 0.1930 0.2330 0.2412 0.5228 0.0930 0.5496 0.3803 0.3400 5 

2 0.0848 0.0802 0.0532 0.0928 0.0937 0.0912 0.0807 _ 3 

3 0.0269 0.0535 0.0617 0.0529 0.0554 0.0519 _ _ 1 

4 0.0140 0.0169 0.0279 0.0191 0.0173 _ _ _ 2 

5 0.0060 0.0147 0.0077 0.0064 _ _ _ _ 4 

6 0.0064 0.0016 0.0018 _ _ _ _ _ 7 

7 0.0019 0.0001 _ _ _ _ _ _ 8 

8 - _ - _ _ _ _ _ 6 

Table 3.7: Simulation results of sorting the dominant ICs by Forward Selection Method 
(USD-FRN) 

~~N^r^~~ 
ICs Method 1 Method 2 Method 3 

‘ Selected 

1 0.0930 0.0930 0.0930 

2 0.0848 0.0848 0.0532 

3 0.0269 0.0269 0.0269 

4 0.0140 0.0140 0.0140 

5 0.0060 0.0060 0.0060 

6 0.0018 0.0016 0.0016 

7 0.0000 0.0000 0.0000 

8 Q.OOOQ 0.0000 0.0000 

Table 3.8: MSE between original signal and reconstruction signal measured by Method 
1，2 and 3 under different dominant ICs number (USD-FRN) 
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F i g u r e 3.8: Normalized original USD-FRN data (upper row), the reconstructed signals 
(middle row) by using 2 dominant ICs determined by Method 1, 2 and 3 respectively from 
left to right, and the corresponding reconstructed signals by the left non-dominant ICs 
(lower row). 



Chapter 4 

Backward Elimination Tendency 
Error 

4.1 Tendency Error Scheme 

In the analysis of the financial markets, such as make prediction, usually the objective 

is to minimize the MSE between the original data and the reconstructed data, by other 

words, more less the MSE is, more better the reconstruction performance is. But we also 

often meet such situation, that is, people care more about the change tendency between 

thfe reconstructed return data and the original return data than care about the total 

MSE between them. Under such cases, MSE is not a suitable measurement criterion. In 

order to reflect the difference of the change tendency between the original data and the 

reconstructed data, here we define a concept of Tendency Error (TE) as follows. 

Considering i ^ financial data series Xi(.) at t ime t, we define the returns of Xi{.) as 

’ 糊 = 1 if Xi(t)-Xi(t-l)>5 
< 柳 = 0 if \x,(t)-x,(t-l)\<S (4.1) 
‘ Ri(t) = - 1 if x i ( t ) - x i { t - l ) < -(^ 

一—^ 

The reconstructed return data Ri{t) can be defined similarly. 

49 
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‘ % { t ) = 1 if x,{t)-x^{t-l)>S 
< 3 ' ( 0 = 0 if | ^ i (0 — x^{t — 1)1 < S (4.2) 
‘ R-(t) = - 1 if xi{t) - Xi{t - 1) < -(5 

here we set S = 10—8. We also define Hi = [ " , (2 ) , " , (3 ) , . . . , h^{N)l wi th hi{t)= 

Ri{t) - Ri(t), the difference between the original return and the reconstructed return at t 

time step, n is the number of returns. We can calculate the Tendency Error (TE) between 

the original modified return and the reconstructed modified return as 

TEi = Number of Nonzero Elements in Hi (4.3) 

4.2 Order-Sorting Criterion 

Apart from some heuristic methods which have been used to sort dominant ICs, in last 

chapter we have proposed a criterion which sorts the dominant ICs under MSE mea-

surement. As we have already illustrated in last section, sometimes the Tendency Error 

between the original data and the reconstructed data is more important for analysts or 

investors. Under such cases, we propose another Order-Sorting criterion: the dominant 

lCs order should be determined under measurement of the Tendency Error between the 

original data and the reconstructed data. 

4.3 Order Sorting Approaches 

Following the previously introduced Order-Sorting criterion, here we focus on the return 

data and define the Tendency Error as the reconstruction error between the original signal 

and the reconstructed signal in sorting the WICs wi th the result that the dominant WICs 

can mostly reflect the change tendency of the original data. Similarly as introduced in 

last chapter, we also can use many order sorting approaches such as exhaustive searching 

approach, which is very time-consuming; branch-and-bound approach, which is an op-

timized searching method, but its searching speed highly depends on the data; forward 



CHAPTER 4. BACKWARD ELIMINATION TENDENCY ERROR 51 

and backward searching approaches, etc. Wi th in these approaches, forward searching and 

backward searching approaches are two simple and efficient methods, so even if by using 

these methods, usually we only can get sub-optimal results, they are widely used in many 

aspects. 

4.4 Backward Elimination Tendency Error Approach 

From our experiment results of separately using Forward Selection and Backward Elimina-

tion methods (for simplification and fast implementation purpose, here we only compare 

these two methods), we find that for return data, the latter one is more robust, sometimes 

it performs better than the former one. So, under the aim of minimizing the Tendency 

Error between the original return data and the reconstructed return data, we introduce 

a so-called Backward Elimination Tendency Error (BETE) approach (Lai et al. 1998b) 

The detailed algorithm is described as follows 

Step 1 

Let V = { / C y J = i , and elimination-order IC list L = { } . 

Step 2 

For each I Q j € V’ we let Z i j = x^ - W I C { j , and delete that I C 〜 w i t h 

mi = arg rnin TE {x^ — Z ” ) ’ 1 < j < k (4.4) 

as the first non-dominant IC. We let 

L _ = L - U { I Q m , } (4.5) 

V _ = V ' ^ ' - { I Q m A (4.6) 

Step 3 

For each IC{j G V^ we let 
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而 = X i — {WICij + WICi) (4.7) 

where WICi = J2ic,^eL^^^ij- We calculate the T E between X{ and Z { j , and 

delete the ICim2 wi th 

rri2 = arg min TE (xi - Z{j) (4.8) 

as the second non-dominant IC. We let 

丄 腳 = L o i d u { / C , ^ J (4.9) 

^ ^ 卿 = y - ' ^ _ { / Q ^ j (4.10) 

Step 4 

Similar w i th Step 3，we can sort all the ICs in the list L w i th ascending order under 

T E measure. 

4.5 Determination of Dominant ICs 

Corresponding to B E T E method ’ we use the Tendency error (TE) by using dominant 

ICs as the cost function to select the suitable number of dominant ICs. The cost function 

J(m) is defined as follows: 

J { m ) = T E ( m ) T E { m 一 1), m = 2,..., n ( 4 . 1 1 ) 

Where TE{m) is the number of nonzero elements in the reconstrtuced return by using 

m dominant ICs, by another word, i t is the Tendency Error between the original return 

data and the reconstructed return data of using m dominant ICs. 
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The number selection criterion is that the curve of cost function J{m) versus m has 

a global minimum point at m — m*, where m* is the appropriate number of dominant 

components. 

Hence, in the following, as given a IC dominant order, we assume the first m* ICs are 

dominant whereas the remaining {n — m*) are non-dominant. 

4.6 Comparison Between Three Approaches 

In this section, we have made experiments to reconstruct four kinds of foreign exchange 

rates. The dominant ICs are sorted by using under mentioned Methods 1,2 and 4 re-

spectively, then we determine the suitable dominant ICs number through our proposed 

dominant number selection criterion under orders got from these 3 methods. 

As given a set of independent components, we determine the dominant order of indepen-

dent components based on WICs by three ways, respectively: 

M e t h o d 1 Li Norm 

M e t h o d 2 L3 Norm 1 

M e t h o d 4 Backward Elimination Tendency Error (BETE) 

4 .6 .1 E x p e r i m e n t R e s u l t s on U S D - S W F R e t u r n 

We have made experiments to reconstruct the USD-SWF return data by using B E T E 

method to gradually eliminate the IC which is relatively not dominant in controll ing the 

change tendency of the original data. Table 4.1 is the simulation results in selecting 

the eliminated ICs gradually. The order of sorting the dominant ICs (contrary to the 

elimination order) is [5,l,3,4,2,7,6,8]. 

^This method can be generalized into Lp norm with p < 00. 
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No. of Elimination 
ICs T E vs Independent Component Order 
Deleted of IC 

~1 ^ ~ ~ 1 ^ ~ ~ ^ ~ ^ ~ ~ ^ ~ ~ U 3 ~ ~ ^ ~ ~ ^ 1 ~~8 

2 256 163 283 232 566 113 203 _ 6 

3 251 192 288 212 544 146 _ _ 7 

4 294 136 289 287 576 _ _ _ 2 

5 257 321 173 572 _ _ _ _ 4 

6 251 224 514 _ _ _ _ _ 3 

7 262 550 _ _ _ _ _ _ 1 

8 - _ _ _ _ _ _ _ 5 

T a b l e 4.1: Simulation results of sorting dominant ICs by B E T E method (USD-SWF) 

The T E values corresponding to different dominant ICs number under measurement of 

Methods 1, 2 and 4 are listed in table 4.2. 

The MSE value curves under Method 1, 2 and T E values under B E T E Method are shown 

in the upper row of Figure 4.1. The relative cost function J ( m ) curves are demonstrated 

in the lower row of Figure 4.1. 

• Method 1: m* = 6; 

• Method 2: m* = 6; 

• Method 4: m* 二 3; 

In Figure 4.2, for each method, we all use 3 dominant ICs to reconstruct the original 

USD-SWF return data. Experiment results show the B E T E method performs better 

than other two methods, i t can reconstruct most of the change tendency of the original 

data. The T E value under this case is 247, 269 and 173 for method 1, 2 and B E T E 

respectively. This result is in conformity wi th our observation in Figure 4.2. 
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^ N o . o f ~ ~ 
ICs Method 1 Method 2 Method 4 

Selected 

i ^ ^ ^ 

2 289 289 224 

3 247 269 173 

4 336 239 136 

5 325 325 146 

6 145 145 101 

7 91 91 91 

8 44 45 44 

T a b l e 4 .2: T E between original signal and reconstruction signal measured by Method 1, 
2 and 4 under different dominant ICs number (USD-SWF) 
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F i g u r e 4.1: MSE under the measure of Methods 1, 2 and T E under Method 4 (upper 
row) and Curve of J (m) vs. m under the measure of Methods 1, 2 and 4 (lower row) 
(USD-SWF) 
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F i g u r e 4 .2: Return of usd-swf data (upper low), the reconstructed signals (lower row) 
by using the m* dominant ICs determined by Method 1, 2 and 4 respectively from left to 
right. 
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4.6 .2 E x p e r i m e n t R e s u l t s on U S D - A U D R e t u r n 

We have made experiments to reconstruct the USD-AUD return data by using B E T E 

method to gradually eliminate the IC which is relatively not dominant in controll ing the 

change tendency of the original data. Table 4.3 is the simulation results in selecting 

the eliminated ICs gradually. The order of sorting the dominant ICs (contrary to the 

elimination order) is [2,4,7,l,3,5,6,8]. 

The T E values corresponding to different dominant ICs number under measurement of 

Methods 1, 2 and 4 are listed in table 4.4. 

The MSE value curves under Method 1, 2 and T E values under B E T E Method are shown 

in the upper row of Figure 4.3. The relative cost function J ( m ) curves are demonstrated 

in the lower row of Figure 4.3. 

• Method 1: m* = 3; 

• Method 2: m* = 4; 

• Method 4: m* = 5; 

In Figure 4.4，for each method, we use m* dominant ICs to reconstruct the original USD-

SWF return data. According to the different dominant ICs number selected through 

methods 1’ 2 and 4，the Tendency Error we get are 397’ 304 and 184 respectively, which 

shows that the B E T E method performs better than other two methods. By using the 

suitable dominant ICs selected from the B E T E method, we can reconstruct most of the 

change tendency of the original return data. 
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No. of Elimination 
ICs T E vs Independent Component Order 
Deleted of ICs 

~1 322 492 285 419~l76~~109 318~~100 8 

2 322 492 285 420 176 109 318 _ 6 

3 321 497 282 420 184 327 _ _ 5 

4 317 501 304 418 343 _ _ _ 3 

5 397 523 477 412 _ _ _ _ 1 

6 546 507 464 _ _ _ _ _ 7 

7 552 529 _ _ _ _ _ _ 4 

8 - _ - . _ _ _ _ 2 

T a b l e 4.3: Simulation results of sorting dominant ICs by B E T E method (USD-AUD) 

~ ~ N ^ ~ ~ 
ICs Method 1 Method 2 Method 4 

‘ Selected 

1 ^ ^ 函 

2 464 507 464 

3 397 397 397 

4 304 304 304 

5 184 184 184 

6 108 108 108 

7 100 100 ‘ 100 

8 72 68 72 

T a b l e 4.4: T E between original signal and reconstruction signal measured by Method 1， 

2 and 3 under different dominant ICs number (USD-AUD) 
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F i g u r e 4 .4: Return of USD-AUD data (upper row), the reconstructed signals (lower 
row) by using the m* dominant ICs determined by Method 1, 2 and 4 respectively from 
left to right. 
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4 .6 .3 E x p e r i m e n t R e s u l t s on U S D - C A D R e t u r n 

We have made experiments to reconstruct the USD-CAD return data by using B E T E 

method to gradually eliminate the IC which is relatively not dominant in controll ing the 

change tendency of the original data. Table 4.5 is the simulation results in selecting 

the eliminated ICs gradually. The order of sorting the dominant ICs (contrary to the 

elimination order) is [3,4,6,7,2,l,5,8]. 

The T E values corresponding to different dominant ICs number under measurement of 

Methods 1, 2 and 4 are listed in table 4.6. 

The MSE value curves under Method 1，2 and T E values under B E T E Method are shown 

in the upper row of Figure 4.5. The relative cost function J ( m ) curves are demonstrated 

in the lower row of Figure 4.5. 

• Method 1: m* = 5; 

• Method 2: m* = 5; 

• Method 4: m* = 6; 

In Figure 4.6, for each method, we all use m* dominant ICs to reconstruct the original 

USD-SWF return data. According to the different dominant ICs number selected through 

methods 1, 2 and 4，the Tendency Error between the reconstructed return data and the 

original data are 346, 346 and 155 respectively, which shows that the B E T E method 

performs better than other two methods, i t can reconstruct most of the change tendency 

of the original data. 
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No. of Elimination 
ICs T E vs Independent Component Order 
Deleted of ICs 

~1 337 356 449 440 155 446 420 146 8 

2 338 356 449 440 155 447 420 _ 5 

3 328 346 421 436 428 412 _ _ 1 

4 373 468 465 478 462 _ _ _ 2 

5 510 410 518 409 _ _ _ _ 7 

6 520 483 462 _ . _ _ _ 6 

7 584 487 _ _ _ _ _ _ 4 

8 _ _ _ _ . _ _ _ 3 

T a b l e 4.5: Simulation results of sorting dominant ICs by B E T E method (USD-CAD) 

^ N o . o f ~ ~ 
ICs Method 1 Method 2 Method 4 

Selected 

1 ^ ^ 4 ^ 

2 468 468 462 

3 510 510 409 

4 499 373 373 

5 346 346 328 

6 155 155 155 

7 146 146 146 

8 98 98 ‘ 91 

T a b l e 4.6: T E between original signal and reconstruction signal measured by Method 1, 
2 and 4 under different dominant ICs number (USD-CAD) 
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F i g u r e 4.6: Return of USD-CAD data (upper row), the reconstructed signals (lower 
row) by using the m* dominant ICs determined by Method 1, 2 and 4 respectively from 
left to right. 
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4 .6 .4 E x p e r i m e n t R e s u l t s on U S D - F R N R e t u r n 

We have made experiments to reconstruct the USD-FRN return data by using B E T E 

method to gradually eliminate the IC which is relatively not dominant in controll ing the 

change tendency of the original data. Table 4.7 is the simulation results in selecting 

the eliminated ICs gradually. The order of sorting the dominant ICs (contrary to the 

elimination order) is [3,5,l,8,2,4,7,6]. 

The T E values corresponding to different dominant ICs number under measurement of 

Methods 1, 2 and 4 are listed in table 4.8. 

The MSE value curves under Method 1, 2 and T E values under B E T E Method are shown 

in the upper row of Figure 4.7. The relative cost function J{m) curves are demonstrated 

in the lower row of Figure 4.7. 

• Method 1: m* = 3; 

• Method 2: m* = 3; 

• Method 4: m* = 7; 

In Figure 4.8, for each method, we use m* dominant ICs to reconstruct the original USD-

SWF return data. According to the different dominant ICs number selected through 

methods 1’ 2 and 4，the Tendency Error between the reconstructed return data and the 

original return data are 341，341 and 197 respectively, which shows that the B E T E method 

performs better than other two methods, i t can reconstruct most of the change tendency 

of the original data. 
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No. of Elimination 
ICs T E vs Independent Component Order 
Deleted of ICs 

~1 ^ ~ ~ ^ ~ ~ ^ ~ ~ ^ ~ ~ 4 7 9 ~ m ~ ~ ^ ~ ~ W i ~ ~ 6 

2 397 335 382 334 479 197 296 _ 7 

3 392 336 396 325 472 334 _ _ 4 

4 386 333 376 465 349 _ _ _ 2 

5 386 421 492 341 _ _ _ _ 8 

6 392 409 480 _ _ _ _ _ 1 

7 485 477 _ _ _ _ _ _ 5 

8 - _ _ . _ _ _ _ 3 

T a b l e 4.7: Simulation results of sorting dominant ICs by B E T E method (USD-FRN) 

^ ^ N o . o f ~ ~ 
ICs Method 1 Method 2 Method 4 

Selected 

1 4 ^ 485 477 

2 409 409 392 

3 341 341 341 

4 349 349 333 

5 334 334 325 

6 295 327 295 

7 197 197 197 

8 171 171 164 

T a b l e 4.8: T E between original signal and reconstruction signal measured by Method 1, 
2 and 4 under different dominant ICs number (USD-FRN) 
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F i g u r e 4 .8 : Return of USD-FRN data (upper row), the reconstructed signals (lower row) 
by using the m* dominant ICs determined by Method 1, 2 and 4 respectively from left to 
right. 



Chapter 5 

Other Analysis of ICA in Foreign 
Exchange Ra te Markets 

5.1 Variance Characteristics of ICs and PCs 

We first analyze the variance change of the independent components (ICs) and compare 

them wi th those o f the principal components (PCs) got from principal component analysis 

(PCA). The variances of each independent components (here 21 windows are used, each 

window contains 100 data points, wi th in which there is an overlap of 50 data points) 

is shown in Figure 5.1’ from which we can see large change of variance exists in each 

independent components, that is to say, each independent component makes its particular 

effect in the change of exchange rates. For different exchange rate, their influence may 

be different. On the other hand, for that of PCA as shown in Figure 5.2 wi th the same 

configuration o f the windows as that in Figure 5.1，the large change in variance are mainly 

located in the first 4 principal components, that is to say, most of the informations are 

contained in these 4 components. Figure 5.3 demonstrates the percentage ofeach principal 

component, f rom which we also can find that the first two principal components already 

can represent most of the original signal. 

69 
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F i g u r e 5 .1: Variance of independent components 

5.2 Reconstruction Ability between PCA and ICA 

As that of in (Back and Weigend 1997), here we also randomly select an foreign exchange 

rate (usd-aud) as an example to compare the reconstruction abil i ty of PCA and ICA. We 

separately use two major principal components and two dominant independent compo-

,nents to reconstruct the original usd-aud data. Simulation results can be found in Figure 

5.4. I t is apparent that by using ICA method, the original exchange rate data can be 

reconstructed very well, the summation of other weighted independent components only 

performs like one kind of random disturbance wi th less magnitude change. But for PCA, 

the reconstruction result is not very satisfied, there are sti l l some big shocks left in the 

minor components and can not be reconstructed, such kinds of shocks usually represent 

some new information that often change the movement directions of the exchange rates. 

4 

5.3 Properties of Independent Components 

For eight separated independent components, we notice that independent component 1 

plays an impor tant role in the change of almost all exchange rates. Components 3 and 5 
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F i g u r e 5.2: Variance of principal components 

mainly influence European currencies, such as German mark, French franc, Swiss franc 

and British pound. Components 6 and 7 mainly influence Japanese yen and Canadian 

dollar. Component 2 mainly influence Australian dollar. Component 4 mainly influ-

ence non-European currencies. Weights of components 6 and 7 on Canadian dollar and 

Japanese yen have the contrary sign, which result in the adverse movement tendencies of 

these two currencies. 

Figure 5.5 demonstrates the weighted independent components of usd-dem. From the 

change magnitude of each components, we can clearly see that components 1’ 3 and 5 are 

three major components. Apparently the factor yl looks like making a periodical floating 

movement. According to the history data of these exchange rates, we find that such kinds 

of regular movements are usually caused by the periodical government intervention such 

as adjusting the interest rates, etc. Some random but very important events that influence 

these exchange rates also can be observed from another major factor y5. In y5 we find 

that the curve starts wi th a ascending period, this is because from the beginning of 1992, 

two countries of previous Russia fought for the Black sea fleet, which results the ascending 

of US dollar versus other currencies, especially European currencies. The second obvious 

ascending period happens in the September of 1992. Because of the different att i tude 
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of some European countries in joining Maastricht's treaty, a currency crisis happened 

which leaded to a storm in the European foreign exchange rates markets. Through this 

crisis, many European countries widened their fluctuating amplitude of these currencies 

versus US dollar. We can see such adjustments actually greatly influence the European 

exchange markets and play roles in quite a long time. The 3rd ascending period in curve 

y5 happened in the August of 1994 as American Federal Reserve Bureau rushed into the 

markets and bought enormous US dollars, which also strongly influenced the movement 

of the markets. 

Skewness usually refers to the asymmetry of a distribution. A distr ibution that is posi-

tively skewed has a long tai l on the right side of the distr ibution and its mean is typically 

greater than its mean, which in turn, is greater than its mode. Because the mean exceeds 

the median, most of the returns are below the mean, but they are of smaller magnitude 

than the fewer returns that are above the mean. A distributicfn that is negatively skewed 

has the contrary effects. In Figure 5.6 we demonstrate the skewness property of each 

independent component. 
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5.4 Autocorrelation 

Of all the independent components that influence the usd-jap exchange rate, components 

1 and 6 are two major ones. In order to analyze the change characteristics of these two 

factors, we compute their autocorrelation coefficients (AC) by using 21 windows and show 

the simulation results in Figure 5.7, where the solid line represents the autocorrelation 

coefficient of component 1 and the dotted line represents that of component 6. We find 

that during the total computational period, for component 1, usually the AC value is larger 

than 0.9, which means the components in consecutive time steps are highly correlated. 

There is just one value smaller than 0.8, which can be explained that there are some 

big changes happened in this component during this period. For component 6, similarly, 

during most of the time, the AR value is larger than 0.95, there is only one value around 

0.75. The results hint that these two components are highly autocorrelated, some big 

changes suddenly decrease their autocorrelation, such kinds of changes usually represent 

some big events or some market intervention. 

5.5 Rescaled Analysis 

In order to make i t clear whether the change of the exchange rates are controlled by 

the deterministic factors or some random noise factors, we use the rescaled range (R/S) 

analysis. I t is a method that frequently applied to natural phenomena to detect any 

biases in behavior over time. For the observed signal x^, the detailed equations are listed 

as follows: 

to+N 

m(N,to) = J2 rt|N, rt = xt - Xt-i (5.1) 

t = to + l ‘ 

1 io+N 
S{N.to) = { - E [rt-m{N,to)n^ (5.2) 

t = to + l 
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toH 
X(N,to,i)= J2 (rt-m(N,to)), l<i<N (5.3) 

t=to + l 

R(N,to) = maxX(A^, to,i) — mmX{N,to,i) (5.4) 
i i 

[ ^ ) = & l f t S 问 

[R/S](N)^{N)" (5.6) 

The Hurst exponent H is defined as: 

H = log{R/S)/log{N) (5.7) 

As we know, H can range between 0 and 1. An H equal to 0.5 implies pure random walk 

behavior. An H between 0 and 0.5 implies anti-persistent behavior. An H greater than 

..0.5 but less than or equal to 1 implies persistent behavior. Figure 5.8 demonstrates the 

rescaled analysis for the 8 independent components. The simulation results show that 

during most of the time the Hurst exponent of component 1, 3 and 5 are larger than 

0.5, which mean that these three components all show persistent behavior. We have 

mentioned before that the exchange rates of European currencies are mainly influenced 

by these three components, under such cases, naturally here we conclude that the change 

of the European currency are mainly influenced by some persistent change components. 

But for some non-European currency exchange rates, the Hurst exponent of their major 

independent components are less than 0.5, which means that the change of these non-

European currencies are controlled by some anti-persistent factors. This new finding 

tells us the reason why the movement characteristics of European currencies and those of 

non-European currencies are usually different. 
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F i g u r e 5.4: Normalized original USD-AUD data (upper low), the reconstructed signals 
(middle low) by using the first 2 dominant components determined by PCA and ICA 
respectively from left to right, and the corresponding reconstructed signals by the left 
non-dominant components (lower row). 
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Chapter 6 

Conclusion and Fur ther Work 

6.1 Conclusion 

We sort the ICs according their L i norm as shown in (Back and Weigend 1997)，then we 

expand this method as sorting them by Lp norm measurement, we develop a criterion to 

find out the appropriate number of dominant WICs under MSE measurement between 

the original data and the reconstructed data. 

We also determine the dominant ICs order under measurement of the MSE between the 

original data and the reconstructed data. Based on this criterion, we study a Forward 

Selection approach (Lai et al. 1998a) to sort the WICs into a certain order according to 

their dominant values measured by MSE. 

Considering of the different practical needs, we determine the dominant ICs order accord-

ing to the Tendency Error (TE) between the original data and the reconstructed data. 

We study a Backward Elimination Tendency Error (BETE) approach (Lai et al. 1998b) 

to implement this criterion. We also develop a corresponding number determination cri-

terion. 

Experiments show that the dominant WICs obtained by these order-sorting approaches 

and number-determination criteria are better than those heuristically obtained in the MSE 

and T E signal reconstruction. Furthermore, we have noticed that both W I C dominant 
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order and its dominant number vary wi th different measure method used in order-sorting 

approaches and the cost function of number-selection criterion. To obtain an appropri-

ate set of dominant WICs, we suggest the measurement in dominant WICs evaluation, 

dominant order determination and number selection criterion should be consistent. 

Additionally, we have also proposed two heuristic modified implementation algorithms 

based on the original L P M algorithm. Experiments show that these modified algorithms 

can efficiently accelerate the convergence speed. 

6.2 Further Work 

The further work consists of two aspects: 

1. Also our proposed Forward Selection and Backward Elimination Tendency Error 

approaches can determine the suitable dominant ICs and reconstruct the original 

signal well, some other optimized approaches such as branch-and-bound approach 

have not been applied in this aspect. How to find other number-selection criteria 

also need to be further studied. 

2. After we separate out those independent components that influence or control the 

original financial data, characteristic of each independent component should be 

deeply studied, such as their change periodicity, move tendency, correlation between 

different ICs, relation between correlation and volati l i ty, etc. These analysis wil l be 

more benefit in the understanding of the financial markets and help us to make 

correct prediction or other applications. 

t 



Appendix A 

Fast Implement of L P M 
Algor i thm 

A.1 Review of Selecting Subsets from Regression Variables 

The problem of determining the "best" subset of regression variables has long been of 

interest to applied statisticians and received considerable attention in the statistical l i t-

erature, especially during 1960 and 1970 periods. .Usually linear models and the least 

squares criterion are considered. In (Miller 1984), reasons of using only some of the 

‘var iab les or possible predictor variables are explained: 

(1) to estimate or predict at lower cost by reducing the number of variables 

(2) to predict accurately by eliminating uninformative variables 

(3) to describe a multivariate data set parsimoniously 

(4) to estimate regression coefficients with small standard errors 

Algori thms for finding best-fitt ing subsets of variables to a set of data requires a search 

strategy and a computational algorithm. Garside (1971) and others have proposed meth-

ods for generating the residual sum of squares for all subsets of all sizes. They use 

Gauss-Jordan methods operating upon sums of squares and product matrices. Alterna-

80 
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tively, the planar-rotation algorithm of Gentleman (1973, 1974) can be used to change 

the order of variables within a triangular factorization, as described for instance by Elden 

(1972), Hammarling (1974) and Clarke (1981) 

Apparently an exhaustive search can be very time consuming if a large number of possible 

subsets have to be examined. Under such cases, some more efficient methods based on the 

procedure of sequentially introducing the variables into the model have been proposed. 

Two of them are called Forward Selection and Backward Elimination (Efroymson, 1966 

or Draper and Smith, 1966). Forward Selection method starts wi th no variables in the 

equation and adds one variable at a time unti l either all variables are in or unti l a stopping 

criterion is satisfied. The variable considered for inclusion at any step is the one yielding 

the largest single degree of freedom F - r a t i o among those eligible for inclusion. Backward 

Elimination method starts with all variables are included in the equation, variables are 

eliminated one at a time. A t any step, the variable wi th smallest F - r a t i o as computed 

from the current regression, is eliminated if this F - r a t i o does not exceed a specified value. 

Some combination of these two methods have also been proposed, the most popular one is 

described by Efroymson (1960), which is a variation on forward selection. In this method, 

after each variable (other than the first) is added to the set of selected variables, a test is 

made to see if any of the previously selected variables can be deleted without appreciably 

increasing the residual sum of squares. Forward selection and the Efroymson algorithm 

can be used when there are more predictors than observations, while backward elimination 

is usually not feasible in such cases. 

An alternative to the Efroymson algorithm, which often finds better-f i t t ing subsets, is 

that of replacing predictors rather than deleting them. Suppose that we have 26 potential 

predictors denoted by the letters A to Z and currently we are looking for subset of four 

predictors. We can start wi th for example the subset ABCD. We can consider first replace 

predictor A from the remaining 22 which gives the smallest'residual sum of squares in a 

subset wi th B, C and D. If no reduction can be obtained then A is not replaced. Then 

we can t ry replace B, then C, then D and then back to the new first predictor, continuing 

unti l no further reduction can be found. 
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Many variations on the basic replacement algorithm are used. A variation is to find the 

best replacement for A, but not to make the replacement. Similarly the best replacements 

for B, C and D are found but only the best of the four replacement is implemented. The 

process is repeated unti l no further improvement can be fund. A sequential replacement 

algorithm is possible, that is i t is carried out sequentially for one, two, three, four pre-

dictors, etc., taking the final subset of p - 1 predictors plus one other predictor as the 

starting point for finding a subset of p predictors. Another variation is to use randomly 

chosen starting subset of each size, which is particularly useful when there is a large num-

ber of predictors. Replacement methods require more computation than forward or the 

Efroymson algorithm, but i t is stil l feasible to apply to problems wi th several hundred 

variables when subsets of up to 20-30 variables are required. 

Some automatic methods start by finding the simple correlations between the predictand 

and each of the predictors, and then check scatter diagrams for those predictors with the 

largest correlations. This may reflect the need for a transformation, or adding polynomial 

terms, or the presence of outliers. After selecting one predictor, the process is repeated 

using the residuals from fitting this predictor, continuing unti l nothing more can be seen in 

the data. This approach is a extension of forward selection and suffers from the weakness 

of that method. A formalized version of th is approach has been called "projection pursuit" 

by Friedman and Stuetzle (1981). 

One technique which has attracted a considerable attention is the ridge regression tech-

nique of Hoerl and Kennard [1970a,b]. They suggested that using all the available 

variables, biased estimators, 6(c?), of the regression of coefficients may be obtained by 

b{d) = {X'X + dI)~^X'Y for a range of positive values of the scalar d. They recom-

mended that the predictor variables should first be standardized to have zero mean so 

that the sum of squares of elements in any column of X should be one, such that X'X 

should be replaced wi th the correlation matr ix, h(d) is plotted against d, this plot was 

termed the 'ridge trace'. Visual examination of the trace usually shows some regression 

coefficients which are 'stable', that is they only change slowly and others either decrease 

or change sign rapidly. The latter variables are then deleted. Usually this method wil l 

tend to select those variables which both yield regression coefficients wi th the same sign 
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in single variable regressions and which show up early in forward selection. 

The branch-and-bound technique is particularly valuable in reducing the number of sub-

sets to be considered when there are "dominant" predictors such that there are no subsets 

which fit well that do not contain them. Suppose that we are looking for the subset of 

5 variables out of 26 which gives the smallest RSS, Let the variables be denoted the 

letters A-Z. We could divide all the possible subsets into two branches, those which con-

tain variable A and those which do not. Wi th in each branch we can have sub-branches 

including and excluding variable B, etc Now suppose we have found a subset of five 

variables containing A or B or both which give RSS=100. If we start to examine that 

sub-branch which excludes both A and B. A lower bound on the smallest RSS which can 

be obtained from this sub-branch is the RSS for all of the other 24 variables. If this lower 

bound is larger than 100 then no subset of 5 variables from this sub-branch can do better 

than this, so this whole sub-branch can be skipped. 

This technique has been first used in subset selection by Beale, Kendall and Mann (1967), 

and by Hocking and leslie (1967). I t is further exploited by LaMotte and Hocking (1970). 

This method has the advantage of exhaustive search that guarantee to find the best-fitting 

subsets and meanwhile it also greatly reduce the computational time by skipping some 

subsets in the searching process. This method can be applied wi th advantage wi th most 

other criteria of goodness-of-fit. One such application has been made by Edwards and 

Havranek (1987) to derive so-called minimal adequate sets. 

Gorman and Toman (1966) proposed a procedure based on a fractional factorial scheme 

in an effort to identify the better models wi th a moderate amount of computation. For 

the same purpose, Barr and Goodnight (1971) in the Statistical Analysis System (SAS) 

regression program proposed a scheme based on maximum-i^^-improvement. This is es-

sentially an extension of the stepwise concept but the search is more extensive. For 

example, to determine the best p-term equation, start ing wi th a given p-1 term equation, 

the currently excluded variable causing the greatest increase in R^ is adjoined to that 

subset. Given this subset, a comparison is made to see if replacing a variable by one cur-

rently excluded wil l increase R \ then the best switch is made. This process is continued 
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unti l i t is found that no switch wil l increase R^. The resulting p-term equation is thought 

as the best, but this subset can be inferior to the one determined by SELECT. 

We have already known the least squares L2 is usually used as the major criterion in 

selecting subset of regression variables. Besides, many other criteria have been proposed. 

These criteria are stated in terms of the behavior of certain functions of the variables 

included in the subsets. Many of these criteria functions are simple functions of the resid-

ual sum of square for the p-term equation denoted by RSSp. The Li criterion is used 

as an alternative to the L2 criterion for its resistance to outlier in the data. The fram-

ing of the L i estimation problem as a linear program by Charnes, Cooper and Ferguson 

[1955], made L i estimation computationally feasible and allowed for the derivation of a 

number of properties of the L i estimates. A number of modifications of linear program-

ming algorithms, such as that by Barrodale and Roberts (1974), have been devised to 

enhance the computational efficiency of L i estimation. Roodman (1974) gives a partial 

enumerative search procedure using a simplex algorithm wi th upper and lower bounds on 

the coefficients to specify the subset of variables being considered at each stage. Narula 

and Wellington (1976) describe an all-subsets procedure that uses both a primal and a 

dual simplex algorithm along wi th a pre-optimality check to move rapidly to the best 

subset. Hanson (1977) incorporated an implicit enumeration scheme wi th fathoming di-

rectly in the Barrodale and Roberts (1974) procedure. The resulting algorithm is very 

fast in finding the best subset. Narula and Wellington (1977，1979) and Wellington and 

Narula (1981) have presented an algorithm for finding the best-f i t t ing subsets of regres-

sion variables based on the criterion that of minimizing the sum of absolute deviations. 

Some other criteria including log-liner model that f i t t ing to categorical data( Goodman 

1971; Brown, 1976), in which the measure of goodness-of-fit is either a log-likelihood or 

a chi-square quantity. Other measures which have been used in subset selection have 

included that of minimizing the maximum deviation from the model, known simply as 

minimax f i t t ing or as Loo fitting. 
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A.2 Unconstrained Gradient Based Optimization Methods 
Survey 

Optimization techniques have been widely used in neural networks fields. Usually, the 

objective is to minimize a cost function (also called an error function or an energy function) 

by using some iterative methods. Of all the different methods, the gradient descent 

algorithm is the most basic one, in which the gradient of the specified cost function with 

respect to its parameters are computed. This algorithm has been used in many neural 

networks problems, for example, the popular back-propagation problem. Although this 

algorithm has the advantage of simple and easy to implement, but its drawback of slow 

convergence is also very apparent and impede its application in practical problems. Up 

to date, many modified algorithms aiming at fast implementation have been proposed. 

Different from the gradient descent algorithm that use only the first derivatives of the cost 

function, the Newton method directly incorporate the Hessian matr ix (second derivatives 

of the cost function). This method lias the fast convergence speed than the gradient 

descent algorithm if the init ial point is close to the optimal point. But i t also has some 

disadvantages. First, i t requires a good init ial estimate of the solution, which is usually 

not available in many cases. Further, each iteration requires the computation of the 

Hessian matr ix and also its inverse, which often introduces computational difficulties and 

singular problems. Finally, for a non-convex function, this method can converge to a local 

maximum, saddle point or minimum (Becker and LeCun 1988). 

Also Newton method may converge faster than gradient descent method by taking into 

account additional information about the cost function, however, for many connectionist 

problems, the Hessian matr ix is too large to compute and too expensive to invert. An 

approximation of the Hessian matr ix is used by only considering its diagonal term (Becker 

and LeCun 1988). Since this approximate Hessian has only diagonal elements, i t is not 

only tr iv ial to invert, and the diagonal approximation can capture most of the curvature 

information. 

Quasi-Newton technique combine Newton's method wi th some other convergent algorithm 
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and overcome many of the drawbacks described above. One of the best techniques is the 

Broyden-Fletcher-Goldfarb-Shanno algorithm (Bat t i t i and Masulli 1990). This algorithm 

is stable since the searching direction is always a descent direction. Also the evaluation 

of second-order derivative is not needed since the positive definite approximations of the 

inverse Hessian matr ix can be obtained solely from gradient information. On the other 

hand, the storage requirement are extremely large for problems wi th large number of 

variables. 

The conjugate gradient method compute the actual search direction as a linear combi-

nation of the current gradient vector with the previous search directions. Such kind of 

method requires much less storage than the Quasi-Newton method. Also they require an 

exact determination of the learning rate and some other parameters in each iteration step. 

Moreover, the conjugate gradient methods require approximately twice as many gradient 

evaluations as the Quasi-Newton methods, but they save time and memory needed for 

computing inverse of the Hessian matr ix for large problems. 

Moller (1993) proposed a scaled conjugate gradient algorithm. This method is fully-

automated, include no critical user-dependent parameters and avoids a t ime consuming 

line search that is often used to to determine the step size in each iteration. Simulation 

results show that this method have much fast convergence speed than conjugate gradient 

and BFGS methods. 

In most of the optimization methods, the learning rates are usually chosen arbitrari ly. 

This naturally arise many drawbacks. One simple way to improve the learning process 

is to smooth the weight changes by adding the momentum term. The momentum factor 

can determine the relative contribution of the current and past partial derivatives to the 

current weight change. When consecutive derivative of a weight possess the same sign, 

the weight is adjusted by a large amount which wil l accelerate the convergence process. 

Similarly, when consecutive derivative of a weight possess opposite signs, the weight is 

adjusted by a small amount which can avoid the algorithm from oscillation (Jacobs 1988). 

LeCun et al (1993) proposed a technique of computing the opt imal learning rate in gra-

dient descent algorithm. By using this scheme, only the principal eigenvalues and eigen-
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vectors of the objective function's second derivative matr ix need to be computed, not the 

Hessian matr ix itself. This wil l greatly decrease the computational time and complexity. 

The opt imal learning rate is estimated to be the inverse of the largest eigenvalue of the 

Hessian matr ix. 

As we know, usually the learning process covers the whole data size, but because we can 

not avoid that some data are contradictory and some are redundant. In this case, i t wil l 

take us a long time to finish the training process. Zhang (1994) implemented the learning 

on an increasing number of selected training examples, start ing wi th a small training set. 

Experiments show that such kind of incremental learning can speed up the convergence 

and achieve a reasonable performance. In this paper, not only the criterion of selecting 

the crit ical example is proposed, but also an efficient method of scheduling their training 

order is given out. 

Yu et al. (1995) proposed an efficient method to derive the first and second derivatives of 

the objective function wi th respect to the learning rate. Several learning rate optimization 

approaches are proposed based on linear expansion of the actual outputs and line searches 

wi th suitable descent values and Newton-like methods. Yu and Chen (1997) proposed 

several approaches to accelerate the back-propagation learning procedure by dynamically 

updating the learning rate and the momentum factor. Optimizat ion of learning rate was 

considered by using the first two derivative information of the cost function wi th respect 

to learning rate. 

Some other heuristical methods of adaptively updating the learning rates have also been 

proposed, such as Delta-Bar-Delta algorithm (Jacobs 1988),Super SAB algorithms (Fahlman 

1988; SchifFman 1992)，Search-Then-Converge algorithm (Darken et al. 1990，1992), Av-

eraging algorithm (Polyak 1990), RPROP algorithm (Riedmiller and Braun 1992) and 

Quickprop algorithm (Fahlman 1988; Lebiere and Lebiere 1990; Veitch and Holmes 1991). 

Salomon and Hemmen (1996) presented a dynamic self-adaptation genetic algorithm to 

accelerate steepest descent as i t is used in iterative procedures. The basic idea is to take 

the learning rate of the previous step and increase or decrease i t slightly, to evaluate the 

cost function for both new values of the learning rate and select the one that has the lower 
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cost function value. The dynamic self-adaptation algorithm is composed of two steps start 

wi th a mutation of comparing the new value with the previous one and select the best 

one, in which gradient descent algorithm can be performed without normalization or with 

normalization. 

V i t tha l et al. (1995) modified the gradient descent algorithm by adding the integral and 

derivatives terms of the gradient. I t can be seen through an appropriate tuning of the 

proportional-integral-derivative (PID) parameters. By using this method, the convergence 

rate can be greatly improved and the local minima can also be overcome. In this paper, the 

principle of how to appropriately tune the PID parameters and an "integral suppression 

scheme that effectively uses the PID principles are all proposed. 

Baba et al. (1994) proposed a new algorithm which combines the modified BP method 

and the random optimization method of Solis and Wets (1981) to find a global minimum of 

the total error function of a neural network in a small number of steps. As the original BP 

method is based on the steepest descent method, which is one of the simplest optimization 

algorithm in the field of nonlinear programming that uses a fixed step size that does 

not perform line searches, so it cannot ensure convergence even to a local minimum 

of the objective function. In this paper, a new modified BP method is proposed that 

uses conjugate gradient method and performs a line search using quadratic polynomial 

approximation o f the total error function in the search direction. To prevent the algorithm 

from stopping on a local minimum of the total error function, the random optimization 

method that ensures convergence to a global minimum of the objective function in a 

compact region is combined wi th the modified BP method to form the hybrid algorithm. 

A.3 Characteristics of the Original LPM Algorithm 

We recall that the original L P M algorithm (Xu et aI. 1998) is mainly implemented by 

using the natural gradient method to tune W and the gradient descent algorithm to 

tune other parameters. Unlike the famous F F T algorithm, in which the properties of the 

triangular function's periodicity and odd-even characteristic o f the number of the data are 
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fully made use of and directly result in the great simplification of the computation process, 

here the consideration of periodicity and whether the number of the mixture or the number 

of data points is odd or even does not make effect. Besides, the observed signals are time 

series, they can not be separated into several parts and computed independently, so the 

parallel algorithm is not suitable to be adopted. Moreover, when W is a n x n matr ix, 

the Hessian matr ix of the cost function J(W) is a n? x n^ matr ix. For high dimension 

cases, i t is prohibitive in computing, even if we can make some approximation and do not 

need to really calculate the inverse of Hessian matrix, usually i t is sti l l unworkable owing 

to the complexity of the cost function. 

A.4 Constrained Learning Rate Adaptation Method 

In the original L P M algorithm (Xu et al. 1998), the natural gradient algorithm (Amari 

et al. 1996) has been extensively used to optimize the related parameters and shows fast 

convergence speed than the gradient algorithm. However, in practical application, such as 

the analysis of the independent components that influence the financial markets, usually 

there are multiple source signals. From the experience of my work in using this algorithm 

in high dimension source signal cases, the convergence speed is unsatisfactory. Naturally, 

a question is proposed: whether we can make some modification to this algorithm and let 

i t sti l l perform well in solving practical problems that wi th high dimension source signals. 

In this section, we present our first modified method, the Constrained Learning Rate 

Adaptation Method. The main purpose is to adjust the de-mixing matr ix W wi th adap-

tively adjusting the learning rate in each iteration. Under same conditions, experiments 

have been made to compare the modified algorithm wi th the original algorithm. 

As regards to the gradient descent algorithm, the iteration* equation at k + 1 step is 

Wk+i = Wk + m ^ W k (A.1) 

J (Wk+ i ) = m m J ( W k ^ 7 ] A W k ) (A.2) 
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The cost function at k + 1 t ime step is: 

J ( W k + i ) = - \ o g \ d e t W k + i \ - j 2 ^ o g g , ( y , ) (A.3) 
i = i 

From 

d e t H W = _ t " ^ i i wn + lAwu 
w21 + 7]Aw21 w22 + r]^w22 

=arf^ + brj + c 

where 

a = Aw11Aw22 — Aw12Aw21 

b = IS.W11W22 + /^W22Wu - d^W12W2i - /S,W2iWi2 

C = W11W22 一 Wi2W2l 

So we can get 

^e tW^AH" i | I。 M “ 、 
‘ 御 奸 1 1 = | 2 ( ^ 7 + & | (A.5) 

and 

二％讀書.為+1 = 0 (A.6) 
t 

In the second part of J(Wk+i), yi should be the output value at k + 1 step, under such 

cases, the derivative of the cost function is too diff icult to be calculated out, so here we 

use an approximation, this is, we assume the output value at two consecutive t ime step, k 

t ime step and k + 1 t ime step are very similar, thus for the derivative of the cost function 
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at k + 1 time step, we use the output value at k time step to approximate its value. We 

define h{y)'AW • X = m, then we have 

|2tt7/ + 6| + m • a"2 + br] + c = 0 (A.7) 

Here we assume 2ar| + b and anf + br) + c are all larger than zero. 

The formula is simplified as 

marj^ + (mb + 2a)7̂  + mc + b = 0 (A.8) 

This is a quadratic equation. We can figure out the two roots. 

-(mb + 2a) + \J(mb + 2a)^ - Ama(mc + b) 
�1 : 2ma (A-9) 

-{mb + 2a) - ^J(mb + 2a)^ — 4ma{mc + 6) 
”2 2ma 

and their simplified forms are 

_ -{mb + 2a) + y/m^(b^ - 4ac) + Aa^ 
… 2ma 

一 —(mb + 2a) — y/m^ (b^ — 4ac) + 4a^ 
仍 2ma 

From the two roots r j i and 772, we choose the real part of- the smaller root and take its 

absolute value as 77. 

After simplify and solve out the above quadratic equation, we can have two roots, here 

we choose the real part of the smaller one. In order to prevent the computation from 

overflowing, we give a selecting criteria in the determination of the learning rate, that is 
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if rj < N 
77 = n * 7? 

else (A-10) 

V=Vo 

In the experiment, we choose N = 0.8, n = 0.01, rj�is fixed at 0.0001. 
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F i g u r e A . 1 : Method 1 (solid) and old method (dotted) with 2 sub-Gaussian signals for 
30,000 data 

Experiment Results 

The performance of the separation is determined by how close to PD the matr ix V = WA 

is. The element V{j represents the amplitude of source Sj goes into recovered signal y j 

and vfj represents the power. The greatest vf j in a row in V is regarded as the power of 

the signal and the sum of other vf^ of the same row is regarded as the power of the noise. 

Here we defined the following noise-to-signal power ratio of channel i as the performance 

index of source separation. 
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F i g u r e A . 2 : Method 1 (solid) and old method (dotted) wi th 1 sub-Gaussian and 1 speech 
signal for 30,000 data 

N|Si = 10 * log 1 0 ( ¾ ^ ^ ) , k = argmaxi ;^ (A.11) 
”ik ‘ 
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Initialization 

We have made experiments to compare the convergence speed between our modified 

algorithm and the original algorithm. For the original algorithm, the learning rates of W, 

T, a, b are kept at 0.0001, 0.001’ 0.01’ 0.001 respectively. For the modified algorithm ’ the 

learning rates of 7 , a, b are the same as those of the original algorithm, but the learning 

rate of W is adjusted adaptively according to the new criterion. The initialization of 

other parameters of these two algorithms are all the same. W is initialized as an identity 

matr ix. The mixing matr ix A is set as 

. ‘ 1 0.6 ‘ , \ 
4 = 0.7 1 (A.12) 

A l l 7i j are initialized as 0.25. Al l bij elements are initialized in the range of (0.5,15). Al l 

ai j elements are initialized as 0. Four components are used in the mixture of densities. 
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Experiment Results on LPM Algorithm 

In tr ial 1, 2-channel artificially generated independent and identically distributed signals 

wi th uniform distribution in [-1, 1] are used. In tr ial 2, we use one uniform distributed 

sub-Gaussian signal and one super-Gaussian speech signal which is recorded from a man 

telling a story. Each channel consists of 30000 data points. The performance graphs of 

tr ial 1 and 2 are plotted in Figure A.1 and Figure A.2. From the simulation results we see 

that if we can suitably choose related parameters (such as m and n), then the learning 

rate of W can be automatically adapted in each iteration, and the convergence rate are 

accelerated. 

In tr ia l 3, the observed signals are the mixture of one normal distributed Gaussian source 

signal and one super-Gaussian speech signal. After scanning for 20000 data points, a 

snapshot of matr ix V{V = W * A) (here we denote it V^l) from our modified algorithm is 

= [ 0 . 5 4 8 2 0.0324 1 
-0.0118 0.8982 *^A_i~ 

A snapshot of matr ix V (here we denote it V2) from the original algorithm is 

y [ 0.7975 0.3396 1 
= [ — 0 . 0 1 1 7 0.7021 J (A.14) 

The average signal-to-noise ratio is 31.10 (dB) and 21.49 (dB) respectively. 

In tr ia l 4, the observed signals are the mixture of two super-Gaussian speech signals. 

After scanning for 30000 data points, a snapshot of matr ix V (we denote it V1) from our 

modified algorithm is 

y ^ 二 [ 1.9201 -0.0134 1 
— - 0 . 0 2 2 8 0.8288 (A.15) 

一 • 
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A snapshot of matr ix V (we denote it V2) from the original algorithm is 

T,n - 1.0625 -0.0044 ‘ , • 、 

M = _ 0 . 2 1 2 4 0.7544 (九叫 

The average signal-to-noise ratio is 37.17 (dB) and 29.34 (dB) for our modified algorithm 

and the original algorithm respectively. 

In order to observe and compare the actual separation performance of our modified 

method and the original method, corresponding to tr ial 3 and 4, in Figure A.3 and Figure 

A.4, we separately list the source signals, the mixture signals, the separated signals by 

modified method and the separated signals by the original method 

Experiment Results on Fixed Nonlinearity 

As shown before, fixed nonlinearity function also can separate some particular source 

signal. In the following experiments, we test the separation ability of our modified algo-

r i thm and the original algorithm within same training process, by other words, to test 

their convergence speed on fixed nonlinearity respectively. 

In tr ia l 5’ we use the nonlinearity hi{yi) = - y i ^ on two sub-Gaussian source signals. 

After scanning for 30000 data points, a snapshot of matr ix V (we denote it V I ) from our 

modified algorithm is 

Y = 2.7818 -0.0168 1 
— 0 . 0 1 7 8 2.6965 (A. l?) 

• • 

A snapshot of matr ix V (we denote it V2) from the original algorithm is 

V2 = [ 2-9506 0.0659 1 
: [ 0 . 1 8 0 9 2.9174 J (A.18) 
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The average signal-to-noise ratio is 44 (dB) and 28.59 (dB) for our modified algorithm 

and the original algorithm respectively. 

In tr ial 6, the nonlinearity function h “ y ‘ ) = - y i " 3 are used on two super-Gaussian speech 

signals. After scanning for 30000 data points, a snapshot of matr ix V (we denote it F1) 

from our modified algorithm is 

一 [ 4 . 6 6 4 7 0.0098 1 

二 [ -0.0207 1.8332 J (A.19) 

A snapshot of matr ix V (we denote it V2) from the original algorithm is 

= [ 4 . 5 3 7 0 0.0369 1 
0.1470 2.3859 ( uj 

The average signal-to-noise ratio is 46.25 (dB) and 33 (dB) for our modified algorithm 

and the original algorithm respectively. 

In tr ial 7, we use the nonlinearity hi{yi) = 1 - 2logsig{yi) on two super-Gaussian speech 

source signals. After scanning for 30000 data points, a snapshot of matr ix V (we denote 

is VI) from our modified algorithm is 

y ^ [ 15.4118 -0.0141 1 
— [ - 0 . 0 4 9 2 5.2662 J (A.21) 

A snapshot of matr ix V (we denote i t V2) from the original algorithm is 

V2 = [ 3.5174 0.8363 1 
_ [ 0.6984 2.5532 (A.22) 
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The average signal-to-noise ratio is 50.68 (dB) and 11.87 (dB) for our modified algorithm 

and the original algorithm respectively. 

A.5 Gradient Descent with Momentum Method 

In last section we propose a criterion for the adjustment of the learning rate in each 

iteration, but as we know, with the increase of the dimension number, the formula for 

solving out the learning rate also becomes much more complicated, so this criterion is not 

suitable for high dimension cases. Naturally we turn to another possibility of improving 

the algorithm, that is how to modify the searching direction pk at kth iteration, which 

enables us to speed up the convergence rate. 

For the gradient descent algorithm, we have the following iteration equation, 

Wk+i = Wk + T]kPk (A.23) 

Vk is the learning rate, pk = -VJ(Wk) is the negative gradient o f the cost function J{W) 

at Wk. Because the steepest descent direction of J(W) at Wk is its negative gradient 

direction, so at Wk+u the gradient of J(W) along this direction should be zero, that is 

^ ^ J { W k + 7]Pk)lr,=ri,=0 (A.24) 

or 

VJ{Wk+ifpk = 0 (A.25) 

which means that the gradient of J{W) at Wk+i is perpendicular to the searching direction 

Pk- In other words, the searching directions between two continuous iteration steps are 
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perpendicular. Now that have such a conclusion, we can assume that the value of Wk+i 

not only has relation wi th the searching direction at kth i terat ion, but also has relation 

w i th the searching direction two consecutive t ime steps before. The iteration equation is 

wr i t ten as 

^k+i = Wk + i]kPk + Vk-iPk-i + Vk-2Pk-2 (A.26) 

For high dimension cases, we find that our proposed modified method performs better 

than the original gradient descent w i th momentum algori thm of considering searching 

direction just one t ime step before. 

Experiment Results on Two-Dimension Cases 

In order to test whether such assumption can speed up the convergence, we also have made 

experiments between our modified algori thm and the original algor i thm. The learning 

rates of W, 7 ’ a, b are kept at [0.0001, 0.001’ 0.01’ 0.001]. The init ial izations of other 

parameters are the same as those used in the last section. 

In t r ia l 8, the observed signals are the mixture of one uniformly distr ibuted sub-Gaussian 

source signal and one super-Gaussian speech signal. For the modified algor i thm, after 

convergence, a snapshot of mat r ix V (here we denote i t V I ) 

y [ 1.3512 0.0238 1 

— [ - 0 . 0 0 1 1 2.0102 J (A.27) 

Meanwhile, a snapshot of mat r ix V (here we denote i t V2) f rom the original algor i thm is 

^2 二 [ 1-0308 0.0459 1 
_ [ -0 .0087 1.1305 (A.28) 

The average signal-to-noise rat io is 50.16 (dB) and 34.66 (dB) for our modified algori thm 

and the original a lgor i thm respectively. 
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In tr ial 9, we use one normally distributed Gaussian signal and one super-Gaussian speech 

signal as two source signals. For the modified algorithm, after convergence, a snapshot of 

matr ix V (we denote it VI) 

= [ 0 . 6 2 7 0 0.0197 ] 
= - 0 . 0 0 6 5 1.8962 (A.29) 

Meanwhile, a snapshot of matr ix V (we denote it V2) from the original algorithm is 

一 [ 0 . 7 8 0 2 0.3454 1 
二 [ -0.0089 1.1598 J (A.30) 

The average signal-to-noise ratio is 39.68 (dB) and 24.69 (dB) for our modified algorithm 

and the original algorithm respectively. 

Corresponding to tr ia l 8 and 9, in Figure A.5 and Figure A.6, we separately list the source 

signals, the mixture signals, the separated signals by modified method and the separated 

signals by the original method. 

Besides, we have also made experiments under the cases of source signals are two uni-

formly distributed sub-Gaussian signals and two super-Gaussian speech signals. The per-

formance graph is shown in Figure A.7 and Figure A.8 respectively, in which the solid line 

represents the signal-to-noise ratio curve of our modified algorithm, contrarily, the dotted 

line represents that of the original algorithm. We can see that compared wi th the original 

algorithm, when we put the previous two step's searching direction into consideration, 

actually the convergence rate can be improved. 

Experiment Results on Eight-Dimension Cases 

This modified method also can be extended to high dimension cases. We also have made 

experiments to compare the convergence performance between our modified method and 
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the original method under such cases. The learning rates of W, 7 , a, b are kept at [0.0001, 

0.001, 0.01, 0.001]. The initializations of other parameters are the same as those used in 

the last section. The mixing matrix A is set as 

“0.6 0.6 0.3 0.2 0.3 0.2 0.1 0.4 “ 
0.7 0.6 0.5 0.4 0.1 0.4 0.3 0.2 
0.1 0.3 1.0 0.6 0.2 0.4 0.5 0.3 
0.4 0.5 0.2 1.0 0.7 0.6 0.3 0.2 

= 0 . 4 0.2 0.1 0.5 1.0 0.7 0.5 0.4 (A.31) 
0.2 0.3 0.1 0.6 0.5 1.0 0.6 0.4 
0.2 0.4 0.3 0.5 0.1 0.4 1.0 0.3 

_ 0.5 0.6 0.3 0.7 0.1 0.2 0.4 1.0 _ 

In tr ial 10, 8-channel uniform distributed sub-Gaussian signals are used. For the modified 

algorithm, after convergence, a snapshot of matrix V (we denote i t VI) 

• - 0 . 0 1 1 3 0.8765 - 0 . 0 0 7 8 -0.0384 0.0273 -0.0154 0.0398 —0.0405 _ 
1.4953 0.0068 0.0107 0.0121 0.0040 -0.0166 0.0115 0.0185 

-0.0008 0.0056 2.4763 0.0117 - 0 . 0 0 2 3 0.0120 0.0048 -0.0114 
y ^ = —0.0039 0.1213 -0.0126 1.8131 0.0017 0.0163 -0.0127 0.0281 

_ -0.0127 -0.0596 0.0080 0.0247 2.2034 —0.0044 0.0178 -0.0017 
‘ -0.0069 0.0076 -0.0148 0.0157 -0.0053 2.0113 -0.0092 0.0074 

0.0071 0.0252 - 0 . 0 0 6 0 -0.0197 0.0082 -0.0029 2.0963 0.0046 
. 0 . 0 0 0 2 0.0437 -0.0132 0.0124 0.0071 -0.0244 -0.0143 2.1597 

(A.32) 

Meanwhile, a snapshot of matrix V (we denote i t V2) from the original algorithm is 

4 
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“ - 0 . 0 8 2 7 0.5603 0.0366 -0.1758 0.0770 -0.0058 - 0 .0089 -0.0499 ‘ 
0.9035 0.1073 0.0695 -0.0846 -0.0729 0.0376 0.0023 -0.0841 

-0.0894 0.0098 1.8277 0.2743 0.0256 0.0957 0.0639 0.0389 
^ 2 ^ 0-0357 0.3972 -0.1525 1.0227 0.0791 -0.0192 -0.0678 -0.3028 

— 0.1984 —0.1978 —0.0255 0.0196 1.5069 0.1208 0.0751 0.1212 
-0.0792 0.0050 -0.0647 0.0436 -0.0629 1.3417 -0.0027 0.0510 
0.0187 0.1305 -0.0412 0.0135 -0.0271 -0.0129 1.4896 -0.0419 

_ 0.2085 0.2681 -0.0604 0.3047 -0.1227 -0.0754 0.0005 1.3817 
(A.33) 

In tr ial 11’ we use 7-channel uniform distributed sub-Gaussian signals together with one 

speech signals. For the modified algorithm, after convergence, a snapshot of matrix V 

(here we denote i t V I ) 

“ 0 . 0 0 2 9 0.8721 -0.0017 -0.0217 0.0200 —0.0131 -0.0073 -0.0468 “ 
1.5173 -0.0098 -0.0158 0.0341 -0.0070 0.0070 -0.0098 0.0323 

-0.0021 0.0046 2.4735 - 0 . 0 0 5 9 -0.0048 -0.0045 -0.0189 -0.0526 
^ 1 = - 0 . 0 0 7 9 0.0842 0.0037 1.8998 -0.0061 0.0147 -0.0213 0.0599 

一 -0.0064 —0.0447 0.0101 -0.0023 2.2482 0.0119 0.0030 -0.0006 

—0.0055 0.0020 - 0 . 0 2 8 8 - 0 . 0 1 9 3 - 0 . 0 0 2 3 2.0720 - 0 . 0 1 5 2 -0 .0210 
0.0074 0.0280 0.0300 0.0286 0.0270 0.0153 2.1384 -0.0222 

_ 0.0193 0.0145 0.0039 0.0276 -0.0122 0.0149 —0.0012 9.1458 
(A.34) 

Meanwhile, a snapshot of matrix F (here we denote it V2) from the original algorithm is 

- - 0 . 0676 0.5641 0.0229 -0.1692 0.0833 0.0078 - 0 . 0 3 5 5 -0.0011 “ 
0.8958 0.1084 0.0312 -0.0452 -0.0658' 0.0308 -0.0225 —0.0436 

-0.0786 0.0100 1.8400 0.2507 0.0393 0.0753 0.0504 -0.0422 

^ 2 = 0.0272 0.3943 -0.1200 1.0835 0.0610 -0.0067 -0.0787 0.0435 
— 0 . 2 1 7 5 -0.2081 -0.0240 - 0 . 0 0 2 9 1.5071 0.0841 0.0695 -0.0091 

-0.0665 0.0018 -0.0619 0.0096 -0.0457 1.3856 - 0 . 0 0 1 7 —0.0156 
0.0089 0.1403 -0.0118 0.0370 -0.0246 0.0070 1.4882 —0.0433 

_ 0.0307 0.0262 0.0065 - 0 . 0 0 1 5 - 0 . 0 1 2 1 0.0083 —0.0084 3.5756 
(A.35) 
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The performance graphs of tr ial 10 and 11 are shown in Figure A.9 and Figure A.10. The 

simulation results demonstrate that our modified algorithm actually performs better than 

the original algorithm. 
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Figure A.3: Experiment results in trial 3, we list the orIginal source signals (first two 
rows), mixed signals (3 and 4 rows), separated source signals by modified method 1 (5 
and 6 rows) and separated source signals by original method (last two rows) 
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_2 ' 1 1 1 1 I I I I I 
0 200 400 600 800 1000 1200 1400 1600 1800 2000 

F i g u r e A . 4 : Experiment results in tr ial 4’ we list the original source signals (first two 
rows), mixed signals (3 and 4 rows), separated source signals by modified method 1 (5 
and 6 rows) and separated source signals by original method (last two rows) 
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F i g u r e A . 5 : Experiment results in tr ial 8, we list the original source signals (first two 
rows), mixed signals (3 and 4 rows), separated source signals by modified method 2 (5 
and 6 rows) and separated source signals by original method (last two rows) 
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F i g u r e A . 6 : Experiment results in t r ia l 9’ we list the original source signals (first two 
rows), mixed signals (3 and 4 rows), separated source signals by modified method 2 (5 
and 6 rows) and separated source signals by original method (last two rows) 



APPENDIX A. FAST IMPLEMENT OF LPM ALGORITHM 108 

0| r- 1 1 r- 1 1 1 

• ^ ^ " ^ ^ ^ ^ ^ . . . . . . . . . . . . . -

-20 - \ .,-

-30 - ^ ^ ^ " " ^ r ^ -
I v ^ - v ^ _ _ ^ 

- 5 o ' ‘ ‘ ' ' ' 1 1 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 

0 I I 1 I I 1 1 T 

- 1 0 - ~ ' ' ~ " ~ ~ ~ ~ ~ ^ \ ^ ^ 

-20 - ~~~~-、 ~\^ -

- 3 0 - ^ ^ ~ ~ A _ - _ _ _ _ 

—4�. V _ 
- 5 0 - V -

-60' 1 1 1 1— 1 I I 
0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 

F i g u r e A . 7 : Method 2 (solid) and original method (dotted) wi th 2 sub-Gaussian signals 
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