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Abstract 

Efficient and accurate information retrieval is one of the main issues in multimedia 

databases. In content-based multimedia retrieval databases, contents or features 

of the database objects are used for retrieval. To retrieve similar database objects, 

we often perform nearest-neighbor search. A nearest-neighbor search is used to 

retrieve similar database objects with features nearest to the query under the fea-

ture vector space with a given distance function (similarity measurement). The 

result of the nearest-neighbor search is often a natural cluster of data. Currently, 

many of the indexing methods do not utilize this data cluster information in the 

construction of the indexing structure which leads to performance degradation. 

To improve the retrieval performance, we (1) use Rival Penalized Competitive 

Learning (RPCL), a stochastic clustering algorithm, to locate good approximate 

cluster centers efficiently and (2) use the result of RPCL clustering to construct 

a good indexing structure for effective nearest-neighbor search. Moreover, we 

present two approaches to cluster features for indexing: (1) Non-hierarchical ap-

proach and (2) Hierarchical approach. The non-hierarchical approach considers 

the whole feature space each time when clustering the data for indexing and re-

trieval. On the other hand, the hierarchical approach transforms the feature space 

into a sequence of nested clusters and builds a hierarchical binary indexing tree 

(RPCL-b-tree) for retrieval. Our experimental results show that: (1) RPCL is 

faster than other tested clustering methods to locate natural clusters for index-

ing, (2) the non-hierarchical RPCL indexing method has high performance for 
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producing good approximate retrieval result quickly, and (3) RPCL-b-tree is effi-

cient to produce 100% nearest-neighbor search results and it is faster than VP-tree 

in general. Moreover, based on the experimental results, we work out a formula for 

RPCL-b-tree to describe the relationship between the searching parameters and 

the searching efficiency. We can also use it to compare the searching efficiency 

with other indexing methods for a given set of parameters. 
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摘要 

在多媒體數據庫中，有效及準確的檢索是一很關鍵的課題o在一些以多媒體的內 

容來作檢索的多媒體數據庫裹，我們常常會進行最鄰近(nearest-neighbor)搜索來 

檢取相似的數據庫資料。在一個可量度距離的特徵空間中，最鄰近搜索是用來檢 

取一些有特徵跟那個查！^最接近的數據庫資料，而這些查詢的結果往往是一些 

自然的數據群集°目前，有很多索引的方法不利用這些數據群集的資料來建造索 

引結構，引致檢索的表現下降。爲了提升檢索的表現，我們(1)用一個隨機群集 

的算法名爲咖! Penalized Competitive Learning (RPCL)來有效地找出好近似 

的群集中心，（2)用由RPCL得來的群集建造一個好的索引結構，以便有效地進 

行最鄰近搜索。此外，我們亦會發表兩個方法來把特徵進行群集以便索弓[。一個 

絲層_,而另一個是有蒼次的°在非層次的方法中，整個特徵空間都會被考 

慮來進行數據群集以便索弓丨及檢索。在有層次的方法中，特徵空間都會變換成一 

連串巢套的群集，然後以此來建造一有層次的二元索弓丨樹(RPCL-b-tree)以作檢 

索。實驗結果顯示：(1)在數個用作測試的群集方法中，RPCL最快找到群集以作 

索弓丨，(2)在非層次RPCL索弓丨中，RPCL可快速地檢索很相似的數據庫資料，并 

有良好的表現，(3)在10>0^各1代6中，100%準確的最鄰近搜索結果可有效地得 

到，而且這方法普遍地比VP-tree快一些°此外，由這些實驗結果，我們推算出 

一條公式來描述搜索參數和搜索效率的關係。這公式亦可用來比較不同索弓丨方法 

在同一參數下的搜索效率。 
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Chapter 1 

Introduction 

1.1 Background 

In this information age, efficient and accurate multimedia information manage-

ment is a very important issue. People often need to manipulate many different 

kinds of multimedia information such as images, sound, and videos for different 

tasks. In the past, people may use traditional databases to manage these multi-

media information, but this is usually ineffective and imprecise. These databases 

use keywords or text descriptors for retrieval, but it poses difficulties for the end 

users especially for those without special training. The main difficulties are: 

1. Lack of Standards: Different users may use different words to describe a 

multimedia data object for retrieval. 

2. Lack of Descriptive Power: Even standardize vocabulary is used, it is 

still hard to depict the object clearly and precisely. 

We use an image database, which is a special kind of multimedia database for 

image management, as an example. If we want to retrieve an image of a sunset 

photo with the sun at the upper left corner in an image database, we may use 

a keyword "sunset". Not surprisingly, some sunset images having the suns at 
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Figure 1.1: An example of image retrieval by image content. 
the bottom right corner are retrieved which are opposite to what we want. This 

shows that it is hard to use keywords for precise image retrieval. To improve 

the efficiency and accuracy, we need a new kind of database which is specially 

designed for multimedia data organization and retrieval. 

In order to manage a large amount of multimedia data efficiently and easily, 

multimedia databases are emerged. These databases support content-based re-

trieval which lets users to specify queries by features (or contents) such as color, 

texture, sketch and shape to retrieve database objects with features similar to the 

‘ queries. For example, we may retrieve a sunset image having the sun at the upper 

left corner by simply using a color sketch with orange and red colors at the upper 

left corner and dark brown color at the bottom. The retrieved images are most 

likely what we want (see Figure 1.1). This shows that it is more effective and 

easier to use features for retrieval. 

Many content-based retrieval multimedia database systems have been devel-

oped in the past few years. For example, Query by Image Content (QBIC) [54, 19, 

4, 22] allows queries on databases based on color, texture, and shape of database 
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objects. Photobook [59] makes use of semantics-preserving image compression 

to support search based on three image content descriptions: appearance, 2-D 

shape, and textural properties. VisualSEEk [64] is a content-based image and 

video retrieval system for World Wide Web. It uses color contents and the spatial 

layout of color regions of images for retrieval. Other multimedia database systems 

which support content-based query include Chabot [57], MMIS [56, 25, 26, 30], 

VIMSYS [32], ART MUSEUM [40, 35], KMeD [15，14], and CORE [69]. Although 

the above databases use different approaches for management, most of them have 

shown that they are efficient for retrieval. 

At the Chinese University of Hong Kong, we have developed an image database 

system called, Montage [41, 42, 45, 46] for managing and retrieving visual infor-

mation efficiently and effectively. I used to be a member of the developing team of 

system. Montage is an image database supporting content-based retrieval by color 

histogram, sketch, texture^ and shape. One important feature of Montage is the 

Open Architecture design. There are two aspects of this open architecture design: 

(1) Open DataBase Connectivity (ODBC) and (2) plug-in framework. They make 

the system extensible, customizable, and flexible. 

In a typical multimedia database, all the database objects have to be pre-

• analyzed and then organized in a special way for retrieval. The main steps are: 

1. The corresponding features from each of the database objects are first ex-

tracted. These features are usually stored in the form of real-valued multi-

dimensional vectors. 

2. The database may then organize the extracted features by using an indexing 

structure for retrieval. 

3. Content-based retrieval can be performed on the indexing structure effi-

ciently and effectively. 

In summary, Figure 1.2 shows the flow of the whole process. 
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Figure 1.2: The flow of indexing and retrieval in a content-based retrieval multi-
media database. 

By using feature vectors, the content-based retrieval multimedia databases 

support similar searching. By applying a suitable distance function (see Definition 

2.2 for details) to the feature vectors as the similarity measurement, the database 

objects can then be ranked according to a query. The top ranked objects are then 

retrieved as the result for similar retrieval. Nearest-neighbor search is a typical 

kind of similar searching. In the feature vector space or the real space, a nearest-

neighbor query is simply a multi-dimensional point (or vector). The result of the 

query is the objects with features which are the neighbors of the query point. 

Using nearest-neighbor search, we can retrieve similar data objects easily. 

For the multimedia databases with nearest-neighbor retrieval, a good index-

ing method is a key component for efficient and accurate retrieval. Nowadays, 

alphanumeric data indexing techniques are already well developed such as [5, 16]. 

However, these databases make use of features for retrieval. The alphanumeric 

indexing methods are not particularly suitable for indexing features because they 

are designed for one-dimensional vectors, but not multi-dimensional vectors like 

the ones used in databases. Therefore, people have begun to develop new indexing 

methods for content-based retrieval in databases such as R-tree [33], R+-tree [63], 

R*-tree [6], SR-tree [39], Quad-tree [21], k-d tree [7], VP-tree [71], MVP-tree [9], 

and some other methods [8, 68 . 
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1.2 Problem Defined 

Generally, multimedia databases contain database objects with features approxi-

mately in Gaussian distributions and there usually exist some natural data clus-

ters in the feature vector space (see Section 2.4 for details). For nearest-neighbor 

search, a group of features will often be retrieved together as the result of a query. 

Therefore, if we can first calculate the natural clusters from the feature space and 

then build an indexing structure based on the clusters, nearest-neighbor search 

will become more efficient and effective. 

The existing indexing methods usually generate partitions for the feature vec-

tor space which lead to indexing structures for efficient retrieval in many cases, 

but most of them seem to fail to retrieve similar database objects when a nearest-

neighbor query lies on the partition boundary. One of the reasons is that these 

methods do not look at the distribution of the features to find natural clusters 

so that features in the same natural cluster may be partitioned into several dif-

ferent nodes. As a result, the performance of nearest-neighbor searches for these 

methods will be degraded. 

In short, the problems we are facing are: 

1. to find an efficient clustering method to locate natural clusters from the 

input feature vector set, and 

2. to build a good indexing structure based on the clusters for efficient and 

effective retrieval. 

1.3 Contributions 

The main contributions of our work for solving the problems defined in the last 

section are shown as follows. 

5 . 
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1. We use a clustering method Rival Penalized Competitive Learning (RPCL) [70 

to calculate natural clusters from the feature vector set. RPCL is an un-

supervised neural network heuristic algorithm for clustering. It provides a 

good approximate of the centers to the clusters and it is computational ef-

ficient. Therefore, we make use of RPCL to calculate natural clusters for 

indexing and retrieval. 

2. We build indexing structures based on the natural clusters in two different 

approaches: (1) Non-hierarchical approach and (2) Hierarchical approach. 

The non-hierarchical approach considers the whole feature space to locate 

different numbers of natural clusters each time. The resultant clusters are 

indexed non-hierarchically by using an inverted file structure for retrieval [44, 

43, 47]. On the other hand, the hierarchical approach transforms a feature 

space into a sequence of nested clusters and builds a hierarchical binary 

indexing tree (RPCL-b-tree) based on the clusters. We then apply a branch-

and-bound technique [38] on the indexing structure for efficient retrieval 

(see Section 5.5 for details). In short, these two approaches make use of 

the information of natural clusters for efficient and effective indexing and 

retrieval. 

Our experimental results show that: 

1. RPCL is faster than A;-means, competitive learning, and general hierarchical 

clustering methods to locate natural clusters for indexing. 

2. The non-hierarchical RPCL indexing method has high recall and precision 

performance for producing good approximate retrieval result quickly. 

3. RPCL-b-tree is faster than VP-tree to produce 100% nearest-neighbor search 

results. 
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According to the experimental results for RPCL-b-tree, we work out a formula 

to describe the relationship between the searching parameters and the searching 

efficiency. We can then make use of this formula to find out the estimated efficiency 

value for a given set of parameters. Besides, we can generalize the formula to other 

indexing methods for comparing their efficiency with a given set of parameters. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows. We will first present some of the 

technical details of multimedia databases in Chapter 2. We will also introduce 

the problem of most of the indexing methods in that chapter. We will then 

present our proposed solution of the indexing problem in Chapter 3. We will use 

RPCL to produce clusters and describe how to build good indexing structures 

from the clusters with two different approaches. Chapter 4 and Chapter 5 will 

show the Non-hierarchical approach and the Hierarchical approach respectively. 

Several experiments and discussions will be presented in these chapters. We will 

then show how to work out the relationship formula from the experimental results. 

Finally, we will have a brief summary of our proposed methods together with some 

future works in Chapter 6. 
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Chapter 2 

Content-based Retrieval 

Multimedia Database 

Background and Indexing 

Problem 

In this chapter, we first give some technical backgrounds of the content-based 

retrieval multimedia databases: Feature Extraction, Nearest-neighbor Search, and 

Content-based Indexing. We then present some problems found in the existing 

content-based indexing methods. 

2.1 Feature Extraction 

Feature extraction is one of the main aspects in content-based retrieval multimedia 

databases. In a content-based retrieval multimedia database, users may want to 

retrieve database objects similar to a query in terms of some kinds of features. 

Therefore, when a multimedia data object is inserted into the database, the useful 

features of the object will be extracted and transformed into feature vectors. The 
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database will then organize the feature vectors for content-based retrieval. 

The definition of feature extraction is: 

Definition 2.1 (Feature Extraction) Let DB = {Ii]^=i be a set of database 

objects. With a set offeature parameters 6 = {Oi]^i, a feature extraction function 

f is defined as: 

f ： IX 0 ^ n^, 

which extracts a real-valued d-dimensional vector. 

We use a simple example here to explain the above definition. Let DB = 

{ / i , . . . , / i o } be a set of 10 images and 0 = {Oi} be the image feature param-

eter set where Oi indicates the number of top colors considered for extraction. 

/(/5,2) will return a real-value vector based on the top two colors in the image 
/ 5 . 

Many features can be used for feature extraction, such as, color, sketch, texture, 

and shape. Here are some examples for images. 

1. For color, the overall color of an image is analyzed and a color histogram 

is built and transformed to a feature vector [27 . 

2. For sketch, an image query may be a hand-drawn sketch of the target 

image. The regionalized color information of an image is extracted to form 

feature vector so that the query can be compared to each of the images 

region by region for retrieval [36 . 

3. For texture, some statistical methods are usually used to analyze the tex-

ture information of an image [65]. Some researchers use Gabor filter for 

image scaling and orientation in texture analysis [48, 50]. 

4. For shape, it is still a hot research topic because it is difficult to extract 

shape information from an image precisely. In fact, different shape features 
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may be used for extraction such as outline based features, region based 

features, and combined features [37, 51, 52, 60，66, 67]. 

Figure 2.1 shows the image retrievals using the above four features: color his-

togram, color sketch, texture, and shape respectively. Other features for content-

based retrieval include volume, spatial constraints, objective attributes, subjective 

attributes, etc [31 . 

Here is an example to illustrate the detail of feature extraction using color 

histogram in an image database (see Figure 2.2). Given an image, its overall color 

is begin analyzed in order to get a feature vector. All the colors in the image 

are quantized into n representative colors. By calculating the frequency of each 

representative color, a n-bucket color histogram is formed. For fair comparison to 

the other color histograms, the sum of the frequencies is normalized to 1. After 

normalization, the histogram is transformed into a n-dimensional feature vector 

for indexing and retrieval. 

2.2 Nearest-neighbor Search 

By using the extracted feature vectors, content-based retrieval multimedia databases 

allow users to perform similar searching. For similar searching, the database ob-

jects with features similar to the query will be retrieved. Nearest-neighbor (NN) 

search is one of the common similar searching techniques used in the multimedia 

databases for content-based retrieval. 

Nearest-neighbor search usually makes use of a distance function for similarity 

measurement. In order to determine how close or how similar two features are in 

the feature vector space, a distance function is defined to measure their similarity. 

With the two features as the input parameters, it usually outputs a real value 

such that the smaller the value, the more the similar between each the two input 

features. 
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Figure 2.1: (a) Query by color histogram, (b) Query by sketch, (c) Query by 
- texture, (d) Query by shape. 
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Figure 2.2: Feature extraction of a color image using color histogram. 
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Definition 2.2 (Distance Function) A typical distance function D is defined 

as follows. 

D : F X F^n 

satisfying: 

1. D{x,y)>0, 

£ D{x,y) = D{y,x), 

3. D{x^ y) = 0 i f f x = y, and 

1 D{x,y)^D{y,z)>D{x,z) 

where x, y，and z G F and F is a feature vector set. 

L2-n0rm (Euclidean distance) is one of the common distance functions and it is 

defined as: D as: D{x, y) = ||a: — y|| 二 yY^=i{xi _ ViY-

A nearest-neighbor search in a content-based retrieval multimedia database is 

a retrieval of database objects with features nearest to a query under the feature 

space with a given distance function. There are two main kinds of nearest-neighbor 

searches: range nearest-neighbor search and k nearest-neighbor search. 

Definition 2.3 (Range Nearest-neighbor Search) Given a set of N features 

• X = {oJi}^!； a range nearest-neighbor query x returns the set P offeatures: 

P = {—a; G X and 0 < D{x, x) < e} , (2.1) 

where e is a pre-defined positive real number and D is a distance function. 

Definition 2.4 {k Nearest-neighbor Search) Given a set of N features X = 

{^i}iLi^ tt k nearest-neighbor query x returns the set P � X satisfying: 

1. |P| = k for 1 < k < N，and 

12 • 



Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem 

® © © � © � 

© © ⑩ ® 
© ,""•^ ⑩ © ® 

f 0 cA • X • 
f ®X© j • • 
^s,,_^^^^^ © 

© ® ® © 
© © 

® ® © © ® © 

© ⑩ ® ③ 

(a) (b) 

Figure 2.3: (a) Range nearest-neighbor search in 2D. (b) k nearest-neighbor search 
in 2D {k = A). 

2. D{x, x) < D{x, y) for y € X - P. 

where D is a distance function. 

Range NN search gives the database objects with features located inside the query 

circle which has the query point as the center and a small positive real number 

e as the radius (see Figure 2.3(a)). A:-NN search gives the objects with features 

which are the top k nearest neighbors to the query (see Figure 2.3(b)). 

Many different algorithms for nearest-neighbor search have been proposed. 

. Table 2.1 shows some of the algorithms for finding the most nearest neighbor. 

We discuss their efficiency and then try to find a suitable one for our proposed 

indexing method. We make use of the total number of distance computations 

between the sample data and the query needed to measure the efficiency of these 

algorithms. Basically, more distance computations will lessen the efficiency. In our 

work, we are using real-valued multidimensional feature vectors for indexing and 

retrieval and using Euclidean distance as the similarity measurement. Therefore, 

by considering the methods using the Euclidean distance as the metric, Kamgar's 
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Algorithm Data ~~Metric~~ Result 

Burkhard and Keller 1000 randomly generated Hamming � 7 0 0 average distance 
(1973) [12]: Some ap- registers of a file using distance computations ( � 7 0 %) 
proaches to best-match 30-bits keys 
file searching 
Fukunaga and Naren- 1000 2D uniform samples Euclidean � 5 8 0 average distance 
dra (1975) [23]: A data distance computations ( � 5 8 %) 
branch-and-bound algo-
rithm for computing K-
nearest neighbors based 
on a hierarchical index-
ing structure 
Feustel and Shapiro 29 randomly generated 5- Graph- � 3 average distance 
(1982) [20]: The vertices directed graphs isomorphisn -computations ( � 1 0 %) 
nearest-neighbor prob- based 
lem in an abstract metric discrete-
space valued 

distance 
Kamgar and Kanal 1000 2D samples uniform Euclidean � 1 6 5 average distance 
(1985) [38]: An im- sample data distance computations ( � 1 6 . 5 %) 
proved 
branch-and-bound algo-
rithm for computing k-
nearest neighbors based 
on a hierarchical index-
ing structure 
Roussopoulos et al. lK, 4K, 16K, 64K, and MINDIST~~The no. of nearest neigh-
(1995) [61]: Nearest 256K synthetic uniformly and MIN- bors increased the no. of 
neighbor queries for R- distributed data sets MAXDIST pages accessed grew in a 

‘ tree distances linear ratio 
Nene and ~~~Nayer 30000 and Euclidean - ^ % ^ 
(1997) [53]: A sim- 100000 high dimensional distance search time used than ex-
ple algorithm for nearest- uniform and normal dis- haustive search for 30000 
neighbor search in high tribution samples 10D data and � 4 0 % of 
dimensions search time used than ex-

haustive search for 30000 
25D data 

Table 2.1: Searching performance of some nearest-neighbor search algorithms. 
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improved branch-and-bound method [38] is the most suitable nearest-neighbor 

search algorithm for our proposed indexing method. 

2.3 Content-based Indexing Methods 

In the past two decades, people have developed many indexing methods for 

content-based retrieval in multimedia databases. In this section, we concentrate 

on two main kinds of content-based indexing methods: rectangle-based indexing 

and partition-based indexing. 

Rectangle-based Indexing 

The rectangle-based indexing methods make use of rectangles to organize the 

features into groups for indexing. Examples are R-tree, R+-tree, R *-tree, and 

SR-tree. 

R-tree 

R-tree [33] is a generalization version of the B-tree [5, 16] for multi-dimensional 

data indexing. It uses rectangles to partition the data into groups. The partition 

process will proceed hierarchically and an indexing tree will then be produced. 

• Properties: R-tree is a height-balanced tree and it has two kinds of nodes: 

Leaf Node and Non-leaf Node. Let M be the maximum number of entries 

that a node can contain and m < M/2 be the minimum number. Every leaf 

node except the root contains between m and M records which are pointing 

to the database objects. Every non-leaf node except the root has between 

m and M children. The root node has at least two children unless it is a 

leaf node. 

15 • 



Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem 

「乂 ~ ~ - ~ ~ 

1 I 1 r - 1 1 1 

D p | i I _ _ ^ 

‘ ‘ I j 
丨！ B ！ 丨 

i H i L n ~ r ~ T ~ i 
I ！ A B C 

G I ‘ " ^ f ^ ^ y ^^“？^^ ~ ~ 

D E F G H I J K L 
I I I I I I I I I I I I 

(a) (b ) 

Figure 2.4: (a) An input data set partitioned by using minimum bounding rect-
angles. (b) The corresponding R-tree structure. 

• Insertion: R-tree is built by inserting the data objects one by one. Figure 

2.4 shows an example. Starting from the root node with a minimum bound-

ing rectangle (MBR) which is the smallest rectangle containing all the data 

objects for the node, data objects are inserted until the node contains more 

than M objects. When the node is overflow, a splitting algorithm is applied 

to split the corresponding rectangle into several small rectangles for child 

nodes. It tries to optimize the area of the MBRs to each child node. From 

now on, a target node is selected first for each to-be inserted data object 

and splitting is performed when the inserted node becomes overflow. 

• Deletion: Apart from insertion, deletion is also a main operation of R-

tree. After deleting a data object from a node, a merging algorithm will be 

applied if the deleted node contains less than m objects. 

• Searching: Given a R-tree and a query rectangle, all the nodes with MBRs 

overlapping the query rectangle will be examined in order to find the results 

of the query. 
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R-tree works fine for many cases, but it is not efficient when a query lies on the 

overlapping area of two or more minimum bounding rectangles. All the involved 

rectangles have to be examined to find out the results of the query which lessen 

the efficiency of the retrieval. Therefore, it is better to decrease the overlapping 

area as much as possible so as to make the retrieval faster. 

R+-tree 

R+-tree [63] is a variation of R-tree. Unlike R-tree, its searching and updating 

algorithms are modified in order to avoid the overlapping rectangles in the inter-

mediate nodes of the indexing tree. According to the experimental results in [63], 

R+-tree has a better searching performance than R-tree. Also, it is more efficient 

for indexing point data and point queries than R-tree. 

R*_tree 

R*-tree [6] is another variation to R-tree. The authors of R*-tree show in [6] that 

overlapping-region-technique does not imply bad average searching performance. 

Below are the essential parameters of the retrieval performance. 

1. The area covered by a directory rectangle should be minimized. 

2. The overlap between directory rectangles should be minimized. 

3. The margin of a directory rectangle should be minimized. 

4. Storage utilization should be optimized. 

Therefore, the authors modify the splitting algorithms using in R-tree so as to 

improve the retrieval performance by reducing the area, margin, and overlap of the 

rectangles. Moreover, the storage utilization is higher than R-tree. In short, from 

the experimental results in [6], R*-tree outperforms the other R-tree variants. 
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SR-tree 

The SR-tree [39] stands for the Sphere/Rectangle-tree and it is an extension of 

the R*-tree [6] and the SS-tree [68]. The distinctive feature of the SR-tree is 

that it makes use of both rectangles and spheres for indexing. This improves the 

performance on nearest-neighbor queries by reducing both the volume and the 

diameter of regions compared with the R*-tree and the SS-tree. According to the 

performance experiments in [39], SR-tree outperforms R*-tree especially for high 

dimensional data. 

Partition-based Indexing 

The partition-based indexing methods make use of lines or curves to produce 

partitions to the input feature vector space for indexing. Examples are Quad-tree, 

k-d tree, VP-tree, and MVP-tree. 

Quad-tree 

Quad-tree [21] is an early developed indexing method for multi-dimensional data 

objects and it is the generalization of the binary search tree. 

• Properties: Quad-tree divides the vector space into subspaces for different 

directions. In two-dimensional space, for example, each non-leaf node has 

four child nodes representing its four directions NW, NE, SW, and SE (see 

Figure 2.5). 

• Insertion: Data objects are inserted one by one. Starting from the root 

node, the direction of a to-be inserted data object to the root node is de-

termined and the corresponding child node will be selected for further pro-

cessing until the leaf node level is reached. 
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Figure 2.5: (a) An input 2-D data set for quad-tree, (b) The corresponding quad-
tree structure. 

• Searching: Searching in a quad-tree is performed according to the direction 

of the query to each node. In A;-dimensional case, for example, it is required 

to consider all k coordinates of a given query at each node to determine its 

direction. The query is first compared to the root node in order to determine 

which child node is examined next. The above process will then repeat until 

the target leaf node is found. 

For a given 2-D data set, the insertion algorithm yields nlog n performance. 

The quad-tree seems to be an efficient for two-dimensional space. 

k-d tree 

k-d tree [7] is a multi-dimensional binary search tree where k denotes the dimen-

sionality of the search space. 

• Properties/Searching: Unlike quad-tree that all k coordinates have to be 

tested at each node, only a different attribute value is tested at each level of 
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Figure 2.6: (a) An input data set for k-d tree, (b) The corresponding k-d tree 
structure. 

the tree for indexing and searching. For example, in two-dimensional space, 

we are comparing the x coordinates at even levels whereas y coordinates at 

odd levels. 

• Insertion: For insertion, a to-be inserted data object is first compared to 

the root node using a suitable attribute value. A child node is then selected 

for further processing. The process repeats until a leaf node is found. Finally, 

the data object is inserted and it partitions the space associated with the 

leaf node into two sub-spaces for two child nodes according to a suitable 

attribute value. Figure 2.6 shows an example of k-d tree. 

In short, by considering only an appropriate coordinate at each node, k-d tree 

is relatively more efficient than quad-tree for indexing and retrieval. 
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Figure 2.7: A simple VP-tree for the data set on the left. 

VP-tree 

Vantage point tree (VP-tree) [13, 71] is an indexing method for multi-dimensional 

nearest-neighbor search. 

• Properties: Like k-d tree, each VP-tree node cuts the space. Unlike k-

d tree, VP-tree partitions the feature vector space based on the distances 

between the feature vectors and a calculated vantage point. 

• Building Indexing Tree: According to the median of these distances, the 

whole feature space is divided into two sets: close vector set and far vector 

set. The process will continue in both sets individually. Finally, an indexing 

tree structure will be built based on the resultant vector sets (see Figure 

2.7). 

• • Searching: For searching in VP-tree, a query is first compared to the van-

tage point associated to the root node and then determined which child 

node is going to be examined. The process repeats until the target leaf 

node is found. The data objects associated with the leaf node satisfying the 

searching criteria of the query will be retrieved as the result. 

The experimental results in [71] show that VP-tree outperforms k-d tree in 

many cases. 
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Figure 2.8: Different data distributions, (a) Mixture Gaussian, (b) Super Gaus-
sian. (c) Uniform. 

MVP-tree 

Multi-vantage point tree (MVP-tree) [9] is a distance based indexing method 

for similarity queries on high-dimensional metric spaces. Like VP-tree, it uses 

vantage point for indexing. Unlike VP-tree, it uses more than one vantage point 

to partition the feature vector space. Experiments in [9] show that MVP-tree 

outperforms the VP-tree 20% to 80% for varying query ranges. 

2.4 Indexing Problem 

The distributions of the features in multimedia databases can usually be approxi-

mated by one of the two main distributions: Gaussian and Uniform. For example, 

a typical image database often contains many different kinds of images such as 

sunset pictures, mountain photos, etc. In terms of the color histogram feature, 

the sunset images will have similar color histograms and form a data cluster in the 

feature vector space. With the same reason, the mountain photos form another 

cluster. We can easily use a mixture of Gaussian distributions (see Figure 2.8(a) 

and section 4.2.1 for details) to approximate this kind of distribution. Here is 
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Figure 2.9: (a) A data set with natural clusters, (b) A boundary nearest-neighbor 
query. 

another example, for a face image database, all the face images have some com-

mon characteristics. However, each face image is still different from the others. 

Therefore, the distribution of the image features is most likely a super Gaus-

sian (see Figure 2.8(b)). If an image database is used to manage general images 

which are in different types from each other, the image features will be probably 

uniformly distributed (see Figure 2.8(c)). In general, we can assume multimedia 

databases often have database objects with features in Gaussian distributions and 

there usually exist natural clusters in their image feature vector spaces (see Figure 

2.9(a)). 

For nearest-neighbor search, a group of features will often be retrieved together 

as the result of the query. Therefore, if we can first calculate the natural clusters 

from the feature vector space and then build an indexing structure based on the 

clusters, nearest-neighbor search on the structure will become more efficient and 

effective. 

People have developed many indexing methods for content-based retrieval in 

multimedia databases and they seem to work fine for many cases in general, but 
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most of them seem to fail to retrieve similar database objects when a nearest-

neighbor query lies on the partition boundary. One of the main reasons is that 

these methods do not look at the distribution of the features to find natural 

clusters so that features in the same natural cluster may be partitioned wrongly 

into several different nodes. We call this as the boundary problem (see Figure 

2.9(b)). For example, the rectangle-based indexing methods such as R-tree, R+-

tree, and R*-tree are built based on the input sequence of the data objects so 

that they cannot pay attention to the distribution of the input data and calculate 

natural clusters. The partition-based indexing method such as VP-tree partitions 

the data object space according to the median distances from the data objects 

to the vantage points, but it still cannot exactly find out the natural clusters for 

retrieval. As a result, the performance of nearest-neighbor retrievals for these 

methods is reduced by the boundary problem. 

Therefore, we are going to work out a new indexing method for the above 

problem. We need to find an efficient clustering method to calculate natural 

clusters from the feature vector space and then build a good indexing structure 

based on the natural clusters. We want the new indexing method can lessen the 

above problem and make the content-based retrieval more efficient and effective. 

24 • 



Chapter 3 

Data Clustering Methods for 

Indexing 

3.1 Proposed Solution to Indexing Problem 

We propose to use an efficient clustering algorithm for content-based indexing in 

order to lessen the indexing problems mentioned in the last chapter. Under the 

assumption that there usually exist natural clusters in the feature vector space, 

we make use of an efficient clustering method to locate those natural clusters 

form the features. We will discuss which clustering algorithm is good for us in 

this chapter. In the following chapters, we will describe how to build indexing 

, structures based on the natural clusters for nearest-neighbor retrieval. We will 

also present several performance experiments to show that our proposed method 

is accurate and efficient. 

25 . 



Chapter 3 Data Clustering Methods for Indexing 

3.2 Brief Description of Several Clustering Meth-

ods 

In this section, we give a brief description of several clustering methods: k-means, 

Competitive Learning, Rival Penalized Competitive Learning, and general hierar-

chical clustering methods to produce cluster partitions form a given data set. 

3.2.1 K-means 

The k-means [3, 49] method groups the feature vectors into k cluster partitions. 

Given n feature vector, the algorithm is shown as follows. 

Algorithm 3.1 K-means(D, k) 
> Input: the input data set D and the expected number of clusters k 
> Output: the k clusters of D 

1 { s i l f - i <— k randomly selected feature vectors from D 
t> {sj}?=! is a temporary data set 

2 for i = 1 to k do 
3 Ci f - {si} > Ci is a cluster 
4 Ci <— Si > Ci is the cluster center of Ci 
5 end for 
6 P = {} 
7 while true do > forever loop 
8 for each data object j of remaining n — k data objects from D do 
9 Ci <— Ci U { j } if the center Ci of Ci is the nearest center to j 
10 recompute the center Ci of C{ 
11 end for 

‘ 12 if P = Ut i {c i } then do 
13 return { C J t i 
14 else 
15 P = { } 
16 for i = 1 to k do 
17 Ci 卜 { c i } 
18 P <r- P U {Ci} 
19 end for 
20 end if 
21 end while 
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Figure 3.1: k-means clustering. 

Figure 3.1 shows an example of using k-means for clustering. In the figure, 

the dots represent the input data objects and the crosses indicate the centers of 

the clusters. By applying the k-means clustering algorithm, the resultant clusters 

are obtained. 

3.2.2 Competitive Learning (CL) 

Competitive Learning (CL) [62, 34] is an unsupervised neural network learning 

algorithm to produce cluster partitions. In this section, we present the technique 

of using competitive learning for clustering. There are some basic conditions of 

the competitive learning rule: 

• Start with a set of neurons that are all the same except for some randomly 

distributed synaptic weights which make each of them respond differently 

to a set of input patterns. 

• Limit the "strength" of each neuron. 

• Allow the neurons to compete for the right to respond to a given subset of 

inputs. 

For a specific input pattern, the neurons compete among themselves and only 

one of them will win the competition which is called a winner-takes-all neuron. 

The rule will then move the synaptic weight vector of the winning neuron toward 

the input pattern. In multimedia databases, the feature vectors are the input 

patterns. By training the neurons with the feature vectors under the competitive 
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Figure 3.2: Competitive learning clustering. 

learning rule, the weight vectors of the neurons will become the cluster centers of 

the feature vectors. 

Let k be the number of clusters, or the number of neurons, and c“ i = 

1,2, . . . , k, be the cluster center points. The algorithm of competitive learning 

clustering is outlined as follows. 

(Step 0) Initialization: Randomly pick k points as the k initial cluster centers. 

(Step 1) Competition: Randomly take a feature vector x from the feature 

sample set X, the winner-takes-all neuron w is that whose cluster center (weight 

vector) Cyj is the closet to x in the sense of L2-n0rm distance (Euclidean distance), 

i.e., 

\x — Cu;||2 二 min ||a; — Ci\\^ • (3.1) 
i 

(Step 2) Updating Cluster Centers: Update the cluster center C{ by 
z 

a^{x - a), if i = w, 
Aci = (3.2) 

0, otherwise. 

where 0 < a^ < 1 is the learning rate for the winner-takes-all neuron. 
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Figure 3.3: Competitive learning clustering for an eight Gaussian mixture distri-
bution of 2560 3-dimensional synthetic feature vectors. The path demonstrates 
how each unit travels from the initial location to the final approximate cluster 
center. 

Step 1 and 2 are iterated until the iteration converges or the number of itera-

tions reaches a pre-specified value. The final cluster centers are the results of the 

competitive learning clustering (see Figure 3.2). Figure 3.3 demonstrates eight 

cluster centers generated by competitive learning algorithm for an eight Gaussian 

mixture distribution of feature vectors. 

3.2.3 Rival Penalized Competitive Learning (RPCL) 

Rival Penalized Competitive Learning (RPCL) [70] is a variant of competitive 

learning (CL). Instead of moving only the winning neuron, RPCL moves also the 

first runner-up neuron away from the randomly selected feature vector in each 

iteration. 

Assuming k cluster centers, the basic idea behind RPCL is that in each iter-

ation, the cluster center for the winner's unit is accentuated where as the weight 
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Figure 3.4: RPCL clustering. 

for the second winner, or the rival, is attenuated. The remaining k — 2 centers 

are unaffected. The winner is defined as the cluster center that is the closest to 

the randomly selected data object. In our work, we use the special version of the 

RPCL clustering algorithm when k = 2. In other words, we only have a winner 

and a rival (second winner) (see Figure 3.4). 

Let k, Cuj, Cr to denote the number of clusters, cluster center points for winner 

and rival clusters respectively. The algorithm of RPCL is outlined as follows. 

(Step 0) Initialization: Randomly pick Ci and c2 as the initial cluster centers. 

(Step 1) Winner-Take-All Rule: Randomly take a feature vector x from the 

feature sample set X, and for i = 1，2,..., k let f 
1, if i = w such that ŵ\\x — c � ^ = min^ 7j||a; — Cj||̂ , 

Ui = < —1, if i = r such that jr\\x — Cr\\^ = minj7j||a:: — Cj||̂ , (3.3) 

0, otherwise. 
w 

where 7j = rij / J2i=i ^i and rii is the cumulative number of the occurrences of 

Ui = 1. This term is added to ensure that every cluster center will eventually 

become the winner somehow. It is called the Frequency Sensitive Competitive 

Learning (FSCL) [2] as an algorithm that reduces the winning rate of the frequent 

30 . 



Chapter 3 Data Clustering Methods for Indexing 

winners. 

(Step 2) Updating Cluster Centers: Update the cluster center vector Ci,i 二 

l,2,.. . ,A; by 

f 
a^j(x — Ci), if Ui 二 1， 

Aci = -ar {x — Ci), if Ui = - 1 , (3.4) 

0, otherwise. 
^ 

where 0 < a^, o^ < 1 are the learning rates for the winner and rival unit, respec-

tively. 

Step 1 and 2 are iterated until one of the following criteria is satisfied: (1) the 

iteration converges, or (2) the number of iterations reaches a pre-specified value. 

Actually pre-specified value is hard to find. We conducted many experiments and 

obtained the value empirically for our work. In fact, more research on this topic 

is needed in order to find out a better stopping procedure. 

Unlike FSCL, RPCL usually gives one candidate cluster center to one clus-

ter and all the extra candidate centers will go to infinite eventually. With this 

property, we may make use of RPCL to determine the actual number of natural 

clusters from an input data set. 
3.2.4 General Hierarchical Clustering Methods 

Apart from the above three clustering algorithms, we are going to describe some 

‘ general hierarchical clustering methods here. 

A hierarchical clustering algorithm usually produces a series of partitions, from 

a single whole data cluster to n one-element clusters [18]. There are two main 

approaches: agglomerative and divisive. The agglomerative approach proceeds by 

a series of successive fusions of the n individuals into groups whereas the divisive 

approach separates the n individuals successively into finer groups. Some general 

hierarchical clustering methods can be found in [1, 11, 28, 29, 55, 58]. 
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3.3 Why RPCL? 

From the clustering methods mentioned in the last section, we try to find out a 

suitable one for our indexing method. We find that k-means and general hierar-

chical clustering methods calculate very good data clusters from a given data set, 

but they are usually computationally intensive. Competitive Learning (CL) and 

RPCL are heuristic algorithms which produce good approximate cluster centers to 

a given data set and they are much faster than k-means and general hierarchical 

clustering methods. 

Eventually, we choose RPCL as the clustering algorithm used in our indexing 

method. The main reasons are: 

1. RPCL is a very fast clustering method and faster than CL in general. 

2. RPCL gives a good approximate of the cluster centers and we may then 

calculate the actual data cluster easily form the centers. 

3. RPCL can usually find the actual number of clusters from an input data 

set. 

4. Only a low storage is enough for RPCL clustering because only the infor-

mation of the cluster centers is needed to keep. 

After clustering, we can make use of the cluster partitions generated by RPCL 

to build indexing structures for content-based indexing. There are two approaches 

to perform top-down clustering and build indexing structures based on the gen-

erated cluster partitions: (1) hierarchical approach and (2) non-hierarchical ap-

proach. We are going to present their details in Chapters 4 and 5 respectively. 
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Non-hierarchical RPCL Indexing 

4.1 The Non-hierarchical Approach 

The non-hierarchical approach of our method considers the whole feature vector 

space each time for clustering by RPCL. We use an example here to explain its 

basic idea. Given a set of feature vectors, our method clusters the set into 2 

clusters at the first time (see Figure 4.1). If four partitions are required at the 

next time, our method will consider the whole space again and clusters the set into 

4 clusters (see Figure 4.2). We find that the latter clusters may not be necessary 

nested into the former clusters, but this method ensures to obtain the correct 

natural clusters. 

In non-hierarchical RPCL indexing, we usually construct the indexing struc-

ture for an input feature vector set in a batch mode. RPCL is firstly used to 

locate the natural clusters from the feature vector set. Based on the generated 

cluster partitions, we make use of the inverted file structure for indexing of the 

feature vectors (see Figure 4.1 and 4.2). For example, given the feature vector 

space having only two partitions Ci and C2 with centers ci and c2 respectively, 

a feature vector v will belong to Ci if D{v, Ci) < D{v^ C2) and it will be indexed 

as "ci". D is a distance function and we use L2-n0rm in our work. Basically, 2̂  
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Figure 4.1: Two cluster partitions generated by the non-hierarchical approach. 
The dots are the database objects whereas the crosses are the centers. An inverted 
file (the right one) is used for indexing. 
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Figure 4.2: Four cluster partitions generated by the non-hierarchical approach. 
The dots are the database objects whereas the crosses are the centers. An inverted 
file (the right one) is used for indexing. 

clusters are calculated for the z-th level. The whole process starts from the top 

level with 2 clusters and stops when all the natural clusters are located at the 

bottom level. 

. For searching on the indexing structure, a nearest-neighbor query q is com-

pared to all the cluster centers at the user-specified level. All the vectors belonged 

to the cluster partition whose center is the closest to q will be retrieved. 

4.2 Performance Experiments 

We conducted several experiments to evaluate the performance of our non-hierarchical 

approach using RPCL clustering for indexing and retrieval based on its accuracy 
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and efficiency. We also tested others methods: k-means, CL, and a traditional 

hierarchical partitioning indexing method VP-tree for reference in these experi-

ments. 

4.2.1 Experimental Setup 

We conducted four different sets of experiments for the four methods: RPCL, 

k-means, CL, and VP-tree to test their accuracy and efficiency for indexing and 

retrieval. All of the experiments were conducted on an Ultra Sparc 1 machine 

running Matlab V4.2c. From Chapters 1 and 2, we know that a cluster of feature 

vectors is often retrieved as the result of a query for nearest-neighbor search. An 

indexing method which can locate natural clusters from the input feature vector 

set accurately and quickly will make nearest-neighbor search more effective and 

efficient. Therefore, in these experiments, we restrict to retrieve the first visited 

feature vector cluster or leaf node as the result of a nearest-neighbor query so 

that, based on the result, we can show that how accurate and efficient the tested 

methods are to locate natural clusters for indexing and retrieval. 

We used two performance measurements: Recall and Precision in the experi-

ments to measure the accuracy of the tested methods (see Figure 4.3). Given a 

set of user-specified target database objects, Recall and Precision are defined as: 

^ 11 Number of target database objects retrieved (4 ” 
Number of target database objects ‘ 

p . . Number of target database objects retrieved (4 ^) 
Number of database objects retrieved ’ 

where 0 < Recall, Precision < 1. Recall shows the ratio of target database objects 

are actually retrieved out of all the expected target database objects whereas 

Precision indicates the ratio of target database objects in the retrieved set. For 
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Figure 4.3: Recall and Precision. 
example, there are 10 database objects and 4 of them are pre-specified as target 

database objects. For a query, 5 database objects are retrieved and 3 of them 

are target database objects. In this case, Recall is 0.75 and Precision is 0.6. 

Basically, the higher the Recall and Precision, the more accurate the method for 

retrieval. By using Recall and Precision, we can calculate the accuracy for each 

of the generated clusters based on the information of its corresponding natural 

cluster. If we do not use them for accuracy, we can only evaluate the accuracy 

by using only a small set of queries. Therefore, we use Recall and Precision to 

evaluate the accuracy of these methods in the experiments. 

We used the following three different kinds of feature vector sets in the exper-

iments: 

1. Synthetic Data in Gaussian Distribution: 

We test our method with synthetic data sets in Gaussian distribution. It is 

because many distributions can be approximated by using Gaussian dis-

tribution. Let jJL == (^jU2,.. . , / in) and a = (cr1,cr2,.. .,<Tn), we gener-

ated the input distribution of the feature vectors from the mixture of n 

Gaussian distributions N(/x,a^) with the generating function defined as 

g(x) = l/(crV2^)exp[-[(o: — /i)^/2cr^]], —00 < x < 00. In our experi-

ments, we used a constant 0.05 for cr. We check for different cr and found 

that, for larger cr, the mixture groups will be mixed together. For smaller cr, 
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all the data objects in a mixture group will crowd round the group center. 

Therefore, we select 0.05 for a which is suitable to generate data sets in 

Gaussian distribution. Moreover, we let n = 2,4,8,16, and 32, but it is 

not necessary to set n to these values. Besides, we do not let n to more 

than 32 because each of the mixture groups will become very small in size. 

Finally, for each input distribution, different numbers of cluster partitions 

are generated for the input feature vectors for testing. 

For the Gaussian distributed database objects, Equations 4.1 and 4.2 can 

be rewritten as below. Given the set of a priori clusters, C 二 {c)Jf and the 

set of cluster partitions generated by the tested methods, C' = {c')5", the 

performance measurements Recall and Precision are defined as: 

Recall = ^ ^ ^ , (4.3) 
cieCAcrec' #Ci 

Ci n c' 
Precision = ^ ’ / ， (4.4) 

cieCAcreC' ^ ¾ 

where #Q denotes the number of elements in the cluster C{. 

2. Synthetic Data in Uniform Distribution: 

We also use synthetic data sets in uniform distribution or random distribu-

tion as uniform represents the data distribution opposite to Gaussian. 

3. Real Data: 

Apart from synthetic data, we also use real data in the experiments to test 

our method in a real world situation. For our experiments, the real data 

features are the feature vectors extracted from real images. Basically, we 

firstly find some real images from different kinds of catalogs. By considering 

the global color information of each image, we calculate an 8-bucket color 
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histogram form the image and transform it into a feature vector. All of the 

output feature vectors form the real data set for testing. 

4.2.2 Experiment 1: Test for Recall and Precision Perfor-

mance 

In the first experiment, we evaluate the accuracy and efficiency of the four tested 

methods: RPCL, CL, k-means, and VP-tree to build indexing structures for re-

trieval. We measure the Recall and Precision performance of these methods for 

accuracy. Moreover, we also kept the time used for pre-processing which includes 

clustering and indexing of the feature vectors for efficiency. The main aim of this 

experiment is to find out which tested method has the best overall performance 

for locating natural clusters for indexing and retrieval. 

We use three different kinds of data sets in this experiment: (1) synthetic 

data in Gaussian distribution, (2) synthetic data in uniform distribution, and (3) 

real data (see Section 4.2.1 for details). Each of the data sets consists of 2048 

8-dimensional feature vectors. This is not a large data set because it is very time 

consuming for k-means to locate clusters from a large feature vector set. Therefore, 

we use a relative small data set here for better comparison of these four methods. 

Besides, we use 8-D feature vectors here because it is not too high and too low 

for testing the four tested methods and the real data are also in 8-D. Moreover, 

for each input data set, different numbers of cluster partitions are generated for 

the input feature vectors by the four tested methods respectively. We conducted 

20 trails with different initial starting points of the centers of the to-be generated 

cluster partitions for these methods to calculate their average Recall and Precision 

Performance and the average time used for building indexing structure. 

We use several tables and figures to present the experimental results of the 

three different data sets. For the data sets in Gaussian distribution with different 

mixture groups, Tables 4.1 and 4.2 show the Recall and Precision results. Since 
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No. of Generated Clusters (RPCL, CL, k-means, VP-tree) 
imG 2 4 8 ^ 32 
"^"""1.0, 1.0, 1.0, 1.0 .51, .45, .66，.50 .27, .25, .57, .25 .15, .14, .53, .13 .22，.09, .51, .06 

4 1.0，1.0, 1.0, 1.0 1.0, 1.0，1.0, 1.0 .52, .58，.80, .50 .39, .43, .77, .25 .53, .31, .76, .13 
8 1.0, .91, 1.0, .87 1.0, 1.0, 1.0, .71 1.0, 1.0, .94, .56 .75, 1.0, .89，.31 .73, .56, .88, .17 
16 .96, .95, 1.0, .90 1.0, .99, 1.0, .86 1.0, 1.0, 1.0, .76 .99, .98, .96, .65 .93, .83，.94, .41 
32 .96, .98, .99, .93 .98, .96, 1.0, .86 .97, .87, .99，.80 .98, .87, 1.0, .69 .98，.87, .94，.63 

Table 4.1: Recall table for the data sets in Gaussian distributions in Experiment 
1. # M G is the number of Gaussian mixture groups. 

No. of Generated Clusters (RPCL, CL, k-means, VP-tree) 
_ G 2 4 8 W 32 
~ 2 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0，1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 

4 .50, .50, .50, .50 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0，1.0, 1.0 1.0，1.0, 1.0, 1.0 
8 .25, .23, .25, .15 .46, .50, .50, .20 1.0, 1.0, .93，.36 1.0, 1.0, .97，.63 1.0, 1.0, 1.0, .79 
16 .11, .12, .13, .10 .26, .24, .27, .16 .54, .54, .61, .21 .97, .93，.88, .39 .98, .85, .97, .68 
32 .06, .05, .06, .05 .11, .11, .14, .08 .25, .18, .26, .13 .51, .39, .56, .21 .94, .71, .87, .41 

Table 4.2: Precision table for the data sets in Gaussian distributions in Experiment 
1. # M G is the number of Gaussian mixture groups. 

the time used for pre-processing is independent to the input distribution of the 

feature vector space, we simply show only the time used for pre-processing 2048 

feature vectors with 16 Gaussian mixtures of the input distribution in Figure 4.4. 

For the data set in uniform distribution and the real data set, we can simply use 

Figures 4.5 and 4.6 to present their results respectively. Moreover, we use Tables 

4.3, 4.4, and 4.5 here to show the main observations of this experiment. 

Based on the above experimental results, a brief discussion of the performance 

of the four methods for content-based retrieval in multimedia databases is given 

below: 

Measures RPCL CL k-means VP-tree 
Recall high middle highest lowest 
Precision high middle highest lowest 
Preprocessing Speed highest high lowest middle 

Table 4.3: Comparison of the average performance of the four methods for index-
ing and retrieval with data sets in Gaussian distributions. 
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Figure 4.4: Time used for the pre-processing of the 2048 feature vectors with 16 
Gaussian mixtures of the input distribution. 

Measures RPCL CL k-means VP-tree 
Recall high low highest low 
Precision high low highest low 
Preprocessing Speed highest high lowest middle 

Table 4.4: Comparison of the average performance of the four methods for index-
ing and retrieval with the uniform data set. 

Measures RPCL CL k-means VP-tree 
Recall high low high high 
Precision high low high high 
Preprocessing Speed highest middle lowest middle 

Table 4.5: Comparison of the average performance of the four methods for index-
ing and retrieval with a given real data set. 
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Figure 4.5: Results for the uniform data set in Experiment 1. (a) The Recall 
results, (b) The Precision results, (c) The pre-processing time. 
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Figure 4.6: Results for the real data set in Experiment 1. (a) The Recall results, 
(b) The Precision results, (c) The pre-processing time. 
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1. Boundary Problem: 

For the data sets in Gaussian distribution, the Recall and Precision values 

of RPCL, CL, and k-means are higher than VP-tree. The reason is that 

VP-tree cannot handle the boundary problem well. This is a problem when 

a requested nearest-neighbor query falls near the cluster partition boundary. 

Since VP-tree does not pay attention to the input distribution, a similar fea-

ture vector near to the query may be clustered into another cluster partition. 

However, the other tested methods try to locate natural clusters from the 

input data set so that they may handle the boundary problem better. As 

a result, the Recall and Precision values of the VP-tree method are lower 

than the other tested methods. 

2. Low Recall Performance When #GC > #MG: 

There is a problem for the k-means, CL, and RPCL methods when the 

number of generated clusters (#GC) is greater than the number of Gaus-

sian mixture groups (Jĵ MG) of the input distribution. We may find that 

the Recall values are relatively low in this case. It is because multiple gener-

ated cluster partitions may be bunched together spatially. This leads to an 

incorrect assessment of cluster partitions since only a few target database 

objects can be retrieved. 

3. Low Precision Performance When #GC < #MG: 

When the number of generated clusters (#G^C) is less then the number of 

Gaussian mixture groups (#MG^), we find that the precision values of the 

tested methods are relatively low. The main reason is two or more mixture 

groups may be clustered into the same cluster. Therefore, the cluster con-

taining the target database objects may contain many non-target database 

objects. The precision for retrieving this cluster as the result of a query will 

be low. 
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4. Performance for Data in Uniform Distribution: 

For the data set in uniform distribution, the Recall and Precision values are 

not very high. It is because there are no explicit natural clusters found in 

the distribution of the data set and clustering is not quite useful for this 

case. As a result, RPCL, CL, and k-means do not have high Recall and 

Precision Performance. 

5. Performance for the Real Data Set: 

For the real data set, it is expected that the Recall and Precision values are 

in between those for data sets in two extreme data distributions: Gaussian 

and uniform. It is because the distribution of the real data set is usually in 

between Gaussian and uniform. Therefore, we find that the overall Recall 

and Precision values are higher than the uniform one, but lower than the 

Gaussian one in general. 

6. K-means - an Accurate but Slow Method: 

K-means gives the best average Recall and Precision performance among the 

four tested methods, but it is the slowest. It is because the k-means algo-

rithm often recomputes the centers of the cluster partitions when clustering. 

Hence, it is computationally intensive. 

7. RPCL - a Fast Method with Satisfactory Recall and Precision 

Performance: 

RPCL gives satisfactory results and it is much faster than k-means for pre-

processing. It produces a good cluster center approximation so that it can 

locate natural clusters well and gives good Recall and Precision results. 

Moreover, it is a heuristic algorithm for clustering so that it is faster than 

k-means for more than several hundred times in general. 
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In summary, RPCL gives the best overall performance among the four tested 

methods for indexing and retrieval in this experiment. Therefore, we will concen-

trate on RPCL in the following three experiments to evaluate the efficiency and 

accuracy of RPCL for indexing and retrieval with other different parameters such 

as size and dimensionality and find out how these parameters affect the efficiency 

and accuracy of our method. 

4.2.3 Experiment 2: Test for Different Sizes of Input Data 

Sets 

In this experiment, we test the accuracy and efficiency of RPCL for indexing 

and retrieval with different sizes of input feature vector sets. We measure the 

Recall and Precision performance of our method for accuracy and record the time 

used for pre-processing for efficiency. We use two different kinds of data sets in 

this experiment: (1) synthetic data in Gaussian distribution and (2) synthetic 

data in uniform distribution (see Section 4.2.1 for details). The data sets are 

8-dimensional feature vector sets with sizes varying from 1024 to 40960. For 

each input data set, different numbers of cluster partitions are generated for the 

experiment. We conducted 20 trails with different initial starting points of the 

centers of the to-be generated cluster partitions for RPCL to calculate its average 

Recall and Precision Performance and the average time used for building indexing 

structure. 

We use several figures and tables to present the results of this experiment. 

For the data sets in Gaussian distribution with different mixture groups, Table 

4.6 shows the Recall and Precision results. For better illustration, we show the 

results for the data sets with feature vectors having 16 Gaussian mixture groups 

by using Figure 4.7. Moreover, it shows the time used for pre-processing this data 

set. On the other hand, Table 4.7 and Figure 4.8 present all the results for the 

data sets in uniform distribution. 
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~~No. of Generated Clusters~~ ~~No. of Generated Clusters~~ 
#MG 2 4 8 16 32 #MG 2 4 8 16 32 

~~2 L0 l7 ：28 ：23 T T ~~2 0 0 L0 0 L0" 
1.0 .47 .28 .12 .06 1.0 1.0 1.0 1.0 1.0 
1.0 .51 .26 .11 .11 1.0 1.0 1.0 1.0 1.0 
1.0 .47 .30 .12 .06 1.0 1.0 1.0 1.0 1.0 
1.0 .47 .29 .14 .06 1.0 1.0 1.0 1.0 1.0 
1.0 .53 .29 .14 .06 1.0 1.0 1.0 1.0 1.0 

~1 ~ ~ 0 Eo M ^^ W ~ 1 ~ ~ ^ 0 0 0 L0" 
1.0 1.0 .50 .37 .43 .50 1.0 1.0 1.0 1.0 
1.0 1.0 .64 .25 .14 .50 1.0 1.0 1.0 1.0 
1.0 1.0 .62 .25 .15 .50 1.0 1.0 1.0 1.0 
1.0 1.0 .64 .25 .12 .50 1.0 1.0 1.0 1.0 
1.0 1.0 .65 .26 .13 .50 1.0 1.0 1.0 1.0 

~ 8 0 0 0 Eo 7fW ~~8 7^ ^ 0 0 r o " 
•99 1.0 1.0 .78 .64 .23 .58 1.0 1.0 1.0 
1.0 .92 1.0 .53 .56 .27 .46 1.0 1.0 1.0 
1.0 1.0 1.0 .57 .31 .27 .50 1.0 .97 1.0 
1.0 1.0 1.0 .62 .27 .25 .50 1.0 1.0 1.0 
1.0 1.0 1.0 .57 .27 .25 .58 1.0 1.0 1.0 

"Te" “^M Eo M ：96 M~ ~ i e ~ " I S ^ M m M ' 
.97 1.0 .98 1.0 .82 .11 .24 .44 1.0 1.0 
1.0 1.0 1.0 1.0 .94 .13 .25 .54 .97 1.0 
.99 .98 .98 1.0 .62 .11 .24 .51 1.0 1.0 
.96 1.0 .98 1.0 .56 .11 .23 .52 1.0 1.0 
.96 .99 1.0 1.0 .56 .11 .26 .52 1.0 1.0 

~32~"：97 ：96 ：97 ：95 ^ ~ ~ ^ “ “ M T0 ：20 M ：83" 
.98 .95 .97 .98 1.0 .06 .09 .23 .50 .97 
.98 .90 .96 .96 1.0 .05 .10 .19 .46 .97 
.97 .98 .98 .99 1.0 .05 .11 .23 .42 .97 
.99 1.0 .97 1.0 .99 .05 .11 .19 .46 .97 
.99 .98 1.0 .99 1.0 .05 .10 .20 .47 .98 

(a) (b) 

Table 4.6: Results for the data sets in Gaussian distributions in Experiment 2. (a) 
The Recall table, (b) The Precision table. Each entry of the tables is a column 
of 6 values for 6 different sizes of the data sets: 1024, 2048, 4096, 10240, 20480, 
and 40960. # M G is the number of Gaussian mixture groups. 
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Figure 4.7: Results for the data sets in Gaussian distribution with 16 mixture 
groups in Experiment 2. (a) The Recall results, (b) The Precision results, (c) 
The pre-processing time. 
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Figure 4.8: Results for the uniform data sets in Experiment 2. (a) The Recall 
results, (b) The Precision results, (c) The pre-processing time. 

48 , 



Chapter 4 Non-hierarchical RPCL Indexing 

Size of # Generated Clusters Size of # Generated Clusters 
Data Set 2 4 8 16 32 Data Set 2 4 8 16 32 

~ l 0 2 4 7n""^.62 .62 .61~~：59" ~ ~ 1 ^ .74 .64 .63~~.62 .63 
2048 .70 .61 .59 .59 .61 2048 .70 .61 .59 .60 .62 
4096 .70 .61 .59 .61 .60 4096 .70 .61 .59 .61 .60 
10240 .72 .62 .60 .60 .61 10240 .72 .62 .60 .60 .61 

20480 .71 .62 .57 .60 .62 20480 .71 .63 .58 .60 .62 
40960 .72 .61 .59 .60 .62 40960 .73 .61 .59 .61 .62 

(a) (b) 

Table 4.7: Results for the data sets in uniform distribution in Experiment 2. (a) 
The Recall table, (b) The Precision table. 

From the experimental results, we find that the accuracy is unaffected by the 

sizes of the data sets in general. From the tables and figures, we can see that 

the Recall and Precision values are almost the same for different data set sizes 

provided that the other parameters are fixed and more pre-processing time is 

needed for larger data set. Therefore, it is concluded that the accuracy of the 

non-hierarchical RPCL indexing method is independent to the size of the input 

data set. 

4.2.4 Experiment 3: Test for Different Numbers of Di-

mensions 

Apart from different sizes of data sets, we also test the performance of RPCL 

for indexing with feature vectors having different numbers of dimensions in terms 

of Recall and Precision for accuracy and the pre-processing time for efficiency. 

Two different kinds of data sets are used in this experiment: (1) synthetic data in 

Gaussian distribution and (2) synthetic data in uniform distribution (see Section 

4.2.1 for details). All the data sets are fixed to have 10240 feature vectors with 

different numbers of dimensions such as 4, 8, 16, and 32. We fixed the size of each 

data set to 10240 as it is not too large or too small for testing and we do not use 

data more than 32-D because it is not so efficient for our method to work with 
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No. of Generated Clusters (DIM = 4, 8, 16, 32) 
#MG 2 4 8 W 32 
~ 2 1.0, 1.0, 1.0，1.0 .51, .49，.53, .55 .25, .25, .26, .28 .13，.12, .14, .11 .07, .07, .06, .06 

4 1.0, 1.0, 1.0, 1.0 1.0, 1.0，1.0, 1.0 .61, .48, .62, .62 .27, .27, .27, .26 .14, .14, .13, .12 
8 1.0, 1.0, 1.0，1.0 1.0，1.0，1.0，1.0 1.0, 1.0, 1.0, 1.0 .50, .49, .54, .64 .32，.24, .27, .28 
16 1.0, .96, .98, 1.0 1.0, 1.0，1.0, 1.0 .98, 1.0, 1.0, 1.0 .98, 1.0, 1.0，1.0 .58，.57, .57, .57 
32 .94, .99，.99, .98 .93, .97, .99, .99 .93, .95，1.0, .98 .96, .97, 1.0, 1.0 .97, 1.0, 1.0, 1.0 

Table 4.8: The Recall table for the data sets in Gaussian distributions in Experi-
ment 3. 

No. of Generated Clusters (DIM = 4, 8, 16，32) 
•MG 2 4 8 W 32 

~ ~ 2 1.0, 1.0, 1.0, 1.0 1.0，1.0, 1.0, 1.0 1.0，1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 
4 .50, .50, .50, .50 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0，1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0，1.0, 1.0 
8 .23, .27，.25, .57 .67, .58, .54, .80 1.0，1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 1.0, 1.0, 1.0, 1.0 
16 .11, .09, .12, .21 .23, .20, .22, .25 .48, .48, .50，.54 .80, 1.0, 1.0, 1.0 .92, 1.0, 1.0, 1.0 
32 .05，.05, .07, .06 .08, .11, .11, .11 .15, .20, .25, .32 .39，.51, .53，.54 .72, 1.0, 1.0, 1.0 

Table 4.9: The Precision table for the data sets in Gaussian distributions in 
Experiment 3. 

such high dimensional data. Moreover, for each input data set, different numbers 

of cluster partitions are generated for the experiment. We conducted 20 trails 

with different initial starting points of the centers of the to-be generated cluster 

partitions for RPCL to calculate its average Recall and Precision Performance 

and the average time used for building indexing structure. 

We use several figures and tables to present the results of this experiment. 

For the data sets in Gaussian distribution with different mixture groups, Tables 

4.8 and 4.9 show the Recall and Precision results. Moreover, we show the results 

for the data set with feature vectors having 16 Gaussian mixture groups by using 

Figure 4.9 for better illustration. Furthermore, Table 4.10 and Figure 4.10 present 

the results for the data sets in uniform distribution. 

By increasing the number of dimensions, the experimental results show that 

the accuracy is not affected for the data sets in Gaussian distributions, but it may 

be lowered for the data sets in uniform distribution. The relatively lower Recall 

and Precision results found for uniform data because there are no explicit natural 
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Figure 4.9: Results for the data sets in Gaussian distribution with 16 mixture 
groups in Experiment 3. (a) The Recall results, (b) The Precision results, (c) 
The pre-processing time. 

51 , 



Chapter 4 Non-hierarchical RPCL Indexing 

. . 1 . r 1 ~ 1 ‘ ‘ ‘ ‘ ‘ ~ 

o ^ V ^ ^ ^ ^ " ^ ^ ^ " " " " " ^ ^ , ^ V / " " ^ " ~ ~ " " ~ ~ R T ’ 
色 3: X X Q 

0.7::. ::.._.: 16 • o.7:. +--+ 16 
i'- 十 卞 丨0 、，. « « qp 

…：. * - - - * 3 2 ”、... 况 

lo.6-V.'i. ^ :io.6:�\.x. • 
Q̂  \ \ X c \、 * �� ^ w �+� �,+�. V •、 � � . 

0.5-、束•�-� °5- k � � . 
、 、 、、+ 
、、、.、.� 、 .、.� 

0.4 • 、 、 、 0.4 • 、 、 、 、 、 

、 、 
nol I I I I I 1 1 03' ‘ ‘ ‘ ‘ ‘ ‘ ^ 
0.3 5 10 15 20 25 30 5 10 15 20 25 30 

Number of Generated Cluster Partitk>n(s) Number of Generated Cluster Partition(s) 

(a) (b) 
70| 1 1 1 1 1 > 

0 0 4 Z ' 
X X 8 z ‘ 6°. +-•-.+ 16 , ' *• - -* 32 z ‘ 

y • , 
50 • z “ ‘ 

y 

• z . 厂 

- ‘ - ‘ : z 
严 ,*一一 Z.z. 
？ ‘ .-• § / z " 
" 3 0 - , ^ . Z . 

Z 4^ 

w ^ 
z 

2 � � Z . . . . . . . . X -> 

^^::-^^ ^ ^ • 

o' ‘ ‘ 1 1 ‘ ‘—— 
5 10 15 20 25 30 

Number of Generated Cluster PartHk>n(s) 

(c) 

Figure 4.10: Results for the uniform data sets in Experiment 3. (a) The Recall 
results, (b) The Precision results, (c) The pre-processing time. 
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# Generated Clusters # Generated Clusters 
DIM 2 4 8 16 32 DIM 2 4 8 16 32 

~ 4 ：80~~.74 .78 . 8 3 ~ 7 f ^ ~ 4 ：80"“̂ .74 .78 .83““7f^ 
8 .71 .60 .59 .58 .62 8 .72 .60 .59 .58 .63 
16 .69 .55 .47 .45 .45 16 .69 .55 .47 .45 .45 
32 .65 .49 .41 .36 .34 32 .65 .49 .41 .36 .34 

(a) (b) 

Table 4.10: Results for the uniform data sets in Experiment 3. (a) The Recall 
table, (b) The Precision table. 

clusters for RPCL to locate. Therefore, we can conclude that our method is more 

suitable for data sets with distributions similar to Gaussian distribution. 

4.2.5 Experiment 4: Compare with Actual Nearest-neighbor 

Results 

In this experiment, we compare the results given by our method with the actual 

nearest-neighbor results in order to check the actual accuracy of our method. In 

the first three sets of experiments, we mainly evaluate the Recall and Precision 

performance of the tested methods. We want to find out the (accuracy) percentage 

of the database objects retrieved by our method can also be found in the actual 

nearest-neighbor results in the experiment for accuracy. 

We use three different kinds of data sets in this experiment: (1) synthetic 

data in Gaussian distribution, (2) synthetic data in uniform distribution, and 

(3) real data (see Section 4.2.1 for details). Each of the data sets contains 8-

dimensional 10240 feature vectors. Moreover, for each input data set, different 

numbers of cluster partitions are generated for the experiment. We conducted 

20 trails with different initial starting points of the centers of the to-be generated 

cluster partitions for RPCL to find out the results of the given queries. The results 

of this experiment are presented by Tables 4.11, 4.12, and 4.13. 
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No. of Generated Clusters 
#MG 2 4 8 16 32 

~ 2 88.14 56.14 40.72 33.40 29.55 
4 73.42 84.34 56.58 40.85 29.30 
8 65.40 60.97 79.10 54.41 39.58 
16 62.14 54.14 57.22 75.34 45.04 
32 64.05 49.82 49.42 49.88 73.08 

Table 4.11: Accuracy percentages for the data sets in Gaussian distributions in 
Experiment 4. # M G is the number of Gaussian mixture groups. 

No. of Generated Clusters 
2 4 8 16 32 

" 5 ^ 42.43 35.09 32.08 28.91 

Table 4.12: Accuracy percentages for the uniform data set in Experiment 4. 

There are several observations for the accuracy percentages of the three differ-

ent kinds of data sets similar to those in Experiment 1. For data sets in Gaussian 

distributions, when the number of generated clusters (#G^C) is the same as the 

number of Gaussian mixture groups (#MG) of the input distribution, the percent-

ages are higher than the others. The reason is the same as the one in Experiment 

1. Another observation with the same reason as the one in Experiment 1 is that 

the percentages for the uniform data set are the lowest and those for the real data 

set are in the middle. These same observations show that Recall and Precision 

are good measurements for accuracy. 

From the experimental results, the accuracy percentages (for first cluster re-

trieval) are relatively high (73%-88%) for the data sets in Gaussian distribution 

when #GC = #MG, but we find that the larger the number of generated cluster 

partitions, the lower the accuracy percentage. It is because the chance of the 

occurrence of the boundary problem is higher when there are many generated 

No. of Generated Clusters 
2 4 8 16 32 

~W.n 56.97 48.39 44.76 37.51 

Table 4.13: Accuracy percentages for the real data set in Experiment 4. 
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clusters. It shows that our method can lessen the boundary problem, but it still 

cannot solve it completely. 

4.3 Chapter Summary 

In summary, we propose to use RPCL to produce cluster partitions in a non-

hierarchical fashion for content-based indexing. From the experimental results, 

we show that our method (RPCL) gives good searching performance and it is the 

fastest method to build for indexing among the tested methods. 

Our method using the non-hierarchical approach for indexing seems to be a 

good method, but there are still some limitations. First, it is not so efficient 

to perform insertion and deletion in our indexing method. Since our method 

uses a non-hierarchical indexing structure, there is no relationship in between two 

different levels' nodes. We have to find the target node at each level individually 

for insertion and deletion. Second, we find that our method still cannot solve the 

boundary problem completely. It does not give 100% nearest-neighbor result for a 

query in general. In order to lessen the above problems, we propose a hierarchical 

approach of our method in Chapter 5. 
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Hierarchical RPCL Indexing 

5.1 The Hierarchical Approach 

In this chapter, we are going to present the hierarchical approach of our indexing 

method. This method uses a hierarchical structure for indexing so that relation-

ship can be found in the nodes between two levels and it helps us to update the 

indexing structure. Moreover, we can perform backtracking in the hierarchical in-

dexing structure so that 100% nearest-neighbor results can be obtained. In short, 

we propose this hierarchical approach here to solve the limitations found in the 

non-hierarchical RPCL indexing method. 

The hierarchical approach transforms a feature vector space into a sequence of 

nested clusters. It clusters the vectors which are in a cluster of the previous level 

(see Figure 5.1). 

The hierarchical clustering approach can be formulated as follows. Let the 

feature vector set X with n vectors be 

X = {^iYi=i • 

A cluster, C, of X breaks X into subsets C1,C2,..., Cm satisfying the following: 

Ci n Cj = 0, 1 < i J < m , i ^ j , 
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Figure 5.1: Hierarchical clustering. C3 and C4 are the clusters inside Ci. C5 and 
Ce are the clusters inside C2. The dots represent the database objects (feature 
vectors). The crosses represent the centers. 

Ci U C2 U . . • U Cm = X . 

Cluster B is nested into cluster C if every component of B is a proper subset of a 

component of C. A hierarchical clustering is a sequence of clusters in which each 

cluster is nested into the previous cluster in the sequence. 

After clustering, there exists a mapping function that maps the generated 

clusters to a binary indexing structure. For example, all the feature vectors are 

in one cluster at the root level and there are 2' subtrees (clusters) at depth i (see 

Figure 5.2). 

At the top level, a nearest-neighbor query q is compared to the centers of the 

clusters in the immediate lower level. The cluster with center closest to the query 

point q is selected. The elements in the selected cluster will be the result of the 

query if they satisfy the criteria of the nearest-neighbor search. Otherwise, the 

search will proceed to the lower levels. In Section 5.5, we will present how to make 

use of a branch-and-bound method to speed up the searching. 
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c ^ 
D(q, Ci) < D(q, c ^ ) ^ ^ _ ^ ^ < ^ ( q , c^) < D(q, c^) 

S f ^ 
眷•參/ \ • • • • • • / \ 參眷• 

^ffl ^ffl ^ffl fflE 
Figure 5.2: The indexing structure for the hierarchical clustering in Figure 5.1. 
Co is the root node which contains all the dots in the data set used in Figure 5.1. 
D{q, Ci) means the L2-n0rm distance between nearest-neighbor query q and the 
center C{ of the cluster Ci. 

5.2 The Hierarchical RPCL Binary Tree (RPCL-

b-tree) 

In this section, we will introduce the hierarchical RPCL binary tree (RPCL-b-

tree). We will also outline the procedure of building the tree structure from the 

RPCL clusters. 

Given a set of data, we can perform top-down RPCL clustering and build a 

RPCL-b-tree based on the RPCL clusters. The basic idea is that we apply RPCL 

to cluster the data set into two sub-clusters each time and then continue to do 

RPCL clustering hierarchically to each of the sub-clusters until each of the final 

sub-clusters contains less than a pre-specified number of data points. With these 

RPCL clusters, we can build a RPCL-b-tree easily. 

RPCL-b-tree is a hierarchical RPCL binary tree structure. There are two 

kinds of nodes in the tree: leaf node and non-leaf node. 

Definition 5.1 (Leaf Node) A leaf node contains a cluster of at most M data 

points calculated by RPCL clustering. M is the maximum number of data in a 

leaf node. 
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Definition 5.2 (Non-leaf Node) A non-leafnode contains 2 entries oftheform, 

{Fi,ChildPtn), 

where i = 1 and 2, ChildPtri is a pointer to its i-th child node, and Fi is a tuple 

summarizing the information of the cluster of the i-th child node, 

Fi = {Ni, LSi, RpclCenteri), 

where 

1. Ni is the number of data points in the cluster， 

2. LSi is the linear sum ofthe N{ data points (i.e. LS{ = J2^=i ^i) {^i]^=i 仏 

the cluster of data points), and 

3. RpclCenteri is the cluster center calculated by RPCL clustering. 

The tuple Fi is similar to the Clustering Feature (CF) in [72]. We keep this 

tuple in each non-leaf node because it can help us to calculate the centroid of 

the cluster for retrieval. The centroid C of a cluster { X j ^ i is defined as: C = 

(Z)iIi Xi)|N, which can be easily computed from information in the tuple. 

Based on Definitions 5.1 and 5.2, RPCL-b-tree satisfies the following proper-

ties. 

Property 5.1 Each leaf node contains between 1 and M data point(s). 

Property 5.2 Each non-leaf node has two children. 

Property 5.3 It has been proven in [72] that N and LS for a non-leaf node 

can be easily calculated from the clustering information of its child nodes with 

Fi = {NuLSuRpclCenteri) and F2 = {N2,LS2,RpclCenter2) as: 

N = Ni + N2 , 

LS = LSi + LS2 . 
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(a) (b) 

Figure 5.3: An example of RPCL-b-tree. (a) shows the input data whereas (b) 
shows the corresponding RPCL-b-tree. A to F are the RPCL clusters for leaf 
nodes. The number in each cluster indicates its size. I to IV are the intermediate 
RPCL clusters for non-leaf nodes. Note that the node size is 100 in this RPCL-
b-tree. 

After introducing the RPCL-b-tree, we now present the algorithm for build-

ing the hierarchical binary tree by using RPCL clustering (Figure 5.3 shows an 

example of RPCL-b-tree). 

Algorithm 5.1 BuildTree(7^, P, M) 
D> Input: A set of data objects D, a RPCL-b-tree node P (P is empty at the first time), and 
the maximum node size M 
> Output: A RPCL-b-tree 

1 if £)'s size is greater than M then do 
2 create a non-leaf node Q 
3 add Q as a child node of P if any 
4 use RPCL to cluster D into two sub-sets Di and D2 
5 BuildTree(Di, Q, M) 
6 BuildTree(D2, 0, M) 
7 return Q 
8 else 
9 create a leaf node L for D 
10 add L as a child node of P if any 
11 calculate the clustering information of D and store it in the corresponding entry 

o fP 
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12 return L 
13 end if 

5.3 Insertion 

Our method not only works in a batch mode, but also allows us to insert data to 

the indexing structure. The algorithm for inserting a single data point p to the 

tree is shown as follows. . 

Algorithm 5.2 Insert(T, p, M) 
> Input: A RPCL-b-tree T, a to-be inserted data object p, and the maximum node size M 

> Output: An updated RPCL-b-tree 
1 N <r- the root node of T 
2 while N is not a leaf node do 
3 N 卜 the node with center closest to p among its child nodes if any 
4 end while 
5 associate p to N 
6 update the center of N according to the RPCL clustering rules 
7 if iV's size is larger than M then do 
8 split the node into 2 sub-nodes by using RPCL 
9 end if 
10 update the information of N's ancestors if necessary 

The performance of the indexing tree for searching may be reduced after some 

individual data point insertions. The more the insertions, the worse the perfor-

mance. The reason is that the insertion algorithm dose not fully consider the 

overall distribution of the inserted data point and the original data so that it can-

not guarantee to keep the natural clusters. The searching performance will then 

be worse (See Table 5.1 and Figure 5.4 for an example. The more the number 

of distance computations, the worse the searching performance. See Section 5.6.1 

for details.). As a result, we may have to rebuild the indexing structure after a 

certain amount of data points have been inserted. 
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# points pre-processed # points inserted avg. # of distance computations 
— 10000 — 0 25.8 — 

9000 ~ lQQQ 33.1 
8000 ~ 2000 33.95 
6000 _ 4QQQ 37.75 
4000 ~ 6000 — 44.80 
2000 8000 41.65 

— 0 10000 41.60 

Table 5.1: The average searching performance of 20 nearest-neighbor queries on 
the RPCL-b-trees built in different ways of data insertions with the same 10000 
data objects. 
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Figure 5.4: Searching performance for insertion. 
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5.4 Deletion 

Apart from insertion, we can also delete an individual data point from a RPCL-

b-tree. The algorithm for deleting a single data point from the tree is shown as 

follows. 

Algorithm 5.3 Delete(r, q, M) 
> Input: A RPCL-b-tree T, a to-be deleted data object q, and the maximum node size M 

> Output: An updated RPCL-b-tree 
1 N <r- the root node of T 
2 while N is not a leaf node do 
3 N — the node with center closest to q among its child nodes if any 
4 end while 
5 if q is associated with N then do 
6 remove q form N 
7 update the center of N according to RPCL clustering rules 
8 update the information of Q's ancestors if necessary 
9 if the size of Q,s parent node less than M then do 
10 merge all Q,s parent node's child nodes 
11 end if 
12 end if 

The deletion algorithm makes the searching performance worse. When the 

number of deletions increases, the searching performance will decrease because 

node merging will change the original indexing structure (see Table 5.2 and Fig-

ure 5.5 as an example). Sometimes, the resultant indexing tree will give better 

searching results especially when the number of deletions is relatively small. It 

is because only a few points are removed from the indexing tree and it does not 

affect the natural clusters and the indexing structure any more. 

5.5 Searching 

In our work, we make use of the branch-and-bound algorithm proposed in [38 

to compute the k nearest neighbors to a given query. The method is designed 
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# points pre-processed # points deleted avg. # of distance computations 
5000 0 28.8 
5100 — 100 31.75 
5200 — 200 22.75 
5300 — 300 28.10 
5400 — 400 32.05 
5600 _ 600 32.25 

— 5800 800 30.20 

6000 — 1000 37.65 
— 10000 5000 43.40 

Table 5.2: The average searching performance of 20 nearest-neighbor queries on 
the RPCL-b-trees built in different ways of data deletions with the same final 5000 
data objects. 
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Figure 5.5: Searching performance for deletion. 
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specially for a tree structure which represents a hierarchical decomposition of a 

set of data points by using clustering techniques. Our RPCL-b-tree has exactly 

the same structure as the one described. Therefore, we apply the method for 

effective and efficient nearest-neighbor search. 

The basic idea of the branch-and-bound method consists of two stages. First, 

the feature set is hierarchically decomposed into disjoint subsets (by RPCL in our 

method). The results of this decomposition are represented by a tree structure 

(RPCL-b-tree). Second, the resultant tree is searched by the branch-and-bound 

algorithm. 

For the branch-and-bound algorithm, each node is tested to determine whether 

or not the nearest neighbor to a query by the following 4 rules. Let X be the 

query, B be the distance to the current nearest neighbor of X among the features 

considered up to the present, Sp be the set of features associated with node p, Np 

be the number of samples associated with node p, Mp be the sample mean of Sp, 

rpmax = m^xx,es,D{Xi,Mp), and r — = mmx,es,D{Xi,Mp), the 4 rules (see 

also Figure 5.6) are: 

Rule 5.1 (General Inclusion Rule) No Xi G Sp can be the nearest neighbor 

to X, if 

D{X,Mp) > B + rpmax . 

Proof: The proof of Rule 5.1 follows. For Xi G Sp, by triangle inequality, 

D{X, Xi) + D{Xi, M,) > D{X, M,). 

By definition, D{Xi, Mp) < rpmax, we have 

D{X, Xi) > D{X, Mp) — rpmax . 

Therefore, no X{ can be nearest neighbor to X, if 

D(X, Xi) > D{X, Mp) 一 rpma. > B , 
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D{X, Mp) > B + rpmax . 

Rule 5.1 follows immediately. 

Rule 5.2 (Specific Inclusion Rule) Xi cannot be the nearest neighbor to X， 

if 

D{X, Mp) >B + D{Xi,Mp), 

where Xi G Sp. 

Proof: The proof of Rule 5.2 is similar to the one for Rule 5.1. 

Rule 5.3 (General Exclusion Rule) No Xi G Sp can be the nearest neighbor 

to X, if 

B + D{X, Mp) < rpmin . 

Proof: The proof of Rule 5.3 follows. For Xi G Sp, by triangle inequality, 

D{Xi,X) + D{X,M,) > D[Xi,M,) • 

By definition, D{Xi, Mp) > rpmin, we have 

D{Xi,X)>r^min-D{X,M^). 

Therefore, no X{ can be nearest neighbor to X, if 

D{Xi,X) > rpmin - D{X,M^) > B , 

B^D{X,Mp) < rpmin . 

Rule 5.3 follows immediately. 

Rule 5.4 (Specific Exclusion Rule) Xi cannot be the nearest neighbor to X， 

if 
B^D{X,M^)<D{Xi,Mj,), 

where X{ G Sp. 

Proof: The proof of Rule 5.4 is similar to the one for Rule 5.3. 
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Figure 5.6: (a) General inclusion rule, (b) Specific inclusion rule, (c) General 
exclusion rule, (d) Specific exclusion rule. 
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With the above 4 rules, the branch-and-bound algorithm to find the nearest 

neighbor to a given query X is given below: 

Algorithm 5.4 Search(T, X) 
> Input: a RPCL-b-tree T and a query X 
> Output: the nearest neighbor to X 
> Initialization 

1 B <- 00 
2 L ^ 1 > L is the current level 
3 N <r- root node > N is the current node 

> Expansion of current node 
4 ActiveList <r- all nodes that are immediately direct successors of N at level L 
5 compute and store the D{X, Mp)'s for the nodes in ActiveList 

> Test for Rules 5.1 and 5.3 
6 for each node p in ActiveList at level L do 
7 if B + r—ax < D{X, M^) or B + D{X, Mp) < r—n then do 
8 remove p from the ActiveList at level L 
9 end if 
10 end for 

> Backtracking 
11 if no nodes left in ActiveList at level L then do 
12 L <r- L - 1 

t> backtrack to the previous level 

13 if L = 0 then do 
14 terminate the algorithm 
15 else 
16 go to Line 6 
17 end if 
18 end if 

> Choose the nearest node for expansion 
19 p 4r- the node yielding the smallest D{X,Mp) among the nodes in ActiveList at 

level L 
20 N <- p 
21 remove p from the ActiveList at level L 
22 if L is not final level then do 
23 L 二 L + 1 
24 go to Line 4 
25 end if 

> Test for Rules 5.2 and 54 

26 for each Xi in p do 
27 i fB + D(X,-,Mp) < D(X,Mp) orB + D(X,Mp) <D(X,,Mp) then do 
28 do not compute D(X, X{) 

> Xi cannot be the nearest neighbor to X 

29 else 
30 compute D{X,Xi) 
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31 ifD{X,Xi) < B then do 
32 N = node i > current nearest neighbor to X 

33 B = D(X,Xi) 
34 end if 
35 end if 
36 end for 
37 go to Line 6 

The above algorithm is easy to be extended to search k nearest neighbors for 

a query X. It can be done by keeping a sorted list of k current nearest neighbors 

instead of the current nearest neighbor and changing B to be the distance to the 

k-th nearest neighbor of X among the features considered up to the present. 

5.6 Experiments 

In this section, we present several experiments and their results for the perfor-

mance of the RPCL-b-tree method with the branch-and-bound algorithm for re-

trieval. We use different kinds of data together with different parameters in the 

experiments in order to measure the efficiency of the method for 100 % nearest-

neighbor search. 

5.6.1 Experimental Setup 

We conducted 6 different experiments to measure the efficiency of the RPCL-b-tree 

method for 100% nearest-neighbor search. All the experiments were conducted 

on an Ultra Sparc 1 machine and the RPCL-b-tree was implemented using C++. 

Unlike the experiments presented in Chapter 4, we use a new measurement for 

efficiency here instead of Recall and Precision. It is because Recall and Precision 

are used for accuracy not efficiency and we do not need to test the accuracy for 

100% nearest-neighbor search. For efficiency, it is hard to tell how efficient a 

method is, thus we define an efficiency measurement for the experiments. In a 
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nearest-neighbor retrieval, the most time-consuming part is to find the distances 

between a query and the feature vectors. Therefore, the efficiency of an indexing 

method is almost proportional to these distance computations. The efficiency of 

our method is defined based on the efficiency of the linear search because it has 

the worst efficiency in searching than other methods. The efficiency measurement 

is defined as: 

Definition 5.3 (Efficiency Measurement) 

. . 1 # of distance computations for the checked method (5 ” 
efficiency — 1 # of distance computations in linear search 

We know that the efficiency of linear search is 0 because it needs to compute 

the distance between every feature vector and the query. Moreover, the total 

number of distance computations is equal to the size of the data set. As a result, 

Equation 5.1 becomes: 

. . # of distance computations for the checked method , � 
efficiency = 1 : 7T i—TT 7 • v -̂̂ i 

““ ^ size 01 the data set 

We use an example here to illustrate what is the practical meaning for this effi-

ciency. For example, if the searching efficiency of a method is 0.8, the method 

needs only approximately 20% of the searching time needed by the linear search 

for retrieval. 
We use three different kinds of data sets in the experiments: 

1. Clustered Data: We test our method with synthetic data sets in Gaussian 

distribution. Section 4.2.1 shows the generating formula for this kind of 

data. In the following experiments, we simply used a constant 0.05 for a 

and let n = 10, 100, and 1000 for the generating formula of the clustered 

data with dimensions varying from 2 to 16. 

2. Uniform Data: We use also synthetic data sets in uniform distribution 

(see Section 4.2.1 for details). In the following experiments, the uniform 

data sets have dimensions varying from 2 to 16. 
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3. Real Data: We use a real data set for testing our method in a real world 

situation. The real data set is obtained in the same way as the one described 

in Section 4.2.1. The only difference is that the size of the set is 10000 here 

because we need not test for k-means in the following experiments so that 

a larger data set is more appropriate. Unlike synthetic data sets, this real 

data set is fixed with 10000 8-D feature vectors. Therefore, we use the set 

in Experiments 5, 7, 9, and 10 only. 

In Experiments 5-10, we try to test our method's efficiency with different, 

parameters as below: 

• Experiment 5: Test for different node sizes. 

• Experiment 6: Test for different sizes of the data sets. 

• Experiment 7: Test for different data distributions. 

• Experiment 8: Test for different numbers of dimensions. 

• Experiment 9: Test for different numbers of database objects retrieved in 

nearest-neighbor search. 

• Experiment 10: Test with VP-tree for comparing their efficiency. 

From these experiments, we want to find out how these parameters affect the 

efficiency of our method. Moreover, we will work out a relationship formula for 

describing the relationship between the efficiency and these parameters in Section 

5.8. 

We first build a RPCL-b-tree in a batch mode for each of the testing data 

sets and then perform nearest-neighbor searches to calculate the efficiency of the 

RPCL-b-tree with the Equation 5.2. Finally, we give a brief discussion on the 

results and try to come out some conclusions. All the results and the conclusions 

will be presented in the following sections. 
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~Node Size 100, 200, 500, 1000, and 2000. 
^ize of Data Set 10000. ~ 
Data Type “ Clustered data with 100 Gaussian 

mixtures, uniform data, and real 
data. 

Dimensionality ^ 
Number of Database Objects Retrieved 1, 5, 20, 50, and 100. 

Table 5.3: Detail of the parameters in Experiment 5. 

5.6.2 Experiment 5: Test for Different Node Sizes 

In Experiment 5, we try to test the efficiency of the RPCL-b-tree with different 

node sizes. In a RPCL-b-tree, each node contains no more than a certain number 

of data or each node has a maximum size. We want to find out how the node size 

affects the efficiency of the RPCL-b-tree and then figure out the most suitable 

node size for the tree from the experimental results. 

We test the efficiency of the method for 100% nearest-neighbor retrieval. That 

means the searching result will be exactly the same as the linear search one. We 

use different numbers of node sizes in this experiment together with several other 

parameters. Table 5.3 shows the detail of the parameters. We test with node sizes 

actually from 1% to 20% of the size of data set. It is meaningless to test with 

node sizes more than 20% as the indexing tree may have only a few leaf nodes and 

each of them may become very large in size. Moreover, we retrieve no more than 

100 database objects in the experiment because in practice the result of a query is 

not a too large set so that we can pick out the desired database objects manually 

from the set. Finally, for each set of parameters, 10 different nearest-neighbor 

searches are performed and the average results are used for analysis. 

We present three main kinds of figures from the experiments: the Indexing 

Structure Construction Time, the Searching Time and the Searching Efficiency. 

The time used in building the indexing structure is shown in Table 5.4 and Figure 
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lsFode Size 100 200 500 1000 2000" 
"Clustered Data 8.40 7.09 4.44 3.92 3.18 
U n i f o r m Data 7.64 5.54 3.84 3.03 3.21 
Real Data 8.22 6.65 5.37 4.05 3.Q0~| 

Table 5.4: Time used (in seconds) for building the indexing structures in Experi-
ment 5. 

Node Size 100 200 500 1000 2000 
Clustered Data k = 1 0.007 0.013 0.042 0.063 0.076 

k = 20 0.010 0.019 0.052 0.082 0.102 
k = 100 0.026 0.050 0.077 0.118 0.123 

Uniform D a t a ~ ~ ¥ ^ 0.017 0.023 0.045 0.060 0.092 
k = 20 0.049 0.059 0.081 0.092 0.120 
k = 100 0.084 0.101 0.119 0.137 0.139 

Real Data k ^ 0.012 0.017 0.018 0.023 0.035 
k = 20 0.022 0.020 0.032 0.040 0.049 
k 二 100 0 037 0.039 0.058 0.058 0.074 

Table 5.5: The average time used (in seconds) for searching the k nearest-neighbors 
to 10 different queries in Experiment 5. 
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Figure 5.7: Results of Experiment 5. (a), (b), and (c) are the average efficiency 
for searching different numbers of nearest neighbors to 10 different queries for 
clustered data, uniform data, and real data respectively, (d) is the time used (in 
seconds) for building the indexing structure. 
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5.7(d). Table 5.5 shows the searching time. The efficiency of nearest-neighbor 

search with the RPCL-b-tree is presented in Figures 5.7(a), (b), and (c). Here are 

the observations from the figures and tables: 

1. The smaller the node size, the better the efficiency is. 

2. The larger the number of database objects retrieved, the worse the efficiency 

is. 

3. The smaller the node size, the more time is needed to construct the indexing 

structure. 

4. The larger the node size, the more the searching time is needed. 

From the experimental results, we find that the smaller the node size, the 

better the efficiency is. For example, when node size is 1% (size 二 100) or 2% | 

(size 二 200) of the size of the data set, the efficiency is better than those for | 

other node sizes. However, in term of the indexing structure construction time, | 

the smaller the node size, the more time is needed. Since the construction of 

the indexing structure is a pre-processing part and we only need to do it once, a 

little bit more construction time is acceptable. Therefore, we would rather have a 

better searching efficiency instead. We conclude that 1% to 2% of the size of the 

data set is a suitable node size for the RPCL-b-tree. 

5.6.3 Experiment 6: Test for Different Sizes of Data Sets 

In Experiment 6, we test the efficiency of the RPCL-b-tree with different sizes of 

the data sets. We want to find out if our indexing method is suitable for a large 

set of data. 

We test the efficiency of the method for 100% nearest-neighbor retrieval. We 

use different sizes of the data sets in this experiment together with several other 

parameters. Table 5.6 shows the detail of the parameters. We fix the node size to 
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Node Size 200. 

Size of Data Set 1000, 2000, 5000, 10000, 20000, 
and 50000. 

Data Type Clustered data with 100 Gaussian 
mixtures and uniform data. 

Dimensionality ^ 
Number of Database Objects Retrieved 1, 5, 20，50，and 100. 

Table 5.6: Detail of the parameters in Experiment 6. 

Data Set Size 1000 2000 5000 10000 20000 5 0 0 0 � 

Clustered Data —0.42 1.09 3.10 7.09 14.48 47.88 
Uniform Data 0.37 1.03 3.34 5.54 11.11 30.47 

Table 5.7: Time used (in seconds) for building the indexing structures in Experi-
ment 6. 

200 as we find in the last experiment that 2% of the size of the data set (10000) 

is a suitable value for node size. For each set of parameters, 10 different nearest-

neighbor searches are performed and the average results are used for analysis. 

We use some tables and figures to present the experimental results. The time 

used in building the indexing structure is shown in Table 5.7 and Figure 5.8(c). 

Moreover, Table 5.8 shows the searching time. The efficiency of nearest-neighbor 

search with the RPCL-b-tree is presented in Figures 5.8(a) and (b). Here are the 

Data Set Size 1000 2000 5000 10000 20000 50000 
Clustered Data k=l 0.009 0.028 0.017~~0.013~~0.012~~0.008 

A;=20 0.010 0.037 0.021 0.019 0.017 0.010 
k=m 0.023 0.058 0.044 0.050 0.039 0.036 

Uniform D a t a ~ ~ 口 0.011 0.015 0.018~~0.023~~0.032~~0.033 
A:=20 0.014 0.028 0.042 0.059 0.057 0.079 
k=m 0.023 0 038 0.066 0.101 0.138 0.111 

Table 5.8: The average time used (in seconds) for searching the k nearest-neighbors 
to 10 different queries in Experiment 6. 
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Figure 5.8: Results of Experiment 6. (a) and (b) are the average efficiency for 
searching different numbers of nearest neighbors to 10 different queries for clus-
tered data and uniform data respectively, (c) is the time used (in seconds) for 
building the indexing structure. 
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observations from the figures and tables. 

1. The larger the data set, the better the efficiency is. 

2. The larger the number of database objects retrieved, the worse the efficiency 

is. 

3. The larger the data set, the more time is needed to construct the indexing 

structure. 

From the experimental results, the main finding is that the efficiency increases 

when the size of the data set increases. It is not hard to explain this observation 

with node size. Given a fixed node size, the ratio of the node size to the size of 

the data set decreases as the data set size increases. From Experiment 5, we know 

that the smaller the ratio, the better the efficiency of the method is. Again, it may 

need a little bit more time to construct the indexing structure for a large data set, 

but we do not mind to pay more pre-processing time for efficient retrieval. 

5.6.4 Experiment 7: Test for Different Data Distributions 

The objective of Experiment 7 is to test the searching performance of the RPCL-

b-tree with different kinds of data distributions. We concentrate mainly on the 

Gaussian distribution with different numbers of Gaussian mixtures. We try to 

find out how the number of Gaussian mixtures affects the searching performance 

of our indexing method. 

We test the efficiency of the method for 100% nearest-neighbor retrieval. We 

use clustered data with different numbers of Gaussian mixtures together with an 

uniform data set in which each feature vector itself can be treated as a Gaussian 

mixture and the real data set for reference. Table 5.9 shows the detail of the 

parameters. For each set of parameters, 10 different nearest-neighbor searches are 

performed and the average results are used for analysis. 
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Figure 5.9: The average efficiency for searching different numbers of nearest-
neighbors to 10 different queries for the clustered and uniform data in Experiment 
7. 

"Node Size 200. — 
“Size of Data Set 10000. 
Data Type Clustered data with 10，100, and 

1000 Gaussian Mixtures together 
with uniform data and real data. 

Dimensionality ^ 
Number of Database Objects Retrieved 1, 5, 20, 50, and 100. 

Table 5.9: Detail of the parameters in Experiment 7. 

No. of Gaussian Mixtures 10 100 1000 Uniform Real 
Construction Time 6.36 7.93 7.09 5.60 6.78 

Table 5.10: Time used (in seconds) for building the indexing structures in Exper-
iment 7. 

No. of Gaussian Mixtures 10 100 1000 Uniform Real 
Searching Time ^ 0.006 0.010 0.029 0.032 0.022 

ib=20 0.012 0.016 0.048 0.061 0.025 
fc=100 0.032 0.041 0.098 0.100 0.039 

Table 5.11: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 7. 
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We use some tables and figures to present the experimental results. The time 

used in building the indexing structure and in the searching are shown in Table 

5.10 and Table 5.11 respectively whereas the efficiency of nearest-neighbor search 

with the RPCL-b-tree is presented in Figure 5.9. Here are some of the main 

observations: 

1. More Gaussian mixtures seem to give worse searching performance. 

2. The larger the number of database objects retrieved, the worse the efficiency 

is. 

3. The number of Gaussian mixtures is independent to the indexing structure 

construction time. 

4. The more the Gaussian mixtures, the more time is needed in the searching. 

From the experimental results, we find that the more the Gaussian mixtures, 

the worse the efficiency. It is because more small clusters are found when building 

the indexing structure. As a result, the indexing structure may have more nodes 

which will worsen the searching performance because more decisions have to be 

made for determining whether the node is going to be examined. We can treat the 

uniform data set as a 10000-sized data set with 10000 Gaussian mixtures or each 

individual feature itself is a one-point Gaussian mixture. Hence, we find that the 

efficiency for uniform data is not very good relatively. As expected, the efficiency 

of real data is in between the one for clustered data with 10 Gaussian mixtures 

and the one for uniform data. 

5.6.5 Experiment 8: Test for Different Numbers of Di-

mensions 

In this experiment, we try to test the efficiency of the RPCL-b-tree for the data 

in different numbers of dimensions. We know that many existing methods are not 
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Node Size 200. 
Size of Data Set 10000. 
Data Type Clustered data with 100 Gaussian 

mixtures and uniform data. 
Dimensionality 2, 4, 8, and 16. 
Number of Database Objects Retrieved 1, 5, 20, 50, and 100. 

Table 5.12: Detail of the parameters in Experiment 8. 

Dimensionality 2 4 8 16 
Clustered Data 1.95 4.02 8.79 17.95 
Uniform Data 1.84 3.07 5.78 21.80 

Table 5.13: Time used (in seconds) for building the indexing structures in Exper-
iment 8. 

quite applicable for high dimensional data. Therefore, we want to find out if our 

method is suitable for high dimensional data. 

We test the efficiency of the method for 100% nearest-neighbor retrieval. We 

use the data with different numbers of dimensions together with several other 

parameters. Table 5.12 shows the detail of the parameters. For each set of pa-

rameters, 10 different nearest-neighbor searches are performed and the average 

results are used for analysis. 

We use some tables and figures to present the experimental results. The time 

Dimensionality 2 4 8 16 
Clustered Data h=l 0.002 0.002 0.012 0.059 

A;=20 0.002 0.008 0.018 0.082 
fe=100 0.006 0.023 0.043 0.133 

Uniform D a t a ~ ~ ^ 0.001 0.006 0.031 0.218 
A:=20 0.001 0.005 0.072 0.225 
k=m 0.008 0.015 0.101 0.254 

Table 5.14: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 8. 
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Figure 5.10: Results of Experiment 8. (a) and (b) are the average efficiency 
for searching different numbers of nearest neighbors to 10 different queries for 
clustered data and uniform data respectively, (c) is the time used (in seconds) for 
building the indexing structure. 
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used in building the indexing structure is shown in Table 5.13 and Figure 5.10(c). 

Moreover, Table 5.14 shows the searching time. The efficiency of nearest-neighbor 

search with the RPCL-b-tree is presented in Figures 5.10(a) and (b). Observations 

from the figures and tables include: 

1. The higher the dimensionality, the worse the searching performance. 

2. The larger the number of database objects retrieved, the worse the efficiency 

is. 

3. The higher the dimensionality, the more time is needed for indexing. 

4. The higher the dimensionality, the more time is needed in the searching. 

From the experimental results, we find that our method works fine for low 

dimensional data. The efficiency is up to 0.9 for both clustered and uniform data. 

On the other hand, the searching performance of our method is acceptable for 

16-dimensional clustered data. The efficiency is approximately 0.6. However it is 

only 0.1 for 16-dimensional uniform data which is not a good performance. For a 

real data set, it may be assumed to have an underlying distribution and we can 

usually approximate it by using Gaussian mixtures. Therefore, the efficiency is 

still acceptable for real data. We can check back Figure 5.7(c) for the searching 

performance with 10000 8-D real data and the efficiency is up to at least 0.85 

when the node size is 200. 

5.6.6 Experiment 9: Test for Different Numbers ofDatabase 

Objects Retrieved 

In this experiment, we test the RPCL-b-tree method for retrieving different num-

bers of database objects. We try to find out how the number of retrieved database 

objects affects the efficiency of the method. 
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Node Size 200. 
Size of Data Set "lOQQQ. 
Data Type Clustered data with 100 Gaussian 

mixtures, uniform data, and real 
data. 

Dimensionality _^ 
“Number of Database Objects Retrieved 1, 2, 5, 10, 20, 50, and 100. 
“Accuracy 10% to 100%. 

Table 5.15: Detail of the parameters in Experiment 9. 

Data Distribution Clustered Data Uniform Data Real Data 
Construction Time 7.05 5.51 6.78 — 

Table 5.16: Time used (in seconds) for building the indexing structures in Exper-
iment 9. 

We test the efficiency of the method for nearest-neighbor search with different 

numbers of database objects retrieved. In the Experiments 5-8, the number of 

database objects retrieved is used on the x-axis in the figures. For this experiment, 

we are exactly testing this number. Therefore, we change the x-axis，attribute 

to accuracy so that we can check also the efficiency for approximate nearest-

neighbor search. The accuracy ranges from 10% to 100% and it simply indicates 

how accurate the nearest-neighbor retrieval result is. For example, given a top-

10 nearest-neighbor retrieval result, accuracy equal to 80% means 8 out of the 

10 database objects are correctly retrieved. Table 5.15 shows the detail of the 

parameters. For each set of parameters, 10 different nearest-neighbor searches are 

performed and the average results are used for analysis. 

We use some tables and figures to present the experimental results. The time 

used in building the indexing structure and the searching time are shown in Table 

5.16 and 5.17 respectively. Moreover, the efficiency of nearest-neighbor search with 

the RPCL-b-tree is presented in Figure 5.11. Here are some of the observations: 

84 , 



Chapter 4 Non-hierarchical RPCL Indexing 

i|~".~~. ‘~~‘~~‘~~‘~~"•~~"‘~~ f̂*-==-t̂ ^̂ ; * *..~~‘~"‘~~‘~‘""" 
「-.古、"̂ .̂...。.... 0~~®"~®~"®~“ 

0.98̂ 3̂~~® ®——® ® 0 s e e >̂ ^̂ ^̂ V̂-,̂ s 
1 k;:̂ .v̂ .̂ .̂  ： ^ , . ^ , . ^ - ^ ^ - ； - • • -X ^S^:^.,'>, . .x X X 

‘'• • ->>vt-. - ~ ̂ » ^ •-+-, K 0-9 “ «Ŝ  ^ 
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Figure 5.11: Results of Experiment 9. (a), (b), and (c) are the average efficiency 
for searching different numbers of nearest neighbors to 10 different queries for 
clustered data, uniform data, and real data respectively. 
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No. of objects retrieved 1 2 5 10 20 50 100 
Clustered Data ~ " 0.008 0.014 0.016 0.020 0.017 0.022 O.OiT 
Uniform Data — 0.027 0.039 0.043 0.048 0.057 0.069 0.091 

"Real Data 0.017 0.019 0.014 0.021 0.019 0.039 0 . 0 ^ 

Table 5.17: The average time used (in seconds) for searching different numbers of 
nearest-neighbors to 10 different queries in Experiment 9. 

1. The more the database objects retrieved, the worse the searching efficiency. 

2. The more accurate the nearest-neighbor retrieval, the worse the efficiency. 

3. The more the database objects retrieved, the more searching time is needed. 

From the experimental results, we find that the efficiency decreases when the 

number of database objects retrieved increases because more nodes and more 

candidate features are needed to be examined. 

5.6.7 Experiment 10: Test with VP-tree 

After testing our method with different parameters, we try to test the RPCL-b-tree 

method with VP-tree for comparing their searching efficiency. We consider VP-

tree because it works similar to our method. First, it uses a hierarchical structure 

for indexing. Second, it splits the input data set into small sub-sets hierarchically 

in a top-down approach to form the indexing tree. In this experiment, we want 

to show that RPCL-b-tree is better than VP-tree for indexing and retrieval. 

We test the efficiency of RPCL-b-tree and VP-tree for 100% nearest-neighbor 

retrieval. For fair comparison, backtracking is allowed for searching in VP-tree 

like RPCL-b-tree. We test the two methods the following parameters sets which 

are similar to those in Experiments 5-8. 

• Parameter Set 1. Different node sizes: 200, 1000, and 2000 for 10000 

synthetic feature vectors with 100 Gaussian mixtures. 
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Node Size 200 1000 2000" 
Clustered Data (RPCE)" 7.09 3.92 3.18_ 
Clustered Data (VP) 144.21 94.76 70.68 

Table 5.18: Time used (in seconds) for building the indexing structures for pa-
rameter set 1. 

^ o d e Size 200 1000 2000 
Clustered Data k = 1 (RPCL) 0.013 0.063 0.076 

k = 1 (VP) 0.114 0.112 0.113 
k 二 20 (RPCL)"""0.019 0.082 0.102 
k = 20 (VP) 0.115 0.113 0.114 
k = 100 (RPCL) 0.050 0.118 0.123 
k = 100 (VP) 0.127 0.128 0.133 

Table 5.19: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 1. 

• Parameter Set 2. Different sizes of data sets: 1000, 10000, and 50000 for 

synthetic feature vectors with 100 Gaussian mixtures. 

• Parameter Set 3. Data sets of 10000 feature vectors with different data 

distributions: clustered data with 100 Gaussian mixtures, uniform data, and 

real data. 

• Parameter Set 4. Data sets of 10000 feature vectors in 100 Gaussian 

mixtures with different numbers of dimensions: 2, 4, 8, and 16. 

For each set of parameters, 10 different nearest-neighbor searches are performed 

and the average results are used for analysis. We present the experimental results 

are in Tables 5.18-5.25 and Figure 5.12. 

From the experimental results, we find that RPCL-b-tree is more efficient than 

VP-tree for 100 % nearest-neighbor retrieval. For building the indexing structure, 

RPCL-b-tree is faster than VP-tree for each of the tested input data sets. It is 

because RPCL-b-tree uses a very fast clustering method, RPCL, to locate natural 
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Data Set Size 1000 10000 50000 
Clustered Data (RPCL) 0.42 7.09 4 7 ^ ^ 
Clustered Data (VP) 7.43 145.19 966TT 

Table 5.20: Time used (in seconds) for building the indexing structures for pa-
rameter set 2. 

^ a t a Set Size 1000 10000 50000 
Clustered Data k=l (RPCL) 0.009~~0.013~~0.008 

k=l (VP) 0.014 0.117 0.585 
k=20 (RPCL)""^OOK~~0T0l9~~0.010 
k=20 (VP) 0.013 0.117 0.574 
A;=100 (RPCL) 0.023~~0^~~0.036 
fe^lOO (VP) 0.024 0.131 0.601 

Table 5.21: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 2. 

No. of Gaussian Mixtures 100 Uniform Real 
Construction Time (RPCL) 7.93 5.60 6.78 
"^struct ion Time (VP) 145.11 144.51 1 4 4 . ^ 

Table 5.22: Time used (in seconds) for building the indexing structures for pa-
rameter set 3. 

No. of Gaussian Mixtures 100 Uniform Real 
Searching Time k=l (RPCL) 0.010 0.032 0.022 

k=l (VP) 0.114 0.113 0.117 
A;=20 (RPCL)""^OLOl6 0 ^ 0025" 
k=20 (VP) 0.116 0.117 0.124 
k=100 (RPCL) 0.041 0?m 0039" 

； fc=100 (VP) 0.130 0.126 0.178 

Table 5.23: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 3. 
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Figure 5.12: Results of Experiment 10. (a), (b), (c), and (d) are the average effi-
ciency for searching different numbers of nearest neighbors to 10 different queries 
for parameter sets 1, 2, 3, and 4 respectively. 
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Dimensionality 2 4 8 16 
"cTustered Data (RPCL) 1.95 4.02 8.79 17.95 
"cTustered Data (VP) 49.73 81.08 145.19 276.95 

Table 5.24: Time used (in seconds) for building the indexing structures for pa-
rameter set 4. 

Dimensionality 2 4 8 16 
Clustered Data k=l (RPCL) 0.002 0.002 0.012 0.059 

k=l (VP) 0.036 0.062 0.117 0.218 
H O (RPCL)~"0.002 0.008 0.018 0.082 
k=20 (VP) 0.039 0.063 0.117 0.224 
A;=100 (RPCL) 0.006 0.023 0.043 0.133 
fc=100 (VP) 0.042 0.073 0.131 0.252 

Table 5.25: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 4. 

clusters from the input data set for indexing. For retrieval, RPCL-b-tree is also 

more efficient than VP-tree. From Figure 5.12, we can see that the searching 

efficiency values of RPCL-b-tree are higher than the corresponding values of VP-

tree. The main reason is that our method makes use of the branch-and-bound 

algorithm to speed up the searching. Moreover, we can also figure out a specific 

advantage from Figure 5.12(b). You can find that RPCL-b-tree is much more 

efficient than VP-tree for large data sets. In fact, this is due to the power of 

> RPCL to locate clusters from large data set. In short, RPCL-b-tree outperforms 

VP-tree for indexing and retrieval. 

5.7 Discussion 

After introducing the RPCL-b-tree for indexing and retrieval, we would like to 

have a short discussion on its performance. 

1. Efficient Nearest-neighbor Retrieval: 
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From most the experimental results, the efficiency is up to at least 0.8 for 

100%-accuracy nearest-neighbor retrieval in general. It is because RPCL 

gives us natural clusters and we try to keep each of the natural clusters in 

a node. Therefore, most of the data in the node can be retrieved together 

as the result of a requested nearest-neighbor query and hence improve the 

effectiveness of retrieval. Besides, we make use of the branch-and-bound 

algorithm on the RPCL-b-tree for retrieval so that the efficiency of nearest-

neighbor search can be increased. We also find that the searching time is 

proportional to efficiency so that most of the retrievals can be finished in 

no more than 1 second. Moreover, we have shown in Experiment 10 that 

our RPCL-b-tree outperforms a common used indexing method VP-tree for 

efficient retrieval. 

2. Solving the Boundary Problem for 100% Nearest-neighbor Result: 

By using the branch-and-bound algorithm on the RPCL-b-tree, the bound-

ary problem described in Section 2.4 can be solved. For example, there is a 

nearest-neighbor query lying on a boundary of two cluster partitions. With 

the backtracking mechanism and the 4 elimination rules, the branch-and-

bound algorithm gives us 100% result of the query which may contain data 

objects on different clusters on both sides of the boundary efficiently. 

3. Short Indexing Structure Construction Time Needed: 

The time used for building the indexing structure is short in the experiments. 

It is no more than 10 seconds for most of the cases. RPCL is a very fast 

clustering method so that it can locate the natural clusters efficiently. As a 

result, less time is needed for constructing the indexing structure. 

4. Good Performance for Real Data: 

According to the experiments for the real data set, the efficiency is relatively 
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high. The reason is that the distribution of the real data set can usually be 

approximated by using Gaussian mixtures. So, its efficiency is often similar 

to the efficiency of the clustered data or just a little bit worse. 

5. Insertion and Deletion: 

Unlike the non-hierarchical approach presented in Chapter 4, the RPCL-b-

tree has a hierarchical indexing structure which helps us to perform data 

insertion and deletion. From Sections 5.3 and 5.4, we know that a single 

data object can be inserted to or deleted from the indexing structure easily 

because there is a clear relationship among the internal nodes. Starting from 

the root node, we can find the target leaf node without any problem and 

then update the indexing structure for data insertion and deletion. 

6. Choice of Node Size: 

We know from the experimental results that the smaller the node size, the 

better the efficiency. Therefore, we tend to choose a small node size although 

a little bit more indexing time have to spend. However, RPCL is a stochastic 

heuristic clustering method and it is computational efficient. It works fine for 

clustering a large set of data, but it may not be so efficient for a set with only 

a few data objects, say 50. Therefore, we have to choose a little bit larger 

node size node size, say 200, in most of the experiments for the RPCL-b-

tree. This may worsen the effectiveness of the retrieval in a small multimedia 

database. However, in practice we often use multimedia database to manage 

a large number of data objects so that the node size is still relatively small 

in this case and it does not lessen the effectiveness of retrieval much. 

7. Branching Factor: 

RPCL-b-tree is a binary tree so its branching factor (the maximum number 

of children for a non-leaf node) is 2. Since RPCL clustering can calculate 
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any number of clusters from a set of data, it is easy to change the binary 

tree to a general tree with branching factor more than 2. 

8. Limitation: 

The RPCL-b-tree works fine for low dimensional data and its efficiency is 

relatively high, but its performance is not very good for high dimensional 

data. In order to improve the searching performance, techniques that can 

reduce dimensionality of the features can be used before indexing. For ex-

ample, we may use KL Transform [17, 24] or Fast Fourier Transform [10 

to calculate the most important features out of a high dimensional feature 

vectors and then produce a low dimensional one for indexing. 

5.8 A Relationship Formula 

Based on all the experimental results, we want to find out the relationship between 

the efficiency and the tested parameters. In this section, we try to use a formula 

to describe their relationship. Recall the efficiency formula (Equation 5.2), 

# of distance computations for the checked method 
efficiency = 1 : 7r77~T~Z 7 . 

size 01 the data set 
We can rewrite is as: 

efficiency = 1 — % of direct distance computations needed. (5.3) 

From Equation 5.3, we find that it is much straight forward to use the percentage 

of direct computations needed (% distcomp) in our relationship formula. Once we 

obtain % distcomp, we can get the corresponding efficiency by Equation 5.3 easily. 

Let M be the node size, S be the size of the data set, D be the dimensionality, 

and Q be the number of database objects retrieved. The relationship formula is 

defined as: 

% distcomp = {h . M + k2 • S + h • D + k4 • Q) . 100% (5.4) 
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^ h h ^ 

Gaussian-100 1.216 -10"^ -6.6429 .10—6 1.7437 .10_2 2.0251 - 1 0 ^ 
Uniform 9.5601 40"^ -9.4841 .10_6 3.5376 >10"̂  3.9351 .10—3 
Real 6.6159 -10"^ -3.3335 .10_4 4.2030 .10_i 1.3369 -lQ-^ 

Table 5.26: The values of the factors ki, k2, k3, and k4 for different data distribu-
tions. 

where fci, k2, k3, and k4 are real-valued factors and different data distributions 

may have different factors. We simply use a linear model here for the first version 

of the formula. In fact, more research is needed to find a better model to describe 

the relationship of the parameters. 

From the results of the Experiments 5-9, we make use of the linear regression 

technique to find the values of the factors: ki, k2, k3, and k4 of the three relation-

ship formula for clustered data with 100 Gaussian mixtures, uniform data, and 

real data respectively (see also Table 5.26). They are: 

% distcompGau-100 二 (1.216 . 10—4 . M - 6.6429 .10—6 . S 

+ 1.7437 . 10-2 . D + 2.0251 . 10"^ • Q). 100% (5.5) 

% distcompuni = (9.5601 . 10"^ . M - 9.4841 . 10"® . S 

+ 3.5376 .10—2 . D + 3.9351 .10"^ . Q). 100% (5.6) 

% distcompreai 二 (6.6159 • 10一5 . M — 3.3335 . 10"^ • S 

+ 4.2030 . 10-1 . D + 1.3369 .10—3 . Q). 100% (5.7) 

From the formula, we can not only get an estimated efficiency value by giving 

the values of the parameters, but also easily find out the relationships between 

each of the tested parameters and the efficiency. Here are these relationships: 

• Node Size (M): ki is positive. Therefore, the larger the node size, the 

greater the % distcomp and the worse the efficiency. 
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• Size of Data Set {S): k2 is negative. Therefore, the larger the data set, 

the less the % distcomp and the better the efficiency. 

• Dimensionality {D): k3 is positive. Therefore, the higher the dimension-

ality, the greater the % distcomp and the worse the efficiency. 

• Number of Database Objects Retrieved (Q): k4 is positive. Therefore, 

the more the database objects retrieved, the greater the % distcomp and the 

worst the efficiency. 

Besides, form Table 5.26, we find that the magnitude of k3 is the largest factor 

among the four. It means that k3 is the dominate factor. A little bit change of 

the number of dimensions will affect the efficiency much. 

Moreover, we can generalize the formula to other indexing methods for compar-

ing.their efficiency. For the indexing methods having corresponding relationship 

formula, we can find out which method gives us the best efficiency easily for a 

given set of parameters. For example, from the results of Experiment 10, we can 

work out the relationship formula of VP-tree for clustered data with 100 Gaussian 

mixtures as: 

% distcompyp-Gau-ioo 二 (6.2544 • 10"^ . M + 1.9647 • 10"^ . S 

+ 3.1051 . 10一2 . D + 3.6359 .10"^ . Q) . 100% (5.8) 

Using Equations 5.5 and 5.8, we can compare the efficiency of RPCL-b-tree and 

VP-tree for the clustered data. Given the following parameters, M = 500, S = 

20000, D = 8, and Q 二 20, RPCL-b-tree's estimated efficiency is 0.8921 whereas 

VP's estimated efficiency is 0.6437. Therefore, we know that RPCL-b-tree is most 

likely more efficient than VP-tree for the given set of parameters. 
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5.9 Chapter Summary 

In summary, our method has good searching performance in general. The branch-

and-bound algorithm solves the boundary problem and makes nearest-neighbor 

search on the RPCL-b-tree more efficient and effective. We have shown that our 

method outperforms VP-tree for indexing and retrieval. Moreover, the hierarchical 

structure helps us to update the RPCL-b-tree simply. From the experimental 

results, we work out a relationship formula for efficiency estimation and efficiency 

comparison with other indexing methods. 
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Conclusion 

6.1 Future Works 

1. Indexing in Montage: 

One of the key issues in Montage (see Section 1.1 for details) is the im-

plementation of a good indexing structure for efficient and accurate image 

retrieval of a large amount of images. Since Montage uses image contents 

or features for retrieval, traditional indexing methods are not particularly 

suitable for the system. Therefore, we plan to implement our RPCL index-

ing method into the system for efficient and accurate content-based indexing 

and retrieval. 

2. A Hybrid Method for RPCL-b-tree: 

We plan to use a hybrid method to build the RPCL-b-tree. In this hybrid 

method, we use RPCL to cluster large data sets only. It is because RPCL 

is not so efficient for small data set (size < 100). On the other hand, we 

use another suitable clustering method for small data sets. As a result, we 

can use a smaller node size in the tree and it will increase the efficiency of 

retrieval. 
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3. The Relationship Formula: 

The relationship formula presented in Section 5.8 is in a linear model cur-

rently. More research is needed to find out a better model for the relationship 

formula. 

4. A Bottom Up Approach for RPCL Indexing: 

Apart from building the indexing structure in a top-down approach, we can 

also use RPCL to find out the actual number of natural clusters form the 

input feature vector set and then build an indexing structure in a bottom 

up fashion. After all the natural clusters located by RPCL, we can merge 

the neighbor clusters to form a bigger cluster for its parent level. The 

process repeats until the root cluster containing the whole feature vector 

set is formed. We will then get the indexing structure for retrieval. This 

indexing method seems to be better than RPCL-b-tree because it actually 

keeps the natural clusters at the leaf nodes. 

6.2 Conclusion 

We have used an efficient clustering algorithm Rival Penalized Competitive Learn-

ing (RPCL) to locate natural clusters for content-based indexing and retrieval. 

Based on the located clusters, we have presented two approaches to build up in-

dexing structures: Non-hierarchical approach and Hierarchical approach. For non-

hierarchical approach, we have analyzed the performance of our method by using 

some experiments and have found that the overall performance of our method for 

nearest-neighbor retrieval is better then other tested methods. For hierarchical 

approach, we have proposed to build a hierarchical binary tree (RPCL-b-tree) for 

retrieval. We also make use of a branch-and-bound algorithm to solve the bound-

ary problem. From the experimental results, it is concluded that: (1) RPCL is a 

very fast method to locate natural clusters for indexing, (2) the non-hierarchical 
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RPCL indexing have high recall and precision performance for producing good 

approximate retrieval result quickly, and (3) RPCL-b-tree is efficient to produce 

100% nearest-neighbor search results and it outperforms VP-tree for indexing and 

retrieval. According to the experimental results for the RPCL-b-tree, we also work 

out a relationship formula for finding estimated searching efficiency and comparing 

the efficiency with other indexing methods. 
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