RIVAL PENALIZED COMPETITIVE LEARNING FOR
CONTENT-BASED INDEXING

By

LAU Tak KAN

A DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF PHILOSOPHY
DivisioN oF COMPUTER SCIENCE AND ENGINEERING
THE CHINESE UNIVERSITY OF HONG HONG

JUNE 1998

Abstract

Efficient and accurate information retrieval is one of the main issues in multimedia
databases. In content-based multimedia retrieval databases, contents or features
of the database objects are used for retrieval. To retrieve similar database objects,
we often perform nearest-neighbor search. A nearest-neighbor search is used to
retrieve similar database objects with features nearest to the query under the fea-
ture vector space with a given distance function (similarity measurement). The
result of the nearest-neighbor search is often é, natural cluster of data. Currently,
many of the indexing methods do not utilize this data cluster information in the
construction of the indexing structure which leads to performance degradation.
To improve the retrieval performance, we (1) use Rival Penalized Competitive
Learning (RPCL), a stochastic clustering algorithm, to locate good approximate
cluster centers efficiently and (2) use the result of RPCL clustering to construct
a good indexing structure for effective nearest-neighbor search. Moreover, we
present two approaches to cluster features for indexing: (1) Non-hierarchical ap-
proach and (2) Hierarchical approach. The non-hierarchical approach considers
the whole feature space each time when clustering the data for indexing and re-
trieval. On the other hand, the hierarchical approach transtorms the feature space
into a sequence of nested clusters a,nd builds a hierarchical binary indexing tree
(RPCL-b-tree) for retrieval. Our experimental results show that: (1) RPCL is
faster than other tested clustering methods to locate natural clusters for index-

ing, (2) the non-hierarchical RPCL indexing method has high performance for

ii.

producing good approximate retrieval result quickly, and (3) RPCL-b-tree is effi-
cient to produce 100% nearest-neighbor search results and it is faster than VP-tree
in general. Moreover, based on the experimental results, we work out a formula for
RPCL-b-tree to describe the relationship between the searching parameters and
the searching efficiency. We can also use it to compare the searching efficiency

with other indexing methods for a given set of parameters.

i1

S

eI T, AR HERERRE —RENSHIFRE - £ LD S BHERIA
FARNERRI L IR IR BT, T H & T RO (nearest-neighbor) {H5RZK
MEUERBEREZR - 16—{E v R EIRRER R EEER T, BTIRERE AR
B — e R AR A E A S R B A BIR EE R, THE BRI R TR — &
HARIBUSREE - HRT, AESEE WA BRI E BRI AR RREER
B#5HE, 5 IBRRNEI TR - BT IRIRERNES, &M (1) A—EEHREE
(5445 Rival Penalized Competitive Learning (RPCL) KA HIFTI
HomegErfuly, (2) FIE RPCL f92RAVBHRELE —AIFRIZRS [F6H, DAERZOtE
TR - A, BAVERRmME T SRR B TR ARG | - —fE
B, TiA—EEAELN - FEFEBROSTET, BB HEa4S
AR HE TRUR B E DUFERRS | R - TEAB R TET, Rz e s —
EER HERRHE, RBUULREE —H @RI —t5R5 [f (RPCL-b-tree) DUEiR
R - BEEREN (1) EBERERERIRE %S, RPCL &R EEHELUE
Z=E(, (2) #EIEB A RPCLES |4, RPCL A MIERBA I BIREZER, H
B BIFHIEE, (3) #E RPCL-b-tree H, 100% HERERRAMUTIIERATR A A RS
B, 1i B8 A EHEL VP-tree [R—EE o [R4), HIEEEERAGR, BHERL
— R AR RIS R S BAHERBERIRRR - E AN AR LB RS 5k
FEF—2 8 FHIRRE -

iv

Acknowledgement

I would like to express my eternal gratitude to my supervisor, Professor Irwin
King for his academic guidance, emotional support, encouragement, and patience
on the work of this thesis. I would also like to sincerely thank my examining
committee, Professor Wai Chee Fu, Professor Lai Wan Chan, and Professor Helen
Shen for their comments and useful suggestions on this thesis.

Moreover, many thanks go to all the team members of the Montage project,
especially Tom Hung and Catherine Chan for giving me lots of images and data
I used in my experiments. My thanks also go to my friends Alan Tung and John
Sum for teaching me how to do research.

Finally, I am deeply grateful to my parents, grandfather, brothers, and sister

for their love, support, and patience during the past two years.

Contents

1 Introduction 1
1.1 Backgroundo 1
1.2 Problem Definedt e oo sonanesss 5
1.3 Contributions . » vo o s ¢ 635 § §8 95 § W9 « a-ws ¥ 8w 5
1.4 Thesis Organization o v v v v v v oot v oo v v oo 7

2 Content-based Retrieval Multimedia Database Background and

Indexing Problem 8
91 TPeature EXATactiON o v s wws x smome s sowios smma s xom s 8
2.2 Nearest-neighbor Search 10
2.3 Content-based Indexing Methods 15
2.4 Indexing Problem 22

3 Data Clustering Methods for Indexing 25
3.1 Proposed Solution to Indexing Problem 25
3.2 Brief Description of Several Clustering Methods 26

321 K-means oo vt vt vttt ee e e 26
3.2.2 Competitive Learning (CL) 27
3.2.3 Rival Penalized Competitive Learning (RPCL) 29
3.2.4 General Hierarchical Clustering Methods 31
8.8 WhyRPOL? . : tuaiia@s so@s s s8 & s@@a 8 s @Aa ¥% 32

Vi -

4 Non-hierarchical RPCL Indexing 33

4.1 The Non-hierarchical Approach 33
4.2 Performance Experiments 34
421 ExperimentalSetup. 35
4.2.2 Experiment 1: Test for Recall and Precision Performance . 38
4.2.3 Experiment 2: Test for Different Sizes of Input Data Sets . 45
4.2.4 Experiment 3: Test for Different Numbers of Dimensions . 49
4.2.5 Experiment 4: Compare with Actual Nearest-neighbor Results 53
4.3 Chapter SUMMATY: s s vowsn x cimwn » siwms & 0w s oo ws 55
5 Hierarchical RPCL Indexing 56
5.1 The Hierarchical Approach ¢ o ¢ ¢ ¢ ¢ v v v s v v v v o s un 56
5.2 The Hierarchical RPCL Binary Tree (RPCL-b-tree) 58
58 Tnsertion : : s 5 s oo s 05 5§ R @@ 5 § s @s = vy v owa 61
Bd Deletion ;: s mm s smos 5 c@e 5 9w 58 ¢ oo @ s & @ o8 ® W 63
BB, Seaichifig cxss somn s sw s s 0wn & omss & ommw 8w 63
56 EXDErimenfs s «ic o s s sw o s awws v vwms 8 v wwms o b 69
5.6.1 Experimental Setup .« + « s vo v s swwn v v o 5w 69
5.6.2 Experiment 5: Test for Different Node Sizes 72
5.6.3 Experiment 6: Test for Different Sizes of Data Sets 75
5.6.4 Experiment 7: Test for Different Data Distributions 78
5.6.5 Experiment 8: Test for Different Numbers of Dimensions . 80

5.6.6 Experiment 9: Test for Different Numbers of Database Ob-
jects Retrieved o0 83
5.6.7 Experiment 10: Test with VP-tree. 86
BT DASCOSSION. & ; o6 s sies § 0 W3 WP 8 s @ W Emwa § 6w 90
58 A Relationship Fotmiula: < i s w5 sv o5 ¢ smms swwn s owe 93
50 Chapter SGMIARY = v v s vwma smme « swmws & 5ww § wms 96

Vil =

6 Conclusion

B Fubure WOLKS . . v o vie s 6.6 5.6 ¢ 6% 83 s s/m@ % & v & @ ws » o

6.2 Conclusion

Bibliography

viii

List of Figures

1.1
1.2

2.1

2.2
2.3

2.4

2.5

2.6

2.7
2.8

2.9

3.1

An example of image retrieval by image content.
The flow of indexing and retrieval in a content-based retrieval mul-

timedia database. e e e e e e e e e e e e e

(a) Query by color histogram. (b) Query by sketch. (c) Query by
texture. (d) Query by shape. . « v« v cvws v vwwms v v
Feature extraction of a color image using color histogram..
(a) Range nearest-neighbor search in 2D. (b) k nearest-neighbor
gearch I 2D (b =) « o v s v v swams v v E
(a) An input data set partitioned by using minimum bounding rect-
angles. (b) The corresponding R-tree structure.
(a) An input 2-D data set for quad-tree. (b) The corresponding
QUAd-TTee BIUCtUDE. & « o v wis vwmis v v s ¥ v w e @ e e e
(a) An input data set for k-d tree. (b) The corresponding k-d tree
BEPUCEMPR: o & o meo » & mimia ® o om o TR
A simple VP-tree for the data set on the left.
Different data distributions. (a) Mixture Gaussian. (b) Super
Gaussian. (¢) Uniform.
(a) A data set with natural clusters. (b) A boundary nearest-

HCITHDOY GEEN oo 6 0 ss s s v w ey sl @H § LS BE 8 05 6w s

lemeans cliBtering: = : v e v 5 v e b3 S EBE 5 EEBE 5 5.8 .

1X

11
11

13

16

19

20
21

22

23

27

3.2
3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Competitive learning clustering.
Competitive learning clustering for an eight Gaussian mixture dis-
tribution of 2560 3-dimensional synthetic feature vectors. The path
demonstrates how each unit travels from the initial location to the

final approximate cluster center.

RPOL clusterinige o« « sonimn o vooes & 6 @iiies § 6§ ® 5 5 0

Two cluster partitions generated by the non-hierarchical approach.
The dots are the database objects whereas the crosses are the cen-
ters. An inverted file (the right one) is used for indexing.
Four cluster partitions generated by the non-hierarchical approach.
The dots are the database objects whereas the crosses are the cen-
ters. An inverted file (the right one) is used for indexing.
Recall and Precision.
Time used for the pre-processing of the 2048 feature vectors with
16 Gaussian mixtures of the input distribution.
Results for the uniform data set in Experiment 1. (a) The Recall
results. (b) The Precision results. (c) The pre-processing time. . .
Results for the real data set in Experiment 1. (a) The Recall results.
(b) The Precision results. (c) The pre-processing time.
Results for the data sets in Gaussian distribution with 16 mixture
groups in Experiment 2. (a) The Recall results. (b) The Precision
results. (c) The pre-processing time.
Results for the uniform data sets in Experiment 2. (a) The Recall
results. (b) The Precision results. (c) The pre-processing time. . .
Results for the data sets in Gaussian distribution with 16 mixture
groups in Experiment 3. (a) The Recall results. (b) The Precision

results. (c) The pre-processing time.

29
30

34

34

36

40

41

42

47

48

4.10 Results for the uniform data sets in Experiment 3. (a) The Recall

5.1

5.2

5.3

3.4
3.9
5.6

5.7

5.8

results. (b) The Precision results. (c) The pre-processing time. . .

Hierarchical clustering. Cs and Cy are the clusters inside Cy. Cs
and Cg are the clusters inside C3. The dots represent the database
objects (feature vectors). The crosses represent the centers.
The indexing structure for the hierarchical clustering in Figure 5.1.
Cp is the root node which contains all the dots in the data set
used in Figure 5.1. D(q,c;) means the Ly-norm distance between
nearest-neighbor query q and the center ¢; of the cluster C;.

An example of RPCL-b-tree. (a) shows the input data whereas
(b) shows the corresponding RPCL-b-tree. A to F are the RPCL
clusters for leaf nodes. The number in each cluster indicates its size.
I to IV are the intermediate RPCL clusters for non-leaf nodes. Note
that the node size is 100 in this RPCL-b-tree.
Searching performance for insertion.
Searching performance for deletion.
(a) General inclusion rule. (b) Specific inclusion rule. (c) General
exclusion rule. (d) Specific exclusionrule..
Results of Experiment 5. (a), (b), and (c) are the average efficiency
for searching different numbers of nearest neighbors to 10 different

queries for clustered data, uniform data, and real data respectively.

(d) is the time used (in seconds) for building the indexing structure.

Results of Experiment 6. (a) and (b) are the average efficiency
for searching different numbers of nearest neighbors to 10 different
queries for clustered data and uniform data respectively. (c) is the

time used (in seconds) for building the indexing structure.

X1

52

57

38

60
62
64

67

74

7

5.9

5.10

5.11

5.12

The average efficiency for searching different numbers of nearest-
neighbors to 10 different queries for the clustered and uniform data
inExperiment T: s o5 3 ss9 s i o0 s ¥ swaa s swmma s o 79
Results of Experiment 8. (a) and (b) are the average efficiency
for searching different numbers of nearest neighbors to 10 different
queries for clustered data and uniform data respectively. (c) is the
time used (in seconds) for building the indexing structure. 82
Results of Experiment 9. (a), (b), and (c) are the average efficiency
for searching different numbers of nearest neighbors to 10 different
queries for clustered data, uniform data, and real data respectively. 85
Results of Experiment 10. (a), (b), (c), and (d) are the average
efficiency for searching different numbers of nearest neighbors to 10

different queries for parameter sets 1, 2, 3, and 4 respectively. . . 89

xii

List of Tables

2.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Searching performance of some nearest-neighbor search algorithms.

Recall table for the data sets in Gaussian distributions in Experi-
ment 1. #MG is the number of Gaussian mixture groups.
Precision table for the data sets in Gaussian distributions in Ex-
periment 1. #MG is the number of Gaussian mixture groups.
Comparison of the average performance of the four methods for
indexing and retrieval with data sets in Gaussian distributions. . .
Comparison of the average performance of the four methods for
indexing and retrieval with the uniform dataset..
Comparison of the average performance of the four methods for
indexing and retrieval with a given real dataset.
Results for the data sets in Gaussian distributions in Experiment
2. (a) The Recall table. (b) The Precision table. Each entry of the
tables is a column of 6 values for 6 different sizes of the data sets:
1024, 2048, 4096, 10240, 20480, and 40960. #MG is the number
of Gaussian mMixture Groups: « & « s s s sim s v s ® s s sw e & & »
Results for the data sets in uniform distribution in Experiment 2.
(a) The Recall table. (b) The Precision table.
The Recall table for the data sets in Gaussian distributions in Ex-

PEEENt 8. o5 w5 s sw s sawea v s s 6 v wa 8 o w e a ¥

Xiil

14

39

39

39

40

40

46

49

4.9

4.10

4.11

4.12
4.13

5.1

5.2

5.3

9.4

5.5

5.6
5.7

5.8

5.9
5.10

The Precision table for the data sets in Gaussian distributions in
PRperiifient 3: ¢ o v s s s 96 s 6@ s ¢ grmies & 6 s w e & »ow e
Results for the uniform data sets in Experiment 3. (a) The Recall
table. (b) The Precision table.
Accuracy percentages for the data sets in Gaussian distributions in
Experiment 4. #MG is the number of Gaussian mixture groups. .
Accuracy percentages for the uniform data set in Experiment 4.

Accuracy percentages for the real data set in Experiment 4.

The average searching performance of 20 nearest-neighbor queries
on the RPCL-b-trees built in different ways of data insertions with
the same 10000 data objects.
The average searching performance of 20 nearest-neighbor queries
on the RPCL-b-trees built in different ways of data deletions with
the same final 5000 data objects.
Detail of the parameters in Experiment 5.
Time used (in seconds) for building the indexing structures in Ex-
PERIMENtS: o« svws s s@ws ¢ g@wn s swan & swma 5 &
The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 5.
Detail of the parameters in Experiment 6.
Time used (in seconds) for building the indexing structures in Ex-
PEEIBHEG,: o5 v swme v womars wwims 5 w B & wow o s oo
The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 6.
Detail of the parameters in Experiment 7.
Time used (in seconds) for building the indexing structures in Ex-

periment l. . oo s swme s o @d 5 B EHB F EEAE B RS S

Xiv

50

33

o4

54
54

62

64

72

73

73
76

76

76
79

5.11

5.12
5.13

5.14

5.15
5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 7.
Detail of the parameters in Experiment 8.
Time used (in seconds) for building the indexing structures in Ex-
PerimeRt 8 i wis s smws 8 s s § EWEE F g s 3w« e
The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 8.
Detail of the parameters in Experiment 9.
Time used (in seconds) for building the indexing structures in Ex-
DERIHEAt 9 & s p s s awm s § sm@s @ smms & s@a e & v wa
The average time used (in seconds) for searching different numbers
of nearest-neighbors to 10 different queries in Experiment 9.

Time used (in seconds) for building the indexing structures for pa-
FarneterBel 1: s s ws s a@n 4 PE B 8 v E e v 8w e e @ 6
The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 1.
Time used (in seconds) for building the indexing structures for pa-
varieter et 2; « s s o6 6 e Es § R E S 8 SW s & 4 e & 6o
The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 2.
Time used (in seconds) for building the indexing structures for pa-
TAMGLEEHEE Bi « ¢ e wn s o wa v swmn 5 vwms x emate » xowa
The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 3.
Time used (in seconds) for building the indexing structures for pa-
rameterset 4.0ttt i e e e e e e
The average time used (in seconds) for searching the k nearest-

neighbors to 10 different queries for parameter set 4.

XV

79
81

81

81
84

84

86

87

87

88

88

88

5.26 The values of the factors ki, k2, ks, and k4 for different data distri-

BOtIOHR: ¢ oo s s e § MG & 8o @@ & & @i @ % & oo o s

XVi

Chapter 1

Introduction

1.1 Background

In this information age, efficient and accurate multimedia information manage-
ment is a very important issue. People often need to manipulate many different
kinds of multimedia information such as images, sound, and videos for different
tasks. In the past, people may use traditional databases to manage these multi-
media information, but this is usually ineffective and imprecise. These databases
use keywords or text descriptors for retrieval, but it poses difficulties for the end

users especially for those without special training. The main difficulties are:

1. Lack of Standards: Different users may use different words to describe a

multimedia data object for retrieval.

2. Lack of Descriptive Power: Even standardize vocabulary is used, it is

still hard to depict the object clearly and precisely.

We use an image database, which is a special kind of multimedia database for
image management, as an example. If we want to retrieve an image of a sunset
photo with the sun at the upper left corner in an image database, we may use

a keyword “sunset”. Not surprisingly, some sunset images having the suns at

Chapter 1 Introduction

Sketch Pad V3.0

SN | 22 B

e S
XD (] i | |

|| @ Moderate(10x10) || CHSY

: ¢ Fine(20 % 20) {Cxa
HERCNERCT N

Figure 1.1: An example of image retrieval by image content.

g e

the bottom right corner are retrieved which are opposite to what we want. This
shows that it is hard to use keywords for precise image retrieval. To improve
the efficiency and accuracy, we need a new kind of database which is specially
designed for multimedia data organization and retrieval.

In order to manage a large amount of multimedia data efficiently and easily,
multimedia databases are emerged. These databases support content-based re-
trieval which lets users to specify queries by features (or contents) such as color,
texture, sketch and shape to retrieve database objects with features similar to the
queries. For example, we may retrieve a sunset image having the sun at the upper
left corner by simply using a color sketch with orange and red colors at the upper
left corner and dark brown color at the bottom. The retrieved images are most
likely what we want (see Figure 1.1). This shows that it is more effective and
easier to use features for retrieval.

Many content-based retrieval multimedia database systems have been devel-
oped in the past few years. For example, Query by Image Content (QBIC) [54, 19,

4, 22] allows queries on databases based on color, texture, and shape of database

Chapter 1 Introduction

objects. Photobook [59] makes use of semantics-preserving image compression
to support search based on three image content descriptions: appearance, 2-D
shape, and textural properties. VisualSEEk [64] is a content-based image and
video retrieval system for World Wide Web. It uses color contents and the spatial
layout of color regions of images for retrieval. Other multimedia database systems
which support content-based query include Chabot [57], MMIS [56, 25, 26, 30],
VIMSYS [32], ART MUSEUM [40, 35], KMeD [15, 14], and CORE [69]. Although
the above databases use different approaches for management, most of them have
shown that they are efficient for retrieval.

At the Chinese University of Hong Kong, we have developed an image database
system called, Montage [41, 42, 45, 46] for managing and retrieving visual infor-
mation efficiently and effectively. I used to be a member of the developing team of
system. Montage is an image database supporting content-based retrieval by color
histogram, sketch, texture, and shape. One important feature of Montage is the
Open Architecture design. There are two aspects of this open architecture design:
(1) Open DataBase Connectivity (ODBC) and (2) plug-in framework. They make
the system extensible, customizable, and flexible.

In a typical multimedia database, all the database objects have to be pre-

analyzed and then organized in a special way for retrieval. The main steps are:

1. The corresponding features from each of the database objects are first ex-
tracted. These features are usually stored in the form of real-valued multi-

dimensional vectors.

2. The database may then organize the extracted features by using an indexing

structure for retrieval.

3. Content-based retrieval can be performed on the indexing structure effi-

ciently and effectively.

In summary, Figure 1.2 shows the flow of the whole process.

3

Chapter 1 Introduction

Multimedia]
Data Objects - [] —Besuls
D D Feature Indexing Content-based |'_"]
O O L] Extraction Structure Query]]
Il
Il

Figure 1.2: The flow of indexing and retrieval in a content-based retrieval multi-
media database.

By using feature vectors, the content-based retrieval multimedia databases
support similar searching. By applying a suitable distance function (see Definition
2.2 for details) to the feature vectors as the similarity measurement, the database
objects can then be ranked according to a query. The top ranked objects are then
retrieved as the result for similar retrieval. Nearest-neighbor search is a typical
kind of similar searching. In the feature vector space or the real space, a nearest-
neighbor query is simply a multi-dimensional point (or vector). The result of the
query is the objects with features which are the neighbors of the query point.
Using nearest-neighbor search, we can retrieve similar data objects easily.

For the multimedia databases with nearest-neighbor retrieval, a good index-
ing method is a key component for efficient and accurate retrieval. Nowadays,
alphanumeric data indexing techniques are already well developed such as [5, 16].
However, these databases make use of features for retrieval. The alphanumeric
indexing methods are not particularly suitable for indexing features because they
are designed for one-dimensional vectors, but not multi-dimensional vectors like
the ones used in databases. Therefore, people have begun to develop new indexing
methods for content-based retrieval in databases such as R-tree [33], R+-tree [63],
R*-tree [6], SR-tree [39], Quad-tree [21], k-d tree 7], VP-tree [71], MVP-tree [9],
and some other methods [8, 68].

Chapter 1 Introduction
1.2 Problem Defined

Generally, multimedia databases contain database objects with features approxi-
mately in Gaussian distributions and there usually exist some natural data clus-
ters in the feature vector space (see Section 2.4 for details). For nearest-neighbor
search, a group of features will often be retrieved together as the result of a query.
Therefore, if we can first calculate the natural clusters from the feature space and
then build an indexing structure based on the clusters, nearest-neighbor search
will become more efficient and effective.

The existing indexing methods usually generate partitions for the feature vec-
tor space which lead to indexing structures for efficient retrieval in many cases,
but most of them seem to fail to retrieve similar database objects when a nearest-
neighbor query lies on the partition boundary. One of the reasons is that these
methods do not look at the distribution of the features to find natural clusters
so that features in the same natural cluster may be partitioned into several dif-
ferent nodes. As a result, the performance of nearest-neighbor searches for these
methods will be degraded.

In short, the problems we are facing are:

1. to find an efficient clustering method to locate natural clusters from the

input feature vector set, and

2. to build a good indexing structure based on the clusters for efficient and

effective retrieval.

1.3 Contributions

The main contributions of our work for solving the problems defined in the last

section are shown as follows.

Chapter 1 Introduction

1. We use a clustering method Rival Penalized Competitive Learning (RPCL) [70]
to calculate natural clusters from the feature vector set. RPCL is an un-
supervised neural network heuristic algorithm for clustering. It provides a
good approximate of the centers to the clusters and it is computational ef-
ficient. Therefore, we make use of RPCL to calculate natural clusters for

indexing and retrieval.

2. We build indexing structures based on the natural clusters in two different
approaches: (1) Non-hierarchical approach and (2) Hierarchical approach.
The non-hierarchical approach considers the whole feature space to locate
different numbers of natural clusters each time. The resultant clusters are
indexed non-hierarchically by using an inverted file structure for retrieval [44,
43, 47]. On the other hand, the hierarchical approach transforms a feature
space into a sequence of nested clusters and builds a hierarchical binary
indexing tree (RPCL-b-tree) based on the clusters. We then apply a branch-
and-bound technique [38] on the indexing structure for efficient retrieval
(see Section 5.5 for details). In short, these two approaches make use of
the information of natural clusters for efficient and effective indexing and

retrieval.
Our experimental results show that:

1. RPCL is faster than k-means, competitive learning, and general hierarchical

clustering methods to locate natural clusters for indexing.

2. The non-hierarchical RPCL indexing method has high recall and precision

performance for producing good approximate retrieval result quickly.

3. RPCL-b-tree is faster than VP-tree to produce 100% nearest-neighbor search

results.

Chapter 1 Introduction

According to the experimental results for RPCL-b-tree, we work out a formula
to describe the relationship between the searching parameters and the searching
efficiency. We can then make use of this formula to find out the estimated efficiency
value for a given set of parameters. Besides, we can generalize the formula to other

indexing methods for comparing their efficiency with a given set of parameters.

1.4 Thesis Organization

The rest of the thesis is organized as follows. We will first present some of the
technical details of multimedia databases in Chapter 2. We will also introduce
the problem of most of the indexing methods in that chapter. We will then
present our proposed solution of the indexing problem in Chapter 3. We Wﬂl use
RPCL to produce clusters and describe how to build good indexing structures
from the clusters with two different approaches. Chapter 4 and Chapter 5 will
show the Non-hierarchical approach and the Hierarchical approach respectively.
Several experiments and discussions will be presented in these chapters. We will
then show how to work out the relationship formula from the experimental results.
Finally, we will have a brief summary of our proposed methods together with some

future works in Chapter 6.

Chapter 2

Content-based Retrieval
Multimedia Database

Background and Indexing
Problem

In this chapter, we first give some technical backgrounds of the content-based
retrieval multimedia databases: Feature Ezxtraction, Nearest-neighbor Search, and
Content-based Indexing. We then present some problems found in the existing

content-based indexing methods.

2.1 Feature Extraction

Feature extraction is one of the main aspects in content-based retrieval multimedia
databases. In a content-based retrieval multimedia database, users may want to
retrieve database objects similar to a query in terms of some kinds of features.
Therefore, when a multimedia data object is inserted into the database, the useful

features of the object will be extracted and transformed into feature vectors. The

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

database will then organize the feature vectors for content-based retrieval.

The definition of feature extraction is:

Definition 2.1 (Feature Extraction) Let DB = {I;}}_, be a set of database
objects. With a set of feature parameters 0 = {0;}7~;, a feature extraction function

f is defined as:
f:Ix0—7RE,
which extracts a real-valued d-dimensional vector.

We use a simple example here to explain the above definition. Let DB =
{I,..., 110} be a set of 10 images and 6 = {0;} be the image feature param-
eter set where 0; indicates the number of top colors considered for extraction.
f(I5,2) will return a real-value vector based on the top two colors in the image
Is.

Many features can be used for feature extraction, such as, color, sketch, texture,

and shape. Here are some examples for images.

1. For color, the overall color of an image is analyzed and a color histogram

is built and transformed to a feature vector [27].

2. For sketch, an image query may be a hand-drawn sketch of the target
image. The regionalized color information of an image is extracted to form
feature vector so that the query can be compared to each of the images

region by region for retrieval [36].

3. For texture, some statistical methods are usually used to analyze the tex-
ture information of an image [65]. Some researchers use Gabor filter for

image scaling and orientation in texture analysis [48, 50].

4. For shape, it is still a hot research topic because it is difficult to extract

shape information from an image precisely. In fact, different shape features

9

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

may be used for extraction such as outline based features, region based

features, and combined features [37, 51, 52, 60, 66, 67].

Figure 2.1 shows the image retrievals using the above four features: color his-
togram, color sketch, texture, and shape respectively. Other features for content-
based retrieval include volume, spatial constraints, objective attributes, subjective
attributes, etc [31].

Here is an example to illustrate the detail of feature extraction using color
histogram in an image database (see Figure 2.2). Given an image, its overall color
is begin analyzed in order to get a feature vector. All the colors in the image
are quantized into n representative colors. By calculating the frequency of each
representative color, a n-bucket color histogram is formed. For fair comparison to
the other color histograms, the sum of the frequencies is normalized to 1. After
normalization, the histogram is transformed into a n-dimensional feature vector

for indexing and retrieval.

2.2 Nearest-neighbor Search

By using the extracted feature vectors, content-based retrieval multimedia databases
allow users to perform similar searching. For similar searching, the database ob-
jects with features similar to the query will be retrieved. Nearest-neighbor (NN)
search is one of the common similar searching techniques used in the multimedia
databases for content-based retrieval.

Nearest-neighbor search usually makes use of a distance function for similarity
measurement. In order to determine how close or how similar two features are in
the feature vector space, a distance function is defined to measure their similarity.
With the two features as the input parameters, it usually outputs a real value
such that the smaller the value, the more the similar between each the two input

features.

10

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

s s Iy ooy T s

e
-

[Cpai5x5) € Midde(10x10) @ fest{20220)
R

Score: 0.579 Score: 0.586

Figure 2.1: (a) Query by color histogram. (b) Query by sketch. (c) Query by
texture. (d) Query by shape.

Frequency
Color Histogram
Color Analysis Normalization
Color Image (0.2, 0.05, ...,0.05)
Quantization Transformation
| | [

Representative Color

Figure 2.2: Feature extraction of a color image using color histogram.

.

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

Definition 2.2 (Distance Function) A typical distance function D is defined

as follows.
D:FXF—=>R

satisfying:

1. D(z,y) 20,

2. D(z,y) = D(y,2),

3. D(z,y) =0 iff e =y, and

4. D(z,y) + D(y,z) 2 D(,2)
where x, y, and z € F and F is a feature vector set.

Ly-norm (Euclidean distance) is one of the common distance functions and it is

defined as: D as: D(z,y) = |z —y| = \/21-1 (2 — i)®

A nearest-neighbor search in a content-based retrieval multimedia database is
a retrieval of database objects with features nearest to a query under the feature
space with a given distance function. There are two main kinds of nearest-neighbor

searches: range nearest-neighbor search and k nearest-neighbor search.

Definition 2.3 (Range Nearest-neighbor Search) Given a set of N features

X = {z;}Y,, a range nearest-neighbor query & returns the set P of features:
P={z|r € X and 0 < D(z,2) < €}, (2.1)
where € is a pre-defined positive real number and D is a distance function.

Definition 2.4 (k Nearest-neighbor Search) Given a set of N features X =

{z:}X,, a k nearest-neighbor query % returns the set P C X satisfying:

1. |P|=k for1<k<N, and

12

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

(] [>) © 6]
(o) (] e o (] e
e} o o
© o .X'
® Xe * o
o 6}
© o o o
fe) o
o © o © o
o e} o

Figure 2.3: (a) Range nearest-neighbor search in 2D. (b) k nearest-neighbor search
in 2D (k = 4)

2. D(%,2) < D(&,y) forye X — P.
where D is a distance function.

Range NN search gives the database objects with features located inside the query
circle which has the query point as the center and a small positive real number
¢ as the radius (see Figure 2.3(a)). k-NN search gives the objects with features
which are the top k nearest neighbors to the query (see Figure 2.3(b)).

Many different algorithms for nearest-neighbor search have been proposed.
Table 2.1 shows some of the algorithms for finding the most nearest neighbor.
We discuss their efficiency and then try to find a suitable one for our proposed
indexing method. We make use of the total number of distance computations
between the sample data and the query needed to measure the efficiency of these
algorithms. Basically, more distance computations will lessen the efficiency. In our
work, we are using real-valued multidimensional feature vectors for indexing and
retrieval and using Euclidean distance as the similarity measurement. Therefore,

by considering the methods using the Euclidean distance as the metric, Kamgar’s

13

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexzing Problem

Algorithm Data Metric Result
Burkhard and Keller | 1000 randomly generated | Hamming | ~ 700 average distance
(1973) [12]: Some ap- | registers of a file using | distance computations (~ 70 %)
proaches to best-match | 30-bits keys
file searching
Fukunaga and Naren- | 1000 2D uniform samples | Euclidean | ~ 580 average distance
dra (1975) [23]: A | data distance computations (~ 58 %)
branch-and-bound algo-
rithm for computing K-
nearest neighbors based
on a hierarchical index-
ing structure
Feustel and Shapiro | 29 randomly generated 5- | Graph- ~ 3 average distance
(1982) [20]: The | vertices directed graphs | isomorphism-computations (~ 10 %)
nearest-neighbor prob- based
lem in an abstract metric discrete-
space valued

distance
Kamgar and Kanal | 1000 2D samples uniform | Euclidean | ~ 165 average distance
(1985) [38]: An im- | sample data distance computations (~ 16.5 %)
proved
branch-and-bound algo-
rithm for computing k-
nearest neighbors based
on a hierarchical index-
ing structure
Roussopoulos et al. | 1K, 4K, 16K, 64K, and | MINDIST | The no. of nearest neigh-
(1995) [61]: Nearest | 256K synthetic uniformly | and MIN- | bors increased the no. of
neighbor queries for R- | distributed data sets MAXDIST | pages accessed grew in a
tree distances linear ratio
Nene and Nayer | 30000 and | Euclidean | ~ 20 % of
(1997) [53]: A sim- | 100000 high dimensional | distance search time used than ex-

ple algorithm for nearest-
neighbor search in high
dimensions

uniform and normal dis-
tribution samples

haustive search for 30000
10D data and ~ 40 % of
search time used than ex-

haustive search for 30000

25D data

Table 2.1: Searching performance of some nearest-neighbor search algorithms.

14

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

improved branch-and-bound method [38] is the most suitable nearest-neighbor

search algorithm for our proposed indexing method.

2.3 Content-based Indexing Methods

In the past two decades, people have developed many indexing methods for
content-based retrieval in multimedia databases. In this section, we concentrate
on two main kinds of content-based indexing methods: rectangle-based indexing

and partition-based indexing.

Rectangle-based Indexing

The rectangle-based indexing methods make use of rectangles to organize the

features into groups for indexing. Examples are R-tree, R+-tree, R*-tree, and

SR-tree.

R-tree

R-tree [33] is a generalization version of the B-tree [5, 16] for multi-dimensional
data indexing. It uses rectangles to partition the data into groups. The partition

process will proceed hierarchically and an indexing tree will then be produced.

e Properties: R-tree is a height-balanced tree and it has two kinds of nodes:
Leaf Node and Non-leaf Node. Let M be the maximum number of entries
that a node can contain and m < M/2 be the minimum number. Every leaf
node except the root contains between m and M records which are pointing
to the database objects. Every non-leaf node except the root has between
m and M children. The root node has at least two children unless it is a

leaf node.

15

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

17 -

D F vl C!

- ----J‘-_---'
—_—]
1B b
i H : L
: A|lB|C
G 1 | ee——lee ’
D|E| F G| H 1 JI K| L

(a) (b)

Figure 2.4: (a) An input data set partitioned by using minimum bounding rect-
angles. (b) The corresponding R-tree structure.

e Insertion: R-tree is built by inserting the data objects one by one. Figure
2.4 shows an example. Starting from the root node with a minimum bound-
ing rectangle (MBR) which is the smallest rectangle containing all the data
objects for the node, data objects are inserted until the node contains more
than M objects. When the node is overflow, a splitting algorithm is applied
to split the corresponding rectangle into several small rectangles for child
nodes. It tries to optimize the area of the MBRs to each child node. From
now on, a target node is selected first for each to-be inserted data object

and splitting is performed when the inserted node becomes overflow.

e Deletion: Apart from insertion, deletion is also a main operation of R-
tree. After deleting a data object from a node, a merging algorithm will be

applied if the deleted node contains less than m objects.

e Searching: Given a R-tree and a query rectangle, all the nodes with MBRs
overlapping the query rectangle will be examined in order to find the results

of the query.

16

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

R-tree works fine for many cases, but it is not efficient when a query lies on the
overlapping area of two or more minimum bounding rectangles. All the involved
rectangles have to be examined to find out the results of the query which lessen
the efficiency of the retrieval. Therefore, it is better to decrease the overlapping

area as much as possible so as to make the retrieval faster.

R+-tree

R+-tree [63] is a variation of R-tree. Unlike R-tree, its searching and updating
algorithms are modified in order to avoid the overlapping rectangles in the inter-
mediate nodes of the indexing tree. According to the experimental results in [63],
R+-tree has a better searching performance than R-tree. Also, it is more efficient

for indexing point data and point queries than R-tree.

R*-tree

R*-tree [6] is another variation to R-tree. The authors of R*-tree show in [6] that
overlapping-region-technique does not imply bad average searching performance.

Below are the essential parameters of the retrieval performance.

1. The area covered by a directory rectangle should be minimized.
2. The overlap between directory rectangles should be minimized.
3. The margin of a directory rectangle should be minimized.

4. Storage utilization should be optimized.

Therefore, the authors modify the splitting algorithms using in R-tree so as to
improve the retrieval performance by reducing the area, margin, and overlap of the
rectangles. Moreover, the storage utilization is higher than R-tree. In short, from

the experimental results in [6], R*-tree outperforms the other R-tree variants.

17

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

SR-tree

The SR-tree [39] stands for the Sphere/Rectangle-tree and it is an extension of
the R*-tree [6] and the SS-tree [68]. The distinctive feature of the SR-tree is
that it makes use of both rectangles and spheres for indexing. This improves the
performance on nearest-neighbor queries by reducing both the volume and the
diameter of regions compared with the R*-tree and the SS-tree. According to the
performance experiments in [39], SR-tree outperforms R*-tree especially for high

dimensional data.

Partition-based Indexing

The partition-based indexing methods make use of lines or curves to produce
partitions to the input feature vector space for indexing. Examples are Quad-tree,

k-d tree, VP-tree, and MVP-tree.

Quad-tree

Quad-tree [21] is an early developed indexing method for multi-dimensional data

objects and it is the generalization of the binary search tree.

e Properties: Quad-tree divides the vector space into subspaces for different
directions. In two-dimensional space, for example, each non-leaf node has
four child nodes representing its four directions NW, NE, SW, and SE (see
Figure 2.5).

e Insertion: Data objects are inserted one by one. Starting from the root
node, the direction of a to-be inserted data object to the root node is de-
termined and the corresponding child node will be selected for further pro-

cessing until the leaf node level is reached.

18

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

(a) (b)

Figure 2.5: (a) An input 2-D data set for quad-tree. (b) The corresponding quad-
tree structure.

e Searching: Searching in a quad-tree is performed according to the direction
of the query to each node. In k-dimensional case, for example, it is required
to consider all k coordinates of a given query at each node to determine its
direction. The query is first compared to the root node in order to determine
which child node is examined next. The above process will then repeat until

the target leaf node is found.

For a given 2-D data set, the insertion algorithm yields nlogn performance.

The quad-tree seems to be an efficient for two-dimensional space.

k-d tree

k-d tree [7] is a multi-dimensional binary search tree where k denotes the dimen-

sionality of the search space.

e Properties/Searching: Unlike quad-tree that all £ coordinates have to be

tested at each node, only a different attribute value is tested at each level of

19

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

d ()
—5 b
Pg
o
a
®c
=
& f
c

(a) (b)

Figure 2.6: (a) An input data set for k-d tree. (b) The corresponding k-d tree
structure.
the tree for indexing and searching. For example, in two-dimensional space,

we are comparing the z coordinates at even levels whereas y coordinates at

odd levels.

e Insertion: For insertion, a to-be inserted data object is first compared to
the root node using a suitable attribute value. A child node is then selected
for further processing. The process repeats until a leaf node is found. Finally,
the data object is inserted and it partitions the space associated with the
leaf node into two sub-spaces for two child nodes according to a suitable

attribute value. Figure 2.6 shows an example of k-d tree.

In short, by considering only an appropriate coordinate at each node, k-d tree

is relatively more efficient than quad-tree for indexing and retrieval.

20

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

vantage point (vp) — vp

median ——|

Figure 2.7: A simple VP-tree for the data set on the left.

VP-tree

Vantage point tree (VP-tree) [13, 71] is an indexing method for multi-dimensional

nearest-neighbor search.

e Properties: Like k-d tree, each VP-tree node cuts the space. Unlike k-
d tree, VP-tree partitions the feature vector space based on the distances

between the feature vectors and a calculated vantage point.

¢ Building Indexing Tree: According to the median of these distances, the
whole feature space is divided into two sets: close vector set and far vector
set. The process will continue in both sets individually. Finally, an indexing

tree structure will be built based on the resultant vector sets (see Figure

2.7).

e Searching: For searching in VP-tree, a query is first compared to the van-
tage point associated to the root node and then determined which child
node is going to be examined. The process repeats until the target leaf
node is found. The data objects associated with the leaf node satisfying the

searching criteria of the query will be retrieved as the result.

The experimental results in [71] show that VP-tree outperforms k-d tree in

many cCases.

21

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

Al
" s 04) 1]
L S ale . 03 08|
~ ' >, .:.‘tﬁ,‘:‘
'1,}”!.: s -, 03 o :
o ot s L 08 I-.-
g it 02 ost” ey
oA 015) 04
o2 . ’ oy 03]
}4#3" e i
A ;‘ o]
ety
04 o 2 oo o 1 o= om 04 04 0z o3 o8 o8 =
(a) (b) (c)

Figure 2.8: Different data distributions. (a) Mixture Gaussian. (b) Super Gaus-
sian. (c) Uniform.

MVP-tree

Multi-vantage point tree (MVP-tree) [9] is a distance based indexing method
for similarity queries on high-dimensional metric spaces. Like VP-tree, it uses
vantage point for indexing. Unlike VP-tree, it uses more than one vantage point
to partition the feature vector space. Experiments in [9] show that MVP-tree

outperforms the VP-tree 20% to 80% for varying query ranges.

2.4 Indexing Problem

The distributions of the features in multimedia databases can usually be approxi-
mated by one of the two main distributions: Gaussian and Uniform. For example,
a typical image database often contains many different kinds of images such as
sunset pictures, mountain photos, etc. In terms of the color histogram feature,
the sunset images will have similar color histograms and form a data cluster in the
feature vector space. With the same reason, the mountain photos form another
cluster. We can easily use a mixture of Gaussian distributions (see Figure 2.8(a)

and section 4.2.1 for details) to approximate this kind of distribution. Here is

22 .

Chapter 2 Content-based Retrieval Multimedia Database Background and Indexing Problem

Figure 2.9: (a) A data set with natural clusters. (b) A boundary nearest-neighbor
query.

another example, for a face image database, all the face images have some com-
mon characteristics. However, each face image is still different from the others.
Therefore, the distribution of the image features is most likely a super Gaus-
sian (see Figure 2.8(b)). If an image database is used to manage general images
which are in different types from each other, the image features will be probably
uniformly distributed (see Figure 2.8(c)). In general, we can assume multimedia
databases often have database objects with features in Gaussian distributions and
there usually exist natural clusters in their image feature vector spaces (see Figure
2.9(a)).

For nearest-neighbor search, a group of features will often be retrieved together
as the result of the query. Therefore, if we can first calculate the natural clusters
from the feature vector space and then build an indexing structure based on the
clusters, nearest-neighbor search on the structure will become more efficient and
effective.

People have developed many indexing methods for content-based retrieval in

multimedia databases and they seem to work fine for many cases in general, but

23 -

Chapter 2 Content-based Retrieval Multimedia Database Background and Indezing Problem

most of them seem to fail to retrieve similar database objects when a nearest-
neighbor query lies on the partition boundary. One of the main reasons is that
these methods do not look at the distribution of the features to find natural
clusters so that features in the same natural cluster may be partitioned wrongly
into several different nodes. We call this as the boundary problem (see Figure
2.9(b)). For example, the rectangle-based indexing methods such as R-tree, R+-
tree, and R*-tree are built based on the input sequence of the data objects so
that they cannot pay attention to the distribution of the input data and calculate
natural clusters. The partition-based indexing method such as VP-tree partitions
the data object space according to the median distances from the data objects
to the vantage points, but it still cannot exactly find out the natural clusters for
retrieval. As a result, the performance of nearest-neighbor retrievals for these
methods is reduced by the boundary problem.

Therefore, we are going to work out a new indexing method for the above
problem. We need to find an efficient clustering method to calculate natural
clusters from the feature vector space and then build a good indexing structure
based on the natural clusters. We want the new indexing method can lessen the

above problem and make the content-based retrieval more efficient and effective.

24 -

Chapter 3

Data Clustering Methods for

Indexing

3.1 Proposed Solution to Indexing Problem

We propose to use an efficient clustering algorithm for content-based indexing in
order to lessen the indexing problems mentioned in the last chapter. Under the
assumption that there usually exist natural clusters in the feature vector space,
we make use of an efficient clustering method to locate those natural clusters
form the features. We will discuss which clustering algorithm is good for us in
this chapter. In the following chapters, we will describe how to build indexing
structures based on the natural clusters for nearest-neighbor retrieval. We will
also present several performance experiments to show that our proposed method

is accurate and efficient.

25

Chapter 3 Data Clustering Methods for Indexing
3.2 Brief Description of Several Clustering Meth-

ods

In this section, we give a brief description of several clustering methods: k-means,
Competitive Learning, Rival Penalized Competitive Learning, and general hierar-

chical clustering methods to produce cluster partitions form a given data set.

3.2.1 K-means

The k-means [3, 49] method groups the feature vectors into k cluster partitions.

Given n feature vector, the algorithm is shown as follows.

Algorithm 3.1 K-means(D, k)
> Input: the input data set D and the expected number of clusters k
> Qutput: the k clusters of D

1 {s;}%, « k randomly selected feature vectors from D
> {si}f_, is a temporary data set

2 fori=1to k do

3 C; + {s:i} > C; is a cluster

4 C; — S; > ¢; s the cluster center of C;
5 end for

6 P={}

7 while true do > forever loop

8 for each data object j of remaining n — k data objects from D do
9 C; + C; U {7} if the center ¢; of C; is the nearest center to j
10 recompute the center ¢; of Cj

11 end for

12 if P =% ,{c;} then do

13 return {C;}E_,

14 else

15 P={}

16 for :=1to k do

17 C; + {c}

18 P+ P U {¢}

19 end for

20 end if

21 end while

26 -

Chapter 3 Data Clustering Methods for Indexing

Figure 3.1: k-means clustering.

Figure 3.1 shows an example of using k-means for clustering. In the figure,
the dots represent the input data objects and the crosses indicate the centers of
the clusters. By applying the k-means clustering algorithm, the resultant clusters

are obtained.

3.2.2 Competitive Learning (CL)

Competitive Learning (CL) [62, 34] is an unsupervised neural network learning
algorithm to produce cluster partitions. In this section, we present the technique
of using competitive learning for clustering. There are some basic conditions of

the competitive learning rule:

e Start with a set of neurons that are all the same except for some randomly
distributed synaptic weights which make each of them respond differently

to a set of input patterns.
e Limit the “strength” of each neuron.

e Allow the neurons to compete for the right to respond to a given subset of

inputs.

For a specific input pattern, the neurons compete among themselves and only
one of them will win the competition which is called a winner-takes-all neuron.
The rule will then move the synaptic weight vector of the winning neuron toward
the input pattern. In multimedia databases, the feature vectors are the input

patterns. By training the neurons with the feature vectors under the competitive

27 -

Chapter 8 Data Clustering Methods for Indezing

selected data object

m\\ [2) : .’//
\ L ¥ R the winner
\\ . . . ,1
\\ . .‘\EV ’ s ’
\\ .‘ ®)
L % e .8
unaffected .
[Fmowesa ey @ : data object
O : center

Figure 3.2: Competitive learning clustering.

learning rule, the weight vectors of the neurons will become the cluster centers of
the feature vectors.

Let k£ be the number of clusters, or the number of neurons, and ¢;, ¢ =
1,2,...,k, be the cluster center points. The algorithm of competitive learning

clustering is outlined as follows.

(Step 0) Initialization: Randomly pick k£ points as the & initial cluster centers.
(Step 1) Competition: Randomly take a feature vector z from the feature
sample set X, the winner-takes-all neuron w is that whose cluster center (weight
vector) ¢, is the closet to z in the sense of Ly-norm distance (Euclidean distance),
l.e.,

lz = eull* = min|jz — c|* . (3.1)
(Step 2) Updating Cluster Centers: Update the cluster center ¢; by

ay(z —¢), if i =w,
Ac,- = (32)

0, otherwise.

where 0 < o, <1 is the learning rate for the winner-takes-all neuron.

28 .

Chapter 8 Data Clustering Methods for Indering

-2

Figure 3.3: Competitive learning clustering for an eight Gaussian mixture distri-
bution of 2560 3-dimensional synthetic feature vectors. The path demonstrates
how each unit travels from the initial location to the final approximate cluster
center.

Step 1 and 2 are iterated until the iteration converges or the number of itera-
tions reaches a pre-specified value. The final cluster centers are the results of the
competitive learning clustering (see Figure 3.2). Figure 3.3 demonstrates eight

cluster centers generated by competitive learning algorithm for an eight Gaussian

mixture distribution of feature vectors.

3.2.3 Rival Penalized Competitive Learning (RPCL)

Rival Penalized Competitive Learning (RPCL) [70] is a variant of competitive
learning (CL). Instead of moving only the winning neuron, RPCL moves also the
first runner-up neuron away from the randomly selected feature vector in each
iteration.

Assuming k cluster centers, the basic idea behind RPCL is that in each iter-

ation, the cluster center for the winner’s unit is accentuated where as the weight

29 .

Chapter 3 Data Clustering Methods for Indexing

0 selected data object

1 .

| ,’

i . 9

| ©e® the winner
oo ®

unaffected o .‘\E}"/
centers ® o
®
L

0 @ : data object
O : center

Figure 3.4: RPCL clustering.

for the second winner, or the rival, is attenuated. The remaining k£ — 2 centers
are unaffected. The winner is defined as the cluster center that is the closest to
the randomly selected data object. In our work, we use the special version of the
RPCL clustering algorithm when k£ = 2. In other words, we only have a winner
and a rival (second winner) (see Figure 3.4).

Let k, cy, ¢, to denote the number of clusters, cluster center points for winner

and rival clusters respectively. The algorithm of RPCL is outlined as follows.

(Step 0) Initialization: Randomly pick ¢; and c; as the initial cluster centers.
(Step 1) Winner-Take-All Rule: Randomly take a feature vector z from the

feature sample set X, and for ¢ = 1,2,...,k let

/

1, if i = w such that v, ||z — ¢y ||? = min; v;||z — ¢;]|?,

u; ={ —1, if i =r such that y||z — ¢||*> = min; v;||z — ¢;l|?, (3.3)

L 0, otherwise.

where v; = n;/ Y% n; and n; is the cumulative number of the occurrences of
u; = 1. This term is added to ensure that every cluster center will eventually
become the winner somehow. It is called the Frequency Sensitive Competitive

Learning (FSCL) [2] as an algorithm that reduces the winning rate of the frequent

30 -

Chapter 3 Data Clustering Methods for Indexing

winners.
(Step 2) Updating Cluster Centers: Update the cluster center vector c;,7 =
1,2,...,k by

4

aw(a: = C,'), if u; = 1,

Aci=14 —a,(z—¢), ifu;=-1, (3.4)

| 0, otherwise.
where 0 < ay,, a, < 1 are the learning rates for the winner and rival unit, respec-
tively.

Step 1 and 2 are iterated until one of the following criteria is satisfied: (1) the
iteration converges, or (2) the number of iterations reaches a pre-specified value.
Actually pre-specified value is hard to find. We conducted many experiments and
obtained the value empirically for our work. In fact, more research on this topic
is needed in order to find out a better stopping procedure.

Unlike FSCL, RPCL usually gives one candidate cluster center to one clus-
ter and all the extra candidate centers will go to infinite eventually. With this

property, we may make use of RPCL to determine the actual number of natural

clusters from an input data set.

3.2.4 General Hierarchical Clustering Methods

Apart from the above three clustering algorithms, we are going to describe some
general hierarchical clustering methods here.

A hierarchical clustering algorithm usually produces a series of partitions, from
a single whole data cluster to n one-element clusters [18]. There are two main
approaches: agglomerative and divisive. The agglomerative approach proceeds by
a series of successive fusions of the n individuals into groups whereas the divisive
approach separates the n individuals successively into finer groups. Some general

hierarchical clustering methods can be found in [1, 11, 28, 29, 55, 58].

31

Chapter 3 Data Clustering Methods for Indexing

3.3 Why RPCL?

From the clustering methods mentioned in the last section, we try to find out a
suitable one for our indexing method. We find that k-means and general hierar-
chical clustering methods calculate very good data clusters from a given data set,
but they are usually computationally intensive. Competitive Learning (CL) and
RPCL are heuristic algorithms which produce good approximate cluster centers to
a given data set and they are much faster than k-means and general hierarchical
clustering methods.

Eventually, we choose RPCL as the clustering algorithm used in our indexing

method. The main reasons are:

1. RPCL is a very fast clustering method and faster than CL in general.

2. RPCL gives a good approximate of the cluster centers and we may then

calculate the actual data cluster easily form the centers.

3. RPCL can usually find the actual number of clusters from an input data

set.

4. Only a low storage is enough for RPCL clustering because only the infor-

mation of the cluster centers is needed to keep.

After clustering, we can make use of the cluster partitions generated by RPCL
to build indexing structures for content-based indexing. There are two approaches
to perform top-down clustering and build indexing structures based on the gen-
erated cluster partitions: (1) hierarchical approach and (2) non-hierarchical ap-

proach. We are going to present their details in Chapters 4 and 5 respectively.

32

Chapter 4

Non-hierarchical RPCL Indexing

4.1 The Non-hierarchical Approach

The non-hierarchical approach of our method considers the whole feature vector
space each time for clustering by RPCL. We use an example here to explain its
basic idea. Given a set of feature vectors, our method clusters the set into 2
clusters at the first time (see Figure 4.1). If four partitions are required at the
next time, our method will consider the whole space again and clusters the set into
4 clusters (see Figure 4.2). We find that the latter clusters may not be necessary
nested into the former clusters, but this method ensures to obtain the correct
natural clusters.

In non-hierarchical RPCL indexing, we usually construct the indexing struc-
ture for an input feature vector set in a batch mode. RPCL is firstly used to
locate the natural clusters from the feature vector set. Based on the generated
cluster partitions, we make use of the inverted file structure for indexing of the
feature vectors (see Figure 4.1 and 4.2). For example, given the feature vector
space having only two partitions C; and C; with centers ¢; and c; respectively,
a feature vector v will belong to C; if D(v,¢;) < D(v,c2) and it will be indexed

as “c;”. D is a distance function and we use L,-norm in our work. Basically, 2

33 .

Chapter 4 Non-hierarchical RPCL Indexing

c —=> s00

C2 —=> se0

AU

Figure 4.1: Two cluster partitions generated by the non-hierarchical approach.
The dots are the database objects whereas the crosses are the centers. An inverted
file (the right one) is used for indexing.

|

VT ¥

7
A

Figure 4.2: Four cluster partitions generated by the non-hierarchical approach.
The dots are the database objects whereas the crosses are the centers. An inverted
file (the right one) is used for indexing.

clusters are calculated for the i-th level. The whole process starts from the top
level with 2 clusters and stops when all the natural clusters are located at the
bottom level.

For searching on the indexing structure, a nearest-neighbor query ¢ is com-
pared to all the cluster centers at the user-specified level. All the vectors belonged

to the cluster partition whose center is the closest to g will be retrieved.

4.2 Performance Experiments

We conducted several experiments to evaluate the performance of our non-hierarchical

approach using RPCL clustering for indexing and retrieval based on its accuracy

34

Chapter 4 Non-hierarchical RPCL Indezing

and efficiency. We also tested others methods: k-means, CL, and a traditional
hierarchical partitioning indexing method VP-tree for reference in these experi-

ments.

4.2.1 Experimental Setup

We conducted four different sets of experiments for the four methods: RPCL,
k-means, CL, and VP-tree to test their accuracy and efficiency for indexing and
retrieval. All of the experiments were conducted on an Ultra Sparc 1 machine
running Matlab V4.2c. From Chapters 1 and 2, we know that a cluster of feature
vectors is often retrieved as the result of a query for nearest-neighbor search. An
indexing method which can locate natural clusters from the input feature vector
set accurately and quickly will make nearest-neighbor search more effective and
efficient. Therefore, in these experiments, we restrict to retrieve the first visited
feature vector cluster or leaf node as the result of a nearest-neighbor query so
that, based on the result, we can show that how accurate and efficient the tested
methods are to locate natural clusters for indexing and retrieval.

We used two performance measurements: Recall and Precision in the experi-
ments to measure the accuracy of the tested methods (see Figure 4.3). Given a

set of user-specified target database objects, Recall and Precision are defined as:

Number of target database objects retrieved
Recall =

Number of target database objects 1)

Number of target database objects retrieved

. (42)

Bt - :
e Number of database objects retrieved

where 0 < Recall, Precision < 1. Recall shows the ratio of target database objects
are actually retrieved out of all the expected target database objects whereas

Precision indicates the ratio of target database objects in the retrieved set. For

35 .

Chapter 4 Non-hierarchical RPCL Indezing

A Multimedia Database
Recall=B/A
Precision=B/C
Target Database Objects Retrieved Database Objects

Figure 4.3: Recall and Precision.

example, there are 10 database objects and 4 of them are pre-specified as target
database objects. For a query, 5 database objects are retrieved and 3 of them
are target database objects. In this case, Recall is 0.75 and Precision is 0.6.
Basically, the higher the Recall and Precision, the more accurate the method for
retrieval. By using Recall and Precision, we can calculate the accuracy for each
of the generated clusters based on the information of its corresponding natural
cluster. If we do not use them for accuracy, we can only evaluate the accuracy
by using only a small set of queries. Therefore, we use Recall and Precision to
evaluate the accuracy of these methods in the experiments.

We used the following three different kinds of feature vector sets in the exper-

iments:

1. Synthetic Data in Gaussian Distribution:

We test our method with synthetic data sets in Gaussian distribution. It is
because many distributions can be approximated by using Gaussian dis-
tribution. Let g = (u1,M2,...,4n) and o = (01,02,...,0,), We gener-
ated the input distribution of the feature vectors from the mixture of n
Gaussian distributions N(u,0?) with the generating function defined as
g(z) = 1/(ov/2m)exp[—[(z — p)?/20%]], —00 < = < oo. In our experi-
ments, we used a constant 0.05 for . We check for different ¢ and found

that, for larger o, the mixture groups will be mixed together. For smaller o,

36 .

Chapter 4 Non-hierarchical RPCL Indezing

all the data objects in a mixture group will crowd round the group center.
Therefore, we select 0.05 for o which is suitable to generate data sets in
Gaussian distribution. Moreover, we let n = 2,4,8,16, and 32, but it is
not necessary to set n to these values. Besides, we do not let n to more
than 32 because each of the mixture groups will become very small in size.
Finally, for each input distribution, different numbers of cluster partitions

are generated for the input feature vectors for testing.

For the Gaussian distributed database objects, Equations 4.1 and 4.2 can
be rewritten as below. Given the set of a priori clusters, C' = {c}T and the
set of cluster partitions generated by the tested methods, C' = {¢'}T*, the

performance measurements Recall and Precision are defined as:

i N ¢
Recall=) G5 ; (4.3)
c.'ECAc;GC’ #C,‘
;N c;
Precision =) 5 (4.4)

/ b
ci€CACLEC #C;

where #c; denotes the number of elements in the cluster c;.

. Synthetic Data in Uniform Distribution:

We also use synthetic data sets in uniform distribution or random distribu-

tion as uniform represents the data distribution opposite to Gaussian.

. Real Data:

Apart from synthetic data, we also use real data in the experiments to test
our method in a real world situation. For our experiments, the real data
features are the feature vectors extracted from real images. Basically, we
firstly find some real images from different kinds of catalogs. By considering

the global color information of each image, we calculate an 8-bucket color

37 .

Chapter 4 Non-hierarchical RPCL Indezing

histogram form the image and transform it into a feature vector. All of the

output feature vectors form the real data set for testing.

4.2.2 Experiment 1: Test for Recall and Precision Perfor-

mance

In the first experiment, we evaluate the accuracy and efficiency of the four tested
methods: RPCL, CL, k-means, and VP-tree to build indexing structures for re-
trieval. We measure the Recall and Precision performance of these methods for
accuracy. Moreover, we also kept the time used for pre-processing which includes
clustering and indexing of the feature vectors for efficiency. The main aim of this
experiment is to find out which tested method has the best overall performance
for locating natural clusters for indexing and retrieval.

We use three different kinds of data sets in this experiment: (1) synthetic
data in Gaussian distribution, (2) synthetic data in uniform distribution, and (3)
real data (see Section 4.2.1 for details). Each of the data sets consists of 2048
8-dimensional feature vectors. This is not a large data set because it is very time
consuming for k-means to locate clusters from a large feature vector set. Therefore,
we use a relative small data set here for better comparison of these four methods.
Besides, we use 8-D feature vectors here because it is not too high and too low
for testing the four tested methods and the real data are also in 8-D. Moreover,
for each input data set, different numbers of cluster partitions are generated for
the input feature vectors by the four tested methods respectively. We conducted
20 trails with different initial starting points of the centers of the to-be generated
cluster partitions for these methods to calculate their average Recall and Precision
Performance and the average time used for building indexing structure.

We use several tables and figures to present the experimental results of the
three different data sets. For the data sets in Gaussian distribution with different

mixture groups, Tables 4.1 and 4.2 show the Recall and Precision results. Since

38 .

Chapter 4 Non-hierarchical RPCL Indezing

No. of Generated Clusters (RPCL, CL, k-means, VP-tree)

#MG 2 4 8 16 32
2 [1.0,1.0,1.0,1.0 .51,.45, .66, .50 .27, .25, .57, .25 .l5;.14;.53,.13 .22,.09,.51,.06
4 |1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 .52, .58, .80, .50 .39, .43,.77,.25 .53, .31, .76, .13
8 |1.0,.91,1.0,.87 1.0,1.0,1.0,.71 1.0,1.0,.94, .56 .75,1.0,.89,.31 .73, .56, .88, .17
16 | .96, .95,1.0,.90 1.0,.99,1.0,.86 1.0,1.0,1.0,.76 .99, .98, .96,.65 .93, .83, .94, 41
32 | .96, .98, .99, .93 .98, .96, 1.0,.86 .97,.87,.99,.80 .98, .87,1.0,.69 .98, .87, .94, .63
Table 4.1: Recall table for the data sets in Gaussian distributions in Experiment
1. #MG@G is the number of Gaussian mixture groups.
No. of Generated Clusters (RPCL, CL, k-means, VP-tree)
#MG 2 4 8 16 32
2 |10,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0
4 | .50, .50, .50, .50 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0
8 |.25,.28,.25,.15 .46, .50,.50,.20 1.0,1.0,.93,.36 1.0,1.0,.97,.63 1.0,1.0,1.0,.79
16 | .11, .12, .13, .10 .26, .24, .27,.16 .54, .54, .61,.21 .97,.93, .88,.39 .98, .85, .97, .68
32 | .06,.05, .06, .05 .11, .11, .14, .08 .25, .18,.26,.13 .51, .39, .56,.21 .94, .71, .87, 41

Table 4.2: Precision table for the data sets in Gaussian distributions in Experiment
1. # MG is the number of Gaussian mixture groups.

the time used for pre-processing is independent to the input distribution of the
feature vector space, we simply show only the time used for pre-processing 2048
feature vectors with 16 Gaussian mixtures of the input distribution in Figure 4.4.
For the data set in uniform distribution and the real data set, we can simply use
Figures 4.5 and 4.6 to present their results respectively. Moreover, we use Tables
4.3, 4.4, and 4.5 here to show the main observations of this experiment.

Based on the above experimental results, a brief discussion of the performance

of the four methods for content-based retrieval in multimedia databases is given

below:
Measures RPCL CL k-means VP-tree
Recall high middle highest lowest
Precision high middle highest lowest
Preprocessing Speed | highest high lowest middle

Table 4.3: Comparison of the average performance of the four methods for index-
ing and retrieval with data sets in Gaussian distributions.

39

Chapter 4 Non-hierarchical RPCL Indezing

e
-
-

....... x CL

RPCL

k-means
VP-tree

5 10

15

20

25

Number of Generated Cluster Partition(s)

Figure 4.4: Time used for the pre-processing of the 2048 feature vectors with 16
Gaussian mixtures of the input distribution.

Measures RPCL CL k-means VP-tree
Recall high low highest low
Precision high low highest low
Preprocessing Speed | highest high lowest middle

Table 4.4: Comparison of the average performance of the four methods for index-
ing and retrieval with the uniform data set.

Measures RPCL CL k-means VP-tree
Recall high low high high
Precision high low high high
Preprocessing Speed | highest middle lowest middle

Table 4.5: Comparison of the average performance of the four methods for index-
ing and retrieval with a given real data set.

40

Chapter 4 Non-hierarchical RPCL Indezing

0.8 5
0.75
q
0.7p) p!
| ‘ o
o.es . .‘- o - '....
0.6} |
z 055 % § B
‘ :
: N\
‘ \
i \ 0.5f %
N\) \
N _ = - - %
“ — 0.45} e 1
o S e
o e il 1 0s} |—= RPCL R
Xereeee x CL o— o BP
+--=-+ k-means womw Ok
0351 | e ——» VP-tree ass| |3 Komean
0.3 . ; M i ; 03 " :) ‘ . ‘
5 10 20 25 30 5 10 15 =£. = -
Number of Generated Cluster Partition(s) Number of Generated Cluster Partition(s)
(a) 5
AT
/‘/
10°} P -
y ° "
/"' b CEEREED X CL
4 +-:=+ k-means
; *--+ VP-tree
'I.
s Y
2 .
§°1 [— |
- “ ol
-
/
7/
¥
O et T
________ ettt
AAAAAA B
et r
¢

10 15 20 25
Number of Generated Cluster Partition(s)

(c)

30

Figure 4.5: Results for the uniform data set in Experiment 1. (a) The Recall
results. (b) The Precision results. (c) The pre-processing time.

41 .

Chapter 4 Non-hierarchical RPCL Indexing

0.9
0.85E,
o Tt £ Lo PR TS
s S Frm s eI
0.8
y
076F .. W-——e—____ & -
o7t Bt |
06} x-.,
0.5
: 08
.
el 055}
*..
o——o RPCL osk |[e—e RPCL | el
Reoroens x CL N e L |00 TTTSessy
03fF |[+='—+ k-means 3 4—-—+ k-means
*--% VP-tree 0451 |a - -« VP-tree i
02 . N i , N : 0.4 . R N L
5 10 15 20 25 30 5 10 15 20 25 30
Number of Generated Cluster Partition(s) Number of Generated Cluster Partition(s)
(a) (b)
.*‘.’.
./
-
= 4
3.
10°F -7
+ g
e o——o RPCL
P sy x CL
o 5 +--=-+ k-means
-1 - d * - -% VP-tree
§ ~I
1
1
4 —— |
L S v SR
P i e
oo
Pisiiaesy
Vi
3 o
¢ i A R : "
5 10 15 20 25 30

Number of Generated Cluster Partition(s)

(c)

Figure 4.6: Results for the real data set in Experiment 1. (a) The Recall results.

(b) The Precision results. (c) The pre-processing time.

42 .

Chapter 4 Non-hierarchical RPCL Indexing

1. Boundary Problem:

For the data sets in Gaussian distribution, the Recall and Precision values
of RPCL, CL, and k-means are higher than VP-tree. The reason is that
VP-tree cannot handle the boundary problem well. This is a problem when
a requested nearest-neighbor query falls near the cluster partition boundary.
Since VP-tree does not pay attention to the input distribution, a similar fea-
ture vector near to the query may be clustered into another cluster partition.
However, the other tested methods try to locate natural clusters from the
input data set so that they may handle the boundary problem better. As
a result, the Recall and Precision values of the VP-tree method are lower

than the other tested methods.

2. Low Recall Performance When #GC > #MG:

There is a problem for the k-means, CL, and RPCL methods when the
number of generated clusters (#GC) is greater than the number of Gaus-
sian mixture groups (#MG) of the input distribution. We may find that
the Recall values are relatively low in this case. It is because multiple gener-
ated cluster partitions may be bunched together spatially. This leads to an
incorrect assessment of cluster partitions since only a few target database

objects can be retrieved.

3. Low Precision Performance When #GC < #MG:

When the number of generated clusters (#GC') is less then the number of
Gaussian mixture groups (#MG), we find that the precision values of the
tested methods are relatively low. The main reason is two or more mixture
groups may be clustered into the same cluster. Therefore, the cluster con-
taining the target database objects may contain many non-target database
objects. The precision for retrieving this cluster as the result of a query will

be low.

43 .

Chapter 4 Non-hierarchical RPCL Indezing

4. Performance for Data in Uniform Distribution:

For the data set in uniform distribution, the Recall and Precision values are
not very high. It is because there are no explicit natural clusters found in
the distribution of the data set and clustering is not quite useful for this
case. As a result, RPCL, CL, and k-means do not have high Recall and

Precision Performance.

5. Performance for the Real Data Set:

For the real data set, it is expected that the Recall and Precision values are
in between those for data sets in two extreme data distributions: Gaussian
and uniform. It is because the distribution of the real data set is usually in
between Gaussian and uniform. Therefore, we find that the overall Recall
and Precision values are higher than the uniform one, but lower than the

Gaussian one in general.

6. K-means - an Accurate but Slow Method:

K-means gives the best average Recall and Precision performance among the
four tested methods, but it is the slowest. It is because the k-means algo-
rithm often recomputes the centers of the cluster partitions when clustering.

Hence, it is computationally intensive.

7. RPCL - a Fast Method with Satisfactory Recall and Precision

Performance:

RPCL gives satisfactory results and it is much faster than k-means for pre-
processing. It produces a good cluster center approximation so that it can
locate natural clusters well and gives good Recall and Precision results.
Moreover, it is a heuristic algorithm for clustering so that it is faster than

k-means for more than several hundred times in general.

44

Chapter 4 Non-hierarchical RPCL Indezing

In summary, RPCL gives the best overall performance among the four tested
methods for indexing and retrieval in this experiment. Therefore, we will concen-
trate on RPCL in the following three experiments to evaluate the efficiency and
accuracy of RPCL for indexing and retrieval with other different parameters such
as size and dimensionality and find out how these parameters affect the efficiency

and accuracy of our method.

4.2.3 Experiment 2: Test for Different Sizes of Input Data

Sets

In this experiment, we test the accuracy and efficiency of RPCL for indexing
and retrieval with different sizes of inpuf feature vector sets. We measure the
Recall and Precision performance of our method for accuracy and record the time
used for pre-processing for efficiency. We use two different kinds of data sets in
this experiment: (1) synthetic data in Gaussian distribution and (2) synthetic
data in uniform distribution (see Section 4.2.1 for details). The data sets are
8-dimensional feature vector sets with sizes varying from 1024 to 40960. For
each input data set, different numbers of cluster partitions are generated for the
experiment. We conducted 20 trails with different initial starting points of the
centers of the to-be generated cluster partitions for RPCL to calculate its average
Recall and Precision Performance and the average time used for building indexing
structure.

We use several figures and tables to present the results of this experiment.
For the data sets in Gaussian distribution with different mixture groups, Table
4.6 shows the Recall and Precision results. For better illustration, we show the
results for the data sets with feature vectors having 16 Gaussian mixture groups
by using Figure 4.7. Moreover, it shows the time used for pre-processing this data
set. On the other hand, Table 4.7 and Figure 4.8 present all the results for the

data sets in uniform distribution.

45 .

No. of Generated Clusters

#MG | 2 4 8 16 32
2 1.0 A7 28 23 A7
1.0 A7 .28 12 .06
1.0 .91 .26 A1 A1
1.0 AT .30 12 .06
1.0 A7 .29 14 .06
1.0 93 .29 14 .06
4 1.0 1.0 .54 .67 D7
1.0 1.0 .50 37 43
1.0 1.0 .64 .25 14
1.0 1.0 .62 .25 19
1.0 1.0 .64 25 12
1.0 1.0 .65 .26 i
8 1.0 1.0 1.0 1.0 .79
.99 1.0 1.0 78 .64
1.0 .92 1.0 .93 .06
1.0 1.0 1.0 Y 2l
1.0 1.0 1.0 .62 27
1.0 1.0 1.0 D7 27
16 | .96 1.0 94 .96 .84
.97 1.0 .98 1.0 .82
1.0 1.0 1.0 1.0 94
.99 .98 .98 1.0 .62
.96 1.0 .98 1.0 .56
.96 .99 1.0 1.0 .56
32 | .97 .96 97 .95 .95
.98 .95 97 .98 1.0
.98 .90 .96 .96 1.0
97 .98 .98 .99 1.0
.99 1.0 97 1.0 .99
.99 .98 40 0) .99 1.0
(a)

Table 4.6: Results for the data sets in Gaussian distributions in Experiment 2. (a)
The Recall table. (b) The Precision table. Each entry of the tables is a column
of 6 values for 6 different sizes of the data sets: 1024, 2048, 4096, 10240, 20480,

Chapter 4 Non-hierarchical RPCL Indexing

No. of Generated Clusters

#MG | 2 4 8 16 32
2 | 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 10 1.0 1.0

1.0 1.0 1.0 1.0 1.0

4 | .50 1.0 1.0 1.0 1.0
.50 1.0 1.0 1.0 1.0

.50 1.0 1.0 1.0 1.0

.50 1.0 1.0 1.0 1.0

.50 1.0 1.0 1.0 1.0

.50 1.0 1.0 1.0 1.0

8 |.27 .58 1.0 1.0 1.0
.23 D8 1.0 1.0 1.0

27 .46 1.0 1.0 1.0

27 .50 1.0 .97 1.0

.25 .50 1.0 1.0 1.0

.25 .58 1.0 1.0 1.0

16 | .10 25 .46 97 .98
A .24 .44 1.0 1.0

13 25 .54 .97 1.0

11 .24 51 1.0 1.0

J3 23 D2 1.0 1.0

A1 .26 .52 1.0 1.0

32 | .06 10 .20 .44 .83
.06 .09 23 .50 97

.05 .10 19 .46 97

.05 A1 23 42 97

.05 14 19 .46 97

.05 .10 .20 47 .98

and 40960. #MG is the number of Gaussian mixture groups.

46

(b)

Chapter 4 Non-hierarchical RPCL Indezing

08} oy © 1024 o0——o 1024
R x 2048 3ina ool x 2048
+--=+ 4096 +—-=-+ 4096

osl |[*--+ 10240 +--¢ 10240

& o——=a 20480 o——a 20480
o0 40960 &0 40960
ol , z ; i . 4 o . . ; i ; ;
5 10 15 20 25 30 5 10 15 20 25 30

Number of Generated Cluster Partition(s)

Number of Generated Cluster Partition(s)

(a)
o0—=o
Sk Xowooens x
et
P
O}
OF o0

1024 4

4096

10240
20480
40960

401

Second(s)

0
0

10 15 20 25 30
Number of Generated Cluster Partition(s)

(c)

(b)

Figure 4.7: Results for the data sets in Gaussian distribution with 16 mixture
groups in Experiment 2. (a) The Recall results. (b) The Precision results. (c)
The pre-processing time.

47 .

Chapter 4 Non-hierarchical RPCL Indexing

08

0.78

073

ioss-"

e ——m = %
=)

08F N | - oo
0.55¢ E 0.55F
0.5 A 4 A h v » 0.5 - > A A k A
5 10 15 20 25 30 5 10 15 20 25 30
Number of Generated Cluster Partition(s) Number of Generated Cluster Partition(s)
(a) _ (b)

70
o——o 1024

- o5 x 2048 Py
+=-=-+ 4096
» - -+ 10240
e——a 20480

Second(s)

5 10 15 20 25 30
Number of Generated Cluster Partition(s)

(c)

Figure 4.8: Results for the uniform data sets in Experiment 2. (a) The Recall
results. (b) The Precision results. (c) The pre-processing time.

48 .

Chapter 4 Non-hierarchical RPCL Indexing

Size of | # Generated Clusters Size of | # Generated Clusters
Data Set | 2 4 8 16 32 Data Set | 2 4 8 16 32
1024 73 .62 .62 .61 .59 1024 74 .64 .63 .62 .63
2048 70 61 .59 .59 .61 2048 70 .61 .59 .60 .62
4096 .70 .61 .59 .61 .60 4096 70 .61 .59 .61 .60
10240 |.72 .62 .60 .60 .61 10240 |.72 .62 .60 .60 .61
20480 |.71 .62 .57 .60 .62 20480 |.71 .63 .58 .60 .62
40960 |.72 .61 .59 .60 .62 40960 |.73 .61 .59 .61 .62

(a) (b)

Table 4.7: Results for the data sets in uniform distribution in Experiment 2. (a)
The Recall table. (b) The Precision table.

From the experimental results, we find that the accuracy is unaffected by the
sizes of the data sets in general. From the tables and figures, we can see that
the Recall and Precision values are almost the same for different data set sizes
provided that the other parameters are fixed and more pre-processing time is
needed for larger data set. Therefore, it is concluded that the accuracy of the
non-hierarchical RPCL indexing method is independent to the size of the input

data set.

4.2.4 Experiment 3: Test for Different Numbers of Di-

mensions

Apart from different sizes of data sets, we also test the performance of RPCL
for indexing with feature vectors having different numbers of dimensions in terms
of Recall and Precision for accuracy and the pre-processing time for efficiency.
Two different kinds of data sets are used in this experiment: (1) synthetic data in
Gaussian distribution and (2) synthetic data in uniform distribution (see Section
4.2.1 for details). All the data sets are fixed to have 10240 feature vectors with
different numbers of dimensions such as 4, 8, 16, and 32. We fixed the size of each
data set to 10240 as it is not too large or too small for testing and we do not use

data more than 32-D because it is not so efficient for our method to work with

49

Chapter 4 Non-hierarchical RPCL Indezing

No. of Generated Clusters (DIM = 4, 8, 16, 32)

#MG 2 4 8 16 32
2 1.0, 1.0, 1.0, 1.0 .51, .49, .53, .55 .25, .25, .26, .28 .13, .12, .14, .11 .07, .07, .06, .06
4 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 .61, .48,.62,.62 .27,.27, .27, .26 .l4,.14,.13,.12
8 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 .50, .49, .54, .64 .32,.24,.27, .28
16 |1.0,.96,.98,1.0 1.0,1.0,1.0,1.0 .98,1.0,1.0,1.0 .98,1.0,1.0,1.0 .58, .57, .57, .57
32 |.94,.99,.99,.98 .93,.97,.99,.99 .93,.95,1.0,.98 .96,.97,1.0,1.0 .97,1.0,1.0,1.0
Table 4.8: The Recall table for the data sets in Gaussian distributions in Experi-
ment 3.
No. of Generated Clusters (DIM = 4, 8, 16, 32)
4MG 2 4 8 16 32
2 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0
4 .50, .50, .50, .50 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0
8 93...91, 25, .57 .67, .58;.54, 80 1.0, 1.0,1.0;1.0 1.0,1.0,1.0,1.0 1.0,1.0,1.0,1.0
16 | .11, .09, .12, .21 .23, .20, .22,.25 .48, .48, .50, .54 .80, 1.0,1.0,1.0 .92,1.0,1.0, 1.0
32 |.05,.05,.07,.06 .08,.11,.11,.11 .15,.20,.25,.32 .39, .51, .53,.54 .72,1.0,1.0,1.0

Table 4.9: The Precision table for the data sets in Gaussian distributions in
Experiment 3.

such high dimensional data. Moreover, for each input data set, different numbers
of cluster partitions are generated for the experiment. We conducted 20 trails
with different initial starting points of the centers of the to-be generated cluster
partitions for RPCL to calculate its average Recall and Precision Performance
and the average time used for building indexing structure.

We use several figures and tables to present the results of this experiment.
For the data sets in Gaussian distribution with different mixture groups, Tables
4.8 and 4.9 show the Recall and Precision results. Moreover, we show the results
for the data set with feature vectors having 16 Gaussian mixture groups by using
Figure 4.9 for better illustration. Furthermore, Table 4.10 and Figure 4.10 present
the results for the data sets in uniform distribution.

By increasing the number of dimensions, the experimental results show that
the accuracy is not affected for the data sets in Gaussian distributions, but it may
be lowered for the data sets in uniform distribution. The relatively lower Recall

and Precision results found for uniform data because there are no explicit natural

50

Chapter 4 Non-hierarchical RPCL Indezing

005
0ot
085}
08}

Lol

071

Precision

065

08

0551

0.5

5 10 15 20 25 30 5 10 15 20 25 30
Number of Generated Cluster Partition(s) Number of Generated Cluster Partition(s)

(a) (b)

2

(=]

5 10 15 20 25 30
Number of Generated Cluster Partition(s)

()

Figure 4.9: Results for the data sets in Gaussian distribution with 16 mixture
groups in Experiment 3. (a) The Recall results. (b) The Precision results. (c)
The pre-processing time.

51 .

Chapter 4 Non-hierarchical RPCL Indexing

T
0.8 1 0.
J
o—o 4 o—o 4
s o5 x 8 : Rorssine x 8
0.7‘;. -+ 16 0.7_"-,. $=-=+ 16
P +--% 32 Iy w--+ 32
- B " E By T
z T e s e R
Ry R R X S T P SR ARty e aneremeett N AT s Kttt
vy V)
\k \\-\
VN \ '\'
Lo\ N L\ N\,
oty 05F Y <
N LTI AN e
N | e v ey e e e L N S S i m i m i m i m—m—————— —
N\ N
0.4} -~ 04} Bl
i -~ -~ > e -~
S - — SN —— e _
————— - e
03 " . N . . N 03 A s R N s .
5 10 15 20 25 30 5 10 15 20 25 30
Number of Generated Cluster Partition(s) Number of Generated Cluster Partition(s)
(a) (b)
70
v 3
-
o—o 4 PR
Recovons X 8 5 -
60 +—=+ 16 - -
=--» 32 i
-
w- ”-
-
_a” PP
- -
- s
?40 r 2" /,‘/
’ k
] ’ i
/
3 ,
30} 7 P
0 . s R i N "
5 10 15 20 25 30
Number of Generated Cluster Partition(s)

(c)

Figure 4.10: Results for the uniform data sets in Experiment 3. (a) The Recall
results. (b) The Precision results. (c) The pre-processing time.

52

Chapter 4 Non-hierarchical RPCL Indexing

Generated Clusters # Generated Clusters

DIM | 2 4 8 16 32 DIM | 2 4 8 16 32
4 |80 .74 .78 .83 .78 4 |8 .74 .78 83 .78
8 |.71 .60 .59 .58 .62 8 |.72 .60 .59 .58 .63
16 | .69 .55 47 .45 .45 16 | .69 .55 .47 .45 .45
32 | .65 .49 .41 .36 .34 32 | .65 .49 .41 .36 .34

(a) (b)

Table 4.10: Results for the uniform data sets in Experiment 3. (a) The Recall
table. (b) The Precision table.

clusters for RPCL to locate. Therefore, we can conclude that our method is more

suitable for data sets with distributions similar to Gaussian distribution.

4.2.5 Experiment 4: Compare with Actual Nearest-neighbor

Results

In this experiment, we compare the results given by our method with the actual
nearest-neighbor results in order to check the actual accuracy of our method. In
the first three sets of experiments, we mainly evaluate the Recall and Precision
performance of the tested methods. We want to find out the (accuracy) percentage
of the database objects retrieved by our method can also be found in the actual
nearest-neighbor results in the experiment for accuracy.

We use three different kinds of data sets in this experiment: (1) synthetic
data in Gaussian distribution, (2) synthetic data in uniform distribution, and
(3) real data (see Section 4.2.1 for details). Each of the data sets contains 8-
dimensional 10240 feature vectors. Moreover, for each input data set, different
numbers of cluster partitions are generated for the experiment. We conducted
20 trails with different initial starting points of the centers of the to-be generated
cluster partitions for RPCL to find out the results of the given queries. The results
of this experiment are presented by Tables 4.11, 4.12, and 4.13.

33

Chapter 4 Non-hierarchical RPCL Indezing

No. of Generated Clusters

#MG | 2 4 8 16 32
2 88.14 56.14 40.72 33.40 29.55
4 73.42 84.34 56.58 40.85 29.30
8 65.40 60.97 79.10 54.41 39.58
16 62.14 54.14 57.22 75.34 45.04
32 64.05 49.82 49.42 49.88 73.08

Table 4.11: Accuracy percentages for the data sets in Gaussian distributions in
Experiment 4. #MG is the number of Gaussian mixture groups.

No. of Generated Clusters
2 4 8 16 32
59.67 42.43 35.09 32.08 28.91

Table 4.12: Accuracy percentages for the uniform data set in Experiment 4.

There are several observations for the accuracy percentages of the three differ-
ent kinds of data sets similar to those in Experiment 1. For data sets in Gaussian
distributions, when the number of generated clusters (#GC) is the same as the
number of Gaussian mixture groups (#M Q) of the input distribution, the percent-
ages are higher than the others. The reason is the same as the one in Experiment
1. Another observation with the same reason as the one in Experiment 1 is that
the percentages for the uniform data set are the lowest and those for the real data
set are in the middle. These same observations show that Recall and Precision
are good measurements for accuracy.

From the experimental results, the accuracy percentages (for first cluster re-
trieval) are relatively high (73%-88%) for the data sets in Gaussian distribution
when #GC = #MG, but we find that the larger the number of generated cluster
partitions, the lower the accuracy percentage. It is because the chance of the

occurrence of the boundary problem is higher when there are many generated

No. of Generated Clusters
2 4 8 16 32
67.72 56.97 48.39 44.76 37.51

Table 4.13: Accuracy percentages for the real data set in Experiment 4.

54

Chapter 4 Non-hierarchical RPCL Indezing

clusters. It shows that our method can lessen the boundary problem, but it still

cannot solve it completely.

4.3 Chapter Summary

In summary, we propose to use RPCL to pvroduce cluster partitions in a non-
hierarchical fashion for content-based indexing. From the experimental results,
we show that our method (RPCL) gives good searching performance and it is the
fastest method to build for indexing among the tested methods.

Our method using the non-hierarchical approach for indexing seems to be a
good method, but there are still some limitations. First, it is not so efficient
to perform insertion and deletion in our indexing method. Since our method
uses a non-hierarchical indexing structure, there is no relationship in between two
different levels’ nodes. We have to find the target node at each level individually
for insertion and deletion. Second, we find that our method still cannot solve the
boundary problem completely. It does not give 100% nearest-neighbor result for a
query in general. In order to lessen the above problems, we propose a hierarchical

approach of our method in Chapter 5.

3 .

Chapter 5

Hierarchical RPCL Indexing

5.1 The Hierarchical Approach

In this chapter, we are going to present the hierarchical approach of our indexing
method. This method uses a hierarchical structure for indexing so that relation-
ship can be found in the nodes between two levels and it helps us to update the
indexing structure. Moreover, we can perform backtracking in the hierarchical in-
dexing structure so that 100% nearest-neighbor results can be obtained. In short,
we propose this hierarchical approach here to solve the limitations found in the
non-hierarchical RPCL indexing method.

The hierarchical approach transforms a feature vector space into a sequence of
nested clusters. It clusters the vectors which are in a cluster of the previous level
(see Figure 5.1).

The hierarchical clustering approach can be formulated as follows. Let the

feature vector set X with n vectors be
A cluster, C, of X breaks X into subsets Ci,Cy,...,Cp satisfying the following:

C,'an=®, 1SZ,]STI’L,Z7£],

56

Chapter 5 Hierarchical RPCL Indexing

Figure 5.1: Hierarchical clustering. C3 and Cj are the clusters inside C;. Cs and
Cs are the clusters inside C;. The dots represent the database objects (feature
vectors). The crosses represent the centers.

CiUG Y. UGy = X

Cluster B is nested into cluster C' if every component of B is a proper subset of a
component of C. A hierarchical clustering is a sequence of clusters in which each
cluster is nested into the previous cluster in the sequence.

After clustering, there exists a mapping function that maps the generated
clusters to a binary indexing structure. For example, all the feature vectors are
in one cluster at the root level and there are 2' subtrees (clusters) at depth 7 (see
Figure 5.2).

At the top level, a nearest-neighbor query ¢ is compared to the centers of the
clusters in the immediate lower level. The cluster with center closest to the query
point ¢ is selected. The elements in the selected cluster will be the result of the
query if they satisfy the criteria of the nearest-neighbor search. Otherwise, the
search will proceed to the lower levels. In Section 5.5, we will present how to make

use of a branch-and-bound method to speed up the searching.

a7

Chapter 5 Hierarchical RPCL Indezing

D(q, ¢;) <D(q, c,) O D(q, c,) <D(q, ¢,)

Cl C2
L N o0 0 L o 00
o « « o
\./3 ‘-/4 N N 5

Figure 5.2: The indexing structure for the hierarchical clustering in Figure 5.1.
Cy is the root node which contains all the dots in the data set used in Figure 5.1.
D(q,c;) means the Ly-norm distance between nearest-neighbor query g and the
center ¢; of the cluster C;.

5.2 The Hierarchical RPCL Binary Tree (RPCL-
b-tree)

In this section, we will introduce the hierarchical RPCL binary tree (RPCL-b-
tree). We will also outline the procedure of building the tree structure from the
RPCL clusters.

Given a set of data, we can perform top-down RPCL clustering and build a
RPCL-b-tree based on the RPCL clusters. The basic idea is that we apply RPCL
to cluster the data set into two sub-clusters each time and then continue to do
RPCL clustering hierarchically to each of the sub-clusters until each of the final
sub-clusters contains less than a pre-specified number of data points. With these
RPCL clusters, we can build a RPCL-b-tree easily.

RPCL-b-tree is a hierarchical RPCL binary tree structure. There are two

kinds of nodes in the tree: leaf node and non-leaf node.

Definition 5.1 (Leaf Node) A leaf node contains a cluster of at most M data
points calculated by RPCL clustering. M is the mazimum number of data in a

leaf node.

58

Chapter 5 Hierarchical RPCL Indezing

Definition 5.2 (Non-leaf Node) A non-leaf node contains 2 entries of the form,

(F;, ChildPtr;) ,

where 1 = 1 and 2, ChildPtr; is a pointer to its i-th child node, and F; is a tuple

summarizing the information of the cluster of the i-th child node,

F,' = (N,‘, LS{, Rpchenter,-) ;
where
1. N; is the number of data points in the cluster,

2. LS; is the linear sum of the N; data points (i.e. LS; = >N X, (XY, s
the cluster of data points), and

3. RpclCenter; is the cluster center calculated by RPCL clustering.

The tuple F; is similar to the Clustering Feature (CF) in [72]. We keep this
tuple in each non-leaf node because it can help us to calculate the centroid of
the cluster for retrieval. The centroid C of a cluster {X;}¥, is defined as: C' =
(=N, X;)/N, which can be easily computed from information in the tuple.

Based on Definitions 5.1 and 5.2, RPCL-b-tree satisfies the following proper-

ties.

Property 5.1 Each leaf node contains between 1 and M data point(s).
Property 5.2 FEach non-leaf node has two children.

Property 5.3 It has been proven in [72] that N and LS for a non-leaf node
can be easily calculated from the clustering information of its child nodes with

Fy = (N, LS,, RpclCentery) and Fy = (N3, LS,, RpclCentery) as:
N = Nl 3 N2)
LS =LS,+ LS, .

59

Chapter 5 Hierarchical RPCL Indezing

ONF
O

Figure 5.3: An example of RPCL-b-tree. (a) shows the input data whereas (b)
shows the corresponding RPCL-b-tree. A to F are the RPCL clusters for leaf
nodes. The number in each cluster indicates its size. I to IV are the intermediate

RPCL clusters for non-leaf nodes. Note that the node size is 100 in this RPCL-
b-tree.

After introducing the RPCL-b-tree, we now present the algorithm for build-

ing the hierarchical binary tree by using RPCL clustering (Figure 5.3 shows an
example of RPCL-b-tree).

Algorithm 5.1 BuildTree(D, P, M)
> Input: A set of data objects D, a RPCL-b-tree node P (P is empty at the first time), and
the mazimum node size M
> Qutput: A RPCL-b-tree
if D’s size is greater than M then do
create a non-leaf node @)
add Q as a child node of P if any
use RPCL to cluster D into two sub-sets D; and D,
BuildTree(D;, Q, M)
BuildTree(D, Q, M)
return @
else
create a leaf node L for D
add L as a child node of P if any

calculate the clustering information of D and store it in the corresponding entry
of P

= O 00~ Ot W

- O

60

Chapter 5 Hierarchical RPCL Indezing

12 return L
13 end if

5.3 Insertion

Our method not only works in a batch mode, but also allows us to insert data to
the indexing structure. The algorithm for inserting a single data point p to the

tree is shown as follows.

Algorithm 5.2 Insert(T, p, M)
> Input: A RPCL-b-tree T, a to-be inserted data object p, and the marimum node size M
> Qutput: An updated RPCL-b-tree
N ¢ the root node of T
while N is not a leaf node do
N « the node with center closest to p among its child nodes if any
end while
associate p to N
update the center of N according to the RPCL clustering rules
if N’s size is larger than M then do
split the node into 2 sub-nodes by using RPCL
end if
0 update the information of N’s ancestors if necessary

=W 00~ O O N

The performance of the indexing tree for searching may be reduced after some
individual data point insertions. The more the insertions, the worse the perfor-
mance. The reason is that the insertion algorithm dose not fully consider the
overall distribution of the inserted data point and the original data so that it can-
not guarantee to keep the natural clusters. The searching performance will then
be worse (See Table 5.1 and Figure 5.4 for an example. The more the number
of distance computations, the worse the searching performance. See Section 5.6.1
for details.). As a result, we may have to rebuild the indexing structure after a

certain amount of data points have been inserted.

61

Chapter 5 Hierarchical RPCL Indezing

points pre-processed | # points inserted | avg. # of distance computations

10000 0 25.8
9000 1000 33.1
8000 2000 33.95
6000 4000 37.75
4000 6000 44.80
2000 8000 41.65

0 10000 41.60

Table 5.1: The average searching performance of 20 nearest-neighbor queries on
the RPCL-b-trees built in different ways of data insertions with the same 10000

data objects.

Insertion
T

w
o
T

No. of Distance Computations

s

25F

20 " N " . N " L N H
1] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
No. of Data Inserted

Figure 5.4: Searching performance for insertion.

62

Chapter 5 Hierarchical RPCL Indexing

5.4 Deletion

Apart from insertion, we can also delete an individual data point from a RPCL-
b-tree. The algorithm for deleting a single data point from the tree is shown as

follows.

Algorithm 5.3 Delete(T', q, M)
> Input: A RPCL-b-tree T, a to-be deleted data object q, and the mazrimum node size M
> Qutput: An updated RPCL-b-tree
N « the root node of T’
while N is not a leaf node do
N « the node with center closest to ¢ among its child nodes if any
end while
if ¢ is associated with N then do
remove ¢q form N
update the center of N according to RPCL clustering rules
update the information of @’s ancestors if necessary
if the size of Q’s parent node less than M then do
10 merge all Q’s parent node’s child nodes
11 end if
12 end if

© 00~ Ok W

The deletion algorithm makes the searching performance worse. When the
number of deletions increases, the searching performance will decrease because
node merging will change the original indexing structure (see Table 5.2 and Fig-
ure 5.5 as an example). Sometimes, the resultant indexing tree will give better
searching results especially when the number of deletions is relatively small. It
is because only a few points are removed from the indexing tree and it does not

affect the natural clusters and the indexing structure any more.

5.5 Searching

In our work, we make use of the branch-and-bound algorithm proposed in [38]

to compute the k nearest neighbors to a given query. The method is designed

63

Chapter 5 Hierarchical RPCL Indexing

points pre-processed | # points deleted | avg. # of distance computations
5000 0 28.8
5100 100 31.75
5200 200 22.75
5300 300 28.10
5400 400 32.05
5600 600 32.25
5800 800 30.20
6000 1000 37.65
10000 5000 43.40

Table 5.2: The average searching performance of 20 nearest-neighbor queries on
the RPCL-b-trees built in different ways of data deletions with the same final 5000

data objects.

451

»
=3
T

:

No. of Distance Computations

o2
o

20 L N . N L N N s N
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
No. of Data Deleted

Figure 5.5: Searching performance for deletion.

64

Chapter 5 Hierarchical RPCL Indezing

specially for a tree structure which represents a hierarchical decomposition of a
set of data points by using clustering techniques. Our RPCL-b-tree has exactly
the same structure as the one described. Therefore, we apply the method for
effective and efficient nearest-neighbor search.

The basic idea of the branch-and-bound method consists of two stages. First,
the feature set is hierarchically decomposed into disjoint subsets (by RPCL in our
method). The results of this decomposition are represented by a tree structure
(RPCL-b-tree). Second, the resultant tree is searched by the branch-and-bound
algorithm.

For the branch-and-bound algorithm, each node is tested to determine whether
or not the nearest neighbor to a query by the following 4 rules. Let X be the
query, B be the distance to the current nearest neighbor of X among the features
considered up to the present, S, be the set of features associated with node p, N,
be the number of samples associated with node p, M, be the sample mean of S,
Pomaz = Maxx;es, D(Xi, My), and rpmin = minx,es, D(Xi, M), the 4 rules (see

also Figure 5.6) are:

Rule 5.1 (General Inclusion Rule) No X; € S, can be the nearest neighbor
to X, if
D(X,M,) > B + romasz -

Proof: The proof of Rule 5.1 follows. For X; € S,, by triangle inequality,
D(X,X;)+ D(X;,M,) > D(X, M,) .
By definition, D(X;, M,) < Tpmaz, We have
D(X,X;) > D(X,M,) — Tpmaz -
Therefore, no X; can be nearest neighbor to X, if

D(X7Xt) > D(X, Mp) — Tpmaz > B y

65

Chapter 5 Hierarchical RPCL Indezing

D(X,M,) > B + rpmaz -

Rule 5.1 follows immediately.

Rule 5.2 (Specific Inclusion Rule) X; cannot be the nearest neighbor to X,
if

D(X,M,) > B+ D(X;, M,) ,
where X; € Sp.

Proof: The proof of Rule 5.2 is similar to the one for Rule 5.1.

Rule 5.3 (General Exclusion Rule) No X; € S, can be the nearest neighbor
to X, if
B+ D(X,M,) < Tpmin

Proof: The proof of Rule 5.3 follows. For X; € S,, by triangle inequality,
D(X;,X) + D(X,M,) > D(X;, Mp) .
By definition, D(X;, M) > Tpmin, We have
D(X;, X) > Tpmin — D(X, Mp) .
Therefore, no X; can be nearest neighbor to X, if
D(Xi, X) 2 rpmin — D(X, M) > B,
B+ D(X, M,) < Tpmin -

Rule 5.3 follows immediately.

Rule 5.4 (Specific Exclusion Rule) X; cannot be the nearest neighbor to X,
if

B+ D(X,M,) < D(X;i, M) ,
where X; € Sp.

Proof: The proof of Rule 5.4 is similar to the one for Rule 5.3.

66

Chapter 5 Hierarchical RPCL Indexing

current nearest
neighbor to X

-

current nearest
neighbor to X

current nearest
neighbor to X

current nearest
neighbor to X

(c) (d)

Figure 5.6: (a) General inclusion rule. (b) Specific inclusion rule. (c) General
exclusion rule. (d) Specific exclusion rule.

6Ff

Chapter 5 Hierarchical RPCL Indezing

With the above 4 rules, the branch-and-bound algorithm to find the nearest

neighbor to a given query X is given below:

Algorithm 5.4 Search(T', X)
> Input: a RPCL-b-tree T and a query X
> Qutput: the nearest neighbor to X
> Initialization

1 B+
2 L+«1 > L is the current level
3 N ¢ root node > N is the current node

> Ezpansion of current node
4 ActiveList « all nodes that are immediately direct successors of N at level L
5 compute and store the D(X, M,)’s for the nodes in ActiveList

> Test for Rules 5.1 and 5.3
6 for each node p in ActiveList at level L do
T if B + pmae < D(X, Mp) or B + D(X, M) < pmin then do
8 remove p from the ActiveList at level L
9 end if
10 end for

> Backtracking
11 if no nodes left in ActiveList at level L then do
12 L+« L-1

> backtrack to the previous level

13 if L =0 then do

14 terminate the algorithm
15 else

16 go to Line 6

17 end if

18 end if

> Choose the nearest node for expansion
19 p « the node yielding the smallest D(X, M;) among the nodes in ActiveList at
level L
20 N < p
21 remove p from the ActiveList at level L
22 if L is not final level then do
23 L=L+1
24 go to Line 4
25 end if
> Test for Rules 5.2 and 5.4
26 for each X; in p do
27 if B+ D(X;, M,) < D(X, M,) or B+D(X, M,) < D(X;, M) then do
28 do not compute D (X, X;)
> X; cannot be the nearest neighbor to X
29 else
30 compute D(X, X;)

68

Chapter 5 Hierarchical RPCL Indexing

31 if D(X, X;) < B then do

32 N = node @ > current nearest neighbor to X
33 B = D(X, X;)

34 end if

35 end if

36 end for

37 go to Line 6

The above algorithm is easy to be extended to search k nearest neighbors for
a query X. It can be done by keeping a sorted list of k£ current nearest neighbors
instead of the current nearest neighbor and changing B to be the distance to the

k-th nearest neighbor of X among the features considered up to the present.

5.6 Experiments

In this section, we present several experiments and their results for the perfor-
mance of the RPCL-b-tree method with the branch-and-bound algorithm for re-
trieval. We use different kinds of data together with different parameters in the
experiments in order to measure the efficiency of the method for 100 % nearest-

neighbor search.

5.6.1 Experimental Setup

We conducted 6 different experiments to measure the efficiency of the RPCL-b-tree
method for 100% nearest-neighbor search. All the experiments were conducted
on an Ultra Sparc 1 machine and the RPCL-b-tree was implemented using C++.

Unlike the experiments presented in Chapter 4, we use a new measurement for
efficiency here instead of Recall and Precision. It is because Recall and Precision
are used for accuracy not efficiency and we do not need to test the accuracy for
100% nearest-neighbor search. For efficiency, it is hard to tell how efficient a

method is, thus we define an efficiency measurement for the experiments. In a

69

Chapter 5 Hierarchical RPCL Indezing

nearest-neighbor retrieval, the most time-consuming part is to find the distances
between a query and the feature vectors. Therefore, the efficiency of an indexing
method is almost proportionai to these distance computations. The efficiency of
our method is defined based on the efficiency of the linear search because it has
the worst efficiency in searching than other methods. The efficiency measurement

is defined as:

Definition 5.3 (Efficiency Measurement)

of distance computations for the checked method

ef ficiency =1 — (5.1)

of distance computations in linear search

We know that the efficiency of linear search is 0 because it needs to compute
the distance between every feature vector and the query. Moreover, the total
number of distance computations is equal to the size of the data set. As a result,
Equation 5.1 becomes:

of distance computations for the checked method

ef ficiency =1 — (5.2)

size of the data set
We use an example here to illustrate what is the practical meaning for this effi-
ciency. For example, if the searching efficiency of a method is 0.8, the method
needs only approximately 20% of the searching time needed by the linear search
for retrieval.

We use three different kinds of data sets in the experiments:

1. Clustered Data: We test our method with synthetic data sets in Gaussian
distribution. Section 4.2.1 shows the generating formula for this kind of
data. In the following experiments, we simply used a constant 0.05 for o
and let n = 10, 100, and 1000 for the generating formula of the clustered

data with dimensions varying from 2 to 16.

2. Uniform Data: We use also synthetic data sets in uniform distribution
(see Section 4.2.1 for details). In the following experiments, the uniform

data sets have dimensions varying from 2 to 16.

70

Chapter 5 Hierarchical RPCL Indexing

3. Real Data: We use a real data set for testing our method in a real world
situation. The real data set is obtained in the same way as the one described
in Section 4.2.1. The only difference is that the size of the set is 10000 here
because we need not test for k-means in the following experiments so that
a larger data set is more appropriate. Unlike synthetic data sets, this real
data set is fixed with 10000 8-D feature vectors. Therefore, we use the set

in Experiments 5, 7, 9, and 10 only.

In Experiments 5-10, we try to test our method’s efficiency with different

parameters as below:

e Experiment 5: Test for different node sizes.

e Experiment 6: Test for different sizes of the data sets.

Experiment 7: Test for different data distributions.

Experiment 8: Test for different numbers of dimensions.

e Experiment 9: Test for different numbers of database objects retrieved in

nearest-neighbor search.

Experiment 10: Test with VP-tree for comparing their efficiency.

From these experiments, we want to find out how these parameters affect the
efficiency of our method. Moreover, we will work out a relationship formula for
describing the relationship between the efficiency and these parameters in Section
5.8.

We first build a RPCL-b-tree in a batch mode for each of the testing data
sets and then perform nearest-neighbor searches to calculate the efficiency of the
RPCL-b-tree with the Equation 5.2. Finally, we give a brief discussion on the
results and try to come out some conclusions. All the results and the conclusions

will be presented in the following sections.

7l

Chapter 5 Hierarchical RPCL Indezing

Node Size 100, 200, 500, 1000, and 2000.

Size of Data Set 10000.

Data Type Clustered data with 100 Gaussian
mixtures, uniform data, and real
data.

Dimensionality 8.

Number of Database Objects Retrieved | 1, 5, 20, 50, and 100.

Table 5.3: Detail of the parameters in Experiment 5.

5.6.2 Experiment 5: Test for Different Node Sizes

In Experiment 5, we try to test the efficiency of the RPCL-b-tree with different
node sizes. In a RPCL-b-tree, each node contains no more than a certain number
of data or each node has a maximum size. We want to find out how the node size
affects the efficiency of the RPCL-b-tree and then figure out the most suitable
node size for the tree from the experimental results.

We test the efficiency of the method for 100% nearest-neighbor retrieval. That
means the searching result will be exactly the same as the linear search one. We
use different numbers of node sizes in this experiment together with several other
parameters. Table 5.3 shows the detail of the parameters. We test with node sizes
actually from 1% to 20% of the size of data set. It is meaningless to test with
node sizes more than 20% as the indexing tree may have only a few leaf nodes and
each of them may become very large in size. Moreover, we retrieve no more than
100 database objects in the experiment because in practice the result of a query is
not a too large set so that we can pick out the desired database objects manually
from the set. Finally, for each set of parameters, 10 different nearest-neighbor
searches are performed and the average results are used for analysis.

We present three main kinds of figures from the experiments: the Indezing
Structure Construction Time, the Searching Time and the Searching Efficiency.

The time used in building the indexing structure is shown in Table 5.4 and Figure

72

Chapter 5 Hierarchical RPCL Indezing

Node Size 100 200 500 1000 2000
Clustered Data | 8.40 7.09 4.44 3.92 3.18
Uniform Data | 7.64 5.54 3.84 3.03 3.21
Real Data 8.22 6.65 5.37 4.05 3.00

Table 5.4: Time used (in seconds) for building the indexing structures in Experi-
ment 3.

Node Size 100 200 500 1000 2000
Clustered Data k=1 0.007 0.013 0.042 0.063 0.076
k=20 [0.010 0.019 0.052 0.082 0.102
k =100 | 0.026 0.050 0.077 0.118 0.123
Uniform Data k=1 0.017 0.023 0.045 0.060 0.092
k=20 |0.049 0.059 0.081 0.092 0.120
k =100 | 0.084 0.101 0.119 0.137 0.139
Real Data k=1 0.012 0.017 0.018 0.023 0.035
k=20 |0.022 0.020 0.032 0.040 0.049
k =100 | 0.037 0.039 0.058 0.058 0.074

Table 5.5: The average time used (in seconds) for searching the k nearest-neighbors
to 10 different queries in Experiment 5.

73

Chapter 5 Hierarchical RPCL Indezing

Efficiency
o
=

04

03r

0.4 N " " " " N " L " 0.2

o——o Clustered Data
s x Uniform Data
i +--—+ Real Data

7 " i A A i " A A i 3 A A A " H i A A
oes 10 20 30 40 50 60 70 80 90 100 200 400 600 800 1000 1200 1400 1600 1800 2000
Search Number Node Size
(c) (d)

Figure 5.7: Results of Experiment 5. (a), (b), and (c) are the average efficiency
for searching different numbers of nearest neighbors to 10 different queries for
clustered data, uniform data, and real data respectively. (d) is the time used (in
seconds) for building the indexing structure.

74

Chapter 5 Hierarchical RPCL Indezing

5.7(d). Table 5.5 shows the searching time. The efficiency of nearest-neighbor
search with the RPCL-b-tree is presented in Figures 5.7(a), (b), and (c). Here are

the observations from the figures and tables:

1. The smaller the node size, the better the efficiency is.

2. The larger the number of database objects retrieved, the worse the efficiency

is.

3. The smaller the node size, the more time is needed to construct the indexing

structure.

4. The larger the node size, the more the searching time is needed.

From the experimental results, we find that the smaller the node size, the
better the efficiency is. For example, when node size is 1% (size = 100) or 2%
(size = 200) of the size of the data set, the efficiency is better than those for
other node sizes. However, in term of the indexing structure construction time,
the smaller the node size, the more time is needed. Since the construction of
the indexing structure is a pre-processing part and we only need to do it once, a
little bit more construction time is acceptable. Therefore, we would rather have a
better searching efficiency instead. We conclude that 1% to 2% of the size of the

data set is a suitable node size for the RPCL-b-tree.

5.6.3 Experiment 6: Test for Different Sizes of Data Sets

In Experiment 6, we test the efficiency of the RPCL-b-tree with different sizes of
the data sets. We want to find out if our indexing method is suitable for a large
set of data.

We test the efficiency of the method for 100% nearest-neighbor retrieval. We
use different sizes of the data sets in this experiment together with several other

parameters. Table 5.6 shows the detail of the parameters. We fix the node size to

75

Chapter 5 Hierarchical RPCL Indezing

Node Size 200.

Size of Data Set 1000, 2000, 5000, 10000, 20000,
and 50000.

Data Type Clustered data with 100 Gaussian
mixtures and uniform data.

Dimensionality 8

Number of Database Objects Retrieved

1, 5, 20, 50, and 100.

Table 5.6: Detail of the parameters in Experiment 6.

Data Set Size

1000 2000 5000 10000 20000 50000

Clustered Data

0.42

1.09

3.10 7.09 14.48 47.88

Uniform Data

0.37

1.03

3.34 5.54 11.11 30.47

Table 5.7: Time used (in seconds) for building the indexing structures in Experi-

ment 6.

200 as we find in the last experiment that 2% of the size of the data set (10000)

is a suitable value for node size. For each set of parameters, 10 different nearest-

neighbor searches are performed and the average results are used for analysis.

We use some tables and figures to present the experimental results. The time

used in building the indexing structure is shown in Table 5.7 and Figure 5.8(c).

Moreover, Table 5.8 shows the searching time. The efficiency of nearest-neighbor

search with the RPCL-b-tree is presented in Figures 5.8(a) and (b). Here are the

Data Set Size 1000 2000 5000 10000 20000 50000
Clustered Data k=1 0.009 0.028 0.017 0.013 0.012 0.008
k=20 |0.010 0.037 0.021 0.019 0.017 0.010
k=100 | 0.023 0.058 0.044 0.050 0.039 0.036
Uniform Data k=1 0.011 0.015 0.018 0.023 0.032 0.033
k=20 | 0.014 0.028 0.042 0.059 0.057 0.079
k=100 | 0.023 0.038 0.066 0.101 0.138 0.111

Table 5.8: The average time used (in seconds) for searching the k nearest-neighbors
to 10 different queries in Experiment 6.

76

Chapter 5 Hierarchical RPCL Indexing

0.1 n X " " N L N " N X X n N N s L : .
10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 920 100
Search Number Search Number

(a) (b)

o——o Clustered Data
a5k | xeennn x Uniform Data

‘?‘

8

CPU Time spent (sec)
3 & 8 B

o
T
x

05 1 15 2 25 3 35 4 45 5

Size of Data Set s x 10"
()

Figure 5.8: Results of Experiment 6. (a) and (b) are the average efficiency for
searching different numbers of nearest neighbors to 10 different queries for clus-
tered data and uniform data respectively. (c) is the time used (in seconds) for
building the indexing structure.

i

Chapter 5 Hierarchical RPCL Indezing

observations from the figures and tables.

1. The larger the data set, the better the efficiency is.

2. The larger the number of database objects retrieved, the worse the efficiency

is.

3. The larger the data set, the more time is needed to construct the indexing

structure.

From the experimental results, the main finding is that the efficiency increases
when the size of the data set increases. It is not hard to explain this observation
with node size. Given a fixed node size, the ratio of the node size to the size of
the data set decreases as the data set size increases. From Experiment 5, we know
that the smaller the ratio, the better the efficiency of the method is. Again, it may
need a little bit more time to construct the indexing structure for a large data set,

but we do not mind to pay more pre-processing time for efficient retrieval.

5.6.4 Experiment 7: Test for Different Data Distributions

The objective of Experiment 7 is to test the searching performance of the RPCL-
b-tree with different kinds of data distributions. We concentrate mainly on the
Gaussian distribution with different numbers of Gaussian mixtures. We try to
find out how the number of Gaussian mixtures affects the searching performance
of our indexing method.

We test the efficiency of the method for 100% nearest-neighbor retrieval. We
use clustered data with different numbers of Gaussian mixtures together with an
uniform data set in which each feature vector itself can be treated as a Gaussian
mixture and the real data set for reference. Table 5.9 shows the detail of the
parameters. For each set of parameters, 10 different nearest-neighbor searches are

performed and the average results are used for analysis.

8 -

Chapter 5 Hierarchical RPCL Indezing

KevroesX 100 .
ost |[+-—+ 1000 TSy
» - -+ Uniform
e—=a8 Real

04 L i . N N N N
10 20 30 40 50 60 70
Search Number

Figure 5.9: The average efficiency for searching different numbers of nearest-
neighbors to 10 different queries for the clustered and uniform data in Experiment

7

Node Size 200.

Size of Data Set 10000.

Data Type Clustered data with 10, 100, and
1000 Gaussian Mixtures together
with uniform data and real data.

Dimensionality 8.

Number of Database Objects Retrieved | 1, 5, 20, 50, and 100.

Table 5.9: Detail of the parameters in Experiment 7.

No. of Gaussian Mixtures | 10 100

1000 Uniform Real

Construction Time 6.36 7.93

7.09 5.60 6.78

Table 5.10: Time used (in seconds) for building the indexing structures in Exper-

iment 7.
No. of Gaussian Mixtures 10 100 1000 Uniform Real
Searching Time k=1 0.006 0.010 0.029 0.032 0.022
k=20 | 0.012 0.016 0.048 0.061 0.025
k=100 | 0.032 0.041 0.098 0.100 0.039

Table 5.11: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 7.

9 -

Chapter 5 Hierarchical RPCL Indexing

We use some tables and figures to present the experimental results. The time
used in building the indexing structure and in the searching are shown in Table
5.10 and Table 5.11 respectively whereas the efficiency of nearest-neighbor search
with the RPCL-b-tree is presented in Figure 5.9. Here are some of the main

observations:
1. More Gaussian mixtures seem to give worse searching performance.

2. The larger the number of database objects retrieved, the worse the efficiency
is.
3. The number of Gaussian mixtures is independent to the indexing structure

construction time.
4. The more the Gaussian mixtures, the more time is needed in the searching.

From the experimental results, we find that the more the Gaussian mixtures,
the worse the efficiency. It is because more small clusters are found when building
the indexing structure. As a result, the indexing structure may have more nodes
which will worsen the searching performance because more decisions have to be
made for determining whether the node is going to be examined. We can treat the
uniform data set as a 10000-sized data set with 10000 Gaussian mixtures or each
individual feature itself is a one-point Gaussian mixture. Hence, we find that the
efficiency for uniform data is not very good relatively. As expected, the efficiency
of real data is in between the one for clustered data with 10 Gaussian mixtures

and the one for uniform data.

5.6.5 Experiment 8: Test for Different Numbers of Di-
mensions

In this experiment, we try to test the efficiency of the RPCL-b-tree for the data

in different numbers of dimensions. We know that many existing methods are not

80 -

Chapter 5 Hierarchical RPCL Indexing

Node Size 200.

Size of Data Set 10000.

Data Type Clustered data with 100 Gaussian
mixtures and uniform data.

Dimensionality 2, 4, 8, and 16.

Number of Database Objects Retrieved

1, 5, 20, 50, and 100.

Table 5.12: Detail of the parameters in Experiment 8.

Dimensionality

2 4

8 16

Clustered Data

1.95 4.02 8.79 17.95

Uniform Data

1.84 3.07 5.78 21.80

Table 5.13: Time used (in seconds) for building the indexing structures in Exper-

iment 8.

quite applicable for high dimensional data. Therefore, we want to find out if our

method is suitable for high dimensional data.

We test the efficiency of the method for 100% nearest-neighbor retrieval. We

use the data with different numbers of dimensions together with several other

parameters. Table 5.12 shows the detail of the parameters. For each set of pa-

rameters, 10 different nearest-neighbor searches are performed and the average

results are used for analysis.

We use some tables and figures to present the experimental results. The time

Dimensionality 2 4 8 16

Clustered Data k=1 0.002 0.002 0.012 0.059
k=20 | 0.002 0.008 0.018 0.082
k=100 | 0.006 0.023 0.043 0.133

Uniform Data k=1 0.001 0.006 0.031 0.218
k=20 | 0.001 0.005 0.072 0.225
k=100 | 0.008 0.015 0.101 0.254

Table 5.14: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries in Experiment 8.

81

Chapter 5 Hierarchical RPCL Indezing

i e
R L T
0.95.\\ .. ?
.
Yy
Smiiin ;
o8 000 TITre=ea. o \
¥ TS 07, ‘.\
\ ~. Y
~.o Lo
085} S O, ~.
\ ~o 06 L N
g- R g K g
~ \ ‘.\‘
3 08f \‘ SO05F N Sy
ﬁ _______ L E \\ ~L
S 04 N
075+ ¥ ’ Y
\\ \\\
~ 03 22,
~ -~
0.7t S5 Sl
o—o 2 S 02} [—=o 2 S
FIERREEE X 4 S ;Y SRRV x 4 ‘~_~\
065t |+-=+ 8 "N oaf [+ 8 TTes
=-—--% 16 R g ---% 16 -
06 R 0 P : i ; . A A i i
10 20 30 40 50 60 70 80 9 100 10 20 30 40 50 60 70 80 90 100
Search Number Search Number
(a) (b)
22
20f |o—=© Clustered Data
%5 % Uniform Data
18 b
16}
‘gil-
'§12-
£l
2
O gt
x

Figure 5.10: Results of Experiment 8. (a) and (b) are the average efficiency
for searching different numbers of nearest neighbors to 10 different queries for
clustered data and uniform data respectively. (c) is the time used (in seconds) for
building the indexing structure.

82 -

Chapter 5 Hierarchical RPCL Indexing

used in building the indexing structure is shown in Table 5.13 and Figure 5.10(c).
Moreover, Table 5.14 shows the searching time. The efficiency of nearest-neighbor

search with the RPCL-b-tree is presented in Figures 5.10(a) and (b). Observations

from the figures and tables include:

1. The higher the dimensionality, the worse the searching performance.

2. The larger the number of database objects retrieved, the worse the efficiency

is.
3. The higher the dimensionality, the more time is needed for indexing.

4. The higher the dimensionality, the more time is needed in the searching.

From the experimental results, we find that our method works fine for low
dimensional data. The efficiency is up to 0.9 for both clustered and uniform data.
On the other hand, the searching performance of our method is acceptable for
16-dimensional clustered data. The efficiency is approximately 0.6. However it is
only 0.1 for 16-dimensional uniform data which is not a good performance. For a
real data set, it may be assumed to have an underlying distribution and we can
usually approximate it by using Gaussian mixtures. Therefore, the efficiency is
still acceptable for real data. We can check back Figure 5.7(c) for the searching
performance with 10000 8-D real data and the efficiency is up to at least 0.85

when the node size is 200.

5.6.6 Experiment 9: Test for Different Numbers of Database

Objects Retrieved

In this experiment, we test the RPCL-b-tree method for retrieving different num-
bers of database objects. We try to find out how the number of retrieved database

objects affects the efficiency of the method.

83

Chapter 5 Hierarchical RPCL Indezing

Node Size 200.

Size of Data Set 10000.

Data Type Clustered data with 100 Gaussian
mixtures, uniform data, and real
data.

Dimensionality 8.

Number of Database Objects Retrieved | 1, 2, 5, 10, 20, 50, and 100.

Accuracy 10% to 100%.

Table 5.15: Detail of the parameters in Experiment 9.

Data Distribution | Clustered Data Uniform Data Real Data
Construction Time 7.05 5.51 6.78

Table 5.16: Time used (in seconds) for building the indexing structures in Exper-
iment 9.

We test the efficiency of the method for nearest-neighbor search with different
numbers of database objects retrieved. In the Experiments 5-8, the number of
database objects retrieved is used on the x-axis in the figures. For this experiment,
we are exactly testing this number. Therefore, we change the x-axis’ attribute
to accuracy so that we can check also the efficiency for approximate nearest-
neighbor search. The accuracy ranges from 10% to 100% and it simply indicates
how accurate the nearest-neighbor retrieval result is. For example, given a top-
10 nearest-neighbor retrieval result, accuracy equal to 80% means 8 out of the
10 database objects are correctly retrieved. Table 5.15 shows the detail of the
parameters. For each set of parameters, 10 different nearest-neighbor searches are
performed and the average results are used for analysis.

We use some tables and figures to present the experimental results. The time
used in building the indexing structure and the searching time are shown in Table
5.16 and 5.17 respectively. Moreover, the efficiency of nearest-neighbor search with

the RPCL-b-tree is presented in Figure 5.11. Here are some of the observations:

84

Chapter 5 Hierarchical RPCL Indexing

10 20 30 40 50 60 70 80 9 100 10 20 30 40 50 60 70 80 90 100
Accuracy (%) Accuracy (%)
(a) (b)
1 .
At SR N
S o :
4 SN0, Bty Yo N
0.95F “--‘_‘ N e 4
.\‘0-_2_.._. __{\ e
N . 2l
.. i T
N, 0.
09} Vi i
V.
g . 9
X - .
% \'\‘ 0.
N, "
085} R -
o—o 1 g
Xeronnns x 2 v ¢
4==+ 5§ \
\
~--% 10 .
08f \
—a 20 \]
o0 50 \
v----7 100 v
°'7510 20 30 40 50 60 70 80 90 100
Accuracy (%)
(c)

Figure 5.11: Results of Experiment 9. (a), (b), and (c) are the average efficiency
for searching different numbers of nearest neighbors to 10 different queries for
clustered data, uniform data, and real data respectively.

85 -

Chapter 5 Hierarchical RPCL Indexing

No. of objects retrieved | 1 2 5 10 20 50 100
Clustered Data 0.008 0.014 0.016 0.020 0.017 0.022 0.046
Uniform Data 0.027 0.039 0.043 0.048 0.057 0.069 0.091
Real Data 0.017 0.019 0.014 0.021 0.019 0.039 0.050

Table 5.17: The average time used (in seconds) for searching different numbers of
nearest-neighbors to 10 different queries in Experiment 9.

1. The more the database objects retrieved, the worse the searching efficiency.
2. The more accurate the nearest-neighbor retrieval, the worse the efficiency.

3. The more the database objects retrieved, the more searching time is needed.

From the experimental results, we find that the efficiency decreases when the
number of database objects retrieved increases because more nodes and more

candidate features are needed to be examined.

5.6.7 Experiment 10: Test with VP-tree

After testing our method with different parameters, we try to test the RPCL-b-tree
method with VP-tree for comparing their searching efficiency. We consider VP-
tree because it works similar to our method. First, it uses a hierarchical structure
for indexing. Second, it splits the input data set into small sub-sets hierarchically
in a top-down approach to form the indexing tree. In this experiment, we want
to show that RPCL-b-tree is better than VP-treé for indexing and retrieval.

We test the efficiency of RPCL-b-tree and VP-tree for 100% nearest-neighbor
retrieval. For fair comparison, backtracking is allowed for searching in VP-tree
like RPCL-b-tree. We test the two methods the following parameters sets which

are similar to those in Experiments 3-8.

e Parameter Set 1. Different node sizes: 200, 1000, and 2000 for 10000

synthetic feature vectors with 100 Gaussian mixtures.

86

Chapter 5 Hierarchical RPCL Indezing

Node Size 200 1000 2000
Clustered Data (RPCL) | 7.09 3.92 3.18
Clustered Data (VP) 144.21 94.76 70.68

Table 5.18: Time used (in seconds) for building the indexing structures for pa-

rameter set 1.

Node Size 200 1000 2000
Clustered Data k£ =1 (RPCL) 0.013 0.063 0.076
k=1 (VP) 0.114 0.112 0.113
k =20 (RPCL) |0.019 0.082 0.102
k =20 (VP) 0.115 0.113 0.114
k =100 (RPCL) | 0.050 0.118 0.123
k =100 (VP) 0.127 0.128 0.133

Table 5.19: The average time used (in seconds) for searching the k& nearest-

neighbors to 10 different queries for parameter set 1.

e Parameter Set 2. Different sizes of data sets: 1000, 10000, and 50000 for

synthetic feature vectors with 100 Gaussian mixtures.

e Parameter Set 3. Data sets of 10000 feature vectors with different data

distributions: clustered data with 100 Gaussian mixtures, uniform data, and

real data.

e Parameter Set 4. Data sets of 10000 feature vectors in 100 Gaussian

mixtures with different numbers of dimensions: 2, 4, 8, and 16.

For each set of parameters, 10 different nearest-neighbor searches are performed

and the average results are used for analysis. We present the experimental results

are in Tables 5.18-5.25 and Figure 5.12.

From the experimental results, we find that RPCL-b-tree is more efficient than

VP-tree for 100 % nearest-neighbor retrieval. For building the indexing structure,

RPCL-b-tree is faster than VP-tree for each of the tested input data sets. It is

because RPCL-b-tree uses a very fast clustering method, RPCL, to locate natural

87 -

Chapter 5 Hierarchical RPCL Indezing

Data Set Size 1000 10000 50000
Clustered Data (RPCL) | 0.42 7.09 47.88
Clustered Data (VP) 7.43 145.19 966.17

Table 5.20: Time used (in seconds) for building the indexing structures for pa-
rameter set 2.

Data Set Size 1000 10000 50000
Clustered Data k=1 (RPCL) 0.009 0.013 0.008
k=1 (VP) 0.014 0.117 0.585

k=20 (RPCL) |0.010 0.010 0.010
k=20 (VP) 0.013 0.117 0.574
k=100 (RPCL) | 0.023 0.050 _ 0.036
k=100 (VP) |0.024 0.131 0.601

Table 5.21: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 2.

No. of Gaussian Mixtures 100 Uniform Real
Construction Time (RPCL) | 7.93 5.60 6.78
Construction Time (VP) 145.11 144.51 144.51

Table 5.22: Time used (in seconds) for building the indexing structures for pa-
rameter set 3.

No. of Gaussian Mixtures 100 Uniform Real
Searching Time k=1 (RPCL) 0.010 0.032 0.022
k=1 (VP) 0.114 0.113 0.117
k=20 (RPCL) |0.016 0.061 0.025
k=20 (VP) 0.116 0.117 0.124
k=100 (RPCL) | 0.041 0.100 0.039
k=100 (VP) 0.130 0.126 0.178

Table 5.23: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 3.

88 -

03rle——o 200 (RPCL)

o0 200 (VP)
02f|+—— 1000 (RPCL)

Foones + 1000 (vp)
01f|e—=8 2000 (RPCL)

[REETR o 2000 (VP)

o 10 20 30 40 50 60 70 80 90 100
Search Number
(a)
o——o 100 (RPCL)

12 Grnnmae o 100 (VP)
+——+ Uniform (RPCL)
+-+ Uniform (VP)

A o—=a Real (RPCL)
""" Real (VP)

L v > T e P e i)
. e S S———
o.z-in...
G . BT

......... B ettt)
00 20 30 4 50 6 70 & 9 100

Search Number

(c)

Chapter 5 Hierarchical RPCL Indezing

Efficiency

93le—o 1000 (RPCL)
1000 (VP)
10000 (RPCL)
10000 (VP)
50000 (RPCL)
50000 (VP)
10 20 30 40 50 60 70 80 90
Search Number

0.2 4y

0.1 —a

(b)

B

0.4
2 (RPCL) e: ..

0.3F O - o 2(WP) | el %

+—+ 4 (RPCL)
o2H + o+ 4 (VP)

e—=o 8 (RPCL)
orb @ o 8(VP)

=—= 16 (RPCL)

o* e 16(VP) T S
o o oo 50 60 70 80 90 100
Search Number
(d)

Figure 5.12: Results of Experiment 10. (a), (b), (c), and (d) are the average effi-
ciency for searching different numbers of nearest neighbors to 10 different queries
for parameter sets 1, 2, 3, and 4 respectively.

Chapter 5 Hierarchical RPCL Indezing

Dimensionality 2 4 8 16
Clustered Data (RPCL) | 1.95 4.02 8.79 17.95
Clustered Data (VP) 49.73 81.08 145.19 276.95

Table 5.24: Time used (in seconds) for building the indexing structures for pa-
rameter set 4.

Dimensionality 2 4 8 16
Clustered Data k=1 (RPCL) 0.002 0.002 0.012 0.059
k=1 (VP) 0.036 0.062 0.117 0.218

k=20 (RPCL) | 0.002 0.008 0.018 0.082
k=20 (VP) 0.039 0.063 0.117 0.224
k=100 (RPCL) | 0.006 0.023 0.043 0.133
k=100 (VP) |0.042 0.073 0.131 0.252

Table 5.25: The average time used (in seconds) for searching the k nearest-
neighbors to 10 different queries for parameter set 4.

clusters from the input data set for indexing. For retrieval, RPCL-b-tree is also
more efficient than VP-tree. From Figure 5.12, we can see that the searching
efficiency values of RPCL-b-tree are higher than the corresponding values of VP-
tree. The main reason is that our method makes use of the branch-and-bound
algorithm to speed up the searching. Moreover, we can also figure out a specific
advantage from Figure 5.12(b). You can find that RPCL-b-tree is much more
efficient than VP-tree for large data sets. In fact, this is due to the power of
RPCL to locate clusters from large data set. In short, RPCL-b-tree outperforms

VP-tree for indexing and retrieval.

5.7 Discussion

After introducing the RPCL-b-tree for indexing and retrieval, we would like to

have a short discussion on its performance.

1. Efficient Nearest-neighbor Retrieval:

90 -

Chapter 5 Hierarchical RPCL Indezing

From most the experimental results, the efficiency is up to at least 0.8 for
100%-accuracy nearest-neighbor retrieval in general. It is because RPCL
gives us natural clusters and we try to keep each of the natural clusters in
a node. Therefore, most of the data in the node can be retrieved together
as the result of a requested nearest-neighbor query and hence improve the
effectiveness of retrieval. Besides, we make use of the branch-and-bound
algorithm on the RPCL-b-tree for retrieval so that the efficiency of nearest-
neighbor search can be increased. We also find that the searching time is
proportional to efficiency so that most of the retrievals can be finished in
no more than 1 second. Moreover, we have shown in Experiment 10 that
our RPCL-b-tree outperforms a common used indexing method VP-tree for

efficient retrieval.

. Solving the Boundary Problem for 100% Nearest-neighbor Result:

By using the branch-and-bound algorithm on the RPCL-b-tree, the bound-
ary problem described in Section 2.4 can be solved. For example, there is a
nearest-neighbor query lying on a boundary of two cluster partitions. With
the backtracking mechanism and the 4 elimination rules, the branch-and-
bound algorithm gives us 100% result of the query which may contain data

objects on different clusters on both sides of the boundary efficiently.

. Short Indexing Structure Construction Time Needed:

The time used for building the indexing structure is short in the experiments.
It is no more than 10 seconds for most of the cases. RPCL is a very fast
clustering method so that it can locate the natural clusters efficiently. As a

result, less time is needed for constructing the indexing structure.

. Good Performance for Real Data:

According to the experiments for the real data set, the efficiency is relatively

91

Chapter 5 Hierarchical RPCL Indexing

high. The reason is that the distribution of the real data set can usually be
approximated by using Gaussian mixtures. So, its efficiency is often similar

to the efficiency of the clustered data or just a little bit worse.

. Insertion and Deletion:

Unlike the non-hierarchical approach presented in Chapter 4, the RPCL-b-
tree has a hierarchical indexing structure which helps us to perform data
insertion and deletion. From Sections 5.3 and 5.4, we know that a single
data object can be inserted to or deleted from the indexing structure easily
because there is a clear relationship among the internal nodes. Starting from
the root node, we can find the target leaf node without any problem and

then update the indexing structure for data insertion and deletion.

. Choice of Node Size:

We know from the experimental results that the smaller the node size, the
better the efficiency. Therefore, we tend to choose a small node size although
a little bit more indexing time have to spend. However, RPCL is a stochastic
heuristic clustering method and it is computational efficient. It works fine for
clustering a large set of data, but it may not be so efficient for a set with only
a few data objects, say 50. Therefore, we have to choose a little bit larger
node size node size, say 200, in most of the experiments for the RPCL-b-
tree. This may worsen the effectiveness of the retrieval in a small multimedia
database. However, in practice we often use multimedia database to manage
a large number of data objects so that the node size is still relatively small

in this case and it does not lessen the effectiveness of retrieval much.

. Branching Factor:

RPCL-b-tree is a binary tree so its branching factor (the maximum number

of children for a non-leaf node) is 2. Since RPCL clustering can calculate

92

Chapter 5 Hierarchical RPCL Indezing

any number of clusters from a set of data, it is easy to change the binary

tree to a general tree with branching factor more than 2.

8. Limitation:

The RPCL-b-tree works fine for low dimensional data and its efficiency is
relatively high, but its performance is not very good for high dimensional
data. In order to improve the searching performance, techniques that can
reduce dimensionality of the features can be used before indexing. For ex-
ample, we may use KL Transform [17, 24] or Fast Fourier Transform [10]
to calculate the most important features out of a high dimensional feature

vectors and then produce a low dimensional one for indexing.

5.8 A Relationship Formula

Based on all the experimental results, we want to find out the relationship between
the efficiency and the tested parameters. In this section, we try to use a formula

to describe their relationship. Recall the efficiency formula (Equation 5.2),

. # of distance computations for the checked method
ef fictency =1 — > .
size of the data set

We can rewrite is as:
ef ficiency = 1 — % of direct distance computations needed. (5.3)

From Equation 5.3, we find that it is much straight forward to use the percentage
of direct computations needed (% distcomp) in our relationship formula. Once we
obtain % distcomp, we can get the corresponding efficiency by Equation 5.3 easily.
Let M be the node size, S be the size of the data set, D be the dimensionality,
and @ be the number of database objects retrieved. The relationship formula is

defined as:

% distcomp = (ky - M + ks - S+ ks-D+kq-Q)-100% (5.4)

93 -

Chapter 5 Hierarchical RPCL Indexing

ki ks ks k4
Gaussian-100 | 1.216 -10~% -6.6429 -10~® 1.7437 -10~2 2.0251 -10~°
Uniform 9.5601 -10~5 -9.4841 -10~® 3.5376 -10~%2 3.9351 -10~°
Real 6.6159 -10~° -3.3335 -10~* 4.2030 -10~! 1.3369 -10~°

Table 5.26: The values of the factors k;, k2, k3, and k4 for different data distribu-
tions.

where ki, ko, k3, and k4 are real-valued factors and different data distributions
may have different factors. We simply use a linear model here for the first version
of the formula. In fact, more research is needed to find a better model to describe
the relationship of the parameters.

From the results of the Experiments 5-9, we make use of the linear regression
technique to find the values of the factors: ki, k2, k3, and k4 of the three relation-
ship formula for clustered data with 100 Gaussian mixtures, uniform data, and

real data respectively (see also Table 5.26). They are:

% distcompgau—100 = (1.216-10™*- M — 6.6429-107¢. S

+ 1.7437-1072- D + 2.0251-107°-Q) - 100% (5.5)

% distcompun; = (9.5601 -107° - M — 9.4841-107°- S

+ 3.5376-1072- D + 3.9351-107°-Q) - 100% (5.6)

% distcomp,eqr = (6.6159 - 10°°- M — 3.3335-107%-9

+ 4.2030-107'- D + 1.3369-107°-Q) - 100% (5.7)

From the formula, we can not only get an estimated efficiency value by giving
the values of the parameters, but also easily find out the relationships between

each of the tested parameters and the efficiency. Here are these relationships:

e Node Size (M): k; is positive. Therefore, the larger the node size, the

greater the % distcomp and the worse the efficiency.

94

Chapter 5 Hierarchical RPCL Indezing

e Size of Data Set (5): k; is negative. Therefore, the larger the data set,
the less the % distcomp and the better the efficiency.

e Dimensionality (D): ks is positive. Therefore, the higher the dimension-

ality, the greater the % distcomp and the worse the efficiency.

e Number of Database Objects Retrieved (Q): k4 is positive. Therefore,
the more the database objects retrieved, the greater the % distcomp and the

worst the efficiency.

Besides, form Table 5.26, we find that the magnitude of k3 is the largest factor
among the four. It means that k3 is the dominate factor. A little bit change of
the number of dimensions will affect the efficiency much.

Moreover, we can generalize the formula to other indexing methods for compar-
ing_their efficiency. For the indexing methods having corresponding relationship
formula, we can find out which method gives us the best efficiency easily for a
given set of parameters. For example, from the results of Experiment 10, we can
work out the relationship formula of VP-tree for clustered data with 100 Gaussian

mixtures as:

% distcompyp_Gau—100 = (6.2544 -10™° - M + 1.9647-107"- S

+ 3.1051-1072- D + 3.6359-107°- Q) - 100% (5.8)

Using Equations 5.5 and 5.8, we can compare the efficiency of RPCL-b-tree and
VP-tree for the clustered data. Given the following parameters, M = 500, S =
20000, D = 8, and @Q = 20, RPCL-b-tree’s estimated efliciency is 0.8921 whereas
VP’s estimated efficiency is 0.6437. Therefore, we know that RPCL-b-tree is most

likely more efficient than VP-tree for the given set of parameters.

95 -

Chapter 5 Hierarchical RPCL Indexing
5.9 Chapter Summary

In summary, our method has good searching performance in general. The branch-
and-bound algorithm solves the boundary problem and makes nearest-neighbor
search on the RPCL-b-tree more efficient and effective. We have shown that our
method outperforms VP-tree for indexing and retrieval. Moreover, the hierarchical
structure helps us to update the RPCL-b-tree simply. From the experimental
results, we work out a relationship formula for efficiency estimation and efficiency

comparison with other indexing methods.

96

Chapter 6

Conclusion

6.1 Future Works

1. Indexing in Montage:

One of the key issues in Montage (see Section 1.1 for details) is the im-
plementation of a good indexing structure for efficient and accurate image
retrieval of a large amount of images. Since Montage uses image contents
or features for retrieval, traditional indexing methods are not particularly
suitable for the system. Therefore, we plan to implement our RPCL index-
ing method into the system for efficient and accurate content-based indexing

and retrieval.

2. A Hybrid Method for RPCL-b-tree:

We plan to use a hybrid method to build the RPCL-b-tree. In this hybrid
method, we use RPCL to cluster large data sets only. It is because RPCL
is not so efficient for small data set (size < 100). On the other hand, we
use another suitable clustering method for small data sets. As a result, we
can use a smaller node size in the tree and it will increase the efficiency of

retrieval.

97 -

Chapter 6 Conclusion

3. The Relationship Formula:

The relationship formula presented in Section 5.8 is in a linear model cur-
rently. More research is needed to find out a better model for the relationship

formula.

4. A Bottom Up Approach for RPCL Indexing:

Apart from building the indexing structure in a top-down approach, we can
also use RPCL to find out the actual number of natural clusters form the
input feature vector set and then build an indexing structure in a bottom
up fashion. After all the natural clusters located by RPCL, we can merge
the neighbor clusters to form a bigger cluster for its parent level. The
process repeats until the root cluster containing the whole feature vector
set is formed. We will then get the indexing structure for retrieval. This
indexing method seems to be better than RPCL-b-tree because it actually

keeps the natural clusters at the leaf nodes.

6.2 Conclusion

We have used an efficient clustering algorithm Rival Penalized Competitive Learn-
ing (RPCL) to locate natural clusters for content-based indexing and retrieval.
Based on the located clusters, we have presented two approaches to build up in-
dexing structures: Non-hierarchical approach and Hierarchical approach. For non-
hierarchical approach, we have analyzed the performance of our method by using
some experiments and have found that the overall performance of our method for
nearest-neighbor retrieval is better then other tested methods. For hierarchical
approach, we have proposed to build a hierarchical binary tree (RPCL-b-tree) for
retrieval. We also make use of a branch-and-bound algorithm to solve the bound-
ary problem. From the experimental results, it is concluded that: (1) RPCL is a

very fast method to locate natural clusters for indexing, (2) the non-hierarchical

98 -

Chapter 6 Conclusion

RPCL indexing have high recall and precision performance for producing good
approximate retrieval result quickly, and (3) RPCL-b-tree is efficient to produce
100% nearest-neighbor search results and it outperforms VP-tree for indexing and
retrieval. According to the experimental results for the RPCL-b-tree, we also work
out a relationship formula for finding estimated searching efficiency and comparing

the efficiency with other indexing methods.

99 -

Bibliography

[1]

2]

G. W. Adamson and D. Bawden. “Comparison of hierarchical cluster analysis

techniques for automatic classification of chemical structures”. Journal of

Chemical Information and Computer Sciences, 21(4):204-209, 1981.

S. C. Ahalt, A. K. Krishnamurthy, P. Chen, and D.E. Melton. ‘Competitive

learning algorithms for vector quantization”. Neural Networks, 3(3):227-290,

- 1990.

8]

4]

[5]

[6]

[7]

M. R. Anderberg. “Cluster Analysis for Applications”. Academic Press, New
York, 1973.

J. Ashley, R. Barber, M. Flickner, J. Hafner, D. Lee, W. Niblack, and
D. Petkovic. “Automatic and semi-automatic methods for image annota-

tion and retrieval in QBIC”. In Proceedings of Storage and Retrieval for
Image and Video Databases III, volume 2420, pages 24-35, February 1995.

R. Bayer. “Symmetric Binary B-trees: Data Structure and Maintenance

Algorithms”. Acta Informatica, 1(4):290-306, 1972.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. “The R*-tree: an
efficient and robust access method for points and rectangles”. ACM SIGMOD
Record, 19(2):322-331, 1990.

J. L. Bentley. “Multidimensional Binary Search Trees Used for Associative

Searching”. Communications of the ACM, 18(9):509-517, 1975.

100 -

[8] S. Berchtold, D. A. Keim, and H. P. Kriegel. “The X-tree: An Index Structure
for High-Dimensional Data”. In Proceedings on the 22th VLDB Conference,
pages 28-39, 1996.

[9] Tolga Bozkaya and Meral Ozsoyoglu. “Distance-Based Indexing for High-
dimensional Metric Spaces”. SIGMOD Record, 26(2):357-368, June 1997.

[10] E. O. Brigham. “The Fast Fourier Transform”. Prentice Hall, 1974.

[11] M. Bruynooghe. “Large data set clustering methods using the concept of
space contraction”. In COMPSTAT 1978 Proceedings in Computational
Statistics, volume 3, pages 239-245, 1978.

[12] W. A. Burkhard and R. M. Keller. “Some approaches to best-match file
searching”. Communications of the ACM, 16(4):230-236, 1973.

[13] T. C. Chiueh. “Content-Based Image Indexing”. In Proceedings of the 20th
VLDB Conference, pages 582-593, September 1994.

[14] W. W. Chu, L. T. Ieong, R. K. Taira, and C. M. Breant. “A temporal
evolutionary object-oriented data model and its query language for medial
image management”. In Proceedings of 18th VLDB Conference, pages 53-64,
1992.

[15] Wesley W. Chu, Alfonso F. Cardenas, and Ricky K. Taira. “KMeD: A
knowledge-based Multimedia Medical Distributed Database System”. In-
formation Systems, 20(2):75-96, 1995.

[16] D. Comer. “The Ubiquitous B-tree”. ACM Computing Surveys, 11(2):121-
137, June 1979.

[17] R. Duda and P. Hart. “Pattern Classification and Scene Analysis”. Wiley,
New York, 1973.

101 -

18]

[19]

[20]

[21]

22]

Brian S. Everitt. “Cluster Analysis”. Halsted Press, New York, 1993.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic,
and W. Equitz. “Efficient and effective querying by image content”. Journal

of Intelligient Information Systems, 3(3/4):231-262, July 1994.

C. D. Feustel and L. G. Shapiro. “The nearest neighbor problem in an
abstract metric space”. Pattern Recognition Letters, 1(2):125-128, December
1982.

R. A. Finkel and J. L. Bentley. “Quad Trees: A Data Structure for Retrieval
on Composite Keys”. Acta Informatica, 4(1):1-9, 1974.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. “Query

* by image and video content: The QBIC system”. IEEE Computer, 28(9):23-

[23]

[24]

[25]

32, September 1995.

K. Fukunaga and P. M. Narendra. “A branch and bound algorithm for com-
puting K-nearest neighbors”. IEEE Transactions on Computers, 24(7):750~
753, July 1975.

Keinosuke Fukunaga. “Introduction to Statistical Pattern Recognition”. Aca-

demic Press, 2nd edition, 1990.

C. A. Goble, M. H. O’Dochery, P. J. Crowther, M. A. Ireton, C. N. Daskalakis,
J. Oakley, S. Kay, and C. S. Xydeas. “The Manchester Multimedia Informa-
tion System”. Multimedia Systems, Interaction and Applications, 1st Euro-

graphics Workshop, pages 269-282, March 1991.

102 -

[26] C. A. Goble, M. H. O’Dochery, P. J. Crowther, M. A. Ireton, J. Oakley,
and C. S. Xydeas. “The Manchester Multimedia Information Systerﬂ”. Ad-
vances in Database Technology EDBT’92, Third International Conference on
Extending Database Technology, pages 39-55, March 1992.

[27] Y. H. Gong, C. H. Chuan, and X. Y. Guo. “Image Indexing and Retrieval
Based on Color Histograms”. Multimedia Tools and Applications, 2(2):133-
156, March 1996.

[28] A. D. Gordon. “A review of hierarchical classification”. J. Roy. Statist. Soc.,
150:119-137, 1987.

[29] A. D. Gordon. “Hierarchical Classification in Clustering and Classification”.
World Scientific Press, 1992.

[30] W. L. Grosky, R. Jain, and R. Mehrotra. “The Handbook of Multimedia

Information Management”. Prentice-Hall, 1997.

[31] V. N. Gudivada and V. V. Raghavan. “Content-Based Image Retrieval Sys-
tems”. Computer, 28(9):18-22, September 1995.

[32] A. Gupta, T. Weymouth, and R.Jain. “Semantic queries with pictures: The
VIMSYS model”. In Proc. 17th VLDB, pages 69-79, 1991.

[33] A. Guttman. “R-trees: A Dynamic Index Structure for Spatial Searching”.
ACM SIGMOD, 14(2):47-57, June 1984.

[34] S. Haykin. “Neural networks: a comprehensive foundation”. Macmillan, New

York, 1994.

[35] K. Hirata and T. Kato. “Query by visual example - content based image re-
trieval”. In Advances in Database Technology EDBT’92, Third International

Conference on Extending Database Technology, pages 56-71, March 1992.

103 -

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

C. E. Jacobs, A. Finkelstein, and D. H. Salesin. “Fast Multiresolution Image
Querying”. In Proceedings of SIGGAPH 95, pages 277-286, August 1995.

H. V. Jagadish. “A Retrieval Technique for Similar Shapes”. In Proc. of the
ACM SIGMOD Internation Conference on the Management of Data, pages
208-217, June 1991.

B. Kamgar and L. N. Kanal. “An improved branch and bound algorithm
for computing k-nearest neighbors”. Pattern Recognition Letters, 3(1):7-12,
January 1985.

Norio Katayama and Shinichi Satoh. “The SR-tree: an index structure for
high-dimensional nearest neighbor queries”. SIGMOD Record, 26(2):369-380,
June 1997.

T. Kato. “Database architecture for content-based image retrieval”. In SPIE,

volume 1662, pages 112-123, 1992.

I. King, A. Fu, L.W. Chan, and L. Xu. “Montage: An Image Database
for the Hong Kong’s Textile, Fashion, and Clothing Industry”, 1995.
http://www.cse.cuhk.edu.hk/~viplab.

Irwin King and Tak Kan Lau. “A Feature-Based Image Retrieval Database for
the Fashion, Textile, and Clothing Industry in Hong Kong”. In Proceedings
of the 1996 International Symposium on Multimedia Information Processing

(ISMIP’96), 1996.

Irwin King and Tak Kan Lau. “Comparison of Several Partitioning Methods
for Information Retrieval in Image Databases”. In Proceedings of the 1997
International Symposium on Multimedia Information Processing (ISMIP’97),
pages 215-220, 1997.

104 -

http://www.cse.cuhk.edu.hk/%e3%80%9cviplab

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Irwin King and Tak Kan Lau. “Competitive Learning Clustering for Informa-
tion Retrieval in Image Databases”. In Proceedings of the 1997 Internation
Conference on Neural Information Processing (ICONIP’97), pages 906-909,
1997.

Tak Kan Lau and Sui Tak Hung. “Montage: An Image Database for Ef-
fective Digital Image Management”. In Hong Kong International Computer

Conference 1997 (HKICC’97), volume 1, pages 83-88, 1997.

Tak Kan Lau and Irwin King. “Montage: An Image Database for the Fashion,
Textile, and Clothing Industry in Hong Kong”. In Proceedings of the Third
Asian Conference on Computer Vision (ACCV’98), volume 1, pages 410-417,
1998.

Tak Kan Lau and Irwin King. “Performance Analysis of Clustering Algo-
rithms for Information Retrieval in Image Databases”. In Proceedings to
the International Joint Conference on Neural Networks (IJCNN’98), pages
932-937, 1998.

W. Y. Ma and B. S. Manjunath. “Texture-based Pattern Retrieval from
Image Databases”. Multimedia Tools and Applications, 2(1):35-51, January
1996.

J. B. MacQueen. “Some Methods for Classification and Analysis of Multi-
variate Observations”. In Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pages 281-297, 1967.

B. S. Manjunath and W. Y. Ma. “Texture Features for Browsing and Re-
trieval of Image Data”. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(8):837-842, August 1996.

R. Mehrotra and J. E. Gray. “Similar-shape Retrieval in Shape Data Man-
agement”. Computer, 29(9):57-62, September 1995.

105 -

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

B. M. Mehtre, M. S. Kankanhalli, and W. F. Lee. “Shape Measures for
Content-based Image Retrieval - a Comparison”. Information Processing

and Management, 33(3):319-337, May 1997.

S. A. Nene and S. K. Nayar. “A Simple Algorithm for Nearest Neighbor
Search in High Dimensions”. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(9):989-1003, September 1997.

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic,
P. Yanker, C. Faloutsos, and G. Taubin. “The QBIC project: querying images
by content using color, texture, and shape”. In Proceedings of the SPIE - The

International Society for Optical Engineering, volume 1908, pages 173-187,
1993.

H. Nishizawa, T. Obi, M. Yamaguchi, and N. Ohyama. “Hierarchical clus-
tering method for the analysis of large amount of data”. In Proceedings of
the SPIE - The International Society for Optical Engineering, volume 2824,
pages 183-190, 1996.

M. H. O’Dochery, C. N. Daskalakis, P. J. Crowther, C. A. Goble, M. A. Ireton,
J. Oakley, and C. S. Xydeas. “The design and implementation of a multimedia
information system with automatic content retrieval”. Information Services

and Use, 11:345-385, 1991.

V.E. Ogle and M. Stonebraker. “Chabot: Retrieval from a Relational
Database of Images”. Computer, 28(9):40-48, September 1995.

S. Openshaw. “Monothetic divisive algorithms for classifying large data sets”.

COMPSTAT, 4:419-425, 1981.

A. Pentland, R. W. Picard, and S. Sclaroff. “Photobook: Content-Based Ma-
nipulation of Image Databases”. International Journal of Computer Vision,

18(3):223-254, June 1996.

106 -

[60]

[61]

[62]

[63]

[64]

N. Ramesh and I. K. Sethi. “Feature Identification as an Aid to Content-
based Image Retrieval”. In SPIFE, volume 2420, pages 2-11, 1995.

N. Roussopoulos, S. Kelley, and F. Vincent. “Nearest Neighbour Queries”.
ACM SIGMOD, 24(2):71-79, June 1995.

D. E. Rumelhart and D. Zipser. “Feature discovery by competitive learning”.

Cognitive Science, 9:75-112, 1985.

T. Sellis, N. Roussopoulos, and C. Faloutsos. “The R*-tree: a dynamic index
for multidimensional objects”. In Proceedings of the 13th VLDB Conference,
pages 507-518, 1987.

J.R. Smith and S. F. Chang. “VisualSEEk: a fully automated content-based

image query system”. In ACM multimedia - international conference - 1996,

- pages 87-98, November 1996.

[65]

[66]

[67]

[68]

F. Tomita and S. Tsuji. “Computer analysis of visual teztures”. Kluwer

Academic Publishers, Boston, 1990.

L.H. Tung and I. King. “A two-stage framework for polygon retrieval us-
ing minimum circular error bound”. In Proceedings to the 9th International
Conference on Image Analysis and Processing (ICIAP’97), pages 567-574,
1997.

L.H. Tung, I. King, P.F. Fung, and W.S. Lee. “Two-Stage Polygon Repre-
sentation for Efficient Shape Retrieval in Image Databases”. In Proceedings
of the First International Workshop on Image Databases and Multi-Media
Search, pages 146-153, 1996.

D. A. White and R. Jain. “Similarity Indexing with the SS-tree”. In Pro-
ceedings of the 12th International Conference on Data Engineering, pages

516-523, February 1996.

107 -

[69]

[70]

[71]

[72]

J. K. Wu, A. D. Narasimhalu, B. M. Mehtre, C. P. Lam, and Y. P. Gao.
“CORE: A content-based retrieval engine for multimedia information sys-

tems”. ACM Multimedia Systems, 3(1):25-41, February 1995.

L. Xu, A. Krzyzak, and E. Oja. “Rival penalized competitive learning for
clustering analysis, RBF net, and curve detection”. [EEE Transactions on

Neural Networks, 4(4):636-649, July 1993.

P. N. Yianilos. “Data structures and algorithms for nearest neighbor search

in general metric spaces”. In Proc. of the 4th Annual ACM-SIAM Symp. on
Discrete Algorithms, pages 311-321, 1993.

T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: A New Data Clustering
Algorithm and Its Applications”. Data Mining and Knowledge Discovery,

. 1(2):141-182, 1997.

108.

HK Libraries

i

003704077

