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基于两层逻辑的二叉排序决定图的有效最小化 

顾淳 

为香港中文大学哲学硕士学位提交 

摘要 

二叉排序决定图（€«300)是布尔网络的一种有效表示。它在逻辑综合， 

测试和验证这些领域中都得到了广泛的应用。尽管0800有一些非常好的性 

质，它的复杂性严重依赖于其变量顺序。而且我们知道变量排序问题是一个 

co-NP完全问题。大多数现有的0800排序的启发式算法都是基于对多层布尔 
I 

网络的不同游历方法。这些方法不能被直接应用于两层逻辑和未完全指定的逻 

辑表达式。这里我们将介绍一些新的基于对逻辑子表达式共享的启发式算法。 

接着我们将讨论一种有着最优共享的逻辑表达式并提出一种对这种逻辑表达式 

能得到最优结果的算法。通过对大量的实验样本的测试结果表明：我们的结果 

同有着广泛应用的，在UCBerkeley的SIS程序包中实现的，基于布尔网络的扇 

入启发式算法相比获得了超过30%的优化。 
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Abstract 

Ordered Binary Decision Diagrams(OBDD) are efficient representation of 

Boolean networks and are widely applied in the areas of logic synthesis, test 

and verification. Though the OBDDs have some very good features, the com-

plexity depends heavily on the variable order. However the variable ordering 

problem is known to be a co-NP complete problem. Most of the existing OBDD 

ordering heuristics are based on various traversal methods on multi-level Boolean 

network. Such methods can not be applied directly to functions described in two-

level form or to incompletely specified functions. Here we will introduce several 

new heuristics based on sharing of the logic sub-functions. Then we will discuss 

the functions that have an optimal sharing and suggest that one of the algorithms 

can get the optimal solution of this kind of functions. The experiment results 

show that our results achieve an average reduction of over 30% compared with 

the widely used network based fan-in heuristic implemented in the SIS package 

of UC Berkeley on a large number of benchmarks. 
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Chapter 1 

Introduction 

One of the major concerns in logic manipulation is to find an efficient repre-

sentation of Boolean functions. Among the various representations of Boolean 

functions, Binary Decision Diagrams(BDDs) [1], and with a constraint of fixed 

variable ordering, Ordered Binary Decision Diagrams(OBDDs), are the most con-

spicuous ones and have drawn people's attention in the last decade. Since 1986, 

the year when R. Bryant first proposed the OBDD representation of Boolean 

functions, discovered the basic properties of the OBDD, and defined the basic 

operations on the OBDD, the OBDDs have found widely applications in all ar-

eas of the C A D like logic synthesis, formal design verification, and test pattern 

generation. And there are also many other variations of the O B D D which are 

especially suitable for a certain purpose. However the normal OBDD never loses 

its importance and there are many researchers working on this subject. 

The OBDD representation has the advantages that: 

• most commonly encountered functions have a reasonable representation; 

• the time complexity of any single operation on the OBDD is bounded by 

the product of the graph sizes for the functions being operated on; 

• the representation of the OBDD is a canonical form if the variable order is 

given. 
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One of the major problems related to the OBDD representation of Boolean 

functions is the OBDD size minimization problem. That is to find a variable 

order of a given Boolean function such that the OBDD size is minimum. This 

is because that the complexity of the operations to generate and manipulate the 

OBDDs is polynomial with respect to the size of the OBDD. However, for a 

certain Boolean function, the OBDD size of a Boolean function is determined by 

the variable order of the OBDD. And the size of an OBDD can be very sensitive 

to the variable order. For example, for an n bit adder the BDD sizes may range 

from 0{n) to 0 ( 2 ^ ) depending on the chosen order. The OBDD sizes of some 

Boolean functions grow exponentially regardless of the variable order (e.g. integer 

multiplier [6]). Some classes of Boolean functions have linear OBDD sizes in 

some variable orders, but the size will be exponential in some other orders. For 

example, the OBDD size of function / ( x i , . . . , X2n) = {x1^x2){x^^x^)... (x2n-1 + 

X2n) is 2n in variable order Xî  X2, . . . , X2n, but its OBDD size in variable order 

xi , X3, . . . , X2n-i, 2：25 X4, . . . , X2n is greater than T\ To find an optimal OBDD 

variable order that minimizes the OBDD size is a co-NP-hard problem. Otherwise 

if we can find the optimal variable order for any OBDD in polynomial time, we 

will have a tractable algorithm to give an optimal representation for a Boolean 

function and we know that it is impossible because the optimal Boolean function 

representation problem is intractable[14]. Therefore what we can do is to find a 

heuristic ordering algorithm. 

Many ordering heuristics have already been developed. Most of the existing 

OBDD variable ordering heuristics are based on various traversal methods on 

multi-level Boolean network. [7], [12], [13], [24], [16], [18]. Those methods can 

not be applied directly to functions described in the two-level form. Another 

drawbacks of these algorithms are that some of them can not be applied to the 

incomplete specified functions. And seldom have these algorithms explored the 

logic relationship between the OBDD and logic functions and have not utilized 
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the benefit brought out by the OBDD. 

It is noticed that the key factor which influences the size of OBDDs is the 

sharing of nodes, the more sharing the smaller the O B D D size may be. An 

optimum O B D D must fully take the advantage of the sharing of nodes. We 

consider two sharing strategies. One is the maximal cube sharing, which gives 

a sound explanation for the effectiveness to our previous dynamic shortest cube 

first algorithm. Another is sub-function sharing. Using this new strategy, we 

propose a revised dynamic shortest cube first algorithm. 

The comparison of experimental results is commonly used in evaluating the 

effectiveness of ordering heuristics. The experimental results show a great im-

provement on average compared with the widely used FIH algorithm. 

In addition to the experimental comparison view on ordering heuristics, we 

propose a theoretical way to evaluate an ordering heuristic. We say an ordering 

heuristic H is optimal for a class of Boolean functions C, if it can find an optimal 

variable order for each Boolean function in C, where an optimal variable ordering 

is an ordering with minimum size of OBDD of all variable orderings. An ordering 

heuristic is considered to be theoretically better than another one if it is optimal 

for a larger class of Boolean functions with the same computation complexity. The 

difficulty of finding an optimal variable order is due to the hardness in recognizing 

optimal OBDDs. So that we consider classes of Boolean functions whose optimal 

OBDDs can be easily recognized. The first class of Boolean functions considered 

is the thin OBDDs, in which the number of non-terminal nodes is equal to the 

number of supporting variables. The structure and construction of thin OBDDs 

are investigated. It is proved that the class of the thin Boolean functions always 

has an essential prime cover; and an algorithm for essential points retrieval is 

given. The second class consists of Boolean functions that can be expressed by a 

factored form with each variable appearing exactly once. We refer to such Boolean 

functions as thin factored functions. It is proved that the thin factored functions 
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belong to the class of thin Boolean functions and they can be recognized in 

polynomial time with respect to the number of terms in prime cube cover. We use 

these two classes of Boolean functions as the testing classes. The D S C F is proved 

to be optimal for a subclass of thin Boolean functions which can be expressed by 

disjoint form, that is the sum of product (SOP) form with no common variables 

for each different cubes. The revised DSCF is proved to be optimal for thin 

factored functions. 

To improve our work, we have also tried some other methods to gain improve-

ments. On the base of sharing and pattern recognition, I have proposed another 

algorithm based on pattern recognition, match, and construction. This algorithm 

has also gain a fairly good result compared with D S C F algorithm and is greatly 

improved compared with the FIH algorithm. 

The rest of this paper is organized as follows. In chapter 2, we describe some 

of the main concepts and definitions used in this paper. Chapter 3 discusses 

some previous work on OBDD. Chapter 4 gives the idea on the two level logic 

functions and OBDD. Chapter 5 presents the dynamic shortest cube first algo-

rithm. Chapter 6 discusses the properties of thin Boolean functions and thin 

factored functions and gives the revised dynamic shortest cube first algorithm. 

The theoretical analysis of these two algorithms is also given in this chapter. In 

Chapter 7 we will discuss another variable ordering algorithm. And finally, the 

conclusion is given in Chapter 8. 
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Chapter 2 

Definitions 

In Chapter 1, we gave a motivation of the OBDD minimization problem in logic 

synthesis. In this chapter we describe the basic terminologies related to our work. 

We first review some logic synthesis terminologies which we frequently use. 

Let f — f{x1,x2, ...，Xn) be a Boolean function on variable set S = {xi^ X2^ ..，cCn:. 

The literal set of S is the set consisting of all variables and their complements, 

namely, ^1,^1,^2,工'2, ...,$n, ?n. The restriction f\x,=b of f with respect to Xi 二 b 

is defined as f]x^=b{xi,.", Xi^i, x,-+i, . . . , Xn)= 

/(a:i, . . . ,a:i_i,6,a;i+i,. . . ,a:n), where b 二 0 or 1. / k = i and f\x^=o is simply 

denoted by f\x, and f\x'.̂  where we use x'- to denote the complement X{. More 

restrictions can be added to a Boolean function /, /|x,̂ =6i,...,a;,̂ =6fe • The restriction 

of f is also called a cofactor (or sub-function) of f. A variable X{ is a dependent 

variable of f if / k . + /|?+. The dependent set of /，denoted by /(/), is the set 

of all dependent variables of f. 

A minterm of a function is a vertex of the Boolean function. 

A product term (or product) is a formula of one of the following forms: 

• 1； 

• a non-constant literal; 

• a conjunction of non-constant literals where no letter appears more than 

once. 

7 



A sum term (or sum) is a formula of one of the following forms: 

• 0; 

• a non-constant literal; 

• a disjunction of non-constant literals where no letter appears more than 

once. 

For example, x1x'2 is a product term, Xi + X2 is a sum term and x[ is both. 

On the other hand, x ix[ and XiXi are neither product terms nor sum terms. 

A sum of product formula is one of the following: 

• 0; 

• a product term; 

• a disjoint of product terms. 

Likewise, a product of sums formula is one of the following: 

• 1； 

• a sum term; 

• a conjunction of sum terms. 

For instance, f = ^1^2 + ^2^3 + ^1^3 is a sum of product formula for /[15]. An 

impHcant of a function f is a product term p that is included in the function /. 

For instance, xy' is a implicant of ocy' + yz. A prime implicant of f is an implicant 

of f that is not included in any other implicant of f. If a prime implicant includes 

at least one minterm that is not covered by any other prime implicant, then that 

prime implicant is called essential prime implicant. 

A factored form logic function can be defined as following: 

• 0 and 1 are in factored form. 
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• Any variable v and its complement v' are in factored form. 

• For any factored form logic function fi’ fj, {fi + fj) and {fi . fj) are in 

factored form. 

• All the factored from logic function can be generated by applying the former 

3 rules recursively. 

A BDD of Boolean function f is a rooted directed diagram with node set of 

non-terminal nodes and two terminal nodes. The two terminal vertices in the 

diagram are 0 and 1 respectively. Each non-terminal node has an primary input 

variable of the Boolean function and two outgoing edges, called 1-edge and 0-

edge. These two edges point to two nodes: a high son high{v) and a low son 

low{v) respectively. The two terminal nodes, denoted by 1 and 0, have their 

attributes as the Boolean value of 1 and 0, respectively. Each non-terminal node 

is in a path from the root to the terminals, and the input variables of nodes on 

this path are in the ordering of S. Each node v represents a Boolean function, 

denoted by /^, which can be decomposed as fy = ocifhigh[v) + Xifiow{v)^ where Xi is 

the input variable of node v. The root of the graph represents the entire function 

f. The term OBDD size is referred to the number of nodes of an OBDD. 

An Ordered BDD(OBDD) is a BDD whose input variables appear in a fixed 

order in any path of the diagram and no variable will appear more than once in 

a path. A Reduced Ordered BDD(ROBDD) is given after the following two rules 

are applied to an OBDD: 

• Eliminate all the nodes whose two edges point to the same node. 

• Share all the equivalent sub-diagram. 

Since we pay most of our attention to the R O B D D in the class of OBDD, 

without further specification, we will refer to ROBDDs as OBDDs. 
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f\ 
i , ® \ /<i 

0 1 

Figure 2.1: The OBDD of 2̂ 1X2 + X1X3 

Since an OBDD is uniquely determined by the function and variable order, 

the OBDD size of a given Boolean function depends on its variable. Different 

variable orders result in different OBDD sizes. There are nl different variable 

orderings, here n is the number of dependent variables of the given Boolean 

functions. Therefore there must exist an ordering such that the O B D D size in 

this ordering is minimum among all variable orderings. Such an ordering is called 

an optimal ordering of the function. The OBDD size minimization problem is to 

find an optimal ordering for any given Boolean functions. This problem is known 

as a co-NP-hard problem. 

An OBDD is said to be thin if for each variable Xi, there is only one node 

with input variable X{ as attribute. A Boolean function is said to be thin if there 

is an ordering of its dependent variables such that the corresponding OBDD is 

thin. If a thin OBDD contains a path from the root to terminal 1 which goes 

through all non-terminal nodes, then it is called a connected thin OBDD. A 

connected thin Boolean function is a Boolean function which has a connected 

thin OBDD representation. For instance, /1 = Xi + x2 + x3 and /2 = X1X2Xs 

are both connected thin Boolean functions, /3 二 XiX^ + x[x2 is a thin Boolean 

function but not a connected thin function, and /4 = X1X2 + X1X3 + X2X2, is not 
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⑴ （2) (3) ⑷ 

Figure 2.2: (1),(2) / 1 , / 2 are thin connected, (3) /3 is thin but not connected, (4) /4 

is not thin Boolean function. 

a thin Boolean function. Figure 2.2 shows the optimal OBDDs of the above four 

Boolean functions. 

We will study a special class of Boolean functions defined by factored from. A 

factored form on variable set S is said to be a thin factored form if each variable 

appears exactly once in the form. We refer to a Boolean function which can 

be expressed in thin factored form as a thin factored function. For example, 

[x\x2 + x3)x4 + 5̂ is a thin factored form, but (^i + x2)[x'^ + a:3) is not a thin 

factored form. Clearly, a Boolean function which can be expressed by a sum of 

disjoint cube cover [25] is a thin factored function, where a disjoint cube cover 

is a cover in which no two cubes share a common variable. The expansion of 

a factored form is a sum of product generated by distribution operations and 

combining reductions, 
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Chapter 3 

Some Previous Work on OBDD 

3.1 The Work of Bryant 

The research work on OBDD can be traced back to 1950's[19][l]. However, it 

is the originative work of R. E. Bryant[5] that really draws the attention of the 

researchers in last decade. From then on, there are thousands of papers published 

on the topic that relevant to this topic. 

In [5], the author has first given a brief introduction on the logic function 

representation problem. He gave the main drawbacks of the logic representation 

techniques at that time and on the contrary, the advantages of the representation 

of OBDDs. However, the OBDDs have their own set of undesirable characteris-

tics: the size of an OBDD is highly dependent to its variable order. In this paper, 

Bryant gave a very important character of OBDDs: For any Boolean function, 

there is only one OBDD representing it. The proof which is based on induction 

theory has given us the inspiration. 

Besides the theory of OBDD, the author also gave the data structure of the 

OBDDs which is easy to be implemented. Some operations on OBDDs are also 

defined which include: reduction, apply, restriction, composition, satisfy. The 

reduction algorithm transforms an arbitrary function graph into a reduced graph 

denoting the same function. The procedure apply provides the basic method for 

creating the representation of a function according to the operators in a Boolean 
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expression or logic gate network. The restriction algorithm transforms the graph 

representing a function f into one representing the function / |而 = b for speci-

fied values of i and b. The composition algorithm constructs the graph for the 

function obtained by composing two functions. Since an elegant data structure 

of the OBDDs and the algorithms of the operation on them are applied, all the 

operations are in a polynomial complexity. 

However, there still exist some logic functions which are impossible to have 

a polynomial complexity representation by the OBDDs. Bryant proved that for 

the logic function of multiplier, it is impossible to have a polynomial complexity 

representation by the OBDDs. 

Although Bryant's work has given the basic property of the O B D D together 

with the operations. A very important problem has not been solved, i. e. the 

variable ordering problem. 

3.2 Some Variations of the OBDD 

Besides the normal OBDD, there are also some other kinds of OBDD. One of the 

variation of OBDD is the Indexed Binary Decision Diagram (IBDD)[17]. In an 

IBDD, the variables are allowed to repeat systematically along a path. The graph 

can be viewed as been divided into various layers, and for each layer the graph 

behaves like an OBDD. So if IBDD has only one layer, then it will be isomorphic 

to the OBDD. Such representations can be proved to be extremely space efficient. 

People have found that the multiplier which do not have a polynomial complexity 

representation in the OBDD form will have it in the IBDD form. 

However, unlike OBDDs, IBDDs are not a canonical representation. For the 

same function, there are multiple representations even under identical orders. 

And this has brought great inconvenience in the application of IBDDs because 

more sophisticated algorithms are required to compare two IBDDs for equiva-

lence. 
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If we place a further restriction on IBDD that all k-layers of graphs must have 

the same variable order, then the IBDD will become a k O B D D . It is easy to see 

that the IBDD will have a more compacted representation compared with the 

O B D D and inferior to the IBDD. And the time taken to check the satisfiability 

of such an IBDD of size G is bounded by a polynomial of 0{\G\^^~^). 

Another representation for functions which maps Boolean vectors to integer 

values has also been developed. This representation is called Binary Moment 

Diagram(BMD). Instead of using the standard Boolean-Shannon expansion, they 

describe a function f in terms of a variable x using Davio expansion. 

A variation of BMD of a function is the M T B D D that results from applying 

the inverse Reed-Muller transformation to the given function. 

Zero-suppressed BDD(ZBDD) targets for the representation of sets of combinations[21]. 

The ZBDD is gained by applying the following two reduction rules: 

• Eliminate all the nodes whose 1-edge points to the 0-terminal node and use 

the subgraph of the 0-edge. 

• Share all equivalent subgraphs in the same way as for ordinary BDDs. 

Figure 3.1 shows how the ZBDDs represent the sets of combinations. A feature 

of ZBDDs is that the form is independent of the number of inputs as long as the 

sets of combinations are the same. It is very efficient when we manipulate very 

sparse combinations. 

From above description, we can see that most of the variation of the OBDD 

have just loosen some of the restrictions of the OBDDs. However, it carries out 

two effects: 

• It may lead to a more compacted representation which can represent some 

of the functions which can not be represented by the normal OBDD. 

• It may lose the canonicity which is the most important property of OBDDs. 
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(abcd):{1000,0100} 
(abc):{100,010} 

^^Y_^ 1 (abcd):{1000,0100} 

Z * ^ 1 ^ ^ 1 (abc):{|^0^} j 
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Figure 3.1: The OBDD and ZBDD of the function f{abc) = ah'c' + a'hc' and 
f{ahcd) = ah'c'd' + a,bc'd' 

Most of the different variations of OBDD are just the trade-off between the time 

complexity and space complexity. 

3.3 Previous Work on Variable Ordering of OBDD 

3.3.1 The FIH Heuristic 

Although there are many variations of OBDDs. The normal OBDD has never lost 

its importance because of its canonicity. However, the variable ordering problem 

remains unsolved and we know that it is a co-NP-complete problem. 

The first very important variable ordering algorithm is given by Sharad Malik 

etc. in 1988[20]. The famous logic synthesis tool, SIS, has applied this algorithm 

to give the variable order for the construction of the OBDDs. Until nowadays, 

people always compare their variable ordering result with this algorithm. 

The algorithm is based on the observation that the multi-level Boolean net-

work can be treated as the combination of two-level Boolean network with the 

inputs as the primary inputs of the original network and some intermediate nodes. 
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The intermediate nodes are the outputs of some Boolean network of last level and 

the inputs of some Boolean network of the next level. For each node in a logic 

network, the inputs of it and the operation of that node are the information 

which are encoded into it. From the above observation, we can see that there is 

a similarity in the functions of intermediate nodes in a multi-level network and 

the vertices in a BDD. Both of them encode information about variables that is 

needed in subsequent levels. 

For the convenience of description on the algorithm, some notations are in-

troduced. The transitive fanin DAG{TFl DAG), rjn of a node n in the network 

?7, consists of n, nodes that are transitive fanins of n and the edges between these 

nodes. The level of a primary output node is 0. For any other node, the level is 

given by: 

level{rii) = mcix(ieveI(nj)) + 1, j 

rij is a fanout of rij 

For a set of nodes S which does not fan out to any level less than 1 and a 

node 7ii fans out only to levels less than 1. Placing rii in the order after all the 

nodes in S will be a good choice. So the ordering of the variables is just a process 

that orders the variables for each TFI DAG and concatenates these orders. The 

idea of the level heuristic was extended in visiting the T F I DAGs in order of 

decreasing depth. And the depth of a TFI DAG is the maximum level of any of 

its nodes. This heuristic is termed the fanin heuristic(FIH). 

3.3.2 The Dynamic Variable Ordering 

Though the FIH algorithm has given a significant improvement over random 

variable ordering, people are not satisfied with its performance: it is impossible 

to form the OBDDs of some large circuits. 

In the process of the FIH algorithm, the position of each variable is determined 

when it has been picked out once. For a Boolean function, after the FIH algorithm 
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is applied, the variable order will be determined, the O B D D is generated and 

won't be changed after then. Even after some operations have been applied to 

the OBDDs, the variable order of the original O B D D is still maintained. So we 

say that the algorithm is not dynamic. 

The dynamic variable ordering algorithms are quite different. The position of 

a variable is not fixed before the ordering is finished. To gain improvement, some 

methods such as the genetic algorithm and simulated annealing are also applied 

to adjust the variable order. Sometimes these algorithms are applied until there 

is no further improvement. 

In the paper of [24], Rudell suggested a dynamic variable ordering algorithm. 

After the variable order is given randomly or by another heuristic, the variables 

are swapped with the neighbor variables. It has been found that swapping the 

order of two adjacent variables in an OBDD affects only the D A G nodes at the 

two levels; all other nodes remain unchanged. This property brings convenience 

in the implementation of the dynamic variable ordering. In this paper, Rudell 

has given two algorithms. One is the Window Permutation Algorithm which 

exhaustively search all kl permutations of the k adjacent variables. Another one 

is the Sifting Algorithm which try to find the optimum position for each variable 

when it assumes all other variables remaining fixed. It is reported that the Sifting 

Algorithm has a better performance than the Window Permutation Algorithm. 

The dynamic variable ordering algorithm suggested by Rudell allow the OBDD 

package determine and maintain the variable order by itself. The variable order 

is changed automatically by the OBDD package, transparently to the user as 

operations are performed. In the implementation of Rudell, he does the dynamic 

variable swapping in the garbage collection stage. 

It is reported that if the maximum DAG size is set to 100,000 nodes, it is 

not possible to form the OBDD's for 11 of the 35 largest multiple-level circuits 

by the FIH algorithm. However, the Sift Algorithm only fails two of them. But 
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the drawback of dynamic variable ordering is that the runtime for the O B D D 

operations increases significantly. 

3.3.3 The Interleaving method 

The interleaving method mainly targets to the multiple output circuits. In the 

variable ordering algorithms before, people mainly discussed on the single output 

logic functions. But we know that normally, the logic functions are multiple 

output ones. The previous algorithm solved this matter by order the variables 

of some function first and then sort the variables of other functions. The new 

variables are appended to the previous variable list. Such algorithms may not be 

so suitable for the multiple output functions. 

In [13], a variable ordering algorithm which is based on the FIH algorithm is 

suggested to attack the multiple output functions. In this algorithm, all nodes in 

the circuit are ordered and each node is basically ordered next to the previously 

ordered gate. When a gate which is visited from an output with higher priority 

is revisited, the insertion point of the newly ordered node for ordering is modified 

to be next to the revisited gate. 

However, the interleaving method also has its own drawback. In some cases, it 

is unreasonable to insert some variables before other ones. From the experiment 

results we can see that the interleaving algorithm and the FIH algorithm get the 

same results in most of the benchmarks. And both of them lead to smaller OBDD 

in some benchmarks. 
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Chapter 4 

Two Level Logic Function and 
OBDD 

Most of the previous work on the variable ordering problem is focused on the 

Boolean network. But the suggested algorithms have the disadvantages that 

they can not be applied to the incompletely specified logic functions. And most 

of them have not deeply explored the logic relationship between the OBDD and 

the logic function. We find that it is easier to study the two-level logic function. 

So most of our work is based on two-level logic functions. 

We give our heuristics based on the study of the two-level logic functions. 

For the variable ordering problem, people have the following principles after the 

observation of many OBDDs: 

1. Sharing. 

Sharing is the most important factor that influences the size of OBDD. A 

good OBDD must fully take the advantage of the sharing of nodes. However 

we can not say that an OBDD with the largest number of sharing nodes will 

definitely lead to a small OBDD because it depends on the two subgraph of the 

OBDD also. If the variable order make the number of both shared nodes and the 

non-shared nodes great, the variable order may not be very successful. 

2. The variables that affect the whole function greatly must be put in the top 

of the OBDD. 
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Here the most important variable means the variable that influences the rep-

resentation of the Shannon expansion most. This is because that the most impor-

tant variables may determine the full representation of the OBDD. For example, 

in the function f = ab + c, c is the most important variable because if c 二 1, then 

we do not need to know the value of any other variable. In this case, there is no 

nonterminal node fan out from the 1-edge of the node with variable c. But for 

any other variable as a or b, there is no such advantage, not any assignment of 

the variable a or b alone can determine the value of the function. Normally, such 

variables have the largest number of appearance in the cubes of the logic function 

or appear in the shortest cubes. The shortest cubes are the cubes which cover the 

largest number of minterms and the variables in the shortest cubes should exist 

in the largest number of minterms. The choosing of such variables can obviously 

deduce the complexity of the sub-functions and their O B D D representations. For 

example, for a 3-8 selector which has three control inputs and eight data in puts, 

we can see that the variables who stand for the control inputs must be more 

important than the variables that stand for the data inputs because the control 

inputs will determine the whole function that the selector performs. And we will 

see that for such a function, the OBDD with the control variables on top is much 

simpler than that with input variables on top. 

3. The variables which have closer relationship must be near in the ordering 

of the variables. 

A group of variables which have the closer relationship means a group of 

variables which belong to the same sum term or product term. For the Boolean 

function and a certain assignment of the variables, such a sum term or product 

term may be enough to determine if the function is 0 or 1. So it is important 

to group the variables in the same sum term or product term to be near in the 

order and a path will lead to the two terminal nodes 0 or 1 in an earlier stage 

and no further offspring is needed. Otherwise each path will generate 2 offspring 
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until very late and thus a very big OBDD will be built. 

From the above discussion, we know that these principles have the problems 

of their own: 

1. The above principles are ambiguous. For a certain function, it is very hard 

to say which variable is the most important one. For example, a variable which 

has the largest number of appearances may not be the variable which appears in 

the shortest cube. 

2. Sometimes the principles are mutually conflicting to each other. For ex-

ample, for the function of f 二 ac + ad + bc + bd, principle 3 asks for a variable 

order that place a and b close to c and d respectively. But there is no way to 

implement it without violating the rules. 

3. People now are still not quite clear about how to make the OBDD share 

more. Unlike the Binary Decision Tree, the OBDD has a compact representation 

so the representation of the same sub-function may be quite different. So it 

is very hard to say how two functions can share some logic sub-function. To 

make the two functions share more, it is essential to find the sub-function which 

appears in both two functions. The complexity will depend on the complexity of 

determining if two functions are unique. For a Binary Decision Tree but not a 

ROBDD, things are already not easy because the size of the Binary Decision Tree 

will be too large. However, compared with the OBDD, the Binary Decision Tree 

are a bit easier to study because the same cube will have the same representation, 

i.e. a path lead to 1 with all literals appear in that path just as appear in the 

cube. For an OBDD, another problem is that there exists sharing between the 

sub-diagrams so that even for the same cube, there is no unique representation. 

4. That principles are not ready to be applied to the multi-output functions. 

Here we will treat the ordering of the OBDD as a sequence of choosing the 

variables one by one. Suppose the number of function f is n[f). Then we have 

23 



the following equation: 

n { f ) = n { Q + n { f ^ ) - n { f ^ n f ^ ) (4.1) 

where n(/^) is the number of nodes in function f^, n{f^) is the number of nodes 

in function /^, n{fx 门 /^) is the number of nodes in the sharing of sub-diagrams 

of fx and /:. So for a function and the set of variable V , we have the following 

rules to choose the variables and generate a good OBDD. 

1. f^ should be simple, i. e. n{fx) should be as small as possible. 

2. / : should be simple and n{fx) should be as small as possible. 

3. The sharing of the OBDD representation of /^ and / ; should be as large 

as possible. 

4. The picking of one variable should make it easy to find a new variable that 

is the suitable for both of the two functions /^ and /;. 

Our principles have the advantages that they are easy to follow. Though we 

can not know the variable order of the sub-function before the variable of the 

current function is picked out, and thus we can not know the size of the sub-

function before any variable is picked out. The complexity of the subfunction 

can still be estimated if an idea of variable ordering is given. However, it is easy 

to define the distance between two cube and therefore the distance between two 

functions. In [4], the distance of two cubes are defined as the number of variable 

with complement appearance in the two cubes. 
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Chapter 5 

DSCF Algorithm 

For each logic function f(xi...xn), the Shannon expansion of it is f = xf^ + x'fx> 

which can be treated as the partition of its minterms into a {n — l)-dimensional 

Boolean space by the variable x. To follow the principles, we can have the 

following strategy: 

Try to make the partition so that all the minterms are in one half-space. The 

consideration of this strategy is that: since most of the minterms are in one half-

space, the minterm m, which is in the half-space with less number of minterms 

will have a great chance that it can be absorbed by the implicant of the half-space 

with more minterms. Suppose m = xc, where x is the partition variable and c is 

the implicant whose restriction on x is m. It will be quite possible that there is 

an implicant of m' = x'a^ where x' is the complement of x and a is the implicant 

with c C a. Then 

, / f c + x'a, ifc C a, xc + X a = < .„ 
1^ a = c, iic = a, 

If minterms in the half-space with less number of minterms are not covered in 

the other half-space, since the number of them is not large, there is a possibility 

that it will be in a very simple form. And a very important advantage of this 

strategy is that since we try to make the partition with most of the minterms in 

one half-space, we may assume that the number of minterms in the half-space 

with less number of minterms is very small. So after the first variable is chosen, 
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we can pay all our attention to the half-space with more minterms and need 

not consider the one with less minterms and by this way, the fourth principle is 

also obeyed. However, this strategy has the problem of its own. For two level 

logic minimization, it is very difficult to calculate the number of minterms in 

the half-space because the cubes may intersect with each other and we can not 

have a polynomial algorithm to check the overlap. So an approximation of this 

strategy is to make sure that the largest cube is in one half-space and no any of its 

minterms are in the other half-space. Thus we have the following algorithm:[25 

DSCF algorithm. 

1. Express the function in the optimal pattern cover form. 

2. Sort the patterns according to their lengths. 

3. Pick the next variable to be added to the ordered sequence from the set of the 
shortest patterns. In case of a tie, apply one of the following strategies: 

v l : The variable which appears in the largest number of unprocessed yet 

patterns, i. e. the most globally binate variable of shortest patterns 

is picked, if tie, just pick the first one. 

v2: The variable which appears in the largest number of these shortest 

patterns is picked, if tie, check the next longer pattern list until the 

tie is broken. 

4. After a variable has been picked, delete this variable (including its comple-

ment) from all patterns. 

5. Back to 2 until all variables are picked. 

The algorithm has a very low complexity. Suppose the number of cubes is m and 

the number of variables is n. To choose the shortest cube will have the complexity 

of 0{m). The complexity of choosing the variable that has the largest number 
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Figure 5.1: The OBDD and K-map of ad + a'hcd' 

of appearance will have the complexity of 0{mn). Since there are n variables, so 

the total complexity is 0{mn^). 

But we notice that several approximation take place in this algorithm and 

this make it inferior in several cases. 

For example, we assume that the minterms in the half-space with less minterms 

have the chance to be covered by the half space with more minterms and if it can 

not be covered, it may have a very simple representation. But it is not usually 

the case especially in a logic function with very few number of variables. We can 

illustrate it in the Figure 5. For the function f = ad + a'bcd', From the figure we 

can see that though the minor half-space has only one minterm. It takes 2/3 of 

the total number of nodes in the OBDD. 

Secondly, if the minterms are not so easily to be partitioned into two half with 

great difference of the number of minterms, this algorithm will lead to a very bad 

result. Let's look at the function of f = a © b © c � d, the minterms of them are 

deployed averagely in the whole Boolean space and thus the result of the OBDD 

given by us is still poor. However no other order can achieve a better OBDD 

here. 

Thirdly, even for some logic function whose minterms are not deployed aver-
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ab ab 
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Figure 5.3: ( l)The K-map of (a + h){c^d) after the variables a, c are picked out, 
(2) The K-map of (a + 6)(c + d) after the variables a, b are picked out. 
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Figure 5.4: ( l)K-map of ad + a'bc, if the first variable is d, (2)K-map of ad + a'hc' 
if the first variable is a. 

agely in the Boolean space but is difficult to be partitioned into good shape, the 

algorithm also can not get good result. The worst case of this kind is the function 

f = {a + b){c + d). From the K-map we can see it. In Figure 5 we can see that 

the first two variables to be picked out should be a and b, but our algorithm can 

only get the variables of a and c. 

Another problem is that the algorithm is not possible to control the integration 

of the cubes. The reason is that the algorithm is lack of the information to control 

the integration of the minterms. For example, for the function f = ad + a'bc', the 

optimal variable order is a, d, b, c. From the K-map, it is easy to see that though 

both the distances between the two partition of minterms is 1 and the cube of 

fa is more integrated than that of fd. But because the algorithm is lack of such 

information, it may only get the result of d, a, b, c. 

Another view point of this algorithm is to treat the OBDD as a recognizer 

of certain patterns. Here the pattern is defined as a finite set composed of the 

literals with an attribute 0 or 1 assigned to it. Note that the concept of pattern 

is similar to that of the implicant. The recognizer is a 3-tuple(G', S^ A) where G 

is a directed acyclic graph, S is a set of legal input patterns on the alphabet A. 

29 



G has the following properties: 

a) each non-terminal node has a variable assigned to it and is able to recognize 

some binary property of it, for examples polarity; 

b) each leaf node has either an attribute l(accept) or an attribute 0 (reject); 

c) each non-terminal node has two out-going edges, one of which has a value 

1 for a true value of the node variable and the other has a value 0 for a comple-

mented value; 

d) for each pattern a in S there exists a directed path from a root of G to a 

leaf t of G such that if the edge attributes are interpreted as polarity modifiers 

of it's parent nodes then the pattern determined by that path has a non empty 

intersection with the pattern a. 

A pattern a is accepted by the recognizer if there exists at least one path 

in G originating at root and terminating at 1 leaf node and which has a non 

empty intersection with the pattern a. A string is rejected if there exists at least 

one path from a root in G which terminates at a 0 leaf node and has a non-

empty intersection with a. So an accepted pattern is an implicant of the function 

whose representation the OBDD is, otherwise is an implicant of the complement 

function. 

It is easy to see that for any OBDD of a function f and any essential primep of 

/, there exists at least one 1-path implying p in which all literals of p are present. 

And for any function f , every cube of it can be recognized by any OBDD of it. So 

to find an optimal variable ordering minimizing the size of an OBDD is similar to 

the problem of finding an optimal input ordering for a pattern recognizer which 

would lead to an implementation with minimum number of internal nodes. We 

will use the name recognizer and OBDD interchangeably. 

We define a spatial entropy of a pattern as the number of minterms that 

can imply it which is the maximal possible logical entropy of any OBDD w.r. 

t this pattern. The shorter a pattern is the higher its spatial entropy is. We 
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suspect that a pattern of higher spatial entropy has a larger effect in enlarging the 

logical entropy of its recognizing OBDD. Therefore the shorter patterns should 

be recognized with higher priority. Another observation is that grouping the 

supporting variables of a pattern in the ordering has a direct effect in reducing 

the corresponding OBDD size. However, we know that this observation can only 

apply for some instances. So in the algorithm, we should try to pick the variable 

in the same cube of the last variable already been picked out. From the algorithm, 

we know that it is really the case. Suppose the variable that has already been 

picked out is not the sole variable in the cube, than from the algorithm we know 

that cube is the shortest cube before the variable is picked out. And after the 

variable is picked out, all the same variable is deleted from the cubes and after 

it, all the length of the cubes should be decreased by one or zero. The length of 

the shortest cube will be definitely decreased by 1 and then it will still be the 

shortest cube. So the next variable to be chosen must be within the variables 

inside the shortest cube and this process goes on until all variables in the same 

cube is picked out. 

Another interpretation of this heuristic is that we can consider each pattern 

as a certain job to be processed. A known queuing principle is that shorter jobs 

should be completed first to minimize the average jobs queuing time. Therefore 

scheduling shorter patterns to be "recognized" earlier would reduce the aver-

age "recognizing length" of all patterns and reduce the number of OBDD nodes 

needed to encode this process. 

To further study the Boolean functions and their OBDDs, we have also studied 

the relationship between the OBDD and essential prime implicants. We try to 

improve the performance of the DSCF algorithm by applying it on the EPI's 

cover. However, the result can not make people satisfied and the details are 

listed in the appendix. 
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Chapter 6 

Thin Boolean Function 

Thin OBDDs and thin Boolean functions have many good properties. First of all, 

a thin O B D D is an optimal OBDD. This is because each dependent variable of a 

Boolean function must appear as an input variable of some node in the OBDD, 

so that for each variable there is at least one node attributed to this variable. 

The thin OBDD has just one node for each dependent variable, therefore it is an 

OBDD with minimum number of nodes. [26 

6.1 The Structure and Properties of thin Boolean 
functions 

In this section, we first study the structure and construction of thin OBDDs, 

then give an estimation of non-isomorphic thin OBDDs. Secondly, we study the 

cube cover properties of thin Boolean functions, and thirdly, the properties of 

thin factored functions. 

6.1.1 The construction of Thin OBDDs 

For convenience, we regard non-terminal nodes of an OBDD with the same input 

variable attribute X{ as at level i, and assume that the levels 1 , 2 , . . . , n are num-

bered from bottom to top. Therefore, a thin OBDD is an OBDD with each level 

containing only one node. When considering thin OBDDs, we simply denote a 
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node with input variable Xi by Xi, and {xi) the represented Boolean function at 

node X{. 

Given a thin OBDD of n non-terminal nodes, we delete the root, which results 

in a digraph containing at least one node without incoming arcs. We then delete 

one of such nodes and the resulting digraph will again contain at least one node 

without incoming arcs. Repeating this process n times, we will finally obtain 

the terminal node 1 and 0. The original OBDD can be constructed backward. 

From this construction method, we obtain an algorithm for generating all non-

isomorphic thin OBDDs with n variables. 

Algorithm 1 . Generate thin O B D D 

0. Let 1 and 0 be the starting two terminal nodes, and Go = ({1, 0}, 0) . 

1. Add node Xi to Go. Let xi point to two different nodes; label one of the new 

arcs 1 and the other 0. The edge-labeled digraph obtained is denoted by 

^ i . 

2 . If k = n, stop. Output G = Gk. Otherwise goto step 3. 

3. Add Xk^ri to Gk' If k < n/2 , or k > n|2 and the number of 2-nodes (the 

node with no incoming arc) of Gk is less than n — k, then let Xk+i point 

to any two different nodes of Gk- If k > n/2 and the number of 2-nodes is 

equal to n — k, then let at least one edge of Xk+i point to a 2-nodes of Gk. 

Otherwise, let x̂ _|_i point to two different 2-nodes of Gk. Label one of the 

new arcs 1 and the other 0. Let the new edge-labeled digraph obtained be 

Gk+i. Go to step 2. 

Figure 6.1 shows an example of the construction of a thin OBDD with six vari-

ables. From Algorithm 1, an recursive formula for the number of non-isomorphic 

thin OBDDs can be obtained. We consider the edge-labeled digraphs generated 

in the middle of Algorithm 1 containing m non-terminal nodes, of which h are 
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Figure 6.1: (1)-(6): the construction step of a thin OBDD. 
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2-nodes. Such a digraph is called an (m, /i)-digraph. Let T{m,h) denote the 

number of all non-isomorphic (m, /i)-digraphs. Since an (m, /i)-digraph can be 

obtained (1) from an (m — l,h - l)-digraph by adding a 2-node pointing to two 

non-2-nodes, (2) from an (m - 1, /i)-digraph by adding a 2-node pointing to a 

2-node and a non-2-node, or (3) from an (m - l,h + l)-digraph by adding a 

2-node pointing to two 2-nodes, the following recursive equation holds: 

T{m,h) = (m - h + 2)(m - h + l)T(m - l,h - 1) 

+2/i(m — h + l)T{m - l,h) + h{h + l ) T ( m - 1，h + 1) (6.1) 

The initial values are T(m, 0) 二 0，T(1,1) 二 2, and T(m, h) = 0 when m < h. 

Using the iteration equation 6.1，we can compute the number of non-isomorphic 

thin OBDDs of n non-terminal nodes by 

r ( n , 1) = 2nT{n - 1 , 1 ) + 2T{n - 1，2) (6.2) 

For example, T(2 ,1 ) = 2 x 2 T ( l , l ) + 2 T ( l , 2 ) = 4 T ( 1 , 1 ) - 8 , T(3,1) = 6T(2,1) + 

2T(2,2) = 6 X 8 + 2 x 2T(1 , 1 ) = 48 + 8 = 56, T(4,1) = 8T(3,1) + 2T(3,2) 二 

464 + 2 X (6T(3,1) + 8T(2,2)) = 464 + 2 x (6 x 56 + 8 x 4) = 1200. Then we can 

get an estimation of T(n, 1). 

Theorem 1 

2"n! < T(n, 1) < 2"' 

Proof. We first prove T(m, h) < 2™̂  by induction on m. It is clearly true when 

m = 2. Assume that it is true when m < k. Then for m = k > 3, 

T{m,h) = (m - h + 2)(m - h + l)T{m - 1, h 1) + 2h{m - h + l)T{m 1, h) 

+/i(/i + l ) T ( m - l , / i + l ) 

< (m h + 2)(m — h + 1)2(^-1)2 + 2h{m h + l)2("̂ —i)2 

+"(/z + l)2—-i)2 

=((m — h + 2)(m h + 1) + 2h{m h + 1) + h{h + 1))2(爪—1)2 
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=(m2 + 3m + 2)2(^-i)2 

< (3m2)2(^-i)2 
~ = 3 m 2 2 ( ^ _ i ) 2 = 2 ( ^ - i ) 2 + i o g 2 3 w 2 

_ 2 ( ^ - l ) 2 + 〜 2 3 + 2 l o g 2 m 

< 2m̂ 4-(2log2 m-2m+2.55) 

_ 2^^ 2^ ^°^2 m-2m+2.55 

< 2讯' 

Next we prove T(n, 1) < 2̂ ^ by induction on n. It is clearly true when n = 2, 3. 

Assume that it is true when n < k, and prove the truth for n = k > 3. Since 

T(m,h) < 2^\ then T ( m , 2 ) < 2^'. By (6.2), we have 

T(n, 1) = 2nT(n — 1，1) + 2T(n — 1, 2) <。("-丄尸+�< 2^' 

On the other hand, T(n, 1) = 2nT(n 一 1 , 1 ) + 2T(n - 1, 2) > 2nT(n - 1 , 1 ) > 

...> 2^n!. I 

From Theorem 1, we know that only a small amount of Boolean functions 

which are thin Boolean functions. To construct all non-isomorphic connected 

thin OBDDs, we only need to change the step 3 of Algorithm 1 to: 

Step 3. Add x^+i to Gk. Let cck+i point to one 2-node and another arbitrary 

node. Label one of the new arcs 1 and the other 0. Let the new edge-labeled 

directed graph obtained be Gk+i. Go to step 2. 

It is clear that the number of non-isomorphic connected thin OBDDs with n 

non-terminal nodes is equal to 2^nl. 
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6.1.2 Properties of Thin Boolean Functions 

Thin Boolean functions are defined by the characterization of OBDD. We will give 

some properties of cube cover form for thin Boolean functions. These properties 

provide conditions for optimal variable ordering heuristics of Boolean functions. 

Theorem 2 For any support variable Xi of a Boolean function /(x1,x2, . . . , Xn) 

which has an EPI cover, the cofactors, f^^, f“，still have an EPI cover. 

Proof. 

First, we can construct the cube p' of /a；, as following: 

For any p of f , 

if Xi appears in p, then we have p' = p^-,px, is the cube with Xi deleted; 

if x'- appears in p, we discard p; 

if Xi do not appears in p, we just have p' = p. 

Obviously, the p's of f^^ are still prime implicants of the Boolean function 

/ (x i , X2,..., cci_i, Xi^i, ...，Xn) over the Boolean space B{xi^ X2, ...，cci_i, X{^i,..., Xn)-

Since the p' is in /̂；., x'p' is not a prime implicant of f{xi, X2,..., Xn)- Sup-

pose the p' is not a prime implicant of f{xi, X2^ ...，x^_i, X{+i,..., Xn). 

if there exists a minterm m G p' and m ^ f , then Xim and m will not be 

a prime implicant of f { x i , x2,..., X{-i); 

if there exists another prime implicant m' covers the m in the function 

f(Xi, X2,..., Xi-i, x^4-i,..., Xn) over the Boolean space B(xi, x2,..., x^-i, x -̂+i,..., Xn), 

then ccim/ and m' will also cover Xim and m. And neither of them can 

be the prime implicant of /(3^1,¾ ..., â i-i)； 

It is also easy to see that the set of p's is a proper cover of /̂ ,̂ . 
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For an essential point m of a prime ^' of f^�Xi must appear in p. Consider m&, 

and m% must be a minterm of f^^. Suppose there exists another p2 + p 

cover nix" then in f , Xip2 or p2 must cover m, so m is not an essential 

point. The assumption is not true and there is no other prime covers m& 

and m^. is also an essential point. So we can say that any p of f^^ is still 

an EPI and f “ still has an EPI cover. For the same reason, /二 also has an 

EPI cover. The proof is completed. 

I 

Lemma 1 The cofactors of a thin Boolean function are also thin Boolean func-

tions. 

Proof. Suppose that an OBDD of function f is given and Xi is a variable of 

/. Then the OBDD of /\^. can be obtained from the O B D D of f by following 

three operations: a) delete all edges with attribute 0 and out of nodes with input 

variable Xi, b) conduct all edges that points to the node with the input variable 

Xi to its high son , c) do the reduction. Clearly, above operations will not increase 

the number of nodes in each level. Therefore when the original OBDD is a thin 

OBDD, then the OBDD obtained from above operations is still a thin OBDD. 

This implies that the cofactors of thin Boolean functions are also thin Boolean 

functions. I 

Lemma 2 A Boolean function is a thin Boolean function if and only if its com-

plement is a thin Boolean function. 

Proof. The OBDD of f', the complement of / , can be obtained from the OBDD 

of f by exchanging the terminal nodes 1 and 0. Therefore, if f has a thin OBDD 

representation, then f has a thin OBDD representation and f' is a thin Boolean 

function. I 
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Lemma 3 The sum, product and composition of thin Boolean functions on dis-

joint sets of variables are still thin Boolean functions. 

Proof. Let Di and D2 be the thin OBDDs of variable disjoint thin Boolean 

functions /1 and /2, respectively. 

The OBDD of /1 + /2 can be obtained in the following way. Change the arcs 

pointing to node 1 of Di into arcs pointing to node 1 of D2, and arcs pointing 

to 0 of Di into arcs pointing to the root of 7¾. Clearly, the O B D D obtained is a 

thin OBDD and the root of Di represents the function /1 + /2, so that /1 + /2 is a 

thin Boolean function. (Figure 6.2 shows an example of the sum of two variable 

disjoint thin OBDDs.) 

By the above result and Lemma 2, we know that /1/2 : {f[ + f^Y is a thin 

Boolean function. 

Let Xi be a variable of /1. Replace Xi by /2, we get a composition of /1 and /2, 

denoted by f\x^=f2' We show that /k=/2 is also a thin Boolean function. Since 

Di is a thin OBDD of j\, Di has a node v with input variable X{ as attribute. 

Replace node v by 2¾ with all incoming arcs of Xi pointing to the root of 7¾, all 

arcs pointing to 1 of 7¾ now pointing to the high son of v, and all arcs pointing 

to 0 of D2 now pointing to the low son of v. The OBDD obtained is a thin OBDD 

with root representing /k=/2. • 

From the proof of Lemma 3, we obtain following theorem. 

Theorem 3 ([25]) For afunction f which is expressed by a sum of disjoint cubes 

cover, any OBDD ordering with variables of the same cube grouped continuously 

is an optimal variable ordering. 

Theorem 4 Each thin Boolean function has an essential prime cover. 

Proof. Let G be a thin OBDD of thin Boolean function f{x1^X2,..., x^) with 

the optimal variable order sequence [xn： ^n-i^ • • •, ^i]- Then each node in G 
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f= fl +f2 

- ^ E^ ^\ 

r r i 
I "T] r^ 

Figure 6.2: The composition of two variable disjoint thin Boolean functions. 

,Xi^ corresponds to a Boolean function which is also a thin Boolean function 

according to Lemma 1. Use the method given in [23] to construct a prime cover 

for (a:̂ ), i = 1 , 2 , . . . , n from bottom to top. We will prove that the prime cover 

is also an essential prime cover by induction on i. 

Suppose that we have constructed prime covers C{xi) of {xi), i = 1，..., k — 1. 

Let Xh = high{xk), xi — low{xk)- We can construct the prime cover C { x i ) for 

[xk) by the following algorithm. 

Algorithm 2 : Compute a prime cover by OBDD 

0. Let C 二 0 , Ch = C{xh), Ci = C{xi). 

1. If Ch = 0,Ci 二 0 , stop. Output C{xk) 二 C. Otherwise, if Ch + 0 , go to 

step 2; otherwise C\ + 0 , go to step 2. 

2 . Choose any cube cf G Ch' If ĉ  is contained in some cube of C(x;), then let 

C 二 CU{c”，C^A = Ch\{c^}. Otherwise let C = C U { x , c f > , C ; , = Ch\{c^} 
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. G o to step 1. 

3. Choose any cube ĉ - G Ci. If c] is contained in some cube of C{xh), then let 

C = C U { 4 > , Ci = Ci \ {4>. Otherwise let C 二 C U { ^ ^ } , Ci = Ci \ {^}. 

Go to step 1. 

By the theorem in [23], we know that the output C(xk) of Algorithm 2 is a 

prime cover of (xk). Let C^(xi) denote the set of primes of (x^) which are not 

in C(xi) , and F(x i ) the set of all primes of (x^). Then F ( x , ) = C(x^) U C'(x^). 

Clearly, C '(1) = 0,C ' (O) = 0 . 

Property 1 There is at least one cube in C{xi) containing literal Xi. If the 

maximum index of literals of cube c G C{xi) is j，then c is also a cube in C{xj). 

We prove the first statement by induction on i. It is clearly true when i — 0,1. 

Suppose that it is true for i < k, we will prove it is true for i = k. Let Xh 二 

high{xk), xi = low{xk), and without loss of generality, assume that h > 1. Then 

by the induction hypothesis, there exists a cube c G C{xh) such that c contains 

literal cch. No cube of C(xi) contains literal Xh, so that c is not contained in any 

cube of C(xi), XkC is a cube in C(xk) by Algorithm 2. 

Suppose that the maximum index of literals of cube c G C(xi) is j. Then 

j < i. It is clearly true when j — i. Suppose j < z, since c does not contain 

literal Xi^ c must be a cube of either C{high{xi)) or C{low{xi)). Since c can not 

be a cube in C ( x ^ ) , m < j, continue the above process, we will have c G C{xj). 

For simplicity, we say that two cubes are non-containment cubes if either of them 

contains the other. 

Property 2 If d- G C[xi) and d-, G C[xii) are non-containment cubes, then no 

cube c G y^^^iC[xi) can be contained in both d- and c)',. 

By contradiction, suppose that c G U"^^C(xi) is contained in both c) and c�;. 

By Property 1, we may assume that i and i' are the maximum indices of literals 

of d- and d'-i, respectively. The literal set of c must contain both literal sets of 
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d- and d-, properly. Let i" be the maximum index of literals in c, then c is a 
J J 

cube of C{xi>i) by Property 1. Since c is contained in both c) and d-, and that 

C [ x i ) and C(a;;) are prime covers, c can not be in C { x i ) and C{xi>). Otherwise 

there will be mutual containment. Therefore i" > i,i" > i'. By the construction 

of C{xin)^ we know that the cube c' formed by deleting the literal oCi" is also a 

cube in U^^^C{xi). Clearly, the literal set of c' contains the literal sets of both 

dj and d-,. Continuing this process, we will finally get a cube c" G U^^iC(x,-) 

with maximum index j of literals that equal to m a x { i , i ' } and is contained in 

both c) and ci. On the other hand, j should satisfy j > i,j > i' by the previous 
J J 

discussion, which leads to a contradiction. 

Property 3 Every cube in C'{xk) must be contained in at least two non-containment 

cubes ofU^ZlC{xi). 

By induction on k. It is clearly true when k 二 1, 2. Suppose that it is true for 

k — 1. Let p G C'{xk). If Xk is a literal of p, then the cube p' obtained by deleting 

Xk from p must be a prime cube of C'{xh) or C ' { x i ) , otherwise p G C { x k ) . And 

p' is contained in at least two different cubes of U i I i C { x i ) or U-lJC(^;^) by the 

induction hypothesis, where Xh = high{xk), xi 二 low[ock). Now suppose that p 

does not contain literal Xk. Since {xk) = xk{xh) + x [ { x i ) , p must be an implicant 

of both {xh) and (x/) . Let pi and p2 be primes of {xh) and (xi) containing 

p, respectively. Since Xk • p and p is prime, p 二 pi 门 p2- If pi G C\xh) or 

P2 G C'{xi) , then the statement is true by the induction hypothesis, otherwise 

p1,p2 are cubes of C{xh) and C { x i ) , respectively. If p contains p2 properly, then 

p 二 p2, ^kP would be a prime cube in C { x k ) , a contradiction to that p is a prime 

of {xk). If Pi = P2, then p = pi = p2 G C { x k ) , a contradiction to p G C ' { x k ) . 

It is also a contradiction if pi is contained in p2. Therefore, pi and p2 are non-

containment cubes. The proof of Property 3 is complete. 

Next, we construct an essential point ek{c) for each prime cube c in C{xk) 

with respect to Boolean function {xk)- The construction begins from bottom to 
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top. At each step m, we construct a point e^(c) over variable set { x 1 , x 2 , . . . , Xm} 

for each cube c G U^iC{xi) satisfying the following two conditions: 

(1) For any cube c；- G C{xi) and cube cf G C{xh), i < m,h < m. em{c]) is 

contained in cf if and only if d- is contained in cf. 

(2) If c) G C{xi), then e (̂cJ-) is not in any prime of {xi) except c]. 

When m = 1. C{xi) = {a;i} or {x；}. If C{xi) 二 { x i } , let ei{xi) 二 {j^i 二 1}’ 

ei( l) = {xi = 0}. If C{xi) = {x[}, let ei{x[) = {xi = 0}, e i ( l ) 二 {x^ = 1}. 

Clearly, ei(..) satisfies condition (1) and (2). 

When m = 2. If high[X2) 二 a:i，/ot<;(a;2) = 0 and C{xi) 二 {a:;i}, then C{x2) 二 

{x2xi}, Let e2{x2x1) 二 ei[xi) U {x2 = 1}, e2{x1) = ei(xi) U {x2 = 0}, e2(l) 二 

ei( l) U {x2 = 0}. If high{x2) = 1, l0w{x2) = xi and C{xi) 二 {xi}, then 

C{x2) = {x2,x1}. Let e2{x2) = ei( l) U {x2 = 1}, e2(l) 二 e i( l ) U {x2 = 0} and 

e2(a;1) = ei{xi) U {x2 = 0}. If high{x2) = 1 and l0w{x2) — 0, then C{x2) = {x2}. 

Let e2{x2) = ei( l) U {x2 = 1}, e2(l) = ei( l) U {x2 = 0}，e2(a;i) 二 ei(:ri) U {x2 = 

0}. Other cases can be defined similarly. It can be verified that e2(..) satisfies 

conditions (1) and (2). 

Suppose that we have constructed a point ek-i{c) for each cube c G U^IiC{xi), 

which satisfies the condition (1) and (2). It remains to construct the points ek{c) 

for each cube c G U^^^C{xi), and to prove that ek{c) satisfies condition (1) and 
� . 

By the algorithm for C{xk)j the cubes in C{xk) can be partitioned into five 

groups: 

C{xk) = { < | z i G / i > U { x , 4 | z 2 G / 2 } 

UK|z3G/3>U{c;.Jz4G/4} 

u K 4 l z 5 e /5}. 

Here C{xh) = {cf|i G h}, C{xi) = {cJ-|z G //}，h = h U h U /3, h = h U /4 U /5, 

where { c f J " G /1} = {c-̂  |zi G /1}； cubes in { c f J z � € /2} are not contained in 
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any cube of C{xi); cubes in {¢^1½ G /3} are contained in some cube of C{xi) 

properly; cubes in {cJJi4 G /4} are contained in some cube of C{xh) properly; 

and ciibes of {c;Jz.5 G /5} are not contained in any cube of C{xh)-

Next we construct a point ek{c) for each cube c of C{xk): 

For Xkcl e {xkclli2 e /2}, let ek{xkC^) = e/,_i(c^) U {xk = 1}, Q ( < ) = 

e/,_i(cfJ U {xk = 0} and for all cubes c G U^^^C{xk) contained in cf̂ , let e “ c ) 二 

ek-i{c) U {xk = 0:-. 

For 4cf5 G M 4 l ^ 5 G /5}，let e ^ ( 4 ^ ) 二 ^ ^ - i ( 4 ) � { ^ ^ = 0 }， e , ( ^ ) = 

e/,_i(cfJ U {x/, = 1} and for all other cubes c G U^^^C(x^) contained in《，let 

6k(c) = 6k-i(c) U {Xk 二 1}. 

Finally, for all the other cubes c of Uf^j^C(xi) which are not updated to ek(c), 

let 6k(c) = 6k-i U {xk = 0}. 

We continue to prove that ek(..) satisfies the condition (1) and (2). First, 

the definition for ek(c), c G Uf^iC(x^) is well-defined. Because no two non-

containment cubes contain the same cube in uf - iC(x i ) , there is no cube c E 

UjLiC(xi) such that Xk in ek[c) is assigned both the value 1 and 0. This implies 

that 6k{c) is well-defined. Let c, c' be any two cubes of yj^^^C{xi). By the defini-

tion of 6fc(..), ck{c) and ck{c') are points of c and c', so that if c contains c', then 

ek{c') is in c. Conversely, we need to show that ek{c) is not in c' and ck{c') is not 

in c when c and c' are non-containment cubes. If c,c' G yj^llC{xi)^ then by the 

induction hypothesis, ek-i{c) is not in c' and ek-i{c') is not in c. So does ek{c) and 

ek{c') by the definition of ck{c) and e^(c'). Suppose that c G C{xk) \ (ufr/C(x^-)), 

then c contains the literal Xk- Let c = XkCi. Then Ci is a cube in \j\llC{xi). 

If c' G yj^ZlC{xi)^ it is clearly true by the definition of ck{c) and 6k{c') whether 

ci is equal to c' or not. Suppose c' G C{xk) \ {^^illC{xi)). If c' = x'̂ C2, the 

statement is clearly true. Otherwise, c' = XkC2^ c2 G U^IiC{xi). Since c and c' 

are non-containment cubes, so are c! and c2. e n ( c i ) is not in c2 and ek-1{c2) is 

not in ci by the induction hypothesis. Therefore, ek{c) = e^_i(ci) U {xk = 1} is 
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not in c' and ek{c') = ek-1[c2) U {xk = 1} is not in c. The proof of condition (1) 

is complete. 

For any cube c G C{xk), ek{c) is not in other cubes of C{xk) by (1). Let p 

be a prime cube in C'{xk). By Property 2, p is contained in at least two non-

containment cubes, say p1,p2, of Ui^^C{xi), and c is not contained in both pi and 

p2 by Property 3. Hence ek{c) is not in at least one of pi and p2, and therefore 

ek{c) is not in p. This proves (2). 

By (2) we know that C{xk) is an essential prime cover. Therefore C{xn) is an 

essential prime cover by induction. The proof is complete. I 

Following example explains the computation of essential point for a thin 

Boolean function. 

Example We compute the essential prime cover for the thin Boolean function 

given by the final OBDD of Fig.2. The prime cover of this function is shown in 

Fig.4. We now compute the essential point for each cube in the prime cover. For 

convenience, we denote {a;i 二 b i , . . . , Xk = bk} by (61 , . . . , bk), and use matrix E{ 

to represent function ek. When m 二 1, 

ei(xi) = {xi 二 1} 二（l),ei(l) = {xi = 0} = (0). 

When m = 2, 

^(T2) = e i ( l ) U { z 2 = l } = (0,l), 

e2(l) = e i ( l ) U { z 2 = 0} = (l，0), 

e2(a î) = e i ( ^ i ) U { a : 2 - 0 > = (l,0). 

When m 二 3, 

(es xi X2 x3 \ 
4 1 0 0 

Es = 1 1 0 1 
2̂ 0 1 0 

\ a;i 1 0 1 j 
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When m = 4, 

‘64 X\ Xi X^ X4� 

X 4 X 2 0 1 0 1 

2̂ 0 1 0 0 
E4 — X4X1 1 0 1 1 

^1 1 0 1 0 
4 1 0 0 0 

� 1 1 0 1 0 / 

When m — 5, 

/ 65 Xi X2 X3 X4 X5 \ 
a;54 1 0 0 0 1 
4 1 0 0 0 0 

_ x4x2 0 1 0 0 1 
5 = 工 2 0 1 0 0 0 

x^xi 1 0 1 1 0 
Xi 1 0 1 0 0 

V1 1 0 1 0 0 / 

When m = 6, 

(65 xi X2 x3 x4 x5 xe � 

XQX4X2 0 1 1 0 1 1 
X4X2 0 1 0 0 1 0 
4 x s 4 1 0 0 0 1 0 
x s 4 1 0 0 0 1 1 

— x ' ^ x i 1 0 1 0 0 0 
6 = Xi 1 0 1 0 0 1 

X4X1 1 0 1 1 0 1 
X4X2 0 1 0 0 0 0 
4 1 0 0 0 0 0 
X2 0 1 0 0 0 0 

\ 1 1 0 1 0 0 0 / 

It can be seen that eQ{xQX4X2), e6(x4x1), e6(xgX5X3), e6(a;^a:i) are in prime 

cubes of XQX4X2, X4X1 , x^x^x'̂  , x'̂ xi^ respectively, but they are not in other 

prime cubes of C{xo) and C'[xQ). So C(xe) is an essential prime cover of (â 6). 

By Theorem 4, we know that, if a Boolean function does not contain an essential 

prime cover, then it is not a thin Boolean function. However, result of Theorem 4 
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© (x6) =x6x4x2 +x4xl +x '6x5x '3+x '6x1 
/ C(x6)={x6x4x2,x4xl,x '6x5x '3,x '6x1) 

1 / |0 C'(x6)={x5x'3x4x2, x4x2xl} 

© (x5)=x5x'3+xl 

� X \ 1 C(x5)=fx5x'3,xl}, C'(x5)=f) 

/ © (x4)=x4x2+x4xl 

/1 \J C{x4)={x4x2, x4xl}，C'(x4)={} 

©\o (x3)=x'3+xl 

1 \i\ C(x3)={x3,xU,C'(x3)={} 

^AQj (x2)=x2+xl 
y f o C(x2)={x2,xl),C'(xl)={} 

/ Q) (xl)=xl 
”lj/ \^f C(xl)={xl}，C，(xl)={} 

"T] \~o 

The computation for the prime cover of a thin Boolean 
function by its thin OBDD. 

Figure 6.3: The computation for the prime cover of a thin Boolean function by 
its thin OBDD. 
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provides a necessary condition for a Boolean function to be a thin Boolean func-

tion. It is known that unate Boolean functions also has this property because 

all prime cubes of unate Boolean functions are essential prime cubes. But there 

are unate Boolean functions which are not thin Boolean functions. For example, 

f{x1,x2,x3) = X1X2 + X2X3 + X3X1 is a unate Boolean function, but it is not a thin 

Boolean function, see Figure 2.2-(4). It is hard to give a cube cover characteri-

zation of thin Boolean functions. We conjectured that the verification problem 

that whether or not a given cube cover form Boolean function is a thin Boolean 

function is a NP-complete problem. 

Theorem 5 For any node Xk of thin OBDD, ifhigh[xk) and low{xk) share some 

common variables, then the set of minimal cubes of {high{xk)) over the common 

variables is equal to that of[low[Xk)). 

Proof. The common variables are in both the paths from node high{xk) to 1 

and from low{xk) to 1, so that they share a common cofactor on the common 

variables. The set of minimal cubes extended over the common variables is just 

the set of essential primes of the Boolean function (a:‘), where Xi is a node with 

highest level of all common variables. Therefore the set of minimal cubes over 

the common variables of {high{xk)) and that of {low{xk)) are equal. I 

The result of Theorem 5 is a necessary condition for an optimal variable order 

of a thin Boolean function. It means that at each level of a thin OBDD, the two 

sons of the function of the node have a maximum sharing of sub-functions. We 

will use this property to construct an ordering heuristic algorithm in Section 6. 

6.1.3 Thin Factored Functions 

Thin factored Boolean functions have much better properties. It can be recog-

nized in polynomial bound of times with respect to the number of terms in cube 

cover. 
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Theorem 6 Let F be a thin factored form on variable set S, and f be the thin 

factored function expressed by F. Then the following statements hold: 

(i) J is a connected thin Boolean function. 

(ii) The algebraic expansion ofF is an essential prime cover off. 

(iii) The algebraic expansion ofF is the set of all prime cubes off. 

Proof. By induction on the number of variables, f can always be decomposed 

into either f = /i + /2 or f = /1/2, where /1 and /2 are two thin factored 

functions with disjoint variable sets. Then by the induction hypothesis, Lemma 3 

and its proof, we know that f is a connected thin Boolean function. The second 

statement follows from Theorem 4 and Algorithm 2. As the terms of expansion 

of the factored form consist of an essential prime cover by Theorem 4. 

Since each variable appears just one time in the thin factored form, so that if 

a variable Xi appears in a term of expansion, then x'- can not appear in any term 

of the expansion; and vice versa. Therefore the function is an unate function, 

this implies that the set of essential prime cubes is the set of all prime cubes. I 

Next, we give another character of thin factored functions expressed in cube 

cover. Let f be a Boolean function expressed in cube cover. We define four 

variable reduction operations on /: 

R i If Xi is a cube, then delete Xi. 

R2 If Xi appears in every cube, then delete X{. 

R3 If Xi and Xj appear always together, then delete x [ 

R4 If Xi and Xj satisfy that X{C is in the cube cover if and only if XjC is in the 

prime cube, then delete Xj. 

Theorem 7 A Boolean function expressed in prime cover form is a thin factored 

function if and only if it can be reduced to null by a series of variable reduction 

operations. 
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Proof. Suppose that / is a thin factored function expressed in prime cover. 

Let F be the thin factored form of f. We prove by induction on the number 

of variables. If F contains a product of two variables, say XiXj, then XiXj will 

always appear together in prime cubes of f by Theorem 6. Deleting Xj will give 

a thin factored function with fewer variables; so it can be reduced to null by the 

induction hypothesis. Suppose that F does not contain products of two variables. 

If there are factors, then there must be two variables Xi and Xj which are in the 

same bracket, now XiC is a prime cube of f if and only if XjC is a prime cube of / . 

Then Xj can be deleted by R4. Deleting Xj, we obtain a factored form of fewer 

variables, and the statement is true by induction hypothesis. Finally, there are 

no products in the factored form. Then the prime cubes of f all consists of single 

literals. Now, it can be reduced to null by Ri . 

Conversely, if f can be reduced to null by variable reduction operations, then 

we construct f backward. If X{ is deleted by Ri , then fk-i + Xi is the factored 

form of the Boolean function at the (n — A;)-th step. If Xi is deleted by R2, then 

Xifk-i is the factored form of the Boolean function at the {n — A;)-th step. If X{ 

is deleted by R3, then change x j to X{Xj. If Xi is deleted by R4, then change Xj 

to Xi + Xj. By this way, we will finally get the factored form of function /. I 

Since the checking for conditions of each variable reduction operation can be 

done in polynomial time in terms of the number of prime cubes in the cover, the 

reductions can be done in polynomial time in terms of this number too. Note 

that the number of essential prime cubes of a thin factored function can be ex-

ponential with respect to the number of variables. For example, / ( x i , . . . , X2n)= 

(3：1 + x2){xs + X4). . . {x2n-i + X2n) is a thin factored function, but it has 2" es-

sential primes. Since D S C F always choose next variable from the shortest cube, 

therefore, for a Boolean function expressed in disjoint cube covers, the variables 

in same cube will be chosen continuously by DSCF. The by Theorem 3，we have 

Theorem 8 DSCF algorithm will always find optimal OBDD orderingfor Boolean 
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functions expressed in disjoint cube covers. 

This means that DSCF is optimal algorithm for disjoint cube cover Boolean 

functions. But for general thin factored functions, the D S C F is not an optimal al-

gorithm. For example ,/(a ; i , . . . , Xn) = (a;1 + a;2)(a;3 + 3:4)... (x2n-i+^2n) is a thin 

factored function. If the input of this function is in form of prime cube cover, then 

DSCF algorithm will find an variable ordering: [xi, X 3 , . . . , x2n-1,X2, X4, . . . , X2n.. 

The OBDD size of f in this ordering is 2̂ +^ because the O B D D size of its com-

plement x[x'^ + . . . + 4^_i3^2n is 2打+1 in this variable order [5]. To overcome 

this shortcoming, we make an amendment to the D S C F algorithm based on the 

necessary conditions of thin Boolean functions. 

6.2 The Revised DSCF Algorithm 

Revised DSCF: 

Step 0. Input Boolean function f 二 /(xi,...，x^) in the form of cube cover. Let 

S 二 [xi^,..., Xi^] be any initial ordering sequence of variables. Set j 二 0. 

Step 1. Sort the patterns of f according to their lengths. Pick the next variable 

Xi and move it to the { j + l)-th position of S. In case of tie, apply one of 

the following procedures: 

v l : The variable which appears in the largest number of unprocessed yet 

patterns, i.e., the most globally binate variable of the shortest patterns 

is picked. In case of tie, just pick the first one. 

v2: The variable which appears in the largest number of these shortest 

patterns is picked. In case of tie, check the next longest list until the 

tie is broken.(DSCF method) 

j = j + l; 
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step 2. for j = l to n-1 

if j-th variable of S is binary 

find the next variable by the DSCF method; 

else Compute S' 二 {I{fU U /(/|。）\ ( I ( f U 门八/1。)； 

Adjust the ordering of the k-th variables, k 二 j + l , . . . ,nsuch 

that each variable in S' is located before all variables not in 

S' and each pair of variables that are both in S' or not in S' 

keep the order in S. 

Let S be the new ordering sequence and Xi be the first unfixed 

variable. Set j — j + 1; 

step 3. Delete Xi and its complement from all cubes containing Xi followed. 

The complexity of this algorithm is 0[nw? + n^m), where n is the number of 

variables and m is the number of input cubes. 

Next, we show that the revised DSCF algorithm is optimal for thin factored 

functions. Let f be a thin factored function expressed in prime cover. Let F be 

the thin factored form of /. By Theorem 6, we know that f is a unate function, 

so that each variable of f is a unate variable and the algorithm will only go to 

the "else" branch in step 2. If Xi is a single term in the thin factored form, then 

S' = {I{fxi) u I{fx') \ (/(/a；,) n /(/工；)）is the set of variables which is in a sum 

term with xf, otherwise, it is the set of variables which is in a product term with 

Xi. Here ti,.. • ,t/ are the sum terms with x̂  if (x̂  + ti + ... + ti) is a maximal 
sum part of F, and product terms with Xi if Xiti . . . ti is a maximal product part 

of F. The operation to f with respect to Xi is just the function obtained from 

assigning X{ to 0 if Xi is a single sum term, or 1 otherwise. Therefore, when X{ is 

a single term, the next variable picked by the algorithm must be a variable in a 

sum term with Xi； otherwise, the next variable is a variable in the product term 

of Xi. Such an ordering is an optimal variable ordering. We can construct a thin 
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O B D D with respect to the ordering backward. Following theorem follows. 

Theorem 9 The revised DSCF algorithm will always find optimal variable or-

dering for thin factored functions. 

Example: Consider function f { x i , . . . , x s ) : X4X1X2 + X4X3 + x^x7 + x g x j + 

xsXg + xexg. By the algorithm, first set S = [x3, x i , x^, x^, X5, x7, XQ, xg]. First 

j = 0, by v l of step 2, choose X4, move it to the first place of 5 , we get S — 

'X4,X2,,XI,X2,X^,X7,XQ,XS]- Set j 二 1. Go to step 1. Since X4, the first variable 

of S, is a 皿&16 variable, go to step 3. S' 二（/(/〜）U /(/〈））\ {I{fx,)门 ^ ( / < ) ) = 

{x1,x2,x^}. Reorder S] we get S = [x4, X3, Xi, X2, X5, xj, Xe, Xg]. Set j - 2. Go 

to step 4. Delete X4 from /; we get f = X3 + X1X2 + x^xj + xeX7 + x^xg + XeXg. 

Go to step 1. The second variable of S is x ,̂. It is a unate variable. Go to 

step 3. S' 二 {I{U) U / ( / 4 ) ) \ {I{f.,) n / ( / 4 ) ) = {xux2,x,,x7,xe,xs}. Update 

S] we get S 二 [工4，2：3，工1,3：2,2；5,工7,3：；6,工8]. Set j = 3. Delete X3 from /; we 

get f = X1X2 + x^x7 + XQX7 + X5X8 + xeXg. The next variable is Xi, and S'= 

{x2}- S is updated to S — [x4, X3, Xi, X2, x^, X7, xe, xg], and f is updated to 

f = X2 + x5X7 + xeX7 + X5X8 + xexg. Next variable is X2. S' — {x5, X7, x&, Xg}, 

S = [x4, a:3, x1,x2, x5, x7, ^8, xe], and f = xsxr + xexj + x^xgi-xexs. Next variable 

is x5. S' — {xe}, andS = [a;4, x3, X1^X2, x^, XQ, x7, xg]. Continuing this process, 

we will finally obtain the ordering sequence S = [x4, X3^ X1,X2, x^, xg, cc7, xg]. The 

thin O B D D by this ordering is show in Figure 6.4. 

6.3 Experimental Results 

The experiment results show that our algorithms can really obtain some good 

result though the algorithm has some drawbacks. In our experiments, in cases of 

multiple P 0 circuits, the O B D D size is first determined by processing patterns 

of all POs together. Then the cubes of the first (and/or second) PO(s) with the 

highest fan-in O B D D size are processed to get the "Dominant Variable Ordering". 
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f = X 4 X i X 2 + X 4 X 3 + X 5 X 7 ^ X 6 X 7 + x 3 x g + x ^ x g 

( ¾ X 4 ( X 1 X 2 + X 3 ) + ( X 5 + x g K x ^ + X g ) 

淡 
/ V V x.x 2̂ x 3+(x 5+ ^6^(^7 +^8^ 

燃 
1 V ^ X1X2+ (X5+ X g K X y + X g ) 

/¾¾ 
( ^ X2+ (x5+ X6)(X7+X8) 

l X ^ (X5+X6)(X7+X8) 
/ ( ¾ X6(X7+X8) 

脉… 
T^ |V 

Figure 6.4: The construction of the thin OBDD of a thin factored function in the 
ordering given by the revised DSCF. 
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This ordering is applied to the entire circuit for which the size of corresponding 

O B D D is shown in parentheses. We pick the better result. Table 1 lists the 

resulta obtained by the M B V F , a two-level input form heuristic as compared 

to ours. We note that our heuristic stably achieves an average improvement of 

over 600%. Table 2 shows comparison between our heuristic and lexicographic 

ordering. Table 3 shows the results of FIH and our heuristic. The D S C F heuristic 

produces an average reduction of over 30% when tested extensively on 71 M C N C 

benchmarks. Among these 71 tested cases, only 6 resulted in an O B D D a little 

larger than the better one produced by the two strategies of FIH, and among 

them only one over 10% larger. In table 3 we show only those examples which 

differ at least by 10% from FIH. The best result among FIH and D S C F is shown 

in bold face. 
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Circuit FIH of SIS D S C F Our size 
name f f ixed P 0 | non-fix P 0 | C P U v l v2 CPU reduction 

alu4 565 1124 1.67 536(415) 377(339) 0.92 33% 
^ ~ ^ " " ^ 2 l 6 216 0.82 229(178) 230(162) 0.02 25% 
^ k ~ " ^ ^ 2265 0.23 1380 1629 2.75 39% 

apex2 ~ ^ 3 6963 81.28 978 1155 2.42 86% 
apex7 672 578 0.43 364 ^ 2.25 43% 

^ 216 T 6 9 ~ 0 W 115(104) 115(104) 0.00 38% 
" 5 5 U 7 117 T 2 ^ 101 75 0.05 36% 
" 7 ^ " ^ 248 T48 I l 8 201 一 201 0.50 19% 

" 7 ^ ^ ^ T ^ ^ 25 ~ 0 5 ~ _ 1 6 16 ~ 0 W ~ 36% 
" T ^ ^ I T ^ ^ 48 ^ ~ " 3 7 36 0.03 25% 
" ^ ^ ^ ~ ~ l 6 16 T 0 3 ~ - 1 2 12 0.02 25% 
~ ^ s T m 1871 26.98 1588 1745 0.068 15% 
" d ^ ~ ~ 3973 " 3 ^ 4.85 4132(1588) 4083(1497) "3.02 62% 一 

duke2 ^ 6 2 ~ ^ 1.02 _ 542(492) 566(520) 0.03 13% 
decod ^ 38 ~Om~"_32 32 ~ o W 16% 

" i ^ 659 T 5 9 7.45 564 629 ~ ~ 5.40 14% 
^ 1760 1760 2.82 2146 2146 0.37 "-22% 
~ M ^ " ^ 71 71 ^：3^~ 73(47) 74(42) 0.02 ~JI% 

frgl 309 T 0 9 Q . W ~ 194 172 0.18 "44% 
1 ^ 112 113 ~ 6 M ~ 99 92 0.15 " l8% 

misex3 "l609 1609 T ^ 1241(855) 586(582) 0.15 T s % 
" ^ ^ 142 142 ~ O ^ W 91 91 0.03 "36% 
~ml 75 75 23.38 54 58 ~oW~ 28% 

tcon 41 T T Q.Or" 27 27 0.02 " W o 
terml 369 ~989 ^.92 219 140 0.57 "62% 
vda 1255 "1255 "2.17 525 525 ^ 5 ^ 58% ~ 

^ 390 ^ 2 3 0.50 281(122) 281(122) 0.02 — 45% “ 
z4ml 31 31 0.15 17 17 0.02 45% 

57 



.

 -

 
...

 .
 

8
 

.
 5
 

.

 ̂

 

.
i
:

 
..

 M

 ̂

 -

.,

 ..

 ••

 :.•
 

^

 .

 .

 .^
 

u

 -

 .
 

.
 h

 .

 “
^
 

-

,

 -

 ̂

 

、
r
 .
 

7

 
’
 --

...

 ..

 .

 .>
 

,”
 “

 V

 •

 .

 、

 
.,

 .

 >

 、
 

.
%

 .

 -
 w

 .

 :
i
 

.

.

.
:
-
-
(
C
T

 .

.
 

:〜-.}
 •
 

d
-
:
 
.

 
.

 
.

 
-

：
厂
.
、
 '_

 
.
 

.
:

 

.
 
.

 .
-

 ：：；
 

•
 i
-

 .

 :

 .,
.
:

•

 _...f:..:.

 ,.:.

 =

 f
i
t
.
.
!
k
b
.
!
l
_
i
T
 :

 t
 ,

 -
:

 s
 >

 V

 v
(

 ,‘..

 .

 :

 I.
I
"

 t

 -
 (
t
f
n
i
s
 



Chapter 7 

A Pattern Merging Algorithm 

For an OBDD, each 1-path represents a disjointed implicant, i.e. there is no 

minterm contained in different implicants that are represented by different 1-

paths. For a logic function, the number of its EPIs is the lower bound of the 

number of 1-path of its OBDD. 

Our algorithm is still based on the pattern recognition notion. Since each 1-

path ofthe OBDD is a disjointed implicant of the logic function, in our algorithm, 

we will first make the cubes disjointed to each other. Our method is to sort 

the implicants by length first. Suppose for a pair of implicants Xî Xî ...Xî  and 

Xj^Xj^...Xj^, {n < m), there is no variable with different phase in these two cubes, 

i.e. Xi and W] do not exist in these two cubes respectively. Then the negation of 

literal Xj will be added to cube xj^Xj^...Xj^ where Xj is the first variable appearing 

in cube Xî Xî ...Xî  but not in cube Xj^Xj^...Xj^. For example, to disjoint the cubes 

X1X2 and x2xsx4, we will modify the X2X3X4 into 可0；2幻3；4. 

Be aware that the function represented by the newly produced disjointed 

implicants may not be the same as the original one. But all the original essential 

points are still kept. 
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f{ p /^ ® \ ^ \ 
G ^ \ G ^ a ^ > ^ \ 

f^k ^�©\ / ®v 
M < \ \ \ 

j j Lu Q 口 口 [7 
Figure 7.1: The four patterns of the function X1X3 + X1X4 + X2X3 + X2X4 

7.1 Merging of Patterns 

The O B D D has the advantage that all the equivalent subgraphs are shared. Thus 

a logic function may have a simpler representation if there is a variable order that 

can make more nodes shared. By this way, the representation is greatly simplified 

and the space and time cost are reduced. So sometimes the OBDDs can represent 

the Boolean logic function which may be intractable in other representations. 

In our algorithm, we also try to eliminate nodes as many as possible by merg-

ing the recognized patterns. The OBDDs can be treated as the merging of recog-

nized patterns. To eliminate extra nodes, we must merge the pairs of recognized 

patterns close to each other so that new nodes will be created as few as possible. 

For example, suppose the logic function is X1X3 + X1X4 + X2X3 + X2CC4. If the 

variable order is x i , X2, x3, X4, the OBDD and the patterns are shown in Fig. 

2. But if the variable order is Xi, X3, X2, X4, the OBDD will have six nodes and 

become more complicated. The OBDD and the patterns are shown in Fig. 3. 

There are several points to be noticed: 

• The patterns are a partition of the onset vertices in the Boolean space. It 

is easy to see from the definition of the OBDD. 

• There exists more than one partition of the onset vertices. 
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R p ^ ©\ ^ 
严\汽 ^ G ^ ^̂  > � � 

& ^ \ \ % , \ 

0 N • ° ° Q 

Figure 7.2: The four patterns of the function X1X3 + X1X4 + X2X3 + X2X4 

• Different merging of the same patterns may lead to different OBDDs. We 

can see that in Fig. 2 and Fig. 3, although the partition of the onset 

vertices are the same, the merging is different and it leads to a different 

OBDD. 

In our algorithm, we will always try to find the closest recognized pattern to 

merge with the cube. Here the closest pattern is the pattern with the largest num-

ber of same literals as the cube. Another terminology is unmerged kngth, which 

is the number of different literals between the cube and its closest recognized 

pattern. 

The last problem is the insertion method. In previous papers, we always 

append new variables to the variables that have already been picked out. But 

sometimes this method can not give the optimal solution. 

We have observed that for an OBDD, it is essential to keep its width small 

because the height of OBDD is at most the number of support variables. To 

reduce the width of the OBDD, it is better to (1) make the two outedges point to 

the nodes in a level as low as possible and (2) make one child to be the offspring 

of another child. Consider variable xi and x2, if Xi appears in one of the f̂ 2 

and /;2 while X2 appears in both /̂ ^ and /二，we will think that to keep the X2 

in a higher order than that of Xi will keep the size of OBDD small. We can see 
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急 K 
^ . , , ^ 1 , _P 1， X1 appears in only fx2 x2 appears in both fxl and fxl ^̂  

\ ®\ 八 /®\ 
© Q ^ x 3 f^。 
W Al(^ 

r̂  rn • i 1 1 1 — — —— 
Figure 7.3: (l)the pattern of X1X3, (2)the merging of patterns X1X3 and X1X̂ X4̂ , 
(3) the merging of patterns X1X2,, X1X2X4̂  and X1X2X4̂ , (4) the final OBDD 

this example in Fig. 4. So in our algorithm, normally, the new variable x will be 

appended to the variables that have already been picked. But in the case that 

for a variable y that is already picked out, if y only appears in either /^ or /^ but 

not both and x appears in both fy or f'y, x will be inserted before y. 
7.2 The Algorithm 
Our algorithm can be stated as follows: 

1. Express the function in the SOP form. 

2. Sort the cubes according to their lengths. 
3. Disjoint the cubes. 

4. Resort the implicants according to their lengths. Now the length of a cube 

is just the unmerged length. 
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5. Pick the next variable to be added from the set of the cubes with shortest 

unmerged length. In case of a tie, pick the better one in the original logic function. 

6. Check if all the variables in a cube is picked out, i.e. a new pattern is 

recognized. If it is, insert the new pattern into the recognized pattern set. 

7. Compare the new pattern with all other patterns in the recognized pattern 

set, choose the pattern that is closest to the new one and merge them. According 

to the merging method, determine the position of the new variable. 

8. Maintain the remained cubes. We can do this by comparing the new 

pattern with the remained cubes. If the cube is closer to the new pattern than 

the original one, the unmerged length of the cube is updated. 

9. Back to 5 until all variables are picked. 

Example: 

F = (xi + x2)(x3 + x4) 

step 1: The function can be expressed as X1X3 + X1X4 + X2X3 + 2̂̂ ::4-

step 2: The cubes are sorted by the length. Since all the cubes have the same 

length. The order of the cubes is not changed. 

step 3: The cubes are disjointed. First X1X4, X2X3, X2X4 are modified into X1X̂ 3X4, x[x2X3 

and x{x2X4 respectively because they are not disjointed to X1X3. Then since 

x[x2X3 are not disjointed to x[x2X4, literal X3 is added to x[x2X4. Now the cubes 

are: a;1X3,a^1a:̂ a;4,a;'1a::2i3 and x[x2X ;̂̂ x4. 

step 4: Since the cubes' lengths are already in the ascending order, the order is 

not changed after reordering. 

step 5: Now that the shortest cube is X1X3, variable Xi is chosen. 

step 6, 7, 8 are skipped because no pattern is recognized. 

step 5: x3 is picked out. 

step 6: Here a pattern X1X3 is recognized. 

step 7: Since X1X3 is the first recognized pattern. No merging is needed. 

step 8: We will need to update the unmerged length of unprocessed cubes. The 

63 



unmerged lengths of the unprocessed cubes xix':^x4,x[x2x^ and x[x2x':^x4 are 2, 2 

and 4 respectively, 

step 9: Go to step 5. 

step 5: x[x2x3 and x1x'^x4 have the same unmerged length. Suppose we choose 

x[x2X3 as the next cube, then X2 is picked out. 

step 6: pattern x[x2x3 is also recognized. 

step 7: Merge the new pattern x[x2x3 with X1X3. According to the cubes, we can 

see that: for the cubes x1x3,x1x':^x4,x[x2x3 and x[x2x'^x4, X3 only appears in f̂：” 

but X2 appears in both /们 and / “ . So to merge the patterns, we should insert 

the variable X2 before the X3. 

step 8: The unmerged length of cube X1X̂ X̂4 is untouched because the number 

of different literals with new recognized pattern x{x2x3 is 3，larger than its un-

merged length. But the unmerged length of cube x{x2x3x4 is changed to 2. 

step 9: Go to step 5. 

step 5: X4 is chosen. 

step 6: patterns X1X̂ X̂4 and ^^^20:3^4 are recognized. 

step 7: x4 is inserted after variable X3. 

step 8: No cube is remained unprocessed. 

step 9: algorithm is finished when all variables are picked. 

The complexity of the algorithm is calculated as following: Suppose m is the 

number of cubes of the function, n is the number of the variables in the Boolean 

function. 

In step 2, the sorting algorithm has a complexity of 0 ( n l n n ) . In step 3, the 

disjunction algorithm has the complexity of (m^n). In step 4, the complexity is 

0 ( n l n n ) . 

Step 5 to 9 is a loop with at most n times. Picking the best variable has 

the complexity of 0{n). Finding the suitable patterns to merge with has a total 
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complexity of 0{m^n). The insertion has the complexity of 0{n). When each 

time a pattern is recognized, we should also modify all the lengths o f the remained 

cubes. This part has a total complexity of 0{m^n). So the complexity of the 

algorithm should be 0(m^n). 

7.3 Experiments and Conclusion 

The result of the experiment is shown in the Table 1. 

Table 7.1: OBDD size from FIH, DSCF and Pattern Merge 

circuit name FIH of SIS DSCF Pattern Merge Improvement over DSCF 
alu4 565 536 420 21.6%_ 
alu2 216 229 183 20.1% 

alupla 2265 1380 4194 -204% 
apex2 6963 1644 2187 -33.0%_ 
apex7 672 ~ ^ ^ 667 -83.2% 

c8 216 115 136 — -18.3% 
cml52a 25— 16 16 0" 
cml63a 48 37 36 2.7%" 

cm82a 16— 12 12 0" 
dahi 3973 4132— 1924 53.4% 

duke2 662— 542 590 -8.9%_ 
decod 38— 32 46 -43.8% — 
f51m 71 73 73 — 0 

frgl 309— 194 171 11.9%_ 
lal 112— 99 104 -5.1%" 

misex3 1609 1241 599 51.7% 
sao2 142— 91 104 -14.3%_ 
t481 75— 54 56 -3.7%" 
tcon i T 27 41 - 5 1 . ^ 

terml 369 219 _ 185 1 5 . ^ 
vda 1255 525— 545 -3.8% 
vg2 390 281 “ 252 1 0 . ^ 

z4ml 31 17 17 0_ 

From the table, we can see that our algorithm do have some better results for 

some circuits. But for many circuits, it performs worse than the DSCF algorithm. 
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For almost all circuits, it performs better than the FIH. 

The reason that the algorithm does not perform better than the DSCF algo-

rithm may be that the benchmark circuits we used are mostly multiple output 

functions and we have only considered the situation of single output functions. 

Our algorithm may not perform well with the multiple output functions. 
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Chapter 8 

Conclusions 

In this paper, we studied the OBDD minimization problem from two-level form 

representation of Boolean functions. We studied two special classes of Boolean 

functions, thin Boolean functions and thin factored Boolean functions. These two 

simple classes of Boolean functions have many good properties. Thin Boolean 

functions have an essential prime cube cover and their optimal OBDD can be 

recognized. Thin factored Boolean functions are thin Boolean functions, they 

can be recognized from prime cube cover representation and By taking OBDD as 

a pattern recognizer, we proposed a dynamic shortest cube first ordering heuristic 

(DSCF), which can find optimal variable order for Boolean functions expressed 

by disjoint cube cover. By the observation of the sharing properties in thin 

Boolean functions, we developed a revised DSCF ordering heuristic. This revised 

DSCF algorithm can find optimal variable order for thin factored functions. We 

implemented the algorithms and get a improvement on the Benchmark problems. 
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Appendix 
When we analyze the Boolean function, the concept of essential prime im-

plicant is of great importance. It is very nature to think that it will also has 

a important role in the minimization of OBDD. This has been verified in a few 

points: 

• In the OBDD of any Boolean function, all the variables in an EPI will 

appear in a l-path[25]. That is because that in any EPI there exists at 

least one essential point(minterm) in it while this essential point will be 

contained by only one 1-path. So the implicant that the 1-path represent is 

contained by the EPI and the variables appear in the EPI definitely appear 

in that 1-path. 

• In the thin Boolean function, we find out that all the primes of its two level 

representation are essential. 

This matters indicate that to study the EPIs is important for the minimization 

of OBDDs. This observation inspires us to try to find out the relationship between 

the EPIs of an Boolean functions and its OBDD. However, we find that it is not 

easy to find a direct connection between the EPIs and a normal OBDD. An idea 

is to retrieve the EPIs of a Boolean function from its two level representation, 

and then apply the DSCF algorithm on these implicants to get the result. 

The idea is supported by the observation before because that all the variables 

in the same EPI will definitely appear in one 1-path, from before we know that it 

is better to have all variables in the same cube close to each other in the variable 

order. And the browsing of the EPIs first will ensure that. 

In our experiments, the EPIs are retrieved from the two level logic functions 

by using Dr. Olivier Coudert's program. After that the DSCF algorithm is 

applied on them to get the result. 
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The algorithm is given as following: 

1. Pick out the function which has the largest number of cubes. 

2. Pick out the essential primes of this function. 

3. Pick out the variable by using the DSCF algorithm to parse the essential 

primes cover of the function. 

4. Go back to 1 until all variables are picked out. 

But as the following experiment result indicates, the result is not satisfactory. 

Table 1: OBDD size from DSCF and EPI 
Circuit name FIH of SIS DSCF Parsing EPIs Improvement over DSCF 

ahi4 565 3 7 7 ' 478 -26.8%" 
alu2 216 ~ ~ m ~ 164 2 8 l 

alupla 2265— 1629 2628 -61,3% 
apex2 6963— 1155 1203 -4.2% 
apex7 “ 672 332 1650 - 3 ‘ 

c8" 216 115 115 ~ Q ^ 
cml63a 48 36 36 0% 

cm82a “ 16 12 12 I 
count" 248 201 ~ ~ 200 0.5k 

dalu 3973 4083 1420 一 65.2% 

duke2 662— 566 501 — 11.5 % 

e64 1760 2146 2146 0 ^ 

frgl 309 172 371 - 1 1 6 ^ 
misex3 1 6 0 ^ 586 1500 -156% — 

terml 369— 140 523 — -274% 
vda 1 2 ^ 525 523 0%" 
vg2 390 281 334 -18.9%_ 

It is hard to say why this method can not bring out a satisfying result because 

we are still lack of the information of the relationship between the EPIs and the 

normal OBDD. But one of the possible reason is that: the set of EPIs is sparser 

than the prime cover which the EPIs are retrived from. From the discussion before 

we know that when we pick out a variable, the Boolean space is partitioned and 
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the DSCF algorithm is trying to partition the Boolean space so that as many as 

possible minterms are within one sub-space. But after the EPIs are retrieved, 

only part of the minterms are kept and the partition based on the minterms in 

the EPIs may not lead to global optimal. 
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