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Abstract 

Data mining is an automated process of discovering knowledge from databases. 

There are various kinds of data mining methods aiming to search for different kind 

of knowledge. In this thesis, data mining approaches that use rules and Bayesian 

network as the knowledge representations are described. Rule can represent in-

teresting patterns and regularities in the database, while a Bayesian network can 

represent the overall structure of the relationships among the attributes. We in-

vestigate the use of Evolutionary Computation as the search algorithm for data 

mining. Evolutionary Computation is a kind of weak search methods that simu-

lates the natural evolution. It is a general search technique and does not require 

any domain specific techniques. 

We present an approach for rule learning that uses Generic Genetic Program-

ming as the core search technique. It is a grammar based search technique that 

allows a powerful knowledge representation. The grammar serves as a template 

to specify the format of rules. A technique called token competition is employed 

to learn multiple rules from the data. 

In learning Bayesian networks from data, a problem is that a Bayesian net-

work can only be constructed from discrete variables. We investigate the use of 

genetic algorithm for learning a policy for discretization of continuous variables 

while learning the Bayesian network structure. The experiments show that this 

approach performs better than the greedy approach. 

A system for knowledge discovery that combines the approaches ofrule learning 

and Bayesian network learning is developed. We introduce the applications of the 

system to two real-life medical databases for limb fracture and Scoliosis. The 
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knowledge discovered provides insights to the clinicians and allows them to have 

a better understanding of these two medical domains. 
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摘要 

數據勘探(DataMining)是指從數據庫中自動地發現知識。這論文會詳論兩種搜索 

方法，分別從數據庫中發掘規則（Rule)及貝氏網絡（BayesianNetwork) ’ 用 以 表 

達當中的知識。規則能表達數據中的規律，貝氏網絡則可表達數據庫中屬性之間 

的關系構造。而我們使用了進化計算(Evolutionary Computation)作爲搜索算法。 

在學習規則中，我們使用了全面遺傳程序(Generic Genetic Programming) ° 
其中的文法（grammar)能規定規則的格式°另外，我們使用了一個名爲資源競爭 

(tokencompetition)的技巧，用以發掘多條的規則。在學習貝氏網絡中，其一問題 

爲如何處理連續變數（continuous variables) °我們硏究了使用遺傳算法（Genetic 
Algorithm) ’將連續變數分段（discretization)，以及同時學習貝氏網絡的結構°實 

驗顯示這個方法的結果比貪婪方法好。 

我們並會介紹一個以上述兩種方法爲基礎的數據勘探系統。我們使用了這個系統分 

析兩個醫學上的數據庫，發現了一些有意義的知識’以增加醫學人員對這兩方面 

的了解。 
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Chapter 1 

Introduction 

Databases are valuable treasures. A database not only stores and provides data 

but also contains hidden precious knowledge, which can be very important. It can 

be a new law in science, a new insight for curing a disease or a new market trend 

that can make millions of dollars. Conventionally, the data is analyzed manually. 

Many hidden and potentially useful relationships may not be recognized by the 

analyst. Nowadays, many organizations are capable of generating and collecting 

a huge amount of data. The size of data available now is beyond the capability 

of our mind to analyze. It requires the power of computers to handle it. Data 

mining, or knowledge discovery in database, is the automated process of sifting 

the data to get the gold buried in the database. 

In this chapter, Section 1.1 is a brief introduction of the definition and the 

objectives of data mining. Section 1.2 states the research motivation. Section 1.3 

lists the contributions of this thesis. The organization of this thesis is sketched in 

Section 1.4. 

1.1 Data Mining 

The two terms Data Mining and Knowledge Discovery in Database have similar 

meanings. The term Data Mining is commonly used by statisticians, to denote 

the finding of useful patterns in data. It consists of applying data analysis and 
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Chapter 1 Introduction 

discovery algorithms to produce patterns or models over the data. On the other 

hand, Knowledge Discovery in Database (KDD) can be defined as the nontrivial 

process of identifying valid, novel, potentially useful, and ultimately understand-

able patterns in data (Fayyad et al. [1996]). The data are records in a database. 

The knowledge discovered from the KDD process should be unable to be obtained 

by a straightforward computation. The knowledge should be not yet discovered 

and should be beneficial to the user. The knowledge should be able to apply to 

new data with some degree of certainty. Finally the knowledge should be human 

understandable. 

KDD is an interactive and iterative process comprises with several steps. In 

Fayyad et al. [1996], KDD is divided into several steps. Data Mining can be 

considered as one of the steps in the KDD process. Data mining is the core of the 

KDD process, and thus the two terms are often used interchangeably. The whole 

process of KDD can consist of five steps: 

1. Selection is made to extract relevant or target data set from the database. 

2. Preprocessing is needed to remove the noise and to handle missing data 

fields. 

3. Transformation is performed to reduce the number of variables under con-

sideration. 

4. A suitable data mining algorithm is employed on the prepared data. 

5. Finally the result of data mining is interpreted and evaluated. 

If the discovered knowledge is not satisfactory, these steps will be iterated. The 

discovered knowledge can then be applied in decision making. 

Different data mining algorithms aim to find different kinds of knowledge. 

Chen et al. [1996] grouped the techniques for knowledge discovery into six cate-

gories. ‘ 

1. Mining of association rules finds rules in the form of "Ai 八.•.八 A^ 玲 

Bi 八•..八 Bn", where Ai and Bj are attributes values. This association rule 
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Chapter 1 Introduction 

tries to capture the association between the attributes. The rule means that 

if Ai and . • • and Am appear in a record, then Bi and • •. and Bn will usually 

appear. 

2. Data generalization and summarization summarized the general character-

istics of a group of target class and presents the data in a high-level view. 

3. Classification formulates a classification model based on the data. The 

model can be used to classify an unseen data item into one of the predefined 

classes based on the attribute values. 

4. Data clustering identifies a finite set of clusters or categories to describe 

the data. Similar data items are grouped into a cluster such that the inter-

class similarity is maximized and the interclass similarity is minimized. The 

common characteristic of the cluster is analyzed and presented. 

5. Pattern based similarity search tries to search for a pattern in temporal or 

spatial-temporal data, such as financial databases or multimedia databases. 

6. Mining path traversal patterns tries to capture user access patterns in an 

information providing system, such as World Wide Web. 

Machine learning (Carbonell et al. [1983]) and data mining share a similar 

objective. Machine learning learns a computer model from a set of training exam-

ples. Many machine learning algorithms can be applied to databases. Rather than 

learning on a set of instances, machine learning is done on a file of records from 

a database (Frawley et al. [1992]). However, databases are designed to meet the 

needs of real world applications. They are often dynamic, incomplete, noisy and 

much larger than typical machine learning data sets. These issues cause difficulties 

in direct application of machine learning methods. 
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Chapter 1 Introduction 

1.2 Motivation 

Data mining has recently become a popular research topic. The increasing use of 

computer results in an explosion of information. These data can be best used if 

the knowledge hidden inside can be uncovered. Thus there is a need for a way 

to automatically discover knowledge from data. The research in this area can be 

useful to a lot of real world problems. For instance, medical domain is a major 

area for applying data mining. With the computerization in hospitals, a huge 

amount of data has been collected. It is beneficial if these data can be analyzed 

automatically. 

Learning from examples is not a new area in computer science. Machine learn-

ing has a well-developed history. Many classification approaches have been de-

signed to construct a model for classification from a set of training cases. However, 

the goal of data mining is different from classification. The objective of data min-

ing is not to classify all the unseen cases perfectly, but discover knowledge inter-

esting to the users, even though the accuracy may be not high. Accuracy should 

be one ofthe requirements for an interesting knowledge, but an approach that can 

only find knowledge with high accuracy should not be a complete approach for 

data mining. In many real-life situations, strong rules just do not exist, or have 

already been discovered since the relationship is so obvious. It is important if the 

data mining method can discover weak rules. 

Another requirement in data mining is that the knowledge discovered should be 

understandable by the user, such that the user can make decision based on the new 

knowledge. Some approaches are black box approaches and not suitable for data 

mining. Some approaches can give human understandable results, but the results 

may be just complicated and difficult to interpret. Rule is commonly used by 

human to represent knowledge, and should be a suitable knowledge representation 

in data mining. However, there are different representations of rule, with different 

representation power. Many rule learning approaches learn rules with its own 

format, and the format may not be powerful enough to represent the knowledge 
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Chapter 1 Introduction 

hidden in the data. Moreover, the rule format may not be the one that the user 

desires. It is advantageous if the knowledge representation can be improved. 

Another interesting knowledge representation is Bayesian network, which is 

based on a well-developed Bayesian probability theory. It is easy to understand 

because of its graphical representation. It can represent the overall causality 

between variables in the domain. One difficulty in Bayesian network learning is 

on how to handle the continuous variables. Friedman and Goldszmidt [1996] has 

proposed a measure for discretization of continuous variables. It is worthwhile to 

investigate the use of other search methods other than the greedy method they 

proposed. 

Evolutionary computation is a kind of weak search method for optimization. 

It is a domain independent search method that can be applied to a wide range of 

problem. Algorithms in evolutionary computation can be used as a search method 

for knowledge discovery. It is suitable for hard search problems where domain 

specific techniques are not available or difficult to design. In this thesis, we will 

investigate the use of evolutionary computation to rule learning and Bayesian 

network learning, and the applications of these techniques on analyses of medical 

databases. 

1.3 Contributions of the research 

The contributions of the research are listed below, in the order that they appear 

in the thesis: 

• An approach for rule learning have been developed. This approach uses 

Generic Genetic Programming (GGP) as the learning algorithm. We have 

designed a suitable grammar to represent a rule, and we have investigated 

how the grammar can be modified in order to learn rules with different 

formats. Other techniques have been employed in GGP to facilitate the 

learning: seeds are used to generate better rules, and the operator 'dropping 

condition' is used to generalize rules. The evaluation function is designed to 
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Chapter 1 Introduction 

measure both the accuracy and significance of the rule, so that interesting 

rules can be learned. 

• The technique token competition has been employed to learn multiple rules 

simultaneously. This technique effectively maintains groups of individuals 

in the population, with different groups evolving different rules. 

• We have investigated the use of Genetic Algorithm in the process of dis-

cretizing continuous variables while learning Bayesian networks. A system 

has been implemented that alternatively learns a Bayesian network struc-

ture and a discretization policy from the data. The approach MDLEP is 

employed to learn the network structure. Genetic Algorithm is used to learn 

the discretization policy, and the performance has been compared with a 

greedy approach. 

• We have developed a data mining system that consists of a causality anal-

ysis step and a rule learning step. These two steps are not independent 

processes. The Bayesian network discovered from the causality analysis can 

help the user to understand the domain, so that the user can construct a 

suitable grammar to guide rule learning, and the search space can be greatly 

decreased. 

• We have applied the data mining system to two real-life medical databases. 

We have consulted the domain experts to understand the domains, so as 

to pre-process the data and construct suitable grammars for rule learning. 

The learning results have been fed back to the domain experts. Interest-

ing knowledge are discovered, which can help the clinician to get a deeper 

understanding of the domains. 

1.4 Organization of the thesis 

Chapter 2 of this thesis in a literature review on different approaches of data 

mining. The approaches are grouped into decision tree approach, classification 

6 
禽 



Chapter 1 Introduction 

rule learning, association rule mining, statistical approach and Bayesian network 

learning. Representative algorithms in each group will be introduced. 

In chapter 3，we will introduce what is Evolutionary Computation, and de-

scribe four evolutionary algorithms: Genetic Algorithm, Genetic Programming, 

Evolutionary Programming and Evolution Strategy, as well as Generic Genetic 

Programming (GGP), which is an extension of Genetic Programming. 

Chapter 4 and chapter 5 will discuss how evolutionary computation can be ap-

plied to discover rules from databases. Chapter 4 will focus on how the problem of 

rule learning is modeled such that GGP can be applied as the learning algorithm. 

The representation of rules, the genetic operators for evolving new rules, and the 

evaluation function will be introduced in this chapter. However, learning one rule 

from data is inadequate. Chapter 5 will describe how to learn multiple number of 

rules. The technique token competition is employed to solve this problem. A rule 

learning system will be introduced, and the experiment results on two machine 

learning databases will be presented in this chapter. The material of these two 

chapters have been published in (Ngan et al. [1998b]). 

Chapter 6 will describe another problem: Bayesian network learning. We will 

first describe an approach, MDLEP, which learns Bayesian Network based on 

the Minimum Description Length (MDL) principle and Evolutionary Program-

ming. The research on discretization of continuous variables in Bayesian Network 

learning based on MDL (Friedman and Goldszmidt [1996]) has been extended. 

Genetic Algorithm is used as the optimization method instead of the proposed 

greedy approach, and the experimental results will be presented. 

In chapter 7, a system for data mining will be introduced. This system com-

bines the approaches for Bayesian network learning and rule learning. The system 

has been used to analyze real-life medical databases for limb fracture and Scol-

iosis. The applications of this system and the learning results will be presented 

in this chapter. A paper on this system has been accepted for publication (Ngan 

et al. [1998a]). 

Chapter 8 is a conclusion of this thesis. The research work will be summarized, 
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and some suggestions for future researches will be given. 
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Chapter 2 

Related Work in Data Mining 

There are a large variety of data mining approaches, with different search methods 

aiming to find different kinds of knowledge. This chapter reviews data mining ap-

proaches related to this research. Decision tree approach, classification rule learn-

ing, association rule mining, statistical approach and Bayesian network learning 

are reviewed in the following sections. 

2.1 Decision Tree Approach 

Decision Tree is a tree like structure that represents the knowledge for classifica-

tion. Internal nodes in a decision tree are labeled with attributes, the edges are 

labeled with attribute values and the leaves are labeled with classes. An example 

of a decision tree is shown in Figure 2.1. This tree is for classifying whether the 

weather of a Saturday morning is good or not. It can classify the weather into 

the class P (positive) or N (negative). For a given record, the classification pro-

cess starts on the root node. The attribute in the node is tested, and the value 

determines which edge is taken. This process is repeated until a leaf is reached. 

The record is then classified as the class of the leaf. Decision tree is a simple 

knowledge representation for representing a classification model, but the tree can 

be very complicate that is difficult to interpret. 
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Chapter 2 Related Work in Data Mining 

out look 

/ T X 
overcast sunny rain 

Z I \ 
P humid i ty w i n d y 

八 八 
high normal true false / \ / \ 

N P N P 

Figure 2.1: A decision tree 

2.1.1 ID3 

ID3 (Quinlan [1986]) is a simple algorithm to construct a decision tree from a set 

of training objects. It is a heuristic top-down irrevocable search. Initially the tree 

contains only a root node and all the training cases are placed in the root node. 

ID3 uses information as a criterion for selecting the branching attribute of a node. 

Let the node contains a set T of cases, with \Cj\ of the cases belonging to one of 

the pre-defined class Cj. The information needed for classification in the current 

node is 
^nfo{T) = - J ： ^ ^ l o J ^ (2.1) 

This value measures the average amount of information needed to identify the 

class of a case. Assume that using attribute X as the branching attribute will 

divide the cases into n subsets. Let 7\ denotes the set of cases in subset i. The 

information required for the subset i is info{Ti). Thus the expected information 

required after choosing attribute X as the branching attribute is the weighted 

average of subtree information : 

i n f o x { T ) = Y . ^ ^ ^ x i n f o { T , ) (2.2) 

Thus the information gain will be 

gain{X) = info{T) - infox(T) (2.3) 

10 . 



Chapter 2 Related Work in Data Mining 

As a smaller value in the information corresponds to a easier classification, the 

attribute X with the maximum information gain is selected for the branching of 

the node. 

After the branching attribute is selected, the training cases are divided by the 

different values of the branching attribute. If all examples in one branch belong 

to the same class, then this branch becomes a leaf labeled with that class. If all 

branches are labeled with a class, the algorithm terminates. Otherwise the process 

is recursively applied on each branch. 

ID3 uses the chi-square test to avoid over-fitting to the noise. In a set T of 

cases, let ocj,xi denote the number of records in class Cj with X 二 xi. If attribute 

X is irrelevant for classification, the expected number of cases belonging to class 

Cj with X = Xi is 

ec,,x. = |C,| X 留 (2.4) 

The value of chi-square is approximately 

x 2 a E E ( o c ^ " . , r % J (2.5) 
. • t̂ t̂  • rf* , 1 j ^j,^i 

In choosing the branching attribute for the decision tree, if x^ is lower than a 

threshold, then that attribute will not be used. This can avoid creating unneces-

sary branches that complicate the constructed tree . 

2.1.2 C4.5 

C4.5 (Quinlan [1993]) is the successor ofID3. The use of information gain in ID3 

has a serious deficiency that it favors tests with many outcomes. C4.5 improves 

this by using a gain ratio as the criterion for selecting the branching attribute. A 

value split info{X) is defined with a similar definition of info{X) 

split info{X) = — E ||| log2 g (2.6) 
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Chapter 2 Related Work in Data Mining 

This value represents the potential information generated by dividing T into n 

subsets. The gain ratio is used as the new criterion 

gain ratio{X) = gain{X)/split info{X) (2.7) 

The attribute with the maximum value on gain ratio{X) is selected as the branch-

ing attribute. 

C4.5 abandoned the chi-square test for avoiding over-fitting. Rather, C4.5 

allows the tree to grow and later prunes the unnecessary branches. The tree 

pruning step replaces a subtree by a leaf or the most frequently used branch. The 

decision on whether a subtree is pruned depends on an estimation of the error 

rate. Suppose that a leaf gives an error of E out of N training cases. For a given 

confidence level CF, the upper limit of the error probability for the binomial 

distribution is written as UcF{E,N). The upper limit is used as the pessimistic 

error rate ofthe leaf. The estimated number of errors for a leaf covering N training 

cases is thus N x Ucp{E, N). The estimated number of errors for a subtree is the 

sum of errors of its branches. 

Pruning is performed if replacing a subtree by a leaf or a branch can give a 

lower estimated number of errors. For example, for a subtree with three leaves, 

which respectively covers 6, 9 and 1 training cases without errors, the estimated 

number of mis-classification with the default confidence level of 25% is 

6x^5%(0,6)+9x^5%(0,9)+lxt /25%(0, l ) = 6x0.206+9x0.143+lx0.750 = 3.273. 

If they are combined to a leaf node, it mis-classifies 1 out of 16 training case. The 

estimated number of mis-classifications of this leaf is 

16 X t /25%(l , 16) = 16 X 0.157 二 2.512. 

This is better than the original subtree and thus the leaf can replace the original 

subtree. 
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2.2 Classification Rule Learning 

A rule is a sentence of the form "if antecedents, then consequent”. Rules are 

commonly used in expressing knowledge and are easily understood by human. 

Rules are also commonly used in expert systems for decision making. Rule learning 

is the process of inducing rules from a set of training examples. Many algorithms 

in rule learning try to search for rules to classify a case into one of the pre-specified 

classes. 

2.2.1 AQ algorithm 

AQ (Michalski [1969]) is a family of algorithms for inductive learning. One ex-

ample is AQ15 (Michalski et al. [1986]). The knowledge representation used in 

AQ is the decision rule. A rule is represented in Variable-valued Logic system 1 

(VLi). In VLi, a selector relates a variable to a value or a disjunction of values, 

e.g. color 二 red V green. A conjunction of selectors forms a complex. A cover is a 

disjunction of complexes describing all positive examples and none of the negative 

examples. A cover defines the antecedents of a decision rule. The original AQ can 

only construct exact rules, i.e. for each class, the decision rule must cover only 

the positive examples and none of the negative examples. 

AQ algorithm is a covering method instead of the divide-and-conquer method 

of ID3. The search algorithm can be described as follows (Michalski [1983]): 

1. A positive example, called the seed, is chosen from the training examples. 

2. A set of complexes, called a star, that covers the seed is generated by the 

star generating step. Each complex in the star must be the most general 

without covering a negative example. 

3. The complexes in the star is ordered by the lexicographic evaluation func-

tion (LEF). A commonly used LEF is to maximize the number of positive 

examples covered. 
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4. The examples covered by the best complex is removed from the training 

examples 

5. The best complex in the star is added to the cover. 

6. Steps 1-5 are repeated until the cover can cover all the positive examples. 

The searching in the star generating step (step 2) is a top down irrevocable 

beam search. This step can be summarized as follows: 

1. Let the partial star be the set containing the empty complex, i.e. without 

any selector. 

2. While the partial star covers negative examples, 

(a) Select a covered negative example. 

(b) Let extension be the set of all selectors that cover the seed but not the 

negative example. 

(c) Update the partial star to be the set {x 八 y | x e partial star, y £ 

extension}. 

(d) Remove all complexes in the partial star subsumed by other complexes. 

3. Trim the partial star, i.e. retain only the maxstar best complexes. 

In the star generating step, not all the complexes that cover the seed are 

included. The partial star will be trimmed by retaining only maxstar best com-

plexes. The heuristic used is to retain the complexes that "maximize the sum of 

positive examples covered and negative examples excluded". 

2.2.2 CN2 

CN2 (Clark and Niblett [1989]) incorporates ideas from both AQ and ID3 algo-

rithm. AQ algorithm cannot handle noise properly. CN2 retains the beam search 

of AQ algorithm but removed its dependence on specific training examples (the 
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seeds) during the search. CN2 uses a decision list as the knowledge representa-

tion. A decision list is a list of pairs (0i ,Ci ) , (^2,^2), . •., ((^,CV),where c^ is a 

complex, Ci is a class, and the last description 4>r is the constant true. This list 

means ‘ if (;z!)ithen Ci else if ¢2 then C2 • • .else CV，. 

Each step of CN2 searches for a complex that covers a large number of examples 

of class C and a small number of other classes. Having found a good complex, 

the algorithm removes those examples it covers from the training set and adds the 

rule 'if <complex> then predict CP to the end of rule list. This step is repeated 

until no more satisfactory complexes can be found. 

The searching algorithm for a good complex is a beam search. At each stage 

in the search, CN2 stores a star S of 'set of best complexes found so far，. The 

star is initialized to the empty complex. The complexes of the star are then 

specialized by intersecting with all possible selectors. Each specialization is similar 

to introducing a new branch in ID3. All specializations of complexes in the star 

are examined and ordered by the evaluation criteria. Then the star is trimmed 

to size maxstar by removing the worst complexes. This process of searching is 

iterated until no further complexes that exceed the threshold of evaluation criteria 

can be generated. 

The evaluation criteria for complexes consist of two tests for testing the predic-

tion accuracy and significance of the complex. Let (pi, •. .,Pn) be the probability 

of examples in class Ci, •.. Cn. CN2 uses the information theoretic entropy (Equa-

tion 2.1) 
info = — ^pi l0g2(pi) (2.8) 

i 

to measure the quality of complex (lower the entropy, the better the quality). The 

likelihood ratio statistic is used to measure the significance of complex : 

2 E / i l 0 g ( / , M ) (2.9) 
i=l 

where ( / i , . . .， fn) is the observed frequency distribution and ( e i , . . . , e^) is the 

expected distribution. A complex with a high value of this ratio means the high 
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accuracy on training data is not just due to chance. 

2.2.3 C4.5RULES 

Other than being able to produce a decision tree as described in section 2.1.2, a 

component of C4.5, C4.5RULES (Quinlan [1993]), can transform the constructed 

decision tree by C4.5 into production rules. Each path of the decision tree from 

the root to the leaf equals to a rule. The antecedent of the rule contains all the 

conditions of the path, and the consequent is the class of the leaf. However this 

rule can be very complicate and a simplification is required. Suppose that the rule 

gives E errors out of the N covered cases, and if condition X is removed from the 

rule, the rule will give E^- errors out of the N^- covered cases. If the pessimistic 

error UcF^E^-.N^-) is not greater than the original pessimistic error UcF[E, N), 

then it makes sense to delete the condition X. For each rule, the pessimistic error 

for removing each condition is calculated. If the lowest pessimistic error is not 

greater than that of the original rule, then the condition that gives the lowest 

pessimistic error is removed. The removal is repeated until the pessimistic error 

of the rule cannot be improved. 

After this simplification, the set of rules can be exhaustive and redundant. For 

each class, only a subset of rules is chosen out of the set of rules classifying it. 

The subset is chosen based on the Minimum Description Length principle. The 

principle states that the best rule set should be the rule set that required the 

fewest bits to encode the rules and their exceptions. For each class, the encoding 

length for each possible subset of rules is estimated. The subset that gives the 

smallest encoding length is chosen as the rule set of that class. 

2.3 Association Rule Mining 

Association rule mining (Agrawal et al. [1993]) focuses on discovering knowledge 

between items in a large database of sales transactions. Association rule is a rule 

of the form " i f X then Y'\ where X and Y are items in a transaction. Association 
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rule mining is different from classification, as there is no pre-specified classes in the 

consequent. An association rule is valid if it can satisfy the threshold requirement 

on confidence factor and support. The rule is required to have at least c% of 

records that satisfy X also satisfy F , where c is the confidence threshold. It is 

also required that the number of records satisfying both X and Y has to be larger 

than s% of the records, where s is the support threshold. 

The problem of mining association rules from a database can be solved in two 

steps. The first step is to find the sets of attributes that have enough support. 

These sets are called large itemsets as 'large' is used to denote having enough sup-

port. The second step is from each large itemset, association rules with confidence 

larger than the threshold are searched. The attributes are divided into antecedents 

and consequent and the confidence is calculated. The main researches (Agrawal 

et al. [1993]; Mannila et al. [1994]; Agrawal and Srikant [1994]; Han and Fu [1995]; 

Park et al. [1995]) consider Boolean association rules, where each attribute must 

be Boolean (e.g. have or have not buy the item). They focus on developing a fast 

algorithm for the first step, as this step is very time consuming. They can be 

efficiently applied to large databases, but the requirement of Boolean attributes 

limited their uses. 

2.3.1 Apriori 

Apriori (Agrawal and Srikant [1994]) is an algorithm for generating large itemsets 

(i.e. the first step) in Boolean association rule mining. The support of an itemset 

has a characteristic that the subsets of a large itemset must be large, and supersets 

of a small (i.e. not large) itemset cannot be large. Apriori makes use of this 

characteristic to drastically reduce the search space. 

The outline of Apriori algorithm is listed as follows: 

1. Count the support of item sets with 1 element. 

2. Li = set of size 1 itemsets that are large. 

3. for {k = 2; k < no-of_attributes', k + +) 
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(a) generate extensions of each size k - 1 large itemset by adding one more 

attributes; 

(b) Ck = set of extensions of size k — 1 large itemsets; 

(c) For each itemset in Ck, if one of its size k — 1 subset is not in Lk, delete 

it from Ck\ 

(d) For each itemset in Ck, count the support and check whether it is large; 

(e) Lk = set of large itemsets in Ck. 

Apriori first searches for large itemsets with one attribute. Then other large 

itemsets are searched from the itemsets known to be large. The large itemsets are 

extended by adding one attribute. If one subset of the extended itemset is not 

known to be large, this itemset is rejected because the subset of a large itemset 

must be large. The supports of these extended itemsets are counted to check 

whether they are still large. Once a large itemset is found to be not large, further 

extension of it is no longer necessary because its superset must be small. 

2.3.2 Quantitative Association Rule Mining 

Quantitative Association Rules do not restrict the attributes to be Boolean. Quan-

titative or categorical attributes are allowed. In Srikant and Agrawal [1996], the 

problem of mining quantitative association rules is mapped into a Boolean as-

sociation rule problem. Intervals are made for each quantitative attribute. A 

new Boolean attribute is created for each interval or category. This attribute is 

set to 1 if the original attribute is in that interval or category. For example, a 

record with age equals 23 will have ' l 's in the new interval attributes 'Age:(21-

25)' and 'Age:(15-30)', and have '0's in the new interval attribute 'Age:(15-20)', 

'Age:(26-30)'. However, this mapping will face two new problems: 

• "ExecTime". The number of attributes is hugely increased, and greatly 

affects the execution time. 

18 
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• "ManyRules". If an interval of a quantitative attribute has minimum sup-

port, any range containing this interval will also has minimum support. Thus 

the number of rules increase greatly. Many of them just differ in the ranges 

of the quantitative attributes and in fact refer to the same association. 

To tackle the first problem, a "maximum support" parameter is required from 

the user. The new Boolean attributes are not created for all possible intervals. If 

the support of an interval exceeds the maximum support, it will not be considered 

as the rule will be too general and should already be covered by other rules having 

a smaller interval. To tackle the second problem, an "interesting level" parameter 

is required from the user. An interesting measure is defined to measure how much 

the support and/or confidence of a rule is greater than expected. Those rules with 

interest measure lower than the user requirement is pruned. 

2.4 Statistical Approach 

Statistic and data mining both try to search knowledge from data. Statistic ap-

proach focuses more on quantitative analysis. A statistical perspective on knowl-

edge discovery has been given in Elder IV and Pregibon [1996]. Statisticians 

usually assume a model for the data and then look for the best parameters for the 

model. They interpret the models based on the data. They may sacrifice some 

performance in order to be able to extract the meaning from the model. How-

ever in recent years statistician has also moved the objective to the selection of a 

suitable model. Moreover, statisticians place strong emphasis on estimating or ex-

plaining the model uncertainty by summarizing the randomness to a distribution. 

The uncertainties are captured in the standard error of the estimation. 

2.4.1 Chi Square Test and Bayesian Classifier 

One of the most useful statistical measures for data mining is the chi-square (x^) 

test described in equation 2.5. The value x^ measures the dependency between two 
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attributes. If this value is smaller than a certain threshold, it can conclude that 

one attribute is not relevant for determining the other attribute. The commonly 

used threshold is 义 at 95% or 99% confidence. 

The Bayesian probability theorem can be used to classify an object into one 

of the classes {c1,c2, • •.，c^}. Let the object be described by a feature vector F 

which consists of attributes { /1, /2，...，//}. The probability of this object belongs 

to class Ci is given by 
删 二 ” " ^ ^ (2.10) 

The use of this theorem can provide probabilistic knowledge for classifications 

of unseen objects. The object with a feature vector F can be classified to the class 

a which gives the maximum value on this probability. Since the denominatorp(F) 

appears in every probability, it is actually a normalizing factor and can be ignored 

in the calculation. The probability p{ci) can be estimated as the occurrence of Q 

over the total number of existing objects. Thus the main concern is on how to 

estimate p{F{ci). 

This probability can be estimated by making assumptions. The simplest as-

sumption is that each feature in F is statistical independence, that is 

p{F\ci) = {[pifk\ci) (2.11) 
k=l 

the value p{fk]ci) can be estimated as the occurrence of objects in class Ci having 

/fc over the occurrence of objects in class Q. Another assumption given in Wu 

et al. [1991] is that the probability can be under a normal distribution, that is 

p {F l c ) 二 问 二 丨 即 , 2 e x p ( - i ( F - M , y C r ^ F -风)） （ 2 . 1 2 ) 

where Q is the covariance matrix and Mi is the mean vector over n unseen cases. 

Thus the problem is reduced to the measurement of the two parameters Q and 

Mi. 
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A = ai A = tt2 Total 
C = Ci Oci,ai ĉ1,a2 Oci 
C — ̂ 2 Oc2,ai ^c2,a2 Ĉ2 
Total Oai 0^ 

Table 2.1: A contingency table for variable A vs. variable C 

2.4.2 FORTY-NINER 

FORTY-NINER (Zytkow and Baker [1991]) is a system for discovering regular-

ities in a database. It searches for significant regularities compared to the null 

distribution hypothesis. The search is divided into two phases. The first phase is 

a search for two-dimensional regularities (i.e. regularities between two variables). 

The second phase generalizes the two-dimensional regularities to more dimensions. 

Either phase can be repeated many times with human interventions. 

In the first phase, each attribute is transformed by using aggregation, slicing 

and projection. The search is performed on partitions of the database. The 

user can reduce the search space by limiting the number of independent variables 

and the depth of partitioning. The regularity is represented in a contingency 

table and in the best linear fit. An example of a contingency table is shown 

in Table 2.1, where 0 ,̂01 is the actual number of occurrence of C 二 Ci and 

A 二 ai. This value is compared with the expected occurence eci,ai = Oci x OaJN 

(where N is the total number of records), and x^ is calculated to measure the 

significance of the regularity. The best liner fit between C and Ais a linear 

regularity C 二 mA + b obtained by using the least squares method, where m is 

the slope and b is the intercept. A value r^ measures the significance of the linear 

regularity. It is calculated over all data points {Xi,Yi) using the formula: 

E Ĉ i - %? 
r2 二 1 一，1 (2.13) 

im 一 均
2 

where Y is the average value of Y over the n data points, and ^ is the value of 

Y predicated by the linear regularity. 

21 
« 



Chapter 2 Related Work in Data Mining 

In the second phase, the user selects the 2-D regularities for expansions. 

The regularity expansion module adds one dimension at a time and the multi-

dimension regularity is formed. This module can be applied recursively. Since the 

search space would be exponential if all possible multi-dimensional regularities is 

considered, user intervention is required to guide the search. 

2.4.3 EXPLORA 

EXPLORA (Hoschka and Klosgen [1991]; Klosgen [1993]) is an integrated system 

for helping the user to search for interesting relationships in the data. A state-

ment is an interesting relationship between a value of a dependent variable and 

values of several independent variables. Various statement types are included in 

EXPLORA, e.g. rules, changes and trend analyses. The value of the dependent 

variable is called the target group and the combination of values of independent 

variables is called the subgroup. For example, the sufficient rule pattern 

48% of the population are CLERICAL. However, 92% of AGE > 40, 

SALARY < 10260 are CLERICAL 

is a relationship between the target group CLERICAL and the independent vari-

ables are AGE and SALARY. The user selects one statement type, identifies the 

target group and the independent variables, and inputs the suitable parameters. 

EXPLORA calculates the statistical significance of all possible statements and 

outputs the statements with significance above the threshold. 

The search algorithm in EXPLORA is a graph search. Given a target group, 

EXPLORA search for the subgroup for regularities. It first uses values from one 

variable, then combinations of values from two variables, and then combination of 

values from three variables, and so on until the whole search space is exhaustively 

explored. The search space can be reduced by limiting the number of combinations 

of independent variables and by the use of redundancy filters. Depending on the 

type of the statements, different redundancy filters can be used. For example, for 

the sufficient rule pattern “If subgroup then target group", the redundancy filter 
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is “if a statement is true for a subgroup a, then all statements for the subgroup a 

八 other values are not interesting". For the necessary rule pattern “If target group 

then subgroup", the redundancy filter is "if a statement is true for subgroup aA6, 

then the statement for subgroup a is true". 

2.5 Bayesian Network Learning 

Bayesian network (Charniak [1991]; Heckerman and Wellman [1995]) is a formal 

knowledge representation supported by the well-developed Bayesian probability 

theory. A Bayesian network captures the conditional probabilities between at-

tributes. It can be used to perform reasoning under uncertainty. A Bayesian 

network is a directed acyclic graph. Each node represents a domain variable, and 

each edge represents a dependency between two nodes. An edge from node A to 

node B can represent a causality, with A being the cause and B being the effect. 

The value of each variable should be discrete. Each node is associated with a 

set of parameters. Let Ni denote a node and U^i denote the set of parents of 

Ni. The parameters of Ni are conditional probability distributions in the form of 

P{Ni{UNi), with one distribution for each possible instance of U^.. Figure 2.2 is 

an example Bayesian network given in Charniak [1991]. This network shows the 

relationships between whether the family is out of the house ( /o ) , whether the 

outdoor light is turned on (/o), whether the dog has bowel problem (bp), whether 

the dog is in the backyard (do), and whether the dog barking is heard {hb). 

Since a Bayesian network can represent the probabilistic relationships among 

variables, one possible approach of data mining is to learn a Bayesian network 

from the data (Heckerman [1996]; Heckerman [1997]). The main task of learning 

a Bayesian network is to automatically find directed edges between the nodes, such 

that the network can best describe the causalities. Once the network structure 

is constructed, the conditional probabilities are calculated based on the data. 

The problem of Bayesian network learning is computationally intractable (Cooper 

1990]). However, Bayesian networks learning can be implemented by imposing 
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P(fo) = 0.15 p(bp) = 0.01 

X'^ily-ouTX ^^wel-problem^ 
V ^ f o ) J V _ _ _ W _ ^ 

^ ^ _ ^ ^ ^ " S < ^ 9 
O i g h t - o n ( l o ) ) ( d = u t ) p ( lo |n fobp) = 0.90 
V j J V (do) y p(lo I fo nbp) = 0.97 

^ Z p ( l o |n fonbp ) = 0.03 
P ( lo | fo) = 0.6 ^ _!：~ _ 

p ( l o h f o ) = 0.05 广hear-bark^ 
K^om^^ 

p(hb 丨 do) = 0.7 
p(hb I ndo) = 0.01 

Figure 2.2: A Bayesian network example 

limitations and assumptions. For instance, the algorithms of Chow and Liu [1968 

and Rebane and Pearl [1989] can learn networks with tree structures, while the 

algorithms of Herskovits and Cooper [1990], Cooper and Herskovits [1992] and 

Bouckaert [1994] require the variables to have a total ordering. More general 

algorithms include Heckerman et al. [1995], Spirtes et al. [1993] and Singh and 

Valtorta [1993]. More recently, Larranaga et al. [1996a]; Larranaga et al. [1996b' 

has proposed algorithms for learning Bayesian networks using Genetic Algorithm. 

2.5.1 Learning Bayesian Networks using the Minimum De-

scription Length (MDL) Principle 

One approach for Bayesian network learning is to apply the Minimum Description 

Length (MDL) principle (Lam and Bacchus [1994]; Lam [1998]). In general there 

is a trade-off between accuracy and usefulness in the construction of a Bayesian 

network. A more complex network is more accurate, but computationally and 

conceptually more difficult to use. Nevertheless, a complex network is only accu-

rate for the training data, but may not be able to uncover the true probability 

distribution. Thus it is reasonable to prefer a model that is more useful. The 

MDL principle (Rissanen [1978]) is applied to make this trade-off. This principle 
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states that the best model of a collection of data is the one that minimizes the 

sum of the encoding lengths of the data and the model itself. The MDL metric 

measures the total description length DL of a network structure G. A better net-

work has a smaller value on this metric. A heuristic search can be performed to 

search for a network that has a low value on this metric. 

Let U 二 { X i , . . . , Xn} denote the set of nodes in the network (and thus the set 

of variables, since each node represents a variable), n^^ denote the set of parents 

of node Xi, and D denote the training data. The total description length of a 

network is the sum of description lengths of each node: 

DL(U, G, D) 二 ^ DL[Xi, Ux,) (2.14) 
Xieu 

This length is based on two components, the network description length DLmt 

and the data description length DLdata' 

DL(Xi, Ux,) = DLnet{Xi, Ux,) + DLdata{Xi, Ux,) (2.15) 

The formula for the network description length is 

DLnet{XiUx,) = kilog,{n) + d{si - 1) Y[ sj (2.16) 
j^^Xi 

where ki is the number of parents of variable Xi, Si is the number of values Xi 

can take on, Sj is the number of values a particular variable in Uxi can take 

on, and d is the number of bits required to store a numerical value. This is the 

description length for encoding the network structure. The first part is the length 

for encoding the parents, while the second part is the length for encoding the 

probability parameters. This length can measure the simplicity of the network. 

The formula for the data description length is 

DL,ata{X,Ux,) = ^ E ^i^iflxJ log2 J ^ ^ " ^ ^ ^ (2.17) 
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where M(.) is the number of cases that match a particular instantiation in the 

database. This is the description length for encoding the data. A Huffman code 

is used to encode the data using the probability measures defined by the network. 

This length can measure the accuracy of the network. 

2.5.2 Discretizating Continuous Attributes while Learn-

ing Bayesian Networks 

Bayesian network can only represent discrete variables. One approach to handle 

the databases with continuous variables is to discretize them first. The continuous 

variables are usually discretized by thresholds specified by human. However, dif-

ferent discretization policy will produce different network structure. The causality 

will be lost if the discretization is not suitable. Thus it is desirable to search for 

the best discretization policy before the learning of the Bayesian network is per-

formed. 

Formally, a discretization sequence X defines a function that maps a continuous 

variable to a discrete variable. Each discretization sequence contains a list of 

threshold values. The variable will be discretized according to the ranges specified 

by the thresholds. For example, if the threshold list is < h , h , . " , t k 〉，h < 

t2 • • • < tk, the function fx defined in the discretization sequence A should be: 

f 

0 if X < h 

fx{x) 二 i if ti < X < ti^i 

k if tk < X 
� 

A discretization policy , A 二 {A^ : Xi is continuous}, is a collection of discretiza-

tion sequences for each continuous variable. The policy defines a new set of vari-

ables U* = {X*,.. .,X*} where X* = ^ , ( ¾ ) if Xi is continuous and X* = Xi 

otherwise. 

Friedman and Goldszmidt [1996] extended the MDL score to evaluate the 
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discretization policy while learning the Bayesian network structure. The origi-

nal training data D is discretized into a new data set D*. A Bayesian network 

structure G for the discretized variables U* can be learned from D*. The new 

definition of the MDL score includes the description length of the network as well 

as description length of the discretization policy: 

DL*(U*,G, A, D) = DL(U*,G, D*) + DL^iA) + DLo^^niD, A) (2.18) 

• The first part, DL(U*,G,D*), is the score of the network under the dis-

cretized data, and can be calculated by using Equation 2.14. 

• The second part, DLA{A), is the length for encoding the particular dis-

cretization policy A over all of the possible discretization policy. Let Valn ( ¾ ) 

to be the set of values of Xi that appear in the data set D, Si = \ValD{Xi) 

to be the cardinality of this set, and 5* = \ValD{X*)\ to be the cardi-

nality of the set of values of X*. The thresholds for Xi in the discretiza-

tion policy is chosen from among the Si - 1 mid-point values. Since there 

are (^r^)different discretization sequences of cardinality 5*, the discretiza-

tion sequence can be indexed by using log (^ri)bits. Because log (^p^) < 

{si - l ) i 7 ( ^ ) , where H{p) = -plogp - (l-p) l o g ( l - p ) , the description 

length of A is equal to: 

DL^= E (̂ . - l ) ^ ( f ^ ) (2-19) 
Xi is continuous ^ 

• The third part, DLD*—D[D,A), is the encoding length for reconstruct U 

from U*. For a particular value of Xi, the encoding length for reconstruc-

tion from X* using the Huffman code is approximately - log p{Xi\X*)= 

- l o g ( ^ ^ ) , where M(.) is the number of cases that match a particular 

instantiation in the database. This encoding has to be repeated for each 
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record in the database. Thus this part is equal to: 

DLn*^o{D, A) = - E E ^(¾) l � g ( ^ ^ ) (？圳 
i Xi � � ) 

Friedman and Goldszmidt [1996] have also described a greedy approach for 

learning the discretization policy as well as the Bayesian network. The approach 

learns the discretization policy and the network structure alternatively. It starts 

with a initial discretization policy and learns the Bayesian network from the dis-

cretized data set by using the MDL metric. Based on this learned structure, 

a discretization policy is learned by using the MDL metric. In learning the dis-

cretization policy, only one variable is re-discretized at a time, with the discretiza-

tion for other variables being fixed. The discretization sequence of this variable is 

reset to empty (i.e. no threshold values) first. The greedy approach searches for a 

possible refinement. The split that gives the largest decrease in the MDL metric is 

added to the current discretization sequence. The process is repeated until there 

is no improvement. The algorithm of this approach can be summarized below: 

1. Start with an initial discretization policy. 

2. Learn a network structure from the discretized data set. 

3. Learn a new discretization policy based on the learned network structure. 

3.1 For each variable, search for the best discretization sequence. 

3.1.1 Reset the discretization sequence to empty. 

3.1.2 Calculate the decrease in MDL for each possible split 

3.1.3 Add the split with the largest decrease to the current discretization 

sequence. 

3.1.4 Repeat 3.1.2-3.1.3 until no improvement. 

3.2 Repeat 3.1 until no improvement in MDL. 

4. Repeat 2-3 until no improvement in MDL. 
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Overview of Evolutionary 

Computation 

3.1 Evolutionary Computation 

Evolutionary Computation is a term to describe computational methods that sim-

ulate the natural evolution to perform function optimization and machine learning. 

A potential solution to the problem is encoded as an individual An evolutionary 

algorithm maintains a group of individuals, called the population, to explore the 

search space. A fitness function evaluates the performance of each individual to 

measure how close it is to the solution. The search space is explored by evolving 

new individuals. The evolution is based on the Darwinian principle of evolution 

through natural selection: the fitter individual has a higher chance of survival, and 

tends to pass on its favorable traits to its offspring. A ‘good, parent is assumed 

to be able to produce 'good, or even better offspring. Thus an individual with a 

higher score in the fitness function have a higher chance of undergoing evolution. 

Evolution is performed by changing the existing individuals. New individuals are 

generated by applying genetic operators that alter the underlying structure of 

individuals. ‘ 

This search technique is a 'weak' method. It is a general, domain independent 

method that does not require any domain-specific heuristic to guide the search. 
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Parameter values: Xi = 7, X2 二 5, x^ = 1 
Binary values: Xi — l l l jX2 — 101, x^ = 01 
Chromosome: | 1 | 1 | 1 | i | 0 | 1 | 0 | 1_ 

Figure 3.1: The chromosome in GA 

Examples of algorithms in evolutionary computation include Genetic Algorithm, 

Genetic Programming, Evolutionary Programming and Evolution Strategy. They 

mainly differ in the evolution models assumed, the evolutionary operators em-

ployed, the selection methods, and the fitness functions used. 

3.1.1 Genetic Algorithm 

Genetic Algorithms (GA) (Holland [1992]; Goldberg [1989]) is a search method for 

optimization. The goal of GA is to search for values for parameters Xi, cc2, •.., ^n 

that optimizes a fitness function, f(x1,x2, • • .,Xn). The values of parameters are 

encoded as a fixed-length binary bit string, which becomes the chromosome of an 

individual. For example, if the parameters are real numbers, the binary value of 

these parameters can be concatenated to form the chromosome, as illustrated in 

3.1. Each individual stores one chromosome. The binary bit string is called the 

genotype of the individual, while the parameter values encoded by the bit string 

is called the phenotype of the individual. 

The algorithm of a simple GA is shown in Table 3.1. The algorithm begins 

with an initial population of individuals. The chromosomes of these individuals 

are randomly generated. Each individual is then evaluated by a fitness function to 

get a fitness value. The binary bits in the chromosome are decoded and the value 

of fitness function on this set of parameter values is calculated. Then a number of 

generations are iterated to evolve better individuals. In each generation, certain 

individuals are selected from the population of current generation as the parents. 

The selection is based on the Darwin's principle of survival of the fittest. The 

probability of an individual being selected is proportional to the fitness of the 

individual. This selection method is called fitness proportionate selection. The 

detail of selection methods is discussed in Section 3.1.5. Crossover is performed 
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Initialize the generation, t, to be 0. 
Initialize a population of individual, Pop(t), with size popsize 
Evaluate the fitness of all individual in Pop(t) 
While the termination criteria is not satisfied 

Initialize Pop(t+l) as an empty set 
While size of Pop(t+l) < popsize 

Select two individuals, parentl and parent2, from Pop(t) 
Cross-over parentl and parent2 to produce childl and child2 
Mutate childl and child2 
Evaluate the fitness of childl and child2 
Put childl and child2 into Pop(t+l) 

Increase the generation t by 1 
Return the individual with the highest fitness value 

Table 3.1: The Simple Genetic Algorithm 

with a probability of Pc to recombine two parents. If crossover is not performed, 

then the children is just the same as the parents. The children then further 

undergo a mutation with a probability of Prn- The mutated children are put into 

the next generation ofpopulation. The generation is iterated until the termination 

criterion is met. An example of a termination criterion is that an individual can 

achieved a requirement of fitness value, or the maximum number of generation is 

exceeded. 

Crossover exchanges the genetic materials in the chromosomes of two parents 

to produce two children. A random position in the bit string is chosen. The bits 

after this crossover point in the parental chromosomes are exchanged, as illustrated 

in Figure 3.2. This kind of crossover is called one point crossover. Mutation flips 

a bit from 0 to 1 or vice versa, as illustrated in Figure 3.3. Each bit has the same 

probability Prn of mutation. Mutation is a secondary operator that can restore 

lost genetic materials. For example, if all the individuals with 0 in the first bit 

are not selected as parents, then only crossover cannot re-generate a 0 at the first 

bit. However, mutation can re-introduce this lost 'gene' into the population. 
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0 I 1 I 1 I 0 11 1 1 丨 0 I 0 I I 0 I 1 I 1 I 0.|| 0 I 0 I 0 I 1 ‘ 
parent 1 ~)• child 1 

crossover 
1 I 1 丨 0 丨 1 丨 丨 0 丨 0 丨 0 丨 1 I I 1 丨 1 丨 0 I 1.11 1 I 1 I 0 I 0 • 

parent 2 child 2 

Figure 3.2: Crossover in GA. The crossover point is the 4th bit and the bits after 
it are exchanged 

0 I 1 I 1 I 0 I 0 I 0 I 0 I 1 I — I 1 丨 1 I 1 丨 0 I 0 0 I 0 丨 1 
before mutation mutation after mutation 

Figure 3.3: Mutation in GA. Mutation occurs at the 1st bit and the 4th bit 

3.1.2 Genetic Programming 
Genetic Programming (GP) (Koza [1992]; Koza [1994]) is an extension of Genetic 

Algorithm. They mainly differ on the representation of chromosomes. The chro-

mosome of GA is with fixed length. Each bit in the chromosome has its own 

meaning. The chromosome of GP is a tree consists of functions and terminals. 

The phenotype of the chromosome is a computer program, which when executed 

can solve the problem. 

GP evolves a computer program in the language LlSP. In LlSP, all operations 

are executed by performing functions to arguments. A function call is represented 

as a list of the function and the arguments, enclosed by parentheses. The first 

element in the list is the function and the subsequent elements are the arguments. 

This kind of expression is called a S-expression. Every S-expression can be rep-

resented in a tree format. A function becomes a parent node and the arguments 

become the branches. For example, Figure 3.4 is the tree representing the S-

expression (+ 1 2 (IF (> TIME 10) 3 4). The function IF returns the second 

argument if the first argument is true, otherwise the third argument. The symbol 

TIME is a variable. The internal nodes of this tree are the functions and the leaf 

nodes are the terminals. This tree representation is the knowledge representation 

of chromosomes used in GP. , 

To apply GP to a problem, a set of functions F and a set of terminals T have to 

be defined. The algorithm of GP is very similar to GA. A set of initial individuals 
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Figure 3.4: The tree representation of a S-expression 

Initialize the generation, t, to be 0. 

Initialize a population of individual, Pop(t), with size popsize 
While the termination criteria is not satisfied 

Evaluate the fitness of all individuals in Pop(t) 
Initialize Pop(t+l) as an empty set 
While size of Pop(t+l) < popsize 

Choose a genetic operation probabilistically 
If reproduction 

Select one individual based on fitness 
Copy the individual into Pop(t+l) 

If crossover 
Select two individuals based on fitness 
Perform crossover 
Insert the two offspring into Pop(t+l) 

If mutation 
Select one individual based on fitness 
Perform mutation 
Insert the offspring into Pop(t+l) 

Increase the generation t by 1 
Return the individual with the highest fitness value 

Table 3.2: The Algorithm of Genetic Programming 
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are created randomly from the function set and the terminal set. Each individual is 

evaluated by a fitness function. New individuals are evolved by genetic operators, 

including reproduction, crossover and mutation. The generation of evolutions 

repeated until the termination criterion is satisfied. The algorithm is sketched in 

Table 3.2. 

To create an individual, a function is selected from F to be the root. A number 

of branches, which equals to the arity of this function, are created from the root. 

At each branch a symbol is selected from the set F U T. If a function is selected, 

the above process repeated recursively. 

The genetic operators typically used in GP are reproduction, crossover and 

mutation. In reproduction, the parent is just copied unchanged to the new popu-

lation. In crossover, two subtrees are selected from the trees of each parent. These 

subtrees are exchanged to produce two children, as shown in Figure 3.5. In muta-

tion, a subtree is selected from the parental tree, and then replaced by a randomly 

generated subtree, as shown in Figure 3.6. The generation of the replacing subtree 

is the same as the generation of the initial population. Mutation is considered 

as less important in GP. It is because particular functions and terminals are not 

associated with fixed positions. It is rare for a function or terminal to disappear 

entirely from all the nodes of all individuals. Thus, mutation is not a necessary 

operation to restore the lost genetic materials. 

3.1.3 Evolutionary Programming 

Evolutionary Programming (EP) (Fogel [1994]; Fogel et al. [1966]) emphasizes on 

the behavioral linkage between parents and their offspring, rather than seeking to 

emulate specific genetic operators as observed in nature. Different from GA, EP 

does not require any specific genotype in the individual. EP employs a model of 

evolution at a higher abstraction. Mutation is the only operator used for evolution. 

A typical process of EP is outlined in Table 3.3. A set of individuals is ran-

domly created to make up the initial population. Each individual is evaluated by 

the fitness function. Then each individual produces a child by mutation. There 
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^^^^^¾! | ( j ^ ^ ^ ^ 
1/^-^ / ^ I Parent 2 
(Time) MOj j 
Parent 1 ^̂̂ ^̂̂ ^̂̂ _̂̂ ^ 

^^^^^11 ^ ^ ^ ^ ! ^ ^ 

Child 1 j(rimeJ (10) j 

Child 2 

Figure 3.5: An example of crossover in GP. The selected subtree is enclosed by 
the dashed box 

^ ^ 0 ^ ^ ^ 

( 5 f ^ ^ " " i o | ^ ^ " n 

I ^ S ^ | - | ® ^ | 
i(B@ I L^__®l 

Parent Child 

Figure 3.6: An example of mutation in GP. The selected subtree is enclosed by 
the dashed box ‘ 
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Initialize the generation, t, to be 0. 
Initialize a population of individual, Pop(t) 
Evaluate the fitness of all individual in Pop(t) 
While the termination criteria is not satisfied 

Produce one or more offspring from each individual by mutation 
Evaluate the fitness of each offspring 
Perform a tournament for each individual 
Put the individuals with high tournament scores into Pop(t+l) 
Increase the generation t by 1 

Return the individual with the highest fitness value 

Table 3.3: The Algorithm of Evolutionary Programming 

is a distribution of different types of mutation, ranging from minor to extreme. 

Minor modifications in the behavior of the offspring occur more frequently and 

substantial modifications occur more unlikely. The offspring is also evaluated by 

fitness function. Then tournaments are performed to select the individuals for 

the next generation. For each individual, a number of rivals are selected among 

the parents and offspring. The tournament score of the individual is the number 

of rivals with lower fitness scores than itself. Individuals with higher tournament 

scores are selected as the population of next generation. There is no require-

ment that the population size is held constant. The process is iterated until the 

termination criterion is satisfied. 

EP has two characteristics. First, there is no constraint on the representation. 

Mutation operator does not demand a particular genotype. The representation 

can follow from the problem. Second, mutations in EP attempt to preserve be-

havioral similarity between offspring and their parents. An offspring is generally 

similar to its parent at the behavioral level with slight variations. EP assumes 

that the distribution of potential offspring is under a normal distribution around 

the parent's behavior. Thus, the severity of mutations is according to a statistical 

distribution. 
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3.1.4 Evolution Strategy 

Evolution Strategy (ES) (Rechenberg [1973]; Schwefel [1981]) is originallydesigned 

for real-valued function optimization. It emphasizes on the individual, i.e. the 

phenotype, to be the object to be optimized. Each parameter is represented as 

an object variable Xj. Each Xj is associated with a strategy variable cfj, which 

controls the degree of mutation to xj. The genotype of an individual is a vector 

of pairs (xj, aj). 

There are various models of evolution strategy. In {fj, + A)-ES, the population 

size is /i, and A more individuals are evolved in each generation by recombination 

and mutation. Among these {fj, + A) individuals, only the best /i individuals are 

kept in the population. The selection is based on the score of an objective function 

F. The evolution terminates when the optimal set of values for all the objective 

variables are found, or when the maximum number of generations is reached. 

There are various methods of recombination, and can be classified as non-

global and global. In non-global combination, two individuals are selected as 

parents. For non-global discrete recombination, the value of each pair {xj ,aj) 

of the offspring is selected randomly from one of the parents. For non-global 

intermediate recombination, the value of each pair {x j ,a j ) of the offspring is set 

to the mean value ofthe two parents. On the other hand, in global recombination, 

a pair of parents are selected for each pair of {xj,aj). Thus if the individual 

contains L pairs of (ocj,aj), L pairs of parents are selected. For global discrete 

recombination, the value of each pair {xj, aj) of the offspring is selected randomly 

from one of its parents. For global intermediate recombination, the value of each 

pair {xj, aj) of the offspring is set to the mean value of its parents. 

Mutation modifies the value of each xj as well as each aj. According to the 

biological observation, offspring are similar to their parents and that smaller mod-

ifications occur more frequently than larger modifications. Thus the new value of 

Xj after mutation, x'j, is equal to: ‘ 

X'j = Xj + iV(0, CFj) 
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where iV(0, aj) is a Gaussian random number with mean 0 and standard derivation 

Gj. A mutation is regarded as successful if the mutated individual has a higher 

score on F than the parent. The ratio r is the ratio of successful mutations to all 

mutations. It is observed that the convergence rate is optimal if r equals to 1/5. 

Thus the new value of aj of each individual, cr;，is changed based on r: 

f 

CdCTj i f r < l / 5 

ĉ j = CiCFj if r > 1/5 

Gj if r = 1/5 
w 

where Cd and Cj are constants. If r is smaller than 1/5, a is decreased by multiplying 

a constant Cd < 1，so as to generate offspring closer to the parents. If r is larger 

than 1/5, cr is increased by multiplying a constant Cj > 1, so as to broaden the 

search. 

ES and EP both use a statistical distribution of mutations. However, ES typ-

ically uses deterministic selection that the worst individuals are eliminated, while 

EP typically uses a stochastic tournament selection. EP is an abstraction of evolu-

tion at the level of species. Thus no recombination is used because recombination 

does not occur between species. In contrast, ES is an abstraction of evolution at 

the level of individual behavior and hence recombination is reasonable. 

3.1.5 Selection Methods 

The classical method for selection of parents is the fitness proportionate selection 

(Holland [1992]), or called the ‘roulette wheel，selection. The individuals in the 

population form a roulette wheel, where each individual has a slot sized in pro-

portion to its fitness. The roulette wheel is turned to select the parent. Thus the 

probability of the ith individual being selected is / � / ^ fi , where fi is the fitness 
i 

of the ith individual. However, there is a deficiency in this selection method. In 

the early generations, a few individuals may have extraordinarily high fitness val-

ues. Fitness proportionate selection allocates a large number of offspring to these 
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individuals, and cause premature convergence. At the later stages, the individuals 

may have very close fitness values. Fitness proportionate selection cannot differ-

entiate the better individuals and allocates an almost equal number of offspring 

to all individuals. 

Alternative selection methods have been proposed. In the rank selection 

method (Baker [1985])，the population is sorted according to the fitness. The 

probability of an individual being selected is inversely proportional to its rank, 

with the better one getting a higher chance. For example, the probability for 

selecting an individual can be {N + 1 - u)/ E ^ i � w h e r e N is the population size 

and Ti is the rank of the individual. This selection method gives less emphasis 

on comparatively high-fitness individuals. On the other hands, it can distinguish 

individuals with a slightly difference in the fitness scores. In the tournament selec-

tion method, a group of individuals with size q are selected from the population. 

Among this group, the individual with the highest fitness value is selected. This 

selection method simulates the phenomenon that several individuals fight over the 

right of mating. However in these two methods, the probability of selection is not 

directly linked with the value of the objective function for optimization. 

3.2 Generic Genetic Programming 

Pure GP does not make any distinction between all the functions and terminals. 

It requires the function set and terminal set to have the closure property: All the 

functions in the function set should be able to accept, as its arguments, any value 

and data type that may possibly be returned by any function in the function set 

and any value and data type that may possibly be assumed by any terminal in the 

terminal set (Koza [1992]). Some operations must be modified before being used 

in GP. For example, division must be modified so that its value is defined when 

the denominator is zero. Another example is the commonly used operator '=，， 

which tests the equality of two numbers. It does not fulfill the closure property 

as its return value should be with Boolean type but the arguments it takes are 
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Expr ">•( if Boolean Real Real ) 

Boolean — ( Operator Real Real ) 

Boolean ^ T | F 

Operator — = | < 丨 > | <= | >= 

Real — varl | var2 | var3 

Real — 0 I 1 丨 2 | 3 | 4 | 5 丨 6 | 7 | 8 | 9 

Table 3.4: An example grammar. The symbol i f returns the second argument if 
the first argument is true, or else the third argument 

real numbers. One solution is to modify the operator such that it returns a real 

number 1 for the value 'true' and returns 0 for the value ‘false，. But this brings out 

other problems. For example, if the operators { + , -, AND, = } are used together 

in the function set, it may produce meaningless programs like "(x AND y) + {x = 

y)，，. The closure requirement greatly limits the representation power of genetic 

programming. 

Generic Genetic Programming (Wong and Leung [1995]; Wong and Leung 

1997]; Wong [1995]) (GGP) extends GP further to increase the consistency and 

flexibility. GGP uses a grammar to control the placement of functions and ter-

minals. A function or a terminal must be placed in a position that conforms to 

the grammar. The genotype used in GGP is a derivation tree instead of the tree 

representation of S-expression in GP. 

A grammar G is a 4-tuple G = (V^，Vr, P, X) where VN is a finite set of non-

terminal symbols, Vr is a finite set of terminal symbols, P is a set of production 

rules of the form a — " , and X G VW is the start symbol of G. A production rule 

in the form a ~> P | 7 denotes two grammar rules { a ^ f3, a ~> 7}. Table 3.4 is 

an example grammar. The start symbol is Expr, the italic terms are non-terminals 

and other terms are terminals. 

If there is a production rule a — fi, then the symbol a can be rewritten as 

p. This rewrite is denoted by a =^ (3. A derivation is zero or more rewrite steps. 

A complete derivation is a derivation from the start symbol such that there are 

only non-terminals in it. Table 3.5 shows an example of a complete derivation of 

the grammar listed in Table 3.4. The derivation process can be represented in a 
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Expr 

=^ ( if Boolean Real Real ) 

=> ( i f ( Operation Real Real ) Real Real ) 

=> ( i f ( > Real Real ) Real Real ) 

=>-(if ( > varl Real ) Real Real ) 

=^ ( if ( > varl 9 ) Real Real ) 

=^ ( if ( > varl 9 ) 3 Real ) 

=^ ( if ( > varl 9 ) 3 4 ) 

Table 3.5: An example derivation 

Expr 

/ ^ > ^ ( if Boolean Real Real ) 

^^^^^"^^^^ I I 

(Operator Real Real ) 3 4 

> var1 9 

Figure 3.7: A derivation tree stored inside an individual of GGP 

derivation tree. One rewrite step corresponds to one branching in the tree. Figure 

3.7 is the derivation tree for the derivation in Table 3.5. 

The grammar is used to generate individuals in Generic Genetic Programming. 

Each individual stores a derivation tree as in Figure 3.7. An individual is initially 

created by performing a complete derivation using the given grammar. Choices 

are randomly made if there are more than one possible derivation. 

Similar to GP, there are three genetic operators in GGP. Reproduction copies 

one individual into the new population. Crossover differs from GP that it produces 

just one offspring from two parents. One parent is designated as the primary 

parent and the other is designated as the secondary parent. A subtree of the 

primary parental derivation tree is selected for crossover. It is then replaced by a 

subtree selected from the secondary parent. Figure 3.8 is an example of crossover. 

But the choice of the replacing subtree is restricted so that the grammar cannot 

be violated. A validation check is made to ensure that replacing the subtree can 

still obey the grammar. If the replacement is not valid, another subtree from 

the secondary parent will be selected. For example, Figure 3.9 shows part of a 
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Expr Expr 

flf̂^̂^̂^̂^̂^̂^̂ 5̂̂^̂^̂ î̂) flf̂^̂^̂^̂^̂^̂^̂^̂ 5̂̂ 2̂̂) 
^ - : ^ ^ T " = ^ ^ I I I |^^^^^^^"V^-=^ I I 
](Operator Real Real )| 3 4 |( Operator Real Real )j var1 5 
I I I I I I I 
[ i__«y§rl__9_� N y ^ ^ ^ ^ ^ [ = 5 _ _ Y ? i 2 _ 」 

Primary Parent | Secondary Parent 
，r 

Expr 

. . , : r : ^ ^ 
( i f Boolean \Real Real ) 

U^^"^"^"^^^i I 1 
|( Operator Real Real )j 3 4 
[ = 5 _ _ v a j 2 _ J 

Child 

Figure 3.8: Crossover in Generic Genetic Programming 

^ 0 

^ ¾ 

Figure 3.9: Part of a derivation tree 

derivation tree. This subtree is valid if there is a grammar rule { 0 ^ o^Px}-

If the subtree at the node a is selected for crossover and replaced by a subtree 

starting with the node 7, the replacement is valid only if there exists a grammar 

rule {办 ^ j P x } -

Mutation replaces a subtree in the derivation tree by a randomly generated 

subtree. A node in the derivation tree of the parent is selected. Each node 

corresponds to a symbol, and the grammar is used to derive another subtree 

rooting with this symbol. This new tree is used to replace the subtree at the 

selected node. Again, a check is needed to make sure the new tree evolved does 

not violate the given grammar. Figure 3.10 is an example of mutation in GGP. 
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Expr Expr 

f̂iT̂^̂^̂^̂^̂^̂^̂ r̂̂^̂^̂) r̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂) 
I ^ ^ ^ ^ ^ " V ^ = ^ I I 1 ^ ^ ^ ^ " ^ " ^ ^ I I 
[(Operator Real Real )] 3 4 |( Operator Real Real )] 3 4 
I I I I I • I I I I 
[ >__va r1 9 � [ <=__var2__va^_J 

Parent Child 

Figure 3.10: Mutation in Generic Genetic Programming 

3.3 Data mining using Evolutionary Computa-

tion 

Data mining can be considered as an optimization problem, which tries to search 

for the most accurate information from all possible hypotheses. Several systems 

have been built for learning concepts using evolutionary computation. GA can 

be used as the search algorithm by encoding a description of a concept into a bit 

string. However, the fixed-length chromosome in GA limited the representation 

of concept. 

GABIL (De Jong et al. [1993]) uses a flat string representation to encode 

classification rules in disjunctive normal form (DNF). It uses the Pittsburgh's 

approach (Smith [1980]; Smith [1983]) that a single individual contains all the 

necessary descriptions for a concept and corresponds to a set of rules. Each 

individual is a variable-length string representing a set of rules. Each rule has a 

fixed length and consists of one test for each feature. The system uses k bits for the 

k values of a nominal feature. For example, the bit string in Table 3.6 represents 

the rule "if (F1 = 1 or 2 or 3) and (F2 = 1) then (class = 0)". Adaptive GABIL 

can adaptively allow or prohibit certain genetic operations for certain individuals. 

Extra bits are introduced to control the uses of certain genetic operations. These 

bits are also parts of evolution in GA. 

GIL (Janikow [1993]) also used the Pittsburgh's approach. The bit string of 
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F1 F2 Class 
—1 I 1 I 1 1 I 0 I 0 I 0 0 ~ 
Table 3.6: Bit string in GABIL 

an individual represents a rule in multiple-valued logic language VLi. It utilizes 

14 genetic operators, such as rules exchange, new event, rules drops, rule split, 

condition drop, condition introduce, reference change and etc. These operators 

perform generalization, specialization or other modifications to the individuals in 

the rule set level, the rule level and the condition level. 

In REGAL (Giordana and Neri [1995]), each individual encodes a disjunct 

consists of a conjunctive formula. Each individual is only a partial solutions, and 

the whole population is a redundant set of these partial solutions. An individual 

encodes a concept represented in the first-order logic, which is a language with 

variables. Several good individauls co-exist in the population by the use of a 

selection operator called Universal Suffrage operator to select the parents. At 

each generation, a set of examples is selected. The individuals covering a selected 

example are collected into a set. This set corresponds to a roulette wheel and 

a spin is made to select a winning individual. The winning individual from the 

selected examples becomes the parents. A parallel model is designed to enhance 

the execution speed. 

GP can perform data mining by learning a program for classification. An 

example is the approach developed by Tackett [1993]. It uses a function set of 

( + , - , x , + ) and the conditional operator <, and a terminal set of all the 20 

input features plus a random floating point constant. A program is evolved by 

GP. If the program returns a value larger than or equal to 0 given an input case, 

the input case is classified as a target. Otherwise it is classified as a non-target. 

Since the learned program is human understandable, knowledge can be obtained 

by examining the program. However, the program can be very complicated and 

difficult to interpret. ‘ 
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Chapter 4 

Applying Generic Genetic 

Programming for Rule Learning 

Rules are statements in the format of "if antecedents then consequent”. Rules are 

commonly used by human to represent knowledge. Rule learning tries to learn 

rules from a set of data. It can be modeled as a search problem to search for the 

best rules. The search space can be very large depending on the rule representa-

tion. A powerful search algorithm is required. Generic Genetic Programming can 

be used as a possible approach. This chapter introduces how the problem of rule 

learning is modeled such that GGP can be applied. 

To apply GGP, firstly a suitable representation has to be made to encode a 

rule as an individual. In GGP, a derivation tree is used to represent an individual, 

so a grammar for rules has to be design to create the derivation tree. Secondly, 

a set of suitable genetic operators has to be designed to evolve new individuals. 

Thirdly we have to design a suitable evaluation function to evaluate how good an 

individual is. This chapter introduces these three issues. The detail techniques 

for learning a set of rules are discussed in Chapter 5. 
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4.1 Grammar 

The grammar of GGP governs the structures to be evolved. Rule learning can 

be achieved in GGP by using a suitable grammar that make up a rule. The 

grammar should specify the structure of a rule. The grammar specifies that a 

rule is of the form "if antecedents then consequent” • The format of rules in each 

problem can be different. Thus for each problem, a specific grammar is written 

so that the format of the rules can best fit the domain. However, in general, the 

antecedent part is a conjunction of attribute descriptors. The consequent part is 

an attribute descriptor as well. An attribute descriptor characterizes an attribute. 

An attribute can be described in many ways, thus there are many different formats 

of descriptors. A descriptor can assign a value to a nominal attribute, a range of 

values to a continuous attribute, or can be used to compare attribute values. 

GGP provides a powerful knowledge representation and allows a great flexi-

bility on the rule format. The representation of rules is not fixed but depends 

on the grammar. Most of the rule learning methods can only learn a particular 

format of rules, for examples, rules with descriptors that compare the attributes 

with values. However, GGP allows a large variation in the attribute description. 

Rules with different formats can be learned, provided that the suitable grammar is 

supplied. Moreover, rules with the user desired structure can be learned because 

the user can specify the required rule format in the grammar. 

An example is used to illustrate the use of grammar to represent the suitable 

rule format. Consider a database with 4 attributes. We want to learn rules about 

attr4, which is Boolean. The attribute attrl is nominal and coded with 0, 1 or 

2. The attribute attr2 is continuous between 0-200 and can be categorized into 

high, medium or low. The domain of attr3 is identical to attr2 and thus it is 

possible for the rule to compare them. 

An example of the context free grammar for this database in given in Table 4.1. 

The symbols ercl, erc2, erc3, boolean_erc and category_erc in this grammar 
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Rule ^ if Antes ， then Consq . 

Antes "> Attrl and Attr2 and Attr3 

Attrl ~> any | Attrl_descriptor 

Attr2 ~> any | Attr2-descriptor 

Attr3 ^ any | Attr3-descriptor 

Attrl-descriptor ~> attrl = ercl 

Attr2-descriptor ^ attr2 is category_erc 

Attr2.descriptor ~^ attr2 between erc2 erc2 

Attr3-descriptor ~> attr3 Comparator Attr3-term 

Comparator ~^ = | * 丨 <=|〉= | < | 〉 

Attr3_term ~^ attr2 | erc3 

Consq ~> Attr4-descriptor 

Attr4-descriptor ^ attr4 = boolean_erc 

Table 4.1: An example grammar for rule learning. 

are ephemeral random constants (ERCs). Each ERC has it own range for instan-

tiation: e r c l is within {0,1,2}，erc2 and erc3 is between 0-200, boolean_erc can 

only be T or F, category_erc can be either high, medium or low. The symbol 

'any' serves as a 'don't care, in the rule. An attribute will not be considered in 

the rule if its attribute descriptor is 'any'. In this grammar, each attribute can 

be described by a descriptor in the rule, or by 'any' such that it is ignored by 

the rule. The attribute a t t r l have only one form of descriptor. The attribute 

attr2 can have two forms of descriptors: it can be described by a range or by the 

category it belongs to. The attribute at tr3 can be described by a comparator. 

Its descriptor can be a comparison with attr2 or a comparison with a constant. 

This grammar allows rules like: 

• if a t t r l = 0 and attr2 between 50 180 and any, then at tr4 二 T. 

• if attrl = 2 and attr2 is high and attr3 7̂  50, then attr4 = T. 

• if a t t r l 二 1 and any and attr3〉二 attr2, then at tr4 = F. 

The grammars for other problems are similar to the grammar in Table 4.1. 

According to the type of attribute, a descriptor similar to Attrl_descriptor, 

Attr2_descriptor or Attr3_descriptor can be used. The following list illus-

trates how the grammar is written for each situation. 
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• The attribute is nominal. 

The attribute can be described by its value. The descriptor similar to 

Attrl_descriptor or Attr4_descriptor can be used. 

• The attribute is continuous. 

The attribute can be described by a range. The descriptor similar to 

Attr2_descriptor can be used. 

• The attribute can be compared with other attributes in the rule 

In many case describing an attribute by a value is not powerful enough to 

represent the knowledge. If a comparison between variables is needed, the 

descriptor similar to Attr3_descriptor can be used. 

• The attribute have more than one kind of descriptions. 

In some cases, an attribute can be described by more than one way. An 

example is Attr2 in the previous example. By the use of grammar, we do 

not need to restrict the rule to use either one descriptor. Another example 

is that an address can be described by the city, state and country. This can 

be done by writing the grammar as follows: 

Address-descriptor ~> Address between city_erc city_erc 

Address-descriptor ~> Address between state_erc state_erc 

Address-descriptor ^ Address between country_erc country_erc 

• The antecedent part have more than one format. 

The use of grammar allows the antecedents to have more than one for-

mat. As an example, the user may want that if Attrl is included in the 

antecedent, then Attr3 and Attr4 should also be included. Otherwise if 

Attr2 is used instead of Attrl, then Attr5 and Attr6 should be included 

in the rule. This can be done by writing the grammar as follows: 

Antes ^ Attrl and Attr3 and Attr4 

Antes ">• Attr2 and Attr5 and Attr6 
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Rule 

=> if Antes , then Consq . 

=^ if Attrl and Attr2 and Attr3 , then Consq • 

=^ if Attrl.descriptor and Attr2.descriptor and Attr3-descriptor , 

then Attr4-descriptor . 

=4> if attrl = ercl and attr2 between erc2 erc2 and attr3 Comparator 

Attr3-term ， then attr4 = boolean_erc . 

= > . i f attrl = ercl and attr2 between erc2 erc2 and attr3 + erc3 , 

then attr4 = boolean_erc . 

zr> if attrl = 0 and attr2 between 100 150 and attr3 + 50 , 

then attr4 = T . 

Table 4.2: An example derivation 

• There are more than one target variable and thus more than one kind of 

rules. 

Usually data mining is not restricted to one target variable. The user may 

want to find knowledge describing all the dependent variables. Thus this 

leads to more than one kind of rules. Different kind of rules can be searched 

simultaneously in the search by starting the grammar as follows: 

Rule —Rulel | Rule2 

Rulel ^ if Antesl ， then Consql . 

Rulel ^ if Antes2 ， then Consq2 . 

4.2 Population Creation 

The grammar is used to derive rules to make up the initial population. Each 

individual in the population corresponds to one rule. The start symbol is the 

first symbol of the first line of the grammar. From the start symbol, a complete 

derivation is performed. Every non-terminal is expanded according to the gram-

mar until only terminals and ERCs are remained. If there are more than one 

possible derivation, a random choice is made. Table 4.2 illustrates how a rule is 

derived from the grammar in Table 4.1. The derivation tree of the derivation is 

stored as the genotype of the individual. The derivation tree for this derivation is 

shown in Figure 4.1. 
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Rule 

^ ^ 7 " " ^ ^ ^ ^ ； ^ 
if Antes then Consq 

^ ^ ^ ^ ^ ^ T = ^ ^ ^ ^ ^ 
Attr1 and Attr2 and Attr3 

/ I 丨 
Attr1_descriptor Attr2_descriptor Attr3_descriptor Attr4_descriptor 

J ^ ^ ^ \ /V\ 
attr1 = erc1 attr2 between erc2 erc2 attr3 Comparator Attr3_term attr4 = boolean_erc 

I I 
去 erc3 

Figure 4.1: The derivation tree 

After the derivation is completed, ERCs in the rules are instantiated. Our 

approach has two different ways to instantiate these constants. Conventional 

GP instantiates the constants randomly. A random value within the range of the 

ERC is assigned. Another way is to use seeds to generate better initial population. 

Using a seed can create a new rule that covers at least one record. When creating 

a new individual, a record in the training set is selected randomly as a seed. A 

rule is then derived from the grammar. During instantiating the ERCs, a constant 

is not generated randomly but generated to a value that matches the seed. For 

a nominal attribute, its ERC is instantiated to the value of the seed. For a 

continuous attribute that is described by a range, the ERCs are instantiated to a 

range that includes the value of the seed. 

4.3 Genetic Operators 

In rule learning using GGP, the search space is explored by generating new rules 

using three genetic operators: crossover, mutation and dropping condition. A rule 

is composed of attribute descriptors. The genetic operators try to change the 

descriptors in order to search for better rules. 

Crossover is a sexual operation that produces one child from two parents. One 
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parent is designated as the primary parent and the other one as the secondary 

parent. A part of the primary parent is selected and replaced by another part 

from the secondary parent. Suppose that the following primary and secondary 

parents are selected: 

if attrl=0 and attr2 between 100 150 and attr3f^50, then attr4=T. 

if attrl=l and any and attr3 > = attr2, then attr4=F. 

The underlined parts are selected for crossover. The offspring will be 

if a t t r l = 0 and attr2 between 100 150 and a t t r 3 > = a t t r 2 , then attr4=T. 

In GGP, each individual is represented by a derivation tree. The replaced part 

is actually a subtree selected randomly from the derivation tree of the primary 

parent (see Section 3.2). The subtree may represent different structures in the 

rule, hence the genetic change may occur either on the whole rule, on several 

descriptors, or on just one descriptor. The replacing part is also selected randomly 

from the derivation tree of the secondary parent, but under the constraint that 

the offspring produced must be valid according to the grammar. If a conjunction 

of descriptors is selected in the primary parent, it will be replaced by another 

conjunction of descriptors, but never by a single descriptor. If a descriptor is 

selected in the primary parent, then it can only be replaced by another descriptor 

of the same attribute. This can maintain the validity of the rule. 

Mutation is an asexual operation. A part in the parental rule is selected and 

replaced by a randomly generated part (see Section 3.2). Similar to crossover, the 

selected part is a subtree of the derivation tree. The genetic change may occur 

on the whole rule, several descriptors, one descriptor, or the constants in the rule. 

The new part is generated by the same derivation mechanism as in the population 

creation. Because the offspring have to be valid according to the grammar, the 

selected part can only mutate to another part with a compatible structure. For 

example, the parent 

if attrl=0 and attr2 between 100 150 and attr37^50, then attr4=T. 

may mutate to 
if attrl=0 and attr2 between 100 150 and attr3>=attr2, then attr4=T. 
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Dropping condition is an genetic operator tailor-made for rule learning using 

GGP. Due to the probabilistic nature of GP, redundant constraints may be gen-

erated in the rule. For example, suppose that the actual knowledge is 'if A<20 

then X=T. We may learn rules like 'if A<20 and B<10 then X = T ' . This rule 

is, of course, correct; but it is just a subsumed rule of the actual rule, and does 

not completely represent the actual knowledge. Dropping condition (Michalski 

1983]) is incorporated in GGP to generalize rules. A rule can be generalized 

if one descriptor in the antecedent part is dropped. Dropping condition selects 

randomly one attribute descriptor, and then turns it into 'any'. That particular 

attribute is no longer considered in the rule, hence the rule can be generalized. 

For example, the parent 

if a t t r l = 0 and attr2 between 100 150 and attr3/5Q, then at tr4=T. 

may change to 
if a t t r l = 0 and attr2 between 100 150 and any, then at tr4=T. 

4.4 Evaluation of Rules 

An evaluation function is needed to measure the degree of interesting of a rule. 

There are a lot of rule evaluation functions. Piatetsky-Shapiro [1991] suggested 

that for a rule 'if A then B\ the function measuring the interesting of the rule 

should be a function of p{A), p{B), p{AkB), rule complexity and possibly other 

parameters (where p{.) denotes the probability of •). Let N be the total number 

of training examples. Let \A\denote the number of cases that satisfy a condition 

A, and \AkB\ denote the number of cases that satisfy condition A and B, it is 

suggested that the rule-interest function RI should satisfy the following principles: 

1. RI = Oif \AkB\ = ^^^. If A and B are statistically independent, the rule 

is not interesting. 

2. RI monotonically increases with \AkB\when other parameters remain the 

same. 
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3. RI monotonically decreases with |A|or \B\ when other parameters remain 

the same. 

For a rule ' i fAthen B\ the probabilityp(A|B) 二 p{AkB)/p{A) is the accuracy 

of the rule. According to the accuracy, a rule can be categorized as an exact, strong 

or weak rule. An exact rule is the rule that always correct, that is, p{A\B) 二 1. A 

strong rule is a rule that almost always correct, that is, p{A\B) is high. A weak rule 

is a rule that the occurrence of the consequent under the antecedent is much more 

than on average, that is p{A{B)�p{B). In the real-life situation, an exact or 

strong rule may not exist. Thus a useful data mining system should not just search 

for exact or strong rules. It should be able to discover weak rules because the 

difference from average may already provide interesting knowledge. Consequently, 

accuracy cannot be the sole metric for rule-interest. Another measurement of rule-

interest is the applicability of the rule to future cases. If the rule can match a 

larger number of training cases, it is less likely that the rule is just because of 

chance, and thus the rule should be more applicable to future cases. 

An evaluation function based on the support-confidence framework (Agrawal 

et al. [1993]) is developed as the fitness function in our rule learning approach. 

Support measures the coverage of a rule. It is a ratio of the number of records 

covered by the rule to the total number of records. Confidence factor (cf) is the 

confidence of the consequent to be true under the antecedents, and is just the 

same as the rule accuracy. It is the ratio of the number of records matching both 

the consequent and the antecedents to the number of records matching only the 

antecedents. For a rule ‘if A then B, and with a training set of N cases, support 

is \Ak,B\/N and confidence factor is \Ak,B\/\A . 

In the evaluation process, each rule is checked with every record in the training 

set. Three statistics are counted. The number antesJiit is the number of records 

matching the antecedents (the 'if' part), consq_hit is the number of records that 

match the consequent (the 'then，part), and both.hit is the number of records that 

obey the whole rule (both the 'if' and the 'then' parts). 
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The confidence factor cf is the fraction both-hit/antes_hit. But a rule with a 

high confidence factor does not mean that it behaves significantly different from 

the average. Therefore we need to consider the average probability of the conse-

quent {prob). The value prob is equal to consq_hit/total, where total is the total 

number of records in the training set. This value measures the confidence for the 

consequent under no particular antecedent. 

A formula similar to the likelihood ratio used in CN2 (Equation 2.9) is used. 

We defined cf-part as 
cf 

cf-part = cf X l o g ( ^ ^ ) (4.1) 

The log function measures the order of magnitude of the ratio cf/prob. This 

value is a product of two factors : cf and log{cf/prob). A high value of cfjpart 

requires simultaneously a high value on the rule confidence ( c / ) and a high value 

on the rule confidence over the average probability {cf/prob). The definition 

of this value matches with the three previously stated principles proposed by 

Piatetsky-Shapiro [1991]. By using his notation, cf is actually |^&5|/|^|,and 

prob is \B\/N. If \AkB\ 二 |^|B|/iV, cf/prob = 1 and cf.part = 0. The value 

cf (and so does cfjpart) monotonically increases with \AkB\ and monotonically 

decreases with \A\. The value prohmonotonically increases with |J5| and thus 

cf-part monotonically decreases with \B • 

Support is another measure that we need to consider. A rule can have a high 

accuracy but the rule may be just because of chance and based on a few training 

examples. This kind of rules does not have enough support. The value support is 

defined as bothMt/total. If support is below a user-defined minimum threshold 

{minsupport), the confidence factor of the rule should not be considered. This 

can avoid the waste of effort to evolve those rules with a high confidence but 

cannot be generalized. 
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We define our fitness function to be: 

f 

support, if support < min.support 
raw_fitness = 

Wi X support + W2 X cfjpart, otherwise 
(4.2) 

where the weights Wi and W2 are user-defined to control the balance between 

the confidence and the support in searching. We have set the values to 1 and 8 

respectively so that the confidence of the rule plays a more important role in the 

evaluation function. 
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Chapter 5 

Learning Multiple Rules from 

Data 

The knowledge of a data set is unlikely to be sufficiently described by a single 

if-then rule. Multiple number of rules are required to represent the knowledge. 

To perform rule learning using evolutionary computation, a suitable modeling for 

individuals must be designed such that a set of rules can be learned. There are two 

different approaches. In the Pittsburgh approach (Smith [1980]; Smith [1983]), 

each individual in the population encodes a whole solution, that is, a set of rules. 

In the Michigan approach (Holland and Reitman [1978]; Booker et al. [1989])， 

each individual encodes only one rule. The individuals in the population can be 

combined together to provide a rule set. However this approach requires special 

techniques such that multiple good individuals can coexist in the population. Our 

approach uses the Michigan approach. The structure of an individual can be sim-

pler because it only represents one rule. Thus the evolution for good individuals 

are easier. 

This chapter begins with an review of previous approaches for maintaining 

groups of individuals evolving different solutions. Then our approach, token com-

petition, is presented in Section 5.2. Section 5.3 summarizes the complete ap-

proach for rule learning. Experimental results of rule learning from two machine 

learning databases are presented in Section 5.4. 
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5,1 Previous approaches 

Genetic algorithm and genetic programming are weak search algorithms to search 

for a solution that optimize the fitness function. These algorithms aim to search 

for a single solution only. Those individuals with higher fitness scores can survive 

while those with lower fitness scores will be extinct. If a part of the search space 

gives a higher fitness scores, eventually all the individuals will converge into this 

part. 

However there are many situations that multiple solutions are required. For 

example, we may need to search for all the peaks in a multimodal function. In this 

case, it is desirable to maintain groups of individuals, with different groups evolv-

ing different solutions. Each group of individuals is referred as a sub-population or 

a species, and the part of the search space being explored by a species is referred 

as a niche. Maintaining diversity in the population is useful for the formulation 

of niches. The individuals are not allowed to converge to a single niche and hence 

forced to explore different part of the search space. Several approaches have been 

designed in GA to accomplish this task and they are reviewed in this section. 

5.1.1 Preselection 

Preselection (Cavicchio [1970]) maintains the diversity by trying to reduce the 

existences of similar individuals. It uses the idea that the parent should be one 

of the most similar individuals to the offspring. A new individual is evolved by 

using a genetic operator. The offspring can replace the parent if it has a better 

fitness. Otherwise the parents survives but not the child. 

5.1.2 Crowding 

In crowding (De Jong [1975]), a certain percentage of the population is selected to 

produce offspring. The percentage is denoted as the generation gap {G). Offspring 

are evolved by crossover and mutation to replace the original individuals in the 

population. To determine which individual is replaced, for each evolved offspring 
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several individuals are selected randomly from the population. The number of 

individuals selected is denoted as the crowding factor {CF). The similarity of 

the selected individuals with respect to the offspring is computed. Similarity is 

defined in turn of bit-wise (i.e. genotypic) matching. The individual that is the 

most similar to the offspring is replaced by the offspring. 

5.1.3 Deterministic Crowding 

Deterministic crowding (Mahfoud [1992]) improves preselection and crowding. In 

each generation, the individuals in the population are randomly paired without 

replacement. Each pair evolves two offspring by crossover. Deterministic crowd-

ing uses the idea of preselection that the offspring should be similar to its parent, 

and uses the idea of crowding that a similarity measure should used to determine 

the replacement. Deterministic crowding uses the phenotypic similarity. The bit 

strings of the individuals are decoded and the similarity measure is defined in the 

decoded parameters. The offspring are compared only with the two parents for 

similarity. There are two possible replacements of two parents by their two off-

spring: offspring 1 replaces parent 1 and offspring 2 replaces parent 2, or offspring 

1 replaces parent 2 and offspring 2 replaces parent 1. The pair of replacements 

that yields the greatest sum of phenotypic similarities between offspring and the 

replaced parent is used. The parent is replaced by the offspring provided that the 

offspring can have a better fitness score. 

5.1.4 Fitness sharing 

Fitness sharing (Goldberg and Richardson [1987]) maintains a diversity of indi-

viduals by discouraging individuals to converge into one niche. The fitness of 

one individual gained from one niche must be shared by similar individuals. A 

distance function d{xi,xj) measures the distance (i.e. dissimilarity) between two 

individuals Xi and xj. For each individual, the distances with all other individuals 

are calculated. A sharing function s defines the degree of fitness sharing by the 
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similar individuals. The shared fitness fs of one individual is the un-shared fitness 

/ divided by the accumulated number of shares: 

f u.) — _ f M _ 
^'^^'''Es{d{xuxj)) 

3 

Thus when more individuals converge to one niche, the fitness is shared by more 

individuals. The fitness will decrease to a level such that it is no longer better than 

the fitness on other niches. Eventually a distribution of individuals on different 

niches can be achieved. 

5.2 Token Competition 

In our rule learning approach, the token competition (Leung et al. [1992]) tech-

nique is employed to increase the diversity, so that good individuals in different 

niches are maintained in the population. The concept is as follows: In the natural 

environment, once an individual has found a good place for living, it will try to 

exploit this niche and prevent other newcomers to share the resources, unless the 

newcomer is stronger than it is. The other individuals are hence forced to explore 

and find their own niches. In this way, the diversity of the population is increased. 

Based on this mechanism, we assume each record in the training set can provide 

a resource called token. If a rule can match a record, it sets a flag to indicate the 

token is seized. Other weaker rules then cannot get the token. The priority of 

receiving tokens is determined by the strength of the rules. A rule with a high 

score on raw-fitness (Equation 4.2) can exploit the niche by seizing as many 

tokens as it can. The other rules entering the same niche will have their strength 

decreased because they cannot compete with the stronger rule. The fitness score 

of each individual is modified based on the tokens it can seize. The modified 

fitness is defined as : 

modified-fitness = raw_fitness x count/ideal (5.1) 
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where raw_fitness is the fitness score obtained from the evaluation function, 

count is the number of tokens that the rule actually seized, ideal is the total 

number of tokens that it can seize, which is equal to the number of records that 

the rule matches. Token competition is a greedy operation. It favors strong 

rules as their chance of survival is maintained, while their close competitors are 

weakened as they cannot get the token. 

From another point of view, each rule contributes to the system by covering 

several records of the database. If a record has already been covered by one 

rule, then another rule covering the same record will make no contribution to the 

system. Thus the fitness of the latter rule should be discounted. 

Token competition is a simple method to force the diversity of the population. 

Token competition has an advantage that it does not require a distance function. 

In crowding or fitness sharing, it is required to define a similarity or a distance 

function, so as to measure the similarity or dissimilarity between two individuals. 

However, it may be difficult to define how one individual is similar to another 

individual, especially in Genetic Programming. Genetic Algorithm uses a fixed 

length binary string as the chromosome. Thus the genotypic difference (i.e. dif-

ference in the bits) can be used as a general similarity measurement. However 

this is not valid in the tree structure of Genetic Programming. Moreover, the 

similarity in genotype may not truly represent the similarity of the individuals. 

Token competition simplifies the problem by simply regarding two individuals to 

be similar if they cover the same record. 

The execution of token competition is faster than fitness sharing. To calcu-

late the fitness score of one individual in fitness sharing, the similarity scores of 

all other individuals with respect to this individual have to be calculated. If the 

similarity score can be computed in time t, and the population size is p, each in-

dividual needs a time pt to calculate the similarity score, and the time needed to 

complete fitness sharing in each generation is 0{pH). On the other hand, calcula-

tions of similarity are not needed in token competition. The required information 
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of token counting is the list of records that each individual covered. This infor-

mation is already stored during the evaluation process. If an individual covers 

m records, a time of 0 (m) is needed to seize the tokens, and token competition 

in each generation can be completed in 0(fhp), where fn is average value of m. 

This computation is straight forward and can be faster than fitness sharing if 

0{fh) < 0{pt). 

As a result of token competition, there are rules that cannot seize any token. 

These rules are redundant as all of their records are already covered by the stronger 

rules. They can be replaced by new individuals. Introducing these new individuals 

can inject a larger degree of diversity into the population, and provide extra 

chances for generating good rules. To create the new individuals, we can use 

seeds to generate better rules (see Section 4.2). Those records with their tokens 

not taken are the possible seeds. These records are not yet covered by any existing 

rules, and thus introducing rules covering them can improve the system. To create 

a new rule, a seed is selected, and then the rule is generated to cover the seed. The 

constants in the rule will not be instantiated randomly but with values matching 

with the seed. 

5.3 The Complete Rule Learning Approach 

Figure 5.1 is the flowchart of the complete process for learning multiple rules 

from a set of data using GGP. A grammar is provided by the user as a template 

for rules. A set of rules is derived by using this grammar and forms the initial 

population. Then, the main loop of GGP is entered. In each generation, individ-

uals are selected stochastically to evolve offspring by the three genetic operators: 

crossover, mutation and dropping condition. In each generation, the number of 

new individuals evolved equals to the population size. Thus at this stage, the 

number of individuals in the population is doubled. All individuals participate in 

the token competition and the replacement step, so as to eliminate similar rules 

and increase the diversity. One half of the individuals with the higher fitness 
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scores after token competition are retained and passed to the next generation. 

The whole process iterated until the maximum number of generations has been 

reached. 

Parents for the genetic operators are selected by the rank selection method 

(see Section 3.1.5). The probabilities of using crossover, mutation and dropping 

condition in our approach are 0.5, 0.4 and 0.1 respectively. These settings are 

chosen because they gave the best result in preliminary executions of the system. 

The data set for learning can be partitioned into a training set and a testing 

set. Only the training set is available for the learning process. After the maximum 

number of generations is reached, the discovered rules are further evaluated with 

the unseen testing set, so as to verify their accuracy and reject the rules that 

over-fit the training set. 

Our system differs from conventional GP that reproduction operator is not 

used, and the parents compete with the offspring for places in the new generation. 

In conventional GP, the next generation of population only consists of the off-

spring. An individual will be passed to the next generation of population through 

the use of the reproduction operator. Good individuals can exploit their genes 

to the new generation by reproducing more children, and gradually dominate the 

population. Thus many individuals contain the good genes, and a good gene has 

a high probability of being passed to the offspring. However, in our rule learning 

approach, we do not want a good rule to replicate itself and dominate the pop-

ulation. Rather, we need to find several good rules and diversify the population. 

Token competition only allows one copy of each good individual to be kept in 

the population. Consequently, the chance of a good gene being passed to the 

offspring is much less than conventional GP, because a good individual may not 

be selected as the parent. Therefore we need an explicit way to retain the good 

genes of the parents. This is done by keeping the parents as competitors for the 

new generation. Good parents can win poor offspring and gain positions in the 

new generation. 

The execution time can be approximated by assuming that the evaluation of 
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Figure 5.1: The flowchart of the Rule Learning process 
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rules is the most time consuming step. In each generation, each rule has to be 

checked with every training case to count the number of records that match the 

antecedents or the consequent. Thus we can roughly estimated that the execution 

time should be directly proportional to (number of database records) x (popula-

tion size) X (number of generations). 

5.4 Experiments with Machine Learning Databases 

Experiments have been performed to evaluate the rule learning system. Two 

databases from the UCI Machine Learning Repository (Merz and Murphy [1998]) 

are used as the source of data. In these database the target is to search for 

knowledge for classification. A useful measure of the accuracy of the learned 

knowledge is to apply it to an unseen testing set. Thus the database is divided 

into a training set and a testing set. To measure the accuracy in the testing set, 

the rules are applied to see whether each testing case is classified correctly. Since 

the discovered rules can overlap, a testing case may match more than one rule. 

Starting from the rule with the highest fitness value, the testing case is checked 

by each rule. If the antecedent part does not match with the testing case, the 

next rule is applied until there is a match or no rule can apply. If no rule can be 

applied or the testing case matches the antecedents but not the consequent part, 

then the testing case is considered as a miss. 

We should note that the classification accuracy on testing sets is different from 

the rule accuracy. For a rule with a high rule accuracy, the classification accuracies 

on those cases that match the antecedent part will be high. However the rules 

with high accuracies may not cover all the testing cases. It is possible that a 

testing case only matches with a less accurate rule, and the overall classification 

accuracy will then be lower. The aim of our rule learning approach is to discover 

knowledge instead of classifying unseen cases. No special technique is designed 

to make the rules cover all the cases. Thus the classification accuracy is only an 

indirect measurement of our approach. 
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Attribute Type Possible Value 
sepal length (in cm) continuous 4.3-7.9 
sepal width (in cm) continuous 2.0-4.4 
petal length continuous 1.0-6.9 
petal width continuous 0.1-2.5 
class nominal Iris setosa, Iris Vericolor, Iris Virginica 

Table 5.1: The iris plants database 

Rule " > i f Antes ， then Consq . 

Antes ^ slength and swidth and plength and pwidth 

slength ~> any | slength^descriptor 

swidth ^ any | swidth-descriptor 

plength ^ any | plength-descriptor 

pwidth ^ any | pwidth_descriptor 

slength-descriptor ^ sepal_length between slength_const slength_const 
swidth-descriptor ~^ sepal_width between swidth_const swidth_const 
plength-descriptor ^ petal_length between plength_const plength_const 
pwidth.descriptor ~> petal_width between pwidth_const pwidth_const 
Consq ^ class_descriptor 

class-descriptor ^ c lass i s c lass_const 

Table 5.2: The grammar for the iris plants database 

5.4.1 Experimental results on the Iris Plant Database 

The first experiment uses the iris plants database as the data set. This database 

is one of the most frequently used database in machine learning. It consists of 150 

records with 5 attributes (Table 5.1). The task is to discover knowledge about the 

three classes. Each class has 50 records in the database. 100 records are randomly 

selected as the training set and the remaining 50 records are used as the testing 

set. 

The grammar in Table 5.2 is used for learning rules from this database. This 

grammar is very simple. Each of the four continuous attributes is described by a 

range in the rule, and the nominal attribute is described by a value. This grammar 

is used to create a population with size 50. The maximum number of generations 

is 50. . 

Preliminary experiments are performed to investigate the effects of different 

parameter settings. We found that by lowering the value of w2 in the fitness 
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wi W2 Accuracy 
~ r " 8 87.6% 

1 1 91.6% 

Table 5.3: Results of different value of w2 

Minimum support Accuracy 
— 0.03 91.6% — 
— 0.01 94.8% — 

Table 5.4: Results of different value of minimum support 

function (Equation 4.2), a higher accuracy on the testing set can be achieved, as 

shown in Table 5.3. In this database it is quite easy to find a rule with a high 

confidence, but the rule may not be general enough. Since the rule set needs to 

cover all testing cases, the goal of the evolution process is not just to evolve rules 

with high confidence, but also to evolve rules with high support. A lower value 

of W2 in the fitness function can favor more general rules with a better support. 

We also found that the classification accuracy on using a lower value of minimum 

support is somewhat better, and the result is less sensitive to the rates of the 

genetic operators. The results are shown in Table 5.4 and 5.5. 

A more complete result is obtained by executing 25 runs using the best setting 

that we have tried. The best setting uses a rate of 0.5 for crossover, 0.4 for 

mutation, and 0.1 for dropping condition, 0.01 for minimum support, 1 and 1 

respectively for the values of wi and W2 for the fitness function. The execution 

time for each run is about 70 seconds in a Sun Ultra 1/140. Our system gets an 

average classification accuracy of 91.04%. The results of these runs are shown in 

Table 5.6. The best run gives an accuracy of 100% and the rules are listed in 

Rate of 
Crossover Mutation Dropping condition Accuracy 

— 0 . 5 0 0.40 0.1 9 4 . 8 % ~ 
0 ^ 0.55 0.1 ~ 9 2 . 4 % 

~ ~ ~ 0 ^ " ^ 0.30 0.1 ~ 9 1 . 6 % 
一 0.45 0.35 0.2 9 4 . 8 % ~ 

Table 5.5: Results of different probabilities for the genetic operators 
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Accuracy 
~Mean Standard Derivation Maximum Minimum" Time 

0.9104 0.0548 1.00 0.76 70 sec. 

Table 5.6: Experimental result on the iris plants database 

Approach Accuracy 
~ O ^ r approach 91.04% (100"¾" 

C4.5 93.8% 
ID3 94.2% 

" l ^ r e s t Neighbor 96.0% 
Neural Net 96.7% 

Table 5.7: The classification accuracy of different approaches on the iris plants 
database 

Appendix A.1. 

The results of other approaches are quoted from Holte [1993] as references (Ta-

ble 5.7). It should be notice that these results are obtained using different number 

of runs and different settings in the training and testing set. For our approach, the 

value inside the brackets shows the best accuracy. The best accuracies of the other 

approaches are not available. However, as they are deterministic approaches, their 

accuracies do not vary on different runs. Their results are different only because 

the training and testing sets used are different. The average accuracy of our ap-

proach shown in this table is not as good as the other approaches. However, the 

perfect result can be obtained in the best run of our approach. A characteristic of 

evolutionary algorithms is that they are stochastic. Thus our approach has larger 

fluctuations in different runs and it is improper to compare the average accuracy 

of our approach to other approaches. In order to get a better result, the user may 

execute several trials of the algorithm to get the result with the best fitness score. 

5.4.2 Experimental results on the Monk Database 

The second experiment is performed on the Monk database (Thrun et al. [1991]). 

This database contains attributes for artificial robots, as shown in Table 5.8. 

There are three data sets. Each data set has a hidden knowledge on the robots 
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Attribute Possible Value 
head shape l(round), 2(square), 3(octagon) 
body shape l(round), 2(square), 3(octagon) 
is smiling l(yes), 2(no) 
holding l(sword), 2(balloon), 3(flag) 
jacket color l(red), 2(yellow), 3(green), 4(blue) 
has tie — l(yes), 2(no) 
class l(yes), 2(no) — 

Table 5.8: The monk database 

that belong to the class (i.e. class 二 1). The training set contains randomly 

selected robots while the testing set contains all the 432 possible robots. The 

task is to discover the knowledge on classification of a robot into the positive or 

negative class. 

1. The monkl data set has 124 examples in the training set, which contains 

62 positive examples (i.e. class=l) and 62 negative examples (i.e. class=2). 

The testing set contains 216 positive and 216 negative examples. The hidden 

knowledge for classification is "(head shape 二 body shape) or (jacket color 

= 1 ) " . There were no mis-classifications. 

2. The monk2 data set has 169 examples in the training set, which contains 

105 positive and 64 negative examples. The testing set contains 190 positive 

and 142 negative examples. The knowledge hidden is "exactly two of the 

six attributes have the values 1". For example, a robot with head shape=l, 

body shape=3, is smiling=l, holding=3, holding=2 and jacket color=2 is 

positive. There were no mis-classifications. 

3. The monk3 data set has 122 examples in the training set, which contains 

62 positive and 60 negative examples. The testing set contains 204 positive 

and 228 negative examples. The knowledge hidden is "(holding 二 1 and 

jacket color = 3) or (body shape + 3 and jacket color + 4). There were 5% 

mis-classifications in the training set. 
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Rule ^ i f Antes , then Consq . 

Antes ~> shapel and smilel and holdl and jacketl and tiel 

shapel ~> shape-Comparison | headl and bodyl 

shape-Comparison ~> head_shape comparator body_shape 
headl ~> any | head-descriptor 

bodyl ~> any | body-descriptor 

smilel ")• any | smile-descriptor 

holdl ^ any | hold-descriptor 

jacketl ~> any | jacket-descriptor 

tiel ~> any | tie-descriptor 

head.descriptor ~> head_shape comparator erc3 
body-descriptor ~> body_shape comparator erc3 
smile-descriptor ~> is_smiling comparator erc2 
hold-descriptor ~> holding comparator erc3 
jacket-descriptor ^ j acket_co lor comparator erc4 
tie-descriptor ^ has_tie comparator erc2 
comparator — 二 | • 

Consq ^ p o s i t i v e 
Table 5.9: The grammar for the monk database 

The knowledge in monkl is in the standard disjunctive normal form (DNF). 

The knowledge in monk2 is similar to a parity problem, and is difficult to be 

described in DNF using the given attributes only. The knowledge in monk3 is 

again in DNF but under the presence of noise. 

The grammar for learning rules from this database is listed in Table 5.9. In 

this database, there should be only one kind of rule: rules describing knowledge 

about the positive robot. Thus the rules can only have one consequent: 'positive，. 

To classify a case as negative, a default rule 'if any then negative' is used. The 

fitness of this rule is calculated. A discovered rule is not used if its fitness is below 

the default. If no rule can be applied to a case, then the default rule is used. In 

this grammar, the attributes head shape and body shape can be described in two 

ways. Basically each attribute can be described by its value. However as they are 

both about the shape, a possible description is a comparison of them. The other 

attributes are described by their values. The constants erc2, erc3 and erc4 are 

respectively with the range 1 to 2, 1 to 3 and 1 to 4. 
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Accuracy 
Mean Standard Derivation Maximum Minimum 

M o n k f 1.000 0.000 1.00 1-00~~" 
Monk2 0.600 0.091 0-69 — 0.31 — 
Monk3 0.954 0.029 1.00 0.89 

Table 5.10: Experimental result on the Monk database 

Approach Monkl Monk2 Monk3 — 
I D 3 9 8 . 6 % 6 7 . 9 % 9 4 . 4 % 

A Q R 9 5 . 9 % " 7 9 . 7 % ^ 7 . 0 % 

CN2 "100% — 6 9 . 0 % 一 8 9 . 1 % 

A Q 1 7 - D C I T 0 0 % 1 0 0 % 9 4 . 2 % — 

AQ15-GA T 0 0 % 86.8% 100% — 
Assistant Professional 100% 81.3% 100% 
Backpropagation 100% 100% 93.1% 
Our approach 100% (100%) 60% (69%) 95.4% (lOQ%T 

Table 5.11: The classification accuracy of different approaches on the monk 
database 

For each data set, rule learning is executed for 25 runs using the following 

setting: population size is 50, maximum number of generations is 50, the rates 

for crossover, mutation and dropping condition are 0.5, 0.4 and 0.1 respectively, 

minimum support is 0.01, Wi is 1 and W2 is 8. The execution time for each run 

is around 120 seconds. The result is shown in Table 5.10. The average results of 

other approaches are quoted from Thrun et al. [1991] in Table 5.11 as references. 

The best results of our approach are shown inside the brackets. 

• Monkl database 

For the monkl database, the hidden knowledge can be easily reconstructed 

by the above grammar. Thus we can obtain a 100% classification accuracy 

on each run. The rule set is shown in Appendix A.2.1. If the grammar 

does not include a comparison between head shape and body shape, the 

perfect rule set can still be found but at a later generation, and three rules 

are needed to represented the concept (head shape 二 body shape) using the 

three possible values. 
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• Monk2 database 

The hidden knowledge is difficult to be represented using a context free 

grammar. The simple hidden rule must be represented by a large number of 

rules. Our system cannot evolve all ofthese rules and results in a poorer clas-

sification accuracy. Rules with this simply format have limited knowledge 

representation power, and cannot represent a certain kind of knowledge. Ap-

proaches that does not use simply rules, such as the backpropagation neural 

network, can achieve a much better result. 

The result of our approach may be improved if evolution using a context 

sensitive grammar is implemented in the system. The best rule set is shown 

in Appendix A.2.2. 

• Monk3 database 

Our system can discover knowledge with a high classification accuracy under 

this noisy environment. The accuracy is the third best in these approaches, 

and the best rule set, shown in Appendix A.2.3, can classify all testing cases 

correctly. 

From these experiments, we can see that our rule learning approach can suc-

cessfully learn rules with high accuracy from the data, although the perfect rule 

set may not be discovered in every run. 
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Bayesian Network Learning 

In the approach of rule learning, we have focused on the detail view of the data. 

One deficiency of this approach is that the discovered rule set is not guaranteed to 

cover the whole database. The system will not provide any knowledge for a record 

that is not covered by any rules. The rules can describe parts of the database that 

have interesting patterns, but do not provide a general knowledge on the data. 

Moreover, the rules in the rule set are not organized. A causality relationship 

may be expanded into several similar rules. The rule learning step is not able to 
|| 

organize them into a chain and cannot provide a generalized view. j 
(' 

A Bayesian network can be a complement to rules. A Bayesian network is a 

much different model to represent the knowledge of data. It captures the condi-

tional probabilities between variables (i.e. attributes in the database), and focuses 

on the general relationships between variables. In many real-life situation, the data 

just cannot be described completely by a few rules. Building a complete model for 

such a database is difficult and usually results in a complicated model. Bayesian 

network should be a suitable knowledge representation to give a structural causal-

ity model. It is easy to understand because of its graphical representation, while 

it has a well-developed mathematical model and can be used to perform reasoning 

under uncertainty. -

Wong et al. [1997] has introduced an approach based on the Minimum De-

scription Length Principle (MDL) and Evolutionary Programming (EP) to learn 
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Bayesian networks. However, the learning of Bayesian network is limited to dis-

crete variables only. As Friedman and Goldszmidt [1996] has extended the defi-

nition of MDL score to handle continuous variables (Section 2.5.2), it is possible 

to combine these two researches, such that evolutionary computation can be used 

to learn a Bayesian network from a data set with discrete as well as continuous 

variables. 

The approach MDLEP, which uses EP to optimize the MDL score, is intro-

duced in Section 6.1. Then this approach is extended by introducing another layer 

to learn a discretization policy to discretize the continuous variables. This new 

layer uses Genetic Algorithm as the search method, and is described in Section 

6.2. The experimental results of the new combined approach are given in Section 

6.3. 

6.1 The MDLEP Learning Approach 

The approach MDLEP (Wong et al. [1997]; Lam et al. [1998]) uses EP to optimize 

the MDL metric (Equation 2.14)，so as to learn the best Bayesian network. The 

flowchart in Figure 6.1 shows the process. Each individual represents a network 

structure, which is a directed acyclic graph (DAG). A connection matrix is used 

to represent the graph. A set of individuals is randomly created to make up 

the initial population. Each graph is evaluated by the MDL metric. Then each 

individual produces a child by performing a number of mutations. The child is 

also evaluated by the MDL metric. The next generation of population is selected 

among the parents and children by tournaments. Each DAG B is compared with q 

other randomly selected DAGs. The tournament score of B equals to the number 

of rivals that B can win, that is，the number of DAGs among those selected that 

have higher MDL scores than B. In our setting, the value of q is 5. One half of 

DAGs with the highest tournament scores are retained for the next generation. 

The process is repeated until the maximum number of generations is reached. 

The setting on the maximum number of generations depends on the complexity 
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of the network structure. If we expect a simple network, the maximum number of 

generations can be set to a lower value. The network with the lowest MDL score 

is output as the result. 

Offspring in EP is produced by using a number of mutations. The probabilities 

of using 1, 2, 3, 4, 5 or 6 mutations are set to 0.2, 0.2, 0.2, 0.2, 0.1 and 0.1 

respectively. The mutation operators modify the edges of the DAG. If a cyclic 

graph is formed after the mutation, edges in the cycles are removed to keep it 

acyclic. The approach uses four mutation operators, with the same probabilities 

of being used: 

1. Simple mutation randomly adds an edge between two nodes or randomly 

deletes an existing edge from the parent. 

2. Reversion mutation randomly selects an existing edge and reverses its direc-

tion. 

3. Move mutation randomly selects an existing edge. It moves the parent of 

the edge to another node, or moves the child of the edge to another node. 

4. Knowledge-Guided mutation is similar to simple mutation, but the MDL 

scores of the edges guide the selection of the edge to be added or removed. 

The MDL metric of all possible edges in the network is computed before 

the learning algorithm starts. This mutation operator stochastically adds 

an edge with a small MDL metric to the parental network or deletes an 

existing edge with a large MDL metric. 

6.2 Learning of Discretization Policy by Genetic 

Algorithm 

Friedman and Goldszmidt [1996] have extended the definition of MDL to include 

the discretization of continuous attributes (see Section 2.5.2). However the search 
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Figure 6.1: The flowchart of the MDLEP process 
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algorithm they proposed has a serious deficiency: The algorithm is a greedy ap-

proach and can be easily trapped in a local optima with no way to escape. This 

approach also greatly depends on the initial settings. If the initial guess of dis-

cretization policy or network structure is not good, the result can be poor. 

An evolutionary approach can be applied to optimize the new MDL metric, 

and thus the best network structure as well as the best discretization policy can 

be learned. The use of evolutionary computation can have less chance for being 

trapped in a local optima, because there is a population of individuals to explore 

the search space in parallel. However, the search space is very huge, since the 

optimization includes two aspects: the optimizations of the network structure as 

well as the discretization policy. There are also two different kinds of genetic 

changes: genetic changes in the DAG and genetic changes in the discretization 

policy. Thus optimizing both aspects in one step is difficult and inappropriate. 

A more realistic approach is to use the iterative approach as suggested by 

Friedman and Goldszmidt [1996]. In both the learning of the network structure 

and the discretization policy, evolutionary approach can be used. MDLEP can be 

applied directly to the network learning step. On the learning of the discretization 

policy, we have applied Genetic Algorithm as the search algorithm. Thus, started 

with an initial discretization policy, MDLEP is used to learn the network structure. 

Based on this structure, GA is used to learn the discretization policy. The process 

is iterated until the maximum number of iterations is reached. 

The genetic algorithm starts with an initial randomly generated population. 

Each individual in the population is evaluated by the new MDL score defined in 

Equation 2.18. The good individuals are selected to produce offspring using the 

genetic operators. The offspring in turn produces the next generation until the 

maximum number of generations is reached. 

6.2.1 Individual Representation 

In this problem we want to search for a good discretization policy. A discretization 

policy consists of discretization sequences for the continuous variables, and each 
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Values of variable a : | 1 | 2 | 3 | 5 | 8 | 12 | 15 | 20 | 33 | 40 

Bit string of variable a : | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 丨 1 

Figure 6.2: A bit string represents a discretization sequence 

0 I 1 丨 0 I 0 I 0 1 丨 0 I 0 I 1 1 丨 0 I 0 I 1 0 I 1 丨 0 0 . . . 
variable a variable b • • • 

Figure 6.3: The bit string in an individual 

discretization sequences consists of threshold values for discretization. We can 

limit the thresholds to mid-points between successive values that appeared in the 

training data. Each individual should represent a possible discretization policy, 

and hence each individual should encode these threshold values. 

We have used one bit string to represent one discretization sequence. The 

number of bits in each string equals to the number of mid-points values of the 

variable (i.e. if variable i has Si different values in the training data, the length 

of its bit string is Si - 1). A '1' in the bit means the corresponding mid-point is 

included as a threshold in the discretization sequence. For example, if variable a 

has 10 different values, its values appeared in the data set and the corresponding 

bit string are as shown in Figure 6.2, then variable a is discretized into four values: 

1-2 are discretized to a value 1, 3-12 are discretized to 2, 15-33 are discretized to 

3 and 40 is discretized to 4. The thresholds represented in this bit string are 

the mid-points between the successive values, i.e. 2.5 (mid-point of 2 and 3), 

13.5 (mid-point of 12 and 15) and 36.5 (mid-point of 33 and 40). To provide a 

more useful discretization and simplify the computation, the user can limit the 

maximum number of thresholds appeared in the discretization sequence. Hence 

the maximum number of '1' in the bit string is limited. An individual stores the 

concatenation of the bit strings of each continuous variable, as shown in Figure 

6.3. 
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6.2.2 Genetic Operators 

Four genetic operators are used. Other than the basic operators of reproduction, 

crossover and mutation, another operator named 'shift' is applied to evolve better 

discretization policies: 

• Reproduction: The standard reproduction is used. The parent is selected 

and copied into the new generation. 

• Crossover: The standard crossover can also be used. Two parents are se-

lected. One random point in the bit string of the parents is selected as the 

crossover point. The bit string is cut into two parts at this point. The 

upper parts of the two parents are exchanged to evolve two children. Then 

the number of ' l 's for each continuous variable is counted. If the number of 

thresholds for a variable is larger then the limit, one or more ' l 's in the bit 

string are randomly selected and turned into '0'. 

• Mutation: The mutation we used is a multiple-point mutation. A parent 

is selected. A random bit from each variable is selected for mutation. In a 

special case that the limit of ' l 's is already reached, only '0's in the bit string 

are selected for mutation. There is a 50% chance that the bit is mutated. If 

mutation occurs, the the selected bit is changed from 0 to 1 or vice versa. 

• Shift: Shift is a special kind of mutation. A slightly change of the threshold 

values would not change the effect of the discretization greatly. Thus a 

slightly increases or decreases of a threshold that gives a good fitness score 

will give a good or hopefully even better fitness score. One parent is selected 

for the shift operator. A random bit with '1' is selected from each variable. 

For each bit there is a 50% chance that a threshold value is shifted. If shift 

occurs, the bit is set to ‘0, and its neighbor bit (either left or right, with 

equal probabilities) is set to '1'. This effectively changes the threshold value 

in the discretization sequence to the next (or previous) mid-point value. 
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6.3 Experimental Results 

The performance of the GA approach is evaluated on a machine learning database 

and two artificially generated databases. A network structure as well as a dis-

cretization policy are learned from the data. The network structure and dis-

cretization policy is searched alternatively. MDLEP is used as the algorithm for 

network structure learning. We have used a population size of 50 to run for 75 

generations in MDLEP. In the GA approach, we used a population size of 50 to run 

for 50 generations. The probabilities of using reproduction, crossover, mutation 

and shift are 0.2, 0.4, 0.2 and 0.2 respectively. 

Each continuous variable is initially discretized to two values by a single ran-

dom threshold value. A variable can at most have 5 discretization thresholds (i.e. 

a maximum of 6 ranges). The learning of network structure and discretization 

policy are alternated for 20 iterations. At each iteration of learning the net-

work structure, MDLEP is re-started from scratch. However at each iteration of 

learning the discretization policy, an elitism is employed. The best discretization 

policy learned from the previous iteration of GA is retained as one individual in 

the population, and the other individuals are created randomly. 

We also compare the result with the greedy approach. The greedy approach 

described in Section 2.5.2 is implemented. MDLEP with the same setting is 

used to learn the network structure. Since the greedy approach is quite sensitive 

to the initial setting, two different initial discretizations have been tested. In 

GreedyO the initial discretization is the same as the GA approach. In Greedyl 

the discretization threshold is set to the median of the set of possible values. For 

example, if the continuous variable has n different values, the 1®̂  to the [几/2�七& 

value are initially discretized to one value and the remaining values are discretized 

to another value. Although Greedyl starts with a fixed discretization, MDLEP 

will give a different result in each run, and thus the results of different runs of 

Greedyl will be different. 
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mean min. max. S.D. 
GA "2574.81 " 2 5 0 6 ^ 2759.77 “ 75.81 
GreedyQ 2693.93 ^574.68 2952?7^ 157.41" 
Greedyl 2574.68 2574.68 2574.68 0.00 

Table 6.1: Results of experiment 1 

6.3.1 Experiment 1 
In the first experiment, a Bayesian network is learned from the Iris plants data set 

described in Section 5.4.1. Each approach is executed for 10 trials. Their mean, 

minimum, maximum and standard derivation of the MDL score of these trials 

are shown in Table 6.1. It shows that the average score of GA is equally good 

as Greedyl, and better than GreedyO. For the best trial (i.e. with the minimum 

score), GA can give a better score than the other two approaches. The network 

structure and the discretization policy of the best trial of these approaches are 

respectively shown in Figure 6.4 and Figure 6.5. 

The three different approaches give different network structures but similar 

discretization policy in the best trial. There is no evidence to say whether these 

network structure and discretization policy is correct. However, the distribution of 

values and the rule discovered by the rule learning approach (shown in Appendix 

A.1) can give suggestions. In the database, petal length does not have records with 

values between 2.0 and 2.9, and petal width does not have records with values 

between 0.7 and 0.9. This suggests that petal length smaller than 2.0 should 

belong to one group and larger than 2.9 should belong to another, and petal 

width smaller than 0.7 should belong to one group and larger than 0.9 should 

belong to another. The results of all approaches can achieve this. Meanwhile, the 

first rule of Appendix A.1 shows that petal width between 0.0 to 0.8 can imply a 

class of iris-setosa. Thus it is reasonable to discretize values in this range to one 

value. All approaches can successfully achieve this. The second rule shows that 

petal length between 2.0 and 5.0, and petal width between 0.2 and 1.7 can imply 

a class of iris-versicolor. Thus it is reasonably to discretize petal length between 

2.0 and 5.0 to one value, and petal width between 0.2 and 1.7 to one value. All 
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Figure 6.4: The network structures of the best results of Experiment 1 
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sepal length: [4.3-5.4] [5.5-5.8] [5.9-7.9 
sepal width: [2-2.9] [3-3.3] [3.4-4.4] 
petal length: [1-1.9] [3-4.7] [4.8-6.9； 

petal width: [0.1-0.6] [1-1.7] [1.8-2.5 

(a) GA 

sepal length: [4.3-5.5] [5.6-6.1] [6.2-7.9； 

sepal width: [2-2.9] [3-3.3] [3.4-4.4； 

petal length: [1-1.9] [3-4.7] [4.8-6.9； 

petal width: [0.1-0.6] [1-1.7] [1.8-2.5； 

(b) GreedyO 

sepal length: [4.3-5.5] [5.6-6.1] [6.2-7.9 
sepal width: [2-2.9] [3-3.3] [3.4-4.4] 
petal length: [1-1.9] [3-4.7] [4.8-6.9 
petal width: [0.1-0.6] [1-1.7] [1.8-2.5 

(c) Greedyl 

Figure 6.5: The discretization policies of the best results of Experiment 1 

approaches give a discretization for petal length between 3.0 and 4.7. Petal width 

is not discretized by the range [0.2-1.7] in the best results, but by two ranges [0.1-

0.6] [l-1.7]. An extra range is necessary as suggested by the distribution of values 

and by the first rule. These observations suggested that appropriate discretization 

policies can be successfully constructed by all approaches. 

6.3.2 Experiment 2 

In the second experiment, a simple Bayesian network structure is used to generate 

a data set of 1000 records, as shown in Figure 6.7(a). Variable 0, 1，2, 4, 5 are 

independent variables and their values are distributed differently: Variable 0 is 

normally distributed in the range (0-0.3), (0.3-0.6) and (0.7-1.0); Variable 1 is 

normally distributed in the range (0-0.4) and (0.6-1.0); Variable 2 is normally 

distributed in the range (0.1-0.6) and (0.4-1.0); Variable 4 is normally distributed 

in the range (0-0.2)，(0.4-0.8) and (0.8-1.0); Variable 5 is uniformly distributed on 

(0-1.0). The actual frequency distributions of values in the data set are shown in 
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mean min. max. S.D. 
GA _ 39604.1 "39435" 40205 “ 234.37 
GreedyO 41040.1 40408 4160T 410.87 
Greedyl 40291.1 40236 40403 48.64 

Table 6.2: Results of experiment 2 

Figure 6.6. 

The performance of ten trials of each approach is shown in Table 6.2. GA 

is better than the other two approaches both on the average score and the best 

score. The network structures of the best result of each approach as well as the 

original structure are shown in Figure 6.7. Both approaches cannot reconstruct 

the original structure, but the network constructed by GA is the most similar to 

the original one. It should be noted that MDL score gives a trade off between 

simplicity and accuracy. Thus the original structure may not be the structure 

with the best MDL score. 

The discretization policies of the best results are shown in Figure 6.8. Both 

GA and Greedyl can discretize variable 0,1,2 and 4 according to the given dis-

tributions, while GreedyO failed to discretize variable 0. For the other variables, 

the discretizations generally match the fluctuations in the frequency distribution. 

Figure 6.9 is an example showing how variable 3 is divided into 6 ranges by the 

discretization policy of GA. The frequency distribution can show the probability 

p{Xi\X*), which affects the encoding length for reconstruction (see Section 2.5.2 

and Equation 2.20). Nevertheless, the encoding length for reconstruction is only 

one part of the MDL score. A good discretization policy should optimize this part 

as well as the other parts. 

6.3.3 Experiment 3 

In the third experiment, a more complex structure (Figure 6.11(a)) is used to 

generate 1000 data. The independent variables are variable 2, 5, 6 and 7. Variable 

2 is normally distributed in the range (0-0.4), (0.4-0.7) and (0.75-1.0); Variable 5 

is normally distributed in the range (0-0.4) and (0.6-1.0); Variable 6 is normally 
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Figure 6.6: The frequency distribution of the variables of experiment 2 
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o o o o o o 

^ 5 ^ ^ ^ ^ o " ^ ^ ^ ^ 

(a) The original structure (b) GA 

o 0 0 0 0 0 

¢ ^ 0 c ^ o 

(c) GreedyO (d) Greedyl 

Figure 6.7: The original network structure of experiment 2 and the network struc-
tures found by the best run of different approaches 
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Variable 0: [0.05-0.26] [0.27-0.56] [0.58-1.01； 

Variable 1: [0.04-0.35] [0.65-0.96] 
Variable 2: [0.18-0.53] [0.54-0.92 
Variable 3: [0.16-0.3] [0.31-0.4] [0.41-0.46] [0.47-0.53] [0.54-0.66] [0.67-0.87； 

Variable 4: [0.02-0.18] [0.42-0.82] [0.83-0.97] 
Variable 5: [0-0.41] [0.42-1] 
Variable 6: [0.11-0.36] [0.37-0.63] [0.64-0.76] [0.77-0.93] [0.94-1.13] [1.14-1.44 

(a) GA 

Variable 0: [0.05-1.01 
Variable 1: [0.04-0.31] [0.32-0.96 
Variable 2: [0.18-0.46] [0.47-0.62] [0.63-0.92； 

Variable 3: [0.16-0.4] [0.41-0.62] [0.63-0.87] 
Variable 4: [0.02-0.51] [0.52-0.73] [0.75-0.97； 

Variable 5: [0-1 
Variable 6: [0.11-0.45] [0.46-0.79] [0.8-1.07] [1.08-1.44: 

(b) GreedyO 

Variable 0: [0.05-0.36] [0.37-0.73] [0.75-1.01； 

Variable 1: [0.04-0.34] [0.35-0.96] 
Variable 2: [0.18-0.48] [0.49-0.67] [0.68-0.92； 

Variable 3: [0.16-0.4] [0.41-0.51] [0.52-0.64] [0.65-0.87； 

Variable 4: [0.02-0.18] [0.42-0.73] [0.75-0.97； 

Variable 5: [0-0.36] [0.37-0.68] [0.69-1] 
Variable 6: [0.11-0.43] [0.44-0.8] [0.81-1.05] [1.06-1.44； 

(c) Greedyl 

Figure 6.8: The discretization policies of the best results of experiment 2 
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Figure 6.9: The ranges formed by the discretization policy of GA and the fre-
quency distribution of variable 3 

mean min. max. S.D. 
GA — 41363.1 41207 4 1 6 ^ 150.40 
GreedyO 43574.7 42584 44647 662.28 
Greedyl 43077.2 42926 43436 144.70 

Table 6.3: Results of experiment 3 

distributed in the range (0.1-0.6) and (0.4-1.0); Variable 7 is normally distributed 

in the range (0-0.2), (0.5-0.9) and (0.9-1.0). The actual frequency distributions of 

values in the data set are shown in Figure 6.10. The performance of ten trials of 

each approach is shown in Table 6.3. Again, GA can give the best results on the 

average score as well as the minimum score. 

The best results give the network structures as shown in Figure 6.11. GA gives 

the structure that is the most similar to the original structure. The discretization 

policies of the best results are as shown in Figure 6.12. When comparing the dis-

cretization policies with the original distributions for generating the independent 

variables (variable 2,5,6,7), GA gives an extra range for variable 5 and 7, GreedyO 

can reconstruct the ranges, while Greedyl gives an extra range for variable 2 and 

7. 
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© © 0 0 0 0 

\ X X v v ^ 
(a) The original structure (b) GA 

^ V V o V n / 
%A?̂  %Xf 

(c) GreedyO (d) Greedyl 
Figure 6.11: The original network structure of experiment 3 and the network 
structures found by the best run of different approaches 
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Variable 0: [0.28-0.7] [0.71-0.96] [0.97-1.12] [1.13-1.28] [1.29-1.53] [1.54-1.79； 

Variable 1: [0.44-0.63] [0.64-0.83] [0.84-0.92] [0.93-0.99] [1-1.07] [1.08-1.28； 

Variable 2: [0.06-0.31] [0.32-0.67] [0.69-0.98] 
Variable 3: [0.18-0.41] [0.42-0.56] [0.57-0.67] [0.68-0.88] 
Variable 4: [0.4-0.57] [0.58-1.12] [1.16-1.44] [1.45-1.64] [1.65-1.83] [1.84-2.1: 
Variable 5: [0.06-0.36] [0.65-0.79] [0.8-0.95] 
Variable 6: [0.18-0.52] [0.53-0.89] 
Variable 7: [0.04-0.57] [0.58-0.71] [0.72-0.85] [0.86-0.99； 

(a) GA 

Variable 0: [0.28-0.7] [0.71-0.96] [0.97-1.22] [1.23-1.3] [1.31-1.56] [1.57-1.79； 

Variable 1: [0.44-0.63] [0.64-0.84] [0.85-0.93] [0.94-1.05] [1.06-1.28； 

Variable 2: [0.06-0.31] [0.32-0.78] [0.8-0.98] 
Variable 3: [0.18-0.42] [0.43-0.66] [0.67-0.88] 
Variable 4: [0.4-0.57] [0.58-0.8] [1.12-1.45] [1.46-1.68] [1.69-1.91] [1.92-2.1: 
Variable 5: [0.06-0.35] [0.36-0.95] 
Variable 6: [0.18-0.55] [0.56-0.89 
Variable 7: [0.04-0.18] [0.57-0.86] [0.92-0.99； 

(b) GreedyO 

Variable 0: [0.28-0.71] [0.72-0.95] [0.96-1.06] [1.07-1.23] [1.24-1.35] [1.36-1.56] [1.57-1.79； 

Variable 1: [0.44-0.63] [0.64-0.84] [0.85-0.9] [0.91-1.06] [1.07-1.28] 
Variable 2: [0.06-0.37] [0.45-0.52] [0.53-0.78] [0.8-0.98] 
Variable 3: [0.18-0.44] [0.45-0.66] [0.67-0.88] 
Variable 4: [0.4-1.16] [1.18-1.32] [1.33-1.59] [1.6-1.71] [1.72-1.86] [1.87-2.1； 

Variable 5: [0.06-0.35] [0.36-0.95] 
Variable 6: [0.18-0.58] [0.59-0.89 
Variable 7: [0.04-0.58] [0.59-0.66] [0.67-0.83] [0.84-0.99: 

(c) Greedyl 

Figure 6.12: The discretization policies of the best results of experiment 3 
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Experiment 1 Experiment 2 Experiment 3 
GA 5 minutes 70 minutes 90 minutes 
GreedyO 15 seconds 15 minutes 30 minutes 
Greedyl 15 seconds 15 minutes 30 minutes 

Table 6.4: Execution time of the three approaches 

6.3.4 Comparison between the GA approach and the greedy 

approach 

From the results of these experiments, we can see that our new GA approach 

performs better than the greedy approach. When comparing the average score, 

GA is better than the two greedy approaches, except in experiment 1 where the 

difference is insignificant. When comparing the best trial in these experiments, GA 

can give the best result that the greedy approach cannot produce. In experiment 

2 and 3，the data set is generated artificially under a network structure and special 

probability distributions. The network structures given by GA in experiment 2 

and 3 are more similar to the original structures, and GA can give ranges similar 

to the underlying probability distributions in most of the independent variables. 

This shows that GA can successfully construct appropriate network structure and 

discretization policy from the data. Nevertheless, the original network structure 

and the underlying probability distributions may not give the best MDL score, 

and can only be references for comparisons. 

The experiment results also confirm a deficiency of the greedy approach: the 

greedy approach depends greatly on the initial discretization. In these experi-

ments, the standard derivation of GreedyO is the largest. The greedy approach 

has more fluctuations than the GA approach when given a random initial dis-

cretization. From a poor discretization policy, the greedy approach does not have 

any technique to escape and thus gives a poor result, while the parallel search in 

GA approach can search for several local optima and gives a better result. When 

given a better initial discretization, such as in Greedyl, a better result is achieved. 

Since we cannot guarantee that we can start with a good initial discretization, 

the GA approach should be a better method to perform the optimization. 
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The approximation time for each execution in a Sun Ultra 1/140 is shown 

in Table 6.4. The execution time of the greedy approach is better than the GA 

approach. The execution time for both approaches is mainly spent on calculating 

the MDL score, as each evaluation needs to loop over every training case. In the 

GA approach, the number of fitness evaluations depends on the population size, 

the number of generations, and the number of iteration between network structure 

learning and discretization policy learning. In the greedy approach, the number of 

MDL score calculations depends on the number of values of each variable (because 

the greedy approach tests all the possible splits for each variable), the number of 

variables, and the number of iterations between network structure learning and 

discretization policy learning. Thus the execution time is a disadvantage of the 

GA approach. 
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Chapter 7 

Medical Data Mining System 

The approaches for rule learning and Bayesian network learning described in pre-

vious chapters have been combined into a knowledge discovery system. Figure 

7.1 shows the steps in this system. Real-life data are collected in the first step. 

Then, the data must be preprocessed before analyses can be performed. The third 

and fourth steps induce knowledge from the preprocessed data. The Causality and 

Structure Analysis step learns the overall relationships between the variables. The 

GA approach described in Chapter 6 is employed to learn a Bayesian network from 

the nominal or continuous data. Based on this knowledge, the user can specify 

the target relationships he wants to know by formulating a grammar. The Rule 

r N Grammar for Rules 
V. J 

'' Data Mining 
1 I [ 

5! iiS i 3¾ 'f.； ‘ 

^ / K r>‘ :: K Casuality and K „,. “ K Knowledge ； Data _ N Data - ~ N structure “~'\ _ ^̂"‘® “~"'^ Verificationand , Collection -~^/ Preprocessing - ~ ^ Analysis ?~~K Leaming - ~ ^ Evaluation 
5?5 i;î  •： m m • m 

U^T V "二 零 …,\ , , ,,,M, % , //, :>"' “‘ ''" 1 ^ '''"" • ‘‘ ''"'"''">"''““ J “ » I ^ I i' ‘ 

f \ f > ( ^ 
_jRawData _ L̂PrepKx:essecl J • Knowledge 

Data 
^ ) V ) r““~^ ^ ) 

Bayesian 
Network 

V J f >1 
^ Rules 
\ y 

Figure 7.1: The knowledge discovery process 
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Learning step learns a set of significant rules from the data. The approach de-

scribed in Chapter 5 is employed. The grammar can guide the format of the rules 

to be learned. In the fifth step, the learned knowledge is verified and evaluated 

by the domain experts. The domain experts may discover and correct mistakes 

in the learned knowledge. On the other hand, the learned knowledge can refine 

the existing domain knowledge. Finally, the constructed Bayesian network can 

be used to perform reasoning under uncertainty, and the induced rules can be 

incorporated into an expert system for decision making. 

The use of grammar can ensure syntactical correctness in the rule, but not 

semantical correctness. It is desirable to eliminate meaningless rules in the search 

process. This requires a certain degree of knowledge on the causalities between 

the attributes. Causality and structure analysis in our data mining system can 

provide this knowledge. The Bayesian network may provide an overview of the 

relationships among the attributes. For example, if we know that attribute A is 

not related to any other attributes, then we don't need to learn rules about A. If 

we know attribute B should depend on attributes C and D, then we can specify a 

rule format like 'if <attribute C descriptor> and <attribute D descriptor>, then 

<attribute B descriptor>'. 

The temporal order among attributes can also provide knowledge to increase 

the learning efficiency. For example, in a medical domain, the rule “if treatment 

is plaster, then diagnosis is radius fracture" is inappropriate. This rule does 

not make sense, because an operation is taken based on the treatment, not the 

other way round. In general, an event that occurs later will not be a cause of 

an event occurred earlier! Thus, we can order the attributes according to the 

temporal relationship. The grammar should be designed such that an attribute 

is not placed in the 'if，part if it occurs later than the attribute in the 'then' 

part. This temporal order can be represented easily in the grammar. Both of 

the causality model and temporal order may significantly reduce search space and 

prune meaningless rules. 

The described data mining technology has been applied to real-life medical 
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Name Type Description Possible Value 
Sex Nominal Sex ’M’ or T ' 
Age Numeric Age Between 0 to 16 years old 
Admday Date Admission date Between year 1984 to 1996; Divided into four 

parts: Day, Month, Year and Weekday 
Stay Numeric Length of staying Between 0 to 1081 days 

in hospital 
Diagnosis Nominal Diagnosis of 10 different values, 

fracture based on the location of fracture 
Operation Nominal Operation 'CR' (Simple Closed Reduction), 

'CR+K-wire' (Closed Reduction with K-wire), 
'CR+POP' (Closed Reduction with POP), 
'OR' (Open Reduction) or Null (no operation) 

Surgeon Nominal Surgeon One of 61 surgeons or Null if no operation 
Side Nominal Side of fracture ‘Left，，（Right，，‘Both，or ‘Missing， 

Table 7.1: Attributes in the fracture database. 

databases. The following two sections are two case study of knowledge discovery 

from a fracture database and a scoliosis database. 

7.1 A Case Study on the Fracture Database 

The fracture database consists of records of children with limb fractures, admitted 

to the Prince of Wales Hospital of Hong Kong in the period 1984-1996. This 

data can provide information for the analysis of children fracture patterns. This 

database has 6500 records and 8 attributes, which are listed in Table 7.1. 

7.1.1 Results of Causality and Structure Analysis 

The relationships among the attributes are analyzed by learning a Bayesian net-

work. We have used a population size of 50 for both MDLEP and GA. The result 

cannot be improved after an execution of 10 hours. The discovered network struc-

ture is drawn in Figure 7.2. Day, Month, Weekday and Year refer to different 

parts of the admission date. The discretization policy is shown in Table 7.2. The 

age is divided into 0-4, 5-9, 10-12 and 13-16. The day and month are discretized 
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Figure 7.2: The best network structure for the fracture database 

Age: [0-4] [5-9] [10-12] [13-16 
Day: [1-31] 
Month: [1-12 
Year: [1984-1987][1988-1991][1992-1996； 

Stay: [0-3] [4-12] [13-1081] 

Table 7.2: Discretization policy of the fracture database 

into just one range, which means that they are not involved in any relationship in 

the Bayesian network. Year is divided into 3 ranges. Stay is divided into 3 ranges. 

From the network structure constructed, the following relationships are ob-

served: 

• Diagnosis implies Operation and Stay. Different fractures are treated with 

different operations, and require different time for recovery. 

• Diagnosis can imply the value of Age. Some fractures are more frequently 

occurred in particular age groups. 

• The value of Age can imply the value of Sex. It is observed that the young 

patients are more likely to be female, and elder patients are more likely to 

be male. 

• Operation and Stay can determine Year. It is observed from the database 

that the length of stay in hospital is longer in the year 1985, 1986 and 1994, 

and open-reduction occurs more frequently for earlier years. 
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No. of cf cf/prob support 
About Rules mean max min mean max min mean max min 

—Diagnosis 2 45.6%— 51.4% 39.8% 1.6 1 . 7 ^ ^ ^ ^ 9 j ^ J Q j ^ _ 8 ^ 
Operation ~ 8 42.6% 74.0% ^8.0% 2.0 2.9 1.1 5 . 4 ^ J 6 j ^ ^ j ^ 

Stay 7 71.1% 81.1% 47.0% 2.5 7.0 1.4 4.5% 8.7% 3.1% 

Table 7.3: Summary of the rules for the fracture database 

7.1.2 Results of Rule Learning 
Based on the learned Bayesian network, we observed a causality model between 

diagnosis, operation and stay. We wished to learn knowledge about these at-

tributes. In addition, the temporal order gives extra knowledge on how the rules 

should be formulated. The attributes can be divided into three time stages: a 

diagnosis is first given to the patient, then an operation is performed, and after 

that the patient stays in the hospital. This knowledge leads to three causality 

models. Firstly, sex, age and admission date are the possible causes of diagnosis. 

Secondly, these three attributes and diagnosis are the possible causes of operation 

and surgeon. Thirdly, length of stay has all other attributes as the possible causes. 

A grammar (see Appendix B.1) is written as a template for these three kinds of 

rules. We have used a population size of 300 to run for 50 generations in the rule 

learning step. The execution time was about 3 hours on a Sun Ultra 1/140 for 

the 6500 records. The results are listed in Table 7.3. 

Two interesting rules about diagnosis are found. The one with the highest 

confidence is: 

If age is between 2 and 5，then diagnosis is Humerus. (cf=51.43*/,) 

The confidences ofthe rules about diagnosis are just around 40%-50%. It is partly 

because there are actually no strong rules affecting the value of diagnosis. However 

the ratio cf /prob shows that the patterns discovered deviated significantly from 

the average. We found that humerus fracture is the most common fracture for 

children between 2 and 5 years old. Radius fracture is the most common fracture 

for boys between 11 and 13. 
Eight interesting rules about operation are found. The one with the highest 
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confidence is: 

If age is between 0 and 7, and admission year is between 1988 and 

1993, and diagnosis is Radius, then operation is CR+POP. (cf=74.057,) 

These rules suggest that radius and ulna fractures are usually treated with CR+POP 

(i.e. plaster). Operation is usually not needed for tibia fracture. Open reductions 

are more common for elder children with age larger than 11, while young children 

with age lower than 7 have a higher chance of not needing operations. We did not 

find any interesting rules about surgeons, as the surgeons for operation are more 

or less randomly distributed in the database. 

Seven interesting rules about length of stay are found. The one with the 

highest confidence is: 

If admission year is between 1985 and 1996, and diagnosis is Femur, 

then stay is more than 8 days. (cf=81.1iy,) 

The rules about the length of stay suggest that Femur and Tibia fractures are 

serious injuries and have to stay longer in hospital. If open reduction is used, the 

patient requires longer time to recover because the wound has been cut open for 

operation. If no operation is needed, it is likely that the patient can return home 

within one day. Relatively, radius fracture requires a shorter time for recovery. 

The results have been evaluated by the medical experts. Previous analyses on 

fracture patterns only gave an overall injury pattern. Our system automatically 

uncovered relationships between different attribute values. The rules provide in-

teresting patterns that were not recognized before. It clearly demonstrated the 

treatment pattern and rules of decision making. It can provide a good monitor of 

the change of pattern if the data mining process is continued longitudinally over 

the years. It also helps to provide the information for setting up a knowledge-

based instruction system to help young doctors in training to learn the rules in 

diagnosis and treatment. 
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Name Explanation and possible values 
Sex Sex 

(M, or T， 

Age Age 

Positive integer 

Lax Joint Laxity 
Integer between 0 and 3 

lstCurveTl Whether 1st curve started at vertebra T1 
Y o r N 

lstMCGreater~~Whether the degree of 1st Major Curve > 2nd Major Curve 
Y o r N 

L4Tilt Whether vertebra L4 is tilted 
Y o r N 

lstMCDeg Degree of 1st Major Curve 
Positive integer 

2ndtMCDeg~~ Degree of 2nd Major Curve 
Positive integer 

lstMCApex Apex of 1st Major Curve 
Any vertebra (vertebras are coded with Tl-T12 or Ll-L5) 

2ndMCApex Apex of 2nd Major Curve 
Null or any vertebra 

Degl Degree of 1st Curve 
Positive integer 

Deg2 Degree of 2nd Curve 
Positive integer 

Deg3 Degree of 3rd Curve 
Positive integer 

Deg4 Degree of 4th Curve 
Positive integer 

Class Scoliosis Classification 
K-I, K-II, K-III, K-V, TL, L 

Mens Period of Menstruation 
Positive integer; -9 for no menstruation yet; 99 for male 

TSI Trunk Shift (measures the displacement of the curve) 
Positive integer 

TSIDir Trunk Shift Direction 
Null, left or right 

RI Risser Sign (measures the maturity of the patient) 
Integer between 0 and 5 

Treatment Treatment . 
Observation, surgery or bracing 

Table 7.4: Attributes in the Scoliosis database 
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7.2 A Case Study on the Scoliosis Database 

The data mining process has also been applied to the database of Scoliosis pa-

tients. Scoliosis refers to the spinal deformation. A Scoliosis patient has one or 

several curves in his spine. Among them, the curves with severe deformations are 

identified as major curves. The database stores measurements on the patients, 

such as the number of curves, the curve locations, degrees and directions. It also 

records the maturity of the patient, the class of Scoliosis and the treatment. The 

database has about 500 records. According to the domain expert, 20 attributes 

are useful and extracted from the database in the preprocessing step. They are 

shown in Table 7.4. 

7.2.1 Results of Causality and Structure Analysis 

In this database, the attributes Age, lstMCDeg, 2ndMCDeg, Degl to Deg4 and Mens 

are continuous variables. For the attributes measuring degrees, the value 0 is 

a special value as it means the curve does not exist. For Mens, the values -9 

and 99 have special meanings, which indicate no menstruation. These values are 

specially handled by always placing a 1 in the corresponding positions of the bit 

string in GA, such that they are always discretized from other values. Then each 

continuous variable is initially discretized into 3 ranges. 

The learning of network structure and discretization policy are alternated for 

20 iterations. For the learning of network structure using MDLEP, we have used 

a population of 50 to run for 100 generations. In each iteration of the learning 

of discretization policy using GA, the population size is 50 and the number of 

generation is 10. The number of generations is small, but the learning is iterated 

20 times, thus there should be enough generations for convergence. The best 

Bayesian network structure learned from this data set is shown in Figure 7.3. The 

discretization policy is shown in Table 7.5. The age is divided into 0-12 (child), 

13-16 (adolescence), 17-21 and over 22. The degrees and Mens are divided into 

different ranges. 

100 . 



Chapter 1 Medical Data Mining System 

(Treatment V̂  ^ ^̂̂  
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Figure 7.3: The best network structure for the Scoliosis database 

Age: [0-12] [13-16] [17-21] [22-41； 

lstMCDeg: [5-13] [14-29] [30-35] [36-52] [53-112； 

2ndMCDeg: [0-0] [5-23] [24-36] [37-65] 
Degl: [3-11] [12-35] [36-52] [54-112] 
Deg2: [0-0] [2-26] [27-36] [37-52] [53-93 
Deg3: [0-0][3-21] [22-60] 
Deg4: [0-0][13-34] 
Mens: [-9 - -9] [0-4] [5-30] [99-99: 

Table 7.5: Discretization policy of the Scoliosis database 

From the network structure constructed, the following relationships are ob-

served: 

• Age can determine Mens and RI (the maturity), and the value of Mens can 

imply Sex. 

• The value of Degl can imply the value of Deg4. In the database only a few 

records have values of Deg4 larger than 0. All of these records have large 

values on Degl. 

• Operation can determine the value of lstMCDeg. If Operation equals to 

observation, the value lstMCDeg is smaller. If Operation equals to surgery, 

the value of lstMCDeg is large. 

• The value of lstMCDeg affects the value of Deg2. It is observed that if the 

value of the first major curve is small, the degree of the second curve must 

be small. Deg2 should not be larger than lstMCDeg. Otherwise the first 
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major curve should be the second curve, and lstMCDeg should be equal to 

Deg2. 

• Deg2 implies the value of 2ndMCDeg, since most of the time the second major 

curve is the second curve. The value of 2ndMCDeg also closely related with 

2ndMCApex (the location of second major curve). If 2ndMCDeg equals to 0, 

the patient does not have the second major curve, and thus 2ndMCApex must 

be null. 

• Deg2 can imply the value of Deg3, since if Deg2 is small, most likely Deg3 

is zero. 

• Deg3 can imply the value of lstCurveTl. If Deg3 is large, the spine has three 

or more curve, and most likely the first curve starts at the first vertebra T1. 

• Deg3 can imply the value of TSIDir. If Deg3 is small, most of the time the 

direction of trunk shift is null 

• TSIDir can imply TSI because if direction of trunk shift is null, TSI should 

be 0. 

• Treatment can imply lstMCDeg. If treatment is bracing, most likely the 

degree of the first major curve is small. In contrast, if operation is needed, 

the degree of the first major curve is usually large. 

7.2.2 Results of Rule Learning 

The medical experts are interested to discover knowledge about classification of 

Scoliosis and treatment. Scoliosis can be classified as Kings, Thoracolumbar(TL) 

and Lumbar(L), while Kings can be further subdivided into K-I, II, III, IV and 

V. Treatment can be observation, surgery and bracing. The determinations of 

these two attributes are complicated. Unfortunately, the Bayesian network does 

not discover any significant relationship for these two variables. According to 

the domain expert, classification should be related to the attributes lstCurveTl, 
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Class No. of cf support proh 
Rules mean max min mean max min 

n<ing-I — ~ 5 ~ 94.84% ^ ^ 0 % ~ 90.48% 5.67% ~ W f W 0.86% 2 8 . 3 3 ^ 
n<ing-II 5 — 80.93% 100% " 5 2 ^ 7 ^ 6.61% "l4.38% 1 . 0 7 ^ _ 3 M ^ 
"King-III 4 — 23.58% 25.87% " I O O % 1.56% “ 2.58% 0 M W j ^ 9 ^ _ 

King-IV 2 — 24.38% 29.41% 1 ^ 5 % 1.18% 1.29% imW 2.79% 
King-V 5 54.13% 62.50% 45.45% 0.97% 1.07% 0.86% 6.44% 

— T L 1 — 4 1 . 1 8 % 4 0 8 % " 4 1 . 1 8 % 1 . 5 0 % 1 . 5 0 ^ 1 . 5 0 % 2 . 1 5 % 

— L 3 54.04% 62.50% 45.45% 2.00% 2.79% 1.07% 4.51% 

Table 7.6: Results of the rules for Scoliosis classification 

lstMCGreater, L4Tilt, lstMCDeg, 2ndMCDeg, lstMCApex and 2ndMCApex, and 

treatment should be related to age, laxity, degrees of the curves, maturity of 

the patient, displacement of the vertebra and the class of Scoliosis. This domain 

knowledge can be easily incorporated in the design of the rule grammar. There are 

two types of rules, one for classification of Scoliosis and the other for suggesting 

treatment. The grammar is outlined in Appendix B.2. 

The population size used in the rule learning step is 100 and the maximum 

number of generations is 50. The execution time was about one hour on a Sun 

Ultra 1/140. The results of rule learning from this database are listed below. 

Rules for Scoliosis classification. 

For each class of Scoliosis, a number of rules are mined. The results are summa-

rized in Table 7.6. The rules are listed in Appendix A.4.1. An typical rule of this 

kind is: 

if lstMCGreater = N and lstMCApex = Tl-T8 and 2ndMCApex = L3-L4, 

then King-I. (cf=100'/.) 

For King-I and II, the rules have high confidence and generally match with 

the knowledge of medical experts. However the fourth rules of King-II is an 

unexpected rule for the classification of King-II. Under the conditions specified in 

the antecedents, our system found a rule with a confidence factor of 52% that the 

classification is King-II. However, the domain expert suggests the class should be 

King-V! After an analysis on the database, we revealed that serious data errors 
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existed in the current database and that some records contained an incorrect 

Scoliosis classification. 

For King-III and IV, the confidence ofthe rules discovered is just around 20%. 

According to the domain expert, one common characteristic for these two classes 

is that there is only one major curve or the second major curve is insignificant. 

However there is no rigid definition for a 'major curve，and the concept of 'in-

significant' is fuzzy. These depend on the interpretation of doctors. Because of 

the lack of this important information, the system cannot find accurate rules for 

these two classes. Another problem is that only a small number of patients in 

the database were classified to King-III or IV (see the values of prob in Table 

7.6). The database cannot provide a large number of cases for training. Similar 

problems also existed for King-V, TL and L. 

For the class King-V, TL and L, the system found rules with confidence around 

40% to 60%. Nevertheless, the rules for TL and L show something different in 

comparison with the rules suggested by the clinicians. According to our rules, 

the classification always depends on the location of the first major curve, while 

according to the domain expert, the classification always depends on the larger 

major curve. After discussion with the domain expert, it is agreed that the existing 

rules are not defined clearly enough, and our rules are more accurate than them. 

Our rules provide hints to the clinicians to re-formulate their concepts. 

Rules about treatment 

The results of rules about treatment are summarized in Table 7.7. The rules are 

listed in Appendix A.4.2. An typical rule of this kind is: 

If age=2-12 and Degl=20-26 and Deg2=24-47 and Deg3=27-52 and Deg4=0, 

then Bracing. (cf=lOOy,) 

The rules for observation and bracing have very high confidence factors. How-

ever, the support is not high, showing that the rules only cover fragments of the 

cases. Our setting in our learning prefers accurate rules to general rules. If the 

user prefers more general rules, the weights in the fitness function can be tuned. 
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Type No. of cf support prob 
Rules mean max min mean max min 

"Observation 1 ~ ~ 98.89%— 100% ' K 5 5 % ' 3.49% 6.01% 1.07%" 62.45% 
Bracing ~ ~ 5 ~ ~ 79.57% 100% T P 3 % 1.03% 1.29% 0.86%" 24.46% 

^ S u r g e r y ~ 0 — - - - - - - 3.65%~ 

Table 7.7: Results of the rules about treatment 

For surgery, no interesting rule was found because only 3.65% of the patients are 

treated with surgery. 

The biggest impact on the clinicians from the data mining analysis of the 

Scoliosis database is the fact that many rules set out in the clinical practice are 

not clearly defined. The usual clinical interpretation depends on the subjective 

experience. Data mining revealed quite a number of mismatches in the classifi-

cation on the type of Kings curves. After a careful review by the senior surgeon 

it appears that the database entries by junior surgeons may not be accurate and 

that the data mining rules discovered are in fact more accurate! The classifica-

tion rules must therefore be quantified. The rules discovered can therefore help 

in the training of younger doctors and act as an intelligent means to validate and 

evaluate the accuracy of the clinical database. 
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Conclusion and Future Work 

In this thesis, we have presented two approaches for learning rules and Bayesian 

networks from data. They both employ Evolutionary Computation as the search 

algorithms. A data mining system that can learn rules and Bayesian networks 

from data has been developed. Causality and Structure Analysis in the system 

learns a Bayesian network from the data. It focuses on the general causality 

model between the variables. In contrast, the rule learning step learns a set of 

rules from the data. It captures the specific behavior between particular values 

of the variables. 

We have used Generic Genetic Programming (GGP) as the search algorithm 

for rule learning. The grammar used in GGP can provide a powerful knowledge 

representation. It can specify the format of the rules to be discovered. The 

format can be changed according to different domains, and the flexible grammar 

allows the representation of general concepts. Moreover, knowledge from domain 

experts can be very useful to data mining. The use of grammar allows the domain 

knowledge to be easily and effectively utilized. Furthermore, the user can specify 

the desirable rule format by composing a suitable grammar. This can increase the 

understandability and the usefulness of the discovered rules. 

In many real-life situations, the available rules are general guidelines with 

many exceptional cases. The fitness function in the rule learning approach has 

been designed to learn such kind of knowledge. It compares the confidence of the 
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rule with the average probability, so as to search for the patterns deviated signif-

icantly from the normal. Since one rule is insufficient to represent the complete 

knowledge, token competition has been used to learn as many rules as possible. 

This technique can effectively and efficiently formulate niches in the population, 

such that different rules are evolved in the same population. This rule learning 

approach can successfully construct rules from data. The rules can represent the 

regularities in the database and provide interesting knowledge to the users. 

The knowledge hidden in real-life database usually cannot be described com-

pletely by just a few rules. Building a complete model for such a database is 

difficult and usually results in a complicated model. Bayesian network is a knowl-

edge representation that can be a complement to rules. Instead of capturing the 

interesting patterns between particular values of attributes, a Bayesian network 

gives a general view on the causality between attributes in a graphical model. 

It is easy to understand while it has a well-developed mathematical model. The 

Bayesian network representation requires the attributes to be discrete. We have 

extended the work on the Minimum Description Length (MDL) for discretizing 

continuous variables. We have investigated the use of Genetic Algorithm to op-

timize the MDL score for discretization. The experimental results show that 

Genetic Algorithm performs better than the greedy approach. 

The rule learning approach and the Bayesian network learning approach have 

been combined in a data mining system. The Bayesian network learned from the 

causality and structure analysis can help the user to understand more on the re-

lationships between attributes, and provide knowledge for guiding the search of 

rules. The causality presented in the Bayesian network, as well as the domain 

knowledge and the temporal relationships between attributes, can provide knowl-

edge to the user to compose a suitable grammar for rule learning. A suitable 

grammar can prune the search space on meaningless rules and increase the search 

efficiency. 

The data mining system has been applied to two real-life medical databases. 
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The results can provide interesting knowledge as well as suggestion for refine-

ments to the existing knowledge. We also have found unexpected results that led 

to discovery of mistakes in the database. In the fracture database, the system au-

tomatically uncovered knowledge about the age effect on fracture, the relationship 

between diagnoses and operations, and the effect of diagnoses and operations on 

lengths of staying in the hospital. In the Scoliosis database, we have discovered 

new knowledge about the classification of Scoliosis and about the treatment. The 

discovered knowledge leads to refinements of the existing knowledge. 

The approach for data mining can be improved in various aspects. The rule 

learning approach is based on GGP with a context free grammar. This grammar 

still may not be powerful enough to represent the hidden knowledge. The knowl-

edge representation can be strengthened if context sensitive instead of context free 

grammar is implemented. The fitness function used in rule learning is far from 

perfect. A more solid fitness function should be defined by doing a more complete 

theoretical analysis. For the Bayesian network learning, the search is alternated 

between structure learning and discretization policy learning. The network struc-

ture is learned from a sub-optimal discretization policy, and vice versa. A better 

result can be obtained if we can designed a method to optimize both the network 

structure and discretization policy learning in a single step, although the search 

space is greatly increased in this way. 

The usability of the data mining system can also be improved. The grammar 

in rule learning provides a powerful knowledge representation, but the users has to 

compose the grammar themselves to fit the problems. The construction of gram-

mar can be simplified if a generic graphical user interface is provided. The time 

complexity is a major disadvantage of evolutionary algorithms. The execution 

speed can be improved if results of previous generations can be cached. Better 

methods for calculations of fitness should be designed such that the calculation 

can fully utilize the results of previous generations. 
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Appendix A 

The Rule Sets Discovered 

A.1 The Best Rule Set Learned from the Iris 
Database 

1. if petal width is between 0.08 and 0.77, then class is Iris-setosa. 

Fitness: 1.50 
Confidence: 100%; Support: 30%; Probability ofconsequent: 30% 

2. if petal length is between 1.98 and 4.97, and petal width is between 0.18 
and 1.66, then class is Iris-vericolor. 
Fitness: 1.37 
Confidence: 100%; Support: 35%; Probability of consequent: 35% 

3. if sepal width is between 2.33 and 3.16, then class is Iris-virginica. 

Fitness: 0.43 
Confidence: 49.06%; Support: 26%; Probability of consequent: 35% 

4. if any, then class is Iris-virginica. 

Fitness: 0.35 
Confidence: 35%; Support: 35%; Probability of consequent: 35% 

A.2 The Best Rule Set Learned from the Monk 
Database 

A.2.1 Monkl 
1. if jacket_color = 1, then positive. 
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Fitness: 11.33 

Confidence: 100%; Support: 23.39%; Probability of consequent: 50% 

2. if head_shape = 1 and body_shape = 1, then positive. 

Fitness: 9.93 
Confidence: 100%; Support: 7.26%; Probability of consequent: 50% 

3. if head_shape 二 2 and body_shape 二 2，then positive. 

Fitness: 8.98 

Confidence: 100%; Support: 12.10%; Probability of consequent: 50% 

4. if head_shape = 3 and body_shape = 3，then positive. 

Fitness: 8.59 

Confidence: 100%; Support: 13.70%; Probability of consequent: 50% 

5. if any, then negative. 

Fitness: 0.51 

Confidence: 50%; Support: 50%; Probability of consequent: 50% 

A.2.2 Monk2 
1. ifhead_shape + body_shape and is_smiling 二 1 and holding + 1 andjacket_color 

二 2 and has_tie 7̂  1, then positive. 
Fitness: 15.59 
Confidence: 100%; Support: 4.73%; Probability of consequent: 37.87% 

2. if head_shape = 2 and body_shape * 1 and is_smiling + 2 and holding + 1 
and jacket_color ^ 1 and has_tie + 2, then positive. 
Fitness: 15.58 

Confidence: 100%; Support: 3.55%; Probability of consequent: 37.87% 

3. if head_shape 7̂  body_shape and is_smiling ^ 1 and jacket_color = 1 and 
has_tie + 1, then positive. 
Fitness: 15.58 
Confidence: 100%; Support: 2.96%; Probability of consequent: 37.87% 

4. if body_shape 7̂  1 and is_smiling ^ 1 and holding = 2 and jacket—color = 1 
and has_tie + 2, then positive. 
Fitness: 15.57 
Confidence: 100%; Support: 2.37%; Probability of consequent: 37.87% 
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5. if head_shape = 1 and is_smiling + 2 and holding + 1 and jacket_color = 3 
and has_tie / 1, then positive. 
Fitness: 15.56 

Confidence: 100%; Support: 1.78%; Probability of consequent: 37.87% 

6. if body_shape 二 1 and is_smiling = 1 and jacket_color = 3 and has_tie 二 2, 

then positive. 

Fitness: 15.56 

Confidence: 100%; Support: 1.78%; Probability of consequent: 37.87% 

7. if head_shape • 1 and body_shape + 1 and i s�mil ing + 1 and holding = 3 
and jacket_color = 1, then positive. 
Fitness: 15.56 

Confidence: 100%; Support: 1.78%; Probability of consequent: 37.87% 

8. if head_shape = 1 and is^miling ^ 2 and holding / 1 and jacket—color = 4 
and has_tie + 1，then positive. 

Fitness: 15.56 

Confidence: 100%; Support: 1.18%; Probability of consequent: 37.87% 

9. if head_shape 二 3 and body_shape ^ 3 and i s�mil ing + 2 and jacket_color 
+ 1 and has_tie 二 2，then positive. 

Fitness: 5.05 

Confidence: 87.50%; Support: 4.14%; Probability of consequent: 37.87% 

10. ifhead_shape + bodyjshape and holding + 1 and jacket_color 二 2 and has_tie 
=1，then positive. 

Fitness: 3.96 

Confidence: 70%; Support: 4.14%; Probability of consequent: 37.87% 

11. if body_shape + 1 and is^miling + 1 and holding = 2 and jacket_color + 2 
and has_tie + 2, then positive. 
Fitness: 2.75 

Confidence: 75%; Support: 3.55%; Probability of consequent: 37.87% 

12. ifhead_shape + body^hape and isjsmiling = 1 and holding + 1 and jacket_color 
= 2 , then positive. 
Fitness: 2.37 
Confidence: 91.67%; Support: 6.50%; Probability of consequent: 37.87% 
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13. ifhead_shape ^ body_shape and holding + 2 andjacket_color 二 2 and has_tie 
= 1 , then positive. 
Fitness: 1.35 

Confidence: 83.33%; Support: 2.96%; Probability of consequent: 37.87% 

14. if body_shape 二 1 and is�mil ing ^ 1 and jacket_color + 1 and has_tie = 2， 

then positive. 

Fitness: 1.13 

Confidence: 50%; Support: 3.55%; Probability of consequent: 37.87% 

15. if any, then negative. 

Fitness: 0.63 

Confidence: 62.13%; Support: 62.13%; Probability of consequent: 62.13% 

A.2.3 Monk3 
1. if body_shape ^ 3 and is�miling = 2 and jacket_color + 4, then positive. 

Fitness: 11.46 
Confidence: 100%; Support: 22.30%; Probability of consequent: 49.59% 

2. if head_shape 7̂  body_shape and holding 二 1 and jacket_color = 3, then 
positive. 
Fitness: 6.76 

Confidence: 100%; Support: 4.13%; Probability of consequent: 49.59% 

3. if bodyjshape + 3 and holding 7̂  2 and jacket_color 二 2, then positive. 

Fitness: 6.06 

Confidence: 100%; Support: 12.40%; Probability of consequent: 49.59% 

4. if head_shape ^ 1 and holding = 1 and jacket_color = 3, then positive. 

Fitness: 4.51 
Confidence: 100%; Support: 4.13%; Probability of consequent: 49.59% 

5. if body_shape + 3 and jacket_color 7̂  4, then positive. 

Fitness: 2.68 
Confidence: 91.94%; Support: 47.10%; Probability of consequent: 49.59% 

6. if body_shape + 3 and jacket_color = 2 and has_tie + 1，then positive. 

Fitness: 1.62 

Confidence: 100%; Support: 11.57%; Probability of consequent: 49.59% 
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7. if head_shape / 2 and body_shape + 3 and holding + 3 and jacket_color = 
2，then positive. 

Fitness: 0.87 

Confidence: 100%; Support: 10.74%; Probability of consequent: 49.59% 

8. if any, then negative. 

Fitness: 0.51 
Confidence: 50.41%; Support: 50.40%; Probability of consequent: 50.40% 

A.3 The Best Rule Set Learned from the Frac-
ture Database 

A.3.1 Type I Rules: About Diagnosis 
1. Humerus 

if age is between 2 and 5, then diagnosis is Humerus . 

Fitness: 3.48 
Confidence: 39.75%; Support: 8.42%; Probability of consequent: 23.43% 

2. Radius 
if sex is M，and age is between 11 and 13, then diagnosis is Radius . 

Fitness: 3.04 
Confidence: 51.43%; Support: 10.01%; Probability of consequent: 36.10% 

A.3.2 Type II Rules : About Operation/Surgeon 
1. Radius vs. CR+POP 

if age is between 0 and 7, and admission year between 1988 and 1993, and 
diagnosis is Radius, then operation is CR+POP. 

Fitness: 8.56 
Confidence: 50.61%; Support: 3.19%; Probability of consequent: 17.72% 

2. Tibia vs. No Operation 
if age is between 1 and 7, and diagnosis is Tibia, then operation is Null (i.e. 
no operation). 
Fitness: 7.86 
Confidence: 74.05%; Support: 3.78%; Probability of consequent: 38.11% 
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3. Ulna vs. CR+POP 
if age is between 1 and 12, and admission year between 1989 and 1992, and 
diagnosis is Ulna, then operation is CR+POP. 

Fitness: 7.19 
Confidence: 47.37%; Support: 3.50%; Probability of consequent: 17.72% 

if diagnosis is Ulna, then operation is CR+POP. 

Fitness: 4.23 
Confidence: 36.17%; Support: 7.40%; Probability of consequent: 17.72% 

4. Radius vs. CR+K-Wire 
if admission year is between 1992 and 1994, and diagnosis is Radius, then 
operation is CR+K-Wire. 
Fitness: 4.10 
Confidence: 34.03%; Support: 3.83%; Probability of consequent: 16.23% 

5. Humerus vs. CR+K-Wire 
if diagnosis is Humerus, then operation is CR+K-Wire. 

Fitness: 2.52 
Confidence: 27.96%; Support: 6.06%; Probability ofconsequent: 16.23% 

6. Ulna vs. OR 
if age is between 11 and 15, and diagnosis is Ulna, then operation is OR. 

Fitness: 3.24 
Confidence: 33.20%; Support: 3.25%; Probability of consequent: 18.26% 

7. Age vs. OR 
if sex is M, and age is between 13 and 17, and admission year between 1985 
and 1989, then operation is OR. 
Fitness: 2.57 
Confidence: 30.53%; Support: 3.22%; Probability of consequent: 18.26% 

8. Age vs. No Operation 
if age is between 0 and 7, then operation is Null (i.e. no operation). 

Fitness: 1.08 
Confidence: 43.33%; Support: 16.22%; Probability of consequent: 38.11% 
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A.3.3 Type III Rules : About Stay 
1. Femur vs. Stay 

if admission year between 1985 and 1996, and diagnosis is Femur，then stay 

is between 8 and 2000 days. (i.e. stay 8 days or more, since 2000 is the 
maximum value of stay) 
Fitness: 21.99 
Confidence: 70.87%; Support: 3.14%; Probability of consequent: 10.24% 
if diagnosis is Femur , then stay is between 5 and 2000 days. (i.e. stay 5 
days or more) 
Fitness: 18.70 
Confidence: 80.99%; Support: 3.30%; Probability of consequent: 19.22% 

2. Tibia vs. Stay 
if age between 5 and 12，and diagnosis is Tibia, then stay is between 3 and 
2000. (i.e. stay 3 days or more) 
Fitness: 8.93 
Confidence: 78.92%; Support: 5.05%; Probability of consequent: 39.15% 

3. OR vs. Stay 
if age between 2 and 14, and diagnosis is Humerus, and operation is OR, 
then stay is between 3 and 25 days. 

Fitness: 8.86 
Confidence: 75.57%; Support: 3.52%; Probability of consequent: 36.51% 
if admission is between 1985 and 1987, and operation is OR, then stay is 
between 3 and 10 days. 
Fitness: 6.99 
Confidence: 65.52%; Support: 3.47%; Probability of consequent: 33.85% 

if operation is OR, then stay is between 3 and 25 days. 

Fitness: 6.13 
Confidence: 64.90%; Support: 12.22%; Probability of consequent: 36.51% 

4. No operation vs. Stay 
if age is between 10 and 14, and admission year is between 1987 and 1996, 
and diagnosis is Radius, and operation is Null, then stay is between 0 and 
1 day. 
Fitness: 9.55 
Confidence: 77.00%; Support: 3.09%; Probability of consequent: 35.65% 

if operation is Null, then stay is between 0 and 1 day. 
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Fitness: 3.38 
Confidence: 52.06%; Support: 19.62%; Probability of consequent: 35.65% 

5. Radius vs. Stay 
if age between 6 and 12, and admission year is between 1989 and 1992, and 
diagnosis is Radius, and operation is CR+POP, then stay is between 1 and 
2 days. 
Fitness: 6.01 
Confidence: 81.11%; Support: 3.22%; Probability of consequent: 51.29% 
if diagnosis is Radius, and operation is CR+POP, then stay is between 1 
and 2 days. 
Fitness: 5.49 
Confidence: 78.57%; Support: 10.22%; Probability of consequent: 51.29% 
if age is between 0 and 8, and diagnosis is Radius, then stay is between 0 
and 3 days. 
Fitness: 2.89 
Confidence: 86.92%; Support: 10.19%; Probability of consequent: 71.30% 

6. Humerus vs. Stay 
ifdiagnosis is Humerus, and operation is CR+K-WIRE, then stay is between 
2 and 5 days. 
Fitness: 3.90 
Confidence: 67.30%; Support: 4.56%; Probability of consequent: 47.16% 

7. Year vs. Stay 
if admission year is between 1985 and 1987, then stay is between 3 and 10 
days. 
Fitness: 2.58 
Confidence: 46.98%; Support: 8.65%; Probability of consequent: 33.85% 

A.4 The Best Rule Set Learned from the Scol-
iosis Database 

A.4.1 Rules for Classification 
King-I 

1. iflstMCGreater=N and lstMCApex==Tl-T8 and 2ndMCApex=L3-L4, then 
King-I. 
Fitness: 20.20 

123, 



Confidence: 100%; Support: 0.86%; Probability of consequent: 28.33% 

2. if lstMCGreater=N and lstMCDeg=21-80 and lstMCApex =Tl -T12 and 
2ndMCApex=L2-L3, then King-I. 
Fitness: 19.06 
Confidence: 96.67%; Support: 6.22%; Probability of consequent: 28.33% 

3. if lstMCGreater=N and L4Tilt=Y and lstMCApex =Tl -T10 and 2ndMCApex=L2-
L5, then King-I. 
Fitness: 18.92 

Confidence: 96.15%; Support: 10.73%; Probability of consequent: 28.33% 

King-II 
1. iflstCurveTl=N and lstMCGreater=Y and lstMCDeg=16-45 and 2ndMCDeg=28-

54 and lstMCApex =T4-T11 and 2ndMCApex=L2-L3, then King-II. 
Fitness: 16.63 
Confidence: 100.00%; Support: 1.07%; Probability of consequent: 35.41% 

2. if lstMCGreater=Y and L4Tilt=Y and lstMCDeg=22-77 and 2ndMCDeg=19-
54 and lstMCApex =T1-T11 and 2ndMCApex=L2-L2, then King-II. 
Fitness: 12.85 
Confidence: 87.88%; Support: 6.22%; Probability of consequent: 35.41% 

3. if lstMCGreater=Y and L4Tilt=Y and lstMCApex=T6-T10 and 2ndM-
CApex= L2-L5, then King-II. 
Fitness: 10.52 
Confidence: 79.76%; Support: 14.38%; Probability of consequent: 35.41% 

4. if lstMajorCurveGreater=Y and 2ndMCDeg=8-95 and lstMCApex=T3-
T l l and 2ndMCApex= T4-T10, then King-II. 
Fitness: 3.32 

Confidence: 52.17%; Support: 7.73%; Probability of consequent: 35.41% 

King-III 
1. if lstCurveTl=N and L4Tilt=N and lstMCApex=Tl-T9 and 2ndMCApex=Null, 

then King-III. 
Fitness: 5.87 
Confidence: 25.87%; Support: 0.86%; Probability of consequent: 7.94% 
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2. if L4Tilt=N and lstMCApex=T2-T6 and 2ndMCApex=T2-Tll, then King-
III. 
Fitness: 4.86 

Confidence: 25.71%; Support: 1.93%; Probability of consequent: 7.94% 

King-IV 
1. if lstCurveTl=Y and lstMCGreater=Y and L4Tilt=Y and lstMCApex=L5-

T10 and 2ndMCApex=T9-L5, then King-IV. 
Fitness: 11.10 
Confidence: 29.41%; Support: 1.07%; Probability of consequent: 2.79% 

2. if lstMCGreater=Y and L4Tilt=Y and lstMCApex=T10-L5 and 2ndMCApex=T5-
L4, then King-IV. 
Fitness: 6.02 

Confidence: 19.35%; Support: 1.29%; Probability of consequent: 2.79% 

King-V 
1. if lstMCGreater=Y and L4Tilt=Y and lstMCApex-T2-T5 and 2ndMCApex=T9-

T11, then King-V. 
Fitness: 22.75 
Confidence: 62.50%; Support: 1.07%; Probability of consequent: 6.44% 

2. if lstMCGreater=N and 2ndMCDeg-37-70 and lstMCApex-T4-T7 and 
2ndMCApex=T2-Tll, then King-V. 
Fitness: 19.98 
Confidence: 57.14%; Support: 0.86%; Probability of consequent: 6.44% 

3. if lstCurveTl=Y and lstMCGreater=Y and L4Tilt=Y and lstMCDeg=3-
35 and lstMCApex=T2-T6 and 2ndMCApex=T7-T9, then King-V. 
Fitness: 16.42 
Confidence: 50.00%; Support: 0.86%; Probability of consequent: 6.44% 

TL 

1. iflstMCGreater=Y and lstMCApex=Tll-T12 and 2ndMCApex=Null, then 
TL. 
Fitness: 19.49 
Confidence: 41.18%; Support: 1.50%; Probability of consequent: 2.15% 
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1. if lstMCGreater=Y and L4Tilt=N and lstMCApex=L2-L5 and 2ndMCApex=Null, 
then L. 
Fitness: 26.32 
Confidence: 62.50%; Support: 1.07%; Probability of consequent: 4.51% 

2. if lstCurveTl=N and L4Tilt=N and 2ndMCDeg=Null and lstMCApex=Ll-
L3 and 2ndMCApex=Null, then L. 
Fitness: 21.59 
Confidence: 54.17%; Support: 2.79%; Probability of consequent: 4.51% 

3. if lstCurveTl=N and lstMCApex=L2-L5 and 2ndMCApex=Null, then L. 

Fitness: 16.84 

Confidence: 45.45%; Support: 2.15%; Probability of consequent: 4.51% 

A.4.2 Rules for Treatment 
Observation 

1. if Degl=3-12 and Deg2 =Null and Deg3 二 Null and Deg4 = Null, then 
Observation. 
Fitness: 7.59 
Confidence: 100.00%; Support: 1.93%; Probability of consequent: 62.45% 

2. if Degl=5-27 and Deg2 =4-21 and Deg3 = 0-22 and Deg4 = Null and mens 
二 99, then Observation. 

Fitness: 7.55 

Confidence: 100.00%; Support: 1.07%; Probability of consequent: 62.45% 

3. if Degl=4-13 and Deg2 =2-29 and Deg3 = Null and Deg4 二 Null, then 

Observation. 

Fitness: 6.8 

Confidence: 95.55%; Support: 6.01%; Probability of consequent: 62.45% 

Bracing 
1. ifage = 2-12 and Degl=20-26 and Deg2 =24-47 and Deg3 二 27-52 and Deg4 

=Null , then Bracing. 
Fitness: 22.54 
Confidence: 100.00%; Support: 0.86%; Probability of consequent: 24.46% 
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2. if Degl=21-28 and Deg2 =32-43 and Deg3 = Null and Deg4 二 Null and RI 
= 3 - 4 , then Bracing. 
Fitness: 15.18 
Confidence: 80.00%; Support: 0.86%; Probability of consequent: 24.46% 

3. if Degl=25-39 and Deg2 =21-42 and Deg3 = Null and Deg4 = Null and RI 
= 1 - 3 , then Bracing. 
Fitness: 12.26 
Confidence: 71.43%; Support: 1.07%; Probability of consequent: 24.46% 
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Appendix B 

The Grammar used for the 
fracture and Scoliosis databases 

B.1 The grammar for the fracture database 
This grammar is not completely listed. The grammar for the other attribute descriptors 
is similar to the part of the grammar in lines 11-19. 

1： Rule — Rulel | Rule2 | Rule3 

2: Rulel ~> if Antesl ， then Consql . 

3: Rule2 "^ if Antesl and Antes2 , then Consq2 • 

4: Rule3 ^ if Antesl and Antes2 and Antes3 ， then Consq2 . 

5: Antesl — Sexl and Agel and Admdayl 

6: Antes2 ~> Diagnosisl 

7: Antes3 ^ Operationl and Surgeonl 

8: Consql — Diagnosis-descriptor 

9: Consq2 ~> Operation_descriptor | Surgeon_desrijptor 

10: Consq3 — Stay—descriptor 

11: Sexl ~> any | Sex.descriptor 

12: Sex-descriptor — sex = sex_const 

13: Admdayl — any | Admday_descriptor 

14： A dmday.des crip tor — admday_day between day_const day_const 

15： Admday.descriptor — admdayjnonth. between month_const month_const 

16: Admday.descriptor — admday_year between year_const year_const 

17： Admday_descriptor ~^ admday_weekday between weekday_const weekday_const 

18: Diagnosisl ~> any | Diagnosis-descriptor 

19: Diagnosis-descriptor ~> diagnosis is diagnosis_const 
• • • 

B.2 The grammar for the Scoliosis database 
This grammar is not completely listed. The grammar for the other attribute descriptors 
is similar to the part of the grammar in lines 7-12. 
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1: Rule ">• Rulel | Rule2 

2: Rulel ^ if Antesl , then Consql . 

3: Rule2 ~> if Antes2 ， then Consq2 . 

4: Antesl — lstCurveTl lstMCGreater and L4Tilt and lstMCDeg 

and 2ndMCDeg and lstMCApex and 2ndMCApex 

5： Antes2 ~> Age and Lax and Degl and Deg2 and Deg3 and Deg4 and Mens and RI 

and TSI and ScoliosisType 

6: Consql ~> ScoliosisType.descriptor 

7： lstMCGreater — any | lstMCGreater.descriptor 

8: lstMCGreater-descriptor ^ lstMCGreater = boolean_const 

9: lstMCDeg ~> any | lstMCDeg.descriptor 

10: lstMCDeg.descriptor — lstMCDeg between deg_const deg_const 

11: lstMCApex ~> any | lstMCApex.descriptor 

12: lstMCApex.descriptor ^ l s t M C A p e x between Apex_const Apex_const 

• • 參 
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