
MEDICAL DATA MINING USING EVOLUTIONARY
COMPUTATION

,,,•'-• •“ •• ,,z._ -Z .' r '• , , . . ‘ ,

BY

NGAN P 0 SHUN

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

THE CHINESE UNIVERSITY OF HONG KONG

JUNE 1 9 9 8

/^^^^ A ^ 系 ^ 書 阖 V A

• c ^ ^ i
\ ^ \ P:!V[RSITY / (§ /
^^j^^^’—7 SYST^^^^

、9?

Abstract

Data mining is an automated process of discovering knowledge from databases.

There are various kinds of data mining methods aiming to search for different kind

of knowledge. In this thesis, data mining approaches that use rules and Bayesian

network as the knowledge representations are described. Rule can represent in-

teresting patterns and regularities in the database, while a Bayesian network can

represent the overall structure of the relationships among the attributes. We in-

vestigate the use of Evolutionary Computation as the search algorithm for data

mining. Evolutionary Computation is a kind of weak search methods that simu-

lates the natural evolution. It is a general search technique and does not require

any domain specific techniques.

We present an approach for rule learning that uses Generic Genetic Program-

ming as the core search technique. It is a grammar based search technique that

allows a powerful knowledge representation. The grammar serves as a template

to specify the format of rules. A technique called token competition is employed

to learn multiple rules from the data.

In learning Bayesian networks from data, a problem is that a Bayesian net-

work can only be constructed from discrete variables. We investigate the use of

genetic algorithm for learning a policy for discretization of continuous variables

while learning the Bayesian network structure. The experiments show that this

approach performs better than the greedy approach.

A system for knowledge discovery that combines the approaches ofrule learning

and Bayesian network learning is developed. We introduce the applications of the

system to two real-life medical databases for limb fracture and Scoliosis. The

ii

knowledge discovered provides insights to the clinicians and allows them to have

a better understanding of these two medical domains.

iii
^

摘要

數據勘探(DataMining)是指從數據庫中自動地發現知識。這論文會詳論兩種搜索

方法，分別從數據庫中發掘規則（Rule)及貝氏網絡（BayesianNetwork) ’ 用 以 表

達當中的知識。規則能表達數據中的規律，貝氏網絡則可表達數據庫中屬性之間

的關系構造。而我們使用了進化計算(Evolutionary Computation)作爲搜索算法。

在學習規則中，我們使用了全面遺傳程序(Generic Genetic Programming) °
其中的文法（grammar)能規定規則的格式°另外，我們使用了一個名爲資源競爭

(tokencompetition)的技巧，用以發掘多條的規則。在學習貝氏網絡中，其一問題

爲如何處理連續變數（continuous variables) °我們硏究了使用遺傳算法（Genetic
Algorithm) ’將連續變數分段（discretization)，以及同時學習貝氏網絡的結構°實

驗顯示這個方法的結果比貪婪方法好。

我們並會介紹一個以上述兩種方法爲基礎的數據勘探系統。我們使用了這個系統分

析兩個醫學上的數據庫，發現了一些有意義的知識’以增加醫學人員對這兩方面

的了解。

�

,

Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisors

Prof. K. S. Leung and Dr. M. L. Wong for their guidance on my research. They

provided fruitful discussions and invaluable suggestions to me. I would like to

thanks Dr. W. Lam and Dr. Ada Fu for their precious comments on the subject of

this thesis. Moreover, I would like to thanks Prof. Jack Cheng for his kindly helps

and explanations on the medical knowledge. I would also like to acknowledge Ms.

Bella C. S. Lau and Ms. Vivian K. S. Lee for their supports and helps on building

the data mining system.

iv
*

Contents

1 Introduction 1

1.1 Data Mining 1

1.2 Motivation 4

1.3 Contributions of the research 5

1.4 Organization of the thesis 6

2 Related Work in Data Mining 9

2.1 Decision Tree Approach 9

2.1.1 ID3 10

2.1.2 C4.5 11

2.2 Classification Rule Learning 13

2.2.1 AQ algorithm 13

2.2.2 CN2 14

2.2.3 C4.5RULES 16

2.3 Association Rule Mining 16

2.3.1 Apriori 17

2.3.2 Quantitative Association Rule Mining 18

2.4 Statistical Approach 19

2.4.1 Chi Square Test and Bayesian Classifier 19

2.4.2 FORTY-NINER 21

2.4.3 EXPLORA : 22

2.5 Bayesian Network Learning 23

V ,

2.5.1 Learning Bayesian Networks using the Minimum Descrip-

tion Length (MDL) Principle 24

2.5.2 Discretizating Continuous Attributes while Learning Bayesian

Networks 26

3 Overview of Evolutionary Computation 29

3.1 Evolutionary Computation 29

3.1.1 Genetic Algorithm 30

3.1.2 Genetic Programming 32

3.1.3 Evolutionary Programming 34

3.1.4 Evolution Strategy 37

3.1.5 Selection Methods 38

3.2 Generic Genetic Programming 39

3.3 Data mining using Evolutionary Computation 43

4 Applying Generic Genetic Programming for Rule Learning 45

4.1 Grammar 46

4.2 Population Creation 49

4.3 Genetic Operators 50

4.4 Evaluation of Rules 52

5 Learning Multiple Rules from Data 56

5.1 Previous approaches 57

5.1.1 Preselection 57

5.1.2 Crowding 57

5.1.3 Deterministic Crowding 58

5.1.4 Fitness sharing 58

5.2 Token Competition 59

5.3 The Complete Rule Learning Approach 61

5.4 Experiments with Machine Learning Databases 64

5.4.1 Experimental results on the Iris Plant Database 65

vi

5.4.2 Experimental results on the Monk Database 67

6 Bayesian Network Learning 72

6.1 The MDLEP Learning Approach 73

6.2 Learning of Discretization Policy by Genetic Algorithm 74

6.2.1 Individual Representation 76

6.2.2 Genetic Operators 78

6.3 Experimental Results 79

6.3.1 Experiment 1 80

6.3.2 Experiment 2 82

6.3.3 Experiment 3 83

6.3.4 Comparison between the GA approach and the greedy ap-

proach 91

7 Medical Data Mining System 93

7.1 A Case Study on the Fracture Database 95

7.1.1 Results of Causality and Structure Analysis 95

7.1.2 Results of Rule Learning 97

7.2 A Case Study on the Scoliosis Database . . 100

7.2.1 Results of Causality and Structure Analysis 100

7.2.2 Results of Rule Learning 搬

8 Conclusion and Future Work 106

Bibliography 109

A The Rule Sets Discovered 116

A.1 The Best Rule Set Learned from the Iris Database 116

A.2 The Best Rule Set Learned from the Monk Database 116

A.2.1 Monkl 116

A.2.2 Monk2 117

A.2.3 Monk3 119

vii

A.3 The Best Rule Set Learned from the Fracture Database 120

A.3.1 Type I Rules: About Diagnosis 120

A.3.2 Type II Rules : About Operation/Surgeon 120

A.3.3 Type III Rules : About Stay 122

A.4 The Best Rule Set Learned from the Scoliosis Database 123

A.4.1 Rules for Classification 123

A.4.2 Rules for Treatment 126

B The Grammar used for the fracture and Scoliosis databases 128

B.1 The grammar for the fracture database 128

B.2 The grammar for the Scoliosis database 128

viii

List of Figures

2.1 A decision tree 10

2.2 A Bayesian network example 24

3.1 The chromosome in GA 30

3.2 Crossover in GA. The crossover point is the 4th bit and the bits

after it are exchanged 32

3.3 Mutation in GA. Mutation occurs at the 1st bit and the 4th bit • 32

3.4 The tree representation of a S-expression 33

3.5 An example of crossover in GP. The selected subtree is enclosed by

the dashed box 35

3.6 An example of mutation in GP. The selected subtree is enclosed by

the dashed box 35

3.7 A derivation tree stored inside an individual of GGP 41

3.8 Crossover in Generic Genetic Programming 42

3.9 Part of a derivation tree 42

3.10 Mutation in Generic Genetic Programming 43

4.1 The derivation tree 50

5.1 The flowchart of the Rule Learning process 63

6.1 The flowchart of the MDLEP process 75

6.2 A bit string represents a discretization sequence 77

6.3 The bit string in an individual 77

6.4 The network structures of the best results of Experiment 1 . • • . 81

ix

6.5 The discretization policies of the best results of Experiment 1 • • 82

6.6 The frequency distribution of the variables of experiment 2 • . . • 84

6.7 The original network structure of experiment 2 and the network

structures found by the best run of different approaches 85

6.8 The discretization policies of the best results of experiment 2 . . 86

6.9 The ranges formed by the discretization policy of GA and the fre-

quency distribution of variable 3 87

6.10 The frequency distribution of the variables of experiment 3 • . • . 88

6.11 The original network structure of experiment 3 and the network

structures found by the best run of different approaches 89

6.12 The discretization policies of the best results of experiment 3 . . 90

7.1 The knowledge discovery process 93

7.2 The best network structure for the fracture database 96

7.3 The best network structure for the Scoliosis database 101

V

零

List of Tables

2.1 A contingency table for variable A vs. variable C 21

3.1 The Simple Genetic Algorithm 31

3.2 The Algorithm of Genetic Programming 33

3.3 The Algorithm of Evolutionary Programming 36

3.4 An example grammar. The symbol i f returns the second argument

if the first argument is true, or else the third argument 40

3.5 An example derivation 41

3.6 Bit string in GABIL 44

4.1 An example grammar for rule learning 47

4.2 An example derivation 49

5.1 The iris plants database 65

5.2 The grammar for the iris plants database 65

5.3 Results of different value of W2 66

5.4 Results of different value of minimum support 66

5.5 Results of different probabilities for the genetic operators 66

5.6 Experimental result on the iris plants database 67

5.7 The classification accuracy of different approaches on the iris plants

database 67

5.8 The monk database 68

5.9 The grammar for the monk database 69

5.10 Experimental result on the Monk database 70

xi

5.11 The classification accuracy of different approaches on the monk

database 70

6.1 Results of experiment 1 80

6.2 Results of experiment 2 83

6.3 Results of experiment 3 87

6.4 Execution time of the three approaches 91

7.1 Attributes in the fracture database 95

7.2 Discretization policy of the fracture database 96

7.3 Summary of the rules for the fracture database 97

7.4 Attributes in the Scoliosis database 99

7.5 Discretization policy of the Scoliosis database 101

7.6 Results of the rules for Scoliosis classification 103

7.7 Results of the rules about treatment 105

• •

xii ,

Chapter 1

Introduction

Databases are valuable treasures. A database not only stores and provides data

but also contains hidden precious knowledge, which can be very important. It can

be a new law in science, a new insight for curing a disease or a new market trend

that can make millions of dollars. Conventionally, the data is analyzed manually.

Many hidden and potentially useful relationships may not be recognized by the

analyst. Nowadays, many organizations are capable of generating and collecting

a huge amount of data. The size of data available now is beyond the capability

of our mind to analyze. It requires the power of computers to handle it. Data

mining, or knowledge discovery in database, is the automated process of sifting

the data to get the gold buried in the database.

In this chapter, Section 1.1 is a brief introduction of the definition and the

objectives of data mining. Section 1.2 states the research motivation. Section 1.3

lists the contributions of this thesis. The organization of this thesis is sketched in

Section 1.4.

1.1 Data Mining

The two terms Data Mining and Knowledge Discovery in Database have similar

meanings. The term Data Mining is commonly used by statisticians, to denote

the finding of useful patterns in data. It consists of applying data analysis and

1
^

Chapter 1 Introduction

discovery algorithms to produce patterns or models over the data. On the other

hand, Knowledge Discovery in Database (KDD) can be defined as the nontrivial

process of identifying valid, novel, potentially useful, and ultimately understand-

able patterns in data (Fayyad et al. [1996]). The data are records in a database.

The knowledge discovered from the KDD process should be unable to be obtained

by a straightforward computation. The knowledge should be not yet discovered

and should be beneficial to the user. The knowledge should be able to apply to

new data with some degree of certainty. Finally the knowledge should be human

understandable.

KDD is an interactive and iterative process comprises with several steps. In

Fayyad et al. [1996], KDD is divided into several steps. Data Mining can be

considered as one of the steps in the KDD process. Data mining is the core of the

KDD process, and thus the two terms are often used interchangeably. The whole

process of KDD can consist of five steps:

1. Selection is made to extract relevant or target data set from the database.

2. Preprocessing is needed to remove the noise and to handle missing data

fields.

3. Transformation is performed to reduce the number of variables under con-

sideration.

4. A suitable data mining algorithm is employed on the prepared data.

5. Finally the result of data mining is interpreted and evaluated.

If the discovered knowledge is not satisfactory, these steps will be iterated. The

discovered knowledge can then be applied in decision making.

Different data mining algorithms aim to find different kinds of knowledge.

Chen et al. [1996] grouped the techniques for knowledge discovery into six cate-

gories. ‘

1. Mining of association rules finds rules in the form of "Ai 八.•.八 A^ 玲

Bi 八•..八 Bn", where Ai and Bj are attributes values. This association rule

2
�

Chapter 1 Introduction

tries to capture the association between the attributes. The rule means that

if Ai and . • • and Am appear in a record, then Bi and • •. and Bn will usually

appear.

2. Data generalization and summarization summarized the general character-

istics of a group of target class and presents the data in a high-level view.

3. Classification formulates a classification model based on the data. The

model can be used to classify an unseen data item into one of the predefined

classes based on the attribute values.

4. Data clustering identifies a finite set of clusters or categories to describe

the data. Similar data items are grouped into a cluster such that the inter-

class similarity is maximized and the interclass similarity is minimized. The

common characteristic of the cluster is analyzed and presented.

5. Pattern based similarity search tries to search for a pattern in temporal or

spatial-temporal data, such as financial databases or multimedia databases.

6. Mining path traversal patterns tries to capture user access patterns in an

information providing system, such as World Wide Web.

Machine learning (Carbonell et al. [1983]) and data mining share a similar

objective. Machine learning learns a computer model from a set of training exam-

ples. Many machine learning algorithms can be applied to databases. Rather than

learning on a set of instances, machine learning is done on a file of records from

a database (Frawley et al. [1992]). However, databases are designed to meet the

needs of real world applications. They are often dynamic, incomplete, noisy and

much larger than typical machine learning data sets. These issues cause difficulties

in direct application of machine learning methods.

3 ,

Chapter 1 Introduction

1.2 Motivation

Data mining has recently become a popular research topic. The increasing use of

computer results in an explosion of information. These data can be best used if

the knowledge hidden inside can be uncovered. Thus there is a need for a way

to automatically discover knowledge from data. The research in this area can be

useful to a lot of real world problems. For instance, medical domain is a major

area for applying data mining. With the computerization in hospitals, a huge

amount of data has been collected. It is beneficial if these data can be analyzed

automatically.

Learning from examples is not a new area in computer science. Machine learn-

ing has a well-developed history. Many classification approaches have been de-

signed to construct a model for classification from a set of training cases. However,

the goal of data mining is different from classification. The objective of data min-

ing is not to classify all the unseen cases perfectly, but discover knowledge inter-

esting to the users, even though the accuracy may be not high. Accuracy should

be one ofthe requirements for an interesting knowledge, but an approach that can

only find knowledge with high accuracy should not be a complete approach for

data mining. In many real-life situations, strong rules just do not exist, or have

already been discovered since the relationship is so obvious. It is important if the

data mining method can discover weak rules.

Another requirement in data mining is that the knowledge discovered should be

understandable by the user, such that the user can make decision based on the new

knowledge. Some approaches are black box approaches and not suitable for data

mining. Some approaches can give human understandable results, but the results

may be just complicated and difficult to interpret. Rule is commonly used by

human to represent knowledge, and should be a suitable knowledge representation

in data mining. However, there are different representations of rule, with different

representation power. Many rule learning approaches learn rules with its own

format, and the format may not be powerful enough to represent the knowledge

4 ,

Chapter 1 Introduction

hidden in the data. Moreover, the rule format may not be the one that the user

desires. It is advantageous if the knowledge representation can be improved.

Another interesting knowledge representation is Bayesian network, which is

based on a well-developed Bayesian probability theory. It is easy to understand

because of its graphical representation. It can represent the overall causality

between variables in the domain. One difficulty in Bayesian network learning is

on how to handle the continuous variables. Friedman and Goldszmidt [1996] has

proposed a measure for discretization of continuous variables. It is worthwhile to

investigate the use of other search methods other than the greedy method they

proposed.

Evolutionary computation is a kind of weak search method for optimization.

It is a domain independent search method that can be applied to a wide range of

problem. Algorithms in evolutionary computation can be used as a search method

for knowledge discovery. It is suitable for hard search problems where domain

specific techniques are not available or difficult to design. In this thesis, we will

investigate the use of evolutionary computation to rule learning and Bayesian

network learning, and the applications of these techniques on analyses of medical

databases.

1.3 Contributions of the research

The contributions of the research are listed below, in the order that they appear

in the thesis:

• An approach for rule learning have been developed. This approach uses

Generic Genetic Programming (GGP) as the learning algorithm. We have

designed a suitable grammar to represent a rule, and we have investigated

how the grammar can be modified in order to learn rules with different

formats. Other techniques have been employed in GGP to facilitate the

learning: seeds are used to generate better rules, and the operator 'dropping

condition' is used to generalize rules. The evaluation function is designed to

5
«

Chapter 1 Introduction

measure both the accuracy and significance of the rule, so that interesting

rules can be learned.

• The technique token competition has been employed to learn multiple rules

simultaneously. This technique effectively maintains groups of individuals

in the population, with different groups evolving different rules.

• We have investigated the use of Genetic Algorithm in the process of dis-

cretizing continuous variables while learning Bayesian networks. A system

has been implemented that alternatively learns a Bayesian network struc-

ture and a discretization policy from the data. The approach MDLEP is

employed to learn the network structure. Genetic Algorithm is used to learn

the discretization policy, and the performance has been compared with a

greedy approach.

• We have developed a data mining system that consists of a causality anal-

ysis step and a rule learning step. These two steps are not independent

processes. The Bayesian network discovered from the causality analysis can

help the user to understand the domain, so that the user can construct a

suitable grammar to guide rule learning, and the search space can be greatly

decreased.

• We have applied the data mining system to two real-life medical databases.

We have consulted the domain experts to understand the domains, so as

to pre-process the data and construct suitable grammars for rule learning.

The learning results have been fed back to the domain experts. Interest-

ing knowledge are discovered, which can help the clinician to get a deeper

understanding of the domains.

1.4 Organization of the thesis

Chapter 2 of this thesis in a literature review on different approaches of data

mining. The approaches are grouped into decision tree approach, classification

6
禽

Chapter 1 Introduction

rule learning, association rule mining, statistical approach and Bayesian network

learning. Representative algorithms in each group will be introduced.

In chapter 3，we will introduce what is Evolutionary Computation, and de-

scribe four evolutionary algorithms: Genetic Algorithm, Genetic Programming,

Evolutionary Programming and Evolution Strategy, as well as Generic Genetic

Programming (GGP), which is an extension of Genetic Programming.

Chapter 4 and chapter 5 will discuss how evolutionary computation can be ap-

plied to discover rules from databases. Chapter 4 will focus on how the problem of

rule learning is modeled such that GGP can be applied as the learning algorithm.

The representation of rules, the genetic operators for evolving new rules, and the

evaluation function will be introduced in this chapter. However, learning one rule

from data is inadequate. Chapter 5 will describe how to learn multiple number of

rules. The technique token competition is employed to solve this problem. A rule

learning system will be introduced, and the experiment results on two machine

learning databases will be presented in this chapter. The material of these two

chapters have been published in (Ngan et al. [1998b]).

Chapter 6 will describe another problem: Bayesian network learning. We will

first describe an approach, MDLEP, which learns Bayesian Network based on

the Minimum Description Length (MDL) principle and Evolutionary Program-

ming. The research on discretization of continuous variables in Bayesian Network

learning based on MDL (Friedman and Goldszmidt [1996]) has been extended.

Genetic Algorithm is used as the optimization method instead of the proposed

greedy approach, and the experimental results will be presented.

In chapter 7, a system for data mining will be introduced. This system com-

bines the approaches for Bayesian network learning and rule learning. The system

has been used to analyze real-life medical databases for limb fracture and Scol-

iosis. The applications of this system and the learning results will be presented

in this chapter. A paper on this system has been accepted for publication (Ngan

et al. [1998a]).

Chapter 8 is a conclusion of this thesis. The research work will be summarized,

7
«

Chapter 1 Introduction

and some suggestions for future researches will be given.

8
^

Chapter 2

Related Work in Data Mining

There are a large variety of data mining approaches, with different search methods

aiming to find different kinds of knowledge. This chapter reviews data mining ap-

proaches related to this research. Decision tree approach, classification rule learn-

ing, association rule mining, statistical approach and Bayesian network learning

are reviewed in the following sections.

2.1 Decision Tree Approach

Decision Tree is a tree like structure that represents the knowledge for classifica-

tion. Internal nodes in a decision tree are labeled with attributes, the edges are

labeled with attribute values and the leaves are labeled with classes. An example

of a decision tree is shown in Figure 2.1. This tree is for classifying whether the

weather of a Saturday morning is good or not. It can classify the weather into

the class P (positive) or N (negative). For a given record, the classification pro-

cess starts on the root node. The attribute in the node is tested, and the value

determines which edge is taken. This process is repeated until a leaf is reached.

The record is then classified as the class of the leaf. Decision tree is a simple

knowledge representation for representing a classification model, but the tree can

be very complicate that is difficult to interpret.

9

Chapter 2 Related Work in Data Mining

out look

/ T X
overcast sunny rain

Z I \
P humid i ty w i n d y

八 八
high normal true false / \ / \

N P N P

Figure 2.1: A decision tree

2.1.1 ID3

ID3 (Quinlan [1986]) is a simple algorithm to construct a decision tree from a set

of training objects. It is a heuristic top-down irrevocable search. Initially the tree

contains only a root node and all the training cases are placed in the root node.

ID3 uses information as a criterion for selecting the branching attribute of a node.

Let the node contains a set T of cases, with \Cj\ of the cases belonging to one of

the pre-defined class Cj. The information needed for classification in the current

node is
^nfo{T) = - J ： ^ ^ l o J ^ (2.1)

This value measures the average amount of information needed to identify the

class of a case. Assume that using attribute X as the branching attribute will

divide the cases into n subsets. Let 7\ denotes the set of cases in subset i. The

information required for the subset i is info{Ti). Thus the expected information

required after choosing attribute X as the branching attribute is the weighted

average of subtree information :

i n f o x { T) = Y . ^ ^ ^ x i n f o { T ,) (2.2)

Thus the information gain will be

gain{X) = info{T) - infox(T) (2.3)

10 .

Chapter 2 Related Work in Data Mining

As a smaller value in the information corresponds to a easier classification, the

attribute X with the maximum information gain is selected for the branching of

the node.

After the branching attribute is selected, the training cases are divided by the

different values of the branching attribute. If all examples in one branch belong

to the same class, then this branch becomes a leaf labeled with that class. If all

branches are labeled with a class, the algorithm terminates. Otherwise the process

is recursively applied on each branch.

ID3 uses the chi-square test to avoid over-fitting to the noise. In a set T of

cases, let ocj,xi denote the number of records in class Cj with X 二 xi. If attribute

X is irrelevant for classification, the expected number of cases belonging to class

Cj with X = Xi is

ec,,x. = |C,| X 留 (2.4)

The value of chi-square is approximately

x 2 a E E (o c ^ " . , r % J (2.5)
. • t̂ t̂ • rf* , 1 j ^j,^i

In choosing the branching attribute for the decision tree, if x^ is lower than a

threshold, then that attribute will not be used. This can avoid creating unneces-

sary branches that complicate the constructed tree .

2.1.2 C4.5

C4.5 (Quinlan [1993]) is the successor ofID3. The use of information gain in ID3

has a serious deficiency that it favors tests with many outcomes. C4.5 improves

this by using a gain ratio as the criterion for selecting the branching attribute. A

value split info{X) is defined with a similar definition of info{X)

split info{X) = — E ||| log2 g (2.6)

11 _

Chapter 2 Related Work in Data Mining

This value represents the potential information generated by dividing T into n

subsets. The gain ratio is used as the new criterion

gain ratio{X) = gain{X)/split info{X) (2.7)

The attribute with the maximum value on gain ratio{X) is selected as the branch-

ing attribute.

C4.5 abandoned the chi-square test for avoiding over-fitting. Rather, C4.5

allows the tree to grow and later prunes the unnecessary branches. The tree

pruning step replaces a subtree by a leaf or the most frequently used branch. The

decision on whether a subtree is pruned depends on an estimation of the error

rate. Suppose that a leaf gives an error of E out of N training cases. For a given

confidence level CF, the upper limit of the error probability for the binomial

distribution is written as UcF{E,N). The upper limit is used as the pessimistic

error rate ofthe leaf. The estimated number of errors for a leaf covering N training

cases is thus N x Ucp{E, N). The estimated number of errors for a subtree is the

sum of errors of its branches.

Pruning is performed if replacing a subtree by a leaf or a branch can give a

lower estimated number of errors. For example, for a subtree with three leaves,

which respectively covers 6, 9 and 1 training cases without errors, the estimated

number of mis-classification with the default confidence level of 25% is

6x^5%(0,6)+9x^5%(0,9)+lxt /25%(0, l) = 6x0.206+9x0.143+lx0.750 = 3.273.

If they are combined to a leaf node, it mis-classifies 1 out of 16 training case. The

estimated number of mis-classifications of this leaf is

16 X t /25%(l , 16) = 16 X 0.157 二 2.512.

This is better than the original subtree and thus the leaf can replace the original

subtree.

12 .

Chapter 2 Related Work in Data Mining

2.2 Classification Rule Learning

A rule is a sentence of the form "if antecedents, then consequent”. Rules are

commonly used in expressing knowledge and are easily understood by human.

Rules are also commonly used in expert systems for decision making. Rule learning

is the process of inducing rules from a set of training examples. Many algorithms

in rule learning try to search for rules to classify a case into one of the pre-specified

classes.

2.2.1 AQ algorithm

AQ (Michalski [1969]) is a family of algorithms for inductive learning. One ex-

ample is AQ15 (Michalski et al. [1986]). The knowledge representation used in

AQ is the decision rule. A rule is represented in Variable-valued Logic system 1

(VLi). In VLi, a selector relates a variable to a value or a disjunction of values,

e.g. color 二 red V green. A conjunction of selectors forms a complex. A cover is a

disjunction of complexes describing all positive examples and none of the negative

examples. A cover defines the antecedents of a decision rule. The original AQ can

only construct exact rules, i.e. for each class, the decision rule must cover only

the positive examples and none of the negative examples.

AQ algorithm is a covering method instead of the divide-and-conquer method

of ID3. The search algorithm can be described as follows (Michalski [1983]):

1. A positive example, called the seed, is chosen from the training examples.

2. A set of complexes, called a star, that covers the seed is generated by the

star generating step. Each complex in the star must be the most general

without covering a negative example.

3. The complexes in the star is ordered by the lexicographic evaluation func-

tion (LEF). A commonly used LEF is to maximize the number of positive

examples covered.

13 .

Chapter 2 Related Work in Data Mining

4. The examples covered by the best complex is removed from the training

examples

5. The best complex in the star is added to the cover.

6. Steps 1-5 are repeated until the cover can cover all the positive examples.

The searching in the star generating step (step 2) is a top down irrevocable

beam search. This step can be summarized as follows:

1. Let the partial star be the set containing the empty complex, i.e. without

any selector.

2. While the partial star covers negative examples,

(a) Select a covered negative example.

(b) Let extension be the set of all selectors that cover the seed but not the

negative example.

(c) Update the partial star to be the set {x 八 y | x e partial star, y £

extension}.

(d) Remove all complexes in the partial star subsumed by other complexes.

3. Trim the partial star, i.e. retain only the maxstar best complexes.

In the star generating step, not all the complexes that cover the seed are

included. The partial star will be trimmed by retaining only maxstar best com-

plexes. The heuristic used is to retain the complexes that "maximize the sum of

positive examples covered and negative examples excluded".

2.2.2 CN2

CN2 (Clark and Niblett [1989]) incorporates ideas from both AQ and ID3 algo-

rithm. AQ algorithm cannot handle noise properly. CN2 retains the beam search

of AQ algorithm but removed its dependence on specific training examples (the

14

Chapter 2 Related Work in Data Mining

seeds) during the search. CN2 uses a decision list as the knowledge representa-

tion. A decision list is a list of pairs (0i ,Ci) , (^2,^2), . •., ((^,CV),where c^ is a

complex, Ci is a class, and the last description 4>r is the constant true. This list

means ‘ if (;z!)ithen Ci else if ¢2 then C2 • • .else CV，.

Each step of CN2 searches for a complex that covers a large number of examples

of class C and a small number of other classes. Having found a good complex,

the algorithm removes those examples it covers from the training set and adds the

rule 'if <complex> then predict CP to the end of rule list. This step is repeated

until no more satisfactory complexes can be found.

The searching algorithm for a good complex is a beam search. At each stage

in the search, CN2 stores a star S of 'set of best complexes found so far，. The

star is initialized to the empty complex. The complexes of the star are then

specialized by intersecting with all possible selectors. Each specialization is similar

to introducing a new branch in ID3. All specializations of complexes in the star

are examined and ordered by the evaluation criteria. Then the star is trimmed

to size maxstar by removing the worst complexes. This process of searching is

iterated until no further complexes that exceed the threshold of evaluation criteria

can be generated.

The evaluation criteria for complexes consist of two tests for testing the predic-

tion accuracy and significance of the complex. Let (pi, •. .,Pn) be the probability

of examples in class Ci, •.. Cn. CN2 uses the information theoretic entropy (Equa-

tion 2.1)
info = — ^pi l0g2(pi) (2.8)

i

to measure the quality of complex (lower the entropy, the better the quality). The

likelihood ratio statistic is used to measure the significance of complex :

2 E / i l 0 g (/ , M) (2.9)
i=l

where (/ i , . . .， fn) is the observed frequency distribution and (e i , . . . , e^) is the

expected distribution. A complex with a high value of this ratio means the high

15

Chapter 2 Related Work in Data Mining

accuracy on training data is not just due to chance.

2.2.3 C4.5RULES

Other than being able to produce a decision tree as described in section 2.1.2, a

component of C4.5, C4.5RULES (Quinlan [1993]), can transform the constructed

decision tree by C4.5 into production rules. Each path of the decision tree from

the root to the leaf equals to a rule. The antecedent of the rule contains all the

conditions of the path, and the consequent is the class of the leaf. However this

rule can be very complicate and a simplification is required. Suppose that the rule

gives E errors out of the N covered cases, and if condition X is removed from the

rule, the rule will give E^- errors out of the N^- covered cases. If the pessimistic

error UcF^E^-.N^-) is not greater than the original pessimistic error UcF[E, N),

then it makes sense to delete the condition X. For each rule, the pessimistic error

for removing each condition is calculated. If the lowest pessimistic error is not

greater than that of the original rule, then the condition that gives the lowest

pessimistic error is removed. The removal is repeated until the pessimistic error

of the rule cannot be improved.

After this simplification, the set of rules can be exhaustive and redundant. For

each class, only a subset of rules is chosen out of the set of rules classifying it.

The subset is chosen based on the Minimum Description Length principle. The

principle states that the best rule set should be the rule set that required the

fewest bits to encode the rules and their exceptions. For each class, the encoding

length for each possible subset of rules is estimated. The subset that gives the

smallest encoding length is chosen as the rule set of that class.

2.3 Association Rule Mining

Association rule mining (Agrawal et al. [1993]) focuses on discovering knowledge

between items in a large database of sales transactions. Association rule is a rule

of the form " i f X then Y'\ where X and Y are items in a transaction. Association

16
^

Chapter 2 Related Work in Data Mining

rule mining is different from classification, as there is no pre-specified classes in the

consequent. An association rule is valid if it can satisfy the threshold requirement

on confidence factor and support. The rule is required to have at least c% of

records that satisfy X also satisfy F , where c is the confidence threshold. It is

also required that the number of records satisfying both X and Y has to be larger

than s% of the records, where s is the support threshold.

The problem of mining association rules from a database can be solved in two

steps. The first step is to find the sets of attributes that have enough support.

These sets are called large itemsets as 'large' is used to denote having enough sup-

port. The second step is from each large itemset, association rules with confidence

larger than the threshold are searched. The attributes are divided into antecedents

and consequent and the confidence is calculated. The main researches (Agrawal

et al. [1993]; Mannila et al. [1994]; Agrawal and Srikant [1994]; Han and Fu [1995];

Park et al. [1995]) consider Boolean association rules, where each attribute must

be Boolean (e.g. have or have not buy the item). They focus on developing a fast

algorithm for the first step, as this step is very time consuming. They can be

efficiently applied to large databases, but the requirement of Boolean attributes

limited their uses.

2.3.1 Apriori

Apriori (Agrawal and Srikant [1994]) is an algorithm for generating large itemsets

(i.e. the first step) in Boolean association rule mining. The support of an itemset

has a characteristic that the subsets of a large itemset must be large, and supersets

of a small (i.e. not large) itemset cannot be large. Apriori makes use of this

characteristic to drastically reduce the search space.

The outline of Apriori algorithm is listed as follows:

1. Count the support of item sets with 1 element.

2. Li = set of size 1 itemsets that are large.

3. for {k = 2; k < no-of_attributes', k + +)

17 _

Chapter 2 Related Work in Data Mining

(a) generate extensions of each size k - 1 large itemset by adding one more

attributes;

(b) Ck = set of extensions of size k — 1 large itemsets;

(c) For each itemset in Ck, if one of its size k — 1 subset is not in Lk, delete

it from Ck\

(d) For each itemset in Ck, count the support and check whether it is large;

(e) Lk = set of large itemsets in Ck.

Apriori first searches for large itemsets with one attribute. Then other large

itemsets are searched from the itemsets known to be large. The large itemsets are

extended by adding one attribute. If one subset of the extended itemset is not

known to be large, this itemset is rejected because the subset of a large itemset

must be large. The supports of these extended itemsets are counted to check

whether they are still large. Once a large itemset is found to be not large, further

extension of it is no longer necessary because its superset must be small.

2.3.2 Quantitative Association Rule Mining

Quantitative Association Rules do not restrict the attributes to be Boolean. Quan-

titative or categorical attributes are allowed. In Srikant and Agrawal [1996], the

problem of mining quantitative association rules is mapped into a Boolean as-

sociation rule problem. Intervals are made for each quantitative attribute. A

new Boolean attribute is created for each interval or category. This attribute is

set to 1 if the original attribute is in that interval or category. For example, a

record with age equals 23 will have ' l 's in the new interval attributes 'Age:(21-

25)' and 'Age:(15-30)', and have '0's in the new interval attribute 'Age:(15-20)',

'Age:(26-30)'. However, this mapping will face two new problems:

• "ExecTime". The number of attributes is hugely increased, and greatly

affects the execution time.

18
禽

Chapter 2 Related Work in Data Mining

• "ManyRules". If an interval of a quantitative attribute has minimum sup-

port, any range containing this interval will also has minimum support. Thus

the number of rules increase greatly. Many of them just differ in the ranges

of the quantitative attributes and in fact refer to the same association.

To tackle the first problem, a "maximum support" parameter is required from

the user. The new Boolean attributes are not created for all possible intervals. If

the support of an interval exceeds the maximum support, it will not be considered

as the rule will be too general and should already be covered by other rules having

a smaller interval. To tackle the second problem, an "interesting level" parameter

is required from the user. An interesting measure is defined to measure how much

the support and/or confidence of a rule is greater than expected. Those rules with

interest measure lower than the user requirement is pruned.

2.4 Statistical Approach

Statistic and data mining both try to search knowledge from data. Statistic ap-

proach focuses more on quantitative analysis. A statistical perspective on knowl-

edge discovery has been given in Elder IV and Pregibon [1996]. Statisticians

usually assume a model for the data and then look for the best parameters for the

model. They interpret the models based on the data. They may sacrifice some

performance in order to be able to extract the meaning from the model. How-

ever in recent years statistician has also moved the objective to the selection of a

suitable model. Moreover, statisticians place strong emphasis on estimating or ex-

plaining the model uncertainty by summarizing the randomness to a distribution.

The uncertainties are captured in the standard error of the estimation.

2.4.1 Chi Square Test and Bayesian Classifier

One of the most useful statistical measures for data mining is the chi-square (x^)

test described in equation 2.5. The value x^ measures the dependency between two

19 .

Chapter 2 Related Work in Data Mining

attributes. If this value is smaller than a certain threshold, it can conclude that

one attribute is not relevant for determining the other attribute. The commonly

used threshold is 义 at 95% or 99% confidence.

The Bayesian probability theorem can be used to classify an object into one

of the classes {c1,c2, • •.，c^}. Let the object be described by a feature vector F

which consists of attributes { /1, /2，...，//}. The probability of this object belongs

to class Ci is given by
删 二 ” " ^ ^ (2.10)

The use of this theorem can provide probabilistic knowledge for classifications

of unseen objects. The object with a feature vector F can be classified to the class

a which gives the maximum value on this probability. Since the denominatorp(F)

appears in every probability, it is actually a normalizing factor and can be ignored

in the calculation. The probability p{ci) can be estimated as the occurrence of Q

over the total number of existing objects. Thus the main concern is on how to

estimate p{F{ci).

This probability can be estimated by making assumptions. The simplest as-

sumption is that each feature in F is statistical independence, that is

p{F\ci) = {[pifk\ci) (2.11)
k=l

the value p{fk]ci) can be estimated as the occurrence of objects in class Ci having

/fc over the occurrence of objects in class Q. Another assumption given in Wu

et al. [1991] is that the probability can be under a normal distribution, that is

p {F l c) 二 问 二 丨 即 , 2 e x p (- i (F - M , y C r ^ F -风)） （ 2 . 1 2)

where Q is the covariance matrix and Mi is the mean vector over n unseen cases.

Thus the problem is reduced to the measurement of the two parameters Q and

Mi.

20
為

Chapter 2 Related Work in Data Mining

A = ai A = tt2 Total
C = Ci Oci,ai ĉ1,a2 Oci
C — ̂ 2 Oc2,ai ^c2,a2 Ĉ2
Total Oai 0^

Table 2.1: A contingency table for variable A vs. variable C

2.4.2 FORTY-NINER

FORTY-NINER (Zytkow and Baker [1991]) is a system for discovering regular-

ities in a database. It searches for significant regularities compared to the null

distribution hypothesis. The search is divided into two phases. The first phase is

a search for two-dimensional regularities (i.e. regularities between two variables).

The second phase generalizes the two-dimensional regularities to more dimensions.

Either phase can be repeated many times with human interventions.

In the first phase, each attribute is transformed by using aggregation, slicing

and projection. The search is performed on partitions of the database. The

user can reduce the search space by limiting the number of independent variables

and the depth of partitioning. The regularity is represented in a contingency

table and in the best linear fit. An example of a contingency table is shown

in Table 2.1, where 0 ,̂01 is the actual number of occurrence of C 二 Ci and

A 二 ai. This value is compared with the expected occurence eci,ai = Oci x OaJN

(where N is the total number of records), and x^ is calculated to measure the

significance of the regularity. The best liner fit between C and Ais a linear

regularity C 二 mA + b obtained by using the least squares method, where m is

the slope and b is the intercept. A value r^ measures the significance of the linear

regularity. It is calculated over all data points {Xi,Yi) using the formula:

E Ĉ i - %?
r2 二 1 一，1 (2.13)

im 一 均
2

where Y is the average value of Y over the n data points, and ^ is the value of

Y predicated by the linear regularity.

21
«

Chapter 2 Related Work in Data Mining

In the second phase, the user selects the 2-D regularities for expansions.

The regularity expansion module adds one dimension at a time and the multi-

dimension regularity is formed. This module can be applied recursively. Since the

search space would be exponential if all possible multi-dimensional regularities is

considered, user intervention is required to guide the search.

2.4.3 EXPLORA

EXPLORA (Hoschka and Klosgen [1991]; Klosgen [1993]) is an integrated system

for helping the user to search for interesting relationships in the data. A state-

ment is an interesting relationship between a value of a dependent variable and

values of several independent variables. Various statement types are included in

EXPLORA, e.g. rules, changes and trend analyses. The value of the dependent

variable is called the target group and the combination of values of independent

variables is called the subgroup. For example, the sufficient rule pattern

48% of the population are CLERICAL. However, 92% of AGE > 40,

SALARY < 10260 are CLERICAL

is a relationship between the target group CLERICAL and the independent vari-

ables are AGE and SALARY. The user selects one statement type, identifies the

target group and the independent variables, and inputs the suitable parameters.

EXPLORA calculates the statistical significance of all possible statements and

outputs the statements with significance above the threshold.

The search algorithm in EXPLORA is a graph search. Given a target group,

EXPLORA search for the subgroup for regularities. It first uses values from one

variable, then combinations of values from two variables, and then combination of

values from three variables, and so on until the whole search space is exhaustively

explored. The search space can be reduced by limiting the number of combinations

of independent variables and by the use of redundancy filters. Depending on the

type of the statements, different redundancy filters can be used. For example, for

the sufficient rule pattern “If subgroup then target group", the redundancy filter

22
禽

Chapter 2 Related Work in Data Mining

is “if a statement is true for a subgroup a, then all statements for the subgroup a

八 other values are not interesting". For the necessary rule pattern “If target group

then subgroup", the redundancy filter is "if a statement is true for subgroup aA6,

then the statement for subgroup a is true".

2.5 Bayesian Network Learning

Bayesian network (Charniak [1991]; Heckerman and Wellman [1995]) is a formal

knowledge representation supported by the well-developed Bayesian probability

theory. A Bayesian network captures the conditional probabilities between at-

tributes. It can be used to perform reasoning under uncertainty. A Bayesian

network is a directed acyclic graph. Each node represents a domain variable, and

each edge represents a dependency between two nodes. An edge from node A to

node B can represent a causality, with A being the cause and B being the effect.

The value of each variable should be discrete. Each node is associated with a

set of parameters. Let Ni denote a node and U^i denote the set of parents of

Ni. The parameters of Ni are conditional probability distributions in the form of

P{Ni{UNi), with one distribution for each possible instance of U^.. Figure 2.2 is

an example Bayesian network given in Charniak [1991]. This network shows the

relationships between whether the family is out of the house (/o) , whether the

outdoor light is turned on (/o), whether the dog has bowel problem (bp), whether

the dog is in the backyard (do), and whether the dog barking is heard {hb).

Since a Bayesian network can represent the probabilistic relationships among

variables, one possible approach of data mining is to learn a Bayesian network

from the data (Heckerman [1996]; Heckerman [1997]). The main task of learning

a Bayesian network is to automatically find directed edges between the nodes, such

that the network can best describe the causalities. Once the network structure

is constructed, the conditional probabilities are calculated based on the data.

The problem of Bayesian network learning is computationally intractable (Cooper

1990]). However, Bayesian networks learning can be implemented by imposing

23 .

Chapter 2 Related Work in Data Mining

P(fo) = 0.15 p(bp) = 0.01

X'^ily-ouTX ^^wel-problem^
V ^ f o) J V _ _ _ W _ ^

^ ^ _ ^ ^ ^ " S < ^ 9
O i g h t - o n (l o)) (d = u t) p (lo |n fobp) = 0.90
V j J V (do) y p(lo I fo nbp) = 0.97

^ Z p (l o |n fonbp) = 0.03
P (lo | fo) = 0.6 ^ _!：~ _

p (l o h f o) = 0.05 广hear-bark^
K^om^^

p(hb 丨 do) = 0.7
p(hb I ndo) = 0.01

Figure 2.2: A Bayesian network example

limitations and assumptions. For instance, the algorithms of Chow and Liu [1968

and Rebane and Pearl [1989] can learn networks with tree structures, while the

algorithms of Herskovits and Cooper [1990], Cooper and Herskovits [1992] and

Bouckaert [1994] require the variables to have a total ordering. More general

algorithms include Heckerman et al. [1995], Spirtes et al. [1993] and Singh and

Valtorta [1993]. More recently, Larranaga et al. [1996a]; Larranaga et al. [1996b'

has proposed algorithms for learning Bayesian networks using Genetic Algorithm.

2.5.1 Learning Bayesian Networks using the Minimum De-

scription Length (MDL) Principle

One approach for Bayesian network learning is to apply the Minimum Description

Length (MDL) principle (Lam and Bacchus [1994]; Lam [1998]). In general there

is a trade-off between accuracy and usefulness in the construction of a Bayesian

network. A more complex network is more accurate, but computationally and

conceptually more difficult to use. Nevertheless, a complex network is only accu-

rate for the training data, but may not be able to uncover the true probability

distribution. Thus it is reasonable to prefer a model that is more useful. The

MDL principle (Rissanen [1978]) is applied to make this trade-off. This principle

24
«

Chapter 2 Related Work in Data Mining

states that the best model of a collection of data is the one that minimizes the

sum of the encoding lengths of the data and the model itself. The MDL metric

measures the total description length DL of a network structure G. A better net-

work has a smaller value on this metric. A heuristic search can be performed to

search for a network that has a low value on this metric.

Let U 二 { X i , . . . , Xn} denote the set of nodes in the network (and thus the set

of variables, since each node represents a variable), n^^ denote the set of parents

of node Xi, and D denote the training data. The total description length of a

network is the sum of description lengths of each node:

DL(U, G, D) 二 ^ DL[Xi, Ux,) (2.14)
Xieu

This length is based on two components, the network description length DLmt

and the data description length DLdata'

DL(Xi, Ux,) = DLnet{Xi, Ux,) + DLdata{Xi, Ux,) (2.15)

The formula for the network description length is

DLnet{XiUx,) = kilog,{n) + d{si - 1) Y[sj (2.16)
j^^Xi

where ki is the number of parents of variable Xi, Si is the number of values Xi

can take on, Sj is the number of values a particular variable in Uxi can take

on, and d is the number of bits required to store a numerical value. This is the

description length for encoding the network structure. The first part is the length

for encoding the parents, while the second part is the length for encoding the

probability parameters. This length can measure the simplicity of the network.

The formula for the data description length is

DL,ata{X,Ux,) = ^ E ^i^iflxJ log2 J ^ ^ " ^ ^ ^ (2.17)

25

Chapter 2 Related Work in Data Mining

where M(.) is the number of cases that match a particular instantiation in the

database. This is the description length for encoding the data. A Huffman code

is used to encode the data using the probability measures defined by the network.

This length can measure the accuracy of the network.

2.5.2 Discretizating Continuous Attributes while Learn-

ing Bayesian Networks

Bayesian network can only represent discrete variables. One approach to handle

the databases with continuous variables is to discretize them first. The continuous

variables are usually discretized by thresholds specified by human. However, dif-

ferent discretization policy will produce different network structure. The causality

will be lost if the discretization is not suitable. Thus it is desirable to search for

the best discretization policy before the learning of the Bayesian network is per-

formed.

Formally, a discretization sequence X defines a function that maps a continuous

variable to a discrete variable. Each discretization sequence contains a list of

threshold values. The variable will be discretized according to the ranges specified

by the thresholds. For example, if the threshold list is < h , h , . " , t k 〉，h <

t2 • • • < tk, the function fx defined in the discretization sequence A should be:

f

0 if X < h

fx{x) 二 i if ti < X < ti^i

k if tk < X
�

A discretization policy , A 二 {A^ : Xi is continuous}, is a collection of discretiza-

tion sequences for each continuous variable. The policy defines a new set of vari-

ables U* = {X*,.. .,X*} where X* = ^ , (¾) if Xi is continuous and X* = Xi

otherwise.

Friedman and Goldszmidt [1996] extended the MDL score to evaluate the

26 .

Chapter 2 Related Work in Data Mining

discretization policy while learning the Bayesian network structure. The origi-

nal training data D is discretized into a new data set D*. A Bayesian network

structure G for the discretized variables U* can be learned from D*. The new

definition of the MDL score includes the description length of the network as well

as description length of the discretization policy:

DL*(U*,G, A, D) = DL(U*,G, D*) + DL^iA) + DLo^^niD, A) (2.18)

• The first part, DL(U*,G,D*), is the score of the network under the dis-

cretized data, and can be calculated by using Equation 2.14.

• The second part, DLA{A), is the length for encoding the particular dis-

cretization policy A over all of the possible discretization policy. Let Valn (¾)

to be the set of values of Xi that appear in the data set D, Si = \ValD{Xi)

to be the cardinality of this set, and 5* = \ValD{X*)\ to be the cardi-

nality of the set of values of X*. The thresholds for Xi in the discretiza-

tion policy is chosen from among the Si - 1 mid-point values. Since there

are (^r^)different discretization sequences of cardinality 5*, the discretiza-

tion sequence can be indexed by using log (^ri)bits. Because log (^p^) <

{si - l) i 7 (^) , where H{p) = -plogp - (l-p) l o g (l - p) , the description

length of A is equal to:

DL^= E (̂ . - l) ^ (f ^) (2-19)
Xi is continuous ^

• The third part, DLD*—D[D,A), is the encoding length for reconstruct U

from U*. For a particular value of Xi, the encoding length for reconstruc-

tion from X* using the Huffman code is approximately - log p{Xi\X*)=

- l o g (^ ^) , where M(.) is the number of cases that match a particular

instantiation in the database. This encoding has to be repeated for each

27
^

Chapter 2 Related Work in Data Mining

record in the database. Thus this part is equal to:

DLn*^o{D, A) = - E E ^(¾) l � g (^ ^) (？圳
i Xi � �)

Friedman and Goldszmidt [1996] have also described a greedy approach for

learning the discretization policy as well as the Bayesian network. The approach

learns the discretization policy and the network structure alternatively. It starts

with a initial discretization policy and learns the Bayesian network from the dis-

cretized data set by using the MDL metric. Based on this learned structure,

a discretization policy is learned by using the MDL metric. In learning the dis-

cretization policy, only one variable is re-discretized at a time, with the discretiza-

tion for other variables being fixed. The discretization sequence of this variable is

reset to empty (i.e. no threshold values) first. The greedy approach searches for a

possible refinement. The split that gives the largest decrease in the MDL metric is

added to the current discretization sequence. The process is repeated until there

is no improvement. The algorithm of this approach can be summarized below:

1. Start with an initial discretization policy.

2. Learn a network structure from the discretized data set.

3. Learn a new discretization policy based on the learned network structure.

3.1 For each variable, search for the best discretization sequence.

3.1.1 Reset the discretization sequence to empty.

3.1.2 Calculate the decrease in MDL for each possible split

3.1.3 Add the split with the largest decrease to the current discretization

sequence.

3.1.4 Repeat 3.1.2-3.1.3 until no improvement.

3.2 Repeat 3.1 until no improvement in MDL.

4. Repeat 2-3 until no improvement in MDL.

28 .

Chapter 3

Overview of Evolutionary

Computation

3.1 Evolutionary Computation

Evolutionary Computation is a term to describe computational methods that sim-

ulate the natural evolution to perform function optimization and machine learning.

A potential solution to the problem is encoded as an individual An evolutionary

algorithm maintains a group of individuals, called the population, to explore the

search space. A fitness function evaluates the performance of each individual to

measure how close it is to the solution. The search space is explored by evolving

new individuals. The evolution is based on the Darwinian principle of evolution

through natural selection: the fitter individual has a higher chance of survival, and

tends to pass on its favorable traits to its offspring. A ‘good, parent is assumed

to be able to produce 'good, or even better offspring. Thus an individual with a

higher score in the fitness function have a higher chance of undergoing evolution.

Evolution is performed by changing the existing individuals. New individuals are

generated by applying genetic operators that alter the underlying structure of

individuals. ‘

This search technique is a 'weak' method. It is a general, domain independent

method that does not require any domain-specific heuristic to guide the search.

29

Chapter 3 Overview of Evolutionary Computation

Parameter values: Xi = 7, X2 二 5, x^ = 1
Binary values: Xi — l l l jX2 — 101, x^ = 01
Chromosome: | 1 | 1 | 1 | i | 0 | 1 | 0 | 1_

Figure 3.1: The chromosome in GA

Examples of algorithms in evolutionary computation include Genetic Algorithm,

Genetic Programming, Evolutionary Programming and Evolution Strategy. They

mainly differ in the evolution models assumed, the evolutionary operators em-

ployed, the selection methods, and the fitness functions used.

3.1.1 Genetic Algorithm

Genetic Algorithms (GA) (Holland [1992]; Goldberg [1989]) is a search method for

optimization. The goal of GA is to search for values for parameters Xi, cc2, •.., ^n

that optimizes a fitness function, f(x1,x2, • • .,Xn). The values of parameters are

encoded as a fixed-length binary bit string, which becomes the chromosome of an

individual. For example, if the parameters are real numbers, the binary value of

these parameters can be concatenated to form the chromosome, as illustrated in

3.1. Each individual stores one chromosome. The binary bit string is called the

genotype of the individual, while the parameter values encoded by the bit string

is called the phenotype of the individual.

The algorithm of a simple GA is shown in Table 3.1. The algorithm begins

with an initial population of individuals. The chromosomes of these individuals

are randomly generated. Each individual is then evaluated by a fitness function to

get a fitness value. The binary bits in the chromosome are decoded and the value

of fitness function on this set of parameter values is calculated. Then a number of

generations are iterated to evolve better individuals. In each generation, certain

individuals are selected from the population of current generation as the parents.

The selection is based on the Darwin's principle of survival of the fittest. The

probability of an individual being selected is proportional to the fitness of the

individual. This selection method is called fitness proportionate selection. The

detail of selection methods is discussed in Section 3.1.5. Crossover is performed

30

Chapter 3 Overview of Evolutionary Computation

Initialize the generation, t, to be 0.
Initialize a population of individual, Pop(t), with size popsize
Evaluate the fitness of all individual in Pop(t)
While the termination criteria is not satisfied

Initialize Pop(t+l) as an empty set
While size of Pop(t+l) < popsize

Select two individuals, parentl and parent2, from Pop(t)
Cross-over parentl and parent2 to produce childl and child2
Mutate childl and child2
Evaluate the fitness of childl and child2
Put childl and child2 into Pop(t+l)

Increase the generation t by 1
Return the individual with the highest fitness value

Table 3.1: The Simple Genetic Algorithm

with a probability of Pc to recombine two parents. If crossover is not performed,

then the children is just the same as the parents. The children then further

undergo a mutation with a probability of Prn- The mutated children are put into

the next generation ofpopulation. The generation is iterated until the termination

criterion is met. An example of a termination criterion is that an individual can

achieved a requirement of fitness value, or the maximum number of generation is

exceeded.

Crossover exchanges the genetic materials in the chromosomes of two parents

to produce two children. A random position in the bit string is chosen. The bits

after this crossover point in the parental chromosomes are exchanged, as illustrated

in Figure 3.2. This kind of crossover is called one point crossover. Mutation flips

a bit from 0 to 1 or vice versa, as illustrated in Figure 3.3. Each bit has the same

probability Prn of mutation. Mutation is a secondary operator that can restore

lost genetic materials. For example, if all the individuals with 0 in the first bit

are not selected as parents, then only crossover cannot re-generate a 0 at the first

bit. However, mutation can re-introduce this lost 'gene' into the population.

31 .

Chapter 3 Overview of Evolutionary Computation

0 I 1 I 1 I 0 11 1 1 丨 0 I 0 I I 0 I 1 I 1 I 0.|| 0 I 0 I 0 I 1 ‘
parent 1 ~)• child 1

crossover
1 I 1 丨 0 丨 1 丨 丨 0 丨 0 丨 0 丨 1 I I 1 丨 1 丨 0 I 1.11 1 I 1 I 0 I 0 •

parent 2 child 2

Figure 3.2: Crossover in GA. The crossover point is the 4th bit and the bits after
it are exchanged

0 I 1 I 1 I 0 I 0 I 0 I 0 I 1 I — I 1 丨 1 I 1 丨 0 I 0 0 I 0 丨 1
before mutation mutation after mutation

Figure 3.3: Mutation in GA. Mutation occurs at the 1st bit and the 4th bit

3.1.2 Genetic Programming
Genetic Programming (GP) (Koza [1992]; Koza [1994]) is an extension of Genetic

Algorithm. They mainly differ on the representation of chromosomes. The chro-

mosome of GA is with fixed length. Each bit in the chromosome has its own

meaning. The chromosome of GP is a tree consists of functions and terminals.

The phenotype of the chromosome is a computer program, which when executed

can solve the problem.

GP evolves a computer program in the language LlSP. In LlSP, all operations

are executed by performing functions to arguments. A function call is represented

as a list of the function and the arguments, enclosed by parentheses. The first

element in the list is the function and the subsequent elements are the arguments.

This kind of expression is called a S-expression. Every S-expression can be rep-

resented in a tree format. A function becomes a parent node and the arguments

become the branches. For example, Figure 3.4 is the tree representing the S-

expression (+ 1 2 (IF (> TIME 10) 3 4). The function IF returns the second

argument if the first argument is true, otherwise the third argument. The symbol

TIME is a variable. The internal nodes of this tree are the functions and the leaf

nodes are the terminals. This tree representation is the knowledge representation

of chromosomes used in GP. ,

To apply GP to a problem, a set of functions F and a set of terminals T have to

be defined. The algorithm of GP is very similar to GA. A set of initial individuals

32

Chapter 3 Overview of Evolutionary Computation

¢5"¾^^^^
^ 0 ¾

(j^^ (^

Figure 3.4: The tree representation of a S-expression

Initialize the generation, t, to be 0.

Initialize a population of individual, Pop(t), with size popsize
While the termination criteria is not satisfied

Evaluate the fitness of all individuals in Pop(t)
Initialize Pop(t+l) as an empty set
While size of Pop(t+l) < popsize

Choose a genetic operation probabilistically
If reproduction

Select one individual based on fitness
Copy the individual into Pop(t+l)

If crossover
Select two individuals based on fitness
Perform crossover
Insert the two offspring into Pop(t+l)

If mutation
Select one individual based on fitness
Perform mutation
Insert the offspring into Pop(t+l)

Increase the generation t by 1
Return the individual with the highest fitness value

Table 3.2: The Algorithm of Genetic Programming

33

Chapter 3 Overview of Evolutionary Computation

are created randomly from the function set and the terminal set. Each individual is

evaluated by a fitness function. New individuals are evolved by genetic operators,

including reproduction, crossover and mutation. The generation of evolutions

repeated until the termination criterion is satisfied. The algorithm is sketched in

Table 3.2.

To create an individual, a function is selected from F to be the root. A number

of branches, which equals to the arity of this function, are created from the root.

At each branch a symbol is selected from the set F U T. If a function is selected,

the above process repeated recursively.

The genetic operators typically used in GP are reproduction, crossover and

mutation. In reproduction, the parent is just copied unchanged to the new popu-

lation. In crossover, two subtrees are selected from the trees of each parent. These

subtrees are exchanged to produce two children, as shown in Figure 3.5. In muta-

tion, a subtree is selected from the parental tree, and then replaced by a randomly

generated subtree, as shown in Figure 3.6. The generation of the replacing subtree

is the same as the generation of the initial population. Mutation is considered

as less important in GP. It is because particular functions and terminals are not

associated with fixed positions. It is rare for a function or terminal to disappear

entirely from all the nodes of all individuals. Thus, mutation is not a necessary

operation to restore the lost genetic materials.

3.1.3 Evolutionary Programming

Evolutionary Programming (EP) (Fogel [1994]; Fogel et al. [1966]) emphasizes on

the behavioral linkage between parents and their offspring, rather than seeking to

emulate specific genetic operators as observed in nature. Different from GA, EP

does not require any specific genotype in the individual. EP employs a model of

evolution at a higher abstraction. Mutation is the only operator used for evolution.

A typical process of EP is outlined in Table 3.3. A set of individuals is ran-

domly created to make up the initial population. Each individual is evaluated by

the fitness function. Then each individual produces a child by mutation. There

34 .

Chapter 3 Overview of Evolutionary Computation

^^^^^¾! | (j ^ ^ ^ ^
1/^-^ / ^ I Parent 2
(Time) MOj j
Parent 1 ^̂̂ ^̂̂ ^̂̂ _̂̂ ^

^^^^^11 ^ ^ ^ ^ ! ^ ^

Child 1 j(rimeJ (10) j

Child 2

Figure 3.5: An example of crossover in GP. The selected subtree is enclosed by
the dashed box

^ ^ 0 ^ ^ ^

(5 f ^ ^ " " i o | ^ ^ " n

I ^ S ^ | - | ® ^ |
i(B@ I L^__®l

Parent Child

Figure 3.6: An example of mutation in GP. The selected subtree is enclosed by
the dashed box ‘

35

Chapter 3 Overview of Evolutionary Computation

Initialize the generation, t, to be 0.
Initialize a population of individual, Pop(t)
Evaluate the fitness of all individual in Pop(t)
While the termination criteria is not satisfied

Produce one or more offspring from each individual by mutation
Evaluate the fitness of each offspring
Perform a tournament for each individual
Put the individuals with high tournament scores into Pop(t+l)
Increase the generation t by 1

Return the individual with the highest fitness value

Table 3.3: The Algorithm of Evolutionary Programming

is a distribution of different types of mutation, ranging from minor to extreme.

Minor modifications in the behavior of the offspring occur more frequently and

substantial modifications occur more unlikely. The offspring is also evaluated by

fitness function. Then tournaments are performed to select the individuals for

the next generation. For each individual, a number of rivals are selected among

the parents and offspring. The tournament score of the individual is the number

of rivals with lower fitness scores than itself. Individuals with higher tournament

scores are selected as the population of next generation. There is no require-

ment that the population size is held constant. The process is iterated until the

termination criterion is satisfied.

EP has two characteristics. First, there is no constraint on the representation.

Mutation operator does not demand a particular genotype. The representation

can follow from the problem. Second, mutations in EP attempt to preserve be-

havioral similarity between offspring and their parents. An offspring is generally

similar to its parent at the behavioral level with slight variations. EP assumes

that the distribution of potential offspring is under a normal distribution around

the parent's behavior. Thus, the severity of mutations is according to a statistical

distribution.

36

Chapter 3 Overview of Evolutionary Computation

3.1.4 Evolution Strategy

Evolution Strategy (ES) (Rechenberg [1973]; Schwefel [1981]) is originallydesigned

for real-valued function optimization. It emphasizes on the individual, i.e. the

phenotype, to be the object to be optimized. Each parameter is represented as

an object variable Xj. Each Xj is associated with a strategy variable cfj, which

controls the degree of mutation to xj. The genotype of an individual is a vector

of pairs (xj, aj).

There are various models of evolution strategy. In {fj, + A)-ES, the population

size is /i, and A more individuals are evolved in each generation by recombination

and mutation. Among these {fj, + A) individuals, only the best /i individuals are

kept in the population. The selection is based on the score of an objective function

F. The evolution terminates when the optimal set of values for all the objective

variables are found, or when the maximum number of generations is reached.

There are various methods of recombination, and can be classified as non-

global and global. In non-global combination, two individuals are selected as

parents. For non-global discrete recombination, the value of each pair {xj ,aj)

of the offspring is selected randomly from one of the parents. For non-global

intermediate recombination, the value of each pair {x j ,a j) of the offspring is set

to the mean value ofthe two parents. On the other hand, in global recombination,

a pair of parents are selected for each pair of {xj,aj). Thus if the individual

contains L pairs of (ocj,aj), L pairs of parents are selected. For global discrete

recombination, the value of each pair {xj, aj) of the offspring is selected randomly

from one of its parents. For global intermediate recombination, the value of each

pair {xj, aj) of the offspring is set to the mean value of its parents.

Mutation modifies the value of each xj as well as each aj. According to the

biological observation, offspring are similar to their parents and that smaller mod-

ifications occur more frequently than larger modifications. Thus the new value of

Xj after mutation, x'j, is equal to: ‘

X'j = Xj + iV(0, CFj)

37

Chapter 3 Overview of Evolutionary Computation

where iV(0, aj) is a Gaussian random number with mean 0 and standard derivation

Gj. A mutation is regarded as successful if the mutated individual has a higher

score on F than the parent. The ratio r is the ratio of successful mutations to all

mutations. It is observed that the convergence rate is optimal if r equals to 1/5.

Thus the new value of aj of each individual, cr;，is changed based on r:

f

CdCTj i f r < l / 5

ĉ j = CiCFj if r > 1/5

Gj if r = 1/5
w

where Cd and Cj are constants. If r is smaller than 1/5, a is decreased by multiplying

a constant Cd < 1，so as to generate offspring closer to the parents. If r is larger

than 1/5, cr is increased by multiplying a constant Cj > 1, so as to broaden the

search.

ES and EP both use a statistical distribution of mutations. However, ES typ-

ically uses deterministic selection that the worst individuals are eliminated, while

EP typically uses a stochastic tournament selection. EP is an abstraction of evolu-

tion at the level of species. Thus no recombination is used because recombination

does not occur between species. In contrast, ES is an abstraction of evolution at

the level of individual behavior and hence recombination is reasonable.

3.1.5 Selection Methods

The classical method for selection of parents is the fitness proportionate selection

(Holland [1992]), or called the ‘roulette wheel，selection. The individuals in the

population form a roulette wheel, where each individual has a slot sized in pro-

portion to its fitness. The roulette wheel is turned to select the parent. Thus the

probability of the ith individual being selected is / � / ^ fi , where fi is the fitness
i

of the ith individual. However, there is a deficiency in this selection method. In

the early generations, a few individuals may have extraordinarily high fitness val-

ues. Fitness proportionate selection allocates a large number of offspring to these

38

Chapter 3 Overview of Evolutionary Computation

individuals, and cause premature convergence. At the later stages, the individuals

may have very close fitness values. Fitness proportionate selection cannot differ-

entiate the better individuals and allocates an almost equal number of offspring

to all individuals.

Alternative selection methods have been proposed. In the rank selection

method (Baker [1985])，the population is sorted according to the fitness. The

probability of an individual being selected is inversely proportional to its rank,

with the better one getting a higher chance. For example, the probability for

selecting an individual can be {N + 1 - u)/ E ^ i � w h e r e N is the population size

and Ti is the rank of the individual. This selection method gives less emphasis

on comparatively high-fitness individuals. On the other hands, it can distinguish

individuals with a slightly difference in the fitness scores. In the tournament selec-

tion method, a group of individuals with size q are selected from the population.

Among this group, the individual with the highest fitness value is selected. This

selection method simulates the phenomenon that several individuals fight over the

right of mating. However in these two methods, the probability of selection is not

directly linked with the value of the objective function for optimization.

3.2 Generic Genetic Programming

Pure GP does not make any distinction between all the functions and terminals.

It requires the function set and terminal set to have the closure property: All the

functions in the function set should be able to accept, as its arguments, any value

and data type that may possibly be returned by any function in the function set

and any value and data type that may possibly be assumed by any terminal in the

terminal set (Koza [1992]). Some operations must be modified before being used

in GP. For example, division must be modified so that its value is defined when

the denominator is zero. Another example is the commonly used operator '=，，

which tests the equality of two numbers. It does not fulfill the closure property

as its return value should be with Boolean type but the arguments it takes are

39 .
•

Chapter 3 Overview of Evolutionary Computation

Expr ">•(if Boolean Real Real)

Boolean — (Operator Real Real)

Boolean ^ T | F

Operator — = | < 丨 > | <= | >=

Real — varl | var2 | var3

Real — 0 I 1 丨 2 | 3 | 4 | 5 丨 6 | 7 | 8 | 9

Table 3.4: An example grammar. The symbol i f returns the second argument if
the first argument is true, or else the third argument

real numbers. One solution is to modify the operator such that it returns a real

number 1 for the value 'true' and returns 0 for the value ‘false，. But this brings out

other problems. For example, if the operators { + , -, AND, = } are used together

in the function set, it may produce meaningless programs like "(x AND y) + {x =

y)，，. The closure requirement greatly limits the representation power of genetic

programming.

Generic Genetic Programming (Wong and Leung [1995]; Wong and Leung

1997]; Wong [1995]) (GGP) extends GP further to increase the consistency and

flexibility. GGP uses a grammar to control the placement of functions and ter-

minals. A function or a terminal must be placed in a position that conforms to

the grammar. The genotype used in GGP is a derivation tree instead of the tree

representation of S-expression in GP.

A grammar G is a 4-tuple G = (V^，Vr, P, X) where VN is a finite set of non-

terminal symbols, Vr is a finite set of terminal symbols, P is a set of production

rules of the form a — " , and X G VW is the start symbol of G. A production rule

in the form a ~> P | 7 denotes two grammar rules { a ^ f3, a ~> 7}. Table 3.4 is

an example grammar. The start symbol is Expr, the italic terms are non-terminals

and other terms are terminals.

If there is a production rule a — fi, then the symbol a can be rewritten as

p. This rewrite is denoted by a =^ (3. A derivation is zero or more rewrite steps.

A complete derivation is a derivation from the start symbol such that there are

only non-terminals in it. Table 3.5 shows an example of a complete derivation of

the grammar listed in Table 3.4. The derivation process can be represented in a

40 .

Chapter 3 Overview of Evolutionary Computation

Expr

=^ (if Boolean Real Real)

=> (i f (Operation Real Real) Real Real)

=> (i f (> Real Real) Real Real)

=>-(if (> varl Real) Real Real)

=^ (if (> varl 9) Real Real)

=^ (if (> varl 9) 3 Real)

=^ (if (> varl 9) 3 4)

Table 3.5: An example derivation

Expr

/ ^ > ^ (if Boolean Real Real)

^^^^^"^^^^ I I

(Operator Real Real) 3 4

> var1 9

Figure 3.7: A derivation tree stored inside an individual of GGP

derivation tree. One rewrite step corresponds to one branching in the tree. Figure

3.7 is the derivation tree for the derivation in Table 3.5.

The grammar is used to generate individuals in Generic Genetic Programming.

Each individual stores a derivation tree as in Figure 3.7. An individual is initially

created by performing a complete derivation using the given grammar. Choices

are randomly made if there are more than one possible derivation.

Similar to GP, there are three genetic operators in GGP. Reproduction copies

one individual into the new population. Crossover differs from GP that it produces

just one offspring from two parents. One parent is designated as the primary

parent and the other is designated as the secondary parent. A subtree of the

primary parental derivation tree is selected for crossover. It is then replaced by a

subtree selected from the secondary parent. Figure 3.8 is an example of crossover.

But the choice of the replacing subtree is restricted so that the grammar cannot

be violated. A validation check is made to ensure that replacing the subtree can

still obey the grammar. If the replacement is not valid, another subtree from

the secondary parent will be selected. For example, Figure 3.9 shows part of a

41 ,

Chapter 3 Overview of Evolutionary Computation

Expr Expr

flf̂^̂^̂^̂^̂^̂^̂ 5̂̂^̂^̂ î̂) flf̂^̂^̂^̂^̂^̂^̂^̂ 5̂̂ 2̂̂)
^ - : ^ ^ T " = ^ ^ I I I |^^^^^^^"V^-=^ I I
](Operator Real Real)| 3 4 |(Operator Real Real)j var1 5
I I I I I I I
[i__«y§rl__9_� N y ^ ^ ^ ^ ^ [= 5 _ _ Y ? i 2 _ 」

Primary Parent | Secondary Parent
，r

Expr

. . , : r : ^ ^
(i f Boolean \Real Real)

U^^"^"^"^^^i I 1
|(Operator Real Real)j 3 4
[= 5 _ _ v a j 2 _ J

Child

Figure 3.8: Crossover in Generic Genetic Programming

^ 0

^ ¾

Figure 3.9: Part of a derivation tree

derivation tree. This subtree is valid if there is a grammar rule { 0 ^ o^Px}-

If the subtree at the node a is selected for crossover and replaced by a subtree

starting with the node 7, the replacement is valid only if there exists a grammar

rule {办 ^ j P x } -

Mutation replaces a subtree in the derivation tree by a randomly generated

subtree. A node in the derivation tree of the parent is selected. Each node

corresponds to a symbol, and the grammar is used to derive another subtree

rooting with this symbol. This new tree is used to replace the subtree at the

selected node. Again, a check is needed to make sure the new tree evolved does

not violate the given grammar. Figure 3.10 is an example of mutation in GGP.

42 ,

Chapter 3 Overview of Evolutionary Computation

Expr Expr

f̂iT̂^̂^̂^̂^̂^̂^̂ r̂̂^̂^̂) r̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂^̂)
I ^ ^ ^ ^ ^ " V ^ = ^ I I 1 ^ ^ ^ ^ " ^ " ^ ^ I I
[(Operator Real Real)] 3 4 |(Operator Real Real)] 3 4
I I I I I • I I I I
[>__va r1 9 � [<=__var2__va^_J

Parent Child

Figure 3.10: Mutation in Generic Genetic Programming

3.3 Data mining using Evolutionary Computa-

tion

Data mining can be considered as an optimization problem, which tries to search

for the most accurate information from all possible hypotheses. Several systems

have been built for learning concepts using evolutionary computation. GA can

be used as the search algorithm by encoding a description of a concept into a bit

string. However, the fixed-length chromosome in GA limited the representation

of concept.

GABIL (De Jong et al. [1993]) uses a flat string representation to encode

classification rules in disjunctive normal form (DNF). It uses the Pittsburgh's

approach (Smith [1980]; Smith [1983]) that a single individual contains all the

necessary descriptions for a concept and corresponds to a set of rules. Each

individual is a variable-length string representing a set of rules. Each rule has a

fixed length and consists of one test for each feature. The system uses k bits for the

k values of a nominal feature. For example, the bit string in Table 3.6 represents

the rule "if (F1 = 1 or 2 or 3) and (F2 = 1) then (class = 0)". Adaptive GABIL

can adaptively allow or prohibit certain genetic operations for certain individuals.

Extra bits are introduced to control the uses of certain genetic operations. These

bits are also parts of evolution in GA.

GIL (Janikow [1993]) also used the Pittsburgh's approach. The bit string of

43 .

Chapter 3 Overview of Evolutionary Computation

F1 F2 Class
—1 I 1 I 1 1 I 0 I 0 I 0 0 ~
Table 3.6: Bit string in GABIL

an individual represents a rule in multiple-valued logic language VLi. It utilizes

14 genetic operators, such as rules exchange, new event, rules drops, rule split,

condition drop, condition introduce, reference change and etc. These operators

perform generalization, specialization or other modifications to the individuals in

the rule set level, the rule level and the condition level.

In REGAL (Giordana and Neri [1995]), each individual encodes a disjunct

consists of a conjunctive formula. Each individual is only a partial solutions, and

the whole population is a redundant set of these partial solutions. An individual

encodes a concept represented in the first-order logic, which is a language with

variables. Several good individauls co-exist in the population by the use of a

selection operator called Universal Suffrage operator to select the parents. At

each generation, a set of examples is selected. The individuals covering a selected

example are collected into a set. This set corresponds to a roulette wheel and

a spin is made to select a winning individual. The winning individual from the

selected examples becomes the parents. A parallel model is designed to enhance

the execution speed.

GP can perform data mining by learning a program for classification. An

example is the approach developed by Tackett [1993]. It uses a function set of

(+ , - , x , +) and the conditional operator <, and a terminal set of all the 20

input features plus a random floating point constant. A program is evolved by

GP. If the program returns a value larger than or equal to 0 given an input case,

the input case is classified as a target. Otherwise it is classified as a non-target.

Since the learned program is human understandable, knowledge can be obtained

by examining the program. However, the program can be very complicated and

difficult to interpret. ‘

44 .

Chapter 4

Applying Generic Genetic

Programming for Rule Learning

Rules are statements in the format of "if antecedents then consequent”. Rules are

commonly used by human to represent knowledge. Rule learning tries to learn

rules from a set of data. It can be modeled as a search problem to search for the

best rules. The search space can be very large depending on the rule representa-

tion. A powerful search algorithm is required. Generic Genetic Programming can

be used as a possible approach. This chapter introduces how the problem of rule

learning is modeled such that GGP can be applied.

To apply GGP, firstly a suitable representation has to be made to encode a

rule as an individual. In GGP, a derivation tree is used to represent an individual,

so a grammar for rules has to be design to create the derivation tree. Secondly,

a set of suitable genetic operators has to be designed to evolve new individuals.

Thirdly we have to design a suitable evaluation function to evaluate how good an

individual is. This chapter introduces these three issues. The detail techniques

for learning a set of rules are discussed in Chapter 5.

45 .

Chapter 4 Applying Generic Genetic Programming for Rule Learning

4.1 Grammar

The grammar of GGP governs the structures to be evolved. Rule learning can

be achieved in GGP by using a suitable grammar that make up a rule. The

grammar should specify the structure of a rule. The grammar specifies that a

rule is of the form "if antecedents then consequent” • The format of rules in each

problem can be different. Thus for each problem, a specific grammar is written

so that the format of the rules can best fit the domain. However, in general, the

antecedent part is a conjunction of attribute descriptors. The consequent part is

an attribute descriptor as well. An attribute descriptor characterizes an attribute.

An attribute can be described in many ways, thus there are many different formats

of descriptors. A descriptor can assign a value to a nominal attribute, a range of

values to a continuous attribute, or can be used to compare attribute values.

GGP provides a powerful knowledge representation and allows a great flexi-

bility on the rule format. The representation of rules is not fixed but depends

on the grammar. Most of the rule learning methods can only learn a particular

format of rules, for examples, rules with descriptors that compare the attributes

with values. However, GGP allows a large variation in the attribute description.

Rules with different formats can be learned, provided that the suitable grammar is

supplied. Moreover, rules with the user desired structure can be learned because

the user can specify the required rule format in the grammar.

An example is used to illustrate the use of grammar to represent the suitable

rule format. Consider a database with 4 attributes. We want to learn rules about

attr4, which is Boolean. The attribute attrl is nominal and coded with 0, 1 or

2. The attribute attr2 is continuous between 0-200 and can be categorized into

high, medium or low. The domain of attr3 is identical to attr2 and thus it is

possible for the rule to compare them.

An example of the context free grammar for this database in given in Table 4.1.

The symbols ercl, erc2, erc3, boolean_erc and category_erc in this grammar

46 .

Chapter 4 Applying Generic Genetic Programming for Rule Learning

Rule ^ if Antes ， then Consq .

Antes "> Attrl and Attr2 and Attr3

Attrl ~> any | Attrl_descriptor

Attr2 ~> any | Attr2-descriptor

Attr3 ^ any | Attr3-descriptor

Attrl-descriptor ~> attrl = ercl

Attr2-descriptor ^ attr2 is category_erc

Attr2.descriptor ~^ attr2 between erc2 erc2

Attr3-descriptor ~> attr3 Comparator Attr3-term

Comparator ~^ = | * 丨 <=|〉= | < | 〉

Attr3_term ~^ attr2 | erc3

Consq ~> Attr4-descriptor

Attr4-descriptor ^ attr4 = boolean_erc

Table 4.1: An example grammar for rule learning.

are ephemeral random constants (ERCs). Each ERC has it own range for instan-

tiation: e r c l is within {0,1,2}，erc2 and erc3 is between 0-200, boolean_erc can

only be T or F, category_erc can be either high, medium or low. The symbol

'any' serves as a 'don't care, in the rule. An attribute will not be considered in

the rule if its attribute descriptor is 'any'. In this grammar, each attribute can

be described by a descriptor in the rule, or by 'any' such that it is ignored by

the rule. The attribute a t t r l have only one form of descriptor. The attribute

attr2 can have two forms of descriptors: it can be described by a range or by the

category it belongs to. The attribute at tr3 can be described by a comparator.

Its descriptor can be a comparison with attr2 or a comparison with a constant.

This grammar allows rules like:

• if a t t r l = 0 and attr2 between 50 180 and any, then at tr4 二 T.

• if attrl = 2 and attr2 is high and attr3 7̂ 50, then attr4 = T.

• if a t t r l 二 1 and any and attr3〉二 attr2, then at tr4 = F.

The grammars for other problems are similar to the grammar in Table 4.1.

According to the type of attribute, a descriptor similar to Attrl_descriptor,

Attr2_descriptor or Attr3_descriptor can be used. The following list illus-

trates how the grammar is written for each situation.

47
«

Chapter 4 Applying Generic Genetic Programming for Rule Learning

• The attribute is nominal.

The attribute can be described by its value. The descriptor similar to

Attrl_descriptor or Attr4_descriptor can be used.

• The attribute is continuous.

The attribute can be described by a range. The descriptor similar to

Attr2_descriptor can be used.

• The attribute can be compared with other attributes in the rule

In many case describing an attribute by a value is not powerful enough to

represent the knowledge. If a comparison between variables is needed, the

descriptor similar to Attr3_descriptor can be used.

• The attribute have more than one kind of descriptions.

In some cases, an attribute can be described by more than one way. An

example is Attr2 in the previous example. By the use of grammar, we do

not need to restrict the rule to use either one descriptor. Another example

is that an address can be described by the city, state and country. This can

be done by writing the grammar as follows:

Address-descriptor ~> Address between city_erc city_erc

Address-descriptor ~> Address between state_erc state_erc

Address-descriptor ^ Address between country_erc country_erc

• The antecedent part have more than one format.

The use of grammar allows the antecedents to have more than one for-

mat. As an example, the user may want that if Attrl is included in the

antecedent, then Attr3 and Attr4 should also be included. Otherwise if

Attr2 is used instead of Attrl, then Attr5 and Attr6 should be included

in the rule. This can be done by writing the grammar as follows:

Antes ^ Attrl and Attr3 and Attr4

Antes ">• Attr2 and Attr5 and Attr6

48

Chapter 4 Applying Generic Genetic Programming for Rule Learning

Rule

=> if Antes , then Consq .

=^ if Attrl and Attr2 and Attr3 , then Consq •

=^ if Attrl.descriptor and Attr2.descriptor and Attr3-descriptor ,

then Attr4-descriptor .

=4> if attrl = ercl and attr2 between erc2 erc2 and attr3 Comparator

Attr3-term ， then attr4 = boolean_erc .

= > . i f attrl = ercl and attr2 between erc2 erc2 and attr3 + erc3 ,

then attr4 = boolean_erc .

zr> if attrl = 0 and attr2 between 100 150 and attr3 + 50 ,

then attr4 = T .

Table 4.2: An example derivation

• There are more than one target variable and thus more than one kind of

rules.

Usually data mining is not restricted to one target variable. The user may

want to find knowledge describing all the dependent variables. Thus this

leads to more than one kind of rules. Different kind of rules can be searched

simultaneously in the search by starting the grammar as follows:

Rule —Rulel | Rule2

Rulel ^ if Antesl ， then Consql .

Rulel ^ if Antes2 ， then Consq2 .

4.2 Population Creation

The grammar is used to derive rules to make up the initial population. Each

individual in the population corresponds to one rule. The start symbol is the

first symbol of the first line of the grammar. From the start symbol, a complete

derivation is performed. Every non-terminal is expanded according to the gram-

mar until only terminals and ERCs are remained. If there are more than one

possible derivation, a random choice is made. Table 4.2 illustrates how a rule is

derived from the grammar in Table 4.1. The derivation tree of the derivation is

stored as the genotype of the individual. The derivation tree for this derivation is

shown in Figure 4.1.

49

Chapter 4 Applying Generic Genetic Programming for Rule Learning

Rule

^ ^ 7 " " ^ ^ ^ ^ ； ^
if Antes then Consq

^ ^ ^ ^ ^ ^ T = ^ ^ ^ ^ ^
Attr1 and Attr2 and Attr3

/ I 丨
Attr1_descriptor Attr2_descriptor Attr3_descriptor Attr4_descriptor

J ^ ^ ^ \ /V\
attr1 = erc1 attr2 between erc2 erc2 attr3 Comparator Attr3_term attr4 = boolean_erc

I I
去 erc3

Figure 4.1: The derivation tree

After the derivation is completed, ERCs in the rules are instantiated. Our

approach has two different ways to instantiate these constants. Conventional

GP instantiates the constants randomly. A random value within the range of the

ERC is assigned. Another way is to use seeds to generate better initial population.

Using a seed can create a new rule that covers at least one record. When creating

a new individual, a record in the training set is selected randomly as a seed. A

rule is then derived from the grammar. During instantiating the ERCs, a constant

is not generated randomly but generated to a value that matches the seed. For

a nominal attribute, its ERC is instantiated to the value of the seed. For a

continuous attribute that is described by a range, the ERCs are instantiated to a

range that includes the value of the seed.

4.3 Genetic Operators

In rule learning using GGP, the search space is explored by generating new rules

using three genetic operators: crossover, mutation and dropping condition. A rule

is composed of attribute descriptors. The genetic operators try to change the

descriptors in order to search for better rules.

Crossover is a sexual operation that produces one child from two parents. One

50 .

Chapter 4 Applying Generic Genetic Programming for Rule Learning

parent is designated as the primary parent and the other one as the secondary

parent. A part of the primary parent is selected and replaced by another part

from the secondary parent. Suppose that the following primary and secondary

parents are selected:

if attrl=0 and attr2 between 100 150 and attr3f^50, then attr4=T.

if attrl=l and any and attr3 > = attr2, then attr4=F.

The underlined parts are selected for crossover. The offspring will be

if a t t r l = 0 and attr2 between 100 150 and a t t r 3 > = a t t r 2 , then attr4=T.

In GGP, each individual is represented by a derivation tree. The replaced part

is actually a subtree selected randomly from the derivation tree of the primary

parent (see Section 3.2). The subtree may represent different structures in the

rule, hence the genetic change may occur either on the whole rule, on several

descriptors, or on just one descriptor. The replacing part is also selected randomly

from the derivation tree of the secondary parent, but under the constraint that

the offspring produced must be valid according to the grammar. If a conjunction

of descriptors is selected in the primary parent, it will be replaced by another

conjunction of descriptors, but never by a single descriptor. If a descriptor is

selected in the primary parent, then it can only be replaced by another descriptor

of the same attribute. This can maintain the validity of the rule.

Mutation is an asexual operation. A part in the parental rule is selected and

replaced by a randomly generated part (see Section 3.2). Similar to crossover, the

selected part is a subtree of the derivation tree. The genetic change may occur

on the whole rule, several descriptors, one descriptor, or the constants in the rule.

The new part is generated by the same derivation mechanism as in the population

creation. Because the offspring have to be valid according to the grammar, the

selected part can only mutate to another part with a compatible structure. For

example, the parent

if attrl=0 and attr2 between 100 150 and attr37^50, then attr4=T.

may mutate to
if attrl=0 and attr2 between 100 150 and attr3>=attr2, then attr4=T.

51 .

Chapter 4 Applying Generic Genetic Programming for Rule Learning

Dropping condition is an genetic operator tailor-made for rule learning using

GGP. Due to the probabilistic nature of GP, redundant constraints may be gen-

erated in the rule. For example, suppose that the actual knowledge is 'if A<20

then X=T. We may learn rules like 'if A<20 and B<10 then X = T ' . This rule

is, of course, correct; but it is just a subsumed rule of the actual rule, and does

not completely represent the actual knowledge. Dropping condition (Michalski

1983]) is incorporated in GGP to generalize rules. A rule can be generalized

if one descriptor in the antecedent part is dropped. Dropping condition selects

randomly one attribute descriptor, and then turns it into 'any'. That particular

attribute is no longer considered in the rule, hence the rule can be generalized.

For example, the parent

if a t t r l = 0 and attr2 between 100 150 and attr3/5Q, then at tr4=T.

may change to
if a t t r l = 0 and attr2 between 100 150 and any, then at tr4=T.

4.4 Evaluation of Rules

An evaluation function is needed to measure the degree of interesting of a rule.

There are a lot of rule evaluation functions. Piatetsky-Shapiro [1991] suggested

that for a rule 'if A then B\ the function measuring the interesting of the rule

should be a function of p{A), p{B), p{AkB), rule complexity and possibly other

parameters (where p{.) denotes the probability of •). Let N be the total number

of training examples. Let \A\denote the number of cases that satisfy a condition

A, and \AkB\ denote the number of cases that satisfy condition A and B, it is

suggested that the rule-interest function RI should satisfy the following principles:

1. RI = Oif \AkB\ = ^^^. If A and B are statistically independent, the rule

is not interesting.

2. RI monotonically increases with \AkB\when other parameters remain the

same.

52

Chapter 4 Applying Generic Genetic Programming for Rule Learning

3. RI monotonically decreases with |A|or \B\ when other parameters remain

the same.

For a rule ' i fAthen B\ the probabilityp(A|B) 二 p{AkB)/p{A) is the accuracy

of the rule. According to the accuracy, a rule can be categorized as an exact, strong

or weak rule. An exact rule is the rule that always correct, that is, p{A\B) 二 1. A

strong rule is a rule that almost always correct, that is, p{A\B) is high. A weak rule

is a rule that the occurrence of the consequent under the antecedent is much more

than on average, that is p{A{B)�p{B). In the real-life situation, an exact or

strong rule may not exist. Thus a useful data mining system should not just search

for exact or strong rules. It should be able to discover weak rules because the

difference from average may already provide interesting knowledge. Consequently,

accuracy cannot be the sole metric for rule-interest. Another measurement of rule-

interest is the applicability of the rule to future cases. If the rule can match a

larger number of training cases, it is less likely that the rule is just because of

chance, and thus the rule should be more applicable to future cases.

An evaluation function based on the support-confidence framework (Agrawal

et al. [1993]) is developed as the fitness function in our rule learning approach.

Support measures the coverage of a rule. It is a ratio of the number of records

covered by the rule to the total number of records. Confidence factor (cf) is the

confidence of the consequent to be true under the antecedents, and is just the

same as the rule accuracy. It is the ratio of the number of records matching both

the consequent and the antecedents to the number of records matching only the

antecedents. For a rule ‘if A then B, and with a training set of N cases, support

is \Ak,B\/N and confidence factor is \Ak,B\/\A .

In the evaluation process, each rule is checked with every record in the training

set. Three statistics are counted. The number antesJiit is the number of records

matching the antecedents (the 'if' part), consq_hit is the number of records that

match the consequent (the 'then，part), and both.hit is the number of records that

obey the whole rule (both the 'if' and the 'then' parts).

53 .

Chapter 4 Applying Generic Genetic Programming for Rule Learning

The confidence factor cf is the fraction both-hit/antes_hit. But a rule with a

high confidence factor does not mean that it behaves significantly different from

the average. Therefore we need to consider the average probability of the conse-

quent {prob). The value prob is equal to consq_hit/total, where total is the total

number of records in the training set. This value measures the confidence for the

consequent under no particular antecedent.

A formula similar to the likelihood ratio used in CN2 (Equation 2.9) is used.

We defined cf-part as
cf

cf-part = cf X l o g (^ ^) (4.1)

The log function measures the order of magnitude of the ratio cf/prob. This

value is a product of two factors : cf and log{cf/prob). A high value of cfjpart

requires simultaneously a high value on the rule confidence (c /) and a high value

on the rule confidence over the average probability {cf/prob). The definition

of this value matches with the three previously stated principles proposed by

Piatetsky-Shapiro [1991]. By using his notation, cf is actually |^&5|/|^|,and

prob is \B\/N. If \AkB\ 二 |^|B|/iV, cf/prob = 1 and cf.part = 0. The value

cf (and so does cfjpart) monotonically increases with \AkB\ and monotonically

decreases with \A\. The value prohmonotonically increases with |J5| and thus

cf-part monotonically decreases with \B •

Support is another measure that we need to consider. A rule can have a high

accuracy but the rule may be just because of chance and based on a few training

examples. This kind of rules does not have enough support. The value support is

defined as bothMt/total. If support is below a user-defined minimum threshold

{minsupport), the confidence factor of the rule should not be considered. This

can avoid the waste of effort to evolve those rules with a high confidence but

cannot be generalized.

54 .

Chapter 4 Applying Generic Genetic Programming for Rule Learning

We define our fitness function to be:

f

support, if support < min.support
raw_fitness =

Wi X support + W2 X cfjpart, otherwise
(4.2)

where the weights Wi and W2 are user-defined to control the balance between

the confidence and the support in searching. We have set the values to 1 and 8

respectively so that the confidence of the rule plays a more important role in the

evaluation function.

55

Chapter 5

Learning Multiple Rules from

Data

The knowledge of a data set is unlikely to be sufficiently described by a single

if-then rule. Multiple number of rules are required to represent the knowledge.

To perform rule learning using evolutionary computation, a suitable modeling for

individuals must be designed such that a set of rules can be learned. There are two

different approaches. In the Pittsburgh approach (Smith [1980]; Smith [1983]),

each individual in the population encodes a whole solution, that is, a set of rules.

In the Michigan approach (Holland and Reitman [1978]; Booker et al. [1989])，

each individual encodes only one rule. The individuals in the population can be

combined together to provide a rule set. However this approach requires special

techniques such that multiple good individuals can coexist in the population. Our

approach uses the Michigan approach. The structure of an individual can be sim-

pler because it only represents one rule. Thus the evolution for good individuals

are easier.

This chapter begins with an review of previous approaches for maintaining

groups of individuals evolving different solutions. Then our approach, token com-

petition, is presented in Section 5.2. Section 5.3 summarizes the complete ap-

proach for rule learning. Experimental results of rule learning from two machine

learning databases are presented in Section 5.4.

56 ,

Chapter 5 Learning Multiple Rules from Data

5,1 Previous approaches

Genetic algorithm and genetic programming are weak search algorithms to search

for a solution that optimize the fitness function. These algorithms aim to search

for a single solution only. Those individuals with higher fitness scores can survive

while those with lower fitness scores will be extinct. If a part of the search space

gives a higher fitness scores, eventually all the individuals will converge into this

part.

However there are many situations that multiple solutions are required. For

example, we may need to search for all the peaks in a multimodal function. In this

case, it is desirable to maintain groups of individuals, with different groups evolv-

ing different solutions. Each group of individuals is referred as a sub-population or

a species, and the part of the search space being explored by a species is referred

as a niche. Maintaining diversity in the population is useful for the formulation

of niches. The individuals are not allowed to converge to a single niche and hence

forced to explore different part of the search space. Several approaches have been

designed in GA to accomplish this task and they are reviewed in this section.

5.1.1 Preselection

Preselection (Cavicchio [1970]) maintains the diversity by trying to reduce the

existences of similar individuals. It uses the idea that the parent should be one

of the most similar individuals to the offspring. A new individual is evolved by

using a genetic operator. The offspring can replace the parent if it has a better

fitness. Otherwise the parents survives but not the child.

5.1.2 Crowding

In crowding (De Jong [1975]), a certain percentage of the population is selected to

produce offspring. The percentage is denoted as the generation gap {G). Offspring

are evolved by crossover and mutation to replace the original individuals in the

population. To determine which individual is replaced, for each evolved offspring

57

Chapter 5 Learning Multiple Rules from Data

several individuals are selected randomly from the population. The number of

individuals selected is denoted as the crowding factor {CF). The similarity of

the selected individuals with respect to the offspring is computed. Similarity is

defined in turn of bit-wise (i.e. genotypic) matching. The individual that is the

most similar to the offspring is replaced by the offspring.

5.1.3 Deterministic Crowding

Deterministic crowding (Mahfoud [1992]) improves preselection and crowding. In

each generation, the individuals in the population are randomly paired without

replacement. Each pair evolves two offspring by crossover. Deterministic crowd-

ing uses the idea of preselection that the offspring should be similar to its parent,

and uses the idea of crowding that a similarity measure should used to determine

the replacement. Deterministic crowding uses the phenotypic similarity. The bit

strings of the individuals are decoded and the similarity measure is defined in the

decoded parameters. The offspring are compared only with the two parents for

similarity. There are two possible replacements of two parents by their two off-

spring: offspring 1 replaces parent 1 and offspring 2 replaces parent 2, or offspring

1 replaces parent 2 and offspring 2 replaces parent 1. The pair of replacements

that yields the greatest sum of phenotypic similarities between offspring and the

replaced parent is used. The parent is replaced by the offspring provided that the

offspring can have a better fitness score.

5.1.4 Fitness sharing

Fitness sharing (Goldberg and Richardson [1987]) maintains a diversity of indi-

viduals by discouraging individuals to converge into one niche. The fitness of

one individual gained from one niche must be shared by similar individuals. A

distance function d{xi,xj) measures the distance (i.e. dissimilarity) between two

individuals Xi and xj. For each individual, the distances with all other individuals

are calculated. A sharing function s defines the degree of fitness sharing by the

58

Chapter 5 Learning Multiple Rules from Data

similar individuals. The shared fitness fs of one individual is the un-shared fitness

/ divided by the accumulated number of shares:

f u.) — _ f M _
^'^^'''Es{d{xuxj))

3

Thus when more individuals converge to one niche, the fitness is shared by more

individuals. The fitness will decrease to a level such that it is no longer better than

the fitness on other niches. Eventually a distribution of individuals on different

niches can be achieved.

5.2 Token Competition

In our rule learning approach, the token competition (Leung et al. [1992]) tech-

nique is employed to increase the diversity, so that good individuals in different

niches are maintained in the population. The concept is as follows: In the natural

environment, once an individual has found a good place for living, it will try to

exploit this niche and prevent other newcomers to share the resources, unless the

newcomer is stronger than it is. The other individuals are hence forced to explore

and find their own niches. In this way, the diversity of the population is increased.

Based on this mechanism, we assume each record in the training set can provide

a resource called token. If a rule can match a record, it sets a flag to indicate the

token is seized. Other weaker rules then cannot get the token. The priority of

receiving tokens is determined by the strength of the rules. A rule with a high

score on raw-fitness (Equation 4.2) can exploit the niche by seizing as many

tokens as it can. The other rules entering the same niche will have their strength

decreased because they cannot compete with the stronger rule. The fitness score

of each individual is modified based on the tokens it can seize. The modified

fitness is defined as :

modified-fitness = raw_fitness x count/ideal (5.1)

59

Chapter 5 Learning Multiple Rules from Data

where raw_fitness is the fitness score obtained from the evaluation function,

count is the number of tokens that the rule actually seized, ideal is the total

number of tokens that it can seize, which is equal to the number of records that

the rule matches. Token competition is a greedy operation. It favors strong

rules as their chance of survival is maintained, while their close competitors are

weakened as they cannot get the token.

From another point of view, each rule contributes to the system by covering

several records of the database. If a record has already been covered by one

rule, then another rule covering the same record will make no contribution to the

system. Thus the fitness of the latter rule should be discounted.

Token competition is a simple method to force the diversity of the population.

Token competition has an advantage that it does not require a distance function.

In crowding or fitness sharing, it is required to define a similarity or a distance

function, so as to measure the similarity or dissimilarity between two individuals.

However, it may be difficult to define how one individual is similar to another

individual, especially in Genetic Programming. Genetic Algorithm uses a fixed

length binary string as the chromosome. Thus the genotypic difference (i.e. dif-

ference in the bits) can be used as a general similarity measurement. However

this is not valid in the tree structure of Genetic Programming. Moreover, the

similarity in genotype may not truly represent the similarity of the individuals.

Token competition simplifies the problem by simply regarding two individuals to

be similar if they cover the same record.

The execution of token competition is faster than fitness sharing. To calcu-

late the fitness score of one individual in fitness sharing, the similarity scores of

all other individuals with respect to this individual have to be calculated. If the

similarity score can be computed in time t, and the population size is p, each in-

dividual needs a time pt to calculate the similarity score, and the time needed to

complete fitness sharing in each generation is 0{pH). On the other hand, calcula-

tions of similarity are not needed in token competition. The required information

60

Chapter 5 Learning Multiple Rules from Data

of token counting is the list of records that each individual covered. This infor-

mation is already stored during the evaluation process. If an individual covers

m records, a time of 0 (m) is needed to seize the tokens, and token competition

in each generation can be completed in 0(fhp), where fn is average value of m.

This computation is straight forward and can be faster than fitness sharing if

0{fh) < 0{pt).

As a result of token competition, there are rules that cannot seize any token.

These rules are redundant as all of their records are already covered by the stronger

rules. They can be replaced by new individuals. Introducing these new individuals

can inject a larger degree of diversity into the population, and provide extra

chances for generating good rules. To create the new individuals, we can use

seeds to generate better rules (see Section 4.2). Those records with their tokens

not taken are the possible seeds. These records are not yet covered by any existing

rules, and thus introducing rules covering them can improve the system. To create

a new rule, a seed is selected, and then the rule is generated to cover the seed. The

constants in the rule will not be instantiated randomly but with values matching

with the seed.

5.3 The Complete Rule Learning Approach

Figure 5.1 is the flowchart of the complete process for learning multiple rules

from a set of data using GGP. A grammar is provided by the user as a template

for rules. A set of rules is derived by using this grammar and forms the initial

population. Then, the main loop of GGP is entered. In each generation, individ-

uals are selected stochastically to evolve offspring by the three genetic operators:

crossover, mutation and dropping condition. In each generation, the number of

new individuals evolved equals to the population size. Thus at this stage, the

number of individuals in the population is doubled. All individuals participate in

the token competition and the replacement step, so as to eliminate similar rules

and increase the diversity. One half of the individuals with the higher fitness

61 .

Chapter 5 Learning Multiple Rules from Data

scores after token competition are retained and passed to the next generation.

The whole process iterated until the maximum number of generations has been

reached.

Parents for the genetic operators are selected by the rank selection method

(see Section 3.1.5). The probabilities of using crossover, mutation and dropping

condition in our approach are 0.5, 0.4 and 0.1 respectively. These settings are

chosen because they gave the best result in preliminary executions of the system.

The data set for learning can be partitioned into a training set and a testing

set. Only the training set is available for the learning process. After the maximum

number of generations is reached, the discovered rules are further evaluated with

the unseen testing set, so as to verify their accuracy and reject the rules that

over-fit the training set.

Our system differs from conventional GP that reproduction operator is not

used, and the parents compete with the offspring for places in the new generation.

In conventional GP, the next generation of population only consists of the off-

spring. An individual will be passed to the next generation of population through

the use of the reproduction operator. Good individuals can exploit their genes

to the new generation by reproducing more children, and gradually dominate the

population. Thus many individuals contain the good genes, and a good gene has

a high probability of being passed to the offspring. However, in our rule learning

approach, we do not want a good rule to replicate itself and dominate the pop-

ulation. Rather, we need to find several good rules and diversify the population.

Token competition only allows one copy of each good individual to be kept in

the population. Consequently, the chance of a good gene being passed to the

offspring is much less than conventional GP, because a good individual may not

be selected as the parent. Therefore we need an explicit way to retain the good

genes of the parents. This is done by keeping the parents as competitors for the

new generation. Good parents can win poor offspring and gain positions in the

new generation.

The execution time can be approximated by assuming that the evaluation of

62

Chapter 5 Learning Multiple Rules from Data

r start)

C r — h e I , / Grammar /
population , Pop *---. / /

~j with size pop_size ^

Training • — . I ^ / T®stmg /
cases / ……一 Evaluate rules L Ef!?!——I

； ^x-^ax. no.̂ v̂̂ ；
i • cQ of g e n e r a t i o n 〉 Yes

^ N ^ e a c h e d ? y ^

\ No ” ：
y ^ ^ \ Evaluate on * . j

I y/^no. of x ^ testing set
j Z ind iv idua ls in X ^ F
i"Yes ^N^op =pop_sizey^
\ X^x2? ^^

\ ^ ^ ^ Output rules
i No
； 1

* i Select a parent
Evaluate rules <'• stochastically (End)

Select a genetic
operation

Perform Token j
Competition ^ ^ - ^ ^ ^

^ y ^ Which ^N^Dropping
_ ^ ^ ~ ~ ; c - v e : <^operationJ^Condition^

redundant rules Select second ^ \ ^ X ~~Perform
I parent Mutation Dropping

R e _ b - t 丄 Per^- " T
i ^ 。 了 Mulation

X
Put the new

individual in Pop

Figure 5.1: The flowchart of the Rule Learning process

63

Chapter 5 Learning Multiple Rules from Data

rules is the most time consuming step. In each generation, each rule has to be

checked with every training case to count the number of records that match the

antecedents or the consequent. Thus we can roughly estimated that the execution

time should be directly proportional to (number of database records) x (popula-

tion size) X (number of generations).

5.4 Experiments with Machine Learning Databases

Experiments have been performed to evaluate the rule learning system. Two

databases from the UCI Machine Learning Repository (Merz and Murphy [1998])

are used as the source of data. In these database the target is to search for

knowledge for classification. A useful measure of the accuracy of the learned

knowledge is to apply it to an unseen testing set. Thus the database is divided

into a training set and a testing set. To measure the accuracy in the testing set,

the rules are applied to see whether each testing case is classified correctly. Since

the discovered rules can overlap, a testing case may match more than one rule.

Starting from the rule with the highest fitness value, the testing case is checked

by each rule. If the antecedent part does not match with the testing case, the

next rule is applied until there is a match or no rule can apply. If no rule can be

applied or the testing case matches the antecedents but not the consequent part,

then the testing case is considered as a miss.

We should note that the classification accuracy on testing sets is different from

the rule accuracy. For a rule with a high rule accuracy, the classification accuracies

on those cases that match the antecedent part will be high. However the rules

with high accuracies may not cover all the testing cases. It is possible that a

testing case only matches with a less accurate rule, and the overall classification

accuracy will then be lower. The aim of our rule learning approach is to discover

knowledge instead of classifying unseen cases. No special technique is designed

to make the rules cover all the cases. Thus the classification accuracy is only an

indirect measurement of our approach.

64

Chapter 5 Learning Multiple Rules from Data
\

Attribute Type Possible Value
sepal length (in cm) continuous 4.3-7.9
sepal width (in cm) continuous 2.0-4.4
petal length continuous 1.0-6.9
petal width continuous 0.1-2.5
class nominal Iris setosa, Iris Vericolor, Iris Virginica

Table 5.1: The iris plants database

Rule " > i f Antes ， then Consq .

Antes ^ slength and swidth and plength and pwidth

slength ~> any | slength^descriptor

swidth ^ any | swidth-descriptor

plength ^ any | plength-descriptor

pwidth ^ any | pwidth_descriptor

slength-descriptor ^ sepal_length between slength_const slength_const
swidth-descriptor ~^ sepal_width between swidth_const swidth_const
plength-descriptor ^ petal_length between plength_const plength_const
pwidth.descriptor ~> petal_width between pwidth_const pwidth_const
Consq ^ class_descriptor

class-descriptor ^ c lass i s c lass_const

Table 5.2: The grammar for the iris plants database

5.4.1 Experimental results on the Iris Plant Database

The first experiment uses the iris plants database as the data set. This database

is one of the most frequently used database in machine learning. It consists of 150

records with 5 attributes (Table 5.1). The task is to discover knowledge about the

three classes. Each class has 50 records in the database. 100 records are randomly

selected as the training set and the remaining 50 records are used as the testing

set.

The grammar in Table 5.2 is used for learning rules from this database. This

grammar is very simple. Each of the four continuous attributes is described by a

range in the rule, and the nominal attribute is described by a value. This grammar

is used to create a population with size 50. The maximum number of generations

is 50. .

Preliminary experiments are performed to investigate the effects of different

parameter settings. We found that by lowering the value of w2 in the fitness

65,

Chapter 5 Learning Multiple Rules from Data

wi W2 Accuracy
~ r " 8 87.6%

1 1 91.6%

Table 5.3: Results of different value of w2

Minimum support Accuracy
— 0.03 91.6% —
— 0.01 94.8% —

Table 5.4: Results of different value of minimum support

function (Equation 4.2), a higher accuracy on the testing set can be achieved, as

shown in Table 5.3. In this database it is quite easy to find a rule with a high

confidence, but the rule may not be general enough. Since the rule set needs to

cover all testing cases, the goal of the evolution process is not just to evolve rules

with high confidence, but also to evolve rules with high support. A lower value

of W2 in the fitness function can favor more general rules with a better support.

We also found that the classification accuracy on using a lower value of minimum

support is somewhat better, and the result is less sensitive to the rates of the

genetic operators. The results are shown in Table 5.4 and 5.5.

A more complete result is obtained by executing 25 runs using the best setting

that we have tried. The best setting uses a rate of 0.5 for crossover, 0.4 for

mutation, and 0.1 for dropping condition, 0.01 for minimum support, 1 and 1

respectively for the values of wi and W2 for the fitness function. The execution

time for each run is about 70 seconds in a Sun Ultra 1/140. Our system gets an

average classification accuracy of 91.04%. The results of these runs are shown in

Table 5.6. The best run gives an accuracy of 100% and the rules are listed in

Rate of
Crossover Mutation Dropping condition Accuracy

— 0 . 5 0 0.40 0.1 9 4 . 8 % ~
0 ^ 0.55 0.1 ~ 9 2 . 4 %

~ ~ ~ 0 ^ " ^ 0.30 0.1 ~ 9 1 . 6 %
一 0.45 0.35 0.2 9 4 . 8 % ~

Table 5.5: Results of different probabilities for the genetic operators

66,

Chapter 5 Learning Multiple Rules from Data

Accuracy
~Mean Standard Derivation Maximum Minimum" Time

0.9104 0.0548 1.00 0.76 70 sec.

Table 5.6: Experimental result on the iris plants database

Approach Accuracy
~ O ^ r approach 91.04% (100"¾"

C4.5 93.8%
ID3 94.2%

" l ^ r e s t Neighbor 96.0%
Neural Net 96.7%

Table 5.7: The classification accuracy of different approaches on the iris plants
database

Appendix A.1.

The results of other approaches are quoted from Holte [1993] as references (Ta-

ble 5.7). It should be notice that these results are obtained using different number

of runs and different settings in the training and testing set. For our approach, the

value inside the brackets shows the best accuracy. The best accuracies of the other

approaches are not available. However, as they are deterministic approaches, their

accuracies do not vary on different runs. Their results are different only because

the training and testing sets used are different. The average accuracy of our ap-

proach shown in this table is not as good as the other approaches. However, the

perfect result can be obtained in the best run of our approach. A characteristic of

evolutionary algorithms is that they are stochastic. Thus our approach has larger

fluctuations in different runs and it is improper to compare the average accuracy

of our approach to other approaches. In order to get a better result, the user may

execute several trials of the algorithm to get the result with the best fitness score.

5.4.2 Experimental results on the Monk Database

The second experiment is performed on the Monk database (Thrun et al. [1991]).

This database contains attributes for artificial robots, as shown in Table 5.8.

There are three data sets. Each data set has a hidden knowledge on the robots

67
*

Chapter 5 Learning Multiple Rules from Data

Attribute Possible Value
head shape l(round), 2(square), 3(octagon)
body shape l(round), 2(square), 3(octagon)
is smiling l(yes), 2(no)
holding l(sword), 2(balloon), 3(flag)
jacket color l(red), 2(yellow), 3(green), 4(blue)
has tie — l(yes), 2(no)
class l(yes), 2(no) —

Table 5.8: The monk database

that belong to the class (i.e. class 二 1). The training set contains randomly

selected robots while the testing set contains all the 432 possible robots. The

task is to discover the knowledge on classification of a robot into the positive or

negative class.

1. The monkl data set has 124 examples in the training set, which contains

62 positive examples (i.e. class=l) and 62 negative examples (i.e. class=2).

The testing set contains 216 positive and 216 negative examples. The hidden

knowledge for classification is "(head shape 二 body shape) or (jacket color

= 1) " . There were no mis-classifications.

2. The monk2 data set has 169 examples in the training set, which contains

105 positive and 64 negative examples. The testing set contains 190 positive

and 142 negative examples. The knowledge hidden is "exactly two of the

six attributes have the values 1". For example, a robot with head shape=l,

body shape=3, is smiling=l, holding=3, holding=2 and jacket color=2 is

positive. There were no mis-classifications.

3. The monk3 data set has 122 examples in the training set, which contains

62 positive and 60 negative examples. The testing set contains 204 positive

and 228 negative examples. The knowledge hidden is "(holding 二 1 and

jacket color = 3) or (body shape + 3 and jacket color + 4). There were 5%

mis-classifications in the training set.

68

Chapter 5 Learning Multiple Rules from Data

Rule ^ i f Antes , then Consq .

Antes ~> shapel and smilel and holdl and jacketl and tiel

shapel ~> shape-Comparison | headl and bodyl

shape-Comparison ~> head_shape comparator body_shape
headl ~> any | head-descriptor

bodyl ~> any | body-descriptor

smilel ")• any | smile-descriptor

holdl ^ any | hold-descriptor

jacketl ~> any | jacket-descriptor

tiel ~> any | tie-descriptor

head.descriptor ~> head_shape comparator erc3
body-descriptor ~> body_shape comparator erc3
smile-descriptor ~> is_smiling comparator erc2
hold-descriptor ~> holding comparator erc3
jacket-descriptor ^ j acket_co lor comparator erc4
tie-descriptor ^ has_tie comparator erc2
comparator — 二 | •

Consq ^ p o s i t i v e
Table 5.9: The grammar for the monk database

The knowledge in monkl is in the standard disjunctive normal form (DNF).

The knowledge in monk2 is similar to a parity problem, and is difficult to be

described in DNF using the given attributes only. The knowledge in monk3 is

again in DNF but under the presence of noise.

The grammar for learning rules from this database is listed in Table 5.9. In

this database, there should be only one kind of rule: rules describing knowledge

about the positive robot. Thus the rules can only have one consequent: 'positive，.

To classify a case as negative, a default rule 'if any then negative' is used. The

fitness of this rule is calculated. A discovered rule is not used if its fitness is below

the default. If no rule can be applied to a case, then the default rule is used. In

this grammar, the attributes head shape and body shape can be described in two

ways. Basically each attribute can be described by its value. However as they are

both about the shape, a possible description is a comparison of them. The other

attributes are described by their values. The constants erc2, erc3 and erc4 are

respectively with the range 1 to 2, 1 to 3 and 1 to 4.

69,

Chapter 5 Learning Multiple Rules from Data

Accuracy
Mean Standard Derivation Maximum Minimum

M o n k f 1.000 0.000 1.00 1-00~~"
Monk2 0.600 0.091 0-69 — 0.31 —
Monk3 0.954 0.029 1.00 0.89

Table 5.10: Experimental result on the Monk database

Approach Monkl Monk2 Monk3 —
I D 3 9 8 . 6 % 6 7 . 9 % 9 4 . 4 %

A Q R 9 5 . 9 % " 7 9 . 7 % ^ 7 . 0 %

CN2 "100% — 6 9 . 0 % 一 8 9 . 1 %

A Q 1 7 - D C I T 0 0 % 1 0 0 % 9 4 . 2 % —

AQ15-GA T 0 0 % 86.8% 100% —
Assistant Professional 100% 81.3% 100%
Backpropagation 100% 100% 93.1%
Our approach 100% (100%) 60% (69%) 95.4% (lOQ%T

Table 5.11: The classification accuracy of different approaches on the monk
database

For each data set, rule learning is executed for 25 runs using the following

setting: population size is 50, maximum number of generations is 50, the rates

for crossover, mutation and dropping condition are 0.5, 0.4 and 0.1 respectively,

minimum support is 0.01, Wi is 1 and W2 is 8. The execution time for each run

is around 120 seconds. The result is shown in Table 5.10. The average results of

other approaches are quoted from Thrun et al. [1991] in Table 5.11 as references.

The best results of our approach are shown inside the brackets.

• Monkl database

For the monkl database, the hidden knowledge can be easily reconstructed

by the above grammar. Thus we can obtain a 100% classification accuracy

on each run. The rule set is shown in Appendix A.2.1. If the grammar

does not include a comparison between head shape and body shape, the

perfect rule set can still be found but at a later generation, and three rules

are needed to represented the concept (head shape 二 body shape) using the

three possible values.

70

Chapter 5 Learning Multiple Rules from Data

• Monk2 database

The hidden knowledge is difficult to be represented using a context free

grammar. The simple hidden rule must be represented by a large number of

rules. Our system cannot evolve all ofthese rules and results in a poorer clas-

sification accuracy. Rules with this simply format have limited knowledge

representation power, and cannot represent a certain kind of knowledge. Ap-

proaches that does not use simply rules, such as the backpropagation neural

network, can achieve a much better result.

The result of our approach may be improved if evolution using a context

sensitive grammar is implemented in the system. The best rule set is shown

in Appendix A.2.2.

• Monk3 database

Our system can discover knowledge with a high classification accuracy under

this noisy environment. The accuracy is the third best in these approaches,

and the best rule set, shown in Appendix A.2.3, can classify all testing cases

correctly.

From these experiments, we can see that our rule learning approach can suc-

cessfully learn rules with high accuracy from the data, although the perfect rule

set may not be discovered in every run.

71

Chapter 6

Bayesian Network Learning

In the approach of rule learning, we have focused on the detail view of the data.

One deficiency of this approach is that the discovered rule set is not guaranteed to

cover the whole database. The system will not provide any knowledge for a record

that is not covered by any rules. The rules can describe parts of the database that

have interesting patterns, but do not provide a general knowledge on the data.

Moreover, the rules in the rule set are not organized. A causality relationship

may be expanded into several similar rules. The rule learning step is not able to
||

organize them into a chain and cannot provide a generalized view. j
('

A Bayesian network can be a complement to rules. A Bayesian network is a

much different model to represent the knowledge of data. It captures the condi-

tional probabilities between variables (i.e. attributes in the database), and focuses

on the general relationships between variables. In many real-life situation, the data

just cannot be described completely by a few rules. Building a complete model for

such a database is difficult and usually results in a complicated model. Bayesian

network should be a suitable knowledge representation to give a structural causal-

ity model. It is easy to understand because of its graphical representation, while

it has a well-developed mathematical model and can be used to perform reasoning

under uncertainty. -

Wong et al. [1997] has introduced an approach based on the Minimum De-

scription Length Principle (MDL) and Evolutionary Programming (EP) to learn

72,

Chapter 6 Bayesian Network Learning

Bayesian networks. However, the learning of Bayesian network is limited to dis-

crete variables only. As Friedman and Goldszmidt [1996] has extended the defi-

nition of MDL score to handle continuous variables (Section 2.5.2), it is possible

to combine these two researches, such that evolutionary computation can be used

to learn a Bayesian network from a data set with discrete as well as continuous

variables.

The approach MDLEP, which uses EP to optimize the MDL score, is intro-

duced in Section 6.1. Then this approach is extended by introducing another layer

to learn a discretization policy to discretize the continuous variables. This new

layer uses Genetic Algorithm as the search method, and is described in Section

6.2. The experimental results of the new combined approach are given in Section

6.3.

6.1 The MDLEP Learning Approach

The approach MDLEP (Wong et al. [1997]; Lam et al. [1998]) uses EP to optimize

the MDL metric (Equation 2.14)，so as to learn the best Bayesian network. The

flowchart in Figure 6.1 shows the process. Each individual represents a network

structure, which is a directed acyclic graph (DAG). A connection matrix is used

to represent the graph. A set of individuals is randomly created to make up

the initial population. Each graph is evaluated by the MDL metric. Then each

individual produces a child by performing a number of mutations. The child is

also evaluated by the MDL metric. The next generation of population is selected

among the parents and children by tournaments. Each DAG B is compared with q

other randomly selected DAGs. The tournament score of B equals to the number

of rivals that B can win, that is，the number of DAGs among those selected that

have higher MDL scores than B. In our setting, the value of q is 5. One half of

DAGs with the highest tournament scores are retained for the next generation.

The process is repeated until the maximum number of generations is reached.

The setting on the maximum number of generations depends on the complexity

73

Chapter 6 Bayesian Network Learning

of the network structure. If we expect a simple network, the maximum number of

generations can be set to a lower value. The network with the lowest MDL score

is output as the result.

Offspring in EP is produced by using a number of mutations. The probabilities

of using 1, 2, 3, 4, 5 or 6 mutations are set to 0.2, 0.2, 0.2, 0.2, 0.1 and 0.1

respectively. The mutation operators modify the edges of the DAG. If a cyclic

graph is formed after the mutation, edges in the cycles are removed to keep it

acyclic. The approach uses four mutation operators, with the same probabilities

of being used:

1. Simple mutation randomly adds an edge between two nodes or randomly

deletes an existing edge from the parent.

2. Reversion mutation randomly selects an existing edge and reverses its direc-

tion.

3. Move mutation randomly selects an existing edge. It moves the parent of

the edge to another node, or moves the child of the edge to another node.

4. Knowledge-Guided mutation is similar to simple mutation, but the MDL

scores of the edges guide the selection of the edge to be added or removed.

The MDL metric of all possible edges in the network is computed before

the learning algorithm starts. This mutation operator stochastically adds

an edge with a small MDL metric to the parental network or deletes an

existing edge with a large MDL metric.

6.2 Learning of Discretization Policy by Genetic

Algorithm

Friedman and Goldszmidt [1996] have extended the definition of MDL to include

the discretization of continuous attributes (see Section 2.5.2). However the search

74

^

Chapter 6 Bayesian Network Learning

C s ^ ")

Create DAGs as
the initial

population, Pop

I / Training /
Evaluate DAGs ^ | ~ ~ / cases !

using MDL

I ^ ^
^ ^ max. no. \ ^

< ^ of genera t ion〉 Yes
^ x r e a c h e d ? y ^

No Output the best
y ^ T individual

Z a " \ " ^ " ^n
Z individuals \

es \ ^ produced ^ / 广 \ ‘
i ^ ^ p r i n g J X 〔 End J

Put all parents X ^ ^
and children in ^

PoP' Select the next "~
individual

I ‘丨丨

Each individual in
Pop' competes Produces a child

with other by performing a
individuals in a number of

tournament mutations

Set Pop to the Evaluate the child
individuals with using MDL

the highest scores r
in tournaments

Figure 6.1: The flowchart of the MDLEP process

75 .

_ _ ^ _ •

Chapter 6 Bayesian Network Learning

algorithm they proposed has a serious deficiency: The algorithm is a greedy ap-

proach and can be easily trapped in a local optima with no way to escape. This

approach also greatly depends on the initial settings. If the initial guess of dis-

cretization policy or network structure is not good, the result can be poor.

An evolutionary approach can be applied to optimize the new MDL metric,

and thus the best network structure as well as the best discretization policy can

be learned. The use of evolutionary computation can have less chance for being

trapped in a local optima, because there is a population of individuals to explore

the search space in parallel. However, the search space is very huge, since the

optimization includes two aspects: the optimizations of the network structure as

well as the discretization policy. There are also two different kinds of genetic

changes: genetic changes in the DAG and genetic changes in the discretization

policy. Thus optimizing both aspects in one step is difficult and inappropriate.

A more realistic approach is to use the iterative approach as suggested by

Friedman and Goldszmidt [1996]. In both the learning of the network structure

and the discretization policy, evolutionary approach can be used. MDLEP can be

applied directly to the network learning step. On the learning of the discretization

policy, we have applied Genetic Algorithm as the search algorithm. Thus, started

with an initial discretization policy, MDLEP is used to learn the network structure.

Based on this structure, GA is used to learn the discretization policy. The process

is iterated until the maximum number of iterations is reached.

The genetic algorithm starts with an initial randomly generated population.

Each individual in the population is evaluated by the new MDL score defined in

Equation 2.18. The good individuals are selected to produce offspring using the

genetic operators. The offspring in turn produces the next generation until the

maximum number of generations is reached.

6.2.1 Individual Representation

In this problem we want to search for a good discretization policy. A discretization

policy consists of discretization sequences for the continuous variables, and each

76 ,

Chapter 6 Bayesian Network Learning

Values of variable a : | 1 | 2 | 3 | 5 | 8 | 12 | 15 | 20 | 33 | 40

Bit string of variable a : | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 丨 1

Figure 6.2: A bit string represents a discretization sequence

0 I 1 丨 0 I 0 I 0 1 丨 0 I 0 I 1 1 丨 0 I 0 I 1 0 I 1 丨 0 0 . . .
variable a variable b • • •

Figure 6.3: The bit string in an individual

discretization sequences consists of threshold values for discretization. We can

limit the thresholds to mid-points between successive values that appeared in the

training data. Each individual should represent a possible discretization policy,

and hence each individual should encode these threshold values.

We have used one bit string to represent one discretization sequence. The

number of bits in each string equals to the number of mid-points values of the

variable (i.e. if variable i has Si different values in the training data, the length

of its bit string is Si - 1). A '1' in the bit means the corresponding mid-point is

included as a threshold in the discretization sequence. For example, if variable a

has 10 different values, its values appeared in the data set and the corresponding

bit string are as shown in Figure 6.2, then variable a is discretized into four values:

1-2 are discretized to a value 1, 3-12 are discretized to 2, 15-33 are discretized to

3 and 40 is discretized to 4. The thresholds represented in this bit string are

the mid-points between the successive values, i.e. 2.5 (mid-point of 2 and 3),

13.5 (mid-point of 12 and 15) and 36.5 (mid-point of 33 and 40). To provide a

more useful discretization and simplify the computation, the user can limit the

maximum number of thresholds appeared in the discretization sequence. Hence

the maximum number of '1' in the bit string is limited. An individual stores the

concatenation of the bit strings of each continuous variable, as shown in Figure

6.3.

77 ,

Chapter 6 Bayesian Network Learning

6.2.2 Genetic Operators

Four genetic operators are used. Other than the basic operators of reproduction,

crossover and mutation, another operator named 'shift' is applied to evolve better

discretization policies:

• Reproduction: The standard reproduction is used. The parent is selected

and copied into the new generation.

• Crossover: The standard crossover can also be used. Two parents are se-

lected. One random point in the bit string of the parents is selected as the

crossover point. The bit string is cut into two parts at this point. The

upper parts of the two parents are exchanged to evolve two children. Then

the number of ' l 's for each continuous variable is counted. If the number of

thresholds for a variable is larger then the limit, one or more ' l 's in the bit

string are randomly selected and turned into '0'.

• Mutation: The mutation we used is a multiple-point mutation. A parent

is selected. A random bit from each variable is selected for mutation. In a

special case that the limit of ' l 's is already reached, only '0's in the bit string

are selected for mutation. There is a 50% chance that the bit is mutated. If

mutation occurs, the the selected bit is changed from 0 to 1 or vice versa.

• Shift: Shift is a special kind of mutation. A slightly change of the threshold

values would not change the effect of the discretization greatly. Thus a

slightly increases or decreases of a threshold that gives a good fitness score

will give a good or hopefully even better fitness score. One parent is selected

for the shift operator. A random bit with '1' is selected from each variable.

For each bit there is a 50% chance that a threshold value is shifted. If shift

occurs, the bit is set to ‘0, and its neighbor bit (either left or right, with

equal probabilities) is set to '1'. This effectively changes the threshold value

in the discretization sequence to the next (or previous) mid-point value.

78 ,

Chapter 6 Bayesian Network Learning

6.3 Experimental Results

The performance of the GA approach is evaluated on a machine learning database

and two artificially generated databases. A network structure as well as a dis-

cretization policy are learned from the data. The network structure and dis-

cretization policy is searched alternatively. MDLEP is used as the algorithm for

network structure learning. We have used a population size of 50 to run for 75

generations in MDLEP. In the GA approach, we used a population size of 50 to run

for 50 generations. The probabilities of using reproduction, crossover, mutation

and shift are 0.2, 0.4, 0.2 and 0.2 respectively.

Each continuous variable is initially discretized to two values by a single ran-

dom threshold value. A variable can at most have 5 discretization thresholds (i.e.

a maximum of 6 ranges). The learning of network structure and discretization

policy are alternated for 20 iterations. At each iteration of learning the net-

work structure, MDLEP is re-started from scratch. However at each iteration of

learning the discretization policy, an elitism is employed. The best discretization

policy learned from the previous iteration of GA is retained as one individual in

the population, and the other individuals are created randomly.

We also compare the result with the greedy approach. The greedy approach

described in Section 2.5.2 is implemented. MDLEP with the same setting is

used to learn the network structure. Since the greedy approach is quite sensitive

to the initial setting, two different initial discretizations have been tested. In

GreedyO the initial discretization is the same as the GA approach. In Greedyl

the discretization threshold is set to the median of the set of possible values. For

example, if the continuous variable has n different values, the 1®̂ to the [几/2�七&

value are initially discretized to one value and the remaining values are discretized

to another value. Although Greedyl starts with a fixed discretization, MDLEP

will give a different result in each run, and thus the results of different runs of

Greedyl will be different.

79 ,

Chapter 6 Bayesian Network Learning

mean min. max. S.D.
GA "2574.81 " 2 5 0 6 ^ 2759.77 “ 75.81
GreedyQ 2693.93 ^574.68 2952?7^ 157.41"
Greedyl 2574.68 2574.68 2574.68 0.00

Table 6.1: Results of experiment 1

6.3.1 Experiment 1
In the first experiment, a Bayesian network is learned from the Iris plants data set

described in Section 5.4.1. Each approach is executed for 10 trials. Their mean,

minimum, maximum and standard derivation of the MDL score of these trials

are shown in Table 6.1. It shows that the average score of GA is equally good

as Greedyl, and better than GreedyO. For the best trial (i.e. with the minimum

score), GA can give a better score than the other two approaches. The network

structure and the discretization policy of the best trial of these approaches are

respectively shown in Figure 6.4 and Figure 6.5.

The three different approaches give different network structures but similar

discretization policy in the best trial. There is no evidence to say whether these

network structure and discretization policy is correct. However, the distribution of

values and the rule discovered by the rule learning approach (shown in Appendix

A.1) can give suggestions. In the database, petal length does not have records with

values between 2.0 and 2.9, and petal width does not have records with values

between 0.7 and 0.9. This suggests that petal length smaller than 2.0 should

belong to one group and larger than 2.9 should belong to another, and petal

width smaller than 0.7 should belong to one group and larger than 0.9 should

belong to another. The results of all approaches can achieve this. Meanwhile, the

first rule of Appendix A.1 shows that petal width between 0.0 to 0.8 can imply a

class of iris-setosa. Thus it is reasonable to discretize values in this range to one

value. All approaches can successfully achieve this. The second rule shows that

petal length between 2.0 and 5.0, and petal width between 0.2 and 1.7 can imply

a class of iris-versicolor. Thus it is reasonably to discretize petal length between

2.0 and 5.0 to one value, and petal width between 0.2 and 1.7 to one value. All

8 0 �

Chapter 6 Bayesian Network Learning

Csepal N (̂ sepal N̂
lengtĥ ^widdî

: ^ v ^
(''̂ ""5taP̂ r width)

^ ^
(class J

(a) GA
Cse^l~"~^N ^̂ "̂"l̂ aT"̂ (^ '̂"'sepd^ ^'^pal^N

length^ ^widfli ̂ ^length^ V^wid|h^

\ I 一 ^ \]

^̂ "petoT̂ \ (二）^""petoi^ \ (wMth)

^ ^ ^ ^
(class) { class J

(b) GreedyO (c) Greedyl

Figure 6.4: The network structures of the best results of Experiment 1

广 _

81 ,

Chapter 6 Bayesian Network Learning

sepal length: [4.3-5.4] [5.5-5.8] [5.9-7.9
sepal width: [2-2.9] [3-3.3] [3.4-4.4]
petal length: [1-1.9] [3-4.7] [4.8-6.9；

petal width: [0.1-0.6] [1-1.7] [1.8-2.5

(a) GA

sepal length: [4.3-5.5] [5.6-6.1] [6.2-7.9；

sepal width: [2-2.9] [3-3.3] [3.4-4.4；

petal length: [1-1.9] [3-4.7] [4.8-6.9；

petal width: [0.1-0.6] [1-1.7] [1.8-2.5；

(b) GreedyO

sepal length: [4.3-5.5] [5.6-6.1] [6.2-7.9
sepal width: [2-2.9] [3-3.3] [3.4-4.4]
petal length: [1-1.9] [3-4.7] [4.8-6.9
petal width: [0.1-0.6] [1-1.7] [1.8-2.5

(c) Greedyl

Figure 6.5: The discretization policies of the best results of Experiment 1

approaches give a discretization for petal length between 3.0 and 4.7. Petal width

is not discretized by the range [0.2-1.7] in the best results, but by two ranges [0.1-

0.6] [l-1.7]. An extra range is necessary as suggested by the distribution of values

and by the first rule. These observations suggested that appropriate discretization

policies can be successfully constructed by all approaches.

6.3.2 Experiment 2

In the second experiment, a simple Bayesian network structure is used to generate

a data set of 1000 records, as shown in Figure 6.7(a). Variable 0, 1，2, 4, 5 are

independent variables and their values are distributed differently: Variable 0 is

normally distributed in the range (0-0.3), (0.3-0.6) and (0.7-1.0); Variable 1 is

normally distributed in the range (0-0.4) and (0.6-1.0); Variable 2 is normally

distributed in the range (0.1-0.6) and (0.4-1.0); Variable 4 is normally distributed

in the range (0-0.2)，(0.4-0.8) and (0.8-1.0); Variable 5 is uniformly distributed on

(0-1.0). The actual frequency distributions of values in the data set are shown in

82 ,

Chapter 6 Bayesian Network Learning

mean min. max. S.D.
GA _ 39604.1 "39435" 40205 “ 234.37
GreedyO 41040.1 40408 4160T 410.87
Greedyl 40291.1 40236 40403 48.64

Table 6.2: Results of experiment 2

Figure 6.6.

The performance of ten trials of each approach is shown in Table 6.2. GA

is better than the other two approaches both on the average score and the best

score. The network structures of the best result of each approach as well as the

original structure are shown in Figure 6.7. Both approaches cannot reconstruct

the original structure, but the network constructed by GA is the most similar to

the original one. It should be noted that MDL score gives a trade off between

simplicity and accuracy. Thus the original structure may not be the structure

with the best MDL score.

The discretization policies of the best results are shown in Figure 6.8. Both

GA and Greedyl can discretize variable 0,1,2 and 4 according to the given dis-

tributions, while GreedyO failed to discretize variable 0. For the other variables,

the discretizations generally match the fluctuations in the frequency distribution.

Figure 6.9 is an example showing how variable 3 is divided into 6 ranges by the

discretization policy of GA. The frequency distribution can show the probability

p{Xi\X*), which affects the encoding length for reconstruction (see Section 2.5.2

and Equation 2.20). Nevertheless, the encoding length for reconstruction is only

one part of the MDL score. A good discretization policy should optimize this part

as well as the other parts.

6.3.3 Experiment 3

In the third experiment, a more complex structure (Figure 6.11(a)) is used to

generate 1000 data. The independent variables are variable 2, 5, 6 and 7. Variable

2 is normally distributed in the range (0-0.4), (0.4-0.7) and (0.75-1.0); Variable 5

is normally distributed in the range (0-0.4) and (0.6-1.0); Variable 6 is normally

83 ,

Chapter 6 Bayesian Network Learning
； •： \

Variabt6 0 Variable 1 |
i 50 V_̂,V,VM,,A.,V_"",,_V<V,V,,<V,,,V,,,+,V,VAV,.1.,,..,YAY.V.V.VÂ̂^ ； 50 ••••�••••••""""""••••—'""̂"••••••:—•—""••—'"""••'"̂•••••̂"••••"''••"••••—"""""••••••••••"•••̂'••̂"••''""••—*"••""••""'"̂"--̂"̂••̂"""""•"""z"'"",, I

:丨 A h A 'I ::丨 A f\ i

: 丨 八 八 _ / \ j ^ j V J 1 1
8 2 8 窝 穿 g S ^ § 8 § 8 ? n ^ 琴 S 8 R § S § I
ci 0 0 0 0 0 0 c5 0 0 T- o o o o o o o o o o *- j

(a) Variable 0 (b) Variable 1

Variabie 2 Variable 3
i 3 § ^̂：̂.v.•.̂ •.v.v,•.̂ v.•.•.̂ ^̂ v...v.̂ •̂.v̂ .•.̂ v.•.•.̂ v̂...v.•.v/.̂ •.•.v-•.•.•.̂ ^ ...,-.̂ ^̂ ..•...̂ ^̂ ..•...̂ ^̂ ^̂ •..̂ v̂.v.̂ v̂ .v.•,..•..•.•.•.•.v.•.̂ v̂.•.•.̂ 3 5 -'- ̂ .̂ v̂.v.̂ ^̂ v.•̂ /̂.v.•.v̂ .̂ v.̂ v//.•.v/.̂ v̂̂ .•.̂ .•.•.•̂ .•.•.-.•.v̂, .-.v.v,v.-. ••,,.-. --. /.-.-.. . . . ,-.v.-.-. .-.-.v̂ .-.v.-.-...-,-,v̂ .̂,-, ,•.v.̂ v//.•/̂ .. .•̂ .̂•.•.•̂ /̂ .w. .•̂ .•.•.•...•.•.•.•.v.-. .•̂ ^̂ .v, ..v.-.v...v̂ j

i 30 I U . 30 I

l A A j : L / " ^ l
§ ° 窝 g 穿 s s ^ § g § 8 2 ^ ^ 琴 s § ^ § § 8 0 0 0 0 0 0 0 0 0 0 T- o o o o d o o o o o *"

i<>-_W"<S.---.---<>̂>s.̂ "~"..---<>"-̂ --~.̂w_.'..~~"~«>..、.....-.V̂S.̂V~>s.̂v--V-̂ .S"~~".、._V~--~_V----~̂V---V〜~̂S"S".-.-"->-.---"~.v~.、.~">̂>>.>>.~--s™--.,'...-~A..-々 .~..-、~~： !̂•—〜〜....、.•̂.，..+.-—•."̂-••..••.-•.、.—.̂•〜•̂.•̂̂•.•̂-••••--•̂.-•.̂•、、.*.-••-•-̂—.〜•̂•-.〜."々••.-•*...、.-.-•-.—*•*.、..-•̂•〜-•••-•.、.̂•-、..-、.-.、-.—.-"̂̂̂.、.-”..•-.*•̂-.、.、..'.-•.、.—.、.."•""•̂‘‘

(c) Variable 2 (d) Variable 3

Variable 4 Variable 5
50 •"：...'.'•''" 、； 25

4 0 I A 11 I 2 0) f | ^

i A . . A A J i f ^ " ^ ^ ^ ^ ^ " ^ ^ 】
8 ° 8 g § g S 它 § 8 S I S 2 S ^ § S § ^ § § S I

o c5 o o o o d o o d *- o o o o o o o o o o *-

(e) Variable 4 (f) Variable 5
； [

Variable 6
30 : I
30
25 i

i : ; u ^ M y
1 8 2 n 窝 § g 8 ^ g S 8 2 S 8 % 1

d d o o d d d d d d *- r- T- •- »- i

(g) Variable 6

Figure 6.6: The frequency distribution of the variables of experiment 2
84 ，

Chapter 6 Bayesian Network Learning

o o o o o o

^ 5 ^ ^ ^ ^ o " ^ ^ ^ ^

(a) The original structure (b) GA

o 0 0 0 0 0

¢ ^ 0 c ^ o

(c) GreedyO (d) Greedyl

Figure 6.7: The original network structure of experiment 2 and the network struc-
tures found by the best run of different approaches

85 ,

Chapter 6 Bayesian Network Learning

Variable 0: [0.05-0.26] [0.27-0.56] [0.58-1.01；

Variable 1: [0.04-0.35] [0.65-0.96]
Variable 2: [0.18-0.53] [0.54-0.92
Variable 3: [0.16-0.3] [0.31-0.4] [0.41-0.46] [0.47-0.53] [0.54-0.66] [0.67-0.87；

Variable 4: [0.02-0.18] [0.42-0.82] [0.83-0.97]
Variable 5: [0-0.41] [0.42-1]
Variable 6: [0.11-0.36] [0.37-0.63] [0.64-0.76] [0.77-0.93] [0.94-1.13] [1.14-1.44

(a) GA

Variable 0: [0.05-1.01
Variable 1: [0.04-0.31] [0.32-0.96
Variable 2: [0.18-0.46] [0.47-0.62] [0.63-0.92；

Variable 3: [0.16-0.4] [0.41-0.62] [0.63-0.87]
Variable 4: [0.02-0.51] [0.52-0.73] [0.75-0.97；

Variable 5: [0-1
Variable 6: [0.11-0.45] [0.46-0.79] [0.8-1.07] [1.08-1.44:

(b) GreedyO

Variable 0: [0.05-0.36] [0.37-0.73] [0.75-1.01；

Variable 1: [0.04-0.34] [0.35-0.96]
Variable 2: [0.18-0.48] [0.49-0.67] [0.68-0.92；

Variable 3: [0.16-0.4] [0.41-0.51] [0.52-0.64] [0.65-0.87；

Variable 4: [0.02-0.18] [0.42-0.73] [0.75-0.97；

Variable 5: [0-0.36] [0.37-0.68] [0.69-1]
Variable 6: [0.11-0.43] [0.44-0.8] [0.81-1.05] [1.06-1.44；

(c) Greedyl

Figure 6.8: The discretization policies of the best results of experiment 2

86 ,

Chapter 6 Bayesian Network Learning

¥ml_ 3
m _—j.—H
m」 .

E / •
:经.“ \
0 -̂…1 J — � ' � ' T � r r--l^^——•

:o o c» o es o o €3- :e> o o
:0 T- f* m w m ^ 卜. m <^ o
o o o o o o o o o o 一 I

Figure 6.9: The ranges formed by the discretization policy of GA and the fre-
quency distribution of variable 3

mean min. max. S.D.
GA — 41363.1 41207 4 1 6 ^ 150.40
GreedyO 43574.7 42584 44647 662.28
Greedyl 43077.2 42926 43436 144.70

Table 6.3: Results of experiment 3

distributed in the range (0.1-0.6) and (0.4-1.0); Variable 7 is normally distributed

in the range (0-0.2), (0.5-0.9) and (0.9-1.0). The actual frequency distributions of

values in the data set are shown in Figure 6.10. The performance of ten trials of

each approach is shown in Table 6.3. Again, GA can give the best results on the

average score as well as the minimum score.

The best results give the network structures as shown in Figure 6.11. GA gives

the structure that is the most similar to the original structure. The discretization

policies of the best results are as shown in Figure 6.12. When comparing the dis-

cretization policies with the original distributions for generating the independent

variables (variable 2,5,6,7), GA gives an extra range for variable 5 and 7, GreedyO

can reconstruct the ranges, while Greedyl gives an extra range for variable 2 and

7.

%

87 ,

p

n

.z

n

^

3

^

M

i

；

e

^

0

 |

 §~二

 〗
§
‘
二

一

一

 n̂
MMUMn̂
-
 0
0
.
-

 ^

 .
m

 ̂-

0
 v_-

 0̂
.0

 ̂
一

 i
\
\
A
i
^

一

 I

 I
 ̂:。J

 ̂

 ̂,

 J
^
〔
t

一

 -=z:::i:"̂
"""̂
^

 g
.
0

 i

一

 «
w
^

一

 0
9
.
0

-

一

一

 、
)
|

 0
8
.
0

-

 X

#

 -̂
.

 ««̂
J

 一、

 /
y
/

 一.

 i

 j

 M
 .
 e

n

 :
:
作
【

 1
 i
^

 i
i

 3
 /
M

 0
5

 ^

 5
一

一

 ̂
【
1

 7

 ̂

.
m

 i
\
l
^
^
.

 ̂-

 ̂kv

T
i
l

k

l
i
:

 k

{

一

 y
i
i

^

历

5

-

 1

一

 .̂
uy

 一.。口

u
^
 ;
 3

 ̂

 x
^

r

^

一

 5

-

 ，.

 b

一

 7
 i

 ̂.

u
^

 k

 ̂-
^

 -
J
u
^
n
l
 ̂.-̂

 .
m
一
|
一

 ̂i.
 一，|

 .g

一
|
一

 i
f

 .g

一
|
一

 i
:

 •
§

 ̂

 ̂
；

 .ra

 i

 ̂
^
J
i
c
l
 i
.
 0
6
.
0

a
 -

.
0
 i

 J
^

辽
 i

 .ra

 i

辽
 s

 .g

 i

 M

 a

 ̂：一

 l̂
^̂
l

 -̂
^̂
^̂

^

 一，

 s
v

 -

 0
5

 ̂

 ^
 一，
 P.
。
：

 ^

一
|
一

：
i
l

 -
^

 .
犯

^
 "
"
"
%
:
l
i
:

S

 ̂̂

t̂i

 ⑷

 ̂
l
n
^
v
-
0
2
^

 g

一

一

 。
2
一

 g

 •

 ̂l
r
.

 0
5

 ^

 J
^

 0
2

一
 ̂
¾
:
^

一

 0̂
.0

一

一

一

 」
O
N
.
O

一

 h

 ̂.

 0
E
.
0

)

一

 ̂
/
i
y
f

i

 i

 l
t
\
A

 t

p

 0
z
.
0

 0
5

一

 A=/̂
.

 0
-
.
0

一

 i

 l
i
n
n
J
r

 一.

 0
-
.
0

 :

 f

^
 :
.

 0
1
.
0

 :

\

一

 /,̂
.

 o

 .

p
^
 ̂

 5..：…

一
 §
-
0

一
 …：：>

 0
0
.
0

一

 ̂

 „
 ，
0
0
.
0

一

 „
.
:
:
.
.
:
:
;
:
:
“：
：
！
•

 ….：-•

 0
0
.
0

 i

 Q

c
 «
-

 M

 ̂

 M

 ̂

 ̂

 5

 o

 ̂

 ̂

 M

 M

 ̂

 ̂

 ̂

 5

 o

M

恥

如

M

扣

o

抑

卯

郎

叨

劝

如

扣

招

0

 .
^

(
 •

 ̂

 ̂
^

t
:
s
i
l
^

 lnŷ
.02._

 一—..lyŷ
.̂
-.̂

 一......

 l
n
:
:
:
:
:
:
=
=
^

 -

 8

g
?

一

 I
A
.
^

 一
0
6
,
0
一

 J

 0
f
g
g
:
M

一

\
i
l

 ̂

4
巧

一

 /
4
!

一

一

 _

垂

一

 ̂lnnkŵ
..̂
^

彻

.

 一̂
^̂
-一一

o

 I
 」
i

 2

I

 一一̂
_巧“：
4

一

 l
^
s
,
,
I
 6

胃

Ĵ
^̂
1

^

M
 ̂"̂
:1

^

厂

|

 J_

 •

 U
 .
J
i
:
j

^

膽

綱
一
¾
^
¾
 .
謹

 一
|
一

 /
j
y
i
^

 .
1

 」
一

 l
:
i
:
l

 .
謹

 ‘一

 _
-
^
l
l

 •
腿

叫

一！一
 ̂
^

0

^

l

i

l

l
i
i

^

 一
|
一
 』」“•？

^

 一
-
一

 <
^
t
。
i

 ^

 f
r

一

1
^
U
^
 0

 ̂

3

一

 1
:
1

⑷

一

 ;

⑷

一

一

 “
^

 t
j

 3
 ̂

J
-
^

^

互
 ̂̂
“.s:

 i

 ̂

 "
^

 J

 T

C
F
 c
 /

 r

 i
:

 O
S

 i

•

•

•
 j
:
i
l

 l
“
s
:

一

一

 ：
i
l

 ^

,̂
.̂

 ::;.：：

 :
:
.
:
.
.
:
.
:
:
.
.
:
:
:
,
:
:
:
l
i
-

一

 ̂

 8
.
0

i

 T
.
:
.
:

,

 :..

 :
:
:
.
r

 0
0
.
0

 ̂

 c
5

一

^

^

 2

:
5

 o

 i

^

一

叨

 S

初

如

 M

 S

 o

一

 M

 M

 ̂

 2

 5

 o

 I

劝

 ̂

加

 «

扣

 ̂

 2
 5

 o

 ^

2
 1
 1

 •

S

g

E

Chapter 6 Bayesian Network Learning

© © 0 0 0 0

\ X X v v ^
(a) The original structure (b) GA

^ V V o V n /
%A?̂ %Xf

(c) GreedyO (d) Greedyl
Figure 6.11: The original network structure of experiment 3 and the network
structures found by the best run of different approaches

89 ,

Chapter 6 Bayesian Network Learning

Variable 0: [0.28-0.7] [0.71-0.96] [0.97-1.12] [1.13-1.28] [1.29-1.53] [1.54-1.79；

Variable 1: [0.44-0.63] [0.64-0.83] [0.84-0.92] [0.93-0.99] [1-1.07] [1.08-1.28；

Variable 2: [0.06-0.31] [0.32-0.67] [0.69-0.98]
Variable 3: [0.18-0.41] [0.42-0.56] [0.57-0.67] [0.68-0.88]
Variable 4: [0.4-0.57] [0.58-1.12] [1.16-1.44] [1.45-1.64] [1.65-1.83] [1.84-2.1:
Variable 5: [0.06-0.36] [0.65-0.79] [0.8-0.95]
Variable 6: [0.18-0.52] [0.53-0.89]
Variable 7: [0.04-0.57] [0.58-0.71] [0.72-0.85] [0.86-0.99；

(a) GA

Variable 0: [0.28-0.7] [0.71-0.96] [0.97-1.22] [1.23-1.3] [1.31-1.56] [1.57-1.79；

Variable 1: [0.44-0.63] [0.64-0.84] [0.85-0.93] [0.94-1.05] [1.06-1.28；

Variable 2: [0.06-0.31] [0.32-0.78] [0.8-0.98]
Variable 3: [0.18-0.42] [0.43-0.66] [0.67-0.88]
Variable 4: [0.4-0.57] [0.58-0.8] [1.12-1.45] [1.46-1.68] [1.69-1.91] [1.92-2.1:
Variable 5: [0.06-0.35] [0.36-0.95]
Variable 6: [0.18-0.55] [0.56-0.89
Variable 7: [0.04-0.18] [0.57-0.86] [0.92-0.99；

(b) GreedyO

Variable 0: [0.28-0.71] [0.72-0.95] [0.96-1.06] [1.07-1.23] [1.24-1.35] [1.36-1.56] [1.57-1.79；

Variable 1: [0.44-0.63] [0.64-0.84] [0.85-0.9] [0.91-1.06] [1.07-1.28]
Variable 2: [0.06-0.37] [0.45-0.52] [0.53-0.78] [0.8-0.98]
Variable 3: [0.18-0.44] [0.45-0.66] [0.67-0.88]
Variable 4: [0.4-1.16] [1.18-1.32] [1.33-1.59] [1.6-1.71] [1.72-1.86] [1.87-2.1；

Variable 5: [0.06-0.35] [0.36-0.95]
Variable 6: [0.18-0.58] [0.59-0.89
Variable 7: [0.04-0.58] [0.59-0.66] [0.67-0.83] [0.84-0.99:

(c) Greedyl

Figure 6.12: The discretization policies of the best results of experiment 3

90 ,

Chapter 6 Bayesian Network Learning

Experiment 1 Experiment 2 Experiment 3
GA 5 minutes 70 minutes 90 minutes
GreedyO 15 seconds 15 minutes 30 minutes
Greedyl 15 seconds 15 minutes 30 minutes

Table 6.4: Execution time of the three approaches

6.3.4 Comparison between the GA approach and the greedy

approach

From the results of these experiments, we can see that our new GA approach

performs better than the greedy approach. When comparing the average score,

GA is better than the two greedy approaches, except in experiment 1 where the

difference is insignificant. When comparing the best trial in these experiments, GA

can give the best result that the greedy approach cannot produce. In experiment

2 and 3，the data set is generated artificially under a network structure and special

probability distributions. The network structures given by GA in experiment 2

and 3 are more similar to the original structures, and GA can give ranges similar

to the underlying probability distributions in most of the independent variables.

This shows that GA can successfully construct appropriate network structure and

discretization policy from the data. Nevertheless, the original network structure

and the underlying probability distributions may not give the best MDL score,

and can only be references for comparisons.

The experiment results also confirm a deficiency of the greedy approach: the

greedy approach depends greatly on the initial discretization. In these experi-

ments, the standard derivation of GreedyO is the largest. The greedy approach

has more fluctuations than the GA approach when given a random initial dis-

cretization. From a poor discretization policy, the greedy approach does not have

any technique to escape and thus gives a poor result, while the parallel search in

GA approach can search for several local optima and gives a better result. When

given a better initial discretization, such as in Greedyl, a better result is achieved.

Since we cannot guarantee that we can start with a good initial discretization,

the GA approach should be a better method to perform the optimization.

91 ,

Chapter 6 Bayesian Network Learning

The approximation time for each execution in a Sun Ultra 1/140 is shown

in Table 6.4. The execution time of the greedy approach is better than the GA

approach. The execution time for both approaches is mainly spent on calculating

the MDL score, as each evaluation needs to loop over every training case. In the

GA approach, the number of fitness evaluations depends on the population size,

the number of generations, and the number of iteration between network structure

learning and discretization policy learning. In the greedy approach, the number of

MDL score calculations depends on the number of values of each variable (because

the greedy approach tests all the possible splits for each variable), the number of

variables, and the number of iterations between network structure learning and

discretization policy learning. Thus the execution time is a disadvantage of the

GA approach.

92 ,

Chapter 7

Medical Data Mining System

The approaches for rule learning and Bayesian network learning described in pre-

vious chapters have been combined into a knowledge discovery system. Figure

7.1 shows the steps in this system. Real-life data are collected in the first step.

Then, the data must be preprocessed before analyses can be performed. The third

and fourth steps induce knowledge from the preprocessed data. The Causality and

Structure Analysis step learns the overall relationships between the variables. The

GA approach described in Chapter 6 is employed to learn a Bayesian network from

the nominal or continuous data. Based on this knowledge, the user can specify

the target relationships he wants to know by formulating a grammar. The Rule

r N Grammar for Rules
V. J

'' Data Mining
1 I [

5! iiS i 3¾ 'f.； ‘

^ / K r>‘ :: K Casuality and K „,. “ K Knowledge ； Data _ N Data - ~ N structure “~'\ _ ^̂"‘® “~"'^ Verificationand , Collection -~^/ Preprocessing - ~ ^ Analysis ?~~K Leaming - ~ ^ Evaluation
5?5 i;î •： m m • m

U^T V "二 零 …,\ , , ,,,M, % , //, :>"' “‘ ''" 1 ^ '''"" • ‘‘ ''"'"''">"''““ J “ » I ^ I i' ‘

f \ f > (^
_jRawData _ L̂PrepKx:essecl J • Knowledge

Data
^) V) r““~^ ^)

Bayesian
Network

V J f >1
^ Rules
\ y

Figure 7.1: The knowledge discovery process

93 ,

Chapter 1 Medical Data Mining System

Learning step learns a set of significant rules from the data. The approach de-

scribed in Chapter 5 is employed. The grammar can guide the format of the rules

to be learned. In the fifth step, the learned knowledge is verified and evaluated

by the domain experts. The domain experts may discover and correct mistakes

in the learned knowledge. On the other hand, the learned knowledge can refine

the existing domain knowledge. Finally, the constructed Bayesian network can

be used to perform reasoning under uncertainty, and the induced rules can be

incorporated into an expert system for decision making.

The use of grammar can ensure syntactical correctness in the rule, but not

semantical correctness. It is desirable to eliminate meaningless rules in the search

process. This requires a certain degree of knowledge on the causalities between

the attributes. Causality and structure analysis in our data mining system can

provide this knowledge. The Bayesian network may provide an overview of the

relationships among the attributes. For example, if we know that attribute A is

not related to any other attributes, then we don't need to learn rules about A. If

we know attribute B should depend on attributes C and D, then we can specify a

rule format like 'if <attribute C descriptor> and <attribute D descriptor>, then

<attribute B descriptor>'.

The temporal order among attributes can also provide knowledge to increase

the learning efficiency. For example, in a medical domain, the rule “if treatment

is plaster, then diagnosis is radius fracture" is inappropriate. This rule does

not make sense, because an operation is taken based on the treatment, not the

other way round. In general, an event that occurs later will not be a cause of

an event occurred earlier! Thus, we can order the attributes according to the

temporal relationship. The grammar should be designed such that an attribute

is not placed in the 'if，part if it occurs later than the attribute in the 'then'

part. This temporal order can be represented easily in the grammar. Both of

the causality model and temporal order may significantly reduce search space and

prune meaningless rules.

The described data mining technology has been applied to real-life medical

94 .

Chapter 1 Medical Data Mining System

Name Type Description Possible Value
Sex Nominal Sex ’M’ or T '
Age Numeric Age Between 0 to 16 years old
Admday Date Admission date Between year 1984 to 1996; Divided into four

parts: Day, Month, Year and Weekday
Stay Numeric Length of staying Between 0 to 1081 days

in hospital
Diagnosis Nominal Diagnosis of 10 different values,

fracture based on the location of fracture
Operation Nominal Operation 'CR' (Simple Closed Reduction),

'CR+K-wire' (Closed Reduction with K-wire),
'CR+POP' (Closed Reduction with POP),
'OR' (Open Reduction) or Null (no operation)

Surgeon Nominal Surgeon One of 61 surgeons or Null if no operation
Side Nominal Side of fracture ‘Left，，（Right，，‘Both，or ‘Missing，

Table 7.1: Attributes in the fracture database.

databases. The following two sections are two case study of knowledge discovery

from a fracture database and a scoliosis database.

7.1 A Case Study on the Fracture Database

The fracture database consists of records of children with limb fractures, admitted

to the Prince of Wales Hospital of Hong Kong in the period 1984-1996. This

data can provide information for the analysis of children fracture patterns. This

database has 6500 records and 8 attributes, which are listed in Table 7.1.

7.1.1 Results of Causality and Structure Analysis

The relationships among the attributes are analyzed by learning a Bayesian net-

work. We have used a population size of 50 for both MDLEP and GA. The result

cannot be improved after an execution of 10 hours. The discovered network struc-

ture is drawn in Figure 7.2. Day, Month, Weekday and Year refer to different

parts of the admission date. The discretization policy is shown in Table 7.2. The

age is divided into 0-4, 5-9, 10-12 and 13-16. The day and month are discretized

95 .

Chapter 1 Medical Data Mining System

(D iagnos is)

^ A >
(̂ ^̂ ^̂ Ŝex̂^ (^^^y^^

Figure 7.2: The best network structure for the fracture database

Age: [0-4] [5-9] [10-12] [13-16
Day: [1-31]
Month: [1-12
Year: [1984-1987][1988-1991][1992-1996；

Stay: [0-3] [4-12] [13-1081]

Table 7.2: Discretization policy of the fracture database

into just one range, which means that they are not involved in any relationship in

the Bayesian network. Year is divided into 3 ranges. Stay is divided into 3 ranges.

From the network structure constructed, the following relationships are ob-

served:

• Diagnosis implies Operation and Stay. Different fractures are treated with

different operations, and require different time for recovery.

• Diagnosis can imply the value of Age. Some fractures are more frequently

occurred in particular age groups.

• The value of Age can imply the value of Sex. It is observed that the young

patients are more likely to be female, and elder patients are more likely to

be male.

• Operation and Stay can determine Year. It is observed from the database

that the length of stay in hospital is longer in the year 1985, 1986 and 1994,

and open-reduction occurs more frequently for earlier years.

96 .

Chapter 1 Medical Data Mining System

No. of cf cf/prob support
About Rules mean max min mean max min mean max min

—Diagnosis 2 45.6%— 51.4% 39.8% 1.6 1 . 7 ^ ^ ^ ^ 9 j ^ J Q j ^ _ 8 ^
Operation ~ 8 42.6% 74.0% ^8.0% 2.0 2.9 1.1 5 . 4 ^ J 6 j ^ ^ j ^

Stay 7 71.1% 81.1% 47.0% 2.5 7.0 1.4 4.5% 8.7% 3.1%

Table 7.3: Summary of the rules for the fracture database

7.1.2 Results of Rule Learning
Based on the learned Bayesian network, we observed a causality model between

diagnosis, operation and stay. We wished to learn knowledge about these at-

tributes. In addition, the temporal order gives extra knowledge on how the rules

should be formulated. The attributes can be divided into three time stages: a

diagnosis is first given to the patient, then an operation is performed, and after

that the patient stays in the hospital. This knowledge leads to three causality

models. Firstly, sex, age and admission date are the possible causes of diagnosis.

Secondly, these three attributes and diagnosis are the possible causes of operation

and surgeon. Thirdly, length of stay has all other attributes as the possible causes.

A grammar (see Appendix B.1) is written as a template for these three kinds of

rules. We have used a population size of 300 to run for 50 generations in the rule

learning step. The execution time was about 3 hours on a Sun Ultra 1/140 for

the 6500 records. The results are listed in Table 7.3.

Two interesting rules about diagnosis are found. The one with the highest

confidence is:

If age is between 2 and 5，then diagnosis is Humerus. (cf=51.43*/,)

The confidences ofthe rules about diagnosis are just around 40%-50%. It is partly

because there are actually no strong rules affecting the value of diagnosis. However

the ratio cf /prob shows that the patterns discovered deviated significantly from

the average. We found that humerus fracture is the most common fracture for

children between 2 and 5 years old. Radius fracture is the most common fracture

for boys between 11 and 13.
Eight interesting rules about operation are found. The one with the highest

97 .

Chapter 1 Medical Data Mining System

confidence is:

If age is between 0 and 7, and admission year is between 1988 and

1993, and diagnosis is Radius, then operation is CR+POP. (cf=74.057,)

These rules suggest that radius and ulna fractures are usually treated with CR+POP

(i.e. plaster). Operation is usually not needed for tibia fracture. Open reductions

are more common for elder children with age larger than 11, while young children

with age lower than 7 have a higher chance of not needing operations. We did not

find any interesting rules about surgeons, as the surgeons for operation are more

or less randomly distributed in the database.

Seven interesting rules about length of stay are found. The one with the

highest confidence is:

If admission year is between 1985 and 1996, and diagnosis is Femur,

then stay is more than 8 days. (cf=81.1iy,)

The rules about the length of stay suggest that Femur and Tibia fractures are

serious injuries and have to stay longer in hospital. If open reduction is used, the

patient requires longer time to recover because the wound has been cut open for

operation. If no operation is needed, it is likely that the patient can return home

within one day. Relatively, radius fracture requires a shorter time for recovery.

The results have been evaluated by the medical experts. Previous analyses on

fracture patterns only gave an overall injury pattern. Our system automatically

uncovered relationships between different attribute values. The rules provide in-

teresting patterns that were not recognized before. It clearly demonstrated the

treatment pattern and rules of decision making. It can provide a good monitor of

the change of pattern if the data mining process is continued longitudinally over

the years. It also helps to provide the information for setting up a knowledge-

based instruction system to help young doctors in training to learn the rules in

diagnosis and treatment.

98 .

Chapter 1 Medical Data Mining System

Name Explanation and possible values
Sex Sex

(M, or T，

Age Age

Positive integer

Lax Joint Laxity
Integer between 0 and 3

lstCurveTl Whether 1st curve started at vertebra T1
Y o r N

lstMCGreater~~Whether the degree of 1st Major Curve > 2nd Major Curve
Y o r N

L4Tilt Whether vertebra L4 is tilted
Y o r N

lstMCDeg Degree of 1st Major Curve
Positive integer

2ndtMCDeg~~ Degree of 2nd Major Curve
Positive integer

lstMCApex Apex of 1st Major Curve
Any vertebra (vertebras are coded with Tl-T12 or Ll-L5)

2ndMCApex Apex of 2nd Major Curve
Null or any vertebra

Degl Degree of 1st Curve
Positive integer

Deg2 Degree of 2nd Curve
Positive integer

Deg3 Degree of 3rd Curve
Positive integer

Deg4 Degree of 4th Curve
Positive integer

Class Scoliosis Classification
K-I, K-II, K-III, K-V, TL, L

Mens Period of Menstruation
Positive integer; -9 for no menstruation yet; 99 for male

TSI Trunk Shift (measures the displacement of the curve)
Positive integer

TSIDir Trunk Shift Direction
Null, left or right

RI Risser Sign (measures the maturity of the patient)
Integer between 0 and 5

Treatment Treatment .
Observation, surgery or bracing

Table 7.4: Attributes in the Scoliosis database

99 .

Chapter 1 Medical Data Mining System

7.2 A Case Study on the Scoliosis Database

The data mining process has also been applied to the database of Scoliosis pa-

tients. Scoliosis refers to the spinal deformation. A Scoliosis patient has one or

several curves in his spine. Among them, the curves with severe deformations are

identified as major curves. The database stores measurements on the patients,

such as the number of curves, the curve locations, degrees and directions. It also

records the maturity of the patient, the class of Scoliosis and the treatment. The

database has about 500 records. According to the domain expert, 20 attributes

are useful and extracted from the database in the preprocessing step. They are

shown in Table 7.4.

7.2.1 Results of Causality and Structure Analysis

In this database, the attributes Age, lstMCDeg, 2ndMCDeg, Degl to Deg4 and Mens

are continuous variables. For the attributes measuring degrees, the value 0 is

a special value as it means the curve does not exist. For Mens, the values -9

and 99 have special meanings, which indicate no menstruation. These values are

specially handled by always placing a 1 in the corresponding positions of the bit

string in GA, such that they are always discretized from other values. Then each

continuous variable is initially discretized into 3 ranges.

The learning of network structure and discretization policy are alternated for

20 iterations. For the learning of network structure using MDLEP, we have used

a population of 50 to run for 100 generations. In each iteration of the learning

of discretization policy using GA, the population size is 50 and the number of

generation is 10. The number of generations is small, but the learning is iterated

20 times, thus there should be enough generations for convergence. The best

Bayesian network structure learned from this data set is shown in Figure 7.3. The

discretization policy is shown in Table 7.5. The age is divided into 0-12 (child),

13-16 (adolescence), 17-21 and over 22. The degrees and Mens are divided into

different ranges.

100 .

Chapter 1 Medical Data Mining System

(Treatment V̂ ^ ^̂̂
^̂ ^̂ -̂__̂ --̂ N̂̂ /̂̂ "̂ ^̂ Ĵlî Ĥ { Age)

^ ^ ^ ^ ^ 5 ^ > ^ ^ ~ ^ ^ f ^ ^

G? (^"^^ J^
^ r (^ © © ^
^^~^^ ^ W N ^ ^ ^ ^ ^ • ^

V^^P^ (TSI)
Figure 7.3: The best network structure for the Scoliosis database

Age: [0-12] [13-16] [17-21] [22-41；

lstMCDeg: [5-13] [14-29] [30-35] [36-52] [53-112；

2ndMCDeg: [0-0] [5-23] [24-36] [37-65]
Degl: [3-11] [12-35] [36-52] [54-112]
Deg2: [0-0] [2-26] [27-36] [37-52] [53-93
Deg3: [0-0][3-21] [22-60]
Deg4: [0-0][13-34]
Mens: [-9 - -9] [0-4] [5-30] [99-99:

Table 7.5: Discretization policy of the Scoliosis database

From the network structure constructed, the following relationships are ob-

served:

• Age can determine Mens and RI (the maturity), and the value of Mens can

imply Sex.

• The value of Degl can imply the value of Deg4. In the database only a few

records have values of Deg4 larger than 0. All of these records have large

values on Degl.

• Operation can determine the value of lstMCDeg. If Operation equals to

observation, the value lstMCDeg is smaller. If Operation equals to surgery,

the value of lstMCDeg is large.

• The value of lstMCDeg affects the value of Deg2. It is observed that if the

value of the first major curve is small, the degree of the second curve must

be small. Deg2 should not be larger than lstMCDeg. Otherwise the first

101 .

Chapter 1 Medical Data Mining System

major curve should be the second curve, and lstMCDeg should be equal to

Deg2.

• Deg2 implies the value of 2ndMCDeg, since most of the time the second major

curve is the second curve. The value of 2ndMCDeg also closely related with

2ndMCApex (the location of second major curve). If 2ndMCDeg equals to 0,

the patient does not have the second major curve, and thus 2ndMCApex must

be null.

• Deg2 can imply the value of Deg3, since if Deg2 is small, most likely Deg3

is zero.

• Deg3 can imply the value of lstCurveTl. If Deg3 is large, the spine has three

or more curve, and most likely the first curve starts at the first vertebra T1.

• Deg3 can imply the value of TSIDir. If Deg3 is small, most of the time the

direction of trunk shift is null

• TSIDir can imply TSI because if direction of trunk shift is null, TSI should

be 0.

• Treatment can imply lstMCDeg. If treatment is bracing, most likely the

degree of the first major curve is small. In contrast, if operation is needed,

the degree of the first major curve is usually large.

7.2.2 Results of Rule Learning

The medical experts are interested to discover knowledge about classification of

Scoliosis and treatment. Scoliosis can be classified as Kings, Thoracolumbar(TL)

and Lumbar(L), while Kings can be further subdivided into K-I, II, III, IV and

V. Treatment can be observation, surgery and bracing. The determinations of

these two attributes are complicated. Unfortunately, the Bayesian network does

not discover any significant relationship for these two variables. According to

the domain expert, classification should be related to the attributes lstCurveTl,

102

Chapter 1 Medical Data Mining System

Class No. of cf support proh
Rules mean max min mean max min

n<ing-I — ~ 5 ~ 94.84% ^ ^ 0 % ~ 90.48% 5.67% ~ W f W 0.86% 2 8 . 3 3 ^
n<ing-II 5 — 80.93% 100% " 5 2 ^ 7 ^ 6.61% "l4.38% 1 . 0 7 ^ _ 3 M ^
"King-III 4 — 23.58% 25.87% " I O O % 1.56% “ 2.58% 0 M W j ^ 9 ^ _

King-IV 2 — 24.38% 29.41% 1 ^ 5 % 1.18% 1.29% imW 2.79%
King-V 5 54.13% 62.50% 45.45% 0.97% 1.07% 0.86% 6.44%

— T L 1 — 4 1 . 1 8 % 4 0 8 % " 4 1 . 1 8 % 1 . 5 0 % 1 . 5 0 ^ 1 . 5 0 % 2 . 1 5 %

— L 3 54.04% 62.50% 45.45% 2.00% 2.79% 1.07% 4.51%

Table 7.6: Results of the rules for Scoliosis classification

lstMCGreater, L4Tilt, lstMCDeg, 2ndMCDeg, lstMCApex and 2ndMCApex, and

treatment should be related to age, laxity, degrees of the curves, maturity of

the patient, displacement of the vertebra and the class of Scoliosis. This domain

knowledge can be easily incorporated in the design of the rule grammar. There are

two types of rules, one for classification of Scoliosis and the other for suggesting

treatment. The grammar is outlined in Appendix B.2.

The population size used in the rule learning step is 100 and the maximum

number of generations is 50. The execution time was about one hour on a Sun

Ultra 1/140. The results of rule learning from this database are listed below.

Rules for Scoliosis classification.

For each class of Scoliosis, a number of rules are mined. The results are summa-

rized in Table 7.6. The rules are listed in Appendix A.4.1. An typical rule of this

kind is:

if lstMCGreater = N and lstMCApex = Tl-T8 and 2ndMCApex = L3-L4,

then King-I. (cf=100'/.)

For King-I and II, the rules have high confidence and generally match with

the knowledge of medical experts. However the fourth rules of King-II is an

unexpected rule for the classification of King-II. Under the conditions specified in

the antecedents, our system found a rule with a confidence factor of 52% that the

classification is King-II. However, the domain expert suggests the class should be

King-V! After an analysis on the database, we revealed that serious data errors

103 .

Chapter 1 Medical Data Mining System

existed in the current database and that some records contained an incorrect

Scoliosis classification.

For King-III and IV, the confidence ofthe rules discovered is just around 20%.

According to the domain expert, one common characteristic for these two classes

is that there is only one major curve or the second major curve is insignificant.

However there is no rigid definition for a 'major curve，and the concept of 'in-

significant' is fuzzy. These depend on the interpretation of doctors. Because of

the lack of this important information, the system cannot find accurate rules for

these two classes. Another problem is that only a small number of patients in

the database were classified to King-III or IV (see the values of prob in Table

7.6). The database cannot provide a large number of cases for training. Similar

problems also existed for King-V, TL and L.

For the class King-V, TL and L, the system found rules with confidence around

40% to 60%. Nevertheless, the rules for TL and L show something different in

comparison with the rules suggested by the clinicians. According to our rules,

the classification always depends on the location of the first major curve, while

according to the domain expert, the classification always depends on the larger

major curve. After discussion with the domain expert, it is agreed that the existing

rules are not defined clearly enough, and our rules are more accurate than them.

Our rules provide hints to the clinicians to re-formulate their concepts.

Rules about treatment

The results of rules about treatment are summarized in Table 7.7. The rules are

listed in Appendix A.4.2. An typical rule of this kind is:

If age=2-12 and Degl=20-26 and Deg2=24-47 and Deg3=27-52 and Deg4=0,

then Bracing. (cf=lOOy,)

The rules for observation and bracing have very high confidence factors. How-

ever, the support is not high, showing that the rules only cover fragments of the

cases. Our setting in our learning prefers accurate rules to general rules. If the

user prefers more general rules, the weights in the fitness function can be tuned.

104 .

Chapter 1 Medical Data Mining System

Type No. of cf support prob
Rules mean max min mean max min

"Observation 1 ~ ~ 98.89%— 100% ' K 5 5 % ' 3.49% 6.01% 1.07%" 62.45%
Bracing ~ ~ 5 ~ ~ 79.57% 100% T P 3 % 1.03% 1.29% 0.86%" 24.46%

^ S u r g e r y ~ 0 — - - - - - - 3.65%~

Table 7.7: Results of the rules about treatment

For surgery, no interesting rule was found because only 3.65% of the patients are

treated with surgery.

The biggest impact on the clinicians from the data mining analysis of the

Scoliosis database is the fact that many rules set out in the clinical practice are

not clearly defined. The usual clinical interpretation depends on the subjective

experience. Data mining revealed quite a number of mismatches in the classifi-

cation on the type of Kings curves. After a careful review by the senior surgeon

it appears that the database entries by junior surgeons may not be accurate and

that the data mining rules discovered are in fact more accurate! The classifica-

tion rules must therefore be quantified. The rules discovered can therefore help

in the training of younger doctors and act as an intelligent means to validate and

evaluate the accuracy of the clinical database.

105 .

Chapter 8

Conclusion and Future Work

In this thesis, we have presented two approaches for learning rules and Bayesian

networks from data. They both employ Evolutionary Computation as the search

algorithms. A data mining system that can learn rules and Bayesian networks

from data has been developed. Causality and Structure Analysis in the system

learns a Bayesian network from the data. It focuses on the general causality

model between the variables. In contrast, the rule learning step learns a set of

rules from the data. It captures the specific behavior between particular values

of the variables.

We have used Generic Genetic Programming (GGP) as the search algorithm

for rule learning. The grammar used in GGP can provide a powerful knowledge

representation. It can specify the format of the rules to be discovered. The

format can be changed according to different domains, and the flexible grammar

allows the representation of general concepts. Moreover, knowledge from domain

experts can be very useful to data mining. The use of grammar allows the domain

knowledge to be easily and effectively utilized. Furthermore, the user can specify

the desirable rule format by composing a suitable grammar. This can increase the

understandability and the usefulness of the discovered rules.

In many real-life situations, the available rules are general guidelines with

many exceptional cases. The fitness function in the rule learning approach has

been designed to learn such kind of knowledge. It compares the confidence of the

106 ,

Chapter 8 Conclusion and Future Work

rule with the average probability, so as to search for the patterns deviated signif-

icantly from the normal. Since one rule is insufficient to represent the complete

knowledge, token competition has been used to learn as many rules as possible.

This technique can effectively and efficiently formulate niches in the population,

such that different rules are evolved in the same population. This rule learning

approach can successfully construct rules from data. The rules can represent the

regularities in the database and provide interesting knowledge to the users.

The knowledge hidden in real-life database usually cannot be described com-

pletely by just a few rules. Building a complete model for such a database is

difficult and usually results in a complicated model. Bayesian network is a knowl-

edge representation that can be a complement to rules. Instead of capturing the

interesting patterns between particular values of attributes, a Bayesian network

gives a general view on the causality between attributes in a graphical model.

It is easy to understand while it has a well-developed mathematical model. The

Bayesian network representation requires the attributes to be discrete. We have

extended the work on the Minimum Description Length (MDL) for discretizing

continuous variables. We have investigated the use of Genetic Algorithm to op-

timize the MDL score for discretization. The experimental results show that

Genetic Algorithm performs better than the greedy approach.

The rule learning approach and the Bayesian network learning approach have

been combined in a data mining system. The Bayesian network learned from the

causality and structure analysis can help the user to understand more on the re-

lationships between attributes, and provide knowledge for guiding the search of

rules. The causality presented in the Bayesian network, as well as the domain

knowledge and the temporal relationships between attributes, can provide knowl-

edge to the user to compose a suitable grammar for rule learning. A suitable

grammar can prune the search space on meaningless rules and increase the search

efficiency.

The data mining system has been applied to two real-life medical databases.

107 *

Chapter 8 Conclusion and Future Work

The results can provide interesting knowledge as well as suggestion for refine-

ments to the existing knowledge. We also have found unexpected results that led

to discovery of mistakes in the database. In the fracture database, the system au-

tomatically uncovered knowledge about the age effect on fracture, the relationship

between diagnoses and operations, and the effect of diagnoses and operations on

lengths of staying in the hospital. In the Scoliosis database, we have discovered

new knowledge about the classification of Scoliosis and about the treatment. The

discovered knowledge leads to refinements of the existing knowledge.

The approach for data mining can be improved in various aspects. The rule

learning approach is based on GGP with a context free grammar. This grammar

still may not be powerful enough to represent the hidden knowledge. The knowl-

edge representation can be strengthened if context sensitive instead of context free

grammar is implemented. The fitness function used in rule learning is far from

perfect. A more solid fitness function should be defined by doing a more complete

theoretical analysis. For the Bayesian network learning, the search is alternated

between structure learning and discretization policy learning. The network struc-

ture is learned from a sub-optimal discretization policy, and vice versa. A better

result can be obtained if we can designed a method to optimize both the network

structure and discretization policy learning in a single step, although the search

space is greatly increased in this way.

The usability of the data mining system can also be improved. The grammar

in rule learning provides a powerful knowledge representation, but the users has to

compose the grammar themselves to fit the problems. The construction of gram-

mar can be simplified if a generic graphical user interface is provided. The time

complexity is a major disadvantage of evolutionary algorithms. The execution

speed can be improved if results of previous generations can be cached. Better

methods for calculations of fitness should be designed such that the calculation

can fully utilize the results of previous generations.

1 0 8 �

Bibliography

R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-

ceedings of the 20th International Conference on Very Large Databases, Santi-

age, Chile, pages 487-499, September,1994.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of

items in large databases. In Proceedings of the 1993 International Conference

on Management of Data (SIGMOD 93), pages 207-216, 1993.

J. E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings

of an International Conference on Genetic Algorithms and Their Applications,

1985. ‘

L. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic

algorithms. Artificial Intelligence, 40:235-282, 1989.

R. R. Bouckaert. Properties of belief networks learning algorithms. In Proceedings

ofthe Conference on Uncertainty in Artificial Intelligence, pages 102—109, 1994.

J. G. Carbonell, R. S. Michalski, and T. M. Mitchell. An overview of machine

learning. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Ma-

chine Learning - An Artificial Intelligence Approach, chapter 1. Los Altos,Calif.,

1983.

D. J. Cavicchio. Adaptive search using simulated evolution. PhD thesis, University

of Michigan, Ann Arbor, 1970.

E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50-63, 1991.

M.S. Chen, J. Han, and S. Yu. Data mining : An overview from database per-

spective. IEEE transactions on Knowledge and Data Engineering, 8(6):866,

December 1996.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with

dependence trees. IEEE Transactions on Information Theory, 14(3):462-467,

1968.

P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3:261-

283，1989.

109,

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of proba-

bilistic networks from data. Machine Learning, 9:309-347, 1992.

G. F. Cooper. The computational complexity of probabilistic inference using

Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.

K. A. De Jong, W. M. Spaers, and D. F. Gordon. Using genetic algorithms for

concept learning. Machine Learning, 13:161-188, 1993.

K. A. De Jong. An analysis ofthe hehavior ofa class of genetic adaptive systems,

Dissertation Abstracts International 36(10)，5140B (University Microfilms No.

76-9381). PhD thesis, University of Michigan, Ann Arbor, 1975.

J. F. Elder IV and D. Pregibon. A statistical perspective on KDD. In U. M.

Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances

in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

U. M. Fayyad, G. Piatesky-Shapiro, and P. Smyth. From data mining to knowl-

edge discovery : An overview. AI Magazine, pages 37-54, Fall 1996.

L. Fogel, A. Owens, and M. Walsh. Artificial Intelligence through Simulated Evo-

lution. New York: John Wiley and Sons, 1966.

D. B. Fogel. An introduction to simulated evolutionary optimization. IEEE

Transactions on Neural Network, 5:3-14, 1994.

W. J. Frawley, G. Piatesky-Shapiro, and C. J. Matheus. Knowledge discovery in

databases : An overview. AI Magazine, pages 57-70, Fall 1992.

N. Friedman and M. Goldszmidt. Discretizing continuous attributes while learning

Bayesian networks. In International Conference on Machine Learning, pages

157-165, 1996.

A. Giordana and F. Neri. Search-intensive concept induction. Evolutionary Com-

putation, 3:375-416, 1995.

D. E. Goldberg and J. Richardson. Genetic algorithms with sharing for multi-

modal function optimization. In Proceedings of the second International Con-

ference on Genetic Algorithms, pages 41-49, 1987.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, 1989.

110,

J. Han and Y. Fu. Discovery of multiple level association rules ^from large

databases. In Proceedings of the 21st International Conference on Very Large

Databases, Zurich, Switzerland, September,1995.

D. Heckerman and M. P. Wellman. Bayesian networks. Communications of the

ACM, 38(3):27-30, March 1995.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian net-

works: The combination of knowledge and statistical data. Machine Learning,

20(3):197-243, 1995.

D. Heckerman. Bayesian networks for knowledge discovery. In Advances in

Knowledge Discovery and Data Mining, pages 273-306. AAAI/MIT Press, 1996.

D. Heckerman. Bayesian networks for data mining. Data Mining and Knowledge

Discover, 1:79-119, 1997.

E. Herskovits and G. Cooper. KUTATO: An entropy-driven system for construc-

tion of probabilistic expert systems from databases. Technical Report KSL-

90-22, Knowledge Systems Laboratory, Medical Computer Science, Stanford

University, 1990.

J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms.

In D. A. Waterman and F. Hayes-Roth, editors, Pattern-Directed Inference

Systems. Academic Press, 1978.

J. H. Holland. Adaptation in Natural and Artificial Systems. Bradford/MIT

Press, 1992.

R. C. Holte. Very simple classification rules perform well on most commonly used

datasets. Machine Learning, 11:91-104, 1993.

P. Hoschka and W. Klosgen. A support system for interpreting statistical data.

In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in

Databases. AAAI/MIT Press, 1991.

C. Z. Janikow. A knowledge-intensive genetic algorithm for supervised learning.

Machine Learning, 13:189-228, 1993.

W. Klosgen. Explora, A support system for Discovery in Databases,

Version 1.1 User Manual. GMD, Sankt Augustin, 1993. URL:

111 ,

ftp://ftp.gmd.de/gmd/explora/EXPLORA-MANUAL.ps.gz.

J. R. Koza. Genetic Programming : on the programming of computers by means

of natural selection. Bradford/MIT Press, 1992.

J. R. Koza. Genetic Programming II: automatic discovery of reusable programs.

Bradford/MIT Press, 1994.

W. Lam and F. Bacchus. Learning Bayesian belief networks - an approach based

on the MDL principle. Computational Intelligence, 10(3):269-293, 1994.

W. Lam, M. L. Wong, K. S. Leung, and P. S. Ngan. Discovering probabilistic

knowledge from databases using evolutionary computation and minimum de-

scription length principle. In Genetic Programming 1998: Proceedings of the

Third Annual Conference, pages 786-794, 1998.

W. Lam. Bayesian network refinement via machine learning approach. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20(3):240-251,

1998.

P. Larranaga, C. Kuijpers, R. Murga, and Y. Yurramendi. Learning Bayesian

network structures by searching for the best ordering with genetic algorithms.

IEEE Transactions on System, Man, and Cybernetics - Part A: Systems and

Humans, 26(4):487-493, 1996a.

P. Larranaga, M. Poza, Y. Yurramendi, R. Murga, and C. Kuijpers. Structure

learning of Bayesian network by genetic algorithms: A performance analysis

of control parameters. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 18(9):9, 1996b.

K. S. Leung, Y. Leung, L. So, and K. F. Yam. Rule learning in expert systems

using genetic algorithm: 1, concepts. In Proceedings of the 2nd International

Conference on Fuzzy Logic and Neural Networks(Iizuka, Japan), pages 201-204,

1992.

S. W. Mahfoud. Crowding and preselection revisited. Parallel Problem Solving

from Nature, 2:27-36, 1992.

H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering

association rules. In KDD-94： AAAI Workshop on Knowledge Discovery in

112,

ftp://ftp.gmd.de/gmd/explora/EXPLORA-MANUAL.ps.gz

Databases, Seattle, Washington, Seattle, Washington, July 1994.

C.J. Merz and RM. Murphy. UCI Repository of machine learning databases.

University of California, Irvine, Dept. of Information and Computer Sciences,

1998. URL: http://www.ics.uci.edu/~mlearn/MLRepository.html.

R. S. Michalski, L Mozetic, J. Hong, and N. Lavrac. The multi-purpose incremen-

tal learning system AQ15 and its testing application to three medical domains.

In Proceedings of the 5th National Conference on Artificial Intelligence, pages

1041-1045, 1986.

R. S. Michalski. On the quasi-minimal solution of the general covering problem.

In Proceedings of the Fifth International Symposium on Information Processing,

pages 125-128, 1969.

R. S. Michalski. A theory and methodology of inductive learning. In R. S. Michal-

ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning - An Arti-

ficial Intelligence Approach, chapter 4. Los Altos,Calif., 1983.

P. S. Ngan, W. Lam, M. L. Wong, K. S. Leung, and J. C. Y. Cheng. Medical data

mining using evolutionary computation. Artificial Intelligence in Medicine, spe-

cial issue of data mining in medicine, To appear, 1998a.

P. S. Ngan, M. L. Wong, K. S. Leung, and J. C. Y. Cheng. Using grammar

based genetic programming for data mining of medical knowledge. In Genetic

Programming 1998: Proceedings of the Third Annual Conference, pages 254-

259, 1998b.

J. S. Park, M. S. Chen, and P. S. Yu. An effective hash based algorithm for

mining association rules. In Proceedings ofthe ACM-SIGMOD Conference on

Management of Data, San Jose, California, May,1995.

G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In

G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in

Databases. AAAI/MIT Press, 1991.
J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81—106, 1986.

J. R. Quinlan. C4.5: programs for machine learning. San Mateo, Calif. : Morgan

Kaufmann Publishers, 1993.

113 ,

http://www.ics.uci.edu/~mlearn/MLRepository.html

G. Rebane and J. Pearl. The recovery of causal poly-trees from statistical data.

In Uncertainty in Artificial Intelligence 3, pages 175-182. North-Holland, Am-

sterdam, 1989.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der hiologischen Evolution (In English: Evolution Strategy: Op-

timization of technical systems by means of biological evolution). Stuttgart:

Fromman-Holzboog, 1973.
J. Rissanen. Modeling by shortest data description. Automatica, pages 465-471,

1978.

H. P. Schwefel. Numerical Optimization of Computer Models. Chichester: Wiley,

1981.

M. Singh and M. Valtorta. An algorithm for the construction of Bayesian net-

work structures from data. In Proceedings of the Conference on Uncertainty in

Artificial Intelligence, pages 259-265, 1993.

S. F. Smith. A Learning System based on Genetic Adaptive Algorithms. PhD

thesis, University of Pittsburgh, 1980.

S. F. Smith. Flexible learning of problem solving heuristics through adaptive

search. In Proceedings of the Eighth International Conference On Artificial

Intelligence. Morgan Kaufmann, 1983.
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search.

Springer-Verlag, 1993.

R. Srikant and R. Agrawal. Mining quantitative association rules in large rela-

tional tables. In Proceedings ofthe ACM SIGMOD Conference on Management

of Data, 1996.

W. A. Tackett. Genetic programming for feature discovery and image discrimi-

nation. In Proceedings of the Fifth International Conference on Genetic Algo-

rithms, pages 303-309, 1993.

S.B. Thrun, J. Bala, E. Bloedorn, L Bratko, B. Cestnik, J. Cheng, K. De Jong,

S. Dzeroski, S.E. Fahlman, D. Fisher, R. Hamann, K. Kaufman, S. Keller,

I. Kononenko, J. Kreuziger, R.S. Michalski, T. Mitchell, P. Pachowicz, Y. Reich,

114,

H. Vafaie, W. Van de Welde, W. Wenzel, J. Wnek, and J. Zhang. The MONK's

problems: A performance comparison of different learning algorithms. Technical

Report CMU-CS-91-197, Carnegie Mellon University, 1991.

M. L. Wong and K. S. Leung. Inducing logic programs with genetic algorithms:

The genetic logic programming system. IEEE Expert, 10(5):68-76, 1995.

M. L. Wong and K. S. Leung. Evolutionary program induction directed by logic

grammars. Evolutionary Computation, 5:143—180, 1997.

M. L. Wong, W. Lam, and K. S. Leung. Using evolutionary computation and min-

imum description length principle for data mining of probabilistic knowledge.

submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence,

1997.

M. L. Wong. Evolutionary program induction directed by logic grammars. PhD

thesis, The Chinese University of Hong Kong, 1995.

Q. Wu, P. Suetens, and A. Oosterlinck. Integration of heuristic and bayesian

approaches in a pattern-classification system. In G. Piatetsky-Shapiro and W. J.

Frawley, editors, Knowledge Discovery in Databases. AAAI/MIT Press, 1991.

J. M. Zytkow and J. Baker. Interactive mining of regularities in databases.

In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in

Databases. AAAI/MIT Press, 1991.

115,

Appendix A

The Rule Sets Discovered

A.1 The Best Rule Set Learned from the Iris
Database

1. if petal width is between 0.08 and 0.77, then class is Iris-setosa.

Fitness: 1.50
Confidence: 100%; Support: 30%; Probability ofconsequent: 30%

2. if petal length is between 1.98 and 4.97, and petal width is between 0.18
and 1.66, then class is Iris-vericolor.
Fitness: 1.37
Confidence: 100%; Support: 35%; Probability of consequent: 35%

3. if sepal width is between 2.33 and 3.16, then class is Iris-virginica.

Fitness: 0.43
Confidence: 49.06%; Support: 26%; Probability of consequent: 35%

4. if any, then class is Iris-virginica.

Fitness: 0.35
Confidence: 35%; Support: 35%; Probability of consequent: 35%

A.2 The Best Rule Set Learned from the Monk
Database

A.2.1 Monkl
1. if jacket_color = 1, then positive.

116,

Fitness: 11.33

Confidence: 100%; Support: 23.39%; Probability of consequent: 50%

2. if head_shape = 1 and body_shape = 1, then positive.

Fitness: 9.93
Confidence: 100%; Support: 7.26%; Probability of consequent: 50%

3. if head_shape 二 2 and body_shape 二 2，then positive.

Fitness: 8.98

Confidence: 100%; Support: 12.10%; Probability of consequent: 50%

4. if head_shape = 3 and body_shape = 3，then positive.

Fitness: 8.59

Confidence: 100%; Support: 13.70%; Probability of consequent: 50%

5. if any, then negative.

Fitness: 0.51

Confidence: 50%; Support: 50%; Probability of consequent: 50%

A.2.2 Monk2
1. ifhead_shape + body_shape and is_smiling 二 1 and holding + 1 andjacket_color

二 2 and has_tie 7̂ 1, then positive.
Fitness: 15.59
Confidence: 100%; Support: 4.73%; Probability of consequent: 37.87%

2. if head_shape = 2 and body_shape * 1 and is_smiling + 2 and holding + 1
and jacket_color ^ 1 and has_tie + 2, then positive.
Fitness: 15.58

Confidence: 100%; Support: 3.55%; Probability of consequent: 37.87%

3. if head_shape 7̂ body_shape and is_smiling ^ 1 and jacket_color = 1 and
has_tie + 1, then positive.
Fitness: 15.58
Confidence: 100%; Support: 2.96%; Probability of consequent: 37.87%

4. if body_shape 7̂ 1 and is_smiling ^ 1 and holding = 2 and jacket—color = 1
and has_tie + 2, then positive.
Fitness: 15.57
Confidence: 100%; Support: 2.37%; Probability of consequent: 37.87%

117,

5. if head_shape = 1 and is_smiling + 2 and holding + 1 and jacket_color = 3
and has_tie / 1, then positive.
Fitness: 15.56

Confidence: 100%; Support: 1.78%; Probability of consequent: 37.87%

6. if body_shape 二 1 and is_smiling = 1 and jacket_color = 3 and has_tie 二 2,

then positive.

Fitness: 15.56

Confidence: 100%; Support: 1.78%; Probability of consequent: 37.87%

7. if head_shape • 1 and body_shape + 1 and i s�mil ing + 1 and holding = 3
and jacket_color = 1, then positive.
Fitness: 15.56

Confidence: 100%; Support: 1.78%; Probability of consequent: 37.87%

8. if head_shape = 1 and is^miling ^ 2 and holding / 1 and jacket—color = 4
and has_tie + 1，then positive.

Fitness: 15.56

Confidence: 100%; Support: 1.18%; Probability of consequent: 37.87%

9. if head_shape 二 3 and body_shape ^ 3 and i s�mil ing + 2 and jacket_color
+ 1 and has_tie 二 2，then positive.

Fitness: 5.05

Confidence: 87.50%; Support: 4.14%; Probability of consequent: 37.87%

10. ifhead_shape + bodyjshape and holding + 1 and jacket_color 二 2 and has_tie
=1，then positive.

Fitness: 3.96

Confidence: 70%; Support: 4.14%; Probability of consequent: 37.87%

11. if body_shape + 1 and is^miling + 1 and holding = 2 and jacket_color + 2
and has_tie + 2, then positive.
Fitness: 2.75

Confidence: 75%; Support: 3.55%; Probability of consequent: 37.87%

12. ifhead_shape + body^hape and isjsmiling = 1 and holding + 1 and jacket_color
= 2 , then positive.
Fitness: 2.37
Confidence: 91.67%; Support: 6.50%; Probability of consequent: 37.87%

118,

13. ifhead_shape ^ body_shape and holding + 2 andjacket_color 二 2 and has_tie
= 1 , then positive.
Fitness: 1.35

Confidence: 83.33%; Support: 2.96%; Probability of consequent: 37.87%

14. if body_shape 二 1 and is�mil ing ^ 1 and jacket_color + 1 and has_tie = 2，

then positive.

Fitness: 1.13

Confidence: 50%; Support: 3.55%; Probability of consequent: 37.87%

15. if any, then negative.

Fitness: 0.63

Confidence: 62.13%; Support: 62.13%; Probability of consequent: 62.13%

A.2.3 Monk3
1. if body_shape ^ 3 and is�miling = 2 and jacket_color + 4, then positive.

Fitness: 11.46
Confidence: 100%; Support: 22.30%; Probability of consequent: 49.59%

2. if head_shape 7̂ body_shape and holding 二 1 and jacket_color = 3, then
positive.
Fitness: 6.76

Confidence: 100%; Support: 4.13%; Probability of consequent: 49.59%

3. if bodyjshape + 3 and holding 7̂ 2 and jacket_color 二 2, then positive.

Fitness: 6.06

Confidence: 100%; Support: 12.40%; Probability of consequent: 49.59%

4. if head_shape ^ 1 and holding = 1 and jacket_color = 3, then positive.

Fitness: 4.51
Confidence: 100%; Support: 4.13%; Probability of consequent: 49.59%

5. if body_shape + 3 and jacket_color 7̂ 4, then positive.

Fitness: 2.68
Confidence: 91.94%; Support: 47.10%; Probability of consequent: 49.59%

6. if body_shape + 3 and jacket_color = 2 and has_tie + 1，then positive.

Fitness: 1.62

Confidence: 100%; Support: 11.57%; Probability of consequent: 49.59%

119,

7. if head_shape / 2 and body_shape + 3 and holding + 3 and jacket_color =
2，then positive.

Fitness: 0.87

Confidence: 100%; Support: 10.74%; Probability of consequent: 49.59%

8. if any, then negative.

Fitness: 0.51
Confidence: 50.41%; Support: 50.40%; Probability of consequent: 50.40%

A.3 The Best Rule Set Learned from the Frac-
ture Database

A.3.1 Type I Rules: About Diagnosis
1. Humerus

if age is between 2 and 5, then diagnosis is Humerus .

Fitness: 3.48
Confidence: 39.75%; Support: 8.42%; Probability of consequent: 23.43%

2. Radius
if sex is M，and age is between 11 and 13, then diagnosis is Radius .

Fitness: 3.04
Confidence: 51.43%; Support: 10.01%; Probability of consequent: 36.10%

A.3.2 Type II Rules : About Operation/Surgeon
1. Radius vs. CR+POP

if age is between 0 and 7, and admission year between 1988 and 1993, and
diagnosis is Radius, then operation is CR+POP.

Fitness: 8.56
Confidence: 50.61%; Support: 3.19%; Probability of consequent: 17.72%

2. Tibia vs. No Operation
if age is between 1 and 7, and diagnosis is Tibia, then operation is Null (i.e.
no operation).
Fitness: 7.86
Confidence: 74.05%; Support: 3.78%; Probability of consequent: 38.11%

120,

3. Ulna vs. CR+POP
if age is between 1 and 12, and admission year between 1989 and 1992, and
diagnosis is Ulna, then operation is CR+POP.

Fitness: 7.19
Confidence: 47.37%; Support: 3.50%; Probability of consequent: 17.72%

if diagnosis is Ulna, then operation is CR+POP.

Fitness: 4.23
Confidence: 36.17%; Support: 7.40%; Probability of consequent: 17.72%

4. Radius vs. CR+K-Wire
if admission year is between 1992 and 1994, and diagnosis is Radius, then
operation is CR+K-Wire.
Fitness: 4.10
Confidence: 34.03%; Support: 3.83%; Probability of consequent: 16.23%

5. Humerus vs. CR+K-Wire
if diagnosis is Humerus, then operation is CR+K-Wire.

Fitness: 2.52
Confidence: 27.96%; Support: 6.06%; Probability ofconsequent: 16.23%

6. Ulna vs. OR
if age is between 11 and 15, and diagnosis is Ulna, then operation is OR.

Fitness: 3.24
Confidence: 33.20%; Support: 3.25%; Probability of consequent: 18.26%

7. Age vs. OR
if sex is M, and age is between 13 and 17, and admission year between 1985
and 1989, then operation is OR.
Fitness: 2.57
Confidence: 30.53%; Support: 3.22%; Probability of consequent: 18.26%

8. Age vs. No Operation
if age is between 0 and 7, then operation is Null (i.e. no operation).

Fitness: 1.08
Confidence: 43.33%; Support: 16.22%; Probability of consequent: 38.11%

121 ,

A.3.3 Type III Rules : About Stay
1. Femur vs. Stay

if admission year between 1985 and 1996, and diagnosis is Femur，then stay

is between 8 and 2000 days. (i.e. stay 8 days or more, since 2000 is the
maximum value of stay)
Fitness: 21.99
Confidence: 70.87%; Support: 3.14%; Probability of consequent: 10.24%
if diagnosis is Femur , then stay is between 5 and 2000 days. (i.e. stay 5
days or more)
Fitness: 18.70
Confidence: 80.99%; Support: 3.30%; Probability of consequent: 19.22%

2. Tibia vs. Stay
if age between 5 and 12，and diagnosis is Tibia, then stay is between 3 and
2000. (i.e. stay 3 days or more)
Fitness: 8.93
Confidence: 78.92%; Support: 5.05%; Probability of consequent: 39.15%

3. OR vs. Stay
if age between 2 and 14, and diagnosis is Humerus, and operation is OR,
then stay is between 3 and 25 days.

Fitness: 8.86
Confidence: 75.57%; Support: 3.52%; Probability of consequent: 36.51%
if admission is between 1985 and 1987, and operation is OR, then stay is
between 3 and 10 days.
Fitness: 6.99
Confidence: 65.52%; Support: 3.47%; Probability of consequent: 33.85%

if operation is OR, then stay is between 3 and 25 days.

Fitness: 6.13
Confidence: 64.90%; Support: 12.22%; Probability of consequent: 36.51%

4. No operation vs. Stay
if age is between 10 and 14, and admission year is between 1987 and 1996,
and diagnosis is Radius, and operation is Null, then stay is between 0 and
1 day.
Fitness: 9.55
Confidence: 77.00%; Support: 3.09%; Probability of consequent: 35.65%

if operation is Null, then stay is between 0 and 1 day.

122,

Fitness: 3.38
Confidence: 52.06%; Support: 19.62%; Probability of consequent: 35.65%

5. Radius vs. Stay
if age between 6 and 12, and admission year is between 1989 and 1992, and
diagnosis is Radius, and operation is CR+POP, then stay is between 1 and
2 days.
Fitness: 6.01
Confidence: 81.11%; Support: 3.22%; Probability of consequent: 51.29%
if diagnosis is Radius, and operation is CR+POP, then stay is between 1
and 2 days.
Fitness: 5.49
Confidence: 78.57%; Support: 10.22%; Probability of consequent: 51.29%
if age is between 0 and 8, and diagnosis is Radius, then stay is between 0
and 3 days.
Fitness: 2.89
Confidence: 86.92%; Support: 10.19%; Probability of consequent: 71.30%

6. Humerus vs. Stay
ifdiagnosis is Humerus, and operation is CR+K-WIRE, then stay is between
2 and 5 days.
Fitness: 3.90
Confidence: 67.30%; Support: 4.56%; Probability of consequent: 47.16%

7. Year vs. Stay
if admission year is between 1985 and 1987, then stay is between 3 and 10
days.
Fitness: 2.58
Confidence: 46.98%; Support: 8.65%; Probability of consequent: 33.85%

A.4 The Best Rule Set Learned from the Scol-
iosis Database

A.4.1 Rules for Classification
King-I

1. iflstMCGreater=N and lstMCApex==Tl-T8 and 2ndMCApex=L3-L4, then
King-I.
Fitness: 20.20

123,

Confidence: 100%; Support: 0.86%; Probability of consequent: 28.33%

2. if lstMCGreater=N and lstMCDeg=21-80 and lstMCApex =Tl -T12 and
2ndMCApex=L2-L3, then King-I.
Fitness: 19.06
Confidence: 96.67%; Support: 6.22%; Probability of consequent: 28.33%

3. if lstMCGreater=N and L4Tilt=Y and lstMCApex =Tl -T10 and 2ndMCApex=L2-
L5, then King-I.
Fitness: 18.92

Confidence: 96.15%; Support: 10.73%; Probability of consequent: 28.33%

King-II
1. iflstCurveTl=N and lstMCGreater=Y and lstMCDeg=16-45 and 2ndMCDeg=28-

54 and lstMCApex =T4-T11 and 2ndMCApex=L2-L3, then King-II.
Fitness: 16.63
Confidence: 100.00%; Support: 1.07%; Probability of consequent: 35.41%

2. if lstMCGreater=Y and L4Tilt=Y and lstMCDeg=22-77 and 2ndMCDeg=19-
54 and lstMCApex =T1-T11 and 2ndMCApex=L2-L2, then King-II.
Fitness: 12.85
Confidence: 87.88%; Support: 6.22%; Probability of consequent: 35.41%

3. if lstMCGreater=Y and L4Tilt=Y and lstMCApex=T6-T10 and 2ndM-
CApex= L2-L5, then King-II.
Fitness: 10.52
Confidence: 79.76%; Support: 14.38%; Probability of consequent: 35.41%

4. if lstMajorCurveGreater=Y and 2ndMCDeg=8-95 and lstMCApex=T3-
T l l and 2ndMCApex= T4-T10, then King-II.
Fitness: 3.32

Confidence: 52.17%; Support: 7.73%; Probability of consequent: 35.41%

King-III
1. if lstCurveTl=N and L4Tilt=N and lstMCApex=Tl-T9 and 2ndMCApex=Null,

then King-III.
Fitness: 5.87
Confidence: 25.87%; Support: 0.86%; Probability of consequent: 7.94%

124,

2. if L4Tilt=N and lstMCApex=T2-T6 and 2ndMCApex=T2-Tll, then King-
III.
Fitness: 4.86

Confidence: 25.71%; Support: 1.93%; Probability of consequent: 7.94%

King-IV
1. if lstCurveTl=Y and lstMCGreater=Y and L4Tilt=Y and lstMCApex=L5-

T10 and 2ndMCApex=T9-L5, then King-IV.
Fitness: 11.10
Confidence: 29.41%; Support: 1.07%; Probability of consequent: 2.79%

2. if lstMCGreater=Y and L4Tilt=Y and lstMCApex=T10-L5 and 2ndMCApex=T5-
L4, then King-IV.
Fitness: 6.02

Confidence: 19.35%; Support: 1.29%; Probability of consequent: 2.79%

King-V
1. if lstMCGreater=Y and L4Tilt=Y and lstMCApex-T2-T5 and 2ndMCApex=T9-

T11, then King-V.
Fitness: 22.75
Confidence: 62.50%; Support: 1.07%; Probability of consequent: 6.44%

2. if lstMCGreater=N and 2ndMCDeg-37-70 and lstMCApex-T4-T7 and
2ndMCApex=T2-Tll, then King-V.
Fitness: 19.98
Confidence: 57.14%; Support: 0.86%; Probability of consequent: 6.44%

3. if lstCurveTl=Y and lstMCGreater=Y and L4Tilt=Y and lstMCDeg=3-
35 and lstMCApex=T2-T6 and 2ndMCApex=T7-T9, then King-V.
Fitness: 16.42
Confidence: 50.00%; Support: 0.86%; Probability of consequent: 6.44%

TL

1. iflstMCGreater=Y and lstMCApex=Tll-T12 and 2ndMCApex=Null, then
TL.
Fitness: 19.49
Confidence: 41.18%; Support: 1.50%; Probability of consequent: 2.15%

125,

L

1. if lstMCGreater=Y and L4Tilt=N and lstMCApex=L2-L5 and 2ndMCApex=Null,
then L.
Fitness: 26.32
Confidence: 62.50%; Support: 1.07%; Probability of consequent: 4.51%

2. if lstCurveTl=N and L4Tilt=N and 2ndMCDeg=Null and lstMCApex=Ll-
L3 and 2ndMCApex=Null, then L.
Fitness: 21.59
Confidence: 54.17%; Support: 2.79%; Probability of consequent: 4.51%

3. if lstCurveTl=N and lstMCApex=L2-L5 and 2ndMCApex=Null, then L.

Fitness: 16.84

Confidence: 45.45%; Support: 2.15%; Probability of consequent: 4.51%

A.4.2 Rules for Treatment
Observation

1. if Degl=3-12 and Deg2 =Null and Deg3 二 Null and Deg4 = Null, then
Observation.
Fitness: 7.59
Confidence: 100.00%; Support: 1.93%; Probability of consequent: 62.45%

2. if Degl=5-27 and Deg2 =4-21 and Deg3 = 0-22 and Deg4 = Null and mens
二 99, then Observation.

Fitness: 7.55

Confidence: 100.00%; Support: 1.07%; Probability of consequent: 62.45%

3. if Degl=4-13 and Deg2 =2-29 and Deg3 = Null and Deg4 二 Null, then

Observation.

Fitness: 6.8

Confidence: 95.55%; Support: 6.01%; Probability of consequent: 62.45%

Bracing
1. ifage = 2-12 and Degl=20-26 and Deg2 =24-47 and Deg3 二 27-52 and Deg4

=Null , then Bracing.
Fitness: 22.54
Confidence: 100.00%; Support: 0.86%; Probability of consequent: 24.46%

126,

2. if Degl=21-28 and Deg2 =32-43 and Deg3 = Null and Deg4 二 Null and RI
= 3 - 4 , then Bracing.
Fitness: 15.18
Confidence: 80.00%; Support: 0.86%; Probability of consequent: 24.46%

3. if Degl=25-39 and Deg2 =21-42 and Deg3 = Null and Deg4 = Null and RI
= 1 - 3 , then Bracing.
Fitness: 12.26
Confidence: 71.43%; Support: 1.07%; Probability of consequent: 24.46%

127,

\

Appendix B

The Grammar used for the
fracture and Scoliosis databases

B.1 The grammar for the fracture database
This grammar is not completely listed. The grammar for the other attribute descriptors
is similar to the part of the grammar in lines 11-19.

1： Rule — Rulel | Rule2 | Rule3

2: Rulel ~> if Antesl ， then Consql .

3: Rule2 "^ if Antesl and Antes2 , then Consq2 •

4: Rule3 ^ if Antesl and Antes2 and Antes3 ， then Consq2 .

5: Antesl — Sexl and Agel and Admdayl

6: Antes2 ~> Diagnosisl

7: Antes3 ^ Operationl and Surgeonl

8: Consql — Diagnosis-descriptor

9: Consq2 ~> Operation_descriptor | Surgeon_desrijptor

10: Consq3 — Stay—descriptor

11: Sexl ~> any | Sex.descriptor

12: Sex-descriptor — sex = sex_const

13: Admdayl — any | Admday_descriptor

14： A dmday.des crip tor — admday_day between day_const day_const

15： Admday.descriptor — admdayjnonth. between month_const month_const

16: Admday.descriptor — admday_year between year_const year_const

17： Admday_descriptor ~^ admday_weekday between weekday_const weekday_const

18: Diagnosisl ~> any | Diagnosis-descriptor

19: Diagnosis-descriptor ~> diagnosis is diagnosis_const
• • •

B.2 The grammar for the Scoliosis database
This grammar is not completely listed. The grammar for the other attribute descriptors
is similar to the part of the grammar in lines 7-12.

128,

1: Rule ">• Rulel | Rule2

2: Rulel ^ if Antesl , then Consql .

3: Rule2 ~> if Antes2 ， then Consq2 .

4: Antesl — lstCurveTl lstMCGreater and L4Tilt and lstMCDeg

and 2ndMCDeg and lstMCApex and 2ndMCApex

5： Antes2 ~> Age and Lax and Degl and Deg2 and Deg3 and Deg4 and Mens and RI

and TSI and ScoliosisType

6: Consql ~> ScoliosisType.descriptor

7： lstMCGreater — any | lstMCGreater.descriptor

8: lstMCGreater-descriptor ^ lstMCGreater = boolean_const

9: lstMCDeg ~> any | lstMCDeg.descriptor

10: lstMCDeg.descriptor — lstMCDeg between deg_const deg_const

11: lstMCApex ~> any | lstMCApex.descriptor

12: lstMCApex.descriptor ^ l s t M C A p e x between Apex_const Apex_const

• • 參

129,

^ i ^ ^ M

t . . ‘ ’ . . - ， 略 y 、 ̂ r * l ^ l 4 > ̂ t ^ f „ .

- . ' . . . - • ^ i . 」 - . ¾ j ̂ ̂ 1 ,

. , f . . J _ f > ¢ ^ : ,

. . . . - ； V 、 i r f 一 < 一

. . - k t

. . .. 一 .

. . . : .. . ^ 一 .

. . . . _ : - . . r 1 . . _ “ : . . - ^ . - • , " k

. - -̂ - - . v ,̂ , ; /

- ̂ I - . - . . , - -

. . : : - . v . > 〈 一

. . ; . . . I

. : i . . • ' . . . - - .̂ ,

• • - . l . ； . \ : . i . : ̂ : r - .

. - — • . , - • • " . ; . (； ， - ^ .

, . . - ? - - 」 • - . . . c \ t

. " ‘ _ . . - J . , . , 二 - .

T - . .

, : i J • (

• . / . . - - _

• . , _ J 、 厂 ，

, . .._ . ，

 I I

,

 — . . . 〈 ： - _ . . : : ^ • .

. . . r •

• . • . . . 」 • ， - - -

• .. . \ 〔 ” -

.. , -

兮
; b / . : .
—

• • - .. - - • : - .

i i I .

r . _ . ” . 》 . . . > .

T , . - .. . 0 > • - • :

. \ , 、 ： / % . 7 T -

, . 1 . , , I 、 • • . 1

. . • . ., ̂ - .

. z . • * . ,

- . - .

, - - . . . , .

. .. - - •

- . - • . - 『 > 一

V . . - . -

. 、 - . .

%

J t .

. r . , - •

< J

. - ...

. . . . , .

:

.. ̂,

- . . , . . . - \

- - 、 - T

: _ ^

• l : :

• . _ l ,

‘ . , . . ‘

, . , 1 ^

. . . . • " . 」 i .

.,, ;

. . . - _

- . , . , : . J .
“

. . < i . . . :

^ . . ” -

、
- . - V • .

., 、 . >

• • - . .

. . , . - . i ,

- .. • . . :

, , 二 一

. - .

• ̂ • - . - . . . _ i

- f r

. : . - . . , - - ;

二 ：
 - : r , ^

. • - . 、‘

. . ^ - , . . ^ „ ? . . V

• . . - - ̂

. , _ . - 咖

s : , - . , - . v

 • • • : . 丄 - - . : . . . ^

， .
 • : • . : I : : : . i . - - - V . : : : . . - l . . s

• • - . . . - . . • : - . - , . . t
〔
- . A - I i , - y . . - ,) . ¾

. . . : . , ̂ - „ - ^

• . . , . . 1 - r ., %

, - . , , t r J r , , _

» ̂ ̂ - 1 s

> . , j f , - ") ̂

, . . • I 广 一 . 二 j

. , . . . • i » 1

 一 , - . ,̂

• • _ r . ^

> “ . . “ 、 一 I \ .
，
i s X J

- _. - V ; ； 、 , 1

. . : . • • _ = . . . : 广 二 ， 气 . v 乂 t :

. . , : : i : : : v : 4 _

. < . > ; f J \ " v : 、 f i J

. . , . } .
”
 5
一

 L . 、 谁 餐 " 考 省 、 , 1
 t J - 」 、 ； . - - " 「 、 ： 广 … 」 ； " 1 ^ ? ¾ , , , : , ¾ ¾ < ¾ ¾ !

. . . ; S T y : 、 . . ,

r $ L r t [: . i j j > : • —

 , ’ , ； : - -

%

C U H K L i b r a r i e s

_圓1111111111
DD37DMEDS

