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摘要 

這篇論文的主要目的是探討如何在虛擬環境中發展出有效的體數據可視化 

(volume 乂丨3口& 2̂&1丨(̂ )方法°傳統上體數據可以在二維的螢幕上顯現出來°但隨著 

電腦能力的提升和虛擬真實技術的進步，二維的顯示和操作方式已再不能滿足大 

部份的用家了。我們現在需要的是一個能容許三維顯示和操作的真正虛擬環境° 

這個硏究將會集中於體數據在虛擬環境中的操縱°這裡會提出一個新的體數據切 

割技術。這個技術主要建基於一個叫‘智能剪刀’（InteUigent 5683018)的二維圖 

像分割算法°我們採用一個相似的動態程序設計(47^&^1^ programming)技術去求 

出一個體數據表面上的關閉等値線°利用這條等値線我們可以求出一個切面。最 

後就可以用一個區域生長算法0"0纟10^ growing &垣061虹)去將那個體數據一分爲 
o 

我們亦會介紹一個新的等値面抽取(iso-surface extraction)方法。在醫學資料的曲 

面重組(8口计&06优(：0似1瓜(̂ 丨00)過程中，爲了要有準確的結果，大多數圖像切面都 

需要考察。這個程序是很複雜的，因爲它需要抽取每一塊圖像切面的等値線和很 

多的人手修正。所以，我們把‘智能剪刀’的槪念擴展和引用到體數據上°這個 

算法的主要目的是提供一個簡單易用的曲面重組界面和將涉及的圖像切面和人 

手修正減至最少。 

最後，因爲三維的‘智能剪刀’可以抽取依付在曲面上的線條，這令它有找尋路 

徑的能力。如果一條管道的兩端是已知的，那麼這條路徑就可以憑三維‘智能剪 

刀’求出來。這個特性可以用來找出某些醫學體數據上的血管°我們亦做了一個 

實驗去證明它可以找出肺部體數據上的氣管位置° 



Abstract 

This thesis concerns how to achieve efficient volume visualization in virtual environ-

ment. Traditionally, volumetric data is visualized and displayed on a two-dimensional 

screen. With the increasing computational power and improving techniques for Vir-

tual Reality(VR), people are no longer satisfied with two-dimensional input and dis-

play. Instead, a real virtual working environment with three-dimensional input and 

output is found to be more appropriate. 

In this research, I concentrated on the manipulation of volumetric data in a virtual 

environment. A new technique for volume cutting is proposed. It is based on a 

technique called Intelligent Scissors, which is a two-dimensional image segmentation 

tool. I adapted a similar technique which used dynamic programming(DP) to find 

out closed contour along surfaces of volumetric data. A cutting surface is produced 

using the resulting contour. The volume can then be cut into two parts by a simple 

region growing algorithm. 

Besides volume modeling, a new iso-surface extraction algorithm is also described. 

For surface reconstruction in medical imaging, every slice has to be examined in order 

to give accurate result. The process is troublesome since it requires every contour 

from every slice and it always involves a lot of manual corrections. Therefore, I 

proposed an algorithm that extended the idea of Intelligent Scissors and applied it 

on volumetric data. The aim of the proposed algorithm is to give a comprehensive 

interface for surface extraction while minimizing the number of slices involved and 

the number of manual corrections. 

Since the extension of Intelligent Scissors can extract curves lying on surfaces, it 

gives the possibility of "path finding". Provided that the end points of a path are 

iii 



known, the path can be found out by three-dimensional Intelligent Scissors. This 

property can be used to find out blood vessels in medical data and some experiments 

are carried out to extract paths in lung data. 
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Chapter 1 

Introduction 

Scientific visualization is an important field of computer graphics. Since many ob-

jects and natural phenomena surrounding us are 3D volumes of data, many scientists 

need various kinds of scientific visualization to examine their data sets, for example, 

computational fluid dynamics(CFD), medical CT/MRI imaging, volumetric data in 

molecular systems, earth science and seismic data about underground layers, etc. 

All of these fields play important roles in our life and careful examinations of the 

related data sets are often necessary. For instance, seismic data can be examined 

with a volumetric scheme, which provides geophysicists an alternative way to reveal 

the structure of geological layers and such information is proved to be useful for 

identifying potential oil reservoirs[40, 51. 

Volume visualization as a subfield of scientific visualization concentrates on the 

examination of complex volumetric data. The main objective of volume visualiza-

tion is to provide methods that can visualize internal structures of data, analyze and 

manipulate volumetric data efficiently and effectively. Among various applications, 

medical imaging is the main driving force for the development of volume visualization 

because of its direct practicality and importance. Medical data can be scanned from 

patient by computed tomography(CT), magnetic resonance imaging(MRI), or ultra-

sonography in a non-destructive and safe manner. Therefore, it is useful for many 

medical applications, for example, clinical diagnosis, orthopedic diagnosis, radiation 

therapy planning, medical education and surgical planning. 

1 
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The other important issue is how to choose a suitable working environment for 

volume visualization. A two-dimensional display is suitable for two-dimensional com-

puter graphics. For three-dimensional graphics, a normal display can still be able to 

give user a sense of depth by using shading, shadows, or even mirrors. However, it 

is not the most natural way to view and interact with 3D objects using 2D display 

and input. Therefore, in this research, I focus on volume visualization in a virtual 

environment and attempt to make efficient tools for volume manipulation in such an 

environment. 

We discuss volume visualization in more detail in Section 1.1. A brief summary of 

the virtual environment we used is described in Section 1.2. Our research approach 

is described in Section 1.3. Finally, we give the thesis overview in Section 1.4. 

1.1 V o l u m e Visualization 

The technique used to visualize three-dimensional volumetric data is called volume 

rendering. An element of the three-dimensional array is called a voxel. The most 

basic steps of volume rendering algorithms are assigning a color and opacity to each 

voxel in the array, making samplings in the volume, projecting the samples onto an 

image plane and compositing the samples together to get the final image. There 

are numerous volume rendering algorithms published in the past. Some of them are 

now only of historic interest because of the low quality of resulting images. Several 

important techniques are summarized as follows: 

• Rendering volume as shaded cubes. In 1979, Herman and Liu[18] pro-

posed an algorithm which rendered CT data as many shaded cubes. An ap-

propriate threshold is applied to the volume to choose boundary voxels. Those 

voxels are rendered as opaque cubes represented by six equal-sized squares. 
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Each face of every cube can be shaded by standard shading algorithms and hid-

den surface removal is done by the Z-buffer algorithm. The main disadvantage 

of the algorithm is that it will form a solid with blocky effect, which can be 

improved by a low-pass filtering. 

• Surface construction by joining contours. Rendering volume as shaded 

cubes causes aliasing effect and thus results in low quality images. Therefore, 

improved surface rendering techniques often use triangles to model the surface of 

volumetric data. One kind of such algorithms extracts contours from all image 

slices and then joins adjacent contours together by triangular strips. There 

are two main steps in such algorithms: first, closed contours from each slice 

are extracted by some edge detection algorithms[8, 26]; and a contour joining 

strategy is used to find optimal triangular strips to fit adjacent contours[19, 31 . 

For contour detection, a novel technique called active contour(or snakes)[26 

is used. Firstly an user has to make a rough approximation of the shape of 

contour. Each point in the boundary is associated with an energy function 

which is a combination of internal forces, such as boundary curvature, and 

external forces, like image gradient magnitude. The contour grows and shrinks 

in order to minimize its energy. The main drawback of the algorithm is, the 

user would never know what the final shape would be at the very beginning. If 

the final contour is not satisfactory, the user has to manually edit the resulting 

contour or restart the whole process with a new initial contour. 

Joining of contours is a more complex problem. One image slice may contain 

two or more contours of the desired object. A branch would occur if one of 

the adjacent planes contains more than one contours. Moreover, the problem 

becomes more complex if the distance between two planes are relatively large 

with respect to the size of cell. In[10], Meyers et aL broke the main problem 
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into four subproblems, namely, correspondence, tiling, branching, and surface 

fitting. 

• Marching cubes and Dividing cubes. Instead of extracting contours, 

some algorithms extract triangles that define the surface of a constant intensity. 

Lorensen and Cline proposed Marching Cubes[2S] to extract a list oftriangles by 

marching through all the cubes. A cube is defined by eight surrounding voxels 

and each voxel is identified as either inside or outside the object according to 

a threshold intensity. Based on the configuration of voxels, each cube can be 

fitted in triangles that define part of the surface. Marching cubes is widely used 

to generate iso-surface because it is fast and can make high-resolution models. 

There are many variants of Marching cubes [35，39, 38, 34] that either fasten 

the extraction process or decrease the number of triangles extracted. 

The Marching Cubes algorithm constructs iso-surface as polygonal elements. 

Another algorithm, called Dividing Cubes[7], renders the surface as 3D points 

with normal vector. Each cube in the volume is identified as either inside, out-

side, or intersecting the surface. A cube which lies on the surface is subdivided 

into small cubes such that each sub-cube is the same size of a display pixel. 

The normal vectors of the sub-cube surface are calculated by interpolating the 

gradient vectors of the original cube. Finally, the surface can be rendered by 

projecting the point surface elements on the view plane. 

Previous algorithms are so-called surface rendering algorithms. The main dis-

advantage of surface rendering is that only surface information is shown and other 

information will be lost. For medical images, it may be important to see through the 

volume rather than only examine the iso-surface. Another disadvantage of surface 

rendering is that a binary decision must be made on the position of surface. This 

kind of iso-surface extraction can lead to the introduction of false positive (consider 
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unnecessary features) or false negative (discard necessary features). 

To overcome these problems, another kind of volume rendering techniques called 

direct volume rendering can be used. Unlike surface rendering, volume rendering goes 

through the whole volume and create a 2D projection of the volumetric data. It can 

also give user an inside view of the volume by using transparency since in some cases, 

making binary decisions on fuzzy surface is inappropriate. Several major volume 

rendering techniques are summarized as follows: 

• Ray casting. One of the most popular volume rendering techniques is ray 

casting . It assumes that volume is made up of many small particles which 

can emit, attenuate or scatter light. The amount of light emitted, attenuated 

or scattered by a particle depends on the particle's density. Parallel rays are 

casted into the volume and samples are taken along the rays. The color of a 

particular voxel can be determined by its gradient vector, viewer's position and 

light positions. Gradient vector(G) of a voxel (x,y,z) in a volume data set V 

can be approximated by central differences: 

G$ = ^Ax{V{xi+i,yj,Zk) - V{xi^i,yj,zk)) (1) 

Gy = -Ay(T/(j;i,y_^.+i,4) — V{xi,yj-i,Zk)) (2) 

Gz 二 -A4T/(a;i, yj, zk+i) - V{xi, yj, Zk-i)) (3) 

The samples along each ray are composited together to form the final color of 

the corresponding image pixel (see Fig. 1). The compositions of samples are 

done by the over operation. Assume every voxel X is assigned a color C{X) 

and an opacity a (X) , the over operation can be defined as: 

Cout = a-n(l - a(^)) + qi)C^(I) � 



Chapter 1. Introduction 6 

来 ^ 
X ^^^ y ^ image pixel 

X Z [ ^ 
I ^ ^ _ 

R^,^>nK 

— ' • � • " / 
^̂ ^̂ .̂  ̂ ^̂ ^̂ ^̂ ^ ^̂ ^̂ ^̂ ^̂ ŷ  y ^ image plane 

Figure 1: Composition of samples along the ray R 

where Cin and Cout are the incoming and outgoing color for voxel X respectively. 

The overall intensity along the ray is given by: 

Cf.nai = E 0(k)a(k) n ( l - « ( 0 ) (5) 
k=Q i=k+l 

where Cjinai is the resulting pixel intensity and K is the number of samples 

along the ray. 

Besides volume rendering, ray casting can also be used to render iso-surface by 

assigning appropriate opacities to voxels and the quality can be comparative to 

some surface rendering algorithms like marching cubes . However, ray casting 

is very computational intensive. Although many acceleration techniques for it 

have been introduced, rendering by ray casting is still far from interactive. 

• Splatting. Ray casting is an image space approach because the algorithm 

iterates over the image pixels. There is another kind of algorithms using an 

object space approach which iterates over the voxels. Splatting[48, 49] is one of 

such algorithms. For each voxel in the volume, it computes the contribution of 
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the voxel to the image pixels by using a filter footprint. The advantage of splat-

ting is that it iterates over the voxels in storage order, unlike ray casting, which 

must compute the locations of sample points along different rays. Therefore, 

splatting uses much less addressing arithmetics than ray casting. However, the 

main disadvantage of splatting is that the computing of filter kernel is expensive 

and viewpoint dependent. 

• Frequency domain rendering. The computational complexity of normal 

spatial domain projection algorithms are 0(n^). By using the Fourier projection 

slice theorem, X-ray liked images can be made from volume with a complexity 

of 0(n^). The Fourier projection slice theorem states that the inverse Fourier 

transform of a slice extracted from the frequency domain of a volume yields a 

projection of the volume in a direction perpendicular to the slice. A volume 

computed by a 3D discrete Fourier transform is firstly formed as a pre-processing 

step. X-ray images from arbitrary views can then be obtained by applying 

an inverse transform to a slice from the transformed volume which is passing 

through the origin. 

• Rendering by shear-warp factorization. 

Both object space and image space approaches can produce high quality im-

ages but the rendering rate is far from interactive. In 1994, Lacroute [27] had 

proposed a new approach by using shear-warp factorization of the viewing trans-

formation matrix. It is neither object space approach nor image space approach, 

but the performance is much better than the two approaches and can visualize 

a 128x128x84 data set in 1/5 second. 

Since the mapping from object space to image space uses a lot of computa-

tions to calculate the positions of samples, image space algorithms usually have 

slow performance. Lacroute pointed out that the addressing arithmetic can be 
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Figure 2: Shear and scale of slices 

greatly reduced by transforming the volume into an intermediate coordinate 

system. It was found that rays can be made parallel to each other by shearing 

and scaling the volume slices. The viewing transformation can be decomposed 

into two matrix called shear matrix and warp matrix. The shearing and scaling 

of volume slices is done by the shear matrix, and the warping of the intermedi-

ate image to the final image is done by the warp matrix. From Figure 2, we can 

see that the projection to a 2D intermediate image would be more efficient by 

using this transformation. The shear-warp algorithm uses a run-length encoded 

volume for rendering and the intermediate image is also a run-length encoded 

data structure, which encodes runs of opaque and non-opaque pixels. 

• Rendering by 3D texture mapping. With the aid of hardware-assisted 3D 

texture mapping, performance can be further improved. One can sample any 

slice inside a block of three-dimensional texture memory(see Fig. 4) by trilinear 

interpolation. Trilinear interpolation is the process for point sampling within 

a 3D box/cell given values at the vertices of the box. For the cell shown in 

Figure 3, if Vboo, Vioo, Voio,..” Viii are the values of the vertices, then the value 

of a point V̂ yz inside the box is given by 
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Figure 3: Trilinear interpolation 

Ky. 二 Vooo(l-x)(l-y)(l-z) 

+Vioox(l-y)(l-z) 

^Voio(l-x)y(l-z) 

+Vooi(l-x)(l-y)z 

+Vloi^(i - y)^ 

+Voii(l - x)yz 

^Viioxy{l — z) 

^Vnixyz (6) 

Cullip and Neumann[42] described how to perform volume rendering by using 

3D texture mapping. The paper describes both the object space and image space 

approaches to do the task. As shown in Figure 5, object space approach uses 

slices perpendicular to one of the axis for sampling, and image space approach 

uses slices perpendicular to the viewing direction. 

A more detailed description of the image space approach had been presented by 
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Figure 4: 3D texture mapping 

PP 
a) Object space sample planes b) toage space sample planes 

Figure 5: Sampling in Object and Image space 

Wilson, Gelder and Wilhelms[50]. An octree encoding scheme has been applied 

along with 3D texture in [15]. That paper also proposes a template based Z-

plane/block intersection method to accelerate the block projection computation. 

Volume rendering by 3D texture mapping is fairly fast. It can achieve about 

20 frames per second for the rendering of a 128^ volume data. In this research, 

this technique would be used since it has remarkably faster speed than previous 

algorithms. 
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1.2 Virtual Environment 

A suitable virtual working environment is important for volume visualization. It is 

easy to find that some volumetric operations are difficult or even impossible to perform 

using a 2D screen and a mouse. A virtual environment with three-dimensional display 

and three-dimensional interaction can help user to understand and interact with the 

volume data much easier by providing a rich set of spatial and depth cues. Existence 

of various VR applications for scientific visualization [2, 3，5, 9, 20, 21, 43] in the 

past few years proves that it is more natural to manipulate high-dimensional data in 

a virtual environment. 

In this research, the Virtual Workbench proposed in [43] is chosen to be the 

working platform. Virtual Workbench is a general-purposed working environment 

for dextrous work in 3D and some applications such as virtual windtunnel[4], blood 

vessel finding[44] and virtual stereotaxis[45] have also been implemented on it. Two 

main advantages of Virtual Workbench are: 

• High resolution three-dimensional display. Virtual Workbench uses 

a mirror to reflect images from a normal monitor such that it constructs a 

"virtual work space" behind the mirror(see Fig. 6). Stereoscopic display can be 

achieved by using a pair of stereo glasses. The image quality is much better 

than those from Head-Mounted Display(HMD) since images are displayed on 

high resolution monitor. 

• Three-dimensional interaction. In Virtual Workbench, object interaction 

is performed using a 6DOF pen-liked input device. With the mirror, user per-

ceives a stereo virtual image within the work space. Therefore, the 3D pen can 

move freely within the work space without blocking the views of virtual images. 
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Figure 6: The Virtual Workbench 

1.3 Approach 
The main objective of this research is to find out effective volume manipulation 

methodologies that can help exploring volumetric data in a virtual environment inter-

actively. Direct volume rendering is too computational intensive even using nowadays 

computers. Therefore, most applications considering direct volume rendering are still 

far from real-time. To improve the performance, unnecessary data from volume can 

be cut away and intention can be focused on volume of interest. Volume segmentation 

plays an important role to achieve this. 

In this research, I borrow the idea from Intelligent 6'cz55or5[30, 41], which is a 2D 

image segmentation technique, and exploit its usefulness in volumetric data manipu-

lation. It is essentially a dynamic programming technique for graph searching. Two 

approaches concerning Intelligent Scissors are taken in this report: 

• Contour extraction on surface mesh Originally, Intelligent Scissors is 

applied to 2D image. We modify the idea a little bit by applying Intelligent 

Scissors to surface mesh generated from volume data. One can interactively 

select feature lines along the surface by this technique. After several successive 
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selections of segments, a closed contour which lies on the surface mesh can be 

formed. Methods are developed to cut volume data into two parts by using the 

closed contour. 

• Three-dimensional Intelligent Scissors We extend the idea of 2D Intel-

ligent Scissors to 3D. In the case of 2D, contours are lying along edges. By 

using 3D Intelligent Scissors, extracted lines now lie on surfaces. Iso-surface 

extraction becomes possible by using those lines. One problem of the extension 

is the huge amount of graph nodes needed to search. Therefore, methods have 

to be developed to cut away unnecessary voxels. One approach is to discard 

voxels with gradient less than a pre-defined amount. More about voxel pruning 

will be discussed later. 

1.4 Thesis Overview 

Chapter 2 gives a brief summary of Intelligent Scissors , which forms the basis of our 

new algorithms. We describe the original algorithm which detects contours in a 2D 

image. Its advantages against other similar algorithms will also be discussed. 

Next, in Chapter 3 we describe the technique for volume cutting. We modify 

the algorithm of Intelligent Scissors to find out closed contours from complex volume 

surface. 

Chapter 4 extends the concept of Intelligent Scissors from 2D to 3D. The extension 

introduces a huge amount of graph nodes and we show that how to accelerate the 

process by discarding unnecessary nodes. 

In Chapter 5, we show the implementation of the algorithms on the Virtual Work-

bench environment. An intuitive interface is built in order to give user a more con-

venient 3D working environment. Some results of our algorithms are presented and 

analyzed here. 
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Finally, Chapter 6 summarizes the conclusions of this report. Implications for 

future research are also discussed. 



Chapter 2 

Contour Extraction 

Contour extraction is an important step in volume segmentation, which in turn is 

very critical in some volume rendering applications because direct volume rendering 

is too computational intensive and segmentation can make visualization of the volume 

of interest possible in order to save time. Three-dimensional segmentation, however, 

is another complex problem and there is still no completely automatic algorithms 

which can generate satisfactory segmentation. Therefore, people tend to reduce the 

problem to two-dimensional. 2D closed contours can be extracted from parallel voxel 

slices first and then joined together to form a geometrical model(see Fig. 7) by some 

surface fitting algorithms[19, 31. 

One main dimculty is how to find the best approximated contour. A popular 

technique called active contours or snakes[26, 8] has been widely used. However, as 

stated in Section 1.1, the main drawback is its inability to control the final shape of 

contour. Another kind of techniques use a graph searching formulation of dynamic 

programming(DP) to find globally optimal boundaries. In[30], Mortensen and Barrett 

proposed a method called Intelligent Scissors that can extract contours from 2D 

images interactively. 

Throughout this chapter, we concentrate on describing the details of Intelligent 

Scissors, which forms the basis of our later algorithms. Section 2.1 introduces the 

concept of Intelligent Scissors. The main algorithm is described in Section 2.2. In 

Section 2.3, we discuss the cost function used in the technique. 

15 
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Figure 7: Surface fitting between parallel contours 

2.1 Concept of Intelligent Scissors 

Although Intelligent Scissors has an interesting name, it is basically a dynamic pro-

gramming technique. There were some algorithms that also used a graph searching 

formulation of DP to find globally optimal boundaries[l, 12, 46, 52]. However, like 

snakes, those algorithms typically need an initial boundary template which is used 

to approximate the final shape of the desired contour. Since the template grows and 

shrinks in order to find an optimal contour, it makes each point on the contour moving 

with one degree of freedom within the 2D image. Therefore, those algorithms cannot 

be interactive and user cannot modify the result in the midway of the process. 

Intelligent Scissors, on the other hand, allows user interactively select the most 

suitable boundary from a set of optimal boundaries given a seed point. The idea is 

simple. A 2D image is modeled as a graph with nodes at the pixel locations and 

edges are defined for neighbor pixels. Each edge is assigned a cost according to 

some gradient and frequency functions. Therefore, the problem of finding a contour 

between two pixels can now be solved using a shortest path algorithm, which finds a 

minimum cost path. Stalling and Hege[41] modified the algorithm in order to apply 

it to medical image segmentation. In their application the cost function is related to 

the image gradient only and the result is acceptable. 



Chapter 2. Contour Extraction 17 

_ • 
(a) (b) 

Figure 8: (a) The original image (b) The graph form of (a). Grey nodes have greater 
gradient than white nodes. 

Edge cost is assigned in a way that pixels lying on boundary features have lower 

cost. Figure 8(a) shows a 8x8 grey-scale image and Figure 8(b) is the corresponding 

graph formulation. Grey nodes in the graph represent the boundary points which 

have greater gradient than other nodes. So in this case, the edges between grey nodes 

have the lowest cost on average. The edges between grey nodes and white nodes have 

higher cost and those between white nodes have the highest cost. For example, if we 

want to find a path from pixel A to pixel B, the algorithm will automatically find a 

path going along the boundary and passing around pixel C. The reason is that the 

total cost of the path is the sum of the edges it passes. Therefore, it is unlikely that 

the resulting path would pass the region D, because the edges in region D tend to 

have greater cost on average. Intelligent Scissors finds the optimal path by Dijkstra's 

algorithm, which is discussed in the next section. 
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2.2 Dijkstra's Algorithm 

To find a minimum cost path between two pixels, the shortest path algorithm called 

Dijkstra's algorithm[ll] is used. In this algorithm, the total path cost of every pixel 

from a source are found by dynamic programming. This algorithm effectively com-

putes the shortest paths from all nodes of the graph to a source node. The search 

need not be finished by one pass. Instead, it can be stopped when the search reaches 

the target position. It can save much time since unnecessary paths need not be cal-

culated. If the seed point is changed, the searching must be started again. Time can 

be saved here since not all of the points need to be re-calculated. For example, u is 

the seed point and v is the new seed point. All points go to u passing v need not be 

re-calculated because if p — v ~> u is the shortest path from a point p to u, then 

p — V must be the shortest path from p to v. 

The idea of Dijkstra's algorithm is to utilize dynamic programming to update the 

cost of each point step by step. For each node u, there is a pointer B{u) which points 

to one of its neighbor nodes such that a path from the clicked point to the seed point 

can be established quickly. Note that the cost function c[u, v) can be preprocessed 

and the only changed function is B(u), which indicates the path from u to the seed 

point s. The pseudo-code of Dijkstra's algorithm is as follows: 

Dijktra'sAlgorithm 

Definitions: 

s seed point 

L list of active nodes 

B{u) back pointers indicating the path 

P[u) TRUE if node u is made permanent 

T{u) total cost from u to s 

c(u, v) local cost of edge u — v 
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min{L) pop the node with minimum cost from L 

Algorithm: 

P{u) f- FALSE for all u 

T{s) — 0’ T{u) f - 0 0 for u + s 

L —{all nodes} 

while L + 0 do 

q <— min{L) 

P(q) f- TRUE 

for each edge q ~^ v such that P{v) = FALSE do 

ifT{v) > T{q)^c{q,v) then 

T{v)^T{q)^c{q,v) 

B{v) f- q 

end if 

end for 

end while 

Figure 9 demonstrates how to find the cost map of a 4x4 image step by step. In 

order to simplify the demonstration, each node has only four neighbors instead of 

eight. The extension to eight neighbors can be done trivially by adding four more 

edges to each node. Figure 9(a) is the initial cost map and S is the seed point. 

There are three types of nodes. The first type is the nodes that are not yet visited. 

The second type is the reachable but not permanent nodes. The final one is the 

permanent nodes which have fixed total path cost. At the very beginning of the 

algorithm, the node S is marked as reached(but not permanent) and has total cost 

zero. Non-permanent nodes are put in a priority queue and in each stage the node 

with minimum total cost will be selected and marked as permanent. Figure 9(b) 
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shows that the only element in the priority queue, S, is marked as permanent and 

the cost of its neighbors is updated. Figure 9(b) and (c) shows the cost map with two 

and three permanent nodes respectively. The final cost map with all nodes marked as 

permanent is shown in Figure 9(e). Note that after each update of a node, the node's 

back pointer is modified and points to the node that makes the change. Therefore, 

eventually every node will have a back pointer that indicates the optimal path from 

that node to the seed point. 

The cost function is directly related to the performance of the algorithm. A bad 

cost assignment can either make the resulting contour far away from the boundaries 

or make it too sensitive to noise. Therefore, we describe the cost function in the next 

section. 

2.3 Cost Function 

Since a minimum cost path has to be found and we want to extract contours near 

strong edge features, pixels near boundaries should have low costs and vice-versa. In 

30], the cost function is composed of three functions: Laplacian zero-crossing(/z), 

gradient magnitude(/(?) and gradient direction(/z)). The cost of an edge between 

node u and node v is as follows: 

cost{u,v) = wz • fz{v) + WD • fD(u,v) + WQ . fo{v) (7) 

where wz^ WD and wo are the weights for the functions. 

In the equation, fz is the Laplacian zero-crossing function which has output of 0 

or 1，where 0 means a strong edge. The gradient of a node can be found by central 

difference. If 4 and Iy are the partials of a pixel in x and y directions respectively, 

the gradient of the pixel can be represented by a vector (/^, Iy) and the gradient 
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Figure 9: Cost map of a 4x4 image 
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magnitude G is given by 

G 二 ^/J + Py (8) 

Since pixels with high gradients should have edges with low costs, the gradient mag-

nitude function f o can be approximated with 

=max{G) - G 二 G � 

JG - max{G) — max{G) ^ ) 

The last function fo controls the smoothness of the path. Therefore, the edge p ~> q 

in Figure 10(a) should have low edge cost and the one in Figure 10(b) should have 

higher cost because the line in (a) is smoother than the curve in (b). Thus / ^ can be 

decided by the change of angles of the gradient vectors and the vector {q-p). Let D{p) 

be the vector perpendicular to the gradient vector of p (i.e. D{p) = {Iy{p),-h{p))-

The smaller the angle between D{p) and {q - p) the smoother the curve is and the 

same for the case of D(q) and {q — p). The equation of /_o is given by: 

j^D(p q) 二 cos[dp(p, g)]-i + cos[dg(p, g)]-i (叫 

where 

dp(p,q) = D(p) • L(p,q) 

dq{p,q) = D{q) • L{p, q) 

and 
“ � ‘q - p 'iiD{p)-{q-p)>^ 
L[p,q)= (丄丄>> 

p — q if D{p) • {q — p) < 0 
\ 

The value of f o ranges from 0 to 1. It can smooth the shape of the contour by 

assigning high costs to sharp changed edges. However, in [41], Stalling suggested a 
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Figure 10: Illustration of the gradient direction function f o 

much simpler equation which uses only the image gradient magnitude. Good results 

are generated when it is applied to medical images. The simplified equation is 

cost{u, v) = 255 — l{G{u) + G{v)) (12) 
A^ 

2.4 S u m m a r y 

In this chapter we have introduced a robust algorithm called Intelligent Scissors which 

can extract contours interactively from a 2D image. The algorithm provides a better 

segmentation tool than previous contour extraction techniques such as active contour 

by using dynamic programming. 

The main advantage of Intelligent Scissors is that it allows interactive manual 

corrections of the contour. The process takes a short time for experienced users and 

the interface is easy to control. However, the drawback of this algorithm is that it 

is hard to predict the number of control points which define the closed contour and 

human interventions are inevitable. 

The main algorithm used is the Dijkstra's shortest path algorithm. With appro-

priate definitions of edge costs, it is expected that extracted contours can go along 

with the real image boundaries. We borrow the idea of this algorithm and begin 

developing our new algorithms described in the next few chapters. 



Chapter 3 

Volume Cutting 

The main goal of volume visualization is to give the user a clear understanding of 

a volumetric data set. Various approaches have been proposed in the past. For 

example, by setting voxels other than bone a opacity of zero, one can visualize the 

skull in a head data set by direct volume rendering. If we do not want to use direct 

volume rendering to examine the skull, we can use marching cubes to extract the 

iso-surface. Moreover, we can use some segmentation techniques to extract just the 

brain of human in a volume data. One can also use some simple tools like cutting 

planes to examine the interior structure of a volume. All these algorithms have their 

own pros and cons. One may prefer a particular algorithm in a particular situation. 

For example, experienced doctor may find that examining a X-ray slice is sufficient 

for clinical diagnosis. Although these algorithms have different features, the ultimate 

goal is the same: to examine the data in the greatest extent. Therefore, we can say 

that it is important to develop methods that can help the user to examine a volume 

data. 

In this chapter we propose a new volume cutting algorithm which utilizes the 

technique of Intelligent Scissors. Instead of applying Intelligent Scissors to a 2D 

image, we now apply it to the surface mesh formed from a volume data. The main 

idea of this algorithm is described in Section 3.1. In Section 3.2, the application of 

Intelligent Scissors to surface mesh is presented. Finally, the internal cutting surface 

used to cut away voxels is described in Section 3.3. 

24 
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3.1 Basic idea of the algorithm 

Given a volume composed of two or more objects, how can we effectively cut it into 

two parts such that we can examine the interior structure more clearly? Segmentation 

is probably the most suitable approach for the task. However, current segmentation 

techniques still have many drawbacks, both in the aspects of quality and interac-

tivity. Noisy data or fuzzy object boundaries make the segmentation more difficult. 

Moreover, some segmentation techniques need prior knowledge of the objects to be 

segmented, which makes the algorithms less adaptive to various data sets. 

Based on the above observations, we conclude that a tool which can provide 

intuitive interface for volume separation is necessary. In this section, we concentrate 

on describing a new methodology which can help cutting the volume into meaningful 

parts. We are not going to give an accurate segmentation tool. What we concern 

here is a new method that can be used for interior structure examination of a volume 

data. 

The basic idea of this algorithm can be illustrated by Figure 11. First a surface 

mesh is generated from the volume data by some mesh generation algorithms such 

as Geometrically Deformed Models(GDM)[29]. Second, user selects a closed contour 

which lies on the surface mesh. This contour extraction process is done by Intelligent 

Scissors described in Chapter 2. We modified the algorithm such that it works on 

surface mesh. Detail of the extension is described in the next section. After we get 

the contour, we build a cutting surface based on this contour using an algorithm 

described in Section 3.3. Now we get a surface mesh and a internal cutting surface. 

Voxelize these two surfaces and finally we can separate the volume by a simple region 

growing algorithm. 
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Figure 11: The basic idea of volume cutting 
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3.2 Intelligent Scissors on Surface M e s h 

Intelligent Scissors is originally a tool for image segmentation. For a 2D image, the 

set of pixels is viewed as a graph with each pixel connected to its eight neighbors. 

From [30, 41], Intelligent Scissors has been proved to be an efficient method on 2D 

segmentation. Now we would like to modify the algorithm such that it can be applied 

to volume data. 

To apply the algorithm to volumetric data, we must have a surface mesh of the 

data first. It is like that we should have a pixel graph first for a 2D image. There are 

some meshing algorithms that can build up the surface mesh from the volumetric data. 

For example, Miller et aL[29] proposed the Geometrically Deformed Models{GDM), 

which can get closed geometric models from volume data. 

After we get the mesh, we should design a cost equation that assigns a cost to each 

mesh vertex. In the original algorithm, the cost equation is related to three functions, 

namely Laplacian zero-crossing, gradient magnitude and gradient direction. To find a 

contour on the surface mesh, we would like to modify the original cost equation such 

that the local cost between vertices u and v depends on their gradient magnitudes and 

gradient vectors. It is because geometrical information is more important than image 

information in a mesh. We also discard the Laplacian zero-crossing function since 

it is meaningless to apply a boundary detection function to a surface. The gradient 

vector of a mesh node can be obtained by trilinear interpolating the gradient vectors 

of the vertices of the cell containing the node(see Fig. 12). The resulting cost function 

is 

COSt{u,v) = Wp{u) - p{v)W {Wgfg{u,v) + Wnfn{u,v)) ( 1 3 ) 
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Figure 12: The gradient vector of a mesh node 

where fg and fn are the gradient magnitude and vector functions 
G H + M 

协 , ” ) = 1 - 2ma.(G) 

/ 如 ) 二 1 - 释 2 ) . _ 

p{u)^p{v) are the position vectors at u and v respectively, and Wg, Wn are the weighting 

factors controlling the influence of fg and fn. The gradient magnitude of the gradient 

vector N{u) is represented by G{u). By using this formula, the Dijkstra algorithm 

tends to find a path which has large gradient changes and small normal changes. Note 

that the multiplication of \\p{u) -^(u)|| is important because it guarantees that the 

shorter one of paths with the same cost would be selected. 

A contour on the surface can be found by applying the technique described in 

Chapter 2. The main differences are the cost function and the number of edges 

attached to a node. In this algorithm, the degree of each node is not constant, unlike 

the case for 2D image. The rest is the same as the original algorithm. 
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Figure 13: Generation of external and internal surfaces 

3.3 Internal Cutting Surface 

A closed contour is not enough for volume extraction. To separate the volume into 

two parts, we must have two surfaces. As shown in Figure 13, the first one is the 

external surface mesh. By cutting the mesh by the extracted contour, we can get 

the external surface by voxelizing the half part of the mesh. The second one is the 

internal cutting surface. The external surface can be obtained much easier than the 

internal one since there exists the surface mesh. Therefore, we must develop method 

that can extract the internal surface efficiently. Moreover, the internal surface should 

separate the volume in an intelligent way such that the surface is close to the object 

boundaries. 

To build the surface, we first project the contour onto a plane, as shown in Fig-

ure 14. The plane is oriented as parallel to the contour as possible such that the 

projected area of the contour is the largest. The construction is done by shrinking 

the contour iteratively with minimization of the total surface cost. 

The project plane is associated with three arrays, namely c(xp,yp), L[Xp,y^) and 
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V(xp, pp), where Xp and ŷ  are the projected coordinates, c{xp, y^) is the cost of voxel 

projected on [x^.y^]. L{x^,y^) is the distance from the contour. V(〜，2/p) will store 

the voxel coordinates (x,y,z) that defines the shape of final cutting surface. 

L(xp,yp) is assigned at once after the projection of the contour. As shown in Fig-

ure 15, the distance map can be made by iteratively shrinking the projected contour. 

The number shown in each pixel is the distance to the contour in hops and the pixels 

outside the contour are assigned to infinity. We define Bk be the set of voxels which 

have a distance of k from the projected positions to the contour. 

Bk = {{x, y , z)]L{xp, yp) 二 k } ( 1 4 ) 

The cost of each voxel depends on two factors. The first one is the gradient 

and the second one is its continuity. The first factor makes it as near as the object 

boundaries. The second factor controls the shape of the surface such that it can be 

smoother. The cost function C{x,y,z) of a voxel {x,y,z) is given by: 

C{x, y, z) = -WgG[x, y, z) + WcS{x, y, z) (15) 

where G{x,y,z) is the gradient magnitude and S{x,y,z) is the surface continuity 

function. Wg and Wc are the positive weighting factors controlling the gradient function 

and the continuity function respectively. Therefore, the total cost of the cutting 

surface is the sum of voxels contained in the surface. 

The surface continuity function measures the average distance of a voxel from 

other neighbor voxels. Surely not all voxels from the volume data have to be included 

for the calculation of the cost of a voxel. We define A{x,y,z) be the set of involved 

voxels for the continuity calculation of a particular voxel and it is given by: 

乂0̂’仏2) = J {̂x,y,z) n B(LOvp,yp)-i) n g (i6) 
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Figure 14: Projection of the contour on a plane 

where 

A/-(.,.,.) = { ( ^ " '乂 ) 1 1 ( 4 ' ¾ ) - ( � " p ) | | < ^} (17) 

(xp,yp) and ( x � y ; ) are the projected point of (x,y,^) and ( x ' , y ' , / ) respectively. Q 

is the set of voxels which have been guaranteed to be involved in the cutting surface. 

e is a constant which is used to control how close two neighbor voxels should be on 

the project plane. Therefore, the surface continuity function is defined as follows: 

c, �\ A ^ ^ o 11"-(工，",州1' , � S{x,y,z)= (丄… 

^{^,y,z) 

As stated before, the surface is found by minimizing the total surface cost. It 

can be done by an iterative process which shrinks the projected contour gradually. 

In fact, the projected area is composed of many contours where the pixels of each 

contour have constant L(xp,yp). Therefore, we can process the contours one by one 

to find out the surface. For example, Figure 15(b) is the projection of the contour 

in Figure 15(a). We then move on the smaller contour marked '1，in Figure 15(c). 

After all voxels have been found out by minimizing the contour cost, we move to the 



Chapter 3. Volume Cutting 32 

^ — — ^ ~ = = ! ! ! _ 2  

= I = = = = ^ E = = I = = = = Z = 
T — 一 ^ 0  

\ 二= = 1 0  

ZZVZZZ7Z z z z z z z z z 
X _ ^ [ — _2__2__2__2  

(a) (b) 

— = i m = = _2__2__2__2  
= m m = = z ^ i i _ L i _ _ 2  
一"5"1 ^ I = — ! 丄 1 _ ^ 上 _ 2  

— ^ 1 = I Z = — !上 ^ _ _ ? _上 _ 9  

= = n m = = = ! 丄 丄 上 _ 9  
i m = — ! ! ! _ 2  

(c) (d) 

Figure 15: Distance map L{xp, yp) of the project plane 
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contour marked '2', and so on, until all contours have been processed. The cutting 

surface can be found using the following algorithm: 

Initialization: 

g i- C n Bo 

k ^ 1 

V 4- Bi 

Vz,i,V(z,i) — null 

V z , i , c{i,j) f - 00 

Algorithm: 

for each (x, y, z) G C do 

c{xp,yp) — 0 

V{x^,yp) — {x,y,z) 

II where (a^p,yp) is the projected coordinates of (x, y, z) 

end for 

while V + 0 do 

for each (x, y, z) G V do 
y^, I / /、C{x ,y ,z ) 

一—。(譽)+、’"丨‘，:)丨  

if tmp < c{xp, yp) then 

c{xp,yp) ^ tmp 

V{xp,yp) f - {x,y,z) 

end if 

end for 

0 — U ’ ^ j ) - — " } 

k f- k + 1 

V i - B k 

end while 
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After extracting the cutting surface, the final step is simple. To separate the 

volume, we can have two alternatives. The first one is region growing. After the 

voxelization of the external and internal surfaces, we can select a voxel in the volume 

and perform a simple region growth to get the region of interest. The second method 

uses the algorithm introduced in [22], which can produce volume data from triangular 

mesh. We can add up the external and internal meshes together to form a closed mesh. 

Triangulating the mesh and the voxelization algorithm can be used straightly. 

3.4 S u m m a r y 

In this chapter, a new volume cutting method is proposed. The aim of this algorithm 

is to give user a convenient interface that can separate a volume into two parts by 

considering the object boundaries. A closed contour is extracted using an extension 

of Intelligent Scissors, which is an efficient 2D image segmentation tool. We modified 

it such that it works on surface mesh. A cutting surface extraction algorithm is also 

proposed. By using these two surfaces, volume can be separated into two parts easily. 

The detail of this work can be found in [6 • 
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Three-dimensional Intelligent Scissors 

The Intelligent Scissors stated in Chapter 2 works quite well in 2D applications. 

It motivates us to extend the algorithm to three-dimensional, which is applied to 

volumetric data instead of 2D images. Unlike the volume cutting algorithm proposed 

in Chapter 3, it works not only on surface mesh from volume data, but works on the 

whole volume data with all voxels as graph nodes. 

The characteristic of 2D Intelligent Scissors is to find out a curve lying on edge 

features given the starting and ending points. In volumetric data, however, our new 

algorithm now extracts lines lying on surfaces, instead of boundaries in the case of 

2D. 

The extension from 2D to 3D is straight forward. Like the pixel graph in a 2D 

image, each voxel of a volume is now a graph node and every node has 6，18 or 26 

edges attached to it, depending on whether the graph is decided to be 6-connected, 

18-connected or 26-connected. Figure 16 shows the voxels involved for 6, 18 and 26-

connectivity respectively. Note that the speed of finding a 3D path is directly related 

to the number of nodes and edges in the graph. For example, the graph constructed 

from a 128x128x128 volume data set will have 2 million nodes and about 6 million, 18 

million or 26 million edges for 6, 18 or 26-connectivity respectively. Therefore, using 

a 6-connected graph can find a contour with low quality quickly and a better quality 

contour can be found by a 26-connected graph with lower speed. The algorithm is 

about the same as the previous one except the increasing number of nodes and edges. 

35 
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Figure 16: The 6，18 and 26 connectivity 

4.1 3 D G r a p h Construction 

The graph construction for 3D Intelligent Scissors can be straight forward. Except 

the outermost voxels of the volume, each voxel can be assigned 6, 18 or 28 edges which 

connect to its neighbor voxels. However, if we construct the graph using this straight 

forward approach, we will be in trouble later. The reason is that it will produce a 

huge amount of nodes and edges in the graph. Several tens of seconds can be taken 

to extract just one contour from a graph with 1 million nodes and 26 million edges 

even on powerful computer. It is because the Dijkstra's algorithm has running time 

0{\E\ + \V\log\V\) if Fibonacci heap[16] is used to implement the priority queue (see 

Appendix A), where V is the set of nodes and E is the set of edges. 

Therefore, we must develop some methods which can reduce the number of nodes 

and edges. Since voxels with zero gradient are usually not preferred in the graph 

searching, the elimination of those voxels can reduce a large number of voxels. How-

ever, simply cutting away those voxels can cause problems. Figure 17(a) shows an 

image composed of two line segments. Now consider finding a path from pixel A to 

pixel B. By Intelligent Scissors, a segment similar to the red line should be found 

easily. However, if we cut away voxels of zero gradient, the image will be broken into 

two groups, as shown in Figure 17(b) (non-zero gradients are represented by shaded 

squares). Since a crack separates the groups, the search originates from node A would 
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Figure 17: (a) Original image (b) Image gradient 

never reach the other group containing B. Thus it is impossible to find a path from 

A to B. In some medical data, the boundaries between objects can be not clear and 

may contain zero gradient voxels. Therefore, a simple node pruning is not reasonable. 

Now the problem is how to reduce the number of voxels but preserve the con-

nectivities of objects inside the volume. Obviously, we cannot eliminate all voxels 

which have zero gradient. Instead, we should keep some of them and use those voxels 

to connect between different groups. To solve the problem, we use a data structure 

called IsoRegion[32], which is used to accelerate ray casting originally. Usually, a 

volumetric data set contains many empty or homogeneous regions. Each of these 

regions contains voxels of the same value. Particularly, if the shape of the region is a 

cube and the size of it is in the form of {2d + 1)3 for d > 0, we say that the region is 

an IsoRegion and d is called the dimension of that IsoRegion. 

IsoRegion can be represented as a 3D array where every element indicates the 

dimension of the corresponding IsoRegion at that voxel. Therefore, a voxel u has a 

IsoRegion number n means that the (2n + 1)3 voxels of the cube centered at u have 

the same voxel intensity. Figure 18 shows a 2D image and its corresponding IsoRegion 
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Figure 18: IsoRegion of a 2D image 

map. The algorithm for the IsoRegion construction can be found in Appendix B. 

Since the edge length of an IsoRegion must be odd, it guarantees that there 

must be one voxel placed at the center. Now we modify the previous node pruning 

algorithm a little bit: all voxels with zero gradient are cut away, except the center 

voxels of IsoRegions. Connectivity can be established by linking some of the boundary 

voxels of an IsoRegion to the center voxel(Fig. 19). Linking all boundary voxels to 

the center can produce too many edges if the dimension of the IsoRegion is large. 

Therefore, only 26 boundary voxels corresponding to the directions of 26-connectivity 

are considered. Figure 20(a) is the IsoRegion map of an image. According to our 

algorithm, all voxels inside an IsoRegion are pruned away, except the boundary voxels 

and the center voxel. Higher priority is given to larger IsoRegions. For example, 

voxels in Figure 18 marked '1' corresponds to IsoRegions of dimension one. However, 

they are still cut away, as shown in Figure 20(b), since they are contained by larger 

IsoRegions of dimension two. Finally, the graph can be completed by linking the 

boundary voxels to the center voxels, as shown in Figure 20(c). Usually not all 

boundary voxels of an IsoRegion are present after pruning because they are contained 

in other IsoRegions. Links are added to those present boundary voxels only. The 
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pseudo code of the graph construction algorithm is as follows: 

Initializations: 

V — { } /* The set of graph node*/ 

E <- { } /* The set of graph edge */ 

I{u) = 0 for all voxel u /* The IsoRegion map */ 

A — { } 

Algorithm: 

I = makeIsoRegion{) /* Make IsoRegion map, see Appendix B */ 

/* Add nodes */ 

for each voxel u in the volume 

if I{u) = 0 or I{u) > I{v) for all neighbor v then 

y = y u {u} 

end if 

end for 

/* Add edges */ 

for each node u G V 

if I{u) 二 0 then 

A — { set of neighbor nodes } 

else 

A — { set of the 26 boundary nodes } 

end if 

for each node v G A 

if (u, v) • E then 

E = EU{{u,v)} 

end if 

end for 

end for 
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Figure 19: Definition of boundary and center voxels in IsoRegion 

4.2 Cost Function 

The cost function is about the same as the one described in Section 2.3. The main 

difference is that it is now applied to volumetric data. Here we use the 3D image 

gradient and Laplacian zero-crossing functions to evaluate the cost of each edge. Let 

fg and /^ be the gradient and Laplacian zero-crossing functions respectively. If p{u) 

is the position vector of u, then the cost equation is 

cost{u,v) = Wp{u) -p(^;)|l {wgfg{u,v) + wJ^{u,v)) (19) 

where Wg and w^ are the weighting factors controlling the gradient and Laplacian 

zero-crossing functions respectively. Experiments show that Wg = 0.7 and w^ 二 0.3 

give acceptable results. 

If ( 4 , Iy, I^) is the gradient vector of a voxel u, the gradient function of a voxel 

can be represented by 
御） +御 ) _ 

他 ” ) 二 1 _ ma.(G) (20) 

where 

咖 ) = y J P M + Il{u) + Il{u) (21) 
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Figure 20: (a) The IsoRegion map (b) After node pruning (c) Linking 
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Finally, the equation of Laplacian zero-crossing function is given by 

‘ 0 if W ( u ) * 齊 ⑷ < 0 
Jz(u,V) = [^^) 

1 if V^V{u) * V^V{v) > 0 
V 

where 
,,、(d'V d'v d^V\ ,。。、 

• 外 ) = 1 斤 + " ^ ^ + 巧 丨 阅 

and it can be approximated by the following discrete form 

W ( a ; , y, z) ^ (27V(x, y, z) — ^ ^ ^ V(o: + z, y + j, z + k))/26 (24) 
i=-l j=-l k=-l 

4.3 Applications 

So far we have described what three-dimensional Intelligent Scissors is and how to 

construct the corresponding graph. In this section we would like to discuss its use-

fulness by proposing two applications. The first one is a surface extraction algorithm 

and the second one is a vessel tracking algorithm. 

4.3.1 Surface Extraction 

Finding contour in one slice by Intelligent Scissors is fast. The original technique can 

be used to extract contours from different slices and surface can be reconstructed by 

joining the contours together[19, 14, 54]. However, the process of extracting every 

slice is troublesome. Moreover, the process of joining adjacent contours is complex. 

Therefore, we hope that the process can be simplified by using as few slices as possible 

and thejoining process is left for 3D Intelligent Scissors. Theoretically, lines extracted 

by 3D Intelligent Scissors tend to lie on iso-surface. It means that a surface inside a 

volume can be reconstructed if we use enough 3D lines. In this section, we show that 
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Figure 21: (a) The initial triangle (b) Four triangles after the first subdivision 

how to construct iso-surface using three slices which are parallel to the XY, YZ and 

ZX-plane respectively. 

Firstly, we define three contours in the XY-plane, YZ-plane and ZX-plane re-

spectively. The ends of contours are joined together such that it forms a "deformed 

triangle"(see Fig. 21(a)). The planes can be selected arbitrarily inside the volume 

and the extractions of the contours in their corresponding planes can be simply done 

by 2D Intelligent Scissors. 

Surface reconstruction is done by applying a recursive subdivision to the "de-

formed triangle" by subdividing the contours and joining the mid-points together. 

As a result, four smaller "triangles" will be formed (Fig. 21(b)). Further subdivisions 

are performed depending on the level of detail(LOD) and finally，a multi-resolution 

surface mesh can be formed. If a mesh has i triangles, then the mesh of the next 

level will have 4t triangles. Therefore, in general, a mesh of level n has 4^ triangles. 

Figure 22 shows six surface meshes of LOD 0, 1, 2, 3，4 and 5 respectively. The 

volumetric data is a CT head of size 128x128x64 and the shown surfaces are the 

outermost skin from one of the eight equal sized octants. 

The contours are in voxel level. It means that every contour is composed of voxels 
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Figure 22: Surfaces for 0, 1, 2, 3, 4, 5 subdivisions respectively 
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Figure 23: (a) Two triangles before subdivision (b) A crack appears if only one is 
subdivided 

and the midpoint of each contour is also a voxel. Therefore, we say that a contour is 

of length n if it is composed of n + 1 voxels. One problem of the subdivision is that 

if the length of any one edge is one, i.e., composed of two voxels, the triangle cannot 

be subdivided into four triangles normally. Thus a crack will be formed if we left it 

unsubdivided (Fig. 23). The solution is to classify all triangles into four cases and 

subdivide a triangle according to its configuration. The first case is the normal case 

where the length of every edge of the triangle is greater than 2 voxels. The second case 

consists of one edge with length equals to one. The third and fourth cases consist of 

two and three edges with lengths equal to one respectively. The subdivision methods 

of these four cases are shown in Figure 24. Following these subdivision rules will 

make the output surface model a closed mesh, which can be subjected to geometric 

operations. 
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4.3.2 Vessel Tracking 

In medical data, various kinds of vessel tracking are sometimes needed because clear 

descriptions of the vessels are important for clinical diagnosis and surgery planning. 

For example, the human liver can be divided into 8 different segments and these seg-

ments can be distinguished according to the branching pattern of the blood vessels. 

In neurosurgery, a clear understanding of cerebral vasculature can help a lot in the 

surgery planning. The third example is heart diseases. Congenital or acquired heart 

diseases may need surgical intervention and dilation of narrowed vessels. The under-

standing of the patient's actual vessel morphology is very important to the surgery. 

Various approaches[53, 47, 13, 36] have been taken to find out blood vessels auto-

matically or semi-automatically in the past. They build the vessel tree either based 

on multiple X-ray images(biplane angiograms) or directly from volume data, using 

some region growing or image processing techniques. In this section, we propose an-

other method that finds such paths using three-dimensional Intelligent Scissors. 3D 

Intelligent Scissors has this ability since the line extracted by it tends to "climb" 

along surfaces. Therefore, a rough path can be found out by the algorithm if the 

end points of a narrow tunnel are selected as the starting and ending voxels (see 

Fig. 25(a)). Another advantage of using 3D Intelligent Scissors for the task is it can 

successfully extract the path even the actual path is broken (see Fig. 25(b)). In some 

medical data, the diameter of a blood vessel may sometimes smaller than one voxel. 

Therefore, it makes some region growing algorithms[53] unsuitable in such cases. 

A path between two voxels can be found out easily by Dijkstra's algorithm(Section 2.2). 

Normally Dijkstra's algorithm originates from the source node and stop the searching 

if the target node is reached. It means that the graph is only partially filled if a 

"point to point" shortest path is to be found. Therefore, if the source node is fixed, 

the partially filled graph can be re-used in order to save time, since some or most of 
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Figure 25: Path finding in volumetric data 

the nodes have already been traversed. This property can be applied to the construc-

tion of a vessel tree since all branches of the tree have a common source/root node. 

The building of a vessel tree can be done by a simple algorithm: 

Initializations: 

r — root node 

T — { all target nodes } 

G ^ the graph (V, E) /* V = { all nodes}, E = { all edges} */ 

B{u) <r- nil for all u G V 
/* B{u) = V if there is an extracted path containing edge (u,v) */ 

Algorithm: 

for each u G T 

if B[u) — nil then 

Dijkstra{G,B,r,u) 

endif 

end for 

As a result, the path information is stored in the node array B{u), which is the 

back pointers that indicate the paths (see Fig. 26(a)). Therefore, a path from root 

node r to a target node v can be found by traversing the back pointers and the path 
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can be represented as 

path = {^, B{v), B{B{v)), B{B{B{v))),.", r } (25) 

Other than the path extraction, the locations of branch points are also important 

in some applications, for example, the navigation of lung air ways. A branch point 

is the intersection of two different paths originated from a single source node (see 

Fig. 26(b)). The locations can be found out by examining all elements of array B. If 

a node v is pointed by other two or more nodes, we say that v is a branch point. The 

following algorithm finds out all branch points and stores the branch nodes in K: 

Initializations: 

C{u) f - 0 for all u G V 

K 4- { } /* the array stores branch nodes */ 

Algorithm: 

for each node u G V 

C{B{u))^C{B{u))^l 

end for 

for each node u G V 

if C{u) > 1 then 

K = K U {u} 

end if 

end for 

4.4 S u m m a r y 

In this chapter, we extend the idea of two-dimensional Intelligent Scissors to three-

dimensional. The graph construction of volumetric data introduces a huge amount 
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of nodes and edges, which severely slows down the contour extraction algorithm. 

In order to reduce both the number of nodes and edges, we cut away most of the 

nodes inside homogeneous regions and leave some of them for connections of different 

groups. 

We apply the three-dimensional Intelligent Scissors in two areas: surface extrac-

tion and vessel tracking. Since lines extracted by the algorithm tend to lie on sur-

faces, enough number of such lines can reconstruct the surface inside the volume. 

The surface is built by a recursive subdivision of an initial abstact triangle with three 

non-straight edges. The output is a topologically simple surface mesh bounded by 

the initial deformed triangle. 

By the same characteristic, a vessel can be tracked out provided the two ends of 

the vessel are known. This can be used to find blood vessels, cerebral vasculature or 

lung air ways. It is also demonstrated how to find out branch points of a vessel tree 

in order to have a virtual fly-through of the volume data. 

The main contribution of 3D Intelligent Scissors is that it can extract contours 

in volumetric data. With this property, we can extract meaningful curves lying on 

surfaces. The algorithm would be more useful if we can extract contours in an in-

teractive rate. However, the huge amount of nodes and edges in a graph makes the 

process far from interactive and it becomes the major drawback of the algorithm. It 

is obvious that we need to improve our graph pruning algorithm and graph searching 

technique in order to improve the performance. 

In the next section, we show the implementations of these new algorithms on a 

virtual environment called Virtual Workbench. User-friendly interfaces are built in 

order to give user an easy and efficient control of these algorithms on volumetric data. 



Chapter 5 

Implementations in a Virtual 

Environment 

When dealing with high-dimensional data, a two-dimensional interface is usually not 

sufficient. Instead, a higher dimension interface is preferred. Particularly, Virtual 

Workbench[43] is one of such interfaces that is suitable for the manipulation of 

three-dimensional data and provides stereo display and three-dimensional interac-

tion. Various applications have shown that it is an appropriate virtual interface for 

three-dimensional dextrous work[4, 44, 45 . 

In previous chapters, we have described a new algorithm for volume cutting which 

is based on the technique of dynamic programming. By using a closed contour lying 

on the surface of a volume, the volume can be cut into two parts (see Chapter 3). An 

extension of the 2D Intelligent Scissors to 3D is also presented in Chapter 4. Based on 

this extension, two new algorithms that extract surfaces and vessels from volumetric 

data are developed. 

In this chapter, we show the implementations of our algorithms on Virtual Work-

bench. Some experiments have been carried out and all of the results in this chapter 

have been measured on a SGI Octane R10000 MXI workstation. A programming 

library called BrixMed [37] is used. It is mainly designed for the Virtual Workbench 

and many useful classes and their call-back functions are well defined, including plane, 

volume, toolrack, tools, lights,...etc. A snapshot of the working environment is shown 

in Figure 27. Typically the environment consists the target objects(the volumetric 

52 
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Figure 27: A typical working environment in Virtual Workbench 

head), a tool(the pen) and a toolrack. Different tools for different operations can be 

selected by clicking the buttons of the toolrack. 

In BrixMed , volumetric data is rendered using 3D texture mapping and there are 

four modes to display the volume, namely, full volume mode, cut-box mode, triplanar 

mode and monoplanar mode. Figure 28 shows the effects of applying these display 

modes to a volume. 

5.1 V o l u m e Cutting 

In Chapter 3 we introduce a new algorithm for cutting volumetric data. The program 

is implemented on Virtual Workbench and a simple interface is built. The cutting 

process is separated into two parts. The first part is contour definition, which selects 

and edits a closed contour. This contour is used to cut the volume into half later. 

The second part is a cutting surface construction and the volume can be separated 

by region growing using this surface as boundary. 

Before the contour definition, a surface mesh has to be built first. For simplicity, 
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Figure 28: The four volume display modes 
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Figure 29: Environmental mapping of a volume 

we use an environment map to represent the mesh. It is constructed by projecting 

rays from a sphere containing the volume to the center and sampling along the rays 

in order to decide whether the rays reach the surface or not(see Fig. 29). The major 

drawback of this method is that every point on the surface must be visible from 

one point inside the volume, otherwise the mesh would be incorrect. In fact, other 

more complicated and accurate mesh extraction algorithms can be used here and our 

algorithm works in the same way. However, since mesh extraction is not the main 

concern of our cutting algorithm, we choose to generate the surface mesh using a 

simple algorithm. 

The first step of our cutting algorithm is to define a closed contour lying on the 

surface mesh. A point on the mesh can be chosen using a six degree-of-freedom(6D0F) 

stylus. When the stylus moves near the surface mesh, the nearest mesh point will 

appear as a sphere. Points with higher gradient magnitudes can be selected by the 

stylus with the help of a 3D snap. Every time we choose a mesh point, the mesh 

points covered by the snap are also considered such that a better edge point can be 
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selected. Figure 30 shows the procedure for defining a closed contour by the interface. 

After the contour definition, the rest of the process is automatic. Firstly, based 

on the closed contour, an internal cutting surface can be constructed using the algo-

rithm described in Section 3.3. Since we now have a surface mesh and the internal 

cutting surface, volume separation can be done by a simple region growing algorithm. 

Figure 31(a)-(f) show some results of this application. Figure 31(a) is the original 

volume, which is a 128x128x64 CT head. Figure 31(b) is the state after defining 

a closed contour surrounding the nose and Figure 31(c) is the volume after cutting 

away the nose. Figure 31(d)-(f) is a similar case except that instead of the nose, a 

part of the face is cut off. 

5.2 Surface Extraction 

The algorithm described in Section 4.3.1 shows how to extract surface from volumetric 

data by using three joined contours. The three contours can be lying on any three 

planes. For simplicity, we use the XY-, YZ- and ZX-plane only. Note that it works 

in the same way even three arbitrary planes are used. 

To extract the surface, we have to extract the three boundary contours first. The 

extraction is done by the interface shown in Figure 32. The interface consists of three 

planes from the volume, which can be rendered using the triplanar mode. At the 

very beginning, the end points of each contour are fixed and the three points have the 

greatest value along their corresponding axes by default (Fig. 32(a)). Three sliders are 

used to tune the three points to the best positions (Fig. 32(b)). After placing the three 

points correctly, the user can use a 3D stylus to edit the contours (Fig. 33(a)). New 

nodes are inserted into the contours in order to change their shapes. For example, if 

u and V are the end nodes of a contour and the path u ~> v is found by the algorithm, 

a node p can be inserted between u and v such that a new contour u — p — v can be 
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Figure 31: Volume cutting by a closed contour 
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formed. The leftmost three buttons in the menu bar control which contour is going to 

be edited. When a plane is selected, a line perpendicular to the plane will be drawn 

from the tip of the stylus to the plane, in order to indicate the position accurately. 

Figure 33(b) shows the final view of the three edited contours. The speed of finding 

and editing the three contours is fast here since the graph searches are restricted to 

two-dimensional planes only. Later construction of the surface, however, consumes 

much more time because the searches are done throughout the volume. 

After the contour definitions, the surface bounded by these three contours can 

be constructed by recursive subdivisions. User is required to choose the level of 

detail which represents the subdivision levels that the process is going to perform 

(see Fig. 34(a)). A surface mesh can then be extracted and Figure 34(b) shows the 

resulting surface from a corner of a 128x128x64 CT head. It is the same surface 

shown in Figure 22 of Section 4.3.1. Table 1 shows the timing results that needed to 

generate the surface shown in Figure 34(b) with different levels of detail. The data 

set is the same for all four cases except the positions of the three planes. Each graph 

is 18-connected. For each case four surfaces are produced with levels 1 to 4. 

5.3 Vessel Tracking 

In this section, the implementation of the vessel tracking algorithm on Virtual Work-

bench is shown and it is applied to the tracking of lung air ways. Commonly, 

vessels from medical data are found by region growing[53], 3D image processing 

techniques[47] or tracing manually[44]. In Section 4.3.2, we has presented an alter-

native method that uses dynamic programming to find a vessel between two voxels. 

Here we show that how the algorithm actually works in a virtual environment. 

To search for vessels in a volume, we have to construct the corresponding 3D 

graph first. The data set we used is a 128x128x64 lung data set. A straight forward 
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Figure 32: Joint points adjustment 
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size I no. nodes | no. edges | level | no. triangles | CPU time(sec.) 
32x32x32 ~~l0435~~~~69572~~ 1 4 0.07 

~ T ~ 16 0.27 
~ 3 ~ ~ 58 0.85 
~~~r~ 202 2.68 

64x32x32 3 0 ^ 236704 1— 4 一 0.68 
~~2~~ 16 2.08 
~ ^ ~ ~ 64 4.32 
~~^~~ 250 9.31 

64x64x32 78609 664090 ~ 1 ~ " 4 3.03 
2 16 7.48 
3 64 一 12.51 “ 

~ 256 — 22.95 _ 
64x64x64 149560 1293068 ~ 1 ~~ 4 7.12 

~ ^ ~ ~ 16 16.86 
~ 1 64 一 28.16 一  

4 256 47.97 “ 

Table 1: Timing results for surface construction 

construction of the volume would produce 1 million nodes and about 9 million edges 

for 18-connected graph. Since the numbers of nodes and edges are too large, the 

volume is thresholded such that voxels with intensity smaller than 30 are set to zero. 

Moreover, since the upper part of the volume contains unnecessary data, the search 

is limited to voxels with y < 90. After thresholding and node pruning, the number 

of nodes is 372820 and the number of edges is 3158320. 

The interface of this program is simple(Fig. 35). User can choose the display 

mode of the volume by the middle four buttons in order to spot the vessel end points 

more easily. The two right buttons on the menu bar control the selections of vessels. 

After pressing the first button, the voxel selected by the 3D stylus will be set as 

the root of a vessel tree. Only one voxel can be set as root since only one tree is 

going to be extracted in this program. The second button enables the tool to select 

an arbitrary number of terminals. Figure 35 shows the steps of defining the vessel 

丨̂ 睡̂,̂ _̂ ̂^̂̂ ĵ̂̂ f̂̂̂^̂—̂̂îMMiuîjBBf̂gjnimiWM1̂BBl̂BWl̂BKmWBHBWB̂H!rMBWBnfTP?BBtlBBHIitŴ̂BiBMmBBr**"?̂*̂i*̂̂ f̂lffBSWBM8HHMBfflMHrĵ!̂w 
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size no. nodes no. edges CPU time(sec.) {\V\log\V\ + |^|)/lOQQQO" 
32x32x32 32500 268165 0.83 3.12 “ 
64x23x32 _ 65088 547833 1-85 ^  
64x64x32 _ 113374 982738 3.49 l̂：^̂   

64x64x64 “ 227503 2024591 一 8.24 2 ^  
128x64x64 390123 3470100 15.15 41.27 

Table 2: Timing results for vessel founding 

tree. In Figure 35(a), the voxel with a small sphere is the root selected by the stylus. 

Vessels can be found by specifying the ends of the vessels(Fig. 35(b)). The volume in 

Figure 36(a)-(e) is rendered in monoplanar mode and we can see that the extracted 

vessel(red line) is passing through one of the air ways. Provided that the graph is 

present and only one tree is needed to be found, the extraction of vessels from that 

root is fast. The most time consuming part of the algorithm is to find the paths from 

all nodes to the root node. It is basically a single-source shortest path problem . If 

the root node is fixed, this calculation is needed to be done once. Table 2 shows the 

CPU time needed to find all paths provided a root node is given. The data set is 

the same lung data used before and only part of it is used each time. As shown in 

appendix A, this algorithm has a complexity of 0{\V\log\V\ + \E\). The last field of 

the table computes |V̂ |/c>dV̂ | + |£̂ | and it can be seen that the increasing rates of this 

value and the time is approximately linear. 

5.4 S u m m a r y 

In this chapter, we show the implementations of our algorithms described in previous 

chapters. For the manipulations of volumetric data, the platform is important. The 

working environment should be able to provide a high-resolution stereo display and 

true 3D interaction. Therefore, we choose the Virtual Workbench as our working 

environment, which can be used to do some dextrous work. 

~ — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ — ~ ~ ~ ~ ~ ~ — ™ ™ M M I » ™ M » « M ™ l — ™ « g g - " W " ™ * < > - ™ « ™ - ™ » ™ " « » ™ ™ " ^ 
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國 
H i l i 

(a) root selection 

_ 

(b) terminal selection 

Figure 35: Construction of the vessel tree 
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In the previous two chapters, one volume cutting algorithm, one surface extraction 

algorithm and one vessel tracking algorithm are proposed. The first one is based on 

the 2D Intelligent Scissors and the last two are based on the 3D Intelligent Scissors. 

Three programs have been written for the algorithms using the BrixMed programming 

library. Each interface of the programs has four buttons in common. These buttons 

control the display modes of the volume. In BrixMed , four display modes are sup-

ported, namely, full volume mode, cut-box mode, triplanar mode and monoplanar 

mode. Using these display modes can help identifying features inside volumetric data 

in a more convenient and efficient way. The three interfaces are very simple and 

have only 2-6 buttons related to the corresponding algorithm. For example, the ves-

sel tracking program only have two buttons related to the algorithm. One for root 

locating and one for terminal locating. 

The applications are not real-time. It is because the graph needed to be searched 

is too large, even we have used a graph node pruning algorithm to cut away most 

of the unnecessary nodes. To have interactive performance, some kinds of volume 

compression or node clustering algorithms have to be used, in order to reduce both 

the number of nodes and edges in the volume graph. 

_iiii_^^imimiiiiiiiiiIiiiii_i_iiii__i_iMi - - - - " " " - ' " ' " " " " " ' I I I I I B I M I I I I II I _i"'""""""-""->¾¾^""<> 



Chapter 6 

Conclusions 

In this thesis, manipulations and feature extractions of volumetric data are the major 

subjects. The performance of pure volume visualization is not the main concern 

in this work. With the help of hardware assisted 3D texture mapping technique, 

volume visualization can already be interactive nowadays. With small data set(e.g., 

128x128x128), it is not hard to achieve 20 frames per second in a small window like 

128x128. One of the major drawbacks of 3D texture mapping is that the performance 

is directly related to the amount of available texture memory. Moreover, usually only 

high-end graphics workstations have this functionality. However, we believe that the 

rapid evolution of computer hardware would make 3D texture mapping a common 

feature of standard workstations eventually. Therefore, we only focus on how to 

manipulate and understand volumetric data in the greatest extent by the help of a 

virtual working environment. 
In this chapter, we give a summary of our work and some future research directions 

and improvement are proposed. 

6.1 S u m m a r y of Results 

The work in this thesis mainly emphasizes on volume cutting and feature extraction 

algorithms. These algorithms are summarized as follows: 
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Chapter 6. Conclusions 

• Application of Intelligent Scissors on volume cutting. Intelligent Scis-

sors is a successful 2D image segmentation tool. An image is transformed into 

a graph and boundary features are found by Dijkstra's shortest path algorithm. 

By successive extractions of contours, a closed contour can be formed for image 

segmentation. We applied it to volumetric data such that a closed contour on 

the volume surface can be extracted in a similar manner. The volume can then 

be separated into half based on the contour. 

• Extension of Intelligent Scissors from 2D to 3D. Although Intelligent 

Scissors has been applied to volumetric data in the volume cutting algorithm, 

it is still a 2D contour extraction tool. We extended the tool to 3D by con-

structing a 3D graph of the volume. A contour between two voxels is extracted 

by Dijkstra's algorithm and feature lines lying on the surface inside the volume 

can be found. 

• An alternative surface extraction algorithm. Surface extraction is an 

important process in volume segmentation because it gives user a more clear 

view of the interior part of a volume. Since contours extracted by 3D Intelligent 

Scissors tend to lie on boundary features, sufficient number of such contours 

should be able to reconstruct the surface. In this thesis, a surface construction 

algorithm based on three manually traced contours is proposed. Experiments 

show that the algorithm works well for the extraction of simple surface. 

• A vessel tracking algorithm. 3D Intelligent Scissors has the ability of 

finding path between two voxels since the gradients of voxels along vessel should 

be high and this characteristic fits the 3D Intelligent Scissors algorithm quite 

well. Experiments have been done on lung data in order to find out the air 

ways. 
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6.2 Future Directions 

We have demonstrated how to reconstruct surface and extract vessels from volumetric 

data by 3D Intelligent Scissors. The basic idea is borrowed from the corresponding 

2D image segmentation tool, which is a fast and robust contour tracking algorithm. 

However, we can see that the performance degrades after extending the algorithm from 

2D to 3D due to the huge number of nodes and edges. Although we have reduced 

the size of graph significantly (40 �6 0 % ) by using the IsoRegion data structure, the 

size is still unreasonable for interactive contour extraction. Time for extracting a 

vessel tree is still acceptable since it only consists of one root node and the search is 

only needed once. However, for the surface construction algorithm, we can see that it 

takes a long time to finish the extraction since the surface consists of a large number 

of contours with different starting and ending points. 

We can see that if we want to improve the performance of our algorithms, we 

have to further reduce the size of the volume graph. Volume compression techniques 

like hierarchical compression[24], vector quantization[33] or wavelet[17] may work. 

Data coherence is important in volume compression and IsoRegion is just one of the 

many structures that deal with data coherence. A cooperation of various volume 

compression algorithms and the graph construction algorithm would surely further 

reduce the size greatly. 

Another possible improvement is the automatic extraction of vessels in volumetric 

data. At this stage, each vessel is found by specifying its two end voxels manually. In 

an actual application, the vessels needed to be extracted may be too many such that 

manually locating all end points would be time consuming. In our algorithm, each 

node of the graph would have a back pointer and a distance variable, which indicates 

the total cost from that voxel to the root voxel. By examining this variable, we can 

probably determine whether a voxel is a terminal or not, since paths pass through 
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homogeneous region tend to have high total cost. Selecting a pre-defined number 

of voxels with low total cost and reasonable length may extract a large number of 

correct paths. These voxels may be further evaluated by applying a region growing 

algorithm, which determines that if the voxel is a tip of a line with certain length, 

say, 10 voxels. 

Finally, a rich set of visualization tools can be integrated into Virtual Workbench. 

Many techniques are useful if it can be implemented in Virtual Workbench. Espe-

cially those need stereo display and 3D manipulation of data. For example, a virtual 

fly-through along the lung air ways immediately after vessel extractions may be in-

teresting. 
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A p p e n d i x A 

Performance of Dijkstra's Shortest Path 

Algorithm 

Recall that the performance of either 2D or 3D Intelligent Scissors depends greatly 

on the complexity of Dijkstra's algorithm. The algorithm maintains a list of labeled 

nodes and the list supports the following functions: 

• insert(n,k) Insert a node n with a key value k into the list. 

• delete_min() Delete the node with the lowest key value from the list. 

• decrease(n,k) Decrease the key value of node n to k. 

Lists that support these functions are also called priority queues. Usually priority 

queues are implemented using heaps，which is a tree structure that keeps the node 

with minimum key value as root node. Various kinds of heaps were proposed[25, 23 

but most of them require 0{log\V\) time for each of the operations. Assume that V 

and E are the sets of nodes and edges of the graph respectively. Dijkstra's algorithm 

requires at most |V̂| — 1 delete_min() operations, at most |T/| insert operations and 

at most \E\ decrease operations. Therefore, Dijkstra's algorithm using normal heaps 

will have a complexity of 0{\E\log\V\). 

In 1984, Fredman and Tarjan[16] proposed a data structure called Fibonacci heaps, 

which reduces the complexity of insert() and decrease() operations to 0(1). Therefore, 

the complexity of Dijkstra's algorithm using Fibonacci heap is 0{\E\ + \V\log\V\). 
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IsoRegion Construction 

The following algorithm is quoted from [32] and it constructs IsoRegion from volu-

metric data. 

Initial step: 

for all voxel position (x, y, z) 

if V{x^i,y^3,z^k) 二 V{x,y,z) 

V z , j , A ; G [ - l , l ] 

then 

Is0Regi0n(x,|/,2:) f - 1 

else 

Is0Regi0n(x,y,2:) f - 0 

Iteration step: 

d f - 1 

repeat 

for all voxel position {x, y, z) 

if IsoRegion(tt;) > d 

Ww e No{x,y,z) 

then 
IsoRegion(x, y, z) f - IsoRegion(x, y, z) + 1 

d 4-c^+l 

until no further IsoRegion found 
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