
INTERACTIVE VOLUME VISUALIZATION IN A
VIRTUAL ENVIRQNMENT

by

Yu-Hang Siu

Submitted to the faculty of the Graduate School

in partial fulfillment of the requirements

for the degree

Master of Philosophy

in the Department of Computer Science and Engineering

The Chinese University of Hong Kong

August 1998

y ^ ^ ^ ^ 5 v
p ^ ^ ^

r (1 8 JUL 1SS3 J s |

^ ^ ^ UNIVF.RS!TŶ / M /
^̂ L̂IBRARY SYSJmy^
^ ^ ^ | /

,

© Copyright 1998

Yu-Hang Siu

ALL RIGHTS RESERVED

ii

摘要

這篇論文的主要目的是探討如何在虛擬環境中發展出有效的體數據可視化

(volume 乂丨3口& 2̂&1丨(̂)方法°傳統上體數據可以在二維的螢幕上顯現出來°但隨著

電腦能力的提升和虛擬真實技術的進步，二維的顯示和操作方式已再不能滿足大

部份的用家了。我們現在需要的是一個能容許三維顯示和操作的真正虛擬環境°

這個硏究將會集中於體數據在虛擬環境中的操縱°這裡會提出一個新的體數據切

割技術。這個技術主要建基於一個叫‘智能剪刀’（InteUigent 5683018)的二維圖

像分割算法°我們採用一個相似的動態程序設計(47^&^1^ programming)技術去求

出一個體數據表面上的關閉等値線°利用這條等値線我們可以求出一個切面。最

後就可以用一個區域生長算法0"0纟10^ growing &垣061虹)去將那個體數據一分爲
o

我們亦會介紹一個新的等値面抽取(iso-surface extraction)方法。在醫學資料的曲

面重組(8口计&06优(：0似1瓜(̂ 丨00)過程中，爲了要有準確的結果，大多數圖像切面都

需要考察。這個程序是很複雜的，因爲它需要抽取每一塊圖像切面的等値線和很

多的人手修正。所以，我們把‘智能剪刀’的槪念擴展和引用到體數據上°這個

算法的主要目的是提供一個簡單易用的曲面重組界面和將涉及的圖像切面和人

手修正減至最少。

最後，因爲三維的‘智能剪刀’可以抽取依付在曲面上的線條，這令它有找尋路

徑的能力。如果一條管道的兩端是已知的，那麼這條路徑就可以憑三維‘智能剪

刀’求出來。這個特性可以用來找出某些醫學體數據上的血管°我們亦做了一個

實驗去證明它可以找出肺部體數據上的氣管位置°

Abstract

This thesis concerns how to achieve efficient volume visualization in virtual environ-

ment. Traditionally, volumetric data is visualized and displayed on a two-dimensional

screen. With the increasing computational power and improving techniques for Vir-

tual Reality(VR), people are no longer satisfied with two-dimensional input and dis-

play. Instead, a real virtual working environment with three-dimensional input and

output is found to be more appropriate.

In this research, I concentrated on the manipulation of volumetric data in a virtual

environment. A new technique for volume cutting is proposed. It is based on a

technique called Intelligent Scissors, which is a two-dimensional image segmentation

tool. I adapted a similar technique which used dynamic programming(DP) to find

out closed contour along surfaces of volumetric data. A cutting surface is produced

using the resulting contour. The volume can then be cut into two parts by a simple

region growing algorithm.

Besides volume modeling, a new iso-surface extraction algorithm is also described.

For surface reconstruction in medical imaging, every slice has to be examined in order

to give accurate result. The process is troublesome since it requires every contour

from every slice and it always involves a lot of manual corrections. Therefore, I

proposed an algorithm that extended the idea of Intelligent Scissors and applied it

on volumetric data. The aim of the proposed algorithm is to give a comprehensive

interface for surface extraction while minimizing the number of slices involved and

the number of manual corrections.

Since the extension of Intelligent Scissors can extract curves lying on surfaces, it

gives the possibility of "path finding". Provided that the end points of a path are

iii

known, the path can be found out by three-dimensional Intelligent Scissors. This

property can be used to find out blood vessels in medical data and some experiments

are carried out to extract paths in lung data.

iv

Acknowledgements

Thanks my supervisors, Prof. P.A.Heng and Prof. H.Sun, for their invaluable advice

during these two years. I would also like to thank Kevin Wong for his great contribu-

tion to the Volume Cutting algorithm, which is a fairly important part of this thesis.

Finally, I would like to thank Mrs. Chan for proofreading the drafts.

V

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Volume Visualization 2

1.2 Virtual Environment 11

1.3 Approach 12

1.4 Thesis Overview 13

2 Contour Extraction 15

2.1 Concept of Intelligent Scissors 16

2.2 Dijkstra's Algorithm 18

2.3 Cost Function 20

2.4 Summary 23

3 Volume Cutting 24

3.1 Basic idea of the algorithm 25

3.2 Intelligent Scissors on Surface Mesh 27

3.3 Internal Cutting Surface 29

3.4 Summary 34

4 Three-dimensional Intelligent Scissors 35

4.1 3D Graph Construction 36

4.2 Cost Function 40

vi

4.3 Applications 42

4.3.1 Surface Extraction 42

4.3.2 Vessel Tracking 47

4.4 Summary 49

5 Implementations in a Virtual Environment 52

5.1 Volume Cutting 53

5.2 Surface Extraction 56

5.3 Vessel Tracking 59

5.4 Summary 64

6 Conclusions 68

6.1 Summary of Results 68

6.2 Future Directions 70

A Performance of Dijkstra's Shortest Path Algorithm 72

B IsoRegion Construction 73

vii

List of Figures

1 Composition of samples along the ray R 6

2 Shear and scale of slices 8

3 Trilinear interpolation 9

4 3D texture mapping 10

5 Sampling in Object and Image space 10

6 The Virtual Workbench 12

7 Surface fitting between parallel contours 16

8 Graph representation of an image 17

9 Cost map of a 4x4 image 21

10 Illustration of the gradient direction function /_o 23

11 The basic idea of volume cutting 26

12 The gradient vector of a mesh node 28

13 Generation of external and internal surfaces 29

14 Projection of the contour on a plane 31

15 Distance map L{xp, yp) of the project plane 32

16 The 6, 18 and 26 connectivity 36

17 Discontinuity of image gradient map . 37

18 IsoRegion of a 2D image 38

19 Definition of boundary and center voxels in IsoRegion 40

20 Node pruning using IsoRegion 41

21 Surface construction using recursive subdivisions 43

22 Surfaces for 0, 1, 2, 3, 4, 5 subdivisions respectively 44

23 Introduction of cracks using inappropriate subdivision 45

viii

24 The subdivision rules for the four cases 46

25 Path finding in volumetric data 48

26 The vessel tree built from back pointers B{u) 50

27 A typical working environment in Virtual Workbench 53

28 The four volume display modes 54

29 Environmental mapping of a volume 55

30 Closed contour definition 57

31 Volume cutting by a closed contour 58

32 Joint points adjustment 60

33 Contour editing by a 3D stylus 61

34 Construction of the surface 62

35 Construction of the vessel tree 65

36 The extracted vessel passes through the actual path 66

ix

Chapter 1

Introduction

Scientific visualization is an important field of computer graphics. Since many ob-

jects and natural phenomena surrounding us are 3D volumes of data, many scientists

need various kinds of scientific visualization to examine their data sets, for example,

computational fluid dynamics(CFD), medical CT/MRI imaging, volumetric data in

molecular systems, earth science and seismic data about underground layers, etc.

All of these fields play important roles in our life and careful examinations of the

related data sets are often necessary. For instance, seismic data can be examined

with a volumetric scheme, which provides geophysicists an alternative way to reveal

the structure of geological layers and such information is proved to be useful for

identifying potential oil reservoirs[40, 51.

Volume visualization as a subfield of scientific visualization concentrates on the

examination of complex volumetric data. The main objective of volume visualiza-

tion is to provide methods that can visualize internal structures of data, analyze and

manipulate volumetric data efficiently and effectively. Among various applications,

medical imaging is the main driving force for the development of volume visualization

because of its direct practicality and importance. Medical data can be scanned from

patient by computed tomography(CT), magnetic resonance imaging(MRI), or ultra-

sonography in a non-destructive and safe manner. Therefore, it is useful for many

medical applications, for example, clinical diagnosis, orthopedic diagnosis, radiation

therapy planning, medical education and surgical planning.

1

Chapter 1. Introduction 2

The other important issue is how to choose a suitable working environment for

volume visualization. A two-dimensional display is suitable for two-dimensional com-

puter graphics. For three-dimensional graphics, a normal display can still be able to

give user a sense of depth by using shading, shadows, or even mirrors. However, it

is not the most natural way to view and interact with 3D objects using 2D display

and input. Therefore, in this research, I focus on volume visualization in a virtual

environment and attempt to make efficient tools for volume manipulation in such an

environment.

We discuss volume visualization in more detail in Section 1.1. A brief summary of

the virtual environment we used is described in Section 1.2. Our research approach

is described in Section 1.3. Finally, we give the thesis overview in Section 1.4.

1.1 V o l u m e Visualization

The technique used to visualize three-dimensional volumetric data is called volume

rendering. An element of the three-dimensional array is called a voxel. The most

basic steps of volume rendering algorithms are assigning a color and opacity to each

voxel in the array, making samplings in the volume, projecting the samples onto an

image plane and compositing the samples together to get the final image. There

are numerous volume rendering algorithms published in the past. Some of them are

now only of historic interest because of the low quality of resulting images. Several

important techniques are summarized as follows:

• Rendering volume as shaded cubes. In 1979, Herman and Liu[18] pro-

posed an algorithm which rendered CT data as many shaded cubes. An ap-

propriate threshold is applied to the volume to choose boundary voxels. Those

voxels are rendered as opaque cubes represented by six equal-sized squares.

Chapter 1. Introduction 14

Each face of every cube can be shaded by standard shading algorithms and hid-

den surface removal is done by the Z-buffer algorithm. The main disadvantage

of the algorithm is that it will form a solid with blocky effect, which can be

improved by a low-pass filtering.

• Surface construction by joining contours. Rendering volume as shaded

cubes causes aliasing effect and thus results in low quality images. Therefore,

improved surface rendering techniques often use triangles to model the surface of

volumetric data. One kind of such algorithms extracts contours from all image

slices and then joins adjacent contours together by triangular strips. There

are two main steps in such algorithms: first, closed contours from each slice

are extracted by some edge detection algorithms[8, 26]; and a contour joining

strategy is used to find optimal triangular strips to fit adjacent contours[19, 31 .

For contour detection, a novel technique called active contour(or snakes)[26

is used. Firstly an user has to make a rough approximation of the shape of

contour. Each point in the boundary is associated with an energy function

which is a combination of internal forces, such as boundary curvature, and

external forces, like image gradient magnitude. The contour grows and shrinks

in order to minimize its energy. The main drawback of the algorithm is, the

user would never know what the final shape would be at the very beginning. If

the final contour is not satisfactory, the user has to manually edit the resulting

contour or restart the whole process with a new initial contour.

Joining of contours is a more complex problem. One image slice may contain

two or more contours of the desired object. A branch would occur if one of

the adjacent planes contains more than one contours. Moreover, the problem

becomes more complex if the distance between two planes are relatively large

with respect to the size of cell. In[10], Meyers et aL broke the main problem

Chapter 1. Introduction 4

into four subproblems, namely, correspondence, tiling, branching, and surface

fitting.

• Marching cubes and Dividing cubes. Instead of extracting contours,

some algorithms extract triangles that define the surface of a constant intensity.

Lorensen and Cline proposed Marching Cubes[2S] to extract a list oftriangles by

marching through all the cubes. A cube is defined by eight surrounding voxels

and each voxel is identified as either inside or outside the object according to

a threshold intensity. Based on the configuration of voxels, each cube can be

fitted in triangles that define part of the surface. Marching cubes is widely used

to generate iso-surface because it is fast and can make high-resolution models.

There are many variants of Marching cubes [35，39, 38, 34] that either fasten

the extraction process or decrease the number of triangles extracted.

The Marching Cubes algorithm constructs iso-surface as polygonal elements.

Another algorithm, called Dividing Cubes[7], renders the surface as 3D points

with normal vector. Each cube in the volume is identified as either inside, out-

side, or intersecting the surface. A cube which lies on the surface is subdivided

into small cubes such that each sub-cube is the same size of a display pixel.

The normal vectors of the sub-cube surface are calculated by interpolating the

gradient vectors of the original cube. Finally, the surface can be rendered by

projecting the point surface elements on the view plane.

Previous algorithms are so-called surface rendering algorithms. The main dis-

advantage of surface rendering is that only surface information is shown and other

information will be lost. For medical images, it may be important to see through the

volume rather than only examine the iso-surface. Another disadvantage of surface

rendering is that a binary decision must be made on the position of surface. This

kind of iso-surface extraction can lead to the introduction of false positive (consider

Chapter 1. Introduction 5

unnecessary features) or false negative (discard necessary features).

To overcome these problems, another kind of volume rendering techniques called

direct volume rendering can be used. Unlike surface rendering, volume rendering goes

through the whole volume and create a 2D projection of the volumetric data. It can

also give user an inside view of the volume by using transparency since in some cases,

making binary decisions on fuzzy surface is inappropriate. Several major volume

rendering techniques are summarized as follows:

• Ray casting. One of the most popular volume rendering techniques is ray

casting . It assumes that volume is made up of many small particles which

can emit, attenuate or scatter light. The amount of light emitted, attenuated

or scattered by a particle depends on the particle's density. Parallel rays are

casted into the volume and samples are taken along the rays. The color of a

particular voxel can be determined by its gradient vector, viewer's position and

light positions. Gradient vector(G) of a voxel (x,y,z) in a volume data set V

can be approximated by central differences:

G$ = ^Ax{V{xi+i,yj,Zk) - V{xi^i,yj,zk)) (1)

Gy = -Ay(T/(j;i,y_^.+i,4) — V{xi,yj-i,Zk)) (2)

Gz 二 -A4T/(a;i, yj, zk+i) - V{xi, yj, Zk-i)) (3)

The samples along each ray are composited together to form the final color of

the corresponding image pixel (see Fig. 1). The compositions of samples are

done by the over operation. Assume every voxel X is assigned a color C{X)

and an opacity a (X) , the over operation can be defined as:

Cout = a-n(l - a(^)) + qi)C^(I) �

Chapter 1. Introduction 6

来 ^
X ^^^ y ^ image pixel

X Z [^
I ^ ^ _

R^,^>nK

— ' • � • " /
^̂ ^̂ .̂ ̂ ^̂ ^̂ ^̂ ^ ^̂ ^̂ ^̂ ^̂ ŷ y ^ image plane

Figure 1: Composition of samples along the ray R

where Cin and Cout are the incoming and outgoing color for voxel X respectively.

The overall intensity along the ray is given by:

Cf.nai = E 0(k)a(k) n (l - « (0) (5)
k=Q i=k+l

where Cjinai is the resulting pixel intensity and K is the number of samples

along the ray.

Besides volume rendering, ray casting can also be used to render iso-surface by

assigning appropriate opacities to voxels and the quality can be comparative to

some surface rendering algorithms like marching cubes . However, ray casting

is very computational intensive. Although many acceleration techniques for it

have been introduced, rendering by ray casting is still far from interactive.

• Splatting. Ray casting is an image space approach because the algorithm

iterates over the image pixels. There is another kind of algorithms using an

object space approach which iterates over the voxels. Splatting[48, 49] is one of

such algorithms. For each voxel in the volume, it computes the contribution of

Chapter 1. Introduction 7

the voxel to the image pixels by using a filter footprint. The advantage of splat-

ting is that it iterates over the voxels in storage order, unlike ray casting, which

must compute the locations of sample points along different rays. Therefore,

splatting uses much less addressing arithmetics than ray casting. However, the

main disadvantage of splatting is that the computing of filter kernel is expensive

and viewpoint dependent.

• Frequency domain rendering. The computational complexity of normal

spatial domain projection algorithms are 0(n^). By using the Fourier projection

slice theorem, X-ray liked images can be made from volume with a complexity

of 0(n^). The Fourier projection slice theorem states that the inverse Fourier

transform of a slice extracted from the frequency domain of a volume yields a

projection of the volume in a direction perpendicular to the slice. A volume

computed by a 3D discrete Fourier transform is firstly formed as a pre-processing

step. X-ray images from arbitrary views can then be obtained by applying

an inverse transform to a slice from the transformed volume which is passing

through the origin.

• Rendering by shear-warp factorization.

Both object space and image space approaches can produce high quality im-

ages but the rendering rate is far from interactive. In 1994, Lacroute [27] had

proposed a new approach by using shear-warp factorization of the viewing trans-

formation matrix. It is neither object space approach nor image space approach,

but the performance is much better than the two approaches and can visualize

a 128x128x84 data set in 1/5 second.

Since the mapping from object space to image space uses a lot of computa-

tions to calculate the positions of samples, image space algorithms usually have

slow performance. Lacroute pointed out that the addressing arithmetic can be

Chapter 1. Introduction 8

shear & scale
viewing rays ^

\ \ \ i
\ V V volume ‘

\ ^ V ~ " V slices] project

^ ^ Y
— g e X ^ \ ^ Centerof ^ ^ \

plane 、 projection

Figure 2: Shear and scale of slices

greatly reduced by transforming the volume into an intermediate coordinate

system. It was found that rays can be made parallel to each other by shearing

and scaling the volume slices. The viewing transformation can be decomposed

into two matrix called shear matrix and warp matrix. The shearing and scaling

of volume slices is done by the shear matrix, and the warping of the intermedi-

ate image to the final image is done by the warp matrix. From Figure 2, we can

see that the projection to a 2D intermediate image would be more efficient by

using this transformation. The shear-warp algorithm uses a run-length encoded

volume for rendering and the intermediate image is also a run-length encoded

data structure, which encodes runs of opaque and non-opaque pixels.

• Rendering by 3D texture mapping. With the aid of hardware-assisted 3D

texture mapping, performance can be further improved. One can sample any

slice inside a block of three-dimensional texture memory(see Fig. 4) by trilinear

interpolation. Trilinear interpolation is the process for point sampling within

a 3D box/cell given values at the vertices of the box. For the cell shown in

Figure 3, if Vboo, Vioo, Voio,..” Viii are the values of the vertices, then the value

of a point V̂ yz inside the box is given by

Chapter 1. Introduction 9

(0,l,l)yj ^ (14,1)

(0，1’0) ^ Nl,l,0)
Vxyz

. r - - - - . #
y . ^ : _ ^ o 4 ^ > ^ — ^ (iAi)

/ z / ^ 十 ; , ； /
^ X (0,0,0) ^ ^ ^ (1,0,0)

X

Figure 3: Trilinear interpolation

Ky. 二 Vooo(l-x)(l-y)(l-z)

+Vioox(l-y)(l-z)

^Voio(l-x)y(l-z)

+Vooi(l-x)(l-y)z

+Vloi^(i - y)^

+Voii(l - x)yz

^Viioxy{l — z)

^Vnixyz (6)

Cullip and Neumann[42] described how to perform volume rendering by using

3D texture mapping. The paper describes both the object space and image space

approaches to do the task. As shown in Figure 5, object space approach uses

slices perpendicular to one of the axis for sampling, and image space approach

uses slices perpendicular to the viewing direction.

A more detailed description of the image space approach had been presented by

Chapter 1. Introduction 10

" ^ ^ ^ C ^ ^ ^ I ^
sampling slice ^____________^ \ 、 、 , , - /

^ / 4 ^
3D texture memory

^ ^
Figure 4: 3D texture mapping

PP
a) Object space sample planes b) toage space sample planes

Figure 5: Sampling in Object and Image space

Wilson, Gelder and Wilhelms[50]. An octree encoding scheme has been applied

along with 3D texture in [15]. That paper also proposes a template based Z-

plane/block intersection method to accelerate the block projection computation.

Volume rendering by 3D texture mapping is fairly fast. It can achieve about

20 frames per second for the rendering of a 128^ volume data. In this research,

this technique would be used since it has remarkably faster speed than previous

algorithms.

Chapter 1. Introduction 11

1.2 Virtual Environment

A suitable virtual working environment is important for volume visualization. It is

easy to find that some volumetric operations are difficult or even impossible to perform

using a 2D screen and a mouse. A virtual environment with three-dimensional display

and three-dimensional interaction can help user to understand and interact with the

volume data much easier by providing a rich set of spatial and depth cues. Existence

of various VR applications for scientific visualization [2, 3，5, 9, 20, 21, 43] in the

past few years proves that it is more natural to manipulate high-dimensional data in

a virtual environment.

In this research, the Virtual Workbench proposed in [43] is chosen to be the

working platform. Virtual Workbench is a general-purposed working environment

for dextrous work in 3D and some applications such as virtual windtunnel[4], blood

vessel finding[44] and virtual stereotaxis[45] have also been implemented on it. Two

main advantages of Virtual Workbench are:

• High resolution three-dimensional display. Virtual Workbench uses

a mirror to reflect images from a normal monitor such that it constructs a

"virtual work space" behind the mirror(see Fig. 6). Stereoscopic display can be

achieved by using a pair of stereo glasses. The image quality is much better

than those from Head-Mounted Display(HMD) since images are displayed on

high resolution monitor.

• Three-dimensional interaction. In Virtual Workbench, object interaction

is performed using a 6DOF pen-liked input device. With the mirror, user per-

ceives a stereo virtual image within the work space. Therefore, the 3D pen can

move freely within the work space without blocking the views of virtual images.

Chapter 1. Introduction 12

~~r ‘ ~j—^screen

" ^ ^ stereo 乂 • mirror

J'W-r^ /%>€ - ‘

Figure 6: The Virtual Workbench

1.3 Approach
The main objective of this research is to find out effective volume manipulation

methodologies that can help exploring volumetric data in a virtual environment inter-

actively. Direct volume rendering is too computational intensive even using nowadays

computers. Therefore, most applications considering direct volume rendering are still

far from real-time. To improve the performance, unnecessary data from volume can

be cut away and intention can be focused on volume of interest. Volume segmentation

plays an important role to achieve this.

In this research, I borrow the idea from Intelligent 6'cz55or5[30, 41], which is a 2D

image segmentation technique, and exploit its usefulness in volumetric data manipu-

lation. It is essentially a dynamic programming technique for graph searching. Two

approaches concerning Intelligent Scissors are taken in this report:

• Contour extraction on surface mesh Originally, Intelligent Scissors is

applied to 2D image. We modify the idea a little bit by applying Intelligent

Scissors to surface mesh generated from volume data. One can interactively

select feature lines along the surface by this technique. After several successive

Chapter 1. Introduction 13

selections of segments, a closed contour which lies on the surface mesh can be

formed. Methods are developed to cut volume data into two parts by using the

closed contour.

• Three-dimensional Intelligent Scissors We extend the idea of 2D Intel-

ligent Scissors to 3D. In the case of 2D, contours are lying along edges. By

using 3D Intelligent Scissors, extracted lines now lie on surfaces. Iso-surface

extraction becomes possible by using those lines. One problem of the extension

is the huge amount of graph nodes needed to search. Therefore, methods have

to be developed to cut away unnecessary voxels. One approach is to discard

voxels with gradient less than a pre-defined amount. More about voxel pruning

will be discussed later.

1.4 Thesis Overview

Chapter 2 gives a brief summary of Intelligent Scissors , which forms the basis of our

new algorithms. We describe the original algorithm which detects contours in a 2D

image. Its advantages against other similar algorithms will also be discussed.

Next, in Chapter 3 we describe the technique for volume cutting. We modify

the algorithm of Intelligent Scissors to find out closed contours from complex volume

surface.

Chapter 4 extends the concept of Intelligent Scissors from 2D to 3D. The extension

introduces a huge amount of graph nodes and we show that how to accelerate the

process by discarding unnecessary nodes.

In Chapter 5, we show the implementation of the algorithms on the Virtual Work-

bench environment. An intuitive interface is built in order to give user a more con-

venient 3D working environment. Some results of our algorithms are presented and

analyzed here.

Chapter 1. Introduction 14

Finally, Chapter 6 summarizes the conclusions of this report. Implications for

future research are also discussed.

Chapter 2

Contour Extraction

Contour extraction is an important step in volume segmentation, which in turn is

very critical in some volume rendering applications because direct volume rendering

is too computational intensive and segmentation can make visualization of the volume

of interest possible in order to save time. Three-dimensional segmentation, however,

is another complex problem and there is still no completely automatic algorithms

which can generate satisfactory segmentation. Therefore, people tend to reduce the

problem to two-dimensional. 2D closed contours can be extracted from parallel voxel

slices first and then joined together to form a geometrical model(see Fig. 7) by some

surface fitting algorithms[19, 31.

One main dimculty is how to find the best approximated contour. A popular

technique called active contours or snakes[26, 8] has been widely used. However, as

stated in Section 1.1, the main drawback is its inability to control the final shape of

contour. Another kind of techniques use a graph searching formulation of dynamic

programming(DP) to find globally optimal boundaries. In[30], Mortensen and Barrett

proposed a method called Intelligent Scissors that can extract contours from 2D

images interactively.

Throughout this chapter, we concentrate on describing the details of Intelligent

Scissors, which forms the basis of our later algorithms. Section 2.1 introduces the

concept of Intelligent Scissors. The main algorithm is described in Section 2.2. In

Section 2.3, we discuss the cost function used in the technique.

15

Chapter 2. Contour Extraction 16

triangular strip ^^^^^ “"̂ ^̂ ""N^ 广 ^\
\ L N̂ contour from nth slice

B m
fJ/ / \ Wl/ / V \ ^ contourfrom(n+l)thslice

V _ ^
Figure 7: Surface fitting between parallel contours

2.1 Concept of Intelligent Scissors

Although Intelligent Scissors has an interesting name, it is basically a dynamic pro-

gramming technique. There were some algorithms that also used a graph searching

formulation of DP to find globally optimal boundaries[l, 12, 46, 52]. However, like

snakes, those algorithms typically need an initial boundary template which is used

to approximate the final shape of the desired contour. Since the template grows and

shrinks in order to find an optimal contour, it makes each point on the contour moving

with one degree of freedom within the 2D image. Therefore, those algorithms cannot

be interactive and user cannot modify the result in the midway of the process.

Intelligent Scissors, on the other hand, allows user interactively select the most

suitable boundary from a set of optimal boundaries given a seed point. The idea is

simple. A 2D image is modeled as a graph with nodes at the pixel locations and

edges are defined for neighbor pixels. Each edge is assigned a cost according to

some gradient and frequency functions. Therefore, the problem of finding a contour

between two pixels can now be solved using a shortest path algorithm, which finds a

minimum cost path. Stalling and Hege[41] modified the algorithm in order to apply

it to medical image segmentation. In their application the cost function is related to

the image gradient only and the result is acceptable.

Chapter 2. Contour Extraction 17

_ •
(a) (b)

Figure 8: (a) The original image (b) The graph form of (a). Grey nodes have greater
gradient than white nodes.

Edge cost is assigned in a way that pixels lying on boundary features have lower

cost. Figure 8(a) shows a 8x8 grey-scale image and Figure 8(b) is the corresponding

graph formulation. Grey nodes in the graph represent the boundary points which

have greater gradient than other nodes. So in this case, the edges between grey nodes

have the lowest cost on average. The edges between grey nodes and white nodes have

higher cost and those between white nodes have the highest cost. For example, if we

want to find a path from pixel A to pixel B, the algorithm will automatically find a

path going along the boundary and passing around pixel C. The reason is that the

total cost of the path is the sum of the edges it passes. Therefore, it is unlikely that

the resulting path would pass the region D, because the edges in region D tend to

have greater cost on average. Intelligent Scissors finds the optimal path by Dijkstra's

algorithm, which is discussed in the next section.

Chapter 2. Contour Extraction 18

2.2 Dijkstra's Algorithm

To find a minimum cost path between two pixels, the shortest path algorithm called

Dijkstra's algorithm[ll] is used. In this algorithm, the total path cost of every pixel

from a source are found by dynamic programming. This algorithm effectively com-

putes the shortest paths from all nodes of the graph to a source node. The search

need not be finished by one pass. Instead, it can be stopped when the search reaches

the target position. It can save much time since unnecessary paths need not be cal-

culated. If the seed point is changed, the searching must be started again. Time can

be saved here since not all of the points need to be re-calculated. For example, u is

the seed point and v is the new seed point. All points go to u passing v need not be

re-calculated because if p — v ~> u is the shortest path from a point p to u, then

p — V must be the shortest path from p to v.

The idea of Dijkstra's algorithm is to utilize dynamic programming to update the

cost of each point step by step. For each node u, there is a pointer B{u) which points

to one of its neighbor nodes such that a path from the clicked point to the seed point

can be established quickly. Note that the cost function c[u, v) can be preprocessed

and the only changed function is B(u), which indicates the path from u to the seed

point s. The pseudo-code of Dijkstra's algorithm is as follows:

Dijktra'sAlgorithm

Definitions:

s seed point

L list of active nodes

B{u) back pointers indicating the path

P[u) TRUE if node u is made permanent

T{u) total cost from u to s

c(u, v) local cost of edge u — v

Chapter 2. Contour Extraction 19

min{L) pop the node with minimum cost from L

Algorithm:

P{u) f- FALSE for all u

T{s) — 0’ T{u) f - 0 0 for u + s

L —{all nodes}

while L + 0 do

q <— min{L)

P(q) f- TRUE

for each edge q ~^ v such that P{v) = FALSE do

ifT{v) > T{q)^c{q,v) then

T{v)^T{q)^c{q,v)

B{v) f- q

end if

end for

end while

Figure 9 demonstrates how to find the cost map of a 4x4 image step by step. In

order to simplify the demonstration, each node has only four neighbors instead of

eight. The extension to eight neighbors can be done trivially by adding four more

edges to each node. Figure 9(a) is the initial cost map and S is the seed point.

There are three types of nodes. The first type is the nodes that are not yet visited.

The second type is the reachable but not permanent nodes. The final one is the

permanent nodes which have fixed total path cost. At the very beginning of the

algorithm, the node S is marked as reached(but not permanent) and has total cost

zero. Non-permanent nodes are put in a priority queue and in each stage the node

with minimum total cost will be selected and marked as permanent. Figure 9(b)

Chapter 2. Contour Extraction 31

shows that the only element in the priority queue, S, is marked as permanent and

the cost of its neighbors is updated. Figure 9(b) and (c) shows the cost map with two

and three permanent nodes respectively. The final cost map with all nodes marked as

permanent is shown in Figure 9(e). Note that after each update of a node, the node's

back pointer is modified and points to the node that makes the change. Therefore,

eventually every node will have a back pointer that indicates the optimal path from

that node to the seed point.

The cost function is directly related to the performance of the algorithm. A bad

cost assignment can either make the resulting contour far away from the boundaries

or make it too sensitive to noise. Therefore, we describe the cost function in the next

section.

2.3 Cost Function

Since a minimum cost path has to be found and we want to extract contours near

strong edge features, pixels near boundaries should have low costs and vice-versa. In

30], the cost function is composed of three functions: Laplacian zero-crossing(/z),

gradient magnitude(/(?) and gradient direction(/z)). The cost of an edge between

node u and node v is as follows:

cost{u,v) = wz • fz{v) + WD • fD(u,v) + WQ . fo{v) (7)

where wz^ WD and wo are the weights for the functions.

In the equation, fz is the Laplacian zero-crossing function which has output of 0

or 1，where 0 means a strong edge. The gradient of a node can be found by central

difference. If 4 and Iy are the partials of a pixel in x and y directions respectively,

the gradient of the pixel can be represented by a vector (/^, Iy) and the gradient

Chapter 2. Contour Extraction 21

, - 、 、 4 , - 、 、 6 , -、、 1 5 厂 、 厂 、 4 , 、 6 / - ^ 15 「、、

、、乂“ 、̂乂* V � " " ^、乂| 、 "• - ^ ' - ^ ' ^、“

10 15 34 5 10 15 34 5
, � � �1 3 , ��1 5 , ��6 0 , � � / � �1 3 / ��. 15 , � �, 60 , � �
；) 1 I 1 I 1 I > ‘ i ‘ ‘ J ‘ ‘
、、乂" \ _ / 、、乂 、、乂 、、： 、、乂 、、乂 � � - '

7 6 10 28 7 6 10 28
, J � � 45 .-N 20 / \, 30 / � � , �� _ 45 ^ 20 /、、丨 30 , � �
« I 1 I 1 I 1 I > ‘ V̂) \ '̂ *� 乂
\ 一 ' 、乂 、乂 、乂 、乂 v ^ 、乂 一

2 8 17 6 2 8 17 6

6 " ^ ^ > ^ : 、 户 : 、 : ） d ^ M b ^ M ^ : j

(a) W

• '-、、 4 , -、、 6 , - 、 、 1 5 广-、、 / -、、 4 广 - 、 、 6 ' ' -、、 1 5 广-、、

1 I 1 I 1 I > > 1 ‘ ' ‘ ‘ ；
、、乂 \ 、 一 ' 、、乂 、、“ 、、乂 、 、 - ' 、、“ 、 、 ’ '

10 15 34 5 10 15 34 5
, � �1 3 , � �1 5 , � 60 , � \ , � �. 13 | 0 15 , �� 60 , � �
> I 1 I 1 ' 1 I ‘ ‘ i 14) i I i ；
\ 一 ' \ 一 ' 、 一 ' 、 乂 、乂 V ^ 、： 、 一 '

7 6 10 28 7 6 10 28
C > M ^ ^ K | H H : : , (^ P K ^ H K ^ ' : J

2 8 17 6 2 8 17 6
(^ ^ > ^ K b ^ M ^ > M ^ C ^ ^ M b ^ " M b ^ ^

(C) (d)

g H H 3 H " ^ 5 > M ?
T T T , ' �

10 15 34 5 丨、) unprocessed nodes

(^ H ^ (^ K " < ^ > ^ 。
丁 f j temporary nodes

7 6 10 28 ^ ^

(^) " ^ ^ " (p ^ ^ " ^ D " ^ ^ " ^ 0 permanentnodes
2 8 17 6

(^ p l _ ^ (^) ^ _ A _ (^) ^ i : ^ ^ ~ backp—r
(e)

Figure 9: Cost map of a 4x4 image

Chapter 2. Contour Extraction 33

magnitude G is given by

G 二 ^/J + Py (8)

Since pixels with high gradients should have edges with low costs, the gradient mag-

nitude function f o can be approximated with

=max{G) - G 二 G �

JG - max{G) — max{G) ^)

The last function fo controls the smoothness of the path. Therefore, the edge p ~> q

in Figure 10(a) should have low edge cost and the one in Figure 10(b) should have

higher cost because the line in (a) is smoother than the curve in (b). Thus / ^ can be

decided by the change of angles of the gradient vectors and the vector {q-p). Let D{p)

be the vector perpendicular to the gradient vector of p (i.e. D{p) = {Iy{p),-h{p))-

The smaller the angle between D{p) and {q - p) the smoother the curve is and the

same for the case of D(q) and {q — p). The equation of /_o is given by:

j^D(p q) 二 cos[dp(p, g)]-i + cos[dg(p, g)]-i (叫

where

dp(p,q) = D(p) • L(p,q)

dq{p,q) = D{q) • L{p, q)

and
“ � ‘q - p 'iiD{p)-{q-p)>^
L[p,q)= (丄丄>>

p — q if D{p) • {q — p) < 0
\

The value of f o ranges from 0 to 1. It can smooth the shape of the contour by

assigning high costs to sharp changed edges. However, in [41], Stalling suggested a

Chapter 2. Contour Extraction 23

\ G (q > D(q) , ~ U ^

\^ ^ q _

P
(a) (b)

Figure 10: Illustration of the gradient direction function f o

much simpler equation which uses only the image gradient magnitude. Good results

are generated when it is applied to medical images. The simplified equation is

cost{u, v) = 255 — l{G{u) + G{v)) (12)
A^

2.4 S u m m a r y

In this chapter we have introduced a robust algorithm called Intelligent Scissors which

can extract contours interactively from a 2D image. The algorithm provides a better

segmentation tool than previous contour extraction techniques such as active contour

by using dynamic programming.

The main advantage of Intelligent Scissors is that it allows interactive manual

corrections of the contour. The process takes a short time for experienced users and

the interface is easy to control. However, the drawback of this algorithm is that it

is hard to predict the number of control points which define the closed contour and

human interventions are inevitable.

The main algorithm used is the Dijkstra's shortest path algorithm. With appro-

priate definitions of edge costs, it is expected that extracted contours can go along

with the real image boundaries. We borrow the idea of this algorithm and begin

developing our new algorithms described in the next few chapters.

Chapter 3

Volume Cutting

The main goal of volume visualization is to give the user a clear understanding of

a volumetric data set. Various approaches have been proposed in the past. For

example, by setting voxels other than bone a opacity of zero, one can visualize the

skull in a head data set by direct volume rendering. If we do not want to use direct

volume rendering to examine the skull, we can use marching cubes to extract the

iso-surface. Moreover, we can use some segmentation techniques to extract just the

brain of human in a volume data. One can also use some simple tools like cutting

planes to examine the interior structure of a volume. All these algorithms have their

own pros and cons. One may prefer a particular algorithm in a particular situation.

For example, experienced doctor may find that examining a X-ray slice is sufficient

for clinical diagnosis. Although these algorithms have different features, the ultimate

goal is the same: to examine the data in the greatest extent. Therefore, we can say

that it is important to develop methods that can help the user to examine a volume

data.

In this chapter we propose a new volume cutting algorithm which utilizes the

technique of Intelligent Scissors. Instead of applying Intelligent Scissors to a 2D

image, we now apply it to the surface mesh formed from a volume data. The main

idea of this algorithm is described in Section 3.1. In Section 3.2, the application of

Intelligent Scissors to surface mesh is presented. Finally, the internal cutting surface

used to cut away voxels is described in Section 3.3.

24

、

Chapter 3. Volume Cutting 36

3.1 Basic idea of the algorithm

Given a volume composed of two or more objects, how can we effectively cut it into

two parts such that we can examine the interior structure more clearly? Segmentation

is probably the most suitable approach for the task. However, current segmentation

techniques still have many drawbacks, both in the aspects of quality and interac-

tivity. Noisy data or fuzzy object boundaries make the segmentation more difficult.

Moreover, some segmentation techniques need prior knowledge of the objects to be

segmented, which makes the algorithms less adaptive to various data sets.

Based on the above observations, we conclude that a tool which can provide

intuitive interface for volume separation is necessary. In this section, we concentrate

on describing a new methodology which can help cutting the volume into meaningful

parts. We are not going to give an accurate segmentation tool. What we concern

here is a new method that can be used for interior structure examination of a volume

data.

The basic idea of this algorithm can be illustrated by Figure 11. First a surface

mesh is generated from the volume data by some mesh generation algorithms such

as Geometrically Deformed Models(GDM)[29]. Second, user selects a closed contour

which lies on the surface mesh. This contour extraction process is done by Intelligent

Scissors described in Chapter 2. We modified the algorithm such that it works on

surface mesh. Detail of the extension is described in the next section. After we get

the contour, we build a cutting surface based on this contour using an algorithm

described in Section 3.3. Now we get a surface mesh and a internal cutting surface.

Voxelize these two surfaces and finally we can separate the volume by a simple region

growing algorithm.

Chapter 3. Volume Cutting 26

^ ^
Z voxel data

^ ^
“

/ closed contour

z ^ ^ ^ Z
“

^ . - ^ ‘ ^ / cutting surface

Z ^ ^
“

r"^^^^
^~"~~'~~-~~~.^y^^^^ _̂̂^̂^̂-̂^̂^̂~̂~̂^̂^̂ ~̂̂ "̂̂^̂ separated volume

D ^ 砂

Figure 11: The basic idea of volume cutting

Chapter 3. Volume Cutting 27

3.2 Intelligent Scissors on Surface M e s h

Intelligent Scissors is originally a tool for image segmentation. For a 2D image, the

set of pixels is viewed as a graph with each pixel connected to its eight neighbors.

From [30, 41], Intelligent Scissors has been proved to be an efficient method on 2D

segmentation. Now we would like to modify the algorithm such that it can be applied

to volume data.

To apply the algorithm to volumetric data, we must have a surface mesh of the

data first. It is like that we should have a pixel graph first for a 2D image. There are

some meshing algorithms that can build up the surface mesh from the volumetric data.

For example, Miller et aL[29] proposed the Geometrically Deformed Models{GDM),

which can get closed geometric models from volume data.

After we get the mesh, we should design a cost equation that assigns a cost to each

mesh vertex. In the original algorithm, the cost equation is related to three functions,

namely Laplacian zero-crossing, gradient magnitude and gradient direction. To find a

contour on the surface mesh, we would like to modify the original cost equation such

that the local cost between vertices u and v depends on their gradient magnitudes and

gradient vectors. It is because geometrical information is more important than image

information in a mesh. We also discard the Laplacian zero-crossing function since

it is meaningless to apply a boundary detection function to a surface. The gradient

vector of a mesh node can be obtained by trilinear interpolating the gradient vectors

of the vertices of the cell containing the node(see Fig. 12). The resulting cost function

is

COSt{u,v) = Wp{u) - p{v)W {Wgfg{u,v) + Wnfn{u,v)) (1 3)

Chapter 3. Volume Cutting 28

N(u) \ ^ ^ ^ ^ ^ _ _ _ J ^^^^^^\A t j ^

妙—舉
Figure 12: The gradient vector of a mesh node

where fg and fn are the gradient magnitude and vector functions
G H + M

协 , ”) = 1 - 2ma.(G)

/ 如) 二 1 - 释 2) . _

p{u)^p{v) are the position vectors at u and v respectively, and Wg, Wn are the weighting

factors controlling the influence of fg and fn. The gradient magnitude of the gradient

vector N{u) is represented by G{u). By using this formula, the Dijkstra algorithm

tends to find a path which has large gradient changes and small normal changes. Note

that the multiplication of \\p{u) -^(u)|| is important because it guarantees that the

shorter one of paths with the same cost would be selected.

A contour on the surface can be found by applying the technique described in

Chapter 2. The main differences are the cost function and the number of edges

attached to a node. In this algorithm, the degree of each node is not constant, unlike

the case for 2D image. The rest is the same as the original algorithm.

Chapter 3. Volume Cutting 29

龜7艇
響\二

X / ^ ^ W ^ . … … /
3D surface mesh /、.’ '•-. ' /

^C::>^^^^^"-^—^
Internal cutting surface

Figure 13: Generation of external and internal surfaces

3.3 Internal Cutting Surface

A closed contour is not enough for volume extraction. To separate the volume into

two parts, we must have two surfaces. As shown in Figure 13, the first one is the

external surface mesh. By cutting the mesh by the extracted contour, we can get

the external surface by voxelizing the half part of the mesh. The second one is the

internal cutting surface. The external surface can be obtained much easier than the

internal one since there exists the surface mesh. Therefore, we must develop method

that can extract the internal surface efficiently. Moreover, the internal surface should

separate the volume in an intelligent way such that the surface is close to the object

boundaries.

To build the surface, we first project the contour onto a plane, as shown in Fig-

ure 14. The plane is oriented as parallel to the contour as possible such that the

projected area of the contour is the largest. The construction is done by shrinking

the contour iteratively with minimization of the total surface cost.

The project plane is associated with three arrays, namely c(xp,yp), L[Xp,y^) and

Chapter 3. Volume Cutting 30

V(xp, pp), where Xp and ŷ are the projected coordinates, c{xp, y^) is the cost of voxel

projected on [x^.y^]. L{x^,y^) is the distance from the contour. V(〜，2/p) will store

the voxel coordinates (x,y,z) that defines the shape of final cutting surface.

L(xp,yp) is assigned at once after the projection of the contour. As shown in Fig-

ure 15, the distance map can be made by iteratively shrinking the projected contour.

The number shown in each pixel is the distance to the contour in hops and the pixels

outside the contour are assigned to infinity. We define Bk be the set of voxels which

have a distance of k from the projected positions to the contour.

Bk = {{x, y , z)]L{xp, yp) 二 k } (1 4)

The cost of each voxel depends on two factors. The first one is the gradient

and the second one is its continuity. The first factor makes it as near as the object

boundaries. The second factor controls the shape of the surface such that it can be

smoother. The cost function C{x,y,z) of a voxel {x,y,z) is given by:

C{x, y, z) = -WgG[x, y, z) + WcS{x, y, z) (15)

where G{x,y,z) is the gradient magnitude and S{x,y,z) is the surface continuity

function. Wg and Wc are the positive weighting factors controlling the gradient function

and the continuity function respectively. Therefore, the total cost of the cutting

surface is the sum of voxels contained in the surface.

The surface continuity function measures the average distance of a voxel from

other neighbor voxels. Surely not all voxels from the volume data have to be included

for the calculation of the cost of a voxel. We define A{x,y,z) be the set of involved

voxels for the continuity calculation of a particular voxel and it is given by:

乂0̂’仏2) = J {̂x,y,z) n B(LOvp,yp)-i) n g (i6)

Chapter 3. Volume Cutting 31

^ ^ ^ ^ • e

^ C ^ X
Z / contour

Figure 14: Projection of the contour on a plane

where

A/-(.,.,.) = { (^ " '乂) 1 1 (4 ' ¾) - (� " p) | | < ^} (17)

(xp,yp) and (x � y ;) are the projected point of (x,y,^) and (x ' , y ' , /) respectively. Q

is the set of voxels which have been guaranteed to be involved in the cutting surface.

e is a constant which is used to control how close two neighbor voxels should be on

the project plane. Therefore, the surface continuity function is defined as follows:

c, �\ A ^ ^ o 11"-(工，",州1' , � S{x,y,z)= (丄…

^{^,y,z)

As stated before, the surface is found by minimizing the total surface cost. It

can be done by an iterative process which shrinks the projected contour gradually.

In fact, the projected area is composed of many contours where the pixels of each

contour have constant L(xp,yp). Therefore, we can process the contours one by one

to find out the surface. For example, Figure 15(b) is the projection of the contour

in Figure 15(a). We then move on the smaller contour marked '1，in Figure 15(c).

After all voxels have been found out by minimizing the contour cost, we move to the

Chapter 3. Volume Cutting 32

^ — — ^ ~ = = ! ! ! _ 2

= I = = = = ^ E = = I = = = = Z =
T — 一 ^ 0

\ 二= = 1 0

ZZVZZZ7Z z z z z z z z z
X _ ^ [— _2__2__2__2

(a) (b)

— = i m = = _2__2__2__2
= m m = = z ^ i i _ L i _ _ 2
一"5"1 ^ I = — ! 丄 1 _ ^ 上 _ 2

— ^ 1 = I Z = — !上 ^ _ _ ? _上 _ 9

= = n m = = = ! 丄 丄 上 _ 9
i m = — ! ! ! _ 2

(c) (d)

Figure 15: Distance map L{xp, yp) of the project plane

Chapter 3. Volume Cutting 33

contour marked '2', and so on, until all contours have been processed. The cutting

surface can be found using the following algorithm:

Initialization:

g i- C n Bo

k ^ 1

V 4- Bi

Vz,i,V(z,i) — null

V z , i , c{i,j) f - 00

Algorithm:

for each (x, y, z) G C do

c{xp,yp) — 0

V{x^,yp) — {x,y,z)

II where (a^p,yp) is the projected coordinates of (x, y, z)

end for

while V + 0 do

for each (x, y, z) G V do
y^, I / /、C{x ,y ,z)

一—。(譽)+、’"丨‘，:)丨

if tmp < c{xp, yp) then

c{xp,yp) ^ tmp

V{xp,yp) f - {x,y,z)

end if

end for

0 — U ’ ^ j) - — " }

k f- k + 1

V i - B k

end while

Chapter 3. Volume Cutting 34

After extracting the cutting surface, the final step is simple. To separate the

volume, we can have two alternatives. The first one is region growing. After the

voxelization of the external and internal surfaces, we can select a voxel in the volume

and perform a simple region growth to get the region of interest. The second method

uses the algorithm introduced in [22], which can produce volume data from triangular

mesh. We can add up the external and internal meshes together to form a closed mesh.

Triangulating the mesh and the voxelization algorithm can be used straightly.

3.4 S u m m a r y

In this chapter, a new volume cutting method is proposed. The aim of this algorithm

is to give user a convenient interface that can separate a volume into two parts by

considering the object boundaries. A closed contour is extracted using an extension

of Intelligent Scissors, which is an efficient 2D image segmentation tool. We modified

it such that it works on surface mesh. A cutting surface extraction algorithm is also

proposed. By using these two surfaces, volume can be separated into two parts easily.

The detail of this work can be found in [6 •

Chapter 4

Three-dimensional Intelligent Scissors

The Intelligent Scissors stated in Chapter 2 works quite well in 2D applications.

It motivates us to extend the algorithm to three-dimensional, which is applied to

volumetric data instead of 2D images. Unlike the volume cutting algorithm proposed

in Chapter 3, it works not only on surface mesh from volume data, but works on the

whole volume data with all voxels as graph nodes.

The characteristic of 2D Intelligent Scissors is to find out a curve lying on edge

features given the starting and ending points. In volumetric data, however, our new

algorithm now extracts lines lying on surfaces, instead of boundaries in the case of

2D.

The extension from 2D to 3D is straight forward. Like the pixel graph in a 2D

image, each voxel of a volume is now a graph node and every node has 6，18 or 26

edges attached to it, depending on whether the graph is decided to be 6-connected,

18-connected or 26-connected. Figure 16 shows the voxels involved for 6, 18 and 26-

connectivity respectively. Note that the speed of finding a 3D path is directly related

to the number of nodes and edges in the graph. For example, the graph constructed

from a 128x128x128 volume data set will have 2 million nodes and about 6 million, 18

million or 26 million edges for 6, 18 or 26-connectivity respectively. Therefore, using

a 6-connected graph can find a contour with low quality quickly and a better quality

contour can be found by a 26-connected graph with lower speed. The algorithm is

about the same as the previous one except the increasing number of nodes and edges.

35

Chapter 4. Three-dimensional Intelligent Scissors 36

仇 惑 ^ ^

_ ffl^, ffr/

W _ ffi^

Figure 16: The 6，18 and 26 connectivity

4.1 3 D G r a p h Construction

The graph construction for 3D Intelligent Scissors can be straight forward. Except

the outermost voxels of the volume, each voxel can be assigned 6, 18 or 28 edges which

connect to its neighbor voxels. However, if we construct the graph using this straight

forward approach, we will be in trouble later. The reason is that it will produce a

huge amount of nodes and edges in the graph. Several tens of seconds can be taken

to extract just one contour from a graph with 1 million nodes and 26 million edges

even on powerful computer. It is because the Dijkstra's algorithm has running time

0{\E\ + \V\log\V\) if Fibonacci heap[16] is used to implement the priority queue (see

Appendix A), where V is the set of nodes and E is the set of edges.

Therefore, we must develop some methods which can reduce the number of nodes

and edges. Since voxels with zero gradient are usually not preferred in the graph

searching, the elimination of those voxels can reduce a large number of voxels. How-

ever, simply cutting away those voxels can cause problems. Figure 17(a) shows an

image composed of two line segments. Now consider finding a path from pixel A to

pixel B. By Intelligent Scissors, a segment similar to the red line should be found

easily. However, if we cut away voxels of zero gradient, the image will be broken into

two groups, as shown in Figure 17(b) (non-zero gradients are represented by shaded

squares). Since a crack separates the groups, the search originates from node A would

Chapter 4. Three-dimensional Intelligent Scissors 37

F ™ ffl^m

^ \
HI“J ‘ \
Ml B / _ _ _ _

翻難
(a) (b)

Figure 17: (a) Original image (b) Image gradient

never reach the other group containing B. Thus it is impossible to find a path from

A to B. In some medical data, the boundaries between objects can be not clear and

may contain zero gradient voxels. Therefore, a simple node pruning is not reasonable.

Now the problem is how to reduce the number of voxels but preserve the con-

nectivities of objects inside the volume. Obviously, we cannot eliminate all voxels

which have zero gradient. Instead, we should keep some of them and use those voxels

to connect between different groups. To solve the problem, we use a data structure

called IsoRegion[32], which is used to accelerate ray casting originally. Usually, a

volumetric data set contains many empty or homogeneous regions. Each of these

regions contains voxels of the same value. Particularly, if the shape of the region is a

cube and the size of it is in the form of {2d + 1)3 for d > 0, we say that the region is

an IsoRegion and d is called the dimension of that IsoRegion.

IsoRegion can be represented as a 3D array where every element indicates the

dimension of the corresponding IsoRegion at that voxel. Therefore, a voxel u has a

IsoRegion number n means that the (2n + 1)3 voxels of the cube centered at u have

the same voxel intensity. Figure 18 shows a 2D image and its corresponding IsoRegion

Chapter 4. Three-dimensional Intelligent Scissors 38

m m m i ! i ^ ! 。 剛 卞 丨 卞 -

0 _ o _ A A A A _ L A
^ T T T T T 0 0 0

H m i a _
_ 2 _ 丄 丄 丄 1 「 1 _ —

o | o | o | o | o M H
(a) (b)

Figure 18: IsoRegion of a 2D image

map. The algorithm for the IsoRegion construction can be found in Appendix B.

Since the edge length of an IsoRegion must be odd, it guarantees that there

must be one voxel placed at the center. Now we modify the previous node pruning

algorithm a little bit: all voxels with zero gradient are cut away, except the center

voxels of IsoRegions. Connectivity can be established by linking some of the boundary

voxels of an IsoRegion to the center voxel(Fig. 19). Linking all boundary voxels to

the center can produce too many edges if the dimension of the IsoRegion is large.

Therefore, only 26 boundary voxels corresponding to the directions of 26-connectivity

are considered. Figure 20(a) is the IsoRegion map of an image. According to our

algorithm, all voxels inside an IsoRegion are pruned away, except the boundary voxels

and the center voxel. Higher priority is given to larger IsoRegions. For example,

voxels in Figure 18 marked '1' corresponds to IsoRegions of dimension one. However,

they are still cut away, as shown in Figure 20(b), since they are contained by larger

IsoRegions of dimension two. Finally, the graph can be completed by linking the

boundary voxels to the center voxels, as shown in Figure 20(c). Usually not all

boundary voxels of an IsoRegion are present after pruning because they are contained

in other IsoRegions. Links are added to those present boundary voxels only. The

Chapter 4. Three-dimensional Intelligent Scissors 39

pseudo code of the graph construction algorithm is as follows:

Initializations:

V — { } /* The set of graph node*/

E <- { } /* The set of graph edge */

I{u) = 0 for all voxel u /* The IsoRegion map */

A — { }

Algorithm:

I = makeIsoRegion{) /* Make IsoRegion map, see Appendix B */

/* Add nodes */

for each voxel u in the volume

if I{u) = 0 or I{u) > I{v) for all neighbor v then

y = y u {u}

end if

end for

/* Add edges */

for each node u G V

if I{u) 二 0 then

A — { set of neighbor nodes }

else

A — { set of the 26 boundary nodes }

end if

for each node v G A

if (u, v) • E then

E = EU{{u,v)}

end if

end for

end for

Chapter 4. Three-dimensional Intelligent Scissors 40

B B B B B B B

¥ ¥
"^ j^ B ~ Boundary voxels
Y = 1
~y ^ C — Center voxel

I=====I
¥ t B B B B B | F

Figure 19: Definition of boundary and center voxels in IsoRegion

4.2 Cost Function

The cost function is about the same as the one described in Section 2.3. The main

difference is that it is now applied to volumetric data. Here we use the 3D image

gradient and Laplacian zero-crossing functions to evaluate the cost of each edge. Let

fg and /^ be the gradient and Laplacian zero-crossing functions respectively. If p{u)

is the position vector of u, then the cost equation is

cost{u,v) = Wp{u) -p(^;)|l {wgfg{u,v) + wJ^{u,v)) (19)

where Wg and w^ are the weighting factors controlling the gradient and Laplacian

zero-crossing functions respectively. Experiments show that Wg = 0.7 and w^ 二 0.3

give acceptable results.

If (4 , Iy, I^) is the gradient vector of a voxel u, the gradient function of a voxel

can be represented by
御） +御) _

他 ”) 二 1 _ ma.(G) (20)

where

咖) = y J P M + Il{u) + Il{u) (21)

Chapter 4. Three-dimensional Intelligent Scissors 41

0 |o |o |o |o |o |o |o |o |o _ 2 _ ! i _ 2 _ _ 2 _ ! _ 9 _ i _ 9 _ _ 9 _
0 1 j__1__1__1 0 0 0 0 ^ Q Q Q Q
0 1 2 2 2 J__J__0__0__0_ _0 2 2 2 0 0 0
0 1 1 1 J__2__1__1__1 0 _0 2 ^
~ ^ 7 1 1 1 丄 丄 丄 丄 _ 2 _ _0__0__0__0 ^ 2 _0_
0 0 0 0 ^__1__1__1__|__0_ 0 0 0 0 0 0_

~ ^ ~ ^ ~ ^ 0 0 0 |o |o |o |o |o |o |o |o |o |o |o |o |o |o

(a) (b)

0 0 0 0 0 0 0 0 0 0
o \ ^ I y^、、、0 0 0 0
0 ——2 2 2 \、、 0 0 0

oZ I、、、、、2、、、I /。
0 0 0 0 \、、 2 2 0

0 0 0 0 0 y ^ I \ ^ 0
0 0 0 0 0 0 0 0 0 0

(c)

Figure 20: (a) The IsoRegion map (b) After node pruning (c) Linking

Chapter 4. Three-dimensional Intelligent Scissors 42

Finally, the equation of Laplacian zero-crossing function is given by

‘ 0 if W (u) * 齊 ⑷ < 0
Jz(u,V) = [^^)

1 if V^V{u) * V^V{v) > 0
V

where
,,、(d'V d'v d^V\ ,。。、

• 外) = 1 斤 + " ^ ^ + 巧 丨 阅

and it can be approximated by the following discrete form

W (a ; , y, z) ^ (27V(x, y, z) — ^ ^ ^ V(o: + z, y + j, z + k))/26 (24)
i=-l j=-l k=-l

4.3 Applications

So far we have described what three-dimensional Intelligent Scissors is and how to

construct the corresponding graph. In this section we would like to discuss its use-

fulness by proposing two applications. The first one is a surface extraction algorithm

and the second one is a vessel tracking algorithm.

4.3.1 Surface Extraction

Finding contour in one slice by Intelligent Scissors is fast. The original technique can

be used to extract contours from different slices and surface can be reconstructed by

joining the contours together[19, 14, 54]. However, the process of extracting every

slice is troublesome. Moreover, the process of joining adjacent contours is complex.

Therefore, we hope that the process can be simplified by using as few slices as possible

and thejoining process is left for 3D Intelligent Scissors. Theoretically, lines extracted

by 3D Intelligent Scissors tend to lie on iso-surface. It means that a surface inside a

volume can be reconstructed if we use enough 3D lines. In this section, we show that

Chapter 4. Three-dimensional Intelligent Scissors 43

丨 \— k^\
A ^ ' / ® ^ '

z

(a) 03)

Figure 21: (a) The initial triangle (b) Four triangles after the first subdivision

how to construct iso-surface using three slices which are parallel to the XY, YZ and

ZX-plane respectively.

Firstly, we define three contours in the XY-plane, YZ-plane and ZX-plane re-

spectively. The ends of contours are joined together such that it forms a "deformed

triangle"(see Fig. 21(a)). The planes can be selected arbitrarily inside the volume

and the extractions of the contours in their corresponding planes can be simply done

by 2D Intelligent Scissors.

Surface reconstruction is done by applying a recursive subdivision to the "de-

formed triangle" by subdividing the contours and joining the mid-points together.

As a result, four smaller "triangles" will be formed (Fig. 21(b)). Further subdivisions

are performed depending on the level of detail(LOD) and finally，a multi-resolution

surface mesh can be formed. If a mesh has i triangles, then the mesh of the next

level will have 4t triangles. Therefore, in general, a mesh of level n has 4^ triangles.

Figure 22 shows six surface meshes of LOD 0, 1, 2, 3，4 and 5 respectively. The

volumetric data is a CT head of size 128x128x64 and the shown surfaces are the

outermost skin from one of the eight equal sized octants.

The contours are in voxel level. It means that every contour is composed of voxels

Chapter 4. Three-dimensional Intelligent Scissors 44

A A
(a) (b)

威處
(c) ⑷

A A
(e) (f)

Figure 22: Surfaces for 0, 1, 2, 3, 4, 5 subdivisions respectively

Chapter 4. Three-dimensional Intelligent Scissors 45

/ , r 7 \ � � �] mid-point I / V ^ ^ ^ ^ ^ ,i
^ / \ \ 曰 ^ ^ _ ^ j ^ ^ ^ subdivided

i'/-^-A/ i ^ y ^
^ ^ ^ ^ Z] � ^ ~ crack

length = 1 unsubdivided

(a) (b)

Figure 23: (a) Two triangles before subdivision (b) A crack appears if only one is
subdivided

and the midpoint of each contour is also a voxel. Therefore, we say that a contour is

of length n if it is composed of n + 1 voxels. One problem of the subdivision is that

if the length of any one edge is one, i.e., composed of two voxels, the triangle cannot

be subdivided into four triangles normally. Thus a crack will be formed if we left it

unsubdivided (Fig. 23). The solution is to classify all triangles into four cases and

subdivide a triangle according to its configuration. The first case is the normal case

where the length of every edge of the triangle is greater than 2 voxels. The second case

consists of one edge with length equals to one. The third and fourth cases consist of

two and three edges with lengths equal to one respectively. The subdivision methods

of these four cases are shown in Figure 24. Following these subdivision rules will

make the output surface model a closed mesh, which can be subjected to geometric

operations.

Chapter 4. Three-dimensional Intelligent Scissors 46

£ 2 . - z ^

- r r ^ ^ . 令 1^：：：：^
\ 、 公 — _ 一

^ ^ r Q ^ ^ ^ ^ ^ ^^^^^

l y^^\^l ^^^^^> ly^^^\ (no subdivision)

1 1

Figure 24: The subdivision rules for the four cases
5

Chapter 4. Three-dimensional Intelligent Scissors 47

4.3.2 Vessel Tracking

In medical data, various kinds of vessel tracking are sometimes needed because clear

descriptions of the vessels are important for clinical diagnosis and surgery planning.

For example, the human liver can be divided into 8 different segments and these seg-

ments can be distinguished according to the branching pattern of the blood vessels.

In neurosurgery, a clear understanding of cerebral vasculature can help a lot in the

surgery planning. The third example is heart diseases. Congenital or acquired heart

diseases may need surgical intervention and dilation of narrowed vessels. The under-

standing of the patient's actual vessel morphology is very important to the surgery.

Various approaches[53, 47, 13, 36] have been taken to find out blood vessels auto-

matically or semi-automatically in the past. They build the vessel tree either based

on multiple X-ray images(biplane angiograms) or directly from volume data, using

some region growing or image processing techniques. In this section, we propose an-

other method that finds such paths using three-dimensional Intelligent Scissors. 3D

Intelligent Scissors has this ability since the line extracted by it tends to "climb"

along surfaces. Therefore, a rough path can be found out by the algorithm if the

end points of a narrow tunnel are selected as the starting and ending voxels (see

Fig. 25(a)). Another advantage of using 3D Intelligent Scissors for the task is it can

successfully extract the path even the actual path is broken (see Fig. 25(b)). In some

medical data, the diameter of a blood vessel may sometimes smaller than one voxel.

Therefore, it makes some region growing algorithms[53] unsuitable in such cases.

A path between two voxels can be found out easily by Dijkstra's algorithm(Section 2.2).

Normally Dijkstra's algorithm originates from the source node and stop the searching

if the target node is reached. It means that the graph is only partially filled if a

"point to point" shortest path is to be found. Therefore, if the source node is fixed,

the partially filled graph can be re-used in order to save time, since some or most of

Chapter 4. Three-dimensional Intelligent Scissors 48

1 ^ ^ p ^ -

(a) (b)

Figure 25: Path finding in volumetric data

the nodes have already been traversed. This property can be applied to the construc-

tion of a vessel tree since all branches of the tree have a common source/root node.

The building of a vessel tree can be done by a simple algorithm:

Initializations:

r — root node

T — { all target nodes }

G ^ the graph (V, E) /* V = { all nodes}, E = { all edges} */

B{u) <r- nil for all u G V
/* B{u) = V if there is an extracted path containing edge (u,v) */

Algorithm:

for each u G T

if B[u) — nil then

Dijkstra{G,B,r,u)

endif

end for

As a result, the path information is stored in the node array B{u), which is the

back pointers that indicate the paths (see Fig. 26(a)). Therefore, a path from root

node r to a target node v can be found by traversing the back pointers and the path

Chapter 4. Three-dimensional Intelligent Scissors 49

can be represented as

path = {^, B{v), B{B{v)), B{B{B{v))),.", r } (25)

Other than the path extraction, the locations of branch points are also important

in some applications, for example, the navigation of lung air ways. A branch point

is the intersection of two different paths originated from a single source node (see

Fig. 26(b)). The locations can be found out by examining all elements of array B. If

a node v is pointed by other two or more nodes, we say that v is a branch point. The

following algorithm finds out all branch points and stores the branch nodes in K:

Initializations:

C{u) f - 0 for all u G V

K 4- { } /* the array stores branch nodes */

Algorithm:

for each node u G V

C{B{u))^C{B{u))^l

end for

for each node u G V

if C{u) > 1 then

K = K U {u}

end if

end for

4.4 S u m m a r y

In this chapter, we extend the idea of two-dimensional Intelligent Scissors to three-

dimensional. The graph construction of volumetric data introduces a huge amount

Chapter 4. Three-dimensional Intelligent Scissors 50

眷 r “

(̂) o

t 上
Q . Branch node ^^^\

/V \ u
'。 ，〇 \ ^ o \ A
o 、 o ， c A r o ' 5 A

' 1 - 义 ^ \ p b

Q • � ？ c f \

t^/ t〉〇 z 0
• /

(a) 03)

Figure 26: (a) The vessel tree built from back pointers B{u) (b) Branch node is
pointed by two or more other nodes

Chapter 4. Three-dimensional Intelligent Scissors 51

of nodes and edges, which severely slows down the contour extraction algorithm.

In order to reduce both the number of nodes and edges, we cut away most of the

nodes inside homogeneous regions and leave some of them for connections of different

groups.

We apply the three-dimensional Intelligent Scissors in two areas: surface extrac-

tion and vessel tracking. Since lines extracted by the algorithm tend to lie on sur-

faces, enough number of such lines can reconstruct the surface inside the volume.

The surface is built by a recursive subdivision of an initial abstact triangle with three

non-straight edges. The output is a topologically simple surface mesh bounded by

the initial deformed triangle.

By the same characteristic, a vessel can be tracked out provided the two ends of

the vessel are known. This can be used to find blood vessels, cerebral vasculature or

lung air ways. It is also demonstrated how to find out branch points of a vessel tree

in order to have a virtual fly-through of the volume data.

The main contribution of 3D Intelligent Scissors is that it can extract contours

in volumetric data. With this property, we can extract meaningful curves lying on

surfaces. The algorithm would be more useful if we can extract contours in an in-

teractive rate. However, the huge amount of nodes and edges in a graph makes the

process far from interactive and it becomes the major drawback of the algorithm. It

is obvious that we need to improve our graph pruning algorithm and graph searching

technique in order to improve the performance.

In the next section, we show the implementations of these new algorithms on a

virtual environment called Virtual Workbench. User-friendly interfaces are built in

order to give user an easy and efficient control of these algorithms on volumetric data.

Chapter 5

Implementations in a Virtual

Environment

When dealing with high-dimensional data, a two-dimensional interface is usually not

sufficient. Instead, a higher dimension interface is preferred. Particularly, Virtual

Workbench[43] is one of such interfaces that is suitable for the manipulation of

three-dimensional data and provides stereo display and three-dimensional interac-

tion. Various applications have shown that it is an appropriate virtual interface for

three-dimensional dextrous work[4, 44, 45 .

In previous chapters, we have described a new algorithm for volume cutting which

is based on the technique of dynamic programming. By using a closed contour lying

on the surface of a volume, the volume can be cut into two parts (see Chapter 3). An

extension of the 2D Intelligent Scissors to 3D is also presented in Chapter 4. Based on

this extension, two new algorithms that extract surfaces and vessels from volumetric

data are developed.

In this chapter, we show the implementations of our algorithms on Virtual Work-

bench. Some experiments have been carried out and all of the results in this chapter

have been measured on a SGI Octane R10000 MXI workstation. A programming

library called BrixMed [37] is used. It is mainly designed for the Virtual Workbench

and many useful classes and their call-back functions are well defined, including plane,

volume, toolrack, tools, lights,...etc. A snapshot of the working environment is shown

in Figure 27. Typically the environment consists the target objects(the volumetric

52

Chapter 5. Implementations in a Virtual Environment '53

•
11 g | 0 & ^ ^ _ 8 1 ¾ ^ ^ ttM _ i | ••̂̂ ^̂̂ ^

Figure 27: A typical working environment in Virtual Workbench

head), a tool(the pen) and a toolrack. Different tools for different operations can be

selected by clicking the buttons of the toolrack.

In BrixMed , volumetric data is rendered using 3D texture mapping and there are

four modes to display the volume, namely, full volume mode, cut-box mode, triplanar

mode and monoplanar mode. Figure 28 shows the effects of applying these display

modes to a volume.

5.1 V o l u m e Cutting

In Chapter 3 we introduce a new algorithm for cutting volumetric data. The program

is implemented on Virtual Workbench and a simple interface is built. The cutting

process is separated into two parts. The first part is contour definition, which selects

and edits a closed contour. This contour is used to cut the volume into half later.

The second part is a cutting surface construction and the volume can be separated

by region growing using this surface as boundary.

Before the contour definition, a surface mesh has to be built first. For simplicity,

Chapter 5. Implementations in a Virtual Environment '54

•|__||圓_1_1_圓11圓_1111 lillWIIM__^__llll

•_.::
(a) Full volume mode (b) Cut-box mode

:觀_::
(c) Triplanar mode (d) Monoplanar mode

Figure 28: The four volume display modes

Chapter 5. Implementations in a Virtual Environment '55

^^^ ||î^̂!̂^̂^̂N̂^

/ I !j 11 I ！ 111 'f

i|5jy
Figure 29: Environmental mapping of a volume

we use an environment map to represent the mesh. It is constructed by projecting

rays from a sphere containing the volume to the center and sampling along the rays

in order to decide whether the rays reach the surface or not(see Fig. 29). The major

drawback of this method is that every point on the surface must be visible from

one point inside the volume, otherwise the mesh would be incorrect. In fact, other

more complicated and accurate mesh extraction algorithms can be used here and our

algorithm works in the same way. However, since mesh extraction is not the main

concern of our cutting algorithm, we choose to generate the surface mesh using a

simple algorithm.

The first step of our cutting algorithm is to define a closed contour lying on the

surface mesh. A point on the mesh can be chosen using a six degree-of-freedom(6D0F)

stylus. When the stylus moves near the surface mesh, the nearest mesh point will

appear as a sphere. Points with higher gradient magnitudes can be selected by the

stylus with the help of a 3D snap. Every time we choose a mesh point, the mesh

points covered by the snap are also considered such that a better edge point can be

Chapter 5. Implementations in a Virtual Environment '56

selected. Figure 30 shows the procedure for defining a closed contour by the interface.

After the contour definition, the rest of the process is automatic. Firstly, based

on the closed contour, an internal cutting surface can be constructed using the algo-

rithm described in Section 3.3. Since we now have a surface mesh and the internal

cutting surface, volume separation can be done by a simple region growing algorithm.

Figure 31(a)-(f) show some results of this application. Figure 31(a) is the original

volume, which is a 128x128x64 CT head. Figure 31(b) is the state after defining

a closed contour surrounding the nose and Figure 31(c) is the volume after cutting

away the nose. Figure 31(d)-(f) is a similar case except that instead of the nose, a

part of the face is cut off.

5.2 Surface Extraction

The algorithm described in Section 4.3.1 shows how to extract surface from volumetric

data by using three joined contours. The three contours can be lying on any three

planes. For simplicity, we use the XY-, YZ- and ZX-plane only. Note that it works

in the same way even three arbitrary planes are used.

To extract the surface, we have to extract the three boundary contours first. The

extraction is done by the interface shown in Figure 32. The interface consists of three

planes from the volume, which can be rendered using the triplanar mode. At the

very beginning, the end points of each contour are fixed and the three points have the

greatest value along their corresponding axes by default (Fig. 32(a)). Three sliders are

used to tune the three points to the best positions (Fig. 32(b)). After placing the three

points correctly, the user can use a 3D stylus to edit the contours (Fig. 33(a)). New

nodes are inserted into the contours in order to change their shapes. For example, if

u and V are the end nodes of a contour and the path u ~> v is found by the algorithm,

a node p can be inserted between u and v such that a new contour u — p — v can be

t^
vo

•

^^^^m
^^^^^^^^M

^^^^^^^^^^^^^M

^
^

^
^

^
^

^
^

^
M

^

^
^

^
^

^
^

^
^

™

^
^

^
^

^
^

M

^
^

^
^

^
^

M
.

^
^

^
^

^
^

M

^
^

^
^

^
^

M

I
_
_
隱

_
議

隱
磁

_
l

f
i

:
s

I
^

^
^

^
^

M

隱
_

.
聽

1

^m
m

^m
ik

i
:.::,:.-:..乂

，
:̂
^、

::::.--:、
巧
..憾

-

-
—

>

$
a

03
^

^
^

^
^

r"^
:^

?^
=

—
:-i^ :

»
1

^
^

^
^

^
^

^
^

^
^

^
^

^
^

M

仏
.::::.:7:..-.:..: ;..:...::,: :.....:..:.

.....:..:.

•

.... -；

:,.,.:]. : m

另

.3
^

^
^

^
^

^
^

^
^

^
^

^
^

¾

^
^

^
^

^
^

M

I
§

^
^

^
^

^
^

^
^

®
^^^^^^^^m

^

^
^

^
^

^
^

^
M

.¾

名

^^^^^^^M
^^^^^^^m

^

^
^

^
^

^
^

r
t

^
I

^
^

^
^

^
^

^
^

^
M

^

^
^

^
^

日

^
^

^
^

^
^

^
：

:

.
:

—
二

一

j
—

-—
—

r
^
5¾
^ »o î
^ U 03
s

Chapter 5. Implementations in a Virtual Environment '58

_ _ m
I ' , i l ' " t ..^M t : : , .,i. "z'ii:||

(a) (b) (c)

• 遍 0 1 1零 ! (1 | 5 ^ ^ • J _ .
(d) (e) (f)

Figure 31: Volume cutting by a closed contour

_ II i _ _ _ _ _ - M T r n m r n m m M M M M M w w n M w - m n m M f m w m M T T m n n n n w m m M a B r m T O m i B i ~̂~--~-̂—;、-

Chapter 5. Implementations in a Virtual Environment '59

formed. The leftmost three buttons in the menu bar control which contour is going to

be edited. When a plane is selected, a line perpendicular to the plane will be drawn

from the tip of the stylus to the plane, in order to indicate the position accurately.

Figure 33(b) shows the final view of the three edited contours. The speed of finding

and editing the three contours is fast here since the graph searches are restricted to

two-dimensional planes only. Later construction of the surface, however, consumes

much more time because the searches are done throughout the volume.

After the contour definitions, the surface bounded by these three contours can

be constructed by recursive subdivisions. User is required to choose the level of

detail which represents the subdivision levels that the process is going to perform

(see Fig. 34(a)). A surface mesh can then be extracted and Figure 34(b) shows the

resulting surface from a corner of a 128x128x64 CT head. It is the same surface

shown in Figure 22 of Section 4.3.1. Table 1 shows the timing results that needed to

generate the surface shown in Figure 34(b) with different levels of detail. The data

set is the same for all four cases except the positions of the three planes. Each graph

is 18-connected. For each case four surfaces are produced with levels 1 to 4.

5.3 Vessel Tracking

In this section, the implementation of the vessel tracking algorithm on Virtual Work-

bench is shown and it is applied to the tracking of lung air ways. Commonly,

vessels from medical data are found by region growing[53], 3D image processing

techniques[47] or tracing manually[44]. In Section 4.3.2, we has presented an alter-

native method that uses dynamic programming to find a vessel between two voxels.

Here we show that how the algorithm actually works in a virtual environment.

To search for vessels in a volume, we have to construct the corresponding 3D

graph first. The data set we used is a 128x128x64 lung data set. A straight forward

Chapter 5. Implementations in a Virtual Environment '60

_ 丨
_隱觀_1
_
::::_ ffi|^1|...^'|:I^^

(b)

Figure 32: Joint points adjustment

^ ^ ^ ^ g
^̂ ^̂ 1̂ ̂^̂1
^^^^M ^̂̂H
^̂ 1̂ ^̂H
^H ^1

^̂iii:::ii:::i、m
|̂̂ ĝ||;̂ B̂

^HHî M^H ^ ^ ^ H ||):i|ii:i|i|i: ; i : :||| ^ ^ H ^^M Ĥ ^ ^ ^ ^ ^ ^ ^ m ^ ^ ^ ^ ^ H ^^M Ĥ ^̂ Ĥ ^̂H ^̂ Ĥ ^̂H •̂̂ jl̂ gl̂ ^̂ ^̂ l H I ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^•^•^^!^^‘. -、••• • - ‘ •• . :. 二；么:.:、‘’…,…/…...‘.•‘ '̂：•'•• ：•• "•••-'-•"''-<'^"Tt>^^

Chapter 5. Implementations in a Virtual Environment '62

mm
UtUSBi
1 i :___邏麵

(a)
flinintiiflttiiiRfflutnmiHifflffiinntifiinifltfltiflimiimftiiflttftffliniitfRHlllunglffl

•隱羅:霧_
_ & 邏 _ 讓
iMymyiilS0yîlSBiiliKIUyy9iiiiffiiiUii6yilSUitt81̂ !HilululUlul O ！ Ullll lll lullHWU imulllHftuI lllllltulliiIll<iuillllhil lUuiltlUltl !Hmu tul i«Ijl ilililmullll)KlHml ltHIU fflfllMJlHniHlflltMuHlUHH » IlijIMHJuHliWltWWtlBU" U(iW I«! ‘‘

(b)
Figure 34: Construction of the surface

Chapter 5. Implementations in a Virtual Environment '63

size I no. nodes | no. edges | level | no. triangles | CPU time(sec.)
32x32x32 ~~l0435~~~~69572~~ 1 4 0.07

~ T ~ 16 0.27
~ 3 ~ ~ 58 0.85
~~~r~ 202 2.68 

64x32x32 3 0 ^ 236704 1— 4 一 0.68 
~~2~~ 16 2.08 
~ ^ ~ ~ 64 4.32 
~~^~~ 250 9.31 

64x64x32 78609 664090 ~ 1 ~ " 4 3.03 
2 16 7.48 
3 64 一 12.51 “ 

~ 256 — 22.95 _ 
64x64x64 149560 1293068 ~ 1 ~~ 4 7.12 

~ ^ ~ ~ 16 16.86 
~ 1 64 一 28.16 一  

4 256 47.97 “ 

Table 1: Timing results for surface construction 

construction of the volume would produce 1 million nodes and about 9 million edges 

for 18-connected graph. Since the numbers of nodes and edges are too large, the 

volume is thresholded such that voxels with intensity smaller than 30 are set to zero. 

Moreover, since the upper part of the volume contains unnecessary data, the search 

is limited to voxels with y < 90. After thresholding and node pruning, the number 

of nodes is 372820 and the number of edges is 3158320. 

The interface of this program is simple(Fig. 35). User can choose the display 

mode of the volume by the middle four buttons in order to spot the vessel end points 

more easily. The two right buttons on the menu bar control the selections of vessels. 

After pressing the first button, the voxel selected by the 3D stylus will be set as 

the root of a vessel tree. Only one voxel can be set as root since only one tree is 

going to be extracted in this program. The second button enables the tool to select 

an arbitrary number of terminals. Figure 35 shows the steps of defining the vessel 

丨̂ 睡̂,̂ _̂ ̂^̂̂ ĵ̂̂ f̂̂̂^̂—̂̂îMMiuîjBBf̂gjnimiWM1̂BBl̂BWl̂BKmWBHBWB̂H!rMBWBnfTP?BBtlBBHIitŴ̂BiBMmBBr**"?̂*̂i*̂̂ f̂lffBSWBM8HHMBfflMHrĵ!̂w 



Chapter 5. Implementations in a Virtual Environment '64 

size no. nodes no. edges CPU time(sec.) {\V\log\V\ + |^|)/lOQQQO" 
32x32x32 32500 268165 0.83 3.12 “ 
64x23x32 _ 65088 547833 1-85 ^  
64x64x32 _ 113374 982738 3.49 l̂：^̂   

64x64x64 “ 227503 2024591 一 8.24 2 ^  
128x64x64 390123 3470100 15.15 41.27 

Table 2: Timing results for vessel founding 

tree. In Figure 35(a), the voxel with a small sphere is the root selected by the stylus. 

Vessels can be found by specifying the ends of the vessels(Fig. 35(b)). The volume in 

Figure 36(a)-(e) is rendered in monoplanar mode and we can see that the extracted 

vessel(red line) is passing through one of the air ways. Provided that the graph is 

present and only one tree is needed to be found, the extraction of vessels from that 

root is fast. The most time consuming part of the algorithm is to find the paths from 

all nodes to the root node. It is basically a single-source shortest path problem . If 

the root node is fixed, this calculation is needed to be done once. Table 2 shows the 

CPU time needed to find all paths provided a root node is given. The data set is 

the same lung data used before and only part of it is used each time. As shown in 

appendix A, this algorithm has a complexity of 0{\V\log\V\ + \E\). The last field of 

the table computes |V̂ |/c>dV̂ | + |£̂ | and it can be seen that the increasing rates of this 

value and the time is approximately linear. 

5.4 S u m m a r y 

In this chapter, we show the implementations of our algorithms described in previous 

chapters. For the manipulations of volumetric data, the platform is important. The 

working environment should be able to provide a high-resolution stereo display and 

true 3D interaction. Therefore, we choose the Virtual Workbench as our working 

environment, which can be used to do some dextrous work. 

~ — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ^ ~ ~ ~ ~ — ~ ~ ~ ~ ~ ~ — ™ ™ M M I » ™ M » « M ™ l — ™ « g g - " W " ™ * < > - ™ « ™ - ™ » ™ " « » ™ ™ " ^ 



Chapter 5. Implementations in a Virtual Environment '65 

國 
H i l i 

(a) root selection 

_ 

(b) terminal selection 

Figure 35: Construction of the vessel tree 

_ — >̂ .̂-vr<qy|mjfn̂-r<Rsm̂ >̂̂ ir̂ T̂ ivt(i- •‘ 



Chapter 5. Implementations in a Virtual Environment '66 

I 圓̂̂ ̂̂ ^̂|j| • j 
' H 

•_I^S__I ̂̂ SB_ 
^ f c _ _ i 

(b) (c) _ _ _ _ • _ _ BHB^̂ ^B ^̂^̂ Ĥ̂^̂^̂M | M c i S B H H i i i K t e i i i S i i : , : : (d) ⑷ Figure 36: The extracted vessel passes through the actual path • - ̂ _̂̂ _̂̂ ^̂ __~̂ ^—^̂ ^̂ ^̂ »̂ —^M^M^̂ ^̂ ^——iî ^̂ l̂̂ ^̂ —^M B̂̂ MgaHM^̂ ^MÎ ^̂ ^WWiWBBBW^̂ >t̂ iSfMBiBIBW^̂ fflPfllW.VMWiitWismMM#Wii;   ^ _ ^ ^ ^ — — ^ ^ ^ M ^ M ^ ^ ^ ^ M I ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ M ^ — M ^ ^ ^ M » B — ^ ^ ^ n — ^ B g M m M ^ n ^ M ^ M M I ^ w t f a a a i M i i B M l i i i i M i M M M B i M i l W i 



Chapter 5. Implementations in a Virtual Environment '67 

In the previous two chapters, one volume cutting algorithm, one surface extraction 

algorithm and one vessel tracking algorithm are proposed. The first one is based on 

the 2D Intelligent Scissors and the last two are based on the 3D Intelligent Scissors. 

Three programs have been written for the algorithms using the BrixMed programming 

library. Each interface of the programs has four buttons in common. These buttons 

control the display modes of the volume. In BrixMed , four display modes are sup-

ported, namely, full volume mode, cut-box mode, triplanar mode and monoplanar 

mode. Using these display modes can help identifying features inside volumetric data 

in a more convenient and efficient way. The three interfaces are very simple and 

have only 2-6 buttons related to the corresponding algorithm. For example, the ves-

sel tracking program only have two buttons related to the algorithm. One for root 

locating and one for terminal locating. 

The applications are not real-time. It is because the graph needed to be searched 

is too large, even we have used a graph node pruning algorithm to cut away most 

of the unnecessary nodes. To have interactive performance, some kinds of volume 

compression or node clustering algorithms have to be used, in order to reduce both 

the number of nodes and edges in the volume graph. 

_iiii_^^imimiiiiiiiiiIiiiii_i_iiii__i_iMi - - - - " " " - ' " ' " " " " " ' I I I I I B I M I I I I II I _i"'""""""-""->¾¾^""<> 



Chapter 6 

Conclusions 

In this thesis, manipulations and feature extractions of volumetric data are the major 

subjects. The performance of pure volume visualization is not the main concern 

in this work. With the help of hardware assisted 3D texture mapping technique, 

volume visualization can already be interactive nowadays. With small data set(e.g., 

128x128x128), it is not hard to achieve 20 frames per second in a small window like 

128x128. One of the major drawbacks of 3D texture mapping is that the performance 

is directly related to the amount of available texture memory. Moreover, usually only 

high-end graphics workstations have this functionality. However, we believe that the 

rapid evolution of computer hardware would make 3D texture mapping a common 

feature of standard workstations eventually. Therefore, we only focus on how to 

manipulate and understand volumetric data in the greatest extent by the help of a 

virtual working environment. 
In this chapter, we give a summary of our work and some future research directions 

and improvement are proposed. 

6.1 S u m m a r y of Results 

The work in this thesis mainly emphasizes on volume cutting and feature extraction 

algorithms. These algorithms are summarized as follows: 

68 

_ ^ — ^ _ _ — » ^ — — ^ — — — ^ ^ M M — ^ ^ — ^ M M — w a M w w u j M M M U M M u m M B ^ B B a £ 3 a s B a M m B B B M m M a t a a B g a a a g 



n ^ 

Chapter 6. Conclusions 

• Application of Intelligent Scissors on volume cutting. Intelligent Scis-

sors is a successful 2D image segmentation tool. An image is transformed into 

a graph and boundary features are found by Dijkstra's shortest path algorithm. 

By successive extractions of contours, a closed contour can be formed for image 

segmentation. We applied it to volumetric data such that a closed contour on 

the volume surface can be extracted in a similar manner. The volume can then 

be separated into half based on the contour. 

• Extension of Intelligent Scissors from 2D to 3D. Although Intelligent 

Scissors has been applied to volumetric data in the volume cutting algorithm, 

it is still a 2D contour extraction tool. We extended the tool to 3D by con-

structing a 3D graph of the volume. A contour between two voxels is extracted 

by Dijkstra's algorithm and feature lines lying on the surface inside the volume 

can be found. 

• An alternative surface extraction algorithm. Surface extraction is an 

important process in volume segmentation because it gives user a more clear 

view of the interior part of a volume. Since contours extracted by 3D Intelligent 

Scissors tend to lie on boundary features, sufficient number of such contours 

should be able to reconstruct the surface. In this thesis, a surface construction 

algorithm based on three manually traced contours is proposed. Experiments 

show that the algorithm works well for the extraction of simple surface. 

• A vessel tracking algorithm. 3D Intelligent Scissors has the ability of 

finding path between two voxels since the gradients of voxels along vessel should 

be high and this characteristic fits the 3D Intelligent Scissors algorithm quite 

well. Experiments have been done on lung data in order to find out the air 

ways. 

———̂̂———M—i—̂̂——»i*«w»CTB»m«wwmiiauTiWwnwwiawnMv™n�,-T» 
" • • • ^ ^ • • • • • • • • — — — W W M M ^ ^ M ^ n F T ^ M ^ ^ ^ ^ M B ^ ^ M y M i l W M i i i M i i l M W i il i l i M l i — i i M Bli 



• 70 Chapter 6. Conclusions 

6.2 Future Directions 

We have demonstrated how to reconstruct surface and extract vessels from volumetric 

data by 3D Intelligent Scissors. The basic idea is borrowed from the corresponding 

2D image segmentation tool, which is a fast and robust contour tracking algorithm. 

However, we can see that the performance degrades after extending the algorithm from 

2D to 3D due to the huge number of nodes and edges. Although we have reduced 

the size of graph significantly (40 �6 0 % ) by using the IsoRegion data structure, the 

size is still unreasonable for interactive contour extraction. Time for extracting a 

vessel tree is still acceptable since it only consists of one root node and the search is 

only needed once. However, for the surface construction algorithm, we can see that it 

takes a long time to finish the extraction since the surface consists of a large number 

of contours with different starting and ending points. 

We can see that if we want to improve the performance of our algorithms, we 

have to further reduce the size of the volume graph. Volume compression techniques 

like hierarchical compression[24], vector quantization[33] or wavelet[17] may work. 

Data coherence is important in volume compression and IsoRegion is just one of the 

many structures that deal with data coherence. A cooperation of various volume 

compression algorithms and the graph construction algorithm would surely further 

reduce the size greatly. 

Another possible improvement is the automatic extraction of vessels in volumetric 

data. At this stage, each vessel is found by specifying its two end voxels manually. In 

an actual application, the vessels needed to be extracted may be too many such that 

manually locating all end points would be time consuming. In our algorithm, each 

node of the graph would have a back pointer and a distance variable, which indicates 

the total cost from that voxel to the root voxel. By examining this variable, we can 

probably determine whether a voxel is a terminal or not, since paths pass through 

^̂̂ ^̂̂ ^̂̂ ^̂ĵ„̂̂ ^̂̂ ^̂̂ „ĵ̂ ĵĵ̂ ĵĵ—jĵBT̂HffjjjBmBimPWHWWWffWMHWBBHMWBMÎ̂^̂gy?*̂̂**̂̂*™i**W**̂,"u**̂，̂̂*̂"»*<fflnyTi*P"_，̂ _̂̂ --̂-̂̂ M̂^̂M̂^̂^̂â^̂M̂M̂^̂^̂^̂M̂M̂ -̂TO!̂̂ ŴM̂^̂Pn̂ M̂MB̂BMMMamUMMMmM̂M̂^̂Mg". i I Mrt.MU-M1̂M̂̂ m̂W.>z. --u. 



• 71 Chapter 6. Conclusions 

homogeneous region tend to have high total cost. Selecting a pre-defined number 

of voxels with low total cost and reasonable length may extract a large number of 

correct paths. These voxels may be further evaluated by applying a region growing 

algorithm, which determines that if the voxel is a tip of a line with certain length, 

say, 10 voxels. 

Finally, a rich set of visualization tools can be integrated into Virtual Workbench. 

Many techniques are useful if it can be implemented in Virtual Workbench. Espe-

cially those need stereo display and 3D manipulation of data. For example, a virtual 

fly-through along the lung air ways immediately after vessel extractions may be in-

teresting. 

—̂ —-—‘—‘—-""-̂ --°""--°-"-"-"°-"-°<-̂ ^ 



A p p e n d i x A 

Performance of Dijkstra's Shortest Path 

Algorithm 

Recall that the performance of either 2D or 3D Intelligent Scissors depends greatly 

on the complexity of Dijkstra's algorithm. The algorithm maintains a list of labeled 

nodes and the list supports the following functions: 

• insert(n,k) Insert a node n with a key value k into the list. 

• delete_min() Delete the node with the lowest key value from the list. 

• decrease(n,k) Decrease the key value of node n to k. 

Lists that support these functions are also called priority queues. Usually priority 

queues are implemented using heaps，which is a tree structure that keeps the node 

with minimum key value as root node. Various kinds of heaps were proposed[25, 23 

but most of them require 0{log\V\) time for each of the operations. Assume that V 

and E are the sets of nodes and edges of the graph respectively. Dijkstra's algorithm 

requires at most |V̂| — 1 delete_min() operations, at most |T/| insert operations and 

at most \E\ decrease operations. Therefore, Dijkstra's algorithm using normal heaps 

will have a complexity of 0{\E\log\V\). 

In 1984, Fredman and Tarjan[16] proposed a data structure called Fibonacci heaps, 

which reduces the complexity of insert() and decrease() operations to 0(1). Therefore, 

the complexity of Dijkstra's algorithm using Fibonacci heap is 0{\E\ + \V\log\V\). 

72 

i _ H w r a n M M n w M m m w m m B m m n r M n w r i i i l _ l _ l l _ l l W M i n i f f 1 W M i m f f r " ' 



A p p e n d i x B 

IsoRegion Construction 

The following algorithm is quoted from [32] and it constructs IsoRegion from volu-

metric data. 

Initial step: 

for all voxel position (x, y, z) 

if V{x^i,y^3,z^k) 二 V{x,y,z) 

V z , j , A ; G [ - l , l ] 

then 

Is0Regi0n(x,|/,2:) f - 1 

else 

Is0Regi0n(x,y,2:) f - 0 

Iteration step: 

d f - 1 

repeat 

for all voxel position {x, y, z) 

if IsoRegion(tt;) > d 

Ww e No{x,y,z) 

then 
IsoRegion(x, y, z) f - IsoRegion(x, y, z) + 1 

d 4-c^+l 

until no further IsoRegion found 

73 

-̂̂-̂^̂^̂^̂^̂-̂^̂^̂M̂^̂^̂M̂ -̂î-̂MiM̂ M̂ŴMMM̂BH9WB̂^̂BMM̂ K̂̂SSiSH!̂MMBMMBifflmHMBiffilC5B̂  



Bibliography 

.1] A.MARTELLI. A n application of heuristic search methods to edge and contour 

detection. In Commmunications ofthe ACM (1976), pp. 73-83. 

2] B A J U R A , M., F U C H S , H., A N D 〇HBUCHI，R. Merging virtual objects with the 

real world: Seeing ultrasound imagery within the patient. Computer Graphics 

26, 2 (July 1992), 203-210. 

3] B R Y S O N , S. Virtual spacetime:an environment for the visualization of curved 

spacetimes via geodesic flows. Tech. Rep. RNR-92-009, NASA NAS, Mar. 1992. 

4] B R Y S O N , S. Projects in V R : The virtual windtunnel on the Virtual Workbench. 

IEEE Computer Graphics and Applications 17, 4 (July/Aug. 1997), 15-15. 

.5] B R Y S O N , S., A N D LEVITT, C. The virtual windtunnel: An environment for the 

exploration of three-dimensional unsteady flows. In Visualization ,91 (1991), 

pp. 17-24. 

6] C . H . W o N G , Y.H.SlU, P , A . H E N G , A N D H.SUN. Interactive volume cutting. 

In Graphics Interface ,98 (to be published) (1998). 

7] CLINE, H. E., L O R E N S E N , W . E., L U D K E , S., C R A W F O R D , C. R., A N D 

T E E T E R , B. C. T w o algorithms for the reconstruction of surfaces from tomo-

grams. Medical Physics 15, 3 (]皿6 1988), 320-327. 

•g] C o H E N , L. D . O n active contour models and balloons. Computer Vision, 

Graphics, and Image Processing. Image Understanding 53, 2 (Mar. 1991), 211-

218. 

74 

— — — » — - « » » « « » « » » » « T n m n r 



BIBLIOGRAPHY 86 

[9] CRUZ-NEIRA, C., SANDIN, D . J., A N D D E F A N T I， T . A . Surround-screen 

projection-based virtual reality: The design and implementation of the CAVE. 

Computer Graphics 27, Annual Conference Series (1993), 135-142. 

10] D . ， M . ， S . , S., A N D K.R. , S. Surface from contour: the corespondence and 

branching problem. In ACM transactions on Graphics (July 92). 

11] DlJKSTRA, E . A note on two problems in connexion with graphs. Numerische 

Mathematik 1 (1959), 269-270. 

12] D . L . P O P E , D . L . P A R K E R , D.E.GuSTAFSON, A N D P . D . C L A Y T O N . Dynamic 

search algorithms in left ventricular border recognition and analysis of coronary 

arteries. In IEEE Proceedings of Computers in Cardiology (1984), pp. 71-75. 

13] EHRICKE, H.-H., D O N N E R , K., K O L L E R , W . , A N D SXRASSER, W . Visual-

ization of vasculature from volume data. Computers and Graphics 18, 3 (May 

1994), 395-406. 

14] E K O U L E , A. B., PEYRIN, F. C., A N D 〇DET, C. L. A triangulation algorithm 

from arbitrary shaped multiple planar contours. ACM Transactions on Graphics 

10, 2 (Apr. 1991), 182-199. 

15] F A N G , S.，SRINIVASAN, R., H U A N G , S., A N D R A G H A V A N , R . Deformable 

volume rendering by 3d texture mapping and octree encoding. In IEEE Visual-

ization ，96 (Oct. 1996), IEEE. ISBN 0-89791-864-9. 

.16] F R E D M A N , M . , A N D T A R J A N , R . Fibonacci heaps and their uses in improved 

network optimization algorithms. Journal ofthe ACM 34 (1987), 596-615. 

17] GROSS, M. H., LlPPERT, L., A N D K U R M A N N , C. Compression domain volume 

rendering for distributed environments. Computer Graphics Forum 14, 3 (1997). 

^ ^ ^ ^ ^ ^ ^ _ ^ ~ ^ ^ ^ — ^ ^ ^ ^ ^ W ^ M ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ — ^ ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ M « M M ^ & g « » ™ ™ M i « u M i J M B M a ^ M ^ ^ — * l * " '"̂  ‘ H I M M M i - M M M - - n i a g f r " 



BIBLIOGRAPHY 87 

18] H E R M A N , G . T., A N D LlU, H . K . Three-dimensional display of h u m a n organs 

from computed tomograms. Computer Graphics and Image Processing 9, 1 (Jan. 

1979), 1-21. 

19] H .FUCHS, Z . M .，K . , AND S.P., U. Optimal surface reconstruction from planar 

contours. In Comm. ACM (1977), pp. 693-702. 

[20] H O N G , L., M U R A K I , S., K A U F M A N , A . ， B A R T Z ， D . , A N D H E , T . Virtual 

voyage: Interactive navigation in the human colon. In SIGGRAPH 97 Confer-

ence Proceedings (Aug. 1997), T. Whitted, Ed., Annual Conference Series, ACM 

SIGGRAPH, Addison Wesley, pp. 27-34. 

•21] J A S W A L , V . S. CAVEvis: Distributed real-time visualization of time-varying 

scalar and vector fields using the CAVE virtual reality theater. In IEEE Visual-

ization 97 (Nov. 1997), R. Yagel and H. Hagen, Eds., IEEE, pp. 301-308. 

22] JoNES, M . W . The production of volume data from triangular meshes using 

voxelisation. Computer Graphics Forum 15, 5 (Dec. 1996), 311-318. 

23] J .VUILLEMIN. A data structure for manipulating priority queues. In Comm. 

ACM (1978), pp. 309-314. 

24] J.WlLHELMS, AND G E L D E R , A . Multi-dimensional trees for controlled volume 

rendering and compression. In ACM Siggraph Symposium on Volume Visualiza-

tion 1994 (1994), pp. 27-34. 

25] J . W . J . W l L L l A M S . Algorithm 323: Heapsort. In Comm. ACM (1964), pp. 347-

348. 

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ĵĵ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ĵ ^̂ ^̂ ^̂ ^̂ ĵ ĵ ^̂ m̂ ^̂ ĝ ^̂ îjiĝmmîjĵgĝjĵggl̂ĝ ĵmîjĵ ^̂ ^̂ ^̂lĵpî ^̂! 



BIBLIOGRAPHY 88 

26] K A S S , M., W l T K I N , A . ， A N D T E R Z O P O U L O S , D. Snakes: Active contour 

models. In First International Conference on Computer Vision, (London, Eng-

land, June 8-11, 1987) (Washington, DC., 1987), IEEE Computer Society Press, 

pp. 259-268. 

27] L A C R O U T E , P . ， A N D L E V O Y , M. Fast volume rendering using a shear-warp 

factorization of the viewing transformation. Computer Graphics 28, Annual 

Conference Series (1994), 451-458. 

28] L O R E N S E N , W . E., A N D C U N E , H. E. Marching cubes: a high resolution 

3D surface construction algorithm. In SIGGRAPH '87 Conference Proceedings 

(Anaheim, 04 , July 27-31, 1987) (July 1987), M. C. Stone, Ed., Computer 

Graphics, Volume 21, Number 4, pp. 163-170. 

29] MlLLER, J. V.，BREEN, D . E., L O R E N S E N , W . E., 0 ' B A R A , R . M . , A N D 

W o z N Y , M. J. Geometrically deformed models: A method for extracting closed 

geometric models from volume data. Computer Graphics (SIGGRAPH，91 Pro-

ceedings) 25, 4 (July 1991), 217-226. 

30] M O R T E N S E N , E . N., A N D B A R R E T T , W . A . Intelligent scissors for image 

composition. In SIGGRAPH 95 Conference Proceedings (Aug. 1995), R. Cook, 

Ed., Annual Conference Series, ACM SIGGRAPH, Addison Wesley, pp. 191-198. 

held in Los Angeles, California, 06-11 August 1995. 

31] OLIVA, J. M . , PERRIN, M . , A N D COQUILLART, S. 3D reconstruction of com-

plex polyhedral shapes from contours using a simplified generalized Voronoi di-

agram. Computer Graphics Forum 15, 3 (Sept. 1996), C397-C408. 

32] P.F.FUNG, A N D P . A . H E N G . Efficient volume rendering by isoregion leaping 

acceleration. In WSCG'98 Computer Graphics and Visualisation (1998). 

» - « — ^ _ « — — — m a w — — l w r o w w W « m » W W U n W t W W W K ! W » C T W > j j W f f l . ; 
^ — ^ _ ^ ^ ~ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ M ^ ^ ^ ^ ^ ^ W ^ ^ M ^ ^ ^ ^ ^ ^ ^ ^ M ^ M ^ ^ ^ ^ ^ W ^ W W M ^ M ^ 1 ^ ^ M M P M ^ ^ ^ m g « B g M » « M i i — M M 1 M M M M ^ M ^ ^ ^ ^ ^ W W W — B ^ ^ — ^ ^ ^ ^ M ^ ^ ^ — - 7 -



BIBLIOGRAPHY 78 

•33] P.NlNG, A N D L.HESSELINK. Fast volume rendering of compressed data. In 

IEEE Visualization Proceedings 9S (1993), pp. 11-18. 

34] P 0 S T 0 N , T., N G U Y E N , H., H E N G , P.-A.，AND WoNG, T.-T. Skeleton climb-

ing: fast isosurfaces with fewer triangles. In Proceedings of Pacific Gro/phics,97 

(Oct. 1997), pp. 117-126, 

35] R o L L , S., H A A S E , A., AND V O N KlENLIN, M . Fast generation of leakproof 

surfaces from well-defined objects by a modified, marching cubes algorithm. Com-

puter Graphics Forum 14, 2 (June 1995), 127-138. 

36] Ross, T .， H A N D E L S , H., BREUER, U., AND SzABO, K. 3D visualization of 

microvascular blood vessel networks. Computers and Graphics 19, 1 (Jan.-Feb. 

1995), 89-?? 

37] SERRA, L., A N D H E R N , N . BrixMed 1.2 User's Guide and Reference Manual 

Institute of Systems Science at National University of Singapore, 1997. 

38] SHEKHAR, R., FAYAD, E.，YAGEL, R., AND CORNHILL, F. Octree-based 

decimation of marching cubes surfaces. In Proceedings of Visualization,96 (Sept. 

1996), pp. 335-342. 

39] SHU, R., Z H O U , C .， A N D K A N K A N H A L L I , M . S. Adaptive marching cubes. 

The Visual Computer 11, 4 (1995), 202-217. ISSN 0178-2789. 

40] SlMS, D . Applications: From the ground up: building a high-resolution seismic 

model. IEEE Computer Graphics and Applications 15, 4 (July 1995), 15-17. 

'41] STALLING, D., A N D H E G E , H . - C . Intelligent scissors for medical image seg-

mentation. In Proceedings 0f4th Freiburger Workshop Digitale Bildverarbeitung 

in der Medizin, Freiburg (Mar. 1996), B. Arnolds, H. Miiller, D. Saupe, and 

T. Tolxdorff, Eds., pp. 32-36. 



BIBLIOGRAPHY 79 

.42] T.J.CULLIP, A N D U . N E W M A N . Accelerating volume reconstruction with 3d 

texture hardware. Tech. rep., University of North Carolina, 93. 

43] T . P 0 S T 0 N , AND L.SERRA. The virtual workbench: dextrous VR. In Proc of 

the Virtual Reality Software and Technology ,94 Conference (94), pp. 111—122. 

44] T . P 0 S T 0 N , L.SERRA, H . N G , P . A . H E N G , AND B . C . C H U A . Interactive tube 

finding on a virtual workbench. In Second International Symposium on Medical 

Robotics and Computer Assisted Surgery (1995). 

'45] T.POSTON，W.L.NOWINSKI, L.SERRA, B . C . C H U A , H . N G , AND P.K.PlLLAY. 

The brain bench: Virtual stereotaxis for rapid neurosurgery planning and train-

ing. In Proc of Visualization in Biomedical Computing 1996 (1996), pp. 491-500. 

46] U.MONTANARI. O n the optimal detection of curves in noisy pictures. In Com-

mmunications of the ACM (1971), pp. 335-345. 

47] W A H L E , A. , 0 S W A L D , H., AND FLECK, E. 3D heart-vessel reconstruction 

from biplane angiograms. IEEE Computer Graphics and Applications 16, 1 (Jan. 

1996), 65-73. 

48] W E S T O V E R , L. Footprint evaluation for volume rendering. Computer Graphics 

(August 90). 

49] W E S T O V E R , L. Splatting - a parallel, feed-forward volume rendering algorithm. 

Tech. rep., Dept. of Computer Science, UNC at chapel Hill, July 91. 

50] WlLSON,〇.，GELDER, A . V . , AND WlLHELMS, J. Direct volume rendering 

via 3d textures. Tech. rep., University of California, Santa Cruz, June 94. 

51] WOLFE, jR., R. H., AND LlU, C. N. Interactive visualization of 3D seismic 

data: a volumetric method. IEEE Computer Graphics and Applications 8, 4 

(July 1988), 24-30. 



BIBLIOGRAPHY 80 

52] Y.P.CHIEN, A N D K.S .Fu. A decision function method for boundary detection. 

In Computer Graphics and Image Processing (1974). 

53] ZAHLTEN, C., H.JURGENS, AND H.-O.PEITGEN. Reconstruction of branching 

blood vessels from CT-data. In Visualization in Scientific Computing (1995), 

p p . 4 1 - 5 2 . 

54] ZYDA, M. J., JONES, A. R., AND HoGAN, P. G. Surface construction from 

planar contours. Computers and Graphics 11, 4 (1987), 393-408. 





Dt9EDiE00 

I MMttmm S9LJBjqn >IHn3 

-\ 


