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摘要 

長久以來，機械手/臂模擬系統被局限在二維輸出/ 

入裝置，如鍵盤、二維屏幕等•由於二維視窗環境的 

限制，機械手的三維模擬操作便依賴於把數個被限的 

一維或二維操縱空間結合起來。這方法每每都是由用 

者手動操控，其控制方法非常昂貴和不自然的。本篇 

論文主要發展一個實時三維互動控制系統，並應用在 

機械手/機械臂與物件之交介面上。關節結構如手或 

臂的移動控制將使用動力學和運動學技術，並討論和 

應用在機械手/臂的互動操控上。我們提議一個使用 

以上程序的混合方法以控制整體移動和局部微調。同 

時，我們結合了視覺修改和運動力計算以模擬機械手 

和物件的互動。我們的實驗顯示了虛議機械手/臂模 

擬是一個有效和靈活的操控介面。 



Abstract 

Robot simulation systems have been for a long time limited to 2D input/output 

devices, such as keyboard and 2D graphics screen. Due to the limitation of 2D 

windowing environments, the simulation of robot operations relies on the 3D in-

tegration of several reduced control spaces, which is usually done manually. The 

manual integration process by the operator is rather costly and unnatural. This 

thesis develops a real-time 3D interactive control system of a robot arm and hand 

manipulating 3D objects. Both kinematics and dynamics techniques for deriving 

the movement of an articulated structure like an arm or hand are discussed and 

experimented for interactive manipulations of robots. A hybrid approach using 

these algorithms for global movement and local refinement is proposed. Also, we 

combine the visual correction technique and dynamic force calculation to simulate 

the interaction between objects and hand. Our experiments certainly show the 

effective and flexible control interface for performing the virtual robotic simula-

tions. 
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Chapter 1 

Introduction 

For many years, robot systems have been studied and applied to many areas. Vir-

tual reality has emerged as one of the hottest topics in computer field. Within the 

3D immersive environment, the user can walk or fly through the design template, 

operate on surrounding objects, view and examine the structure of the models, 

etc. Although virtual reality appears promising, but the amount of applications 

are very limited. The main reason of the limitation is the high computation power 

and special hardwares required to perform the virtual operations, which are very 

expensive and not easily available. Since the technology of hardware has been 

improved rapidly in recent years, it is very likely that V R will become the most 

promising technology for developing the future computer applications. 

To provide a highly interactive environment for articulated structure manipu-

lations, we need to deal with representation, coordinate frames and control algo-

rithms. These derive the motion to fulfill a certain goal, such as the end position 

and orientation of the robot arm/hand while grabbing a mechanical object. Even 

through motion control techniques have been applied extensively in robotics area 

for a long time, their use is mainly for off-line autonomous robot systems. The 

general use of these techniques in a common V R simulation platform is unknown. 

The first goal of the research is to find an efficient control approach in the vir-

tual robotic manipulations. There are typical control techniques used in robotics, 
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Chapter 1 Introduction 

which are kinematics and dynamics. In general, kinematics uses the geometri-

cal properties and coordinate transformations to derive a motion; dynamics uses 

physical laws as building blocks to work out the forces and torques by the motion. 

These two control techniques will be investigated and experimented in performing 

the real-time robotic interactions. 

The second goal of this research is to provide flexible, immersive V R envi-

ronment as a common platform for robot simulations. For many years, robot 

simulations are mainly limited to 2D window-layout graphics environment. The 

motion of the robot control is displayed on 2D devices, like screen or control panel, 

which contains only visual information shown to guide the interactive control of 

the motion. The input of the control is performed through either lD or 2D pa-

rameter interface one at a time. Obviously, there are several disadvantages in such 

control environment: 

• The 2D display cannot provide the realistic view observing the robot inter-

actions in the 3D working environment. 

• Due to the reduced control space of each input device, extra efforts are 

required to control the 3D movement in the environment. 

• The 2D interaction between the user and the environment cannot completely 

simulate the control environment of a robot system. 

• Extra training is required for the operator to control the system, which will 

increase the cost of operation. 

In contrast to 2D limitations, 3D interactive environment can provide a bet-

ter environment for interactive robotic control. It allows the user to specify the 

robotic control directly in the task space. 3D devices can be used to record the 

required position and orientation of the goal, and be transmitted to the system. 

The user can also interactively modify the goal according to the result of the sim-

ulation. Direct control interface of robot manipulations makes the design process 

much easier, which reduces the cost and efficiency of control system development. 
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Chapter 1 Introduction 

Special training of the user is not necessary, which make possible of the intro-

duction of robotic control into our daily life. The real-time 3D simulation we 

proposed in this research will provide common function modules and framework 

that can be used in various robot applications. 

In addition to 3D interactive environment, feedback systems will be used to 

improve the ease of control. Recently, people start to understand that a good 

feedback system can improve the efficiency of the job. For instance, the user can 

feel the force from the controller and knows that the robot he controlling has 

hit the virtual table when it walks through the room. It reminds the user to 

move the robot backwards and go around the table. Moreover, feedback systems 

is necessary in the operations which requires accurate simulation. The user has 

to receive more information before he can determine the next action he takes. 

Currently two main kinds of feedback systems are commonly used, which are 

the force/touch feedback and visual feedback system. In this research, we will 

discuss and compare the advantage and disadvantage of these two systems. In the 

following chapters, we will show that enhanced visual feedback is more suitable 

to be used in our research. A detail analysis will be done on how enhanced visual 

feedback system can be used to improve our system. An approach called visual 

correction will be used as the base of interaction between virtual hand and virtual 

object. Finally, we will combine the motion control techniques with the feedback 

system in our object manipulation system. 

In the following, Chapter 2 outlines the development of robot systems. New 

approach of robot simulation in virtual reality will also be discussed Chapter 3 

presents the objectives of this research. Chapter 4 describes the robotic structures 

and representation. Chapter 5 presents two virtual manipulator, which are the 

examples of robotic structures discussed in chapter 4. Chapter 6 discusses the 

two typical control techniques, kinematics and dynamics, and their use in both 

forward and inverse modes in robot applications. The use of constraints and 

optimization in robot simulation is also discussed. Chapter 7 describes some 

previous works in force/touch feedback systems and discuss the advantage and 
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disadvantage of them. Chapter 8 presents how visual correction is used in our 

research. Experiments base on the above discussion will be presented in chapter 9 

and chapter 10 concludes the research. 
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Chapter 2 

Background 

For decades after the invention ofthe first robot, robotic systems has been applied 

to many areas. It replaces human labors in tedious, repetitive task and allow us to 

focus on design and creative activities. In this section, the development of robotic 

systems is presented, which can be divided into three major stages: autonomous 

systems, 2D windowing simulators, and virtual robot simulators. 

2.1 History of Robotics 

The term robot was first introduced into our vocabulary by the Czech playwright 

Karel Capek in his 1920 play Rossum,s Universal Robots, the word robota being the 

Czech word for work. Afterwards, the term was applied to describe a great variety 

of mechanical devices, such as autonomous land rovers, teleoperators, underwater 

vehicles, etc. Nowadays, every kinds of machines which operates with some degree 

of autonomy, usually under computer control, can be called a robot. 

In our context, the term robot means a computer controlled industrial manip-

ulator. An official definition of such a robot comes form the Robot Institute 

of America (RIA): A robot is a re-programmable multi-functional manipulator 

designed to move material, parts, tools, or specialized devices through variable 

programmed motions for the performance of a variety of tasks. 

Robotic system has its own attraction to the industrial environment. It is 
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Chapter 2 Background 

commonly know that the introduction of robots can decrease the labor costs, 

increase precision and productivity, increased flexibility compared with specialized 

machines. Also, working conditions such as dull, repetitive, or hazardous jobs are 

more suitable to be performed by robots. 

The robot, as we have defined it, was born out of the marriage of two ear-

lier technologies: that of teleoperators and numerically controlled milling 

machines. Teleoperators were developed during the second world war to handle 

radioactive materials. Computer numerical control(CNC) was developed because 

of the high precision required in the machining of certain items, such as com-

ponents of high performance aircraft. The first robots essentially combined the 

mechanical linkages of the teleoperator with the autonomy and programmability 

of C N C machines. The followings are several milestones on the road to present 

day robot technology: 

1947 the development of first servoed electric powered teleoperator 

1948 a teleoperator with force feedback is developed 

1954 the first programmable robot designed, by George Devol 

1961 the first Unimate robot is installed in a Trenton, New Jersey plant of General 

Motors 

1963 the development of first robot vision system 

1971 the development of Stanford Arm at Stanford University 

1973 the development of first robot programming language (WAVE) at Stanford 

1974 the introduction of T^ robot with computer control by Cincinnati Milacron 

1978 the introduction of P U M A robot by Unimation, which based on designs 

from a General Motors study 

1976 the development of Remote Center Compliance (RCC) device for part in-

sertion in assembly at Draper Labs in Boston 
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1981 the development of first direct-drive robot at Carnegie-Mellon University 

It should be pointed out that the important applications of robots are not 

limited to thosejobs which the robot is replacing the human worker. There are also 

many other applications which the use of humans is impractical or undesirable. 

Among these are undersea and planetary exploration, satellite retrieval and repair, 

the defusing of explosive devices, and work in radioactive environments. 

2.2 Autonomous Robot Systems 

Robotics system has been researched extensively for decades. Various robotic 

systems have been developed and applied to applications [32], including heavy 

machines in construction site, space robots for exploring unknown universe, and 

tiny robots for performing surgery inside human body [29]. Very often, robotic 

systems are introduced to improve the efficient of the task. For example, if the 

car parts are assembled by human workers, it is often a slow and tedious task. 

With the use of robotic system, however, the production cycle can be speed up, 

and the cost of operation is reduced. It is not a surprise to see more and more 

applications of Robotic system. 

In the earliest stage, the control of robotic system is done by direct manip-

ulation of each joint. User specifies the desire configurations by controlling the 

rotation or extension of each joint. A typical example of such system is the me-

chanical excavator in the construction site. The worker controls its motion by 

switches and levers. 

Although autonomous system has been commonly used in many areas, it still 

has some problems which limit its usage. One major problem with autonomous 

system is the lack of flexibility. In most autonomous systems, the operations that 

can performed are rather rigid and limited. One cannot request the system to 

do other tasks which the system is not designed for. Even for the same task, if 

the conditions or environment is slightly changed, the whole system needs to be 
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rebuilt from the very beginning, which usually requires a lot of man power and 

testing cycles, as well as the development cost. 

2.3 2D Windowing Simulators 

Simulation is the idea introduced to reduce the costs required for building au-

tonomous robotic systems. It can be used to directly operate a system in a remote 

site. (e.g. operating the robot on Mars). The fundamental idea is to use computer 

system to predict and reproduce the behavior of a real system. For a long time, 

robot simulation environment has been limited to 2D windowing layout. Using 

2D graphical tools, such as part display or control panel, the user can monitor the 

system and perform the task by moving the part or manipulator from one place 

to another. 

However, this kind of operation is rather unnatural and inefficient. The main 

cause of the problem is 2D limitation. In the windowing simulation, one or more 

cameras are used to observe the robot behavior. The movement is then caught and 

projected to 2D output devices. To control the robotic system in 3D environment, 

the user has to divide the 3D control space into several separate lD or 2D control 

planes and integrate the separated control effects manually. For instance, to move 

a robot to a goal position or orientation the user needs to specify the coordinates 

(x,y,z), one at a time from keyboard or slider. This usually involves special training 

ofthe operator and thus will increases the cost of operation in a reduced windowing 

control environment. 

2.4 Robot Simulation in VR 

Virtual reality (VR) is a newly emerged three-dimensional environment [38, 61. It 

directly places the user in computer simulated worlds, in which the user can view 

and manipulate the surrounding objects with the movements of his/her hand(s) 

and body [41]. 3D input and output devices are usually used to provide a nature 
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interface between user and computer. Data glove devices are one of the three 

dimensional interactive devices introduced in virtual reality [36, 37]. Equipped 

with sensors to track both static hand shapes and dynamic hand movements, data 

glove devices have the advantages in creating simple human-computer interfaces 

than most conventional input devices, such as keyboard and mouse, for their 

highly coupled degrees of freedom, familiar sign language, and body reference 

coordinates. 

The use of virtual reality in robot simulation is in its infancy. It is mainly due 

to the special V R hardware with high computation power, which is not commonly 

available and affordable until recent years. Research in V R is not abundant, but 

is increasing. Takahashi and Sakai [39] have proposed a virtual workspace to 

simulate the actual robot workspace, in which the user's movement is translated 

to manipulator commands that control the robot to perform the same task. A 

virtual environment for teaching robotic assembly operation is presented in [22' 

Another research trend in the virtual robot simulation is teleoperation of robots 

:26]. Operating a robot in a remote site may result in time delays between the 

input commands and the robot reactions. These delays make real-time robot 

operations very difficult. To address the problem, Brunner et al. [4] has developed 

a telesensor-programming concept that uses sensory perception to locally control 

the robot. Virtual environments have also used in the development of robotic 

teleoperation for NASA's Space Station Freedom [2 . 

Generally speaking, V R environment provides the user a 3D vision of the sys_ 

tem, which helps the user simulating the robot operations with the available 3D 

information. For example, the sense of distance is important in most robot appli_ 

cations. To better control the movement of a robot, we need to know the distance 

between the robot arm/hand and the mechanical model to be manipulated. This 

information is difficult to represent in a 2D window-layer environment. Moreover 

3D input devices, such as data glove devices and 3D mouse, provide direct and 

natural manipulation interface which allows the user perform the same robotic 

tasks in the simulation space. Usually, direct manipulation interface requires less 

9 



Chapter 2 Background 

user training time when comparing to traditional 2D system. This can reduce the 

operating cost. Also, the control is much easier because the operator can control 

the robot in a similar way as the robot does. 

Real-time interactive manipulation is another important feature in robotic 

simulation system. The system should allow the user to control the system and 

display the simulated results instantly to the user. To archive this, small latency 

is required or the user will have difficulty in controlling the system. A frame-rate 

of 15-30 frames/second is necessary for performing real time operations. This 

requirement may not be archived easily without using efficient algorithms and 

suitable user interface. In order to develop the common simulation framework 

across different platforms, different precision-control levels should be supported. 
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Chapter 3 

Objective 

The primary objective of this research is to create a real-time 3D interactive 

control system as a common simulator for performing the robotic manipulations. 

The following features are proposed: 

• The same working environment should be modeled and experimental through 

the 3D input/output interface. 

• Our system should allow the user to interactively specify the goal of a ma-

nipulator (i.e., the end position and orientation of a robot arm). 

• The system should have instant response and small latency. Otherwise, it 

will create extra difficulty operating the virtual simulation mode. 

• To satisfy both the requirements of high response speed and precise control, 

our system should provide mechanisms which adopt control algorithms to 

different precision levels of a manipulation task. 

• Combine the strength of both kinematics and dynamics approaches and 

apply them to the same simulation system. 

• Our system should provide basic manipulation functions and structural 

framework that can be commonly used in various robot applications 
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• Feedback system is required to improve the efficiency and accuracy of the 

operation. 

• Physical interaction, such as force and torque, between the manipulator and 

object is simulated. 

12 



Chapter 4 

Articulated Structures 

In this chapter, the articulated structures and representations used in this research 

is described. 

4.1 Joints and links 

To allow easy modification, a simple representation method of articulated struc-

ture is required. An articulated structure can be represented by a collection of 

links connected together by joints. Usually, the links are rigid objects, which 

cannot be deformed. Although some researchers is working on the control of 

robots with deformable links, but the word link mentioned in this thesis refer only 

to non-deformable links. 

The joints in an articulated structure can be classified into three types: pris-

matic(translation) and revolute(rotational) or the combination of two. Fig-

ure 4.1 and 4.2 show an example of the first two types. A prismatic joint allows 

two links to move linearly relative to each other. It is usually used to extend or 

move certain parts of the structure. The drawer of a desk is a good example of 

such joint. A revolute joint allows rotation between two links. It can usually be 

seen in the structures which require the change of shape. Most of the joints in 

our body require such ability, which are good examples of revolute joint. 
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Chapter 4 Articulated Structures 

Articulated structures can be divided into two types: n-link structure and tree-

form structure. Figure 4.4 is an example of n-linked structure. A general n-link 

structure consists of links which connected together by joints in series. This kind 

of structure can be used to model articulated body or parts, such as a robot arm 

and leg. Another type of structure is tree-form structure, which is the general 

extension of n-link structure. It consists of several n-link structures and each of 

them connects to a common base. An example of tree structure is human hand, as 

shown in figure 4.3. The arms, legs and head act as the 5 n-links structures, which 

are connected by the body. Although the motion of each link is independent, the 

links can be coordinated to collectively perform the same tasks, such as walking. 

4.2 Degrees of Freedom 

Theoretically, all joints can be rotated in 3 orthogonal directions and translated 

in 3 planar direction. The planar translation control the relative position of the 

connected links, while the orthogonal rotation control the relative orientation. 

However, it is rarely that a joint can rotate or translate in all 6 direction. It is 

because the movement of the joint is limited by constraint of the system and the 

allowable range of each joint. W e called the allowable moving directions as the 

degrees of freedom (DOF) of the joint. For example, the legs of a human body 

can only rotate about 180 in 1 direction. Therefore, the degree of freedom is 1 If 

the articulated contains more than 1 joint, its D O F is calculated as the the total 

D O F of all joints in the body. 

The degree of freedom is important for the movement control of a body. The 

higher the D O F , the more difficult to control the movement. It is because the 

movement of the joints usually depend on each other. Moving ajoint required us 

to adjust other joints to balance the whole system, which is extremely complex in 

a body with lots of DOFs. 
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4.3 Denavit-Hartenberg Notation 

To simplify the representation, each joint with more than 1 degree of freedom will 

be decomposed into several 1-D joints, which are either translational or rotational. 

Then, Denavit-Hartenberg(DH) notation [9] is used to describes the kinematics of 

each link relative to its neighbours by attaching a coordinate frame to each link. 

Following is the procedure to assign the coordinate frames to the links: 

Algorithm 4.1: D-H Representation 

1. Number the joints from 1 to n starting with the base and ending with 
the tool yaw, pitch, and roll, in that order. 

2. Assign a right-handed orthonormal coordinate frame Lo to the robot 
base, making sure that z^ aligns with the axis of joint 1. Set k = 1. 

3. Align z^ with the axis ofjoint k + 1. 

4. Select x^ to be orthogonal to both z^ and z^~^ are parallel, point x^ 
away from z^~^. 

5. Select y^ to form a right-handed orthonormal coordinate frame Lk 

6. Set k = k + 1. If k \ n, go to step 2; else, continue, 

7. Set the origin of Ln at the tool tip. Align z^ with the sliding vector, 
and x^ with the normal vector of the tool. Set k = 1. 

8. Locate point b̂  at the intersection of the x^ and z^~^ axes. If they 
do not intersect, use the intersection of x^ with a common normal 
between x^ and z^~^. 

9. Compute $k as the angle of rotation from x^~^ to x^ measured about 

� “ . 

10. Compute d^ as the distance from the origin of frame L^-i to point b^ 
measured along z^~^. 

11. Compute cLk as the distance from point b^ to the origin of frame Lk 
measured along x^. 

12. Computer a^ as the angle of rotation from z^~^ to z^ measured about 
xK 

13. Set k = k + 1. If k < n, go to step 8; else, stop. 

17 



Chapter 4 Articulated Structures 

Four parameters are used to define a linear transformation matrix between 

consecutive coordinate systems attached to each joint. The four parameters are 

described below (see figure 4.5 and figure 4.6 for the correspondence): 

• ttk is the distance from Zk to Zk+i measured along Xk - the length of the 

link. 

• ct is the angle between Zk and Zk+i measured about Xk. This is the twist of 

the link. 

• dk is the distance between the Xk_i and Xk axes measured along Zk - the 

distance between links. 

• 9 is the angle between Xk_i and Xk measured about Zk. 

The ^-th coordinate frame is therefore characterized by the four Denavit-

Hartenberg kinematic link parameters. For a rotational joint, a&, dk and a^ are 

constant while 6k is changed along the z axis. For a translational joint, 4 , a&, 

Ok remains constant while ak is changed along the x-axis. These information can 

then be used to calculate homogeneous transformations between link coordinate 

frames. To change from A:-lth frame to kth. frame, the following four steps are 

required : 

� rotate about Zk-i an angle $k 

• translate along Zk-i a distance dk 

• translate along rotated Xk_i = Xk a length a^ 

• rotate about x^ an angle a^ 

The four parameters of D H notation form the basis of link coordinate frames 
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Chapter 5 

Virtual Manipulators 

In the last section, the method to describe a general articulated structure is dis-

cussed. In this section, we will present two examples of manipulator. The first one 

is arm structure, with 3 links collected by 6 rotational joints. It is an example of 

a general N-link structure. This model is used to simulate how an arm structure 

is moved, rotate or manipulate other objects. The second example is hand struc-

ture, with 5 fingers connected to a common base. It is an example of a tree-type 

structure. This model will be used in our experiment to test how hand-oriented 

manipulation can be produced in an interactive system. 

5.1 Arm(N-link) Structure 

Figure 5.1 shows the outlook of a 3-link robot arm. The whole-arm structure 

consists of 3 joints, which will be decomposed into 6 1-D joints. The 6 DOFs can 

be divided into two groups, each with 3 DOFs. The first 3 DOFs distribute among 

the shoulder (2 D O F ) and elbow (1 DOF). These DOFs control the position of 

the end-efFector(hand) in the 3-D environment. Changing these joint variables 

will not affect the orientation of the hand. The next 3 DOFs appear at the wrist 

position. They control the orientation (yaw, pitch, roll) of the hand. During the 

calculation, we can divide the D O F into two groups to reduce the computation 

complexity. 
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Figure 5.1: Configuration of a robot arm 

W e can represent the structure using D H notation mentioned in Section 4 and 

use the parameters to calculate the corresponding coordinate frame of each joint. 

The following table shows the parameters of each coordinate frame: 

Frame 0 d a a H o n ^ 

~~Ti Fi~~0~~0~~%~~l90~ 
L2 02 0 «2 0 0 

L3 03 0 0 9 0 0 

L4 04 d4 0 -90 0 

L5 6l5 0 0 -90 90 

Le Oe 0 0 90 -90 

Table 5.1: Parameters of each coordinate frame 

The Home column is the initial value of 〜.It specifies the normal position 

of the joint. Figure 5.2 shows a detailed view of the coordinate frames of the 6 

joints. Note that dotted lines between the origin of L2 and L3, L4 and L5 L& 

indicate that the origins of these coordinate frames coincide. They are drawn in 
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Figure 5.2: Coordinate frames of the joints 

separate space in order to make the diagram more clear, a^ and d4 are the lengths 

of two links. 

In this structure, we can interactively specify the location and orientation of 

the goal of end-effector. According to the input of the user, structure is moved 

using different motion control techniques. These techniques afFect the flexibility 

and accuracy of the motion, and will be discussed in the next section. 

Figure 5.3 shows a case of goal specification. Coordinate frames of the struc-

ture and the goal is draw to the figure for reference. First, a goal position and 

orientation is specified by the user. The system reads this information from the 

3D device and calculates the required movement. Figure 5.4 shows the interme-

diate frames of the motion towards the goal, in which the last frame is drawn in 

solid rendering while in-between frames are rendered in wire-frame. 
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Figure 5.3: Goal configuration of a robot arm 
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Figure 5.4: Motion frames towards the goal 
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Figure 5.5: Outlook of simplified hand model 
5.2 Hand Model 
Hand is one of the most important parts in our body. W e use it to manipulate 

other other objects around us. The advantage of the hand lies in its flexibility and 

dextrousness. It contains more than 20 DOFs, which allow us to performs most 

complicated operations. However, due to the complexity of our hand, it makes 

the simulation of our hand very difficult. Instead of simulating the hand in full 

manner, simplified hand models are usually used. 

Figure 5.5 shows the outlook of the virtual hand model and figure 5.6 shows 

the structure of our model. Basically, the four fingers, other than the thumb, has 

the same structure. Each of them consists of three links, connected together by 

a lD rotational joint. The fingers are connected to the palm by the base joint 

which has 2 D O F . The additional D O F comes from the abduction and adduction 

of the finger. Abduction and adduction refer to the side movements of the finger 

Adduction moves the fingers toward each other and abduction is the vice verse 

The only different between the thumb and other fingers is that it does not has the 

third link, which make the thumb has one less degree of freedom than the other 
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fingers. Table 5.2 gives a summary of the D O F of hand . 

Joint D ^ 

Thumb 1st joint 1 

base joint 2 

Fingers(x4) 1st joint 1 

2st joint 1 

base joint 2 

“Total 19 

Table 5.2: The degrees of freedom of hand joints 

A new coordinate system is assigned to each joint of the fingers. Figure 5.7 

shows the configuration of the coordinate frame of a finger. All coordinate frames 

are assigned at the joints, with its x-axis pointing towards the next joint or the 

finger tip. The y-axis is assigned as axis of rotation and all joints rotate along 

it. The z-axis is assigned to the same direction as the cross product of x-axis and 

y-axis, which usually pointing away from the palm. 

The base joint of all fingers are divided into two 1-D joints. One is the folding 

joint, which is the same as the other two joints of the finger. The other is the 

abduction joint, which control the angle between each fingers. The abduction 

joints rotate along the z-axis of each base joints. 

A coordinate frame is assigned to the wrist of the virtual hand. It is used to 

represent the position and orientation or user hand. The x-axis of this coordinate 

frame is pointing towards the tip of fingers, which the z-axis is pointing along the 

direction which the palm facing. The y-axis is the cross product of the other two 

axes. 
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Figure 5.6: Structure of hand model \ 
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Figure 5.7: Configuration of coordinate frame of one finger 
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Chapter 6 

Motion Control Techniques 

Two major control techniques, kinematics and dynamics, have been used in motion 

control. Both techniques can be applied in either forward mode or inverse mode, 

which derives motion from either the joints or the end-effector. In the following, 

both techniques and each of the control modes are described in detail. 

6.1 Kinematics 

For several decades, kinematics [10, 11, 18] has been studied extensively in the 

robotic field. It mainly focuses on the geometrical relationship between the joints 

and the end position and orientation of a manipulator. The motion of a linked 

structure is purely determined by the joint parameters, which is 6 for rotational 

and a for translational. To move the structure, the the joint variables will be 

changed to meet the requested goal configuration. Two modes of control, forward 

kinematics and inverse kinematics, can be used to guild the motion and determine 

the change required for the goal. 

6.1.1 Forward Kinematics 

Forward kinematics involves explicitly setting the position and orientation of ob-

jects at specific frame times. For our articulated structure, this means directly 
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setting all joint variables. To simplify the work and avoid setting the variables re-

peatedly for each frame, a series of key-frames can be specified at different frames, 

and the system interpolates the intermediate frames by the joint parameters be-

tween the key-frames [34]. Among the interpolating methods which can be used 

to generate the motion, linear interpolation is the simplest. However, linear in-

terpolation cannot guarantee the continuity of first derivatives at the key-frames. 

This may not be a problem for most applications. However, when the system 

is applied to robotic simulation, such a jerky motion is not desired. Therefore, 

a higher-order interpolation method, such as piecewise splines, can be used to 

provide continuous and smooth motion to the system. 

In general, forward kinematics is not suitable for interactive robot control. 

One major difficulty is the complexity problem. Even for a very simple structure, 

its DOFs can easily go over 10. For some complex structure, like human body, 

its DOFs can be over 100, which is impossible for the user to control interac-

tively. Even supposing that the number of degrees of freedom within a figure is 

manageable, it is difficult to control the motion of the joints, especially rotational 

joints. Unlike translations, an ordered series of rotations do not combine intu-

itively, making it difficult to predict the consequence of editing a single rotation 

trajectory. It is almost impossible to decide on the appropriate changes to all 

three rotations (X, Y and Z directions) which will produce a desired change in a 

single body segment's motion. 

Different approaches can be used to improve the efficiency of forward kinemat-

ics. Keyframe-based control is used in the making of computer animation. The 

animators only require to create the keyframes of the motion of the character, 

while the computer is used to calculate the intermediate steps. This can signifi-

cantly reduce the amount of work required. However, keyframe-based control is 

not suitable to use in an interactive environment. In most interactive application, 

the user need to modify the motion of the structure according to the situation. It 

is difficult to pre-set the key-frame beforehand. 
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6.1.2 Inverse Kinematics 
,• 

: Using forward kinematics, it is difficult to control the position of any parts in 

the structure. The position and orientation of the parts can only be controlled 

indirectly by specifying the joint variables between the root and the parts itself, 

’， which is tedious and non-efficient. Inverse kinematics, on the other hand is used 
' " '^ , 

as an alternative solution of above problem. Inverse kinematics provides direct 

control over the placement of an end-effector at the desired location. To change 

the configuration of the manipulator, user can directly specify the position and 

orientation of end-effector, while the system automatically computes the joint 

variables required to meet the requirement. It is not surprising that the inverse 

kinematics problem has been studied extensively in the robotics field, although it 

is only recently that the techniques have been adopted for the V R environments. 

Using inverse kinematics, the required change of intermediate joints to fulfill 

certain goal are calculated automatically without the aids from users. The cal-

culation is based on the geometrical and kinematical relationships between the 

links. Compares with forward kinematics, inverse kinematics significantly reduces 

the control details and time required to create the desired motion. This makes 

interactive control possible using kinematics method. 

6.1.3 Solving Kinematics Problem 

At each joint of an articulated structure, a coordinate frame is assigned. In the 

last chapter, the method to assign coordinate frame to each joint is discussed. The 

transformation matrix Mi is used to transform the coordinates in frame i - 1 into 

frame i. According to chapter 4, M,- is consisted of four transformations. That is, 

�=R^X^,)Ti.,{a,, 0,0)T,_i(0,0, d,)R,̂ _̂  {9,) (6.1) 

where Raxisn is the rotational matrix about axis of frame n and 7] is the trans-

lational matrix at frame i. Combining all the transformation matrix, we can find 

the matrix M = MnMn-1..Mi...M2M1, which relates the position and orientation 
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of the end-effector to the base. 

Given a vector q in the control space of the structure, the position and orien-

tation vector X of the end-effector can be found by forward kinematic using the 

following equation, 

^ = f(q) (6.2) 

where f can be found by M . On the other hand, given the position and orientation 

vector X, inverse kinematic is used to find the joint variables of the intermediate 

joints. It requires us to solve the inverse of the equation 6.2, 

9 = /-i(i) (6.3) 

However, due to the nonlinear property of function f, it is difficult to find its 

inverse. Also, although we can find a unique mapping from q to x in equation 6.2, 

the same cannot be said for the inverse mapping of 6.3. This is because the 

structure may contain redundant degree of freedom, and it will be discussed in 

the next section. 

A common method to solve the inverse kinematics problem is linearize the 

problem about the current structure configuration, and the relationship between 

joint velocities and the velocity of the end-effector is, 

^ = J(q)4 (6.4) 

where the linear relationship is given by the Jacobian matrix J, 

,Sf 
J=Tq (6.5) 

J is an m x n matrix, where n is the number of joint variables and m is the 

dimension of end-effector vector x. Inverting the equation 6.4 allow us to solve 

the inverse kinematics problem 

々 = ” ⑷ 士 ( 6 . 6 ) 

If we can found the inverse ofJ, we can compute the incremental changes injoint 

variables from the incremental change in the end-effector position and orientation 
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Base on equation 6.6, we can solve the inverse kinematics problem by a simple 

iterative scheme. At each iteration, x can be computed from the current and 

desired end-effector positions. Then, the joint velocities q can be computed using 

the Jacobian inverse, and integrated once to find a new joint state vector q. Since 

J is only valid for small perturbations in the structure configuration, J(q) must 

be recomputed at each iteration. The same calculation process is repeated until 

the desired goal is reached. However, the above scheme base on the fact that 

the Jacobian matrix is invertible. This assume that J is both square and non-

singular. Unfortunately, this assumption is generally not valid. Problems arise 

when the articulate structure contain redundant degree of freedom, or when it 

passes through or near a singular configuration. 

6.1.4 Redundancy 

goal(x,y) 

4 \ 
d 丨 T Original configuration 

> 
/ 1 

/ I 
/• 1  

/ �� Other possible configurations 

V 
Base 

Figure 6.1: Three configurations of a 2D redundant manipulator 

A manipulator is considered kinematically redundant when it possesses more 

degree of freedom than are required to specify a goal for the efFector[28l For 

example, consider the simple 2D case in Figure 6.1. The structure has 3 degree “ 
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of freedom, which the links can rotate above each joint. The position of the 

end-effector (goal) can be changed by adjusting the rotation angles at each joint. 

However, to specify the goal of end-effector on the 2D plane, only 2 D O F is 

required. As the figure shows, for a given goal, it can be archived by more than 

one configuration. Therefore, the structure is called redundant. 

For a redundant structure, the Jacobian matrix has fewer rows than columns, 

which means it cannot be inverted. In this case, J_i is replaced by some general-

ized inverse J+. One such generalized inverse is the Moore-Penrose pseudo-inverse 

•12]. It has been shown [16] that this pseudo-inverse yields solutions with a mini-

m u m Euclidean norm for cases in which equation 6.6 is under-determined (m < n), 

and that in cases in which the system is over-determined (m > n) a least-squares 

solution is obtained. This ensure that thejoints move as little as possible to match 

the desired end-effector velocity as closely as possible. 

Redundant is sometimes necessary. For example, if we want to get an object 

around the corner by a human-like robotic arm, we must extend the arm so that 

the arm will not hit the wall. In this case, redundant is required to avoid the 

obstacle. In general, extra degree of freedom add flexibility to the manipulator, 

which allows it to reach objects around the obstacle and manipulate an otherwise 

inaccessible object. 

6.1.5 Singularities 

Another problem of inverse kinematics is singular. A matrix is called singular 

when two or more of its rows are linearly dependent, and a structure is said to 

be in a singular configuration when the Jacobian becomes singular. A singular 

configuration usually appears when the structure reaches the workspace boundary 

or two or morejoint axes lining up. When a structure is in a singular configuration, 

it has lost one or more degree of freedom. This means that there is some direction 

(or subspace) in Cartesian space along which it is impossible to move the hand of 

the robot no matter which joint rates are selected. 

Figure 6.2 shows a structure in a singular configuration. In this example, an •‘ 
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incremental change to any of thejoint angles will result in approximately the same 

movement of the end-effector in the y-direction. No combination ofjoint velocities 

will move the end-effector along the singular(i.e.x) direction. The Jacobian matrix 

for this case will contain zeros in one it the rows, and is therefore singular and 

cannot be inverted. 

Similar to redundant, pseudo-inverse can be applied to obtain a useful solution 

when J is singular. However, when the structure approaches this configuration, 

the pseudo-inverse tends to produce large joint velocities. This may create dis-

continuities in control space and instability to the system. 

c x r = = ^ c = >  

singular direction 
Figure 6.2: A structure in a singular configuration 

6.2 Dynamics 

Dynamics [1, 43] is another major motion control technique. For dynamic anal-

ysis, object attributes including center of mass, total mass, the moments and 

products of inertia, are required in object description. The motion of the object 

is affected by the forces and torques which are applied to different parts of the 

system. Dynamics method is to simulated the actually physical interaction hap-

pened in the simulating environment. Although there are many formulations for 

the equation of motion, two methods are most commonly used. The Newton 

Euler approach is based on the elementary dynamic formulas and on an analysis 

of forces and moments of constraint acting between the links, which can be called 

as a "force balance" approach. As an alternative to the Newton-Euler method 

^ 
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the Lagrangian dynamic formulation is proposal base on the "energy-based" ap-

proach. By the conservation law of energy, the total energy of a system is always a 

constant. The Lagrangian dynamic formulation provides a means of deriving the 

equations of motion from a scalar function called the Lagrangian, which is defined 

as the difference between the kinetic and potential energy of a mechanical system. 

This function is in terms of angular and translational velocity and acceleration 

of each parts of the structure. Using this function, the resulting motion can be 

determined. 

6.2.1 Forward Dynamics 

Similar to Forward Kinematics, Forward Dynamics involves explicit application 

of time-varying forces and torques to objects. Some forces, such as those due 

to gravity and collisions between objects, may be handled automatically. Other 

forces are applied directly to objects in the environment by the user. At each 

discrete time steps, the motion is approximated by solving the equations of motion 

for the acceleration an object undergoes in response to the applied forces. These 

applied forces can be constant force, such as gravity, or time-varying force, such 

as user acting forces, or impulsive force, such as collusion forces. 

Applying this approach to interactive motion control is very difficult. Usually, 

the required force that should be applied to the structure in order to get the desired 

motion is not explicitly known. The only way for a user to control the motion 

is by trial-and-error, which makes the control extremely unstable and imprecise. 

Also, when the structure becomes more and more complex, it is nearly impossible 

for the user to control it interactively using this method. It is often the case that 

the user applies the force or torque leading to a wrong position/orientation or 

cannot apply the suitable force on time to generate a desired motion. Therefore, 

the user cannot control the position and orientation of the end-effector efficiently 

using this approach. In autonomous robot systems, trial and error approach is 

used to apply force or torque on the structure to get the desired result, which is 

very time consuming and costly. “ 

34 



Chapter 6 Motion Control Techniques 

6.2.2 Inverse Dynamics 

Inverse dynamics method automatically determines the force and torque functions 

needed to accomplish a specified goal. The goal can be a directed motion of the 

structure towards a particular position and orientation of the end-effector. Similar 

to forward dynamics, the motion of the structure is calculated by physical laws and 

attributes acting on each linked segment. While deriving the motion, interactions 

between the links and the force and torques applied between intermediate joints 

are calculated. 

The computation of inverse dynamics is rather costly. For each degree of free-

dom of the structure, there will be one equation of motion. This usually leads to 

a large system of equations, which must be solved by numerical method at con-

siderable computational expense. In general, dynamic simulation of complex ar-

ticulated structure cannot be performed at interactive speed on a singer-processor 

machine. Although the processing power of available machines becomes more 

powerful, it is still difficult to use pure dynamics approach for a complex system. 

6.3 Combination of Two Control Modes 

Kinematics uses the geometrical relationship between links, which involves the 

use of Jacobian matrix during the process of velocity calculation. During the 

calculation, J~^ is necessary to be found [45]. However, Jacobian matrix is usually 

not square. In this case, pseudo - inverse techniques, which is an approximation 

technique, is used to find the solution. It is almost certain that errors will be 

introduced during these operations. 

Dynamics bases on physical laws and properties to derive the object's move-

ment, instead of positioning the object by geometrical transformations. Using 

forces and torques, and physical properties, the required motion of the system 

is calculated. As a result, the motion is produced more physically accurate, and 

appears more attractive and natural. There are many types of motion, such as 

pushing and reacting to collisions, which can be automatically calculated from the “ 
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dynamics environment, but not in kinematics environment. However, the phys-

ical realism comes with a cost of heavy calculations. A general system with 6 

D O F can result in a large equation set, not to mention a more complex system. 

In comparison with dynamics, the calculations involved in kinematics are much 

simpler, which can greatly reduce the time required to find the solution. 

Kinematics is fast in calculating end position and orientations, while dynamics 

is natural in calculating the interactions between objects. Our goal is to combine 

the strength of both approaches. When the structure is moving in a free space, 

without interacting with other objects, we apply kinematics method to get a fast 

calculation of required end positions and orientation. When the structure interacts 

with other objects, such as picking, dropping, or colliding, dynamics calculation 

is used. By finding the responding forces and torques between objects, we can 

simulate the physically-accurate motion. Usually, the interaction between objects 

lasts only short period of time, like several mini-seconds for the case of collision 

After the interaction is produced, we can switch back to kinematic mode to speed 

up the calculation. The system will not suffer from serious latency problem for a 

long period of time. 

6.4 Constraints and Optimization 

In most interactive control system, we need to specify the constraints of the system 

'44]. These constraints are arose usually because of the physical configuration of 

the system. W e may also apply constraints to the system so that we can limit the 

movement of the system. This can reduce the time needed to find the solution 

and minimize the chance of machinery failure. 

Another reason to apply constraints is to avoid the case of ill condition. Under 

some configuration like full extension, the system will lose some degree offreedom. 

In such cases, the system will become unstable and the behavior will become more 

erratic. Applying constraints to the system can prevent the system going into ill 

conditions. 
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Another thing to consider is optimization. Sometimes, redundancy is intro-

duced to the system so that the system can reach around an obstacle and manip-

ulate an otherwise inaccessible object. For a given goal there are more than one 

solution; each of the configurations will place the end-effector at the goal position. 

In this case, the system needs to select the best solution. How a optimal solution 

is selected is very difficult in most cases. Even the same structure can have dif-

ferent optimal solutions under different situations. In general, we want to have a 

solution that satisfy the goal while requiring minimumjoint movement. How the 

solution should be optimized is important in interactive motion control. 
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Physical Feedback Systems 

To provide an interactive virtual environment, the reaction between the objects 

and virtual manipulator must be considered. Feedback mechanism is created due 

to this purpose. When user performs certain action, the system will determine 

the result of the action and simulate it, which will immediately feedback to the 

user. 

A good feedback system requires a small latency to provide good interaction 

between the system and the user. Also, the system should not require heavy C P U 

computation, so that the whole system will not be slow down. In this chapter 

two kinds of physical feedback systems are considered. They are touch and force 

feedback. 

Tactile feedback is one of the most basic sources of information from our 

surrounding environment. W e use our hand (or other parts of the body) to touch 

and feel the object. It is very important because it tells us the nature of the 

object, whether it is soft, hard, smooth, rough, round, etc. The information 

requirements of many tasks needing dextrous manipulation and sense of touch is 

not met without tactile feedback. Also, the reaction force from the object gives 

us the information about the structure of object. A simple object (like a box) 

will give a single direction (parallel to the normal of the surface) reaction force, 

while a complex articulated structure will give multiple reaction force together 

with torques. .. 
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Recently, people have come to understand that force/touch feedback can be 

very useful. In the situations where the field of view is occluded or dark, the users 

need to get the information of the environment by their sense of virtual touch. 

Also, it is a must for some applications, like training of surgeons on virtual bodies, 

to let the user to "touch" the object they manipulate with. 

7.1 Touch Feedback 

In [30], the author identified five main approaches for finger touch feedback 

through visual, pneumatic, vibro-tactile, electro-tactile and neuromuscular stim-

ulations. A newer approach using multi-modal "enhanced" feedback will also be 

discussed. 

Pneumatic use micro air pockets which placed in a glove to provide touch 

feedback. This approach was used in the design of the "Teletact Glove" [35]. 20 

air pockets are located in different positions inside the glove, mostly finger tip and 

palm. A proportional control interface is used to drive the inflation and deflation 

of the air pockets. Air pressure necessary for the feedback is obtained with a 

small compressor placed in the control interface. The glove is used to generate 

simple tactile patterns when users grasp real objects. These patterns are then 

transmitted and sensed by the person wearing the tactile-feedback glove. 

Vibro-tactile use voice coils as the source of touch feedback. The voice coils 

were driven at high frequency and the amplitude of the vibration is determined 

by the force required. Experiments [23] has shown that in a simple two-finger 

scenario, the use of tactile can improve the performance of the work by 10-30%. 

A variation to Vibro-tactile is to use micro-pin arrays instead of voice coils. 

The system changes the pattern of "active" micro-pins to simulate edges, holes 

or other surfaces of the object. Figure 7.1 shows the situation when the finger 

move along the edge of a virtual object. When the finger move from right to left 

(figure a and b), the pattern of the pins changed to provide tactile feedback to 

the finger. The quality of the simulation depends on the density and pattern of . 
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the micro-pins array. 
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Figure 7.1: Tactile feedback of object edge by micro-pin arrays 

Electro-tactile feedback uses electric pulses with varying width and frequency 

to simulate the skin of the fingers. Neuro-muscular stimulation provides the signal 

directly to the user's primary cortex. Due to the natural of these two techniques, 

they can be very dangerous and harmful to the user. 

Research has been done to produce enhanced tactile feedback by adding tem_ 

pemture and thermal conductivity feedback [8]. Temperature information can 

help identify the natural of the virtual object. In addition, "pain" feedback (by 

very high or low temperature) can be implemented by this method. 
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7.2 Force Feedback 

In addition of viewing the result of simulation, force feedback provide real force 

reaction to the user. For instance, when the user holds an object in his hand, 

he/she should feel the weight of the object. 

Force feedback is different from touch feedback in several aspects. Touch 

feedback focuses on providing the surface information (like smooth, rough, edge, 

hole, etc.) of the virtual object, while force feedback provide the total contact 

force (like mass, fiction, etc.) which the object applied on the user. 

An earlier research [17] has designed a force feedback system called "Master 

arm". This system focuses on simulating the weight of an object, its inertia and 

its contact with stiff walls. Although the system composed of large mechanic 

components, it is gravity and inertia compensated so that no forces are felt at the 

handle as long as there is no interaction with the virtual environment. However, 

due to the complexity of the system, the cost of it is very high and it is difficult 

to more the system around. 

Force feedbackjoystick is another approach taken by Schmult and Jebens [27' 

Force is applied when the object controlled by the user is contacted with other 

objects. The joystick can produce up to 75g of force on each axis (X and Y). 

The handle motion has a resolution of 3201 parts, which is enough to produce a 

number of force and tactile sensation such as direct forces, impulses, vibrations 

and change in stiffness. However, the system can only work in 2-D, which is the 

major disadvantage of it. 

To solve the problem of 2-D working space, Iwata [15] has developed a "six 

degrees of freedom pen based force display". The system has two three degree of 

freedom arms placed in parallel, which each connected to one end of pen-shaped 

handle. By controlling the direction of force applied by the two arms, translational 

forces and torques can be produced on the user hand. The advantage of this system 

is extremely intuitive to use. Also, it is desktop based, has six degrees of freedom 

and a large work envelope than simplejoysticks. 
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Another force feedback created by Burdea and his colleagues [5] is called Rut-

gers Portable Master. The feedback structure uses four pneumatic micro-cylinders 

placed in the palm of a glove on a small L-shaped platform. Each actuator has 

a conical work envelope which allows both flexion and aduction/abduction of the 

fingers. When the virtual hand grasped objects such as virtual rubber balls or 

soda cans, users could feel forces on their fingers. 

7.3 Force/Touch Feedback Systems 

Although touch and feedback system are very useful, a good feedback mechanism 

is not easily available. Here are the disadvantages: 

• special devices require by force feedback usually increase the price of the 

system significantly. 

• training is required to make the user familiar with the system 

• additional mechanics providing feedback will reduce the manipulation range. 

• due to the complexity of human body, it is very difficult to create a system 

which can cheat our sensory organism. 

• limited by current technology, most force feedback systems can only provide 

a limited set of force simulator, which is not enough to simulate the force 

interaction completely in the virtual environment. 

• it is difficult to modify the requirement or goal of the system 

• when system failure occurs, the system may generate a very large force and 

injure the user. 
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Chapter 8 

Virtual Object Manipulation 

Object manipulation is one of the most basic operations in virtual reality. One 

of the aims of our research is to provide an user friendly interface to the user. 

Current research efforts [19, 20’ 33’ 7] are to develop the virtual environment 

which allows the users to control the objects by their hands. In the last chapter, 

different kinds of feedback systems has been discussed. However, all the systems 

has their limitations and are not suitable to be used as interactive control interface 

Instead, we prefer to enhance the operator's visual feedback. 

It is a tedious task to manipulate the virtual objects by means of digital 

glove which often carries mechanical errors and sensing noise. So the user has 

difficulty using sensed hand to precisely control the objects in the virtual world. 

Without the tactile/force feedback, the user can hardly adjust the hand posture 

in interaction and the forces they should apply in controlling the manipulation. 

To solve the above problems, different methods have been proposed. One of 

them is posture/gesture recognition [36]. Based on some pre-defined commands, 

users can use few recognized postures/gestures to control the virtual objects. How-

ever, gesture recognition has is problem [42]. When the virtual environment be-

comes complex, the number of posture commands also increases,which demands 

the power ofhand recognition system. Even the system has sufficient computation 

power, the user may have difficulty in remembering all the commanding postures. 

Also, The posture-command approach does not support the contact control in “ 
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object manipulation. 

Rezzonico and Ronan [25] proposed an approach of interactive grasping where 

the hand posture is directly used to establish the grasp on the virtual object. 

The user do not need to remember the specific posture to express a grasping 

command. However, the main limitation of this approach lies in the lack of finger 

manipulation of the object relatively to the hand coordinate system. Once the 

grasping is established, the object is rigidly linked to the hand. 

In a recent article of Ronan and Rezzonico [3], they suggested a complementary 

approach. They developed a virtual contact model, which allows the virtual object 

to be rotated or moved according to the movement of the fingers. However, the 

limitation of this model lies in the lack of force interaction between the hand 

and the object. Also, using this model will create some odd configuration of the 

fingers, like over bend the finger towards the back of the hand. 

In this section, we propose an visual correction approach, which based on the 

work of Ronan and Rezzonico. W e focus on providing an accurate and easy-

to use interface in the virtual hand simulation. W e propose a hybrid control 

approach that uses both kinematics and dynamics methods at different stages of 

picking to generate physically-accurate hand interactions in real time. The main 

advantage of this approach is that it does not require any special hardware but 

a sensing DataGlove. This approach utilizes both the visual feedback in contact 

interaction and physics-based simulation in hand picking. It can reduce the cost 

of additional hardwares and prevent the problem of limited control space in the 

feedback system. 

8.1 Previous Work 

The main theme of Ronan and Rezzonico,s approach is to maintain the hand 

posture by unfolding (correcting) the hand so that the finger positions will be 

fixed on the surface of the object. After a durable grasp between the thumb and 

at least one finger is established, a secure grasp state is reached where the relative 
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position of the hand and object is fixed. The process can be divided into three 

different states (figure 8.1): 

FREE_HAND 
free object ^ X ^ ^ the hand and object bounding  

J \ spheres intersect 

The hand and objectK 
bounding spheres no \ G R A S P I N G 
more intersect ^ ^ fn progress 

free object ^ N ^ 
^ “ \at least the thumb and onefinger 

‘ \ establish a durable grasp 

not enoughfingers to \ ^ 
maintain a minimum grasp\^ S E C U R E _ 

GRASP 

attached object 
v̂   

y 

Figure 8.1: The interactive grasping automata 

• FREE_HAND : there is no contact between the object and the hand. The 

hand posture is displayed as measured with the digital glove. 

• GRASPING : the posture of colliding fingers are continuously corrected 

so that the finger can lie on the surface of the object. The object is free to 

more relative to the hand. If the simplified grasp condition is established, 

i.e. at least the thumb and one finger are maintaining a durable contact 

with the object, the system enters the "SECURE_ G R A S P " state 

• SECURE_GRASP : the posture of the colliding fingers are continuously 

corrected. However, the relative position between the object and the hand 

is unchanged until the simplified grasp condition is broken. 
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Whenever a finger collide with the object, interactive grasping procedure ad-

justs the hand posture by opening it. The reason for this is that it is a common 

practice for the user to penetrating into the object when they want to grasp it, 

especially without the help of force feedback. So we assume that the operator will 

permanently close the grasping fingers slightly more than geometrically necessary. 

In such way, we can ensure that the unfolding process will result in a durable 

contact between the fingers and the object. Figure 8.3 shows the steps to perform 

the unfolding process. The algorithm starts by unfolding the collided finger base 

joint until it no longer penetrate the object. Then, it unfolds the next and the 

last joints with the same process. In this case, the final finger posture consistently 

wraps around the object. 

8.2 Physics-based Virtual-hand Grasping 

To improve the work of Ronan and Rezzonico's approach. W e suggest the physic-

based virtual-hand grasping approach, which based on m y previous work in [13 

The virtual picking in our approach is divided into two phases: visual-correction 

and active grasping. Visual-correction grasping is based on the work in [31. It 

uses kinematics method to calculate the possible colliding contact between the 

moving fingers of the hand and the object to be grasped. The sensing angles 

from a CyberGlove device are used for contact checking at each time frame. The 

checking is conducted first from the joint closest to the palm then outward to 

the other joints of the finger. If the joint collides with the object, its joint angle 

will be revised in a way that the joint just lies on the surface of the object 

using inverse kinematics. The revised joint angle will be propagated to the other 

articulated joints of the finger. The reason of using visual-correction instead of 

full-dynamics is that visual-correction requires less computation than the full-

dynamics approach, and can be easily programmed for various kinds of objects. 

Active grasping, on the other hand, uses gravity, friction coefficients, and lifting 

velocity to calculate the physics-based behavior of virtual hand picking. A force ； 
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is applied to the object when a joint touches it. The maximum friction between 

the contact fingers and the object is determined by a constant, which depends on 

the material of the object. The forces collected at the contact points balance the 

lifting, while the actual lifting speed produces the forces which are proportional 

to the friction coefficient of the object. These forces act against the gravity to 

determine whether the lifting is slippery or stable. A lifting motion is produced 

when the sum of lifting forces is greater than the gravity. 

B E 

X ^ " ^ X x ^ ^ > _ ^ 
free|^A u p w a r d M D dropping ] ^ Q 

%^^ 
Figure 8.2: Automata of the virtual picking 

Figure 8.2 shows the whole set of transitions considered for the virtual picking 

automata. W e can divide the whole process into three states: 

• free : no collision is detected between the hand and the objects. The hand 

posture is displayed as measured with the digital glove. 

• upward : collision is detected. The hand posture is corrected and the forces 

from the fingers are applied to the object. The frictional forces are strong 

enough to move the the object and thus the object moves with the hand 
(Vobj = Vhand) 

• dropping : collision is detected. The hand posture is corrected and the 

forces from the fingers are applied to the object. The frictional forces are 
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not strong enough to hold the object and thus the object drops from the 

hand. (Vobj + Vhand) 

In the free state, there is no constraint on the hand posture or the object 

(transition A). When a collision between one of the fingers and the object is 

detected, the posture of the collided finger is corrected and forces are applied to 

the object at the positions where the corrected fingers contact with the object 

(transition B). The hand is in the upward state when the hand first collides with 

the object. Then as the hand moves upward, the contacts between the fingers and 

the object are checked to see whether the frictional forces are strong enough to 

maintain the upward movement of the object. If the upward movement is slow 

enough, The object will stay with the hand and the upward movement continues 

(transition D). However, if the upward movement is faster than what the friction 

forces can support, the object will slip from the hand. Then the system goes into 

the dropping stage (transition E), in which the object keeps dropping in relative 

to the hand. 

Each picking interaction in our system is described by a cycle of states. The 

hand is initially in the free state if none of the fingers collides with the object 

(transition C and H). When a collision occurs, the hand is changed to the upward 

state, which remains as long as the friction forces can maintain the upward move-

ment of the object (transition D and F). The upward state can be again transited 

to the dropping state (transition E and G), when the friction forces are less than 

the lifting force. 

8.3 Visual Correction 

This section describes the steps used in the visual-correction stage in virtual pick_ 

ing. Ronan and Rezzonico [3] suggests that the hand posture is directly used 

to establish the grasping interaction on the virtual object. However, the main 

limitation of this work lies in the lack of force interaction between the fingers of 

the hand and the object in grasp. Our approach aims at directly using the hand •丨 
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Original hand posture 

correctedjoint 

finger base 

(f̂  fCV 
t̂̂  v̂y 

a_ b 

d ~c 
correctedjoint correctedjoint 

lf̂  r̂  
v i : y V _ ^ 

Figure 8.3: Steps of unfolding colliding finger 

posture to maintain the grasping interaction as suggested in [3], and in addition 

the grasping posture is used to compute the balance forces between the contact 

fingers and the object in grasp. 

The main theme of visual-correction is to maintain the hand posture by unfold-

ing (correcting) the colliding finger so that the fingers are placed on the surface 

of the object. Whenever a finger collides with the object, the system adjusts 

the hand posture by unfolding the finger. The reason for such correction is the 

common case for the user to penetrate into the object when trying to grasp it in 

the virtual space, especially without the help of force feedback. Then, the un-

folding process is necessary to maintain a durable contact between the fingers of 

the hand and the object. Figure 8.3 shows the steps of unfolding process. The 

process starts from unfolding the base joint of a colliding finger until the joint no 

longer penetrates the object. The revised motion of the joint is propagated to the “ 49 
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lower articulated joint(s) accordingly. Then the same process repeats to unfold 

the next colliding joint and so on. Again, the unfolding process is applied to the 

next colliding finger until all the fingers are checked. After the correction, the 

final hand posture wraps around the surface of the object. 

nĵ ;;̂ :̂ ;;22Ii;:;̂ (̂ ^^ ^ ^ 

\ Object 

w — 
\ Case 1 

�-0̂ ?̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ~̂~_̂ ^̂  f 
/ / Case 2 

Figure 8.4: Configurations which the joints cannot touch the object 

8.3.1 Joint Correction 

Different from the approach used in [3], it is not necessary for the joint of the 

fingers to lie on the surface of the object in our approach. It is because there are 

some cases which it is not possible for the joints to touch the object. Figure 8 4 

shows some of these cases. If we adjust the joint to lie on the surface, some parts 

of the finger may penetrate into the object, which is not desired. 

In our approach, we first calculate the angle which the x-axis of the joint 

touches the object. Then, we check whether the finger can touch the object. “ 
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J 
,,#^\ 

^ - : V ^ : ' . \ Over bentjoint 
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;̂'fA:ŝ /,:̂、. w-̂ ?r-j !,?# 
^ ^ : " * �, ^ / 

Figure 8.5: Odd configuration after unfolding the colliding joints 

If the part of the finger is not long enough and cannot touch the object, we 

calculate the fold angle again so that the finger tip will lie on the surface. Using 

this approach, we can ensure that the finger can lie on the virtual object while at 

the same time no part of the finger will penetrate into it. 

8.3.2 Odd Finger Configurations 

In some cases, the above approach may result in odd finger configurations. One 

of the odd configurations is the case when a joint (except the base joint) bends 

over the normal (flat) position towards the back of the palm. Figure 8.5 shows 

the above odd configuration. The last joint of the finger is over-bent, which is 

impossible to human hand. When this happens, the orientation of the joints 

should be changed for the second correction. Figure 8.6 shows the procedure of 

the second correction. The second correction is done in a back-up process: Our 

system first checks the last joint of the finger. If the odd condition is found, the 

joint angle is flipped to the configuration which keeps the two ending positions 

the same as before. Then the second last joint of the finger is checked. If the odd 

condition is found again, the second joint is moved in the same way as keeping 
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d-d-G 
Joint orientation after first correction 

Joint orientation after second correction 

Figure 8.6: Second correction of odd finger configuration 

the two end positions fixed. Using this back-up method, we can ensure that the 

hand configuration after correction is natural and at the same time our correction 

only changes the contact between the hand and object slightly. 

8.4 Active Grasping 

After the natural contact between the hand and object is established, the system 

will proceed to the active grasping stage, in which the force interaction between 

them is calculated. The active grasping stage is responsible for the upward and 

dropping states in figure 8.2. Our system determines whether the picking process 

is successful by determining the interacting forces between the contact fingers and 

the object. 

At each contact point, a normal force and a frictional force are calculated and 

applied in controlling the object's motion.The frictional force is proportional to the 

normal force, and it follows the Coulomb law. The Coulomb law states that the 

tangential force of friction during sliding is proportional to the normal force thus 

defining the coefficient of friction as this constant of proportionality. To simplify 

the problem, we only used the static coefficient of friction during our calculation 

The coefficient of friction is determined by the material of the object, which is 
*' 
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different for every object. The rougher the surface, the higher the coefficient. 

«—„ 
— — … - 一 

\ 
\ 

• gravity \ ^^g^r 

Figure 8.7: Force balance in upward movement 

The normal force at each contact point is proportional to the difference between 

the original and the corrected angle of the colliding joint. This is due to the 

fact that people usually close their fingers harder when trying to hold the object 

tighter. So we assume that stronger forces are applied to the object while closing 

the grasping fingers. W e then calculate the frictional force at each contact point by 

this normal force. Figure 8.7 shows force balance in the upward movement during 

picking. The equations of the normal force and frictional force are as follow: 

n,- = ke, (8.1) 

ft = Cfni (8.2) 

where k is a constant, c� is the friction coefficient of the object and 6i is the 

different between the original and the corrected angle of the collidingjoint. 

During each time interval St, we calculate the forces acting on each contact 

»* 
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points. The y-component of these forces is used to calculate the vertical acceler-

ation of the ball. The following equation is used: 

^baii = (XX〜i + fyi) 一 mg)/m (8.3) 

W e then use the new acceleration to find the velocity of the ball in y-direction. 

The new velocity of the ball will be compared with the hand's velocity. If the 

velocity of the ball matched with the hand, the grasping operation success. How-

ever, if the hand is moving faster then the ball, the system goes into the dropping 

state and the object starts slipping from the hand. After the comparison is fin-

ished, the next cycle starts and the calculation is repeated. W e can summarize 

the process as follow: 

During each interval (̂t 

calculate all contact points on the object 

calculate normal force rii and respective frictional force fi on each con-
tact points 

calculate auii = (E(^yi + fyi — mg)/m 

calculate the new velocity of the ball in y-direction 

repeat for next (̂t 

Algorithm 8.1: Force calculation algorithm 

When the object drops out of the hand, its motion is determined by the new 

velocity and position calculated by the gravity. This also leaves the hand in the 

free state which does not report any collision between the hand and object. The 

next cycle of picking can be started by another attempt of grasping the object. The 

hand interaction in grasping is then guided by the two stages: visual-correction 

and active grasping, which are described by the three distinct states. 

8.5 Collision Detection of Complex Objects 

It is well know that collision detection is difficult for complex or irregular objects. 

Various methods have been suggested to simplified the process [21, 31, 14]. One ‘ 
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of them is hierarchical bounding volumes(spheres and boxes). 

The basic idea of using bounding volume is to bound a complex object by 

simple geometrical primitives. The collision detection is then done by checking 

the collision of the decomposed primitives, instead of the complex object itself. 

Therefore, the time required for collision detection is independent of the modeling 

complexity. Figure 8.8 shows a teapot bounded by a sphere, which should be 

further decomposed into other primitives that for better approximate the teapot 

geometry. Figure 8.9 shows one hierarchical bounding volume of the teapot, which 

can be further decomposed into smaller fitting primitives of the geometry. 

»» 
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Figure 8.8: Teapot bounded by a sphere 
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Figure 8.9: Teapot bounded by hierarchical primitives ,, 
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Chapter 9 

Experiments 

Based on the discussion of previous chapters, a hand-oriented interactive system 

is developed to simulate the physics-based virtual-hand interaction in V R applica-

tions. The system utilizes the hybrid control approach of kinematics and dynam-

ics, and graph-directed state flow in hand grasping interactions. The following 

describes the overview of the system architecture and hand grasping interface. 

9.1 System Architecture 

In our system, CyberGlove is used to capture the motion of the user's hand. 

Two sub-systems are used to connect the CyberGlove to the SGI workstation. 

The Tracking system detects the position and orientation of the tracker, which is 

attached on the CyberGlove. The CyberGlove interface unit converts the hand 

shape into digital data and transmit that information back to the workstation. 

Figure 9.1 shows how different parts are connected together in our system. In the 

following, each of the parts is described in detail. 

/' 
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Screen 
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Unit(IPU) / ^ 

Transmitter 

Figure 9.1: Hand-oriented interactive system architecture 

9.1.1 Tracking System 

The Polhemus^^ F A S T R A K tracking system [24] is designed to determine the 

three-dimensional position and orientation of the CyberGlove. The system gener-

ates low frequency electromagnetic field by a transmitter. The field is detected by 

a receiver and the signal is used to compute the receiver's position and orientation 

relative to the transmitter. The workstation uses this information to determine 

the movement of virtual hand. 

The F A S T R A K system consists of an information processing unit (IPU) a 

transmitter and a receiver. The information processing unit controls all the 
input and output of the system. All signals generated by the transmitter are received by the receiver and processed here. It also provides switches for selecting “ 
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working mode of the system. The transmitter generates electromagnetic signals 

received by the receiver. The resolution of the system is 0.0005 cm and 0.025°. 

The receiver can provide an accurate spatial if it locates with 76cm range of the 

transmitter. Further distance is possible (up to 305cm) but the system will suffer 

reduced accuracy. Within the 76cm limit, the system has a 0.08cm R M S (root 

mean square) error for X,Y, and Z position, 0.24cm R M S error for orientation. 

Also, there will be a latency of 4ms before the IPU receives the current receiver 

location. 

9.1.2 Glove System 

ĤĤ^̂̂ | 
*̂PM̂ Î 
^SH 
^:"^^^^^ltl^Ktm 

Figure 9.2: A 22-sensor CyberGlove and the CyberGlove Interface Unit (CFIU) 
(Picture adapted from http://www.virtex.com/prod_cyberglove.html, the official 
homepage of Virtual Technologies.) 

The glove system [40] consists of two parts, the CyberGlove and CyberGlove 

Interface Unit(CFIU). The CyberGlove contains 18 or 22 sensors which are 

placed on different positions of the glove. The shape of the hand is detected by the sensors and sent to the CGIU. The CGIU amplifies and digitizes the signals 
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received and relay the data to host computer via an RS-232 interface. The host 

computer then calculates the shape of the hand according to the data and re-

generate the hand shape by the virtual hand. 

The 22 sensors in the CyberGlove are located over or near the joints of the 

hand and wrist to capture the motions of the physical hand and fingers. They are 

made of elastic material which will change its resistance when the length changes. 

Therefore, when the finger is bent, it will bend the sensor and extend its length, 

which affects its output voltage. The system can then determine the angle of the 

joint by the output voltage. The sensor has resolution of 0.5 degree and 1 degree 

standard deviation. The glove can send up to 112 records each second under 

normal working condition. 

9.1.3 Host Computer 

The workstation we used is SGI Octane workstation with a RlOOOO processor and 

128M ram. It serves as the link between the tracking system and the glove system. 

It uses the data received from the two systems to simulate the interaction between 

the virtual hand and virtual object. 

When all objects are fully rendered, the system can operate in a rate of 18-

24 frame per second, which may vary by the number of objects in the virtual 

environment. When the objects are rendered in wireframe, the system can archive 

up to 60-70 frames per second. 

9.2 Experimental Results 

In this section, two sets of experimental result will be shown. The first set is 

the general application of virtual hand grasping. Different objects and grasping 

conditions will be used to test the stability of the system. The second set of the 

experiment is to analyze the relationship between frictional coefficient of the object 

and the mass of the object. W e want to test how large the frictional coefficient 

required to maintain a stable grasping operation. Different mass and coefficient " 
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combination will be used during the test. 

9.2.1 General application 

The following is the snapshots of the virtual hand grasping the objects in the 

virtual environment. Figure 9.3 to Figure 9.5 show the sequence of grasping 

a sphere. Figure 9.6 shows the view while grasping the sphere from another 

direction. 

Figure 9.7 shows the case when the hand grasping a cube. If the upward force 

is larger than the gravity, the object can be grasped by fewer fingers. Figure 9.8 

shows the examples of grasping the cube with two fingers. 

Figure 9.9 shows other examples of virtual hand model grasping the objects 

in the virtual environment constructed by primitives and polygons. 

9.2.2 Relationship between frictional coefficient and mass 

of the object 

In our force equation, the frictional force is proportional to the normal force and 

the frictional coefficient of the object. It is clear that an object with a rough 

surface can maintain a stable grasping configuration easier than one with smooth 

surface. On the other hand, the heavier the object, the larger the gravity force 

acting on it. In this experiment, we want to analyse the relationship between 

frictional coefficient and the mass of the object. 

Table 9.1 shows the frictional coefficient of different material we used in the 

test. Note that the coeffient listed is only an average value of the type of object. 

The variance of the value can be very large. For example, the surface of a wood 

table can have a coefficient of 0.8, while the surface of a tree can have a coefficient 

of 2 to 3. 

In this experiment, sphere of 6 different friction coefficient will be tested. W e 

try to pick the sphere with different number of fingers and try to find the maximum 

mass which we can pick up. Starting from the initial mass, if we can successfully ,' 
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pick up the sphere, we will increase the mass in a stepwise manner until we can 

no longer pick it up. The maximum mass will be record and the test will continue 

with another friction coefficient with the initial mass. 

Table 9.2 shows the experiment result. The result shows that the maximum 

mass and the number of fingers uses follow a directly proportional relationship. 

It is obvious because the force acting on the object depending on the number of 

contact points. The more fingers we use, the larger the frictional force. Therefore, 

to prevent the object to slip from the hand, more fingers should be used. 

Another observation is the relationship between the frictional coefficient and 

the mass. W e found out that the maximum mass is about C(l+c/) times of the 

frictional coefficient, where C is a constant and c/ is the frictional coefficient. 

"Object Frictional Coefficient 

Metallic surface 0.4 

"Gkss “ 0.5 

Tkstic 0.9 

"Wood _ 1.2 

Paper “ 1.3 

Cloth - 1.6 

lock 2.2 

Table 9.1: Frictional Coefficient of different materials 

Maximum mass(Kg) 

with number of fingers 
Frictional Coefficient 2 3 ~ 4 ~ ~ ~ 5 ~ ~ 

0-5 —7.5 11.2 T I T l ^ 
0.8 ~9T~ 13.3 18.0 22.2 

“ 1.1 10.4 15.9 20.6 " 2 ^ 
1.4 ~T^ 19.0 24.3 30.8 
1.7 l 3 X 20.1 27.0 33.2 
2.0 14.8 22.2 29.1 36.6 

Table 9.2: Maximum mass of object which can be grasped 

•• 
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xiiŝ
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ŝ,@î
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â
"
^
B
^
 

.

 一
 .
 

•p_i
 

:
,
r
 .
¾
:

 
"
 

、—

 

w-̂
/̂
wĥ
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Chapter 9 Experiments 

rr 

]^^^ ^̂ ^ 
_ n 

, ’ Figure 9.9: Hand model manipulating objects in virtual environment 
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Chapter 10 

Conclusions 

In this Chapter, we will give a summary of our research. The main idea of previous 

chapters will be presented. W e will also list out the contribution of this research 

in the following section. Finally, a discussion of possible future direction of this 

research will also be included at the end of this chapter. 

10.1 Summary 

The control of articulated structure has been in extensive study for many decades 

Its application can be found anywhere in our daily life. Robotic system combining 

the knowledge of articulated structure and computer automation, which improves 

the efficiency of many tedious task and allow us to focus on creative activities. 

Also, robotic systems can replace human to work in many environment, such as 

undersea or planetary exploration, which is hazard or inaccessible to human. 

When robotic systems are first created, they only have simple structure and 

configuration. Control is usually done by the means of directly manipulation at 

each joints. Such controlling method is usually costly and inflexible. With the 

increase of availability and computation power of computer system, simulation 

is done before the real system is built. This can reduce the operation cost and 

building time. For decades, simulation is done in 2D environment, with switches 

or keyboard as the input device. However, working efficiency is usually affected “ 
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Chapter 10 Conclusions 

by the limitation of control space. Special training is required before the operator 

can control the system. 

In this research, we have done an extensive study on the requirement of robotic 

simulation. The simulation should be built in an interactive control environment 

with 3D interface and small latency. Digital glove is selected as the input because 

it can reproduce the operation performed by the users. Also, the user does not 

require special training to operate the system, which can significantly reduce the 

operation cost. 

Two motion control techniques, kinematics and dynamics, are discussed. They 

both have their own advantages and disadvantage, which make no clear winner 

when controlling and articulated structure. To adopt the efficiency of kinematics 

without losing the accuracy of dynamics, we suggest an approach to combine the 

two methods. When the articulated structure is moving in a free space, which it 

does not collide with any object, kinematics is used to calculate its motion. On 

the other hand, when collision appears, dynamics approach is used to calculate the 

interaction. This can maintain a fast response and small latency system without 

losing its accuracy. 

Other than fast response and small latency, accurate feedback system is also 

important. In this research, common approach of physical feedback has been 

studied. General description of previous are also included. Unfortunately, it is 

found that most physical feedback has its limitation and are usually expensive. 

The special hardwares required are not easily available. As a result, we aim at 

improving the visual feedback to compensate the lack of physical feedback systems. 

One of the most basic operations in virtual reality is object manipulation. Dif-

ferent methods have been purposed to provide a natural and convenience method 

for object grasping. However, our study show that most of these method fail to 

fulfill the requirement. Instead, an approach called interactive grasping, which 

based on the work of Ronan and Rezzonico's study, is suggested. The visual con-

figuration of the digital glove is modified, so that the colliding fingers can easily 

lie on the surface of the virtual object. The user does not need to take care of “ 
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the correct posture or hand shape to grasp an object. Also, dynamic is used to 

determine whether the grasping is success or not. If the virtual hand fail to supply 

enough upward force to the object, the object will slip from user's hand and fall. 

To place the above discuss in context, an interactive manipulator control sys-

tem is built. It simulates the operations performed by user hand and reproduces 

it in virtual environment. The user can control the objects by their hand - just 

like what we done in our daily life. In the system, different virtual objects are 

included. The user can manipulate any objects in the environment. This system 

can be used as the base of other simulation system, such as machine design, long 

distance robot control, virtual environment exploration, etc. 

10.2 Contributions 

This research has the following contributions: 

• Outline the needs of robot simulation in V R . 

• Unify the control space of virtual robot hand and arm structure. 

• Propose a hybrid control approach of kinematics and dynamics in virtual 

robot simulation (global and movement/local hand manipulation) 

• Develop a hand-oriented interactive system for V R applications. 

• Combine visual correction and active lifting in hand interaction. 

• Implement physics-based picking of virtual hand models. 

10.3 Future Work 

To improve the control interface of the system, a 3D display environment is re-

quired. It allows the user to view the environment from different viewpoint. This 

can be done by changing the display device from 2D screen to Head Mount Display 

or Crystal Eyes. “ 
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Appendix Conclusions 

In the virtual object manipulating system, the object cannot be re-oriented by 

the hand. A further enhancement of the system is to allow the orientation of the 

object to be changed when it is grasped by the hand. The object should move 

with the hand if the orientation of the virtual hand is changed. 

Finally, constraint should be added to the system. In the program, the position 

of virtual objects are not checked. Different objects can cut into each other, which 

is not realistic. Constraint mechanism should be added to prevent this to happen. 

•• 
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Appendix A 

Description files 

In this section, the format of the two description files used in this system will be 

shown. 

A.1 Scene Description 

To allow simple modification of the virtual environment, an scene description 

language is created. It describes the objects in the virtual environment, magnitude 

of the gravity, the ground level, etc. The scene description is stored in a simple 

ASCII file. Table A.1 shows one example of a scene description file. The resultant 

scene is shown in figure A.1. 

W e can divide the scene description file into two parts. The first part specifies 

the environment parameters. F O R C E _ C O N S T A N T is used to specify the force 

constant between the hand and virtual object. GRAVITY specifies the gravi-

tational acceleration acting on the object. W e can simply turn off the gravity 

in the virtual environment by giving 0 to this parameter. G R O U N D tells the 

system where the ground level lays to avoid the virtual object dropping beyond 

the ground constraint. 

The second part of the file specifies the objects in the virtual environment. 

Three types of objects, spheres, cubes and polygons, are supported in the current 

system. The object is specified by a name, its color and property parameters. “ 

71 



Appendix A Description files 

FORCE_CONSTANT 0.5 ‘ 
GRAVITY 9.8 
G R O U N D -3.0 
SPHERE # a sphere 
1.0 0.0 0.0 # color of the sphere 
4.8 2.2 8.0 # center position 
4.0 # radius 
P O L Y G O N 3 # a polygon with 4 sides 
0.0 1.0 0.0 # color of the polygon 
-3.0 0.0 3.0 # position of the vertices 
-3.0 8.0 6.0 # note : vertices must be given 
7.0 14.0 3.0 # in anti-clockwise manner 
C U B E # a cube 
0.0 0.0 1.0 # color of the cube 
-6.0 -4.0 -4 # position of starting vertices 
8.0 8.0 8.0 # size of the cube (x,y,z) 

Table A.1: Scene description language 

SPHERE specifies the position (x,y,z) and radius (r). POLYGON specifies 

the number of vertices, the color, the position (x,y,z) of the vertices in counter-

clockwise order. Note that the number of vertices must be the same as the one 

specified early. C U B E specifies the color, the starting point, the size extended in 

(x,y,z). 

The object data of the scene is stored in a structure with two layers. The first 

layer contains the general information shared by all the objects (type, color, ve-

locity). The next layer contains the parameters of the object. The sphere_node 

includes radius and center position(x,y,z) of the sphere. The polygon_node in-

cludes size, which specify the number of vertices, normal calculated from the 

vertices, and vertices. The cube_node contains the position(x,y,z) of the starting 

point, color, and size(x,y,z) of the cube. Figure A.2 outlines the data structure of 

scene description. 

** 
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i ^ ^ a 

•

_ 

• 
M | M 
• 

Figure A.1: The scene specified by the scene description file 
A.2 Hand Description 
Similar to scene description, hand description specifies the initial state of the 

hand structure. Table A.2 shows the hand description and Figure A.3 shows the 

virtual hand. 

The hand file specifies the position(x,y) of each finger joint relative to the 

center of the wrist. The file specifies one finger at a time, from thumb to pinkie 

finger. It first specifies the position of the base joint, then 1st joint, 2nd joint 

and the finger tip. After all the fingers, the file specifies the radius of the finger 

along its cross section. Finally, the last parameter specifies the switch to turn 

on/off the CyberGlove. This parameter is used for debugging process. Every time 

the program starts, the CyberGlove and Tracker system need to be re-initiated. 

However, the initiation process requires a long time and it will be inconvenient 
during the system development process. Therefore, this parameter is used to turn the CyberGlove and Tracker system. If off, the system initializes all joint angles .‘ 
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Appendix A Description files 

object_node  

objtype objtype objtype 

color color color 

velocity velocity velocity 

next > next > next > 

obj obj obj 

radius size pos(x, y, z) 

center(x,y,z) normal size(x,y,z) 

sphere_node cube_node 

vectices 

polygon_node 

Figure A.2: Data structure of object specification 

and glove position to zero, which can speed up the system development process. 

•• 

74 



-2.5 3.4 # x,y coordinate of the joint 
-6.6 5.8 # starting from base joint to finger tip 
-9.0 7.6 # finger start from thumb to pinkie finger 

-2.6 10.4 
-3.1 14.8 
-3.35 17.4 
-3.6 19.8 

0.0 10.6 

0.4 15.2 
0.65 18.2 
0.9 21.0 

2.2 9.8 

3.0 13.8 

3.6 16.8 

4.2 19.4 

4.2 8.6 

5.6 11.4 

6.55 13.4 

7.6 15.5 

0.7 # radius of the finger 

ACTIVE • specify whether the glove device is active 

Table A.2: Hand description file 

•• 
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(0.9,21.0) 

(-3.6,19.8) 

( T 
1 (0.65’18.2)丨, / 

(-3.35,17.4) 4 / 
\ f (3.6,16.8) 
\ (0.4,15.2) / -
\ o / f (7-6,15.5) 

(-3.1,14.8) 4 j (3.0,13.8)i / 
\ j j 6.55,13.4) 

(-9.0,7.6) ( - 2 . 6 . 1 0 . A _ _ I j / (5.6'11.4) 
• \ ___V(4.2,8.6) 
\ \ _,10.6) ^ ^ ^ 

V (-6-6,5.8) \ / 

乂\丨 
(-2.5,3.4)\ / 

^ L ~ ^ X 

Figure A.3: Hand coordinate according to hand specification file 
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