On Methods of Computing Galois Groups and

‘their Implementations in MAPLE

L "s‘\
W T N
w” 3% 3¢
by !/\" O 3.\7 N

TANG Ko CHEUNG, SiMON

(TangSimon@cuhk.édix.hk)

A Thesis
Submitted to the Graduate School of
The Chinese University.of Hong Kong
(Division of Mathematics)

In partial fulfillment of the requirements for

the degree of Master of Philosophy in Mathematics

. August 1999






The Chinese University of Hong Kong
Graduate School

The undersigned certify that we have read a thesis, entitled “On Methods of
Computing Galois Groups and their Implementations in MAPLE” submitted to the
* Graduate School by Tang Ko Cheung, Simon in partial fulfillment of the require-
ments for the degree of Master of Philosophy in Mathematics. We recommend
that it be accepted. |

iy Sum bt % Zg_‘M
S R

Chairman il

L Wl

External Examiner

NG

i



Abstract

This work is an investigation of the mathematics, if any, and the computing
knowledge involved in the determination of Galois group of polynomials over the
rationals up to degree seven. We first describe a finite procedure in van der
Waerden’s 1949 Algebra Text to determine the Galois group of polynomials. It
requires the construction and ft'a.ctoriza.tion of a degree n! polynomial in n +1

variables and thus is not suitable for practical purposes. Two workable methods

are then described.

Stauduhar’s 1973 method for a given polynomial involves finding high-precision
approximations to the roots of the polynomial, and fixing an ordering for these
roots. The roots are then used to create (relative) resolvent polynomials of small
degree, the linear factors of which determine new ordering for the roots. Se-

quences of these resolvents isolate the Galois group of the polynomial.

Soicher-McKay’s 1985 method proceeds by efficiently determine sufficient prop-
erties, so as to specify the Galois group to within conjugacy in the symmetric
group. This conjugation is realized by relabelling the zeros of the polynomial. The
main tool discussed is the (absolute) resolvent polynomial. For T in Z[z;,. .., Z,)],
the complete factorization of a resolvent polynomial is used to determine the or-
bit length partition of {Y(Z1e,...,Zn) : 0 in S,} under the action of the Galois
group. An important class of resolvent polynomials considered are the linear
resolvent polynomials. The use of linear resolvents in determining Galois group

is discussed and a practical exact method of computing linear resolvents is de-

scribed.

Roughly speaking, Stauduhar’s method is numerical in nature while Soicher-

McKay’s method is symbolic. The two methods are compared and contrasted.
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The success of Soicher-McKay’s method depends on exact polynomial factoriza-
tion algorithrlns that have developed since 1968. As an important and interesting
topic in a newly emerging field called SAC—Symbolic gnd Algebraic Computa-
tion (Computer algebra or Computational Algebra), we also describe algorithms

to factor polynomials over finite fields, over the rationals and over algebraic num-

ber fields.

A demonstration for an implementation of Stauduhar/Soicher-McKay’s method
by Tang Simon in MAPLE are then given. It takes two seconds to obtain an

|
answer for the polynomials that we encounter on a Pentium-133.

'Finally in an Appendix we argue that Galois Theory is not dead, there is now
Computational Galois Theory— have developed rapidly recently and that basi-
cally is to blossom Old-fashioned Galois theory with & Computer. We also include
some notes on the field of SAC. The advent of computing technology prompts
a renewed interest in the Constructive School of Mathematics and that activity
necessarily interweaves mathematics, complexity theory and software systems. It
spurs new areas of research and revive languishing areas. The importance of SAC
in applications has grown in recent years—the methods of Computer' Algebra and
the applications of computer algebra systems in technological areas related to in-
formation processing, software engineering, etc. in which the symbolic nature

of the objects studied makes the techniques of calculus and numerical analysis

inapplicable.

These views should not just be personal as they are supported by a overwhelming

body of testimonials.
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Chapter 1

Introduct ion

1.1 Motivation
|

The existence of an algorithm for the determination of Galois groups is nothing new;
indeed, the original definition of the Galois group conl,aineld, at least implicitly, a
technique for its determination, and this technique has been described explicitly by
many authors, e.g., van der Waerden [GaloisBks].

1.1.1 Calculation of the Galois group

A method for actually forming the Galois Group of an equation f(z) = 0 relative
to a field F is the f'ollow‘mg.

Let the roots of the equation be «,,...,a, . By means of the indeterminates
Uy,y.. dyUn, form the expression § = w, + --- + u,a; perform on it all per-
mutations 8y of the indeterminates u and form the product R(z,u) =[] (z — 0*+).
. Evidently this product is a symmetric function of the roots, and there}orc, by the
Iundamental T'heorem of Symmetric Polynomials ('theorcm 5), il can be expressed
in terms of the coefficients of f(z). Now decompose R(2, ) into irreducible factors
in Flz,u]: R(z,u) = N1(2,8)R2(2,2) -+ - R (2,%).

Theorem 1 The permutations s, which carry any of the factors, say R;, into itself
form a group §. It is ezactly the Galois group T of the given equation.

Proof. After adjoining all roots, R and therefore 3, are decomposed into linear
factors 2— " u, @, with the roots o, as coefficients in any sequential order. We now
affix subscripts to the roots in such fashion that %, contains the factor z — (we, +



s+ +usa,). By 8y we shall herealter denote any permutation of the u, and by 8o
the same permutation of the a. Then, obviously, the product 348, leaves invariant
the expression 0 = uy @, + - -+ + u, v, 3 that is, we have §°a%s =, §%a = s’

If 8y belongs to the group g, that is, if it leaves %, invariant, then s, transforms
every linear factor of R, including the factor z— 0, into a lincar factor of R, again.
If, conversely, a permutation s,, transforms the factor z—0 into another linear factor
of Ry, it transforms N, into a polynomial which is irreducible in F{z,u] and which
is a divisor of R(2,1), and so it transforms R, into one of the polynomials R;. This
R; has a linear factor in common with ®;. Therefore the permutation necessarily
transforms R, into itself, which means that s, belongs to g Thus § consists of the

permutations of the & which transform z — @ into a linear factor of R; again.

The permutations sq of the Galois group T" of f(z) are characterized by the prop-
erly that they transform the quantity = wya, +--- + u,a, into its co;Jjugates.
This means: 34 transforms 8 into an element satisfying the same irreducible equa-
Lion as 0; that is, s, carries the linear factor z — @ into another linear factor of R;.
Now §°= = 0’;l; hence s 'carrics the linear factor z — 0 again into a lincar factor
of R;; that is s;_‘nnd SO s_; belong to . The converse is also true. Thus the Galois
Group I' consists of m(actly the same permutations as the group g, except that they
are performed on o the instead of the u.

These sources show that the problem of finding the Galois group of a polynomial
f(z) of degree n over a given field /' can be reduced to the problem of factoring
over I a polynomial of degree n! whose coefficients are symmetric functions of the
roots of f(z).

In principle, therefore, lwhenever we have a factoring algorithm over I, we also
have a Galois group algorithm.

|
1.1.2 Factorization of polynomials in a finite number of steps

IS feasible

e
(5 %3

Let I be an {ntc-gral domain, where the unique faclorization thoorem be valid for
it. Let K be the field of fractions of I. By Gauf’s lemma, we may assume the
coeﬂ‘icients of any polynomials over K to be in /, and perform its factorization over
I. To factorize a polynomial in I[zy,Z3,...,2,], by the method of induction on the
variable n we shall now reduce everything to the following problem.

Theorem 2 Let any factorization in I be performable in a finite number of steps:
moreover, let there be only a finite number of units in I. There is a method of
. factoring every polynomial in I[z] into prime factors.



Proof. 'i‘he solution is dfie to Kronecker [GaloisBks](4), cf. Chapter,section 3.1 in
Chis thesis. Let f(z) be a polynomial of degree n in I{z]. If f(z) can be factored,
then one of the factors is of degree < n/2; thus, if s is the Igreatmt integer < n/2,
we must investigate whether f(z) has a factor g(z) of degree < n/2.

We form the functional values f(ao), f(@1),...,f(as) for s+ 1 integral arguments
@9,01,...,a,. If f(z) is to be divisible by g(z), then f(ap) must be divisible by
9(a0), and f(a1) by g(a1), and so on. However, every f (a;) in I possesses only a
finite number of factors; therefore, for every g(a;) there are only a finile number of
possibilities all of which may be found explicitly. For every possible combination of
values g(ag), g(a1),...,9(a,) there is, one and only one polynomial g(z) which may
be formed by Lagralngc's or, more conveniently, Newton’s interpolation formula. In
this way a finite number of possible factors g(z) are found.

Empléying the division algorithm, we may now find out whether each of these
polynomials g(z) is actually a factor of f(z). If, apart from the units, none of the
" possible g(z) is a factor of f(z), then f(z) is irreducible; otherwise, a factorization
has heen found, and we may proceed to apply the same procedure to the two ’factors,

and so forth. In this manner we finally arrive at the irreducible factors.

Remark!. In the inbegll'al case, I = Z, the procedure may freque'ntly
be shortened considerably. By factoring the given polynomial modulo 2
and possibly modulo 3, we get an idea what degrees the possible factor
polynomials g(z) might have, and to what residue classes the coefficients
modulo 2 and 3 might belong. This limits the number of the possible
g(z) considerably. Moreover, when applying Newton’s interpolation for-
mula, one should note that the last coefficient A, must be a factor of the
highest coefficient of f(z), which limits the number of possibilities still
further.
Finally, it is a.nl advantage to use more than s+ 1 points a; (preferably
0,%+1,%+2 and so on). For determining the possible g(a;) we use those
f(a;) which contain the least number of prime factors; the other points
may afterwards be used in order to limit the number of possibilities still
further by examining each g(z), and to see whether it assumes values

_which are factors of the respective f(a;) at all points a;.

As Kronecker has described a factoring algorithm for polynomials with rational
coefficients, the problem of determining the Galois groups of such polynomials is
solved in principle. It is obvious, however, that a procedure which requires the

factorization of a polynomial of degree n! is not suited to the uses of mortal men.

! Please sec Chapter 3—Factoring Polynomials Quickly.



In this thesis we describe two practical and relatively simple procedures which

have been used to develop programs for polynomials over Q of degrees 3 through 7.

To end this section, we remark that the problem of determining the Galois group
of a given f € I[z] was declared by Hans Zassenhaus® to be one of the 4 main
problems in constructive number theory, [Poh87]— can demand particularly hard
computations, and may as well be used to create hard examﬁ]es for the subalgo-
rithms used, [PZ89] and [Zas71].

1.2 Table & Diagram of Transitive Groups up to
|

Degree 7
I 3
The two methods that we are going to describe depend on a knowledge of transi-
tive groups. For degrecs 3 to 7, the number of transitive groups up to conjugacy
are 2,5,5,16 and 7 respectively, see Table 1.1 below. Figure 1.1 is the transitive
subgroups lattice of permutation groups up to degree 7, [PZ89).

The notation for the group names is similar to that of [Mck79] and [SM85], who
also gives group generators, cf. [Sta73]. A, is the allernating group of degree n; S,
is the symmetric group of degree n; Z,, denotes the cyclic group of order n; Vy is
the four-group; D,, 'denotes the dihedral group of order 2n; F,, denotes a Trobenius
group of order n; G, denotes a group of order n. If A and B are groups then A/B
means that A is represented on the cosets of B in A. Groups preceded by “ 4 are
groups of even permutations.

* * *

. . { . *% "
& =y a4 "~'|," % NORS I

The transitive groups for *gr(.w "1 lo 7 are relatively well-know, [Sta73] But
for higher degrees, to “C]ass&'y transitive subgroups of S,, up to conjugacy” is a
non-trivial group-theoretical question, [Coh93], p.317. It has been solved up to
n = 11, [BM83] and [MR85), in 1985 and up to n = 15, in 1993, see helow. For
higher degrees, the groups,™ bn% just the number of groups, will become ~unwieldy.
Recent work by Alexander Hulpke confirins these results and extends the tables up
to degree 31, Appendix B.1(8], with the aid of the Computational Group Theory
system GAP, [GAP).

While 31 is still a very small number, the reader should have no problem to com-
prehend that 31! = 8,222, 838,654,177, 922,817,725, 562, 880,000,000 with any
Computer Algebra System like [MAPLE]. :

2Prof. Zassenhaus passed away on November 21, 1991, around six 6 o’clock in the morning.
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We include some findings of Alexander here:
|

degree 2 4 5 6 7
| prim. 1 2 5 7
trans. 1 5 5 16 7
fpf. 2 2 7 8 3 4
Total 2 4 11 19 56 96 :
degree 8 9 10 11 12 13 4 15
prim. 7 11 9 8 6 9 4 6 .
trans. 50 ' 45 8 %01 9 63 104
[pf. 200 258 1038

Total 206 554 1593
degree 16 7 18 19 20 21 2 3

prim. 22 0 4 8 4 9 4 7

trans. 1,95/ 10 983 8 1,117 164 59 7
degree A 25 2 27 2. 20 30 31
prim. 5 28 7 15 14 8 4 12
trans. 26,813 211 96 2,382 1,852 8 5712 12
' | 5

All Numbers refer to classes up to Sn-conjugacy:
prim.: number of primitive groups (see Definition 30)
trans.: number of transitive groups (including primitive)
fpl.: number of fix point free groups (i.e. groups that are not subgroups
of smaller symmetric groups.)
Total: total(n-1)+fpf(n)
The numbers for (l(g;ree > 23 are still to be checked !
Back to my Homepage®.

So we don’t know whether the number of transitive subgroups of Sy is 26,813.
Double Oh Eleven also told me that he found the following in one of Alexander’s
preprint:

“... The classification of transitive permutation groups has been pur- .
sucd for over a century since the Grand Prix of the Académie des Sci-
ences in 1858 [Grand priz de mathématiques, C. R. Acad. Sci. Paris,
1858, 302-303]. An account of carly work is given in [Bur1898] and
[Mil1935], a very readable historical outline can be found in [Mark
W. Short, The primitive soluble permutation groups of degree
less than 266, Lecture Notes in Mathematics, Band 1519, Springer-
Verlag, 1992]. 'This work led Lo a classification of the groups up to degree
15 [Mil1896, Mil1898, Kuh1904]. Having achieved these results devel-
opment stopped for some time and was taken up again with the arrival
of symbolic computation. The last twenty years have seen extensive
work in this area HBM1983, Roy1987, Butl 993] noting errors in earlier

So we don’t know whether CHINESE* Double Oh Eleven has good taste, cf. Ap-
pendix B.2.

3Courtesy of Double Oh Eleven =)
‘TIIINK OF HIS EUROPEAN COLLEAGUE_S.




Degree 3 Degree 4

54
+A,
+A, D,
|
+V,
1 Z4.
Degree 6 |
5
‘ PGL,(5)
G,, +PSL,(5)
Gy,
+SJV
pe” 8 ‘
5 % *A, .
N
N

Degree 5

+A,

Degtee 7

SN
N

$ +PSL,(2)

Feo
| +F,,

7

¢ ey,
A S LR RN

\

Iigure 1.1: Transitive subgroups Lat.tica;) of permutation groups up to degree 7
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Degree 3

Group | Description | Generators | Order
Ss (123),(12) |
+As (123) 3
Degree 4
Group Description Generators Order
Sy (1342), (13) 24
+A, (134), (12)(34) 12
Dy | group of the square | (1234), (13) 8
Zy cyclic four group | (1234)
+Vi Klein 4-group (12)(34), (13)(24) 4
Degree 5
Group Description Generators Order
Ss (12345), (12) 120
+As (12345), (21345) 60
Fy | metacyclic five group | (12345), (2354) 20
+Ds ' (12345), (25)(34) | 10
+Zsg cyclic five group (12345) 5
Degree 7
Group Description Generators Order
Sy (243756), (123) 5040
+Aq (1234567), (123) 2520
+PSLs(2) BRI (AT 168
(2743)(56)
IO/ melacyclic seven group (1234567), (243756) 42
+Fy (1234567), (235)(476) 21
Dn (1234567), (27)(45)(36) | 14
+Zy cyclic seven group (1234567) 7

Tuble 1.1: Transitive Groups up to degree 7
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Degree 6

Group® Description Generators Order
Se (142536), (12345) 720
+As (1524)(36), (12345) 360
: maximal group imprimitive (123), (456), (12),
Gro I 72
on two sets of three letters (45), (14)(25)(36)
+G§0 GraN+Ag (123)’ (456), 36
(12)(45), (1425)(36)
G:lm (123), (456), 26
(12)(45), (14)(25)(36)
Cus (123), (456), %
(14)(25)(36)
Dy metacyclic six group (123)(156), (12)(45), 12
(14)(26)(36)
' (123)(465),
i cto S
S3 somorphic to S3 (14)(25)(36) 6
o (123)(456),
Zg cydlic six grouy © (4)(25)(36) 6
maximal group imprimitive (12), (34), (56),
Gas 48
on three sets of two letters (135)(246), (13)(24)
(12)(34), (34)(56),
S4/Z4 (12)(56), (135)(246), 24
(14)(23)(56)
e (12)(34)(50), (4)68), |
(56), (135)(216)
+5u/Va Ga N -i.-Ao (135)(246), (13)(24), -
isomorphic to Sy (12)(34), (34)(56)
+A4 isamorphic to A4 (12)(34), (34)(56), 12
(12)(56), (135)(246)
. PGILy(5) isomorphic to S (126)(354), (12345), 120
(2354)
+PSk, (5) G120 N+Ag (126)(354), (12345), 60
isordorphic to +As (25)(34)

Table 1.1{continued) Transitive Groups up to ldegx-ee 7
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1.3 Background and Notation

We give some basic definitions and results of Galois Theory here, [GaloisBks]. Some
rudimentary concepts in the theory of permutation groups that will be used in the
sequel are also included at the end of this section and let us begin with some

elementary stuffs in abstract algebra. The version of Gaufi’s lemma that we use is:

Lemma 3 (Gaull’s lemma) Let [ be a ufd—Unique Factorizalion Domain, with
field of fractions K and let f(z) € I[z]. If f(z) is reducible in K[z] then f(z)
is reducible in Ifz). More precisely, if f(z) = A(z)B(z) for some nonconstant
polynomials A(z),B(z) € K|[z], then there are nonzero elements r,s € K such
that rA(z) = a(z) and sB(z) = b(z) both lie in I[z] and f(z) = a(z)b(z) is a
factorization in I[z]. | *
Definition 4 Let R be a commutative ring with an idenlity element.

A polynomial f in R[zy,...,zn] which is unchanged by any permutation of the
indeterminates T,,...,Zn, .6, f(Tie,...,Tne) = f(Z1,...,Zy) for every o € S,
i8 called a symmetric polynomial of the variables z,,...,Z,.

Let T = (z—21)(2=%2) ... (2—Tn) = 2" — 812" 892" 2 .. 4-(—1)"3,,. Each s;
i8 a polynomial of total degree j in zy,...,2,. We call 34,...,8, the clementary
symmetric polynlom!als of T1y...,Zn.

Theorem 5 (Fundamental Theorem of Symmetric Polynomials) Let f €

Rz, .I. .y Ty) be symmelric, where R is @ commutative ring with an identity element.
Then there ezists a polynomial h € R[z1,...,T,] such that f = h(sy,...,s,) where

' the 8; are the elementary symmetric polynomials of z,,...,z,.

Definition 8 A splitting field of f(z) € Flz], splp(f), is a field extension I3/ F

in which f(z) splits (it is a product of linear factors) while f(z) does not split in

any proper subfield of E.

Since a splitting field is unique up to isomorphism, we often refer to the splitting
field.

Theorem 7 (Isomorphism Extenslon Theorem) Let o : F — I be an iso-
morphism of fields, let f(z) € Flz], and let f*(z) = o(f(z)) (by acting on the
coefficients) be the corresponding polynomial in F'(z|; let E be a splitting field of

f(z) over F and let‘E' be a splitting field of f*(z) over F'. Then there is an
isomorphism & : E — E extending o. :

13



Definition 8 The polynomial f(z) € Flz] is separable over F if each of its
irreducible factors over I' has no repeated roots (in its respective splitting field). Let
L/ F be an extension of fields, an element of E is separable over F if either it
18 lranscendental or its irreducible polynomial over F' is separable; if every element
in K is separable over I, I7 is a separable extension of F.

Definitlon 9 Let B/ F be an eztension of fields. An element o of E is o primitive
element if £ = F(a).

Theorem 10 (Theorem of Primitive Element) If £ is a finite separable ex-
tension of I, then I has a primitive element.

Definition 11 Let E/F be an extension of fields. Jts Galois group; denoted
by Gal(E/F), (or sometimes G), is the group of all the automorphisms of E fizing
I pointwisely under the binary operation of composition.

Theorem 12 Jf f(z) € I'[z] has n distinct roots in ils splitting field E, then
Gal(IZ/F) is isomorlphic to a permutation group of ils roots, which is a subgroup of
the symmelric group S,. We denote this subgroup of S, by Galp(f), (or sometimes
), and calll it the Galois Group of the polynomial f.
|
Remark. However, the subgroup in S, depends on the labelling of the roots; re-

labelling the roots amounts to conjugation by an element of $,, cf. Chapter,section
2.2,

Definition 13 £/F is a normal extenslon of fields if every irreducible polyno-
mial over F' which has a root in E splits in K.

Definition 14 E/F is a Galois extension of fields if B/ F is finite, normal and
separable.

Definition 15 Let Aut(E) be the group of all the automorphisms of a field . If
G is a subset of Aut(E) , then E® = {a € E:o(a) = a forallo € G} is called the
fixed field of G in E.

The author was always puzzled with the various definitions of normal extensions

by different writers in [GaloisBks]. Fortunately the following two theorems should
explain the matter sufficiently clear. '



Theorem 16 Let /I be a finite extension of fields with Galois Group

G = Gol(E/F). The following conditions are equivalent:

(i) F = E9;

(i) every irreducible p(z) € I'[z] with one root in E, has all its rools in I, and each
ro0t i8 simple;

(iii) B is a splitting field of some separable polynomial f(z) € Fla.

Theoreém 17 Let I/ F be a finite extension of fields. Then E is a splitting field of
a polynomial over F iff every irreducible polynomial over I which has a root in E
1splils in K.

We are now able to state '

Theorem 18 (The Fundamental Theorem of Balois Theory) Let £/ I bea Calois
eztension with Galois Group G = Gal(I3/F"). Let 11 be a subgroup of G and B be a
subfield of I containing I,

(i) The functiony : Sub(G) — Lat(E/F), defined by H v EH | is an order reversing
bijection with inverse y~' : B +» Gal(E/B). In short, there is a bijection between
the subgroups of G and the latlice of subfields of E containing F.

(ii) EGoWE/B) = B and Gal(E/EH) = H.

(i) B'VK = B¥ N EX and B0 = E¥ v BX; Gal(E/B v C) = Gal(E/B) N
Gal(E/C) and Gal(E,/B N C) = Gal(E/B) V Gal(E/C),

where HV K denotes the smallest subgroup (or subfield) containing both I and K.
(i#i) Degree & Indez: (B : F| = [G : Gal( B/B))| and [G : H) = [E¥ : ).

(iv) B/F is a Galois estension iff Gal(E/B) is a normal subgroup of G. In this
case, Gal(B/F) & G/Gal(E/B).

'The following results are used somewhere in this thesis:

Theorem 19 If f(z) € ['(z] is irreducible over a ficld 17, then its Galois group
Galp(f) is transitive on its roots, i.e., for every two roots a and B of f, there is

a permutation 0 € Galp(f) with o(@) = B. The converse is lrue if | (z) has no
repeated roots.

Thearem 20 Let f(z) € F(z] be a separable polynomial, and E/F be ils splitting
field. Let f(z) = g(z)h(z) in Flz], and let B[F end C/T be splitting fields of
9(z), h(z) respectively, contained in E. If BNC = F, then Gal(E/F) = Gal(B/ F) x
Gal(C/F), where x denote the direct product of groups.

Definition 21 Let f(z) = az™ + 12"  +--- + @, and g(z) = bpz™ + byz™~1 4
4+ by be two univariate polynomials over an integral domain 1).
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Ifay,...,o are the roots of f and B,...,Bm are the roots of'g in their common
splitting field, then the resultant res;(f,g) of f and g is

rmz(f)g) =ag 81_1 l—_[(aI G ﬁ))
i=1j=1

|
The resultant can be shown to be the determinant of the Sylvester matrix of f and

dg Gy U l
@ @1 - G } ™ rows
g, namely, res;(f,9) = 20 a --- a, . (In all
b b b ﬁ
\ 1 rows
bo by cee eee By ;

blank spaces we must substitulc zeros.)

1t i3 an element of tlhe integral domain D.

Deﬁuiltlon 22 Let f(z) = aox™ + a1z""! +--- + 0, be a polynomial of degree n

over an integral domain D with roois «,,...,a, in ils splitting field. Let A =

[Licj(cs — ;). The discriminant of f, disc(f), is defined as disc(f) = a2"2A2,
' Being defined in this way, it is an element of ID. Notice that disc(f) = A? for a

monic polynomial f. '

We observe an interesting relation, res.(f, f') = (—l)waodisc( f), where f'(z)

i3 the derivative of f(z).

For computation of resultants and discriminants symbolically (quickly and avoids
coefficients blowup), see [CAbks].

The following algorithm can be found in [Coh93] and is used to create squarefree
resolvent. (This will become clear later.)

Theorem 23 (Tschirnhausen Transformation). Given a monic irreducible
polynomial I' defining a number field K = Q(0), the following algorithm oulput
another such polynomial U defining the same number field.

1. [choose random polynomial] Let n «— deg(T'). Choose at.mndom a polynomial
A € Z[z) of degree less than or equal to n— 1.

2. [Compute characteristic polynomial] Compute the characteristic polynomiel U of
a = A(0). Set U « res,(T(y), X — A(y)).

3. [Check degree] Using Puclid’s algorithm, compute V' « ged(U,U"). If V is con-
stant, then output U and terminate the algorithm, otherwise go to step 1.



Theorem 24 Lel f(x) € IFlz] be a polynomial of degree n over a field F' which has
no repeated roots in ils splitling field. \/disc(f) € F iff its Clalois group Galp(f) C
An.

Theorem 26 A field of finite size must has ezactly p" elements, where p is a
rational prime. It is the splitling field of z*" —x over Z,,. Thus all finite fields with
the same number of elements are isomorphic. We use GF(p™) to denote the Galois
field (finite) with p™ elements. |

Theorem 26 Gal(GF(p")/GF(p)) & Z, with generator u +— wP where Z,, denote
the cyclic group of order n.

Notice that GF(p) is just the field Z,, where p is a prime number.

Theoremn 27 For every p and n there are polynomials f(z) of degree n which are
irreducible mod p. They are all divisors of zF" — z mod p. Moreover, 27" — z is

the product of all monic irreducible polynomials in Z,[z] whose degrees divide n.

Finally we include a few basic concepts in the theory of permmtation groups,
[Wie64).

Definition 28 A permutation group G on §Q is called semircgular if every permu-
tation # id (the identily permulation) in G has no fized point. G is called regular
if it is semiregulor and transitive.

Definition 29 Let G be a permutation group on ). We call a subset ¥ of 0 a

block of G if for each g € G the image set 99 either coincide with v or has no
point in common with .

Definition 30 A transilive permutation group is called imprimitive if it has at
least one nontrivial block 9 (i.e., Y # ¢, {c}, Q). Otherwise, it is called o primitive
group.

1.4 Content and Contribution of THIS thesis

|
Although the author bas made a MAPLE program, [MAPLL], which can determine
the Galois group of any irreducible polynomials over Q up to degree 7 within sec-
onds (usually less than two), cf. Appendix A, there has been no contribution to
Mathematics and Computer Science.
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|
Since with reference to Appendix B, this MAPLE program should adequately be

considfared as a TOY in Computational Galois Theory, c[. Appendix B.1. However it
is the author’s first attempt to make something nontrivial in a newly emerging field
called Symbolic and Algebraic Computation (or Computer Algebra, Computalional
Algebra), cf. Appendix B.2. '

There is a saying that “Pure mathematical ideas are not found in any computer
program or its output.” There are far more sayings that I can understand though.
I give some findings in my journey here and 1 hope that some competent and indus-

trious people may draw the proper conclusions, cf. [CAbks] and Appendix B.

Chapter 2 in this thesis describes Stauduhar’s method of determining Galois
groups, [Sta73]. The computational requirements of this method are the approxi-

mated roots (Lo any desired accuracy) and syntbetic division of integral polynomials,
these could easily be achieved in 1973.

Yiou® \qaqy

In Chapter 4, we discuss Soicher and McKay’s method of computing Galois groups,
[SM85] and [Soi84). This method is symbolic and exact and requires the use of
polynomial factorization algorithms developed since 1968, [Ber68] and [Zas69).

Since the topic of exact polynomial factorization has formed an important part in
the field of Symbolic and Algebraic Computation, and because this field is relatively
new, we find it worthwhile to include the material in Chapter 3 despite that they

can easily be found in Computer Algebra ‘Textbooks, [CAbks]. Those textbooks
have been published since late eighties.

A splendid experience with Computer Algebra Software System like MAPLLE,
[MAPLE] or Computational Group Theory System like GAP, [GAY’] is that you

coukl be able to know the exact solutions to (some) arbitrary concrete questions

w:.l.;ilm.seconds. For instance, to factorize 2% — 1, to do indefinite integration

sinz

f mdz- J¥n2dz, to display the subgroup lattice of Ss, to find out the Galois
group of z# — 2; x5 +25. To knqw this kind of answers is not €asily accomplished
by methods in classical Mathemétm text—at best a very tedious method that may
_ not be at all clear and practical is available, which might not guarantee to work in
all cases; maybe only scattered examples are found in the usual cases. Nowadays,

all this can be done within seconds on a cheap Pentium®.

1
®The author has dificulty in producing instructive examples since he hasn't pluyed enough yet.
8The current price is loss than US$1,000 for Pentium-166 at Hong Kong,.
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There is no need to be rich or powerful. Just use your mind lightly and softly,
without any efforts. To put the game in another way: What is inside the com-
puter? Does it succeed just by calculating fast? Is artificial intelligence inside? Is

mathematics involved?” Pure mathematics or Applied mathematics?

"This work is an investigation of the mathematics, if any, and the computing knowl-

edge involved, for the computation of Galois group of polynoinials over Q.

"It shouldn’t be of very farsighted to conclude that if a computer says that the indefinite integral
of sin(x)/x is not clementary then either it is lying or (s)he does in fact know some mathematics,
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Chapter 2

Stauduhar’s Method

"The principal reference for this chapter is “R. . Stauduhar, The determination of

Galois Groups, Mathematics of Computation 27 (1973), 981-996,” [Sta73].

2.1 Overview & Restrictions

A t,ech'nique is described for the nontentative computer determination of the Ga-
lois groups of irreducible polynomials with integer coefficients. 'The technique for
a given polynomial involves finding high-precision approximations to the roots of
the polynomial, and fixing an ordering for these roots. The roots are then used to
create (relative) resolvent polynomials of relatively small degree, the linear factors
of which determine new ordering for the roots. Sequences of these resolvents isolate
the Galois group of the polynomial. Machine implementation of the technique re-
quires the use of multiple-precision integer and multiple-precision real and complex
floating-point arithmetic. Using this technique, Staudubar has developed programs

for the determination of the Galois groups of polynomials of degree N < 7. Two
exemplary calculations are given.

Restrictlons 'T'he algorithm to be described will apply only to irreducible monic
polynomials with integer coefficients. Since any polynomial with rational coefficients
can easily be transformed into a monic polynomial with integer coefficients equiva-

lent with respect to its Galois group, these latter two adjectives create no genuine
restriction.

The irreducibility restriction is genuine, however. For suppose f(z) = g(z)h(z)
in Q[z], and suppose B and C are the splitting fields of g and h, respeclively. If

BNC = the rational, then the Galois group of f(z) is the direct sum of the Galois
|

-

20



groups of g(z) and h(z), theorem 20, and there is no difficulty. If; on the other hand,
BNC is larger tht;.q the rationals, then the group of f(z) is not easily determined
from those of g(z) and h(z) without explicit knowledge of the relations which exist
between the roots of g and the roots of A.

As will become clear, the irreducibility restriction is not essential, but it greatly
simplifies the work of implclamenting the algorithm for polynomials of a given degree.

In this instance, a forthcoming article might be helpful, Applendix B.1[1].

There is another restriction. Application of the algorithm to polynomials of degree
n requires knowledge of all transitive (theorem 19) permutation groups of that
degree.

Iowever, the memory size of computers currently (in 1973) available will limit the
- use of the algorithm in the near future to cases for which such knowledge already

exists. Consequently, this restriction is not practically important in 1973.

2.2 Represclentation of the Galois Group

In the L:lassical development of Galois theory, the Galois group of a polynomial is
regarded as a group of permutations on the roots of the polynomial, theorem 12.

From the standpoint of computation, this concrete, finite representation of the group
seems to offer the best hold on the problem of its determination. Consequently, the
Galois group will here be regarded as a group of permutations.

More specifically, let S, be ihé¢ symmetric group on n letters and 7,0' € S, be
maps of {1,2,...,n} onto itself. Multiplication of permutations is compaosition, so
that k°" = (k7).

Let f(z) be a polynomial with rational coefficients and roots , @y, ..., @n. Lel B
be the splitting field of f(z). Let G = Gal(E/Q) e the group of automorphisms of £
fixing Q pointwisely, see theorem12. Suppose ¢ € G = Gal(FZ/Q). Then ¢ induces a

o a DY
permulation on 4,2, ..., ¢, Which can be set forth as [ollows: ;' -
of, -+ ,of
By = 50 1, = n . .
or i ’ jor| | : '_ - Letting 7y denote the final expres-
Qiyy =0 04, 1y, " ,in !

sion here, it is clear that the map ¢ — my delines an isomorphism from G =
Gal(£/Q) onto a subgroup I' = Galg(f) of Sy,.

1t is important to observe that the group I depends on the chosen labelling of Lhe
roots of f(z).

e Tor if a new labelling a'l = Qyr,ct ,a:, = (= is chosen, then the isomorphism
given above will carry G onto 7'~ 1,
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Consequently, when the Galois group of a polynomial is given as a group of per-

mutations, an ordering of the roots of the polynomial must also be given.

‘I'ne material presented in the following two sections is well known from classical
Galois theory. A few of the theorems and definitions are presented in a slightly
unusual form, one which has been dictated by the numerical character of their
application. The others are set forth simply for completeness and for clarity of
exposition of the main algorithm.

2.3 Groups and Functions

|
Let T(z,---,2n) be a polynomial in the indeterminates z,,- - -, z,. The course of
the Galois algorithm requires that the action of permutations on the arguments of
such functions be conside.rled.

Definition 31 Let T(zy,---,Z,) be a polynomial in the indﬁ:terminates Ty, "y Tn.
Let w € Sn. Then T’r(xh o ,xn) = T(E]r,' a4 1$u')-

If two permutations are applied sequentially to a function, we obtain the following:
bt (Tx)a(zh' o axn) = qu(zl! ke ’xﬂ)'

It may be that a function Y(z,,---,2,) is left unchanged by the action of certain
permutations. For example, T(z1,"++,2,) = 123 + To24 is unchanged by any of
the permutations {ildentity, (1234), (1423), (13)(24),

(12)(34'), (1423), (13), (24)}.

The collection of all permutations on n letters which leave a function unchanged

clearly forms a group. (The permutations in the above example form the group of

the square.) '

Definition 32 Let Y(zy,---,Zn) be a bolynomial with integral coefficients in the
indeterminates y,- -+ ,Ta. Let G, be a group of permutations on 1,...,n. If T is left
unchanged by precisely the permutations of G, we say that T belongs to G.

In this definition we restrict the coefficients of T to be integers for reasons that
will be apparent later.

Theorem 33 Let G be a subgroup of S,. Then there is a function
T(z1, -+ ,Zn) which belongs to G.



Proof. 0
Let W(zy,--+,Zy) = 2]23- - 2P, Define Y(zy,---,z,) = ): W (zy,- -+ ,2y). Clearly,

gEQ@
T belopgs to G. For if © € @, then the application of m merely permutes the terms
of T among themselves, but if w ¢ G, then the terms of T are moved onto terms
_corresponding to the right coset Gm of G.
Definitlon 34 Given a function Y(z1,---,z,) and a permutation w1 € S, the
function T™ is called a conjugale value or a conjugate function of the function Y.

Now we can ask the question: Given a polynomial Y(z,,--,,), and a group
H C S, , how many distinct conjugate values does T take under the permutations
of H? This is answered by the following:

Proposition 35 Let H be a subgroup of S,. Suppose Y(zi,---,z,) belongs to
G C S,. Then Y takes exactly [H : H N G] distinct conjugate values under the
permutations of H.

Proof. Suppose T, My € H. We will show that Y™ = Y*2 iff 7; and my lie in
the same right coset of HNG. TM = Y™ jff (T”l)"n—' =0 if Y™™ = Tiff
mmyt € HNG ff (HNG)m = (HNG)mp. M

Definition 36 Suppose G and H are subgroups of S,, and Y(z,,--,z,) belongs to
G. Let G’ =GNH. We say then that T belongs to G’ In H. That is, among the
permutations in I, ezactly those of G' leave T unchanged.

Proposition 37 Suppose G and H are subgroups of S,,, with G C H , and suppose
T(z1,--,2Zn) belongs to G in H. If m € H then Y™ belongs to =~ 'Gn in H.

Proof. Y(z1, -,2Zn) belongs to G in H iff Vo € H, Y =T & 0e @
iffVo e H,(Y") =T oen 'Cr
iff T™ belongs to 7~ !Gmrin H. W

Now suppose T(2,--+,Z,) belongs to G in H, and [H : G] = k. Then we can
choose permutatlons m; € H so that I = Gm U---Gmy and hence, as we have
shown, BO that the functions T = T™ ,T™ ... T™ are formally distinct. It should
be noted, however, that the values of these functions are not necessarily distinct on
a fixed n-tuple of numbers.

For example, let Y(zy,22,%3,24) = %173 + To23 + z3%7 + 2472, so that T be-
longs to the cyclic group generated by (1234), with right coset representatives
{identity, (12), (13),(23), (123),(132)} in S4. Now if we evaluate T and its con-
jugatcs on the four roots of f(z) = z* — 2, with the ordering (a,az,a3,a4) =

“
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(V2,—/2,i2,-i¥/2), we observe that

T(%)(al)am ('13,(14) - T(l”)(all o, 03104) =0.

2.4 Relative Resolvents

Functions and the Galois Group In this section, we consider the relation
between the Galois group T = Galg(f) of an irreducible nth degree polynomial
f(z) and the values taken on the roots of f(z) by functions belong to subgroups of
S,. ' 'mr'j

Theorem 38 Let jj (z) be a monic irreducible polynomial of degree n with integer

cocfficients. Let 1,0z, ...,0 be @ fized ordering of the roots of f(z).

Suppos|e H 13 a transitive subgroup of Sn, and suppose that, with respect to the given

ordering of the roots, the Galois group I' of f(z) is a subgroup of H. Let G be a
" subgroup of H and Y(z1,---,Z,) 6 function belongs to G in H. Let My Mg, -y M

be representative for the right cosets of G in I.

Then the relative resolvent polynomial

k
R(u,6)(z) = H(-’” = (Yo, @, ..., 2,))™) ‘ (2.1)

g=1

has integer coefficients.

Proof. For each i, 1 <1 < k,(Y(a1,02,...,a,))™ is an algebraic integc;'. Hence,
the coefficients of R(,c)(z) are algebraic integers.

Now suppose 0 € I'. Then o € H, and hence o(R(y )(z)) =

TTfs (@ = ((C(ar, 02,y @n))™)7) = [Ty (& — (T(e1, 02, ey ).

But the set 7,0, 790, - -, M0 is also a set of right coset representatives for G in H.
Thus, the application of & has merely permuted the roots of R(#,c)(x), leaving Lthe
coefficients fixed. The coefficients of Ry y(2) are then algebraic integers left fixed
by I' and are therefore, by Galois theory, rational integers. Wl

At this point it is worth mentioning that the roots of R c)(z) may be not be
distinct, as the example following Proposition 37 shows.

2.4.1 Computing Resolvents Numerically

Assume that high-precision approximations to the roots of f(z) are known. Since
the resolvents being dealt with are known to have integer coefficients, it is only

necessary to calculate the coefficients or resolvents to within an accuracy of %1 in

order to determine them exactly. To insure this accuracy, the roots of a typical

-
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resolvent Rp, a)(2) = H?:x (z — (Y(a1, 2, ..., 04))™) can be calculated Lo high
precision, using tl;e given approximations to o, o, ..., s, , and the product can then
be expanded to obtain approximations to the coefficients. Multiple-precision com-
plex floating-point arithmetic routines are generally required tlo obtain the necessary

accuracy.

In the discussion of the Searching Procedures in the next section (also see theorem
39 below), it is assumed that those integer roots of resolvents with respect.to which
reordering is taking place are not rcpeated roots. In the case that all the integer
roots of a resolvent have multiplicity greater than one, the resolvent can be recal-
culated with respect to a new [unction, or the input polynomial can be operated
upon with a Tschirnhaus transformation, theorem 23 (which preserves the Galois

group) in order to obtain a resolvent without repeated roots.

2.4.2 Integer Roots of Resolvent Polynomials

Theorem 39 Let all the assumptions of Theorem 38 hold. T(a1,09,...,0) is @
oot of Ry )(2), since one of the cosel representatives of G in I lies in G itself.
Assume T(ay, g, ...,0n) 8 not a repeated root of Ry c)(z).

Then T C G iff T(a1,a2,...,0n) i8 a rational integer.

Proof. First, observe that T(a1,s,...,a,) is an algebraic integer.

Now assume I' C G. Let 0 € T. Then 0 € G, hence T? = Y. Consequently,
Y(ay,,...,ap) is fixed under the action of all elements of the Galois group, hence
it is a rational number, by Galois theory. Since it is an algebraic integer, it is a
rational integer.

Conversely, assume T(, 2, ..., ) is & rational integer. Then Y(ay, a, ..., an) is
fixed by the Galois group I'. But among the permutations of H only those of G fix

T(ay, gz, ..., ), since it is not a repeated root of R(1,c)(z). Hence (CNH) CG.
But by assumption 'C H. Thus T’ c G. W

I
Corollary 40 Assume (T(_a;,az,...,a,.))”‘ is not a repeated rool of Ry ().
Then T C w7 'Gmy iff (T(cr, @2, .., @n))™ is a rational integer.
|
Corollary 41 Suppose (Y(ay,as,...,an))™ is a rational integer, and not a repeated
100t of R(11,Gy(), s0 that I C 7 'Grm;. If the roots of f(z) are reordered according

to the rule a;. = aj=, then T(oy,0y,..., @) is o rational integer, and with respect
to this new ordering, T C G.

Something now should be said about how integer roots of resolvent polynomials
are identified. If a given (approximate) root of the resolvent R, ma) () seems to

“
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be an integer to within some reasonable tolerance, it tan be rounded to that integer
and a synthetic division can be performed with R(ss, a,)(Z) to test whether the
integer is indeed a root of the resolvent.

2.5 The Determination of Galois Groups

Since polynomials over Q are separable, theorem 24 is well-adapted in our situation

here. It is very useful in trying to determine the Galois group of a polynomial.

Theorem 42 Let f(z) be a monic irreducible polynomial of degree n with integer
coefficients. Then the Galois group of f(z) is a subgroup of the alternating group
A, iff the discriminant disc(f(z)) is a perfect square.

Now suppose that a monic irreducible polynomial f(z) of degree n with integer
coefficients is given. Assume that the discriminant disc(f(z)) and its square root
are known. (There is a simple recursive technique for computing the discriminant
of a polynomial, given its cocfficients. See [Sta73] and [CAbks].) Assume further

that high-precision approximations to the roots of f(z) are known.

2.5.1 Searching Procedures

Place the approximated roots in an (arbitrary) initial ordering o, ey, ..., . Let T
denote the (alois group of f(z) with respect to this ordering. Now suppose that
M is a mazimal transitive subgroup of Sp, M # Ay ;and (S, : M] = k. (The case
M = A, will be considered later in this section.) We know, a priori, that I' C 9,.
To determine if I' C M, or some conjugate of M, calculate a resolvent polynomial

i ) %
of degree k, numerically, using a function T(()\l, 2, -..; &n) belongs to M in S,,, and
a set y,---, 7 of right coset representatives for M in Sy,

According to Theorem 38, this resolvent is monic with integer cocflicients. Test
the resolvent for integer roots. If it has none, then I' is not contained in any of the
conjugates of M, and similar resolvents may be computed, corresponding to other

conjugacy classes of maximal transitive subgroups of S,,.

Suppose, however, that R(s, ar)(z) bas an integer root. 'I'hen this root is
(T, a2, ..., ,))™, where ; is one of the chosen coset: representatives, and in
consequence of the first corollary to Theorem Y, rcnr; *Mm;.

The roots of f(z) thust now be reordered, so that a; = aj=;. After the reordering,
according to the second corollary to Theorem 39, we have I' C M.
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Now, assuming that I' C M, suppose M"* is a maximal transitive subgroup of
M, and T; is a function belonging to M* in M. Then a resolvent polynomial
R(am:m+)(z) of degree [M : M*] is calculated, and this new polynomial is tested
for integer roots. (This resolvent is, again by Theorem 38, monic with integer
coeflicients.) If an integer root of R(as.ar+)(2) is found, the roots of f(z) are again
reorclered {0 insure that I' C M*.

Searching continues in this way until either none of the resolvents at a given level
yield an integer root, or a minimal transitive subgroup of Sy, is located. (We need

consider only transitive subgroups of S, in the course of the search, since f(z) is
assumed irreducible.)

At each level of the search, clearly, only groups not previously climinated need be
mnsidereld. Suppose, for example, that S, has maximal subgroups M; and Mz, and
it is discovered that R(g.As,)(z) bas no integer roots, but that R(s,.:M3)(z) does, so
that I' ¢ My, and I' C M. Then, for the remainder of the search, groups which lie
within M; N M, are automatically ruled out as possibilities'for T'.

We have not yet described how the discriminant is used. It is used in two ways.
First, if none of the resolvents associated with the maximal transitive subgroups
of Sy, yield an integer root, then I' = A, or I' = S,,, depending on whether or
not disc(f(z)) is a perfect square. Second, if disc(f(z)) is a square, and we have
determined that I' C M, then we know that T' C M N A,,. Use of Lhis fact simplifies

the search procedure to some extent.

|
2.5.2 Data: Y(z1,%s,...,%,), Coset Representatives & Search-
' ing Diagram

, The following tables and diagrams contain the data needed to find the Galois groups
of polynomials of degree n < 7. Information used in constructing the tables and
trees presented herc has been gleaned from various sources by Staudubar. 'He has
constructed a similar table and tree for the degree-eight case. It was not given in
[Sta73], since it has not been checked by actual computation. '

Table 2.1 describes, when required, functions belonging to these groups, as well as

the necessary coset representatives.

The alternating and symmetric groups of the various degrees are not ihcluded in
the tables. No functions are given belonging to the groups for which no resolvent

is computed. For example, in the degree five case, if the Galois group T of a

-

27



polynomial f(z) is a subgroup of Fy, and disc(f(z)) is a perfect square, then
I’ C +Ds, otherwise I' = Fy3. Consequently, it is never necessary to compute a

resolvent of the form Ry 4py)(z), when disc(f(z)) is known.

The groups of degree six have been divided into three categorics: the groups
imprimitive (see definition 30) on two sets of three letters, the groups imprimitive
on three sels of two letters but not two sets of three letters, and primitive groups.

They are given in this order in the table.



Degree 4

ight
Group | C T(x1 ,x2,...,x,,,) right coset
Tepresentatives
Dy | 54 X1X3+X2X4q id, (23), (34)
Zy | Dy | xix3+xex3+xsxa+xaxs | id, (12)(34)
+Va
' Degree 5 y
Group | C T(x1,X2y: - -yXn) Fight poac
representatives
i s (x1xg+xoxa+xaxq+xaxs+xsxy | . id, (12)(34), (12435),
20 5 ;
-X lxg-x:;xs-xsxz-xzxruxl)z (15243), (12453),(12543)
+Dsg
+Zs | +Ds | xix34xoxdtxaxd4xaxi4xsx? | id, (12)(35)
Degree 6
right coset
Group C T(x1,X2,: - - yXn) & ) :
representalives
id, (2543), (236)(15),
25436
Gr Se | x1XoX3+X4X5Xg (2043, (26) (),
(2453), (25), (2345)
(24536), (3645)
+Gie ' ;
X1-X2) (x2-x3 ) (X3-
Cls | Gn (Gc1-xa) Crrxa) ) id, (56)
(x4-x5) (x5-x6) (xg-x4)
Clo
Cis
o | e |, 2, 0
T2
+(xa-x5)(xs-xs) (xg-xa) | (12)(465)

Table 2.1: The function Y(z1,22,...,%,) and right coset representatives




Degree 6 (Continued)

Gl
Dg | , id, (123), (132), (56),
(&P X1X4+X2X5+X3Xe (123)(56),
(132)(56)
S Gis | x1Xq+Xaxg+X3Xs id, (123), (132)
Zs Cs x'xétxzxg":x”xg o | id (123), 132)
+x4X5+X5X]+XgX3 ‘
id, (24635), (26)(35),
(354), (2345),
G Se X1 X9+X3X4+X5Xg (53), (340), (368)34),
(26435), (2346),
(234), (25)(36), (2435),
(24)(35), (26543)
(x1+x2-X3-X4)
| *(X3+X4-X5-Xs)
Sa/Zy Gus -(x5+xXg-X1-X2) id, (12)
; “(x17x2)
(x3-x4) (x5-Xs)
(x1+x2-x3-X4)
Gy Gas “(x3+x4-X5-Xg) Jid, (13)(24)
-(x5+Xg-X1-X2)
+54/Va
+A4 +54/Vi | see Gigq id, (13)(24) ,
(x1x2+x3x5+x4%6)
-(x1x3+%4X5+X2Xg)
PGL,(5) Se +(x3x4+X1Xg+X2X5) i, (13), (23), (173),
(132), (12)
-(x1X5+x2X4+X3Xg)
“(x1X4+X2x3+X5Xg)
+PSLy(5)

Table 2.1(Continued) The function Y(z;,y,...,Z,) and right coset

representatives




Degree 7

Group C TAX13X2y0:0.55%n) riight: sl
| representatives
id, (356), (365), (34)(56),
| (354), (364), (456), (345),
(36)(45), (465), (35)(46),
X1X2X4+X1X3X7 (346), (47)(56), (35)(47),
+PSLs(2) & +XiXsXo+Xox3Xs | (36)(47), (243756), (243675),
+XoXgX7+HXaXaXe | (243)(57), (2475), (247536),
+X4X5X7 (247563), (246375), (246)(57),
' (246753), (24)(375), '
(24)(36)(57), (24)(567),
(245)(37), (245736), (245673)
Let A be the sct consisting of
X1X2X4+X1X2Xg the even coset repreac'ntatives
+XX3Xq+X3XgxX7 | for PSLy(2) in S7!
+X1X5X6+X1X5X7 Let B be the set of all
Fyo S7 +XyX3X5+XoX3X7 cosel representatives
+XoX4X5+X2XgX7 for Ggyin  PSL3(2) .
' +X3X4Xg+XaX5Xg Then the roquired 120 cosel
+x4X5X74+X4X6X7 representatives here
are.given by A- B
id, (37)(56), (23)(74),
+1iy +PSLy(2) | see Fyg C Sy (2347)(56), (24)(56),
(24)(37), (2743)(56), (27)(34)
Dy Iy RURETRESE id, (235)(476), (253)(467)
we FXeX7+HX7X)
+Zn +1y, sec Dy C Fyy

id, (235)(476), (253)(467)

Table 2.1(Continued) The function Y(z,,zs,. .. ,Zy) and right coset

representatives
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Degree S

Ss

+Z,

—

g,
+P31,(2) TFa
+F, . 4D,
+Z,

Figure 2.1: Stauduhar’s method of traversing in the Transitive subgroups Lattices

The diagrams in Figure 2.1 indicate, for cach degree, the order in which scarching
can be carried out (i.e., the order in which resolvents should be computed), so
that optimal use is made of accumulated information. For these diagrams, the
following conventions have been adopted: (1) at any particular node, searching
proceeds from left to right on the branches leaving that node; (2) nodes isolated
through examination of the discriminant are identified by a “(A)” (for alternating);

an example is the node +Vj in the tree for n = 4; (3) the alternating group A4, is
not shown in tree n.

For n = 3, the only transitive groups are Sz and Aj. Hence the Galois group of
an irreducible polynomial of this degroe is determined entirely by the value of the
discriminant of the polynomial. Consequently, no tree is shown for this degree.

2.5.3 Exampies

Example 1. Let f(z) = 2® — 4224 4 8023 + 44122 — 1680z + 4516.
f(=) can be shown to be irreducible over the rationals. Let T' denote the Galois
group of f(z). '

32



First of all, disc(f(z)) = —2994775465327199186944, clearly not a perfect square.

The roots of f(z) are (approximately) o =4.392— 1.570i; «u =7a5, . Let
a3 = —5.490 — 0.780i; oy = a3,

a5 = 1.008 — 2.355¢; ag = @s.
this be the initial ordering of the roots. The maximal subgroup Grq of Sg has the

ten right coset representatives m; = identity g = (2453), When the resolvent
mp = (2543), m7 = (25),
3 = (236)(45), g = (2345),
my = (25436),  mp = (24536),
s = (25)(34), Mo = (3645).
R(56,612)(Z) is computed using the above data and the function Tkysaii28) =
Z1T223 + T4TsTg given in Table 2.1, we obtain
R(6,Gr2)(2) = 20 + 802 — 591662 — 43903207 [The actual calculation
+1200615393z® + 880769188805
—7198940057856z — 3888019845120003
+20193311991398400:2
+595967000182784000z

—4689149328097280000.
of the resolvent was made carrying 192 bits of precision. With this precision the

coefficients of the resolvent were integers to within 2-98.] The resolvent has a single
integer root, —80, corresponding to the conjugate value Y™, and no repeated roots.
Consequently, T' C n3 ' G7ams and, after reordering the roots of f(z) according to
the rule a; = @j=s, we know that I' C Gys.

Gr2 has two maximal subgroups of order 36, +G2; and Glg. Since +G2; C +As,
and since we know that disc(f(z)) is not a perfect square, I' ¢ +G%,.
Computing the resolvent '!R(G",Gg‘)(z), we find R(q,, 1 )(7) = (z + 137376)(z —
137376) and therefore T' C GJg.

|
Now, G4 contains two isomorphic versions of G 18, wWhich are conjugate in Gy

but not in Gig. Therefore, to test whether T is contained in some conjugate of
G\1s, one can either compute a single quartic resolvent R(Gra,c18)(T), O 8 pair of
quadratic resolvents Rc1_ ,,)(%). Adopting the first course, Gyg has the four
right coset representatives {identity, (12)(45), (56), (12)(465)} in Gry. We then find
R(G1a,615) (%) = (z+3604) (z — 3604) (y +648) (y —648) and we have I’ C (56)G15(56).
Reordering the roots of f(z) again,;sing the interchange (56), we have I' C Gis.

Finally, G1s has the transitive subgroup S3, and the resolvent associated with this

subgroup turns out to be (g, ,s,)(z) = 2* — 1323247722 = (z—33)(z—6)(z +39).
Thus, T C S3.

Since S is a minimal transitive subgroup of Sg, I' = Sj. Therefore, with respect to
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the final ordering ¢« = 4.392 — 1.5704; @3 = —5.490 — 0.7803; the Galois group
' o3 = 1.098 + 2.355%; a4 = 1.098 — 2.3551;
as = 4.392 4 1.570; ag = —5.490 4 0.780z;
of f(z) is {identity, (123)(465),(132)(456),(14)(25)(36), (15)(26)(34), (16)(24)(35)},
a group isomorphic to S3, Table 1.1. O

Example 2. Let f(z) = 2° — 322% + 160z® — 3202 4 384z — 256.

Again, f(z) is irreducible over the rationals, and again we let I' denote the Galois
group of f(z).
First of all, disc(f(x)) = 403780252137947136 = (635437056)2.

An initial ordering for the roots of f(z) is oy = 1.587; ag=0.517 — 1.342i;

2 oy = 2.534 4 1.927;;

1 iy [ 7}
(7 ag = —7.690.

I —
g =
This time, we obtain the resolvent

R(s0,Gra) (@) = T'°+ 1602° + 1254428 4 76185627 which proves to have no in-
+35586048z° 4 137573171225
+39845888000z* +- 9357659996162
+15169824489472z2
+172073569746944z

—30786325577728.
teger roots. Hence I is not contained in any of the conjugates of Grg.

We next compute a resolvent with respect to the maximal subgroup Gyg of index 15
in Sg, m(s,,a“)(z)' = 2%+ 9624 + 49922'3 4 17152022 This re-
4546560z + 99237888210
+18951045122z° + 3119513600028
+448874414080z7 + 56530593767682°
+63843346677760z° +- 606767209775104z*
+45043211818762242° 4 2816234107804057622
+71405583642656768z +- 0.
solvent has the single integer root 0 corresponding to the conjugate value T(28543)
of the function Y(zy,...,z¢) = :'1:1:1:2 + z3%4 + T5Tg. After reordering th(l: roots of
f(z) according to (26543), we have I' C Gys.

Since disc(f(z)) is a perfect square, I' C G4g N +Ag = +54 /Va. There is only one
transitive subgroup of +S;/V; which is not also a subgroup of Gyg. This group is
+A4, and computing the resolvent R(;s, /v, +4,)(z) = z? — 103424, we find that
I' = 454/ V4, since this resolvent has no integer roots.



Thus, with respect to the final ordering «; = 1.587; | as = —7.690; of
' o3 = 0517 1L.342%; o=

ag = 2.534 +1.927i; ag =05
the roots of f(z), the Galois group I' of f(z) is a group of 24 even permutations,
isomorphic to S4. Generators for this group are given in Table 1.1. O

Please see Appendix A for the demonstration of the author’s MAPLE

program on these examples—It took two seconds to obtain an answer

on his cheap IPeutium-133.

2.6' Quadratic Factors of Resolvents

Suppose M, and M, are non-conjugate maximal transitive subgroups of S,, and
f(z) is an irreducible polynomial of degree n with Galois group I. It has been

shown, above, that a resolvent polynomial R(s, a,)(z) can be used to determine if

I' is a subgroup of some conjugate of M;. This is done by searching, in effect, for

linear factors of (s, a,)(z)- '

It is sometimes possible to determine if I' is a subgroup of another maximal transitive
subgroup M; by searching for higher degree factors of (s, a,)(z). There are obvi-
ous practical advantages to this approach if [S,, : M;] is substantially smaller than
[Sn : Mz]. For example, Sy has two ‘maximal’ transitive subgroups: +PSL3(2), of
index 30, and Fyg, of index 120. It turns out that by looking for quadratic factors
of the resolvent R(g,, +psrs(2))(z) of degree 30, one can avoid ever dealing with a
resolvent of degree 120. (A similar situation occurs in the degree eight case.)

A difficulty is encountered, however, in using quadratic factors of resolvents. Under
certain circumstanés a quadratic factor of ?R(s,.,M,)(z) will guarantee that I' is a
subgroup of some conjugate of My, but will fail to specify exactly which conjugate.
To put it another way, it is sometimes impossible to extract from the quadratic
factor the information necessary to reorder the roots of f(z). As it turns out, this
unpleasant situation can always be avoided in the degree seven and degree eight
cases. Even so, the procedure for obtaining reordering information from a quadratic

factor is somewhat complicated and will not be discussed here, see [Sta69).

2.7 Comment

Staudubar gave a method for computing Galois groups of polynomials f in Z[z].
lle used approximations to the roots and worked down from the symmetric group,
Sy, through the transitive subgroups, to identify Galg(f) as a transitive group of
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degree up to 8. '

e The required precision of the roots can be very large. Stauduhar himself
reported calculations using 192 bits (~ 60 digits) approximations to the roots
of a degree 6 polynomial. In Appendix B.1[2], it is stated that calculations for
certain degree 11 and 12 polynomials require thousands of digits of precision!

¢ 'Traversing the subgroup lattice from the symmetric group down to the Galois
group of the polynomial can take substantial time.

e Much tabulated information is necessary and should store into the computer.

In fact, this method becomes unwieldy when there are many transitive subgroups,
as there are when the degree is, say 12, there are about 300 such subgroups. A
rcason for this is that of storing or computing polynomial'invariants and data for

traversing the transitive subgroups to identify Galg(f).



Chapter 3

Factoring Polynomials
Quickly

While only linear (or quadratic) factors of resolvent polynomials are required in
Stauduhar’s method of computing Galois groups, Soicher & McKay have developed
a method based on the complete factorization of resolvent polynomials, [SM85].

Ixact and efficient polynomial factorization algorithms have developed since 1968,
[Ber68] and [Zas69]. Perhaps part of the motivation of such Algorithmic pure
Mathematics was due to the advent of computing technology. Polynomial
factorization has been one of the important topic of a newly emerging field called
Symbolic and algebraic Computation, or Computer Algebra, Compulational Alge-
bra. Textbooks in’this area have been published since late eighties, [CAbks]. See
Appendix B.2 for more information of SAC.

The principal references for this chapter are “Factoring Polynomials Quickly, Susan
[
Landau, Notices of the American Mathematical Society, [Special Article Series],

Vol. 34, No. 1 (1987), pp. 3-8,” [Lan87] and also the Complut.er Algebra textbooks,
[CADKs].

3.1 History

3.1.1 From Feasibility to Fast Algorithms

Computer science has a way of reaching back to the origins of mathematics: arith-
metic and computfxtions. Finding primes, factoring integers—the old problems re-

cur. This is the story of another: factoring polynomials into irreducibles over the
|
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rationals. The question of computability was answered centuries ago, but an effi-

cient solution was arrived at only recently.

'I'he problem has a venerable history: Isaac Newton tried his hand at it, and saw
a way to find linear and quadratic divisors. In 1793, Friedrich von Schubert, an
astronomer, generalized Newton’s technique and determined all factors.

Von Schubert’s idea was to calculate f (1), £(2),..., f(n) where n is the degree of
f(z), the polynomial in question. Then factor the f(i). If 4(1),d(2),...,d(n) is a
particular sequence of divisors of f(1), f(2),..., f(n), then the d(i) define a poten-
tial factor of f(z), one which can easily be found by interpolation. The complete
factorization of f(z) can be determined in this way.

Von Schubert’s t:echnique would satisfy logicians—it shows that the question is
decidable—but not someone who really wanted to factor. It’s too slow. The
algorithm requires at least 2" steps to show that a polynomial of degree n is irre-
ducible. It is infeasible fdr factoring polynomials of degree 20 or more. The issue is
complexity : how long must a factoring algorithm take?

|
Computer scientists believe that polynomial time solutions—algorithms which
take a polynomial number of steps in the size of the input—are the only feasible

kind. Von Schubert’s algorithm is exponential in the degree of the polynomial.

Actually there are two parts which contribute to a polynomial’s size: its degree,
and the number of bits needed to express its coefficients. Considering first the
degree, there are two possible measures for univariate polynomials: the sparse no-
tation, in which ‘2™ — 1’ would be written as (n,1;0,—1), taking O(logn) bits,
and the dense, in which the same polynomial would be (1,0,0,...,0,—1), requiring
O(n) bits. Since a polynomial of degree n may have as many as n factors, the more

natural dense notation has been accepted as the ‘right’ measure of a polynomial’s
size.

As for the coefficients, suppose f(z) = foz™ + - + fiz + fo. Then if g9(z) s a
factor of f(z) of degree mn, the ith coefficient of g(z) is less than (Mo F7JL P
(We will denote (37, f2)% by |f(z)].) This means that g(z) may be expressed
in a number of bits that is polynomial in the size of f (z), and since tpere are at
most n factors of f(z), a compiete factorization can be written down in polynomial

space. In theory, at least, a polynomial time solution to the polynomial factorization
problem is possible.

Certain parts of the problem arc easy. For example, it has long been known how
to pull out multiple factors of a polynomial. Suppose f(z) has an irreducible factor,
9(z), of multiplicity k. Then g*~!(z) divides the ged(f(z), f'(z)) (while g*(z) does
not). The ged is quickly computed by the subresultant version of the Kuclidean
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Algorithm, which also avoids any coefficient l)lOWllp. Tnstead of factoring f(z),

one factors WT(LS_.)I—'GSIF and ged(f(z), f'(z)). lterating this procedure means that

only squarefree polynomials need be factored.
|

If you can’t factor polynomials over the rationals, why not try factoring over
smaller fields? In 1967 Berlekamp discovered deterministic and probabilistic
methods to factor squarefrec polynomials mod p. Sometime later Rabin created
an even simpler version of the probabilistic algorithm with expected running time
of O(n® logp) steps for factoring a squarefree polynomial of degree n. Meanwhile
Zassenhaus countered with Hensel’s Lemma (which explains how to lift a squarefree
factorization mod m to one mod m? ). Zassenhaus’s idea was to factor a polynomial
over the integers l?y first factoring over a suitable prime modulus (one which does
not divide the discriminant of the polynomial, and thus keeps f(z) squarefree mod
), tt'xen raising that to a factorization mod p? , then mod p*, and so on.. . . until the
modulus was large enough—though still polynomial sized in terms of the original
problem—to lift to a factorization over the integers.

Consider f(z) =az*—82®+22—-24z—6 : .
=(z?+22+3)(z+3)  (mod 5) '
=(2?-8z—-2)(z2+3)  (mod 25)
=(z?-8z-2)(z?+3) (2) :

It’s a good idea, and it works well much of the time. Difficultics arise because
polynomials may have a finer factorization in Z/pZ than they do in Z, and the
ensuing problem of combining factors mod p to determine factors in Z may be
costly. For certain polynomials, it’s a disaster. Swinnerton-Dyer point.led out one
such: the polynomial whose roots are +v/2+ /3 +--- 4 \/Pn, Where p,, is the nth
prime. This polynomial factors into either linear or quadratic polynomials mod m
for any modulus m one might choose, yet it is a polynomial which is irreducible over
the integers. To discover its irreducibility, one must look at all possible combinations
of mod m factors, an exponential nightmare. The class of pelynomials which raise
difficulties like this is small--cssentially those with ‘nice’ Galois groups—and so,
despite its worst-case exponential running time, Berlekamp-Hensel became the
factoring algorithm of choice during the 1970s.

Other classic problems fell into polynomial time, yet polynomial factorization re-
mained stubbornly exponential. Pieces were chipped away: Weinberger showed
that under the assumption of the Extended Riemann Hypothesis, one could test ir-
reducibility in polynomial time, and Cantor showed that—ERH or no—irreducible
polynomials have short proofs of that fact. Cantor and Zassenhaus gave a new, im-
provex mod p factoring routine. The central question, however, of how to avoid the

exponential increase which arose from looking at combinations of mod p factors
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|
remained.

* * *

Suppose p does not divide the discriminant of f(z), and h(z) is an irreducible
factor of f(z) in Z/pZ. One approach is to consider the unique factor of f(z) in Z

which h(z) divides (which exisls since f(2) is squarefree in Z/pZ). Call it ho(z).
The issue then, is to efficiently determine ho(z) from h(z).

It was classical mathematics which provided the tool: Minkowski lattices. Lattices
are simple generalization of Z", bul, they are the key to important theorems, and
now, to important algorithms. Hendrik Lenstra introduced them into computer

science with an elegant polynomial time solution for integer linear programming
with a bounded number of variables.

Let by,b,...,b, be a set of linearly independent vectors in Z®. Then the n-
dimensional lattice L'€ Z™ with basis b; is the set of integral linear combinations of
the ;. Several natural questions immediately arise: Gi;len a basis of a lattice, how
does one quickly determine an orthogonal onc? How does one find short vectors?
Is there a fast algorithm for determining the shortest vector in a lattice?

It was this last question which Lenstra answered for fixed dimension in 1981.
Shortly afterwards Lovész found a polynomial time basis reduction algorithm which
computes, among other things, a nonzero basis vector b such that b] < 275 |z| for
all nonzero vectors z in the lattice L. Arjen Lenstra, Hendrik Lenstra and Lovész

(hcnce L") combine ideas to create a polynomial time polynomial factorization
algorithm, [LLL82).

The L? algorithm builds an m-dimensional lattice L whose vectors are polynomials
in z determined by h(z), an irreducible factor of f(z) mod p. (Recall that h(z)
determines ho(z), a unique irreducible factor 6f f(z) in Z[z].) If ho(z) is of degree
m then it will be found by the Lovész basis reduction algorithmn, since any vector in
L which s linearly independent of ho(z) will be 2% times longer than it. The proofl
of this fact is surprisingly simple, and we present it here below. llowever we omit
the proof that basis reduction can be done quickly, and instead refer the interested
reader to the original paper (or Computer Algebra Textbooks, [CAbks].) Note that

the bounds we show are lms than optimal, and are chosen for the sake of a simpler
argument.

Let the polynomial to be factored be f(z) € Z|z], and suppose that it is primitive
(which means that the ged of its coefficients is 1), squarefree and of degree n. Factor
f(z) mod p, where p is chosen so that p } disc(f(z)). (One can find such a p which
will be polynomial size in n and |f(z)].) Pick an irreducible factor of f (z)inZ/pzZ,

-
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say h(z) of degree I (I < n). Now raise the factorization Lo one mod p* (where k
is chosen s that p* > (2% (2") | £(z)[*)" ), using Ilensel lifting, and let /i(z) be the
image of A(z). We will find ho(z), the unique irreducible factor of f(z) in Z[z|
which 7(z) divides.

We assume ho(z) has degree m. Define a lattice with basis as follows: b; = p*z
for 0 <i <1, and b; = h(z)z*! for I < i < m. Now if we thiok of the polynomials
as vectors, with the coeflicient of z* as the (i + 1)st coordinate, then the b; are

linearly independent, since they form an upper diagonal matrix.

But since ho(z) is a factor of f(z), we have that |ho(z)| < (2::)* If(z)] <
i@l

Remember that k was chosen to salisfy p* > (2% (*") | f(z)|*)". 1t is clear that
ho(z) is in the lattice, and we claim that any vector of L which is linearly indepen-

dent of ho(z) is 2% times longer than hg(z). Thus hg(z) can be determined by the
basis reduction algorithm.

We prove the claim. Let g(z) be any element of L which is linearly independent
of ho(z). Then ged(g(z), ho(2)) = 1 in Z{z]. Thus the polynomials ho(z)z*,0 < i <
deg(g(z)), and g(z)z?,0 < j < deg(ho(z)), are linearly independent. Consider the
resultant, det(R), of ho(z) and g(z). By Hadamard’s inequality and the fact that
the degree of g(z) < m, we have det(R) < |ho(z)|" |9(z)|" .

Now h(z) divides both ho(z) and 9(z) modulo p*, since both polynomials are
elements of L. In particular, det(R) must be zero modulo p*. But because det(R) #
0, we know that p* < det(R). Then |g(z)| > 2% (**) |f(z)|, thus proving the claim.

The polynomial ho(z) has degree between ! and n, the degree of f(z), so that the
basis reduction algorithm to determine ho(z) from h(z) is done at most n times.
As mentioned earlier, one can pick bounds somewhat more carefully, in which case
the L? algorithm takes O(n®+€ + n™+¢|f(z)|) steps to factor f(z) (for any € > 0).

Randomness is central to computer algorithms. It can mean an exponential
spoedup|for an algorithm, as in the Solovay-Strassen primality test, which is an
O(n) deterministic algorithm, and an O(logn) probabilistic one. Many crypto-
graphic schemes rely on random bits. In a certain sense, the roots of polynomials
are not random. If an appraximate root of an integer polynomial is given, along
with a bound on the degree and coefficient size of its minimal polynomial, then in

polynomial time, the minimal polynomial can be determined. Therein lies another
factoring scheme.

In particular, if f(z), a monic polynomial over Z is given, a root a of f (z) can be

approximated in polynomial time. The lattice algorithm can be used to determine

|
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g(z), the minimal polynomial of &. Of course, g(z) is a factor of f(z). This
variant of the algorithm was discovered by Kanuan, Arjen Lenstra, and Lovész,
and independently by Schonhage. Its running time is identical to that of L3,

Arjen Lenstra generalized the L? algorithm to a variety of situations: for algebraic
number fields, for multivariate polynomials over finite fields, fields of characteristic
», and for Q. A number of others, including von zur Gathen, Kaltofen, Trager,
Landau, Chistov, and Grigoriev, used different techniques to also find polynomial

time solutions for diverse factoring problems.

Before L3, Arjen Lenstra had scen a connection between lattices and factorization
over algebraic number fields; after L? he gave a polynomial time method for fac-
toring a monic polynomial f(z) in Q(c)[z], where « satisfies a monic irreducible
polynomial, g(t), over Q. The technique is the same as for L3: determine a factor-
ization of f(z) over a finite field (in this case, Z[t]/(p, H (t)), where g(t) is squarefree
in Z/pZ and H(t) is one of its irreducible factors in that field), extend to a factor-
ization over an appropriate ring Z[t|/(p*, H(t)) for a large enough k, and use basis
reduction to factor. The details are messy, and we will not jpresent them.

In some ways though, Kronecker had everyone beat by a century. In 1882, he
proposed using norms for factoring polynomials over algebraic number fields. The
idea is simple. Again let f(z) be a squarefree polynomial of degree n in Q(a)[z],
where « satisfies g(t), an irreducible monic polynomial of degree m over Q. One can
view the polynomial f(z) as a polynomial in z and a or, equivalently, in 2 and t, We
define the Normqa)/q(f(2)) = [T (2, ), where the product is over all conjugates,
@, of . We can compute it quickly since it is the Resultant,(g(t), f(z)). Then
if F(z) = Noer(L) /(f(z)), F(z) is a polynomial in Q|z] of degree mn. If it is
squarefree and equal to [];_, fi(z), where the fi(z) are irreducible in Q[z], then
fl2) = [T, 8cd(fi(2), f(z))- As long as f(z) is squarefree to begin with, one can
always ‘twiddle’ the polynomial 8o as to ensure that F(z) will be. Landau, building
on work of Trager, showed that all these reductions can be performed in polynomial

time. Thus one can factor over algebraic number ficlds in poiynomiat tirae using norms.

3.1.2 Implementations on Computer Algebra Systems

When you build a better mousetrap, it's important to remember the mouse. Almost
all the algorithms described above have been implemented; how good are they?

Polynomial time factoring algorithms developed since L? have depended upon the
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lattice algorithm. "T'he old Berlekamp-Ilensel algorithm is exponential. Yet for many
factoring problems, the practical algorithm is Berlekamp-Hensel. It’s faster.

Tor umvanal:es over Q, the L algorithm requires at least O(n” + nlog| f(z)|)
steps. Berlekamp-llensel is almost always quicker on univariate polynomials.
Berlekamp-Hensel runs into trouble only when the Galois group is 'nice’, which
is Joosely defined as & permutation group on n elements which is small compared
to S,. Most—in a strong sense—irreducible polynomials do not have nice Galois
groups. It is important to keep in mind, however, that the polynomials one might
choose to factor are often not typical.

Another situation in which lattices provide a good algorithm is for algebraic num-
ber fields. This is an early algorithin of Arjen Lenstra’s which is practical (despite a
worst-case exponential running time) because it avoids computations on algebraic
numbers until it see?rches for the true factors. ]

And what happens in practice? MACSYMA, the workhorse of symbolic compu-
tation programs, uses Berlekamp-Hensel to factor univariate polynomials, and a
variation of Wang’s original algorithm for multivariates. It’s impressive; it factored
, z5‘+48x43+301:3'+81m“5+47z"5+536x23+8lz”+209:z:“+891:¢;5+12z”+564:z:‘8+
22828 4+ 972
= (2% +2'7 4 1125 + 12) - (220 + 472'® 4 192 + 81) in one minute on & VAX,
and (az®y? + bz%® + dfzy + 11) - (a3b2e* + a26% + 3ab + 2)

(abc®y + abz + ac? 2 + 4) - (abc>d? + d3zy? + dex?y + 5) '
—a polynomial with two hundred and fifty terms— in only fifteen seconds. What’s
theoretically slow can still be practically fast.

Interesting though, the two examples above both took only 1 second for its fac-
torization by “MAPLE V (sce [MAPLE]) release 3.0, 1994 for Windows 3.1” on the

author’s private Pentium-133.
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Notation '
Thrpughdut the remaining sections in this chapter we let 7 be a ufd—unique

factorization domain and K the field of fractions of /.

Definition 43 A univariate polynomial f(z) over'the ufd I is primitive iff there
is no prime in I which divides all the coefficients in f (z).

Definitlon 44 Up to mulliplication by units we know that every polynomial a(z) €
K([z] can be decomposed uniquely into a(z) =cont(a)- pp(a), where cont(a) € K and
pp(a) is a primitive polynomial in Ifz). cont(a) is the content of a(z), pp(a) is
the primitive part of a(z).

Remark: From GauB’s Lemma we will usually assume a(z) € I[z] and develop
methods for working directly in the ufd 7.

3.2 Squarefree factorization

By just computing geds— greatest common divisors, we can produce a so-called
squarefree factorization of a polynomial, i.e., a partial solution to the problem of
factoring polynomials. Squarefree factorization is only a first step in the complete
factorization of a polynomial. However, it is relatively inexpensive and it is a
prerequisite of many factorization algorithms.

Throughout this chapter let K be a computable field generaled as Q(I), the field
of fractions of I, where I is a ufd—unique factorization domain. Whenever I isa
ufd, then also I[z] is a ufd from Gaul’s lemma.

Definition 456 A polynomial a(z,,...,2,) in I[zy,...,Z,) is squarefrec iff every

nontrivial factor b(z,...,2,) of a (i.e, b not similar to o and not a constant)
occurs with multiplicity ezactly 1 in a.

By GauB’s lemma we know that for primitive polynomials the squarefree factor-
izations in I(z] and K|[z] are the same.

There is a simple criterion for deciding squarefreeness.
Theorem 46 Let a(z) be a nonzero polynomial in K(z], where char(K) = 0 or

K =1, for a prime p. Then a(z) is squarefroo if and only if ged(a(z),0'(z)) = 1.
(o/(z) is the derivative of a(z).)
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Proof. If a(z) is not squarefree, i.e., for some non-constant b(z) we have a(z) =
b(z)? - ¢(z), then a'(z) = 2b(z)b'(z)c(z) + b*(z)c/(z). So a(z) and a'(x) have a non-
trivial ged.

On the other hand, if a(z) is squarefree, i.e., a(z) = [[i., ai(z), where a;(z) are
pairwise relatively prime irreducible polynomials, then '

n n
a(@) =) (ai() [] ;(=)).
i=1 j=1
J#
Now it is easy to see that none of the irreducible factors a;(z) is a divisor of a/(z).
a;(z) divides all the summands of a’(z) except the i-th. This finishes the proof
for characteristic 0. In Zy[z], e{(z) cannot vanish, for otherwise we could write
a;i(z) = b(zP) = b(z)P for some b(z), and this would violate our assumption of
squarefreeness. Thus, ged(a(z),a’'(z))=1. A

The problem of squarefree factorization for a(z) € K[z] consists of determining the
squarefree pairwise relatively prime polynomials b, (z),,..,b,(z), such that a(z) =

H:=] bi(z)i'
Definition 47 The representation of a as

a= Hb,-(:z:)‘

i=1

s called the squarefree faclorization of a.

In characteristic 0 (e.g., when a(z) € Z[z]), we can proceed as follows. We
set 21(z) = a(z) and ay(z) := ged(ay,a]). Then ey(z) = [T, bi(z)! =
[Ticz %i(2), a1(z) := ai(z)/az(z) = []i_, bi(z) contains every squarefree fac-
tor exactly once. Now we sct az(z) := ged(an,0f) = [[_sbi(z)~2, ep(z) =
az(z)/as(z) = H:uil bi(z) contains every squarelree factor of multiplicity > 2 ex-
actly once. So we have b)(z) = ¢,(z)/c2(z).

Next weset aq(z) := ged(as, ah) = [Ti_ bi(z) ?, cs(z) := as(z)/as(z) = [Tiey bi(2).
So we have ba(z) = ca(z)/cs(z).

Iterating this process until Cs+1(Z) = 1, we ultimately get the desired squarefree
lactorization of a(z). This process for computing a squarefree factorization is sum-
marized in SQFR_FACTOR. |

Algorithm SQFR_FACTOR (in: a; out: F);

[a is a primitive polynomial in Zz],

F = [by(),...,bs()] is the list of squarefree factors of a.]
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1. F=1[;

a) = aGj

g = ged(ag,ay);
¢ = ay/ay;

ag = ged(az, ab);
c2 = ag/ag;

F := CONS(c; / ez, F);

2. whilecy # 1 do
{ a2 := a3; a3 := ged(as, a3);
€1 1= cg; Cy = ag/as;
F := CONS(c1/ez, F) };

3. F:=INV(F); return.

If the polynomial a(z) is in Z,[z], the situation is slightly more tx)mplic;t.ed. TPirst
we determine d(z) = ged(a(z), o'(z)).
If d(z) = 1, then a(z) is squarefree and we can set a;(z) = a(z) and stop.
If d(z) # 1 and d(z) # a(z), then d(z) is a proper factor of a(z) and we can carry
out the process of squarefree factorization both for d(z) and a(z)/d(z).
Finally, if d(z) = a(z), then we must have a’(z) = 0, i.e., a(z) must contain only
terms whose exponents are a multiple of p. So we can write a(z) = b(zP) = b(z)?
for some b(z), and the problem is reduced to the squarefree factorization of b(z).

An algorithm for squarefree factorization in Zy[z] along these lines is presented in
Akritas(1989), [CAbks], namely PSQFFT.

Algorithm PSQFFF (Polynomial Squarefree factorization over a finite field)
Input: a(z), a nonconstant monic polynomial in Z,[z], p > 0 is prine.
Output: b;(z),...,be(z) and e such that e(z) = [],¢;<.bi(z)' is the squarefree
factorization of a(z).
1. [Initialize.] k:=0; m:=1; e:=0.
2. [IMain loop.] 7 :=1; ag(z) = ged(a(z), d'(z)); e1(z) := a(z)/az(z);
if e1(z) = 1, then go to 7.

3.  [Update] €' := jm; il e’ > e,then
do {bes1(z) := beqa(z) := - ber—1(z) == 1; £ :=¢€'}.
4.  [Compute by (z).] cz(z) := ged(aa(z), €1(z)); ber(z) := €1(z)/c2(2)-
5.  [Update.] If c2(z) # 1, then do {az(z) := az(z)/c2(z); e1(z) := ca(z);
ji=j+1; goto3.} ' '
6. [Finished?] If a3(z) = 1, then exit.

s

[a}(z) = 0] a(z) := (az(z))?; k:=k+ 1; m :=mp; go to 2.

Throughout the execution of PSQFFF we have m = p*, and whenever we arrive
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at step 6, the value of e is the largest index ¢ such that p* does divide i and a(z)
has a nonconstant, factor to power i. We also assume that the polynomials ay(z)
and cz(z) calculated in steps 2 and 4, respectively, are monic.

3.3 Factorization over finite fields

We will reduce the computation of the factors of an intégral polynomial to the
computation of the factors of the polynomial modulo a prime number. So we have to
investigate this problem first, i.e., we consider the problem of factoring a polynomial

a(z) € Zy[z], p a prime number. W .l.o.g. we may assume that lc(a(z)) = 1, i,
a(z) is monic.

In the sequel we describe E. R. Berlekamp’s (1968) algorithm, [Ber68] for factoring
squarefree univariate polynomials in Zy[z]. Throughout this section let a(z) be a

squarefree polynoxflial of degree n in Z,[z], p a prime number, having the following
factorization into irreducible factors a(z) = [T;_, ai(z).

By the Chinese Remainder theorem for polynomials, for every choice of 8y,...,8; €
Z, there exists a uniquely determined polynomial v(z) € Z,[z] such that

v(z) = 8; mod a;(z) for 1 <i<r, and

deg(v) < deg(a1) +- - +deg(a,) = n.

(3.1)

In (3.1) it is essential that a is squarefree, i.e., the a;’s are relatively prime.
Lemma 48 For every a;,0;,i # j, there exist 81,...,8, € Z, such that the corre-
sponding solution v(z) of (3.1) generates a factorization b- ¢ of a with a; | b and
a;j|c

Proof. If r = 1 there is nothing to prove. So assume r > 2. Choose 8; # 3;
and the other si’s arbitrary. Let v be the corresponding solution of (3.1). Then
ai(z) | ged(a(z),v(z) — &) and a;(z) t ged(a(z),v(z) — 5:). W

So we could solve the factorization problem over Z,, if we could get a complete
overview of the solutions v(z) of (3.1) for all the choices of sy,...,8, € Z,. Fortu-

nately this can be achieved by linear algebra methods.

If v(z) satisfies (3.1), then v(z)? = sF = 8; = v(z) mod a;(z) for 1 <i < 7. So we
have

v(z)? = v(z) mod a(z) and deg(v) <n (3.2)

Bvery solution of (3.1) for some 8,,..., 8, solves (3.2). But what about the con-

verse of this implication? Is every solution of (3.2) also a solution of (3.1) for some

-
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81,...,8,7 From the fact that GF'(p) is the splitting field of =P —z, theorem 25, (cf.
Fermat’s little theorem), we get that v(z)? —v(z) = (v(z) — 0)(v(z) — 1) ... (v(z) —
(p—1)). So if v(z) satisfies (3.2), then a(z) divides v(z)? — v(z) and therefore every
irreducible factor a;(z) must divide one of the factors v(x) —s of v(z)P —v(z). Thus,

every solution of (3.2) is also a solution of (3.1) for some sy,...,3,. In particular,
there are exactly p™ solutions of (3.2).

By Fermat’s little theorem and the [reshmen’s dre:'xm‘, the solutions of (3.2) con-

stitute a vector space over Z,. So we can get a complete overview of the solutions
of (3.2), if we can compute a basis for this vector space.

9,0 =t qon-1

Let the (n x n)-matrix Q, over Zy, Q, = Q = : : , be
Gn-10 *°° Gn-1,n-1

defined by zPF = g - 12" + - -+ + g 1T + gr0 mod a(z) for 0 < k < n+~ 1. That

is, the entries in the k-th row of Q are the coefficients of rem(z**, a(z)). Using the

representation of ¥(z) = v,-12""! + - 4+ vg as the vector (vy,...,va—1), we have
-1 i -1 -1 = -1

v-Q=v&u(z) =Y vl = j=0 Lok=0 Uk Gk 29 = Y3 g vpaP* =v(2P) =

v(z)P mod a(z).

We summarize all these results in the following theorem.
|

Theorem 49 With the notation used above, a polynomial v(z) = vp— 12"  +- -+
vz +vg in Zy[z] solves (3.2) if and only if the vector (vy,...,Vn_1) i3 in the null

space of the matriz Q—1I (I is the idenlity malriz of dimensionn), i.e., v-(Q—1) =
(0,...,0). '

Now we are ready to formulate Berlekamp’s algorithm for factoring squarefree
univariate polynomials in Zp[z].

1 At Iong Kong here, some students of the science stream may study the Binomial Theorem in
Secondary Four—at the age of 16.
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Algorithm FACTOR B(in: a(z),p; out: F);
[p is & prime number, a(z) is a squarefree polynomial in Z,[z],
F is the list of prime factors of a.]
form the (n x n)-matrix Q over Z,, where the k-th line (gx0,- - - ,qk,n-1)

1.

of Q satisfies

rem(zP*, a(z)) = Q12+ +@rp, for0<k<n-—1;

by column operations transform the matrix Q — I into (e.g., lower-right)

triangular form;

from the triangular form read off the rank n — r of the matrix Q — I;

[There are exactly r linearly independent solutions ol ... ol of
v-(Q—1I)=(0,...,0). Let v be the trivial solution (1,0,...,0).
So (after interpretation of vectors as polynomials) there are p”
solutions t;vV 4 - - - ¢, vl of (3.2),
and therefore  irreducible factors of a(z).]
if r =1, then o(z) is irreducible and we set F' := [o];
otherwise, compute ged(a(z),v(z) — 8) for s € Z, and put the
factors of a found in this way into the list F;
a8 long as /' contains fewer than r factors, choose the next v/*¥(z),
k =3,...,r, and compute ged(f(z),v!¥(z) — s) for f in F;
add the factors found in this way to I
[ultimately, F* will contain all the factors of a(z),
Lemnma 48.]

return.

Exawmple. Let us use FACTOR._B for factoring the polynomial a(z) = z®+23+
222 + z +2 in Zg[z].

First we have to check for squarelrecness. a'(z) = 22*+z+ 1, so ged(a,0’) =1 in

Zg[z] and therefore a(z) is squarefree.

The rows of t.he (5 x 5)-matrix Q are the coeflicients of z°,2%, 28,22, z'? modulo
100 00
00010

a(z). SoQ=]| 0 1 2 1 2 |.Q~—1I can be transformed into the triangular
01122
20 211
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00 00O
0 0010
form | 0 0 1 1 2 |.Weread off r = 2, i.e., there are 2 irreducible factors
0011 2
1 0000

'

of a(z). The null-space of Q — I is spanned by vl'! = (1,0,0,0,0) and /@ =
(0,0,2,1,0).

Now we get the factors by appropriate gcd computations:
ged(a(z), vl (z) +2) = 2% + 2 + 2,
ged(a(z), v (z) +1) =2* + 222 +1. O

The basic operations in FACTOR._B are the setting up and solution of a system

of linear equations and the ged computations for determining the actual factors.
"The complexity of FACTOR._B is proportional to n® 4 pra2, where n is the degree
of the polynomial, cf. [CAbks].

3.4 Factorization over the integers

From Gmllﬁ’s lemma, we know that factorizations of univariate integral polynomials
are essentially the same it Z[z] and Q[z]. For reasons of efficiency we concentrate
on the case of integral polynomials. The factorization of integers is & much harder
problem than the factorization of polynomials. For this readon we do not intend to
factor the content (ged of the coefficients) of inlegral polynomials. Throughout this

section we assume that the polynomial to be factored is a primitive (content = 1)
non-constant polynomial.

The problem of factoring a primitive univariate integral polynomial a(z) consists in
finding pairwisc relatively prime irreducible polynomials e;(z) and positive integers
m; such that a(z)=[Ti_, ai(z)™.

As for polynomials over finite fields we first compute a squarefree factorization of
a(z). By application of SQFR_FACT'OR, p.45, our factorization problem is reduced
to thelproblem of factoring a primitive squarefree polynomial.

So from now on let us assume that a(z) is primitive and squarefree over Z.

We would like to use the fast factorization algorithin modulo a prime p FAC-
TOR.B, p.49, first. The problelln of factorization over Z is reduced to [actorization
modulo p and a subsequent lifting of the result to a factorization modulo p*. If k is

AN
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high enough, the integer factors can be constructed, (Zas69]. The lifting process is
based on a constructive form of Hensel’s lemma (1918), which is & simple proposition
in p-adic analysis.’
|
Lemma 50 (Hensel lemma) Let a(z) € Z|z] be primitive and squarefree. Let
p be a prime number not dividing lc(a). Let a,(z),...,a.(z) € Zy[z] be pairwise
relatively prime such thate = a; - ...-a, mod p and Ic(a;) = lc(a) mod p, Ic(az) =
=lkfa,)=1.
Then for every natural number k there are polynomials ol (&), ..., (z) € Z[2]
with 1e(a$®) = le(a) mod ¥, le(a{?) = ... =1e(@®) = 1 such that a(z) = al® (z)-
..-a®)(z) mod p* and agk)(z) = m(z) modp for 1<i<r.

Proof. We proceed by induction on k. For k = 1 we can obviously choose a( ) =

and all the requirements are satisfied.

So now assume that the a(k) satisfy the requirements. That is, for some d(z) €
Z,|z] we have a —[Ti_, a; *) = pkd mod p*+!. We replace the leading coefficient of

(xk) by ( le(a) mod p**! ). Then for some d(z) € Z,[z] we have a—[]T_, a! o{® = pkd
mod p**+1, where deg(d) < deg(a).

|
We will determine b;(z) € Z,[z] with deg(h;) < deg(a;) such that ask“) = Sk) +
p®b;. Using this ansalz?, we get

= Ha(k‘H) =a— Ha(k) k(z(b ﬁ Gj)) | pk+1.

i=1 i=1  j=1,j#i ?
Ny !
p*d =:d;

So the a§k+ g will constitute a'factorization modulo p**+! if and only if’

T
dEZb.--a,- mod p.
=1

A solution is guaranteed by the following theorem®: “For a,,...,a, € K [#] pairwise
relatively prime and ¢ € K|z], K a field, with deg(c) < deg(a;)+...+deg(ar) =7
there exist uy,...,u, € K[z] with deg(u;) < deg(a;) for 1 < i < r, such that
e= Yt (u IE:lJ;&i a;)",

and algorithm LIN.COMB below. ll

The following algorithin LIN.COMB will be used as a subqlgorithm in the lifting
process.

Algorithm LIN_COMB (in: [ay,...,a,]; out: [by,...,d,));
la; € K|z] (K a field) pairwise relatively prime;

2 ansatz means hair-line.
3This is a generalization of a property related to the extended Buclidean algorithm, see stop 2
of LIN_.COMB.
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bi € K|z], deg(b;) < deg(a;) and 1 = 37, bais, where &; &= | | PP
L. di=1;i:=0;
forj=2tordoa;- :=m=jak;
2. whilei<r—1do
{i=i+1;
compute u,v such that d = ua; + val,,,
deg(u) < deg(a},,), deg(v) < deg(a;)
' [by‘the extended Euclidean Algorithm, cf. [CAbks].]

bi :=v;d =}
3. b =d;
Iret.urn.

We summarize these algorithmic ideas in LH”I‘.I"{&CTORS.
Algorithm LIFT_FACTORS (in: g,[ay,...,a,),p, K; out: F); '
[a is a primitive squarefree polynomial in Z(z], p is a prime number not dividing
le(a) and s.t. (a mod p) is squarefree in Zylz), ay,...,0, € Z,|z] pairwise relatively
prime, Ic(a;) = Ic(a) mod p, lc(laz) =...=Ic(e;) =1,and a=aq; -...-a, mod P,
K eN; "
F = [8y,...,8,), & € Zyx[z), such that a = G, - ... *@ mod p¥, Ic(@;) = Ic(a) mod
%, 1c(82) =... = lo(G,) = 1, and &; = a; mod p.] '
1. by an application of LIB_.COMB to [a1,-..,0,] compute v; € Z,[z] s.t.
deg(v;) < deg(a;) and 1 = Y i1 ¥ mod p, where &; = ITa1 e G5
2. fori=1tordoa:=a;
ki=1;
3. while k < K do
{ replace Je(a,) by ( lo(a) mod p*+! ); :
d:i=((a— ITi=; ) mod p+1 );
d:=d /[ p¥
fori=1tordo
{bi := rem(duv;, ay);
a; =2 +p*bi};
k=k+1}
4. F:=[ay,...,8,);

return.

As [or the general lifting algorithm LIF'T there is also a quadratic lifting scheme
for LIFT_FACTORS. The interested reader is referred to [CAbks].

Now we put all the subalgorithms together and we get the Berlekamp-Hensel
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algorithm FACTOR_BH for factoring primitive univariate squarefree polynomials
over the integers.

Algorithm FACTOR BH(in: a; out: F);

[ is a primitive squarefree polynomial in Z[z]; I = [a4,...,a,], where a,,...,a,

are primitive irreducible polynomials in Z[z] such that a =a, -...- a,.]

L.

choose a prime number p such that p { lc(a) and a is squarefree modulo p
(i.e., p does not divide the discriminant of a);
[tt1,...,u] :== FACTOR B(a,p); (p.49) :
normalize the u;’s such that lc(u;) = le(e) mod p and le(up) =--- =
lefu,)=1;
delermine a natural number B which bounds the absolute value of any
coefficient in a factor of a over the integers ( for instance, use the
Landau-Mignotte bound: Let a(z) = 31" a2 and b(z) = S, biz*
be polynomials over Z (a,, # 0 # by ) such that b divides a. )
Then 7o |bi| < 2°| 2|/ 6F- )
K := min{k € N | p* > 2|1c(a)|B};
[v1y...,7,] :=LIFT_FACTORS(a, [u1,...,u%), p, K);
[combine factors]

d=a;

C :={2,...,8}; [v; will be included in the last factor]
=0

m:=0;

while m < |C| do

{m=m+1;

for all {i1,...,im} C C do
{ [integers modulo p* are centered around 0, i.e., the representation of
Zy is {q | —p" /2 < g <p"/2}]

b:= (Ic(@) - vi, - . . . - vi,, mod pX), interpreted as a polynomial over the
intcgers; :
b:=pp(B);

i.l'b|&the_n {i:=i+1;a;:=b;a:= ii/b;C::C\{il,l...,im}} }
b .
ti=i41;
e == a;
F = layy... 04);

|
return.

Step (5) is necessary, because irreducible factors over the integers might factor

further modulo a prime p. In fact, there are irreducible polynomials over the integers
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which factor modulo every prime number. An example of this is z4+1, cf. [CAbks).

The complexity of FACTOR_BH would be polynomial in the size of the input
except for step (5). Since in step(5), in the worst case, we have to consider all
possible combinations of factors modulo p, this might lead to a combinatorial ex-
plosion, rendering the algorithm FACTOR_BH exponential in the size of the input.
Nevertheless, in practical examples the combinations of factors does not present an
insurmountable problem. Basically all the major computer algebra systems employ
some variant of FACTOR_BII as the standard factoring algorithin for polynomials
over the integers.

Example. We want to factor the primitive squarefree integral polynomial

a(z) = 627 + 72 +42° + 2 + 62 4+ 72? + 4z + 1.

We use FACTOR_BII in the process. A suitable prime is 5, a(z) stays squarefree
modulo 5. '

By an application of the Berlekamp algorithm FACTOR._B, a(z) is factored modulo
5 into '
a(:c)'s(a: —-2)-(22-2)- (22 +2)- (z2 — z+2) mod 5.
L Y e P S S ——
uy ug us i ug
By an application of LIFT_FACTORS we lift this factorization to a factorization

modulo '|25, gelting
I

a(z) =(6z+3) - (22 = 7) - (z* 4 7) - (z? 4+ 9z — 8) mod 25.
—— e e S e
v vz va v4 |
The Landau-Mignotte bound for a is rather big. Let us assume that by some
additional insight we know that K = 2 is good enough for constructing the integral
factors. Now we have to try combinations of factors modulo 25 to get the factors
over the integers. So we set @ := a and C := {2,3,4}. Testing the factors vz, v3,v4
we sce that only v4 yields a factor over the integers: ay(z) := pp(le(a) - v4 mod
26) = 3z + 2z + 1.
So now @ := @/a; = 225 4+ z* + 2z + 1. The combination of vy and vy yields the
factor ag(z) := pp(lc(a) - v - v3 mod 25) =zt + 1.
We set @ := a/az = 2z + 1. Now C has become empty, and the last factor is
a3(z):= d(z) = 2z + 1.

FACTOR.BH returns F' = [a,,a2,a3), i.e., the factorization a(z) = (3z% +2z + 1) -
(z*+1)-(2z+1). O



3.5 Factorization over algebraic extension fields

3.5.1 Reduction of the problem to the ground field

We describe an algorithm that has been presented in van der Waerden, [GaloisBks]
and slightly improved by B. Trager, [Tra76].

Let K be a computable [ield of characteristic 0 such that there is an algorithm for
factoring polynomials in K [x]. Let a be algebraic over K with minimal polynomial
p(y) of degree n. Throughout this section we call K the ground field and K(a)
the extension field. Often we will write a polynomial f(z) € K (a)(z] as f(z,) to
indicate the occurrence of « in the coefficients. Let a = al,laz, ..., 0y be the roots
of p(y) in a splitting field of p over K. By ¢;,1 < j < n, we denote the canonical
field isomorphism that takes e into ), i.e.,, ¢;: K(a) — K(oj)

@
o—a for all a € K.
¢; can be extended to ¢; : K(a)[z] — K (a;)[z] by letting it act on the coefficients.

We will reduce the problem of factorization in K(a)[z] to factorization in K|z].
This reduction will be achieved by associating a g € K [x] with the given f € K(a)[z]
such that the fa.cto{'s of f are in a computable 1-1 correspondence with the factors
of g,ie., f(z)€ K(a)[z] — g€ K[z]

factors of f 2L, factors of g
A candidate for such a function is the norm, which maps an element in the ex-

" tension field to the product of all its conjugates over K. This product is an element
normg(ay k| K(e) = K .

of K. B T B where ' ~ 3 means that (' is conjugate to
B relative to K(a) over K. e[";xat is, if B = q(a) is the standard representation
of B in K(a), then normk(ay/x)(8) = [Ti; ¢(a). If the field extension is clear
from the context, we write just norm(-) instead of normyx(a)/k|("). Since the norm
is symmetric in the ¢;’s, by the fundamental theorem on symmetric polynomials,
theorem 5 it can be expressed in terms of the coefficients of p and thus lies in K.
The norm can be generalized from K() to K{a)[z] by defining the norm of a
polynomial h(z, ) to be [T;_, A(z, ), which can be computed as norm(h(z, @) =
resy (p(y), h(z,¥)), cf. definition 21. One important properly of the norm is multi-
;;licativity, i.e., norm(f - g) = norm(f) - norm(g).

Theorem 51 If f(z,«) is irreducible over K (), then nonil( f) = h(z)! for some
irreducible h € K[z] and some j € N.
Proof. Assume norm(f) = g(z)h(z) and g, h are relatively prime. For 1 <i < nlet
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fi(z) = f(z, ). Clearly f = f, divides norm(f) =[] fi. So, since f is irreducible,
flg or flh.. W.1o.g. let us assume that flh, ie., h(z) = fi(z,q)- h(z,c). Then
hz) = ¢i(h) = ¢j(/1)$;(h) = f;i(z,0;). Therefore, f;|h for 1 < j < n. Since g
and h are relatively prime, this implies that ged(f;,g) = 1 for 1 < j§ < n. Thus,
ged(norm(f),g) =1,ie,g=1.1

Remark: The pn':vioue theorem yields a method for finding minimal polynomials
for elements B € K(a). Let f = g(a), b(z) = norm(z — B) = norm(z — ¢(c)).
z-—p Il b(z), so b(B) = 0. Therefore the minimal polynomial ps(z) has to be one
of the irreducible factors of b(z). By the above theorem, 5(z) = pg(z)’ for some

" j€N. So pp(z) can be determined by squarefree factorization of b(z), Algorithm
SQIFRIACTOR, p.45.

K(a)(z] is & Euclidean domain, so by successive application of the Euclidean
algorithm the problem of factoting in K(a)[z] can be reduced to the-problem of
factoring squarefree polynomials in K (a)[z], Algorithm SQFR_FACTOR, p.45.

Trom now on let us assume that f(z,a) € K(e)[z] is squarefree.

Theorem 52 Let f(z,a) € K(a)[z] be such that F(z) = norm(f) is squarefree.
Let F(z) = [Ti-, Gi(z) be the irreducible factorization of F(z). Then [[i_, gi(z,c),
where gi(z,a) = ged(f,G;) over K(a), is the irreducible factorization of f (z,@)
over K(a).

Proof. The statement follows from |
a. every g; divides f,

b. every irreducible factor of f divides one of the g;’s.

c. the g;’s are relatively prime, and

d. every g; is irreducible.

Ad (a): This is obvious from g; = ged(f,G;).

Ad (b): Let v(z,c) be an irreducible factor of f over K(a). By Theorem 51,
norm(v) = w(z)* for some irreducible w(z) € K|z]. v|f implies norm(v)| norm(f).
Since norm(f) is squarefree, norm(v) is irreducible and must be one of the G;’s. So
v|gi(z, @).

Ad (c): Suppose the irreducible factor v of f divides both g; and gj for i # j. Then
the irreducible polynomial norm(v) divides both norm(G;) = G? and norm(G;) =
G7}. This would mean that G; and G; have a common factor.

Ad (d): Clearly every g; is squarefree. Assume that v;1(z, @) and vy(z, @) are distinct
irreducible factors of f and that both of them divide g; = ged(f, G;). v1|G; implies
norm(vy)|porm(G:)=Gi(z)". Because of the squarcfreeness of norm(f), we must

have norm(vy) = G;. Similarly we get norm(va) = G;. But (vy - v3)|f implies
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norm(v; -v2) = G;i(z)?| norm(f), in contraction to the squarefreeness of norm(f). Ml

So we can solve our factorization problem over K (), if we can show that we can
restrict our problem to the situation in which norm(f) is squarefrec. The following
lemmata and theorem will guarantee exactly that.

Lemma 53 If f(z) is a squarefree polynomial in K[z], then there are only finitely
many 8 € K for which norm(f(z — sc)) is not squarefree.

Proof. Let By,...,8, be the distinct roots of f. Then the roots of f(z — sa;) are
Bi+saj,1 < i < m. Thus, the roots of G(z) = norm(f(z—sa;)) = [Tr_, f(z—s0x)
are f;+say for 1 <i <m,1 <k < n. G can bave a multiple root only if 8 = g-:—:%,
where k # 1. There are only finitely many such values. l

Lemma 54 If f(z,a) is o squarefree polynomial in K(a)(z], then there exists a
squarefree polynomial g(z) € K |z] such that f | g.

Proof. Let G(z) = norin(f(x, @) = [] gi(z)* be the squarefree factorization of the
norm of f. Since f is squarefree, f|g := []g:(z). R

Theorem 55 For any squarefree polynomial f(z,c) € K(a)[z] there are only fi-
nitely many 8 € K for which norm(f(z — sa)) is not squarefree.

Proof. Let g(z) be as in the above lemma. By the previous Lemma, there are only
finitely many s € K for which norm(g(z — sa)) is not squarefree. But flg implies

norm(f(z—sa))| norm(g(z— sa)). If norm( f(z—sa)) is not squarefree, then neither
is norm(g(z — sc)). M

Algorithm SQFR_NORM(in: f; out: g,s, N);
|f € K(a)[z] squarefree; 3 € N, 9(z) = f(z — scx),
N(z) = norm(g(z, @)) is squarefree.]

L 8:=0; gla,0) = (g,

2. N(z) :=res,(p(v), 9(=,v));

3. while deg(ged(N(z), N'(z))) # 0 do

{s:=8+1; .

9(z,0) := g(z — a,0);

N(z) := resy (p(y), 9(z,¥))};
return.

So over a field of characteristic 0 we can always find a transformation of the form

f(z — sa), 8 € N, such that norm(f(z — sa)) is squarefred. These considerations

-
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give rise to an algorithm for computing a linear change of variable which transforms
f to a polynomial with squarefree norm.

Now we are ready to present an algorithm for factoring polynomials over the
extension field.

Algorithm FACTOR-ALG(in: f; out: F);

[f € K(a)[z] squarefree; F = [f1,..., fr], where fi,..., f, are the irreducible factors
of f over K().]
1. [g,8,N] = SQFR.NORM();
2. L :=list of irreducible factors of N(z) over K;
3. if LENGTH(L) = 1 then return([f]);
4. F:=];
for each H(z) in L do
{h(z, @) := ged(H(z), 9(z, @));
9(z, @) == g(z, ) /h(z, a);
F := CONS(h(z + s, ), F)};

return.

Example. We apply the factorization algorithm FACTOR_ALG to the domain
Q(V2)[z], i.e., K = Q, @ a root of p(y) = y* — 2. Let us factor the polynomial
f(z,a) = 2% + az® — 2z — 2a.

f(z,a)is squareﬁ'lee. First we have to transform f to a polynomial g with square-
free norm. The norm of f itself is norm(f) = resy(p(y), f(z,¥)) = (2% —2)*(z® +2),
i.e., it is not squarefree. The transformation z — z — a does not work, but
Z v T — 20 does: 9(z,a) = f(z - 20,0a) = z* — Taz® + 18c22? — 42z + 18a,
N(z) = norm(g) = z'2 — 5629 + 2162° — 60482* + 11664, and N(z) is squarefree.
The factorization of N(z) is N(z) = (2% — 2)(z® — 54)(z® l-i- 108).

Computing the ged of all the factors of N(z) with g(z, ) gives us the factorization
of g(z,a): g(z,a) = (z — a)(z — 3a)(z? — 3az + 3a?), which can be transformed
by z - z + 2 to the factorization f(z,a) = (2 + a)(z — a)(2? + az +o?). O

3.5.2. Computation of primitive elements for multiple field

extensions
|

Over a field K of characteristic 0 every algebraic extension field K (a) is separable,
i.c., d is a root of multiplicity 1 of its minimal polynomial. So every multiple
algebraic extension K C K(e,;) C... C K(ay,...,0,) can be expressed as a simple

+ algebraic extension, i.e., K(a,...,ay) = K(v), theroem 10 for some + algebraic
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over K. Such a v is a primitive element for the field extension. We will describe

how Lo compute primitive clements.

Clearly it suffices to find primitive elements for double field extensions K C
K(e) C K(a, B), where p(a) = 0 for some irreducible p(z) € K[z| and q(8,a) =0
for some irreducible g(z, @) € K(a)[z]. Let n = deg(p) and m = deg(q).

Theorem 58 If N(z) = norm|k(a)/k|(9(Z,a)) is squarefree, then K(a, 8) = K(B),
and N(z) is the minimal polynomial for 3 over K.

Proof. Let ay,...a, be the roots of p(z), and B;,,...,B; . the roots of q(z, ;).
norle(o',) /k)(9) = ITi-; a(z, @), so if this norm is squarefree, then all the Pi; must
be different. So for every B in {8;; | 1 <i < m,1 < j < m}there is a uniquely
determined « in {@1,...a,} such that g(8,a) = 0. Thus, iged(q(8, z), p(z)) must

be linear, ged(q(B, 7), p(z)) = z—7(f) for some r(y) € K[y, and therefore a = r(8).
So K(a,B) = K(B).

B is a root of N(z) = normk(a)/k)(¢)- By theorem 51, and the squarefreeness of
N(z), N(z) must be the minimal polynomial for 3 over (. B

Algorithm PRIMITIVE_ELEMENT(in: p,q; out: N, 4, B);
[» and g are the minimal polynomials for « and S, respectively, as above; N(z) is
the minimal polynemial of v over K such that K(c,8) = K(y), A and B are the
standard representations of & and £ in K () respectively.]

1. [‘q, 8,N] := SQFR_NORM(q(z,));

2. A:=solution of the linear equation ged(g(7,z),p(z)) =0 in K(v),

where N(v) =0;
3. B:=q-—s4; '

return.

Example. Let us compute a primitive element for the multiple extension
Q(V2, V3), i.e., for Q(e, B), where a is a root of »(z) = 22 —2 and B is a root of
q(z,a) = q(z) =2* - 3.

The norm of q is not squarefree, in fact DOrMg( /3)/q) (9) = (=2 - 3)2. So we need
a linear transformation of the form z + z — sa, and in fact 3 = 1 works.
9(z,0) =q(z - a,0) =22 —2az—1,

N(z) = normg( 31 (9(2, @) = (2? — 20z — 1)(2? + 202 — 1) = z* — 10z + 1.
N(z) is irreducible. Let y be a root of N(z). So v = 8 + a. We get the repre-

sentation of & in K(7) as the solution of the linear equation ged(g(y,z),p(z)) =

ged(-21z+ (v — 1),z -2 =z + j(—r* +9y) =0, '

ie, a=A(y) = 3(y* —9). Finally = B(y) =y — A(y) = -}(v* - 119). O

-
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Chapter 4

Soicher-McKay’s Method

"The principal references for this chapter are

e “L. Soicher and J. McKa.y; Computing Galois groups over the miio;mls, Jour-
nal of Number ‘I'heory 20 (1985), 273-281,” [SM85] and

e “L. Soicher, An algorithm for computing Galois groups, in Computational
Group Theory (M. D. Atkinson, Ed.), pp. 291-296, Academic Préss, 1984,”
[Sois4).

4.1 Overview, Restrictions and Background

Let f = f(z) be a polynomial in Q[z], (thus is a separable polynomial over Q), and
let {a1, ..., } be the roots of f, where o distinct. We regard Galg(f), the Galois
group over the ralionals, to be the group of permutations of the (indices of the)

zeros of f induced by the group of automorphisms of the splitting ficld, splg(f), of
[, cf. Chapter section2.2.

We describe [easible computational'tecbniques to determine Galg(f). By elfi-
ciently determine sufficient properties (invariants), the aim is to specily Galg(f)
to within conjugacy in the symmetric group S, of degree n. This conjugation is
realised by relabelling the zeros of f.

The main tool discussed is the (absolute) resolvent polynomial. For T in
Z[zy,...,Ty), the complete factorization of a resolvent polynomial is used to deter-
mine the orbit length partition of {Y(zye,...,Zne) : ¢ in S,} under the action of

Galg(f).

An important class of resolvent polynomials considered are the linear resolvent
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polynomials, where T = eyzy +--e,Zr, € in Z and 0 < r < n. The use of
linear resolvents in determining Galg(f) is discussed. A practical exact method of

computing linear resolvents is described. :

Tach transitive permutation group of degree 3 to 7 is realised as a Galois group

over the rationals. The exact computation furnish a proof of the result.

Restrictlons We consider only irreducible f so that Galg(f) is transitive, the-

orem 19, and assume without loss of generality that f is monic with integer coeffi-
cients,

Background We:prove a result of Galois theory here. One may like to compare
|
Kaplansky, [GaloisBks][2], p.20.

Let G = Gal(E/F) be the Galois group of a Galois extension I7/F¥ of Tields.

Lemma 57 Let S = {f,...,0:} be a finite subset of distinct elements in E and
9(z) = TI5_,(z — B:). Then G maps S onto S (i.e. {B*:B in S and ¢ in G} = S)
if and only if g(z) is in I[z].

Proof. Let g(z) = % gai2', B in S, and ¢ in G = Gal(E/F). Suppose g(z) is
in Flz]. As ¢ is an automorphism of I fixing F' pointwisely we have: 0 = g(8) =
9(B)? = (E:-o a;f)¢ = ZLO a;(8%)! = g(B?). Thus B is in S for all B in S and
¢ in G. Recall that each ¢ is bijective on E, every ¢ in G maps S onto S.

Conversely, suppose G maps S onto S. Then each ¢ in G induces a permutation
of S. Thus a.? = a; for each coefficient a; of Q(x), because each ¢; is a symmetric

function of By,...,Bk. From Galois theory, this implies that a; is in .

Theorem 58 Let 8 be in S where S = {fy,...,Px} is a finite subsel of distinct
elements in E. Denote by 9 the set {#% : ¢ in G}. Then S = B9 if and only if
p(z) = H:‘al(z — ;) is an irreducible polynomial over F.

Proof. If § = ¢, then by the previous lemma, g(z) is in F[z]. Suppose g(z) is
reducible. Then g(z) has a factor h(z) in Flz] where h(z) = [, , (z — B:), for
some I properly contained in {1,...,k}. Then by the previous lemma G maps {f; : ¢
in 1} onto itself, which contradicts the fact that § = 9.

Conversely, suppose that g(z) is an irreducible polynomial in F'[z]. By the previous
lemma, we know that G maps S onto itself. Thus 89 is contained in S. Suppose
B9 = {B; : i in I}, where 1 is properly contained in {1,...,k}. Then by the previous
lemma, h(z) = []; . (= — B:) is in F[z]. Since h(z) is a proper divisor of g(z), we
have arrived at the desired contradiction. ll

61



4.2 Determining cycle types in Galg(f)

A well-known method of determining cycle types in Galg(f) is the following, in van
der Waerden [GaloisBks].

First we prove:

Theorem 59 Let I be an integral domain with identity, and let the Unique Factor-
ization Theorem be valid for it. Let P be a prime ideal in I, and let 1 =1 /P be the
quotient ring. Let the fields of fractions of I and T be F and F. Let f(z) =z™+---
be a polynomial in Ifz), and let f(z) be the polynomial assciated with it in the ho-
momorphism I — I, assuming that neither has a double root.

Then the Galois group T of | relative to F (as a 'permutation group of the suitably
arranged roots) is a subgroup of the Galois group I' of f.

Proof. By Gauf’s lemma, the factorization of R(z,u) =[] (z — 0°¢) (see theorem
1) into factors Ry Ry - - - Ry, that are irreducible in #(2,u] can actually be carried out

in I(z,4]. The natural homomorphism carries this factorization down into I(z,u:

ﬁ(z,t_&) = ﬁlﬁg ¥ -m.

The polynomials R;,... inay be reducible. By theorem 1, the permutations in T’
carry ®; (and so ®,) into itself; the other permutations of the u’s carry R, into
5—22, one ,ﬁk. .

By theorem 1 again, the permutations in T carry an irreducible factor of R, into

itself so that they cannot carry 3 into Rg,...; R, but must carry R, into R;,
which means that T is a subgroup of I'. H

The théorem is frequently used for determining the group Galg(f). In particular,
we often choose the ideal (p) in such a manner that the polynomial f(z) factors
mod p, since in this way the Galois group of f can be determined more easily.

Theorem 60 Let Z be the ring of integers and f(z) € Z[z] be a monic polynomial.
For a prime p not dividing disc(f), the discriminant of f, the partition of n induced
by the degrees of the irreducible factors of f modulo p (called the degree partition
of f mod p) is the cycle type of a permutation in Galg(f).

Proof. Lel P = (p) be the ideal generated by p, p being a prime number. Let
f(z) factor modulp p thus: f(z) = fi(z)fa(z)--- fa(z) mod p. It follows that
-f=?172"'7n-

The' Galois group T of 7(3:) is always cyclic, since the automorphism group of a
Galois field is always cyclic, theorem 26. Let the generating permutation s of T,
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written as a product of cycles, be (12...5)(j+1...)... . Since the transitivity sets
of the group T correspond exactly to the irreducible factors of f, theorem 58, the

numbers occurring in the cycles (12...37), (...), ... must exactly denote the roots
of 7, and fyp,---.

Thus, as soon as the degrees j,k,... of fi,f2,... are known, the type of the
substitution 8 is known as well: 8 consists of a cycle of j terms, of a cycle of k
terms, and so on. Since, with a suitable arrangement of the roots, T is a subgroup

of I by the above theorem, I' = Galg(f) must contain a permutation of the same
type. H |

Thus, for example, if a quintic with integral coefficients resolves modulo any prime
number into an irreducible factor of the second and into one of the third degree,
the Galois group contains a permutation of the type (1 2) (3 4 5).

Example. Consider the equation 25 —z — 1 =0. |
The left member factors modulo 2 into (22 + = + 1)(z* + 2 + 2). It is irreducible
modulo 3; for it had a linear or quadratic factor, it would have a factor in common
with z° — z, theorem 27, and would therefore have to have a factor in common with
#(z® — z), i.e. with either 2° — 2 or 2% + z, which evidently is not the case.
Hence the group contains a cycle of five symbols and & product (ik)(Imn). The third
power of the latter permutation is (ik); this, transformed by (12345) and its powers,
gives a chain of transpositions (3k), (kp), (pg), (g), (ri) which together generate the
symmetric group. Thus the group Galg(f) is the symmetric group. O

In fact, cf. [LO77), we have

|

Theorem 81 (Cebotarev Density Theorem) As k — oo, the proportion of
occurrences of a degree partition T' of f mod p;, i =1,...,k (pi distinct primes)
tends to the proportion of permutations in Galg(f) having cycle type 1",

But full power of this result seems difficult to use in practice.

Butler and McKay [BM83] have tabulated the transitive permutation Igroups of
degree up to 11, and the cycle type distribution of permutations in these groups.
After f is factorized modulo various primes, these tables are used to obtain a set of
groups {H;} such that for all i, H; 2 Galo(f).

In fact, if Galg(f) is A, or Sy, then Galg(f) can usually be quickly determined
using modulo p factorizations and the fact that Galg(f) is a group of even permu-
tations if and only if disc(f) is a rational integral square, theorem 42.

1f Galg(f) is neither A, nor Sy, an historical and very useful method to determine
Galg(f) is the constriiction and factorization of appropriate resolvent polynomials.

-
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4.3 Absqlute Resolvents

I
Let T = T(zy,...,2,) be a polynomial in Z[zy,...,z,) and let o be a permutation
in S,,. We define T = T(z1e, ey Tner ).

Definition 62 Let {T,,'...,Tk} = TS, where the T; are distinct functions. The
absolute resolvent polynomial R(Y, f) associated with Tl and f is defined by

k
R(T, f) = H(.'z: - Ti(ay,... yQn)),
=1

where qy,..., 0, (o distinct) are the roots of f.

We may take T; = T%, 1 < i < k, where {0y,...0}} is a set of right coset
representatives of Stabg, (T) (the stabilizer in Sp of T) in S,.

The cocfficients of a resolvent polynomial R(T, f) are algebraic integers which are
symmetric functiouL of the zeros ay,. .. , a, of J, hence these coefficients are rational
integers by the fundamental theorem of symmetric polynomials, theorem 5.

'l‘h'Blrwolvent were introduced by Lagrange around 1770 in order to compute the
relations between the roots of a polynomial and to study (in his own language)
' the field-extensions associated o these roots. It cnabled him to unify in a way the
former methods (Cardan, Ferrari) used to solve algebraic equations up to degree 4,
and to uﬁderstand why should not exisf such methods beyond degree 4, cf. Old-
fashloned Galols theory books by Edwards or Tignol [GaloisBks]. Notice that
the Galois theory (now classical) as presented by Artin and Kaplansky do not
contain this stuff, but Modern Galois theory (1970, 1985, 1990+ + +) is based
on similar stuffs, and pull the computer into the game of Symbolic and Algebraic
Computation, cf, Appendix B.1. |

4.3.1 Construction of resolvent

The resolvent polynomial R(T, f) can be constructed by expanding R(T, f) sym-
bolically in the zeros of f and then determining the coefficients of R(T, f) as poly-
nomials in the coefficients of f. Unfortunately, unless deg(R(Y, f)) is small or f is
sparse, Lhis leads to very extensive symbolic manipulation. However, if we use this
method, we get an explicit formula for the coefficients of R(T, f) in terms of the co-
efficients of f. Such formulae have been published for certain resolvent polynomials,
cf. the citations in [SM85].

R(T, f) can also be formed using high-precision numerical approximations to the
zeros of f. If the coefficients of (Y, f) are determined to within an absolute error

AN
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less than %, then these coefficients are determined exactly by rounding. Stauduhar,
cl. chapter 2 in this thesis employs this method. '

We next define a special type of absolute resolvent polynomials which can be

computed symbolically and at the same time very useful to determine the conjugacy
class of Galg(f) in Sp.

Definition 63 A resolvent polynomial R(Y, f), where T = ez + -+ - + erZy, for

somer, | <r <, and ey,...,e, nonzero integers, is called o linear (absolute)
resolvent polynomial.

Soicher in [Soi84] details a new, practical, exact algorithm LRINT, cf. p. 71
below, to construct linear resolvent polynomials. This algorithm does not expand

the resolvent symbolically in the zeros of f.
I

We shall now assume throughout that the zeros of R(Y, f) are distinct (cf theorem

65 below), for if not, we may apply an appropriate Tschirnhaus transformation
(theorem 23) to f preserving the Galois group, then recompute R(T, f).

4.3.2 Complete Factorization of Resolvent
First we observe that any subgroup of S, acts on T5» = {Y? : 5 € S, }.

Definition 84 For a group G acting on a finite set S we call the partition of |S|

induced by the lengths of the orbits of S under G the orbit-length partition of §
under G.

We have the following theorem

Theorem 85 Suppose R(Y, f) has distinct roots. Then the orbit-length partition

of T under Galg(f) is the same as the partition of deg(R(T, f)) induced by the
degrees of the irreducible factors of R(7Y, f).

We would like to prove this theorem by the following lemma and proposition.

Let E =sply(f), ¢ € G = Gal(E/Q) and 04 € I = Galg(f) as a subgroup in S,.

r
Recall the isomorphism ‘,; - as in Clapter,section 2.2: ¢ induces a per-
— 0’¢

.a ..o
mutation on ay, @z, ..., &, which can be set forth as follows:( : ,a,; ) or
: aj, - ,0f

@ “ee [ ! 1 eee n .
M ” or [ 7 "7 | . Letting 04 denote the final expression
Qiyy ot 04, i, "t ,4ia

here.



Lemma 668 We have T(ay,...,0q)% = T(z1,...

’ z")a‘. |=|==lal oo sBN =

Proof. L.HS.= T(ay,...,an)* =T(?,...,a¢) = T(,,..., x,)

R.IH.S= T(Zl, cee ,2,-.)"',, =Q e T =Cp T(zl"‘ gsee )zn’¢)|3| =QyeyTn=0n
= T(zil it ’zin)lzl=°l|---|=n=°vl -~ T(“Iil L ’a‘n)‘ u

Proposition 67 Lett € IC {1,...,k} and {T),...,Ti} = TS, where the T; are
distinct functions. Let I’ = Galo(f).

(1) If XY = {Y; : i in 1} and the Ti(ey,...,®,) are distinct for i in I, then
9(z) =TI in 1z — Tilay,...,an)) is an irreducible polynomial over Q.

(2) If 9(z) = II; in 1(z — Ti(aay...,an)) i8 @ non-repeated irreducible factor of
R(Y, f) then T} = {Y;:iinI}.

Proof. (1) Apply the above lemma and theorem 58.

(2) As E =splg(f) is separable over Q, g(x) must have distinct zeros. By theorem
58 and the above lemma, {Ti(@1,...,an) : iin1} = {To(z1,...,%0)° |2y =01, .. ,20=0n
o in I'}. As g(z) is a non-repeated factor of R(Y, f), for all i in I and j = 1,..., k,
Ti(ar,-..,an) = Tj(ay,...,an) if and only if i = j. The result follows. l

Proof of theorem 85: G = Gal(E/Q) as a group of automorphism on E, acts on
the set of zeros of R(T, f), by fixing Q pointwisely and permuting the {c;}. As the
zeros of R(T, f) are distinct this action is equivalent to the action by I' = Galg(f)
on T5 from the lemma.

The orbits of the action by G on the zeros of R(T, f) are precisely the sets of zeros
of the distinet irreducible factors (over Q) of R(T, f), theorem 58. Once again as
the zeros of R(Y, f) are distinct, the theorem follows from the proposition. H

To factorize R(Y, f), we use Berlekamp-Hensel algorithm FACTOR._BH, p. 53.
|
Alternatively, one can often determine candidates for factors of R(T, f) by using

numerical approximations to the zeros of R(T, f). |

Often (cf. Chapter 2 in this thesis and the citations in [SM85]) resolvent polynomi-
als are used to determine if Galg(f) is contained in some given proper subgroup G
of S,,. If T is chosen so that G =Stabg,_ (), then (Y, f) has a linear factor if and
only if Galg(f) is contained in some conjugate of G in S,. Although linear factors
are easy to find, they give information only about the Galois group’s containment
in one group and its conjugates. The complete factorization of well-chosen resolvent
polyndmial can often determine GalQ( f) among possible candidates.

-



4.4 Linear Resolvent Polynomials

Linear resolvents form a general class of useful resolvent polynomials for f(z) of
any degree. Often the factorization of linear resolvents of relatively low degree
can be used to determine Galg(f). We may use linear resolvents to determine the
orbit-length partition of r-sets or r-sequences under Galg(f) (1 <r <n).

4.4.1 r-sets and r-sequences

r-sets A subgroup G of Sy acts on the (7) r-sets contained in {1,...,n}, where the
action is defined by {1, ...,3, }° = {i10,...,4pe } forallo € G. Now let T = 21+ - - .
It is clear that the action of G on T3 is equivalen_t to the action of G on the r-sets

contained in {l,...,n}. Thus the factorization of (Y, f) determines the orbit-length
partition of r-sets under Galg(f). g

Erbach, Fischer, and McKay, cf. [EFM79) and [Mck79], suggest using resolvents of
this type in order to determine the transitivity of Galg(f) on r-sets.

T'he following remark is of interest: for f irreducible and n'= rs,r,8# 1, %(T, f)
has ¢ irreducible factors of degree s if and only if Galg(f) has t systems of imprim-
itivity of 8 blocks of size r, cf. definition 30.

r-sequences A subgroup G of S, acts on the (n’_“ril r-sequences of distinct
elements of (1,...,n) where the action is defined by (%1, ...,%)7 = (410,...,3re) for all

o € G. Now let T = e;z;+---+e,2,, where ey,..., e, are distinct nonzero integers.

Now suppose R(T), f) has distinct zeros, then R(Y, f) is reducible if and only if
Galy(f) is not r-ply transitive.

There is also a simple field-theoretic interpretation to the factorization of R(T, f)-
Let b = ejayo+ - ~+r 0o, 0 € Sy beazero of R(T, f). We see that Stabgarg(sy(b) =
' Ny Stabgate(s)(@ir); hence Q(b) = Qaie, - - -, e ). The degrees of the irreducible
factors of (T, f) correspond to the degrees over Q of nonconjugate snbf'ields of
splo(Sf) gencrated by r-sets of the zeros of f.

For irreducible f and r = 2, we note that R(T, f) bas irreducible factors all of
degree n if and only if Q(a;) = Q(;) for all 1 < 4,5 < n if and only if splo(f) =

Q) for all 1 < 7 < n if and only if Galg(f) is a regular permutation group,
definition 28.

We also note that ifr=n—1orr =4n, then R(T, f) has degree n! and splQ(f) =
Q(b) for each zero b of R(T, f).
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4.4.2 Data: Orbit-length Partitions

[

For the transitive permutation groups G of degree 3 to 7, Table 4.1 contains the
orbit-length partitions of r-sets (r up to 3 degree of G) land 2-sequences (with
distinct elements) under G. 'T'his table was computed by Butler, [BM83] and
[MR85], using the group-theoretical computer language CAYLEY (now it is called
MAGMA). We can also use GAP, [GAP), since it is a free software. But how and

of course—why?

For irreducible f of degree up to 7, Table 4.1 is used to determine candidates for
Galg(f) given the factorization of a linear resolvent which determines the orbit-
length partition of r-sets or 2-sequences under Galg(f).
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Q 2-scts | 3-sets | 2-sequences
Degree 3
+A3 32
Sy 6
Degree 4
Zy 24 43
+V4 23 43
Dy 24 48 '
+A4 6 12
Sq 6 12
Degree 5
+Zs 52 54
+Dg 52 102
0 10 20
+Ag 10 20
Ss 10 20
Degree 6 :
Zg 3, 62 2, 6° 65
Sy 3,6 2,68 6%
Dg 3, 62 2, 6, 12 6, 122
+A4 3,12 42, 62 6, 122
Gis 6,9 2, 18 62, 18
G 312 62,8 6, 122
+S4/Vy 3,12 £.13 6,
Ss/Z4 3,12 8, 12 6, 24
Gl 6,9 2, 18 12, 18
+G% 6,9 2, 18 12, 18
Gas 3,12 8, 12 6, 24
+PSLy(5) 15 102 30
Grn 6,9 2, 18 12, 18
PGLy(5) 15 20 30
+Ag 15 20 30
Se 15 20 30
Degree 7
+Z; | B T 7
Dy 7 73, 14 143
+f | 2 7.9 212
Fyp 21 14, 21 42
+PSL3(2) 21 7, 28 42
Ay 21 35 42
S 21 35 42

Table 4.1: Orbit-length Partitions of Sets and Sequences un:ia' G
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4.4.3 Constructing Linear Resolvents Symbolically

"The resolveat algorithm revolves around the following observation of Trager, [Tra76].
Let f(z) = (z — o)...(z — an), 9(z) = (z — B;)...(x — Bm) be non-constant
polynomials over the integers. Then the resultant (definition 21) eliminating y,
resy (f(y),9(z — ¥)) = [Ti, 9(% — @), is the degree nm monic polynomial having
zeros s+ (i=1,...,m j=1,...,m).

The following notation is used in algorithm LRINT below, [Soi84). Let t be a
non-zero integer and f(z) a monic polynomial of degree 7.
Then we define f(;)(z) = t" f(§). Thus f(4)(z) is the monic polynomial whose zeros
are ¢ times those of f(z).

Next we define mult(¢, T) to be the number of distinct terms of the (multivariate)
polynomial T having the coefficient %.



Algorithm LRINT

Input: A monic integral polynomial f(z) of positive degree n, and T = e,z +---+
€-Tr, where r < n and the e; are non-zero integers.
Returns: R(7T, f).

1.
2.
3.

o

10.

if r = 0 (T = 0) then return (“z”) and stop.

if 7 = 1 then return (f(.,)(z)) and stop.

Permute the labelling of z1,...,Z, in T so that mult(e,, ) < mult(e;, T)

fori=1,..r. (This ensures that the degree of u(z) in step 4

is as samll as possible. Note that the symmetry allows relabelling of

the variables of T without changing R(T, f).)

set T := e,z + -+ ey_12,_1 and set u(z) = R(Y', f), (recursively).

Let ay,...,ax be the k (say) distinct elements of {ey,...,e,_;}, and set
=7 + e,z where i (not necessarily uniquely det.ermmed)
chosen so that a;z; is a term of T, (i =1,...,k).

If any of the T; now have only 7 — 2 terms (x.e. a; + e, = 0), then
relabel the variablt?s of these T; with 1,2,...,7 — 2 to conform with the
input rules for this algorithm.

sel v(z) 1= H?:x R(Yi, £)* (recursively), where |

ci=n—r+2ifa;+e =0, and ¢; = mult(a; + e, T;) otherwise.
(Observe that res, (u(y), fie.)(z — ¥))/v(z) = R(T, f)¢, where
¢ = mult(e,, T).) -

set ¢ := mult(e,, T) and m := (n deg(x) — deg(v))/c+ 1.

[n — 1 = deg(R(T, f))]

Choose distinct integers 8,,...,8m such that fori=1,...,m: v(s;) #0

and if ¢ is even then |s;| > |0} for any zero 0 of R(Y, f).

(A bound on {the magnitude of the zeros of R(T, f) is calculated by

bounding the magnitude of the zeros of f.)

fori=1,...,m:set t; = resy(u(y), fie,)(8: —¥))/v(s:).

(For non-negative real ¢, let t1/¢ denote the non-negative real c-th root of t.)
fori=1,..,m
if £; < 0 then set &; := —|¢;|*/¢
else if ¢ is even and m — 1 is odd and s; < O then set {; := —t;1/¢
else set ¢; = t;1/¢, .

( now t; =R(Y, f)(s:) ) | |

set w(z) to be the unique polynomial of degree (at most) m — 1 such that
ti=w(s;) fori=1,...,m.

return (w(z)) and stop.
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4.4.4 Examples

Example 1. Consider f(z) = z” — 142° + 562® — 56z + 22.

disc(f) = 287'9; f is irre;ducible over Q. Compute and factorize R = R(z; +z2 +
3, f) ol degree 35 to determine the orbit-length partition o{ 3-sets under Galg(f).
Factorizing R into irreducible factors over Q, we find that R = N1 N2N3, where

Ry = 27— 2825 + 2242° — 448z + 94,

Nz = 27 — 2825 4 2247° — 448z + 192, and

Rg = 2! — 84z + 2436217 — 3113625 + 635824 4 20384021% — 84392212

—7338247'! + 42072820 + 14801922° — 9880648 — 165203627

+1138368z° + 986496z° — 620928z* — 2840322° + 13798422
427104z — 10648.

R has distinct zerps and its factorization shows that the orbit-length partition of

3-gets under Galg(f) is 7%, 21. 1rom Table 4.1 we scc that Galg(f) is +F, the
Frobepius group of order 21 on 7 letters. O

Example 2. Consider f(z) = 27 — 7z% + 1422 — 7z + 1.

f is irreducible and disc(f) = 78172, thus Galg(f) is a transitive subgroup of As.
Letting T = 21 + 22 + 23, compute and factorize R(T, f) of degree 35 to determine
the orbit-lengths of the action of Galg(f) on the 3-subsets of {1,...,7}. It takes 6
minutes to compute R(Y, f) using LRINT, p.71 on the PDP-11/34, '

The factorization of R(Y, f), of degree 35, takes approximately 10 minutes on the
PDP-11/34. The degree 7 factor is 27 — 14z + 723 + 1422 — 56z — 32. R(T, f)is
found to have irreducible factors of degrees 7 and 28 which proves that Galg(f) is
+PSL(2) from Table 4.1. O

Soicher-McKay remarked that the PDP-11/34 minicomputer was much slower than
a typical large main-frame computer.

Please sce Appendix A for the demonstration of the author’s MAPLE

program on these examples—It took two scconds to dbtain an answer
on his cheap Pentium-133.

4.5 Further techniques

For n = deg(f) = 3,4,5,7, the conjugacy class in S,, of transitive Galg(f) is deter-
mined completely by the “squareness” of disc(f), (theorem 42) and the orbit-lengths
of the action of Galg(f) on 2-sets, 3-sets, and 2-sequences, with the exception of
distinguishing Foo from Sg.
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Tor degree 6, all 'the transitive groups can be differentiated by disc(f) and the
orbit-lengths on 2-sets, 3-sets, and 2-sequences except to distinguish S4/Z; from
Gy, Gl [rom Grp, and PGLy(5) from Se.

' 4.5.1 Quadratic Resolvents |

The ability to compute linear resolvents efficiently allows us to compute certain
uselul quadratic resolvents. When R(7T, f) is a resolvent such that for some Y7 =
! '

—T for some o € Sy, we sec that R("?, )(z?) = R(T, f)(z).

Suppose deg(f) = 5 and Galg(f) is either Fx or Ss. We compute and factorize
R = R((z1 + 22 — 23 — 74)?, f) of degree 15, using a linear resolvent, to distinguish
between these candidates. Now Galg(f) = Fu if and only if R is reducible. In this
case R has irreducible factors of degrees 5 and 10.

4.5.2 Factorization over Q(y/disc(f))

The factorization of R(T, f) over Q(,/disc(f)) when disc( f). is not a square is also
useful to determine the conjugacy class of Galg(f) in Sh.

We assume that all polynomials discussed have distinct zeros.

Let E be splg(f) and I' = Galg(f) as a subgroup in S,. Suppose g(z) is a monic
irreducible factor of a resolvent polynomial R(Y, f) such that Tj(a,...,0) is a
zero of g for a specific T; € T (qy,..., e, the zeros of f).

Let d be the squarefree part of disc(f), define gy4(z) to be the monic integral
polynomial of degree 2 - deg(g) having the zeros by 4+ d#, where the by, run through
the zeros of g.

Theorem 68 The following are equivalent:
(1) Stabp(7T;) is a subgroup of A,.

(2) UYj(ay,..., o)) contains Q(y/disc(f))."
() g(z) is reducible over Q(+/disc(f)).

(4) ga(z) is reducible over Q.

Proof. The equivalence of (1) and (2) follows immediately from the fundamen-
tal theorem of Galois theory and the observation that Q(;(a)) = ES#r(Ts) (as

R(T, f) has distinct roots, cf. theorem 39) and Q(+/disc(f)) = EFM4».

Let A = y/disc(f), and h be the minimial polynomial of Tj(a) over Q(A). g is
irreducible over Q(A)

iffg=~h

73



iff [Q(T5()) : Q = [Q(A, Tj(w) : Q(A)]
i QY (@), A) : Q(T;()] = [Q(A) : Q] = 2
ilf Q(A) € Q(T;(a)). Hence (2) and (3) are equivalent.

Finally from theorem 51, we have: if normg(a)/q(9(z, A)) is squarefrée, g(z,A) is
irreducible over Q(A) iff normga)/q(g(2, A)) is irreducible over Q. The norm of g is
clearly not squarefree, so we consider a linear transformation of the form z — z—A
- We let h(z,A) = g(z — A) and consider its norm. It is convenient to use d?,
where d is the squarefree part of disc(f), in place of A in the construction, since
the corresponding norm will have smaller coefficients and hence be easier to factor.
Thus the polynomial gg is reducible over Q iff normg(a)/q(h(z, A)) is reducible over
Q iff h(z,A) is reducible over Q(A) iff g(z) is reducible over Q(+/disc(f)). Hence
(8) is equivalent to (4). M

Now suppose 7 = 6 and R = R(z) + z2 + 23, f) of degree 20.

Suppose Galg(f) = S4/Z4 or Gyg. Let g be the monic irreducible factor of degree
12 (bow?) of R. Then Galo(f) = Sy4/Z4 if and only if g, is reducible.

Suppose Galg(f) = Gjg or Grz. Let g be the monic irreducible factor of degree 2
of R. Then Galg(f) = G} if and only il g4 is reducible.

Suppose Galg(f) = PGLy(5) or Ss. Let g = R. Then Galy(f) = PGLy(5) if and
only if g4 is reducible.

4.6 Application to the Inverse Galois Problem

“Given a permutation group G, to find polynomials over a certain field whose Galois
group are G” is called the Inverse Galois Problem. There have been a huge
amount of literature on this problem, cf. the citations in Appendix B.1 no.5&6 or
simply search “inverse Galois” in the MathSei disc on the CD-rom.

1t is an unsolved problem whether any permutation group can appear as the Galois
group of a polynomial over, Q. Lor each solvable group C it is known that there
exists & polynomial f such that Galg(f) = G, [Sha54]; however there has not yet
appeared a practical general method of constructing an f from 'any given solvable
group G.

For each transitive permutation group G of degree 3 to 7, Soicher and McKay
have computed a polynomial f(z) such that Galg(f) = G. These polynomials
appear in Table 4.2 below where w, denotes a primitive nth root of unity. (For
each polynomial f in Table 4.2 one can prove that Galg(f) is the group indicated

by the algorithms mentioned above.) |
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Many of the polynomials f are constructed so that splg(f) is contained in some
known field. The methods of doing this include constructing f to be a resolvent
polynomial, constructing f to be a composite polynomial, or if Galg(f) is to be
cyclic, by constructing f such that splQ(f) is contained in Q(w,), p prime. This

knowledge about splo(f) is used to reduce or eliminate the work necessary to de-
termine Galg(f).

The only polynomials whose Galois groups are delermined using other information
than the splitting field, cycle types, or discriminant are those [ with Galg(f) = Ds,
Dy, Fyy, or PSLy(2). These exceptions are proved to have the group indicated by
using the factorization of appropriate linear resolvent polynomials, Table 4.1.

Given G, to find monic integral f (z) such that Galo(f) = G, where it is nontrivial
to construct an appropriate splitting field, we do computer searching. If G is a group
of even permutations, we first seck f such that disc(f) is a square. We, also search
for f such that, for all primes p in a fixed set, either p| disc(f) or the degree partition
of f mod p is the gycle type of some permutation in G.

There has been interest in polynomials with PS’L3(2) (isomorphic to PSL(2,7))
as Galois group over Q, cf. the citations in [SM85]. The new example in Table 4.2
has the property that itg discriminant, 78172, is the smallest discriminant of any

monic integral polynomial with Galois group PSL3(2) over the rationals of which
Soicher and McKay were aware. I

This table has also been used as the TEST DATA of the author's
MAPLE program on computing Galois group of polynomials up to de-
gree 7.
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(&) disc(f) f(z) Remarks
Degree 3
+As 7 x34x%-2x-1 spl(f)=Q(w7+w; ')
Sy 2% x342
I Degree 4
Z4 53 x4 4x+1 spl(f)=Q(wws)
+Vi e x441 spl(1)=Q(ws)
Dy il ' xt9
+4A4 giigt x*-+8x+12
Sa 229 xtx1 l
Degree 5
+Zs 114 x5 +xt-ax3-3x243x4 1 spl()=Q(w11 + w}')
+Ds glags x5-5x4-12
Fy 2455 x®42
+As 91958 x5 +20x-+16
S 19-151 xPx+1
. Degree 6
Zg 8 x5 xad 4x2 41 spl(f)=Q(w7)
Sy 218321 x%4108 spl(f)=spl(x>+2)
Dg 21136 X842
+4A4 2838 x8-3x2-1 spl(f)=spl(x*4-8x-1-12)
Gis g x843x343
Gas 9038 x8-3x2.41 Galg(x3-3x+1)=A3
+8S4/Vy 262992 x8-4x2-1 spl(f)=spl(x*+x+1)
S4/Z4 2293 x8-3x546x4-7x3 4262+ x-4 spl(f)=spl(x*+x 1)
Gl 2889 x84+2x3.2
+G% g10g85¢ x84+6x4+2x3 4+ 9x2 + 6x4 f(x)=(x3+3x+1)2-5
Cus 115242 x5 4+2x242
+PSLy(5) | 2%%5° x5+ 10x°+55x44-140x%+175x21-170x-+25 | spl(F)=spl (x*-+20x+16)
Cn 28733 x84-2x4 423 4 x2-42x-+-2 [(x)=(x*-1x-+1)2--1
PGLy(5) | 5%19°151° | x5+ 10x5+55x* +140x® 1 176x2-3019x-+25 | spl(f)=spl(x5-x+1)
+Ag 9163958 x84-24x-20
Se -101-431 x®x+1
- Degree 7
+2y 172998 x7+x8-12x5-7x4 1-28x3 1 14x2-9x1-1 spl(1)=Q(wo201 w3+ o' 4 w2
) D 38, xT+7x3 4+ 724 7x-1
+Fy 28710 x7-14x5 4 56x3-56x-+-22
Fy 2877 x'+2 ‘
+PSL3(2) | 7’172 xT-7x3 4 14x2-7x4-1
+A7 . 1 xT+7x4 4+ 14x +3
Sy -11-239-331 | x74x+1

“
Table 4.2: Polynomials f(z) such that Galg(f) =G
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4.7 Comment

e The resolvents are relatively simple and can be calculated symbolically. But
rather than tcl> test for a lincar factor, as was the case in Staudubar’s method,
the resolvents are completely factored (by the polynomial factorization algo-
rithm in Chapter 3). Hence no round-off error problem exists.

e A few resolvents are needed to distinguish all the groups of a given degree, and
for each group, its shape (cycle-structures of its elements and their number
of occurrences) and orbit-length partitions of r-sets and 2-sequences inder its

action are all is required. So the storage requirements are low.

] Al
o Traversing down the subgroup lattice is not necessary in this method.

However, the degree of some resolvents are relatively higher than that of Staudubar’s
method and factorization can take some time. We also observe that this method
only give the Galois group of f(z) to within conjugacy, while Stauduhar’s method

can output the exact permutations in the Galois group with respect to an ordering
of the roots.



Appendix A

Demonstration of the

MAPLE program

Example 1

> tl:=time();
> gal3_7(x"6-42%x"4+80*x"3+441%x~2-1680%x+4516) ; t2:=time()-t1;

ti =0
[stuff deleted]
factorgd = (x - 6%86) (x + B6060) (x + 66390)

(x - 159498 x + 7638068124 x - 95259900647448)
olpart := [1, 1, 1, 3

~83-, 6, {(1 3 5)(2 4 6), (1 6)(2 B)(3 4)}
12 := 2.600

Example 2

> tl:=time();
> gal3_7(x"6-32*%x"4+160%x"~3-320%x"~2+384%x-266) ; t2:=time()-t1;
tl := 2.000
{--> enter gal3_ 7, args = x"6-32%x"4+160%x"3-320*x"2+384%x~-266
6 4 3 2
g:=x -32x + 160 x - 320 x + 384 x - 266
= {x}
'y
6

6 4 2
g:=x -32x +160x - 320x + 384 x - 266
{--> enter factor, args = x"6-32*%x"4+160*x"3-320*x"2+384*x-266
6

3
-32x g x - 320 x + 384 x - 266

<—- exit factor (now in gnlS 7) = x"6-32¢x"4+160%x~3-320%x"2+384*x-266}

{--> enter whattype, args = x‘6—32*x‘4+160*x“3—320tx 2+384*x-266

<-- exit whattype (now in gal3.7) = +}
{--> enter gal6, args = x"6-32%x" 4+160*x“3-320*x“2+384*xr256 x

Digits := 67
H 403780252137947136
is _sqrdisc := true

6 3 2
hordro h:=x - 32 x + 160 x - 320 x + 384 x - 266
ordro
-7. 6899496404 55985014882011771346235648146365134931898297770890631636,
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5173“%2882?295‘%38718828%8338%9?%?8149%8?8 $70413160808814513¢ 44338 1
B OO O 0B 09 A48 001084482 4084880310 aaase 1
1.6872011670335243236610101329177401787304065336186231560200216840147

2 S L S U LIS AL o
Rt T T

= x1 x52 (x2 x4 + x3 x6) + x22 x42 (x5 x1 + x3 x6)
+x3 x6 (xbxi + x2 x4) + x1 x62 (x6 x2 + x3 x4)
+x2 x6 (x1 x6 + x3 x4) + x3 x42 (x1 x6 + xb x2)
+x1 x3 (x2x6 + x4 xB) + x2 x6 (x1 x3 + x4 xb)
+ x4 xb (x1 x3 + x2 x6) + x1 x4 (x2 x3 + xb x6)
+x2 x3 (x4 x1 + x6 x6) + xb x6 (x4 x1 + x2 x3)
+x1 x2 (x3 xb + x4 x6) + x3 x6 (x1 x2 + x4 x6)

+ x4 x6 (x1 x2 + x3 xB)
se_pcL2_6 := [[1, [[1, 211, C[1, 311, [[1, 411, ([1, 611, [[1, 6111

b 4 3
R = - 756591543258710012 x —615872 x + 118030336 x - 449696497664 x

+ 8b69354236462864 x + x + 247809443596154699776
enter tschirnhausen

__________ tschirnhausen succ;eded 5 § E § B
t = 12122 x + 9121 - 1233 x - 40%0 x + 20; x - 704x + x é x g x+1
h := 12122 x + 9121 - 1233 x - 4020 x + 207 x - 70 x + x

hordroots :=
67.82527611385398313794128326451992353676632559733216490276600331461

T D0 OL 70370157757 00018013500433 1715430300 008406845 7833111337 T

- 1 osigiaTaTTe Tos0asE R sTaoe e aantoTTOReSsO R0 0RA00D0RA00,

i. 935006855856034015944909264870709980123515849342715652158401064852

Lo GRSl s R eGSO E OB IO0RCTR. )
O T R R e T

F := x12 x52 (x2 x4 + x3 x6) + x22 x42 (x5 x1 + x3 x6)
+x3 x6 (xb x1 +x2x4) +x1 x6 (x5 x2 + x3 x4)
+x2 xb6 (x1 x6 + x3 x4) + x3 x4 (x1 x6 + x6 x2)
+x1 x3 (x2 x6 + x4 xB) + x2 x6 (x1 x3 + x4 xb)
+x4 xb (x1 x3 + x2 x6) + x1 x4 (x2 x3 + x5 x6)
+x2 x3 (x4 x1 + xb x6) + xb_ x6 (x4 x1 + x2 x3)
+x1 x2 (x3 xb + x4 x6) + x3 xb6 (x1 x2 + x4 x6)

x6 (x1 x2 + x3 xB)
S6_PGL2_5 : = [[]. CLi, 211, L[4, 3]]. [[1, 411, (01, 611, [[1, 6]1]1]

R := - 10084826338064985722085466146362176 x - 6442036 x
+ 115120608233404 X - 546664230005932493152 x
+ 317374867 349578646416 x- +
536894838331326101058572% 65306688
factored := (x - 2263176 x- + 101330045990168 x~ - 112362603136642134496 x

2
+ 2606643060486262159681180688) (x - 4188860 x + 4352323423876)
olpart := [2, 4
<-- exit gal6 (now in gal3_7) = +S4/V4 ~S4 , 24, {(1 36)(2 4 6),

N N NN
N NN N
N N NN
NN

N NN
N NN
NN
NN

N N NN
NN NN
N
N NN

N
NN
N N

NN

MNN
N
N

!
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(26)(36), (25)(36)}}

+S4/V "84 , 24, {(135)(246), (26)(3b), (25 )(3 6)}
<-- exit gal3_7 (nov at top level) = +54/V4 “s4 , 24, {(1 36)(246),
(26)(36), (25)(3 6)}}

+84/V4 ~S4 , 24, {(1 3 5)(2 4 6), (2 6)(3 B), (2 6 )(3 6)}
12 := 2.000 :

Example 3
> til:=time(); '
> gal3_7(x~7-14%x"B+66%x~3-66%x+22); t2:=time()- -t1;

t1 := 4.000
[stuff deleted]
+F21, 21, {(12345667), (236)(476)}
t2 := 2.000

Example 4 |

> til:=time();
> gal3_ 7(x~T-T#x"3+14%x" 2-T*x+1) ; t2 =t1me()—t1

{--> enter gal3_7, args = x‘7-7*x 3+14¢x‘2—7*x+1

7 3 2
g :=x - 7 x +14x -Tx+1
= {x}

Il ll

ulﬁN

7 2
- g =x -7x +14x -T7Tx+1
{--> enter factor, args = X 7-T#x 3+14%x~2-T*x+1

3
| x -7Tx +14x -Tx+1

<-- exit factor (mow in gal3_7) = x"7-T*x"3+14*x"2-7*x+1}

{-—> enter whattype, args = x“7-7#x"3+14%x~2-7*x+1

+
<-- éxit whattype (now in gal3_7) = +}

le :=1
{--> enter gal7, arge = x‘7-7*x’3+14*x“2—7*x+1 x

D := 1666027489
is sq;d 8c := true

3 2
h -7x +14x -Tx+
hordroots := [- 1 996654909810169046962068827799749993914
- 401406195936;62224 39192627246231420387
123 4665881256 1973160203443

4°1f°?1§o§§§?883§3§322§3§3 135610131 50903443 I.

.2631040267829447108336386624122674781262,
4069979427191243244956555338374909521301
1. 064682666090615030 200306578499618923868
7062970661368875427162230353506364 I,
1. 06468266609061503020030657849961892
17062970661368875427162230353506364 Il
= [-, 5397083650901853379341998630369788059512

A R e3P 8e R oo 1,

= 2 1349;7078963789360 49428112105657827
6668812661973160203443 I,
.92638049693699 7166560 5978187263 2699556
218194770264173309771269845 0114852807 I,
.268695773565504010945%749335251352882
1.763096476 9446668812661973150203443 I,

26197027 311454081 § 26R0E20R0TTSIOT0 ¢ e 1,

~2.7994673016832990957299073653248996277991,
2618702742174849814324680530503726397 906

901706297066136887542716223035360636 I,
- 3958144491540057242721829916117553319473

T L e 0e119041 145001212024 04212085 o7 1,
T2 300188338 R AR T 401TOREST a1

R T T e e -
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- 1.333378439666119041146568151202476421208
+ 1.%18?9477028417330977126984%750114852807

~ L OO 0] e0a ] 30490a8RR 1560167 3180503443 I
1. 0T 31 T1358219343577 7328841383 1 aes 807
-+ 92680 R 59041 73300 1115308427803 14852807

" 2 O 7601 5904400008 26819731 50203443

I

I

I
i -
I

I

'2686?51?92888829é8§?8§322282381283?835120203443
, " 501700007 Obe 135807 6457185330 383806364

% ;g§$293ggggg1;23;1%3425&?%2411505325862 '
4% 90629 0%9?36887g427162230%33506364

6688222&8??8883?82%2§é%%5%2%?1%8358%2%806354 :

-1.326662940308100011632774631649991663658, )

1.T3ATSAESEERERI0SEERAO0 TSI - ey
- 1355 TeasseeorIe0n IseRI a0aAToazvone

I

I
1. 72795913624466 03601669 274614706697

(oo S A o ©

%?%i 81947702641 330977126984&750114852807 I

I

I,

- g aet SRR e
- 1.90{Og3icaoareOsTASSHonpRaoSREOERInERd

OO 8 63808 300683606 3865761061 85664079 T,
.132710422371061013438544329199487863822,

= 5249 010004 266106716462640117
g44 200 33;0661368875427162230353506364 I,
2. 536363274900364384896268690836728799866

- .5249743010004296922661067 154626401179159

- .5449017062970661368875427162230353606364 I]
i::=1i

R := .4576219190000000000000000000000000000012*109 3 + .7*10 ~33 I
.4676223999999999999999999999999999999931 %10 x
.3191663999999999999999999999999999999996% 10  x
.1682666719999999999999999999999999999996%10  x
.1189669619999999999999999999999999999999%10_ x
.B743919999999999999999999999999999999996%10 x 31 3
.5456530223800008800000000000000000000010*10 x + .b*10 Ix 8 8
.13646%*10 I x + .19696865699999999999999999999999999999621%10 x
.22603083999999999999999§9999999999999634*108 xg
.3319044399999999999999999999999999997825#108 x13
236272.0000000000000000000000000000007011 x % 20
.2264098000000000000000000000000000001329%10
.3055527999999999999999999999999999991000*107 x
.3367760000000000000000000000000000001266%10  x
.2763514599999999999999999999999999998298#108 x
.3674891200000000000000000000000000000314*107
.1638363999999999998999999999999999998639%10_ x
.3280990999999998999999999999999999997191%10 x
.2072131320000000000000000000000000000108*109 X
.1181074930000000000000000000000000000157#10: x
.1243717020000000000000000000000000000113%10 x

© W W O N
ON Wb O,
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279 .9999999999999999999999999999999997423 x29 '
301.9999999999999999999999999999999994110 x

294 .0000000000000000000000000000000002833 x

- 4900.000000000000000000000000000000001114 x

= 170562.00000000000000000000000000000003568 x

+ 60942.000000000000000000000000000000095682 x

- 60773.99999999999999999999999999999977277 x22 .
+ 15387.299999939999999999?3899998999937984_59 - 31*10 N
- .42%10 I x_ + .794%10 _g x 5 -81x10 8 x 4 .233*1930 Ix
+ .1206+1 xs - .bbb11%10 x + .14%10 Ix - .1%10 Ix
- .29%10 I x + b55.99999999999999999939999999999999998632 x

+ +

38 34

= 139.99%?9999%9999999999999999999%%9999?%8 X - .9*%8. Ix

+ .2%10 Ix +x - .20101*10 I x + .724%10 Ix
-28 -28 16 ~-29 17

- .1202x%10 o9 I x - .13118%10 I x - .1611%10 Iig

1 - 14 -32
+ .b400*10 I x  + .2024%10 I x + .604%10 Ix

» 31 -36 32 -3 33
- .b68782*10 Ix + .177687%10 I x + .143x10 - I x o0
+ .144827%10 I x - .102092%10 I x + .40651%10 I x
-30 -32 26 -32
+ .28697%10 oI x _ + .T6871%10 % x = _.11779%10 g x o8
- .104881*10 I x -~ .2065784%10 I x + .5383%10 Ix

& 17391410 20 T x°0 - T1BOTEE¥10 ot I xo0 5

- .197saoao90000000ooooooooooooooooooooooust1o7 c 20410 I x,
R := 457621919 x + 4676224 x - 1976808 + 319166400 x + 1682566672 x

+ 118966952 1 + 67439200, x + 54565302%0x6 + 19696866 x  + 2260308%619

+ 33190444 x - 236272 X+ 2254098 x & 3066528 x & 3367760 x
27636146 x  + 36748912 x _+ 1638364 x - 3280991 x

28
+ 207213132 x  + %%8107493 b 4 25—.12437170%4x - 280 §3 + 302 x 29
+ 294 51 - 49003% -3&7052 x + 60942 x - 60774 x + 15368 x
+b66x -140x + x

olpart := [7, 28]
<-- exit gal7 (now in gal3_7) = +PSL2(F7) “+PSL3(2), 168, {(1 23 46 6 7)
» (23)(4 7N}
+PSL2(F7) ~+PSL3(2), 168, {(1 234566 7), (23)(4 T}
<-- exit gal3_7 (now at top level) = +PSL2(F7) ~“+PSL3(2), 168, {
(12345667), (23)(4 N}
+PSL2(F7) ~+PSL3(2), 162é {(1220804 667), (234 N}

Example 5

> ti:=time(); ,
> gal3_7(x"6+x"4-4%x"3-3*x"2+3%x+1); t2:=time()-t1;

tl =0
{--> enter gal3_ 7, args = x"B+x"4-4*%x"3-3%x"2+3*x+1

4 3 2
! g:=x +x -4x -3x +3x+1
xx:?_{x}
ni=b
3 2
g =x +x -4x -3x +3x+1
{--> enter factor, args = X" B+x"4-4%x"3-3%x"2+3*x+1
5 4 3

. x +x -4x -3x +3x+1
<-- exit factor (now in gal3_7) = x"B+x"4-4*x"3-3%x"2+3*x+1}
|
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{--> enter whattype, args = x“B+x“4-4%x~3-3#x"2+3%x+1
+
<-- exit whattype (now in gal3_7) = +}
. lc :=1
{--> enter galb, args = X"B+x"4-4%x"3-3%x"2+3%x+1, x

., D ;= 14641
1s_sqrd13c := true
3 2
H o -3x +3

h +x -4x x+1

hordroots := [-1.918985947228994779780736114132655398125,
-1.309721467890570128113850144932587106368,
-.2846296765465702808875853372327393375821,
.8308300260037728510585482984592464070480,
1.682507065662362337723623297838735435027]

Foi=(x1 x2+x2x3+x3x4+x4x5+x5x1-x1x3-x3x5-x5x2- x2 x4

- x4 x1)°2
S6_F20 é= [, [gi. 2, 3]].4[[1, 3, 211, _[[1, 211, [[2, 311, [[1, 311]

ti=x - 264 x + 25168 x - 1022208 x + 14992384 x - 14992384 x,
[31.78284454738512997240974738261312642006,
1.077014693677007040114228609258101691166,
95.66277685414092609135789506930621238498,
64.55546037131997519140424134514376166263, 0,
70.921914633476962704713887603678807965136]

6 b 4 3 2
R:=x -264 x + 26168 x - 1022208 x + 14992384 x_ - 14992384 x
Rordroots := [31.78284454738512997240974738261312642005,
1.077014593677007040114228609258101691156,
95.66277585414092509135789505930621238498,
64.666460371319976191404241345143761656263, 0,
70.92191463347696270471388760367880795136]

b 4 2
factored := x (x - 264 x + 26168 x - 1022208 x + 14992384 x - 14992384)
olpart := [1i, 5]
iroot := 0
thisp := t[2, 311
hordroots := [-1.918985947228994779780736114132655398125,

-.2846296765465702808875853372327393375821,

—1.309721467890570128113850144932587106368,

.8308300260037728510585482984592464070480,

1.682607066662362337723623297838736435027]

t = [-1.918985947228994779780736114132655398125,
-.2846296765465702808875853372327393375821,
—1.309721467890570128113850144932587106368,
.83083002600377286106856482984592464070480
1.682507065662362337723623297838735435027j

000000000000000000

; d := 121.00000000000000
<-- exit galb (now in gal3_7) = +Cb, b, {(1 2 3 4 B)}}
+C6, 5, {(1 23 4 B)}
<-- exit gal3_ 7 (now at top level) = +CB, 5, {(1 2 3 4 B)}}
+C6, 6, {(1 2 3 4 B)}
t2 := 1.000
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|
Thomas W. Mattman, The computation of Galois groups over function fields,
M.Sc. Mathematics Thesis, McGill University, Montréal, Canada, 1992.
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13.
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16.
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paraitre dans Journal of Pure and Applied Algebra.
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K.Yokoyama, A modular method for computing the Galois groups of polyno-
mials, MEGA’96, (Effective Methods in Algebraic Geometry, at Eindhoven,
The Netherlands), to appear in a special issue of the Journal of Pure and
Applied Algebra.

H.Anai, M.Noro and K. Yokoyama, Computation of the splitting fields and the
Galois groups of polynomials, MEGA’94, (U. Cantabria, Santander, Spain),
published in Algorithms in Algebraic Geometry and Applications, Progress in
Mathematics vol.143, Birkhéuser, 1996, pp.29-50

. HL.Anai and K.Yokoyama, Radical representation of polynomial rools, submit-

ted to J. Symbolic Computation. (Research Report ISIS-RR-94-13K, 1994,
Institute for Social Information Science, Fujitsu Lab. Ltd., Japan.)

D. S. Dummit, Solving Solvable Quintics, Mathematics of Computation, vol.57
no.195, 1991, pp. 387-401.

K.Yokoyama, T.Takeshima and M.Noro, On determining the solvability of
polynomials, ISSAC’90, published in Proceedings of the International Sym-

[fgsbum on Symbolic and Algebraic Computation, ACM PRESS, p.127-134,

|
K.Yokoyama, T.Takeshima and M.Noro, Computing primitive clements of
extension fields, Journal of Symbolic Computation, vol.8, p.553-580, 1989.

Susan Landau, Factoring Polynomials over Algebraic Number Fields, SIAM
J. Comput., vol.14, no.1, 1985, pp.184-195.

Mark J. Encarnacién, “Faster Algorithms for Reconstructing Rationals, Com-

puting Polynomial éCDs, and Factoring Polynomials”, Ph.D. Thesis, Re-

aearchA Initgi;lsxte for Symbolic Computation, Johannes Kepler University, Linz,
ustria, :

M. J. Encarnacién, Factorin polynomials over algebraic number fields via
norms, in Proceedings ISSAC’97.

|
M. J. Encarnacién, The average number of modular factors in Trager’s poly-
nomial factorization algorithm, in Proceedings 1ISSAC’97.
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68. M. J. Encarnacién, On a modular algorithm for computing geds of polynomials

(1)‘6851 algebraic number (ields, in Proceedings ISSAC’94, pp.58-65, ACM Press,

69. M. J. Encarnacién and G. E. Collins, Efficient rational number reconstruction,
Journal of symbolic Computation 20, 287-297, 1995,

70. M. J. Encarnacién and G. E. Collins, Improved techniques for factoring uni-
variate polynomials, Journal of Symbolic Computation 21, 313-327, 1996.

71. P. Weinberger and L. Rothschild, Factoring Polynomials over Algebraic Num-

ber Fields, ACM Transactions on Mathematical Software, vol.2, no.4, 1976,
pp.335-350.

72. A. K. Lenstra, Lattices and Factorization of Polynomials over algebraic num-

ber fields, in Proc. Eurocam 1982, Lecture Notes in Computer Science 144,
Springer-Verlag, pp.32-39. '

73. A. K. Lenstra, Factoring polynomials over algebraic number fields, in Proc.

g}élsrooal 1983, Lecture Notes in Computer Science 162, Springer-Verlag, Pp.458-

74. H. W. Lenstra, Algorithms in Algebraic Number Theory, Bulletin (New Series)
of the American Mathematical Society, vol.26, no.2, 1992, pp. 211-244. (given

as a Progress in Mathematics Lecture, August 8-10, 1991, meeting of American
Mathematical Society in Orono, Maine.)

75. Harold M. Edwards, “Kronecker, Galois and S{ym'bolic Computation”, Invited
lecture presented in ISSAC’96, International Symposium o Symbolic and Al-
gebraic Computation, (at Eidgenossische Technische Hochschule Ziirich.)

B.2 Notes on SAC—Symbolic and Algebraic Com-

putation

SAC = Symbolic and Algebraic Cc?zputation = Computer Algebra =

Symbolic and Algebraic Computation, or Computer algebra or Computational
algebra, is devoted to the investigation of algorithms, computational methods, soft-
ware gystems, and computer languages, oriented to scientific computations per-
formed on ezact and often symbolic data, by manipulating formal expressions by
means of the algebraic rules they satisfy.

It studies such problems from three different but confluent viewpoints:
a) development and analysis of algebraic algorithmis (from the viewpoints both of
practical performance and of theoretical complexity);

b; design and analysis of software systems for symbolic manipulation;
c) applications of scientific and/or technological systems.

Its importance for applications has grown in recent years with the introduction of
technological areas (related to information processing, software engineering, etc.) in
which the symbolic nature of the objects studied makes the techniques of calculus
and numerical analysis inapplicable. For these arcas, algebra provides both a the-
oretical framework for the development of theories and algorithmic techniques for
the concrete manipulation of objects. Traditional areas of science such as physics,

chemistry and biology has found the method of computer algebra creeping in. For
more information , see

e Computer algebra in science and engineering /editors, J. Fleischer, 1995.
¢ Computer algebra in industry 1,2: problem solving in practice 1991, 1995.

~
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e Symbolic computation in undergraduate mathematics education / Zaven A.
Kdrian, editor. Mathematical Association of America, 1992, Computer al-

gebra systems in the classroom / edited by J. Monaghan and T.A. Etchells.,
1993.

|
It is important to stress that the mathematical theories to which computer algebra
applies are not necessarily only the algebraic ones: polynomial and differential equa-
tions, commutative algebra, real geometry, and group theory have a well-established
research activity using symbolic computation techniques, and such activity necessar-
ily interweaves mathematics, complexity theory, and software systems. For example,
in the last few years extensive studies have been devoted to complexity in elimi-

nation theory, and to the importance of appropriate data structures for exhibiting
efficient algorithms to solve polynomial systems.

Computer Algebra System General purpose computer algebra systems: Mu-
PAD (free of charge), Maple(TM), Mathematica(TM), Macsyma(TM), Axiom(TM),
Reduce(TM), Derive(TM).

Special purpose computer algebra systems (free of charge):
Computational Group Theory: GAP
Computational Algebraic) Number Theory: PARI, KANT, Asir, SACLIB

Computational Algebraic Geometry: Casa, Grébner, Macaulay
Mixed:Magma(TMg’e

The first beginnings of the development of program systems for computer algebar
date back to the 1950s, but . . . . many of these programs can now run on my cheap
Pentium-133. One can compute [or instance integral bascs, unit group generators

and the class group structure of algebraic number ficlds, and even generators for
the Mordell-Weil group.

SAC meetings ISSAC '9x International symposium on symbolic and algebraic
computation (the primary international conference on SAC, the first meeting was
on 1966 but with a different name—SYMSAC.)

ANTS Algorithmic number theory: international symposium, 199x.

MEGA *9x Effective Methods in algebraic geometry. .

AAECC Applied Algebra, Algorithms and Error-Correcting Codes *198x *199x
DISCO *9x, Design and implementation of symbolic computation systems: Interna-
tional Symposium,

PASCO '9x International Symposium on Parallel Symbolic Computation.

AISMC Integrating symbolic mathematical computation and artificial intelligence
: International Conference, 199x

General SAC Meetings In the East ASCM '95 Beijing, China. The First
Asian Symposium on Computer Mathematics '

ATCM ’95 Singapore The First Asian Technology Conference in Mathematics
ASCM ’96 Kobe, Japan The 2nd Asian Symposium on Computer Mathematics
ATCM '97 Penang, Malaysia The 2nd Asian Technology Conference in Mathemat-
%X&ﬁ%ﬁPUTER TECHNOLOGY IN MATHEMATICAL RESEARCH AND

Perjodical publications Journal of Symbolic Computation, editor B.F. Cavi-
ness (formerly B. Buchberger) '

Applicable Algebra in Engineering, Communication, and Computing, editor J. Cal-
me!
SIGSAM Bulletin (ACM special interest group on SAC)

Something more should be said from the angle of mathe-
matics.
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Computers have stretched the limits of what is possible in mathematics. More
than that, they have given rise to new fields of mathematical study: the analysis
of new and traditional algorithms; the creation of new parad for implementing

computational methods; and the viewing of old techniques irom a concrete algo-
rithmic vantage point. '

Being suspected of the validity of this statement, Tang Simon asked the following

qgmtion in the USENET newsgroup sci.math.symbolic from April to August
1996:

A Computer has nothing to do with Pure Mathematics. Discuss (160%)

Not for homework and examination, simply because students are bewil-
dered.

Here are some fragments of answers that 1 have collected:

On the style (school or philosophy) of Mathematics The word "algorith-
m” as well as the key word "algebra” in the title of this book come from the name
and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizml,
....... The word "algorithm” is actually a westernization of al-Khowarizml's name,
while algebra derives from "al-jabr,” a termn that appears in the title of his book
Kitab al-jabr wa’l muqabala, where he discusses symbolic methods for the solution
of equations. '

This *-close-* connection between algebra and algorithms !!!-lasted roughly up
to the beginning of this century-!!!; until then, the primary goal of algebra was

the design of *constructive* methods for solving equations by means of symbolic
transformations.

During the !!!-second half of the nineteenth century-!!!, a new line of thought
began to enter algebra from the realm of geometry, where it had been successful
since Euclid’s time, namely, the *—axiomatic method—*,

The starting point of the axiomatic approach to algebra is the question, What kind
of object is a symbolic solution to an algebraic equation? To use a simple example,
the question would be not only, What is a solution of ax+b = 0, but also, What are
the properties of the objects a and b that allow us to form the object -b/a? The
axiomatic point of view is that these are objects in a surrounding algebraic structure
which determines their behavior. The algebraic structure in turn is described and
determined by properties that are laid down in a set of axioms.

The foundations of this approach were laid by Richard Dedekind, Ernst Steinitz,
David Hilbert, Eminy Noether, and many others. The *-axiomatic method—* fa-
vors *-abstract-*, **.non-constructive-** arguments over *-concrete-* algorithmic

constructions. The former tend to be considerably *-shorter-* and more *_elegant-*
than the latter. ;

*—Before the arrival of computers—*, this advantage more or less *-settled-* the
question of *-which-* one of the two approaches was to be preferred: the algorithmic
results of mathematicians like Leopold Kronecker and Paul Gordan were way beyond
the scope of what could be done with pencil and paper, and so they had little to
offer except being more tedious than their non-constructive counterparts.

On the other hand, ‘it would be a *-mistake—* to construe the axiomatic and
the algorithmic method as being irreconcilably *—opposed—* to each other. As
a matter of fact, significant *-algorithmical-* results in algebra were proved by
the very proponents of *-axiomatic-* thinking such as David Hilbert and Emmy
Noether. Moreover, mathematical logic-a field that centers around the *-axiomatic-
* method-made fundamental contributions to *.algorithmic-* mathematics in the
1930s. Alan Turing and Alonzo Church for the first time made precise the concept
of computability in what is known as Church’s thesis, or also as the Church-Turing
thesis. Kurt Godel proved that certain problems inberently elude computability and
decidability. This triggered a wave of new results by Alfred Tarski and other mem-
bers of the Polish school of logicians on the algorithmic solvability or unsolvability
of algebraic problem.



Again, because of their enormous complexity, these algorithms were of

*-no practical-* significance whatsoever.

As aresult, the !!-beginning second half of this century-!! saw an *—axiomatic and

largely non-constructive—* approach to algebra firmly established in both research
and teaching.

*

The arrival of computers———* * * and their breathtaking development
in the !!-last three decades-!! then prompted a *-renewed interest—* in the problem

of **—effective constructions—** in algebra. Many constructive results from the past
were unearthed, often after having been rediscovered independently.

Moreover the development of new concepts and results in the area has now estab-
lished *-computer algebra—* as an independent discipline that extends **_deeply-**
into *-both—* mathematics and computer science.

[oh! Pure Maths |

There are many good reasons for viewing computer algebra as an independent field.
However, the fact that the *~mathematical part—* of it is some what separated from
the work of *-pure algebraists—* is, in our opinion, rather unfortunate and not at

all justified. We feel that this situation **~must and will change—** in the near
future.

As a matter of fact, **-computational aspects—** are **-beginning-** to show
up more and more in undergraduate-level textbook on abstract algebra. * *

[oh! Take a break.]

A case study: Griobner bases There is, however, one particular contribution
made by computational algebra that is in most dire need of being introduced in the
*—mathematical mainstream—* namely, the theory of Grobner bases.

Grobner bases were introduced by Bruno Buchberger in 1965. The terminology
acknowledges the influence of Wolfgang Grobner on Buchberger’s work. ....... Given
a finite set of multivariate polynomials over a field, the Buchberger algorithm com-
putes a new set of polynomials, called a Grobner basis, which generates the same
ideal as the original one and is an analogue to the ged of the univariate case ........

It leads to solutions to a large number of algorithmic problems that are related
to polynomials in several variables. Most notably, algorithms that involve Grobner
basis computation allow **-exact—** conclusions on the solutions of systems of non-
linear equations, such as the (geometric) dimension of the solution set, the exact

number of solutions in case there are finitely many, and their actual computation
with arbitrary pregision.

Most of the problems for which Grobner bases provide algorithmic solutions were
already known to be solvable *-in principle-*. Grobner bases are a *_giant step-
* forward insofar as actual implementations have *-become feasible-* and have
actually provided answers to physicists and engineers.

[ie Pure Maths + Comf)ut.er may-;, applications of DEEP Mathematics. Is this a
happy event? |

On the other hand‘ many problems of 10 more than modérate input size still defy
computation. The *—mathematics behind the algorithms—*, as well as the *—

hardware—* that, performs them have a **-long way to go-** hefore these problems
can be considered solved to the satisfaction of the user.

" [ie full of opportunities.]

The purpose of this book is to give a self-contained, **mathematically sound**
introduction to the theory of Grobner bases and to some of its applications, stressing
both theoretical and computational aspects.

..... Chapter 6-10 cover a wide range of a plications, ..... Strong emphasis is placed
on a mathematically sound verification of the algorithms.

[ie they are not clarelees or non-rigorous mathematics. Are they ugly? ]
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.... theoretically and algorithmically. ........ absence of any complexity theory ......

On the contrary, we feel that complexity theory is too important an issue to be
dealt with lightly. ;

{oh! Pure Maths & Computer Science}

... Furthermore, we demonstrate how Grobner bases can often be used to give *-
elegant an enlightening proofs of classical results—*, ...... This shows that Grobner

are not only a powerful tool for actual computation, but also a cornerstone
of commutative algebra.

[ oh! an extra 'double oh’. ]

SAC from the angle of Mathematics The mathematical uses of computers
can be divided roughly into numeric and nonnumeric applications.

Numeric computation involves primarily calculations in which real numbers are
approximated by elements from a fixed set of rational numbers, called floating-point

numbers. Such computation is usually associated with the mathematical discipline
NUMERICAL ANALYSIS.

One nonnumeric application of computers to mathematics is
SYMB O LI C.COMPUTATION.

Although it is impossible to give a precise definition, symbolic computation nor-
mally inVolves representipg mathematical objects -exactly_ and perform _exact._ cal-
culations with these representations. It includes efforts to automate many of the
techniques taught to high school students and college undergraduates.

The term 'computer algebra’ is frequently used as a syndnym for symbolic com-
putation’. Although the term ’computer algebra’ is well established, it conflicts
somewhat with current usage within mathematics, where ’algebra’ usually is used
in the narrower sense of 'abstract algebra’, the study of algebraic structures such
as groups, rings, fields, and modules.

The word *computer’ in the phrase ’computer algebra’ is also not quite accurate.
It is true that much of what is done is motivated by the existence of computers.

Nevertheless, the algebraic algorithms which have been developed represent, sub-
stantial _-mathematical. achievements, whose importance is not dependent entirely
on their being incorporated into computer programs.

Within symbolic computation there is a rapidly expanding area of computational
(abstract) algebra; which is the study of procedures for manipulating objects from
abstract algebra with particular concern for practicality.

-Computational _Group_Theory. is the &art of computational algebra which con-
siders problems related to groups. her flourishing subfields of computational
algebra are -Computational(Algebraic) Number_Theory, and

-Computational _Algebraic_Geometry.

Symbolic computation is at the _border_ between mathematics and computer sci-
ence. The objects being manipulated are _mathematical _. However, the algorithmic
ideas often have come from _computer._science., and individuals who identify them-
selves as computer scientists have made important contributions to the subject.

A point of continuing debate is the role of —~complexity_theory. in symbolic com-
putation. The traditional complexity measure in theoretical computer science is as-
ymptotic worst-case complexity. For users of symbolic software, worst-case analysis
are often too pessimistic. Of much more relevance is average-case complexity. How-
ever, average-case analyses are lacking for many of the most important algebraic
algorithms. Moreover, there are cases in which no agreement has been reached on
what the average case is. [...] Frequently, all that we can do is apply competing
methods to a selection of test problems and compare the results. Experimental

evidence is better than nothing, but one must be very _careful. about drawing
conclusions from such evidence.
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[..] |

While the work of symbolic solutions for algebraic equations, from integrals to
polynomials, has its roots in work of the Greeks (the Euclidean algorithm continues
to be useful in computing the greatest common divisor in various domains), rescarch
began ih earnest _thirty_years_ago., with the development of Macsyma(TM) for

solving polynomial and integral equations. Since that time a variety of system have
appeared.

Much work in the development of algorithms remains to be done, from a very
-practical. systems development to _theoretical- algorithms research ( Mathematics?

On the other hand, computer algebra systems have been a _useful_tool_ to teach-

ers, scientists and engineers, from (pure) mathematical research to industry and
business.

An article that looks like a concl{pslpn Pure mathem?bics bas resi
computers longer than most branches of science. The advent of computers is fi-

nally, fundamentally transforming the practice of mathematics. Both pure and ap-

plied mathematics and mathematicians are experiencing the upheaval. The changes
include: | . .

* The line between pure and applied mathematics is in flux.
* Computers spur new areas of research and revive languishing areas.
* Computers increase productivity or make productivity possible by providing new
means for: generating examples and testing conjectures; recording and disseminat-
ing information; conducting joint research among far removed researchers.
* Algorithm development motivates theory.
* Computers enhance teaching by providing: vastly improved graphical presen-
tation; ability to present non-trivial examples in class; ability to routinely assign
non-trivial homework problems; tools for students to analyze, experiment and play
with the subject matter.

Areas of mathematics such as applied logic, algebraic geometry, combinatorics,
commutative algebra, dynamical systems, and many others owe their existence,
*—rebirth—* or major new research initiatives to the influence of computers. Re-
searchers in these areas use computers as an extension of hand calculation to com-

pute examples which test conjectures and provide data to increase understanding
and motivate theorems.

Beyond computation, computers exert a profound influence on mathematical re-
search. Researchers delve into the algorithms underlying computation. They find
motivation for pure mathematics from analyzing existing algorithms and developing
new algorithms. Significant developments in the creation of *-algorithms—* require

significant developments in *~theory—*. This is a fertile source of new mathematical
theory.

Buchberger theory, other computational methods, and the related theory are be-
coming known to commutative algebraists and algebraic geometers because of their
importance for computation and because they provide the basis for many new in-
teresting problems. '( Originally Galois theory was primarily computational. Now
a days, proofs often make use of the fact that a Galois group exists and no compu-
tation is involved. The same can be done with Buchberger theory. )

The *-computer algebra—* community realized the significance of this work be-
fore the general academic pure mathematics community. The computer algebra
eommunity involves a full spectrum from engineers to theoreticians. The problem
solvers using computer algebras, the implementors, the algorithm developers and

the theory developers work side by side, motivating and benefiting from each other’s
developments and problems. '

To be Continued ....Continued from above .....
At best, the result is a robust, stimulating, productive scientific environment.

HHEE_XEEX At worst, over zealous theoreticians -Puritans- and over zealous al-
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gorithm developers -Algos- divide into narrow-minded, self-serving communities.
Each thinks it is binarter and works harder than the other. The Algos believe
that algorithmic solutions to problems require better theorems with more difficult
proofs than non-algorithmic solutions. The Puritans believe that the Algos work
on problems which have *-already been—* solved. ***—*¥*

Purely existential results are fundamental to algorithm development. For in com-
puter algebra systems, one wishes to use efficient algorithms as measured by the
number of computational steps and memory usage. Determining bounds on algo-
rithms and finding efficient algorithms requires and motivates further theory. This
is *-why-* algorithmic approaches to problems can be more difficult and involve
more theory than non-algorithmic approaches.

Suppose a new area of mathematics has just opened. Here is a list of new problems
and their difficulties.

Problem: ‘ A B C DEF
Difficulty of non-algorithm approach: 5 10 15 20 25 30
Difficulty of algorithm approach: 6 12 18 24 30 36

At first the Puritans and Algos work on problem A. An existential ‘solution is
obtained before an algorithmic solution. Soon the Puritans are working on Problem
F, while the Algos are working on Problem E. This is *why* the Puritans fell the
Algos are working on problems which have already been solved. The Algos have
contempt for problem F as being of only theoretical interest and irrelevant to the real
world. The first Algos developing algorithmic approaches to F face this contempt
from their Algo peers. Once I becomes established on an algorithmic basis, the
Algos/Puritans act as if they always believed it had real world relevance.

Applications *~made possible—* by computers are part of the impetus for the study
and development of modern commutative algebra and algebraic geometry. The book
presents *-applications—* in chapters on Robotics, Invariant theory of Finite Groups
and Automatic Geometric Theorem Proving. Automatic Geometric Theorem Prov-
ing is not an artificial intelligence attempt to duplicate the human theorem proving
process. Instead, using analytic geometry, the theorem to be proved is reduced to a
system of equations, possibly with some exceptional conditions or inequalities. One
then uses algebraic means to verify the resulting algebraic system. :
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