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Abstract 
I 

This work is an investigation of the mathematics, if any, and the computing 
• 丨 ~ 

knowledge involved in the determination of Galois group of polynomials over the 

rationals up to degree seven. We first describe a finite procedure in van der 

Waerden's 1949 Algebra Text to determine the Galois group of polynomials. It 

requires the construction and factorization of a degree n! polynomial in n + 1 

variables and thus is not suitable for practical purposes. Two workable methods 

are then described. 

Stauduhar's 1973 method for a given polynomial involves finding high-precision 

approximations to the roots of the polynomial, and fixing an ordering for these 

roots. The roots are then used to create (relative) resolvent polynomials of small 

degree, the linear factors of which determine new ordering for the roots. Se-

quences of these resolvents isolate the Galois group of tlie polynomial. 

Soicher-McKay's 1985 method proceeds by efficiently determine sufficient prop-

erties, so as to specify the Galois group to within conjugacy in the symmetric 

group. This conjugation is realized by relabelling the zeros of the polynomial. The 

main tool discussed is the (absolute) resolvent polynomial. For T in Z[xi,…，xn], 

the complete factorization of a resolvent polynomial is used to determine the or-

bit length partition of {T(xi<r,... ,xn«r) : o in under the action of the Galois 
I 

group. An important class of resolvent polynomials considered are the linear 

resolvent polynomials. The use of linear resolvents in determining Galois group 

is discussed and a practical exact method of computing linear resolvents is de-

scribed. 

Roughly speaking, Stauduhar's method is numerical in nature while Soicher-

McKay's method is symbolic. The two methods are compared and contrasted. 
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The success of Soicher-McKay's method depends on exact polynomial factoriza-
i 

tion algorithms that have developed since 1968. As an important and interesting 

topic in a newly emerging field called SAC—Symbolic Algebraic Computa-

tion (Computer algebra or Computational Algebra), we also describe algorithms 

to factor polynomials over finite fields, over the rationals and over algebraic num-

ber fields. 

A demonstration for an implementation of Stauduhar/Soicher-McKay's method 

by Tang Simon in MAPLE are then given. It takes two seconds to obtain an 
I 

answer for the polynomials that we encounter on a Pentium-133. 

Finally in1 an Appendix we argue that Galois Theory is not dead, there is now 

Computational Galois Theory— have developed rapidly recently and that basi-

cally is to blossom Old-fashioned Galois theory with a Computer. We also include 

some notes on the field of SAC. The advent of computing technology prompts 

a renewed interest in the Constructive School of Mathematics and 'that activity 

necessarily interweaves mathematics, complexity theory and software systems. It 

spurs new areas of research and revive languishing areas. The importance of SAC 

in applications has grown in recent years—the methods of Computer Algebra and 

the applications of computer algebra systems in technological areas related to in-

formation processing, software engineering, etc. in which the symbolic nature 

of the objects studied makes the techniques of calculus and numerical analysis 
I 

inapplicable. 

These views should not just be personal as they are supported by a overwhelming 

body of testimonials. 
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Chapter 1 

Introduct ion 
I 

1 . 1 M o t i v a t i o n 
I 

The existence of an algorithm for the determination of Galois groups is nothing new; 

indeed, tlie original definition of the Galois group contained, at least implicitly, a 

technique for its determination, and this technique has been described explicitly by 

many authors, e.g., van dcr Waerden [GaloisBks]. 

1.1.1 Calculation of the Galois group 

A method for actually forming tlie Galois Group of an equation / ( x ) = 0 relative 

t o a field F is the following. 

Let the roots of the equation be rtj,... , a t l . By means of the indeterminates 

«1,--.1,^1, form tlie expression 0 = m a , H 1- unan', perform on it all per-

mutations of the indeterminates u and form the product ^(z^u) (z — 0'^). 

.Ev iden t ly thi? product is a symmetric function of the roots, and therefore, by the 

l'\inclameDtal Theorem of Symmetric Polynomials (theorem 5), il can bo oxpressod 

in terms of the coefficients of f(x). Now decompose 況(么，丑)into irrcciucible factors 

in F[z,u}-. ^{Z>u) = n^u^z.u) • ‘ K^u). 
丨 • 

T h e o r e m 1 The permutations which carry any of the factors, say into itself 

form a group It is exactly 仇e Galois group T of the given equation. 

P r o o f . After adjoining all roots,況 and therefore are decomposed into linear 

factors z - Y ^ u ^ a t , witli the roots a v as coefficients in any sequential order. We now 

affix subscripts t o the roots in such fashion that contains the factor z - (ui^ + 
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h «nQ!„). By Su we shall hereafter denote any permutation of the u, and by 

the same permutation of the a . Then, obviously, the product leaves invariant 

the expression 0 — u 1 a 1 H 1- tliat is, we have 08这8汰=0,6'°- = 0 a : 1 . 

If 8^ belongs to the group g, that is, if it leaves 51̂  mvariant, then transforms 

, every linear factor of , including the factor z — 0�mto a linear factor of Jfti again. 

If, conversely，a permutation transforms the factor into another linear factor 

of 说it transforms into a polynomial whicli is irreducible in F[z,u] and which 

is a divisor of and so it transforms into one of the polynomials 祝j. This , 

价j has a linear factor in common with Therefore the permutation necessarily 

transforms into itself, which means that s^ belongs to g. Thus g consists of the 

permutations of the u which transform z-0 into a linear factor of again. 

The permutations of tlie Galois group r of f(x) are characterized by the prop-

erty that tliey transform the quantity 9 = H f- unan into its conjugates. 

Til is means: transforms 0 uito an element satisfying the same irreducible equa-
tion as 0\ that is, carries the linear factor z-0 into another linear factor of 3^. 

—1 
Now 09^ = ； hence s二1carries tlic linear factor z - 0 again into a linear factor 

of 況l ； Umt Ls s ' ^ n d so belong to g. The converse is also true. Tlnia the Galois 

Group r consists of exactly the same permutations as the group g, except that they 

are performed OD a tlie instead of the u. • 

These sources show that the problem of finding the Galois group of a polynomial 

/ ( x ) of degree n over a given field F can be reduced to tlie problem of factoring 

over F a polynomial of degree ?i! whose coefficients are symmetric functions of the 

roots of f(x). 

In principle, therefore, whenever we have a factoring algorithm over F , we also 
have a Galois group algorithm. 

I 

1.1.2 Factorization of polynomials in a finite number of steps 
IS feasible 

y ‘ 

Let I be an integral domain, where the unique factorization theorem be valid for 

it. Let K be the field of fractions of I. By Gaiifi's lemma, we may assume tlie 

coefficients of any polynomials over K to be in I, and perform its factorization over 

/ . To factorize a polynomial in I [ x i , x 2 ) . . . , xn] , by the method of induction on the 

variable n we shalll now reduce everything to the following problem. 

T h e o r e m 2 Let any factorization in I be performable in a finite number of stej)s: 

moreover, let there be only a finite number of units in I. There is a method of 

,factoring every polynomial in l[x] into prime factors. 
\ 
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I 
P r o o f . The solution is d^ie to Kronecker [GaloisBks](4), cf. Chapter,section 3.L in 

thia thesis. Let f(x) be a polynomial of degree n in /[a;]. If f(x) can be factored, 

then one of the factors is of degree < n/2; thus, if s is tlie jgreatest integer < n/2, 

we must investigate whether f(x) has a factor g(x) of degree < n/2 . 

We form the functional values / ( ^ ) , / ( 0 1 ) , . . . , / ( ^ ) for s + 1 integral arguments 

« 0 , ^ , . . . , « , , . If f(x) is to be divisible by g(x)) then f(a0) must be divisible by 

犮(oo)’ and f(ai) by g(ai), and so on. However, every /(a‘）in I possesses only a 

finite number of factors; therefore, for every g(a{) there are only a finite number of 

possibilities all of which may be found explicitly. For every possible combination of 

values g(a0),g(ai),... ,(?(a8) there is, one and only one polynomial g(x) which may 

be formed by Lagrange's or, more conveniently, Newton's interpolation formula. In 

tliis way a finite number of possible factors ^(a:) are found. 

Employing the division algorithm, we may now find out whether each -of these 

polynomials is actually a factor of f(x). If, apart from tlie units, none of the 

'poss ib le g(x) is a factor of f(x), then f(x) is irreducible; otherwise, a factorization 

has been found, and we may proceed to apply the same procedure to the two factors, 
1 

and so forth. In this manner we finally arrive at the irrecJucible factors. • 

Remark1. In the integral case, / = Z, tlie procedure may frequently 

be shortened considerably. By factoring the given polynomial modulo 2 

and possibly modulo 3，we get an idea wliat degrees the possible factor 

polynomials g(x) might have, and to what residue classes the coefficients 

modulo 2 and 3 might belong. This limits the number of the possible 

considerably. Moreover, when applying Newton's interpolation for-

mula, one should note that the last coefficient Aa must be a factor of the 

highest coefficient of f(x), which limits the number of possibilities still 

further. 
1 

Finally, it is an advantage to use more than s + 1 points a» (preferably 

0，士1，士2 and so on). For determining the possible g(ai) we use those 

/(a<) wliicli contain the least number of prime factors; tlie otlier points 

may afterwards be used in order to limit the number of possibilities still 

further by examining each g(x), and to see whether it assumes values 

which are factors of the respective /(a‘）at all points a‘. 

As Kronecker has described a factoring algorithm for polynomials with rational 

coefficients, tlie problem of determining the Galois groups of sucli polynomials is 

solved in principle. It is obvious, however, that a procedure which requires the 

factorization of a polynomial of degree n! is not suited to tlie uses of mortal men. • 
1 Please see Chapter S*—Factoriug Polyuomials Quiddy. 
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夏ii tliis thesis we describe two practical and relatively simple pr(>ct)dur(» which 

have been used to develop programs for polynomials over Q of degrees 3 through 7. 

To end tliis section, we remark that the problem of determining the Galois group 

of a given / G was declared by Hans Zasscnliaus2 to be one of the 4 main 

problems in constructive number theory, [Poh87]— can demand particularly hard 

computations，and may as well be used to create hard examples for the subalgo-

rithms wse(l, [PZ89] and [Zaa71]. 

1.2 Table & Diagram of Transitive Groups up to 

Degree 7 
I .. 

The two methods that we are going to describe depend on a knowledge of transi-

tive groups. For degrees 3 to 7，the number of transitive groups up to conjugacy 

are 2,5,5,16 and 7 respectively, see Table 1.1 below. Figure 1.1 is the transitive 

subgroups lattice of ；permutation groups up to degree 7, [PZ89]. 

The notation for the group names is similar to that of [Mck79] and [SM85], wlio 

also gives group generators, cf. [Sta73]. An is the alternating group of degree n; Sn 

is the symmetric group of degree n; Z n denotes tlie cyclic group of order n; V4 is 

the four-group; Dn 'denotes the dihedral group of order 2n; Fn denotes a IVobenius 

group of order n; Cn denotes a group of order n. If A and B are groups then A/B 

ineaiif^that A is represented on the cosets of B in A. Croups preceded by “ + ” are 

groups of even permutations. 

I 
• • • 

C \, ? .“ • 丨 、 ： '
A

: 」 . 、 、 . . . ， ' ' ' 

The transitive groups for degree 3 to 7 arc relatively well-know, [Sta73]. But 

for higher degrees, to "Classify' transitive subgroups of Sn up to conjugacy" is a 

non-trivial gi-oup-thooretical questioii, [Coli93], p.317. It has been solved up to 

« = 11, [BM83] and [MR85], in 1985 and up to n = 15, in 1993, see below. For 

higher degrees, the groups,i)ui just tlie number of groups, will become unwieldy. 

Recent work by Alexander Ilulpke confirms these results and extends the tables up 

to degree 31, Appendix B.l[8], with the aid of the Computational Group Theory 

system GAP, [GAP]. 

While 31 is still a very small number, the reader should have no �)robIem to coin-

Prchend that 31! == 8} 222,838,654,177,922,817,725,562,880,000,000 with any 

Computer Algebra System like [MAPLE]. 1 

3 Prof. Zaaaenliaiis passed away on November 21，1991, around six 6 o'clock in the morning. 
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产 … r '� . . 
We include some fhuliiigs of Alexander here: 

I 
degree 2 3 4 5 6 7 

I prim. 1 2 2 5 4 7 

t rarLS. ./ 2 5 5 16 7 

, fpf. 2 2 7 8 37 40 
1 

Total 2 4 11 39 56 96 
I 

degree 8 9 iq n ]2 |3 L4 ]5 

7 11 9 8 6 9 4 6 

trans, so 34 ' 45 8 301 9 63 104 
fpf. 200 258 1038 

Total 296 554 1593 

degree 1.6 17 18 19 20 21 22 23 1 

prim. 22 10 4 8 4 9 4 7 

trans. 1,954 10 983 8 1,117 164 59 7 
degree 'M 25 20 27 28 29 30 31 

prim. 5 28 7 15 14 8 4 12 

trans. 26,813 211 96 2,382 1,852 8 5,712 12 
1 . . . 

All Numbers refer to classes up to 5^-conjugacy: 
prim.: number of primitive groups (see Definition 30) 
trailwS.: number of iransiUve groups (including primitive) 
fPr-:，丨liber of fix point free groups (i.e. groups that are not subgroups 
of smaller symmetric groups.) 
Total: total(?i-l)+fpf(n) 

The numbers for degree > 23 still to be chocked ！ 
Back to my Homepage . 

S o ， d o n ' t know whether the number of transitive subgroups of S2A is 26 813 
Double Oh Eleven also told me that he found the following hi one of Alexander's 
preprint: 

• The classification of transitive permutation groups has been pur-
succi for o v e r a c e n t l i r y s i n c e t h e Q r t m d P r i x o f t � i e Ac<ademie desSci- ' 
^ Z ^ J 0 ^ p r i x d f ^ ^ m t i q u a s , C. 11. A � d . Sci. Paris, 
r ^ n ' o ^ i A U o f w o r k 18 given in [liurl898] and 
i x ； i ? ^ a V C r y r e a ( l a b l c hwUmcal outline can be found in [Mark 
W. bhort, The p r i m i t i v e so luble permuta t ion groups of decree 
} f s s t h a n ?56, Lecture Notes in Mathematics, Band 1519 Surm^er 

1992]. This work leel to a classification of the groups up toSe 
1 5 l M i 1 8 严 ’ 呷 严 8 ’ Kuhl904). Having achieved L s e results c S 
opment stopped for some time and was taken up again with the arrival 
of symbol ic c o m p u t f ion The last twenty years have seen extensive 

广 t h l s ar巧，[BM1983，Royl987, Butl993] noting errors in earlier 

p t i U f h l ° W W h e t h e r C l I I N E S E 4 D o u b l e 0 h E l e v e j l has good taste, cf. Ap-

丨 3 Courtesy of Double Oh Eleven :-) 
I 4 T I H N K OP HIS EUROPEAN OOLI.EAOUEJS. 
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Degree 3 Degree 4 Degree 5 

S 3 • 

SK 551\ 

1 z j 

“ z s 

I 

u-

D e g r e e 6 Degree? 

A S J I a g \ \ 

( \ m+a4 ,+Z7 

, 丨、 
Figure 1.1: Transitive subgroups Lattice^ of permutation groups up to degree 7 
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Degree 3 
Group Description Generators Order 

(123)，(12) 6 

+ ^ 3 _ I (123) — 3 

Degree 4 
Group Description Generators Order 

(1342), (13) 24 

+儿1 (134)，(12)(34) 12 , 

/)4 group of the square (1234), (13) 8 

H,\ cyclic four group (1234.) 4 

+ ¼ Klein 4-gro叩 (1^)(34), (13)(24) 4 

Degree 5 
Group Description Ca«nerators Order 

S\ (12345)，(12) �20 

-\-Ar) (12345)’ (21345) 60 

^20 metacyclic live grotip (L2345), (2354) 20 

+Dr> (12345), (25)(34) 10 
+Z5 cyclic Gve group (12345) 5 

Degree 7 
Group Deacriptkm Generators Order 

S7 (243756), (123) 5040 

+A7 “1 ~ (12.-M567), (123) 2520 

鄉 3 � ( m 俯 ) ’ 轉 7 6 ) ， — 

(2743)(56) 

Fa2 mctacy'dic scvcti group (12:^5(57), (24375(5) 42 

-\-F2t (12345H7), (235)(476) 2J 

P i (1234567)，(27)(45)(36) ~ 1 4 ~ 

+Z7 cyclic seven group (1234567) 7 

Tkble 1.1: Transitive Groups up to degree 7 

' 11 ^ 

1 
. . ' ^ • 1 •-Vv-''". 

. ••• • •• . • t . . . . • , ••• • • 1:-. : ： -V IC -• ； y . .： V>：
 :

 ‘ ：；：;̂-；' V , ；. • . ：： . . . - .. ‘ 



I I 

Degree 6 
Group' Description Generators Order 

Sq (142536), (12345) 720 

+Aq (1524)(36), (12345) 360 

maximal group imprimitive (�23), (456), (12), 
G72 1 72 

on two sets of three letters (45), (14)(25)(36) 

" T i C 7 2 n + ^ 6 ^ T 

(12)(45), (3425)(36) 

(456), 
J 3 6 (12)(45), (14)(25)(36) ' _ 

n � 2 3 ) ’ (456), 
(-T18 18 

(14)(25)(3G) 
Dq metaqyclic six group ( )(,.)’（）(他)’ [2 

(14)(25)(36) 

S3 isomorphic to S3 ( )( )» g , 
(14)(25)(36) 

m (123)(456), 
Zg cyclic six group 6 

(14)(25)(36) 

maximal group imprimitive (12), (34), (5(5), 
Ct4s 48 

on Uircc sets of two letters (135)(246), (13)(24) 

(12)(34), (34)(56), 

(12)(56), (135)(2/16), 24 

(14)(23)(56) 

(12)(34)(56), (34)(56), ~ ~ 
<-»24 24 

, (50), (135)(246) 

+ 4 / ¼ +yl6 (135)(246), (13)(24), ~ 
isomorphic to (12)(M), (34)(5(5) 

— h i e to A ( 1 2 ) ( : M ) , ( 零 ) ， 
(12)(56), (135)(246) 

, P ( 7 L 2 ( 5 ) ‘ ( r 2 6 ) ( 3 5 4 ) ， （ ] 2 3 4 5 ) ， ^ T 
(2354) 

+ P ^ 2 ( 5 ) � � ( J 2 6 ) ( 3 5 4 ) > (12345), ~ 
isoraWphic to +A5 (25)(34) 

Table 1.1 (continued) Transitive Groups up to degree 7 

V 
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1.3 Background and Notation 

We give some basic clefinitidns and results of Galois Theory here, [GaloisBks]. Some 

rudimentary concepts in the theory of periimtation groups that will be used in the 

sequel are also included at the end of this section and let us begin with some 

elementary stuffs in abstract algebra. The version of GaulVs lemma that we use is: 

Lomnia 3 ('GauB'H l e m i u a j Let I be a ufd——Unique FactorizaLion Domain, with 

field of fi'actions K and let f(x) € /[$�• If f(x) is reducible in /if[x] then f(x) 

is reducible in I[x]. More precisely, if f(x) = A(x)B(x) for some nonconstant 

polynomials A(a;),B(a;) G K[x], then there are nonzero elements r,.s e K such 

that rA(x) = a(x) and sB(x) = both He in I[x) and f(x) = a(:c)&(a:) is a 

factorization in i[a;]. 丨 

Def iu i t ion 4 Lei R be a commutative ring with an identity element. 
A polynomial f in /i^i,-• • which is unchanged by any permutation of the 
indeterminates x i , . . . i.e., f(xia,...,xn»r) = / ( x j , . . . , x n ) for every a £ Sn� 

is called a s y m m e t r i c po lynomia l of the variables x 1 } . . . ,a ;n . 

Let T = (z-xi)(z-x2). >> (z-xn) = zn -sizn~l + s2zn~2 + ( - l ) n s „ . Each Sj 

is a polynomial of total degree j in X i , . . . , x n . We call s i , . . . , s n the e l e m e n t a r y 

s y m m e t r i c polynomlaia o/ ’ …’:c n . 

T h e o r e m 5 fPuiwlaniental T h e o r e m of S y m m e t r i c PolyuomialsJ Let f G 

R[xi,..., x„] be symmelric, where. R is a commutative ling with an identity element. 
Then there exists a polynomial h € . . . , x „ ] swe/t thai f = /i(«s,,..., ,sn) where 

.: » 

the sj are the elementary symmetric polynomials o/ a^，...，acTl. 

I 

Def in i t ion 6 A sp l i t t ing field of f(x) £ F[x], splp(/)，is a field extension E/F 
in which f(x) splits (it is a product of linear factors) while f(x) does not split in 
any proper sub field of E. 

Since a splitting field is unique up to isomorphism, we often refer to the splitting 

field. , 

T h e o r e m 7 ( Isomorphts in Ex tens ion T h e o r e m ) Lei a \ F F' be an iso-

morphism of fields, let f(x) G F[x], and let f*(x) = <r(f(x)) (by acting on the 

coefficients) be the corresponding polynomial in F^x]; let E be a splitting field of 

f(x) over F and let E' be a splitting field of f*{x) over F'. ITien there is an 

isomorphism a \ E E' extending o. 1 

V 
13 



Dofiui t ion 8 The po lynomia l f(x) G F[a;] is s epa rab le over F if each of its 

iireiiucible factors over F has no repeated roots (in its respective splitting field). Let 

E/F be an extension of fields, an e lement of E is s epa rab le over F if either it 

is transcendental or its irreducible polynomial over F is separable; if every element 

in E is separable over F, E is a separab le ex tens ion of F. 

Defin i t ion 9 Let E/F be an extension of fields. An elerne.nt a of E is a p r imi t ive 
element if E — F(a). 

T h e o r e m 10 (Tbeorom of P r imi t ive E l e m e n t ) if E is a finite separable ex-
tension of F, then E has a primitive element. 

Defiu i t ion 11 Let E/F be an ex tens ion of fields. Its Galois group； denoted 

by Gal(E/F), (or sometimes Q), is the group of all the automorphisms of E fixing 

F pointwisely under the binary opemtion of composition. 

T h e o r e m 12 if f (x) G 尸[re! has n distinct roots in Us splitting field E, then 

Gal(PJ/F) is isomorphic to a permutation group of its roots, which is a subgroup of 

t/ie symmetric group Sn. We denote this subgroup of Sn by GalF(f)} (or sometimes 

r), and, call it t h e Galois G r o u p of t h e po lynomia l f . 

I 

R e m a r k . However, the subgroup in Sn depends on the labelling of the roots; re-

labelling the roots amounts to conjugation by an element of cf. Chapter^ection 

2.2. 

Def in i t ion 13 E/F is a n o r m a l ex tens ion of fields if every irreducible polyno-
mial over F which has a root in E splits in E. 

Def in i t ion 14 E/F is a Galois extens ion of fields if E/F is finite, normal and 
separable. 

I 

Def iu i t ion 15 Let Aut(E) be the group of all the automorphisms of a field E. If 
G is a subset of Aut{E) , then B° = {aeE: a(a) = a for all a eG} is called the 
fixed field of G in E. 

I 

The author was always puzzled with the various definitions of normal extensions 

by different writers in [GaloisBks]. Fortunately the following two theorems should 

explain the matter sufficiently c.lW. ' 

14 V -



I 

T h e o r e m 16 Let E/F be a finite extension of jields with Galois Group 
Q = Gal{E/F). The following conditions are equivalent: 
(i) F = EP; 

(H) ava-y irre/htcible p(x) G F[a:] with one root in E, has all its roots in E’ and each 

root is simple; 

(Hi) E is a splitting [field of some separable polynomial f{x) £ 

T h e o r 6 m 17 Let E/F be a Jinite extension of fields. Vien E is a splitting field of 

a polynomial over F iff ever-y irreducible polynomial over F which has a root in E 

‘splits in E. 
I 

We are now able to state 1 

T h e o r e m 18 (Xf)t S'un^amentali^fjeorem of ©afois V^zqxK)) Let E/F be a Galois 

(txtension mlh Galois Group Q = Cal(E/F). Let 11 be a subgroup of G and, B be a 

subfield of E containing F, 

(i) The function 7 : Sub(Q) -* Lat(E/F)，defined by H EH, is an oilier reversing 

bijeciion with inverse 7一
1
: B Gal(E/B). In short, there is a bijoctioti between 

the subgroups of Q and the lattice of subfields of E containing F. 

(ii) EGat^!B) = B and Gal{E/EH) = 1L 

(Hi) E鍾=Eli n EK and EHnK = Eu V EK; Gal(E/B V C) = Cal{E/B) n 

Gal{E/C) and Gal{E/B 门 C) = Gal(E/B) V Gal(E/C), 

where. H\/K denotes the smallest subgroup (or subJieM) containing both 11 and K. 

(in) Degree & Index: [B : F] = [G : Gal{E/B)] and [Q ： /7] = [EH ： /r]. 

(iv) B/F is a Galois extension iff Gal(E/B) is a normal subgroup of Q. In this 
case, Gal(B/F) ^ Q/Gal(E/B). 

The following results are used somewhere in this thesis: 

T h e o r e m 19 If f(x) G i''[.x] is irreditcible over a JicUl /'，，then its Galois group 

' GYaiF(/) is traiiBitivo on its roots, i.e., for every two roots a and (3 of f； there is 
a pej-mutation 0 G GalF(f) with (r(a) - p. The converse in Ime if f(x) has no 

repeated roots. 

- 1 

T h e o r e m 20 Lei f(x) € /'» be a sepamble polynomial, and E/F be its splitting 

field. Let f(x) = g(x)h(x) in F[x], and let B/F and C/F be splitting fields of 

g(x)th(x) respectively, contained in E. If BnC = F, then Gal(E/F) ^ Gal(B/F) x 

Gal(C/F)} where x denote the direct product of groups. 

Def in i t ion 21 Let f(x) = a^x11 + a i x n _ 1 + • • •+an and g(x) = b0xm + bjx"1'1 + 

1- bm be two univariate polynomials over an integrul domain D. 

15 � ' 

\ 



/ / a i , . . . , an are the roots of f and 卢1，...，are the roots of (j in their common 
splitting field, then the r e su l t an t rcax(f,g) of f and g is 

n m 

*=ii=i 
, I 

I 
Vie resultant can be shown to be iha determinant of the Sylvester m a t r i x off and 

oo «i . . . ! 

oo ai • •• a„ m rows 

g, namely, resx(f,g) = ao ….•. aM . (In all 

厶 l Ki 
ii rows 

bo 厶 l bm 

blank spaces wc must substitute zeros.) 

It is an element of the integral domain D. 

Dofiui t lon 22 Let f(x) = <H)Xn + a i x " - 1 + • • • + a n be a polynomial of dagree n 

over an integral domain D with roots ,..., a n in its splitting field. Let A = 

11^7-(^ 一 7 7 i e d i scr iminant o f f , disc(/), is defined as disc(/) = 2 厶2. 

Being defined in this way, it is an element of D. Notice that disc(/) = A2 for a 

monic polynomial f . 

We observe an interesting relation, r e s x ( / , / ' ) = (—1) M{n2-1)
 a o disc(/), where f'(x) 

is the derivative of f(x). ( 

For computation of resultants and discriminants symbolically (quickly and avoids 
coefficients blowup)，see [CAbks]. 

The following algorithm can be found in [Coh93] and is used to create stpiarefTee 
resolvent. (This will become clear later.) 

T h e o r e m 23 (Tschirnhai isen IVaDsformat ion^ Given a monic irreducible 

polynomial T defining a number field K = Q(0)’ the following algorithm ouLput 

another such polynomial U defining the same number field. 

i . [choose random polynomial] Let n — deg('I'). Choose at random a polynomial 

A G Z[:c] of degree less than or equal to n—1. 

S. [Compute characteristic polynomial] Compute the characteristic polynomial U of 

ot = A(0). Set U 4 - Tesv(T(y), X - A(y)). 

3. [Check degree] Using Euclid's algorithm, compute V *— gcd(C/, U'). JfV is con-

slant, then output CJ and terminate the algorithm, otherwise go to step 1. 

16 V , 
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T h e o r o m 24 LcL /(x) G F[a;] be a polynomial of degree n over- a field F' which has 
no repeated roots in its splitLing field. y/disc(f) € F iff its Galois group Qal/f(f) C 
An. 

T h e o r e m 25 A field of finite size must has exactly pn elements, where p is a 

rational prime. It is the splitting field of xpn — x over Zp . Ihus all finite fields with 

the same number of elements are isomorphic. We use GF(pn) to denote the Galois 
I 

field (finite) with pn elements. 丨 

T h e o r e m 26 Gal(GF(pn)/GF(p))竺 Zn with generator u h vP.where Zn denote 
the cyclic group of order n. 

Notice that CF(p) is just the field Xp} where p is a prime number. 

T h e o r e m 27 For every p and n there are polynomials f(x) of degree n which are 

irreducible mocl p. They are all divisors of xpn — x mod p. Moreover, xpn — x is 

the product of all monic irreducible polynomials in Zp[x] whose degrees divide n. 

I 

Finally we include a few basic concepts in the theory of permutation groups, 

[Wie64). 

Def in i t ion 28 A permutation group G on Q. is called semircgula r if ever y permu-

tation • id (the identity permuLation) in G has no fixed point. G is called r egu la r 

if it is semiregular and transitive. 

Def iu l t ion 29 Let G be a permutation group on U. We call a subset 吻 of VI a 

block of Q if for each g £ G the image set if)9 either coincide with tp or has no 

, point in common with ip. 

Def in i t ion 30 A transitive permutation group is called impr iml t lve if it has at 
least one nontrivial block '0 (i.e., if) * •�{a}，fi). Otherwise, it is ailled a p r imi t ive 

group. 
I 

1.4 Content and Contribution of THIS thesis 
I 

I 

Allhougli the author has made a MAPLE program, [MAPLE], wliicli can determine 

the Galois group of any irreducible polynomials over Q up 丨to degree 7 within sec-

onds (usually less than two), cf. Appendix A, there has been no contribution to 

Mathematics and Computer Science. 
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I 
Since with reference to Appendix B, this MAPLE program should adequately be 

considered aa a TOY in Computational Galois Theory, cf. Appendix B.l . However it 

is the author's first attempt to make something nontrivial in a newly emerging field 

called Symbolic and Algebmic Computation (or Computer Algebra, Comptitational 
Algebra)} cf. Appendix B.2. 1 

There is a saying that "Pure mathematical ideas are not found in any computer 

program or its output." There are far more sayings that I can understand though. 

I give some findings in ,ny journey here and I hope tlmt some competent and indus-

trious people may draw the proper conclusions, cf. [CAbks] and Appendix B. 

• • 

Chapter 2 in this thesis describes Stauduhar's method of determiiiuig Galois 

groups, [Sta73]. The computational reqiilrementa of this metliod are the approxi-

mated roots (to any desired accuracy) and synthetic division of integral polynomials, 

these rould easily be achieved in 1973. 
I 

In Chapter 4, we discuss Soicher and McKay's method of computing Galois groups, 

[SM85] and [Soi84]. This method is symbolic and exact and requires the use of 

polynomial factorization algorithms developed since 1968, [Ber68] and [Zas69]. 

Since the topic of exact polynomial factorization has formed an important part in 

the field of Symbolic and Algebmic Computation, and because this field is relatively 

new, we find it worthwhile to include the material in Chapter 3 despite thai they 

can easily be found m Computer Algebra Textbooks，[CAbks]. Those textbooks 

have been published since late eighties. 

•k -k -k 

I 

A splendid experience with Computer Algebra Software System like MAPLE, 

[MA.PLE] or Computational Group Theory System like GAP, [GAPj is tlial you 

could be able to know the oxtict solutions to (some) tirbitrary conc.rctc qucalions 

within seconds. For instance, to factorize x w - 1，to do indefinite integration 

f x^+aWxdxi J # 彻 ， i o display the subgroup lattice of.95) to find out the Galois 

, g r o u p of x4 - 2; Xs + 25. To know this kind of answers is not e a s i l y accomplished 

by methods in classical Mathematics t®ct—at best a very tedious method that may 

not be at all clear and practical is available, which might not guarantee to work in 
1 all cases; maybe only scattered examples are found iii the usual cases. Nowadays, 

all this can be done within seconds on a cheap Pentium6. 
‘ ； ！ 

8 The autlior has difficulty in producing instructive examples since he hosaM, ph^yed enough yet. 
6Th.e current prioe is IOHB tlian US$1,000 for Pentium-166 at Hong Kong. 
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There is no need to be rich or powerful. Just use your mind lightly and softly, 

without any ertorljs. To put the game in another way: What is inside the com-

puter? Does it succeed just by calculating fast? Is artificial intelligence inside? Is , 

mathematics involved?7 Pure mathematics or Applied mathematics? 

This work is an investigation of the mathematics, if any, and the computing knowl-

edge involved, for tlie (imputation of Galois group of polynomials over Q. 

• .. 

I 

I 
I 

I 

• . 

I 

' I 

I 

t 

L , 
7 It shouldn't be of very farsigbted to conclude tlial if a computer says thai the iudcGnitc integral 

of sin(x)/x is not olemeutary then either it is lying or (s)]Le does in. facl lenow same matliomatics. 
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Chapter 2 

Stauduhar’s Method 

•‘ I 

The principal reference for tliis chapter is “R. P. Stauduhar, The determination of 

Galois Croups, Mathematics of Computation 27 (1973), 981-996," [Sta73]. 

2.1 Overview Restrictions 

A teclinique is described for the iiontentative computer determination of the Ga-

lois groups of irreducible polynomials with integer coefficients. The technique for 

a given polynomial involves finding high-precision a�)proximatioiis to the roots of 

the polynomial, and fixing an ordering for these roots. The roots are then used to 

create (relative) resolvent polynomials of relatively small degree, the linear factors 

of which determine new ordering for the roots. Sequences of these resolvents isolate 

the Galois group of the polynomial. Machine implementation of the technique re- ‘ 

quires the use of multiple-precision integer and multiplo-precision real and complex 

floating-point arithmetic. Using this technique, Stauduhar has developed programs 

for the detemiiiiation of the Galois groups of polynomials of degree N <7. Two 

exemplary calculatioTis are given. 

Ros t r lc t lons The algorithm to be described will apply o^ily to irreducible monk: 

polynomials with integer coefficients. Since any polynomial with rational coefficients 

can easily be transformed into a monic polynomial with integer coefficients equiva-

lent witli respect to its Galois group, these latter two adjectives create no genuine 

restriction. 

The irreducibility restriction is genuine, however. For suppose f(x) = g(x)h(x) 

in Q[x].，and suppose B and C ore the splitting fields of g and h, respectively. If 

B A C = tbe rational, then the Galois group of f(x) is the direct sum of the Galois 
I 
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I • 

groups of 双(x) and /i(x), theorem 20，and there is no difficulty. If, on the other hand, 

B 门 C7 is larger thaq the rationals, then the group of f(x) is not easily determined 

from those of g(ai) and h(x) without explicit knowledge of the relations whicli exist 

between the roots of g and the roots of h. 

As will become clear, the irreducibility restriction is not essential, but it greatly 

simplifies the work of implementing the algorithm for polynomials of a given degree. 

In this instance, a forthcoming article might be helpful, Appendix B.l[l]. 

There is another restriction. Application of the algorithm to polynomials of degree 

n requires knowledge of all transitive (theorem 19) permutation groups of that 

degree. 

However, the memory size of computers currently (in 1973) available wi]l limit the 

use of Uie algorithm in the near future to cases for which such knowledge already 

exists. Consequently, this restriction is not practically important in 1973. 

2.2 Representation of the Galois Group 
I 

In the classical development of Galois theory, the Galois group of a polynomial is 

regarded as a group of permutations on the roots of the polynomial, theorem 12. 

From the standpoint of computation, this concrete, finite representation of the group 

seems to offer the best hold on the problem of its determination. ConsequenUy, the 

Galois group will here be regarded as a group of permutations. 

More specifically, let Sn be th6 symmetric group on n letters and 丌，& e Sn be 

maps of {1,2,...，n} onto itself. Multiplication of permutations is composition, so 

tha t ka11 = (k^y. 

Let f(x) be a polynomial with rational coefficients and roots on，a2,..., On. Let E 

be the splitting field o f / ( x ) . Let Q — Gal(E/Q) be the group of automorphisiris of E 

fixing Q jjointwisely, see theoreml2. Suppose (f>£Q — Cal(E/Q). Then <f> induces a 

permutation on ，«2» …，彻 ’ which can be set forth as follows: ( “ 1 ' 1 
… J 

( a i , … , t t n \ / 1 , … \ 
1 or I j . Letting 丌诊 denote the final exprcs-

. . . J \ iu J , 
sion here, it is clear that the map ^ defines an isomorphism from Q = 

Gal(E/Q) onto a subgroup T = GalQ(f) of Sn. 

I t is Important to observe that the group r depends on the clioscn labelling of the 

roots of f(x). 

• For if a new labelling a^ — . .•，ô  = o„x is chosen, then the isomorphism 

given above will carry Q onto TIT1 丌一夂 
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Consequently, when the Galois group of a polynomial is given as a group of per-

mutations, an ordering of the roots of tlie polynomial must also be given. 

The materia] presented in the following two sections is well known from classical 

Galois theory. A few of tlie theorems and definitions are presented in a slightly 

unusual form, one which has been dictated by the numerical character of their 

application. The others are set forth simply for completeness and for clarity of 

exposition of the main algorithm. 

2.3 Groups and Functions 
I 

Let T(a;i ’ . . . , a:„) be a polynomial in the indeterminates xir-',xn. The course of 

the Galois algorithm requires that the action of permutations on the arguments of 

such functions be considered. 
I 

Dcf iu i t lon 31 Let T{xi,- - •,x„) be a polynomial in the indeterminates â ，. -. 
Let ir E Sn. Then T 7 1 "， . . • ’x n ) = T(x1r：’ "•，xnn). 

If two permutations are applied sequentially to a function, we obtain the following: 

• { T ^ Y x n ) 二 T 抓 { X l ， … ’ 

I t may be that a function T(a;i, - •.，®„) is left unchanged by the action of certain 

permutations. For example, T(a：!.,• • • ,x„) = xix:i + x2x4 is undiangcd by any of 

the permutations {identity, (1234), (1423), (13)(24), 

(12)(34),(1.423),(13),(24)), 
I 

The collection of all pernmtations on n letters which leave a function unchanged 

clearly forms a group. (The permutations in the above example form the group of 

tlie square.) 1 

• 

Def in i t ion 32 Let T(xi}'",xn) be a polynomial with integral coefficients in the 

indeterminates ¢1，. ‘.，a;„. LetQ be a group of per-mutations on 1,...,71. IfT is left 

unchanged by precisely the permutations of G, we say that T be longs t o G. 

In this definition we restrict the coefficients of T to he integers for reasons tliat 

will be apparent later. 

T h e o r e m 33 Let G be a subgroup of Sn. Then there is a junction 
T(xi,".，rcn) which belongs to G. 

22 v 
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P r o o f . . 
I 

Let 屯(a;!,...,知)=x\4 …a;；；. Define T(x! ’".，；）= D 俨(巧，...’ ；).Clearly, 
a£G 

T belongs to G. For if 7r 6 (7, then the application of 丌 merely peromtes the terms 

of T among themselves, but if 7T 咨 G, then the terms of T are moved onto terms 

corresponding to tlie right coset 6V of G. • 
I 

DeBul t lon 34 Given a function - and a permutation 7r G Sn, the 

function T* is called a conjugate value or a conjugate function of the function T . 

I I 

Now we can ask the question: Given a polynomial T(x j , • • • ,a;n), and a group 

H C Sn ’ how many distinct conjugate values does T lake under the per imitations 

of / / ? This is answered by the following: 

P r o p o s i t i o n 35 Let H be a subgroup of Sn. Suppose T (x i , - - - , x„ ) belongs to 

G C Sn. Then T takes exactly [// : if 门 Gj distinct conjugate values under the 

permutations of 1J. 

P r o o f . Suppose 兀1’冗2 G II. We will show tliat = T冗2 iff ̂  and 7T2 lie in 

the same right coset of / / n G. T^1 = IT 2 ifT ( T ^ 1 ) ^ 1 =丨T i f F T T 1 � - 1 = T iff 

ttittj1 £ H f ) C m (HHG)TTI = (HnG)tt2. • 

Def in i t ion 36 Suppose G and H are subgroups ofSn and T(xi , - - -,a;n) belongs to 

G, Let G' = GnH. We say then that T be longs t o G' in H. That is, among the 

permutations in I f , exactly those of G' leave T unchanged. 

, P r o p o s i t i o n 37 Suppose G and H are subgroups of Sn, with G c H, and, suppose 

T(xi,---,^) belongs to G in H. //丌 € FI then belongs to 7r_1G7r in H. 

P r o o f . T ( x i , - . • ,rc„) belongs to G in H ifF Va € J-/, Tff = T a 6 G 

ifF Va G H, (Tw 广 = ^ xG-k 

iff T w belongs to tT1Gtt in 11. • 

Now suppose ,x„) belongs to G in Hf and [/ / : G] = k. Then we can 

choose permutations 7r< G / / so that H = Giri U • . . Girk and hcnce, as we liave 
… � ' . � T V I.C. 

shown, so that the functions T = T^1 , TWa ’...，Tw* are formally distinct. I t should 

be noted, however, that the values of these functions are not necessarily distinct on 

a fixed n-tuple of numbers. 

For example, let T(x1}a:2, ^3,^4) = + + + so tliat T be-

longs to the cyclic group generated by (1234), with right coset representatives 

{identity, (12), (13), (23), (123), (132)} in SA. Now if we evaluate T and its con-

jugates on the four roots of f(x) = a:4 - 2, with the ordering (0 :1 ,02 ,^3 ,^4)= 
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I 

- i ^ / % w€j observe that 

1 ( 2 3 ) ( 0 ^ 0 : 2 , 0 ^ 0 1 4 ) = ^ ^ ) ( 0 : ^ 0 : 2 , ^ 3 , ^ 4 ) = 0. 

I 

2.4 Relative Resolvents 

Fuuct ious and. t h e Galois G r o u p In tliis section, wc consider the relation 

between the Galois group F = Galq(f) of an ii-redticible n th degree polynomial 

f{x) and tlie values taken on the roots of f(x) by functions belong to subgroups of 
Q . 'I flti 

1) 

T h e o r e m 38 Let J(x) be a monic irrexluc,ible polynomial of degree n with integer 

coeffidtnts. Let 0^,0:2,...,0^ be a fixed ordering of the roots of f(x). 
1 

Suppose H is a transitive subgroup ofSn, and suppose that, with respect to the given 

ordering of the roots, the Galois group V of f(x) is a subgroup of H. Let G be a 

subgroup of H and T(xi, • • • ,a;n) a function belongs to G in H. Let 丌1，冗2, 

be rq)resentative for the right cosets of G in IL 

llien the r e la t ive resolvent polynomial 
k 

=U(X — (T("l，a2’ …’〜)广） ‘ ( 2 . 1 ) 
t=l 

has integer coefficients. 

P r o o f . For each i，1 < i < ^ , ^ ( 0 : 1 , 0 2 , - , ^ ) ) ^ is an algebraic integer. Hence, 

tlie coefRcients of ^ft(H,G)(x) a r e algebraic integers. 

Now suppose a 6 T. Then a G //，and hence 戊(3i(/f,c;)(aJ))= 

- ( ⑴ 例 购 ’ … ， = n L 办 - ( 丁 ⑷ ， . . ” � „ ) ) ¥ ) . 
But tlie set Trie, tt2<7, .. • ,7TfcO" is also a set of right coseb representatives for G in if. 
Thus, the application of 0 has merely permuted the roots of ,^)(^), leaving the 

coefficients fixed. The coefficients of 況(̂ ,0)0) are then algebraic integers left fixed 
by r and are therefore, by Galois theory, rational integers. • 

At tliis point it is worth mentioning that the roots of ^ h , g ) { x ) may be not be 

distinct, as the example following Proposition 37 shows. 

2.4.1 Computing Resolvents Numerically 

Assume that higli-precision approximations to the roots of f(x) are known. Since 

the resolvents being dealt with are known to have integer coefficients, it is only 
necessary to calculate the coefficients or resolvents to within an accuracy of in 1 

order to determine them exactly. To insure this accuracy, the roots of a typical 
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resolvent = njLiO1 ' 一 (T(oii,012,...,0^,))^) can be calculated to high 

precision, using the given approximations to oji, 0:-2, . . ”a« , and the product can then 

be expanded to obtain approximations to the coefficients. Multiple-precision com-
" 1 

plex floating-point arithmetic routines are generally required to obtain the necessary 

accuracy. 

In the discussion of the Searching Procedures in the next section (also see theorem 

39 below), it is assumed that thoae integer roots of resolvents with respect to which 

reordering is taking place are not repeated roots. In tlie case that all the integer 

roots of a resolvent have �miltiplicity greater than one, the resolvent can be recal-

culated with respect to a new function, or the input polynomial can be operated 

upon with a Tscliirnliaiis transformation, theorem '23 (which preserves the Galois 

group) in order to obtain a resolvent without repeated roots. 
I 

2.4.2 Integer Roots of Resolvent Polynomials 

Theoro in 39 Let all the asfrtimptions of Theorem 38 hold. T ( a i , a 2 , . . . , a n ) is a 

root since one of the coset representatives of G in H lies in C itself. 

Assume T(ai,0:2,...,^) w not a repeated root 0/^(//,0)(^)-

Then T c G ij(f T(ai，£*2’...，《n) is a rational integer. 

P r o o f . First, observe that T(«i,0:2, . . . ,«„) is an algebraic integer. 

Now aasume r C G. Let a G r . Then a G G\ hence T a = T. Consequently, 

Tfoij，a2,..” 0«) is fixed under the action of all elements of the Galois group, hence 

it is a rational number, by Galois theory. Since it is an algebraic integer, it is a 

rational integer. 

Conversely, assume T(a i , a 2 , . . . ,On) is a rational integer. Tlieii is 

fixed by the Galois group F. Bub among the permutations of H ouly those of G fix 

T(oii，a2y …’ since it is not a repeated root of Hence ( r n H) C G. 

But by assumption V C H. Thus r C G. • 

I 
Coro l la ry 40 Assume (巧叫’购’…’�„))” is not a repeated root of tG)(x). 

IhenTc ^Cin Uf {T(aua2,...,^)) is a mtional integer. 
— I 

Coro l la ry 41 Suppose (T(aj，a2,…，an))^ is a rational integer, and not a repeated 
root of^{IIta)(x), 80 that i1 C 7r~1G7Ti. If the roots of f(x) ar-e reordered according 
to 作切 a j — ， tf ien T(«1,0:2,..., a^) is a rational integer, and with respect 
to this new ordering, r c G. 

Something now should be said about how integer roots of resolvent polynomials 

are identified. If a given (approximate) root of the resolvent 9i (MliAfa)(a;) seeiris to 

I v 
25 

I 



I 

I 

be an integer to witliin some reasonable tolcrance, it ban be rounded to that integer 

and a synthetic division can be performed with 5)^(^ .Afj)^) test whether tlie 

integer is indeed a root of the resolvent. 
I 1 

2.5 The Determination of Galois Groups 

Since polynomials over Q are sqmrable, theorem 24 is well-adapted in our situatioD 

here. It is very useful in trying to determine the Galois group of a polynomial. 

T h e o r e m 42 Let f(x) be a monic irred,ucible polynomial of degree TI with integer 

coefficients. Then the Galois group of f(x) is a subgroup of the alternating group 

An iff the discriminant d\ac(f(x)) is a perfect square. .. 
I 

Now suppose that a monic irreducible polynomial f(x) of degree n with integer 

coefficients is given. Assume lliat the discriminant disc(/(.x)) and its square root 

are known. (There is a simple recursive technique for computing tlie discrimbiant 

of a polynomial, given its coefficients. See [Sta73] and [CAbks].) Assume further 

that high-precision approximations to the roots of f(x) are known. 

2.5.1 Searching Procedures 

Place the approximated roots in an (arbitrary) initial ordering 叫，购，…，an. Let r 

denote tlie Galois group of f(x) with respect to this ordering. Now suppose that 

M is a maximal transitive subgroup of S^，M # ,and [Sn : M] = k. (The case 

Af = An will be considered later in this sectioiii) We know, a priori^ tha t V C Sn. 

To determine if F C M, or some conjugate of M , calculate a resolvent polynomial 

of degree k’ numerically, using a function ..., belongs to M in Sny and 

a set 7Ti, - • • of right coset representatives for M in Sn. 

According to Theorem 38, this resolvent is monic with integer c«cHicients. Test 

the resolvent for integer roots. If it has none, then F is not contained in any of the 

conjugates of M, and siniilar resolvents may be computed, corresponding to other 

, conjugacy classes of maximal transitive subgroups of Sn. 

Suppose, however, that 轮 ( 工 ） b a s ail integer root. Then this root is 

(T(a i ’ «2» …，On))*1 ’ where 7Ti is one of the chosen coset representatives, and in 

consequence of the first corollary to Tlieorein 39, F C TrfiMTTi. 

The roots of f(x) iiiust now be reordered, so that a'^ = ajn{. After tlie reordering, 

according to the second corollary to Theorem 39, we have I1 C M. 

I I v 
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Now, assuming tliat r C M, suppose M* is a maximal transitive subgroup of 

M，and T* is a function belonging to M* in M. Then a resolvent polynomial 

轮(m:m*)(丨)of degree [M : M*) is calculated, and this new polynomial is tested 

for integer roots. (This resolvent is, again by Theorem 38, monic with integer 

coefficients.) If an integer root of 沂(似:似*)(怎)is found, the roots of f(x) are again 

reordered to insure that I � C M*. 

Searching continues in this way until either none of tlie resolvents at a given level 

, yield ail integer root, or a minimal transitive subgroup of Sn is located. (We need 

consider only transitive subgroups of Sn in tlie course of the search, since f(x) is 

assumed irreducible.) 

I 

At each level of the search, clearly, only groups not previously eliminated need be 

considered. Suppose, for example, that Sn lias maximal subgroups M\ and M2, and 

ifc is discovered that has no integer roots, but that does, so 

tliat F ^ Mi, and I � C M2. Then, for tlie remainder of the search, groups whicli lie 

within Mi 门 M2 are automatically ruled out aa possibilities'for I � . 

We have not yet described how the discrunuiant is used. It is used in two ways. 

First, if none of the resolvents associated with the maximal transitive subgroups 

of Sn yield an integer root, then r = A n or V = Sni depending on whether or 

not disc(/(a:)) is a perfect square. Second, if disc(/(a:)) is a square, and we have 

determined that r C M, then we know that r C Mr\An. Use of this fact simplifies 

the search procedure to some extent. 

I 

2.5.2 Data: T(.Ti,.T2,...，xn), Coset Representatives & Search-
丨 ing Diagram 

, T h e following tables and diagrams contain the data needed to find tlie Galois groups 

of polynomials of degree n < 7. Information used'in coiistrucling the tables and 

trees presented here has been gleaned from various sources by Standuhar. He lias 

constructed a similar table and tree for the clegroe-«ig]it case. It was not given in 

[Sta73], since it has not been chiecked by actual computation. ' 

Table 2.1 describes, when required, functions belonging to these groups, as well as 

the necessary coset representatives. 

The alternating and symmetric groups of the various degrees are not included m 

the tables. No functions are given belonging to the groups for wliich no resolvent 

is computed. For example, in the degree five case, if the Galois group r of a 
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polynomial f(x) is a subgroup of F20, and disc(/(x)) is a perfect square, then 
r C +D5，otherwise F = F20. Consequently, it is never necessary to compute a 
resolvent of tlie form , + ) ( ^ ) , when disc.(/(a;)) is known. 

The groups of degree six have been divided into three categories: the grouj^ 

imprimitive (see definition 30) on two sets of three letters, the groups imprimitive 

on three sets of two letters but not two sets of three letters, and primitive groups. 

They are given in this order in the table. 
1 

1 

1 

• 1 
1 

I 

1 -

I 

1 

» 
I 
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Degree 4 
. � right � s e t 

Group C T (x i，X2，…,xn) 
representatives 

D4 -¾ X1X3+X2X4 ui, (23), (34) 

Z4 D\ xtxl+xaxl+xax^+xixj i<l, (12)(34) 
-

1 Degree 5 : 
. � right coset 

Oroiip C T(x.i，X2，...，x„) 
1 representatives 

— — 1~ ——^―—————^―———-
c, 0 (X1X2+X2X3+X3X4+X4X5+X5X1 id, (12)(34), (12435), 
^20 ^5 _ ！ 

-X1X3-X3X5-X5X2-X2X4-X4X!)2 (15243)，(12453),(12543) 

+ ¾ +£>5 xix|+x2x'^4-x3xt+x4x§4-x5x ,f id, (12)(35) ' 

Degree 6 
� right coset 

Group C T(x l rx2’…’x„) , 
� representatives 

id, (2543), (23fi)(45), 

(2453), (25), (2345) 

(24536)，(3645) 

+^36 I , 
i (xi-x2)(x2-xa)(x3-x1) g36 G72 id, (r»r>) 

• ( X 4 - X 5 ) ( X 5 - X Q ) ( X 6 - X 4 ) 

Gjg 

(x1-x2)(x2-x3)(x3-x1) i<l, (12)(45), (56), 

+ ( X 4 - X 5 ) ( X 5 - X 6 ) ( X 6 - X 4 ) (12)(465) 

Table 2.1: The function T ( x i , x 2 , . . . ,a;n) and right coset representatives 

J 
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Degree 6 (Continued) 

^36 
f)G , id, (12li), (132), (56), 

Q n xiX44-X2X5-fX3X6 (123)(56), 
(132)(56) 

.¾ <̂ 18 X1X4+X2X6+X3X5 id, (123), (132) 

一 知 ^ T 〜 „ 綱 ’ ( m ) 

+x4x|+x5xf+xex5 

id, (24635), (26)(3.5), 

(354), (2345), 

(253), (345), (256)(34), 
C/48 X1X2+X3X4+X5X6 

(26435), (2346), 

(234), (25)(36), (2435), 

(24)(35), (26543) 
(XX+X2-X3-X4) 

I .(X3+X4-X5-X6) 
^ 4 / ¾ G妨 .(X5+X6-X1-X2) (12) 

(X1-X2) 
‘ I I: 

-(X3-X4)(XG-X6) 
(XX4-X2-X3-X4) 

C 2 4 ' ( X 3 + X 4 - X 5 - X 6 ) . id , ( 1 3 ) ( 2 4 ) 

-(X5+X6-X1-X2) ^ 

4-^/¼ 
+Al + ^ 4 / ¼ see Q2 i itl, (13)(24) , 

(X1X2+X3X5+X4XG) 

•(X1X3+X4X5+X2X6) . f ‘ 
PG/v2(5) Sq (X:{X4+XIX6+X2X5) ’ ‘ ’， ’ ’ 

•(X1X5+X2X4+X;)X6) ’ 1 

•(X1X4+X2X3+X6X6) 
-|-i>gL2(5) 

Table 2.1(Continued) The function T^a^a^，... , x n ) and riglit coset 

representatives 
1 

1 

V 
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Degree 7 
(；蘭p C T(xi，x2”..，x„) ngFit cobcl 

j re]jre8entatives 

id, (356), (365), (34)(56), 
1 (354), (364), (456), (345), 

(36)(45), (465), (35)(46), 

X 1 X 2 X 4 + X 1 X 3 X 7 (346), (47)(56), (35)(47), 
I 

+PSL3{2) S7 +X1X5X6+X2X3X5 (36)(47), (243756), (243675), 
+x 2x 6x 7+x 3x 4x 6 (243)(57), (2^75), (2475.¼). 

+X4X5X7 (247563), (24G375), (246)(57), 

' (246753), (24)(375),, 

(24)(36)(57), (24)(567), 

(245)(37), (245736), (245673) 

Let A be the set coiisistuig of 

X1X2X4+X1X2X6 the even coset representatives 

+x i x 3 x 4 +x 1 x 3 x 7 for PSL3(2) in S7； 

+X1X5X6+X1X5X7 Let B be the set of all 

厂42 »SV 4-X2X3X5+X2X3X7 coset representatives 

+X2X4X5+X2X6X7 for G2iiii PSL3(2). 

+X3X4X6+X3X5X6 Then % rcqniretl 120 oosct 

+X4 X5X7 +X4X6X7 representatives here 

are.given by A • B 

itl, (37)(56), (23)(74), 
+PSL'A(2) see I'\2 C S7 (2347)(5G), (24)(56), 

(24)(37), (2743)(56), (27)(34) 

^ ^ … + x 6 x 7 + x 7 x i 吡(235)(476), ( ^ ) ( 4 6 7 ) 

+ ¾ +F21 I sec D 7 C F42 id, (235)(476), (253)(467) 
Table 2.1(Contiimed) The function T(x1}x2l... ,a;n) and right coset 

representatives , 

• • 
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D E E R E E 4 DESREE S 

s - t s a “ 

D 丄 

D e c r e e 6 八 -
D e g r e e 7 

G ， X j A , / � S i > f 4 2 

N / ^ s y z , G ^ J + s y v 4 + P S L a < 5 ) o + 巳 丄 口 

\ A+z? 
s丄 \ 

Figure 2.1: Stauduhar's method of traversing in the Transitive subgroups Lattices 
I 

T h e diagrams in Figure 2.1 indicate, for each degree, the order ID which searching 

can be carried out (i.e., the order in which resolvents should be computed), so 

tliat optimal use is made of iMJcumulated information. For these diagrams, the 

following conventions have been adopted: (1) a t any particular node, searching 

proceods from left to right on the branches leaving that node; (2) nodes isolated 

tlirough examination of the discriminant are identified by a "(A)" (for alternating); 
a n example is the node + ¼ in the tree for n = 4; (3) the alternating group An is 

not shown in tree n. 

, I'�or n = 3’ the only transitive groups are S3 and /1». Ilencc the Galois group of 
a n irrcjducible polynomial of this degree is determined entirely by the value of the 

discriminant of the polynomial. Consequently, no tree is shown for this degree. 

2.5.3 Examples 

E x a m p l e 1. Let f(x) = x 6 - 42x4 + 80x3 + 441.x2 - 1680a: + 4516. 

f ( x ) ^e shown to be irreducible over tlie rationals. Let r denote the Galois 
group of f(x). 1 
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First of all, disc(/(a;)) = -2994775465327199186944, clearly not a perfcct square. 

The roots of f(x) are (ajiproxiniately) on = 4.392 - 1.570i; a2 = «7, . Let 

a3 = -5.490 - 0.780i; a4 = SJ, 
ar, = 1.098 - 2.355i; a 6 = d^. 

this be the initial ordering of the roots. The maximal subgroup G72 of Sq has the 
ten right coset representatives 7r, = identity 7r6 = (2453), When the resolvent 

tt2 = (2543), 7T7 = (25), 

7T3 = (236)(45), tt8 = (2345), , 

n = (25436), tt9 = (24536), 
tt5 = (:25)(34), 7T10 = (3645). 

价 i s computed using the above data and tlie function Tf^a^，... , : r 6 ) = 
^ix2x3 + x4x5x6 given in Table 2.1, we obtain 

況 ( 為 灿 2 ) � = x 1 0 + 80x9 - 59166x8 - 4390320x7 [The actual calculation 

+1200615393¾8 + 88076918880rc5 

-7198940057856a;4 - 388801984512000.¾3 

4-20193311991398400a;2 

+595967pC)0182784000x 

, -4689149328097280000. 
of tlie resolvent was made carrying 192 bits of precision. With this precision tlie 

coefficients of the resolvent were integers to witliin 2~96.] The resolvent has a single 

integer root, —80, corresponding to the conjugate value TW s , and no repeated roots. 

Consequently, T C ^ 7 2 ^ 3 and, after reordering the roots of f(x) according to 

the rule o/j = we know that F C G72. 

G72 has two maximal subgroups of order 3 6 ， a n d Since +G§6 C +A 6 , 

and since we know that (lisc(/(x)) is not a perfect square, V ^ + 6 ¾ . 

Computing the r e s o l v e n t ' j f t ^ ^ i J (x), we find 略)(x) = (x + 137376) ( . x -

137376) and therefore r C Gj 6 . 
‘ I 

Now, contains two isomorphic versions of G1 8’ which are conjugate in C72 

but not in Tlierefore, to test whether T is contained in some conjugate of 

C?i8，one can either compute a single quartic resolvent %77ai(7,8)(x), or a pair of 
quadratic resolvents Adopting the first course, G 1 8 has the four 

right coset representatives {identity, (12)(45), (56)，(12)(465)} in G 7 2 . We then find 

況 = (x+360i)(x-360i)( j /+648)(y-648) and we have r C (56)G18(56). 
Reordering the roots of f(x) again, using the interchange (56), we have C G1 8 . 

Finally, 6 \ 8 has the transitive subgroup 63, and the resolvent associated witli this 
subgroup turns out t o be ^(G l B ,sB)(x) = x3-1323x4-7722 = (x -33) (x -6 ) (a :+39) . 
Thus,<r C 

Since S3 is a minimal transitive subgroup of SB) T = S3. Therefore, with respect to 
» 

1 

33 ~ , 
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the final ordering a t - 4.392 — 1.570i; a 2 = 一 5 . 4 9 0 — 0.780i; the Galois group 

a 3 = 1.098 + 2.355¾； a 4 = 1.098 - 2.35¾； 

a& = 4.392 + 1.570i; a 6 = 一 5 . 4 9 0 + 0.780i; 
of / � is {identity, (123)(465),(132)(456),(14)(25)(36), (15)(26)(34), (16)(24)(35)), 
a group isomorphic to S3，Table 1.1. • 

Example 2. Let j(x) = xQ- 32a;4 + 160x3 一 320a;2 + 384a: - 256. 

Again, f(x) is irreducible over the rationals, and again we let r denote the Galois 
group of f(x). 

First of all, disc(/(a;)) = 403780252137947136 = (635437056)2. 

An initial ordering for the roots of f(x) is c^ = 1.587; a 2 = 0.517 — 1.342i; 

1 0:3 = «2 a4 = 2.534 + 1.927r, 
1 

0:5 — a l a 6 = - 7 . 6 9 0 . 
Tliis time, we obtain the resolvent 

%e,«72)W = ^10 + 160x9 + 1254½8 + 761856a:7 whici proves to have no in-
+35586048x6 + 1375731712a;5 

+3984588800(b;4 + 935765999616a;3 

+15169824489472x2 

4-172073569746944¾ 

-30786325577728. 
teger roots. Hence r is not contained in any of the conjugates of G n . 

We next compute a resolvent with respect to the maximal subgroup G4g of index 15 

in SQl = a;15 + 96x14 + 4992a:13 + 171520a:12 This re-

4546560a;11 + 99237888x10 

+1895104512a;9 + 3L195136000x8 

+448874414080x7 + 5653059376768a;6 

+63843346677760.T5 + 60676720977510½4 

+450432118187622½3 + 28162341078040576a;2 , 

-f71405583642656768x + 0. 

solvent has tlie single integer root 0 corresponding to tlic conjugate value T(26543) 
I 1 

of the function T(a;i，...,x6) = xxx2 + 0:30:4 + x5.T6. After reordering the roots of 
f(x) according to (26543)，we have Y C G4 8 . 

Since disc(/(x)) is a perfect square, F C G48 n -\-Aq = +S4/VA. There is only one 

transitive subgroup of 4 - ^ / ¼ whicli is not also a subgroup of G72. Thii group is 

+^4 , and computing the resolvent 5R(+s4/v4l+yi4)(a；) = x2 - 103424, we find tliat 

r = 4-54/V4, since this resolvent has no integer roots. 

! 

I 
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Thus, with respect to the final ordering o^ = 1.587; 丨 c*2 = —7.690; of 

«3 = 0.517 - 1.342i; «4 = 03 

a& = 2.534 + 1.927i; a 6 = 7 ^ 
the roots of / (x ) , the Galois group I � o f f(x) is a group of 24 even permutations, 
isomorphic to S^. Generators for this group are given in Table 1.1. 口 

Please see Appendix A for the demonstration of the author's MAPLE 
program on these examples—It took two seconds to obtain an answer 
on his cheap Pentium-133. 

2.6 1 Quadratic Factors of Resolvents 

1 Suppose Mi and Ma are non-conjugate maximal transitive subgrou]))3 of Sn�and 

/ ( x ) is an irreducible polynomial of degree n with Galois group F. II bas been 
I 

shown, above, that a resolvent polynomial 5R(s„,m,)(^) can be used to determine if 
1.�is a subgroup of some conjugate of Mi. This is done by searching, in t^Fect, for 
linear factors of 

It is sometimes possible to determine i f T i s a subgroup of another maximal transitive 

subgroup M2 by searching for higher degree factors of There are obvi-

ous practical advantages to this approach if [Sn : M i � is substantially smaller than 

[S"n : M2]. For example, S-j has two 'maximal' transitive subgroups: + PS of 

index 30, and F42, of index 120. It turns out that by looking for quadratic factors 

of the resolvent of degree 30, one can avoid ever dealing with a 

resolvent of degree 120. (A similar situation occurs in the degree eight case.) 

A difficulty is encountered, however, in using quadratic factors of resolvents. Under 
I 

certain circumstances a quadratic factor of 轮(礼’ MO^C) will guarantee that I � i s a 

subgroup of some conjugate of Af2, but will fail to specify exactly which conjugate, 

l b put it another way, it is sometimes impossible to extract from the quadratic 

factor tlie information necessary to reorder the roots of f(x). As it turns out, this 

unpleasant situation can always be avoidtxl in llic dogrcc seven and (kigroo ciglit 

coses. Even so, tlie procedure for obtaining reordering information from a quadratic 

factor is somewhat complicated and will not be discussed here, see [Sta69]. 

2.7 Comment 

1 Stauduhar gave a method for computing Galois groups of polynomials f in X[x]. 

l ie used approximations to the roots and worked down from the symmetric group, 

Sn�through the transitive subgroups, to identify GalQ(f) as a transitive group of 
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degree up to 8. i 

I 
• The required precision of the roots can be very large. Staucluliar himself 

reported calculations usir^g 192 bits ( « 60 digits) approximations ^o the roots 

of a degree 6 polynomial. In Appendix B.l[2], it is stated that calculations for 

certain degree 11 and 12 polynomials require thousands of digits of precision! 

• Traversing the subgroup lattice from the symmetric group down to the Galois 
group of the polynomial can take substantial time. 

• Much tabulated information is necessary and should store into the computer. 

In fact, tliis method becomes unwieldy when there are many transitive subgroups, 

as there are when t̂ he degree is, say 12, there are about 300 such subgroups. A 

reason for this is that of storing or computing polynomial1 invturiants and data for 

traversing the transitive subgroups to identify G(Uq(J). 

I 

I 

• I 
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Chapter 3 

Factoring Polynomials 
Quickly 

While only linear (or quadratic) factors of resolvent polynomials are required in 

Stauduhar's method of computing Galois groups, Soiclier k McKay have developed 

a method based on the complete factorization of resolvent polynomials, [SM85]. 

, ]Sxact and efficient polynomial factorization algoritlims have developed since 1968, 

[Ber68] and [Zas69], Perhaps part of the motivation of such Algor i thmic pure 

M a t h e m a t i c s was due to the advent of c o m p u t i n g technology. Polynomial 

factorization has been one of the important topic of a newly feinerging field called 
Symbolic and algebraic Computation, or Computer Algebra, Computational Alge-

i 
bm. Textbooks in this area have been published since late eighties, [CAbks]. See 

Appendix B.2 for more information of SAC. 

The principal references for this chapter are "Factoring Polynomials Quickly, Susan 

Lanclau, Notices of the American Matheinatica] Society, [Special Article Series], 

Vol. 34, No. 1 (1987), pp. 3-8，” [Lan87] and also tlie Computer Algebra textbooks, 

[CAbks]. ' 

3.1 History 

3.1.1 From Feasibility to East Algorithms 

Computer science has a way of reaching back to the origins of mathematics: arith-

metic and computations. Finding primes, factoring integers~the old problems re-

cur. This is the story of another: factoring polynomials into irroducibles over the 
• I 
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ratioDals. The question of computability was aiiswered centuries ago, but an effi-

cient solution was arrived at only recently. 

The problem hns a venerable history: Isaac Newton tried his hand at it, and saw 

a way to find linear and quadratic divisors. In 1793, Priedrich von Schubert，an 

astronomy, generalized Newton's technique and detCTiiiined all factors. 

Von Schubert's idea was to calculate / ( 1 ) , / ( 2 ) , . . . , f(n) where n is the degree of 
I 

f(x)t the polynomial in question. Then factor the f(i). If d(l) ,d(2), . •. ,d(n) is a 

particular aoqucucc of divisors of /(1.), / (2) ’ … ’ f(n)，then the rf(i) define a poten-

tial factor of /(X)，one whicli can easily be found by interpolation. The complete 

factorization of / ( x ) can be delermlned in this way. 
I 

Von Scliubeit's technique would satisfy logicians~it shows that the question is 

d o c i d a b l e b u t not someone who really wanted to factor. It 's too slow. The 

algorithm requires at least 2n steps to show that a polynomial of degree n is irre-

ducible. It is infeasible fcir factoring polynomials of degree 20 or more. The issue is 

complex i ty : how long must a factoring algorithm take? 
I 

Computer scientists believe that po lynomia l t i m e solutions~algorithms which 

take a polynomial number of steps in the size of the input~are the only feasible 

kind. Von Schubert's algorithm is exponential in the degree of the polynomial. 

ActuaJly there are two parts which contribute to a polynomial's size: its degree, 

and the number of bits needed to express its coefficients. Considering first the 

degree, there are two possible measures for univariate polynomials: the sparse no-

tation, in whicli 'a;n 一 1' would be written as ( n ’ l ; 0 , - l ) , taking O(logn) bits, 

and the dense, in Whicli the same polynomial would be ( 1 , 0 , 0 , . . . , 0 , - 1 ) , requiring 

0{n) bits. Since a polynomial of degree n may have as many as n factors, the more 

natujfa] dense notation has been accepted as the 'right5 measure of a polynomial's 

size. 

As for the coefRcienta, suppose f(x) = fnxn + . , . + fxx + / 0 . Then if g(x) is a 

factor of f(x) of degree m, the ith coefficient of g(x) is less tlian ("l)(X)iLo 

(We will denote C L o / i 2 ) ' hy \f{x)\.) This meaius that g(x) may he expressed 

in a number of bits that is polynomial in the size of f(x)} and since there are a t 

most n factors of f(x), a complete factorization can be written down in polynomial 

space. In theory, a t least, a polynomial time solution to tlie polynomial factorization 

problem is possible. 

Certain parts of the problem are easy. For example, it lias long been known how 

to pull out multiple factors of a polynomial. Suppose f(x) has an irreducible factor, 

of multiplicity k. Then ^ " ^ x ) divides the gcd( / (x) , / ' (x) ) (while gk(x) does 

not). The gcd is quickly computed by the subresultant version of the Euclidean 
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Algorithm, which also avoids any coefficient blowup. Instead of factoring / (x) , 

one factors and gcd(f(x)J'(x)). Iterating tliis procedure means that 

only squarefree polynomials need be factored. 
I 

If you can't factor polynomials over the rationals, why not try factoring over 

smaller fields? In 1967 Berlekamp discovered de te rmin i s t i c and probabi l i s t ic 

methods to factor squarefree polynomials mod p. Sometime later Rabin created 

an even simpler version of the probabilistic algorithm with expected running time 

of 0 ( n 3 logp) steps for factoring a squarefree polynomial of degree 71. Meanwhile 

Zassenliaus countered with Hensel's Lemma (which explains how to lift a squarefree 

factorization mod m to one mod m 2 ). ZasseDliaiis's idea was to factor a polynomial 

over the integers lj>y first factoring over a suitable prime modulus (one which does 

not divide the discriramaiit of the polynomial, and thus keeps f(x) squarefree mod 

p), then raising that to a factorization mod p2 , then mod p4 , and so o n , . . until the 

modulus was �argc enough—-though still polynomial sized in terms of the original 

problem——to lift to a factorization over the integers. 

' C o n s i d e r f(x) = :c4 - Sx3 + x2 - 24x - 6 1 . 

= ( x 2 + '2x + 3) (x2 + 3) (mod 5) ' 

=(a : 2 — 8x - 2)(x2 + 3) ( mod 25) 

= {x2-SX-'^)(X2 + 3) (Z) , 

It 's a good idea, and it works well much of the time. Difficulties arise because 

polynomials may have a finer factorization in Z/pZ than they do in Z, and the 

ensuing problem of combining factors mod p to determine factors in Z inay be 

costly. For certain polynomials, it 's a disaster. Swinnerton-Dyer pointed out one 

such: the polynomial whose roots are 士 士 \/云土.. •士 ^/^�where pn is the nth 

prime. This polynomial factors into either linear or quadratic polynomials mod m 

for any modulus m one might choose, yet it is a polynomial which is irreducible over 

the integers. Tb discover its irreducibility, one must look at all possible combinations 

of mod m factors, an exponential nightmare. The class of pplynoinials which raiae 

difficulties like this is small—一essentially those with 'nice' Calois groups—and so, 

despite its wors t -case exponential running time, Berlekamp-Hensel became tlie 

factoring algorithm of choice during the 1970s. 

Other classic problems fell into polynomial time, yet polynomial factorizatioii re-

mained stubbornly exponential. Pieces were chipped away: Weinberger showed 

tha t under the assumption of the Extended Riemann Hypothesis, one could test ir-

reducibility in polynomial time, and Cantor showed that—ERH or no—irreducible 

polynomials have short proofs of that fact. Cantor and Zassenhaus gave a new, im-

proved mod p factoring routine. The central question, however, of how to avoid tlie 

exponen t i a l increase which arose from looking at combinations of mod p factors ’ 
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remained. 

• • • 
I 

Suppose p does not divide the discriminant of f(x), and h(x) is an irreducible 

factor of f(x) in Z/pZ. One approach is to consider the unique factor of f(x) in Z 

whidi /i(a;) divides (which exists since / � is squarefree in Z/pZ). Call it ho(x). 

The issue then, is to efficiently determine /i0(x) from /i(a;). 

It was classical mathematics which provided the tool: Minkowski lattices. Lattices 

are simple generalization of Z n , but they are the key to important theotems，and 

now，to important a lgor i thms, llendrik Lenstra introduced them into computer 

science with an elegant polynomial time solution for integer linear programming 

with a bounded number of variables. 

Let 6 1 , 6 2 , . . . , b e a set of linearly independent vectors in Z n . Then tlie n-

(limensional lattice L ' e Zn witli basis b{ is tlie set of integral,linear combinations of 

the bi. Several natural questions immediately arise: Given a basis of a lattice, how 

does one quickly determine an orthogonal one? How does one find short vectors? 

fa there a fast algorithm for determining the shortest vector in a lattice? 

w a s t h i s l a s t question which Lenstra answered for fixed dimension in 1981. 

Shortly afterwards Lovasz found a polynomial time basis reduction algorithm which 

computes, among other things, a nonzero basis vector b such that \b\ ^ 2^ \x\ for 
a U nonzero vectors x in the lattice L. Arjen Lenstra, Hendrik Lenstra and Lovasz 
(hence L3) combine ideas to create a polynomial time polynonual factorization 
algorithm, [LLL82]. 

The L3 algorithm builds an m-dimensional lattice L whose vectors are polynomials ' 

in x determined by h(x), an irreducible factor of f(x) mod p. (Recall that h(x) 

determines a unique irreducible factor 6f f(x) in Z[x].) If ho(x) is of degree 

m t h e n l t w i l 1 b e f o u n d 切 ^ e Lovasz basis reduction algorithm, since any vector in 
L w h i d l 58 ^nearly independent of A0(rc) will be 2 ^ times longer than it. The proof 

of this fact is surprisingly simple, and we present it � iere below. However we omit 

the proof that basis reduction can be done quickly, and instead refer the interested 

reader to the original paper (or Computer Algebra Textbooks, [CAbkssj.) Note that 
the bounds we show are less than optimal, and are chosen for the sake of a simpler 
argument. 

Let the polynomial to be factored be f{x) G Z[x], and suppose that it is primitive 

(which means that the gcd of its coefficients is 1), ^uarefroe and of degree n. Factor 

/ � mod p, where p is chosen so that p \ d\ac(f(x)). (One can fiml such a p which 

will be polynomial size in n and | /(x) | .) Pick an irreducible factor of f{x) in Z/pZ, 
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say h(x) of degree I (I < n). Now raise the faclorization lo one mod pk (where k 
is chosen SQ that pk 彡（2弩(2^) | / ( X ) | 2 ) " )，using Ilejisel lifting，and let h(x) be the 
image of h(x). We will find /^(x), the unique irreducible ifactor of f(x) ui Z[x] 
which h{x) divides. 

We assume /io(x) lias degree m. Define a lattice witli basis as follows: hi = pkx{ 

for 0 < i < /, and b{ - h(x)xi~l for I ̂ i^m. Now if we think of the polynomials 

as vectors, with the coefficient of x* as the (i + l)st coordinate, then the b{ are 

linearly bidependent, since they form an upper diagonal matrix. 

But since ft0(o;) is a factor of f(x), we have tliat \h0(x)\ 彡 （ = ) * | / (x) | 彡 
⑵ ) ” / � . 

Remember tliat k was chosen to satisfy pk
�(2¾ (2^) | / (x) | 2 )" . It is clear that 

ho(x) is in the lattice, and we claim that any vector of L which is linearly indepen- 1 

dent of h0(x) is 2¾1 times longer ilian hn(x). Thus /i0(:c) can be determined by the 

basis reduction algorithm. 

We prove the claim. Let g(x) be any elemeut of L wiiich is linearly independent 

of/i0(:c). Tlien gcd(<?(a;),^(x)) = 1 in Z[x]. Tliua tlie polynomials hQ(x)xi
>0 彡 i < 

d e g ^ W ) , and (leg(/io(x)), are linearly independent. Consider the 

resultant, det(R)t of ho(x) and g(x). By Iiaclamard's inequality and the fact that 

the degree of ̂ (x) < in, we have det(Tl)彡丨/io(a;)|n . 

Now h(x) divides both /i0(®) and g(x) modulo pfc, since botli polynomials are 

, elements of L. In particular, cict(il) must be zero modulo pk. But because det(i?) • 

0，we know that pk
�det(R). Then \g(x)\ ^ 2¾ (，) \f{x)l thus proving the claim. 

Tbe polynomial ho(x) has degree between I and n, tlie degree of / (x ) , so that the 

basis reduction algorithm to determine h0(x) from h(x) is done at most n times. 

As mentioned earlier, one can pick bounds somewhat more carefully, in which case 

the L 3 algorithm takes O(n 0 + e + n7+e | / (x) | ) steps to factor f(x) (for any e > 0 ) . 

I^andomness is central to computer algorithms. It can mean an exponential 

speedup for an algorithm, as in tlie Solovay-Strassen primality test, which is an 

deterministic algorithm, and an O(logn) probabilistic one. Many crypto-

graphic schemes rely on random bits. In a certain sense, the roots of polynomials 

are not random. If an approximate root of an integer polynomial is given, along 

witli a bound on the degree and coefficient size of its minimal polynonual, then in 

polynomial time, the minimal polynomial can be determined. Therein lies another 

factoring scheme. 

In particular, if f(x), a monk polynomial over Z is given, a root a of f(x) can be 

approximated in polynomial time. Tlie lattice algorithm can be used to determine 

I 
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the minimal polynomial of a. Of course, g(x) is a factor of f(x). This 

variant of the algorithm was discovered by Kannan, Arjen Lenstra, aad Lovasz, 

and independently by Schonliage. Its running- time is identical to that of L3. 

Arjen Lenstra generaJized the L3 algorithm to a variety of situations: for algebraic 

number fields, for multivariate polynomials over finite fields, fields of characteristic 

P> and for Q. A number of others, including VOIL zur Gathen, Kaltofen, Tlager, 

Landau, Chistov, and Grigoriev, used different teclmiques to also find polynomial 

time solutions for diverse factoring problems. 

, • • • 

Before L3’ Arjen Lenstra had seen a connection between lattices and factorization 

over algebraic number fields; after L 3 he gave a polynomial time method for fac-

toring a monic polynomial f(x) in Q(a)[x], where a satisfies a monic irreducible 

polynomial, g(t)y over Q. Tlie technique is the same as for L3: determine a factor-

ization of f(x) over a finite field (in this case, Z[t]/(p)H(t)), where g(t) is squarefree 

in Z/pZ and H(t) is one pf its irreducible fiactors in that field), extend to a factor-

ization over on appropriate ring Z[t]/(pk, H(t)) for a large enough k} and use basis 

reduction to factor. The details are messy, and we will not ipresent them. 

In some ways though, Kronecker had everyone beat by a century. In 1882, he 

proposed using norms for factoring polynomials over algebraic number fields. The 

idea is simple. Again let f(x) be a squarefree polynomial of degree n in Q(a)[x], 

where a satisfies <?(t), an irreducible monic polynomial of degree m over Q. One can 

view tlie polynomial f(x) as a polynomial in x and a or, equivalently, in x and t. We 

define the N o r m ^ ^ f i x ) ) 二 11/(%°¾) ,where the product is over all conjugates, 

of a . We can compute it quickly since it is the Resultantt (g(t), f(x)). Then 

if = NormQla)/Q{f(x))) F(x) is a polynomial in Q[x] of degree mn. If it is 

squarefree and equal to f l L i /<(丨)’ where the fi(x) are irrcxiucible ill Q[x], then 

f ( x ) - l l i=i SP<-Kfi{x)>f(x))- As long as f(x) is squarefree to begin witli, one can 

always 'twiddle' the polynomial so as to ensure that F(x) wiU be. Landau, building 

' O D w o r k o f ^ a g e r , showed that all these reductions can be performed in polynomiaJ 

time. Thus one can factor over algebraic number fields in poly„omi.i ti.™, using norms. 
I 

3.1.2 Implementation^ on Computer Algebra Systems 

When you build a better mousetrap, it's important to remember the mouse. Almost 

all tlie algorithms described above have been implemented; how good are tliey? 

Polynomial time factoring algorithms developed since L3 have depended upon tlie 
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laUice algorithm. The old Berlekamp-IIensel algorithm is exponential. Yet for many 

factoring problems, the practical algorithm is Berlekamp-Hensel. It's faster. 

For univariates over Q, the L3 aJgorithm requires at least 0 ( n 7 + n 4 l og | / (x ) | ) 

steps. Ikrlekamp-lfensel almost always quicker on univariate polynomials. 

Berlekamp-Hensel runs into trouble only when the Galois group is 'nice', which 

is loosely defined as a permutation group on n elements wlbich is small compared 

to Sn, Most—in a strong sense—irreducible polynomials do not have nice Galois 

groups. It is important to keep in mind, however, that the polynomials one might 

choose to factor are often not typical. 

Another situation in which lattices provide a good algorithm is for algebraic num-

ber fields. This is an early algorithm of Arjen Lenstra's which is practical (despite a 

worst-fcaso exponential nimiing time) because it avoids computations on algebraic 

numbers until it searches for the true factors. ' 

And what happens in practice? MACSYMA, the workhorse of symbolic compu-

tation I programs, uses Berlekamp-Hensel to factor univariate polynomials, and a 

variation of Wang's original algorithm for multivariates. It 's impressive; it factored 

, 3 ^ + 4 8 : ^ + 3 0 : ^ + 8 1 3 ^ + 4 7 2 ^ + 5 3 6 0 : 2 3 + 8 1 0 ^ + 2 0 9 : ^ + 8 9 1 0 + 1 2 0 : 2 6 + 5 6 4 0 ^ + 

228x6 + 972 1 

=(^25 + 无17 + ll®5 + 12) • {x26 + 47x18 + 19x6 + 81) in one minute on A VAX, 
and (ax^y2 + bx2y'A + dfxy + 1 1 ) . (a3b2eA + a2b3 + 3ab + 2) 

(abc^y + abx + a c 2 / 2 + 4 ) . (aftc3^ + d3xy2 + dex2y + 5) , 
—a polynomial with two hundred and fifty terms— in only fifteen seconds. What 's 
theoretically slow can still be practically fast. 

Interesting though, the two examples above botli took only I second for its fac-

torization by "MAPLE V (see [MAPLE]) release 3.0, 1994 for Windows 3:1” on the 

atithor'8 private Pentium-133. 

J 
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Notation 1 

Throughout the remaining sections in this chapter we let / be a ufd—unique 

factorization domain and K the field of fractions o f / . 

I 
Defiu i t ion 43 A univariate polynomial f(x) over'the ufd 1 is p r imi t ive iff there 
is no pnme in I which divides all Hie coefficients in f(x). , 

Defin i t ion 44 Up to multiplication by units we know that ever-y polynomial a(x) G 
^ N can be decomposed uniquely into a(ar) =cont(a)- pp(a), where cont(a) £ K and 
PP(«) « primitive polynomial in I[x). cont(a) us the con ten t of a(x), pp(a) is 
the p r imi t ive p a r t of a(x). 

R e m a r k : IVom Gaufi's Lemma we will usually assume a(z) G I[x) and develop 
methods for working directly in the ufd I . 

3.2 Squarefree factorization 
I 

By just computing gcds- greatest common divisors, we can produce a so-called 

squarefree factorization of a polynomial, i.e., a partial solution to tlie problem of 

factoring polynomials. Squarefree factorization is only a first step in the complete 

factorization of a polynomial. However, it is relatively inexpensive and it is a 

prerequisite of many factorization alg6ritlims. 

Throughout tliis chapter let K be a computable field generated as Q(/ ) , the field 

of fractions of / , where / is a ufd—unique factorization domain. Whenever / is a 

ufd，then also i[a;] is a ufd from GauB's lemma. 

Def in i t ion 45 A polynomial a(xx,...,xn) in I[xx,...,xn] is squarefree iff every 

nontrivial factor 1^...,xn) of a (ie., b not similar to a and not a constant) 
occurs with multiplicity exactly 1 in a. 

By GauB's lemma we know that for primitive polynomials tlie squarefree factor-
izations in /[a:] and K[x] are the same. 

There is a simple criterion for deciding squarefreeness. 

T h e o r e m 46 Let a(x) be a nonzero polynomial in K[x], where cha^/T) = 0 or 
K = f°r « V^ne p. Then a(x) is sqimrefroo if and only if gcd(a(x), a'(x)) = 1. 
(^'{x) is the derivative of 'a(x).) 
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P r o o f . If a{x) is not squarefi-ee, i.e., for some non-<x>nstant &(x) we have a(x)= 

&(a;)2 . c(x)} then a'(x) = 2b(x)b'(x)c{x) 4- b2(x)c'(x). So a(a;) and a'(x) have a non-

trivial gcd. 

On the other hand, if a(x) is squarefree, i.e., a(x) = a‘(a;)，where a»(x) are 
~ I 

pairwise relatively prime irreducible polynomials, then 

a\x) = f^(a[(x)f[aj(x)). 
»=1 j=sl 

Now it is easy to see that none of the irrcxiiicible factors a<(x) is a divisor of a ' ( i ) . 

di(x) divides all the summands of a'(x) except the i-th. This finishes tlie proof 

for characteristic 0. In Zp[x], a\(x) cannot vanish, for otherwise we could write 

ai(x) = 6(:cP) = b(x) 
p for some and this would violate our assumption of 

squarefreeness. Thus, gqd(a(x),a'(x)) = 1. • 

The problem of squarefree factorization for a(x) G /C[rc] consists of determiiiiiig the ' 

squarefree pairwise relatively prime polynomials bi(re),,.. ,6,(^), such that a ( x ) = 

DcBui t lon 47 The represeMation of a as 

a 

(1 = 11¼^ 

is called the squaTvJree factorization of a. 

• In characteristic 0 (e.g., when a(x) G Zja;]), we can proceed as follows. We 

set ai(x) := a(x) and o2(x) := gcd(aita[). Then a2(x) = 11*= i ^(^)4-1 = 

II*=2 ci(rc) := ai(x)/a2(o:) = n ' = i bi(x) contains every squarefree fac-

tor exactly once. Now we set a^(x) := gcd(a2, o/2) = 11二3 � � … 2 ’ � 2 ( 丨 ） ： = 

^2(^)/(13(^) = lli=g contains every sqiiarofrot} factor of multiplicity > 2 ex-

actly once. So we have bi(x) — ci(x)/c2(x). 

Next we ad, a4(:c) := gcd(a 3 ,站）=UUi H X Y~' ' \ ^ ( x ) := a;j(.x)/a,,(x) = n?=:j h(冚). 

So we haye 62(^) = C2(x)/C3(x). 

Iterating this process until c8 + 1(x) = L, we ultimately get the desired squarefree 

factorization of a(x). This process for computing a squarefree factorization is sum-

marized in SQFIU^ACTOR. 1 

A l g o r i t h m S Q F R _ F A C T O R (in: a; out: F) ; 

[a is a primitive polyiioniia] in Z[x], 

•P = [h(x),... ,6a(x)] is the list of squarefree factors of a.] 
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1. F:=0; ‘ 
tti := a; 

02 :=gtxJ(ai,a；); 

Ci:=ai/a2; 
a3 := gcd^aS); 
c-2 := a2/a3； 

F : = C0NS(ci/C2,F); 

2. while C2 / L do 

{ a 2 := a 3 ; a 3 ：二 gcd(a3，n“)； 

ci := ca； oz \— <12/03； 

' F := C0NS(c!/C2,F) }; 
3. F := 1NV(F); return； 

If the polynomial a(a:) is in Zpf^li the situation ia slightly more cornplkated. First 

we determine d(x) t= gcd(a(x), tt'(a:)). 

If d(x) = 1，then a(x) is squarefroe and we can set ai(x) = a(x) and stop. 

If d(x) • 1 and d(x) • a(a:), then d(a;) is a proper factor of a(x) and we can carry 

out tlie plrocess of squarei^ee factorization both for d(x) and a(x)/d(x). 

Finally, if d(x) = a{x), then we must have a'(x) = 0，i.e., a(x) must oontaui only 

terms whose exponents are a multiple of p. So we can writje a(x) = b(xp) = &(x)p 

for some 6(x), and the problem is reduced to the squarefree factorization of 6(x). 

An algorithm for squarefree factorization in Zp[x] along these lines is presented in 

Akritas(1989), [CAbks], namely PSQFFF. 

A l g o r i t h m P S Q F F F (Polynomial Squarefree factorization over a finite field) 

Input: a(x), a nonconstant monic polynomial in Zp[x], p > 0 is prime. 

Output: …，&e(x) and e such that a(x) = J | 1 < i < e 6^(0:)1 is the squarefree 

factorization of a(rc). 
1. [Initialize.] fc :二 0; m := 1; e := 0. 

2. [Main loop.] j :— 1; 02(^) := gcd(a(x)’fl'(a;)); c � ( x ) := a(x)/a2(x); 
1 
if C\(a;) = 1, then go to 7. 

3. [Update.] e' := jm\ if e' > e,then 

do {6c+](x) := 6e+a(®) := . . .b e >- i (x ) := 1; p := e'}. 

4. [Compute 6e»(x).] c-2(x) := gcd(tt2(x),ci(a;)); be>(x)Ci(x)/C2(x)., 

5. [Update.] If (^{x) • l , t lien do {02(^) := a2(x)/c*2(x); ci(x) ：二 C2(o;); 

j ：= j + 1； go to 3.} 

6. [Finished?] U a-2(x) = 1, then exit. 

7. [a^W = 0] fl('c) := (a2(x))p; fc := fc + 1; rn := mp; go to 2. 

Throughout the execution of PSQFFF we have m = pfc, and whenever we arrive 
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at step 6, the value of e fe the largest index i such that pk does divide i and a(x) 

has a noncoDsfcan^ factor to power i. We also assume that the polynomials 02(x) 

and C'2{x) calculated in steps 2 and 4，respectively, are monic. 

3.3 Factorization over finite fields 

We will reduce the computation of the factors of an integral polynomial to the 

computation of tlie factors of the polynomial modulo a prime number. So we have to 

investigate this problem first, i.e., we consider the problem of factoring a polynomial 

a(x) G Zp[x], p a prime number. W.l.o.g. we may assume that lc(a(a:)) = 1, i.e., 

a(x) is monic. 

In the sequel we describe E. R. Berlekamp's (1968) algorithm, [Ber68] for factoring 

squarefree univariate polynomials in Zp[x], Throughout this section let a(x) be a 

squarefree polynoi|iiaI of degree n in Zp[x], p a prime number, having tlie following 

factorization into irreducible factors a(x) = H l= i a< 

By the Chinese Remainder theorem for polynomials, for every choice of S i , . . . G 

Z p there exists a uniquely determined polynomial v(x) € Zp[a;] such that 

v(x) = &i mod ai(x) for 1 <i < r, and . 
(3.1) 

deg(u) < deg(ai) H + deg(a r) = n. 丨 

In (3.1) it is essential that a is squarefree, i.e., the a‘,s are relatively prime. 
I I 

L e m i n a 48 For every a“aj，i • j , there exist s i , . . . , s r G Zp such that the corre-

sponding solution v(a;) of (3.1) generates a factorization b • c of a with | b and 

ttj I c. 
i 

P r o o f . If r = 1 there is nothing to prove. So assume r > 2. Choose / Sj 

and the other sfc's arbitrary. Let v be the corresponding solution of (3.1). Then 

«i(x) I gcd(a(x),t;(x) — «») and aj(x) \ gcd(a(x),v(x) — s‘). • 

So we could solve tlie factorization problem over Zp, if we could get a complete 

overview of the solutions u(a;) of (3.1) for all the choices of ,，" .，s r G Zp . Fortu-

nately this can be achieved by linear algebra methods. 

If v(a；) satisfies (3.1), then v(x)v = s‘p = = v(x) mod for 1 < i < r. So we 

have 

v(x)p = u(a;) mod a(rc) and deg(v) < n (3.2) 

Every solution of (3.1) for some ,« r solves (3.2). But what about the con-

verse of this implication? Is every solution of (3.2) also a solution of (3.1) for some 

v 
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»1 , . . . , s r ? Prom the fact that GF(p) is the splitting field of xp — x, theorem 25, (cf. 

Fermat's little theoijem), we get that v(x)p — = (v(x) — 0)(v(a:) — 1) . . . (v(a;)— 

(p—1)). So i fv(x) satisfies (3.2), then a(x) divides - v(x) and therefore every 

irralut^ible factor a»(a;) must divide one of the factors v(x)—s ofv(ac)p-i;(a;). Thus, 

every solution of (3.2) is also a solution of (3.1) for some S i , … , s r . In particular, 

there are exactly p r solutions of (3.2). 
I 

By Fcsrmat's little theorem and 11 ie frralimen's dream1，Uic solutions of (3.2) oon-

stitute a vector space over Zp . So we can get a complete overview of the solutions 

of (3.2), if we can compute a basis for this vector space. 
I I 

,Oofl … go,ii-1� 

Let the (n x 7i)-matrix Qa over Zp，Q“ = Q == ： | , be 

\ <?n - l ,0 … < / n - l , n - l j 
defined by xpk = qk,n- ixn~l H hgfc,ix + qk,o mod a(a:) for 0 < fc < nr- 1. That 

is, the entries in tlie /s-th row of Q are the coefficients of rem(:rpfc’fi(x)). Using the 

representation of v(x) = ！^一�“一1 (-vo as the vector (vo,.. . , u n _ t ) , we have 

= v(x) = — = E^o1 EU 办 . • W = S： 二 叫 一 = = 
v(x)p mod a(a;). 

We summarize all these results in the following theorem. 
I 

T h e o r e m 49 With the notation used above, a polynomial v(x) = ^ - 1 ^ 1 - 1 H \-

ViX + Vq in Zp[x] solves (3.2) if and only if the vector (vot. •. ’ wn-i)切 in the null-

space of the matrix Q —I (I is the identity matrix of dimension n), i.e., v(Q —I)= 

(0 , . - . ,0 ) . 

Now we are ready to formulate Berlekamp，s a l g o r i t h m for factoring squarefree 
univariate polynomials in Zp[x]. 

I 

1 At Ilotig Koiig liere, »ome students of the science stream may atudy the Binomial Theorem in 
Seoaiidary Four~at the of 16. 

v 
48 

I 



A l g o r i t h m FACTORJ3( in : a(x),p\ out: F); 

[p is a prime number, a(x) is a squarefree polynomial in Zp[a;], 

F is tlie list of prime factors of a.] 

1. form the (n x n)-matrix Q over Zp , where tlie fc-tli line (qk,Of. ><7fc,n-1) 

of Q satisfies 
I 

rem(xPfc,a(a;)) = qktH..tx""1 + • • • + </*：,o> r o r O < f c < n - l ; 

2. by column operations transform the matrix Q — J into (e.g., lower-right) 

triangular form; 

from the triangular form read off the rank ?i — r of the matrix Q — I] 

[There are exactly r linearly independent solutions wl1】，...，v[rl of 

v - ( Q - I ) = (0 , . . . , 0 ) . Let v ^ be the trivial solution (1,0,…’ 0). 

So (after interpretation of vectors as polynomials) there are pr 

solutions “ w l 1 � + … + t r v ^ of (3.2)’ 

and therefore r irreducible fac.lora of a(a;).] 

3. if r = 1, then a(x) is irreducible and we set F := [a]; 

otherwise, compute gcd(a(a-),<;l2J(a;) — s) for s £Zp and put tlie 1 

factors of a found in this way into the list F; 

as long as F contains fewer than r factors, choose the next v�fcI(a;), 

k = 3,. . . ,r , and compute gcd(/(x),vW (x) — s) for f in F\ 

add the factors found in this way to F\ 

[ultimately, F will contain all the factors of a(x), 

Lemma d8.] 
4. return. 

Bxatiiple. Let us use P A C T O R J 3 for factoring the polynomial a(x) — x 5 +a ; 3 + 

2x2 + x + 2 in Z3[a;]. 

First we have to check for squarefreeness. a'(a;) = 2a:4 + x +1，so god(a, a') = 1 in 

Z.j[x] and therefore a(x) is squarefree. 

The rows of the ,(5 X 5)-matrix Q are the coefRcients of a;0 ,a ; s ,x6 ,x9 ,x1 2 modulo 

/ 1 0 0 0 0 \ 

0 0 0 1 0 j 

a(x). S? Q = 0 1 2 1 2 . Q — I can be transformed into the triangular 

0 1 i. 2 2 

� 2 0 2 1 1 J 
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/ 0 0 0 0 0 \ 

0 0 0 1 0 

form 0 0 1 1 2 . We read off r = 2，i.e., there are 2 irreducible factors < 

0 0 1 1 2 

\ 1 0 0 0 0 > 

of a{x). The null-space of Q — / is spanned by i>iJl = (1,0,0,0,0) and v ! 2 � = 

(0,0,2,1,0). 

Now we get the factors by appropriate god computations: 

gcxi(a(.r)’ (re) + 2) = x2 4- x + 2, 

gcd(a(x),t;t2l(3；) + 1) = x'A + 2x2 + 1. • 

The basic operations in F A C T O R J 3 are the setting up and solution of a system 

of linear equations and tlie gcd computations for determining the actual factors. 

The complexity of PACTC)R.J3 is proportional to n 3 +pr?i2，where n is the d ^ r e e 

of the polynomial, cf. [CAbks]. 

I 
3.4 Factorization over the integers 

From Gaufl's lenrnia, we know that factorizations of univariate integral polynomials 

are essentially the same iA Z[x] and Q[a;]. For reasons of efficiency we concentrate 

on the case of integral polynomials. The factorization of integers is a much harder 

problem than the factorization of polynomials. For tliis reason we do not intend to 

factor the content (gcd of the coefficients) of integral polynomials. Tlirougliout this 

section we assume that the polynomial to be factored is a primitive (content = 1) 

non-conatant polynomial. 

The problem of factoring a primitive univariate integral polynomial a(a:) consists in 

finding pairwiso relatively prime irreducible polynomials ttt(x) and positive integers 

rrii such that =111=1 a i{^) m i . 

As for polynoniialls over finite fields we first compute a squarefree factorization of 

a(x). By application of SQFR_FACTOR, p.45, our factorization problem is reduced 

to thei problem of factoring a primitive sqiiarejFree polynomial. 

So from now on let us assume that a(sc) is primitive and squarefree over Z. 
t 

I 

I 

We would like to use the fast factorization algorithm modulo a prime p FAC-

TORJ3, p.49, first. The problem of facloriaation over Z is reduced to factorization 

modulo p and a subsequent lifting of the result to a factorization modulo pk. Tf k is 
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high enough, the integer factors can be constructed, [Zas69]. The lifting process is 

based on a constructive form of Hensel's lemma (1918), wliicli is 幺 simple proposition 

in p-adic analysis. 
I 

Leu i iua 50 (Hensel l e m m a ) Let a(x) e Z[x] be primitive and squarefree. Let 

p be a prime number not dividing lc(a). Let tii(a;)， . . .,ar(x) 6 Zp[x] be painuise 

relatively prime such that\a = ai • . . . - Or mod p and lc(ai) = lc(a) mod p, lc(a2)= 

lc(a r) = 1. 

Then for every naturul number k there are polynomials a ^ ( j c ) , . . . € Zpk [x] 

with l c ( a ^ ) = lc(o) mod 沪’ k ^ a f ) ) = . . . = lc(arfe^) = 1 such that a(x) = «^(0:) • 

. . . • a»(.fc)(x) mod pk and a j ^ (x ) = ai(x) mod p for I <i<r. 

P r o o f . Wc proceed by induction on k. For A: = 1 we can obviously choose = 

and all tbe requirements are satisfied. 

So now assume that the satisfy tlie requirements. That is, for sonic G 

Zp[xj we have a 一 JJ^^j flp) = pkd mod p*1"*"1. We replace tlie leading coefficient of 

a[k) by ( lc(a) mod jpfc+l ). Then for sonic d(x) G Z?J[x] wc have a — n i = i = Pk(l 

mod pk+1, where deg(d) < deg(a). 

We will determine € Zp[x] witli deg(ft,) < deg(aj) such that a!*4"1) = a ^ + 

pkb{. Using this ansatz2, we get 
1 

a - n a S f c + 1 ) ^ - n a S f c > V ( E ( 6 i f[ «,) ) mod 严 . 
i= l i= l j=l»j#t ' 

� 1 1 v 一 � . z 
Pkd =:ai 

So tlie a!fc+1)’8 will constitute a1 factorization modulo p k + l if and only if ' 
T 

d — y ^ & j . o» mod p. 

A solution is guaranteed by the following theorem3: "For ¢1^...,0^. G pairwise 

relatively prime and c € K[x], K a field, with deg(c) < deg(ai ) + . . . + deg(or) = n 

there exist i t i , . . . € K[x] with deg(tti) < deg(ai) for I < i < r , sucli that 

and algorithm LIN-COMB below. • 

The following algorithm LIN-COMB will be used as a subalgorithm iii the lifting 

process. 

Algorithm LIN—COMB (in: [au …， 
«r]； OUt： [61,... ,6r])； 

[a» G K[x\ (K a field) pairwise relatively prime; 

2aiiBatz means ludr-line. 
3Tliis is a generalization of a property related to tlie extended Euclidean algoritluii, see step 2 

of L I N - C O M B . 
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b i G < d eg(«i) and 1 = YlLi 帖“ where ^ 4= 
1. <i:= 1； i ：=0; 

f o r j = 2 t o r d o a j : = I T f c = i t t f c ； 

2. while i < r — 1 do 
[i := i + 1; 

compute u}v such that d-ua{+ ’ 

cieg(w) < deg(a?+1), deg(v) < deg( f l i) 

[by tlie extended Euclidean Algorithm, cf. [CAbks].] 
f>i ：= v; d := p}； 

3. br := rf; 

return. 
I 

We summarize these algorithmic ideas in LIFTJl^ACTORS. 

A l g o r i t h m LIFT—FACTORS (in: a, K , . . . /f； out: F); , 

[<l i s a p r i m i i i v e 叫騰论抚 polynomial in Z ^ , p is a prime number not dividing 
lG(a) °nd 认（a mod Ls squarefree in^x), au... >Qt ^ Zp[x] pairwisq relatively 

prime，lc(fll) = lc(a) mod p, lc(a2) = . . . = 1 ^ ) = 1, and a = a i - . . . - a r mod p, 

KeN] 

尸=[�’…，Srj’ � G ZpK[x], such that a 三 ^ . … . 5 r mod p K
} l c ( 〜 ） = l c � m o ( j 

P > � c ( 5 2) = - . . = lc(a r) = 1，and = mod p.] , 

1. by an application of L I B _ C O M B to [ai，…，知】compute ^ 6 Zp[x] s.t. 
deg(叫)< deg(ai) and 1 = E < = 1 ^ mod p, where a{ = «i； 

2. for i = 1 to r do dj := a,-； 

k 1 | 
3. while k < K do 

{ replace lc(ai) by (lc(a) mod pk+l
 )； ' 

d : = ( ( a - n L a mod p ^ 1 )； 

d ..= d I pk\ 

for i = 1 to r do 

{&‘ ：= rem(rft;“a‘)； 

a» := dj , 

Ar := fc + 1 }； 

F : = ( ^ , . . . , ^ 

return. 

As for the general Hfting algorithm LIFT there is also a quadratic lifting scheme • 
f o r WFT.FACTORS. The interested reader is referred to [CAbks]. 

Now we put all tlie aubalgorithms together and we get the Ber lekamp-Henae l 
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aLgorithiu FACTOIL.BH for factoring primitive univariate squarefree polynomials 

over the integers. 

A l g o r i t h m FACTORJBH( in : a; out: F); 

[a is a primitive squarefree polynomial in Z[a;]; F = [ a i , . . . ,ar], where a i , . . . , t v 

are primitive irreducible polynomials in Z[x] such that a = aj. • . . . • a,..] 

1. choose a prime number p sucli that p \ lc(a) and a is squarefree modulo p 

(i.e., p does not divide the discriminant of a); 

2. [w t> . . . ,u8):- FACTORJB(a ,p) ; (p.49) • 

normalize the u^s such that lc(«i) = lc(a) mod p and lc(«2) ==•••== 

lc(wa) = 1; 

3. determine a natural number B which bounds the absolute value of any 

cxiefficient in a factor of a over the integers ( for instance, use the 

L a n d a u - M l g n o t t c b o u n d : Let a(x) = a i x i and 6(x) = ^2^=0 

be ；polynomials over Z (am ^ 0 ^ bn) such that b divides a. 

T l i e n E I U W y n l t l V E S ^ - ) 
K := min{fc G N | 沪 > 2| lc(a)|J3}; 

4. ,¼] :=LIFT_PACTORS(a, [例， . . . ,u s ] , p, K)\ 

5. [combine factors] 丨 

a := a; 

C := {2,...，《}; will be included In the last factor] 

i := 0; 

m := 0; 

while m < JC| do 

{rn := m +1; 

for all { i“ . . .， i m } C C7 do 

{� in tegers modulo pK are centered around 0, i.e., the representation of 

is {q\-pK/2 <q< pK/2}} 

丨 b := (lc(a) .!；“-...• mod pK), interpreted as a polynomial over the 

integers; 

f> := pp(6); 
if 丨 d then {i :二 i + 1; := 6; a := a /6 ; C :== C \ {、，...，im}} } 

}； 丨 

i :=i + 1; 
‘ a{ := a; 
6. F :p [« i , . . . , a<]； 

I 
return. 

I 
Step (5) is necessary, because irreducible factors over the integers might factor 

further modulo a prime p. In fact, there are irreducible polynomials over the integers 

5 3 



which factor modulo every prime numbra-. An example of this is x 4 + 1 , cf. [CAbks]. 

The complexity of FAGT01l_BH would be polynomial in the size of the input 

except for step (5). Since in step(5), in the worst case, we have to consider all 

possible combinations of factors modulo pt this might lead to a combinatoria] ex-
i 

plosion, rendering the algorithm FACT0RJ3H exponential in the size of the input. 

Nevertheless’ in practical examples the combinations of factors does not present an 

insurmountable problem. Basically all the major computer algebra systems employ 

some variant of FACTOIL-BII as the standard factoring algorithm for polynomials 

over the integers. 

Example . We want to factor the primitive squarefree integral polynomial 

«(rn) = + 7x6 + 4x5 4- 6®3 +7a : 2 +4a; + l. 

We use FACTOR_BII in tlie process. A suitable ]>rime is 5, a(rc) stays squarefree 

modulo 5. 1 

By an application of tlie Berleknmp algorithm FACTOR-B, a(x) is factored modulo 

5 into 

a(x) =(a; 一 2) . (a;2 - 2) • (x2 + 2) • (x2 - x + 2) mod 5. 
I ‘ � s v • 

UL U3 U4 

By an application of LIFT-FACTORS we lift this factorization to a factorization 

modulo 25, getting 
I 

a{x) =(6x + 3 ) . (x2
 一 7 ) . (x2 + 7 ) . (x2 + 9 x - 8 ) mod 25. 

、丨••“丨̂•̂画•乂 、•丨 m^^ •_"_ � I I I I ^ ^ I I I ' I • 

Vl V2 V3 »4 I 

Tlie Landau-Mignotte bound for a is rather big. Let us assume that by some 

additional insight we know that /<" = 2 is good enough for constructing the integral 

factors. Now we have to try combinations of factors modulo 25 to get the factors 

over the integers. So we set a := a and C := {2,3,4}. Testing the factors 

we see that only Ul yields a factor over the integers: a! (x) := pp(lc(d) - V4 mod 

25) = 3jc2 + 2 x + l . 

So now a :== a / a i = 2¾5 + + 2a; + 1. Tlie combiDabiou of v2 and V3 yields the 

factor := pp{lc(a) -v^-v^ mod 25) = x 4 + 1. 

We set d := a/a2 = 2x 4- 1. Now C has become empty, and the last factor is 

a3 (x) 1 := a(a;) = 2x + 1. 

FACTOR_BII returns F = [ai,a2 ,a3], i.e., the factorization a(x) = (Zx2-\-2x + 1.) • 

, ( x 4 + l)-(2a; + l). • 
1 

1 

I ‘ 
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3.5 Factorization over algebraic extension fields 
I 

•' I 
3.5.1 Reduction of the problem to the ground field 

We describe an algorithm that has been presented in van der Waei'den, [GaloisBks] 

and slightly improved by B. TVag-er，[TVa76]. 

Let K be a computable field of characteristic 0 such that there is an algorithm for 

factoring polynomials ID K[x]. Let a be algebraic over K with minimal polynomial 

p(y) of degree n. Tlirouglhout this section we call K the g r o u n d field and K(a) 

the oxtcnsioii field. Often we will write a polynomial f(x) G / ( ( a ) 问 as / ( x , « ) to 

indicate tlie occurrence of a: in the coefficients. Let a = a i , ' a 2 , . . . , a n be the roots 

of p(y) in a splitting field of p over K. By 1 < j <n} we denote the canonica] 

field isomorphism that takes a into a j , i . e . ,小 j : K ( a ) K ( a j ) 

a*-* aj 

a a for all a G K. 
<f>j can be extended to (f>j : /T(a)[o;] — 7^(¾ ) ^ ] by letting it act on the coefficients. 

We will recluce llie problem of factorization in K"(a)[x] to factorization iii /C[x]. 

This reduction will be achieved by associating ag £ K[x] with the given f € K(a) [re] 

such that the factors of f are in a computable 1-1 correspondence with the factors 

of g, i.e., f(x) G X(ck)[x] <~~»• g G K[x\ 

factors factors of g. 

A candidate for such a function is the n o r m , which maps an element in the ex-

tension field to the product of all its conjugates over K. This product is an element 
norm|K(rt�/fi:| : K(a) — K , 

of K. ^^ Yl } W^ i e rC 评 ~ 3 means that fi' is conjugate to 

/3 relative to K(a) over K. That is，if /9 = q(a) is the standard representation 

of in A"(a), then iiorm[/^(a)/j<](/?) = I l iLi 9 (^ ) - If the field extension is clear 

from the context, we write just norm(-) instead of norin[K"(a)//q(.)- Since the norm 

is symmetric in the a^s，by tlie fundamental theorem on syimnetric polynomials, 

theorem 5 it can be expressed in terms of the coefficients of p and thus lies in K. 

Tlie norm can be generalized from K ( a ) to /<"(«：) [x] by defining the norm of a 

polynomial h(xta) to be /i(x,a‘), which can be computed as norm(/i(a;, a ) ) = 

resy(p(|/),/1(2:,2/)), cf. defniition 21. One important property of the norm is multL-

plicativity, i.e., n o r m ( / . g) = norm(/) • norm(5). 

1 ' 

T h e o r e m 51 If f(x, a) is irreducible over K(a), then norm(jf) = h(xY for some 

irreducible h € jftT[a;] and some j G N. 

P r o o f . Assume nonn( / ) = g(x)h(x) and g, h are relatively prime. For 1 < i < n let 
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I 

fi(x) = f(x, 0¾). Clearly f = fi divides norm(/) = []/»• So, since / is irreducible, 
f\g or f\h. W.l.o.g. let us assume that f\ht i.e., h(x) = fi(x,a) . h(x,a). Then 
Hx) = = MMjW = fjh{x,aj). Therefore, fj\h for l < j < n. Since g 
and h are relatively prime, this implies that gcd(/ j ,p) = 1 for 1 < j < n. Thus, 
god(norm(/)，5) = 1，i.e., p = 1. • 

I 
R e m a r k : Tlie previous theorem yields a method for finding minimal polynomials 

for elements (3 £ K(a). Let /3 = q(a), b(x) = norin(x — 灼=norm(a; 一 ¢(0:)). 

ar — I b(x)t so b(/?) = 0. Therefore tlie minimal polynomial pp(x) has to be one 

of the irreducible factors of b(x). By the above theorem, b(x) = pp(xy for some 
I _ 

j € N. So can be determined by squarefree factorization of 6(x), AlgOTithm 
SQF11.FACT0R, p.45. , 

K{a)[x] is a Euclidean domain, so by successive application of the Euclidean 

algorithm the problem of factoHng in X(Q!)[X] can be reduced to the* problem of 

factoring squarefree polynomials in ir(o;)[x], Algorithm SQFR_FACT0R, p.45. 

From now on let us assume that /(.-c, a ) G /C(o:)[x] is squarefree. 

I 
T h e o r e m 52 Let f(x}a) € K(a)[x] be such that F(x) = iiorm(/) is squarefree. 

Let F(x) = nLi Gi(x) be 仇e irreducible factorization ofF(x). Then [5=1 

where g{(x, a) — gcd(/, Gi) over K(a), is the irreducible factorization of / ( x ’ a ) 

over K(a). 

i 
P r o o f . The statement follows from i 

a. every 讲 divides /， 

b. every irreducible factor of / divides one of the 讲’s. 

c. the QiS are relatively prime, and 

d. every gi is irreducible. 

Ad (a): Tliis is obvious from g‘ = go<l(/,Gi). 

Ad (b): Let v(xy a) be an irreducible factor of f over K(a). By Theoreni 51, 

norin(v) = for some irreducible w(x) G v\f implies nonn(w)| norm(/). 

Since norin(/) is squarefree, iiorm(v) is irreducible and must be one of the G^'s. So 

Ad (c): Suppose the irreducible factor u of / divides both g{ and gj for i • j. Then 1 

the irreducible polynomial nonn(v) divides both norm(C?‘）= GJ1 and no r in (Gj )= 

C?". This would mean tliat G< and Gj have a common factor. 

Ad (d): Clearly every g{ is squarefree. Assume that vx (x, a) and w2(x’ a) are distinct 

irreducible factors of f and that both of them divide g{ = god(/’ Gi). vx implies 

n o r m ( v i ) I n o r m ( G i ) ( x ) n . Because of the squarcfreeness of norm(/), we must 

have no rma l ) = Similarly we get norm(v2) = G‘. But (vi ‘ v>2)\f implies 
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normal -½) = norm(/),' in contraction to the squarefreeness of norm(/). • 

So we can solve oiir factorization problem over K(a ) , if we can show that we can 

restrict our problem to the situation in which norm(/) is squarefree. The following 

lemmata and theorem wi]] guarantee exactly thai. , 

Lemiua 53 If f(x) is a squarefree polynomial in iC[x], then there are only finitely 

many s£ K for which norin(/(x — aa)) is not squarefree. 

P r o o f . Let /¾，.. •’ be the distinct roots of f . Then the roots of f ( x — saj) are 

A +3Q!j, I < t < m. Thus，the roots of G(x) = norin( / ( .T-sf^)) = JYtUi 

are A +^Jfe for 1 < i < m, 1 < fc < n. G can have a multiple root only if s = H , 

where I. There are only finitely many such values. • 

Lenrnia 54 If /(x,a) is a squarefree polynomial in ^(a)^], then there exists a 
squarefree polynomial g(x) £ K[x] such that f \ g. 

P r o o f . Let G(x) = norm(/(a;’ a)) = n p t ^ ) * be the squarefree factorization of the 
norm of / . Since / is squarefree, f\g :— J^y^x) . • 

T h e o r e m 55 For any squarefree polynomial f(x,a) G there are only fir . 

nitely many 8 e K for which norm(/(x — so；)) is not squarefree. 

P r o o f . Let p(ar) be as in the above lemma. By the previous Lemma, there are only 

finitely many 8 e K for which norm(5(x — sa)) is not squarefree. But f\g implies 

norm(f(x-sa))\ noTm(g(x-sa)). If n o r m ( / ( x - s a ) ) is not squarefree, then neither 

is norm(̂ (a; — «a)). • 

A l g o r i t h m SQFR_NORM(in : / ; out: g,s，N); 

[f 6 K(a)[x] squarefree; s G N, g(x) = f(x — sa) , 

N{x) = norm(g(a;，a)) is squarefree.] 

1. a := 0; g(xta) := / ( x , a) ; 

2. N(x) :=:Tcsv(p{y),g(x1y)yi 

3. while deg(gcd(iV(a:),^ /(x))) — 0 do 

{ s : = s + l ; 

ff(x，Q!) := g(t - a,a); 

昨)：=resy(p(j/),<?(a;,j/))}; 
return. 

I 
I 

So over a field of characteristic 0 we can always find a transformation of the form 

/(as — sa), s G N, such that norm(/(a: - sa)) is squarefreel. These considerations 
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give rise to ail algorithm for computing a linear change of variable which transforms 

/ to a polynomial with squarefree norm. 

Now we are ready to present an algorithm for factoring polynomials over the 

extensioD field. 

A l g o r i t h m FACTOR_ALG(in: / ; out: F); 

[/ G X(a)[a;] squarefree; F = [/1,.. •, /r]> where / 1 , . . . , / r are the irreducible factors 

of f over A'(«).] ‘ 

1. [g, 8, N] := S Q F R _ N O R M ( / ) ; 

2. L := list of irreducible factors of N(x) ovpr K\ 
3. if L E N G T H � = 1 then return([/]); 

4. F := 0； 

for each H(x) in L do 

{/i(:c’ a) := gcd(ff(x)，</(x, a)); 

ff(x,a) := ff(x,a)/h(x,a); 

F := CONS(/i(® + sa’a)，F)}; 

return. 

Example . We apply the factorization algorithm FACTOILALG to the domain 

Q(v^2)[a;]) i.e., K — Qt a a root of p(y) = y 3 — 2. Let 11s factor the polynomial 

f(x} a) = a:4 + ax^ — 2x — 2a. 

/ ( x , a ) is squarefree. First we have to transform / to a polynomial g with square-

free norm. The norm of f itself is norm(/) = resy(p(y),f(x,y)) = (x3 — 2)3(x3 +2)， 

i.e., it is not squarefree. The transformation x x — a does nob work, but 
1 

x x — 2a does: p(:c’d!) := f(x — 2a, a ) = x4 — 7ax3 + 18a2a;2 — A2x + 18a, 

N(x) = norm(<7) == re12 — 56x9 + 216a:6 — 6048a:3 + 11664, and N(x) is squarefree. 
The factorization of N(x) is N(x) = (x3 - 2)(x3 - 54)(x6 4-108). 

Coniputing the gcd of all the factors of N(x) with g(xy a) gives 11s the factorization 

of g{x, a): g(x^a) = (x ~ a)(x 一 3a)(x2 — 3ax + 3a2) , which can be transformed 

by a; i-f x + 2a to the factorization / (x , a ) = (x + o:)(x — a)(x 2 + ax + a2). • 

3.5.2 Computation of primitive elements for multiple field 
extensions 

I 

Over a field K of characteristic 0 every algebraic extension field K(a) is separable, 

i.e., d is a root of multiplicity 1 of its minimal polynomial. So every multiple 

algebraic extension K C K(ai) C . . . C K{au...,〜）can be expressed as a simple 

• algebraic extension, i.e., K ( a i i . . . , a n ) = /^(7), theroem 10 for some 7 algebraic 
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over K. Such a 7 is a p r imi t ive e lement for the field extension. We will describe 

how to compute primitive elements. 

Clearly it sufRc.es to find primitive elements for double field extensions K C 

/if (a) C K(a, /3), where p(a) = 0 for some irreducible p(x) G and a) — 0 

for some irreducible q(x, a) G /C(o:)[a:]. Let n = deg(p) and m = deg(q). 

T h e o r e m 56 IfN(x) = normp�/«|(<?(丨’《0) is squarefre.e, thenK(ay^) — 
1 

and N (a:) is the minimal polynomial for (3 over K. 

P r o o f . Let «1’ . . . a „ be the roots of p(x)} and /¾ ’. •. the roots of q(x, a»). 

norm|尺“)/叫(q) = nj l
! = 1 q(x, o^), so if this norm is squarefree, then all tlie rmist 

be different. So for every ft in {/¾ | l < i < n , l < j < mjtliere is a uniquely 

determined a in {0^ , . . . 0^} such that a ) = 0. Thus’lgcd(q(j9，x)’p(a:)) must 

be linear, gccl((7(/3,x),p(a:)) = x - r ( f f ) for somer(2/) G /([y]，and therefore a - r(/3). 

So K(a,p) = K(0). 

is a root of N(x) — norin[A'(a)//!:|(<?)• By theorem 5i , and the squarefreeness of 

N(x), N(x) must be the minimal polynomial for /? over K. • 

A l g o r i t h m P R I M I T I V B J E L E M E N T ( i n : p,g； out: N}A,B)\ 

[p and q are the minimal polynomials for a and respectively, as above; N(x) is 

the minimal polynomial of 7 over K such that K(a, f3) = /^(7), A and B arc the 

standard representations of a and p in respectively.] 

1. [p, 8, N] := SQFR_NORM(q(x , a)); 

2. A := solution of the linear equation gcd(5(7,a;)，p(x)) = 0 in / ( ( 7 ) , 

where iV(7) = 0; 
1 

3. B := 7 — sA', ‘ 

return. , 

Example . Let us compute a primitive element for the multiple extension 

Q ( A v^) , i.e., for Q{a,/3), where a is a root of = x2 — 2 and /3 is a root of 

q(x, a) = </(:c) = x2 - 3. 

The norm of " is not squarefree，in fact norm[Q(力)zq�(g) = (x2 — 3)2. So we need 

a linear tratiBforination of the form — sa, and in fact s == 1 works. 

g(x, a ) := q(x - at, a ) — x2 — 2ax - 1， 

N{x) = norm[Q(4)^^(5(0;，a)) = (x2 -2ax- l)(a;2 + 2ax 一 1) = x 4 — lOo:2 + 1. 

N(x) is irreducible. Let 7 be a root of N(x). So 7 = /3 -I- a . We get the repre-

sentation of a in i f ( ^ ) as the solution of the linear equation g c d ( y ( 7 , x ) } p ( x ) ) = 

gcd(-27.T + ( 7
2
 一 1)，ar2 — 2 ) = x + ^ ( - 7 3 + 9 7 ) = 0, 、 

i.e., a = A(y) = | ( 7 3 — 97). Finally (3 = ^ ( 7 ) = 7 - y 4 ( 7 ) = - ^ ( 7 3 - l l 7 ) . • 
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Chapter 4 
I 

Soicher-McKay's Method 
I 

) 

. . I 
Tlie principal references for this chapter are 

I , I 
• WL. Soicher and J. McKay, Computing Galois groups over the rationals^ Jour-

nal of Number Theory 20 (1.985)，273-281," [SM85] and 

• "L. Soicher, An algorithm for comptiting Galois groups, in Computational 

Group Theory (M. D. Atkinson, Ed.), Pi). 291-296, Academic Press, 1984," 

[Soi84]. 

4.1 Overview, Restrictions and Background 
\ 

Let / = f(x) be a polynomial in Q[x], (thus is a separable polynomial over Q), and 

let {a i , . . . . , a n } be the roots of /，where distinct. We regard GalQ(f), the Galois 

group over the rationals, to be the group of permutations of the (indices of tlie) 

zeros of f induced by the group of automorphisms of the splitting field, sp]Q(/)，of 

f , cf. Chapter,sectioii2.2. 

We describe feasible coniputational techniques to determine GalQ(f). By effi-

ciently determine sufficient properties (invariants), the aim is to specify CalQ(f) 

to within conjugacy in the symmetric group Sn of degree n. This conjugation is 

realised by relabelling the zeros of f . 

The main tool discussed is the (absolute) resolvent polynomial. For T in , 

Z[a;i,...，xn], the complete factorization of a resolvent polynomial is used to deter-

mine the orbit length partition of {T(xia ’ • . . ,xna) : a in Sn} under the action of 

GalQ(f). 

An important class of resolvent polynomials considered are the linear resolvent 
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polynomials, where T = eiXi + •• - e\ in Z and 0 < r < n. The use of 

linear resolvents in determining GaiQ(/) is discussed. A practical exact method of 

computing linear resolvents is described. 

]5ach transitive permutation group of degree 3 to 7 is realised as a Galois group 

over the rationals. The exact computation furnish a proof of the result. 

Res t r i c t ions We consider only irreducible f so that G<I/Q(/) is transitive, the-

orem 19, and assume without loss of generality that / is monic with integer coeffi-

cients. 

Backg round We prove a result of Galois theory here. One may like to compare 
I 

Kaplansky, [GaloisBks][2], p.20. 

Let Q = Gal{E/F) be the Galois group of a Galois extension EjF of'fielcls. 

Lcrnina 57 Let S = {/?i，. ..,/¾} be a finite subset of .distinct elements in E and 

ff(x) = — Pi)- Then Q maps S onto S (ie. {炉：(3 in S and <f> in Q} = S) 

if and only if g(x) is in F[a;]. 

P r o o f . Let 双(x) = ^ j L o P in S�and <j> m Q = Gal{EjF). Suppose ^(a;) is 

in F[x). As 0 is an automorphism of E fixing F pointwisely we have: 0 = g{p)— 

9W = ( Z t o ^ Y = = 9(^)- Thus 沪 is in S for all (3 in S and 

沴 in 卩.Recall that each <f> is byective on E1 every • in Q maps S onto S. 

Conversely, suppose Q maps S onto S. Then each ^ in ^ induces a permutation 

of S. Thus af = a{ for each coefficient ai of 5(0:), because each a � i s a symmetric 

function of , . . . , )3¾. From Galois theory, this implies that a^ is in F . • 

T h e o r e m 58 Let /3 be in S where S — {/9i, ...,/¾} is a finite subset of distinct 

elements in E. Denote by (3Q the set {/3小:小 in G}. Then S = P° if and only if 

g(x) = njj=l(a: — /¾) is an irreducible polynomial over F. 

P r o o f . H S = 沪 ’ then by llic previous leinnia, (}(x) is in Suppose g(x) is 

' reducible. Then g(x) has a factor h(x) in F[x] where /i.(a) = Oi in i ( x _ A)> 

some I properly contained in {1 , . . . Then by the previous lemma Q maps {/¾ : i 

m 1} onto itself, which contradicts the fact that S — (3Q. 

Conversely, suppose that ^(a;) is an irreducible polynomial in F[x\. By the previous 

lemma, we know tliat Q maps S onto itself. Thus /3s is coatained in S. Suppose 

/3s = {/3iti in I}, where I is propearly contained in {1 , . . . Then by the previous 

lemma, h(x) = in 1(21 — A ) ^ ^ F[a:]. Since h(x) is a proper divisor of g(x)t we 

have arrived at the desireid contradiction. • 
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4.2 Determining cycle types in Galq(f) 

A well-known method of determining cycle types in GalQ(f) is the following, in van 

der Waerden [GaloisBks]. 

First we prove: 

T h e o r e m 59 Let / be an integral domain with identity, and let the Unique factor-

ization Theorem be valid for it. Let P be a prime ideal in I, and let I = I /P be the 
- 一 I 

quotient ring. Let tlie fields of fractions of I and I be F and F. Let f{x) = H— 

be a polynomial in I[x), and let f(x) be the polynomial assciated with it in the ho-

momorphism I —* I, assuming that neither has a double root. 

Then the Galois group T of f relative to F (as a permutation group of the suitably 

arranged roots) is a subgroup of the Galois group F of f . 

Proof . By Gaufi's lemma, the factorization of (z — (see theorem 
a 

1) into factors 況1祝2. • * 轮fc that are irreducible in can actually be carried out 

in The natural lionioniori)liism carries this factorization down into J[名’M]: 

The polynomials 況丄，...tnay be reducible. By theorem 1, the permutations in r 

carry 況1 (and so 轮1) into itself; the other permutations of the u's carry into 

9?2’...，9ifc. 

By theorem 1 agai^, the permutations in F carry an irreducible factor of 恥 into 

itself so that they cannot carry Into 処，…；叫，but must carry 
% into l i , 

whicli means that V is a subgroup of r . • 

The theorem is frequently used for determining the group GalQ(f). In particular, 

we often choose the ideal (p) in sucli a manner that the polynomial f(x) factors 

mod p, since in this way the Galois group of f can be determined more easily. 

Theorem 60 Let Z be the ring of integers and f(x) £ Z[x] be a rnonic polynomial 
For a piime p not dividing disc(/), the discriminant of f , the partition ofn induced 

by the degrees of the irreducible factors of f modulo p (called the degree p a r t i t i o n 

of f mod p) is the cycle type of a permutation in GalQ(f). 

P r o o f . Let P = (p) be the ideal generated by p, p being a prime number. Let 

f(x) factor modulp p thus: f(x) = /1(01)/2(^)---/^(2:) mod p. I t follows tliat 

7 = /1/2 

The1 Galois group r of f(x) is always cyclic, since the automorphism group of a 

Galois field is always cyclic, theorem 26. Let the generating permutation s of r , 

v 
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written as a product of cycles, be (12 . . . j ) ( j4 -1 . . . ) . . . . Since the transitivity sets 

of the group r correspond exactly to the irreducible factors of / ’ theorem 58, the 

numbers occurring in the cycles (12. . . j ) , ( . . . )’ . . . must exactly denote tlie roots 

of7i and72»-". 

Thus, 
as soon as the degrees j ^k , . . . of /1 , /2 , . •• fire known，the type of the 

substitution s is known â t well: s consists of a cycle of j terms, of a cycle of k 

terms, and so 011. Since, with a suitable arrangement of the roots, F is a subgroup 

of F by the above theorem’ F = GO/Q(/) must contain a permutation of the same 

type. • 丨 

Thus, for example，if a quintic with integral coefficients resolves modulo any prime 

number into an irreducible factor of the second and into one of tlie third degree, 

the Galois group contain^ a permutation of the type (1 2) (3 4 5). 

Example . Consider the equation x5 - x— 1. = 0. I 

The left member factors iriodulo 2 into (x2 + rc + l)(a:3 + a; + 2). It is irreducible 

modulo 3; for it had a linear or quadratic factor, it would have a factor in common 

with x9 一 x, theorem 27, and would therefore have to have a factor in common with 

x(xg 一 a;), i.e. with either a;5 - a; or a;5 4-a;, which evidently is not the case. 

Ilence the group contains a cycle of five symbols and a product (ik) (Imn). The third 

power of the latter permutation is (ik)] this, transformed by (12345) and its powers, 

gives a chain of transpositions (ik), (kp), (pq)} (qr), (ri) which together generate the 

symmetric group. Thus the group GaZq(/) is the symmetric group. • 

In fact, cf. [L077], we have 
1 

T h e o r e m 61 fCebotarcrv Dens i ty T h e o r e m ) A: — 00，the proportion of 

,occurrences of a degree partition T of f mod pi} i = lt...}k, (pi distinct primes) 

tends to the proportion of permutations in GaiQ(/) having cycle type T. 
1 

But full power of this result seeins difficult to use in practice. 

Butler and McKay [BMB3] have tabulated the transitive permutation groups of 

degree up to 11，and tlie cycle type distribution of permutations in these groups. 

After f is factorized modulo various primes, these tables are used to obtain a set of 

groups {i f j} such that for all i, H{ ^ GaZQ(/). 

In fact, if GalQ(f) is An or Sn, then GalQ(f) can usually be quickly determined 

using modulo p factorizations and the fact that GCIZQ(/) is a group of even permu-

tations if and only if disc(/) is a rational integral square, theorem 42. 

If GO/Q(/) is neither An nor Snt an historical and very useful method to determine 

GalQ(f) is the construction and factorization of appropriate jresolvent polynomials. 
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4.3 Absolute Resolvents 
I 

Let T = T(xu...,xn) be a polynomial in Z[xu:..>Xn] and let a be a permutation 
in We define T - = T ^ . , . . . , . ^ ) . 

Defi i i i thm 62 Let { T , , 1 . . . ^ , } = T礼，whe^ the T‘ are distinct Ructions. The 

absolute resolvent polynomial 5R(T,/) associated with T^iuif is defined by 

k 

叫 t , / ) = h ( h ( 叫 ” . . ， 〜 ) ) ， 
t=i 

where ， … ， ( o t i distinct) are the roots of f . 

We may take T, = T - , 1 … k ， w h e r e { a , , . . . ^ } is a set of right a « e t 
representatives of Slab 5 n (T) (the stabilizer in Sn of T) in Sn. 

The «)effi«iente of a resolvent polynomial f ) are algebraic integers which are 

symmetric function^ of t h e z e r o s ^ , . . . o f / , hence these coefficient are rational 

integers by the fundamental theorem of symmetric polynomials, theorem 5 
I * 

This resolvent were introduced by Lagrange around 1770 in order to compute the 

relations between the roots of a polynomial and to study (in his own language) 

the field^xtensions associated to these roots. It enabled him to unify in a way the 

former methods (Cardan, Ferrari) used to solve algebraic equations up to degree 4， 

and to understand why should not exist such methods beyond degree 4, cf. Old-
fashl°ned GaloIfi thcory b o o k s by Edwards or Tignol [GaloisBks]. Notice that 
the Galois theory (now claBslcal) as presented by Artin and Kaplansky do not 
contain this stuff, but M o d e r n Galois theory (1970, 1985, 1990+ 4 - + ) is based 

° D 8 h n U a r 8 t u f f e ， a n d P u l i t h e 咖叩uter into the game of Symbolic and Algebruic 
Computation, cf. Appendix B.l. ' 

4.3.1 Construction of resolvent 

The resolvent polynomial JR(T,/) can be constructed by expanding 5R(T，/) sym-

bolically in the zeros of f and then determining the coefTicient^ of K(T, f ) as p o l y -
n 0 m i a l s i n t h e of / . Unfortunately, unless deg(JR(T, / ) ) is s m a U o r f is 

sparse, this leads to very extensive symbolic manipulation. However, if we use this 

method, we get an explicit formula for the coefficients of f ) in terms of the co-

e r t i d e n t 8 ° f f ' S u c h f o r m u l a e h a v e b e e n Published for certain resolvent polynomials, 
cf. the citations in [SM85]. 

«(T，/) can also be formed using high-precision numerical approximations to the 
Z e ' ° 8 ° f 广 � f t h G o f 况 � / ) are determined to within an absolute error 
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I 
less than |，then these coefficients are determined ekacfcly by rounding. Stauduhar, 

cf. chapter 2 in this thesis employs this method. 1 

We next define a special type of absolute resolvent polynomials which can be 

computed symbolically and at tlie same time very useful to determine the conjugacy 

class of GalQ(f) in Sn. 

DeBDitlon 63 A resolvent polynomial 猊(T’/), luhere T = e\X\ H erXrt for 

some r, 1 < r < ??-, and e i , . . . ,e r nonzero integers, is called a l inear (absolute) 

resolvent polynomial 

Soicher m [Soi84] details a new, practical} exact algorithm LRINT, cf. p. 71 

below, to construct linear resolvent polynomials. This algorithm does not expand 

the resolvent symbolically in tlie zeros of / . 
I 

Wc shal] now assume tliroughout that the zeros of 9i(T ’ / ) are distinct (cf. theorem 

65 below), for if not, we may apply an appropriate Tschirnhans transformation 

(theorem 23) to f preserving the Galois group, then recompute ?R(T,/). 

4.3.2 Complete Factorization of Resolvent 

First we observe that any subgroup of Sn acts on T6 'n = (Tff : <r € Sn). 

Def in i t ion 64 For a group G acting on a finite set S we call the partition of 

induced by the lengths of the orbits of S under G the o rb i t - l eng th p a r t i t i o u of S 
\ 

under G. 

We liave the following theorem 

T h e o r e m 65 Suppose / ) has distinct roots. Then the orbit-length partition 

of TSn under Galq(f) m the same as the parlilion of deg(猊(T,/)) induced by the 

degrees of the irreducible factors of 9?(T, / ) . 

We would like to prove this theorem by the following lemma and proposition. 

Let E = Bpl^(/), (j>£G = Gal(E/Q) and e T = GalQ(f) as a subgroup in Sn. 

' 0 — r 

Rocall the isomorphism , as in Cliaptcr,section 2.2: tf> induces a pcr-

inuiatiou on ai’吻’…,an) wliich can be set forth as follows: ( ' ^ ] or 
W , … � a t ) 

( « 1 ， … ，an I � / 1， … ， n � 
I or I j . Letting a^ denote the final expression 

"in …，洱《 J \ h, • • yin ) 
here. I 
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L e m m a 66 We have T ( a i , . . . , = T ( x t , . . . , \ X l J a i , . . . , ^ = ^ • 

P r o o f . L.H.S.= T(rKi, . . . ,an)^ = T(af’...，n;J) = T(a“，...’0：‘„) 

R.H.S.= T(ari , . . •,a^n)^ |®i=«i , . . . , » ： „ = « „
 =

 ，• • ， ) 1 ^ , =a,,...,i„=o„ 
= X ( x i , , . •. ,a?i„)|sBi==tt|,...,a:„=ft„ = ’• . . • 

P r o p o s i t i o n 67 Let t £ Ic {1, . . . , / :} and {Ti’…’T fc} 二Ts"，where the T» are 
distinct functions. Let Y 二 

(1) If T f = (Ti : i in 1} and, the T ^ a i , . . . , a n ) are distinct for i in I, then 
g(x) = in j(x — T i ( a i , . . . , a „ ) ) is an iireducible polynomial over Q. 

« 

(2) If g(x) = {„ /(^ — T i ( « i , . . . , a n ) ) is a non-repeated irreducible factor of 

/ ) then T{' = {Ti H in /}. 

P r o o f . (1) Apply the above lemma and theorem. 58. 

(2) As i? = sp lqf / ) is separable over Q, p(ar) must have distinct zeros. By theorem 

58 and the above lemma, { ^ ( 0 : 1 , . . . , 0 ^ ) : i 1111} = { T t ( x i , . . . : 

a in I1}. As g{x) is a non-repeated, factor of 5i(T, / ) ’ for all i in I and j = 1 , f c ， 

T i ( a i , . . . , a n ) = T j ( a i ’ •..，an) if and only if i = j . The result follows. • 

P r o o f of t h e o r e m 65: Q = Gal(E/Q) as a group of automorphism on E, acts on 

the set of zea-os of 5R(T,/),,by fixing Q pointwisely and permuting the {a»}. As the 

zeros of 9 i (T , / ) are distinct this action is equivalent to the action by 1�== CalQ(f) 

on T s " from the lemma. 

The orbits of the action by Q on the zeros of 3l(T, / ) are precisely the sets of zeros 
1 

of the distinct irreducible factors (over Q) of /)，theorem 58. Once again as 

the zeros of 5R(T,/) are distinct, the theorem follows from the proposition. • 

To factprize 3®(T,/), we use Berlekamp-Ilensel algorithm FACTOR_BII, p. 53. 
1 

Alternatively, one can often determine candidates for factors of / ) by using 

numerical approximations to tlie zeros of 9 i (T , / ) . 

Often (cf. Chapter 2 io this tliesis and the citations in [SM85]) resolvent polynomi-

als are used to determine if GalQ(f) is contained in some given proper subgroup G 

of 5,,. If T is chosen so that G =Stab5 n(T) , then 況(T’/) has a linear factor if and 

only if GaZQ(/) is contained in some conjugate of G in Sn. Although linear factors 

are easy to find, they give information only about the Galois group's containment 

in one group and its conjugates. The complete factorization of well-chosen resolvent 

polynomial can often determine Galq(f) among possible candidates. 

• I 

1 
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4.4 Linear Resolvent Polynomials 

Linear resolvents form a general class of useful resolvent polynomials for f(x) of 

any degree. Often tbe factorization of linear resolvents of relatively low degree 

can be used to determine GalQ(f). We may use linear resolvents to determine the 

orbit-length partition of r-sets or�-sequences under GalQ(f) (1 彡 r 彡 n). 

4.4.1 r-sets and r-sequences 

r - se t s A subgroup G of Sn acts on the r-sets contained in {1,...,n}, whwe the 

action is defined by {ii , . . . , i r = for all a 6 G. Now let T = x H — x r . 

It is clear that the action of G on TSn is equivalent to the action of G on the r-sets 

contained in {Z,...,?i}. Thus the factorization of Sfi(T, / ) determines tbe orbit-length 

partition of r-sets under GalQ(f). ‘ 

Erbach, iWher , and McKay, cf. [EFM79] and [Mck79], suggest using resolvents of 

this type in order to determine the transitivity of Calq( f ) on r-sets. 

The following remark is of interest: for f irreducible and n ' = i'sy t � s • 1, 9?(T,/) 

lias t irreducible factors of degree s if and only if GalQ(f) has t systems of iinprini-

itivity of 8 blocks of size r, cf. definition 30. 

' r-sequences A subgroup C of Sn acts on the (n:“ry r-sequences of distinct 

elements of (1.,...,n) where the action is defined by (ii, ...,^)0^ = ...，ir
ff) for all 

a G G. Now let T = eiXiH he ra; r, where e x , . . . , e r are distinct nonzero integers. 

Now suppose / ) has distinct zeros, then 9l(T, / ) is reducible if and only if 

GalQ(f) is not r-ply transitive. 

There is also a simple field-theoretic interpretation to the factorization of 9i(T, / ) . 

Let b — eiQ!i»H ^^, a € Sn beazeroof5R(T,/). We see that S t a b l y ) (b)= 
' n ^ ! 5tabGaiQ (/) ( « » ' ) ； hence Q(b) = Q(ai<» ’ • . .，o^) . The degrees of the irreducible 

factors of correspond to the degrees over Q of nonconjugatc subfields of 

splg( / ) generated by r-scts of tlie zeros of / • 

For irreducible f and r = 2，we note that 9?(T,/) has irreducible factors all of 

degree n if and only if Q(o;i) = 0^(¾) for all 1 < i,j ^ n if and only if s p l q ( / ) = 

Q(a<) for all 1 < i < n if and only if GalQ(f) is a regular permutation group, 

definition 28. 
, I 

We also note that if r = n - 1 or r = n, then 猊(T, f ) has degree n! and SP1Q(/)= 

Q(b) for each zero b of 价(T, / ) . 

v 
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4.4.2 Data: Orbit-length Partitions 
I 

For the transitive permutation groups G of degree 3 to 7, T^ble 4.1 contains the 

orbit-length partitions of r-sets (r up to | degree of G) land 2-sequences (with 

distinct elements) under G. This table was computed by Butler, [BM83] and 

[MI185】，using tlie group-theoretical computer language CAYLEY (now it is called 

MAGMA). We can also use GAP, [GAP], since it is a f l C G software. Bui how and 

of course~why? 

For irreducible f of degree up to 7，Table 4.1 is used to determine candidates for 

GalQ(f) given the factorization of a linear resolvent which determines the orbit-

length partition of r-sets or 2-sequeiioes under G«ZQ(/). 

丨 __ 
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C 2-scts 3-8ots 2-sequeuccs 
1 Degree 3 

j j 32 

‘ f» 

Degree 4 

Z4 2,4 4
3 

+¼ ^ 4̂  
D\ ^ 4,8 

4-At G 12 

S4. 6 12 
Degree 5 , 

+Z5 丨

 52 I 54 

+D& 52 102 

F20 10 20 

+/I5 10 20 

拜 5 10 20 

Degree 6 1 

Z6 3, 62 2, 63 65 

S3 33, 6 2, (i3 C5 

DQ 3’ 62 2, 0, 12 6, 122 

+/I4 3’ 12 4 2 ,6 2 6, 122 

<?18 6, 9 2, 18 6
2
, 18 

g 2 4 3, 12 62, 8 6, 12'2 

+SA/Vi 3, 12 42, 12 6,24 

S j / Z j 3, 12 8, 12 6，24 

6’ 9 2, 18 12, 18 

+g§ 6 6 ,9 2, 18 12, 18 
G a 8 3，12 8, 12 6，24 

+尸 SX2(5) 15 1 0 2 — 30 

C n 6, 9 2, 18 12, 18 

PGL2{h) 15 20 30 

15 20 30 

Se 15 20 30 

Degree 7 

• + Z r \ 7 3 7 5 — 

D7 7
3
 7

3
. 14 14

3 

, 21 7
2
，21 21

2 

^42 21 14, 21 42 

+ P 5 £ 3 ( 2 ) 21 4 2 � 

+ A 7 21 35 42 
1 
S7 21 35 42 

Table 4.1: Orbit-length Partitions of Sets and Sequences under G 
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4.4.3 Constructing Linear Resolvents Symbolically 
I 

I 
The resolvent algoritlim revolves around the following observation of Trager，fIVa76]. 

Let f(x) = (x - ai)...(x - a n ) , g(x) — (x - /3±).. .(x - be non-constant 

polynomials over the integers. Then the resultant (definition 21) eliminating y, 
rGSy(f{y)}9{x

 一 y)) = Iir=i 9{x ~ a
« ) > 鉍

 t h e degree nm moDic polynomial having 

zeros tt‘ + 约（i = 1’…，n; = 1’…，，/i). 

The following notation is used in algorithm LRINT below, [Soi84]. Let t be a 
non-zero integer and f(x) a inonic polynomial of degree n. 

Then we define /(t)(ar) = t T i / ( f ) - Thus f(t)(x) is the monic polynomial whose zeros 

are t times those of f(x). 

Next we define mult( i ,T) to be tlie number of distinct terms of the (multivariate) 1 

polynomial T having the coefficient t. 

I 

I . 
I 

I 

I 
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Algorithm L R I N T 
Input: A monic integral polynomial f(x) of positive degree n, and T = e\Xi H h 

erXr, wherer <n and the t{ are non-zero integers. 

Returns: 5R(T, / ) . 

1. if r = 0 (T = 0) then return ( V ) and stop. 

2. if r = 1 then return (/(C|)(x)) and stop. 

3. Permute the labelling of in T so that mult(e r , T) < nmlt(ei, T) 

for i = l , . . . , r . (This ensures that the degree of u(x) in step 4 

is as samll as possible. Note that the symmetry allows relabelling of 
the variables of T without changing 3®(T, / ) . ) 

4. set T ' := e^xi H + er-ixr-i and set u(x):=況(T', / ) (recuraively). 

5. Let a i , . . be the k (say) distinct elements of {e�.",〜―丄}，and set 

Ti := T ' + where i' (not necessarily uniquely determined) is 

chosen so that a‘a:‘' is a term of T ' , (i = 1 , . . . , A;). " 

If any of the Ti now have only r — 2 terms (i.e. a‘ + e r = 0)，then 

relabel the variables of these T» with l ,2 , . . . , r - 2 to conform with the 

input rules for this algorithm. 

6. set v(x) := nf = 1 5R(Ti , / ) C l (recursively), where 

Ci = n - r + 2 if ai + er = 0, and Ci = mult(a‘ + e r , T t ) otherwise. 

(Observe that vesy(u(y)}fi<lr)(x - y))/v(x) = 9«(T,/)C’ where 

c = mult(e r , T).) 

7. set c := mult(e r ,T) and m := (n deg(«) - deg(v))/c + 1. 

[m— l = deg(3i(T，/))] 

Choose distinct integers S i , . . . , s m such that for i = 1，...，m : v(si)丰 0 

and if c is even then > for any zero 0 of / i ( T , / ) . 

(A bound or^the magnitude of the zeros of i l (T, / ) is calculated by 

bounding the magnitude of the zeros of f . ) 

8. for i - 1, . . . ,m : set U := resy(u(y)JM(3i 一 y))/v(si). 

9. (For non-negative real t, let t 1 " denote the IIOII-negative real c-lh root of t.) 

for i = : 
I 

if < 0 then set U := - | t i | 1 / c ‘ 

else if c is even and m - 1 is odd and < 0 then, set ti := —ti1^ ‘ 
else set “ := 

. ( n — = 9i(T，/)⑷）, , 

10. set w;(a:) to be the unique polynomial of degree (at most) m - 1 such that 

ti - w(si) for i = 1 , . . . ,m. 

return (w(x)) and stop. 

7 1
 V , 
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I 
4.4.4 Examples 

E x a m p l e 1. Consider f(x) = x7 - 14a;5 + 56x3 — 56a; + 22. 
I 

disc(/) = 26710; f is irreducible over Q. Compuie and factorize = +冗2 + 

冗3，f) of degree 35 to determine the orbit-length partition of 3-sete under GalQ(f). 

Factorizing 轮 into irreducible factors over Q, we find that 轮 = ^ 1 ^ 2 ^ 3 , where 

5Ri = x7 一 28a;5 + 224a;3 - 448a; + 94, 

況2 = x7
 一 28a;5 + 224JX3 - 448¾ +192, and 

sJl3 = x2 1 — Mx19 + 2436x17 - 31136x15 + 6358x14 + 203840a;13 — 84392a:12 

-733824x l l +420728x 1 0 + 1480192a;9 — 988064x8 - 1652036a:7 

4-1138368.¾6 + 986496a;5 一 620928x4 - 284032x3 + 137984x2 

+27104a: - 10648. 

轮 has distinct zerps and its factorization shews that the orbit-length partition of 

3-set8 under GalQ(f) is 72’ 21. From Tabic 4.1 we see that CalQ{f) is +F2i, tlie 

Probepius group of order 21 on 7 letters. • 

E x a m p l e 2. Consider f(x) = x7 - 1x& + lAx2 - 7x + 1. 
• 

f is irreducible and disc.(/) = 78172, thus Gal^f) is a transitive subgroup of A7. 
Letting T = Xi + 0¾ +i3，compute and factorize 5R(T, / ) of degree 35 to determine 

the orbit-lengtlis of the action of GalQ(f) on the 3-subsets of {1,...,7}. It takes 6 

minutes to compute 5ft(T, / ) using L1UNT, p.71 on the PDP-11/34. . 

The factorization ofJR(T, / ) , of degree 35’ takes approximately 10 iniimtes on the 
PDP-11/34. The degree 7 factor is x 7 - 14x4 + 7x3 + 14x2 - 56x — 32. / ) is 
found to have irreducible factors of degrees 7 and 28 which proves that GalQ(f) is 
+ F ^ L 3 ( 2 ) from Table 4.1. • 

Soiclier-McKay remarked that the PDP-11/34 minicomputer was much slower than 
a typical large niain-frame computer. 

Please see Appendix k for the demonstration of the author's MAPLE 

program on these examples—It took two seconds to 6biain an answer 

on his cheap Pentium-133. 

4.5 Further techniques 

the conjugacy class in Sn of transitive GalQ(f) is deter-

mined completely by the "squareness" of disc(/) ’ (theorem 42) and the orbit-lengths 

of the action of GalQ(f) on 2-sets, 3-sets, and 2-sequences, with the exception of 

distinguishing F20 from S5. 

72 � ' 



For degree 6, all 'the transitive groups can be differentiated by disc(/) and the 

orbit-lengtlis on 2-sets, 3-sets, and 2-flequences except to distinguish S4/Z4 from 

GUs, <̂ 36 from Grz, and PGL^^t) from S%. 

• 一 

4.5.1 Quadratic Resolvents 
I 

The ability to compute linear resolvents efficiently allows us to compute certain 

useful quadratic resolvents. When sJi(T, / ) is a resolvent such that for some T a = 

- T for some a £ Sni we see that 5R(T2,/)(x2) = 5R(T, f)(x). 

Suppose deg(/) = 5 and Ga lq i f ) is either F-^ or 6 5 . We compute and factorize 

9? = — a?4)2, / ) of degree 15’ using a linear resolvent, to distinguish 

between these candidates. Now CaZQ(/) = F20 if and only if 9? is reducible. In this 

case 9? has irreducible factors of degrees 5 and 10. 

4.5.2 Factorization over Q(^/disc(/)) 

Tlie factorization of 況(T，/) over Q(v/disc(7)) when disc(/) is not a square is also 

useful to determine the coiijugacy class of Gal^f) in Sn. 

We assume that all polynomials discussed have distinct zeros. 

Let E be splq(/) and I � = Galq(f) as a subgroup in Sn. Suppose g(x) is a monic 

irreducible factor of a resolvent polynomial 5R(T,/) such that T ^ a ! , . . . is a 

zero of g for a specific Tj G T s" (a“. .. ’0!„ the zeros of /). 

Let d be the squarefree part of disc(/), define gd(x) to be the monic integral 

polynomial of degree 2 . deg(p) having the zeros bk±d^) where the bk run through 

the zeros of g. 

T h e o r e m 68 The following are equivalent: 

(J) Stabr(Tj) is a subgroup of An. 

(2) QO^ai，... contains Q(^ciisc(/)). 
(S) 17 (0; ) is miucMe over Q(^/<lisc(/)). 

(4) gd(x) is reducible over Q. 

P r o o f . The equivalence of (1) and (2) follows immediately from tlie fundamen-

tal theorem of Galois theory and the observation that Q(Tj (a ) ) = E S t a b r ( T � ( a s 

9?(T, / ) lias distinct roots, cf. theorem 39) and Q( v /d isc( / ) ) = EvnAn. 

Let A = and h be the minimial polynomial of Tj (a) over Q(A). g is 

irreducible over Q(A) 

iff g = h 

73 
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iff [Q( r j (a ) ) ： Q] = [Q(A ,T j i a ) ) : Q(A)] 

iff [ Q C T j i a ) , 厶 ) : Q ( T , • � � = [ Q ( A ) : Q] = 2 
iff Q(厶）^ Q(Tj(a) ) . Hence (2) and � are equivalent. 

Finally from theorem 51, we have: if normQ(A)/Q(<;(a;, A)) is squarefrte, g(x, A) is 

irreducible over Q(A) iff normQ ( A ) / Q(^(x, A)) is irreducible over Q. The norm of g is 

clearly not squarefree, so we consider a linear transformation of the form x x-A 

. W e let 厶）=g(x - A) and consider its norm. It is convenient to use da, 

where d is the squarefree part of disc(/), in place of A bi the construction, since 

the corresponding norm will have smaller coeflicients and hence be easier to factor. 

Thus the polynomial gd is reducible over Q iff normQ (A) /Q(/i(x,厶))is reducible over 

Q 沘 M 1 , 厶 ) i s reducible over Q(A) iff <?(a;) is reducible over Q(ydiac( / ) ) . Hence 

(3) is equivalent to (4). • 

Now suppose n = 6 and 轮= JJi(xi + x 2 + x 3 , / ) of degree 20. 

Suppose GaZQ(/) = S4JZ4 or G姑.I^et g be the monic irreducible factor of degree 

12 (how?) o f 9 t Then Galqif) = S^/Z^ if and only i f 5 d is reducible. 

Suppose CalQ(f) = CJ6 or G72 . Let g be the monic irreducible factor of degree 2 
of 3¾. Then GalQ(f) = G j e if and only if gd is rediicible. 

Suppose GalQ(f)=尸 GL2(5) or Let p = 肐 Then Gal^if) = PGL2(5) if and , 
only if gi is reducible. 

4.6 Application to the Inverse Galois Problem 

“Given a permutation group G, to find polynomials over a certain field whose Galois 

group are Gn is called the Inverse Galois P r o b l e m . There have been a huge 

amount of literature on this problem，cf. the citations in Appendix B.l no.5&6 or 

simply search "inverse Gtilois" in the MathSci disc on the CD-rom. 

It is an unsolved problem whether any permutation group can appear as the Galois 

group of a polynomial ovor, Q. For each solvable group G it is known tliat there 

exists a polynomial f such tliat Ga/q( / ) = G, [Sha54]; however tliere has not yet 

appeared a practical general method of constructing an / from any given solvable 

group G. 
1 

For each transitive permutation group G of degree 3 to 7，Soicher and McKay 

have computed a polynomial f(x) such that GalQ(f) = G. These polynomials 

appear in Table 4.2 below where ojn denotes a primitive nth root of unity. (For 

each polynomial f in TVibleU^ one can prove thai Ga^f) is the group indicated 

by the algorithms mentioned above.) ! 

！ • .
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Many of the polynomials / are constructed so that sp]Q(/) is contained in some 

known field. The methods of doing this include constructing / to be a resolvent ' 

polynomial, constructing / to be a composite polynomial, or if Ga lq i f ) is to be 

cydic，by constructing / such that splQ(/) is contained in Q(wp), p prime. This 
knowledge about splQ( /) is iisecl to reduce or eliminate the work necessary to de-
termine Galq,(f). 

The only polynomials whose Galois groups are deLermliied using other information 

tlian the splitting field, cycle types, or discruniiiant are those f with GalQ(f) = D s , 
D 7 ' 7'2i» o r 尸 5 T h e s e exceptions are proved to have the group indicated by 
using the factorization of appropriate linear resolvent polynomials, Thble 4.1. 

Given G, to find monic integral f(x) such that GalQ(f) = G, where it is nontriviaJ 

to construct an appropriate splitting field, we do computer searchmg. I f G i s a group 

of even permutations, we first seek f sucli tliat dlsc(/) is a square. We. also search 

for f such that, for all primes p in a fixed set, either p\ disc(/) or the degree partition 

of f mod p is tlie qycle type of some permutation in G. 

There has been interest in polynomials with PSLA(2) (isomorphic to P5L(2,7)) 

as Galois group over Q, cf. the citations in [SM85]. The new example in Table 4.2 
h a s t h e P r °P e r t y t l i a t 驷 discriminant, 7

8
17

2
, is tlie smallest discriminant of any 

monic integral polynomial with Galois group � o v e r the rationals of which 

Soicher and McKay were aware. I 

table has also been used as the TEST DATA of the author's 
MAPLE Program on computing Galois group of polynomials up to de-
gree 7. 

I 

I 

I 

I 

I , 
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I II ‘ ‘‘ 
G (iisc(/) f(x) j Remarks . ~ 

Degree 3 

+ 彳 3 亡 X 3 + X 2 - 2 X - 1 S P K O ^ Q ^ T + T P F 1 ) 

禺 -2
2
.¾

3 X3
-|-2 

Degree 4 
^4 5^ x4-hx3+x2+x+l sp](f)=Q(tJ75) 

+¼ i 28 x̂ +I spl(f)=Q(«u8) 
Jh -211 1 “ ~ 

+ • ^ 4 2 1 2 3 4 X 4 + 8 X + 1 2 

5 4 229 x4+x-t-l ~ 厂 

Degree 5 

+ ^ 5 II4 ~^5+X4-4X3-3X2+3X+1 spl(f) 二 氓 刚 + 〜 1 ) 

+ P 5 2 1 2 5 G T 5 - 5 X - M 2 

F2Q 2455
 ~X5+2 — 

-f-A5 2 1 6 5 6 X 5 + 2 0 X - H 6 " 

65 19-151 x5-x-H “ 

丨 Degree 6 

6̂ x6+x5+x4+x3+x2+x+l spl(f)=Q(G77) 
^ 丨 _2i632i ~>+108 l̂ (f)̂ spl(x3+2) — 
Dp ' -2n36 x6+2 “ 
+ ^ 4 2638 X8-3X2-1 叩 l(f)=spl(x4+8x+12) 
Oi8 ~3n T^3x3+3 . — 
g 24 -2638 x 6 -3x 2 f l GaZQ(xa-3x+l)^3 

+^4/¼ 262292 spl(f)=spl(x4-t-x+l)“ 
2293 x6-3x5+6x4-7x3+2x2 l-x-4 spl(f)=spl(x4+x hi) 

GH 1 ¾ 9 X6+2X3-2 

+G§6 2103654 X6+6X4+2X3H-9X2+6X^ ~f(x)=(xa+3x-H)2-5 
G48 ~2n5272 “ 

•hPSL2(5) 23658 x6+10x
s+55x

4+140x3+175x2-丨-17QX+25 spl('f)=spl(x5-f-20x+16) 

-28733 x6-|-2x4H-2x3+x2-h2x-|-2 f(x)=(x3-|-x-H)2-H 

PGL2(5) 5 2 0 1 9 3 1 5 1 3 X 6 + 1 0 X 5 + 5 5 X 4 + 1 4 0 X 3 + 1 7 5 X 2 - 3 0 1 9 X + 2 5 spl(f)=spl(x5-x+1) 

+ ^ 6 2 1 6 3 8 5 6 X 6 + 2 4 X - 2 0 ~ ~ 

Sq -101-431 x 6 +x+l ~ 

' . Degree 7 

+̂ 7 172296
 X7+X6

-12X5
-7X4H-28X3-H4X2-9X-» 1 spl(f)二Q(CT2tH 叨誌+^^1-丨 

P I - 3 6 7 ° " ^ T + 7 X 3 + 7 X 2 + 7 X - 1 

+̂ 21 26710 "̂ 7-14X5+56X3-56X+22 “ 
FA2 ) 7 7 X7+2 

+PSL3(2) ~?172 x7-7x3-f!4x2-7x+l “ 

+A7 36^ "x7+7x4+14x-h3 ~ 
S7 -11-239-331 x 7 + x + l 一 

Table 4.2: Polynomials f(x) siicli that CalQ(f) = 

% � 



4.7 Comment 

• The resolvents are relatively simple and can be calculated symbolically. But 

rather than to test for a linear factor, as was the case in Stauduhax's method, 

the resolvents are completely factored (by the polynomial factorization algo-
i 
ritlim in Chapter 3). Hence no round-off error problem exists. 

• A few resolvents are needed to distinguish all the groups of a 运ven degree, and 

for each group, its shape (cycle-«tnictures of its elements and their number 

of occurrences) and orbit-length partitions of r-sets and 2-sequences under its 

action are all is required. So tlie storage requirements are low. 
I 1 

• IVaversing down the subgroup lattice is not necessary in this method. 

However, the degree of some resolvents axe relatively higher than that of Stauduhar's 

method and factorization can take some time. We also observe that this method 

only give the Galois group of f(x) to within conjugacy, while Stauduhar's method 

can output the exact permutations in the Galois group with respect to an ordering 

of the roots. 

i 
I 

I 
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Appendix A 
I 

I 

Demonstrat ion of the 

MAPLE program 

Example 1 
I 

> t l := t ime( )； 
> gal3_7(x~6-42*x~4+80*x"-3+441*x"2-1680*x+4516); t 2 : = t i m e ( ) - t l ; 

t l := 0 
[ s tu f f de l e t ed ] 

factored : - (x - 6186) (x + 55050) (x + 66390) 
3 2 

(x - 159498 x + 7638068124 x - 95259900647448) 
o l p a r t := [1, 1, 1, 3] 

"S3-, 6, {(1 3 5 ) (2 4 6 ) , (1 6 ) ( 2 5 ) (3 4)> 
t 2 := 2.000 

Example 2 

> t l := t ime( )； 
> gal3_7(x-6-32*x~4+160*x~3-320*x-2+384*x-256); t 2 : = t i m e ( ) - t l ; 

t l := 2.000 
{—> en te r gal3_7, a rgs = x" ,6-32*x"4+160*x-3-320*x~2+384*x-266 

6 4 3 2 
g := x - 32 x + 160 x - 320 x + 384 x - 256 

x := {x} 
X ：= X 
n := 6 

6 4 3 2 
g := x - 32 x + 160 x — 320 x + 384 x - 256 

{ - - > e n t e r f a c t o r , a rgs = x"6-32*x"4+160*x~3-320*x~2+384*x-256 
6 4 3 2 

x - 32 x + 160 x - 320 x + 384 x - 256 
< — e x i t fac tor (now in gal3_7) = x"6-32*x^4+160*x~3-320*x"2+384*x-256> 
{—> enter whattype, args = x"6-32*x"4+160*x"3-320*x"2+384*x-256 - + 
<__ e x i t whattype (now i n gal3_7) = +> 
r
 1 l c := 1 

•C—> en te r ga l6 , a rgs = x"6-32*x"4+160*x~3-320*x"2+384*x-256, x 
D i g i t s := 67 

D := 40378025213794713^ 
i s _ s q r d i s c := t r u e 

6 4 3 2 
r li ：= x - 32 x + 160 x - 320 x + 384 x - 256 

hordroot曰：= [ 
-7.689949640495598501488201177134623564814635134931898297770890531635, 

v 
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.5173040450083055256719890487905706679074948061084162141542651230727 
-1.342241671626710863100292671217310039105979613780809918911617444338 I 

.5173040450083056256719890487905706579074948061084162141542661230727 
+ 1.342241671626710863100292671217310039105979613780809918911617444338 I 

1.587201157033524323661010132917740178730405336185231560200216840147, 
2 • 结韶認認ii鹄§115?益21?貂?盤群器ii?龍1品11?誌85轻§?1总162908 I 
2

-
5

¥ » 裰 點 • 蹦 腿 M 騮 W i 羅 腦 誦 8 工 ] 
2 2 2 2 

F := xl x5 (x2 x4 + x3 x6) + x2 x4 (x5 xl + x3 x6) 
2 2 2 2 

+ x3 x6 (x5 xl + x2 x4) + x l x6 (x5 x2 + x3 x4) 
2 2 2 2 

+ x2 x5 (xl x6 + x3 x4) + x3 x4 (xl x6 + x5 x2) 
2 2 2 2 

+ x l x3 (x2 x6 + x4 x5) + x2 x6 (xl x3 + x4 x5) 
2 2 2 2 

+ x4 x6 (xl x3 + x2 x6) + x l x4 (x2 x3 + x5 x6) 
2 2 2 2 

+ x2 x3 (x4 xl + x5 x6) + x5 x6 (x4 xl + x2 x3) 
2 2 2 2 

+ x l x2 (x3 x5 + x4 x6) + x3 x5 (xl x2 + x4 x6) 
2 2 

+ x4 x6 (xl x2 + x3 x5) 
S6_PGL2_5 := [ [ ] , [ [1, 2 ] ] ’ [[1, 3 ] ] ， [ [ 1 , 4 ] ] , [[1, 51], [[1, 6 ] ] ] 

5 4 3 
R := - 766591543258710016 x - 15872 x + 118030336 x - 449696497664 x 

2 6 
+ 859354236452864 x + x + 247809443596154699776 

enter tschizmhausen 
tschimhausen succeeded 

2 3 4 5 6 2 
t := 12122 x + 9121 - 1233 x - 4020 x + 207 x - 70 x + x , x - x + 1 

2 3 4 5 6 
h := 12122 x + 9121 一 1233 x 一 4020 x + 207 x - 70 x + x 

hordroots : = [ . 
67.825275113853^8313794128326451992353676632559733215490276600331461, 

-1.051313275077617650255922167899218914481077053633602918684992434809 
-.046462420695703701277570891601329043317124383909884988452833171337 I 

-1!051313275077617660255922167899218914481077053633602918684992434809 
,+ .046452420595703701277570891601329043317124383909884988452833171337 I 

1.932006355855034015944909264870709980123516849342715652158401064852, 
1.172672540223109073^12825903203902156036656330296167641222790245078 

丨 - 7 . 8 4 0 8 2 6 4 2 8 1 3 1 8 5 1 7 5 2 1 8 4 3 7 7 8 2 1 4 7 5 T 2 6 9 1 5 2 8 3 1 1 5 8 9 6 7 6 4 3 7 3 6 9 2 2 7 9 6 1 0 0 0 3 8 2 1 I 
1.172672540223109073312825903203902156036656330296167641222790245078 

+ 7.84082642813185175218437782147572691528311^896764373692279610003821 I 
2 2 2 2 

F := x l x5 (x2 x4 + x3 x6) + x2 x4 (x5 x l + x3 x6) 
2 2 2 2 

+ x3 x6 (x6 x l + x2 x4) + x l x6 (x5 x2 + x3 x4) 
2 2 2 2 

+ x2 x5 (xl x6 + x3 x4) + x3 x4 (xl x6 + x5 x2) 
2 2 2 2 

+ x l x3 (x2 x6 + x4 x6) + x2 x6 (xl x3 + x4 x5) 
2 2 2 2 

+ x4 x5 (xl x3 + x2 x6) + x l x4 (x2 x3 + x5 x6) 
2 2 2 2 

x2 x3 (x4 x l + x5 x6) + x5 x6 (x4 xl + x2 x3) 
2 2 2 2 

+ x l x2 (x3 x6 + x4 x6) + x3 x5 (x l x2 + x4 x6) 
2 2 

t xA x6 (xl x2 + x3 x5) 
S6.PGL2_5 := [ [ ] , [ [1 , 2 ] ] , [[1, 3 ] ] , [ [1 , 4 ] ] , [[1, 5 ] ] , [ [1 , 6 ] ] ] 

R := - 10984826338064985722085466146362176 x - 6442036 x 
- I 4 3 

+ 115129608233404 x - 546664230005932493152 x 
O g 

+ 3417374567876472349578646416 x + x 
+ 10906368940499121326101058572558369306688 
4 3 2 

factored := (x - 2253176 x + 101339045990168 x - 112362603136642134496 x 
2 

+ 2505643050485262159681180688) (x - 4188860 x + 4352323423876) 
olpart := [2, 4] 

< — e x i t gal6 (now in gal3_7) = +S4/V4 ~S4 , 24, { (1 3 6 ) (2 4 6) , 
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-1.333378439666119041145681512024754212085 
+ 1.218194770264173309771269845750114852807 I , 

一 1 - m 纈 M 鏺 觀 騮 鰯 ？ 羅 嫋 綱 i , 
辦賴龍辦键器矜„35群?4^2807 

^辦徴税騮？襬器朔兹識饌颗4852807、 
-2.134957078963789360512349428112105657827 T 

-1.763096476561239446658812561973150203443 I , 
.9263804969369947166500259781872632599555 

I - 2.307998182858305583546355278196185554079 I， 

. 2 6 8 6 ? 預 賺 • • 隱 醒 衡 2 酬 、 
, - . 6 f 8 齜 髋 M 鎞 玀 顒 • 顆 鼸 薩 i , 

2.392469358964174771234251819411505325862, 

口 3 〒 簡 騮 纖 群 觀 憩 磷 3 5 0 6 3 6 4 L 

- 龊 6
0 ? ? M = 鳟 8

M M
0

5 0 6 3 6 4 I, 
-1.3265529403081000116327746^1549991563658, 

“
3 4

!
8 4 6

® 飄 糨 • • • ‘ 縱 , ! ， 
- [ 鄉 腿 趟 腦 釋 腿 藉 紐 騮 滅 I , 

1.727959136244665036016693894274614705697 
一 1.763096476561239446658812561973150203443 I , 

1.070274412873174330312042849612486733959 
- 1.218194770264173309T71269845T50114852807 I , 

-
1
 •呀視腿！隨龍觀鏹撒麗4079 I, 

_
 1
 •？叩？猢織镏镪齲玀§龉騮?1?鎅嫋3443 I, 

1.070274412873174330312042849612486733959 ” 丨 
-2.307998182858305583546355278196185554079 I , 

.132710422371061013438544329199487853822’ 
- .5249743010004296922661067154626401179159 T 

+ .5449017062970661368875427162230353506364 I , 
2.536363274900354384896268690836728799866, 

-.5249743010004296922661067154626401179159 
-.5449017062970661368875427162230353506364 I ] 

\ • = i 
9 7 - 3 3 

R .4576219190000000000000000000000000000012*10 , + .7*10 I 
+ .4676223999999999999999999999999999999931*10 x 

, 9 5 
+ .3191663999999999999999999999999999999995K10 x 
+ .1582566719999999999999999999999999999996*10 x 

9 3 
+ .1189659519999999999999999999999999999999*10 x 

8 2 
+ .5743919999999999999999999999999999999996*10 x 

9 6 —31 3 
+ .5456530240000000000000000000000000000010*10 x + .5*10~ I x 

-29 20 8 8 
一 .13646*10 I x + .1969686599999999999999999999999999999521*10 x 

8 9 
+ .2260308399999999999999999999999999999634*10 x 

8 13 
+ .3319044399999999999999999999999999997825*10 x 

21 
-236272.0000000000000000000000000000007011 x 

7 20 
+ .2264098000000000000000000000000000001329*10 x 

7 17 
+ .3056527999999999999999999999999999991000*10 x 

7 16 
+ .3357760000000000000000000000000000001266*10 x 

8 15 ’ 
-.2763514599999999999999999999999999998298*10 x 

- 8 14 
+ .3674891200000000000000000000000000000314*10 x 

7 18 
+ .1638363999999999999999999999999999998539*10 x 

7 19 
- .328099099999999999999999999999999999719if10 x 

9 10 
•»• . 2072131320000000000000000000000000000108* 10 x 

9 11 
+ .1181074930000000000000000000000000000157*10 x 

9 12 
-.1243717020000000000000000000000000000113*10 x 

•v 
81 � ' 
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29 
-279.9999999999999999999999999999999997423 x • 

28 
+ 301.9999999999999999999999999999999994110 x 

27 
+ 294.0000000000000000000000000000000002833 x 

26 
-4900.000000000000000000000000000000001114 x 

25 
-17052.00000000000000000000000000000003568 x 

24 
+ 60942.00000000000000000000000000000009582 x 

23 
-60773.99999999999999999999999999999977277 x 

22 -38 34 
+ 15367.99999999999999999999999999999937984 x - .71*10 x 

一 3 0 8 -29 9 -29 io 一 29 7 
一 .42*10 I x + .794*10 I x + .81*10 I x - .233*10 I x 

-36 33 -36 32 -30 4 -30 5 
4- . 1206*10 x - .55511*10 x + . 14*10 I x - .1*10 I x 

-30 6 31 
- . 2 9 * 1 0 ； x + 55.99999999999999999999999999999999998632 x 

一 139.9999999999999999999999999999999999628 - .9*10~32 I x 
-31 2 35 -28 12 -29 13 

+ .2*10 I x + x 一 .20101*10 I x + .724*10 I x 
-28 11 -28 16 -29 17 

- .1202*10 I x 一 .13118*10 I x 一 .1511*10 I x 
-29 18 -28 14 -32 15 

+ .5400*10 I x + .2024*10 I x + .504*10 I x 
— -35 31 „ ^ -36 32 -37 33 

- .58782*10 I x + .177587*10 I x + .143*10 • I x 
-29 19 -29 21 -30 22 

+ .144827*10 I x - .102092*10 I x + .40551*10 I x 
-30 23 , -32 26 -32 27 

+ .28597*10 I x + .76台71*10 I x - .11779*10 I x 
-30 24 -31 25 -33 28 

一 .104881*10 I x 一 .2055784*10 I x + .5383*10 I x 
-33 29 - 3 4 30 

+ .17391*10 I x 一 .7150765*10 I x 
7 -38 34 

-.1976808000000000000000000000000000000016*10 - .20*10 I x 
7 5 4 

E := 457621919 x + 4676224 x - 1975808 + 319166400 x + 158256672 x 
3 2 6 8 9 

+ 118965952 x + 57439200 x + 546653024 x + 19696866 x + 22603084 x 
13 21 20 17 16 

+ 33190444 x - 236272 x + 2254098 x + 3055528 x + 3357760 x 
15 14 18 19 

一 27635146 x + 36748912 x + 1638364 x 一 3280991 x 
10 l i 12 29 28 

+ 207213132 x + 118107493 x -,124371702 x - 280 x + 302 x 
27 26 25 24 23 22 

+ 294 x - 4900 x 一 17052 x + 60942 x 一 60774 x + 15358 x 
31 30 35 

+ 56 x - 140 x + x 
olpaxt := [7, 28] 

< — e x i t gal7 (now in gal3_7) = +PSL2(F7) "+PSL3C2), 168, { (1 2 3 4 5 6 7) 
, ( 2 3)(4 7 ) » 

+PSL2(F7) "+PSL3(2), 168, { ( 1 2 3 4 5 6 7 ) , (2 3 ) (4 7)> 
< — e x i t gal3一7 (now at top leve l ) = +PSL2(F7) "+PSL3(2), 168, { 
(1 2 3 4 5 6 7) , (2 3)(4 7 ) » 

+PSL2(F7) "+PSL3(2), 168, { ( 1 2 3 4 5 6 7 ) , (2 3) (4 7)> 
t2 := 2.000 

Example 5 
« 

> ti:=time()； 
> gal3_7(x~5+x',4-4*x^3-3*x"2+3*x4-l); t2 :=t ime() - t l ; 
r t l := 0 
{__> enter gal3__7, args = x"5+x"4-4*x"3-3*x"2+3*x+l 

5 4 3 2 
' g := x + x - 4 x - 3 x + 3 x + 1 

X : = { x > 
X ：= X 

» . n := 6 
5 4 3 2 

g := x + x - 4 x - 3 x + 3 x + 1 
{一一> enter f a c t o r , args = x",5+x~4-4*x'*3-3*x**2+3*x+l 1 5 4 3 2 

x + x — 4 x — 3 x + 3 x + 1 
<—exit factor (now in ga!3_7) » 

I 

82 " 



I 

I 

{ ~ > en t e r whattype, a rgs = x"5+x~4-4*x"3-3*x"2+3*x+l 
< — e x i t whattype (now i n gal3_7) = +> 
r ^ l c := 1 
i—> en te r ga l5 , a rgs = x~5+x~4一4伞x~3一3*x~2+3*x+l» x 

D := 14641 
i s _ s q r d i s c := t r u e 

v 5 4 3 2 
hordroote := [-1.918985947228994779780736114132665398125, 

-1.309721467890570128113850144932587106368, 
-.2846296765465702808875853372327393375821 
.8308300260037728510585482984692464070480 
1.682507065662362337723623297838735435027] 

F ：= (xl x2 + x2 x3 + x3 x4 + x4 x5 + x5 x l - x l x3 - x3 x5 - x5 x2 - x i x4 
一 x4 xl)̂ 2 

S5_F20 [ [ ] , [ [1 , 2, 3]] > 4 C[1, 3 , 幻 ] , 3 [ [ 1 ’ 2 ] ] , [ [2 , 3 ] ] , [ [1 , 3 ] ] ] 
t := x - 264 x + 25168 x - 1022208 x + 14992384 x 2 一 14992384 x, 

[31.78284454738512997240974738261312642005, 
1.077014593677007040114228609258101691156, 
95.66277585414092509135789505930621238498 
64.55545037131997519140424134514375155263； 0, 

J O . 92191463347696270471388760367880795136] 

RordrootsX ;= [ 3 1 ， 字 雪 2 1 4 4 5 4 7 3 8 ¾ ¾ ¾ ^ ½ ¾ ¾ ^ ¾ ^ ¾ ^ 2 3 8 4 * 
1.077014593677007040114228609258101691156, 
95.66277585414092509135789605930621238498 
64.55545037131997619140424134514375155263； 0, 
70.92191463347696270471388760367880795136] 

factored := x (x - 264 x + 26168 x - 1022208 x + 14992384 x 一 14992384) 
olpart := [1, 5] 

i r o o t := 0 
t h i s p := [[2, 3]] 

hordroo t s := [-1.918985947228994779780736114132655398125• 
-.28462967654657028088758533T2327393376821, 
-1.309721467890570128113850144932587106368, 
.8308300260037728510585482984592464070480, 
1.682607065662362337723623297838735435027] 
t ':= [-1.918985947228994779780736114132655398125, 

-.2846296765465702808875853372327393375821, 
-1.309721467890570128113850144932687106368! 
.8308300260037728510585482984592464070480, 
1.682507065662362337723623297838735435027] 

I d := 121.0000000000000000000000000000000000000 
< - - e x i t gal5 (now in gal3_7) = +C6, *5, { ( 1 2 3 4 5 ) » 

+C5, 5, { ( 1 2 3 4 5)> 
< - - e x i t gal3-7 (now at top l e v e l ) = +C5, 5, { (1 2 3 4 5 ) » 

+C5, 5, { ( 1 2 3 4 
t 2 := 1.000 

I 

I 

I 

I 
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Appendix B 

I 

Avenues for Far ther 

Exploration 
I “ 

B . l Computational Galois Theory 

1. John McKay and Richard Stauduhax, Finding Relations Among the Roots of 
a n ^reducible Polynomial, in Proceedings 1SSAC97 (International Sympo-
sium on Symbolic and Algebraic Computation). 

2. D. Caaperson and J. McKay, "Symmetric Functions, m-s杖8，aod Galois Group-
s , Mathematics of Computation, vol.63, no.208, 1994, pp.749-757. 

3 . Ti l o m a f W ' M a^man，The computation of Galois groups over function fields 
M.bc. Mathematics Thesis, McGill University, Montreal, Canada, 1992. 

4. 'T. W. Mattman and J. McKay, The computation of Galois groups over func-
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B.2 Notes on SAC—Symbolic and Algebraic Com-

putation 

SAC = Symbolic and Algebraic Computation = Computer Aleebra = 
CA 

I 
Symbolic and Algebraic Computation, or Computer algebra or Computational 

algebra, is devoted to the investigation of algorithms, computational methods, soft-
ware systems, and computer languages, oriented to scientific computations per-
formed oil exact and often symbolic data, by manipulating formal expressions by 
means of the algebraic rules they satisfy. 

1 It studies such problems front three different but confluent viewpoints: 
a) development and analysis of algebraic algorithrris (from the viewpoints both of 
practical performance and of theoretical complexity); 
b) design and analysis of software systems for symbolic manipulation; 
c) applications of scientific and/or technological systems. 

Jt® importance for application^ has grown in recent years with the introduction of 
te^^ological areas (related to information processing, software engineering, etc.) in 
whjch the symbolic nature of the objects studied makes the techniques of calculus 
aocl numerical analysis inapplicable. For these areas, algpbra provides both a the-
=etical framework for the development of theories and algorithmic techniques for 
t Je concrete manipulation of objects. Traditional areas of science such as physics, 
chemistry and biology has found the method of computer algebra creeping in. For 
more information，see 

• • Computer algebra in science and engineering /editors, J. Fleischer, 1995. 

• Computer algebra in industry 1,2: problem solving in practice 1991, 1995. 
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• Symbolic computation in undergraduate matheinalics education / Zaven A. 
Karian, editor. Mathematical Association of America，1992. Computer td-
gebra systems in the classroom / edited by J. Monaghan and T.A. Etchells., 

It is important to stress that tlie mathematical theories to which computer algebra 
applies are not necessarily only the algebraic ones: polynomial and differential equa-
tions, coinnmtative algebra, real geometry, and group theory have a well-established 
researcli activity using symbolic computation techniques, and such activity necessar-
yy interweaves mathematics, complexity theory, and soawaxe systems. For example, 
111 ！朋七 few years extensive studies have been devoted to complexity iii eliiui-
ii忘ti?n theory, and to the importance of appropriate data structures for exhibiting 
efficient algorithms to solve polynomial systems. 

‘ . 

C o m p u t e r A l g e b r a Sys t em General purpose computer algebra systems: Mu-
PAD (free of charge), Maple(TM), Mathematica(TM), Macsyma(TM), AxiomfTM), 
Reduce(TM), Deri^e(TM). ‘ V h 

Special purpose computer algebra systems (free of charge): 
Computational Group Theory: GAP 
Comiiutational (Algebraic) Number Theory: PA�U, KANT, Asir, SACLIB 
Computational Algebraic Geometry: Casa. Grobner, Macaulav 
Mixed:Magma(TM) 

T h ® fir8t beginnings of the development of program systems for computer algebar 
^ t e back to the 1950s, b u t . . . . many of these programs can now run on my cheap 
Pentium-133. One can oomputc for instance integral bases, unit group generators 
and the class group structure of algebraic number fields, and even generators for 
the Mordell-Weil group. 

I I 
S A C mee t ings ISSAC '9x International symposium on symbolic and algebraic 

computation (the primary international conference oil SAC, the first meeting was 
on 1966 but with a different name—SYMSAC.) 

Algorithmic number theory: international symT)osiiim, 199x. 
MEGA '9x Effective Methods iii algebraic geometry. 
^ E C C Applied Algebra, Algorithms and Error-Correcting Codes '198x '199x 
DISCO'9x, Design and implementation of symbolic computation systems: Interna-
tional Symposium, 
PASCO International Symposium on Parallel Symbolic Computation. 
A^bMCJ Iijtegrating symbolic mathematical computation and artificial intelligence 
:International Conference, 199x 

G e n e r a l SAC M e ^ I n g s In t h e E a s t ASCM »95 Beijing, China. The First 
Asian bymposium on Computer Mathematics 丨 

令 1 ¾ ：浩 S i n 6 a P ? r e T h ® , F i ^ t A®100 Technology Conference in Mathematics 
^ ^ 9 6 Kobe, Japan The 2nd Asian Symposium on Computer Mathematics 
A T � M , 9 化 微 M ^ s i a 丄 h e A s i a n Ibclinobffy Conference in Mathemat-

R TECHNOLOGY IN MATHEMlTICAL RESEARCH AND 

Per iodica l pub l ica t ions Journal of Symbolic Computation, editor B.F. Cavi-
iiess {formerly B. Buchberger) ' 
^ � l i c a b l e Algebra in Engineering, Communication, and Computing, editor J. Cal-

SIGSAM Bulletin (ACM special interest group on SAG) 

Something more should be said from the angle of mathe-
matics. 

書 
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CoiAputera have stretched the limits of what is possible in mathematics. More 
tlian that, they have given rise to new fields of mathematical study: the analysis 
of new and traditional algorithms; the creation of new paradigms for implementing 

, computa t iona l methods; and the viewing of old techniques from a concrete algo-
rithmic vantage point. , 

Being suspected of the validity of this statement, Tang Simon asked the following 
i n t l l e USENET newsgroup aci .math.symbol tc from April to August 

1995: 

A Computer has nothing to do with Pure Mathematics. Discuss (100%) 
Not for homework and examination, simply because students are bewil-
dered. 

Here are some fragments of answers that I have collected: 

O n t h e s tyle (school or phi losophy) of M a t h e m a t i c s The word ”algprith-
m" as well as the key word ” algebra，，in the title of this book come from the name 
and the work of the nintli-centiiry scientist Mohammed ibn Musa al-Kliowarizml, 

The word ”algorithm，’ is actually a westernization of al-Khowarizml's name, 
wliile algebra derives from ”al-jabr’” a term that appears in the title of his book 
Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution 
of equations. 

This *-close-* connection between algebra and algorithmfe !!Hasted roughly up 
to the beguming of this century-!!!; until then, the primary goal of algebra was 
tlie design of *constructive* methods for solving equations by means of symbolic 
transformations. 

During the ！！！-second half of the nineteenth century-!!!, a new line of thought 
began to enter algebra from the realm of geometry, where it liad been successful 
since Euclid's time, namely, the *—axiomatic method—*. 

The starting point of the axiomatic approadi to algebra is the question, What kind 
of object is a symbolic solution to an algebraic equation? To use a simple example, 
the question would be not only, What is a solution of ax+b = 0，but also，What are 
t h � properties of the objects a and b that allow us to form the object -b/a? The 
axiomatic point of view is that these are objects in a surrounding algebraic structure 
Y h l c " determuies their behavior. The algebraic structure in turn is described and 
determined by properties that are laid down in a set of axioms. 

Th.® foundations of this approach were laid by Richard Dedekind, Ernst Steinitz, 
David Hilbert, Enuny Noetlier, and many others. The *-axiomatic method-* fa- ‘ 
vors (abstract-*，**-non-constructive-** arguments over *-concrete-* algorithmic 
constructions. The former tend to be considerably *-shorter-* and more *-elegant-* 
than the latter. 

•—Before the arrival of computers—*，this advantage more or less *-settled-* the 
question of *-whidi-* one of tlie two approaches was to be preferred: the algorithmic 
results of mathematicians like Leopold Kronecker and Paul Gordan were way beyond 
t}l® ^ ^ of what could be (lone with pencil and paper, and so they had liillo to 
offer except being more tedious than their non-constructive counterparts. 

On the other hand, it would be a *一mistake"* to construe the axiomatic and 
the algorithmic method as being irreconcilably *-opposed-* to each other. As 
a m a t t e r o f fact> significant *-algorithmical-* results in algebra were proved by 

veiy proponents of *-axiomatic-* thinking such as David Hilbert and Emmy 
?oetlier. Moreover, mathematical logic-a field that centers around the (axiomatic-

, 1 method-made fundamental contributions to *-algorithmic-* mathematics in the 
l ^Os . Alan rurmg and Alonzo Church for the first time made precise the concept 

computabihty in what 鉍 known as Church's thesis, or also as the Church-Taring 
J .^VMJ ^ 1 P r o v e d t h a t certain problems inherently elude computability and 
decidability. TJis triggered a wave of new results by Alfred Thrski and other mem-

o l t h e Polish school of logicians on the algorithmic solvability or unsolvabUitv 
of algebraic problem. 
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Again, because of their enormous complexity, these algorithms were of 
*-no practical-* signllicaDce whatsoever. 

I 
As a result, the ！!-beginning second half of this century-!! s^w an *—axiomatic and 

largely non-constructive—* approach to algebra firmly established in both research 
and teaching. 

. * The arrival of computers * * * and their breathtaking development 
in the ！!-last three decades-!! then prompted a *—renewed interest-* in the problem 
of **-€fTective constructions-** in algebra. Many constructive results from the past 
were unearthed, often after having been rediscovered independently. 

Moreover tlie development of new concepts and results in the area has now estab-
lished *-computer algebra-* as an independent discipline that extends **-deeply-** 
into *-both-* mathematics and computer science. 

[oh! Pure Maths ] 

There are many good reasons for viewing computer algebra as an independent field. 
However, the fact that the *-mathematical part-* of it is some what separated from 
the work of *-pure algebraists-* is, in our opinion, rather unfortunate and not a t 
all justified. We feel that this situation **-must and will change-** in the near • 
future. 

As a matter of fact, **-computational aspects-** are **-be©inning-** to show 
up more and more in undergraduate-level textbook on abstract algebra. * * 

[oh! Take a break.] 

A case s tudy : G r o b n e r bases There is, however, one particular contribution 
made by computational algebra that is in most dire need of being introduced in tlie 

mathematical mainstream-* namely, the theory of Grobner bases. 
Grobner bases were introduced by Bruno Buchberger in 1965. The terminology 

acknowledges the influence of Wolfgang Grobner on Buchberger�work Given 
a finite set of multivariate, polynomials over a field, the Buchberger algorithm com-
putes a new set of polynomials, called a Grobner basis, which generates the same 
ideal as the original one and is an analogue to the gcd of the univariate case 

I t leads to solutions to a large number of algorithmic problems that are related 
to polynomials in several variables. Most notably, algorithms that involve Grobner 

computation allow **-exact-** conclusions OIL the solutions of systems of non-
linear equations, such as the (geometric) dimension of the solution set, the exact 
number of solutions in case there are finitely many, and their actual computation 
with arbitrary prepkion. 

Most of the problems for which Grobner bases provide algorithmic solutions were 
already known to be solvable *-in principle-*. Grobner bases are a 运ant step-
* forward insofar as actual implementations have *-become feasible-* and have 
actually provided answers to physicists and engineers. 

[ie Pure Maths + Computer may- i applications of DEEP Mathematics. Is this a 
liappy event?] 

On the other hand, many problems of no more than moderate input size stUl defy 
computation. The *—mathematics behind the algorithms—*, as well as the *— 
hardware—* that performs them have a **-long way to go-** before these problems 
can be considered solved to tlie satisfaction of the user. 

'[ie full of opportunities.] 

The purpose of this book is to give a self-contained,林mathematically sound** 
introduction to the theory of Grobner bases and to some of its applications, stressing 
both theoretical and computational aspects. 

. .…Chapter 6-10 cover a wide range of applications,..…Strong emphasis is placed 
on a mathematically sound verification of the algorithms. 

[ie they are not careless or non-rigorous mathematics. Are they ugly?] 
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..:::: implementations of any practical value involve considerably more mathematics. 
….theoretically and algorithmically absence of any complexity theory 

On the contrary, we feel that complexity theory is too important an issue to be 
deaJt with lightly. 

{oh! Pure Matlis k Computer Science} 

...Furthermore, we demonstrate liow Grobner bases can often be used to give * -
elegant an enlightening proofs of classical results-*, Tliis shows that GJrobner 
bases are not only a powerful tool for actual computation, but also a comeratorie 
of commutative algebra. 

[oh! an extra ’double oh'.] 

SAC f rom t h e angle of Mathemat ics The mathematical uses of computers 
can be divided roughly into numeric and nonnumeric applications. 

Numeric computation involves primarily calculations in which real numbers are 
approximated by elements from a fixed set of rational numbers, called floating-point 
N U M A ? I A L Y S I S D ^ U S U a l l y ^ 8 0 0 ^ ^ w i t h mathematicaJ discipline 

One nonnumeric i application of computers to mathematics is 

JS Y M B 0 L I C_COMPUTATION_ 

Although it is impossible to give a precise definition, symbolic computation nor-
inallx involves rcpresentL|ig mathematical objects _exactly_ and perform _exact_ cal-
culations with these representations. It includes efforts to automate many of the 
techniques taught to high school students and college undergraduates. 

The term 'computer algebra' is frequently used as a syndnym for 'symbolic com-
putation*. Although the term 'computer algebra' is well established, it conflicts 
somewliat with current usage within mathematics, where ’algebra, usually is used 
in the narrower sense of 'abstract algebra', the study of algebraic structures 8uch 
as groups, rings, fields, and modules. 

The word 'computer' in the phrase 'computer algebra' is also not quite accurate. 
It is true that much of wliat is done is motivated by the existence of computers. 

Nevertheless, the algebraic algoritlims which have been developed represent sub-
stantial jnathematicaL achievements, whose importance is not dependent entirely 
on their being incorporated into computer programs. 

Within symbolic computation there is a rapidly expanding area of computational 
(abstract) algebra! which is the study of procedures for manipulating objects from 
abstract algebra with particular concern for practicality. 
_ComputationaLGroup_Theory_ is the part of computa t iona l a lgebra which con-
siderf problems related to groups. Other flourishing subBelds of computational 
algebra are -ComputationaL(Algebraic)_Number_Theory, and 
-Computational_Algebraic_Geometry. 

, Symbolic computation is at the -border, between matlieniatics and computer sci-
^ice. The objects being manipulated are jnathematicaL However, the algorithmic 
id^as often have come from .computer jscience., and individuals who identify tliem-
selves as computer scientists have made important contributions to the subject. 

A point of exjntinuing debate is the role of -complexity_theory_ in symbolic com-
putation. The traditional complexity measure in theoretical computer science is as-
ymptotic worst-caise complexity. For users of symbolic software, worst-case analysis 
are often too pessimistie. Of much more relevance is average-case complexity. How-
ever, average-case analyses are lacking for many of the most important algebraic 
algorithms. Moreover, there are cases in which no agreement has been reached on 
what the average case is. [....] Frequently, all that we can do is apply competing 
methods to a selection of test problems and compare the results. Experimental 
evidence is better than nothing, but one must be very _careful_ about drawing 
concluaions from such evidence. 
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While the work of symbolic solutions for algebraic equations, from integrals to 

polynomial, has its roots in work of the Greeks (the Euclidean algorithm continues 
to be useful in computing the greatest common divisor in various domains), research 
began iii earnest _iliirt^_years_Ago_, with the development of Macsyma(TM) for 
solving polynomial and integral equations. Since that time a variety of system liave 
appeared. 

Much work in the development of algorithms remains tb be done, from a very 
-practical一 systems development to -theoretical- algorithms research ( Mathematics? 
)• 

On the other hand, computer algebra systems have been a -liaefuLtooL to teach-
ers, scientists and engineers, from (pure) mathematical research to industry and 
business. 

A n article t l ia t looks like a conclusion P u r e mathematics has resisted 
computers longer than most branches of science. The advent of computers is fi-
nally, fundamentally transforming the practice of mathematics. Both pure and ap-
pliod mathematics and mathematicians are experiencing the upheaval. The changes 
include: I . 

* The line between pure and applied mathematics is in flux. 
* Computers spur new areas of research and revive languishing areas. 
* Computers increase productivity or make productivity possible by providing new 
means for: generating examples and testing conjectures; recording and disseminat-
ing information; conducting joint research among far removed researchers. 
* Algorithm development motivates theory. 
* Computera enhance teaching by providing: vastly improved graphical presen-
tation; ability to present non-trivial examples in class; ability to routinely assign 
non-trivial homework problems; tools for students to analyze, experiment and play 
witli the subject matter. 

Areas of mathematics such as applied logic, algebraic geometry, combinatorics, 
commutative algebra, dynamical systems, and inany others owe their existence, 
*-rebirth-* or major new research initiatives to the influence of computers. Re-
searchers in these areas use computers as an extension of hand calculation to com-
pute examples which test conjectures and provide data to increase understanding 
and motivate theorems. 

Beyond computation, computers exert a profound influence on mathematical re-
search. Researchers delve into the algorithms underlying computation： They find 
motivation for pure mathematics from analyzing existing algorithms and developing 
new algoritlims. Significant developments in tlie creation of *-algorithm»-* require 
significant developments in .-theory-*. This is a fertile source of new mathematical 
theory. 

Buchberger theory, other computational methods, and the related theory arc be-
coming known to commutative algebraists and algebraic geometers because of their 
importance for computation and because they provide the basis for many new in-
teresting problems.1 ( Originally Galois theory was pruiiarily computational. Now 
a days, proofs often make use of the fact that a Galois group exists and no compu-
tation is involved. The same can be done with Buchberger theory.) 

T h e *~computer algebra-* community realized the significance of this work be-
fore t h e general academic pure mathematics community. The computer algebra 
community involves a full spectrum from engineers to theoreticians. The problem 
solvers using computer algebras, the implementors, the algorithm developers and 
the theory developers work side by side, motivating and benefiting from each other's 
developments and problems. 

To be Continued ....Continued from above ..… 
At best, the result is a robust, stimulating, productive scientific environment. 

****~**** At worst, over zealous theoreticians -Puritans- and over zealous al-
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gorithm developers -Algos- divide into narrow-minded, self-serving communities. 
Each thinks it is binarter and works harder than the other. The Algos believe 
that algorithmic solutions to problems require better theorems with more difficult 
proofs thai! non-algorithmic solutions. The Puritans believe tliat the Algos work 
on problems which have *-already been-* solved. ***—**** 

Purely existential results are fundamental to algorithm development. For in com-
puter algebra systems, one wishes to use efficient algorithms as measured by the 

, n u m b e r of computational steps and memory usage. Determining bounds on algo-
fitjjms and finding efficient algorithms requires and motivates further theory. This 
is *-why-* algorithmic approadies to problems can be more difficult and involve 
more theory than non-algorithmic approaches. ' 

Suppose a new area of mathematics has just opened. Here is a list of new problems 
and their difficulties. 

I I 
Problem: A B C D E F 

Difficulty of non-algorithm approach: 5 10 15 20 25 30 

Difficulty of algorithm approach: 6 12 18 24 30 36 

At first the Puritans and Algos work on problem A. An existential solution is 
obtained before an algorithmic solution. Soon the Puritans are working on Problem 

while the Algos are working on Problem E. This is *why* the Puritans fell the 
Algos are working on problems which have already been solved. The Algos have 
contempt for problem F as being of only theoretical interest and irrelevant to tlie real 
world. The first Algos developing algorithmic approaches to F face this contempt 
from their Algo peers. Once F becomes established on an algorithmic basis, the 
Algos/Piiritans act as if they always believed it had real world relevance. 

Applications *-ma(ie possible-* by computers are part of the impetus for the study 
and development of modern commutative algebra and algebraic geometry. The book 
presents *-applications-* in chapters on Robotics, Invariant theory of Finite Groups 
and Automatic Geometric Theorem Proving. Automatic Geometric Theorem Prov-
mg is not an artificial intelligence attempt to duplicate the human theorem proving 
process. Instead, using analytic geometry, the theorem to be proved is reduced to a 
system of equations, possibly with some exceptional conditions or inequalities. One 
then uses algebraic means to verify the resulting algebraic system. 

I 

j 
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