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Abstract 

Error resiliency is becoming increasingly important with the rapid growth of the 

mobile systems. The channels in mobile communications are subject to fading, 

shadowing and interference and thus have a high error rate. Channel coding cannot 

correct all the errors when the channel condition is too bad. Compressed data are very 

sensitive to errors; even a single bit error can cause significant quality degradation ofthe 

decoded data. Error resiliency is about to code the multimedia data in a way such that the 

effect of errors on quality degradation is minimized. 

One of the targets identified by the MPEG-4 is to provide error robustness for the 

storage and communications in error-prone environment. The schemes being investigated 

include layering, resynchionization, data recovery and error concealment. This thesis will 

review some of these techniques. 

One of the causes of the vulnerability of the compressed data is the use of variable 

length entropy codes. The decoder will lose the synchronization of codewords when there 

are errors in the compressed stream. The two main approaches discussed in this thesis to 

solve this problem are (1) Fixed length codes and (2) Self-synchronizable code. 

Fixed length codes inherently eliminate the problem of codeword synchronization 

because the boundaries of codewords are at known positions. The errors are always 

confined within the corrupted codeword. Tunstall code and Lempel-Ziv code are 

examples of fixed length codes. 
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The self-synchronizable code has the property that the punctuation at the position in 

question can always be determined by observing s neighbouring symbols. This 

synchronization procedure can start anywhere within the bitstream and this property 

limits the propagation of errors. 

The organization of this thesis is as follows: Chapter 1 gives the basic of JPEG and 

MPEG. Chapter 2 addresses the issue of error resiliency and describes the techniques 

studied by MPEG-4. Chapter 3 reviews the Tunstall and the Lempel-Ziv algorithm. 

Chapter 4 gives the construction procedure of a self-synchronizable code and its 

synchronizer. We then describe its application to image coding over noisy channels. 
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簡介 

隨著無線電通訊糸統的迅速發展，訊息之抗錯田1101 Resiliency)能力亦變得更重 

要。己被壓縮的影視訊息十分容易受錯誤影響，即使旦一個位元的錯誤也能使解 

壓後的影像質素大大下降。 

傳統上信道編碼被應用來糾錯，但當信道的環境十分差的時候，這些糾錯碼並不 

能糾正所有的錯誤。所謂訊息之抗錯能力就是指將錯信道錯誤帶來的影響儘量減 

少o 

MPEG-4其中一個目標是提供一些編碼工具來提高訊息之抗錯能力。正被硏究的 

工具包括多層編碼0^&乂6^118)，重新同步(&63700^1100123^010，數據之復原(0&{& 

^1600^6巧)和錯誤隱蔽(£1101 Concealment)�這篇論文將會介紹這些技術的一些基 

本槪念。 

壓縮後的訊息容易受錯誤影響，是因爲它們採用了不同長度的字碼。一但發生錯 

誤，解碼器便不能辦認各字碼的正確位置。這篇論文硏究兩項方法來解決這問 

題： 

一、固定長度字碼(Fixed length Code) 
例子包括• Tuntsall 和 Lempel-Ziv 碼 

二�g^g(Self -SynchronizableCode) 
自步碼的特性是我們只要檢查s個鄰近的字元，就能夠判斷某位置是否字碼 

的邊界。 

本論文的大綱如下： 

第一章爲影視壓縮技術的標準JPEG和MPEG的基本知識。 

第二章對訊息之抗錯作深一步解釋，並介紹MPEG-4現時所作之硏究。 

第三章解釋Tuntsall和Lempel-Ziv碼和其應用。 

第四章介紹如何建立自步碼和判斷字碼的邊界，也解釋它對錯誤時的表現。 
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Chapterl Introduction 

Chapter 1 Introduction 

With the successful development of the Internet, visual communications has now 

become an essential part of our lives. World-Wide-Web (WWW) browsing, Intemet 

phone, real time streaming audio and video are already maturely developed and very 

popular [l],[2]. These image and video applications always require some methods of 

compression to reduce the otherwise prohibitive demand on the bandwidth and storage 

space. To see the need for compression, consider a typical digital colour image with size 

528 X 432 pixels at 3 bytes per pixel (1 byte for each red, green, blue colour component), 

it requires 684,288 bytes of storage space. To transmit this image over a 33600 bps 

modem, it takes about 2.7 minutes. The International Organization for Standardization 

(ISO) Joint Photographic Experts Group (JPEG) has developed an algorithm for coding 

still colour images. The JPEG algorithm can offer 20:1 compression ratio with almost no 

visual difference. This means that it reduces the required storage space of this image to 

about 34,000 bytes and transmission time to 8 seconds. 

This chapter will give a brief description of the two most popular standards for 

coding image and video: JPEG and MPEG. 

1.1 Image Coding Standard: JPEG 

The JPEG committee defines four different modes of operations [4]: 
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Chapterl Introduction 

Sequential DCT-based: The image is partitioned into many 8 x 8 blocks. Every block is 

transformed by the forward discrete cosine transform (FDCT). The blocks are then 

scanned from left to right and top to bottom and the transform coefficients are quantized 

and entropy coded in one scan. 

Progressive DCT-based: This mode allows the decoder to produce a "rough" picture 

quickly and enhance it to full details by later scans. It is similar to sequential mode except 

the quantized coefficients are coded in several scans. 

Lossless: The encoder entropy codes the difference between the input sample and its 

predicted value (based on the input sample's neighbor sample). The decoder will 

reproduce exactly the same digital input image. 

Hierarchical: Another form of progressive coding. The input image is coded as a 

sequence of increasing spatial resolution frames. The first frame (lowest resolution) is 

coded by using either the sequential mode or progressive mode. 

We shall look into more details of the sequential mode operation. 

JPEG sequential DCT Codec 

All JPEG DCT-based encoders begin with the partition of the digital input image 

into non-overlapping 8 x 8 blocks. These sample values (assume 8 bit precision, range 

from 0 to 255) are first level shifted by 128 so that they range from-128 to +127, then the 

blocks are transformed into the frequency domain by using the FDCT. The equations for 

8 X 8 forward and inverse discrete cosine transform (IDCT) is given by: 
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Chapterl Introduction 

FDCT: 

S{v,u) = ̂ ^ - ^ X S < y , ^ ) cos[(2x + 1)UK /16]cos[(2y + l)v7t /16] 
L 丄 y^0 x=0 

IDCT: 

s(y,x) = X ^ ^ X ^ ^ 5 X v , " ) c o s [ ( 2 x + l)u7T / 16]cos[(2j; + l)v7T /16] 
v=o L „=0 L 

where 

C(O = l/V2 for i = 0 

C(i) 二 1 for i > 0 

t 

s(y,x) = 2-D sample values 

S(v’u) = 2-D DCT coefficients 

The coefficient at the most top left corner of a DCT block is proportional to the 

average of the spatial domain samples, thus called the dc coefficient. The other 

coefficients, called ac coefficients, represent increasingly higher frequencies component 

as they progress away from the dc coefficient. For most natural images, there is not so 

much drastic change of content within an 8 x 8 block. The DCT hence concentrates most 

of the energy of the input samples into the first few coefficients at the top left corner. 

The next step is quantization, which makes JPEG a lossy coding algorithm. An 8 x 

8 quantization matrix is used to reduce the amplitudes of the transform coefficients and 

increase the number of zero-valued coefficients. The quantization and dequantization is 

done by: 
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Chapterl Introduction 

f s^^ ) 
Quantization. Sq^^ = round - ^ 

\ ^vu 

Dequantization: R^ 二 Sq、，u x g^„ 

where 

Svu • DCT coefficients 

2^„: quantization steps 

Sq^^: quantized coefficients 

凡":reconstructed coefficients 

Rounding is to the nearest integer. This round function incurs loss of information. 

Larger quantization steps can produce smaller amplitudes and more zeros, hence a higher 

compression ratio but poorer image quality. Many JPEG implementations control the 

compression ratio using a Q-factor, which simply just a scale factor applies to the 

quantization matrix elements. For example, the JPEG implementation released by the 

Independent JPEG Group (ILG) [19] uses the quantization matrix: 

— 1 6 11 10 16 24 40 51 61 — 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 
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Chapterl Introduction 

A quality factor Q, range from 0 to 100, allows the user to adjust between the 

compression ratio and quality. The number Q is transformed to a percentage number by 

the equations: 

2 0 0 - 2 * 2 if 5 0 < e < 1 0 0 
^ " ^ 5000 /g if 0 < e < 5 0 

Say, if Q = 75, i.e. P = 50%, all the quantization matrix entries will be halved. If Q 

=50, then P 二 lOC)o/o, the quantization matrix will be used as-is. 

As mentioned before, the dc coefficient corresponds to the average intensity of an 8 

X 8 block and adjacent blocks tend to have similar average intensities. So JPEG codes 

only the difference of the dc component between adjacent blocks. (This is an example of 

differential pulse coded modulation DPCM). Each differential value is coded by a 

variable length bit string, which comprises a SIZE symbol followed by exactly SIZE bits 

to specify the value. For example, a dc difference of +6 needs 3 bits: 110 to represent and 

this is translated to a token (SIZE=3,110). JPEG uses the Huffman code, to code the 

symbol SIZE. A typical Huffman table is shown below: 

SIZE Difference Code length Huffman code word 
0 0 2 00 
1 -1,1 3 010 
2 -3,-2,2,3 3 011 
3 -7,...,-4,4,...7 3 100 
4 -15,...-8,8,...,15 3 101 
5 -31,...-16,16,...,31 3 110 
6 -63,...-32,32,...,63 4 1110 
7 -127,...-64,64,...,127 5 11110 
8 -255,...-128,128,...,255 6 111110 
9 -511,...-256,256,...,511 7 1111110 

Table 1-1 A Typical Huffman Table for dc difference 
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The ac coefficients are zero-runlength (ZRL) coded. Zig-zag scanning is used 

because it tends to records longer zero runs by visiting lower frequency coefficients first. 

0 —1 5 —6 14—15 27—28 
X / z / / / / 

1 4 7 n 16 26 29 42 
1/ / / / / / / 丨 
3 8 12 17 25 30 41 43 

z / / / / / / 
9 11 18 24 31 40 44 53 
I / / / / / / / I 
10 19 B 32 39 45 52 54 

/ / / / / / / 
20 22 ^3 38 46 31 55 60 
丨 / / / / / / / \ 
21 M VI 4? 50 56 59 61 

/ / / / / / / 
35— 56 4S—49 57—58 62—63 

Figure 1-2 The Zig-Zag Sequence 

The non-zero ac coefficients are coded similarly as the dc coefficients. However the 

tokens now become (ZRL/SIZE, VLI). ZRL is the number of zeros since the last 

nonzero coefficient. VLI is the variable length integer of SIZE bits needed to specify the 

non-zero ac coefficient. The pair (ZRL/SIZE) is again entropy by Huffman code. 

1.2 Video Coding Standard: MPEG 

1.2.1 MPEG history 

In 1992, the Moving Picture Expert Group (MPEG) has released an international 

standard，MPEG-1, for the compression of digital audio and video for transmission and 

storage. Uncompressed digital video requires an extremely high transmission bandwidth. 

For example, a PAL resolution television signal has a bit rate of approximately 100 

Mb/sec. MPEG-1 can reduce this bit rate down to 1.5 Mb/sec, making it suitable for 

storage on compact discs. MPEG-1 is intended to be generic, it defines only the coding 
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syntax and hence mainly the decoding procedure is standardized. MPEG-1 defines a 

DCT/DPCM hybrid-coding scheme with motion compensation method similar to the 

H.261 coding standard. It also provides functionality for random access required in 

digital media storage. 

Studies on MPEG-2 began in 1990, with the initial target to issue a standard for 

coding of TV-pictures with CCIR Rec. 601 resolution (e.g. 352 pixels/line x 240 lines x 

30 frames/sec) at data rates below 10 Mbps. In 1992 the scope of MPEG-2 was enlarged 

to suit coding of HDTV - thus making an initially planned MPEG-3 phase superfluous. 

The Draft International Standard (DIS) for MPEG-2 video was issued in early 1994. 

The video coding scheme used in MPEG-2 is again generic and similar to the one 

of MPEG-1, however with further refinements and special consideration of interlaced 

sources. Furthermore many functionalities such as "scalability" were introduced. 

Anticipating the rapid convergence of telecommunications industries, computer and 

TV/film industries, the MPEG group officially initiated a new MPEG-4 standardization 

phase in 1994. It targets to standardize algorithms and tools for coding and flexible 

representation of audio-visual data to meet the challenges of future multimedia 

applications requirements. In particular MPEG-4 addresses the need for: 

• Universal accessibility and robustness in error prone environments 

• High interactive functionality 

• Coding of natural and synthetic data 

• Compression efficiency 
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Chapterl Introduction 

Bit rates targeted for the MPEG-4 video standard are between 5-64 kbps for mobile 

or PSTN video applications and up to 2 Mbps for TV/film applications. 

1.2.2 MPEG video compression algorithm overview 

All video compression algorithms achieve compression by exploiting the spatial 

redundancy and/or temporal redundancy exists in the video frames. The following 

paragraphs explain how does the MPEG algorithm exploit this redundancy [2],[5]. 

Spatial Redundancy 

Video can be viewed as a sequence of still images, thus it can be compressed using 

the techniques defined in JPEG. A video frame is partitioned into non-overlapping 8 x 8 

blocks. DCT is applied to every block, then the transform coefficients are quantized and 

coded. This technique exploits the spatial redundancy between pixels within a video 

frame and is referred as intra-frame coding because each video frame is independently 

compressed from other frames. 

Temporal Redundancy 

Intra-frame coding alone cannot compress the video down to the desired bit rate. 

There exists high correlation between adjacent video frames. MPEG exploits this 

temporal redundancy by using a block-based motion compensation approach. 

A block of pixels (MacroBlock MB), called the target block, in the frame to be 

encoded is matched by a block of the same size in a reference frame (say the previous 

frame). The block that "best matches" the target block in the reference frame is used as a 

prediction. The prediction error is computed as the difference between the target block 
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and the matching block. Associated with this matching block is a motion vector that 

describes the displacement of the matching block relative to the target block. The 

prediction error is then coded using the DCT approach as in intra-frame coding and 

transmitted to the decoder along with the motion vectors. 

Smaller macroblock size allows us to find "better matching" block more easily and 

compress more efficiently. However, this also means that we have to transmit more 

motion vectors and overhead for the MB's. MPEG-1 chooses 16 x 16 macroblocks for 

motion compensations. This is a compromise between the compression efficiency and the 

storage overhead for the MB's. 

MPEG has defined three frame types for temporal processing: 

I-frames (intra-coded) 

The I-frames are coded independently from other pictures. They provided random 

access and fast search points within the coded bitstream. The compression efficiency 

within the I-frames is moderate since inter-frame temporal redundancy is not used in 

encoding. 

P-frames (forward predicted) 

The P-frames are encoded based on the prediction from past I-frames or P-frames 

by using motion compensated prediction. 

B-frames (bi-directionally predicted) 

The B-frames are encoded based on the prediction from both past and future frames, 

thus named bi-directional. However, the B-frames themselves will not be used as 

reference for prediction. The use of bi-directional prediction gives better compression 
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Chapterl Introduction 

efficiency and video quality. This comes from the reduction in temporal redundancy and 

the ability to use future frames to address the unpredictable areas from the past reference. 

一 一 ~ —―-----、^-—― ——------‘ 

I B B P B B P 

^ ^ ^ ^ ^ ^ 
: ^ ^ ^ 么 ： ^ ： ^ 

夕夕夕夕夕夕^^^ 
__""^ ^ -̂-〜一~̂  ^ “ ^ ^ >""~"~\ 一 r>kHlnn 

© ⑤ ④ ② ⑥ ⑦ ⑤ 欲 丄 ? ° 
\一-才 ^——_—――^"~" ^•___•< •̂一一一 一^̂ “̂ 

The arrows indicate which pictures are used in prediction 

Figure 1-3 The Relation between I-,P-,B-frames 

1.2.3 More MPEG features 

MPEG-1 

MPEG-1 [15] was primarily targeted for multimedia CD-ROM applications. 

Important features provided by MPEG-1 include frame based random access of video, 

fast forward/fast reverse searches through compressed bit streams, reverse playback of 

video and editability of the compressed bit stream. MPEG-1 has been a very successful 

standard. It is the de-facto form of storing moving pictures and audio on the World Wide 

Web and is used in millions of Video CDs. Digital Audio Broadcasting (DAB) is a new 

consumer market that makes use ofMPEG-1 audio coding. 
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MPEG-2 

MPEG-2 can be seen as a superset of the MPEG-1 coding standard and was 

designed to be backward compatible to MPEG-1. Emerging applications, such as digital 

cable TV distribution, networked database services via ATM, digital VTR applications 

and satellite and terrestrial digital broadcasting distribution, were seen to benefit from the 

increased quality brought by the new MPEG-2 standardization. 

MPEG-2 has introduced the concept of frame pictures and field pictures [5],[16] 

along with particular frame prediction and field prediction modes to accommodate coding 

of progressive (non-interlaced) and interlaced video. For interlaced sequences it is 

assumed that the input consists of a series of odd (top) and even (bottom) fields that are 

separated in time by a field period. Two fields of a frame may be coded separately (as 

fleld pictures). In this case each field is separated into adjacent non-overlapping 

Macroblocks and the DCT is applied on a field basis. Alternatively two fields may be 

coded together as a frame (frame pictures) similar to conventional coding of non-

interlaced video sequences. Here, consecutive lines of top and bottom fields are simply 

merged to form a frame. 
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z “ ^ ^ ^ ^ ^ - ^ “ ^ 

I X ^ P / ^ P 

Top Bottom Top Bottom Top Bottom 

^ # ^ ¾ ¾ ^ 

c ^ < • • - • • • • < ^ < • • - . . > ^ < • • • • > -

J ^ .-•••••• ^ z -•••••• Z z ...-••• z z . . . . . 
,•••••• Z ； ...•••••••••> y C , .,•••••••> 力 夕 

^ ^ ^ ^ ^ 5 ^ ¾ ^ 

( ^ � � � � ® §S5® 
T h e c o n c e p t of f i e l d - p i c t u r e s and an e x a m p l e of p o s s i b l e f i e l d 
predict ion. Each bottom f ield is coded using motion compensated Inter-
f ie ld predic t ion based on the prev iously coded top f ie ld. The top f ie lds 
are coded us ing mot ion c o m p e n s a t e d In te r - f ie ld p red i c t i on based on 
ei ther the prev ious ly coded top f ie ld or based on the prev ious ly coded 
bottom f ield. This concept can be extended to incorporate B-p ic tures. 

Figure 1-4 Field pictures and field-prediction 

New/ze/J prediction modes are introduced to efficiently code the field pictures. In 

field prediction, predictions are made independently for each field by using data from one 

or more previously decoded field. Usually, inter-field prediction from the decoded field 

in the same picture is preferred if no motion occurs between fields. An indication which 

reference field is used for prediction is transmitted with the bit stream. Within a field 

picture, all predictions are field predictions. Frame prediction forms a prediction for a 

frame picture based on one or more previously decoded frames. In a frame picture either 

field or frame predictions may be used and the particular prediction mode preferred can 

be selected on a Macroblock-by-Macroblock basis. 
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MPEG-2 also introduces scalable video coding to provide additional functionality, 

such as embedded coding of digital TV and HDTV, and graceful quality degradation in 

the presence of transmission errors. Browsing through video database and transmission of 

video over heterogeneous network is expected to benefit from this scalability. The basic 

idea of scalable video coding is to provide multiple layers of video signal at different 

scale. The lower scale video is encoded into the base layer bitstream at reduced bitrate. 

The upscale reconstructed base layer video serves as a prediction for the original video. 

The prediction error is encoded into the enhancement layer bitstream. Decoder can 

choose to display a lower quality video by decoding only the base layer bistream. Thus 

scalable coding can be used to encode video with a suitable bit rate allocated to each 

layer in order to meet specific bandwidth requirements of transmission channels or 

storage media. 

enchancement 
Source Video in layerbitstream high resolution video 

^ Enchancement ^ Enchancement ^ 
encoder decoder 

2 

，r   

Downscaling Upscaling Upscaling 
Spatial or Spatial or Spatial or 
Temporal Temporal Temporal 

2 Z 

base layer low resolution 
„ , bitstream „ , video  
Base layer ^ Base layer ^ 

encoder decoder 

Figure 1-5 The scheme of Scalability 
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There are four basic scalable extensions defined in MPEG-2: 

Spatial scalability 

The algorithm is based on the classical pyramid progressive image coding. It is 

developed to support displays at different spatial resolution. This functionality is useful 

for application including embedding coding used in HDTV, allowing a migration from 

digital TV service to high spatial resolution HDTV service. 

Temporal scalability 

Layering is achieved by providing layers at different temporal resolution. The aim 

of this tool is similar to that of Spatial scalability. 

SNR scalability 

This tool has been developed to provide graceful degradation of the video quality in 

prioritized transmission media. If the base layer can be protected from transmission errors, 

a version of the video with gracefully reduced quality can be obtained by decoding the 

base layer signal only. One way to achieve SNR scalability is that at the base layer, the 

DCT coefficients are coarsely quantized and transmitted to achieve moderate image 

quality at reduced bit rate. The enhancement layer encodes and transmits the difference 

between the non-quantized DCT-coefficients and the quantized coefficients from the base 

layer with finer quantization stepsize. At the decoder the highest quality video signal is 

reconstructed by decoding both the lower and the higher layer bitstreams. It is also 

possible to provide SNR scalability by transmitting the first few DCT coefficients only in 

the base stream and the remaining coefficients in the enhancement layer. 

14 
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Data partitioning 

Data partitioning to designed to assist error concealment in the presence of 

transmission errors. It is not formally standardized with MPEG-2, but rather is referenced 

in the informative Annex of the MPEG-2 standard document. This is because this tool 

can be used entirely as a post-processing tool to any single layer coding technique. The 

algorithm is based on the separation of the DCT coefficients. Data partition can also be 

applied to separate the header information, such as the frame size and frame rate 

parameters, from the entropy coded stream. 

It is possible to combine different scalability tools into a hybrid scheme. For 

example, services with different spatial resolution and frame rate can be supported by 

combining the Temporal Scalability and Spatial Scalability tools. Interoperability 

between HDTV and SDTV services can be provided along with a certain resilience to 

channel errors by combining the Spatial Scalability extensions with the SNR Scalability 

tool. With scalable video coding, decoder of various complexities can decode appropriate 

size replicas of the original video. Possible application areas include multi-party 

conferencing and video database browsing. 

MPEG-4 

MPEG is now working to produce MPEG-4, scheduled for completion in January 

1999. The focus of MPEG-4 is the convergence of common applications for digital 

television, interactive graphics applications (synthetic content) and the World Wide Web 

(distribution of and access to content). MPEG-4 will provide the standardized 

technological elements enabling the integration of the production, distribution and 
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content access of the three fields. Currently, MPEG-4 has identified the following key 

functions [6],[7]: 

Content-based interactivity 

New applications can be developed by the ability to interact with meaningful 

objects within an audio-visual scene. In existing standards such as MPEG-1 and MPEG-2, 

manipulation and editing are only possible in the original image domain. MPEG-4 will 

provide tools for content-based interaction and bitstream editing without transcoding. 

Otherwise, decoding before editing implies increased complexities and possible quality 

degradation. Possible fields of applications can be home video editing, video database 

queries, movies digital effects, online home shopping and video games. 

Improved coding efficiency 

MPEG-4 aims to provide better audio and visual quality at comparable bit rates of 

existing standards such as CCITT H.261. Better coding efficiency makes many 

applications more economically viable and competitive. Currently, core experiments on 

texture coding includes wavelet-based coding and matching pursuits. 

Hybrid natural and synthetic coding 

MPEG-4 will support for combining artificial object with natural video, thus 

allowing interactivity. It allows seamless integration of computer-generated graphics and 

natural scenes. Related techniques under experiment include shape coding, sprite coding, 

texture warping and wavelet coding. 
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Coding multiple concurrent data streams 

Multimedia applications such as virtual reality, 3D movies, and multimedia 

presentations require efficiently coding multiple views and soundtracks of a scene. 

Robustness in error-prone environments 

Wireless communication requires error robustness for low bit-rate applications 

under severe conditions. MPEG-4 provides an error robustness capability to allow access 

multimedia applications over a variety of wireless and wire networks. 

1.3 Summary 

This chapter provides an overview of the JPEG and MPEG, the most popular 

standards for image and video coding respectively. We also present the basics of their 

compression algorithms and finally we review some of the features and functionalities 

developed by the different phases of MPEG, i.e. MPEG-1, MPEG-2 and MPEG-4. The 

knowledge of these materials will help the understanding on the issue of error resilience, 

which is going to be discussed in the next chapter. 
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Chapter 2 Error Resiliency 

2.1 Introduction 

With the rapid growth in mobile systems, error resilience is becoming increasingly 

important [7], [18]. Mobile communication channels in urban and suburban areas are 

subject to noise, fading, shadowing and interference [3]. All these make the wireless link 

an unreliable channel. Traditionally, channel coding is used to combat channel errors. 

However, when the channel condition is too bad, there are still uncorrectable errors. The 

compressed audio and video data are very vulnerable to errors: even a single bit error 

could result in significant quality degradation. Error resilience refers to the features of 

graceful degradation in the quality of the decoded data against deteriorating channel 

errors. 

To demonstrate the problem of transmitting compressed data through noisy channel, 

Figure 2-1 shows a JPEG compressed image transmitted over a channel ofBER 0.01%. A 

small number of bit errors can lead to great distortion in the decoded image. These few 

errors propagate over a large area of the image because of the use of Huffman code. A 

Huffman decoder is able to identify the correct separation of codewords from an error-

free bitstream. However when there are errors, the decoder will either decoder longer or 

shorter codewords, leading to the loss of codeword synchronization and extended errors. 
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Figure 2-1 JPEG with 0.01% BER 

The remainder of this chapter is organized as follows: in next section, we review 

several current existing methods in combating errors in video coding. Section 2.3 

describes new ways to combat errors that are being considered by MPEG-4. 

2.2 Traditional approaches 

In this section will first review some prior methodology used to provide error 

resilience. 

2.2.1 Channel coding 

Forward error correcting codes (FEC) such as Reed-Solomon codes and BCH codes, 

can be used to correct certain amount of transmission errors. It involves the addition of 

extra parity bits to the compressed data, thus increases the total bandwidth required. 

Moreover, the FEC system is usually designed with the worst case scenario in mind. For 

channel with variable conditions, we need a very strong error correcting codes that adds 
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much redundancy and hurts compression efficiency heavily. Besides, such a system will 

fail catastrophically when there are uncorrectable errors. This occurs when there is long 

burst of errors (as in a fading channel). One method to combat this is to use interleaving 

that tums long burst of errors into random errors, but this will introduce large delays. 

2.2.2 ARQ 

The Automatic Repeat Request (ARQ) protocol allows the decoder to request 

retransmission of the corrupted data. It is usually used with packet delivery systems. 

ARQ is effective in dealing with packet loss and long burst of errors. However, the 

retransmission of data can lead to significant delay and generate excess network traffic. 

This is undesirable for most real time applications such as video conferencing. 

Furthermore, ARQ is not efficient in dealing with random errors and short error bursts. 

2.2.3 Multi-layer coding 

The basic idea is to code the image/video in two or more layers. The base layer is 

used to code more important information, while subsequent layers are used to code the 

refinement information. The different layers can be given different error protection 

according to their priorities. This technique is also known as Unequal Error Protection 

(UEP). The bitstream from these layers may also be transmitted over different channels 

with different conditions. 

2.2,4 Error Concealment 

Error concealment actually is a post-processing technique. Here the decoder tries to 

detect errors within the received data using parity information or some statistical means. 
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For example, in the JPEG system, errors can be detected by discovering an illegitimate 

marker or an out-of-range DCT coefficient. Upon detecting an error, the decoder tries to 

conceal the errors by predicting the probable content of the corrupted data. A DCT codec, 

for example, can replace erroneous block by the average of its neighbouring blocks. 

2.3 MPEG-4 work on error resilience 

One of the targets identified by MPEG-4 is to provide error robustness and 

resilience to allow accessing image or video information over a wide range of storage and 

transmission media. The error resilience tools developed for MPEG-4 can be divided into 

three major areas. These areas or categories include resynchronization, data recovery, and 

error concealment [7]. These approaches address different areas in error resiliency. 

Resynchronization is almost indispensable in any coding system. MPEG-4 enhances the 

characteristics of these resynchronization tools. After synchronization is regained, the 

data recover tools attempt to recover the data that in general would be discarded. MPEG-

4 also provides tools that help the error concealment methods, which are post-processing 

techniques to improve the decoded video quality. 

2.3.1 Resynchronization 

Resynchronization tools, as the name implies, attempt to enable resynchronization 

between the decoder and the bitstream after a residual error or errors have been detected. 

Generally, the data between the synchronization point prior to the error and the first point 

where synchronization is reestablished is discarded. If the resynchronization approach is 

effective at localizing the amount of data discarded by the decoder, then the ability of 
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other types of tools that recover data and/or conceal the effects of errors is greatly 

enhanced. 

The resynchronization approach adopted by MPEG-4, referred to as a packet 

approach, is similar to the Group of Blocks (GOBs) structure utilized by the ITU-T 

standards ofH.261 and H.263. In these standards a GOB is defined as one or more rows 

of macroblocks (MBs). At the start of a new GOB, information called a GOB header is 

placed within the bitstream. This header information contains a GOB start code, which is 

different from a picture start code, and allows the decoder to locate this GOB. 

Furthermore, the GOB header contains information which allows the decoding 

process to be restarted (i.e., resynchronize the decoder to the bitstream and reset all 

predictively coded data). The GOB approach to resynchronization is based on spatial 

resynchronization. That is, once a particular macroblock location is reached in the 

encoding process, a resynchronization marker is inserted into the bitstream. A potential 

problem with this approach is that since the encoding process is variable rate, these 

resynchronization markers will most likely be unevenly spaced throughout the bitstream. 

Therefore, certain portions of the scene, such as high motion areas, will be more 

susceptible to errors, which will also be more difficult to conceal. 

The video packet approach adopted by MPEG-4 is based on providing periodic 

resynchronization markers throughout the bitstream. In other words, the length of the 

video packets are not based on the number of macroblocks, but instead on the number of 

bits contained in that packet. If the number of bits contained in the current video packet 
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exceeds a predetermined threshold, then a new video packet is created at the start of the 

next macroblock. This creates slices of macroblock with variable lengths. 

A resynchronization marker is used to distinguish the start of a new video packet. 

This marker is distinguishable from all possible VLC codewords as well as the VOP 

(Video Object Plane) start code. Header information is also provided at the start of a 

video packet. Contained in this header is the information necessary to restart the decoding 

process and includes: the macroblock number of the first macroblock contained in this 

packet and the quantization parameter necessary to decode that first macroblock. The 

macroblock number provides the necessary spatial resynchronization while the 

quantization parameter allows the differential decoding process to be resynchronized. 

It should be noted that when utilizing the error resilience tools within MPEG-4, 

some of the compression efficiency tools are modified. For example, all predictively 

encoded information must be confined within a video packet so as to prevent the 

propagation of errors. 
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In conjunction with the video packet approach to resynchronization, a second 

method called fixed interval synchronization has also been adopted by MPEG-4. This 

method requires that VOP start codes and resynchronization markers (i.e., the start of a 

video packet) appear only at legal fixed interval locations in the bitstream. These help to 

avoid the problems associated with start codes emulation. That is, when errors are present 

in a bitstream it is possible for these errors to emulate a VOP start code. In this case, 

when fixed interval synchronization is utilized the decoder is only required to search for a 

VOP start code at the beginning of each fixed interval. 

2.3.2 Data Recovery 

After synchronization has been reestablished, data recovery tools attempt to recover 

data that in general would be lost. These tools are not simply error correcting codes, but 

instead techniques that encode the data in an error resilient manner. For instance, one 

particular tool that has been endorsed by the Video Group is Reversible Variable Length 

Codes (RVLC) [8]. In this approach, the variable length codewords are designed such 

that they can be read both in the forward as well as the reverse direction. Example of such 

codewords is 111, 101, 010. Codewords such as 100 are not used. 

Figure 2-3 shows an example illustrating the use of a RVLC. Generally, in a 

situation such as this, where a burst of errors has corrupted a portion of the data, all data 

between the two synchronization points would be lost. However an RVLC enables some 

of that data to be recovered. 
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Figure 2-3 Example ofRVLC 

Other error resilient tools under consideration by MPEG-4 that enable data 

recovery include: 

1) Robust DC coefficient encoding 

For example, the median predictor is used instead of simple DPCM. In DPCM error 

propagates until the next reset of prediction. On the other hand, the median predictor has 

the ability to reject out-lier and is thus more robust to errors. 

2) Packaging VLCs into fixed length packets 

This is primarily to avoid the catastrophic loss of codeword synchronization. A 

technique of this category is the error-resilient entropy code (EREC) [17]. The basic 

operation of the EREC is to rearrange the n variable length blocks of data into fixed 

length slotted structure. In this way, the decoder can independently find the start of each 

block and start decoding it. 

An example ofthe algorithm with 6 blocks is shown in the figure 2-4. At each stage 

k, whenever a block i has surplus bits over the fixed length slot, it will search in slot (i+k) 

mod n for empty space to put the remaining bits. After at most n stages, all the variable 
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length blocks are packed into the fixed length slots. Synchronization is automatically 

achieved at the beginning of every block. 

A drawback of this method is the requirement of all the data blocks to be known 

beforehand. This implies significant memory requirement and delay. 

Stage 1 Stage 2 

^ ^ ^ ^ ^ ^ ^ J ^ — ^ ^ 

y 
^\ ••••••_•._ î ^ 

i i i i _ I ^ taiiiicj 

stage 3 Stage 6 

圉 〕 — . • B 

i i i i i _ ‘ L_iii_ 

n Empty bit 疆 Block 1 bit Block 2 bit j | Block 3 bit 

^ Block 4 bit I Block 5 bit | | Block 6 bit 

Figure 2-4 Example of the EREC algorithm 
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3J Multiple transmission within the bitstream of key information 

In each video packet, a 1-bit field called Header Extension Code (HEC) is 

introduced. If this bit is set, the important header information (e.g. spatial dimension, 

motion vectors) which describes this video frame is repeated. 

2.3.3 Error Concealment 

Error concealment is an important component of an error robust video codec. 

Similar to the error resilience tools discussed above, the effectiveness of an error 

concealment strategy is highly dependent on the performance of the resynchronization 

scheme. Basically, ifthe resynchronization method can effectively localize the error then 

the error concealment problem becomes much more tractable. For low bitrate, low delay 

applications, the current resynchronization scheme provides very acceptable results with 

a simple concealment strategy, such as copying blocks from the previous frame. 

In recognizing the need to provide enhanced concealment capabilities, the Video 

Group has developed an additional error resilient mode that further improves the ability 

of the decoder to localize an error. 

Specifically, this approach utilizes the data partitioning tools by separating the 

motion and the texture information. This approach requires that a second 

resynchronization marker (Motion Boundary Marker MBM) be inserted between motion 

and texture information. If the texture information is lost, this approach utilizes the 

motion information to conceal these errors. That is, due to the errors, the texture 

information is discarded, while the motion information is used to motion compensate 

from the previous decoded VOP. 
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2.4 Summary 

This chapter discussed the importance of error resilience in image and video 

communications. Some prior approaches of providing error resilience are described. 

Thereafter we introduced the current work by MPEG-4 on error resilience. These tools 

are mainly on the area of resynchronization, data recovery and error concealment. 
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Chapter 3 Fixed length codes 

3.1 Introduction 

In this chapter, we present a variable-to-fixed length coding scheme to entropy code 

the DCT coefficients and compare the results to the baseline JPEG Huffman system. 

Traditional entropy coding of the DCT coefficients, such as Huffman, employs 

fixed-to-variable length coding scheme, in which a fixed length block of symbols is 

matched to a variable length bit string. Here, we experiment a variable-to-fixed length 

coding scheme in which a variable number of DCT coefficients are matched to a fixed 

length binary string. This is a feasible solution to the error resiliency problem because 

transmission errors will not propagate beyond the boundaries of the fixed length codes. 

With our modified Lempel-Ziv algorithm, we have implemented a variable-to-fixed 

length coder which cost about 20% additional bit-rate than the baseline JPEG Huffman 

system without special error resiliency consideration, but cost less than the reverse 

Huffman code proposed to the MPEG-4 study group. 

A variable-to-fixed length encoding is a mapping from a dictionary of variable-

length strings of source symbols to a set of codewords with a given length. A variable 

length code, like Hufftnan code, achieves compression by assigning shorter codewords to 

more frequent source symbols and longer codewords to less frequent source symbols. A 
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variable-to-fixed length code, on the other hand, chops the input source sequence into 

segments of variable length and represents each segment with an index from its 

dictionary ofpossible segments. To achieve compression, it tries to maximize the average 

number of source symbols represented by each dictionary index. The Tunstall code and 

Lempel-Ziv code are examples of variable-to-fixed length codes. 

Fixed length codes are inherently more resilient to errors. A variable length decoder 

may output codewords of wrong length in case of errors, thus lead to the loss of 

codeword synchronization. Codeword synchronization is not necessary for fixed length 

codes since we know the exact positions of the codeword boundaries. The effect of errors 

is always confined within the codeword corrupted and does not propagate. 

The remainder of this chapter is organized as follows: section 3.2 and 3.3 briefly 

reviews the Tunstall and Lempel-Ziv coding algorithms. Section 3.4 gives the details of 

our variable-to-fixed length coder and presents the simulation results. 

3.2 Tunstall code 

This section reviews the Tunstall coding algorithm. The Tunstall code [9: 

construction procedure starts with a coding tree with all single-letter string as leaves. The 

leaf-nodes will correspond to the strings in the Tunstall dictionary. Associates with each 

string is the probability of occurrence of that string. 

The algorithm chooses the leaf node with the largest probability and split it down 

by one more level. (Ties in choosing the maximum probability are broken arbitrarily.) 

This is equivalent to appending a single letter to the string currently with the largest 
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probability. The probabilities of the newly added strings are updated accordingly. This 

process iterates until the total number of leaf-nodes exceeds the desired dictionary size. 

An index is then assigned to every leaf-node, according to their lexicographical order. 

As an example, consider a binary memoryless source with alphabet {A,B}, and 

Pr{A)-0.7, Pr{B)=0.3. We construct a Tunstall code with 8 strings in the dictionary, 

thus we use 3 bits (2^=8) per index. Figure 3-1 shows the first few steps and the final step 

of the codebook construction. The final codebook is: 

Index Strings represented 
000 AAAAA 
001 AAAAB 
010 AAAB 
011 AAB 
100 AB 
101 BAA 
110 BAB 
111 BB 
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A / 0 . 7 

B / 0.3 

Step 1 In i t ia l t ree 

AA / 0.49 

AB I 0.21 

B / 0.3 

Step 2 

AAA / 0 .343 

AAB / 0 .147 

AB / 0.21 

B / 0.3 

Step 3 

AAAAA / 0 .16807 

AAAAB I 0 .07203 

AAAB / 0 .1029 

AAB / 0 .147 

AB / 0.21 

BAA / 0 .147 

BAB / 0 .063 

BB / 0.09 

Step 7 

Figure 3-1 Example of Tunstall code construction 
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The Tunstall code works well with memoryless sources. Of course, we can improve 

the performance by incorporating higher order probability estimates when updating the 

probabilities. However, this will increase the complexities drastically. 

3.3 Lempel-Ziv code 

In this section, we review two famous compression algorithms, by A. Lempel and J. 

Ziv, commonly referred to as LZ77 and LZ78. 

The Lempel-Ziv code belongs to a class of dictionary-based compression methods. 

It encodes variable length strings into a single token and these tokens form an index to a 

phrase dictionary. The Lempel-Ziv code was first invented in 1977 [10] by Abraham 

Lempel and Jacob Ziv. They published another paper [11] in 1978 describing another 

dictionary-based compression method. These two techniques developed are called LZ77 

and LZ78. LZ77 is a "sliding window" technique in which the dictionary consists ofase t 

of fixed-length phrases found in the previously processed window. LZ78 builds up its 

dictionary one at a time, adding a new symbol to an existing phrase whenever a match 

occurs. 

In the following sub-sections, we will review the LZ77 and LZ78 coding 

algorithms respectively. 
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3.3.1 LZ-77 

The LZ77 maintains two sliding windows: the just encoded window of length N 

and the to-be-encoded window of length K. The compressor loops the following three 

steps: 

Parse: the compressor tries to find the longest prefix in the to-be-encoded window as 

matched by a substring inside thejust encoded window. 

Encode: the matching information is encoded by emitting the token 

(go back n, copy k, append ‘A’） 

where 'A' is the first letter following the matched prefix string inside the to-be-encoded 

window. This token tells the decoder to go back n letters in the just encoded window, 

start from there, copy k letters and append a letter 'A'. 

Update: both windows slide forward by k+l, i.e. the length of the matched string plus the 

appended letter. 

The LZ77 is a fixed length code because all the parameters within the token (n, k, 'A') 

are represented by bit strings of given lengths. 

Example: 

Assume we are already in the middle of the compression process and we will encode: 

...H.261,H.262, H.263... 

withN=7,K=4. 

step just encoded window to-be-encoded window output token 
1 "H.261," "H.26" back 7, copy 4, append '2' 
2 “, H.262" “，H." back 7, copy 4, append ‘2, 
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The first two steps of encoding are shown. 

Note that the just encoded window in LZ77 implies the dictionary used. All the k-sub-

strings within the just encoded window are members of the dictionary. 

3.3.2 LZ-78 

The LZ78 algorithm maintains a dictionary of phrases it has seen before, all the 

phrases are distinct and each is given a unique index. The initial dictionary contains only 

one entry: the NULL phrase with an index of 0. 

Similar to its counterpart, LZ78 loops these three steps: 

Parse: find a phrase P in the current dictionary that matches the longest prefix ofthe to-

be-encoded string. 

Encode: the compressor output the token 

(copy i-th phrase, append 'A') 

where the i-th phrase is P and 'A' is the letter P in the to-be-encoded string. 

Update: the new phrase (P, 'A') is added to the dictionary. 

The pair of dictionary indexes i and the appending letter 'A' is again coded with bit string 

of given lengths respectively. 
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Example: 

We will encode the same input sequence: 

...H.261,H.262, H.263... 

Assume the LZ78 dictionary is already occupied with some single letters: 

index string 
0 NULL 
1 “H” 
2 ‘‘.” 
3 “2” 
4 “6” 
5 T 
6 “,”  
7 “ ” 

The encoding steps are shown below: 

Steps Matched string Output token New string added — 
1 “H” 1,‘.， index=8,“H.” 
飞 “2” 3, ‘6, "^ex=9 , “26” 
^ “1” 5,‘,， li^ex=10,‘‘l,” 
~4 “” 7,‘H, l i i ^ e x = l l , H , , 
飞 “.” ~X ‘2, index=12, “.2” 一 
^ “6” 4,‘2, ^ e x = 1 3 , “ 6 2 ” 
~7 “,’’ 6, ‘， ^ e x = 1 4 , “, ” 
8 一 “ k ” 8,‘2’ lndex-15, "H.2" 
9 丨“6” |4,‘3’ |index=16,“63,. 

In both LZ77 and LZ78 algorithms, the dictionary need not be sent to the decoder. 

The decoder can infer the dictionary from the decoded tokens and update its dictionary in 

pace with the encoder. This dictionary update process depends on the previously decoded 

result. Hence, a single error can result in a wrong entry in the dictionary and lead to many 

future errors. 
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3.4 Simulation 

We have modified the original LZ78 algorithm to produce a stationary codebook. 

This variable-to-fixed length codebook will be used to code the stream of DCT 

coefficients and we have simulated our algorithm on a series of standard test images. The 

compression efficiency is about 20% worse than the baseline JPEG Huffman, and this is 

the cost to provide the error resiliency. In comparison, our scheme compares favorably to 

the reverse Huffman code which costs about 50% extra redundancy [20]. 

3 A 1 Experiment Setup 

To use the LZ78 algorithm, we need some modifications: 

(1) To avoid the problem of loss of dictionary synchronization between the encoder 

and decoder, the LZ78 dictionary is trained by an image beforehand. The 

trained dictionary will be used to encode the other images. This sacrifices some 

compression efficiency, but is justified by the error resiliency it brings. 

(2) The starting LZ78 dictionary is initially loaded with all single-coefficient string. 

This ensures that we can always find a match: at least a string oflength one. 

(3) Now, we do not have to update the dictionary and hence we shall no longer 

append a letter after the matching index. The encoder just has to search for the 

longest matched prefix from the trained dictionary and output the index found. 

In the training stage of the dictionary, we proceed as usual in the original LZ78 

algorithm with the DCT coefficients from the training images as input sources. We grow 
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the dictionary by one string at a time. The maximum size of the dictionary is chosen to be 

216 (64K), and a 16-bit string represents every dictionary index. When the dictionary is 

filled up to 64K entries, we will stop the training process. The choice of a 16-bit index 

makes the parsing of the compressed stream much easier since we do not have to deal 

with the byte alignment problem. This allows a simpler and faster decoder. Moreover, the 

216 entries provide us a sufficient number of string candidates to match the incoming 

DCT coefficient stream. 

In this experiment, the LZ78 algorithm is preferred to Tunstall code because the 

alphabet size ofthe transform coefficients is too large for Tunstall. Moreover, there exists 

correlation between the coefficients, they do not imitate a memoryless source. Keeping 

the higher order probability statistics of these coefficients means too much computation. 

For the LZ77 sliding window technique, the previously processed text becomes the 

source of the dictionary. A single bit error will lead to loss of synchronization between 

the windows content being kept by the encoder and decoder. This creates extended errors 

in the decoded coefficients. Therefore the LZ78 algorithm is chosen. 

3.4.2 Results 

Every image is DCT transformed and quantized with a quality factor of 50. The 

DPCM on the dc coefficients is switched off. This is to avoid the problem of cascaded 

errors due to the use of prediction from previously decoded coefficients. The ac 

coefficients are run-length coded as usual. The quantized coefficients and the run-length 

symbols are then coded using the modified LZ78 algorithm. Four different training 
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images are used to train up the dictionary. These training images include landscapes and 

portraits. Table 3-1 records the result bit rates. 

Training Images  
JPEG baboon barb boat bridge 

Couple 29188 34539 35717 36451 34833 
Crowd 28810 35655 36279 37001 34751 

Girl 22511 27407 28209 28095 27577 
Goldhill 27449 32917 33813 34845 32465 

Lake 29396 36403 37389 37767 35673 
Lena 20921 26197 26063 26691 25775 
Man 28102 33583 34577 35239 33281 

Peppers 21310 26395 26703 27279 26211 
Plane 22602 30469 29569 29769 28767 

Tiffany 25642 30087 31371 32037 30483 
Woman 14323 20177 18899 19117 18537 
Zelda 17262 21341 21405 21959 21063 

Total Bytes“287516 355170 359994~366250~"349416 
Vs. JPEG +23.5% +25.2% +27.4% +21.5% 

Table 3-1 16-bit LZ-78 on DCT coefficients of the test images 

The bit rate by the baseline JPEG Huffman system (see section 1.1) is shown also. 

Here the same quantization parameters are used as in our modified LZ-78 algorithm. 

Hence, we are comparing the efficiency at the stage oflosslessly code the quantized DCT 

coefficients. The baseline JPEG and our LZ-78 decoder should give identical decoded 

pictures in an error-free condition. 
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Figure 3-3 The images coded by the LZ-78 
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3.4.3 Concluding Remarks 

The modified LZ-78 algorithm records over 20% bitrate than the baseline JPEG 

Huffman encoder. However, it gives us the property of codeword synchronization and 

can be used in conjunction with the bi-directional decoding as in the RVLC of MPEG-4. 

Comparing LZ78 with the simple reverse Huffman codes to achieve reversibility, we 

have improved the coding efficiency. In the construction of a reversible Huffman code, 

we take a usual Huffman code and mirror extend those codewords that are not self-

symmetric (i.e. codewords that read the same in both forward and reverse directions). 

This usually introduces a redundancy from 50% to 100% [20]. 

An advantage of the variable-to-fixed length code is that we can further recover 

those data between two error points. In contrast to simple RVLC, the decoder still outputs 

a series ofwrong words when error occurs. With fixed length codes, the error is confined 

within the codeword corrupted so that we can continue the decoding process. 

—~~ 1 ；, „.. «1 ,~~—‘~i-.;;./;,/-^-^i -' “ ‘““: 
‘ A 广、"V" ‘ ‘ ''么、\ ‘ �V . , 

- ‘'<\；1-̂̂ -̂- - - .v= -.\a- ‘‘ . 
Resvnc : 3 ^ ^ x ^ | Resync 

•‘ q,f)"^z ‘ ‘ ‘ ^)" , : i ' , ' . ‘ , 
- p'-y-:> -, -' -：'' ,̂ >\ ',| - , - I  

Figure 3-4 Recover data between two error points 

Compare with the standard Huffman, our encoder requires training overhead and 

the trained codebook is large. This imposes a large memory requirement. On the other 

hand, the decoder is simpler because itjust has to perform a straightforward table lookup. 

In most multimedia applications, a less complex decoder is often preferred. 
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Although there are papers proving that fixed-length codes are better than variable 

length codes asymptotically [12], their conditions require a word length and codebook 

size that tends to infinity, which is not viable in practical applications. Nevertheless, the 

use of fixed-length codes provides good error resilience by avoiding the catastrophic 

damage caused by errors, as in the case ofHuffman code. 

In the next chapter, we will use a class of self-synchronizable code to achieve 

codeword synchronization. This class of self-synchronizable codes is variable in length 

and we will show that it further improves the coding efficiency. 
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Chapter 4 Self-Synchronizable codes 

4.1 Introduction 

In this chapter, we present another solution to the error resiliency problem with the 

application of Scholtz's class of self-synchronizable code (or synchronizable code) to the 

entropy coding of the DCT coefficients. These codes have the property that 

synchronization of variable-length codewords can be quickly recovered after errors. This 

property effectively limits error propagation and provides error resiliency. 

This class of synchronizable code offers self-synchronizability of the bitstream and 

good compression efficiency on the DCT coefficients. It provides good error resiliency 

because the synchronization procedure can start anywhere within the bitstream and does 

not depend on what comes before. We have implemented an encoder using Scholtz's 

synchronizable code and shown that its compression efficiency is about 10% worse than 

the baseline JPEG Huffman. Combining with the technique of reversible decoding, we 

have demonstrated an improvement in the decoded image quality under various error 

conditions. 

The organization ofthis chapter is as follows: section 4.2 gives a tutorial on Scholtz 

synchronizable code, including its construction and synchronization procedure. Section 
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4.3 gives the simulation results of our Scholtz's encoder on the DCT coefficients and also 

the bi-directional decoder we have implemented. Section 4.4 is the concluding remarks. 

4.2 Scholtz synchronizable code 

4.2.1 Definition 

A synchronizable code (SCs) has the property that the punctuation, i.e. the comma 

separating the codewords, can always be determined by observing at most 5 neighbouring 

code symbols of the position in question. The number s is called the synchronization 

delay of the code. 

When a transmission error occurs, the decoder can temporarily misjudge the 

boundaries between codewords, but the property of self-synchronizability ensures that 
# 

codeword synchronization can be recovered within a short time. 

4.2.2 Construction procedure 

Scholtz showed in his paper in 1966 that one can construct a synchronizable code 

from another [13], [14]. Consider a synchronizable code C consists of codewords c" 

C2,... ,Cn. A new synchronizable code can be constructed with the following procedure: 
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Suffix Construction Procedure 

1. Remove a codeword Cj from C. 

2. Create new codewords by appending c； as a suffix, with an arbitrary number oftimes, 

to the remaining codewords. Thus the new codewords added are: 

Ci Ci Ci Cj Ci Cj Cj Ci Cj 

C2Ci C2Ci Ci C2Ci Ci Cj 

..• • • • • • • 
Ci_i Ci Ci_i Ci Ci Ci_i Ci Cj Cj 

Ci+1 Ci Ci+1 Cj Ci Ci+1 Ci Ci Ci 

... • • • • • • 
CnCi CnCjCi C„CiCiCi 

The only restriction is that we do not exceed the maximum desired word length. 

The code derived from this procedure is also synchronizable by the following 

argument. After observing s letters, we must be able to determine the punctuation for the 

original code C at a particular point of the code stream. If the punctuation is a comma, we 

must determine whether or not the following word is q from C. This requires an 

observation of an additional k； symbols, where k, is the length of c,. Hence the new 

synchronization delay s' is given by s' = s + k；. 

Let us look at an example to see how the procedure works. We start with the 

simplest synchronizable dictionary SC。： 

C(o): 1,0 
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Using 0 as the suffix word and setting the maximum word length to be 5, we derive 

C«: 1 

10 

100 

1000 

10000 

Repeat the suffix construction procedure, with 1 as the suffix word this time. We have 

C(2): 10 

100 101 

1000 1001 1011 

10000 10001 10011 10111 

Further modification using 10 as the suffix word results 

C(3): 100 101 

1000 1001 1011 

10000 10001 10011 10111 10010 10110 

The synchronization delay of the code C(” 

=length of 0 + length of 1 + length of 10 

=4 

Let us call the codewords 0, 1, 10 the atoms of C(3) since every word in C(3) is a 

(repeated) concatenation of these atoms. The final synchronizable code can be fully 

specified by the statement ofthe initial dictionary (C(。))，the atoms chosen and their order, 

and the maximum allowed word length. 
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4.2.3 Synchronizer 

Following the above example, we shall demonstrate how synchronization can be 

achieved for the code C(3). Similar to the construction procedure, the synchronization 

process for C(�）relies on the synchronization capability of the base codes from which it is 

derived. 

As a test sequence, let us use 

...00,100,101,10111,10010,10... 

The first synchronizer for C(°) is trivial, we just have to insert a comma between 

every letter. 

The next operation is to synchronize the sequence for the dictionary C(̂ ). This 

involves erasing commas preceding the codeword suffix 0 which is a member from C(o). 

No word in C(” (and hence no words in C(2) and C(�)) begin with a 0. 

Next, we have to erase commas preceding l,s, but only when 1 appears as a 

complete word. The synchronization of the original sequence is finally completed by 

erasing the comma preceding the 10 word in C(2). 

Notice that the erasure of a comma only depends on what follows the comma, this 

whole procedure does not depend on where one starts the synchronization process in a 

stream of code symbols. We have put a '?' at the punctuation position of the stream 

because the synchronizer must observe more symbols to make a decision. To be exact, 

we have to inspect 4 letters to decide the punctuation at the position of '?' for the code 

C(3). 
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The codes derived from the Suffix Construction Procedure are suffix codes: no 

codeword being a suffix of another codeword. Of course one can construct a self-

synchronizable prefix code by the Prefix Construction Procedure, i.e. the atoms are being 

added to the head of the other codewords in each derivation. The synchronizer for this 

prefix code shall be changed to remove the comma following the atoms in each step of 

synchronization. 
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00100101101111001010 ’0，0’1，0’0’1，0’1，1，0’1，1’1，1，0’0，1，0’1，0， 
• insert commas — 

,0,0,1,0,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,^ remove the first 00，100’10’1，10，1’1，1’100,10，10? 

comma in ,0, 

00,100,10,1,10,1,1,1,100,10,10? remove the first 00,100,101,10111,100,10,10? 
comma in ,1， 

00,100,101,10111,100,10,10? remove the first 00，100,101,10111,10010?10? 

comma in ,10, 

Figure 4-1 The synchronizer for the self-synchronizable code C(;) 
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4.2.4 Effects of errors 

In case of errors, it will corrupt the codeword that contains the erroneous bit and its 

immediate neighbour only. Using the previous example, suppose the sequence is 

corrupted from 

...00100101101111001010... to 

...00100101111111001010... 

Running the synchronization procedure as described before, the parsing result is 

changed from: 

...00,100,101,10111,10010710?... to 

...00,100,10111111,10010710?... 

The corrupted bit is highlighted. We see that two of the codewords are merged 

together but the other codewords remain intact. The synchronization points (commas) are 

inserted correctly. 

When there are channel erasures, Scholtz's synchronizable code is capable of 

recovering synchronization very quickly too. This is because the synchronization process 

can start from anywhere within the bitstream. 

51 



Chapter 4 Self-Synchronizable code 

4.3 Simulation 

We have adapted the Scholtz algorithm to code the DCT coefficients from a 

collection of test files. The compressed stream is subjected to various levels of 

transmission errors and we have used both forward decoding alone and bi-directional 

decoding to reconstruct the pictures. The decoded pictures are visually examined and the 

PSNR are calculated. It is found that our algorithm performs only slightly worse than 

Redmill and Kingsbury [17] in terms of bit-rates and visual quality, but are competitive 

on other features such as buffering and decoding complexity. 

4.3.1 Experiment Setup 

We construct a codebook consists of a set of variable length codewords by the procedure 

reviewed in the previous section. The construction parameters are chosen as follows: 

Initial dictionary: {1,0 } 

Atoms chosen: {0,1,1000} 

Maximum code length: 12 

To assign these codewords to the DCT coefficients, we obey the basic principle of 

data compression, i.e. use shorter codewords for more frequent symbols and longer 

codewords for less frequent symbols. For most images, there are more coefficients of 

smaller magnitudes after quantization. Therefore the shorter codewords are assigned to 

them first. For the zero runlengths, shorter runs of zeros are more frequent except for the 

EOB symbol. Empirical probabilities of the coefficients are collected and we assign 

shorter codewords to the more probable codewords in order. We have separate codebook 
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for the dc and ac coefficients because they have different range and exhibit different 

distribution. This is also true in the baseline JPEG Huffman model. 

The Scholtz algorithm comes with some compression inefficiency in order to 

provide synchronizability. One is the lack of total flexibility to change the length of the 

codewords. Another is that it is not a flill-tree code, i.e. some nodes of the coding tree 

have only one child. Therefore we use the following adaptation to increase the 

compression efficiency. We code every non-zero coefficient (both dc and ac) into two 

numbers. The first number is the quotient of the coefficient when divided by 8; the 

second number is the absolute-valued remainder when the quotient is non-zero. The sign 

ofthe remainder is dropped because the sign of the coefficients can be inferred from the 

quotient. 

The final codebook to be used is: 
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Ĵ
-̂.A

—
'«̂

—
"".

."'—
-'�

'—
.""

"̂
"̂

"""
�

.
 

m
 f

^ 
\ 

：
 

…
 
一
一
"“
一
“
""""""…
一
“
‘
“
…
—
“
—
“
‘
“
—
“
‘
“
‘
“
“
‘
“
“
“
“
“
州
 

i 
DC

 
1

 
„

 ^
 ^

 . 
_ 

AC
 

_•
„_
„
 

—
 

—
 

..".
�

‘
 

—
 

"
T

 
t

^
M

t
i

S
Z

n
i

^
[

:
!

J
f

f
o

l 
C

0
d

�
r

L
J

£
r

^
—

^
^

�
^

^
~

jg
g

g
g

g
^

T
lj

iZ
3

[
d

M
n

n
iE

Z
Z

I
E

Z
：
 

Î
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Chapter 4 Self-Synchronizable code 

The coding order of DCT coefficients is: 

{DC coefficients of all blocks} followed by 

{AC coefficients ofblock 1} followed by 

{AC coefficients ofblock 2} followed by 

{AC coefficients ofblock 3} ... etc. 

We output all dc coefficients first because we do not want the decoder to switch 

reading the dc and ac coding tables back and forth. Otherwise when there are errors, the 

decoder may read the wrong tables intermittently. 
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4.3.2 Results 

Q = 50 Q = 75  
Images Scholtz JPG Scholtz JPG 
Baboon 50511 45753 76298 68933 
Barb 32805 29648 47316 43393 
Boat 27897 24367 40769 36272 
Bridge 46202 41317 69811 62923 
Couple 32526 29188 48432 43840 
Crowd 32980 28810 46740 41862 
Girl 25595 22511 37129 33310 
Goldhill 31525 27449 47228 42004 
Lake 33591 29396 50286 44917 
Lena 23925 20921 36214 32568 
Man 31727 28102 47427 42908 
Peppers 24441 21310 37588 33722 
Plane 26303 22602 38776 33826 
Tiffany 28734 25642 44638 40879 
Woman 17606 14323 26104 22235 
Zelda 20170 17262 30329 27008 
total bytes 486538 428601 725085 6 5 0 6 0 0 “ 
Vsjpeg +13.52% - +11.45% -

Table 4-1 Image Coding Using Scholtz's code 

Table 4-1 records the bit rate of using the Scholtz code on the DCT coefficients. 

The bit rate ofthe baseline JPEG Huffman model is also included for comparison. As in 

last chapter of the application of LZ78, both the JPEG and our Scholtz system are 

losslessly compressing the identical set of quantized DCT coefficients. 
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In terms of coding efficiency we have improved over the modified LZ78. The extra 

bytes, compared with JPEG, dropped from over 20% to 13% at a quality factor of 50. At 

a quality factor of 75, the extra bytes are about 11%. This coding gain comes from the 

use of variable word length. The DCT coefficient exhibit highly skewed distributions 

with most coefficients are of small magnitudes. Thus, the shorter codewords (mostly with 

length less than 5) ofthe synchronizable code already contribute to the most share ofthe 

bit count. This also explains the choice of the atoms in the construction of our 

synchronizable code. In every suffix construction procedure, if we remove a shorter word 

we can add more new codewords to our dictionary (by appending more repetitions). Thus, 

we remove 0 and 1 in the first two steps. After that we want to keep the shorter 

codewords since it will contribute most to the bit count, therefore we choose to remove a 

codeword of length 4 rather than length 2 or 3. On the other hand, if we remove a 

codeword oflength 5, the result dictionary size will not be large enough. 

Next we will demonstrate the use of self-synchronizable codes in conjunction with 

the bi-directional decoding technique as introduced in the RVLC (reversible variable 

length code). Conditions with random channel erasures and errors are both simulated. 

Erasures are also important because when there are uncorrectable error-patterns, a block 

channel decoder (say a RS decoder) may output erasures. While a convolution decoder 

(which finds the most probable code path by the Viterbi algorithm) always outputs a 

codeword, which may contain random errors. All the images will be subjected directly to 

the applied errors and no channel coding is used. 
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Images Fwd only Bi-directional 
Baboon 22.826736 25.551426 

Barb 24.803165 28.721564 
Boat 26.218367 31.098192 

Bridge 23.356335 26.073067 
Couple 25.944527 28.955846 
Crowd 25.290572 29.646251 

Girl 28.846805 32.568283 
Goldhill 27.683424 31.839993 

Lake 24.283356 28.347524 
Lena 27.695152 33.145045 
Man 27.068229 30.542521 

Peppers 26.814051 31.111188 
Plane 24.807193 29.968025 

Tiffany 27.226883 29.758860 
Woman 29.483727 35.763666 
Zelda 29.690868 33.472342 

(a) 

Images Fwd only Bi-directional 
Baboon 18.536957 22.843518~ 

Barb 20.545385 24.312417 
Boat 21.911535 26.629913 

Bridge 19.071453 21.951153 
Couple 22.377877 26.119982 
Crowd 20.108135 22.415568 

Girl 23.549027 26.515470 
Goldhill 21.031646 24.393998 

Lake 20.957058 22.653602 
Lena 22.758831 25.450534 
Man 21.95351 25.414182 

Peppers 23.153029 26.163731 
Plane 22.905153 25.026695 

Tiffany 21.228916 24.820463 
Woman 24.207779 26.010601 
Zelda 23.780936 25.624487 

(b) 

Table 4-2 Forward decoding vs Bi-directional decoding of images coded at Q=50 
PSNR(dB) at (a) 0.1% erasures (b) 0.1% errors 
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Table 4-2 gives the peak signal-to-noise ratio (PSNR) of the decoded images at 

0.1 % random erasures and 0.1 % random errors respectively. With bi-directional decoding, 

we can recover part ofthose data that would be discarded when only forward decoding is 

used. Hence, we see that there is an improvement in the PSNR for all the test images. 

Figure 4-3 to figure 4-11 shows some decoded images ofLena and Boat at different 

error rates for visual comparisons. The recovery of data brought by the use of bi-

directional decoding is visualized as the removal of those blurred blocks in the case of 

erasures or checkers-like artifacts in case of errors. 

From the PSNR vs BER curves, we see that there is a consistent improvement in 

the PSNR over a wide range of error rates for both images Lena and Boat. The power of 

bi-directionally decoding is more significant, in terms of both the PSNR number and 

perceptual quality, at error rate not less than 0.1%. The comparative advantage of bi-

directional decoding diminishes as the error rate increases. For instance, the image Boat 

at a bit error rate of 0.1%, has a gain of about 5dB from bi-directional decoding. While 

this gain drops to 2dB when the BER rises to 1%. This is because when the error rate is 

too high (-1%), the errors will appear near the ends of the synchronization points more 

probably. This limits the amount of data recovered by the bi-directional decoding. Yet, at 

such high error rate, the decoded picture is already at rather low quality (the Boat is at a 

PSNR of 14dB to 16dB), an improvement by 2dB does not help much perceptually in this 

case. 
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Figure 4-2 PSNR at different Bit Erasure Rate ofLena coded at Q=50 (0.73 bpp) 
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Figure 4-3 Error free Lena at Q=50 
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醒隱 
(a) (b) 

_ • 
(c) (d) 

Figure 4-4 Lena 

With 0.1% erasures (a) forward decoding only (b) bi-directional decoding 

With 0.3% erasures (c) forward decoding only (d) bi-directional decoding 
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Figure 4-5 PSNR at different Bit Erasure Rate ofBoat coded at Q=50 (0.85 bpp) 
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Figure 4-7 Boat 

With 0.1% erasures (a) forward decoding only (b) bi-directional decoding 

With 0.3% erasures (c) forward decoding only (d) bi-directional decoding 
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Figure 4-8 PSNR at different Bit Error Rate ofLena coded at Q=50 (0.73 bpp) 
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Figure 4-9 Lena 

With 0.1% errors (a) forward decoding only (b) bi-directional decoding 

With 0.3% errors (c) forward decoding only (d) bi-directional decoding 
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Figure 4-10 PSNR at different Bit Error Rate of Boat coded at Q=50 (0.85 bpp) 
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Figure 4-11 Boat 

With 0.1% errors (a) forward decoding only (b) bi-directional decoding 

With 0.3% errors (c) forward decoding only (d) bi-directional decoding 
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4.4 Concluding Remarks 

Compare with the EREC algorithm proposed by Redmill and Kingsbury [17], our 

algorithms introduce about 10% more bit rates. However, our algorithms do not have to 

buffer the whole set of DCT coefficients and has simpler decoding complexities and 

operate faster. 

In terms of codeword synchronizability, the self-synchronizable code offers similar 

performance. We still can decode bi-directionally or recover those data between two error 

points. With respect to limitation of error propagation, the self-synchronizable code is 

less stringent than fixed length codes. An error may affect the next codeword also. 

However, the self-synchronizable code has an extra advantage of being not afraid of the 

insertion or deletion errors. This is because the synchronization procedure can start 

anywhere we like and does not depend on what comes before. In some channels, like CD-

ROM, which employs some form of run-length coding, bit insertions and deletions are 

possible. The self-synchronizable codes will provide protection against these kinds of 

errors. 
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Chapter 5 Conclusions 

In this thesis, we described the error resilience tools provided in MPEG-4. These 

tools enable the robust transmission of video in error-prone environments. These 

techniques include variable macroblock slices, RVLC, partitioning of texture and motion 

data etc. These error resilient tools are mainly applied to the data layer while we assume 

that FEC codes are already provided in the system layer. They all aim to mitigate the 

effect ofresidual errors (after channel decoding) on the decoded video frames. 

Compressed data is vulnerable to errors because of the loss of codeword 

synchronization when error occurs. We have studied two methods to deal with this 

problem. We first try the LZ78 code, which is a variable-to-fixed length code. 

Next, we use Scholtz's class of self-synchronizable code. The major advantage is 

we can start the synchronization procedure from anywhere within the bitstream. Although 

it is inflexible to change Scholtz's code length distribution, it does match the DCT 

coefficient distribution satisfactorily. In our experiment, we only lag the baseline 

Huffman JPEG (in terms of bitrate) by 13.5% at a quality factor of 50 and 11.5% at 75 

respectively. 

Together with the technique ofbi-directional decoding, we are able to recover more 

data in case of errors. This is beneficial to other error concealment methods that further 

increase the effective quality. 
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