
I

Error-Resilient Coding Tools

In MPEG-4

t

By

CHENG Shu Ling

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF THE MASTER OF PHILOSOPHY

DIVISION OF INFORMATION ENGnvfEERING

THE CHINESE UNIVERSITY OF HONG KONG

July 1997

•

A ^ ^ s ^
p (: ^ S 3 1 ^ ^ ^

4c—^w
- v ^ UNIVERSITY JgJ
' %^^y^^ s � , s ^ ^

% ^ r : : ^ v € X
'̂ <"niî Ji.̂ i:̂ '5̂ ^

Acknowledgement

I would like to thank my supervisor Prof. Victor K. W. Wei for his invaluable

guidance and support throughout my M. Phil, study. He has given to me many fruitful

ideas and inspiration on my research. I have been the teaching assistant of his channel

coding and multimedia coding class for three terms, during which I have gained a lot of

knowledge and experience. Working with Prof. Wei is a precious experience for me; I

learnt many ideas on work and research from him.

I would also like to thank my fellow labmates, C.K. Lai, C.W. Lam, S.W. Ng and

C.W. Yuen. They have assisted me in many ways on my duties and given a lot of

insightful discussions on my studies. Special thanks to Lai and Lam for their technical

support on my research.

Last but not least, I want to say thank you to my dear friends: Bird, William,

Johnny, Mok, Abak, Samson, Siu-man and Nelson. Thanks to all of you for the support

and patience with me over the years.

ii

Abstract

Error resiliency is becoming increasingly important with the rapid growth of the

mobile systems. The channels in mobile communications are subject to fading,

shadowing and interference and thus have a high error rate. Channel coding cannot

correct all the errors when the channel condition is too bad. Compressed data are very

sensitive to errors; even a single bit error can cause significant quality degradation ofthe

decoded data. Error resiliency is about to code the multimedia data in a way such that the

effect of errors on quality degradation is minimized.

One of the targets identified by the MPEG-4 is to provide error robustness for the

storage and communications in error-prone environment. The schemes being investigated

include layering, resynchionization, data recovery and error concealment. This thesis will

review some of these techniques.

One of the causes of the vulnerability of the compressed data is the use of variable

length entropy codes. The decoder will lose the synchronization of codewords when there

are errors in the compressed stream. The two main approaches discussed in this thesis to

solve this problem are (1) Fixed length codes and (2) Self-synchronizable code.

Fixed length codes inherently eliminate the problem of codeword synchronization

because the boundaries of codewords are at known positions. The errors are always

confined within the corrupted codeword. Tunstall code and Lempel-Ziv code are

examples of fixed length codes.

iii

The self-synchronizable code has the property that the punctuation at the position in

question can always be determined by observing s neighbouring symbols. This

synchronization procedure can start anywhere within the bitstream and this property

limits the propagation of errors.

The organization of this thesis is as follows: Chapter 1 gives the basic of JPEG and

MPEG. Chapter 2 addresses the issue of error resiliency and describes the techniques

studied by MPEG-4. Chapter 3 reviews the Tunstall and the Lempel-Ziv algorithm.

Chapter 4 gives the construction procedure of a self-synchronizable code and its

synchronizer. We then describe its application to image coding over noisy channels.

iv

簡介

隨著無線電通訊糸統的迅速發展，訊息之抗錯田1101 Resiliency)能力亦變得更重

要。己被壓縮的影視訊息十分容易受錯誤影響，即使旦一個位元的錯誤也能使解

壓後的影像質素大大下降。

傳統上信道編碼被應用來糾錯，但當信道的環境十分差的時候，這些糾錯碼並不

能糾正所有的錯誤。所謂訊息之抗錯能力就是指將錯信道錯誤帶來的影響儘量減

少o

MPEG-4其中一個目標是提供一些編碼工具來提高訊息之抗錯能力。正被硏究的

工具包括多層編碼0^&乂6^118)，重新同步(&63700^1100123^010，數據之復原(0&{&

^1600^6巧)和錯誤隱蔽(£1101 Concealment)�這篇論文將會介紹這些技術的一些基

本槪念。

壓縮後的訊息容易受錯誤影響，是因爲它們採用了不同長度的字碼。一但發生錯

誤，解碼器便不能辦認各字碼的正確位置。這篇論文硏究兩項方法來解決這問

題：

一、固定長度字碼(Fixed length Code)
例子包括• Tuntsall 和 Lempel-Ziv 碼

二�g^g(Self -SynchronizableCode)
自步碼的特性是我們只要檢查s個鄰近的字元，就能夠判斷某位置是否字碼

的邊界。

本論文的大綱如下：

第一章爲影視壓縮技術的標準JPEG和MPEG的基本知識。

第二章對訊息之抗錯作深一步解釋，並介紹MPEG-4現時所作之硏究。

第三章解釋Tuntsall和Lempel-Ziv碼和其應用。

第四章介紹如何建立自步碼和判斷字碼的邊界，也解釋它對錯誤時的表現。

Table of Contents

Chapter 1 Introduction 1

1.1 Image Coding Standard: JPEG 1

1.2 Video Coding Standard: MPEG 6

1.2.1 MPEG history 6

1.2.2 MPEG video compression algorithm overview 8

1.2.3 More MPEG features 10

1.3 Summary 17

Chapter 2 Error Resiliency 18

2.1 Introduction 18

2.2 Traditional approaches 19

2.2.1 Channel coding 19

2.2.2 ARQ 20

2.2.3 Multi-layer coding 20

2.2.4 Error Concealment 20

2.3 MPEG-4 work on error resilience 21

2.3.1 Resynchronization 21

2.3.2 Data Recovery 25

2.3.3 Error Concealment 28

2.4 Summary 29

Chapter 3 Fixed length codes 30

3.1 Introduction 3 0

3.2 Tunstall code 31

V

3.3 Lempel-Ziv code 34

3.3.1 LZ-77 35

3.3.2 LZ-78 36

3.4 Simulation 38
•

3.4.1 Experiment S etup 3 8

3.4.2 Results 39

3.4.3 Concluding Remarks 42

Chapter 4 Self-Synchronizable codes 44

4.1 Introduction 44

4.2 Scholtz synchronizable code 45

4.2.1 Definition 45

4.2.2 Construction procedure 45

4.2.3 Synchronizer 48

4.2.4 Effects of errors 51

4.3 Simulation 52

4.3.1 Experiment Setup 52

4.3.2 Results 56

4.4 Concluding Remarks 68

Chapter 5 Conclusions 69

References 70

vi

Chapterl Introduction

Chapter 1 Introduction

With the successful development of the Internet, visual communications has now

become an essential part of our lives. World-Wide-Web (WWW) browsing, Intemet

phone, real time streaming audio and video are already maturely developed and very

popular [l],[2]. These image and video applications always require some methods of

compression to reduce the otherwise prohibitive demand on the bandwidth and storage

space. To see the need for compression, consider a typical digital colour image with size

528 X 432 pixels at 3 bytes per pixel (1 byte for each red, green, blue colour component),

it requires 684,288 bytes of storage space. To transmit this image over a 33600 bps

modem, it takes about 2.7 minutes. The International Organization for Standardization

(ISO) Joint Photographic Experts Group (JPEG) has developed an algorithm for coding

still colour images. The JPEG algorithm can offer 20:1 compression ratio with almost no

visual difference. This means that it reduces the required storage space of this image to

about 34,000 bytes and transmission time to 8 seconds.

This chapter will give a brief description of the two most popular standards for

coding image and video: JPEG and MPEG.

1.1 Image Coding Standard: JPEG

The JPEG committee defines four different modes of operations [4]:

1

Chapterl Introduction

Sequential DCT-based: The image is partitioned into many 8 x 8 blocks. Every block is

transformed by the forward discrete cosine transform (FDCT). The blocks are then

scanned from left to right and top to bottom and the transform coefficients are quantized

and entropy coded in one scan.

Progressive DCT-based: This mode allows the decoder to produce a "rough" picture

quickly and enhance it to full details by later scans. It is similar to sequential mode except

the quantized coefficients are coded in several scans.

Lossless: The encoder entropy codes the difference between the input sample and its

predicted value (based on the input sample's neighbor sample). The decoder will

reproduce exactly the same digital input image.

Hierarchical: Another form of progressive coding. The input image is coded as a

sequence of increasing spatial resolution frames. The first frame (lowest resolution) is

coded by using either the sequential mode or progressive mode.

We shall look into more details of the sequential mode operation.

JPEG sequential DCT Codec

All JPEG DCT-based encoders begin with the partition of the digital input image

into non-overlapping 8 x 8 blocks. These sample values (assume 8 bit precision, range

from 0 to 255) are first level shifted by 128 so that they range from-128 to +127, then the

blocks are transformed into the frequency domain by using the FDCT. The equations for

8 X 8 forward and inverse discrete cosine transform (IDCT) is given by:

2

Chapterl Introduction

FDCT:

S{v,u) = ̂ ^ - ^ X S < y , ^) cos[(2x + 1)UK /16]cos[(2y + l)v7t /16]
L 丄 y^0 x=0

IDCT:

s(y,x) = X ^ ^ X ^ ^ 5 X v , ") c o s [(2 x + l)u7T / 16]cos[(2j; + l)v7T /16]
v=o L „=0 L

where

C(O = l/V2 for i = 0

C(i) 二 1 for i > 0

t

s(y,x) = 2-D sample values

S(v’u) = 2-D DCT coefficients

The coefficient at the most top left corner of a DCT block is proportional to the

average of the spatial domain samples, thus called the dc coefficient. The other

coefficients, called ac coefficients, represent increasingly higher frequencies component

as they progress away from the dc coefficient. For most natural images, there is not so

much drastic change of content within an 8 x 8 block. The DCT hence concentrates most

of the energy of the input samples into the first few coefficients at the top left corner.

The next step is quantization, which makes JPEG a lossy coding algorithm. An 8 x

8 quantization matrix is used to reduce the amplitudes of the transform coefficients and

increase the number of zero-valued coefficients. The quantization and dequantization is

done by:

3

Chapterl Introduction

f s^^)
Quantization. Sq^^ = round - ^

\ ^vu

Dequantization: R^ 二 Sq、，u x g^„

where

Svu • DCT coefficients

2^„: quantization steps

Sq^^: quantized coefficients

凡":reconstructed coefficients

Rounding is to the nearest integer. This round function incurs loss of information.

Larger quantization steps can produce smaller amplitudes and more zeros, hence a higher

compression ratio but poorer image quality. Many JPEG implementations control the

compression ratio using a Q-factor, which simply just a scale factor applies to the

quantization matrix elements. For example, the JPEG implementation released by the

Independent JPEG Group (ILG) [19] uses the quantization matrix:

— 1 6 11 10 16 24 40 51 61 —

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

4

Chapterl Introduction

A quality factor Q, range from 0 to 100, allows the user to adjust between the

compression ratio and quality. The number Q is transformed to a percentage number by

the equations:

2 0 0 - 2 * 2 if 5 0 < e < 1 0 0
^ " ^ 5000 /g if 0 < e < 5 0

Say, if Q = 75, i.e. P = 50%, all the quantization matrix entries will be halved. If Q

=50, then P 二 lOC)o/o, the quantization matrix will be used as-is.

As mentioned before, the dc coefficient corresponds to the average intensity of an 8

X 8 block and adjacent blocks tend to have similar average intensities. So JPEG codes

only the difference of the dc component between adjacent blocks. (This is an example of

differential pulse coded modulation DPCM). Each differential value is coded by a

variable length bit string, which comprises a SIZE symbol followed by exactly SIZE bits

to specify the value. For example, a dc difference of +6 needs 3 bits: 110 to represent and

this is translated to a token (SIZE=3,110). JPEG uses the Huffman code, to code the

symbol SIZE. A typical Huffman table is shown below:

SIZE Difference Code length Huffman code word
0 0 2 00
1 -1,1 3 010
2 -3,-2,2,3 3 011
3 -7,...,-4,4,...7 3 100
4 -15,...-8,8,...,15 3 101
5 -31,...-16,16,...,31 3 110
6 -63,...-32,32,...,63 4 1110
7 -127,...-64,64,...,127 5 11110
8 -255,...-128,128,...,255 6 111110
9 -511,...-256,256,...,511 7 1111110

Table 1-1 A Typical Huffman Table for dc difference

5

Chapterl Introduction

The ac coefficients are zero-runlength (ZRL) coded. Zig-zag scanning is used

because it tends to records longer zero runs by visiting lower frequency coefficients first.

0 —1 5 —6 14—15 27—28
X / z / / / /

1 4 7 n 16 26 29 42
1/ / / / / / / 丨
3 8 12 17 25 30 41 43

z / / / / / /
9 11 18 24 31 40 44 53
I / / / / / / / I
10 19 B 32 39 45 52 54

/ / / / / / /
20 22 ^3 38 46 31 55 60
丨 / / / / / / / \
21 M VI 4? 50 56 59 61

/ / / / / / /
35— 56 4S—49 57—58 62—63

Figure 1-2 The Zig-Zag Sequence

The non-zero ac coefficients are coded similarly as the dc coefficients. However the

tokens now become (ZRL/SIZE, VLI). ZRL is the number of zeros since the last

nonzero coefficient. VLI is the variable length integer of SIZE bits needed to specify the

non-zero ac coefficient. The pair (ZRL/SIZE) is again entropy by Huffman code.

1.2 Video Coding Standard: MPEG

1.2.1 MPEG history

In 1992, the Moving Picture Expert Group (MPEG) has released an international

standard，MPEG-1, for the compression of digital audio and video for transmission and

storage. Uncompressed digital video requires an extremely high transmission bandwidth.

For example, a PAL resolution television signal has a bit rate of approximately 100

Mb/sec. MPEG-1 can reduce this bit rate down to 1.5 Mb/sec, making it suitable for

storage on compact discs. MPEG-1 is intended to be generic, it defines only the coding

6

Chapterl Introduction

syntax and hence mainly the decoding procedure is standardized. MPEG-1 defines a

DCT/DPCM hybrid-coding scheme with motion compensation method similar to the

H.261 coding standard. It also provides functionality for random access required in

digital media storage.

Studies on MPEG-2 began in 1990, with the initial target to issue a standard for

coding of TV-pictures with CCIR Rec. 601 resolution (e.g. 352 pixels/line x 240 lines x

30 frames/sec) at data rates below 10 Mbps. In 1992 the scope of MPEG-2 was enlarged

to suit coding of HDTV - thus making an initially planned MPEG-3 phase superfluous.

The Draft International Standard (DIS) for MPEG-2 video was issued in early 1994.

The video coding scheme used in MPEG-2 is again generic and similar to the one

of MPEG-1, however with further refinements and special consideration of interlaced

sources. Furthermore many functionalities such as "scalability" were introduced.

Anticipating the rapid convergence of telecommunications industries, computer and

TV/film industries, the MPEG group officially initiated a new MPEG-4 standardization

phase in 1994. It targets to standardize algorithms and tools for coding and flexible

representation of audio-visual data to meet the challenges of future multimedia

applications requirements. In particular MPEG-4 addresses the need for:

• Universal accessibility and robustness in error prone environments

• High interactive functionality

• Coding of natural and synthetic data

• Compression efficiency

7

Chapterl Introduction

Bit rates targeted for the MPEG-4 video standard are between 5-64 kbps for mobile

or PSTN video applications and up to 2 Mbps for TV/film applications.

1.2.2 MPEG video compression algorithm overview

All video compression algorithms achieve compression by exploiting the spatial

redundancy and/or temporal redundancy exists in the video frames. The following

paragraphs explain how does the MPEG algorithm exploit this redundancy [2],[5].

Spatial Redundancy

Video can be viewed as a sequence of still images, thus it can be compressed using

the techniques defined in JPEG. A video frame is partitioned into non-overlapping 8 x 8

blocks. DCT is applied to every block, then the transform coefficients are quantized and

coded. This technique exploits the spatial redundancy between pixels within a video

frame and is referred as intra-frame coding because each video frame is independently

compressed from other frames.

Temporal Redundancy

Intra-frame coding alone cannot compress the video down to the desired bit rate.

There exists high correlation between adjacent video frames. MPEG exploits this

temporal redundancy by using a block-based motion compensation approach.

A block of pixels (MacroBlock MB), called the target block, in the frame to be

encoded is matched by a block of the same size in a reference frame (say the previous

frame). The block that "best matches" the target block in the reference frame is used as a

prediction. The prediction error is computed as the difference between the target block

8

Chapterl Introduction

and the matching block. Associated with this matching block is a motion vector that

describes the displacement of the matching block relative to the target block. The

prediction error is then coded using the DCT approach as in intra-frame coding and

transmitted to the decoder along with the motion vectors.

Smaller macroblock size allows us to find "better matching" block more easily and

compress more efficiently. However, this also means that we have to transmit more

motion vectors and overhead for the MB's. MPEG-1 chooses 16 x 16 macroblocks for

motion compensations. This is a compromise between the compression efficiency and the

storage overhead for the MB's.

MPEG has defined three frame types for temporal processing:

I-frames (intra-coded)

The I-frames are coded independently from other pictures. They provided random

access and fast search points within the coded bitstream. The compression efficiency

within the I-frames is moderate since inter-frame temporal redundancy is not used in

encoding.

P-frames (forward predicted)

The P-frames are encoded based on the prediction from past I-frames or P-frames

by using motion compensated prediction.

B-frames (bi-directionally predicted)

The B-frames are encoded based on the prediction from both past and future frames,

thus named bi-directional. However, the B-frames themselves will not be used as

reference for prediction. The use of bi-directional prediction gives better compression

9

Chapterl Introduction

efficiency and video quality. This comes from the reduction in temporal redundancy and

the ability to use future frames to address the unpredictable areas from the past reference.

一 一 ~ —―-----、^-—― ——------‘

I B B P B B P

^ ^ ^ ^ ^ ^
: ^ ^ ^ 么 ： ^ ： ^

夕夕夕夕夕夕^^^
__""^ ^ -̂-〜一~̂ ^ “ ^ ^ >""~"~\ 一 r>kHlnn

© ⑤ ④ ② ⑥ ⑦ ⑤ 欲 丄 ? °
\一-才 ^——_—――^"~" ^•___•< •̂一一一 一^̂ “̂

The arrows indicate which pictures are used in prediction

Figure 1-3 The Relation between I-,P-,B-frames

1.2.3 More MPEG features

MPEG-1

MPEG-1 [15] was primarily targeted for multimedia CD-ROM applications.

Important features provided by MPEG-1 include frame based random access of video,

fast forward/fast reverse searches through compressed bit streams, reverse playback of

video and editability of the compressed bit stream. MPEG-1 has been a very successful

standard. It is the de-facto form of storing moving pictures and audio on the World Wide

Web and is used in millions of Video CDs. Digital Audio Broadcasting (DAB) is a new

consumer market that makes use ofMPEG-1 audio coding.

10

Chapterl Introduction

MPEG-2

MPEG-2 can be seen as a superset of the MPEG-1 coding standard and was

designed to be backward compatible to MPEG-1. Emerging applications, such as digital

cable TV distribution, networked database services via ATM, digital VTR applications

and satellite and terrestrial digital broadcasting distribution, were seen to benefit from the

increased quality brought by the new MPEG-2 standardization.

MPEG-2 has introduced the concept of frame pictures and field pictures [5],[16]

along with particular frame prediction and field prediction modes to accommodate coding

of progressive (non-interlaced) and interlaced video. For interlaced sequences it is

assumed that the input consists of a series of odd (top) and even (bottom) fields that are

separated in time by a field period. Two fields of a frame may be coded separately (as

fleld pictures). In this case each field is separated into adjacent non-overlapping

Macroblocks and the DCT is applied on a field basis. Alternatively two fields may be

coded together as a frame (frame pictures) similar to conventional coding of non-

interlaced video sequences. Here, consecutive lines of top and bottom fields are simply

merged to form a frame.

11

Chapterl Introduction

z “ ^ ^ ^ ^ ^ - ^ “ ^

I X ^ P / ^ P

Top Bottom Top Bottom Top Bottom

^ # ^ ¾ ¾ ^

c ^ < • • - • • • • < ^ < • • - . . > ^ < • • • • > -

J ^ .-•••••• ^ z -•••••• Z z ...-••• z z
,•••••• Z ； ...•••••••••> y C , .,•••••••> 力 夕

^ ^ ^ ^ ^ 5 ^ ¾ ^

(^ � � � � ® §S5®
T h e c o n c e p t of f i e l d - p i c t u r e s and an e x a m p l e of p o s s i b l e f i e l d
predict ion. Each bottom f ield is coded using motion compensated Inter-
f ie ld predic t ion based on the prev iously coded top f ie ld. The top f ie lds
are coded us ing mot ion c o m p e n s a t e d In te r - f ie ld p red i c t i on based on
ei ther the prev ious ly coded top f ie ld or based on the prev ious ly coded
bottom f ield. This concept can be extended to incorporate B-p ic tures.

Figure 1-4 Field pictures and field-prediction

New/ze/J prediction modes are introduced to efficiently code the field pictures. In

field prediction, predictions are made independently for each field by using data from one

or more previously decoded field. Usually, inter-field prediction from the decoded field

in the same picture is preferred if no motion occurs between fields. An indication which

reference field is used for prediction is transmitted with the bit stream. Within a field

picture, all predictions are field predictions. Frame prediction forms a prediction for a

frame picture based on one or more previously decoded frames. In a frame picture either

field or frame predictions may be used and the particular prediction mode preferred can

be selected on a Macroblock-by-Macroblock basis.

12

Chapterl Introduction

MPEG-2 also introduces scalable video coding to provide additional functionality,

such as embedded coding of digital TV and HDTV, and graceful quality degradation in

the presence of transmission errors. Browsing through video database and transmission of

video over heterogeneous network is expected to benefit from this scalability. The basic

idea of scalable video coding is to provide multiple layers of video signal at different

scale. The lower scale video is encoded into the base layer bitstream at reduced bitrate.

The upscale reconstructed base layer video serves as a prediction for the original video.

The prediction error is encoded into the enhancement layer bitstream. Decoder can

choose to display a lower quality video by decoding only the base layer bistream. Thus

scalable coding can be used to encode video with a suitable bit rate allocated to each

layer in order to meet specific bandwidth requirements of transmission channels or

storage media.

enchancement
Source Video in layerbitstream high resolution video

^ Enchancement ^ Enchancement ^
encoder decoder

2

，r

Downscaling Upscaling Upscaling
Spatial or Spatial or Spatial or
Temporal Temporal Temporal

2 Z

base layer low resolution
„ , bitstream „ , video
Base layer ^ Base layer ^

encoder decoder

Figure 1-5 The scheme of Scalability

13

Chapterl Introduction

There are four basic scalable extensions defined in MPEG-2:

Spatial scalability

The algorithm is based on the classical pyramid progressive image coding. It is

developed to support displays at different spatial resolution. This functionality is useful

for application including embedding coding used in HDTV, allowing a migration from

digital TV service to high spatial resolution HDTV service.

Temporal scalability

Layering is achieved by providing layers at different temporal resolution. The aim

of this tool is similar to that of Spatial scalability.

SNR scalability

This tool has been developed to provide graceful degradation of the video quality in

prioritized transmission media. If the base layer can be protected from transmission errors,

a version of the video with gracefully reduced quality can be obtained by decoding the

base layer signal only. One way to achieve SNR scalability is that at the base layer, the

DCT coefficients are coarsely quantized and transmitted to achieve moderate image

quality at reduced bit rate. The enhancement layer encodes and transmits the difference

between the non-quantized DCT-coefficients and the quantized coefficients from the base

layer with finer quantization stepsize. At the decoder the highest quality video signal is

reconstructed by decoding both the lower and the higher layer bitstreams. It is also

possible to provide SNR scalability by transmitting the first few DCT coefficients only in

the base stream and the remaining coefficients in the enhancement layer.

14

Chapterl Introduction

Data partitioning

Data partitioning to designed to assist error concealment in the presence of

transmission errors. It is not formally standardized with MPEG-2, but rather is referenced

in the informative Annex of the MPEG-2 standard document. This is because this tool

can be used entirely as a post-processing tool to any single layer coding technique. The

algorithm is based on the separation of the DCT coefficients. Data partition can also be

applied to separate the header information, such as the frame size and frame rate

parameters, from the entropy coded stream.

It is possible to combine different scalability tools into a hybrid scheme. For

example, services with different spatial resolution and frame rate can be supported by

combining the Temporal Scalability and Spatial Scalability tools. Interoperability

between HDTV and SDTV services can be provided along with a certain resilience to

channel errors by combining the Spatial Scalability extensions with the SNR Scalability

tool. With scalable video coding, decoder of various complexities can decode appropriate

size replicas of the original video. Possible application areas include multi-party

conferencing and video database browsing.

MPEG-4

MPEG is now working to produce MPEG-4, scheduled for completion in January

1999. The focus of MPEG-4 is the convergence of common applications for digital

television, interactive graphics applications (synthetic content) and the World Wide Web

(distribution of and access to content). MPEG-4 will provide the standardized

technological elements enabling the integration of the production, distribution and

15

Chapterl Introduction

content access of the three fields. Currently, MPEG-4 has identified the following key

functions [6],[7]:

Content-based interactivity

New applications can be developed by the ability to interact with meaningful

objects within an audio-visual scene. In existing standards such as MPEG-1 and MPEG-2,

manipulation and editing are only possible in the original image domain. MPEG-4 will

provide tools for content-based interaction and bitstream editing without transcoding.

Otherwise, decoding before editing implies increased complexities and possible quality

degradation. Possible fields of applications can be home video editing, video database

queries, movies digital effects, online home shopping and video games.

Improved coding efficiency

MPEG-4 aims to provide better audio and visual quality at comparable bit rates of

existing standards such as CCITT H.261. Better coding efficiency makes many

applications more economically viable and competitive. Currently, core experiments on

texture coding includes wavelet-based coding and matching pursuits.

Hybrid natural and synthetic coding

MPEG-4 will support for combining artificial object with natural video, thus

allowing interactivity. It allows seamless integration of computer-generated graphics and

natural scenes. Related techniques under experiment include shape coding, sprite coding,

texture warping and wavelet coding.

16

Chapterl Introduction

Coding multiple concurrent data streams

Multimedia applications such as virtual reality, 3D movies, and multimedia

presentations require efficiently coding multiple views and soundtracks of a scene.

Robustness in error-prone environments

Wireless communication requires error robustness for low bit-rate applications

under severe conditions. MPEG-4 provides an error robustness capability to allow access

multimedia applications over a variety of wireless and wire networks.

1.3 Summary

This chapter provides an overview of the JPEG and MPEG, the most popular

standards for image and video coding respectively. We also present the basics of their

compression algorithms and finally we review some of the features and functionalities

developed by the different phases of MPEG, i.e. MPEG-1, MPEG-2 and MPEG-4. The

knowledge of these materials will help the understanding on the issue of error resilience,

which is going to be discussed in the next chapter.

17

Chapter 2 Error Resiliency

Chapter 2 Error Resiliency

2.1 Introduction

With the rapid growth in mobile systems, error resilience is becoming increasingly

important [7], [18]. Mobile communication channels in urban and suburban areas are

subject to noise, fading, shadowing and interference [3]. All these make the wireless link

an unreliable channel. Traditionally, channel coding is used to combat channel errors.

However, when the channel condition is too bad, there are still uncorrectable errors. The

compressed audio and video data are very vulnerable to errors: even a single bit error

could result in significant quality degradation. Error resilience refers to the features of

graceful degradation in the quality of the decoded data against deteriorating channel

errors.

To demonstrate the problem of transmitting compressed data through noisy channel,

Figure 2-1 shows a JPEG compressed image transmitted over a channel ofBER 0.01%. A

small number of bit errors can lead to great distortion in the decoded image. These few

errors propagate over a large area of the image because of the use of Huffman code. A

Huffman decoder is able to identify the correct separation of codewords from an error-

free bitstream. However when there are errors, the decoder will either decoder longer or

shorter codewords, leading to the loss of codeword synchronization and extended errors.

18

Chapter 2 Error Resiliency ^ g ^

圓
M j ^ M o J ^ m
m^^^^^^^Hi^^^^^p^^^^^^^HSHmraH^^^^

Figure 2-1 JPEG with 0.01% BER

The remainder of this chapter is organized as follows: in next section, we review

several current existing methods in combating errors in video coding. Section 2.3

describes new ways to combat errors that are being considered by MPEG-4.

2.2 Traditional approaches

In this section will first review some prior methodology used to provide error

resilience.

2.2.1 Channel coding

Forward error correcting codes (FEC) such as Reed-Solomon codes and BCH codes,

can be used to correct certain amount of transmission errors. It involves the addition of

extra parity bits to the compressed data, thus increases the total bandwidth required.

Moreover, the FEC system is usually designed with the worst case scenario in mind. For

channel with variable conditions, we need a very strong error correcting codes that adds

19

Chapter 2 Error Resiliency

much redundancy and hurts compression efficiency heavily. Besides, such a system will

fail catastrophically when there are uncorrectable errors. This occurs when there is long

burst of errors (as in a fading channel). One method to combat this is to use interleaving

that tums long burst of errors into random errors, but this will introduce large delays.

2.2.2 ARQ

The Automatic Repeat Request (ARQ) protocol allows the decoder to request

retransmission of the corrupted data. It is usually used with packet delivery systems.

ARQ is effective in dealing with packet loss and long burst of errors. However, the

retransmission of data can lead to significant delay and generate excess network traffic.

This is undesirable for most real time applications such as video conferencing.

Furthermore, ARQ is not efficient in dealing with random errors and short error bursts.

2.2.3 Multi-layer coding

The basic idea is to code the image/video in two or more layers. The base layer is

used to code more important information, while subsequent layers are used to code the

refinement information. The different layers can be given different error protection

according to their priorities. This technique is also known as Unequal Error Protection

(UEP). The bitstream from these layers may also be transmitted over different channels

with different conditions.

2.2,4 Error Concealment

Error concealment actually is a post-processing technique. Here the decoder tries to

detect errors within the received data using parity information or some statistical means.

20

Chapter 2 Error Resiliency

For example, in the JPEG system, errors can be detected by discovering an illegitimate

marker or an out-of-range DCT coefficient. Upon detecting an error, the decoder tries to

conceal the errors by predicting the probable content of the corrupted data. A DCT codec,

for example, can replace erroneous block by the average of its neighbouring blocks.

2.3 MPEG-4 work on error resilience

One of the targets identified by MPEG-4 is to provide error robustness and

resilience to allow accessing image or video information over a wide range of storage and

transmission media. The error resilience tools developed for MPEG-4 can be divided into

three major areas. These areas or categories include resynchronization, data recovery, and

error concealment [7]. These approaches address different areas in error resiliency.

Resynchronization is almost indispensable in any coding system. MPEG-4 enhances the

characteristics of these resynchronization tools. After synchronization is regained, the

data recover tools attempt to recover the data that in general would be discarded. MPEG-

4 also provides tools that help the error concealment methods, which are post-processing

techniques to improve the decoded video quality.

2.3.1 Resynchronization

Resynchronization tools, as the name implies, attempt to enable resynchronization

between the decoder and the bitstream after a residual error or errors have been detected.

Generally, the data between the synchronization point prior to the error and the first point

where synchronization is reestablished is discarded. If the resynchronization approach is

effective at localizing the amount of data discarded by the decoder, then the ability of

21

Chapter 2 Error Resiliency

other types of tools that recover data and/or conceal the effects of errors is greatly

enhanced.

The resynchronization approach adopted by MPEG-4, referred to as a packet

approach, is similar to the Group of Blocks (GOBs) structure utilized by the ITU-T

standards ofH.261 and H.263. In these standards a GOB is defined as one or more rows

of macroblocks (MBs). At the start of a new GOB, information called a GOB header is

placed within the bitstream. This header information contains a GOB start code, which is

different from a picture start code, and allows the decoder to locate this GOB.

Furthermore, the GOB header contains information which allows the decoding

process to be restarted (i.e., resynchronize the decoder to the bitstream and reset all

predictively coded data). The GOB approach to resynchronization is based on spatial

resynchronization. That is, once a particular macroblock location is reached in the

encoding process, a resynchronization marker is inserted into the bitstream. A potential

problem with this approach is that since the encoding process is variable rate, these

resynchronization markers will most likely be unevenly spaced throughout the bitstream.

Therefore, certain portions of the scene, such as high motion areas, will be more

susceptible to errors, which will also be more difficult to conceal.

The video packet approach adopted by MPEG-4 is based on providing periodic

resynchronization markers throughout the bitstream. In other words, the length of the

video packets are not based on the number of macroblocks, but instead on the number of

bits contained in that packet. If the number of bits contained in the current video packet

22

Chapter 2 Error Resiliency

exceeds a predetermined threshold, then a new video packet is created at the start of the

next macroblock. This creates slices of macroblock with variable lengths.

A resynchronization marker is used to distinguish the start of a new video packet.

This marker is distinguishable from all possible VLC codewords as well as the VOP

(Video Object Plane) start code. Header information is also provided at the start of a

video packet. Contained in this header is the information necessary to restart the decoding

process and includes: the macroblock number of the first macroblock contained in this

packet and the quantization parameter necessary to decode that first macroblock. The

macroblock number provides the necessary spatial resynchronization while the

quantization parameter allows the differential decoding process to be resynchronized.

It should be noted that when utilizing the error resilience tools within MPEG-4,

some of the compression efficiency tools are modified. For example, all predictively

encoded information must be confined within a video packet so as to prevent the

propagation of errors.

23

Chapter 2 Error Resiliency

—

I I 1
_ - ‘

b 1 L — > «

Spat ia l doma in B i t s t ream d o m a i n

(a) Markers inser ted af ter every row of macrob locks

“ 1
1 ^

|M......I.IIIM< 1 I ~'^^~~~^^^^~~^^^~"^~^^~~~'^^^^~'^^~^^~"'~^~ “ � , ' "
�\ � __^
\ ™^ ^~“ ‘ TTT*

���…
•

^ ^ —

tiMm"̂ fii...ii L

Spat ia l domain B i t s t ream doma in

(b) Markers inser ted at equal in terval of the coded b i ts t ream

Resynch ron i za t i on markers

Variable MacroBlock Slice Tehnique:

Markers are inserted at equal interval of the bitstream, instead of after a fixed number of
macroblocks. The slice of macroblocks between two adjacent markers become variable
in length.

Figure 2-2 The use ofvariable Macroblock slice to provide error resilience

24

Chapter 2 Error Resiliency

In conjunction with the video packet approach to resynchronization, a second

method called fixed interval synchronization has also been adopted by MPEG-4. This

method requires that VOP start codes and resynchronization markers (i.e., the start of a

video packet) appear only at legal fixed interval locations in the bitstream. These help to

avoid the problems associated with start codes emulation. That is, when errors are present

in a bitstream it is possible for these errors to emulate a VOP start code. In this case,

when fixed interval synchronization is utilized the decoder is only required to search for a

VOP start code at the beginning of each fixed interval.

2.3.2 Data Recovery

After synchronization has been reestablished, data recovery tools attempt to recover

data that in general would be lost. These tools are not simply error correcting codes, but

instead techniques that encode the data in an error resilient manner. For instance, one

particular tool that has been endorsed by the Video Group is Reversible Variable Length

Codes (RVLC) [8]. In this approach, the variable length codewords are designed such

that they can be read both in the forward as well as the reverse direction. Example of such

codewords is 111, 101, 010. Codewords such as 100 are not used.

Figure 2-3 shows an example illustrating the use of a RVLC. Generally, in a

situation such as this, where a burst of errors has corrupted a portion of the data, all data

between the two synchronization points would be lost. However an RVLC enables some

of that data to be recovered.

25

Chapter 2 Error Resiliency

Forward decoding

1 X Error

Resync point Resync point

Error X

Discard

Backward decoding

Figure 2-3 Example ofRVLC

Other error resilient tools under consideration by MPEG-4 that enable data

recovery include:

1) Robust DC coefficient encoding

For example, the median predictor is used instead of simple DPCM. In DPCM error

propagates until the next reset of prediction. On the other hand, the median predictor has

the ability to reject out-lier and is thus more robust to errors.

2) Packaging VLCs into fixed length packets

This is primarily to avoid the catastrophic loss of codeword synchronization. A

technique of this category is the error-resilient entropy code (EREC) [17]. The basic

operation of the EREC is to rearrange the n variable length blocks of data into fixed

length slotted structure. In this way, the decoder can independently find the start of each

block and start decoding it.

An example ofthe algorithm with 6 blocks is shown in the figure 2-4. At each stage

k, whenever a block i has surplus bits over the fixed length slot, it will search in slot (i+k)

mod n for empty space to put the remaining bits. After at most n stages, all the variable

26

Chapter 2 Error Resiliency

length blocks are packed into the fixed length slots. Synchronization is automatically

achieved at the beginning of every block.

A drawback of this method is the requirement of all the data blocks to be known

beforehand. This implies significant memory requirement and delay.

Stage 1 Stage 2

^ ^ ^ ^ ^ ^ ^ J ^ — ^ ^

y
^\ ••••••_•._ î ^

i i i i _ I ^ taiiiicj

stage 3 Stage 6

圉 〕 — . • B

i i i i i _ ‘ L_iii_

n Empty bit 疆 Block 1 bit Block 2 bit j | Block 3 bit

^ Block 4 bit I Block 5 bit | | Block 6 bit

Figure 2-4 Example of the EREC algorithm

27

Chapter 2 Error Resiliency

3J Multiple transmission within the bitstream of key information

In each video packet, a 1-bit field called Header Extension Code (HEC) is

introduced. If this bit is set, the important header information (e.g. spatial dimension,

motion vectors) which describes this video frame is repeated.

2.3.3 Error Concealment

Error concealment is an important component of an error robust video codec.

Similar to the error resilience tools discussed above, the effectiveness of an error

concealment strategy is highly dependent on the performance of the resynchronization

scheme. Basically, ifthe resynchronization method can effectively localize the error then

the error concealment problem becomes much more tractable. For low bitrate, low delay

applications, the current resynchronization scheme provides very acceptable results with

a simple concealment strategy, such as copying blocks from the previous frame.

In recognizing the need to provide enhanced concealment capabilities, the Video

Group has developed an additional error resilient mode that further improves the ability

of the decoder to localize an error.

Specifically, this approach utilizes the data partitioning tools by separating the

motion and the texture information. This approach requires that a second

resynchronization marker (Motion Boundary Marker MBM) be inserted between motion

and texture information. If the texture information is lost, this approach utilizes the

motion information to conceal these errors. That is, due to the errors, the texture

information is discarded, while the motion information is used to motion compensate

from the previous decoded VOP.

28

Chapter 2 Error Resiliency

2.4 Summary

This chapter discussed the importance of error resilience in image and video

communications. Some prior approaches of providing error resilience are described.

Thereafter we introduced the current work by MPEG-4 on error resilience. These tools

are mainly on the area of resynchronization, data recovery and error concealment.

29

Chapter 3 Fixed length codes

Chapter 3 Fixed length codes

3.1 Introduction

In this chapter, we present a variable-to-fixed length coding scheme to entropy code

the DCT coefficients and compare the results to the baseline JPEG Huffman system.

Traditional entropy coding of the DCT coefficients, such as Huffman, employs

fixed-to-variable length coding scheme, in which a fixed length block of symbols is

matched to a variable length bit string. Here, we experiment a variable-to-fixed length

coding scheme in which a variable number of DCT coefficients are matched to a fixed

length binary string. This is a feasible solution to the error resiliency problem because

transmission errors will not propagate beyond the boundaries of the fixed length codes.

With our modified Lempel-Ziv algorithm, we have implemented a variable-to-fixed

length coder which cost about 20% additional bit-rate than the baseline JPEG Huffman

system without special error resiliency consideration, but cost less than the reverse

Huffman code proposed to the MPEG-4 study group.

A variable-to-fixed length encoding is a mapping from a dictionary of variable-

length strings of source symbols to a set of codewords with a given length. A variable

length code, like Hufftnan code, achieves compression by assigning shorter codewords to

more frequent source symbols and longer codewords to less frequent source symbols. A

30

Chapter 3 Fixed length codes

variable-to-fixed length code, on the other hand, chops the input source sequence into

segments of variable length and represents each segment with an index from its

dictionary ofpossible segments. To achieve compression, it tries to maximize the average

number of source symbols represented by each dictionary index. The Tunstall code and

Lempel-Ziv code are examples of variable-to-fixed length codes.

Fixed length codes are inherently more resilient to errors. A variable length decoder

may output codewords of wrong length in case of errors, thus lead to the loss of

codeword synchronization. Codeword synchronization is not necessary for fixed length

codes since we know the exact positions of the codeword boundaries. The effect of errors

is always confined within the codeword corrupted and does not propagate.

The remainder of this chapter is organized as follows: section 3.2 and 3.3 briefly

reviews the Tunstall and Lempel-Ziv coding algorithms. Section 3.4 gives the details of

our variable-to-fixed length coder and presents the simulation results.

3.2 Tunstall code

This section reviews the Tunstall coding algorithm. The Tunstall code [9:

construction procedure starts with a coding tree with all single-letter string as leaves. The

leaf-nodes will correspond to the strings in the Tunstall dictionary. Associates with each

string is the probability of occurrence of that string.

The algorithm chooses the leaf node with the largest probability and split it down

by one more level. (Ties in choosing the maximum probability are broken arbitrarily.)

This is equivalent to appending a single letter to the string currently with the largest

31

Chapter 3 Fixed length codes

probability. The probabilities of the newly added strings are updated accordingly. This

process iterates until the total number of leaf-nodes exceeds the desired dictionary size.

An index is then assigned to every leaf-node, according to their lexicographical order.

As an example, consider a binary memoryless source with alphabet {A,B}, and

Pr{A)-0.7, Pr{B)=0.3. We construct a Tunstall code with 8 strings in the dictionary,

thus we use 3 bits (2^=8) per index. Figure 3-1 shows the first few steps and the final step

of the codebook construction. The final codebook is:

Index Strings represented
000 AAAAA
001 AAAAB
010 AAAB
011 AAB
100 AB
101 BAA
110 BAB
111 BB

32

Chapter 3 Fixed length codes

A / 0 . 7

B / 0.3

Step 1 In i t ia l t ree

AA / 0.49

AB I 0.21

B / 0.3

Step 2

AAA / 0 .343

AAB / 0 .147

AB / 0.21

B / 0.3

Step 3

AAAAA / 0 .16807

AAAAB I 0 .07203

AAAB / 0 .1029

AAB / 0 .147

AB / 0.21

BAA / 0 .147

BAB / 0 .063

BB / 0.09

Step 7

Figure 3-1 Example of Tunstall code construction

33

Chapter 3 Fixed length codes

The Tunstall code works well with memoryless sources. Of course, we can improve

the performance by incorporating higher order probability estimates when updating the

probabilities. However, this will increase the complexities drastically.

3.3 Lempel-Ziv code

In this section, we review two famous compression algorithms, by A. Lempel and J.

Ziv, commonly referred to as LZ77 and LZ78.

The Lempel-Ziv code belongs to a class of dictionary-based compression methods.

It encodes variable length strings into a single token and these tokens form an index to a

phrase dictionary. The Lempel-Ziv code was first invented in 1977 [10] by Abraham

Lempel and Jacob Ziv. They published another paper [11] in 1978 describing another

dictionary-based compression method. These two techniques developed are called LZ77

and LZ78. LZ77 is a "sliding window" technique in which the dictionary consists ofase t

of fixed-length phrases found in the previously processed window. LZ78 builds up its

dictionary one at a time, adding a new symbol to an existing phrase whenever a match

occurs.

In the following sub-sections, we will review the LZ77 and LZ78 coding

algorithms respectively.

34

Chapter 3 Fixed length codes

3.3.1 LZ-77

The LZ77 maintains two sliding windows: the just encoded window of length N

and the to-be-encoded window of length K. The compressor loops the following three

steps:

Parse: the compressor tries to find the longest prefix in the to-be-encoded window as

matched by a substring inside thejust encoded window.

Encode: the matching information is encoded by emitting the token

(go back n, copy k, append ‘A’）

where 'A' is the first letter following the matched prefix string inside the to-be-encoded

window. This token tells the decoder to go back n letters in the just encoded window,

start from there, copy k letters and append a letter 'A'.

Update: both windows slide forward by k+l, i.e. the length of the matched string plus the

appended letter.

The LZ77 is a fixed length code because all the parameters within the token (n, k, 'A')

are represented by bit strings of given lengths.

Example:

Assume we are already in the middle of the compression process and we will encode:

...H.261,H.262, H.263...

withN=7,K=4.

step just encoded window to-be-encoded window output token
1 "H.261," "H.26" back 7, copy 4, append '2'
2 “, H.262" “，H." back 7, copy 4, append ‘2,

35

Chapter 3 Fixed length codes

The first two steps of encoding are shown.

Note that the just encoded window in LZ77 implies the dictionary used. All the k-sub-

strings within the just encoded window are members of the dictionary.

3.3.2 LZ-78

The LZ78 algorithm maintains a dictionary of phrases it has seen before, all the

phrases are distinct and each is given a unique index. The initial dictionary contains only

one entry: the NULL phrase with an index of 0.

Similar to its counterpart, LZ78 loops these three steps:

Parse: find a phrase P in the current dictionary that matches the longest prefix ofthe to-

be-encoded string.

Encode: the compressor output the token

(copy i-th phrase, append 'A')

where the i-th phrase is P and 'A' is the letter P in the to-be-encoded string.

Update: the new phrase (P, 'A') is added to the dictionary.

The pair of dictionary indexes i and the appending letter 'A' is again coded with bit string

of given lengths respectively.

36

Chapter 3 Fixed length codes

Example:

We will encode the same input sequence:

...H.261,H.262, H.263...

Assume the LZ78 dictionary is already occupied with some single letters:

index string
0 NULL
1 “H”
2 ‘‘.”
3 “2”
4 “6”
5 T
6 “,”
7 “ ”

The encoding steps are shown below:

Steps Matched string Output token New string added —
1 “H” 1,‘.， index=8,“H.”
飞 “2” 3, ‘6, "^ex=9 , “26”
^ “1” 5,‘,， li^ex=10,‘‘l,”
~4 “” 7,‘H, l i i ^ e x = l l , H , ,
飞 “.” ~X ‘2, index=12, “.2” 一
^ “6” 4,‘2, ^ e x = 1 3 , “ 6 2 ”
~7 “,’’ 6, ‘， ^ e x = 1 4 , “, ”
8 一 “ k ” 8,‘2’ lndex-15, "H.2"
9 丨“6” |4,‘3’ |index=16,“63,.

In both LZ77 and LZ78 algorithms, the dictionary need not be sent to the decoder.

The decoder can infer the dictionary from the decoded tokens and update its dictionary in

pace with the encoder. This dictionary update process depends on the previously decoded

result. Hence, a single error can result in a wrong entry in the dictionary and lead to many

future errors.

37

Chapter 3 Fixed length codes

3.4 Simulation

We have modified the original LZ78 algorithm to produce a stationary codebook.

This variable-to-fixed length codebook will be used to code the stream of DCT

coefficients and we have simulated our algorithm on a series of standard test images. The

compression efficiency is about 20% worse than the baseline JPEG Huffman, and this is

the cost to provide the error resiliency. In comparison, our scheme compares favorably to

the reverse Huffman code which costs about 50% extra redundancy [20].

3 A 1 Experiment Setup

To use the LZ78 algorithm, we need some modifications:

(1) To avoid the problem of loss of dictionary synchronization between the encoder

and decoder, the LZ78 dictionary is trained by an image beforehand. The

trained dictionary will be used to encode the other images. This sacrifices some

compression efficiency, but is justified by the error resiliency it brings.

(2) The starting LZ78 dictionary is initially loaded with all single-coefficient string.

This ensures that we can always find a match: at least a string oflength one.

(3) Now, we do not have to update the dictionary and hence we shall no longer

append a letter after the matching index. The encoder just has to search for the

longest matched prefix from the trained dictionary and output the index found.

In the training stage of the dictionary, we proceed as usual in the original LZ78

algorithm with the DCT coefficients from the training images as input sources. We grow

38

Chapter 3 Fixed length codes

the dictionary by one string at a time. The maximum size of the dictionary is chosen to be

216 (64K), and a 16-bit string represents every dictionary index. When the dictionary is

filled up to 64K entries, we will stop the training process. The choice of a 16-bit index

makes the parsing of the compressed stream much easier since we do not have to deal

with the byte alignment problem. This allows a simpler and faster decoder. Moreover, the

216 entries provide us a sufficient number of string candidates to match the incoming

DCT coefficient stream.

In this experiment, the LZ78 algorithm is preferred to Tunstall code because the

alphabet size ofthe transform coefficients is too large for Tunstall. Moreover, there exists

correlation between the coefficients, they do not imitate a memoryless source. Keeping

the higher order probability statistics of these coefficients means too much computation.

For the LZ77 sliding window technique, the previously processed text becomes the

source of the dictionary. A single bit error will lead to loss of synchronization between

the windows content being kept by the encoder and decoder. This creates extended errors

in the decoded coefficients. Therefore the LZ78 algorithm is chosen.

3.4.2 Results

Every image is DCT transformed and quantized with a quality factor of 50. The

DPCM on the dc coefficients is switched off. This is to avoid the problem of cascaded

errors due to the use of prediction from previously decoded coefficients. The ac

coefficients are run-length coded as usual. The quantized coefficients and the run-length

symbols are then coded using the modified LZ78 algorithm. Four different training

39

Chapter 3 Fixed length codes

images are used to train up the dictionary. These training images include landscapes and

portraits. Table 3-1 records the result bit rates.

Training Images
JPEG baboon barb boat bridge

Couple 29188 34539 35717 36451 34833
Crowd 28810 35655 36279 37001 34751

Girl 22511 27407 28209 28095 27577
Goldhill 27449 32917 33813 34845 32465

Lake 29396 36403 37389 37767 35673
Lena 20921 26197 26063 26691 25775
Man 28102 33583 34577 35239 33281

Peppers 21310 26395 26703 27279 26211
Plane 22602 30469 29569 29769 28767

Tiffany 25642 30087 31371 32037 30483
Woman 14323 20177 18899 19117 18537
Zelda 17262 21341 21405 21959 21063

Total Bytes“287516 355170 359994~366250~"349416
Vs. JPEG +23.5% +25.2% +27.4% +21.5%

Table 3-1 16-bit LZ-78 on DCT coefficients of the test images

The bit rate by the baseline JPEG Huffman system (see section 1.1) is shown also.

Here the same quantization parameters are used as in our modified LZ-78 algorithm.

Hence, we are comparing the efficiency at the stage oflosslessly code the quantized DCT

coefficients. The baseline JPEG and our LZ-78 decoder should give identical decoded

pictures in an error-free condition.

40

Chapter 3 Fixed length codes

m m
baboon barb

• f^m
… � � �^ '*""vwwt'ttW|riiiî |

^ n
k ^ ^ ^ ^ m
M ^ ^ ^ ^ W M S I j i f f i i f p W _ . i m m _ _ , M -

boat bridge

Figure 3-2 The training image set

_ M M
couple crowd 9'^'

灣 M 1 1 1
I III" II lake lena

_ 隱 fe
man peppers plane ^ ^

職 m m
tiffany woman zelda

Figure 3-3 The images coded by the LZ-78

41

Chapter 3 Fixed length codes

3.4.3 Concluding Remarks

The modified LZ-78 algorithm records over 20% bitrate than the baseline JPEG

Huffman encoder. However, it gives us the property of codeword synchronization and

can be used in conjunction with the bi-directional decoding as in the RVLC of MPEG-4.

Comparing LZ78 with the simple reverse Huffman codes to achieve reversibility, we

have improved the coding efficiency. In the construction of a reversible Huffman code,

we take a usual Huffman code and mirror extend those codewords that are not self-

symmetric (i.e. codewords that read the same in both forward and reverse directions).

This usually introduces a redundancy from 50% to 100% [20].

An advantage of the variable-to-fixed length code is that we can further recover

those data between two error points. In contrast to simple RVLC, the decoder still outputs

a series ofwrong words when error occurs. With fixed length codes, the error is confined

within the codeword corrupted so that we can continue the decoding process.

—~~ 1 ；, „.. «1 ,~~—‘~i-.;;./;,/-^-^i -' “ ‘““:
‘ A 广、"V" ‘ ‘ ''么、\ ‘ �V . ,

- ‘'<\；1-̂̂ -̂- - - .v= -.\a- ‘‘ .
Resvnc : 3 ^ ^ x ^ | Resync

•‘ q,f)"^z ‘ ‘ ‘ ^)" , : i ' , ' . ‘ ,
- p'-y-:> -, -' -：'' ,̂ >\ ',| - , - I

Figure 3-4 Recover data between two error points

Compare with the standard Huffman, our encoder requires training overhead and

the trained codebook is large. This imposes a large memory requirement. On the other

hand, the decoder is simpler because itjust has to perform a straightforward table lookup.

In most multimedia applications, a less complex decoder is often preferred.

42

Chapter 3 Fixed length codes

Although there are papers proving that fixed-length codes are better than variable

length codes asymptotically [12], their conditions require a word length and codebook

size that tends to infinity, which is not viable in practical applications. Nevertheless, the

use of fixed-length codes provides good error resilience by avoiding the catastrophic

damage caused by errors, as in the case ofHuffman code.

In the next chapter, we will use a class of self-synchronizable code to achieve

codeword synchronization. This class of self-synchronizable codes is variable in length

and we will show that it further improves the coding efficiency.

43

Chapter 4 Self-Synchronizable code

Chapter 4 Self-Synchronizable codes

4.1 Introduction

In this chapter, we present another solution to the error resiliency problem with the

application of Scholtz's class of self-synchronizable code (or synchronizable code) to the

entropy coding of the DCT coefficients. These codes have the property that

synchronization of variable-length codewords can be quickly recovered after errors. This

property effectively limits error propagation and provides error resiliency.

This class of synchronizable code offers self-synchronizability of the bitstream and

good compression efficiency on the DCT coefficients. It provides good error resiliency

because the synchronization procedure can start anywhere within the bitstream and does

not depend on what comes before. We have implemented an encoder using Scholtz's

synchronizable code and shown that its compression efficiency is about 10% worse than

the baseline JPEG Huffman. Combining with the technique of reversible decoding, we

have demonstrated an improvement in the decoded image quality under various error

conditions.

The organization ofthis chapter is as follows: section 4.2 gives a tutorial on Scholtz

synchronizable code, including its construction and synchronization procedure. Section

44

Chapter 4 Self-Synchronizable code

4.3 gives the simulation results of our Scholtz's encoder on the DCT coefficients and also

the bi-directional decoder we have implemented. Section 4.4 is the concluding remarks.

4.2 Scholtz synchronizable code

4.2.1 Definition

A synchronizable code (SCs) has the property that the punctuation, i.e. the comma

separating the codewords, can always be determined by observing at most 5 neighbouring

code symbols of the position in question. The number s is called the synchronization

delay of the code.

When a transmission error occurs, the decoder can temporarily misjudge the

boundaries between codewords, but the property of self-synchronizability ensures that

codeword synchronization can be recovered within a short time.

4.2.2 Construction procedure

Scholtz showed in his paper in 1966 that one can construct a synchronizable code

from another [13], [14]. Consider a synchronizable code C consists of codewords c"

C2,... ,Cn. A new synchronizable code can be constructed with the following procedure:

45

Chapter 4 Self-Synchronizable code

Suffix Construction Procedure

1. Remove a codeword Cj from C.

2. Create new codewords by appending c； as a suffix, with an arbitrary number oftimes,

to the remaining codewords. Thus the new codewords added are:

Ci Ci Ci Cj Ci Cj Cj Ci Cj

C2Ci C2Ci Ci C2Ci Ci Cj

..• • • • • • •
Ci_i Ci Ci_i Ci Ci Ci_i Ci Cj Cj

Ci+1 Ci Ci+1 Cj Ci Ci+1 Ci Ci Ci

... • • • • • •
CnCi CnCjCi C„CiCiCi

The only restriction is that we do not exceed the maximum desired word length.

The code derived from this procedure is also synchronizable by the following

argument. After observing s letters, we must be able to determine the punctuation for the

original code C at a particular point of the code stream. If the punctuation is a comma, we

must determine whether or not the following word is q from C. This requires an

observation of an additional k； symbols, where k, is the length of c,. Hence the new

synchronization delay s' is given by s' = s + k；.

Let us look at an example to see how the procedure works. We start with the

simplest synchronizable dictionary SC。：

C(o): 1,0

46

Chapter 4 Self-Synchronizable code

Using 0 as the suffix word and setting the maximum word length to be 5, we derive

C«: 1

10

100

1000

10000

Repeat the suffix construction procedure, with 1 as the suffix word this time. We have

C(2): 10

100 101

1000 1001 1011

10000 10001 10011 10111

Further modification using 10 as the suffix word results

C(3): 100 101

1000 1001 1011

10000 10001 10011 10111 10010 10110

The synchronization delay of the code C(”

=length of 0 + length of 1 + length of 10

=4

Let us call the codewords 0, 1, 10 the atoms of C(3) since every word in C(3) is a

(repeated) concatenation of these atoms. The final synchronizable code can be fully

specified by the statement ofthe initial dictionary (C(。))，the atoms chosen and their order,

and the maximum allowed word length.

47

Chapter 4 Self-Synchronizable code

4.2.3 Synchronizer

Following the above example, we shall demonstrate how synchronization can be

achieved for the code C(3). Similar to the construction procedure, the synchronization

process for C(�）relies on the synchronization capability of the base codes from which it is

derived.

As a test sequence, let us use

...00,100,101,10111,10010,10...

The first synchronizer for C(°) is trivial, we just have to insert a comma between

every letter.

The next operation is to synchronize the sequence for the dictionary C(̂). This

involves erasing commas preceding the codeword suffix 0 which is a member from C(o).

No word in C(” (and hence no words in C(2) and C(�)) begin with a 0.

Next, we have to erase commas preceding l,s, but only when 1 appears as a

complete word. The synchronization of the original sequence is finally completed by

erasing the comma preceding the 10 word in C(2).

Notice that the erasure of a comma only depends on what follows the comma, this

whole procedure does not depend on where one starts the synchronization process in a

stream of code symbols. We have put a '?' at the punctuation position of the stream

because the synchronizer must observe more symbols to make a decision. To be exact,

we have to inspect 4 letters to decide the punctuation at the position of '?' for the code

C(3).

48

Chapter 4 Self-Synchronizable code

The codes derived from the Suffix Construction Procedure are suffix codes: no

codeword being a suffix of another codeword. Of course one can construct a self-

synchronizable prefix code by the Prefix Construction Procedure, i.e. the atoms are being

added to the head of the other codewords in each derivation. The synchronizer for this

prefix code shall be changed to remove the comma following the atoms in each step of

synchronization.

49

Chapter 4 Self-Synchronizable code

00100101101111001010 ’0，0’1，0’0’1，0’1，1，0’1，1’1，1，0’0，1，0’1，0，
• insert commas —

,0,0,1,0,0,1,0,1,1,0,1,1,1,1,0,0,1,0,1,0,^ remove the first 00，100’10’1，10，1’1，1’100,10，10?

comma in ,0,

00,100,10,1,10,1,1,1,100,10,10? remove the first 00,100,101,10111,100,10,10?
comma in ,1，

00,100,101,10111,100,10,10? remove the first 00，100,101,10111,10010?10?

comma in ,10,

Figure 4-1 The synchronizer for the self-synchronizable code C(;)

50

Chapter 4 Self-Synchronizable code

4.2.4 Effects of errors

In case of errors, it will corrupt the codeword that contains the erroneous bit and its

immediate neighbour only. Using the previous example, suppose the sequence is

corrupted from

...00100101101111001010... to

...00100101111111001010...

Running the synchronization procedure as described before, the parsing result is

changed from:

...00,100,101,10111,10010710?... to

...00,100,10111111,10010710?...

The corrupted bit is highlighted. We see that two of the codewords are merged

together but the other codewords remain intact. The synchronization points (commas) are

inserted correctly.

When there are channel erasures, Scholtz's synchronizable code is capable of

recovering synchronization very quickly too. This is because the synchronization process

can start from anywhere within the bitstream.

51

Chapter 4 Self-Synchronizable code

4.3 Simulation

We have adapted the Scholtz algorithm to code the DCT coefficients from a

collection of test files. The compressed stream is subjected to various levels of

transmission errors and we have used both forward decoding alone and bi-directional

decoding to reconstruct the pictures. The decoded pictures are visually examined and the

PSNR are calculated. It is found that our algorithm performs only slightly worse than

Redmill and Kingsbury [17] in terms of bit-rates and visual quality, but are competitive

on other features such as buffering and decoding complexity.

4.3.1 Experiment Setup

We construct a codebook consists of a set of variable length codewords by the procedure

reviewed in the previous section. The construction parameters are chosen as follows:

Initial dictionary: {1,0 }

Atoms chosen: {0,1,1000}

Maximum code length: 12

To assign these codewords to the DCT coefficients, we obey the basic principle of

data compression, i.e. use shorter codewords for more frequent symbols and longer

codewords for less frequent symbols. For most images, there are more coefficients of

smaller magnitudes after quantization. Therefore the shorter codewords are assigned to

them first. For the zero runlengths, shorter runs of zeros are more frequent except for the

EOB symbol. Empirical probabilities of the coefficients are collected and we assign

shorter codewords to the more probable codewords in order. We have separate codebook

52

Chapter 4 Self-Synchronizable code

for the dc and ac coefficients because they have different range and exhibit different

distribution. This is also true in the baseline JPEG Huffman model.

The Scholtz algorithm comes with some compression inefficiency in order to

provide synchronizability. One is the lack of total flexibility to change the length of the

codewords. Another is that it is not a flill-tree code, i.e. some nodes of the coding tree

have only one child. Therefore we use the following adaptation to increase the

compression efficiency. We code every non-zero coefficient (both dc and ac) into two

numbers. The first number is the quotient of the coefficient when divided by 8; the

second number is the absolute-valued remainder when the quotient is non-zero. The sign

ofthe remainder is dropped because the sign of the coefficients can be inferred from the

quotient.

The final codebook to be used is:

53

,....
..-»

..,.

r"
"

""
•
•
""
•
'"
''
•
•
'"
’
•
•
•
'’

""
’
'

"""
""1

"""
"""

 ”
\

\

,从
,„
,,
„„
,„̂
,,̂
„„
„,
"„
,„
„„
™«̂̂
卿
“
柳
洲
”
“
“
“
仲
"…
'"
"'
""
'"
'…
'"
'"
，
""
"'
,"
""
""
"'
—
"“̂
.,
",
•
•
"”
•
'"
•
•
.̂
“
“
""
""
""
""
'"
'"

ico
de

bo
ok

i
—

卞
_

U
.—

—

r
—

—

T
 ”

~"
'

y5
S5

5r:
55

5S
;55

;SK
5Ŝ

Ĵ
-̂.A

—
'«̂

—
"".

."'—
-'�

'—
.""

"̂
"̂

"""
�

.

m
 f

^
\

：

…

一
一
"“
一
“
""""""…
一
“
‘
“
…
—
“
—
“
‘
“
—
“
‘
“
‘
“
“
‘
“
“
“
“
“
州

i
DC

1

„

 ^
 ^

 .
_

AC

_•
„_
„

—

—

..".
�

‘

—

"
T

t

^
M

t
i

S
Z

n
i

^
[

:
!

J
f

f
o

l
C

0
d

�
r

L
J

£
r

^
—

^
^

�
^

^
~

jg
g

g
g

g
^

T
lj

iZ
3

[
d

M
n

n
iE

Z
Z

I
E

Z
：

Î
••̂

^^
?^

^^
^^

^^
|̂̂^

^J
^―

卜
+寸

1
-̂—

—
ns

[—

lR
2l

"^
一

T
oo

5o
oT

T
i^

r^

38

1
ig

or
ni

im
.

11
—

—

I^
^^

^•
^1

^~
~^

~^
^—

~^
^^

^^
““

5
^

—
—

j
^

—
^

^
^

^
—

T
—

^
^

—
i

s
s

T
s

s
r

i
Z

X
J

^
^

^
j

j
m

m
m

J
Z

L
j

L
L

—

U
^

^"
^^

^"
“^

r-
^^

―
“L

-z
sr

—
“•

W
ol

—
;
-
了

一
7^

—
""

im
om

ffT

::Z
Zi

r^
...

...
1.

...
.1
匪
.哩

1醒

1̂

i..—

....1

帶

^

f

—
.T

oT
l—

...
—

.4
—

.—
..:

8―
―

1M
1T

00
0.

..：
9

—
Z

R
4Q

..
..

..
..

.J
JM

ll
li

m
eJ

—
11

—

h—
f•

..
•“

—
1
黑

一
L

—
I

i2

—
 —

10
00

0
5

—
―

丽
.—

]
涵

1
1

1
_
^
—

胆
」

麗
迎

1
^

^
•

—
“

^
H

"
—

—

•
_

^
5

_
_

^
^

j—
^

^
^

^
^

―
^

^
―

^
I

“
―

f
-

"
^

―
丽

'5

“
―

‘―
“

g
—

—
T

0
5

T
T

l0
0

0
9

Z

R
42

1

0
”0

0
0
.
画

H

—

一

h
-4

^
^

-l
^

^
•—

—
|4

.i
—

—
^

ig
5

T
l^

-r
^

':
—

i—
rw

^
"

^
"

"
^

^
I^

l^
iU

"
JS

"
5

^
^

i^
~

r"
^

^
"

"
^

"
^

“
^

^

^
^

4
—

S
」

一
f"

^
—

f—
—

i^
—

fT
ti

T
w

i^
T

9
i^

4
1
0
1

 ””
i.i.

.i.i
JZ

Z3
iZ

Z]

h^
"^

^"
^"

"^
^"

^"
^^

^T
5S

^-
t̂-

"“
“6

^™
"^

^^
rz

R4
"—

rd
oo

oo

^
“6

^

7
^

^
w

n
T

T
T

^
^

^
"

^
^

^
^

9
^

^
^

^
T

M
O

ii
lS

E
Z

m
—

—

h^
^^

^^
"―

“^
^^

�
ri

—
~

^^^
^^

~
g-

涵
5

^™
—

~
r-

^^
"-

io

j^
5

5
5

5
5

5
T

""
^

r^
R

4
s

iio
og

gg
gg

gg
U

^^
^^

Z3
ZZ

Zl

1"
"""

"""
"Ŷ

"̂
T̂m

"̂̂—
“̂

"̂̂"
"“̂

6̂

z^
""

^'
^―

ro
oo

T
T

^"
^^

""
"^

"^
^^

^
—

ra
6o

oo
p

1
0

ZR

47

1
1
應

醒
上

l̂

-

“̂

nn
ii

i
6

“
7

10

01
11

6

-1
0

“
 "l

O
O

O
O

O
O

bl
t
t

1
0

ZR

48

^
11

00
00

00
01

11
,

1?
—

—
—

—
•
\-
，

•
—
—

而
"
^
『

—
4
—
—
§

^r

""
r"

""
lo

io
oo

'
'—

:6
:�

:z
^

7
'"

''
S

M
i[

L

j!
—

—

^—
J2

50
S5

Q
9M

a:
_^

^
1̂̂…̂

^̂̂>̂
—

—
—

^^
""

"^
^^

""
—

"f
g^

""
"—

r—
飞

 f
^l

'—
""

""
''"

To
Tl

Tj
 —

 "t
 —

 "6
哪

—
—

11
:““

，
10

00
00

]¾
¾

^
训

 l
f

„.
ZR

50

10
00

00
00

11
11

1
2

…

―̂
―̂̂

—̂̂
^̂
丽̂
面
『
1―̂

1̂
—̂̂
^̂
〜̂
丽

『

画
^
~
[
丁

—
工

:
—

—
画

—
个

1丽
丽

11
""

|—
 J

L
L

jj
^

5
L

_
1Q

9Q
09

0_
50

M
L

-̂ ̂
J?

^

—g
—-

^^
"—

75
55

55
1^

"“
“—

“^
7"

—"
""

"“
^i

^ —
―

―
T

o
o

o
o

^
J

3
T

Z
"^

 Z
3

L
^—

J^
Q

5
ilQ

9
5

3
L

JL
—

l_
^^

^_
M

?
J

io
oo

oo
oi

iii
i|

1
2

"""
""•

"“̂
9"

""̂
'““̂

"̂T
oo

oo
Tl

7

im
^

―
^

T
l^

l1
"Z

7
Z

m
i^

^
J

_
0

9
Q

Q
J

ii
iE

lL
jL

J
|l

-Z
^

JiQ
59

50
U1

5̂
-̂_

_̂
̂

_J
A_

__
__̂

_

—
9

fooo
rR"
"""
"""̂
“
™—
"""
"7

—̂
“̂

1
lo

oo
T

T
T

T
—“̂

7 ~—
—‘̂
 ―
―

T2̂
""̂
"loo

m
 1

10
00

1
0

 f
j

^
A

11
 oo

oo
oiT

TT
TT

T
1
2

t..—
 ..

{o
 •

•.
—

..
丽

丽
..

..
..

.7
..

.
.....

 Z
R9

..
10

0T
00

0
..
.

...7
....

....
....

..Z
R3

0
1.
剛
.可

泄

里

ZR

K

^M
^^

_
iM

l
1
?

Q

h
""

7
o

"—
—

而
而

一
T

—
厂

••
..

,.
二

:
[
:

™
M

L
']

I

:
]M

O
jj^

S
L^

[_
^^

^^
^^

li
r

 ^
!5

6
i6

oo
oi

 1
11

11
1

Y
l—

—
—
召

r̂
"Y

i"―
"̂—

“̂
io

iio
oo

•"—
""“̂

"""
""̂

1
^

—
"^

^
c

x
]^

n
^

:1
::

rz
z

z
n

]^
M

rt
M

n
in

ir
T

1
0

zR

57

io
oo

iiT
TT

oo
o',

1
2

—

^

I""
"""

"：
-̂"̂

^̂
―

“ib
TiT

iT

^
—

"“
^

r"
'Z

E
Z

Z
H

r"
3

M
n

r=
Z

Z
^

Z
Z

r3
E

T
rM

M
i^

^
Z

JL
^

丄

zR
58̂

10

00
11

11
11

11

1
2

:
I""

•""
"""̂

2"
"""

"""̂
"̂n

m
oo

o6
o"

'T"
—“̂

8
i"

"^
fi

—

—
3

i^
p

5
z

r—
c

7
:j

i^
M

r—
3

n
n

in
M

X
�

L
^

^
™

i^
§

i~
~

ii
^

9
J

i9
^

^
—

—
J

i^
—

^

1 "
"""

"""
"•:T

2̂
"̂"̂

T00
000

m"
"""

"""
"̂

îEzt
ziz:[jp̂

îr̂
""i“

_zcz
 =

i^
Z3

M
nn

rn

1 •

"̂"̂
so

110
011

111
100

0
12

^

__

__
__

__
̂

__
„̂^̂

^̂^̂
^̂^̂

^̂^̂
^̂^̂

^̂^̂
_̂j__̂

__̂
^̂^̂

^̂^̂
^̂_̂

_̂K̂
^

—
T

E
r

i^
i:

 ―
―

f
:

—
i^

~
"l

^
i^

fa
|^

^
T

""
"^

r—

zR
6i

pf

oo
Y

^i
iT

TT
T

^
12
 _

 ^

^

_̂
__

__
__̂

^̂
广
厂
了
涵
讯
—
_̂

^™
-̂^̂

召
•̂̂•̂

^̂
^̂

—
^̂

Ĵ^
―

1.g
gĝ

^̂
_̂

-__̂
ĝ

-r"
"̂

“̂̂
:f̂

fo

oo
pO

p
1
1
 i

 Z
R6

2
>

_
迎

_
1[

..…
.一

^

‘
“

1
4

1
0

0
0

1
1

”
8

Z

R
1

3

10
00

11
11

8

Z

R
34

10

00
00

00
01

1
1

1
—

1

I
l

l
l

U
i

5
0

L
—

—
J

?
—

—
—

&

r]
T

'—
 ~

To
oi

lo
oo

]''

f"
'7

i"
""

zR
i4

'i

m
^

^
[

Q

:
i
i

16
jf

id
m

dj
nT

 "
 J

f
^^

^

JQ

li
il

n^
U

i
—

J^

g

t
Z

K
i

p
M

E
Z

Z
X

Z
t

S
:

=
!

_
f

:
=

:
|

Z
r

Z
l

p
:

‘
::

jg
||

^
::

^
:5

;^
g

_
a

te
d

bv
 S

ch
ot

tz^
cu

rsi
ve

 m
eth

od
, k

N

I

-1
5

T
10

11
10

00

—
 8

ZR

16

igi
um

t
 8

—

J5

^
^ 1

QS
QQ

gQiy
î

jj

^

--
4M

ax
co

de
le

ng
th

 =
 1

2
—

Ŝ

I
W

10

11
11

11

—
_A

—
Jl

^Z
Bl

L
10

11
11

11

r

8

ZR

36

10
00

00
11

00
0_

_
J1

_ 一

st

ar
t:

{0
.1

)
—

、
^

i
-

1
6

n
O

O
O

O
O

O
D

O
"

"
^

7
Y

_
'

i
~

~
^

g
g

g
g

^
g

^
~

j
〒
一

"~
^—

""
~~

~-
Ts

""
—

^^
^^

g
g
g
"j

:j
Y

:p
p
p
|
-
-

 T
T

At
om

s:
{

'
o

.
1

.
1

0
0

0
}

§

1
]

r

^
^

j
[

T
^

^
_

g
g

g
^

o
o

i
—

_
^
—

T
—

^
^
—

_
„
;j

^
^
_
_
^
_
_
;^

_
g

g
^

^

^
“

―
1

；

1

‘

g
-

Chapter 4 Self-Synchronizable code

The coding order of DCT coefficients is:

{DC coefficients of all blocks} followed by

{AC coefficients ofblock 1} followed by

{AC coefficients ofblock 2} followed by

{AC coefficients ofblock 3} ... etc.

We output all dc coefficients first because we do not want the decoder to switch

reading the dc and ac coding tables back and forth. Otherwise when there are errors, the

decoder may read the wrong tables intermittently.

55

Chapter 4 Self-Synchronizable code

4.3.2 Results

Q = 50 Q = 75
Images Scholtz JPG Scholtz JPG
Baboon 50511 45753 76298 68933
Barb 32805 29648 47316 43393
Boat 27897 24367 40769 36272
Bridge 46202 41317 69811 62923
Couple 32526 29188 48432 43840
Crowd 32980 28810 46740 41862
Girl 25595 22511 37129 33310
Goldhill 31525 27449 47228 42004
Lake 33591 29396 50286 44917
Lena 23925 20921 36214 32568
Man 31727 28102 47427 42908
Peppers 24441 21310 37588 33722
Plane 26303 22602 38776 33826
Tiffany 28734 25642 44638 40879
Woman 17606 14323 26104 22235
Zelda 20170 17262 30329 27008
total bytes 486538 428601 725085 6 5 0 6 0 0 “
Vsjpeg +13.52% - +11.45% -

Table 4-1 Image Coding Using Scholtz's code

Table 4-1 records the bit rate of using the Scholtz code on the DCT coefficients.

The bit rate ofthe baseline JPEG Huffman model is also included for comparison. As in

last chapter of the application of LZ78, both the JPEG and our Scholtz system are

losslessly compressing the identical set of quantized DCT coefficients.

56

Chapter 4 Self-Synchronizable code

In terms of coding efficiency we have improved over the modified LZ78. The extra

bytes, compared with JPEG, dropped from over 20% to 13% at a quality factor of 50. At

a quality factor of 75, the extra bytes are about 11%. This coding gain comes from the

use of variable word length. The DCT coefficient exhibit highly skewed distributions

with most coefficients are of small magnitudes. Thus, the shorter codewords (mostly with

length less than 5) ofthe synchronizable code already contribute to the most share ofthe

bit count. This also explains the choice of the atoms in the construction of our

synchronizable code. In every suffix construction procedure, if we remove a shorter word

we can add more new codewords to our dictionary (by appending more repetitions). Thus,

we remove 0 and 1 in the first two steps. After that we want to keep the shorter

codewords since it will contribute most to the bit count, therefore we choose to remove a

codeword of length 4 rather than length 2 or 3. On the other hand, if we remove a

codeword oflength 5, the result dictionary size will not be large enough.

Next we will demonstrate the use of self-synchronizable codes in conjunction with

the bi-directional decoding technique as introduced in the RVLC (reversible variable

length code). Conditions with random channel erasures and errors are both simulated.

Erasures are also important because when there are uncorrectable error-patterns, a block

channel decoder (say a RS decoder) may output erasures. While a convolution decoder

(which finds the most probable code path by the Viterbi algorithm) always outputs a

codeword, which may contain random errors. All the images will be subjected directly to

the applied errors and no channel coding is used.

57

Chapter 4 Self-Synchronizable code

Images Fwd only Bi-directional
Baboon 22.826736 25.551426

Barb 24.803165 28.721564
Boat 26.218367 31.098192

Bridge 23.356335 26.073067
Couple 25.944527 28.955846
Crowd 25.290572 29.646251

Girl 28.846805 32.568283
Goldhill 27.683424 31.839993

Lake 24.283356 28.347524
Lena 27.695152 33.145045
Man 27.068229 30.542521

Peppers 26.814051 31.111188
Plane 24.807193 29.968025

Tiffany 27.226883 29.758860
Woman 29.483727 35.763666
Zelda 29.690868 33.472342

(a)

Images Fwd only Bi-directional
Baboon 18.536957 22.843518~

Barb 20.545385 24.312417
Boat 21.911535 26.629913

Bridge 19.071453 21.951153
Couple 22.377877 26.119982
Crowd 20.108135 22.415568

Girl 23.549027 26.515470
Goldhill 21.031646 24.393998

Lake 20.957058 22.653602
Lena 22.758831 25.450534
Man 21.95351 25.414182

Peppers 23.153029 26.163731
Plane 22.905153 25.026695

Tiffany 21.228916 24.820463
Woman 24.207779 26.010601
Zelda 23.780936 25.624487

(b)

Table 4-2 Forward decoding vs Bi-directional decoding of images coded at Q=50
PSNR(dB) at (a) 0.1% erasures (b) 0.1% errors

58

Chapter 4 Self-Synchronizable code

Table 4-2 gives the peak signal-to-noise ratio (PSNR) of the decoded images at

0.1 % random erasures and 0.1 % random errors respectively. With bi-directional decoding,

we can recover part ofthose data that would be discarded when only forward decoding is

used. Hence, we see that there is an improvement in the PSNR for all the test images.

Figure 4-3 to figure 4-11 shows some decoded images ofLena and Boat at different

error rates for visual comparisons. The recovery of data brought by the use of bi-

directional decoding is visualized as the removal of those blurred blocks in the case of

erasures or checkers-like artifacts in case of errors.

From the PSNR vs BER curves, we see that there is a consistent improvement in

the PSNR over a wide range of error rates for both images Lena and Boat. The power of

bi-directionally decoding is more significant, in terms of both the PSNR number and

perceptual quality, at error rate not less than 0.1%. The comparative advantage of bi-

directional decoding diminishes as the error rate increases. For instance, the image Boat

at a bit error rate of 0.1%, has a gain of about 5dB from bi-directional decoding. While

this gain drops to 2dB when the BER rises to 1%. This is because when the error rate is

too high (-1%), the errors will appear near the ends of the synchronization points more

probably. This limits the amount of data recovered by the bi-directional decoding. Yet, at

such high error rate, the decoded picture is already at rather low quality (the Boat is at a

PSNR of 14dB to 16dB), an improvement by 2dB does not help much perceptually in this

case.

59

Chapter 4 Self-Synchronizable code

3 ^ 1 1 1—I—I—I—I~I”I I I I ‘ ‘ I I I
^ "i"- i g ^ i ； ： ； ； i A A FonMard decodng cnly

： l ^ " ^ ^ K J 1 1 ！ 1 1 • • Bi-drectional decodng
54 !•——i-----i--^^<;jJ-il i i ~ i ~ " '-

I 1 I I I 1 ^ ^ I I I I 1 I I I

^ - … - … ^ ^ ^ 谓 丨 , … - ^ ； ^ - 卜 十 寸 十 丨 十 卜

塞28 j - — — i - - l - ^ - - ^ - 4 - N ^ - … … - - - ; X ; ^ k 4 - - - : - - - M - 4 4 -

^ 4 … 一 H 4 H _ W F M ^ _ + H f

1……――丨___—I――riiiiiT_••___-•�-___

“ - - - - - - - - - - (- - - - - - r - - t i i - - n i t - … … 1 … ― t - - T - i - - f r f t j
, I I I I I I 1 I I • » ‘ ‘ ‘ • • , I I I I I \ I I » ‘ • ‘ ‘ _ _ ‘

2ol 1 1 — — i ~丨 ‘ ‘ ‘ ‘丨 ‘ ‘ ‘
10"' 10-3 10

Bit Erasure Rate

Figure 4-2 PSNR at different Bit Erasure Rate ofLena coded at Q=50 (0.73 bpp)

,^^m :m
i^-%wm m

Figure 4-3 Error free Lena at Q=50

60

Chapter 4 Self-Synchronizable code

醒隱
(a) (b)

_ •
(c) (d)

Figure 4-4 Lena

With 0.1% erasures (a) forward decoding only (b) bi-directional decoding

With 0.3% erasures (c) forward decoding only (d) bi-directional decoding

61

Chapter 4 Self-Synchronizable code

36 1 1 1 1 1 1~~I~r~i I I ； ； I I "1 ~~|~
； 1 I 1 1 1 ； ； ^ A Forward decoding only

[3^ I 1 ； j I I I ; • • Bi-directional decoding __
0̂ __ - "^^"^^^ ^̂""̂L̂_ “ |" _ _ _ “ “ _ |~ “ 一 _ "| _ _ _ “ “ _ "| “ - 7 I I _

"T̂^ I I I , • « , ̂ ； ； ' ' ! ! ~~,

i \^^4义 i i i i ：： i 丨 丨 丨 丨 丨 i i
32 - - — L ; i - - ^ ^ - r f i t ;-----r---:---r-i--!--:--

�I 丨 丨 丨 丨 丨 丫 丨 坤 丨 丨 丨 丨 ： i i i
30 ---rr::^:rU^---i——!---f-- |--i-ffi^ f L----L---|---|--f-|--|-

r ^ i V i i 丨 丨 丨 丨 丨 \ 丨 丨 丨 丨 丨 丨 i i

1 1 — 卞 1 7 胃 — 、 1 : : 1 : : [[: [:] : 1
p 6 — : … … : - … - [_ T r n _ f K ; 丨 \ 丨 丨 丨 n 丨 丨

24 - i- i ;---^--!--T-n-n-7 ---Xrl ——-\'r r---!---r-n--I--|--
: : i : 丨 M : : > \ N J i : : i :

- - … . _ t - _ - r _ r T T m r _ — — r " K ^ t J - r

20 卜_____卜__十—^十十^” r " " " " t " t " t " T l i ^ i

181 ： 1 ！~"i~~‘ ‘ ‘ ‘‘ i ‘ ‘ ‘ "~ ‘~~‘ ‘ ‘ ‘
10_4 10-3 10-2

Bit Erasure Rate

Figure 4-5 PSNR at different Bit Erasure Rate ofBoat coded at Q=50 (0.85 bpp)

^ ^ ^ ^ ^ ^ ^ M m
^ m ^ f t ^ ^ i S 3 f f l
^ ^ ^ ^ ^ ^ ^ ^ l g l l ^ m l ^ | y l l l

[: : - , • •

Figure 4-6 Error free Boat at Q=50

62

Chapter 4 Self-Synchronizable code

"、、、、、、’，、，.,.--ŵ ^̂ ^ h , : X : ' ; : ? (: ^ : ^ ^ P ^ ^ ^ P

MM
_ i f l W ; : : ‘ _ ^ H

(a) (b)

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ m
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ m ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ m .

“ . ^ ' . . ¾ : . ' 1 : ' ^ ¾

钃 _
,—、知 ^ ： _ T P i ^ # < ; ^ ^ . , t # � 1 - ^ ^
—î £,； >̂?.v-- , . % 、，、、‘,:』 一.-v̂ -c . :-.-. "'':::^^__<iS

(c) (d)

Figure 4-7 Boat

With 0.1% erasures (a) forward decoding only (b) bi-directional decoding

With 0.3% erasures (c) forward decoding only (d) bi-directional decoding
63

Chapter 4 Self-Synchronizable code

34 1 1 1 1 — I — I — I ” 1 ~ I I I I I ' I j 1 ~~

[� [j I I ； I I I A A Forward decoding only
32 - - ^ x - i- ； ;_ - . j - - ^ -_ { -^ -^ - • • Bi-directional decoding --

30 !rr：>̂ ^̂ -̂!：!>̂ ---- + ---.-!--->!-- — - ! - — — -] f [__-—--十-十-—十十_

28-…^^^^i;yii l………I……hH-Hif
26 ！……;^>4__j.":^j^ f i-----r---;---:--rrr-

I I I i X u i ’ \ I i ： ： I ： 11
g 24 ——r---"i----i--i--r>^---�i—-:---r-rniT
-22 ―…--.：……i__4_-U--U3^-4\4—i--i4H--H--

i :丨丨丨丨丨丨丨 \ Ki丨丨丨丨丨
20 'r 1 l---y-^--T-yy^ - - " - - ^ : ^ ^ ' ：̂；̂'!'""："̂'：'"："

18 1- 1 1- - -] - - — -1 - — —： : f^<j;^;- - -— :|̂ --；--

16 L 1 :...j-.j.-i-j-j-j - I ———J---"ri^^rl^^

1 4 1 1 ！——！~~‘~‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘~~‘~‘‘‘平

10—4 10"' 10"
Bit E � � o � R a t e

Figure 4-8 PSNR at different Bit Error Rate ofLena coded at Q=50 (0.73 bpp)

64

Chapter 4 Self-Synchronizable code

_ _

! I H ^ f e i ^ ^l<m ll^^M.M： • •
(a) (b)

_ _

(c) (d)

Figure 4-9 Lena

With 0.1% errors (a) forward decoding only (b) bi-directional decoding

With 0.3% errors (c) forward decoding only (d) bi-directional decoding

65

Chapter 4 Self-Synchronizable code

3 4 g ^ 1 1 1 1 — I — I ~ I ~ ~ I I I . • , • ‘ ‘ ‘

^ \ ！ 1 I I I ； I ； A A Fonward decoding only
32 . _ . _ ^ . ^ - . ' r - i ; . _ . j . . ^ _ - i - ^ - ^ - • • Bi-directional decoding -

X ！ ！ i ： ： ‘： i i ： ： ： ： i ： i ：
3 0 r - - ^ - ! … … l - - - ^ - - - . - n - . - . y 「-___「— 丁-丁-_^-丁丁_

i 4丄丨丨丨丨丨丨 i 丨 丨 丨 丨 i i i
2 8 Z \ — - — - - - i — - t - 1 ^ g - t t i …̂…厂—厂-「--「丁丁-厂

26 4 - J 丄」 _丄 ! 1] 5 \ _ _ _ _ —-丄—--丄-丄丄丄」丄:__

• 2 ' p " ^ _ n i i M ' ^ \ 丨 丨 丨 丨 丨 丨 ： I
Ql 24 ；-——i--->k4--iH-^n ^ - r ; - - : " 1 " 1 " ' 1 ' t t "
I “； i i I > N . : ： \ ： ： i ： i i ：
^ 22 1-------;--t"i""i""i ' i 'V^-------T-N^--r--r-:-;--y-:--:--

2。 -卜—十—|—;—十斤 [- - \；： + " 4」 -十 :十卜

18 i- 1……:---;-—--:-——] ;.-.:>^^-|----;-^^--|--:-

16 [……i-…-L-‘‘“-U; 1……;----p44-;4̂ N]
I I I i i :M| i i i i !>U.

14 1 ‘ • . 1 .__I_i_j • 1 ‘ ‘——‘~‘~~‘~̂ ^
10.4 10—3 10"'

Bit E � � o � R a t e

Figure 4-10 PSNR at different Bit Error Rate of Boat coded at Q=50 (0.85 bpp)

66

Chapter 4 Self-Synchronizable code

热、.:.:.，、；:.:Y w m m ^ I ,mmm^^^
、 : > 〉 : , • , _ ’ ， : . . : • • . : . : . f : ' : : _ i ^ i i

SM^^m
_ ^ ^ ^ ^ K ^ 1 ^i^mHPBB
……怨、;-、(-：：,“ ：：•‘::/?- :‘.,; — '"、：.^^c=V“+4� ' :“:':^
“• '5;T5̂ "‘4 . ‘ :":—':r jJ ,、”：〜‘-‘'、、:〜二一 ’…> ‘二：二“̂】
、 《 ., 、•̂ ‘ -'ii 二 A «hfc *• ̂v>w '-

(a) (b)

_ 画
Wm^^^K / r • . . " • � ^ ' . - .

(c) (d)

Figure 4-11 Boat

With 0.1% errors (a) forward decoding only (b) bi-directional decoding

With 0.3% errors (c) forward decoding only (d) bi-directional decoding

67

Chapter 4 Self-Synchronizable code

4.4 Concluding Remarks

Compare with the EREC algorithm proposed by Redmill and Kingsbury [17], our

algorithms introduce about 10% more bit rates. However, our algorithms do not have to

buffer the whole set of DCT coefficients and has simpler decoding complexities and

operate faster.

In terms of codeword synchronizability, the self-synchronizable code offers similar

performance. We still can decode bi-directionally or recover those data between two error

points. With respect to limitation of error propagation, the self-synchronizable code is

less stringent than fixed length codes. An error may affect the next codeword also.

However, the self-synchronizable code has an extra advantage of being not afraid of the

insertion or deletion errors. This is because the synchronization procedure can start

anywhere we like and does not depend on what comes before. In some channels, like CD-

ROM, which employs some form of run-length coding, bit insertions and deletions are

possible. The self-synchronizable codes will provide protection against these kinds of

errors.

68

Chapter 5 Conclusions

Chapter 5 Conclusions

In this thesis, we described the error resilience tools provided in MPEG-4. These

tools enable the robust transmission of video in error-prone environments. These

techniques include variable macroblock slices, RVLC, partitioning of texture and motion

data etc. These error resilient tools are mainly applied to the data layer while we assume

that FEC codes are already provided in the system layer. They all aim to mitigate the

effect ofresidual errors (after channel decoding) on the decoded video frames.

Compressed data is vulnerable to errors because of the loss of codeword

synchronization when error occurs. We have studied two methods to deal with this

problem. We first try the LZ78 code, which is a variable-to-fixed length code.

Next, we use Scholtz's class of self-synchronizable code. The major advantage is

we can start the synchronization procedure from anywhere within the bitstream. Although

it is inflexible to change Scholtz's code length distribution, it does match the DCT

coefficient distribution satisfactorily. In our experiment, we only lag the baseline

Huffman JPEG (in terms of bitrate) by 13.5% at a quality factor of 50 and 11.5% at 75

respectively.

Together with the technique ofbi-directional decoding, we are able to recover more

data in case of errors. This is beneficial to other error concealment methods that further

increase the effective quality.

69

References

References

[1] Weidong Kou, “Digital Image Compression Algorithms and Standards, ” Kluwer

Academic Publishers.

[2] Hseuh-Ming Hang, John W. Woods, "Handbook of visual communications，”

Academic Press.

[3] Theodore S. Rappaport, “Wireless Communications, Principle & Practice, ” Prentice

HalL

[4] William B. Penneaker, Joan L. Mitchell, “JPEG Still Image Data Compression

Standard, “ VanNostrand Reinhold 1993.
[5] Thomas Sikora, "More on MPEG-1 and -2," available online at

http://wwwam.HHLDE/mpeg-video/papers/sikora/mpegl_2/mpegl_2.htm

[6] Thomas Sikora, “MPEG-4 Overview, “ available online at

http://wwwam.HHI.DE/mpeg-video/standards/mpeg-4.htm

[7] Yih-Fang Huang, Che-Ho Wei, "Circuits and Systems in the Information Age,，，

Short Courses at the 1997 IEEE International Symposium on Circuits and Systems.

[8] Wen and J. Villasenor, “A Class of Reversible Variable Length Codes for Robust

Image and Video Coding, “ Proceedings of the IEEE International Conf. on Image

Proc., Santa Barbara, CA, Vol 2, pp 65-68, Oct 1997.

[9] B. P. Tunstall, "Synthesis of noiseless compression codes, “ Ph.D. dissertation,

Georgia Inst. TechnoL, Atlanta, GA, 1967.

70

http://wwwam.HHLDE/mpeg-video/papers/sikora/mpegl_2/mpegl_2.htm
http://wwwam.HHI.DE/mpeg-video/standards/mpeg-4.htm

References

[10]J. Ziv and A. Lempel, "A universal algorithm for data compression, ” IEEE Trans.

Inform. Theory, vol. IT-23, pp337-343, 1977.

[11]J. Ziv and A. Lempel, “Compression of individual sequences via variable-rate

coding, “ IEEE Trans. Inform. Theory, vol. IT-24, pp530-536, 1978.

[12] Serap A. Savari, Robert G. Gallager, “Generalized Tunstall Codesfor Sources with

Memory, “ IEEE Trans. Information Theory, vol. 43, No. 2, March 1997.

[13]A. Scholtz, "Codes with synchronization Capability, “ IEEE Transactions on

Information Theory, vol. IT-12, No. 2, pp. 135-142, April 1966.

[14]Robert A. Scholtz, “Maximal and Variable Word-Length Comma-Free Codes, “ I

IEEE Transactions on Information Theory, vol. IT-15, No. 2, pp. 300-306, March

1969.

[15]Joan L. Mitchell, William B. Pennebaker, Chad E. Fogg and Didier J. LeGall,

"MPEG Video Compression Standard, ” Chapman and Hall.

[16]Barry G. Haskell, Atul Puri and AmnN. Netravali, "Digital Video: An Introduction

to MPEG-2, “ Chapman and Hall.

[17]David W. Redmill and Nick G. Kingsbury, “The EREC: An Error-Resilient

Technique for Coding Variable-Length Blocks of Data,，，IEEE Trans. On Image

Processing, vol. 5, No. 4, April 1996.

[18]Raj Talluri, "Error-Resilient Video Coding in the ISO MPEG-4 Standard, IEEE

Communications Magazine, June 1998.

[19]Independent JPEG Group (ILG), Portable C code for JPEG Compression, available

atftp://ftp.im.net/grapiiics/jpeg/ipegsrc.v6b.tar.gz

[20] Dr. Wei-ping Li, private communications

71

ftp://ftp.im.net/grapiiics/jpeg/ipegsrc.v6b.tar.gz

•••••

.•
-
 J:

:..�

...;
-.:

••
):1

:v

_
-

.
-
-.

•

.

…
；

‘‘

.

•

.
 .
.:
 ̂
5

•

,

--.-约

；
.：
；
V：

 .
-

•
；
 ••
：]

霞
/:
::
、

.-
,

…
,-..

“
I

..
.

“.
i

-：
::.,、
:--.，
•
“
 ？
.

,
—

, '-r̂

v̂--̂'

 :;-iA
>H

";
.

-
•

" -
.-.:..•

 -
 -̂

'-:">
i

;•/
-;,

 ':
•

•>.
 •:•

,

.
. .

;
..•

:-.
}

..-
.'C
:..."
-._

-."
/:
 “
 -

.

“

.

..，
-:.

. "
.
--
.".--
.-v"
.C'.'--
M

.:、
；
;;.
..:...;.:.v.:
 •

.
'V
 --

i 1

5;-
;
 -:
;;>
 "'
--"
"'"̂
-

-

-

.

,..:-:丄々
"广
--(̂

^
•"•;

V

:.:-.-
.-

•

.
“

.
-

-:-

 "
 ""
.'./:̂

"-
;

;.."̂V
 -̂

:J;.̂
-:̂

.::::
:..::

,""
-.-•

-

-
;..

...::.
:.:,:,

.:3:
ft_

:.:,:-

....?
. .

;

‘
.

, .

-
-...',:

-:..-
,::.:.

¾-
.;:¾

¾̂

C U H K L i b r a r i e s

1_圓11_圓11111
DD37DH3f lb

