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Abstract

The Levenberg-Marquardt method is a nonlinear least squares algorithm and
can be used to train neural networks with cost functions in the form of sum-of-
squares nonlinear functions. It utilizes the second-order information of the cost
function to achieve fast convergence speed. However, the arithmetic operations and
storage required to train recurrent networks are large. Training a recurrent network
with the Levenberg-Marquardt algorithm requires O(N"T) operations per epoch in
batch mode calculation (or O(N®) operations per time step in sequential mode
calculation) and O(N*) storage, where N is the number of fully recurrent hidden units
and T is the number of training data.

In this thesis, we proposed applying the Levenberg-Marquardt method with
the block-diagonal Hessian matrix to the recurrent neural network training. This
method requires less operations per epoch / time step (ranging from O(N’T) to
O(N*T) in batch mode calculation or ranging from O(N*) to O(N°) in sequential
mode calculation) and less storage (ranging from O(Nz) to O(N4)). Moreover,
weight updates of different blocks can be calculated independently. This property
makes the parallel processing possible.

There are different variations of this algorithm. For example, weights of
different blocks can be updated asynchronously or synchronously. We call these
updating methods asynchronous and synchronous methods respectively.
Asynchronous method updates weights of one block at a time while synchronous
method updates weights of all blocks at a time. Moreover, partitioning the Hessian
matrix into a block-diagonal matrix involves the choices of the number of blocks,
sizes of the respective blocks and weight-grouping methods. Their effects on the

performance were studied and analyzed in detail.
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Chapter 1 Introduction

1.1 Time series prediction

Many things around us appear as collections of observations made
sequentially in time. Examples are sales figures measured in successive weeks,
share prices measured on successive days, company profits measured in successive
years and measurements of the performance of a manufacturing process in
successive hours. They range from economics to engineering. Marketing analysts
need to predict future sales and economists want to predict economic cycles.
Process control specialists need to predict furnace temperatures and investors want
to predict the stock market. So, we have great interest in predicting the future values
of these time ordered values termed time series to make corresponding decisions.

The prediction is often made based on the past information. Let x(t), t=0, 1,
... be the time series where t is the time. The d past values of x (x(t), x(t-1), ..., x(t-
d+1)) form the d-dimensional time delay space or lag space for prediction. The
number of prediction steps is called the prediction horizon. They are illustrated in
Equation 1.1.

X(t+p) =F(x(t),x(t=1),....x(t—d +1)) (1.1)
where X(t+ p) is the forecasted value

p is the prediction horizon, p=1

d is the dimension of time delay space or lag space, d=1

F is the forecasting model

In the next section, the basic forecasting models F used in the literature of

neural network are reviewed.

1.2 Forecasting models

In this section, three basic types of forecasting models used in the literature
of neural network are described. They are the networks using time delays
[Dorffner96, Sharda90, Tang93, Ulbricht92, Weigend90], networks using context
units [Elman90, Jordan86, Karunanithi92, Mori93, Wilson95] and layered fully

recurrent networks [Li90, Pedersen95].



1.2.1 Networks using time delays
1.2.1.1 Model description

We consider a simple neural network using time delays: a feedforward
network with one hidden layer shown in Figure 1-1. The inputs of this network are
the input signal x(t) and the delayed signals x(t-1), x(t-2), ..., x(t-d+1) where d is the
dimension of the time delay space. We use the time delay elements to obtain the
delayed signals. The number of hidden units is determined by the complexity of

mapping between the inputs and the outputs.

A
x(t+p)

Hidden Unit Hidden Unit Hidden Unit

Unit Delay Unit Delay Unit Delay

x(1) x(t-1) x(t-d+1)

Figure 1-1 Network using time delays

This type of network was used in [Weigend90] to predict the sunspot number
and was shown to outperform the threshold autoregressive (TAR) model. In
[Sharda90], this model was tested on 75 time series from the M-Competition. This
study showed that this model performed as well as an automatic Box-Jenkins
modeling expert system, AUTOBOX. In [Tang93], this model was tested on 14
time series. These series included the international airline passenger data, company

sale data and time series selected from the M-Competition. This model was shown



to be able to compete with or outperform the Box-Jenkins method when appropriate
combinations of network and training parameters were used.

The time delays of the above network are placed between the input signal
and the network. They can also be distributed over the whole network to retain
information of the previous time steps. For example, time delays can be introduced

on the connections between hidden and output units. [Ulbricht92, Dorffner96]

1.2.1.2 Limitation

The limitation of the neural network using time delays is that the number of
delayed inputs is fixed and limited. If the number of delayed inputs is small, the
amount of past information taken into account is small. However, if the number of
delayed inputs is large, learning will be slow due to the increase in the number of
weights. Moreover, a lot of training examples are required for successful learning
and generalization. In Sections 1.2.2 and 1.2.3, this limitation is solved by feeding
the processed past inputs back to the model. In effect, all the past inputs can be

taken into account to make the prediction.

1.2.2 Networks using context units
1.2.2.1 Model description

Instead of the explicit use of delayed inputs to keep the past information,
context units are used to feed the past information back to the model. For example,
Elman network [Elman90] shown in Figure 1-2 uses context units to feed the past
information from the hidden units back to the model. The hidden states are first
copied to the states of the context units. Then, the context units are treated as
additional inputs to the network. One important feature of the context units is that
the dependence of context states on the weights is ignored during weight updating.
This ignorance makes the training of network using context units similar to the
training of feedforward network. This reduces the computation complexity
significantly. In [Mori93], Elman network was used to do short-term load

forecasting in power system. It was superior to the conventional feedforward three-

layer neural network in forecasting accuracy.
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Figure 1-2 Elman network

Context layer can be placed in other locations. For example, Michael I.
Jordan proposed a model called Jordan network [Jordan86] shown in Figure 1-3,
which uses context units to feed the activations of the output units and context units
of the previous time step back to the model. In [Karunanithi92], Jordan network was
used to predict software reliability. It was tested on 14 different software projects
and compared with the feedforward network and five well known software reliability
growth prediction models. Jordan network was shown to be the best among the
models.

Some networks use several context layers, which contain copies of
activations of the previous time steps [Wilson95]. If the activations of the output
units are copied to the context layers shown in Figure 1-4, the network is called
Jordan tower network. If the activations of the hidden units are copied shown in
Figure 1-5, the network is called Elman tower network. These networks are
collectively called tower-recurrent networks. The networks with more context

layers learned faster and found lower weight configurations with lower total error.
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Figure 1-5 Elman tower network

1.2.2.2 Limitation

Since the dependence of context states on the weights is ignored during
weight updating, errors due to the context states (previous hidden states) cannot be
corrected. Layered fully recurrent network described in Section 1.2.3 does not have
this limitation. It has the same feedback mechanism as that of the Elman network

but context units are not used.

1.2.3 Layered fully recurrent networks
1.2.3.1 Model description

We consider a rather general scheme: a three-layer feedforward network with
a fully-connected hidden layer termed layered fully recurrent network [Pedersen95].
This network includes the conventional feedforward network as a special case.
Figure 1-6 shows the structure of the layered fully recurrent network. The arrows in
the figure represent the weights and propagation directions. Wj;, Wig, Rjr, wjx and
wjo represent the hidden-to-output, output bias, recurrent, input-to-hidden and hidden

bias weights respectively. The subscripts i, j and k are the indexes for the units in



the output, hidden and input layers respectively and the subscript O represents the
bias. The units in the input layer fully connect to the units in the hidden layer. The
units in the hidden layer are self-connected and fully connect to the other units in the
same layer. They also fully connect to the units in the output layer. Usually,
semilinear (in our case, tanh) transfer function is used in the hidden units and linear

transfer function is used in the output units.

Output Layer

W, W,
1 Hidden Layer R,
Wio Wik

Input Layer

Figure 1-6 Layered fully recurrent neural network

At time t, the input unit k is clamped to the value &c(t). The hidden unit j

thus receives a net input

hj(t)=§k:wjkgk(t)+wjo+2RJ.,V, (t-1) (1.2)
and produces output

V; 0=, ) =gE W,k + Wy + TR,V (¢=D) (1.3)
The output unit i receives a net input

d; ()=, W;V; () + W, (1.4)

and produces the final output

O, (t)= f(di ()= f(zwij Vj (H+ Wio) (1.5)
j



In [Li90], the layered fully recurrent network was used to predict the sunspot
number. This network was shown to produce very good results, especially when

doing long-range forecasting.

1.2.3.2 Our selection and motivation

The layered fully recurrent network described in this section is more flexible
compared with the neural network forecasting models described in Sections 1.2.1
and 1.2.2 in modeling time series and was chosen in our study. Unlike the network
using time delays, the layered fully recurrent network does not need to determine the
dimension of time delay space in advance. Its feedback structure in effect takes all
the past inputs into account. Unlike the network using context units, the dependence
of previous hidden states on the weights is not ignored during weight updating. So,

errors due to the previous hidden states can be corrected.

1.2.4 Other models

There are many different types of recurrent models. For example,
[Shimohara88] discussed the possibilities of different feedback mechanisms
(feedback sources and feedback destinations) in layer level. Feedback structures
incorporated in synapse level were discussed in [Ts0i94]. These structures include
local synapse feedback, local activation feedback and local output feedback.
[Mozer93] considered the possibilities of different memory forms. These forms
include delay, exponential and gamma. [Horne95] investigated some single layer
recurrent networks using higher order connections. Examples are higher order

network [Giles90], bilinear network and quadratic network.

1.3 Learning methods [Battiti92, Bishop95, Hertz91, Press88,
Shepherd97]

After choosing the forecasting model, we then train the model to predict the
future values of the time series. There are many ways of doing it, which are known

as the learning methods. In this section, some of them are described.



First, we define a cost function to measure the performance of the forecasting
model. The cost function is usually defined as the deviations between the target and
the network output values. Sum-of-squares error function shown in Equation 1.6 is

often used as the cost function E.
1 :
E=YE = Y& ®-0,0) (1.6)
t ti

where Oj(t) is the output value of the ith output unit at time t

Ci(t) is the target value for the ith output unit at time t

w is the weight vector comprising all the network weights

The objective of the learning process is to adjust the weight vector w of the
model so as to minimize the cost function E. We have many different kinds of
learning methods such as evolutionary algorithm [Angeline94, Fogel91], genetic
algorithm [Koehn94], first order and second order methods [Battiti92, Bishop95,
Hertz91, Press88, Shepherd97] to accomplish this task. In these examples, the first
two methods aim at finding the global minimum while the latter two methods are
guaranteed to locate a local minimum only. Among them, the first order and second
order methods are more popular in the neural network training because of their fast

learning speed. In the next section, we will describe more about these two methods.

1.3.1 First order and second order methods

The first order and second order methods are the numerical unconstrained
minimization techniques [Dennis83]. These methods derive from the Taylor series
expansion of the cost function E(w) in the neighborhood of an arbitrary point w.
E(w+s) = E(w) + g(w)'s + V2 s ' H(W)s + ... (1.7)
where E is the cost function

w is the Witx1 weight vector comprising all the network weights and the

weights are indexed from 1 to Wt.
w=| | (1.8)

Wt is the number of network weights



g is the Wtx1 gradient vector (first partial derivatives of cost function E with
respect to all network weights)
( OE )
ow,
9E aaE
ow W2
JE
OW y,

(1.9)

(-]
|
1l

H is the WtxWt Hessian matrix (second partial derivatives of cost function E

with respect to all network weights)

J0°E PE B )
ow,0w, 0w, 0w, OW ,0W y, %
E 0’E E_JE
H= TwE aw%awl oW, 0w, OW L0W y, (1.10)
9B E  OE
oW OW, OW 0w, OW , OW y,

If the methods derive from the linear model,
E(w+s) = E(w) + g(w)'s (1.11)
they are known as first order methods. One of the examples is gradient descent
method. Its updating rule is
Aw =—ug (1.12)
where W is the step length parameter. This method has many variations, for example,
using various adaptive learning rate strategies and using momentum.

If the methods derive from the quadratic model,
E(w+s) = E(w) + g(w)"s + 2 sTH(W)s (1.13)
they are known as second order methods. One of the examples is the Newton’s
method. Its updating rule is
Aw=-H"g (1.14)
Other examples are the Quasi-Newton method, the ‘memoryless’ Quasi-Newton
method and the conjugate gradient method.

The mentioned examples in this section are designed to minimize the general

nonlinear cost function. In the next section, we present a special case of

10



unconstrained minimization known as the nonlinear least squares methods, which

are designed to minimize the sum-of-squares function only.

1.3.2 Nonlinear least squares methods

Nonlinear least squares methods are designed to minimize the sum-of-
squares error function in Equation 1.6 and cost function in the form of sum-of-
squares nonlinear functions. Examples of these methods are the Gauss-Newton
method, the damped Gauss-Newton method, the Levenberg-Marquardt method and
the full Newton-type method.

Let e, (t)={;(t)—O,;(t) and e be a T-Px1 vector with elements ej(t)

e() (e,(1)
e(2 e,(t
e= (:) and e(t) = 2:() (1.15)
e(T) Ler (0
Then the sum-of-squares error function in Equation 1.6 can be written as
E= leTe (1.16)
2
By differentiating Equation 1.16, we obtain the gradient vector expression
g=VE=]"e (1.17)

By differentiating Equation 1.17 once more, we obtain the Hessian matrix

expression
H=VE=J"J+S (1.18)
where J is the T-PxWt Jacobian matrix with elements %
Wi
de() de()  de(l) de, (1)
aW1 aWZ ow Wt aWj
de(2) de(2) de(2) de, (t)
_de _ de(t) | —2~<
J—-a—w—— av:vl av:vz ) a\,zwt and 5, = ow, (1.19)
de(T) 9e(T)  de(T) de, ()
| oW,  ow, oWy ) ow

T is the number of training data

P is the number of network outputs

11



S=> e (t)V7e,(t) (1.20)

Substituting Equations 1.17 and 1.18 into Equation 1.14, we have
Aw=-H"'g=—[J"J+S]"'J"e (1.21)

The Gauss-Newton method assumes that S=0. Its updating rule is
Aw=—J"J]"J"e (1.22)

The Gauss-Newton method of Equation 1.22 is improved by combining it

with a line-search algorithm. This method is called the damped Gauss-Newton
method. Its updating rule is

Aw=-p[J"J]"Je (1.23)
where W is the step length parameter. This method is more reliable than the Gauss-
Newton method.

The Levenberg-Marquardt method is a trust-region modification of the
Gauss-Newton method. Its updating rule is as follows.

Aw =-[J"J+M]"J"e (1.24)
where I 1is the WtxWt unit matrix

A is the learning parameter

The Gauss-Newton method, the damped Gauss-Newton method and the
Levenberg-Marquardt method described in Equations 1.22 to 1.24 ignore the term S.
If S is small relative to J'J, these methods are locally quadratically convergent.
However, S is relative large for the problems that are very nonlinear and have
comparatively large errors e at the solution. If so, the convergence speed of these
methods becomes slow.

The full Newton-type method approximates S in Equation 1.20 by the quasi-
Newton approximation. The convergence speed of this method will not deteriorate
when this method is applied to problems that are very nonlinear and have relative
large errors. However, this method is more complex.

In the following sections, the algorithm of the Levenberg-Marquardt method

and our motivation for selecting it as our learning method will be described.

12



1.3.2.1 Levenberg-Marquardt method — our selection and motivation

As described in Section 1.3.2, the Levenberg-Marquardt method is one of the
nonlinear least squares methods. Several factors make us to choose the Levenberg-
Marquardt method as our training method. First, the Levenberg-Marquardt method
is well defined when J in Equation 1.19 does not have full column rank (this
happens if the number of training data is less than the number of weights). Second,
when the Gauss-Newton update in Equation 1.22 is much too long, the Levenberg-
Marquardt update in Equation 1.24 is often superior to the damped Gauss-Newton
update in Equation 1.23 [Dennis83]. Last, the Levenberg-Marquardt method
performs well in practice. In the study of [Shepherd97], many different first order
and second order methods were compared. The Levenberg-Marquardt method was
the fastest training method with the zero-residual N-parity problem and with the
small-residual sin(x)cos(2x) problem, but the slowest second-order method with the
larger-residual sin(x) problem. It also performs well in the N-parity problem when
the scale of the problem increases. Moreover, [Hagan94] reported that the
Levenberg-Marquardt method was very efficient compared with the backpropagation
with variable learning rate and conjugate gradient backpropagation. These methods
were tested on the sine wave, square wave, 2-D sinc function and 4-D function
approximation problems.

In the following section, the algorithm of the Levenberg-Marquardt method

will be described.

1.3.2.2 Levenberg-Marquardt method — algorithm

The Levenberg-Marquardt update is shown in Equation 1.24. In this
equation, the parameter A controls both the magnitude and direction of Aw. As A
increases, the magnitude of Aw decreases and the direction of Aw changes gradually
from the Gauss-Newton direction to the negative gradient direction.

The setting of the parameter A during the minimization process is shown in

Algorithm 1.1.

13



Algorithm 1.1 Levenberg-Marquardt method

1. A =0.001, B = 10, iteration = 0 and finished = false

2. WHILE finished = false

3. calculate Aw = -(J7J + A D'J%e

calculate E(w+Aw)

WHILE (A < maximum_A) AND (E(w+Aw) = E(w))
increase A by a factor 3
calculate Aw
calculate E(w+Aw)

END

10. IFA < maximum_A

o e =3 o R

11, update w (W <— w + Aw)
12. decrease A by a factor §

13. iteration < iteration + 1

14. END

15. calculate J7e
16. IF (iteration > maximum_iteration) OR
(minimum of validation error is reached = true) OR

(J"e < minimum_gradient) OR (A > maximum_2\)

17. finished = true
18. END
19. END

In Step 1, A is initialized to a small value such that the approximate Gauss-
Newton step is tried first. If the cost function E increases after taking the
Levenberg-Marquardt step, A is increased by a factor § (Step 5) and the cost function
E is recomputed (Step 6). This process is repeated until a decrease in the cost
function E is obtained. If the cost function E decreases after taking the Levenberg-
Marquardt step, the new weight vector is stored (Step 9) and A is decreased by a

factor B (Step 10). The whole algorithm is repeated until the termination criteria in

Step 13 are satisfied.

14



1.3.3 Batch mode, semi-sequential mode and sequential mode of updating

The learning methods can be used in different modes, namely the batch
mode, semi-sequential mode and sequential mode of updating. Batch mode learning
methods update weights for all training data at a time. Semi-sequential mode
learning methods update weights for part of the training data at a time. Sequential
mode learning methods update weights for one datum at a time. Semi-sequential
and sequential approaches are more efficient if the data is highly redundant.
Moreover, they have the possibilities to escape from local minima since they are

stochastic algorithms.

1.4 Jacobian matrix calculations in recurrent networks

The key step in the Levenberg-Marquardt algorithm is the computation of the
Jacobian matrix, which is defined in Equation 1.19. In this section, two different
computations of the Jacobian matrix will be described. These computations are
similar to the calculations of gradient vector in the Real Time Back-Propagation
Through Time (RTBPTT) algorithm [Williams90] and the Real Time Recurrent
Learning (RTRL) [Williams89] algorithm. We call them the RTBPTT-like and
RTRL-like calculations respectively and they are described in Sections 1.4.1 and

1.4.2 respectively.

1.4.1 RTBPTT-like Jacobian matrix calculation

The derivation of the RTBPTT-like Jacobian matrix calculation is as follows.
First the temporal operation of the recurrent network is unfolded into a multi-layer
feedforward network. Take the layered fully recurrent network in Figure 1-6 as an
example. The t time step operation of the recurrent network is unfolded into a
feedforward network with t hidden layers, which is shown in Figure 1-7. In this
unfolded feedforward network, each weight has t number of copies. Take the
recurrent weight R;; as an example. Its t copies are labeled as Rj(1), Rj«(2), Rj:(3),

de; (t)

..., Rj(t). The Jacobian element (first derivative of e;(t) with respect to the

jr
recurrent weight R;;) is calculated by summing all the first derivatives of e;(t) with

respect to the unfolded recurrent weights Rji(1), Rj(2), Rjx(3), ..., Rj«(t). That is,
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de; (1) _ <o 9de;(t)
aRjr _gaRjr(T) Ll

Other weights are calculated similarly. Based on this method, it can be shown that

Jacobian element (derivative of e;(t)) with respect to the hidden-to-output weight

de. (t)
—== =3, (1) V.(t 1.26
oW, (V1) (1.26)
Jacobian element (derivative of e;(t)) with respect to the output bias weight
oe, (t)
——2 =4, (t 1.27
oW, (1) (1.27)
Jacobian element (derivative of e;(t)) with respect to the recurrent weight
(t !
%) _ 35, )V, (1-1) (1.28)
aR i’ =1
Jacobian element (derivative of e;(t)) with respect to the input-to-hidden weight
(1.29)

M')' = zsij (DE, (7)

aW jk T=1
Jacobian element (derivative of e;(t)) with respect to the hidden bias weight

%e&(: = Zsij (7) (1.30)
where
8. (t) = —f'(d, (1)) (1.31)
g'(h;()W;6,(1) =t
(1.32)

5;(D) =1,
g OXR B D
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Figure 1-7 Unfolding the t time step operation of the recurrent network in Figure 1.6 into a

feedforward network with t hidden layers.

1.4.2 RTRL-like Jacobian matrix calculation
The RTRL-like method calculates the Jacobian elements without duplicating
de; (1)

the units and weights. Its calculation of Jacobian elements at time t ———= (first
w

derivative of e;(t) with respect to the network weight w) are expressed in terms of the

derivatives of hidden states at time t-1, a—V(t;l) The derivatives of E)V(—t—l)_ are

W w
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de, (t—1)

available from the calculations of Jacobian elements at time t-1, . When
w
, : , dVv(0)
calculating the Jacobian elements at time 1, we assume that = 0. The RTRL-
W

like calculations of the Jacobian elements with respect to the recurrent, input-to-

hidden and hidden bias weights are shown in Equations 1.33 to 1.35 respectively.

9V, (t)
. aR

de. de; (1) _
dR ..

Jr

v, (t) aV.(t—1) aVv,(0)
= gy, (t-18.+ YR d———=0
where x®, g'(h J(t)){Vr (t—-Dd; + Z 0R,, ] dR ;.

—f'(d, (t))z (1.33)

J;i denotes the Kronecker delta

de; () _ V;(t)

= —f'(d, (t))ZW " (1.34)
— %\:VJJ(IL g'(hj(t))(ﬁk.(t)ﬁjj.+§r:R a\g V(vt )] aa\:v O _,
%ew(;) —£'(d, (t))Z ,J aV i (1.35)
where E?:;fz)=g'(hj(t))(5ﬁ.+ZR a\gv(vt D] and a;;(o) 0

The Jacobian elements (first derivatives of e;(t)) with respect to the hidden-
to-output and output bias weights do not depend on the derivatives of hidden states.
The RTRL-like calculations of these Jacobian elements are the same as the

RTBPTT-like calculations shown in Equations 1.26 and 1.27.

1.4.3 Comparison between RTBPTT-like and RTRL-like calculations

The number of operations of the RTBPTT-like calculation increases with
time t. On average, the RTBPTT-like calculation requires O(NZT) operations per
time step where N is the number of fully recurrent hidden units and T is the number
of training data. The number of operations of the RTRL-like calculation is even
across time t. The RTRL-like calculation requires O(N*) operations per time step.

If the number of training data is small (T<N2), RTBPTT-like calculation is more

efficient. Otherwise, RTRL-like calculation is more efficient.
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If the weights are updated in batch mode, the Jacobian matrices that we use
the RTBPTT-like and RTRL-like methods to calculate are the same. However, if the
weights are updated in sequential mode, the Jacobian matrices that we use the
RTBPTT-like and RTRL-like methods to calculate diverge. The reason is that in the
RTRL-like calculation, the calculation of Jacobian elements at time t depends on the
calculation at time t-1. During this time, the weights are assumed to be constant.
However, this assumption is not true if the weights are updated in sequential mode.
The error accumulated will not be negligible if the number of training data is very
large. In [Catfolis93], the author remedied this problem by re-initializing the
aVv(t)

A"

derivatives after a certain number of time steps. The RTBPTT-like

calculation does not have this problem because the calculation at time t does not

depend on the calculations of the previous time steps.

1.5 Computation complexity reduction techniques in recurrent

networks

Neural network training is an iterative process. It usually requires a number
of iterations to arrive at the solution, which cost a lot of time. This hinders the
application of neural network to large problems. So, a more efficient learning
method is required. One way to accomplish this task is to reduce the computation
complexity of the learning method. A number of techniques were devised for doing
this. These techniques are divided into the architectural and algorithmic approaches,

which are described in Sections 1.5.1 and 1.5.2 respectively.

1.5.1 Architectural approach

Architectural approaches reduce the computation complexity by altering the
architecture of the network. Examples are the recurrent connection reduction
method [Chan95, Bengio89, Frasconi92], treating the feedback signals as additional
inputs method [Elman90, Jordan86, Wilson95, Zipser89] and growing network
method [Fahlman91]. These methods are described in Sections 1.5.1.1 to 1.5.1.3

respectively.
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1.5.1.1 Recurrent connection reduction method

One way to reduce the computation complexity dramatically is to reduce the
number of recurrent connections at the expense of generality of network architecture.
Examples are the locally connected recurrent neural network [Chan95] and the local
feedback multilayered network [Bengio89, Frasconi92]. They are described as

follows.

Locally connected recurrent neural network

[Chan95] considered a class of recurrent connection reduction network
topology called the locally connected recurrent neural network. The recurrent links
of each hidden unit are connected to its neighborhood units only. Depending on the
definition of neighborhood units, the network can be in ring, grid, cubic or other

structures.

Local feedback multilayered network
Local feedback multilayered network described in [Bengio89] and
[Frasconi92] is a special case of locally connected recurrent neural network. Only

the self-recurrent connections are assumed.

1.5.1.2 Treating the feedback signals as additional inputs method

Another way to reduce the computation complexity is to treat the feedback
signals as additional inputs so that the dependence of the feedback signals on the
weights during weight updating is ignored. This technique was used in the networks
using context units described in Section 1.2.2. Sub-grouping method [Zipser89] also
applied this technique to some of the feedback signals. These examples are

explained as follows.

Context units

Elman network [Elman90], Jordan network [Jordan86] and tower-recurrent
networks [Wilson95] use context units to feed the past information back to the
networks. The activations of the context units, that is the feedback signals, are

treated as additional inputs to the networks.
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Sub-grouping method [Zipser89]

Sub-grouping method reduces the computation complexity by treating some
of the feedback signals as additional inputs. These feedback signals are chosen
depending on the definition of the sub-networks. For example, a fully recurrent
network with N hidden units and M inputs is divided into g fully recurrent sub-
networks each with N/g hidden units (assuming that g is a factor of N). Each hidden
unit in a sub-network will receive the activations of the N-N/g hidden units in the
other subgroups as inputs in addition to the original M inputs. The effect of sub-

grouping is to reduce the size of recurrently connected units from N to N/g.

1.5.1.3 Growing network method

In growing network method like the recurrent cascade-correlation
architecture [Fahlman91], new hidden units with self-recurrent link are added one
by one and are frozen once they are added to the network. Only the weights
connected to the new hidden units are learned at a time. This reduces the

computation complexity dramatically.

1.5.2 Algorithmic approach

Algorithmic approaches reduce the computation complexity without altering
the architecture of the network. Examples are the history cutoff method
[Williams90] and changing the updating frequency from sequential mode to semi-
sequential mode method [Schmidhuber92]. They are described in Sections 1.5.2.1
and 1.5.2.2 respectively.

1.5.2.1 History cutoff method
Truncated Back-Propagation Through Time, BPTT(h) algorithm [Williams90]
Truncated Back-Propagation Through Time algorithm termed BPTT(h)
algorithm uses a bounded-history approximation to the RTBPTT algorithm. The
information is saved for a fixed number h of time steps and any information older
de; (t)

jr

than that is forgotten. Take the calculation of Jacobian element shown in

Equation 1.25 as an example. In the BPTT(h) algorithm, the Jacobian element is

calculated as follows.
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1.5.2.2 Changing the updating frequency from sequential mode to semi-sequential
mode method
Hybrid of BPTT and RTRL [Schmidhuber92]

The RTRL algorithm requires O(N*) operations per time step where N is the
number of fully recurrent hidden units. Hybrid of BPTT and RTRL method reduces
the computation complexity of the RTRL algorithm by changing the weight updating
frequency from every time step to every h' time steps. This method computes the
cumulative error gradient by means of the Back-Propagation Through Time (BPTT)
-like calculation once every block of h' time steps. The RTRL-like calculation is
used to encapsulate the history before the start of each block. If h'is chosen to be

O(N), the average computational complexity per time step is reduced to O(N?).

1.6 Motivations for using block-diagonal Hessian matrix

In the last section, we reviewed a number of computation complexity
reduction techniques used in the recurrent neural network training. In this thesis, we
proposed using the block-diagonal Hessian matrix to reduce the computation
complexity in the recurrent network training. The proposed method is algorithmic
since it does not alter the architecture of the recurrent network. In the following, our
motivations for using the proposed method are described.

Several factors make us to choose the method of using the block-diagonal
Hessian matrix. First, the proposed method requires less operations and storage.
For example, training a recurrent network with the Levenberg-Marquardt algorithm
requires O(N*T) operations per epoch in batch mode calculation (or O(N®)
operations per time step in sequential mode calculation) and O(N*) storage, where N
is the number of fully recurrent hidden units and T is the number of training data.
Using the proposed method requires less operations per epoch / time step (ranging
from O(N3T) to O(N“T) in batch mode calculation or ranging from O(N*) to O(N®)
in sequential mode calculation) and less storage (ranging from O(N?) to O(IN*)).

Second, weight updates of different groups can be calculated independently
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(explained in Chapter 2). This property makes the parallel processing possible.
Finally, the proposed method performs well in the feedforward neural network
training. For example, diagonal Hessian matrix, a special case of block-diagonal
Hessian matrix, was used in [Becker88], [Fahlman88] and [Ricotti88]. Using
diagonal Hessian matrix was shown to learn faster than the backpropagation with
fixed learning rate and/or momentum on a random classification problem
[Becker88], an encoder/decoder task [Fahlman88], the XOR problem [Fahlman88,
Ricotti88] and a word stress determination application [Ricotti88]. Block-diagonal
Hessian matrix was used in [Kollias88, 89] and [Wille97]. [Kollias88, 89] ignored
the Hessian elements (second partial derivatives of the cost function E) with respect
to the incoming weights of different neurons and [Wille97] suggested ignoring the
Hessian elements (second partial derivatives of the cost function E) with respect to
the weights of different layers. In [Kollias88, 89], the performance was shown to be
better than performance of the backpropagation with fixed learning rate and

momentum on the problem of XOR.

1.7 Objective

In this chapter, we proposed applying the Levenberg-Marquardt method with
the block-diagonal Hessian matrix to the recurrent neural network training. In the
remaining chapters, the objective is to assess the performance of the Levenberg-
Marquardt method with the block-diagonal Hessian matrix in the recurrent neural
network training. It also includes the identification of the factors of the proposed

method and evaluation of the effects of these factors on the performance.
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1.8 Organization of the thesis

In the next chapter, we will identify the factors of the proposed method,
which includes the choices of block-diagonal Hessian matrices and weight updating
methods. To assess the performance of the proposed method, we evaluated the
method on three time series prediction problems. These problems are described in
Chapter 3. The setup of the evaluation is also included in this chapter. The
performance of the proposed method depends on the choices of the updating
methods, numbers and sizes of the blocks of the block-diagonal Hessian matrix and
weight-grouping methods of the block-diagonal Hessian matrix. (These factors are
explained in Chapter 2.) The effects of these factors on the performance are studied
in Chapters 4, 5 and 6 respectively. Finally, discussion and conclusion are given in

Chapters 7 and 8 respectively.
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Chapter 2 Learning with the block-diagonal Hessian

matrix

2.1 Introduction

In the last chapter, we proposed applying the technique of block-diagonal
Hessian approximation to the recurrent neural network training, which can reduce
both the computation and storage complexities. We need to consider two factors
when this technique is applied.

i. One is the choice of block-diagonal Hessian matrices. In Section 2.2, the
general form and factors of the block-diagonal Hessian matrices will be
described. In Section 2.3, we will describe four particular block-diagonal
Hessian matrices, which will be studied in this thesis.

ii. The other factor is the choice of weight updating methods, which is described

in Section 2.4.

2.2 General form and factors of block-diagonal Hessian matrices

2.2.1 General form of block-diagonal Hessian matrices
0°E
ow,ow;

The Hessian matrix H of the cost function E has an entry the

second partial derivative, in the (i,j)-place where E is defined in Equation 1.6. Itis a
WitxWt matrix where Wt is the number of network weights. The block-diagonal
Hessian matrix approximates to the Hessian matrix by letting the block-diagonal
entries be equal to the corresponding entries in the Hessian matrix and the off-block-

diagonal entries be equal to zeros. It is of the form

H 0 0 0
0O H, 0 O

Hblock—diag. = 0 02 0 (21)
0 0 0 H,

where H;is a qixq; matrix foreachi=1, 2, ... B.

B
zzqi = the number of network weights, Wt.

i=1
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Each sub-matrix H; is called a block. Its number of rows or columns g; is
called the block size. The elements of the blocks are called the non-zero Hessian
elements. In Equation 2.1, the total number of non-zero Hessian elements is

Q4+ ... +qg’. Let us partition the weight vector w as [wi" wo" ... wg']" where

2

w; is a ;X1 vector, such that H; can be written as . We call w; the weight

W, 0w,

vector of the ith block and its elements the weights of the ith block.

In particular, the Levenberg-Marquardt Hessian approximation described in
Section 1.3.2 is considered.
Hin=J"J (2.2)
where J is the Jacobian matrix defined in Equation 1.19
Since Equation 2.2 calculates all the Hessian elements, we call it full Hessian matrix
to distinguish it from the block-diagonal Hessian matrix, which calculates Hessian
elements in the block-diagonal region only.

Let us partition J as [J; J2 ... Jg] where J; is a T-Pxq; matrix.

de

Ji (2.3)

where e is the error vector defined in Equation 1.15
T is the number of training data
P is the number of network outputs
The ith block H; in Equation 2.1 can then be written as
H=J"J; 24)
and the general form of the block-diagonal approximation to Equation 2.2 is

JJJ, 0 0 o0

o J,)J, 0 0
H yiock—ding. = 5 20 2 B (2.5)

| 0 0 0 J'Jy)

where

Ji'J;i=0,i#] (2.6)
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2.2.2 Factors of block-diagonal Hessian matrices
Equations 2.1 and 2.5 show the general form of block-diagonal Hessian
matrices. To specify a particular block-diagonal matrix, we need to describe the
following two factors
i. number and sizes of the blocks and
ii. weight-grouping method

They are explained as follows.

i. Number and sizes of the blocks
The first factor is the number and sizes of the blocks. It is denoted by a set
{q1, 92, ..., qs} where q; represents the size of the ith block. The number of
elements in the set is equal to the number of blocks, B. The restrictions on this
factor are as follows.
i. The number of blocks, B < the number of network weights, Wt.
ii. The sum of block sizes, qi+qx+ ... +qs = the number of network weights,
Wt.
In the special cases, the block-diagonal matrix becomes full Hessian matrix if

B = 1 and becomes diagonal Hessian matrix if B = Wt.

ii. Weight-grouping methods
The second factor is the arrangement of the positions of elements in the
weight vector w. This factor affects the positions of elements in the Hessian matrix
and hence affects the approximation of the Hessian matrix.
Block-diagonal Hessian matrices with the following arrangements have the
same Hessian elements approximating to zeros.
i. Different arrangements of positions of elements in w; where w; is the weight
vector of the ith block fori=1, 2, ..., B.
ii. Different arrangements of positions of w;’s in the weight vector w where w;’s
are the weight vectors of the blocks with equal number of elements.
The differences among these arrangements are excluded from the second factor.
In other words, the second factor specifies which weights are grouped in the

weight vector of each block. So we call this factor the weight-grouping method.
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The effects of the first and second factors on the performance of our

proposed method are described in Chapters 5 and 6 respectively.

2.3 Four particular block-diagonal Hessian matrices

As described in the last section, block-diagonal Hessian matrices depend on
the number of blocks, sizes of the blocks and weight-grouping methods, which have
many varieties. This means that the number of different block-diagonal Hessian
matrices approximating a Hessian matrix is very large. Among these block-diagonal
Hessian matrices, we will evaluate four particular block-diagonal Hessian matrices
which were either expected to have good performance or used in the previous studies
[Kollias88, 89 and Wille97]. These matrices are described in Sections 2.3.1 to 2.3.4
and named as the correlation, one-unit, sub-network and layer block-diagonal
Hessian matrices respectively. These matrices have one thing in common, which is
described as follows.

In the layered fully recurrent network shown in Figure 1.6, we assume that
linear and nonlinear transfer functions are used in the output and hidden units
respectively. The cost function E is linear in the output-layer weights Wiipear and
nonlinear in the input-layer and recurrent-layer weights Wyoptinear. Minimizing the
cost function E defined in Equation 1.6 with respect to the weights Wiear and
Waonlinear Can be viewed as the mixed linear-nonlinear least-squares problem. One of
the solutions to this problem is that we minimize the cost function E by solving a
nonlinear least-squares problem in the nonlinear variables Wyopiinear. FOr any given
values of Wyoniinear, W€ calculate the corresponding optimal values of Wiipear by
solving a linear least-squares problem. This approach usually solves the mixed
linear-nonlinear least-squares problems in less time and fewer function evaluations
than the full nonlinear optimization of all the variables [Dennis83]. In neural
network, Webb and Lowe (1988) show that, for some problems, this approach can
yield better solutions, or can require less computational effort [Bishop95].

This approach requires that the linear weights Wjne,r and the nonlinear

weights Wyonlinear Can be optimized separately. This can be accomplished by applying

the approximation shown in Equation 2.7.
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nonlinear
where Wiinear is the weight vector containing the output-layer weights

Whonlinear 1 the weight vector containing the input-layer and recurrent layer

weights
In other words, the output-layer weights are grouped in the weight vector of a block.
The approximation of Equation 2.7 is used in the correlation, one-unit, sub-network
and layer block-diagonal Hessian matrices.

Take a recurrent network with M input, N hidden and P output units as an
example. The P(N+1) output-layer weights are grouped in the weight vector of a
block. This is illustrated in Figure 2-1 for the recurrent network with M =2, N =3
and P = 1. The bold connections are the weights that are grouped in the weight

vector of a block.

Figure 2-1 The bold hidden-to-output and output bias weights are grouped in the weight vector of a
block.

2.3.1 Correlation block-diagonal Hessian matrix

One way of designing the block-diagonal Hessian matrix is to keep as much
information of the full Hessian matrix as possible. In our case, we used the sum of
absolute values of all the Hessian elements to measure the amount of information in
a block-diagonal Hessian matrix. The formation of the correlation block-diagonal
matrix is intended to achieve this goal. As described in Section 2.2, block-diagonal

Hessian matrix is formed by ignoring the Hessian elements (second partial
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derivatives of the cost function E) in the off-block-diagonal places. The correlation
block-diagonal Hessian matrix is formed by ignoring the Hessian elements (second
partial derivatives) with respect to the outgoing weights of different units. In other
words, the outgoing weights of the same hidden unit or the same input unit are
grouped in the weight vector of a block. This weight arrangement is called the
correlation weight-grouping method.

The following shows the formation of the correlation block-diagonal Hessian
matrix. We will first consider a simple case, a single output feedforward network.
Then, we extend the result to the recurrent network.

Consider a single output feedforward network with one hidden layer. Since
the feedforward network is a special case of recurrent network by letting the
recurrent weights R be zeros, we use the same notation as that of the recurrent

network described in Section 1.2.3. The Levenberg-Marquardt Hessian
0°E

approximation to the Hessian element Hj ji = ————— described in Section 1.3.2
OW ;, OW ;.

is shown in Equation 2.8 where wjx and wji are the weights locating between the

input and hidden layer of the network. e;(t) is the error between the output and target

values at time t defined in Equation 1.15.

de; (t) de; (t)
Hije= 3 = ) —5‘;— (2.8)
=Y (£'(d; (1) W,g'(h; ())&, (D)E'(d; () Wyg' (h; ()&, (1)) (2.9)
=Y £'(d;(1)*g'(h;(1)g'(h; () W, W, (DE,.(t) (2.10)
© first term ) second term ) third term  fourth term

Equation 2.9 is obtained by differentiating e;(t) with respect to wj and wjy.
After rearranging Equation 2.9, we obtain the expression of Hessian element shown
in Equation 2.10. The first term f’(di(t))2 is a squared function and hence positive for
all t. The second term g'(h;(t))g'(h;(t)) is also positive for all t since the derivative of
sigmoid function is always positive. The sign of the third term W;;Wj; is unchanged
for all t. Only the last term Ex(t)Ex(t) changes its sign over time t. If the signs of
E(t) and Ex(t) are correlated, the magnitude of Hjjx will be larger. That is, the

signs of &(t) and &(t) vary together or vary in opposite sign over time t. However,
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if the variations of the signs of &(t) and &k (t) over time t are independent of each
other, the magnitude of Hjx i will be smaller.

If we choose k=K', the signs of &x(t) and &(t) will be correlated. This means
that the magnitudes of the Hessian elements (second partial derivatives of the cost
function E) with respect to the outgoing weights of the same input unit, that is k=k,
are expected to be larger. As mentioned in the beginning of this section, the
correlation block-diagonal Hessian matrix is formed by keeping those Hessian
elements with large magnitude. So, the Hessian elements (second partial
derivatives) with respect to the outgoing weights of the same input units are kept and
the others are ignored. In other words, the outgoing weights of the same input unit
are grouped in the weight vector of a block.

Take a feedforward network with M input, N hidden and one output units as
an example. The N outgoing weights of the same input unit are grouped in the
weight vector of a block. There are M+1 such weight vectors. This is illustrated in
Figure 2-2 for the recurrent network with M = 2, N = 3 and one output unit. In each
diagram, the bold connections are the weights that are grouped in the weight vector
of a block.

The limitation of the above analysis of Equation 2.10 is that we consider the
signs of the terms in the expression of Hessian elements only, which is one of the
factors that affects the magnitudes of Hessian elements. Furthermore, the analysis is
applicable to feedforward weights and one output network only.

For the recurrent weights, we ignore the dependence of previous hidden
states on the recurrent weights in the calculations of Hessian elements. Then, we
obtain the expression of the Hessian elements (second partial derivatives of the cost
function E) with respect to the recurrent weights R;; and Ry
0°E

: A
"R ,0R

= Y £'(d;(1)*g'(h;(1))g'(h; YW, W, V, (t-D)V,.(t-1) (2.11)

that is similar to Equation 2.10. We perform the analysis similar to that of Equation
2.10. We keep the Hessian elements (second partial derivatives) with respect to the
outgoing weights of the same hidden units, that is r=r', and ignore the others. In

other words, the outgoing weights of the same hidden unit are grouped in the weight

vector of a block.
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Take a recurrent network with N hidden units as an example. The N
outgoing weights of the same hidden unit are grouped in the weight vector of a
block. There are N such weight vectors. This is illustrated in Figure 2-3 for the
recurrent network with N = 3. In each diagram, the bold connections are the weights

that are grouped in the weight vector of a block.
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Figure 2-2 The weight arrangement of the correlation block-diagonal Hessian matrix. In each

diagram, the bold weights are grouped in the weight vector of a block.
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(b)

Figure 2-3 The weight arrangement of the correlation block-diagonal Hessian matrix. In each

diagram, the bold weights are grouped in the weight vector of a block.
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2.3.2 One-unit block-diagonal Hessian matrix

The one-unit block-diagonal Hessian matrix is formed by ignoring the
Hessian elements (second partial derivatives of the cost function E) with respect to
the incoming weights of different hidden units. In other words, the incoming
weights of the same hidden unit are grouped in the weight vector of a block. This
weight arrangement is called the one-unit weight-grouping method.  This
arrangement has been applied to the feedforward network training in [Kollias88] and
[Kollias89].

Take a recurrent network with M input and N hidden units as an example.
Each hidden unit is connected by M input units, one bias and N hidden units. The
M+N+1 incoming weights of the same hidden unit are grouped in the weight vector
of a block. There are N such weight vectors. This is illustrated in Figure 2-4 for the
recurrent network with M = 2 and N = 3. In each diagram, the bold connections are

the weights that are grouped in the weight vector of a block.

2.3.3 Sub-network block-diagonal Hessian matrix

The sub-network block-diagonal Hessian matrix is formed as follows. At
first, the hidden units of a network are divided into several groups of hidden units
and each group of hidden units is called a sub-network. The sub-network block-
diagonal Hessian matrix is formed by ignoring the Hessian elements (second partial
derivatives of the cost function E) with respect to the incoming weights of different
sub-networks. In other words, the incoming weights of the same sub-network are
grouped in the weight vector of a block. This weight arrangement is called the sub-
network weight-grouping method.

Take a recurrent network with M input and N hidden units as an example.
We assume that each sub-network consists of U hidden units. Then, the N hidden
units are divided into N/U sub-networks (assuming that U is a factor of N). Each
sub-network is connected by UxM input units, U biases and UXN hidden units. The
UM+N+1) incoming weights of the same sub-network are grouped in the weight
vector of a block. There are N/U such weight vectors. This is illustrated in Figure
2-5 for the recurrent network with M = 2 and N = 3. U = 3 is chosen in this

example. The bold connections are the weights that are grouped in the weight vector

of a block.
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If U = 1, the sub-network block-diagonal matrix becomes the one-unit block-
diagonal matrix described in Section 2.3.2. If U = x, we call this sub-network block-
diagonal matrix the x-unit block-diagonal Hessian matrix. Its weight arrangement is

called the x-unit weight-grouping method.

2.3.4 Layer block-diagonal Hessian matrix

The layer block-diagonal Hessian matrix is formed by ignoring the Hessian
elements (second partial derivatives of the cost function E) with respect to the
weights of different layers. In other words, the weights of the same layer are
grouped in the weight vector of a block. This weight arrangement is called the layer
weight-grouping method. This arrangement was suggested for the feedforward
networks in [Wille97].

Take a recurrent network with M input and N hidden units as an example.
The (M+1)N input-to-hidden weights are grouped in the weight vector of a block
and the N? recurrent weights are grouped in the weight vector of another block. This
is illustrated in Figure 2-6 for the recurrent network with M = 2 and N = 3. In each

diagram, the bold connections are the weights that are grouped in a block.

Table 2-1 summarizes the numbers and sizes of the blocks of the block-
diagonal Hessian matrices described in Sections 2.3.1 to 2.3.4 and Table 2-2
summarizes the weight-grouping methods used in these block-diagonal Hessian
matrices. Table 2-3 gives some examples for the recurrent networks with one input,

six or nine hidden and one output units.
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Figure 2-4 The weight arrangement of the one-unit block-diagonal Hessian matrix. In each diagram,

the bold weights are grouped in the weight vector of a block.
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Figure 2-5 The weight arrangement of the three-unit block-diagonal Hessian matrix. The bold

weights are grouped in the weight vector of a block

Figure 2-6 The weight arrangement of the layer block-diagonal Hessian matrix. In each diagram, the

bold weights are grouped in the weight vector of a block
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Block-diagonal Hessian matrix

No. of

Block sizes, {qi, 92, ..+, qs}

blocks, B
Correlation M+N+2 {N,N, ..., N,P(N+1)}
Sub-network N/U+1 {UM+N+1), UM+N+1), ..., UM+N+1), P(N+1)}
Sub-network (U=1) / One-unit N+1 {M+N+1, M+N+1, ..., M+N+1, P(N+1)}
Sub-network (U=3) / Three-unit N/3+1 {3(M+N+1), 3(M+N+1), ..., 3(M+N+1), P(N+1)}
Layer 3 {(M+1)N, N%, P(N+1)})

Table 2-1 Numbers and sizes of blocks of the correlation, sub-network, one-unit, three-unit and layer

block-diagonal Hessian matrices where M, N, P are the number of input, hidden and output units

respectively.
Weight-grouping method Which weights are grouped in the weight vector of a block
output-layer weights;
Correlation

outgoing weights of the same hidden unit or the same input unit

Sub-network

output-layer weights; incoming weights of the same sub-network

Sub-network (U=1) / One-unit

output-layer weights; incoming weights of the same hidden unit

Sub-network (U=3) / Three-unit

output-layer weights;

incoming weights of the same sub-network (U=3)

Layer

weights of the same layer

Table 2-2 Descriptions of the weight-grouping methods used in the correlation, sub-network, one-unit,

three-unit and layer block-diagonal Hessian matrices.

Block-diagonal
_ No. of Hidden units [ No. of blocks Block sizes
Hessian matrix
6 9 {6,6,6,6,6,6,6,6,7}
Correlation
9 12 {9,9,9,9,9,9,9,9,9,9,9,10}
Sub-network (U=1) 6 ; {8,8,8,8,8,8,7}
One-unit 9 10 {11,11,11,11,11,11,11,11,11,10}
Sub-network (U=3) 6 3 {24,247}
Three-unit 9 4 {33,33,33,10}
6 3 {12,36,7}
Layer
9 3 {18,81,10}

Table 2-3 Numbers and sizes of blocks of the correlation, one-unit, three-unit and layer block-

diagonal Hessian matrices for the recurrent network with one input, six or nine hidden and one output

units.
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2.4 Updating methods

The updating equation of the Levenberg-Marquardt method in Equation 1.24
is written again as follows.
Aw=-JJ+AD)'Je (2.12)
If we apply the block-diagonal Hessian matrix in Equation 2.4 to Equation 2.12,
Equation 2.12 becomes
AW = -(Hypiock.diag. + A 1) J'e (2.13)
This system of updating equations can be decomposed into B smaller systems of
updating equations.
Awy = -1 T+ ML) e
Awy=-(J3" L+ ML) ' J)e

Awg = -(Jp"Jp + A In) ' Jo'e (2.14)
where Awj is a g;x1 vector and [Aw1T szT AwBT]T = Aw

I; is a g;Xq; unit matrix

A is a learning parameter

B is the number of blocks

The calculation of the weight update vector Aw in Equations 2.14 requires
less operations and storage than that in Equation 2.12. Moreover, Aw;, Aw, ... Awg
can be calculated separately in Equations 2.14 but they should be calculated at the
same time in Equation 2.12. This property of Equation 2.14 leads to two different
types of updating methods. They are the asynchronous and synchronous updating
methods. The asynchronous method updates weights of one block w; at a time while
the synchronous method updates weights of all blocks w at a time. The descriptions
of these two updating methods and their effects, together with the factors of block-
diagonal Hessian matrices, on the training performance will be described in Chapter

4. Chapter 3 describes the data set and the setup of the experiments used in Chapter

4 and subsequent chapters.
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Chapter 3 Data set and setup of experiments

3.1 Introduction

In this chapter, the problems that we chose to evaluate our proposed method
are described. These problems consist of three time series prediction tasks and are
described in Section 3.2. The details of this section include the source of data, data
generation method, and partition of the training, validation and testing data.

The settings of our experiments are described in Section 3.3. They include
the choices of recurrent neural network parameters and initialization methods. The

method of dealing with over-fitting is described in Section 3.4.

3.2 Data set

Three time series are chosen as our data set. They are the single sine,
composite sine and sunspot data, which are described in Sections 3.2.1 to 3.2.3
respectively. The first two series are synthetic data and the last one is real-life data.
The data are used to do one-step ahead prediction. For example, when y(t) is
presented to the network, the network gives us its estimate of y(t+1) where y(t), t =

0,1, 2, ... is the time series.

3.2.1 Single sine

The first series shown in Equation 3.1 is a sinusoidal sequence of period N; =

16. We call it single sine.
o
1K) = sin(= =) (3.1)

wherek=0,1, ...,52
In real-life examples, the data usually contains some noise. To simulate this

situation, we added some noise € to Equation 3.1.
., 2mk
yin(k) = sm(?) + € (3.2)

where k=0, 1, ..., 52
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The noise € is uniformly distributed over the interval (-, o). Its probability

density function Prob(g) is

i .
Piobl=tng 1 F ESE (3.3)

0 otherwise
In our experiment, we set 24 on the ratio of the average power of the signal
y1a(k) to the average power of the noise €, which is known as the signal-to-noise
ratio (SNR). The calculation of the interval (-o, o) of the noise € is based on this
ratio. It is as follows.
We first compute the average power of the signal ya(k).

1 N,-1
P,=— 3y, (K)?=0.5
N] k=0

We then compute the average power of the noise €.

a2

P, =E[e’] = [ &Prob(e)de = =

Since SNR = % = 24, we obtain that

n

0.5

a2

=24

[

o=0.25
We used Equation 3.2 to generate 52 data points (3.75 periods). The first 44
data points (2.75 periods) were used for training and the remaining 8 data points (0.5
period) were used for validation. Another 52 data points without added noise as

shown in Equation 3.1 were used for testing.

3.2.2 Composite sine
The second series shown in Equation 3.4 is the sum of four sinusoidal

sequences of different periods and amplitudes.

y2a(k) = y2(k) (3.4)

1
max(|y, (k)|
where k=0,1, ..., 208

2nk 21k
64

ok .2 .
ya(K) = sm(%) % sm(%) +4sin(S) + dsin( S =)

3
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max |y, (k)]) = 9.0230

This series is re-scaled such that their values are within the range of [-1, 1].
Its period is N = 64. We call this series composite sine.

Like what we did to the single sine data described in Section 3.2.1, we added
some noise € to the data as shown in Equation 3.5.
y2b(K) = y2a(k) + € (3.5)
where k=0,1, ..., 208

The noise € is uniformly distributed over the interval (-c, o). Its probability
density function Prob(g) is shown in Equation 3.3. The interval (-o, ) of the noise €
is determined by the pre-defined signal-to-noise ratio (SNR). In our case, SNR was
set to 24 and the calculation of o was similar to that of the single sine data described
in Section 3.2.1. The o calculated is 0.166.

We used Equation 3.5 to generate 208 data points (3.75 periods). The first
176 data points (2.75 periods) were used for training and the remaining 32 data
points (0.5 period) were used for validation. Another 208 data points without added

noise as shown in Equation 3.4 were used for testing.

3.2.3 Sunspot

The third series is a widely used real-life time series, yearly sunspot numbers.
Sunspots are dark blotches on the sun. Normalized sunspot data from 1700 through
1920 was used for training and data from 1921 to 1955 was used for validation.
Data from 1921 to 1955 was also used for testing to estimate the generalization

performance.

Figure 3-1 shows the graphs of the above three time series. Table 3-1

summarizes the numbers of training data, validation data and testing data.

Data No. of training data No. of validation data No. of testing data
Single sine 44 8 52
Composite sine 176 32 208
Sunspot 220 35 35

Table 3-1 Numbers of training, validation and testing data.
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3.3 Choices of recurrent neural network parameters and initialization

methods

Layered fully recurrent network described in Section 1.2.3 would be used in

our experiments. The choices of its parameters, numbers of input, hidden and output

units, will be described in Section 3.3.1. Moreover, we will describe how the hidden

states and weights are initialized in Sections 3.3.2 and 3.3.3 respectively.
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3.3.1 Choices of numbers of input, hidden and output units

The three time series chosen are univariate and at each time step, only the
current data is input to the network. So, the number of input unit M is one. The task
is to do next step prediction. So, the number of output unit P is also one.

Regarding the choice of the numbers of hidden units N, we used the
Levenberg-Marquardt method described in Section 1.3.2.2 to train the networks with
different numbers of hidden units (3, 6, and 9). We trained each network 20 times
using different weight initializations. The one that gives the lowest average
generalization error is chosen. Figures 3-2, 3-3 and 3-4 show the generalization
errors of the networks trained to predict the single sine, composite sine and sunspot
data respectively. These figures are the Box-whisker plots [Lawrence97]. The inter-
quartile range (IQR) is shown with a box and the median is represented with a bar
across the box. Whiskers extend from the ends of the box to the minimum and
maximum values. Points greater than 1.5 IQR from the ends of the box is
considered to be outliers and plotted separately with symbol ‘+’. In addition, the
mean marked with ‘x’ and interpolated linearly by a solid line is superimposed on
the plot. The minima of the generalization errors of the networks trained to predict
the single and composite sine data are shown at the six hidden units. The minimum
of the generalization error of the networks trained to predict the sunspot data is
shown at the nine hidden units.

Table 3-2 shows the summary of number of hidden units, number of weights
and data-to-weight ratio. We used the data-to-weight ratio to determine whether the

network has too many free parameters.

3.3.2 Initial hidden states
The hidden states were initialized to 0. This means that no information is fed

back to the network at the first time step.

3.3.3 Weight initialization method

The network weights were initialized to random numbers. They were
uniformly distributed inside a small range of values [-0.1, 0.1]. Since a particular
training run was sensitive to the initial conditions of the weights, we trained each

network 20 times using different weight initializations.
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Figure 3-2 Generalization errors measured in terms of mean squared error against number of hidden units. The

single sine training data was used in these experiments.
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composite sine training data was used in these experiments.
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Figure 3-4 Generalization errors measured in terms of mean squared error against number of hidden

units. The sunspot training data was used in these experiments.

Data No. of hidden units | No. of weights No. of training data : No. of weights
Single sine 6 55 1253 1
Composite sine 6 35 32:1
Sunspot 9 109 2:1

Table 3-2 Number of hidden units, number of weights and data-to-weight ratio

3.4 Method of dealing with over-fitting

A network with too many free parameters will model the small details or
noise of the time series and result in poor generalization. This phenomenon is called
over-fitting. To avoid over-fitting, we used early stopping [Sarle95]. Validation
error was computed on each iteration and the set of weights that minimized the
validation error within the maximum amount of computation was chosen to be the

solution. We define the final training time as the time required to reach the

minimum of the validation error.
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Chapter 4 Updating methods

4.1 Introduction

As discussed in Chapter 2, we need to consider two factors when the
technique of block-diagonal Hessian approximation is applied. These two factors
are

i. the choice of weight updating methods and
ii. the choice of block-diagonal Hessian matrices
In this chapter, we will study the first factor.

If the block-diagonal Hessian approximation is used, the original system of
updating equations can be decomposed into B smaller systems of updating equations
where B is the number of blocks. The weight updates of these B decomposed
systems of updating equations can be calculated separately. So, the weights of
different blocks can be updated asynchronously or synchronously. We call these
updating methods asynchronous and synchronous updating methods respectively.
Asynchronous method updates weights of one block at a time while synchronous
method updates weights of all blocks at a time. In this chapter, implementation of
these two updating methods is described and performance of these two updating
methods is compared.

The subsequent sections are organized as follows. In Sections 4.2 and 4.3,
we will evaluate the performance of the asynchronous updating method on the time
series prediction problems described in Chapter 3. The block-diagonal Hessian
matrices described in Chapter 2 would be used. Moreover, we would use the
original Levenberg-Marquardt method with full Hessian matrix to provide a basis for
comparison. Section 4.4 describes the corresponding result of using the synchronous
updating method.

In Section 4.5, the training time performance of the asynchronous and
synchronous updating methods is compared. The training time performance depends
on two factors, which are the computation load per complete weight update and

convergence speed. The effects of the updating methods on these two factors are

also compared.
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Finally, we compare our proposed methods with the traditional method: the

gradient descent method with adaptive learning rate and momentum in Section 4.6.

4.2 Asynchronous updating method

The weight updating methods are divided into the asynchronous and
synchronous updating methods. In this section, the asynchronous updating method,
which updates weights of one block at a time, is studied. We will describe its

implementation and evaluate its performance.

4.2.1 Algorithm

The implementation of the asynchronous updating method is shown in

Algorithm 4.1.

Algorithm 4.1 Asynchronous updating method

1. A, Ay, ..., Ag=0.001, overflow_A =0, B = 10, iteration = 0 and finished = false
2. 1 (index for weight vectors of different blocks) = 1

3. WHILE finished = false

4. calculate J;'e

3. IF J;"e > minimum_gradient

6. IF A; > maximum_A

7. decrease A; by a factor

8. overflow_A < overflow_A - 1

9. END

10. calculate Aw; = -(Ji"Ji + 1 L) ' Ji"e

11. calculate E(w;+Aw;)

12. WHILE (A; < maximum_A) and (E(w;+Aw;) = E(w;))
13. increase A; by a factor 8

14. calculate Aw;

15. calculate E(wi+Aw;)

16. END

17. IF Ai < maximum_A
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18. update w; (Wi <— w; + Aw;)

19. decrease A; by a factor 3

20. iteration < iteration + 1

21. ELSE

22. overflow_A < overflow_A + 1
23. END

24. END

25. updatei(i<i+1;IFi>B,i=1,END)
26.  calculate J'e
27. IF (iteration > maximum_iteration) OR
(minimum of validation error is reached = true) OR

(J"e < minimum_gradient) OR (overflow_A\ = B)

28. finished = true
29. END
30. END

In this algorithm, only weights of one block at a time are updated (Step 18).
The setting of A; is the same as the setting of A of the original Levenberg-Marquardt

method with full Hessian matrix described in Section 1.3.2.2.

4.2.2 Method of study
To have broader evaluation on the performance of the asynchronous updating

method, we used the asynchronous updating method with different block-diagonal
Hessian matrices. These block-diagonal Hessian matrices are the correlation, one-
unit, three-unit and layer block-diagonal Hessian matrices described in Sections
2.3.1 to 2.3.4 respectively. To provide a basis for comparison, we used the original
method with full Hessian matrix. To sum up, we also used the training methods
with the following options.

i. asynchronous updating method and correlation block-diagonal Hessian matrix

ii. asynchronous updating method and one-unit block-diagonal Hessian matrix
iii. asynchronous updating method and three-unit block-diagonal Hessian matrix
iv. asynchronous updating method and layer block-diagonal Hessian matrix

v. original method and full Hessian matrix
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These training methods were used to train the layered fully recurrent network
described in Section 1.2.3 to predict the single sine, composite sine and sunspot data
described in Sections 3.2.1 to 3.2.3 respectively.

We evaluated the performance of the asynchronous updating methods by
comparing it with the performance of the original method with full Hessian matrix.
The term performance refers to the time required to train the network (the final
training time) and the generalization error of the trained network. The final training
time and the generalization error are measured in terms of number of flops and mean

squared error respectively.

4.2.3 Performance

The performance of different training methods is shown in Figure 4-1.
Figures 4-1a and 4-1b show the final training time and the generalization errors
respectively. The performance of the asynchronous updating methods used with the
correlation, one-unit, three-unit and layer block-diagonal Hessian matrices is plotted
in the first four columns respectively. The performance of the original method used
with full Hessian matrix is plotted in the last column. This figure shows the
performance of the training methods used to train the networks to predict the single
sine data. The corresponding graphs of the performance of the training methods
used to train the networks to predict the composite sine and sunspot data are shown
in Figures 4-2 and 4-3 respectively.

We compare the performance of the asynchronous updating methods with
that of the original method shown in Figures 4-1 to 4-3. The comparisons are made
in terms of the ratios of their average performance. The ratios of their average final
training time and average generalization errors are summarized in Tables 4-1 and 4-2

respectively.
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Training data

Average final training time of the asynchronous updating method

Average final training time of the original method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 0.98 0.87 0.78 0.79
Composite sine 1.86 1.65 1.38 1.27
Sunspot 1.28 0.23 0.25 0.32

Table 4-1 Ratios of the average final training time of the asynchronous updating method to that of the

original method under different training data and block-diagonal Hessian matrices.

Training data

Average generalization error of the asynchronous updating method

Average generalization error of the original method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 4.03 3.42 3.74 3.01
Composite sine 3.49 323 3.06 2.32
Sunspot 1.21 1.41 1.68 1.14

Table 4-2 Ratios of the average generalization error of the asynchronous updating method to that of

the original method under different training data and block-diagonal Hessian matrices.

Table 4-1 shows that the training time performance of the asynchronous

updating methods relative to that of the original method varied with the training
data. It was good (shorter final training time), average or poor when the networks
were trained to predict the sunspot, single sine or composite sine data respectively.
Table 4-2 shows that the generalization performance of the asynchronous
updating methods was slightly poor when the networks were trained to predict the
sunspot data but was very poor when the networks were trained to predict the single
sine or composite sine data. The generalization errors were several times larger than

that of the original method. This problem is investigated below.

4.2.4 Investigation on poor generalization
4.2.4.1 Hidden states

Hidden states show the internal operations of the network. Our first
examination is the hidden states of the network in the final weight configuration.

The hidden states of the networks trained to predict the single sine, composite sine

52



and sunspot data are shown in Figures 4-4, 4-5 and 4-6 respectively. The
asynchronous updating method and the one-unit block-diagonal Hessian matrix were
used to train these networks. In these figures, different rows represent different
trials. There are 20 rows representing 20 different trials. Different columns
represent different hidden units. We used networks with six hidden units to predict
the single and composite sine data. So, there are six columns representing six
different hidden units in Figures 4-4 and 4-5. We used networks with nine hidden
units to predict the sunspot data. So, there are nine columns representing nine
different hidden units in Figure 4-6. The hidden states in each subplot are plotted
against time. Moreover, we draw a vertical line to separate the hidden states of the
network operated on the training set and the validation set.

Figures 4-4 and 4-5 show that the states of most hidden units of the networks
trained to predict the single and composite sine data were in the saturation region,
where the hidden state levels off and approaches fixed limits, in most trials and time.
Average absolute hidden state defined in Equation 4.1 was used to measure the

degree of saturation.

1 20 N T
Average absolute hidden state = ——
g TR

tr=1 j=1 t=1

V;'(t)l @.1)

where Vjtr (t) is the state of the jth hidden unit at time t in the trial tr,

t, j and tr are the indexes of the time step, hidden unit and trial,

N is the number of hidden units and

T is the number of training and validation data
The average absolute hidden states shown in Figures 4-4 and 4-5 are 0.79 and 0.73
respectively. They are large when compare with the average absolute hidden states
of the networks trained by the original method, which are 0.42 and 0.36. The
observations about the hidden states were the same when the other block-diagonal
Hessian matrices (correlation, three-unit and layer block-diagonal Hessian matrices)
were used instead of the one-unit block-diagonal Hessian matrix. The average
absolute hidden states of using the other block-diagonal Hessian matrices are

summarized in Table 4-3.
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Average absolute hidden state

Training correlation one-unit block- | three-unit block- layer block- full
data block-diagonal diagonal diagonal diagonal Hessian
Hessian matrix | Hessian matrix | Hessian matrix | Hessian matrix | matrix

Single sine 0.91 0.79 0.88 0.86 0.42

Com.posite 0.84 0.73 0.80 0.74 0.36

sine
Sunspot 0.73 0.57 0.68 0.60 0.38

Table 4-3 Average absolute hidden states of the asynchronous updating method under different

training data and block-diagonal Hessian matrices.

Similarly, Figure 4-6 shows that the states of about half of the hidden units of
the networks trained to predict the sunspot data were in the saturation region in most
trials and time. The average absolute hidden state is 0.57. Again, it is large when
compare with the average absolute hidden state of the networks trained by the
original method, which is 0.38. The observations about the hidden states were the
same when the other block-diagonal Hessian matrices were used instead of the one-
unit block-diagonal Hessian matrix.

We observed that the poor generalization performance was related to the
frequently saturated hidden states. Most hidden units of the networks trained to
predict the single and composite sine data were frequently saturated and the
generalization performance was very poor. About half of the hidden units of the
networks trained to predict the sunspot data were frequently saturated. The problem
of frequently saturated hidden states was less serious and the generalization
performance was less poor.

The frequently saturated hidden states may be due to the large incoming
weight magnitudes of the hidden units. So, the next examination is the incoming

weight magnitudes of the hidden units in the final weight configuration.

4.2.4.2 Incoming weight magnitudes of the hidden units
The incoming weight magnitudes of the hidden units were measured in two
ways.
1. One measurement is the maximum and minimum of the incoming weights

ii. The other is the 90th and 10th percentiles of the incoming weights
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The maximum and minimum are based entirely on the extreme values. The
90th and 10th percentiles depend on the middle 80% of the incoming weights and
are not affected by the extreme values. The difference between the 90th and 10th
percentiles is used to measure the typical range of the incoming weights.

Figure 4-7 shows the magnitudes of the above measures. The placements of
the training methods on the x-axes are the same as those shown in Figure 4-1.
Figure 4-7a shows the magnitudes of maximum and minimum of the incoming
weights of the hidden units, which are represented by symbols 'x' and 'o' respectively.
Figure 4-7b shows the magnitudes of the 90th and 10th percentiles of the incoming
weights of the hidden units, which are represented by symbols 'x' and 'o' respectively.
These incoming weights are the ensemble of the incoming weights of 20 networks of
different trials. These networks were trained to predict the single sine data. The
corresponding graphs of the weight magnitudes of the networks trained to predict the
composite sine and sunspot data are shown in Figures 4-8 and 4-9 respectively.

These figures show that the magnitudes of the maximum and minimum of
the incoming weights of the networks that we used the asynchronous updating
methods to train were from 3.5 to 40000 times larger than those of the networks that
we used the original method to train. The magnitudes of the 90th and 10th
percentiles of the incoming weights of the networks that we used the asynchronous
updating methods to train were from 1.25 to 20 times larger than those of the
networks that we used the original method to train. These indicated that at least 20%
of the incoming weight magnitudes of the hidden units were from large to extremely
large. The frequently saturated hidden states were probably due to these large
incoming weight magnitudes of the hidden units.

The large incoming weight magnitudes of the hidden units can be explained
as follows. Initially, the weights were very small and so did the network output.
And we updated a small part of weights at a time to minimize the difference between
the initial network output and the target value. That part of weights might become

very large in order to produce significant network output when the other weights

were still small.
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4.2.4.3 Weight change against time

We investigated the problem further by observing the weight changes against
time. The result showed that the large weight magnitudes were due to the large
weight changes, which occur in the beginning of the learning. To solve this
problem, we imposed weight change constraint on each weight. We call this the
asynchronous updating with constraint method, which will further be described in

Section 4.3.
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Descriptions
Label ' '
Hessian matrix updating method maximum allowed weight change
full full Hessian matrix N/A N/A
c/a asynchronous )
c/a(l) correlation block-diagonal 1
. ) asynchronous with
c/a(0.5) Hessian matrix _ 0.5
constraint
c/a(0.1) 0.1
ul/a asynchronous oo
ul/a(l) one-unit block-diagonal 1
) . asynchronous with
ul/a(0.5) Hessian matrix _ 0.5
constraint
ul/a(0.1) 0.1
u3/a asynchronous )
u3/a(l) three-unit block-diagonal 1
) . asynchronous with
u3/a(0.5) Hessian matrix 0.5
constraint
u3/a(0.1) 0.1
l/a asynchronous oo
l/a(1) layer block-diagonal 1
. : asynchronous with
1/a(0.5) Hessian matrix 0.5
constraint
1/a(0.1) 0.1

Table 4-4 Labels for the training methods using different Hessian matrices, asynchronous updating

methods and values of maximum allowed weight change.

Descriptions
Label
Hessian matrix updating method
full full Hessian matrix N/A
c/s multiple A's with line search synchronous
correlation block-diagonal
c/s(l) , . single A synchronous
Hessian matrix
c/s(ls) multiple A's synchronous
ul/s multiple A's with line search synchronous
one-unit block-diagonal
ul/s(l) . ) single A synchronous
Hessian matrix
ul/s(ls) multiple A's synchronous
u3/s multiple A's with line search synchronous
three-unit block-diagonal
u3/s(l) _ ) single A synchronous
Hessian matrix
u3/s(ls) multiple A's synchronous
I/s multiple A's with line search synchronous
layer block-diagonal
s(l) ) i single A synchronous
Hessian matrix
1/s(1s) multiple A's synchronous

Table 4-5 Labels for the training methods using different Hessian matrices and implementation of

synchronous updating methods

37




i (a) Single sine
v . ! ¥ J
45| . correlation one-ufit three-unit layer : . ... ... .. full ;o
block-diagonal block-diagonal block-giagonal block-ﬁiagonal Hessian
. 4 Hessialp matrix- - - - - Hessian - matrix- - - - - Hessiah‘matrix - - - - - Hessian‘matrix - -+ - - - matrix - -
2 : i | : ——
o | I : '
g 85 b soesereo s | ................... frovenmenmensnenana : ........................................ ]I ........ il
© | ! i : |
(o I § [ ................... T B I T I Joviniann =
S : i I [
O, ! el s T — |
E” ; i 5 5 :
g) o R L REY EEREERER] SERE R EEEE R R SR TR RREE RREEE TR =
= : ; : | —=
'® N P <l N0, N IR /S, IS IS I / ..... - -
15 : : : :
= : o T — e ;
© : : : : :
é 1l R ERREEY TR DR PRERE R e R R EENE EEEEE R CEREE S =
05k .. .................. .................... .................... R T (XL -
_i_ _1_ _1_ ........ =
0 b ¢ s s b s e l ................... R i X . . A A
cla ul/a u3/a l/a full
training method
(b) Single sine
R Vs S e SR e R SR o P o S SR E v e T ) 3
o : : 3 :
oo0gl- . correlation one-unit . three-unit layer . ... full ;o
block-diagonal block-diagonal block-diagonal block-diagonal Hessian
_.0.08 - Hessian matrix- - - -- Hessi@'- matrix- - - Hessian matrix - - - - - Hessian matrix - -+ - - - matfix - - -
L : : : : :
n : : : : :
S 007f - T ................. .................... .................... T SRR -
e : I | :
g 006+« : ................... Fossevesonsnnossoces | .................... I ............................ -
() ; i | :
g : | i |
9 0.05 R R R R I corr S EEEEEE R i S =
T : | : !
N sosl — e — S oo il
m . . . .
g 0.03 S, T N Sanresloannmiaeanafiee o TR [ oot
o ! : E
0'02 b v o v v v 00 l ................... I .................... ; ...............................................
) ! ;
: 1 ==
0‘01 b ¢ ¢ e s e ~ ................... .................... - .................... ..............
! 1 I L 1
c/a ul/a ud/a I/a full

training method

Figure 4-1 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error.

The x-axes show the training methods using the

asynchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 4-4. The single sine training data was used in these experiments.
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Figure 4-2 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using the
asynchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 4-4. The composite sine training data was used in these experiments.
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Figure 4-3 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using the
asynchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 4-4. The sunspot training data was used in these experiments.
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Figure 4-4 Hidden states of 20 networks of different trials. The asynchronous updating method and

The single sine

the one-unit block-diagonal Hessian matrix were used to train these networks.

training data was used in these experiments.
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Figure 4-5 Hidden states of 20 networks of different trials. The asynchronous updating method and

the one-unit block-diagonal Hessian matrix were used to train these networks. The composite sine

training data was used in these experiments.
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Figure 4-6 Hidden states of 20 networks of different trials. The asynchronous updating method and

the one-unit block-diagonal Hessian matrix were used to train these networks. The sunspot training

data was used in these experiments.
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data was used in these experiments. (continued)
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Figure 4-7 Magnitudes of (a) minimum ‘o’ and maximum ‘x’ and (b) the 10th percentile ‘o’ and 90th
percentile ‘x’ of the incoming weights of the hidden units. The x-axes show the training methods
using the asynchronous updating method and different block-diagonal Hessian matrices. The labels

of the x-axes are explained in Table 4-4. The single sine training data was used in these experiments.
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Figure 4-8 Magnitudes of (a) minimum ‘o’ and maximum ‘x’ and (b) the 10th percentile ‘o’ and 90th

percentile ‘x’ of the incoming weights of the hidden units. The x-axes show the training methods

using the asynchronous updating method and different block-diagonal Hessian matrices. The labels

of the x-axes are explained in Table 4-4. The composite sine training data was used in these

experiments.
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Figure 4-9 Magnitudes of (a) minimum ‘0’ and maximum ‘x’ and (b) the 10th percentile ‘0’ and 90th
percentile ‘x’ of the incoming weights of the hidden units. The x-axes show the training methods
using the asynchronous updating method and different block-diagonal Hessian matrices. The labels

of the x-axes are explained in Table 4-4. The sunspot training data was used in these experiments.
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4.3 Asynchronous updating with constraint method

The implementation of the asynchronous updating method proposed in
Section 4.2 has the problem of poor generalization generated by the large incoming
weight magnitudes of the hidden units. In this section, another implementation of
the asynchronous updating method which aims to remedy this problem is proposed.

The evaluation of this implementation is the same as that described in Section 4.2.

4.3.1 Algorithm

Asynchronous updating with constraint method is derived from the
asynchronous updating method described in Section 4.2.1. It adds some procedures
to the asynchronous updating method to ensure that large weight changes do not

happen. Its algorithm is as follows.

Algorithm 4.2 Asynchronous updating with constraint method

1. A, A, ..., A =0.001, overflow_A =0, B = 10, iteration = 0 and finished = false
2. set the value of maximum allowed weight change, maxwtchg
3. 1 (index for weight vectors of different blocks) = 1

4. WHILE finished = false

5. calculate J iTe

6. IF J,Te> minimum_gradient

T IF A; > maximum_A

8. decrease A; by a factor 8

0. overflow_A <« overflow_A - 1

10. END

11 calculate Aw; = -(J;"Ji + L L)' Ji"e

12. calculate E(w;+Aw;)

13. WHILE (A; < maximum_A) and (E(w;+Aw;) > E(w;))
14. increase A; by a factor 3

15. calculate Aw;

16. calculate E(wi+Aw;)

17. END
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18. IF A; < maximum_A

19. IF || AW; || > maxwtchg

20. update w; (W; <— w; + il Aw;)
| Aw, ||..

21, ELSE

22. update w; (wW; <— w; + Aw;)

23. END

24. decrease A; by a factor

25. iteration <« iteration + 1

26. ELSE

27. overflow_A <« overflow_A + 1

28. END

29. END

30. updatei i< i+ 1;IFi>B,i=1, END)
31.  calculate J7e
32. IF (iteration > maximum_iteration) OR
(minimum of validation error is reached = true) OR

(J"e < minimum_gradient) OR (overflow_)\ = B)

33 finished = true
34. END
35. END

" l.-norm || X |- is defined as max | x il
J

The added procedures include the setting of the maximum allowed weight
change parameter (Step 2), checking of the weight change magnitude and

conditional constraint application (Steps 19 to 23).

4.3.2 Method of study

We evaluated the performance of the asynchronous updating with constraint
method by comparing it with the performance of the asynchronous updating without
constraint method described in Section 4.2 and the original method with full Hessian
matrix. The asynchronous updating with constraint method would be used with the

correlation, one-unit, three-unit and layer block-diagonal Hessian matrices described
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in Sections 2.3.1 to 2.3.4 respectively. These training methods were used to train the
layered fully recurrent network described in Section 1.2.3 to predict the single sine,
composite sine and sunspot data described in Sections 3.2.1 to 3.2.3 respectively.
When the asynchronous updating with constraint method is used, the value of
maximum allowed weight change needs to be set (Step 2 of Algorithm 4.2). To
study the effect of the value of maximum allowed weight change, we tested a range

of values. The values that we chose are 1, 0.5 and 0.1.

4.3.3 Performance

The performance of the asynchronous updating with constraint method is
plotted in Figure 4-10. Figures 4-10a and 4-10b show the final training time and the
generalization errors respectively. Each figure is divided into five parts. The first
four parts show the performance of using the correlation, one-unit, three-unit and
layer block-diagonal Hessian matrices respectively. In each part, the first column
shows the performance of the asynchronous updating without constraint method
discussed in Section 4.2. The next three columns show the performance of the
asynchronous updating with constraint methods used with the maximum allowed
weight change of 1, 0.5 and 0.1 respectively. These values are written in the
brackets of their respective x-axis labels. The last part of the figure shows the
performance of the original method with full Hessian matrix. This figure shows the
performance of the training methods used to train the networks to predict the single
sine data. The corresponding graphs of the performance of the training methods
used to train the networks to predict the composite sine and sunspot data are shown

in Figures 4-11 and 4-12 respectively.

4.3.3.1 Generalization performance

The generalization performance of the asynchronous updating with constraint
method shown in Figures 4-10b, 4-11b and 4-12b is first examined. Smaller value
of maximum allowed weight change means greater constraint. These figures show
that as the constraint increased, the average generalization errors decreased and then
either decreased slowly or started to increase. The average generalization errors
decreased to the levels that were approximately the same as that of the original

method with full Hessian matrix. Thus, the asynchronous updating with constraint
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method can remedy the poor generalization problem generated by the large incoming
weight magnitudes of the hidden units.

The generalization performance of the asynchronous updating with constraint
method depends on the value of maximum allowed weight change. The values of
0.5, 0.5 and 1 were chosen when the networks were trained to predict the single sine,
composite sine and sunspot data respectively. The choices are based on the
following criteria.

i. First, the generalization performance is similar to that of the original method
with full Hessian matrix.

ii. Second, the value of maximum allowed weight change should be as large as
possible so as not to limit the learning step, that is the weight change, too
much.

In our experiments, over 80% of weight magnitudes of the networks that we
used the original method to train were below 0.6. Comparing these values with the
values of maximum allowed weight change showed that the constraint seldom
affected the normal weight update. We suggest the half of the 10 to 90 percentile
range of the weights as the value of maximum allowed weight change in the first
attempt. First, it can prevent the exceptional large weight update. Second, it does

not limit the learning step too much.

4.3.3.2 Training time performance

Then we examine the training time performance of the asynchronous
updating with constraint method shown in Figures 4-10a, 4-11a and 4-12a. These
figures show that the average final training time decreased and then increased as the
constraint increased.

In Table 4-6, the training time performance of the asynchronous updating
with constraint method was compared with the training time performance of the
asynchronous updating without constraint method. In Table 4-7, it was compared
with the training time performance of the original method. The values of maximum
allowed weight change used in the comparisons are shown in the second column of
Table 4-6. The comparisons were made in terms of the ratios of their average final
training time. Table 4-6 shows that the training time performance of the

asynchronous updating with constraint method was better than that of the
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asynchronous updating without constraint method in most of the experiments. Table
4-7 shows that the training time performance of the asynchronous updating with
constraint method was better than that of the original method in all experiments.
Moreover, when the networks were trained to predict the single sine or sunspot data,
the training time performance of the asynchronous updating with constraint method

was significantly better.

Average final training time of the asynchronous
updating with constraint method
Maximum
Average final training time of the asynchronous
Training allowed
updating without constraint method
data weight
correlation three-unit
change one-unit block- layer block-
block-diagonal block-diagonal
diagonal matrix diagonal matrix
matrix matrix
Single sine 0.5 0.12 0.13 0.46 0.22
Composite
) 0.5 0.33 0.46 0.35 0.65
sine
Sunspot 1 0.16 0.78 0.78 1:32

Table 4-6 Ratios of the average final training time of the asynchronous updating with constraint
method to that without constraint method under different training data and block-diagonal Hessian

matrices.

Average final training time of the asynchronous

updating with constraint method

Training data Average final training time of the original method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 0.12 0.11 0.36 0.18
Composite sine 0.62 0.75 0.49 0.82
Sunspot 0.20 0.18 0.19 0.42

Table 4-7 Ratios of the average final training time of the asynchronous updating with constraint
method to that of the original method under different training data and block-diagonal Hessian

matrices.
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4.3.4 Hidden states and incoming weight magnitudes of the hidden units
After applying the constraint, we examined the hidden states and the
incoming weight magnitudes of the hidden units, which are described in Sections

4.3.4.1 and 4.3.4.2 respectively.

4.3.4.1 Hidden states

The hidden states of the networks trained to predict the single sine,
composite sine and sunspot data are shown in Figures 4-13, 4-14 and 4-15
respectively. The asynchronous updating with constraint method and the one-unit
block-diagonal Hessian matrix were used to train these networks. In most trials and
time, the states of most hidden units were not in the saturation region. The average
absolute hidden states are 0.51, 0.34 and 0.34 respectively. They are smaller than
those of the asynchronous updating without constraint method shown in Table 4-3.
The observations about the hidden states were the same if the other block-diagonal

Hessian matrices were used instead.

4.3.4.2 Incoming weight magnitudes of the hidden units

The magnitudes of the maximum, minimum, 90th percentile and 10th
percentile of the incoming weights of the hidden units of the networks trained to
predict the single sine, composite sine and sunspot data are shown in Figures 4-16 to
4-18. The placements of the training methods on the x-axes are the same as those
shown in Figures 4-10 to 4-12. These figures show that the ranges of incoming
weights of the hidden units decreased and then either decreased slowly or started to
increase as the constraint increased. The range of incoming weights of the hidden
units of the networks that we used the asynchronous updating with constraint

method to train was close to that of the networks that we used the original method to

train.
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Figure 4-10 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
asynchronous updating methods and block-diagonal Hessian matrices. The values of maximum
allowed weight change are written in the brackets of the labels of the x-axes. The labels of the x-axes

are explained in Table 4-4. The single sine training data was used in these experiments.
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Figure 4-11 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error. The x-axes show the training methods using different

asynchronous updating methods and block-diagonal Hessian matrices.

The values of maximum

allowed weight change are written in the brackets of the labels of the x-axes. The labels of the x-axes

are explained in Table 4-4. The composite sine training data was used in these experiments.
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Figure 4-12 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
asynchronous updating methods and block-diagonal Hessian matrices. The values of maximum
allowed weight change are written in the brackets of the labels of the x-axes. The labels of the x-axes

are explained in Table 4-4. The sunspot training data was used in these experiments.
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Figure 4-13 Hidden states of 20 networks of different trials. The asynchronous updating with
constraint method and the one-unit block-diagonal Hessian matrix were used to train these networks.
The maximum allowed weight change of 0.5 was used. The single sine training data was used in these

experiments.
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Figure 4-14 Hidden states of 20 networks of different trials.
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The asynchronous updating with

constraint method and the one-unit block-diagonal Hessian matrix were used to train these networks.

The maximum allowed weight change of 0.5 was used. The composite sine training data was used in

these experiments.
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Figure 4-15 Hidden states of 20 networks of different trials. The asynchronous updating with
constraint method and the one-unit block-diagonal Hessian matrix were used to train these networks.

The maximum allowed weight change of 1 was used. The sunspot training data was used in these

experiments.
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Figure 4-15 Hidden states of 20 networks of different trials. The asynchronous updating with
constraint method and the one-unit block-diagonal Hessian matrix were used to train these networks.

The maximum allowed weight change of 1 was used. The sunspot training data was used in these

experiments. (continued)
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Figure 4-16 Magnitudes of (a) minimum ‘0’ and maximum ‘x’ and (b) the 10th percentile ‘0’ and 90th
percentile ‘x’ of the incoming weights of the hidden units. The x-axes show the training methods
using different asynchronous updating methods and block-diagonal Hessian matrices. The values of
maximum allowed weight change are written in the brackets of the labels of the x-axes. The labels of

the x-axes are explained in Table 4-4. The single sine training data was used in these experiments.
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Figure 4-17 Magnitudes of (a) minimum ‘o’ and maximum ‘x’ and (b) the 10th percentile ‘o’ and 90th
percentile ‘x’ of the incoming weights of the hidden units. The x-axes show the training methods
using different asynchronous updating methods and block-diagonal Hessian matrices. The values of
maximum allowed weight change are written in the brackets of the labels of the x-axes. The labels of

the x-axes are explained in Table 4-4. The composite sine training data was used in these

experiments.
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Figure 4-18 Magnitudes of (a) minimum ‘0’ and maximum ‘x’ and (b) the 10th percentile ‘0’ and 90th
percentile ‘x’ of the incoming weights of the hidden units. The x-axes show the training methods
using different asynchronous updating methods and block-diagonal Hessian matrices. The values of
maximum allowed weight change are written in the brackets of the labels of the x-axes. The labels of

the x-axes are explained in Table 4-4. The sunspot training data was used in these experiments.
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4.4 Synchronous updating methods

As mentioned in the beginning of this chapter, the weight updating methods
are divided into the asynchronous and synchronous updating methods. The
asynchronous updating method has been studied in Sections 4.2 and 4.3. In this
section, the synchronous updating method, which updates weights of all blocks at a
time, is studied. In the following, we will first describe two different ways of
implementing the synchronous updating method. The evaluation of these two
synchronous updating methods is the same as that of the asynchronous updating

method.

4.4.1 Single A and multiple A’s synchronous updating methods

As shown in Equations 2.14, each decomposed system of updating equations
has its own learning parameter A;. We treat these learning parameters in two ways
leading to two different synchronous updating methods.

i. One way is using one learning parameter A for weights of all blocks. We call
this method the single A synchronous updating method and describe it in
Section 4.4.1.1.

ii. The other way is using different A;’s for weights of different blocks w;'s. We
call this method the multiple A’s synchronous updating method and describe it
in Section 4.4.1.2.

Lower computation load per complete weight update is the feature of the
single A synchronous updating method while using A’s tailored to weights of

different blocks is the feature of the multiple A’s synchronous updating method.
4.4.1.1 Algorithm of single A synchronous updating method

The implementation of the single A synchronous updating method is shown

in Algorithm 4.3.
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Algorithm 4.3 Single A synchronous updating method
1. A=0.001, B = 10, iteration = 0 and finished = false
2. WHILE finished = false
3. FORi=1TOB
calculate Aw; = -(J ST 4+ A Ii)'lJ Te
END
calculate E(w+Aw) where Aw = [Aw1T szT AWBT]T
WHILE (A < maximum_A) AND (E(w+Aw) > E(w))

increase A by a factor 3

¥ 0 a2 & L ok

calculate Awy, Awy, ... Awg
10. calculate E(w+Aw)
L1 END

12. IF A < maximum_A

13. update w (W < w + Aw)
14. decrease A by a factor 3

15: iteration < iteration + 1

16. END

17, calculate J'e
18. IF (iteration > maximum_iteration) OR
(minimum of validation error is reached = true) OR

(J"e < minimum _gradient) OR (A > maximum_A)

19. finished = true
20. END
21. END

It is similar to the algorithm of the original method with full Hessian matrix

described in Section 1.3.2.2. The difference is that we use the block-diagonal

Hessian matrix to calculate Aw in the single A synchronous updating method (Steps

3 to 5 or 9) whereas we use full Hessian matrix in the original method.

4.4.1.2 Algorithm of multiple A’s synchronous updating method

The implementation of the multiple A’s synchronous updating method is

shown in Algorithm 4.4.
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Algorithm 4.4 Multiple A’s synchronous updating method

1. A, A, ..., Ag=0.001, B = 10, iteration = 0 and finished = false
2. WHILE finished = false

3. FORi=1TOB

4 calculate Aw; = -(JiTJi + A Ii)'IJ Te

5 calculate E(w;+Aw;)

6. WHILE (A; < maximum_A) AND (E(w;+Aw;) = E(w;))
7 increase A; by a factor §

8 calculate Aw;

9 calculate E(w;+Aw;)

10. END

11. END

12.  overflow_A =0

13. FORi=1TOB

14. IF A\; > maximum_A

15. overflow_A < overflow_A + 1
16. END

17. END

18. calculate E(w+Aw) where Aw = [AwlT Aw,T ... AWBT]T

19. WHILE (overflow_A < B) AND (E(w+Aw) > E(w))

20. increase Ay, Ay, ..., A by a factor 3
21. overflow_A =0

22 FORi=1TOB

23. IF A; > maximum_A

24. overflow_A « overflow_A + 1
25. END

26. END

27. calculate Awy, Aw,, ... Awg

28. calculate E(w+Aw)

29. END

30. IF overflow_A < B

31. update w (W <— w + Aw)
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32. decrease A1, A, ..., Ap by a factor B
33. iteration <« iteration + 1
34. END
35.  calculate J'e
36. IF (iteration > maximum_iteration) OR
(minimum of validation error is reached = true) OR

(J"e < minimum_gradient) OR (overflow_A\ = B)

37 finished = true
38. END
39. END

In Steps 3 to 11, A; tailored to each decomposed system of updating
equations is first found. Then, weights of all blocks are updated synchronously
(Step 18). The cost function E may not decrease after taking the step Aw provided
that the block-diagonal Hessian matrix deviates from the full Hessian matrix. In that

case, all the A;’s have to be scaled up to obtain a decrease in the cost function E

(Step 20).

4.4.1.3 Method of study

We evaluated the performance of both synchronous updating methods by
comparing it with the performance of the original method with full Hessian matrix.
Like the evaluation of the asynchronous updating methods described in Sections 4.2
and 4.3, the synchronous updating method would be used with the correlation, one-
unit, three-unit and layer block-diagonal Hessian matrices described in Sections
2.3.1 to 2.3.4 respectively. These training methods were used to train the layered
fully recurrent network described in Section 1.2.3 to predict the single sine,

composite sine and sunspot data described in Sections 3.2.1 to 3.2.3 respectively.

4.4.1.4 Performance

The performance of the single A and multiple A’s synchronous updating
methods is plotted in Figure 4-19. Figures 4-19a and 4-19b show the final training
time and the generalization errors respectively. Each figure is divided into five

parts. The first four parts show the performance of using the correlation, one-unit,
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three-unit and layer block-diagonal Hessian matrices respectively. In each part, the
performance of the single A and multiple A’s synchronous updating methods is
plotted in the first two columns respectively. The performance of the multiple A’s
with line search method described in Section 4.4.2 is plotted in the last column.
Finally, the last part of the figure shows the performance of the original method with
full Hessian matrix. This figure shows the performance of the training methods used
to train the networks to predict the single sine data. The corresponding graphs of the
performance of the training methods used to train the networks to predict the
composite sine and sunspot data are plotted in Figures 4-20 and 4-21 respectively.
These figures show that both single A and multiple A’s synchronous updating
methods required more training time than the original method with full Hessian
matrix under different training data and block-diagonal Hessian matrices. The
comparisons are summarized in Tables 4-8 and 4-9 in terms of the ratios of their
average final training time. These tables show that the average final training time of
the synchronous updating methods was about 2.1 times more than that of the original
method when the networks were trained to predict the single and composite sine
data. The average final training time of the synchronous updating methods was
about 4.4 times more than that of the original method when the networks were
trained to predict the sunspot data. The long training time problem of both

synchronous updating methods is investigated in the next section.

Average final training time of the single A synchronous updating method

. Average final training time of the original method
Training data

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 2.45 1.74 1.55 1.80
Composite sine 2.27 2.26 2.06 2.11
Sunspot 4.77 4.83 4.47 3.98

Table 4-8 Ratios of the average final training time of the single A synchronous updating method to

that of the original method under different training data and block-diagonal Hessian matrices.
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Average final training time of the multiple A’s
synchronous updating method
Training data Average final training time of the original method
correlation block- one-unit block- three-unit block- layer block-
diagonal matrix diagonal matrix diagonal matrix diagonal matrix

Single sine 241 2.07 1.35 2.36
Composite sine 2.25 223 2.17 2.24
Sunspot 4.28 4.67 4.03 4.44

Table 4-9 Ratios of the average final training time of the multiple A’s synchronous updating method to

that of the original method under different training data and block-diagonal Hessian matrices.

4.4.1.5 Investigation on long training time: analysis of A

We investigated the long training time problem of the single A and multiple
A’s synchronous updating methods by examining their learning parameters A’s. The
values of A's during the whole training period were recorded. They are shown in
Figure 4-22. These values are the median values of A's of 20 trials. The one-unit
block-diagonal Hessian matrix was used. The light-colored lines in Figures 4-22a,
4-22b and 4-22c represent A’s of the single A, multiple A’s and multiple A’s with line
search (described in Section 4.4.2) synchronous updating methods respectively. In
each figure, A of the original method represented by the dark-colored line is plotted
for comparison. This figure shows the values of A's of the training methods used to
train the networks to predict the single sine data. The corresponding graphs of the
values of A's of the training methods used to train the networks to predict the
composite sine and sunspot data are shown in Figures 4-23 and 4-24 respectively.

These figures show that the value of A of the single A synchronous updating
method and the values of most A’s of the multiple A’s synchronous updating method
were often larger than that of the original method in the early training period. The
observations about the values of A’s were the same if the other block-diagonal
Hessian matrices were used instead.

The values of A’s of both synchronous updating methods are larger because
of the deviation between the full Hessian matrix and the block-diagonal Hessian
matrix. Larger A means that the step size is smaller and the direction is closer to the

gradient descent direction. Both factors make the algorithms learn slowly. To retain
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the approximate Gauss-Newton direction, we introduce the step size parameter,
which is adapted after A for each decomposed system of updating equations is found.
We call this the multiple A’s with line search method, which will further be

described in Section 4.4.2.
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Figure 4-19 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error. The x-axes show the training methods using different

implementation of synchronous updating methods and block-diagonal Hessian matrices. The labels of

the x-axes are explained in Table 4-5. The single sine training data was used in these experiments.
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Figure 4-20 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
implementation of synchronous updating methods and block-diagonal Hessian matrices. The labels of

the x-axes are explained in Table 4-5. The composite sine training data was used in these

experiments.
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Figure 4-21 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
implementation of synchronous updating methods and block-diagonal Hessian matrices. The labels of

the x-axes are explained in Table 4-5. The sunspot training data was used in these experiments.
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Figure 4-22 Values of A's during the whole training period. A of the original method with full Hessian
matrix is represented by the dark-colored line. A's of the single A, multiple A's and multiple A's with
line search synchronous updating methods shown in (a), (b) and (c) respectively are represented by

the light-colored lines. The one-unit block-diagonal Hessian matrix and the single sine training data

were used in these experiments.
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Figure 4-23 Values of A's during the whole training period. A of the original method with full Hessian
matrix is represented by the dark-colored line. A's of the single A, multiple A's and multiple A's with
line search synchronous updating methods shown in (a), (b) and (c) respectively are represented by
the light-colored lines. The one-unit block-diagonal Hessian matrix and the composite sine training

data were used in these experiments.
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Figure 4-24 Values of A's during the whole training period. A of the original method with full Hessian
matrix is represented by the dark-colored line. A's of the single A, multiple A's and multiple A's with
line search synchronous updating methods shown in (a), (b) and (c) respectively are represented by

the light-colored lines. The one-unit block-diagonal Hessian matrix and the sunspot training data

were used in these experiments.
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4.4.2 Multiple A’s with line search synchronous updating method
4.4.2.1 Algorithm

As mentioned in the previous section, we devise the multiple A’s with line
search synchronous updating method to retain the approximate Gauss-Newton

direction. The algorithm of this method is as follows.

Algorithm 4.5 Multiple A’s with line search synchronous updating method
1. A, Az ..., A8 =0.001, f =10, oo = 2, iteration = 0 and finished = false
2. WHILE finished = false

3. FORi=1TOB

4. calculate Aw; = -(Ji'Ji + L L)' Ji"e
. calculate E(wi+Aw;)

6. WHILE E(w;i+Aw;) = E(w;)

7. increase A; by a factor 8

8. calculate Aw;

9. calculate E(wi+Aw;)

10. END

11. END

12. p=1

13. calculate E(w+uAw) where Aw = [AwlT Aw," ... AWBT]T

14. WHILE (4 2 minimum_p) AND (E(w+uAw) > E(w))

15. decrease W by a factor o
16. calculate E(w+uAw)
17. END

18. IF = minimum_p

19. update w (W <— w + Aw)

20. decrease Ay, A, ..., Ap by a factor B
21. iteration <« iteration + 1

22. END

23.  calculate J7e

24. IF (iteration > maximum_iteration) OR

(minimum of validation error is reached = true) OR
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(JTe < minimum_gradient) OR (U < minimum_)

25. finished = true
26. END
27. END

The first part of the algorithm (Steps 2 to 11) is to find A; tailored to each
decomposed system of updating equations. It is the same as that of the multiple A’s
synchronous updating method. After that, we adapt the step size parameter u to

obtain a decrease in the cost function E.

4.4.2.2 Performance

The performance of the multiple A’s with line search synchronous updating
method is shown in the last column of the first four parts of Figures 4-19, 4-20 and
4-21. These figures show that the training time performance of the multiple A’s with
line search synchronous updating method is better than that of the single A and
multiple A’s synchronous updating methods under different block-diagonal Hessian
matrices and training data. The comparisons are summarized in Tables 4-10 and 4-
11 in terms of the ratios of their average final training time. Moreover, Figures 4-19
to 4-21 show that the training time performance of the multiple A’s with line search
synchronous updating method was slightly worse than that of the original method.
On average, the average final training time of the multiple A’s with line search
synchronous updating method is about 1.2 times more than that of the original
method. The individual comparisons are summarized in Table 4-12 in terms of the

ratios of their average final training time.
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Training data

Average final training time of the multiple A’s with

line search synchronous updating method

Average final training time of the single A synchronous updating method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 0.38 0.56 0.26 0.28
Composite sine 0.84 0.74 0.38 0.71
Sunspot 0.37 0.16 0.22 0.48

Table 4-10 Ratios of the average final training time of the multiple A’s with line search synchronous

updating method to that of the single A synchronous updating method under different training data and

block-diagonal Hessian matrices.

Average final training time of the multiple A’s with

line search synchronous updating method

Average final training time of the multiple A’s

Training data
synchronous updating method
correlation block- one-unit block- three-unit block- layer block-
diagonal matrix diagonal matrix diagonal matrix diagonal matrix
Single sine 0.39 0.46 0.30 0.22
Composite sine 0.85 0.75 0.36 0.67
Sunspot 0.42 0.17 0.25 0.43

Table 4-11 Ratios of the average final training time of the multiple A’s with line search synchronous

updating method to that of the multiple A’s synchronous updating method under different training data

and block-diagonal Hessian matrices.

Training data

Average final training time of the multiple A’s with

line search synchronous updating method

Average final training time of the original method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 0.93 0.96 0.40 0.51
Composite sine 1.91 1.67 0.78 1.49
Sunspot 1.78 0.79 0.99 1.93

Table 4-12 Ratios of the average final training time of the multiple A’s with line search synchronous

updating method to that of the original method under different training data and block-diagonal

Hessian matrices.

99




4.4.2.3 Comparison of A

We examined the values of A’s after applying the step size parameter u. The
values of A’s of the multiple A’s with line search synchronous updating method
during the whole training period were recorded when the networks were trained to
predict the single sine, composite sine and sunspot data. They are shown in Figures
4-22c to 4-24c respectively. These values are the median values of A’s of 20 trials
and are represented by the light colored lines. Moreover, A of the original method
represented by the dark colored line is plotted in each figure for comparison.

These figures show that most A’s of the multiple A’s with line search
synchronous updating method were often smaller than that of the original method
with full Hessian matrix in the early training period. The observations about the
values of A's were the same if the other block-diagonal Hessian matrices were used

instead. Large A’s were not observed when this algorithm was used.
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4.5 Comparison between asynchronous and synchronous updating

methods

The results of the previous sections show that the asynchronous updating
method works best with constraint on the weight change and the synchronous
updating method works best with line search strategy. In this section, these two
updating methods, namely the asynchronous updating with constraint method and
the multiple A’s with line search synchronous updating method, are compared. Their
final training time is compared in Section 4.5.1.

The final training time depends on two factors, which are the computation
load per complete weight update and convergence speed. The relation between the
final training time and these factors is shown in Equation 4.2.

computation load per complete weight update

final training time o< 4.2)

convergence speed

The effects of the updating methods on these two factors are compared in Sections

4.5.2 and 4.5.3 respectively.

4.5.1 Final training time

The performance of the asynchronous and synchronous updating methods is
plotted together in Figure 4-25. Figures 4-25a and 4-25b show the final training
time and the generalization errors respectively. Each figure is divided into three
parts. These parts show the performance of the asynchronous, synchronous and
original updating methods respectively. Four columns are shown in each of the first
two parts. They represent the performance of using the correlation, one-unit, three-
unit and layer block-diagonal Hessian matrices respectively. This figure shows the
performance of the training methods used to train the networks to predict the single
sine data. The corresponding graphs of the performance of the training methods
used to train the networks to predict the composite sine and sunspot data are shown
in Figures 4-26 and 4-27 respectively.

These figures show that the asynchronous updating method learned faster
than the synchronous updating method under different block-diagonal Hessian
matrices and training data. The comparisons are summarized in Table 4-13 in terms

of the ratios of their average final training time.
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Training data

Average final training time of the synchronous updating method

Average final training time of the asynchronous updating method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 7.76 8.70 1.12 2.88
Composite sine 3.10 221 1.61 1.82
Sunspot 8.93 4.43 5.10 4.55

Table 4-13 Ratios of the average final training time of the synchronous updating method to that of the

asynchronous updating method under different training data and block-diagonal Hessian matrices.

4.5.2 Computation load per complete weight update

The computation load per complete weight update is one of the factors of
final training time. We used its average value over the whole training process to
measure this factor. The average computation loads per complete weight update of
the training methods used to train the networks to predict the single sine, composite
sine and sunspot data are shown in Figures 4-28, 4-29 and 4-30 respectively. They
were measured in terms of number of flops. The placements of the training methods
on the x-axes are the same as those shown in Figures 4-25, 4-26 and 4-27.

Table 4-14 summarizes the comparisons between the average computation
loads per complete weight update of the synchronous and asynchronous updating
methods under different training data and block-diagonal Hessian matrices shown in
Figures 4-28, 4-29 and 4-30. The comparisons were made in terms of the ratios of
their average values of 20 trials. This table shows that the average computation load
per complete weight update of the synchronous updating method was slightly larger
than that of the synchronous updating method in most of the experiments and was

about 1.04 times larger on average.
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Training data

Average computation load per complete weight update of the

synchronous updating method

Average computation load per complete weight update of the

asynchronous updating method

correlation block-

diagonal matrix

one-unit block-

diagonal matrix

three-unit block-

diagonal matrix

layer block-

diagonal matrix

Single sine 0.97 1.05 1.01 1.04
Composite sine 1.10 1.06 1.04 1.05
Sunspot 1.05 1.01 1.02 1.03

Table 4-14 Ratios of the average computation load per complete weight update of the synchronous
updating method to that of the asynchronous updating method under different training data and block-

diagonal Hessian matrices. Average value of 20 trials was used in calculating these ratios.

4.5.3 Convergence speed

The convergence speed, which is inversely proportional to the number of
cycles of complete weight update of the whole training process, is another factor of
final training time. To compare the convergence speed of the asynchronous and
synchronous updating methods, we plotted the numbers of cycles of complete weight
update of the whole training process of the training methods used to train the
networks to predict the single sine, composite sine and sunspot data on Figures 4-31,
4-32 and 4-33 respectively. The placements of the training methods on the x-axes
are the same as those shown in Figures 4-25, 4-26 and 4-27.

These figures show that the asynchronous updating method converged faster
than the synchronous updating method and the original method with full Hessian
matrix. Since the factor of computation loads per complete weight update of the
asynchronous and synchronous updating methods are approximately the same, the
factor of convergence speed becomes the determinant of the final training time. So,
the plots of the inverse of convergence speed and final training time are very similar.
We can verify this by comparing Figures 4-31, 4-32 and 4-33 with Figures 4-25, 4-
26 and 4-27.

The fast convergence speed of the asynchronous updating method can be
explained as follows. Asynchronous updating method finds an optimal A for weights
of each block. In contrast, the original method finds one optimal A for all weights.

This A probably is not the best for individual weight. The synchronous updating
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with line search method finds an optimal A for weights of each block at first. But, it
limits the learning step size later because of the deviation between the full and

block-diagonal Hessian matrices.
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Figure 4-25 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
updating methods and block-diagonal Hessian matrices. The labels of the x-axes are explained in

Tables 4-4 and 4-5. The single sine training data was used in these experiments.
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Figure 4-26 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
updating methods and block-diagonal Hessian matrices. The labels of the x-axes are explained in

Tables 4-4 and 4-5. The composite sine training data was used in these experiments.
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Figure 4-27 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error. The x-axes show the training methods using different

updating methods and block-diagonal Hessian matrices. The labels of the x-axes are explained in

Tables 4-4 and 4-5. The sunspot training data was used in these experiments.
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training data was used in these experiments.
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4.6 Comparison between our proposed methods and the gradient

descent method with adaptive learning rate and momentum

In this section, we compare our proposed methods with the traditional
method: the gradient descent method with adaptive learning rate and momentum.
The learning rate and momentum of the gradient descent method are adapted using
the strategy described in [Chan87].

In the comparison, our proposed methods and the gradient descent method
were used to train the layered fully recurrent network described in Section 1.2.3 to
predict the single sine, composite sine and sunspot data described in Sections 3.2.1
to 3.2.3 respectively. The results of the training time and generalization
performance are shown in Tables 4-15 and 4-16 respectively.

We found from Table 4-15 that the training time performance of the
asynchronous updating method is better than the gradient descent method in all
cases. The asynchronous updating method is from 2 to 15 times faster than the
gradient descent method. The training time performance of the synchronous
updating method is better than or close to that of the gradient descent method. The

synchronous updating method is from 1 to 3.5 times faster than the gradient descent

method.
Average final training time of our proposed methods
Average final training time of the gradient descent method
Training Asynchronous updating method Synchronous updating method
data correlation one-unit three-unit layer correlation one-unit three-unit layer
block- block- block- block- block- block- block- block-
diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal
matrix matrix matrix matrix matrix matrix matrix matrix
Single
) 0.086 0.079 0.26 0.13 0.66 0.69 0.29 0.36
sine
Composite
) 0.35 0.42 0.27 0.46 1.07 0.94 0.44 0.84
sine
Sunspot 0.071 0.064 0.070 0.15 0.64 0.28 0.36 0.69

Table 4-15 Ratios of the average final training time of our proposed methods to that of the gradient
descent method with adaptive learning rate and momentum under different training data and block-

diagonal Hessian matrices.
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Table 4-16 shows that the generalization errors of our proposed methods and

the gradient descent method are similar in most cases.

The high average

generalization error of the synchronous updating method when the correlation block-

diagonal Hessian matrix is used is due to a few outliers which can be observed from

Figure 4-26b.

Average generalization errors of our proposed methods

Average generalization error of the gradient descent method

Training Asynchronous updating method Synchronous updating method
data correlation one-unit three-unit layer correlation one-unit three-unit layer
block- block- block- block- block- block- block- block-
diagonal diagonal diagonal diagonal diagonal diagonal diagonal diagonal
matrix matrix matrix matrix matrix matrix matrix matrix
Single
) 0.69 0.83 0.61 0.49 1.24 1.39 0.78 1.06
sine
Composite
) 0.93 0.98 0.87 0.84 3.79 1.28 0.91 1.01
sine
Sunspot 1.05 1.16 1.07 1.03 1.03 1.13 1.03 1.08

Table 4-16 Ratios of the average generalization errors of our proposed methods to that of the gradient

descent method with adaptive learning rate and momentum under different training data and block-

diagonal Hessian matrices.
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Chapter 5 Number and sizes of the blocks

5.1 Introduction

As discussed in Chapter 2, we need to consider two factors when the
technique of block-diagonal Hessian approximation is applied. These two factors
are

i. the choice of weight updating methods and

ii. the choice of block-diagonal Hessian matrices
The first factor has been studied in Chapter 4. In this and the next chapters, the
second factor will be studied.

The performance of our proposed method depends on the block-diagonal
Hessian matrix and this matrix depends on the following two factors.

i. Number and sizes of the blocks
ii. Weight-grouping method

In this chapter, the effect of the first factor on the performance of our
proposed method will be studied. The effect of the second factor will be studied in
the next chapter.

The subsequent sections are organized as follows. In Section 5.2, the effect
of number and sizes of the blocks on the final training time and generalization error
is studied. In Sections 5.3 and 5.4, we will study the effects of number and sizes of
the blocks on the computation load per complete weight update and convergence

speed respectively, which are the factors of the final training time.

5.2 Performance

In this section, the effect of number and sizes of the blocks on the final

training time and generalization error is studied.

5.2.1 Method of study

To simplify the study, we restricted ourselves to block-diagonal Hessian

matrix whose block sizes are approximately equal. That is,
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(5.1)

where q; is the block size of the ith block

Wt is the number of network weights

B is the number of blocks
As the number of blocks varied, the block sizes varied according to Equation 5.1. In
each variation in the number of blocks, the performance was measured and plotted
on a graph to show the trend.

As mentioned in the introduction, the performance of our proposed method
depends on the weight-grouping method. To eliminate the effect of weight-grouping
method, we used the same weight-grouping method in all experiments. In our
experiments, we chose the sub-network weight-grouping method, which enabled us
to vary the number of blocks easily.

The Hessian matrices that we chose in the experiments are shown in Table 5-
1. These matrices satisfy our restrictions described above. Their numbers of blocks
are summarized in Table 5-1. These Hessian matrices would be used with the
asynchronous updating method described in Section 4.3 and the synchronous
updating method described in Section 4.4.2. These training methods were used to

train the layered fully recurrent network described in Section 1.2.3 to predict the

single sine, composite sine and sunspot data described in Sections 3.2.1 to 3.2.3

respectively.
Number Number of blocks
of one-unit block- | two-unit block- three-unit five-unit block
] . _ full Hessian
hidden diagonal diagonal block-diagonal diagonal
matrix
units Hessian matrix | Hessian matrix | Hessian matrix | Hessian matrix
6" 7 4 3 s 1
9* 10 6 4 3 1

Networks with six hidden units were used to predict the single and composite sine data

* Networks with nine hidden units were used to predict the sunspot data

Table 5-1 Numbers of blocks of Hessian matrices under different numbers of hidden units.
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5.2.2 Trend of performance

The trend of performance, which is a function of number of blocks, is shown
in Figure 5-1. Figures 5-la and 5-1b show the final training time and the
generalization errors respectively. Each column shows the performance of different
training methods. These training methods are different from each other in updating
methods and/or block-diagonal Hessian matrices. Each figure is divided into two
parts. The left and right parts of each figure show the performance of using the
asynchronous and synchronous updating methods respectively. In each part of the
figures, the columns show the performance of using the one-unit block-diagonal,
two-unit block-diagonal, three-unit block-diagonal and full Hessian matrices. They
are arranged in descending order of their numbers of blocks. This figure shows the
performance of the training methods used to train the networks to predict the single
sine data. The corresponding graphs of the performance of the training methods
used to train the networks to predict the composite sine and sunspot data are shown

in Figures 5-2 and 5-3 respectively.

5.2.2.1 Asynchronous updating method

The case of using the asynchronous updating method shown in the left halves
of Figures 5-1, 5-2 and 5-3 is first discussed. As the number of blocks increased, the
average final training time first decreased and then increased. However, in the
experiments of predicting the single sine data, the average final training time kept on
decreasing.

The performance of using the two-unit block-diagonal Hessian matrix was
the best in our experiments. The reasons are as follows. First, the average final
training time might start to increase when the number of blocks became large.
Although using a block-diagonal Hessian matrix with large number of blocks might
further reduce the training time but the reduction was small. Second, the
generalization error was slightly larger when a block-diagonal Hessian matrix with
large number of blocks was used. This is illustrated in Figures 5.1b, 5.2b and 5.3b.

So, using a block-diagonal Hessian matrix with large number of blocks was not

suggested.
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5.2.2.2 Synchronous updating method

We then discuss the case of using the synchronous updating method shown
in the right halves of Figures 5-1, 5-2 and 5-3. As the number of blocks increased,
the average final training time first decreased and then increased

The performance of using the two-unit block-diagonal Hessian matrix was
the best in our experiments. However, the reduction in training time was not as
drastic as that in the asynchronous cases in most of the experiments. The average
final training time of the synchronous updating method started to increase when the
number of blocks became large. Moreover, the generalization error was slightly
larger when a block-diagonal Hessian matrix with large number of blocks was used.
So, using a block-diagonal Hessian matrix with large number of blocks was not
suggested. It is suggested that the degradation of the performance with the increase
of the number of blocks is caused by the increasing of the Hessian approximation
erTor.

We analyzed the trend of final training time by studying its factors. These
factors are the computation load per complete weight update and the convergence

speed. They are described in Sections 5.3 and 5.4 respectively.

5.3 Computation load per complete weight update

The computation load per complete weight update is one of the factors of
final training time. We used its average value over the whole training process to
measure this factor. The average computation loads per complete weight update of
the training methods used to train the networks to predict the single sine, composite
sine and sunspot data are shown in Figures 5-4, 5-5 and 5-6 respectively. The
placements of the training methods on the x-axes are the same as those shown in
Figures 5-1, 5-2 and 5-3.

These figures show that as the number of blocks increased, the average
computation load per complete weight update first decreased and then increased.
This indicated that using a block-diagonal Hessian matrix with a large number of
blocks did not have the advantage of lower computation load per complete weight

update and was not suggested.
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The trend of the average computation load per complete weight update can
be explained as follows. As the number of blocks increases, both the computation
loads of calculating Hessian matrix and solving systems of updating equations

decrease. On the other hand, the number of cost function calculations increases.

5.4 Convergence speed

5.4.1 Trend of inverse of convergence speed

The convergence speed, which is inversely proportional to the number of
cycles of complete weight update of the whole training process, is another factor of
final training time. To study its trend, we plotted the numbers of cycles of complete
weight update of the training methods used to train the networks to predict the single
sine, composite sine and sunspot data on Figures 5-7, 5-8 and 5-9 respectively. The
placements of the training methods on the x-axes are the same as those shown in
Figures 5-1, 5-2 and 5-3.

The trends shown in these figures are very similar to those shown in Figures
5-1, 5-2 and 5-3 respectively. This shows that the convergence speed is a crucial

factor in determining the final training time.

5.4.2 Factors affecting the convergence speed
There are two factors affecting the convergence speed. They are described as
follows.

1. On the one hand, as the number of blocks increases, the number of non-zero
Hessian elements decreases and the accuracy of second-order information
decreases. Hence the convergence speed is expected to decrease.

ii. On the other hand, as the number of blocks increases, the number of A’s
increases. Using A’s tailored to different weights can increase the convergence
speed.

These two factors have opposite effects on the convergence speed. From the
results of our experiments, we suggested that the effect of the second factor
dominated when the number of blocks was small. The effect of the first factor

dominated when the number of blocks was large.
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Descriptions

Label maximum allowed
Hessian matrix updating method
weight change
ul/s synchronous N/A
one-unit block-
ul/a(0.5) 0.5
diagonal asynchronous
ul/a(l) 1
u2/s synchronous N/A
two-unit block-
u2/a(0.5) 0.5
diagonal asynchronous
u2/a(1) 1
u3/s synchronous N/A
three-unit block-
u3/a(0.5) 0.5
diagonal asynchronous
u3/a(l) 1
uS/s five-unit block- synchronous N/A
uS/a(1) diagonal asynchronous |
full full N/A N/A

Table 5-2 Descriptions of labels shown in Figures 5-1 to 5-9.
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Figure 5-1 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
updating methods and block-diagonal Hessian matrices. The labels of the x-axes are explained in

Table 5-2. The single sine training data was used in these experiments.
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Figure 5-2 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using different
updating methods and block-diagonal Hessian matrices. The labels of the x-axes are explained in

Table 5-2. The composite sine training data was used in these experiments.
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Figure 5-3 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error. The x-axes show the training methods using different

updating methods and block-diagonal Hessian matrices. The labels of the x-axes are explained in

Table 5-2. The sunspot training data was used in these experiments.
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Figure 5-5 Average computation load per complete weight update measured in terms of number of
flops. The x-axis shows the training methods using different updating methods and block-diagonal
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was used in these experiments.
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data was used in these experiments.
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Figure 5-9 Inverse of convergence speed measured in terms of number of cycles of complete weight
update. The x-axis shows the training methods using different updating methods and block-diagonal

Hessian matrices. The labels of the x-axis are explained in Table 5-2. The sunspot training data was

used in these experiments.

124



Chapter 6 Weight-grouping methods

6.1 Introduction

As mentioned in Chapter 2, the block-diagonal Hessian matrix depends on
the following two factors.

i. Number and sizes of the blocks
ii. Weight-grouping method

In the previous chapter, the effect of number and sizes of the blocks has been
studied. In this chapter, the effect of weight-grouping method will be studied.

Four particular Hessian matrices are introduced in Sections 2.3.1 to 2.3.4.
They are the correlation, one-unit, three-unit and layer block-diagonal Hessian
matrices. Their respective weight-grouping methods are called the correlation, one-
unit, three-unit and layer weight-grouping methods.

Here, these weight-grouping methods are compared. We will have two
studies. The first one described in Section 6.2 is to compare their final training time
and their generalization errors. The second one described in Section 6.3 is to
compare the degree of approximation of the block-diagonal Hessian matrices with

these weight-grouping methods.

6.2 Training time and generalization performance of different weight-
grouping methods

In this section, the performance of the correlation, one-unit, three-unit and

layer weight-grouping methods is evaluated.

6.2.1 Method of study

It is not fair to compare these weight-grouping methods directly since these
methods produce Hessian matrices with different numbers and sizes of the blocks,
which will affect their training time performance. Instead, these weight-grouping
methods were compared with the arbitrary weight-grouping method. The arbitrary
weight-grouping method arranges the positions of elements in the weight vector w

randomly. The number and sizes of the blocks of the block-diagonal Hessian matrix
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with this weight-grouping method were set to be the same as those with the weight-
grouping methods under study.

The block-diagonal Hessian matrices with these weight-grouping methods
would be used with the asynchronous updating method described in Section 4.3 and
the synchronous updating method described in Section 4.4.2. These training
methods were used to train the layered fully recurrent network described in Section
1.2.3 to predict the single sine, composite sine and sunspot data described in

Sections 3.2.1 to 3.2.3 respectively.

6.2.2 Performance

The performance of the weight-grouping methods is plotted in Figures 6-1
and 6-2. Figures 6-1 and 6-2 show the performance of using the synchronous and
asynchronous updating methods respectively. Figures 6-la and 6-2a show the
training time performance. Figures 6-1b and 6-2b show the generalization
performance. Each figure has four parts. These four parts show the comparisons
between the performance of the weight-grouping methods under study and the
performance of the arbitrary weight-grouping method. The methods under study are
the correlation, one-unit, three-unit and layer weight-grouping methods. In each part
of the figures, the performance of the weight-grouping method under study is shown
in the left column and the performance of the arbitrary weight-grouping method used
for reference is shown in the right column. Figures 6-1 to 6-2 show the performance
of the training methods used to train the networks to predict the single sine data.
The corresponding graphs of the performance of the training methods used to train
the networks to predict the composite sine and sunspot data are shown in Figures 6-3
to 6-4 and Figures 6-5 to 6-6 respectively.

Table 6-1 summarizes the comparisons between the final training time of the
weight-grouping methods under study and the final training time of the arbitrary
weight-grouping method shown in Figures 6-1 to 6-6. The ratio of final training
time of the weight-grouping method under study to the final training time of the
arbitrary weight-grouping method was used in the comparisons. If the ratio is less
than one, the training time performance of the weight-grouping method under study
is better than that of the arbitrary weight-grouping method. Otherwise, the training

time performance of the weight-grouping method under study is worse. Median
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value of 20 trials was used in calculating this ratio because outliers were found in

SOome cases.
Percentage of non-zero Training time performance relative to that of the arbitrary
Hessian elements weight-grouping method
Weight- : >
& Networks | Networks Synchronous updating Asynchronous updating
grouping L
with six [ with nine
method hidden —— Single |Composite| Sunspot | Single |Composite| Sunspot
+ sine data | sine data data sine data | sine data data
units units*
Correlation 0.11 0.08 0.96 1.06 1.50 1.22 0.40 1.37
One-unit 0.14 0.10 1.08 1.66 0.57 1.05 0.88 0.55
Three-unit 0.40 0.28 0.93 0.65 0.89 0.78 0.76 0.93
Layer 0.49 0.59 1.73 1.51 1.04 1.21 1.06 0.95

T Networks with six hidden units were used to predict the single and composite sine data
* Networks with nine hidden units were used to predict the sunspot data

Table 6-1 Comparisons of different weight-grouping methods: Percentage of non-zero Hessian

elements under different numbers of hidden units. Ratios of the final training time of different

weight-grouping methods to that of the arbitrary weight-grouping method under different training data

and updating methods. Median value of 20 trials was used in calculating these ratios.

Table 6-1 shows that the training time performance of the three-unit weight-
grouping method was better than that of the arbitrary weight-grouping method under
different updating methods and training data. However, the training time
performance of the layer weight-grouping method was worse in most of the
experiments. The relative training time performance of the correlation and one-unit
weight-grouping methods with respect to the arbitrary weight-grouping method
varied with the updating methods and/or the training data.

In Table 6-1, each weight-grouping method is listed with the percentage of
non-zero Hessian elements. The relative training time performance of the block-
diagonal Hessian matrices with small number of non-zero elements, like the
correlation and one-unit block-diagonal matrices, varied with the updating methods
and/or the training data. In contrast, the relative training time performance of the
block-diagonal Hessian matrices with moderate number of non-zero elements, like
the three-unit and layer block-diagonal matrices, was relatively insensitive to the

updating methods and the training data.
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Weight-grouping methods affect the degree of approximation of a block-
diagonal Hessian matrix, which we used the sum of the absolute values of all the
Hessian elements of a block-diagonal Hessian matrix relative to that of the full
Hessian matrix to measure. And the degree of approximation of a block-diagonal
Hessian matrix affects the training performance of our proposed method. In the next
section, we will compare the degree of Hessian approximation of the block-diagonal
Hessian matrices with different weight-grouping methods and study its relationship

with the training time performance.

6.3 Degree of approximation of block-diagonal Hessian matrices with

different weight-grouping methods

In this section, the degree of Hessian approximation of the block-diagonal
Hessian matrices with the correlation, one-unit, three-unit and layer weight-grouping

methods is evaluated.

6.3.1 Method of study

Like what we did in Section 6.2, we do not directly compare the degree of
approximation of the block-diagonal Hessian matrices with the correlation, one-unit,
three-unit and layer weight-grouping methods. It is because these methods produce
Hessian matrices with different numbers and sizes of the blocks, which will affect
the degree of approximation. Instead, we compared the degree of approximation of
the block-diagonal Hessian matrices with the weight-grouping methods under study
to that with the arbitrary weight-grouping method. The number and sizes of the
blocks of the block-diagonal Hessian matrix with the arbitrary weight-grouping
method were set to be the same as those with the weight-grouping methods under

study.

6.3.2 Performance

The degree of approximation of the block-diagonal Hessian matrices with the
correlation and arbitrary weight-grouping methods over the whole training process
was recorded and plotted on Figure 6-7. The x and y axes represent the training time

and the degree of approximation respectively. The correlation and arbitrary weight-
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3 b

grouping methods are represented by the line types ‘“—x—’ and ‘—o—’
respectively. The degree of approximation shown in the figure is the mean value of
20 trials. Figures 6.7a and 6.7b show the degree of approximation of using the
synchronous and asynchronous updating methods respectively. Similar plots of the
degree of approximation of the block-diagonal Hessian matrices with the one-unit,
three-unit and layer weight-grouping methods are shown in Figures 6-8 to 6-10
respectively. Figures 6-7 to 6-10 show the degree of approximation of training the
networks to predict the single sine data. The corresponding graphs of the degree of
approximation of training the networks to predict the composite sine and sunspot
data are shown in Figures 6-11 to 6-14 and Figures 6-15 to 6-18 respectively.

These figures show that the degree of approximation of the block-diagonal
Hessian matrices with the correlation and layer weight-grouping methods was often
lower than that with the arbitrary weight-grouping methods during the whole training
period. However, the degree of approximation of the block-diagonal Hessian
matrices with the one-unit and three-unit weight-grouping methods was often higher.
Table 6-2 summarizes the comparisons. These results showed that the magnitudes
of some Hessian elements were often larger than those of the others. If these
elements are identified, a block-diagonal Hessian matrix with higher degree of

approximation can be constructed.

Degree of approximation of the block-diagonal Hessian matrices
Weight-grouping method
relative to that with the arbitrary weight-grouping method

Correlation Lower
One-unit Higher
Three-unit Higher
Layer Lower

Table 6-2 Degree of approximation of the block-diagonal Hessian matrices with the correlation, one-
unit, three-unit and layer weight-grouping methods relative to that with the arbitrary weight-grouping

method under different training data and updating methods.

Finally, we combined the results in Section 6.2 and this section and related
the degree of Hessian approximation to the training time performance. If the block-
diagonal Hessian matrices with moderate number of non-zero elements were used,

the weight-grouping methods with higher degree of Hessian approximation had
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better training time performance. From our experimental results, there is only one
exceptional case to the above statement. The degree of approximation of the block-
diagonal Hessian matrix with the layer weight-grouping method is lower than that
with the arbitrary weight-grouping method. But, when the asynchronous updating
method was used to train the networks to predict the sunspot data, the training time
performance of the layer weight-grouping method is better. We observed from
Figure 6.18 that although the relative degree of approximation is lower, the absolute
degrees of both curves are high. They have reached 0.65 for the layer weight-
grouping method. This implies that it is not necessary to have very accurate
approximation to the Hessian matrix.

If the block-diagonal Hessian matrices with small number of non-zero
elements were used, we did not observe any correlation between the degree of
approximation and the training time performance. The reason is that the degree of
approximation of these block-diagonal Hessian matrices was very poor. So, its

effect on the training time performance became less dominant.
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Figure 6-1 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error.

The x-axes show the training methods using the

synchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 6-3. The single sine training data was used in these experiments.
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Figure 6-2 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error.

The x-axes show the training methods using the

asynchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 6-3. The single sine training data was used in these experiments.
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Figure 6-3 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error.

The x-axes show the training methods using the

synchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 6-3. The composite sine training data was used in these experiments.
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Figure 6-4 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error.

The x-axes show the training methods using the

asynchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 6-3. The composite sine training data was used in these experiments.
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Figure 6-5 (a) Final training time measured in terms of number of flops and (b) generalization errors

measured in terms of mean squared error.

synchronous updating method and different block-diagonal Hessian matrices.

The x-axes show the training methods using the

The labels of the x-

axes are explained in Table 6-3. The sunspot training data was used in these experiments.
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Figure 6-6 (a) Final training time measured in terms of number of flops and (b) generalization errors
measured in terms of mean squared error. The x-axes show the training methods using the
asynchronous updating method and different block-diagonal Hessian matrices. The labels of the x-

axes are explained in Table 6-3. The sunspot training data was used in these experiments.
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Descriptions

i block-diagonal Hessian matrix maximum
abe
weight-grouping | number and sizes updating method allowed weight
method of blocks change
cls correlation
synchronous N/A
c(arb)/s arbitrary
the same under
c/a(0.5) correlation
the same network 0.5
c(arb)/a(0.5) arbitrary )
size asynchronous
c/a(l) correlation ;
c(arb)/a(1) arbitrary
ul/s one-unit
synchronous N/A
ul(arb)/s arbitrary
the same under
ul/a(0.5) one-unit
the same network 0.5
ul(arb)/a(0.5) arbitrary )
size asynchronous
ul/a(l) one-unit i
ul(arb)/a(1) arbitrary
u3/s three-unit
synchronous N/A
u3(arb)/s arbitrary
the same under
u3/a(0.5) three-unit
the same network 0.5
u3(arb)/a(0.5) arbitrary )
size asynchronous
u3/a(l) three-unit ¢
u3(arb)/a(1) arbitrary
/s layer
synchronous N/A
I(arb)/s arbitrary
the same under
1/a(0.5) layer
the same network 0.5
I(arb)/a(0.5) arbitrary
size asynchronous
I/a(1) layer
1
I(arb)/a(1) arbitrary

Table 6-3 Descriptions of labels shown in Figures 6-1 to 6-6.
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Figure 6-7 Degree of Hessian approximation during the whole training period. It is measured in terms
of sum of the absolute values of all the Hessian elements relative to that of the full Hessian matrix.
The (a) synchronous updating method, (b) asynchronous updating method and the single sine training
data were used in these experiments. The correlation and arbitrary weight-grouping methods are

represented by the line types ‘—x—" and ‘—o—" respectively.
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(a) Single sine, Synchronous updating, u1/s vs. ui(arb)/s
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Figure 6-8 Degree of Hessian approximation during the whole training period. It is measured in terms
of sum of the absolute values of all the Hessian elements relative to that of the full Hessian matrix.
The () synchronous updating method, (b) asynchronous updating method and the single sine training
data were used in these experiments. The one-unit and arbitrary weight-grouping methods are

represented by the line types ‘—x—’ and ‘—o—" respectively.
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(a) Single sine, Synchronous updating, u3/s vs. u3(arb)/s
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Figure 6-9 Degree of Hessian approximation during the whole training period. It is measured in terms
of sum of the absolute values of all the Hessian elements relative to that of the full Hessian matrix.
The (a) synchronous updating method, (b) asynchronous updating method and the single sine training
data were used in these experiments. The three-unit and arbitrary weight-grouping methods are

represented by the line types ‘—x—" and ‘—o—" respectively.
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(a) Single sine, Synchronous updating, I/s vs. I(arb)/s
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Figure 6-10 Degree of Hessian approximation during the whole training period. It is measured in

terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian

matrix. The (a) synchronous updating method, (b) asynchronous updating method and the single sine

training data were used in these experiments. The layer and arbitrary weight-grouping methods are

represented by the line types ‘—x—’ and ‘—o—" respectively.
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(a) Composite sine, Synchronous updating, c/s vs. c(arb)/s
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Figure 6-11 Degree of Hessian approximation during the whole training period. It is measured in
terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian
matrix. The (a) synchronous updating method, (b) asynchronous updating method and the composite
sine training data were used in these experiments. The correlation and arbitrary weight-grouping

methods are represented by the line types ‘—x— and ‘—o—" respectively.
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(a) Composite sine, Synchronous updating, u1/s vs. ui(arb)/s
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Figure 6-12 Degree of Hessian approximation during the whole training period. It is measured in
terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian
matrix. The (a) synchronous updating method, (b) asynchronous updating method and the composite
sine training data were used in these experiments. The one-unit and arbitrary weight-grouping

methods are represented by the line types ‘—x—’ and ‘—o—" respectively.
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(a) Composite sine, Synchronous updating, u3/s VS. u3(arb)/s
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Figure 6-13 Degree of Hessian approximation during the whole training period. It is measured in
terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian
matrix. The (a) synchronous updating method, (b) asynchronous updating method and the composite
sine training data were used in these experiments. The three-unit and arbitrary weight-grouping

methods are represented by the line types ‘—x— and ‘—o— respectively.
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(a) Composite sine, Synchronous updating, I/s vs. I(arb)/s
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Figure 6-14 Degree of Hessian approximation during the whole training period. It is measured in
terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian
matrix. The (a) synchronous updating method, (b) asynchronous updating method and the composite
sine training data were used in these experiments. The layer and arbitrary weight-grouping methods

are represented by the line types ‘“—x—’ and ‘—o—" respectively.
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Figure 6-15 Degree of Hessian approximation during the whole training period. It is measured in

terms of

sum of the absolute values of all the Hessian elements relative to that of the full Hessian

matrix. The (a) synchronous updating method, (b) asynchronous updating method and the sunspot

training data were used in these experiments. The correlation and arbitrary weight-grouping methods

are represented by the line types ‘—x—’ and ‘—o—" respectively.
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(a) Sunspot, Synchronous updating, u1/s vs. ui(arb)/s
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Figure 6-16 Degree of Hessian approximation during the whole training period. It is measured in

terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian

matrix.

The (a) synchronous updating method, (b) asynchronous updating method and the sunspot

training data were used in these experiments. The one-unit and arbitrary weight-grouping methods

are represented by the line types ‘—x— and ‘—o—" respectively.
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(a) Sunspot Synchronous updating, u3/s vs. u3(arb)/s
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Figure 6-17 Degree of Hessian approximation during the whole training period. It is measured in
terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian
matrix. The (a) synchronous updating method, (b) asynchronous updating method and the sunspot
training data were used in these experiments. The three-unit and arbitrary weight-grouping methods
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(a) Sunspot Synchronous updatmg, I/s vs. I(arb)/s
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Figure 6-18 Degree of Hessian approximation during the whole training period. It is measured in

terms of sum of the absolute values of all the Hessian elements relative to that of the full Hessian

matrix.

The (a) synchronous updating method, (b) asynchronous updating method and the sunspot

training data were used in these experiments. The layer and arbitrary weight-grouping methods are

represented by the line types ‘—x— and ‘—o—" respectively.
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Chapter 7 Discussion

7.1 Advantages and disadvantages of using block-diagonal Hessian

matrix

In the following, the advantages and disadvantages of using block-diagonal

Hessian matrix in terms of the computation complexity, storage complexity, training

time performance and ease of use are listed.

7.1.1 Advantages

ii.

1il.

1v.

The advantages of using block-diagonal Hessian matrix are as follows.
First, the computation complexity is reduced. The computation load of
calculating a block-diagonal Hessian matrix is less than that of calculating a
full Hessian matrix. Moreover, if the block-diagonal Hessian matrix is used,
the original system of updating equations can be decomposed into a number of
smaller systems of updating equations. The computation load of solving this
set of systems of updating equations is also less than that of solving the original
system of updating equations. A detailed analysis is given in Section 7.2
Second, the storage complexity is reduced. The Hessian matrix requires most
space. Its storage complexity is O(N*). If we only store the non-zero Hessian
elements, the storage complexity of a block-diagonal Hessian matrix ranges
from O(N*) to O(NZ). The details are explained in Section 7.3
Third, the weights of different blocks can be calculated and updated in parallel
if the synchronous updating method is used. The implementation is detailed in
Section 7.4.
Last, our experiments showed that the training time performance of the
asynchronous updating with constraint methods under various block-diagonal
Hessian matrices was better than that of the original method with full Hessian
matrix. Moreover, when the networks were trained to predict the single sine or
sunspot data, the training time performance of the asynchronous updating with

constraint method was significantly better.
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7.1.2 Disadvantages
The disadvantages of using block-diagonal Hessian matrix are as follows.

i. The first disadvantage is the choice of the value of maximum allowed weight
change. This choice affects both the training time and generalization
performance. One may spend some time tuning this parameter. In our
experiments, the half of the 10 to 90 percentile range of the weights was close
to the best choice.

An alternative implementation of weight change constraint is given in Section
139

ii. The second disadvantage is the choice of block-diagonal Hessian matrices.
There are many different block-diagonal Hessian matrices and we lack prior
knowledge on the choice of these matrices. Finding the one with the best
performance takes us an unmanageable amount of time. Our experiments
showed that block-diagonal Hessian matrices with small number of blocks had
better training time performance. Regarding the weight-grouping methods,
sub-network weight-grouping method was the best. However, we had only

studied a few of them and many of them were ignored.

7.2 Analysis of computation complexity

In this section, the computation complexities of the original Levenberg-
Marquardt method with full Hessian matrix described in Section 1.3.2.2,
asynchronous updating method with the block-diagonal Hessian matrix described in
Section 4.3 and synchronous updating method with the block-diagonal Hessian
matrix described in Section 4.4.2 are analyzed.

The computation-intensive steps of these training methods are the
calculations of Jacobian matrix J, Hessian matrix H, cost function E and weight
update vector Aw (solving systems of updating equations)

The computation complexities of these computation-intensive steps are
shown in Tables 7-1 and 7-2. We assume that the number of hidden units is much
larger than the numbers of input and output units. The computation complexities are

expressed in terms of the number of hidden units N and the length of the time series
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T. Among the four steps, a tick is placed beside the step with the largest computation

complexity, which is the computation complexity of the whole algorithm.

Computation complexity

Asynchronous or synchronous updating
Original method with full | method with block-diagonal Hessian matrix
Mode of
Calculation Hessian matrix
updating the block-diagonal the block-diagonal
matrix is partitioned | matrix is partitioned
T<N? | T>N? into O(N) blocks into O(N?) blocks
Jacobian 4 7 o " 7
_ O(N‘T) O(N‘T) O(N‘T)
matrix
Hessian 7 \
. O(N'T) O(N’T) O(N’T)
matrix
Cost
ONN?T) ONN°T) on'ty | Vv
function
Batch
Weight
update
vector by v 4
_ O(N%) O(NY) o)
solving
systems of
equations
Jacobian P
| o oy | VY | owy | ¥V
matrix
Hessian i 5
. O(N%) o) O(N?)
matrix
Cost
_ on?) o’ oY) v
function
Sequential
Weight
update
vector by
. O(N%) v ONY) v O(N)
solving
systems of
equations

Table 7-1 Computation complexities of the original method, asynchronous updating method and

synchronous updating method. A tick is placed beside the step with the largest computation

complexity. Jacobian matrix calculation that requires O(N*) computation per time step is used.
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Computation complexity

Asynchronous or synchronous updating

method with block-diagonal Hessian matrix

Original method with full
Mode of _ the block-diagonal
Calculation Hessian matrix the block-
updating matrix is partitioned
diagonal matrix is
into O(N) blocks
partitioned into
T<N? | T>N? T<N | T>N O(N?) blocks
Jacobian
ON°T) O(N°T) v | o)
matrix
Hessian
O(N*T) v | oN'T) v | oNT)
matrix
COSt - 3 / /
O(N’T) O(N°T) O(N*T)
function
Batch
Weight
update
vector by
o’ | vV onNYy | v O(N)
solving
systems of
equations
Jacobian " "
. O(N’) O(N?) O(N’)
matrix
Hessian :
. O(N%) O(N%) O(N?%)
matrix
Cost
, o) o) oYy | vV
function
Sequential
Weight
update
vector by
. O(N®) 4 ON*) v O(N)
solving
systems of
equations

Table 7-2 Computation complexities of the original method, asynchronous updating method and

synchronous updating method. A tick is placed beside the step with the largest computation

complexity. Jacobian matrix calculation that requires O(N?) computation per time step is used.
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The difference between Tables 7-1 and 7-2 is the calculations of Jacobian
matrix. The computation complexities per time step of Jacobian matrix calculations
shown in Tables 7-1 and 7-2 are O(N4) and O(N3) respectively. The RTRL-like
calculation described in Section 1.4.2 is an example of Jacobian matrix calculation
that requires O(N% computation per time step. Examples of Jacobian matrix
calculations that require O(N?) computation per time step are as follows.

i One is the Green’s function method [Sun92]. But, [Logar93] reported that
the prediction error of using the Green’s function method was larger than that
of using the RTRL algorithm. Moreover, the difference of errors between
these two methods increased as the prediction horizon increased.

ii. The other is the truncated back-propagation through time algorithm described
in Section 1.5.2.1. Information older than O(N) time steps is ignored. This
is suitable for time series with short time correlation.

The computation complexities of the asynchronous and synchronous
updating methods depend on the number of blocks of the block-diagonal Hessian

matrix. So, two conditions of the block-diagonal Hessian matrix are considered.

1. One is that the block-diagonal matrix is partitioned into O(N) blocks.
ii. The other one is that the block-diagonal matrix is partitioned into O(Nz)
blocks.

To simplify the analysis, we assume the block sizes of the block-diagonal Hessian

matrix are approximately equal.

7.2.1 Trend of computation complexity of each calculation

If Tables 7-1 and 7-2 are read in row, these tables show the trend of
computation complexity of each calculation as a function of number of blocks. As
the number of blocks increases, both the computation complexities of Hessian
matrix and weight update vector calculations decrease. However, the computation
complexity of cost function calculation increases because the number of cost
function calculations increases. Finally, the computation complexity of Jacobian

matrix calculation is not affected by the number of blocks and remains the same.
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7.2.2 Batch mode of updating

We first discuss the case of batch mode of updating, which is shown in the
upper halves of Tables 7-1 and 7-2. In the original method with full Hessian matrix,
the computation complexity of weight update vector calculation dominates when T
is small relative to the number of weights (=N?. If T is large, the computation
complexity of Hessian matrix calculation dominates. This computation complexity
is the same as that of gradient based method such as the RTRL algorithm. (The
BPTT algorithm requires only O(N’T) operations. However, it is not suitable for
large T since its memory requirement increases with T).

In the asynchronous or synchronous updating method with the block-
diagonal Hessian matrix, the computation complexities of Jacobian matrix and cost
function calculations become dominant as the number of blocks increases. These
two calculations have influential effect on the computation complexity of the whole
algorithm. Take the case when the block-diagonal Hessian matrix is partitioned into
O(N) blocks as an example. If the computation complexity of Jacobian matrix
calculation is O(N3T) instead of O(N4T) and T 2 N, the computation complexity of
the whole algorithm is reduced from O(N4T) to O(N3T). The condition of T > N is
often satisfied in practice since T is normally much larger than N.

As the number of blocks increases, the computation complexity of the whole
algorithm does not change on the condition that the computation complexity of the
Jacobian matrix calculation is O(N*T). If the computation complexity of the
Jacobian matrix calculation is O(NT), the computation complexity of the whole
algorithm first decreases and then increases. The lowest computation complexity is
O(N3T) when the block-diagonal Hessian matrix is partitioned into O(N) block and
T2=N.

7.2.3 Sequential mode of updating

We then discuss the case of sequential mode of updating, which is shown in
the lower halves of Tables 7-1 and 7-2. In the original method with full Hessian
matrix, the computation complexity of weight update vector calculation dominates.
This computation complexity is greater than that of the gradient based method such

as the RTRL algorithm. If the block-diagonal Hessian matrix is used, the
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computation complexity of the whole algorithm ranges from O(N°) to O(N*), which
is comparable to that of the gradient based method.

The computation complexity of weight update vector calculation dominates
when the number of blocks is small. When the number of blocks is large, the
computation complexity of cost function calculation becomes dominant. The
computation complexity of Jacobian matrix calculation is not dominant. The
computation complexity of the whole algorithm remains the same whether the

computation complexity of Jacobian matrix calculation is O(N3) or O(N4).

7.3 Analysis of storage complexity

In this section, the storage complexities of the original Levenberg-Marquardt
method with full Hessian matrix described in Section 1.3.2.2, asynchronous updating
method with the block-diagonal Hessian matrix described in Section 4.3 and
synchronous updating method with the block-diagonal Hessian matrix described in
Section 4.4.2 are analyzed.

Two sets of variables that require most space are the Hessian matrix H and

L aV;(t) . av;(t) | . .
the triply indexed set of values R This set of values 5 RJ is used in the

i

e
calculation of the Jacobian matrix J with respect to the recurrent weights. The
calculation is shown in Equation 1.33.
The storage complexities of these two sets of variables are shown in Table 7-
3. They are expressed in terms of the number of hidden units N. The table shows
the cases of using the original method, asynchronous and synchronous updating
methods. It also shows the cases of using full Hessian matrix and block-diagonal
Hessian matrices which are partitioned into O(N) or O(N?) blocks. In this analysis,
two assumptions have been made.
i. The number of hidden units is much larger than the numbers of input and
output units.

ii. The block sizes of a block-diagonal Hessian matrix are approximately equal.
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Storage complexity
Asynchronous Synchronous Asynchronous Synchronous
Original updating updating updating updating
method method with method with method with method with
P with full block-diagonal | block-diagonal | block-diagonal | block-diagonal
Hessian Hessian matrix | Hessian matrix | Hessian matrix | Hessian matrix
matrix the block-diagonal matrix is the block-diagonal matrix is
partitioned into O(N) blocks partitioned into O(N?) blocks
{an e O’ O(N?) O\’ O(N) o)
oR
Hessi.an ON 4) O(N3) O(Nz)
matrix

Table 7-3 Storage complexities of the original method, asynchronous updating method and

synchronous updating method.

7.3.1 Trend of storage complexity of each set of variables

If Table 7-3 is read in row, this table shows the trend of storage complexity

as a function of number of blocks. As the number of blocks increases, the storage

complexity of Hessian matrix decreases. The storage complexity of {

decreases if the asynchronous updating method is used.

synchronous updating method is used, the storage complexity of {

the same.

7.3.2 Trend of overall storage complexity

v, (1)

jr

an(t)}
also
oR

However, if the

} remains

As the number of blocks increases, the storage complexity of the whole

algorithm decreases from O(N4) to O(Nz) on the condition that the asynchronous

updating method is used. If the synchronous updating method is used, the storage

complexity decreases from O(N4) to O(N3).
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7.4 Parallel implementation

The comparisons described in Section 4.5 showed that the synchronous
updating method converged slower than the asynchronous updating method.
However, it possesses a useful property that the asynchronous updating method does
not have. This property is that the algorithm of the synchronous updating method is
inherently parallel. For example, hidden states can be computed simultaneously
during the cost function calculation. The elements of the Jacobian matrix can be
computed in parallel if the RTRL-like calculation described in Section 1.4.2 is used.
The Hessian elements can also be computed at the same time. Finally, weight
updates of different blocks can be computed simultaneously. Therefore, the
synchronous updating method is readily implemented in parallel processing

hardware. Substantial training time can then be saved.

7.5 Alternative implementation of weight change constraint

In the asynchronous updating with constraint method described in Section
4.3, constraint is imposed on the weight update to avoid excessively large magnitude
of weight update. Alternatively, this can be done by using regularizer in the form of
magnitude of the change of the weight vector. Then the weight change magnitude
can be controlled by the regularization parameter.

This regularization can be implemented easily in the Levenberg-Marquardt

algorithm. The updating equation of Levenberg-Marquardt algorithm shown in

Equation 1.24 is obtained by minimizing the modified error function E shown in
Equation 7.1 with respect to Wyey. (Refer to [Bishops95, Chan96] for the derivation
of E.)

~ 1
E =E"e+'](wnew —wold )"2 +)\’||wnew _wold "2 (71)

where w4 is the current weight vector
Waew 18 the new weight vector
e is the error vector
J is the Jacobian matrix
Equation 7.1 shows that the regularization used in the Levenberg-Marquardt

algorithm is in the form of magnitude of the change of the weight vector and the
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regularization parameter is A. Therefore, the amount of weight change constraint

can be controlled by the regularization parameter A.
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Chapter 8 Conclusions

The Levenberg-Marquardt method is a nonlinear least squares algorithm and
can be used to train neural networks with cost functions in the form of sum-of-
squares nonlinear functions. It utilizes the second-order information of the cost
function to achieve fast convergence speed. However, the arithmetic operations and
storage required to train recurrent networks are large. Training a recurrent network
with the Levenberg-Marquardt algorithm requires O(N*T) operations per epoch in
batch mode calculation (or O(N°) operations per time step in sequential mode
calculation) and O(N*) storage, where N is the number of fully recurrent hidden units
and T is the number of training data.

In this thesis, we proposed applying the Levenberg-Marquardt method with
the block-diagonal Hessian matrix to the recurrent neural network training. This
method requires less operations per epoch / time step (ranging from O(N’T) to
O(N“T) in batch mode calculation or ranging from O(N4) to O(N6) in sequential
mode calculation) and less storage (ranging from O(Nz) to O(N“)). Moreover,
weight updates of different blocks can be calculated independently. This property
makes the parallel processing possible.

We need to consider two factors when the block-diagonal Hessian matrix is
applied. These factors are the choices of the block-diagonal Hessian matrices and
weight updating methods. They are described as follows.

Regarding the first factor, the block-diagonal Hessian matrices depend on the
number of blocks, sizes of the blocks and weight-grouping method. To simplify the
study, we assumed that the block sizes of a block-diagonal Hessian matrix were
approximately equal. In our experiments, choosing a block-diagonal Hessian matrix
with small number of blocks and the sub-network weight-grouping method was the
best. However, there are many possible block-diagonal Hessian matrices not
evaluated in this thesis.

Regarding the second factor, two weight updating methods, namely the
asynchronous and synchronous updating methods, are proposed. Asynchronous
method updates weights of one block at a time while synchronous method updates
weights of all blocks at a time. The asynchronous updating method converges faster

than the synchronous updating method but we should impose constraint on each

160



weight to remedy the poor generalization problem generated by the large incoming
weight magnitudes of the hidden units. Although the synchronous updating method
converges slower, it is inherently parallel. It is readily implemented in parallel

processing hardware. This property can save substantial training time.
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