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撮要 

在自然科學的硏究上己經廣泛使用Cellular Automata。在一九八 

六年，Stephen Wolfram發現可以將CelMar Automata應用在產生假 

任意數，而其中一項的數學軟件Mathematica也正使用它。 

在七十年代，因著公開鍵密碼系統的創立，密碼學得以大力發 

展。在發展過程中，發現那些使用定函數的公開鍵密碼系統，因著已 

編碼的訊息內帶著原文或密碼鍵的資訊而不安全，所以我們想利用假 

任意數產生器去建立一個槪率密碼系統，使那在已編碼的訊息內帶著 

原文或密碼鍵的資訊因這個系統而被隱藏° 

在這篇論文中，我們會討論一個利用061仙31八1^003�3制作的假 

任意數產生器。首先，我們會討論假任意數產生器的三個特性——擴 

張性、統計上不可分及計算複雜性。以後我們會介紹Cellular Automata 

的一些基本性質，同硏討它的一些工具。接著，我們會看看CelMar 

Automata基本律30如何適用於制作假任意數產生器；因著我們限定 

產生器的輸出在{0,1}這個集內，因此我們會介紹一個如何禾_在{0,1} 

內的假任意數去制作更大整數集上的假任意數°最後’我們會討論幾 

個利用假任意整數去加強保安的密碼系統。 
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Abstract 

Cellular Automata have been widely used in research of nature science. In 1986, 

Stephen Wolfram found that Cellular Automata can be used in generating pseu-

dorandom number and now is used by Mathematica to generate random integer. 

Cryptography has been rapidly developed after the concept of public key 

cryptosystem was established in 70's. During the development, it was found 

that any public key cryptosystem which use deterministic function may have a 

risk that some partial information of the plaintext or the key could be found by 

the ciphertext, therefore we want to develop a probabilistic cryptosystem using 

pseudorandom number generator to hide this partial information. 

In this thesis, we discuss a special kind of pesudorandom number generator 

which makes use of Cellular Automata. W e begin by discuss in the pseudoran-

domness of the generator by three properties - expansiveness, statistical indistin-

gushiblity and computational complexity. Then we introduce some basic proper-

ties of Cellular Automata, and some tools to help us to expound the detail about 

Cellular Automata. After that, we discuss a special kind of Cellular Automata -

Elementary Automata Rule 30 and see how it suits to be a pesudorandom num-

ber generator. Since we restrict the set of output of the Cellular Automata on 

{0,1} we will introduce an algorithm to use the pseudorandom bits to generate 

pseudorandom integer. Finally, we discuss serveral algorithms in cryptography 

which use a pseudorandom integer to secure the cryptosystem. 
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Chapter 1 

Pseudorandom Number 

Generator 

1.1 Introduction 

Random numbers have been widely used in numerical analysis, testing chips for 

defects and decision making. 

To construct "random" number, it is equivalent to obtain independent sam-

ples from uniform probability distribution on sample space. Obtaining "random" 

number can be reduced to a problem that to obtain random bits from {0,1} [2 . 

Therefore, in this thesis, we will mainly discuss the case that the sample space 

is {0,1} , and will discuss in the Section 4.2 when the sample space is the set of 

integers. 

To discuss the "random" behaviour, we will mainly concern three properties 

of the generator: Is the generator expansive in the sense of a dynamical system? 

Is the output evenly distributed in the sample space if the input is? Is the compu-

tational complexity like that of a one-way function? W e will discuss these three 

5 



Pseudorandom Number Generator o ‘ oy 

properties one by one below. 

Expansiveness is a concept arised from dynamic system. A chaotic dynamical 

system has three properties, and one is expansiveness. W e give the definition of 

expansiveness. 

Definition A flow ft on a metric space M is expansive at a point x G M if 

f^{x) — ft{y)l > A^|x — y\ where 入〉1’ provided that \x — y\ < 6 and 0 < t < to 

for some fixed to-

Expansiveness means that a small change of seed will result in a large change 

of the result. 

For the distribution of output numbers, we need to introduce a concept called 

"statistical indistingushibility". W e discuss it in the next section. 

For the complexity of the generator, we need the concepts of NP-problem and 

one-way function in complexity theorem of computing. 

The class P is the set of decision problems that the solutions can be solved 

in polynomial time, and the class N P is the set of decision problems that the 

solutions can be verified in polynomial time. The class NP-complete is the set 

of decision problems that they are N P and for all problems in NP, there exist a 

polynomial time reduction to the problems in NP-complete. 

Since there are widely believe that P^^NP, so a NP-complete problem must 

not in P, otherwise all N P problems will be in P. 

Now, let us consider the following problem: 



Pseudorandom Number Generator o ‘ oy 

For a generator G, is there a x such that G{x) = y for a given yl 

That problem must be in NP-complete for generator G , since we do not want 

that problem can be solved in polynomial-time, otherwise the seed of the gener-

ator will be easily to be found from the random bits. In the other hand, we want 

that problem can be verify in polynomial-time since we want to generate random 

bits from any seed in polynomial-time, that means the generator is efficient. 

1.2 Statistical Indistingushible and Entropy 

A definition of pseudorandom number is always relative to the use to which pesu-

dorandom numbers are to be put[3]. Our aim is to simulate a target probability 

distribution to within a degree of approximation. 

W e measure the degree of approximation using statistical tests. 

Let P be the source probability. 

G{P) be the probability distribution generated by the P R G G, 

Q be the target probability distribution approximated by G. 

A statistic is any deterministic function a{x) of a sample x drawn from a 

distribution, and a statistical test a consists of the computation of a statistic a 

of sample drawn from G{P). 

Definition W e say that distribution Pi and P2 on the sample space S are e-

indistinguishable using the statistic a on S provided that the expected values of 

cr(x) drawn from Pi to P2, respectively, agree to within the tolerance level e; i.e. 

E[a{x) : X G Pi] — E[a{x) : x G P2]| < e 

Given a collection T ={(cTi, ei))i of statistical tests cr̂  with corresponding tol-

erance levels 6i we say that G is a T-pseudorandom number generator from source 



Pseudorandom Number Generator o ‘ oy 

P to target Q provided that G{P) is ê  indistinguishable from Q for all statistical 

tests cTi drawn from T . 

In most uses, we want P 二 Uk (uniform distribution) on the set {0,1}" of 

binary strings of length k and for the target probability Q = Ui for some 1. 

In this thesis, we will test the generator by some statistical tests from [21], 

and this will be discussed in Chapter 3. 

In addition, the amount of randomness in a probability distribution that can 

be measured by its binary entropy or information, which for a discrete probability 

distribution P is 

H{P) = -EP{^) log2P(x) 
X 

where x runs over the atoms of P and p is the probability function. In par-

ticular 

H{Uk) 二 k 

The notion of randomness-increasing initially seems impossible, because any 

deterministic mapping G applied to a discrete probability distribution P never 

increase entropy, i.e. 

H{G{P)) < H{P) 

However, when computing power is limited, G(P) may approximate a target 

distribution Q having a much higher entropy so well that, within the limits of 

computing power avaliable, one cannot tell the distribution G{P) and Q apart, 

to a small tolerance level e. If H{Q) is much larger than H[P), then we say G 

is indeed computationally randomness-increasing, as measured by the tolerance 

level to statistical tests T={{ai, 6¾)}¾. 
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1.3 Example of P N G 

Before discussing the cellular automata P N G , we will introduce some P N G to see 

the relationship between P N G and some cryptosystem. 

Example (Multiplicative Congruential Generator) 

Xn+i 三 axn + b{modM) where 0 < Xn < M - 1 

Here (a, b, n) are the parameters describing the generator and Xo is the seed. 

It is well known that this type of generator is similar to a type of private key 

cryptosystem called "Caesar Cipher". 

Example (Power Generator) 

Xn+i = x^[modN) 

Here (d, N) are parameters describing the generator and Xo is the seed. 

If N = p1p2 is a product of two distinct primes and {d, (^(AQ) 二 1，where 4> is 

the Euler's totient function, defined by 

树#)二#(嘉)* = (̂ 1̂-1)(̂ 2̂ — 1) 

Then the m a p x — x^{modN) is one-to-one on {^Y and this operation is the 

encryption operation of the R S A public key cryptosystem. W e call this kind of 

generators R S A generators. 

For d 二 2 and N 二 pip2 with pi 三 p2 三 3(mod4); we call this kind of 

generators Square Generator. In this case the mapping 

Xn+1 三{Xn)̂ {modN) 

is four-to-one on (^)*. 
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One says that y is a quadratic residue (mod N) for some x, if y = x^ (mod N ) 

for some x. N o w , any quadratic residue y with {y, N) 二 1 has exactly four square 

roots. The assumption pi 三 p2 三 3 (mod 4) guarantees that -1 is a quadratic 

nonresidue (mod pi) and (mod p2), and this fact implies that exactly one of these 

four square roots is itself a quadratic residue. W e denote it by y and call it the 

principal square root of y. 

If we restrict the generator to the domain 

Q{N)= {y (mod N):{y,N)=l and y is a quadratic residue. } 

then it becomes a one-to-one mapping. The square generator on the domain 

Q{N) is a pesudorandom number generator. 

Example (Discrete Exponential Generator) 

Xn+i 三 g^[modN) 

Here {g,N) are parameters describing the generator and xo is the seed. 

W h e n N is a odd prime p and g is a primitive root (mod p). Then the problem 

of recoving Xn given (x^+i,仏 N) is the discrete logarithm problem, and is clearly 

a hard number-theoretic problem. 

The discrete exponentiation operation (mod p) was suggested for crypto-

graphic use in the key-exchange scheme. A key exchange scheme is a scheme 

for two parties to agree on a secret key used in an insecure channel. 

Example (Kneading Map) Consider a bivariate transformation 

{Xn+U Vn+l) •= {Vn, ^n + fiVn, ^n)) 

where f is a fixed bivariate function, usually taken to be nonlinear. The function 

/(.，.) determines the generator, while {xo,yo) and the family {zn} are the seed. 

One often takes all Zn := K for a fixed K. 
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One can generalize this generator to take x,y,f(-,.) to be vector-valued. The 

Data Encryption Standard (DES) cryptosystem is composed of sixteen iteration 

of vector-valued maps of this type, where f{xo,yo) is the plaintext, all Zi = 

K compose the key, and f is a specific nonlinear function representable as a 

polynomial in several variables. 

Example (Shift-register Sequences) 

^n+l •二 y(̂ Ti5 ̂ n-l 5 • ‘ • 7 ^n-j^ 

for a fixed function f. 

Such sequences are easy to compute by storing at each iteration the vector 

{xn, Xn-1, ... ,Xn-j) and using it to compute (xn+i,xn, ...,Xn-j+i)- The seed is 

(^O5 工-i, •",工-j) 

This generator is not much related to any cryptosystem but is a good generator 

that generates pseudorandom number in a efficient way. 



Chapter 2 

Basic Knowledge of Cellular 

Automata 

2.1 Introduction 

Cellular Automata are mathematical idealizations of physical systems in which 

space and time are discrete, and physical quantities take on a finite set of discrete 

values. They were originally introduced as a possible idealization of biological sys-

tems with the particular purpose of modeling biological self-reproduction. They 

have been applied and reintroduced for a variety purpose. 

Physical systems containing many discrete elements with local interactions are 

often conveniently modeled as cellular automata. Any physical system satisfying 

differential equations may be approximated as a cellular automata by introducing 

finite differences and discrete variables. 

Cellular Automata have also been used to study problems in number theory 

and their applications to tapestry design. In a typical case, successive differ-

ences in a sequence of numbers reduced with a small modulus are taken, and the 

geometry of zero regions is investigated. 

Below, we will give a definition of Cellular Automata from [6]. That is not 
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the general form of Cellular Automata but after this section, we will see a simply 

one. 

Definition Let I be the set of integers. To obtain a cellular space we associate 

with the set I x I: 

1. The neighborhood function g : I x I ^ 2^^^ defined by 

g{a) = {a + (5i,a + ^,...a + ^n} V a G I x I 

where Si{i = 1，2, ...,n) G I x I is fixed. 

2. The finite automaton {V,VoJ), where V is the set of cellular states, Vo is a 

distinguished element of V called the qmescent state, and f is the local transition 

function from n-tuples of elements of V into V . The function f is subject to the 

restriction, 

f{vo,Vo, ...,Vo) = VQ. 

W e m a y think that cellular space is a space as a plane assemblage of a count-

able numbers of interconnected cells (or sites). The location of each cell is located 

by its Cartesian coordinates. Each cell contains an identical copy of the finite 

automaton (V,孙，/) and the states v^(a) of a cell a at time t is precisely the state 

of its associated automaton at time t. Each cell is connected to the n neighboring 

cells a + 6i,a + 知，...a + Sn- In all that follows we shall assume the a is its 

neighbor itself, and in this assumption, ̂ i 二 0. 

The neighborhood state function h^ : I x I — V^ is defined by 

h\a) = ( # ) , 4 + ^),...V(a + M). 

Now, we can relate the neighborhood states of a cell a at time t to the cellular 

state of that cell at time t + 1 by 

/剛)二^;’). 

The above sees that two main restriction need to define Cellular Automata, 

the neighborhood function (tell you where is the neighborhood) and the state 

function (tell you how the state change with time) • 
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2.2 Elementary and Totalistic Cellular Automata 

以⑴ is taken to denote the value of site i in one-dimensional cellular automaton % 

at time step t. Each site value is specified as an integer in the range 0 through 

k-l. The site value evolve by iteration of the mapping 

(t) T M ( H ) (t-l) it-l) (̂t-l)l (cy i\ 

a\) = F[al_^ %aJ_^+i, •..，a] ,... , a^+^ J. [Z.i) 

F is an arbitrary function which specifies the cellular rules. 

The parameter r in the equation above determines the range of the rule; the 

value of a given site depends on the last values of a neighborhood of at most 

2r + 1 sites. The region affected by a given site grows by at most r sites in each 

direction at every time step; propagating features generated in cellular automaton 

evolution m a y therefore travel at most r sites per time step. After t time step, a 

region of at most l + 2rt site may therefore be affected by a given initial site value. 

The elementary cellular automata have k 二 2 and r 二 1, corresponding to 

nearest-neighbor interactions. 

A n alternative form of eq. (2.1) is 

a:t)=f[E%afci)] (2,2) 
j=-r 

where aj are integral constants, and the function f takes a single integer argument. 

Rules specified according (2.1) may be reproduced directly by taking otj 二 k". 

Totalistic rules are obtained by taking cXj 二 1. Such rules give equal weight 

to all sites in a neighborhood, and imply that the value of a site depends only on 

a total of all preceding neighborhood site values. 
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Cellular automaton rules m a y be combined by composition. The set of cellular 

rules is closed under composition, although composition increases the numbers 

of sites in the neighborhood. Composition of a rule with itself yields patterns 

corresponding to alternate time steps in time evolution according to the rule. If 

the composition of F1F2 of rules generates a sequence of configuration with period 

7T, then the rule F2F1 must also allow a sequence of configuration with period 7v. 

The form of the function F in time evolution rule (2.1) m a y be specified by a 

"rule number" [7 
j=r 

E k—^ai+j 
R p 二 X ^ F[ai_r,. •. , ai^r]k^^~^ 

{o,i-n^i+r} 

The function f in equation (2.2) also can be specified by a numerical "code" 

(2r+l)(fc-l) 

Cf = E ⑶几] 
n=0 

In general, there are a total of A:(&(。"+”）possible cellular rules of form (2.1) or 

(2-2). 

A few cellular automaton rules are "reducible" in the sense that the evolution 

of sites with particular values, or on a particular grid of positions and times, are 

independent of other sites values. 

Very little information on the behaviour of a cellular automaton can be de-

duced directly from simple properties of its rule. A few simple results are never-

theless clear. 

For example, necessary conditions for a rule to yield unbounded growth are 

F[a^_r, ai-r+i,... , o^, 0, 0,... , 0] 7̂  0. 

F[0,... , 0, 0，tti+i, •.. , ai+r] 7̂  0. 
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for some set of a^. 

If these conditions are not fulfilled then regions containing nonzero site sur-

round by zero sites can never grow, and the cellular automaton must exhibit 

behaviour such that the pattern becomes homogeneous or degenerates into sim-

ple periodic structure (which are called class 1 and class 2 of cellular automata 

and are discussed in next section). For totalistic rules, the conditions becomes 

f[n] * 0 

for some n < r. 

One may consider cellular automata both finite and infinite in extent. 

W h e n finite cellular automata are discussed below, they are taken to consist 

of N sites arranged around a circle (periodic boundary conditions). Such cellular 

automata have a finite number k ^ of possible states. Their evolution may be 

represented by a finite states transition diagram [8], in which nodes representing 

each possible configuration are joined by directed arcs, with single arc leading 

from a particular node to its successor after evolution for one time step. After 

a sufficiently long time (less than k^), any finite cellular automaton must enter 

a cycle, in which a sequence of configuration is visited repeatedly. These cycles 

represented attractors for the cellular automaton evolution, and correspond to 

cycles in the state transition graph. At nodes in the cycle may be rooted in the 

tree have a single successor, but may have serveal predecessors. In the course 

of time evolution, all states corresponding to nodes in the tree to the cycles on 

which the root lies. Configurations corresponding to nodes on the periphery of 

the state diagram (terminals or leaves of the transient trees) are never reached in 

the evolution; they may occur only as initial states. The fraction of configuration 
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which m a y be reached one time step in cellular automaton evolution, and which 

are therefore not on the periphery of the state transition diagram, give a simple 

measure of irreversibility. 

The configuration of infinite automata are specified by infinite sequences of 

site values. Such sequences are identified as elements of a Cantor Set and discuss 

in [9；. 

Equation (2.1) and (2.2) m a y be generalized to several dimensions. For r = 1, 

there are at least two possible symmetric forms of neighborhood, containing 2d+l 

(type I) and 3^ (type II) sites respectively; for larger r other "unit cells" are pos-

sible. 

2.3 Four classes of Cellular Automata 

This section discusses some qualitative features of cellular automaton evolution. 

Despite the simplicity of their construction, cellular automata are founded to 

be capable of diverse and complex behaviour. To discuss its complexity, we will 

now see what happen when cellular automata evolute. 

N o w we will see the pattern of the cellular automata with initial condition 

that is randomly generated 100 site long. Most picture are elementary Cellular 

Automata Rule with r = 1 and k 二 2, but there is no Class 4 in that kind of 

Cellular Automata, so we will find example in Totalistic Cellular Automata with 

r = 2 and k = 2. 

The Elementary C A Rule 4,12, 218 and 205 are belonged to class 1，which 
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the pattern becomes homogeneous (fixed points). 

_ • 

R u l e 9 R u l e 83 

The Elementary C A Rule 9 and 83 are belonged to class 2, the pattern de-

generates into simple periodic structure (limit cycles). 

• 圊 
R u l e 45 R u l e 30 

The Elementary C A Rule 45 and 30 are belonged to class 3，the pattern is 

aperiodic, and appears chaotic. Some patterns assigned to class 3 contain many 

triangular "clearing" and appear more regular than others. The regularity is re-

lated to the degree of irreversibility of the rules. 

Most C A P N G are made by this class. The Rule 30 is discussed in next chap-
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ter. 

圓 ’ 
Totalistic CA Rule 52 Totalistic CA Rule 20 

The Totalistic C A Rule 52 and 20 are belonged to class 4, which complicated 

localized structures are produced by them. 

According to [10], there is a relation between the class and the entropy. As 

the entropies study in that thesis is important to the analysis of C A Rule 30 

P N G , it will be introduce in next section. 

2.4 Entropy 
This section describes quantitative statical measures of order and chaos in pat-

tern generated by cellular automaton evolution. These measures may be used to 

distinguish the four classes of behaviour identified qualitatively above. 

First, consider the statical properties of configurations generated at a par-

ticular time step in cellular automaton evolution. A disordered initial states, in 

which each site takes on its k possible values with equal independent probabil-

ities, is statically random. Irreversible cellular automaton evolution generates 
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deviations from statistical randomness. In a random sequence, all k ^ possible 

subsequences of length X must occur with equal probabilities. With probabilities 

pf) for the kX possible sequence of site value in a length X block, one m a y define: 

Definition (spatial set entropy) 

s(aO(x) 二 全 logk{E 0{pf)) where 0{p) = 1 for p > 0 and 0{p) = 0 for p 二 0. 
i=i 

and 

Definition (spatial measure entropy) 

s^^\X) = -j,Epflog,pf\ 
j=i 

In both cases, the superscript (X) indicates the "spatial" sequences (obtained 

at a particular time step) are considered. The “set entropy" is determined directly 

by the total number N^^\X) of length X blocks generated (with any nonzero 

probability) in cellular automaton evolution, according to 

5(气义）=• iQgfcTvmpO. 

In the "measure entropy" each block is weighted with its probability, so that 

the result depends explicitly on the probability measure for different cellular au-

tomaton configuration, as indicated by the subscript /i. Set entropy is often called 

"topological entropy" ； measure entropy is sometimes referred as "metric entropy". 

The definitions above yield immediately 

4')P0 < s(')w < 1. 
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The first equality holds only for "equidistributed" systems, in which all nonzero 

block probabilities pf^ are equal The second equality holds if all possible length 

X blocks of site occurs, but perhaps with unequal probabilities. s|T)(X) 二 1 only 

for "X-random" sequences, in which all k^ possible sequences of JC site values 

occur with equal probabilities. In addition, 

0 < 4')P0 < ^ ⑷ ⑷ 

5|f^(X) = 0 if and only if just one length X block occurs with nonzero probabil-

ity, so s(z)(X) 二 0 also. As discuss above, the equality holds for class 1 cellular 

automata. 

The entropies <s(4 and 4工）may be obtained either for many blocks in a single 

cellular automaton configuration, or for blocks in an ensemble of different con-

figuration. For smooth probability measures on the ensemble of possible initial 

configurations, the results obtained in these two ways are almost always the same. 

(A probability measure will be considered "smooth" if changes in the values of a 

few site in an infinite configuration lead only to very little change in the proba-

bility for the configuration) The set entropy 3(工）is typically independent of the 

probability measure on the ensemble, for any smooth measure. The measure en-

tropy 5|f̂  in general depends on the probability measure for initial configuration, 

although for class 3 cellular automata, it is typically the same for at least a large 

class of smooth measures. 

The entropies 3(工）and 5|f̂  are defined for infinite cellular automata. A corre-

sponding definition may be given for finite cellular automata, with a maximum 

block length given by the total number of sites N in the cellular automaton. The 

entropies s ( ^ N ) and s^^\N) are related to the global properties of the state 

transition diagram for the finite cellular automaton. The value of s^^\N) at a 
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particular time is determined by the fraction of possible configurations which m a y 

be reached at that time by evolution from any initial configuration. The limiting 

value of s ^ ( A O at large times is determined by the fraction of configuration on 

cycles in the state transition graph. 

The spatial sequences entropies were defined in terms of the sequences of sites 

values in a cellular automaton configuration at a particular time step. One m a y 

also define temporal entropies which characterize the sequences of values taken on 

by particular site through many time step of cellular automaton evolution. With 

probabilities pf^ for the k^ possible sequences of value for a site at T successive 

time steps, one m a y define 

Definition (temporal set entropy) 

fcT 

s(”(T) - + logfc(E 6>(pf)) where 0{p) 二 1 for p > 0 and 6{p) = 0 for p 二 0, 
i=i 

and 

Definition (temporal measure entropy) 

s^\T) = -^Y:pfhog,p^\ 
i=i 

These entropies satisfy relations directly analogous to those defined on spatial 

sequences. 

As a generalization of the spatial and temporal entropies introduced above, 

one may consider entropies associated with space-time patches in the patterns 

generated by cellular automaton evolution. With probabilities pf'^^ for k^^ pos-

sible patches of spatial width X and temporal extent T, one m a y define 
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Definition (set entropy) 

j^XT 

#，工)(7̂  ： X) = i logfc(E 0{pf"^)) where 0{p) 二 1 for p > 0 and 0{p) = 0 for 
i=i 

p = 0, 

and 

Definition (measure entropy) 

kX^T 

4 ^ ( T : X ) 二 - i E 4，4。g4，”. 
i=i 

Clearly 

4')(T) = 4'，4(T:1), 

and 

4f)(x) = 4。Ai:x). 

If no relation existed between configuration at successive time steps, then 

4''^^(T : X) < s(W(T : X) < X. 

The cellular automaton rules introduce definite relations between successive 

configuration and tighten the bound of set entropy and measure entropy. In fact, 

the values of all sites in a T x X space-time patch are determined according to 

the cellular automaton rules by the values in the "rind" of the pitch. The rind 

contains only X + 2r(T-l) sites (where r is the "range" ofthe cellular automaton 

rule), so that 

s[f'"̂ (T : X) < s_(T : X) < [X + 2r(r - l)]/T. 
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The rind of the spacetime pattern 

For large T and fixed X, 

4''4(T : X) < <s(W(T : X) < 2r. 

If both X and T tend to infinity with X/T fixed, then the "information per site" 

s|f'T)(T : X)|X in T x X patch must tend to zero. The evolution of cellular 

automata can therefore never generate random space-time patterns. 



Chapter 3 

Theoretical analysis of the CA 

PNG 

3.1 The Generator 

There are a total of 256 cellular automaton rules for k = 2 and r 二 1. A m o n g 

these there are two rules that seem best as pseudorandom number generator 

proposed in [8 . 

In this thesis, we will mainly focus on Rule 30, which can be simply represented 

as 

af 二 af-i) X O R (af—-?) O R a&?)) (3.1) 

Here X O R stands for exclusive or and O R stands for inclusive disjunction. 

From the figure in Chapter 2 about Rule 30, we can see that such complexity can 

arise in systems of simple construction. From the apparent randomness of the 

center vertical, it may show the potential for pseudorandom number generation. 

The C A Rule 30 is essentially nonlinear. Nevertheless, its dependence on 

afZi^ is in fact linear. This feature is the basis for many of its properties. In 

the Rule 30，the rule gives af^ in term of a^L"/\ af"^^ and a^l^^. But the linear 

dependence on a”）allows the rule to be rewritten as 

26 
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at/) = af^ X O R ( 4 " ) O R a ^ ^ ) (3.2) 

gives afSi^ in terms of af^，af—i) and af~^^\ This relation implies that the 

spacetime patterns shown can be found not only by direct time evolution by 

equation (3.1) from a given initial configuration, but also by extending spatially 

according to equation (3.2), starting with temporal sequences of values of two 

adjacent sites. 

R a n d o m sequences are obtained from Rule 30 by sampling the values that a 

particular site attains as a function of time. In practical implementations, a finite 

number of sites are considered, and are typically arranged in a circular register. 

Given almost any initial "seed" configuration for the sites in the register, a long 

and seemingly random sequence can apparently be obtained. 

3.2 Global Properties 

This section will discuss about the behaviour of cellular automata starting from all 

possible initial states. The basic approach is to count the possible sequences and 

patterns that can occur and to characterize them. Most section in this chapter 

will discuss infinite size limit and section 3.6 will discuss the finite size effect. 

• 

Figure 3 .1 

The figure above is a spacetime pattern produced by the Rule 30 starting from 
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a disordered initial states (in which the value of each site is randomly chosen to be 

zero or one). N o w we want to show that: given an appropriate initial condition, 

any sequences can be generated in an infinite cellular automaton with the Rule 30. 

The Rule 30 can be considered as a mapping from one cellular automaton 

configuration to another. A n important property of this mapping is surjective. 

Any configuration 乂⑷ can be obtained as the image of some A(t_i), according 

to A(t)=F(A(t-i)). A possible configuration A(t—i) (may be not unique) can be 

found by starting with the candidate pair of site values, then extends to the left 

by equation (3.2). So, if all possible initial configurations are considered, then 

any configuration can be generated at some time step. Therefore with suitable 

initial conditions, any spatial sequences of site values can be reproduced. 

Every length X spatial sequences of site values that occurs is determined by a 

length X + 2 spatial sequences of site values on the previous time step. Since C A 

Rule 30 is surjective, so predecessors exists for any length X spatial sequences of 

site values. 

For the Rule is surjective, there are exactly four predecessors for any se-

quences. Given values af\ afJ^ and so on，in one sequences, the values af~^^ and 

c4̂ —i) in its predecessor can be chosen in all four possible ways; in each case the 

remaining a^^- are uniquely determined by equation (3.2). 

Therefore, starting from an ensemble that contains all possible cellular au-

tomaton configurations with equal probabilities, each configuration will be gener-

ated with equal probabilities, throughout the evolution of the cellular automaton, 

so every possible spatial sequences of a particular length will occur with equal 

frequency. 
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One m a y also consider sequences of values attained by a single site as a func-

tion of time. Starting from an initial ensemble which contains all configurations 

with equal probabilities, all such sequences again occur with equal frequencies. 

For, given any temporal sequence, iteration of Equation (3.2) yields an equal num-

ber of initial configurations which evolve to it. The same is true for sequences of 

site values on lines at any angle in the spacetime pattern. 

Entropies introduced in last chapter provided characterizations of the number 

of possible sequences that occur. N o w , I repeat the definition with little change. 

Before the definition, I have to say that n is the length of the sequences, x is the 

specified sequences (the sequences m a y be spatial or temporal). 

Definition (set entropy) 

s = lim 1 log2 E 0{pf^) 
n—oo '^ j—i J 

where 6>(p) = 1 for p > 0 and 6>(p) 二 0 for p 二 0. 

Definition (measure entropy) 

〜=lim ^ E pflog.pf 
^ n—oo 几 j=i J J 

For the cellular automaton of Equation (3.1)，all possible sequences occur with 

equal probatdlities (given an equal probability initial ensemble) so both entropies 

are maximal: 

s^s==l. (3.3) 

Any reduction in entropies would reveal redundancy in the sequences, and 

would imply a lack of randomness. Equation (3.3) is a must for randomness. 



Pseudorandom Number Generator o ‘ oy 

Though Equation (3.3) implies that all possible sequences of value for single 

sites can occur along any spacetime pattern direction, the deterministic nature 

of the cellular automaton Rule 30 implies that only certain spacetime patches of 

values can occur. In fact, all the site values in a particular patch are completely 

determined by the values that appears on its upper on its upper, left and right 

boundaries. W h e n these boundaries are specified, the values of remaining sites 

in the patch are redundant, and can be found simply by applying equation (3.1) 

and (3.2). 

In general the degree of redundancy in such spacetime patterns can be char-

acterized by the invariant of set and measure entropies for the cellular automaton 

mapping, given by 

h - lim lim s^^^^^T : X) 
x^oo t—oo 

h.- lim l i m 4 ' ' % T : X ) 
x^oo t—oo 

where s(^(T : X) and s^)(T : ^ ) defined in last chapter. 

By the result that 

4''^^(T : X) < s(")(T : X) < 2r 

we have 

h^ < h < 2 

A calculation based on the method of [11] in fact shows that 

h^ < 1.2 
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Therefore a knowledge of the time sequences of values of about 1.2 sites suffice 

in principle to determine the values of all other sites. In particular however the 

function which gives the initial configuration in terms of these temporal sequences 

seems to become intractably complicated, as discussed in Section 3.5. 

3.3 Stability Properties 

In this section, we will consider the change in the patterns produced by small 

perturbations in the initial states. Figure 3.2 shows the differences resulting from 

reversal of a single site value in a typical disordered initial configuration. The 

region affected increases in size with time, reflecting the instability of pattern 

generated. 

叙 
Figure 3.2 - The difference in pattern produced by the C A Rule 30 from two 

initial condition which difference only by one site. 

The instability implies that information on localized changes eventually prop-

agates throughout the cellular automaton. The rates of information transmission 

to the left and right are determined by the slope of the difference pattern in Fig-

ure 3.2 These in turn give left and right Lyapunov exponents Xi and 入丑 for the 

cellular automaton evolution. 
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The form of the cellular automaton Rule 30 immediately implies that 

Ai^=l. 

For consider a configuration in which the difference pattern has reach the site 

that i 二 一1. Whatever the current values of site that i 二 1 and i = 0, the X〇R 

in equation (3.1) leads to change in the new value of site that i 二 0. Therefore 

Aj^==l is the maximum allowed by the locality of the Rule 30. 

Empirical measurements suggests that the left-hand side of the difference pat-

tern expands at an asymptotically linear rate, with the slope [15 

Az^=0.2428 士 0.0003 

the above gives the average speed of the left-hand side of the difference pattern. 

In general, one can construct the analog of a Green's function[10], giving the 

probability that a site at a particular position and time will be affected by an 

initial perturbation. 

Lyapunov exponents measure the rate of information transmission in cellular 

automaton, and provide upper bounds on entropies, which measure the informa-

tion content of patterns generated by cellular automaton evolution. For surjective 

cellular automata it can be shown [10], 

K < (AL + Afi) 

consistent with Equation h^ < 2. The existence of positive Lyapunov exponents 

is a characteristic feature of Class 3 cellular automata. 

The difference pattern of Figure 3.2, and the related Green's function, mea-

sure the effect of initial perturbation on the values of individual sites. In studying 

random sequences generation, one must also consider the effect of such pertur-

bation on time sequences of site values, say of length T. These sequences are 
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always completely determined from the initial values of 2T + 1 sites. However 

not all these initial values necessarily affect the time sequences. A change in any 

of the T + 1 left-hand initial sites necessarily leads to a change in at least one 

element of the time sequence. In the other hand, some change in the T right-hand 

initial sites have no effect on any element of the time sequence. It seems that 

the probability for a particular initial site to affect the time sequences decreases 

exponentially with distance to the right. The average number of the sites on the 

right which affect the time sequence is found to be approximately 0.26 + 1.9T 

10]. Thus the total number of initial sites on which a length T time sequence 

depends on average approximately 1.91 + 1.19T [10]. This result is presumably 

related to the entropy. 

3.4 Particular Initial States 

This section considers evolution from particular special initial configuration. 

Figure 3.4.1 shows on two scales the pattern produced by evolution from a 

configuration containing a single nonzero site. 

There are some definite regularities. For example, diagonal sequences of sites 

on the left-hand side of the pattern are periodic, with small periods. In general, 

the value of a site at depth N from the edge of the pattern depends only on the 

sites at depths N or less; all the other sites on which it could depend always have 

value 0 because of the initial conditions given. As a consequence, the site down 

to depth N are independent of those deeper in the pattern, and in fact follow 

a shifted version of the cellular automaton Rule 30，with boundary conditions 

that constrain two sites at one end to have values zero. Since such finite cellular 

automaton has a total of 2" possible states, any time sequence of values in it 

must have a period of at most 2^. The corresponding diagonal sequences in the 
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赢金 
Figure 3.4.1 

pattern Figure 3.4.1 must therefore also have periods not greater 2^. 

Depth TTfi T̂L 
0 1 1 

1 2 1 

2 2 1 

3 4 2 

4 8 1 

5 8 2 

6 16 2 
7 32 1 

8 32 4 

9 64 1 

10 64 4 

11 64 4 

12 64 4 

13 64 4 

14 64 4 

15 128 4 

16 256 4 

Table 3.4.1 above gives the actual periods of diagonal sequences found at var-

ious depths on left- and right-hand sides of the pattern in Figure 3.4.1. which iTR 

and 7TL signify respectively periods for diagonal sequences on the right and left 

of the patterns, at the specify depth. 

The short periods on the left-side of the pattern in Fig 3.4.1 are related to 

high degree of irreversibility in the effective cellular automaton rule for diagonal 
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sequences in this case. Starting with any possible initial configuration, this cel-

lular automaton always yields cycles with periods 2^ The maximum value of j 

increases very slowly with 7V, yielding m a x i m u m cycle lengths which increase in 

jumps, on average slower than linearly with N. The actual sequences that occur 

near the left-hand boundary of the pattern in Fig 3.4.1 correspond to a particular 

set of those possible in this effective cellular automaton. In a first approximation, 

they can be considered uniformly distributed among possible Â -site configura-

tions, and their periods increase very slowly with N. 

The effective rule for the right-hand side diagonal pattern in Fig 3.4.1 is a 

shifted version of Rule 30. 

af) 二。”)崖(4-11)隱!1-21)) 

with boundary condition 

4)_i 二 4 : i i ) ^ 4 _ i ) 
fl(') - a(t-i) 
^N — ̂ N 

This system is exactly reversible; all of its 2" possible configurations have 

unique predecessors. All the configuration thus lie in cycles, and again the cycles 

have periods of the form 2̂ '. As the length of the longest cycles is a function of 

N , one [5] may yield 

log2n^:^0.5(7V + l ) 

This length is small compared to the total number of states 2^; few states 

in fact lie on such longest cycles. Nevertheless, the periods of the right-hand 

diagonal sequences in Fig 3.4.1 do seem to increase roughly exponentially with 

depth, as suggested by Table 3.4.1 
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The boundary in Fig 3.4.1 between regular behaviour on the left and irregu-

lar behavior on the right seems to be asymptotically linear, and move to the left 

with speed 0.25. A statistical argument for this result can be given in analogy 

with that AL=0.2428 士 0.0003. Each site at depth d on the left-hand side of the 

pattern could in principle be affected by sites down to depth d arbitrarily far up 

in the pattern. In practice, however, it is unaffected by changes in sites outside 

a cone whose boundary propagates at speed 入尤 ^ 0.25. Thus the irregularity on 

the right spreads to the left only at this speed. 

With diagonal sequences at angles ±1 in Figure 3.4.1 must ultimately be-

come periodic, sequences closer to the vertical need not. In fact, no periodic has 

been found in any such sequences. The central vertical (temporal) sequences has, 

for example, been tested up to length 2^^ [5], and no periodicity is seen. For if 

two sequences were both periodic, then it would fellow that all sequences to their 

right must also be, which would lead to a contradiction at the edge of the pattern. 

Not only no periodicity has been detected in the center vertical sequences of 

Figure 3.4.1; the sequences has also passed all other statical tests of randomness 

applied to it, as discussed in section 3.8. 

While individual sequences seem random, there are local regularities in the 

overall pattern of Fig 3.4.1. Example are the triangular regions of zero sites. Such 

regularities are associated with invariants of the C A Rule. 

The particular configuration in which all sites have value 0 is invariant un-

der the cellular automaton Rule 30. As a consequence, any string of zeros that 

appears can be corrupted only by effects that propagate in from its ends. Thus 

each string of zeros that is produced leads to a uniform triangular region. 
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Period Element 

1 0 

01 

3 000011111001 

4 0000001 

0000111 

0010011 

0111111 

Table 3.4.2 above and Fig 3.4.2 give other configuration which are periodic 

under the Rule 30. Again, any string that contains just the sequences in these 

configuration can be corrupted only through end effects, and leads to a regular 

region in spacetime pattern generated by Rule 30. 

_ _ • 
Period 1 Period 3 P"iod 4 

Figure 3.4.2 

In general, there are finite set of configurations with any particular period p 

under a permutive cellular automaton rule such as Rule 30. The configuration 

may be found by starting with a string of length 2p, then testing whether this 

and the string yields through Equation (3.2) on the left are in fact invariant. The 

string to be tested need never longer than 2^P，since such a string can contain all 

possible length 2p string. Therefore the periodic configuration consists of repeti-

tions of blocks containing 2^^ or less site values. 
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3.5 Functional Properties 

Cellular automaton rule such as Rule 30 can be considered as a function f which 

m a p three Boolean values to one. Iteration of these values for say t steps corre-

spond to function of 2t + 1 Boolean values. The complexity of these functions 

reflects the complexity of cellular automaton evolution. 

The complexity of a Boolean function can be characterized by the number of 

logic gates that would be needed to evaluate it with a particular kind of circuit, 

or the number of terms that it would have in particular symbolic representation. 

Explicit evolution according to the cellular automaton Rule 30 corresponds to a 

circuit with 0{t^) components and depth t, but for purposes of comparison, it 

is convenient to consider fixed depth representation. One such representation is 

disjunctive normal form (DNF), in which the function is written as a disjunction 

of conjunctions. A two-level circuit can be constructed in direct correspondence 

with this form. 

For Rule 30，the D N F of Equation (3.1) can be written as: 

/(a_i,ao,ai) = (a_iao) + (a—i^o^i) + (^-i<^i) 

where + stand for O R , concatenation for A N D and bar for N O T . 

The general problem of finding the absolute shortest representation for any ar-

bitrary Boolean function, even in D N F , is NP-complete [12] , and so presumably 

requires an exponential time computation. However a definite approximation can 

be found in terms of "prime implicants" [13]. Each prime implicant can be used as 

a term in a D N F for the function. The number of prime implicants required gives 

a measure of the total number of terms in the D N F and thus of the complexity 

of the function. 
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The minimal D N F obtained with prime implicants for the function corre-

sponding to two iterations of the cellular automaton Rule 30 is 

/2(a_2, a_i,ao, ai, a2)=(a_2,a_1,a0, a1,a2) + (a_2, a_i, ao, a1,a2) 

+(a_2,a_1 , ao, a1,a2) + (a—2, a_i , a o , a i , ^ ) 

+ ( a _ 2 , a _ i , ^ , ^ ) + (a_2,a_1,a0, a2) 

+ ( a _ 2 , a - 1 , a o , a 2 ) + (a_2,a_1,ao,a2) + (a_2,a_1,a0) 

Table 3.5.1 below gives the number of prime implicants for successive itera-

tions of the Rule 30. These results are plotted in Fig 3.5.1. For arbitrary Boolean 

functions of 2t+l variables, the number of prime implicants could increase like 

4^ In practice, however, a least square fit to the data of Table 3.5.1 suggests 

growth like 4̂ -̂ ^̂  

t P.I. Min 

1 3 3 

2 9 7 

3 23 17 

4 76 41 

5 185 105 

6 666 272 

Various efficient methods are known to find D N F that are somewhat simpler 

than those obtained using prime implicants. With one such method [14], the 

D N F can be reduced to 

/2(a_2, a_i ,ao, a i , a2) 二 (a_2,a_i,ao, ai) + (a_2, a_i ,ao , ai) 

+ (a_2,a_1,ao,a2) + (a_2,a_1,ao,a2) 

+ ( a _ 2 , a i , ^ ) + (a_2,a_1,a0) + (a—2, a—i,^o) 
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t 3 4 5 6 Figure 3.5.1 

The sizes of the minimal D N F obtained by this method for iteration of the 

Rule 30 are shown also in Table 3.7.1 and Figure 3.7.1. They are seen to grow 

more slowly than those obtained with prime implicants; the data given are again 

fit by exponential growth like 40.6^ 

The rapid increase in the size of the minimal D N F found for the iteration 

of the Rule 30 indicates the increasing computational complexity of determining 

the result of evolution according to Rule 30, and supports the conjecture of its 

computational irreducibility. 

The results of Table 3.5.1 and Figure 3.5.1 concern the difficulty of finding the 

outcome of cellular automaton evolution according to the Rule 30 from a given 

initial state. One m a y also consider the problem of deducing the initial state 

from time sequences of site values produced in the evolution. Given say t steps 

in the time sequences of values for two adjacent sites, the initial configuration up 

to t sites to the left can be deduced directly by the iteration of Equation (3.2). 

The combinatorial results of section 3.2 indicate in fact that only about 1.2 such 

temporal sequences should on average be required, and in principle from a single 
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sufficiently long temporal sequences, it should be possible to deduce a complete 

initial configuration for a finite cellular automaton. In practice, the necessary 

computation seems to become increasing intractable as the size of systems in-

creases. 

Given a particular temporal sequences, say at position 0, Equation (3.2) 

uniquely determines the values of all sites in a triangle to left as a function of val-

ues in the temporal sequences at position 1. The number of values in the position 

1 temporal sequences on which a given site depends varies with the form of the 

position 0 sequences. For example, if the position 0 sequence consists solely of 

ones, then the whole triangle of sites is completely determined, entirely indepen-

dent of the position 1 sequence. Table 3.5.2 gives some results from considering 

the dependence of the site value a—t at position -t on the position 1 sequence, 

for all 2* possible position 0 sequences. The number of values in the position 1 

sequences on which a-t depends seems to be roughly Poisson distributed, with a 

mean that grows like 0.4t as shown in Figure 3.5.2. This is consistent with the 

combinatorial result. 

n Number of Variable P.I. 

2 0.5 1 

3 1 2 

4 1.375 3 

5 1.125 3 

6 2.281 12 

7 2.828 17 

8 3.164 26 

Table 3.5.2 above also gives some properties of the prime implicants forms 

for a—t. It is clear that the complexity of the function that determines a—t from 

temporal sequences grows with t, probably at increasingly rapid rate. Again 
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Figure 3.5.2 

this suggests that the problem of deducing the initial sequences for evolution ac-

cording to the Rule 30, while combinatorially possible, is computational complex. 

3.6 Computational Theoretical Properties 

The discussion of the previous section are considered as giving a characterization 

of the computational complexity of iterations of the cellular automaton Rule 30 

in a particular simple model of computation. The results obtained suggest that 

at least in this model, there is no shortcut method for finding the outcome of the 

evolution; the computation required are not less than for a explicit simulation of 

each time step. As discussed above, one suspects in fact that the evolution is in 

general computationally irreducible, so that no possible computation could find 

its outcome more efficiently than by direct simulation. 

This would be the case if the cellular automaton Rule 30 could act as an 

efficient universal computer [16], so that with an appropriate initial state, its 
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evolution could mimic any possible computation. In particular, it could be that 

the problem of finding the value of a particular site after t steps, must take a 

time polynomial in t on any computer. (Direct simulation takes 0{t^) time on a 

serial-processing computer, and 0{t) time with 0{t) parallel processors.) 

In addition to studying cellular automaton evolution from given initial config-

uration, one may consider the problem of deducing configurations for the cellular 

automaton from partial information such as temporal sequences. In particular, 

one may study the computational complexity of finding the seed for a cellular 

automaton in a finite region from the temporal sequences it generators. 

There are 2^ possible seeds for a size N cellular automaton, and one can 

always find which ones produce a particular sequence by trying each of them in 

turn. However, such a procedure would rapidly become impractical. The result in 

last section suggest a slightly more efficient method. If it were possible to find two 

adjacent temporal sequences, then the seed could be found easily using Equation 

(3.2). Given only one temporal sequences, some elements for the seed are initially 

undetermined. Nevertheless, in a finite size system, say with periodic boundary 

conditions, one can derive many distinct equations for a single site value. The 

site value can then be deduced by solving the resulting system of simultaneous 

Boolean equations. The equations will typically involve variable. As discussed 

in last section, the number of variables seems to be Poisson-distributed with a 

mean around 0.4A^. 

The general problem of solving a Boolean equation in n variable is NP-

complete, and so presumably cannot be solved in time polynomial in n. In 

addition, it seems likely that the average time to solve an arbitrary Boolean 

equation is correspondingly long. To relate the problem of deducing the seed dis-

cussed above to this would require a demonstration that the Boolean equations 
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generated were in a sense uniformly distributed over all possibilities. Out of all 

2^" n-variable equation, the problem here typically involves 0(2^), but these seem 

to have no special simplifying features. At least with method discussed above, it 

is conceivable that the problem of deducing the seed is equivalent to the general 

problem of solving Boolean equation, which is NP-complete. 

3.7 Finite Size Behaviour 

Much of the above discussed have concerned the behaviour of the cellular au-

tomaton Rule 30 in the idealized limit of an infinite lattice of sites. But practical 

implementations must use finite size registers, and certain global properties can 

depend on the size and boundary conditions chosen. 

The total number of possible states in a size N cellular automaton is 2". Evo-

lution between these states can be expressed by a finite states transition diagram. 

Fig 3.7.1 give examples of such diagrams for the cellular automaton of the Rule 

30 with N 二 9 periodic boundary conditions, such that 

af) = 4_i) XOR (af-i) OR a ” ) 

4) 二 4:1? XOR (4—1) OR a”)） 

Table 3.7.1 summarizes some of their properties. Fraction of Longest Cycle 

is the total number of configuration involve in the longest cycle (including the 

configuration "attract" to the longest cycle) against total configuration. Cycle 

Fraction is the total number of configuration in cycles against the total number 

of configuration, and transient means that if one the configuration is not in cycle, 

average time step that configuration reach the cycles. W e find that the results 
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are seen to depend not only on the magnitude of N，but also presumably on its 

number theoretical properties. 
N No . of Cyc le X Cyc le L o n g Frac t ion of Longest Cyc le Cyc le F rac t i on Trans ient 

4 1 x 8 3 x 1 0.75 0.69 0.5 

5 1 X 5 1 X 1 0.94 0.19 4.3 

6 3 x 1 1.00 0.05 3.3 

7 1 x 6 3 7 X 4 l x l 0.60 0.72 0.4 

8 1 X 4 0 1 X 8 0.88 0.20 3.1 

9 1 x171 1 x 7 2 1 x 1 0.81 0.48 1.1 

10 2 X 1 5 1 X 5 3 x 1 0.82 0 .04 14.8 

1 1 l x l 5 4 1 1 x 1 7 l X l 0.76 0.17 3.3 

12 4 X 1 0 2 1 x 8 4 x 3 3 x 1 0.93 0.11 4.4 

13 1x832 1x260 1 x 2 4 7 0.32 0.17 2.2 

14 l x l 4 2 8 2 x 1 3 3 1x112 2 x 8 4 1 x 6 3 1 x 1 4 3 x 1 0.84 0.13 2.7 

15 l X l 4 5 5 5 x 3 0 5 x 9 1 5 x 7 4 x 5 1 x 1 0.93 0.05 5.7 

Table 3.7.1 

Each site transition diagram contains a set of cycles, fed by trees representing 

transients. The cycle may be considered as "attractors" to which states in their 

"basins of attractions" irreversibly evolve. 

There are many regularities in the structure of the state transition diagrams 

obtained from the Rule 30. The evolution is not well-approximated by a random 

mapping between 2^ states. 

A first observation is that most configurations have unique predecessors under 

the Rule 30, so there is little branching in the state transition diagram. In fact, 

it can be shown that a configuration has a unique predecessor unless it contains 
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a pair of value zero sites separated by a sequences of 3n + 1 value one sites (with 

n > 0) or unless N is divisible by 3, and all site have value 1. In the former 

case, the configuration has exactly zero or two predecessors; in the latter case, it 

has three. The numbers of configuration with zero or two predecessors are equal 

when N is not divisible by 3; there are two more with zero predecessors when 

3|iV. For large N , the number of configurations with zero or two predecessors 

behaves as K^, where K - 1.696 is the real root of 4/̂ ^ — 2n^ — 1 二 0. Since the 

total number of configurations grows like 2^, the fraction of nodes in the state 

transition diagram that are branch points tends exponentially zero. 

A second observation is that there are often many identical parts in the state 

transition diagrams of Table 3.7.1 and Figure 3.6.1. This is largely a consequence 

of shift invariance. States in a cellular automaton with periodic boundary condi-

tions that are related by shift evolve equivalently. Therefore, for example, there 

are often several identical cycles, related by shifts in their configurations. In ad-

dition, the periods of the cycles are often divisible by N or its factors, since they 

obtain several sequences of configurations related by shifts. The transient tree 

that feed each of these sequences are then identical. 

The evolution of finite cellular automaton with periodic boundary conditions 

is equivalent to the evolution of an infinite cellular automaton with periodic ini-

tial configuration. Therefore, the results on cycle length distributions in Table 

3.7.1 can be considered as inverse to those Table 3.5.2 on configuration with given 

temporal periods. Cycles of lengths corresponding to these temporal periods oc-

cur whenever N is divisible by the spatial periods of these configurations. Such 

short cycles are absent if N has none of these factors. 

For large N , the state transition diagrams for the Rule 30 appear to be in-

creasingly dominated by a single cycle. This cycle is longer than the others, and 
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its basin of attraction is large enough that most arbitrary chosen initial states 

evolve to it. The low degree of branching in the transient trees implies that the 

points reached from the arbitrary initial states should be roughly uniformly dis-

tributed around the cycle. 

The shorter cycles in Table 3.7.1 can be considered as related to subsets of 

states invariant under cellular automaton rule. With N even, for example, con-

figuration which consist of two identical N|2 subsequences can evolve only to 

configuration of the same type. Once such a configuration has been reached, the 

evolution is trapped within this subset of configurations, and must yield shorter 

cycles. In general, there may exist subsets of states within certain special sym-

metry properties that are preserved by the cellular automaton rule. Initial states 

with particular, symmetrical forms can be expected to have these properties, and 

thus to be trapped in subsets of state space, and to yield short cycles. For ex-

ample, with N 二 36，a configuration containing a single nonzero site evolves to 

a length 2844 cycle, while most initial evolve to the longest cycle, with 2237472 

states. 
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loĝ  ns 

ii| f ^ 
8： f W 

： f / 

‘ N 
5 10 15 20 25 30 

Figure 3.7.2 

N Longest Cycle Leng t h : H ;v N Longest Cyc le Leng t h : TIjv 

4 8 32 2002272 

5 5 33 2038476 

6 1 34 5656002 

7 63 35 18480630 

8 40 36 2237472 

9 171 37 49276415 

10 15 38 9329228 

11 154 39 961272 

12 102 40 19211080 

13 832 41 51151354 

14 1428 42 109603410 

15 1455 43 93537212 

16 6016 44 192218312 ^ ^ 

17 10845 45 75864495 l a b l G 0 . 7 . ^ 

18 2844 46 261598274 

19 3705 47 811284813 

20 6150 48 3035918676 

21 2793 49 9937383652 

22 3256 50 593487780 

23 38429 51 3625711023 

24 185040 52 20653434880 

25 588425 53 40114679273 

26 312156 54 7551779562 

27 67554 

28 249165 

29 1466066 

30 306120 

31 2841150 

In the infinite size limit, patterns such as that of Figure 3.4.1 generated by 

the cellular automaton of the Rule 30 never become periodic, but with a total of 

N sites, a cycle must occur after 2^ or less steps. Table 3.7.2 and Figure 3.7.2 

give the actual maximal cycle length U ^ found. A roughly exponential increase 

of riiv with N is seen, and a least square fit to the data of Table 3.7.2 yields 

log2niv^O.6l(Ar4-l) (3.7.1) 
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Note that if the state transition diagram correspond to an entirely random 

mapping between the 2" cellular automaton states, then cycles of average length 

2^/2 would be expected. The cycles actually obtained are significantly longer. 

The exponent in Equation (3.7.1) may be related to the entropy h^ < 2 as a 

result of the expansivity or instability of the mapping discussed section 3.3. 

If there were very short cycles, the sequences produced by the cellular au-

tomaton would readily be predictable. Therefore if in fact no such prediction can 

be made by any polynomial time computation, the length of the cycles that oc-

cur should in general increase asymptotically faster than polynomial in N. This 

behaviour is supported by Equation (3.7.1) 

If indeed the evolution of cellular automaton Rule 30 is computationally ir-

reducible, then a complex computation may always be required to determine for 

example the lengths of cycles that appear. For in this case, there are effectively 

be no better way to find the succession of states that occur, except by explicit 

application of the Rule 30. One expects in fact that the problem of finding say 

whether two configurations lie on the cycle is PSPACE-complete, and so presum-

ably cannot be solved in a time polynomial in 7V, but rather essentially requires 

a direct simulation of the cellular automaton evolution. 

The cycle structure of finite cellular automata depends in detail on the bound-

ary conditions chosen. Table 3.7.3 gives the maximal cycle length found for the 

Rule 30 with shift register boundary conditions such that 

4” = 4、XOR (af OR af-i)) 

4) = 4) XOR (a?-i) OR 4'-i)) 

ajv and ajv-i is similar to ai and a2 

The result differ substantially from those with boundary conditions given in 

Table 3.7.2. 
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N Longest Cyc le L e n g t h : I l j v 

4 5 
5 2 

6 7 
7 4 

8 17 

9 65 

10 6 

11 57 

12 50 

13 118 

14 185 

15 257 

16 481 

17 907 Table 3.7.3 
18 1681 

19 707 

20 2679 

21 5630 

22 1368 

23 31241 

24 3567 

25 60503 

26 4752 

27 46519 

28 35569 

29 207197 

30 149899 

31 482717 

Other boundary conditions m a y also be considered. A m o n g them are twisted 

ones, in which ai and â v are negated in periodic boundary conditions. The max-

i m u m cycle length found with such boundary conditions seem typically shorter 

than in purely periodic case. 

One m a y in addition consider boundary conditions in which the boundary 

site value are fixed, rather than being periodic identified. Different cycles are 

obtained in different cases; all those investigated nevertheless give maximal cycle 

length shorter than those in Table 3.6.2 found with periodic boundary conditions. 

W h a t has been discussed so far are cycles in complete finite cellular automa-

ton configurations. But in obtaining random sequences one samples single sites. 

The sequences found could potentially have periods which sub-multiples of the 

periods for complete configuration. However, permutive rule such as Rule 30 
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cannot occur. 

The state transition diagrams summarized in Table 3.7.1 give the number of 

complete 7V-site configurations that can occur at various stages in the evolution 

of the cellular automaton rule 30. One m a y also consider the number of single 

site temporal sequences that can occur. Table 3.7.4 gives the fraction of the 2^ 

possible length L temporal sequences that are actually generated from any of the 

2^ possible initial states in a size N cellular automaton evolution according to 

the Rule 30 with periodic boundary conditions. Whenever N > L + 2, all possible 

sequences seem to be generated. They appear with roughly equal frequencies. 

L 3 4 5 6 7 8 9 10 11 12 13 14 15 

3 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

4 0.250 0.625 0.875 0.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

5 0.125 0.313 0.656 0.844 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 0.063 0.156 0.344 0.594 0.906 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.031 0.078 0.180 0.352 0.609 0.891 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8 0.016 0.039 0.094 0.188 0.328 0.633 0.949 0.992 1.000 1.000 1.000 1.000 1.000 

9 0.008 0.020 0.047 0.094 0.168 0.361 0.668 0.895 0.996 1.000 1.000 1.000 1.000 

10 0.004 0.010 0.023 0.047 0.085 0.195 0.386 0.644 0.917 0.989 1.000 1.000 1.000 

11 0.002 0.005 0.012 0.023 0.042 0.102 0.204 0.377 0.666 0.897 0.995 1.000 1.000 

12 0.001 0.002 0.006 0.012 0.021 0.052 0.105 0.209 0.385 0.669 0.913 0.995 1.000 

13 0.000 0.001 0.003 0.006 0.011 0.026 0.054 0.105 0.209 0.385 0.669 0.913 0.995 

14 0.000 0.001 0.001 0.003 0.005 0.013 0.027 0.053 0.109 0.209 0.397 0.671 0.906 

15 0 000 0 000 0.001 0.001 0.003 0.007 0.013 0.027 0.055 0.109 0.215 0.399 0.668 

Table 3.7.4 

3.8 Statistical Properties 

The sequences generated by the cellular automaton Rule 30 m a y be considered 

effectively random if no feasible procedure can identify a pattern in them, or al-

low their behavior to be predicted. Even though it m a y not be possible to prove 

that no such procedure can exist, circumstantial evidence can be accumulated by 

trying various statistical results on sequences generated by the Rule 30 with those 

calculated for sequences whose elements occur purely according to probabilities. 
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To establish the validity of the Rule 30 as a random sequence generator, one 

should apply a variety of statistical procedures, related to various different kinds 

of calculations. The choice of tests is necessarily as ad hoc as the choice of cal-

culations done. At the end of the chapter lists those used here. While quite ad 

hoc, the tests seem to be sensitive, and reasonably independent. 

As an example, consider the "equidistribution" or "frequency" test. If a se-

quence of zeros and ones is to be random, the digits zero and one must occur in it 

with equal frequency. In general, in fact, all 2^ possible length n blocks of digits 

must also occur with equal frequency. However, in a finite sample of length m , 

there are expected to be statistical fluctuations, which lead to slightly different 

numbers of zeros and ones. As a consequence, one can never definitely conclude 

by studying a finite sample that the complete sequence is not random. One can 

calculate the probabilities that tmly random sequence would have the properties 

seen in the finite sample. 

To do this, one evaluates ：)(：2, defined in terms of the observed and expected 

frequencies po and Pe as 

u 

X^=T,{PO-Pef/Pe 
1 

Here v gives the number of degrees of freedom, or the number of distinct ob-

jects whose frequencies are included in the sum. If blocks of length n are studied 

then u=2^. N o w one must find the probability that a value of x^ larger than 

that observed would occur for a random sequence. This "confidence interval" is 

obtained immediately from the integral of the x^ distribution. 

If the confidence interval is very close to zero or one, then the observed x^ 

is unlikely to be produced from a random sequence, and one may infer that the 

observed sequence is not random. Of course, if say a total of k tests are done, 
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it is to be expected that the confidence interval for at least one of them will be 

less than l/k. Evidence for nonrandomness in a sequence must come from an 

excess of confidence interval values close to zero or one, over or above the number 

expected for a uniform distribution. 

N = 1 7 , L = 8 k N = 1 7 , L = 6 4 k N = 2 3 , L = 6 4 k N = 2 9 , L = 6 4 k N = 3 7 , L = 6 4 k N = 4 9 , L = 6 4 k 

A 0.0039 1.0000 0.0456 0.7375 0.3852 0.8003 

B 0.0171 0.9944 0.3391 0.4888 0.1010 0.1494 

C 0.4164 0.4783 0.7256 0.4847 0.4083 0.9407 

D 0.3227 0.9998 0.1506 0.1434 0.1678 0.6074 

E 0.4576 0.4484 0.6790 0.8492 0.5414 0.7991 

F 0.4306 0.8644 0.8751 0.5590 0.6681 0.6606 

G 0.2942 0.9944 0.1232 0.7359 0.4448 0.6961 

T a b l e 3 . 8 . 1 - W i t h in i t ia l state as single nonzero site, and k = 1024. The number given are the probabi l i t ies for stat ist ical 

averages of t ru ly r andom sequences to exceed those of the sequences analyzed. The numbers should be un i formly d is t r ibuted 

between 0 and 1 if sequences analyzed are indeed t ru ly r andom . Accumu la t i on close to 0 and 1 suggest derivat ions from random-

ness. Such accumula t ions are seen in th is case only when the per iod of the cellular a u t oma t on is comparab le to the length of the 

sequence sampled . 

Table 3.8.1 gives results from the statistical tests described at the end of the 

section for sequences generated by the Cellular Automaton Rule 30 in a finite 

circular register. Except when the sample sequence is comparable in length to 

the period of the system, as given in Table 3.7.2, no significant deviations from 

randomness are found. 

If deviations from randomness were detected by some statistical procedure, 

then this procedure could be used to make statistical predictions about the se-

quences. In addition, it could be used to obtained a compressed representation 

for the sequence, and would demonstrate that the sequence did not have maximal 

information content. The fact that deviations from randomness have not been 

found by any of the statistical procedures considered lends strong support to the 

belief that sequences produced by the Rule 30 with large N are indeed random 
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for practical purposes. 

3.8.1 statistical test used 

The statistical test are taken from [21 . 

The sequences studied consists of strings of binary bits. In many of the test, 

these bits are grouped into blocks; either 8 or 4. The possible bit sequences in 

these blocks can be represented by integer value between 0 and 255 or 15, respec-

tively. 

n-blocks mean a blocks with n bits. 

A Block Frequency Distribution 

Each of the 2^ possible n-blocks should occur with equal frequency, (n=8 are 

used.) 

B Gap Length Distribution 

The lengths of runs of n-blocks whose value are all greater than i2 or less than 

î  should follow a binomial distribution, (n=8, n=100 ^=200 are used; runs 

longer than 16 blocks are lumped together.) 

C Distinct Blocks Distribution 

The frequencies with which p out of q successive m-blocks are distinct should 

follow a definite distribution, ( m = 4 q=4 are used.) 

D Block Accumulation distribution 

The number of successive n-block necessary for all possible m-blocks to appear 
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in order as their first m elements should follow to a definite distribution.(n=8,m=3 

are used; number greater than 40 are lumped together.) 

E Permutation Frequency Distribution 

The value of q successive n-blocks should occur in all q\ possible ordering with 

equal frequency. ( n = 8� q = 5 are used.) 

F Monotone Sequence Length Distribution 

The lengths of sequences in which successive n-blocks have monotonically in-

creasing value should follow a definite distribution, (n=8 is used; length greater 

than 6 are lumped together; elements immediately following each run are dis-

carded to make successive runs statistically independent.) 

G Maxima distribution 

The m a x i m u m values of n-blocks in sequences of successive of q n-blocks 

should follow a power law distribution. {n=8,q=S are used.) 



Chapter 4 

Practical Implementation of the 

CA PNG 

4.1 The implementation of the CA P N G 

The simplicity and intrinsic parallelism of the Cellular Automaton Rule 30 makes 

possible efficient implementation on many kinds of computers. 

O n a serial-processing computer, each site could be updated in turn according 

to and updated to the Rule 30, but in practical, site values can be repersented by 

single bits in say a 32-bit word, and updated in parallel using standard word-wise 

Boolean operations. 

O n a synchronous parallel-processing computer, different sites or groups of 

sites in the cellular automaton can be assigned to different processors. They can 

then be updated independently, using the same instruction, and with only local 

communications. 

Very efficient hardware implementation of the Rule 30 should be possible. For 
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short registers, explicit circuitry can be included for each site. A n d for long reg-

isters, a pinelined approach analogous to a feedback shift register can be used. 

The evidence presented above suggests that the Cellular Automaton Rule 

30 can serve as a practical random sequence (pseudorandom number on {0,1}) 

generator. The most appropriate detailed choices of parameters depends on the 

application intended. The most obvious constraint isone of cycle length. To ob-

tain a cycle length larger than 2^2 ̂  4 x lC)9, Table 3.7.2 shows that a circular 

registor of length of N = 49 can'be used. Cycle lengths tends to increase with 7V, 

but Table 3.7.2 shows some irregularities. Therefore it is not clear, for example, 

how large N need to be obtain a cycle length larger than 2®^ ~ 10i9，but base on 

Equation 3.7.1, a value N 二 127 should certainly suffice. 

R a n d o m sequences can be obtained by sampling the sequence of values of a 

particular site in a register updated according to the Rule 30. The theoretical 

and statistical studies described above support the contention that such sequences 

show no regularities. 

Sequences could potentially be obtained more quickly by extracting the val-

ues of several sites in the register at each time step, but h^ < 2 implies that 

some statistical correlations must exist between these values. The correlations 

are probably minimized if the sites sampled are equally spaced around the register. 

The random sequences obtained from the Rule 30 have an equal fraction of 0 

and 1. M a n y applications, however, involve random binary choices with unequal 

probabilities. There is a simple algorithm to obtain digits with arbitrary prob-

abilities. [5]. First write the probabilities p for outcome 1 as a binary number. 

Then generate a random binary sequence s with length equal to this number. 

The output is obtained by an iterative procedure. Begin with the "current re-
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sult" of 1. Then starting from the least significant digit in p, successively find 

a new result by combining the old result with corresponding digit of 5, using a 

function A N D or O R , depending on whether the digit in p is 0 or 1, respectively. 

The final result thus obtained is equal to 1 with probability exactly p. 

Configurations in two length N registers with slightly different seeds should 

become progressively less correlated under the Rule 30 as a result of the insta-

bility discussed in the section 3.3. The characteristic time for this process is 

governed by the left and right Lyapunov exponents Az, and Xn, and should be 

O.SN. Therefore, if several sequences are to be generated with seeds that differ 

only slightly, then the Rule 30 should be applicated at least 0{N) times to the 

seeds before beginning to extract random sequences. 

4.2 Applied to the set of integers 

To generate a random integer on a set of integers size is equal to n, for example: 

{0,1，2, ...,n- 1}, just choose a N that the "width" of the C A P N G , satisfies 

n<0.61(A^ + l) 

then select a site to capture its temporal sequences with length equal to 

l0g2n + 1. After capture the sequences, simply change it to decimal from bi-

nary. If generate a number that greater thenn-1, discard it and generate again. 

This method will have a expected run time (2n -击)「L0g2n] for the worst 

case that the size of the set is 2^ + 1 for some integer m and「Log 2^l for the 

best case that the size of the set is the power of 2. 

From [2], we can found an algorithm called DDG-tree alogorithms (Discrete 

distribution generateing tree algorithms) that can generate any distribution of 
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o<̂ ^̂^ 
Figure 4.2.1 

random numbers, and the above is the typical one that the distribution is uni-

form. 

The analysis of the algorithm have been in [2] and there will be an introducion 

of that algorithm. 

For example, if we want to generate the set of integers {0,1, 2, 3} with prob-

abilities 1/8’ 1/2，1/4,1/8’ we write the probabilities in binary form that 

1/8 = (0.001)2 

1/2 = (0.1)2 

1/4 = (0.01)2 

Then construct a tree that for generate 0, we have a termial node on level 3 

from the root, according to (0.001)2. As same as for generate 1, we have a termial 

node on level 1 from the root. In the figure 4.2.1, we have shown the DDG-tree 

of the algorithm, which go to top-right from the left-node means get 1 from the 

C A P N G , and to bottom-right means get 0 from the C A P N G . Therefore, from 

the figure 4.2.1, we know that we generate 0 for 000, 1 for 1, 2 for 01 and 3 for 001. 
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Figure 4.2.2 

There [2] have been shown that for any dicrete distribution, with probabilities 

are rational, this algorithm will be halted in expected finite time, and there [2] is 

an algorithm to generate that tree. 

The figure 4.2.2 shown the DDG-tree for generate a pesudorandom number 

from the set of integers { 0,1,2 } with equal probabilities. 



Chapter 5 

Application to Cryptography 

5.1 Stream Cipher 

Using the generator discuss in this thesis, we can construct a cryptosystem to 

encrypt stream cipher[17]. The initial state of the register (i.e. the seed) is used 

as a key. The value 汉⑴ attained by a particular site through time then serve 

as a random sequence. Ciphertext C can be obtained from binary plaintext P 

according to Ci = Pi X O R a(0; the plaintext can be recovered by repeating the 

same operation, but only if the sequence a(') is known. 

The security of this cryptosystem relies on the difficulty of finding the seed 

from time sequence of cell values. This problem is in the class NP. No systematic 

algorithm for its solution is currently known that takes a time less than exponen-

tial in N. No statistical regularities have been found in sequences shorter than 

the cycle length. 

One approach to the problem of finding the key uses the near linearity of the 

Rule 30. The Rule 30 can be written in the alternative form ̂!̂(̂―丄丄)=̂̂ )̂ X O R ( 

af-i) O R af+/^ )• Given the values of sites in two adjacent columns, this allows 
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the values of all cells in a triangle to the left to be reconstructed, but the sequence 

provided gives only one column. Values in other column can be guessed, and then 

determined from the consistency of Boolean equations for the seed. However in 

disjunctive normal form the number of terms in these equations increase linearly 

with iV, presumably making their solution take a time more than polynomial in 

N. 

5.2 One Time Pad 

Pseudorandom have been used in private key cryptosystem. A private key cryp-

tosystem uses a key for two users exchange some secure which enables them both 

to encrypt and decrypt message sent between them. Ciphertext should be un-

readable to anyone else and should appear "random" to unauthorized receiver, 

and ideally no statistical information can be extract from the ciphertext. Most 

private key cryptosystem do not achieve this, and statistical method is a main 

method of cryptanalysis. 

Absolute security can always be achieved by the one time pad, which uses a 

key of same length as the totality of ciphertext to be exchanged. H o w much secu-

rity is possible when the key is to be shorter than a messages to be encrypted? In 

this situation an analogy between pseudorandom number generation and private 

key cryptosystem is apparent: the key of the one time pad supplies seed for the 

pseudorandom number generator to generate longer one time pad. 
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5.3 Probabilistic Encryption 

Probabilistic Encryption ofsingle bits have been proposed to replace deterministic 

block encryption, since adversary cannot distinguish between a random encryp-

tion of “0” and T . 

There is a example that proposed in [18 • 

To send a message M to Alice using a probabilistic scheme, Bob proceeds as 

follows. Let M=mi . rri2 .. . m in binary notation. For i = 1，. . .t: 

1. Bob randomly choose an integer n from Z^. 

2. Ifmi=0, Bob sends f^=rfmod n to Alice; if rrii=l, Bob sends Ci=y ... rfmod 

n to Alice. 

W h e n mi=Q, Bob send a random square to Alice, whereas when rUi=l, Bob 

send a random pseudosquare. (Alice need to include y in her public key just so 

that Bob will be able to generate random pseudosquares.) 

Since distinguishing squares from pseudosquare modulo n is easy if the fac-

torization of n is known, Alice can decode the message. 

However, for an adversary, the problem of distinguishing whether a given piece 

of cipher text d represents a 0 or a 1 is precisely the problem of distinguishing 

square from pseudosquare, which was assumed to be hard. 
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5.4 Probabilistic Encryption with RSA 

R S A cryptosystem is a public cryptosystem that has its security depended on 

the computational complexity of factorizing large integers. However, for any de-

terministic encryption, partial information of plaintext can always be computed 

from ciphertext. 

The following scheme have been proposed to hide all partial information bit-

by bit. 

Let N be a Blum integer which is the product of two primes each congruent 

to 3 (mod 4) and ^(N) be the Euler-phi function. 

For Alice, choosing a suitable Blum integer, hides the two primes and publics 

the key N. 

W h e n Bob sends a message x with length n to Alice, first he chooses 5o uni-

formly from {l,.",7V}. Next, for i 二 l,".,n + l, computes Si = s?_i (mod N) 

and cTi =lsb(si). Finally, computes y=x X O R a1a2 cFn. The ciphertext 

will be ( Sn+1,2/ ) • 

After Alice receives the ciphertext, first computes d 二 2"^ m o d N. Next using 

this d to compute ai such that ai=4+i m o d N. Then, for i 二 1, ...,n, computes 

Q =lsb(ai) and ai+i=a? (mod N). Finally, the plaintext is y X O R ^1¾ n̂ 

The scheme security will depend on the length of N. 
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5.5 Prove yourself 

The following is a scheme for a person to prove himself.[20 

Assume that Alice wants to prove that she is Alice to Bob, first Alice publics 

a Blum integer, and select a x^ from the set {1,..., N} and public yA=^A (mod 

AO. 

Alice publics a Blum integer her public key. W h e n Alice wants to prove her-

self, she uniformly select a r from the set { 1 ,…，N} and sends s=r^ m o d N to Bob. 

Bob uniformly select a challenge a from {0,1}，and sends it to the Alice. 

Alice replies with z=r ... x^ (mod N) to Bob. 

Bob finally accepts if and only if z^ 三 s ... y; (mod N). 

The above scheme can be repeated to maintain reliability. 

The protocol depends on that Alice is the only party to know the square root 

of VA-
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