
. , / " ' ‘ : f l *

.-'• •--" ‘.
,广. -‘.. 、

/ ' y
/ . • .‘、： /" ,.' 1 .’ \ , - 、

1 • ’

't- .

Pseudorandom Number Generator
, , . \ ‘ . . (.

.. 、 . . •

by Cellular Automata

And

Its Application to Cryptography

by

Siu Chi Sang Obadiah

Thesis

Submitted to the Faculty of the Graduate School of

The Chinese University of Hong Kong

(Division of Mathematics)

In partial fulfillment of the requirements

for the Degree of

Master of Philosophy

July, 1999

1

/ ^ ^ ^ jU/统系馆書圓\，、

g p i m M)l|

W V ~ U N I V E R S I T Y ~ / M J

vS^sLiBRARY smmy^ ^ ^ ^ p ^

i j

I
, i

I

撮要

在自然科學的硏究上己經廣泛使用Cellular Automata。在一九八

六年，Stephen Wolfram發現可以將CelMar Automata應用在產生假

任意數，而其中一項的數學軟件Mathematica也正使用它。

在七十年代，因著公開鍵密碼系統的創立，密碼學得以大力發

展。在發展過程中，發現那些使用定函數的公開鍵密碼系統，因著已

編碼的訊息內帶著原文或密碼鍵的資訊而不安全，所以我們想利用假

任意數產生器去建立一個槪率密碼系統，使那在已編碼的訊息內帶著

原文或密碼鍵的資訊因這個系統而被隱藏°

在這篇論文中，我們會討論一個利用061仙31八1^003�3制作的假

任意數產生器。首先，我們會討論假任意數產生器的三個特性——擴

張性、統計上不可分及計算複雜性。以後我們會介紹Cellular Automata

的一些基本性質，同硏討它的一些工具。接著，我們會看看CelMar

Automata基本律30如何適用於制作假任意數產生器；因著我們限定

產生器的輸出在{0,1}這個集內，因此我們會介紹一個如何禾_在{0,1}

內的假任意數去制作更大整數集上的假任意數°最後’我們會討論幾

個利用假任意整數去加強保安的密碼系統。

Pseudorandom Number Generator o ‘ oy

Abstract

Cellular Automata have been widely used in research of nature science. In 1986,

Stephen Wolfram found that Cellular Automata can be used in generating pseu-

dorandom number and now is used by Mathematica to generate random integer.

Cryptography has been rapidly developed after the concept of public key

cryptosystem was established in 70's. During the development, it was found

that any public key cryptosystem which use deterministic function may have a

risk that some partial information of the plaintext or the key could be found by

the ciphertext, therefore we want to develop a probabilistic cryptosystem using

pseudorandom number generator to hide this partial information.

In this thesis, we discuss a special kind of pesudorandom number generator

which makes use of Cellular Automata. W e begin by discuss in the pseudoran-

domness of the generator by three properties - expansiveness, statistical indistin-

gushiblity and computational complexity. Then we introduce some basic proper-

ties of Cellular Automata, and some tools to help us to expound the detail about

Cellular Automata. After that, we discuss a special kind of Cellular Automata -

Elementary Automata Rule 30 and see how it suits to be a pesudorandom num-

ber generator. Since we restrict the set of output of the Cellular Automata on

{0,1} we will introduce an algorithm to use the pseudorandom bits to generate

pseudorandom integer. Finally, we discuss serveral algorithms in cryptography

which use a pseudorandom integer to secure the cryptosystem.

o
Pseudorandom Number Generator 乙

ACKNOWLEDGMENTS

I wish to express m y gratitude to m y supervisor, Prof. K . M . Yeung, for his

guidance and encouragement in these two years. His supervision has helped a lot

during the preparation of this thesis. I would like to express m y gratitude to the

Department of Mathematics and the Science Faculty for their support.

Contents

1 Pseudorandom Number Generator 5

1.1 Introduction 5

1.2 Statistical Indistingushible and Entropy 7

1.3 Example of PNG 9

2 Basic Knowledge of Cellular Automata 12

2.1 Introduction 12

2.2 Elementary and Totalistic Cellular Automata 14

2.3 Four classes of Cellular Automata 17

2.4 Entropy 20

3 Theoretical analysis of the CA PNG 26

3.1 The Generator 26

3.2 Global Properties 27

3.3 Stability Properties 31

3.4 Particular Initial States 33

3.5 Functional Properties 38

3.6 Computational Theoretical Properties 42

3

Pseudorandom Number Generator o ‘ oy

3.7 Finite Size Behaviour 44

3.8 Statistical Properties 51

3.8.1 statistical test used 54

4 Practical Implementation of the CA PNG 56

4.1 The implementation of the CA PNG 56

4.2 Applied to the set of integers 58

5 Application to Cryptography 61

5.1 Stream Cipher 61

5.2 One Time Pad 62

5.3 Probabilistic Encryption 63

5.4 Probabilistic Encryption with RSA 64

5.5 Prove yourself 65

Bibliography

Chapter 1

Pseudorandom Number

Generator

1.1 Introduction

Random numbers have been widely used in numerical analysis, testing chips for

defects and decision making.

To construct "random" number, it is equivalent to obtain independent sam-

ples from uniform probability distribution on sample space. Obtaining "random"

number can be reduced to a problem that to obtain random bits from {0,1} [2 .

Therefore, in this thesis, we will mainly discuss the case that the sample space

is {0,1} , and will discuss in the Section 4.2 when the sample space is the set of

integers.

To discuss the "random" behaviour, we will mainly concern three properties

of the generator: Is the generator expansive in the sense of a dynamical system?

Is the output evenly distributed in the sample space if the input is? Is the compu-

tational complexity like that of a one-way function? W e will discuss these three

5

Pseudorandom Number Generator o ‘ oy

properties one by one below.

Expansiveness is a concept arised from dynamic system. A chaotic dynamical

system has three properties, and one is expansiveness. W e give the definition of

expansiveness.

Definition A flow ft on a metric space M is expansive at a point x G M if

f^{x) — ft{y)l > A^|x — y\ where 入〉1’ provided that \x — y\ < 6 and 0 < t < to

for some fixed to-

Expansiveness means that a small change of seed will result in a large change

of the result.

For the distribution of output numbers, we need to introduce a concept called

"statistical indistingushibility". W e discuss it in the next section.

For the complexity of the generator, we need the concepts of NP-problem and

one-way function in complexity theorem of computing.

The class P is the set of decision problems that the solutions can be solved

in polynomial time, and the class N P is the set of decision problems that the

solutions can be verified in polynomial time. The class NP-complete is the set

of decision problems that they are N P and for all problems in NP, there exist a

polynomial time reduction to the problems in NP-complete.

Since there are widely believe that P^^NP, so a NP-complete problem must

not in P, otherwise all N P problems will be in P.

Now, let us consider the following problem:

Pseudorandom Number Generator o ‘ oy

For a generator G, is there a x such that G{x) = y for a given yl

That problem must be in NP-complete for generator G , since we do not want

that problem can be solved in polynomial-time, otherwise the seed of the gener-

ator will be easily to be found from the random bits. In the other hand, we want

that problem can be verify in polynomial-time since we want to generate random

bits from any seed in polynomial-time, that means the generator is efficient.

1.2 Statistical Indistingushible and Entropy

A definition of pseudorandom number is always relative to the use to which pesu-

dorandom numbers are to be put[3]. Our aim is to simulate a target probability

distribution to within a degree of approximation.

W e measure the degree of approximation using statistical tests.

Let P be the source probability.

G{P) be the probability distribution generated by the P R G G,

Q be the target probability distribution approximated by G.

A statistic is any deterministic function a{x) of a sample x drawn from a

distribution, and a statistical test a consists of the computation of a statistic a

of sample drawn from G{P).

Definition W e say that distribution Pi and P2 on the sample space S are e-

indistinguishable using the statistic a on S provided that the expected values of

cr(x) drawn from Pi to P2, respectively, agree to within the tolerance level e; i.e.

E[a{x) : X G Pi] — E[a{x) : x G P2]| < e

Given a collection T ={(cTi, ei))i of statistical tests cr̂ with corresponding tol-

erance levels 6i we say that G is a T-pseudorandom number generator from source

Pseudorandom Number Generator o ‘ oy

P to target Q provided that G{P) is ê indistinguishable from Q for all statistical

tests cTi drawn from T .

In most uses, we want P 二 Uk (uniform distribution) on the set {0,1}" of

binary strings of length k and for the target probability Q = Ui for some 1.

In this thesis, we will test the generator by some statistical tests from [21],

and this will be discussed in Chapter 3.

In addition, the amount of randomness in a probability distribution that can

be measured by its binary entropy or information, which for a discrete probability

distribution P is

H{P) = -EP{^) log2P(x)
X

where x runs over the atoms of P and p is the probability function. In par-

ticular

H{Uk) 二 k

The notion of randomness-increasing initially seems impossible, because any

deterministic mapping G applied to a discrete probability distribution P never

increase entropy, i.e.

H{G{P)) < H{P)

However, when computing power is limited, G(P) may approximate a target

distribution Q having a much higher entropy so well that, within the limits of

computing power avaliable, one cannot tell the distribution G{P) and Q apart,

to a small tolerance level e. If H{Q) is much larger than H[P), then we say G

is indeed computationally randomness-increasing, as measured by the tolerance

level to statistical tests T={{ai, 6¾)}¾.

Pseudorandom Number Generator o ‘ oy

1.3 Example of P N G

Before discussing the cellular automata P N G , we will introduce some P N G to see

the relationship between P N G and some cryptosystem.

Example (Multiplicative Congruential Generator)

Xn+i 三 axn + b{modM) where 0 < Xn < M - 1

Here (a, b, n) are the parameters describing the generator and Xo is the seed.

It is well known that this type of generator is similar to a type of private key

cryptosystem called "Caesar Cipher".

Example (Power Generator)

Xn+i = x^[modN)

Here (d, N) are parameters describing the generator and Xo is the seed.

If N = p1p2 is a product of two distinct primes and {d, (^(AQ) 二 1，where 4> is

the Euler's totient function, defined by

树#)二#(嘉)* = (̂ 1̂-1)(̂ 2̂ — 1)

Then the m a p x — x^{modN) is one-to-one on {^Y and this operation is the

encryption operation of the R S A public key cryptosystem. W e call this kind of

generators R S A generators.

For d 二 2 and N 二 pip2 with pi 三 p2 三 3(mod4); we call this kind of

generators Square Generator. In this case the mapping

Xn+1 三{Xn)̂ {modN)

is four-to-one on (^)*.

Pseudorandom Number Generator o ‘ oy

One says that y is a quadratic residue (mod N) for some x, if y = x^ (mod N)

for some x. N o w , any quadratic residue y with {y, N) 二 1 has exactly four square

roots. The assumption pi 三 p2 三 3 (mod 4) guarantees that -1 is a quadratic

nonresidue (mod pi) and (mod p2), and this fact implies that exactly one of these

four square roots is itself a quadratic residue. W e denote it by y and call it the

principal square root of y.

If we restrict the generator to the domain

Q{N)= {y (mod N):{y,N)=l and y is a quadratic residue. }

then it becomes a one-to-one mapping. The square generator on the domain

Q{N) is a pesudorandom number generator.

Example (Discrete Exponential Generator)

Xn+i 三 g^[modN)

Here {g,N) are parameters describing the generator and xo is the seed.

W h e n N is a odd prime p and g is a primitive root (mod p). Then the problem

of recoving Xn given (x^+i,仏 N) is the discrete logarithm problem, and is clearly

a hard number-theoretic problem.

The discrete exponentiation operation (mod p) was suggested for crypto-

graphic use in the key-exchange scheme. A key exchange scheme is a scheme

for two parties to agree on a secret key used in an insecure channel.

Example (Kneading Map) Consider a bivariate transformation

{Xn+U Vn+l) •= {Vn, ^n + fiVn, ^n))

where f is a fixed bivariate function, usually taken to be nonlinear. The function

/(.，.) determines the generator, while {xo,yo) and the family {zn} are the seed.

One often takes all Zn := K for a fixed K.

Pseudorandom Number Generator o ‘ oy

One can generalize this generator to take x,y,f(-,.) to be vector-valued. The

Data Encryption Standard (DES) cryptosystem is composed of sixteen iteration

of vector-valued maps of this type, where f{xo,yo) is the plaintext, all Zi =

K compose the key, and f is a specific nonlinear function representable as a

polynomial in several variables.

Example (Shift-register Sequences)

^n+l •二 y(̂ Ti5 ̂ n-l 5 • ‘ • 7 ^n-j^

for a fixed function f.

Such sequences are easy to compute by storing at each iteration the vector

{xn, Xn-1, ... ,Xn-j) and using it to compute (xn+i,xn, ...,Xn-j+i)- The seed is

(^O5 工-i, •",工-j)

This generator is not much related to any cryptosystem but is a good generator

that generates pseudorandom number in a efficient way.

Chapter 2

Basic Knowledge of Cellular

Automata

2.1 Introduction

Cellular Automata are mathematical idealizations of physical systems in which

space and time are discrete, and physical quantities take on a finite set of discrete

values. They were originally introduced as a possible idealization of biological sys-

tems with the particular purpose of modeling biological self-reproduction. They

have been applied and reintroduced for a variety purpose.

Physical systems containing many discrete elements with local interactions are

often conveniently modeled as cellular automata. Any physical system satisfying

differential equations may be approximated as a cellular automata by introducing

finite differences and discrete variables.

Cellular Automata have also been used to study problems in number theory

and their applications to tapestry design. In a typical case, successive differ-

ences in a sequence of numbers reduced with a small modulus are taken, and the

geometry of zero regions is investigated.

Below, we will give a definition of Cellular Automata from [6]. That is not

12

Pseudorandom Number Generator o ‘ oy

the general form of Cellular Automata but after this section, we will see a simply

one.

Definition Let I be the set of integers. To obtain a cellular space we associate

with the set I x I:

1. The neighborhood function g : I x I ^ 2^^^ defined by

g{a) = {a + (5i,a + ^,...a + ^n} V a G I x I

where Si{i = 1，2, ...,n) G I x I is fixed.

2. The finite automaton {V,VoJ), where V is the set of cellular states, Vo is a

distinguished element of V called the qmescent state, and f is the local transition

function from n-tuples of elements of V into V . The function f is subject to the

restriction,

f{vo,Vo, ...,Vo) = VQ.

W e m a y think that cellular space is a space as a plane assemblage of a count-

able numbers of interconnected cells (or sites). The location of each cell is located

by its Cartesian coordinates. Each cell contains an identical copy of the finite

automaton (V,孙，/) and the states v^(a) of a cell a at time t is precisely the state

of its associated automaton at time t. Each cell is connected to the n neighboring

cells a + 6i,a + 知，...a + Sn- In all that follows we shall assume the a is its

neighbor itself, and in this assumption, ̂ i 二 0.

The neighborhood state function h^ : I x I — V^ is defined by

h\a) = (#) , 4 + ^),...V(a + M).

Now, we can relate the neighborhood states of a cell a at time t to the cellular

state of that cell at time t + 1 by

/剛)二^;’).

The above sees that two main restriction need to define Cellular Automata,

the neighborhood function (tell you where is the neighborhood) and the state

function (tell you how the state change with time) •

Pseudorandom Number Generator o ‘ oy

2.2 Elementary and Totalistic Cellular Automata

以⑴ is taken to denote the value of site i in one-dimensional cellular automaton %

at time step t. Each site value is specified as an integer in the range 0 through

k-l. The site value evolve by iteration of the mapping

(t) T M (H) (t-l) it-l) (̂t-l)l (cy i\

a\) = F[al_^ %aJ_^+i, •..，a] ,... , a^+^ J. [Z.i)

F is an arbitrary function which specifies the cellular rules.

The parameter r in the equation above determines the range of the rule; the

value of a given site depends on the last values of a neighborhood of at most

2r + 1 sites. The region affected by a given site grows by at most r sites in each

direction at every time step; propagating features generated in cellular automaton

evolution m a y therefore travel at most r sites per time step. After t time step, a

region of at most l + 2rt site may therefore be affected by a given initial site value.

The elementary cellular automata have k 二 2 and r 二 1, corresponding to

nearest-neighbor interactions.

A n alternative form of eq. (2.1) is

a:t)=f[E%afci)] (2,2)
j=-r

where aj are integral constants, and the function f takes a single integer argument.

Rules specified according (2.1) may be reproduced directly by taking otj 二 k".

Totalistic rules are obtained by taking cXj 二 1. Such rules give equal weight

to all sites in a neighborhood, and imply that the value of a site depends only on

a total of all preceding neighborhood site values.

Pseudorandom Number Generator o ‘ oy

Cellular automaton rules m a y be combined by composition. The set of cellular

rules is closed under composition, although composition increases the numbers

of sites in the neighborhood. Composition of a rule with itself yields patterns

corresponding to alternate time steps in time evolution according to the rule. If

the composition of F1F2 of rules generates a sequence of configuration with period

7T, then the rule F2F1 must also allow a sequence of configuration with period 7v.

The form of the function F in time evolution rule (2.1) m a y be specified by a

"rule number" [7
j=r

E k—^ai+j
R p 二 X ^ F[ai_r,. •. , ai^r]k^^~^

{o,i-n^i+r}

The function f in equation (2.2) also can be specified by a numerical "code"

(2r+l)(fc-l)

Cf = E ⑶几]
n=0

In general, there are a total of A:(&(。"+”）possible cellular rules of form (2.1) or

(2-2).

A few cellular automaton rules are "reducible" in the sense that the evolution

of sites with particular values, or on a particular grid of positions and times, are

independent of other sites values.

Very little information on the behaviour of a cellular automaton can be de-

duced directly from simple properties of its rule. A few simple results are never-

theless clear.

For example, necessary conditions for a rule to yield unbounded growth are

F[a^_r, ai-r+i,... , o^, 0, 0,... , 0] 7̂ 0.

F[0,... , 0, 0，tti+i, •.. , ai+r] 7̂ 0.

Pseudorandom Number Generator o ‘ oy

for some set of a^.

If these conditions are not fulfilled then regions containing nonzero site sur-

round by zero sites can never grow, and the cellular automaton must exhibit

behaviour such that the pattern becomes homogeneous or degenerates into sim-

ple periodic structure (which are called class 1 and class 2 of cellular automata

and are discussed in next section). For totalistic rules, the conditions becomes

f[n] * 0

for some n < r.

One may consider cellular automata both finite and infinite in extent.

W h e n finite cellular automata are discussed below, they are taken to consist

of N sites arranged around a circle (periodic boundary conditions). Such cellular

automata have a finite number k ^ of possible states. Their evolution may be

represented by a finite states transition diagram [8], in which nodes representing

each possible configuration are joined by directed arcs, with single arc leading

from a particular node to its successor after evolution for one time step. After

a sufficiently long time (less than k^), any finite cellular automaton must enter

a cycle, in which a sequence of configuration is visited repeatedly. These cycles

represented attractors for the cellular automaton evolution, and correspond to

cycles in the state transition graph. At nodes in the cycle may be rooted in the

tree have a single successor, but may have serveal predecessors. In the course

of time evolution, all states corresponding to nodes in the tree to the cycles on

which the root lies. Configurations corresponding to nodes on the periphery of

the state diagram (terminals or leaves of the transient trees) are never reached in

the evolution; they may occur only as initial states. The fraction of configuration

Pseudorandom Number Generator o ‘ oy

which m a y be reached one time step in cellular automaton evolution, and which

are therefore not on the periphery of the state transition diagram, give a simple

measure of irreversibility.

The configuration of infinite automata are specified by infinite sequences of

site values. Such sequences are identified as elements of a Cantor Set and discuss

in [9；.

Equation (2.1) and (2.2) m a y be generalized to several dimensions. For r = 1,

there are at least two possible symmetric forms of neighborhood, containing 2d+l

(type I) and 3^ (type II) sites respectively; for larger r other "unit cells" are pos-

sible.

2.3 Four classes of Cellular Automata

This section discusses some qualitative features of cellular automaton evolution.

Despite the simplicity of their construction, cellular automata are founded to

be capable of diverse and complex behaviour. To discuss its complexity, we will

now see what happen when cellular automata evolute.

N o w we will see the pattern of the cellular automata with initial condition

that is randomly generated 100 site long. Most picture are elementary Cellular

Automata Rule with r = 1 and k 二 2, but there is no Class 4 in that kind of

Cellular Automata, so we will find example in Totalistic Cellular Automata with

r = 2 and k = 2.

The Elementary C A Rule 4,12, 218 and 205 are belonged to class 1，which

Pseudorandom Number Generator o ‘ oy

. • _ - m - m m p , P r - f * * p ^ M .

• • .• • . • mm • • . .• . • amm m ..•. . ..

R u l e 4 R u l e l 2

• •
R u l e 218 R u l e 205

Pseudorandom Number Generator o ‘ oy

the pattern becomes homogeneous (fixed points).

_ •

R u l e 9 R u l e 83

The Elementary C A Rule 9 and 83 are belonged to class 2, the pattern de-

generates into simple periodic structure (limit cycles).

• 圊
R u l e 45 R u l e 30

The Elementary C A Rule 45 and 30 are belonged to class 3，the pattern is

aperiodic, and appears chaotic. Some patterns assigned to class 3 contain many

triangular "clearing" and appear more regular than others. The regularity is re-

lated to the degree of irreversibility of the rules.

Most C A P N G are made by this class. The Rule 30 is discussed in next chap-

Pseudorandom Number Generator o ‘ oy

ter.

圓 ’
Totalistic CA Rule 52 Totalistic CA Rule 20

The Totalistic C A Rule 52 and 20 are belonged to class 4, which complicated

localized structures are produced by them.

According to [10], there is a relation between the class and the entropy. As

the entropies study in that thesis is important to the analysis of C A Rule 30

P N G , it will be introduce in next section.

2.4 Entropy
This section describes quantitative statical measures of order and chaos in pat-

tern generated by cellular automaton evolution. These measures may be used to

distinguish the four classes of behaviour identified qualitatively above.

First, consider the statical properties of configurations generated at a par-

ticular time step in cellular automaton evolution. A disordered initial states, in

which each site takes on its k possible values with equal independent probabil-

ities, is statically random. Irreversible cellular automaton evolution generates

Pseudorandom Number Generator o ‘ oy

deviations from statistical randomness. In a random sequence, all k ^ possible

subsequences of length X must occur with equal probabilities. With probabilities

pf) for the kX possible sequence of site value in a length X block, one m a y define:

Definition (spatial set entropy)

s(aO(x) 二 全 logk{E 0{pf)) where 0{p) = 1 for p > 0 and 0{p) = 0 for p 二 0.
i=i

and

Definition (spatial measure entropy)

s^^\X) = -j,Epflog,pf\
j=i

In both cases, the superscript (X) indicates the "spatial" sequences (obtained

at a particular time step) are considered. The “set entropy" is determined directly

by the total number N^^\X) of length X blocks generated (with any nonzero

probability) in cellular automaton evolution, according to

5(气义）=• iQgfcTvmpO.

In the "measure entropy" each block is weighted with its probability, so that

the result depends explicitly on the probability measure for different cellular au-

tomaton configuration, as indicated by the subscript /i. Set entropy is often called

"topological entropy" ； measure entropy is sometimes referred as "metric entropy".

The definitions above yield immediately

4')P0 < s(')w < 1.

Pseudorandom Number Generator o ‘ oy

The first equality holds only for "equidistributed" systems, in which all nonzero

block probabilities pf^ are equal The second equality holds if all possible length

X blocks of site occurs, but perhaps with unequal probabilities. s|T)(X) 二 1 only

for "X-random" sequences, in which all k^ possible sequences of JC site values

occur with equal probabilities. In addition,

0 < 4')P0 < ^ ⑷ ⑷

5|f^(X) = 0 if and only if just one length X block occurs with nonzero probabil-

ity, so s(z)(X) 二 0 also. As discuss above, the equality holds for class 1 cellular

automata.

The entropies <s(4 and 4工）may be obtained either for many blocks in a single

cellular automaton configuration, or for blocks in an ensemble of different con-

figuration. For smooth probability measures on the ensemble of possible initial

configurations, the results obtained in these two ways are almost always the same.

(A probability measure will be considered "smooth" if changes in the values of a

few site in an infinite configuration lead only to very little change in the proba-

bility for the configuration) The set entropy 3(工）is typically independent of the

probability measure on the ensemble, for any smooth measure. The measure en-

tropy 5|f̂ in general depends on the probability measure for initial configuration,

although for class 3 cellular automata, it is typically the same for at least a large

class of smooth measures.

The entropies 3(工）and 5|f̂ are defined for infinite cellular automata. A corre-

sponding definition may be given for finite cellular automata, with a maximum

block length given by the total number of sites N in the cellular automaton. The

entropies s (^ N) and s^^\N) are related to the global properties of the state

transition diagram for the finite cellular automaton. The value of s^^\N) at a

Pseudorandom Number Generator o ‘ oy

particular time is determined by the fraction of possible configurations which m a y

be reached at that time by evolution from any initial configuration. The limiting

value of s ^ (A O at large times is determined by the fraction of configuration on

cycles in the state transition graph.

The spatial sequences entropies were defined in terms of the sequences of sites

values in a cellular automaton configuration at a particular time step. One m a y

also define temporal entropies which characterize the sequences of values taken on

by particular site through many time step of cellular automaton evolution. With

probabilities pf^ for the k^ possible sequences of value for a site at T successive

time steps, one m a y define

Definition (temporal set entropy)

fcT

s(”(T) - + logfc(E 6>(pf)) where 0{p) 二 1 for p > 0 and 6{p) = 0 for p 二 0,
i=i

and

Definition (temporal measure entropy)

s^\T) = -^Y:pfhog,p^\
i=i

These entropies satisfy relations directly analogous to those defined on spatial

sequences.

As a generalization of the spatial and temporal entropies introduced above,

one may consider entropies associated with space-time patches in the patterns

generated by cellular automaton evolution. With probabilities pf'^^ for k^^ pos-

sible patches of spatial width X and temporal extent T, one m a y define

Pseudorandom Number Generator o ‘ oy

Definition (set entropy)

j^XT

#，工)(7̂ ： X) = i logfc(E 0{pf"^)) where 0{p) 二 1 for p > 0 and 0{p) = 0 for
i=i

p = 0,

and

Definition (measure entropy)

kX^T

4 ^ (T : X) 二 - i E 4，4。g4，”.
i=i

Clearly

4')(T) = 4'，4(T:1),

and

4f)(x) = 4。Ai:x).

If no relation existed between configuration at successive time steps, then

4''^^(T : X) < s(W(T : X) < X.

The cellular automaton rules introduce definite relations between successive

configuration and tighten the bound of set entropy and measure entropy. In fact,

the values of all sites in a T x X space-time patch are determined according to

the cellular automaton rules by the values in the "rind" of the pitch. The rind

contains only X + 2r(T-l) sites (where r is the "range" ofthe cellular automaton

rule), so that

s[f'"̂ (T : X) < s_(T : X) < [X + 2r(r - l)]/T.

Pseudorandom Number Generator o ‘ oy

^ T — ^ i H t o i

• i
^ X —

The rind of the spacetime pattern

For large T and fixed X,

4''4(T : X) < <s(W(T : X) < 2r.

If both X and T tend to infinity with X/T fixed, then the "information per site"

s|f'T)(T : X)|X in T x X patch must tend to zero. The evolution of cellular

automata can therefore never generate random space-time patterns.

Chapter 3

Theoretical analysis of the CA

PNG

3.1 The Generator

There are a total of 256 cellular automaton rules for k = 2 and r 二 1. A m o n g

these there are two rules that seem best as pseudorandom number generator

proposed in [8 .

In this thesis, we will mainly focus on Rule 30, which can be simply represented

as

af 二 af-i) X O R (af—-?) O R a&?)) (3.1)

Here X O R stands for exclusive or and O R stands for inclusive disjunction.

From the figure in Chapter 2 about Rule 30, we can see that such complexity can

arise in systems of simple construction. From the apparent randomness of the

center vertical, it may show the potential for pseudorandom number generation.

The C A Rule 30 is essentially nonlinear. Nevertheless, its dependence on

afZi^ is in fact linear. This feature is the basis for many of its properties. In

the Rule 30，the rule gives af^ in term of a^L"/\ af"^^ and a^l^^. But the linear

dependence on a”）allows the rule to be rewritten as

26

Pseudorandom Number Generator o ‘ oy

at/) = af^ X O R (4 ") O R a ^ ^) (3.2)

gives afSi^ in terms of af^，af—i) and af~^^\ This relation implies that the

spacetime patterns shown can be found not only by direct time evolution by

equation (3.1) from a given initial configuration, but also by extending spatially

according to equation (3.2), starting with temporal sequences of values of two

adjacent sites.

R a n d o m sequences are obtained from Rule 30 by sampling the values that a

particular site attains as a function of time. In practical implementations, a finite

number of sites are considered, and are typically arranged in a circular register.

Given almost any initial "seed" configuration for the sites in the register, a long

and seemingly random sequence can apparently be obtained.

3.2 Global Properties

This section will discuss about the behaviour of cellular automata starting from all

possible initial states. The basic approach is to count the possible sequences and

patterns that can occur and to characterize them. Most section in this chapter

will discuss infinite size limit and section 3.6 will discuss the finite size effect.

•

Figure 3 .1

The figure above is a spacetime pattern produced by the Rule 30 starting from

Pseudorandom Number Generator o ‘ oy

a disordered initial states (in which the value of each site is randomly chosen to be

zero or one). N o w we want to show that: given an appropriate initial condition,

any sequences can be generated in an infinite cellular automaton with the Rule 30.

The Rule 30 can be considered as a mapping from one cellular automaton

configuration to another. A n important property of this mapping is surjective.

Any configuration 乂⑷ can be obtained as the image of some A(t_i), according

to A(t)=F(A(t-i)). A possible configuration A(t—i) (may be not unique) can be

found by starting with the candidate pair of site values, then extends to the left

by equation (3.2). So, if all possible initial configurations are considered, then

any configuration can be generated at some time step. Therefore with suitable

initial conditions, any spatial sequences of site values can be reproduced.

Every length X spatial sequences of site values that occurs is determined by a

length X + 2 spatial sequences of site values on the previous time step. Since C A

Rule 30 is surjective, so predecessors exists for any length X spatial sequences of

site values.

For the Rule is surjective, there are exactly four predecessors for any se-

quences. Given values af\ afJ^ and so on，in one sequences, the values af~^^ and

c4̂ —i) in its predecessor can be chosen in all four possible ways; in each case the

remaining a^^- are uniquely determined by equation (3.2).

Therefore, starting from an ensemble that contains all possible cellular au-

tomaton configurations with equal probabilities, each configuration will be gener-

ated with equal probabilities, throughout the evolution of the cellular automaton,

so every possible spatial sequences of a particular length will occur with equal

frequency.

Pseudorandom Number Generator o ‘ oy

One m a y also consider sequences of values attained by a single site as a func-

tion of time. Starting from an initial ensemble which contains all configurations

with equal probabilities, all such sequences again occur with equal frequencies.

For, given any temporal sequence, iteration of Equation (3.2) yields an equal num-

ber of initial configurations which evolve to it. The same is true for sequences of

site values on lines at any angle in the spacetime pattern.

Entropies introduced in last chapter provided characterizations of the number

of possible sequences that occur. N o w , I repeat the definition with little change.

Before the definition, I have to say that n is the length of the sequences, x is the

specified sequences (the sequences m a y be spatial or temporal).

Definition (set entropy)

s = lim 1 log2 E 0{pf^)
n—oo '^ j—i J

where 6>(p) = 1 for p > 0 and 6>(p) 二 0 for p 二 0.

Definition (measure entropy)

〜=lim ^ E pflog.pf
^ n—oo 几 j=i J J

For the cellular automaton of Equation (3.1)，all possible sequences occur with

equal probatdlities (given an equal probability initial ensemble) so both entropies

are maximal:

s^s==l. (3.3)

Any reduction in entropies would reveal redundancy in the sequences, and

would imply a lack of randomness. Equation (3.3) is a must for randomness.

Pseudorandom Number Generator o ‘ oy

Though Equation (3.3) implies that all possible sequences of value for single

sites can occur along any spacetime pattern direction, the deterministic nature

of the cellular automaton Rule 30 implies that only certain spacetime patches of

values can occur. In fact, all the site values in a particular patch are completely

determined by the values that appears on its upper on its upper, left and right

boundaries. W h e n these boundaries are specified, the values of remaining sites

in the patch are redundant, and can be found simply by applying equation (3.1)

and (3.2).

In general the degree of redundancy in such spacetime patterns can be char-

acterized by the invariant of set and measure entropies for the cellular automaton

mapping, given by

h - lim lim s^^^^^T : X)
x^oo t—oo

h.- lim l i m 4 ' ' % T : X)
x^oo t—oo

where s(^(T : X) and s^)(T : ^) defined in last chapter.

By the result that

4''^^(T : X) < s(")(T : X) < 2r

we have

h^ < h < 2

A calculation based on the method of [11] in fact shows that

h^ < 1.2

Pseudorandom Number Generator o ‘ oy

Therefore a knowledge of the time sequences of values of about 1.2 sites suffice

in principle to determine the values of all other sites. In particular however the

function which gives the initial configuration in terms of these temporal sequences

seems to become intractably complicated, as discussed in Section 3.5.

3.3 Stability Properties

In this section, we will consider the change in the patterns produced by small

perturbations in the initial states. Figure 3.2 shows the differences resulting from

reversal of a single site value in a typical disordered initial configuration. The

region affected increases in size with time, reflecting the instability of pattern

generated.

叙
Figure 3.2 - The difference in pattern produced by the C A Rule 30 from two

initial condition which difference only by one site.

The instability implies that information on localized changes eventually prop-

agates throughout the cellular automaton. The rates of information transmission

to the left and right are determined by the slope of the difference pattern in Fig-

ure 3.2 These in turn give left and right Lyapunov exponents Xi and 入丑 for the

cellular automaton evolution.

Pseudorandom Number Generator o ‘ oy

The form of the cellular automaton Rule 30 immediately implies that

Ai^=l.

For consider a configuration in which the difference pattern has reach the site

that i 二 一1. Whatever the current values of site that i 二 1 and i = 0, the X〇R

in equation (3.1) leads to change in the new value of site that i 二 0. Therefore

Aj^==l is the maximum allowed by the locality of the Rule 30.

Empirical measurements suggests that the left-hand side of the difference pat-

tern expands at an asymptotically linear rate, with the slope [15

Az^=0.2428 士 0.0003

the above gives the average speed of the left-hand side of the difference pattern.

In general, one can construct the analog of a Green's function[10], giving the

probability that a site at a particular position and time will be affected by an

initial perturbation.

Lyapunov exponents measure the rate of information transmission in cellular

automaton, and provide upper bounds on entropies, which measure the informa-

tion content of patterns generated by cellular automaton evolution. For surjective

cellular automata it can be shown [10],

K < (AL + Afi)

consistent with Equation h^ < 2. The existence of positive Lyapunov exponents

is a characteristic feature of Class 3 cellular automata.

The difference pattern of Figure 3.2, and the related Green's function, mea-

sure the effect of initial perturbation on the values of individual sites. In studying

random sequences generation, one must also consider the effect of such pertur-

bation on time sequences of site values, say of length T. These sequences are

Pseudorandom Number Generator o ‘ oy

always completely determined from the initial values of 2T + 1 sites. However

not all these initial values necessarily affect the time sequences. A change in any

of the T + 1 left-hand initial sites necessarily leads to a change in at least one

element of the time sequence. In the other hand, some change in the T right-hand

initial sites have no effect on any element of the time sequence. It seems that

the probability for a particular initial site to affect the time sequences decreases

exponentially with distance to the right. The average number of the sites on the

right which affect the time sequence is found to be approximately 0.26 + 1.9T

10]. Thus the total number of initial sites on which a length T time sequence

depends on average approximately 1.91 + 1.19T [10]. This result is presumably

related to the entropy.

3.4 Particular Initial States

This section considers evolution from particular special initial configuration.

Figure 3.4.1 shows on two scales the pattern produced by evolution from a

configuration containing a single nonzero site.

There are some definite regularities. For example, diagonal sequences of sites

on the left-hand side of the pattern are periodic, with small periods. In general,

the value of a site at depth N from the edge of the pattern depends only on the

sites at depths N or less; all the other sites on which it could depend always have

value 0 because of the initial conditions given. As a consequence, the site down

to depth N are independent of those deeper in the pattern, and in fact follow

a shifted version of the cellular automaton Rule 30，with boundary conditions

that constrain two sites at one end to have values zero. Since such finite cellular

automaton has a total of 2" possible states, any time sequence of values in it

must have a period of at most 2^. The corresponding diagonal sequences in the

Pseudorandom Number Generator o ‘ oy

赢金
Figure 3.4.1

pattern Figure 3.4.1 must therefore also have periods not greater 2^.

Depth TTfi T̂L
0 1 1

1 2 1

2 2 1

3 4 2

4 8 1

5 8 2

6 16 2
7 32 1

8 32 4

9 64 1

10 64 4

11 64 4

12 64 4

13 64 4

14 64 4

15 128 4

16 256 4

Table 3.4.1 above gives the actual periods of diagonal sequences found at var-

ious depths on left- and right-hand sides of the pattern in Figure 3.4.1. which iTR

and 7TL signify respectively periods for diagonal sequences on the right and left

of the patterns, at the specify depth.

The short periods on the left-side of the pattern in Fig 3.4.1 are related to

high degree of irreversibility in the effective cellular automaton rule for diagonal

Pseudorandom Number Generator o ‘ oy

sequences in this case. Starting with any possible initial configuration, this cel-

lular automaton always yields cycles with periods 2^ The maximum value of j

increases very slowly with 7V, yielding m a x i m u m cycle lengths which increase in

jumps, on average slower than linearly with N. The actual sequences that occur

near the left-hand boundary of the pattern in Fig 3.4.1 correspond to a particular

set of those possible in this effective cellular automaton. In a first approximation,

they can be considered uniformly distributed among possible Â -site configura-

tions, and their periods increase very slowly with N.

The effective rule for the right-hand side diagonal pattern in Fig 3.4.1 is a

shifted version of Rule 30.

af) 二。”)崖(4-11)隱!1-21))

with boundary condition

4)_i 二 4 : i i) ^ 4 _ i)
fl(') - a(t-i)
^N — ̂ N

This system is exactly reversible; all of its 2" possible configurations have

unique predecessors. All the configuration thus lie in cycles, and again the cycles

have periods of the form 2̂ '. As the length of the longest cycles is a function of

N , one [5] may yield

log2n^:^0.5(7V + l)

This length is small compared to the total number of states 2^; few states

in fact lie on such longest cycles. Nevertheless, the periods of the right-hand

diagonal sequences in Fig 3.4.1 do seem to increase roughly exponentially with

depth, as suggested by Table 3.4.1

Pseudorandom Number Generator o ‘ oy

The boundary in Fig 3.4.1 between regular behaviour on the left and irregu-

lar behavior on the right seems to be asymptotically linear, and move to the left

with speed 0.25. A statistical argument for this result can be given in analogy

with that AL=0.2428 士 0.0003. Each site at depth d on the left-hand side of the

pattern could in principle be affected by sites down to depth d arbitrarily far up

in the pattern. In practice, however, it is unaffected by changes in sites outside

a cone whose boundary propagates at speed 入尤 ^ 0.25. Thus the irregularity on

the right spreads to the left only at this speed.

With diagonal sequences at angles ±1 in Figure 3.4.1 must ultimately be-

come periodic, sequences closer to the vertical need not. In fact, no periodic has

been found in any such sequences. The central vertical (temporal) sequences has,

for example, been tested up to length 2^^ [5], and no periodicity is seen. For if

two sequences were both periodic, then it would fellow that all sequences to their

right must also be, which would lead to a contradiction at the edge of the pattern.

Not only no periodicity has been detected in the center vertical sequences of

Figure 3.4.1; the sequences has also passed all other statical tests of randomness

applied to it, as discussed in section 3.8.

While individual sequences seem random, there are local regularities in the

overall pattern of Fig 3.4.1. Example are the triangular regions of zero sites. Such

regularities are associated with invariants of the C A Rule.

The particular configuration in which all sites have value 0 is invariant un-

der the cellular automaton Rule 30. As a consequence, any string of zeros that

appears can be corrupted only by effects that propagate in from its ends. Thus

each string of zeros that is produced leads to a uniform triangular region.

oy
Pseudorandom Number Generator o ‘

Period Element

1 0

01

3 000011111001

4 0000001

0000111

0010011

0111111

Table 3.4.2 above and Fig 3.4.2 give other configuration which are periodic

under the Rule 30. Again, any string that contains just the sequences in these

configuration can be corrupted only through end effects, and leads to a regular

region in spacetime pattern generated by Rule 30.

_ _ •
Period 1 Period 3 P"iod 4

Figure 3.4.2

In general, there are finite set of configurations with any particular period p

under a permutive cellular automaton rule such as Rule 30. The configuration

may be found by starting with a string of length 2p, then testing whether this

and the string yields through Equation (3.2) on the left are in fact invariant. The

string to be tested need never longer than 2^P，since such a string can contain all

possible length 2p string. Therefore the periodic configuration consists of repeti-

tions of blocks containing 2^^ or less site values.

Pseudorandom Number Generator o ‘ oy

3.5 Functional Properties

Cellular automaton rule such as Rule 30 can be considered as a function f which

m a p three Boolean values to one. Iteration of these values for say t steps corre-

spond to function of 2t + 1 Boolean values. The complexity of these functions

reflects the complexity of cellular automaton evolution.

The complexity of a Boolean function can be characterized by the number of

logic gates that would be needed to evaluate it with a particular kind of circuit,

or the number of terms that it would have in particular symbolic representation.

Explicit evolution according to the cellular automaton Rule 30 corresponds to a

circuit with 0{t^) components and depth t, but for purposes of comparison, it

is convenient to consider fixed depth representation. One such representation is

disjunctive normal form (DNF), in which the function is written as a disjunction

of conjunctions. A two-level circuit can be constructed in direct correspondence

with this form.

For Rule 30，the D N F of Equation (3.1) can be written as:

/(a_i,ao,ai) = (a_iao) + (a—i^o^i) + (^-i<^i)

where + stand for O R , concatenation for A N D and bar for N O T .

The general problem of finding the absolute shortest representation for any ar-

bitrary Boolean function, even in D N F , is NP-complete [12] , and so presumably

requires an exponential time computation. However a definite approximation can

be found in terms of "prime implicants" [13]. Each prime implicant can be used as

a term in a D N F for the function. The number of prime implicants required gives

a measure of the total number of terms in the D N F and thus of the complexity

of the function.

Pseudorandom Number Generator o ‘ oy

The minimal D N F obtained with prime implicants for the function corre-

sponding to two iterations of the cellular automaton Rule 30 is

/2(a_2, a_i,ao, ai, a2)=(a_2,a_1,a0, a1,a2) + (a_2, a_i, ao, a1,a2)

+(a_2,a_1 , ao, a1,a2) + (a—2, a_i , a o , a i , ^)

+ (a _ 2 , a _ i , ^ , ^) + (a_2,a_1,a0, a2)

+ (a _ 2 , a - 1 , a o , a 2) + (a_2,a_1,ao,a2) + (a_2,a_1,a0)

Table 3.5.1 below gives the number of prime implicants for successive itera-

tions of the Rule 30. These results are plotted in Fig 3.5.1. For arbitrary Boolean

functions of 2t+l variables, the number of prime implicants could increase like

4^ In practice, however, a least square fit to the data of Table 3.5.1 suggests

growth like 4̂ -̂ ^̂

t P.I. Min

1 3 3

2 9 7

3 23 17

4 76 41

5 185 105

6 666 272

Various efficient methods are known to find D N F that are somewhat simpler

than those obtained using prime implicants. With one such method [14], the

D N F can be reduced to

/2(a_2, a_i ,ao, a i , a2) 二 (a_2,a_i,ao, ai) + (a_2, a_i ,ao , ai)

+ (a_2,a_1,ao,a2) + (a_2,a_1,ao,a2)

+ (a _ 2 , a i , ^) + (a_2,a_1,a0) + (a—2, a—i,^o)

Pseudorandom Number Generator o ‘ oy

log (tenft5)

^ P ； ^ ^ ^
3 y ^ Hin

: ^
t 3 4 5 6 Figure 3.5.1

The sizes of the minimal D N F obtained by this method for iteration of the

Rule 30 are shown also in Table 3.7.1 and Figure 3.7.1. They are seen to grow

more slowly than those obtained with prime implicants; the data given are again

fit by exponential growth like 40.6^

The rapid increase in the size of the minimal D N F found for the iteration

of the Rule 30 indicates the increasing computational complexity of determining

the result of evolution according to Rule 30, and supports the conjecture of its

computational irreducibility.

The results of Table 3.5.1 and Figure 3.5.1 concern the difficulty of finding the

outcome of cellular automaton evolution according to the Rule 30 from a given

initial state. One m a y also consider the problem of deducing the initial state

from time sequences of site values produced in the evolution. Given say t steps

in the time sequences of values for two adjacent sites, the initial configuration up

to t sites to the left can be deduced directly by the iteration of Equation (3.2).

The combinatorial results of section 3.2 indicate in fact that only about 1.2 such

temporal sequences should on average be required, and in principle from a single

Pseudorandom Number Generator o ‘ oy

sufficiently long temporal sequences, it should be possible to deduce a complete

initial configuration for a finite cellular automaton. In practice, the necessary

computation seems to become increasing intractable as the size of systems in-

creases.

Given a particular temporal sequences, say at position 0, Equation (3.2)

uniquely determines the values of all sites in a triangle to left as a function of val-

ues in the temporal sequences at position 1. The number of values in the position

1 temporal sequences on which a given site depends varies with the form of the

position 0 sequences. For example, if the position 0 sequence consists solely of

ones, then the whole triangle of sites is completely determined, entirely indepen-

dent of the position 1 sequence. Table 3.5.2 gives some results from considering

the dependence of the site value a—t at position -t on the position 1 sequence,

for all 2* possible position 0 sequences. The number of values in the position 1

sequences on which a-t depends seems to be roughly Poisson distributed, with a

mean that grows like 0.4t as shown in Figure 3.5.2. This is consistent with the

combinatorial result.

n Number of Variable P.I.

2 0.5 1

3 1 2

4 1.375 3

5 1.125 3

6 2.281 12

7 2.828 17

8 3.164 26

Table 3.5.2 above also gives some properties of the prime implicants forms

for a—t. It is clear that the complexity of the function that determines a—t from

temporal sequences grows with t, probably at increasingly rapid rate. Again

oy

Pseudorandom Number Generator o ‘

Viriaile

L Z .
* t 4 6 $ 10

Figure 3.5.2

this suggests that the problem of deducing the initial sequences for evolution ac-

cording to the Rule 30, while combinatorially possible, is computational complex.

3.6 Computational Theoretical Properties

The discussion of the previous section are considered as giving a characterization

of the computational complexity of iterations of the cellular automaton Rule 30

in a particular simple model of computation. The results obtained suggest that

at least in this model, there is no shortcut method for finding the outcome of the

evolution; the computation required are not less than for a explicit simulation of

each time step. As discussed above, one suspects in fact that the evolution is in

general computationally irreducible, so that no possible computation could find

its outcome more efficiently than by direct simulation.

This would be the case if the cellular automaton Rule 30 could act as an

efficient universal computer [16], so that with an appropriate initial state, its

AO

Pseudorandom Number Generator o ‘ oy

evolution could mimic any possible computation. In particular, it could be that

the problem of finding the value of a particular site after t steps, must take a

time polynomial in t on any computer. (Direct simulation takes 0{t^) time on a

serial-processing computer, and 0{t) time with 0{t) parallel processors.)

In addition to studying cellular automaton evolution from given initial config-

uration, one may consider the problem of deducing configurations for the cellular

automaton from partial information such as temporal sequences. In particular,

one may study the computational complexity of finding the seed for a cellular

automaton in a finite region from the temporal sequences it generators.

There are 2^ possible seeds for a size N cellular automaton, and one can

always find which ones produce a particular sequence by trying each of them in

turn. However, such a procedure would rapidly become impractical. The result in

last section suggest a slightly more efficient method. If it were possible to find two

adjacent temporal sequences, then the seed could be found easily using Equation

(3.2). Given only one temporal sequences, some elements for the seed are initially

undetermined. Nevertheless, in a finite size system, say with periodic boundary

conditions, one can derive many distinct equations for a single site value. The

site value can then be deduced by solving the resulting system of simultaneous

Boolean equations. The equations will typically involve variable. As discussed

in last section, the number of variables seems to be Poisson-distributed with a

mean around 0.4A^.

The general problem of solving a Boolean equation in n variable is NP-

complete, and so presumably cannot be solved in time polynomial in n. In

addition, it seems likely that the average time to solve an arbitrary Boolean

equation is correspondingly long. To relate the problem of deducing the seed dis-

cussed above to this would require a demonstration that the Boolean equations

Pseudorandom Number Generator o ‘ oy

generated were in a sense uniformly distributed over all possibilities. Out of all

2^" n-variable equation, the problem here typically involves 0(2^), but these seem

to have no special simplifying features. At least with method discussed above, it

is conceivable that the problem of deducing the seed is equivalent to the general

problem of solving Boolean equation, which is NP-complete.

3.7 Finite Size Behaviour

Much of the above discussed have concerned the behaviour of the cellular au-

tomaton Rule 30 in the idealized limit of an infinite lattice of sites. But practical

implementations must use finite size registers, and certain global properties can

depend on the size and boundary conditions chosen.

The total number of possible states in a size N cellular automaton is 2". Evo-

lution between these states can be expressed by a finite states transition diagram.

Fig 3.7.1 give examples of such diagrams for the cellular automaton of the Rule

30 with N 二 9 periodic boundary conditions, such that

af) = 4_i) XOR (af-i) OR a ”)

4) 二 4:1? XOR (4—1) OR a”)）

Table 3.7.1 summarizes some of their properties. Fraction of Longest Cycle

is the total number of configuration involve in the longest cycle (including the

configuration "attract" to the longest cycle) against total configuration. Cycle

Fraction is the total number of configuration in cycles against the total number

of configuration, and transient means that if one the configuration is not in cycle,

average time step that configuration reach the cycles. W e find that the results

Pseudorandom Number Generator o ‘ oy

。o
NnB Figure 3.7.1

are seen to depend not only on the magnitude of N，but also presumably on its

number theoretical properties.
N No . of Cyc le X Cyc le L o n g Frac t ion of Longest Cyc le Cyc le F rac t i on Trans ient

4 1 x 8 3 x 1 0.75 0.69 0.5

5 1 X 5 1 X 1 0.94 0.19 4.3

6 3 x 1 1.00 0.05 3.3

7 1 x 6 3 7 X 4 l x l 0.60 0.72 0.4

8 1 X 4 0 1 X 8 0.88 0.20 3.1

9 1 x171 1 x 7 2 1 x 1 0.81 0.48 1.1

10 2 X 1 5 1 X 5 3 x 1 0.82 0 .04 14.8

1 1 l x l 5 4 1 1 x 1 7 l X l 0.76 0.17 3.3

12 4 X 1 0 2 1 x 8 4 x 3 3 x 1 0.93 0.11 4.4

13 1x832 1x260 1 x 2 4 7 0.32 0.17 2.2

14 l x l 4 2 8 2 x 1 3 3 1x112 2 x 8 4 1 x 6 3 1 x 1 4 3 x 1 0.84 0.13 2.7

15 l X l 4 5 5 5 x 3 0 5 x 9 1 5 x 7 4 x 5 1 x 1 0.93 0.05 5.7

Table 3.7.1

Each site transition diagram contains a set of cycles, fed by trees representing

transients. The cycle may be considered as "attractors" to which states in their

"basins of attractions" irreversibly evolve.

There are many regularities in the structure of the state transition diagrams

obtained from the Rule 30. The evolution is not well-approximated by a random

mapping between 2^ states.

A first observation is that most configurations have unique predecessors under

the Rule 30, so there is little branching in the state transition diagram. In fact,

it can be shown that a configuration has a unique predecessor unless it contains

Pseudorandom Number Generator o ‘ oy

a pair of value zero sites separated by a sequences of 3n + 1 value one sites (with

n > 0) or unless N is divisible by 3, and all site have value 1. In the former

case, the configuration has exactly zero or two predecessors; in the latter case, it

has three. The numbers of configuration with zero or two predecessors are equal

when N is not divisible by 3; there are two more with zero predecessors when

3|iV. For large N , the number of configurations with zero or two predecessors

behaves as K^, where K - 1.696 is the real root of 4/̂ ^ — 2n^ — 1 二 0. Since the

total number of configurations grows like 2^, the fraction of nodes in the state

transition diagram that are branch points tends exponentially zero.

A second observation is that there are often many identical parts in the state

transition diagrams of Table 3.7.1 and Figure 3.6.1. This is largely a consequence

of shift invariance. States in a cellular automaton with periodic boundary condi-

tions that are related by shift evolve equivalently. Therefore, for example, there

are often several identical cycles, related by shifts in their configurations. In ad-

dition, the periods of the cycles are often divisible by N or its factors, since they

obtain several sequences of configurations related by shifts. The transient tree

that feed each of these sequences are then identical.

The evolution of finite cellular automaton with periodic boundary conditions

is equivalent to the evolution of an infinite cellular automaton with periodic ini-

tial configuration. Therefore, the results on cycle length distributions in Table

3.7.1 can be considered as inverse to those Table 3.5.2 on configuration with given

temporal periods. Cycles of lengths corresponding to these temporal periods oc-

cur whenever N is divisible by the spatial periods of these configurations. Such

short cycles are absent if N has none of these factors.

For large N , the state transition diagrams for the Rule 30 appear to be in-

creasingly dominated by a single cycle. This cycle is longer than the others, and

Pseudorandom Number Generator o ‘ oy

its basin of attraction is large enough that most arbitrary chosen initial states

evolve to it. The low degree of branching in the transient trees implies that the

points reached from the arbitrary initial states should be roughly uniformly dis-

tributed around the cycle.

The shorter cycles in Table 3.7.1 can be considered as related to subsets of

states invariant under cellular automaton rule. With N even, for example, con-

figuration which consist of two identical N|2 subsequences can evolve only to

configuration of the same type. Once such a configuration has been reached, the

evolution is trapped within this subset of configurations, and must yield shorter

cycles. In general, there may exist subsets of states within certain special sym-

metry properties that are preserved by the cellular automaton rule. Initial states

with particular, symmetrical forms can be expected to have these properties, and

thus to be trapped in subsets of state space, and to yield short cycles. For ex-

ample, with N 二 36，a configuration containing a single nonzero site evolves to

a length 2844 cycle, while most initial evolve to the longest cycle, with 2237472

states.

oy
Pseudorandom Number Generator o ‘

loĝ ns

ii| f ^
8： f W

： f /

‘ N
5 10 15 20 25 30

Figure 3.7.2

N Longest Cycle Leng t h : H ;v N Longest Cyc le Leng t h : TIjv

4 8 32 2002272

5 5 33 2038476

6 1 34 5656002

7 63 35 18480630

8 40 36 2237472

9 171 37 49276415

10 15 38 9329228

11 154 39 961272

12 102 40 19211080

13 832 41 51151354

14 1428 42 109603410

15 1455 43 93537212

16 6016 44 192218312 ^ ^

17 10845 45 75864495 l a b l G 0 . 7 . ^

18 2844 46 261598274

19 3705 47 811284813

20 6150 48 3035918676

21 2793 49 9937383652

22 3256 50 593487780

23 38429 51 3625711023

24 185040 52 20653434880

25 588425 53 40114679273

26 312156 54 7551779562

27 67554

28 249165

29 1466066

30 306120

31 2841150

In the infinite size limit, patterns such as that of Figure 3.4.1 generated by

the cellular automaton of the Rule 30 never become periodic, but with a total of

N sites, a cycle must occur after 2^ or less steps. Table 3.7.2 and Figure 3.7.2

give the actual maximal cycle length U ^ found. A roughly exponential increase

of riiv with N is seen, and a least square fit to the data of Table 3.7.2 yields

log2niv^O.6l(Ar4-l) (3.7.1)

Pseudorandom Number Generator o ‘ oy

Note that if the state transition diagram correspond to an entirely random

mapping between the 2" cellular automaton states, then cycles of average length

2^/2 would be expected. The cycles actually obtained are significantly longer.

The exponent in Equation (3.7.1) may be related to the entropy h^ < 2 as a

result of the expansivity or instability of the mapping discussed section 3.3.

If there were very short cycles, the sequences produced by the cellular au-

tomaton would readily be predictable. Therefore if in fact no such prediction can

be made by any polynomial time computation, the length of the cycles that oc-

cur should in general increase asymptotically faster than polynomial in N. This

behaviour is supported by Equation (3.7.1)

If indeed the evolution of cellular automaton Rule 30 is computationally ir-

reducible, then a complex computation may always be required to determine for

example the lengths of cycles that appear. For in this case, there are effectively

be no better way to find the succession of states that occur, except by explicit

application of the Rule 30. One expects in fact that the problem of finding say

whether two configurations lie on the cycle is PSPACE-complete, and so presum-

ably cannot be solved in a time polynomial in 7V, but rather essentially requires

a direct simulation of the cellular automaton evolution.

The cycle structure of finite cellular automata depends in detail on the bound-

ary conditions chosen. Table 3.7.3 gives the maximal cycle length found for the

Rule 30 with shift register boundary conditions such that

4” = 4、XOR (af OR af-i))

4) = 4) XOR (a?-i) OR 4'-i))

ajv and ajv-i is similar to ai and a2

The result differ substantially from those with boundary conditions given in

Table 3.7.2.

Pseudorandom Number Generator o ‘ oy

N Longest Cyc le L e n g t h : I l j v

4 5
5 2

6 7
7 4

8 17

9 65

10 6

11 57

12 50

13 118

14 185

15 257

16 481

17 907 Table 3.7.3
18 1681

19 707

20 2679

21 5630

22 1368

23 31241

24 3567

25 60503

26 4752

27 46519

28 35569

29 207197

30 149899

31 482717

Other boundary conditions m a y also be considered. A m o n g them are twisted

ones, in which ai and â v are negated in periodic boundary conditions. The max-

i m u m cycle length found with such boundary conditions seem typically shorter

than in purely periodic case.

One m a y in addition consider boundary conditions in which the boundary

site value are fixed, rather than being periodic identified. Different cycles are

obtained in different cases; all those investigated nevertheless give maximal cycle

length shorter than those in Table 3.6.2 found with periodic boundary conditions.

W h a t has been discussed so far are cycles in complete finite cellular automa-

ton configurations. But in obtaining random sequences one samples single sites.

The sequences found could potentially have periods which sub-multiples of the

periods for complete configuration. However, permutive rule such as Rule 30

Pseudorandom Number Generator o ‘ oy

cannot occur.

The state transition diagrams summarized in Table 3.7.1 give the number of

complete 7V-site configurations that can occur at various stages in the evolution

of the cellular automaton rule 30. One m a y also consider the number of single

site temporal sequences that can occur. Table 3.7.4 gives the fraction of the 2^

possible length L temporal sequences that are actually generated from any of the

2^ possible initial states in a size N cellular automaton evolution according to

the Rule 30 with periodic boundary conditions. Whenever N > L + 2, all possible

sequences seem to be generated. They appear with roughly equal frequencies.

L 3 4 5 6 7 8 9 10 11 12 13 14 15

3 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 0.250 0.625 0.875 0.938 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0.125 0.313 0.656 0.844 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 0.063 0.156 0.344 0.594 0.906 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0.031 0.078 0.180 0.352 0.609 0.891 1.000 1.000 1.000 1.000 1.000 1.000 1.000

8 0.016 0.039 0.094 0.188 0.328 0.633 0.949 0.992 1.000 1.000 1.000 1.000 1.000

9 0.008 0.020 0.047 0.094 0.168 0.361 0.668 0.895 0.996 1.000 1.000 1.000 1.000

10 0.004 0.010 0.023 0.047 0.085 0.195 0.386 0.644 0.917 0.989 1.000 1.000 1.000

11 0.002 0.005 0.012 0.023 0.042 0.102 0.204 0.377 0.666 0.897 0.995 1.000 1.000

12 0.001 0.002 0.006 0.012 0.021 0.052 0.105 0.209 0.385 0.669 0.913 0.995 1.000

13 0.000 0.001 0.003 0.006 0.011 0.026 0.054 0.105 0.209 0.385 0.669 0.913 0.995

14 0.000 0.001 0.001 0.003 0.005 0.013 0.027 0.053 0.109 0.209 0.397 0.671 0.906

15 0 000 0 000 0.001 0.001 0.003 0.007 0.013 0.027 0.055 0.109 0.215 0.399 0.668

Table 3.7.4

3.8 Statistical Properties

The sequences generated by the cellular automaton Rule 30 m a y be considered

effectively random if no feasible procedure can identify a pattern in them, or al-

low their behavior to be predicted. Even though it m a y not be possible to prove

that no such procedure can exist, circumstantial evidence can be accumulated by

trying various statistical results on sequences generated by the Rule 30 with those

calculated for sequences whose elements occur purely according to probabilities.

CO
Pseudorandom Number Generator 。

To establish the validity of the Rule 30 as a random sequence generator, one

should apply a variety of statistical procedures, related to various different kinds

of calculations. The choice of tests is necessarily as ad hoc as the choice of cal-

culations done. At the end of the chapter lists those used here. While quite ad

hoc, the tests seem to be sensitive, and reasonably independent.

As an example, consider the "equidistribution" or "frequency" test. If a se-

quence of zeros and ones is to be random, the digits zero and one must occur in it

with equal frequency. In general, in fact, all 2^ possible length n blocks of digits

must also occur with equal frequency. However, in a finite sample of length m ,

there are expected to be statistical fluctuations, which lead to slightly different

numbers of zeros and ones. As a consequence, one can never definitely conclude

by studying a finite sample that the complete sequence is not random. One can

calculate the probabilities that tmly random sequence would have the properties

seen in the finite sample.

To do this, one evaluates ：)(：2, defined in terms of the observed and expected

frequencies po and Pe as

u

X^=T,{PO-Pef/Pe
1

Here v gives the number of degrees of freedom, or the number of distinct ob-

jects whose frequencies are included in the sum. If blocks of length n are studied

then u=2^. N o w one must find the probability that a value of x^ larger than

that observed would occur for a random sequence. This "confidence interval" is

obtained immediately from the integral of the x^ distribution.

If the confidence interval is very close to zero or one, then the observed x^

is unlikely to be produced from a random sequence, and one may infer that the

observed sequence is not random. Of course, if say a total of k tests are done,

Pseudorandom Number Generator o ‘ oy

it is to be expected that the confidence interval for at least one of them will be

less than l/k. Evidence for nonrandomness in a sequence must come from an

excess of confidence interval values close to zero or one, over or above the number

expected for a uniform distribution.

N = 1 7 , L = 8 k N = 1 7 , L = 6 4 k N = 2 3 , L = 6 4 k N = 2 9 , L = 6 4 k N = 3 7 , L = 6 4 k N = 4 9 , L = 6 4 k

A 0.0039 1.0000 0.0456 0.7375 0.3852 0.8003

B 0.0171 0.9944 0.3391 0.4888 0.1010 0.1494

C 0.4164 0.4783 0.7256 0.4847 0.4083 0.9407

D 0.3227 0.9998 0.1506 0.1434 0.1678 0.6074

E 0.4576 0.4484 0.6790 0.8492 0.5414 0.7991

F 0.4306 0.8644 0.8751 0.5590 0.6681 0.6606

G 0.2942 0.9944 0.1232 0.7359 0.4448 0.6961

T a b l e 3 . 8 . 1 - W i t h in i t ia l state as single nonzero site, and k = 1024. The number given are the probabi l i t ies for stat ist ical

averages of t ru ly r andom sequences to exceed those of the sequences analyzed. The numbers should be un i formly d is t r ibuted

between 0 and 1 if sequences analyzed are indeed t ru ly r andom . Accumu la t i on close to 0 and 1 suggest derivat ions from random-

ness. Such accumula t ions are seen in th is case only when the per iod of the cellular a u t oma t on is comparab le to the length of the

sequence sampled .

Table 3.8.1 gives results from the statistical tests described at the end of the

section for sequences generated by the Cellular Automaton Rule 30 in a finite

circular register. Except when the sample sequence is comparable in length to

the period of the system, as given in Table 3.7.2, no significant deviations from

randomness are found.

If deviations from randomness were detected by some statistical procedure,

then this procedure could be used to make statistical predictions about the se-

quences. In addition, it could be used to obtained a compressed representation

for the sequence, and would demonstrate that the sequence did not have maximal

information content. The fact that deviations from randomness have not been

found by any of the statistical procedures considered lends strong support to the

belief that sequences produced by the Rule 30 with large N are indeed random

54
Pseudorandom Number Generator ^^

for practical purposes.

3.8.1 statistical test used

The statistical test are taken from [21 .

The sequences studied consists of strings of binary bits. In many of the test,

these bits are grouped into blocks; either 8 or 4. The possible bit sequences in

these blocks can be represented by integer value between 0 and 255 or 15, respec-

tively.

n-blocks mean a blocks with n bits.

A Block Frequency Distribution

Each of the 2^ possible n-blocks should occur with equal frequency, (n=8 are

used.)

B Gap Length Distribution

The lengths of runs of n-blocks whose value are all greater than i2 or less than

î should follow a binomial distribution, (n=8, n=100 ^=200 are used; runs

longer than 16 blocks are lumped together.)

C Distinct Blocks Distribution

The frequencies with which p out of q successive m-blocks are distinct should

follow a definite distribution, (m = 4 q=4 are used.)

D Block Accumulation distribution

The number of successive n-block necessary for all possible m-blocks to appear

cc
Pseudorandom Number Generator 。。

in order as their first m elements should follow to a definite distribution.(n=8,m=3

are used; number greater than 40 are lumped together.)

E Permutation Frequency Distribution

The value of q successive n-blocks should occur in all q\ possible ordering with

equal frequency. (n = 8� q = 5 are used.)

F Monotone Sequence Length Distribution

The lengths of sequences in which successive n-blocks have monotonically in-

creasing value should follow a definite distribution, (n=8 is used; length greater

than 6 are lumped together; elements immediately following each run are dis-

carded to make successive runs statistically independent.)

G Maxima distribution

The m a x i m u m values of n-blocks in sequences of successive of q n-blocks

should follow a power law distribution. {n=8,q=S are used.)

Chapter 4

Practical Implementation of the

CA PNG

4.1 The implementation of the CA P N G

The simplicity and intrinsic parallelism of the Cellular Automaton Rule 30 makes

possible efficient implementation on many kinds of computers.

O n a serial-processing computer, each site could be updated in turn according

to and updated to the Rule 30, but in practical, site values can be repersented by

single bits in say a 32-bit word, and updated in parallel using standard word-wise

Boolean operations.

O n a synchronous parallel-processing computer, different sites or groups of

sites in the cellular automaton can be assigned to different processors. They can

then be updated independently, using the same instruction, and with only local

communications.

Very efficient hardware implementation of the Rule 30 should be possible. For

56

cy
Pseudorandom Number Generator ^

short registers, explicit circuitry can be included for each site. A n d for long reg-

isters, a pinelined approach analogous to a feedback shift register can be used.

The evidence presented above suggests that the Cellular Automaton Rule

30 can serve as a practical random sequence (pseudorandom number on {0,1})

generator. The most appropriate detailed choices of parameters depends on the

application intended. The most obvious constraint isone of cycle length. To ob-

tain a cycle length larger than 2^2 ̂ 4 x lC)9, Table 3.7.2 shows that a circular

registor of length of N = 49 can'be used. Cycle lengths tends to increase with 7V,

but Table 3.7.2 shows some irregularities. Therefore it is not clear, for example,

how large N need to be obtain a cycle length larger than 2®^ ~ 10i9，but base on

Equation 3.7.1, a value N 二 127 should certainly suffice.

R a n d o m sequences can be obtained by sampling the sequence of values of a

particular site in a register updated according to the Rule 30. The theoretical

and statistical studies described above support the contention that such sequences

show no regularities.

Sequences could potentially be obtained more quickly by extracting the val-

ues of several sites in the register at each time step, but h^ < 2 implies that

some statistical correlations must exist between these values. The correlations

are probably minimized if the sites sampled are equally spaced around the register.

The random sequences obtained from the Rule 30 have an equal fraction of 0

and 1. M a n y applications, however, involve random binary choices with unequal

probabilities. There is a simple algorithm to obtain digits with arbitrary prob-

abilities. [5]. First write the probabilities p for outcome 1 as a binary number.

Then generate a random binary sequence s with length equal to this number.

The output is obtained by an iterative procedure. Begin with the "current re-

CO
Pseudorandom Number Generator o ‘ oy

sult" of 1. Then starting from the least significant digit in p, successively find

a new result by combining the old result with corresponding digit of 5, using a

function A N D or O R , depending on whether the digit in p is 0 or 1, respectively.

The final result thus obtained is equal to 1 with probability exactly p.

Configurations in two length N registers with slightly different seeds should

become progressively less correlated under the Rule 30 as a result of the insta-

bility discussed in the section 3.3. The characteristic time for this process is

governed by the left and right Lyapunov exponents Az, and Xn, and should be

O.SN. Therefore, if several sequences are to be generated with seeds that differ

only slightly, then the Rule 30 should be applicated at least 0{N) times to the

seeds before beginning to extract random sequences.

4.2 Applied to the set of integers

To generate a random integer on a set of integers size is equal to n, for example:

{0,1，2, ...,n- 1}, just choose a N that the "width" of the C A P N G , satisfies

n<0.61(A^ + l)

then select a site to capture its temporal sequences with length equal to

l0g2n + 1. After capture the sequences, simply change it to decimal from bi-

nary. If generate a number that greater thenn-1, discard it and generate again.

This method will have a expected run time (2n -击)「L0g2n] for the worst

case that the size of the set is 2^ + 1 for some integer m and「Log 2^l for the

best case that the size of the set is the power of 2.

From [2], we can found an algorithm called DDG-tree alogorithms (Discrete

distribution generateing tree algorithms) that can generate any distribution of

CQ
Pseudorandom Number Generator …

o<̂ ^̂^
Figure 4.2.1

random numbers, and the above is the typical one that the distribution is uni-

form.

The analysis of the algorithm have been in [2] and there will be an introducion

of that algorithm.

For example, if we want to generate the set of integers {0,1, 2, 3} with prob-

abilities 1/8’ 1/2，1/4,1/8’ we write the probabilities in binary form that

1/8 = (0.001)2

1/2 = (0.1)2

1/4 = (0.01)2

Then construct a tree that for generate 0, we have a termial node on level 3

from the root, according to (0.001)2. As same as for generate 1, we have a termial

node on level 1 from the root. In the figure 4.2.1, we have shown the DDG-tree

of the algorithm, which go to top-right from the left-node means get 1 from the

C A P N G , and to bottom-right means get 0 from the C A P N G . Therefore, from

the figure 4.2.1, we know that we generate 0 for 000, 1 for 1, 2 for 01 and 3 for 001.

Pseudorandom Number Generator o ‘ oy

^^XD^^^^^

5̂̂ ^
Figure 4.2.2

There [2] have been shown that for any dicrete distribution, with probabilities

are rational, this algorithm will be halted in expected finite time, and there [2] is

an algorithm to generate that tree.

The figure 4.2.2 shown the DDG-tree for generate a pesudorandom number

from the set of integers { 0,1,2 } with equal probabilities.

Chapter 5

Application to Cryptography

5.1 Stream Cipher

Using the generator discuss in this thesis, we can construct a cryptosystem to

encrypt stream cipher[17]. The initial state of the register (i.e. the seed) is used

as a key. The value 汉⑴ attained by a particular site through time then serve

as a random sequence. Ciphertext C can be obtained from binary plaintext P

according to Ci = Pi X O R a(0; the plaintext can be recovered by repeating the

same operation, but only if the sequence a(') is known.

The security of this cryptosystem relies on the difficulty of finding the seed

from time sequence of cell values. This problem is in the class NP. No systematic

algorithm for its solution is currently known that takes a time less than exponen-

tial in N. No statistical regularities have been found in sequences shorter than

the cycle length.

One approach to the problem of finding the key uses the near linearity of the

Rule 30. The Rule 30 can be written in the alternative form ̂!̂(̂―丄丄)=̂̂)̂ X O R (

af-i) O R af+/^)• Given the values of sites in two adjacent columns, this allows

61

ftO
Pseudorandom Number Generator 。么

the values of all cells in a triangle to the left to be reconstructed, but the sequence

provided gives only one column. Values in other column can be guessed, and then

determined from the consistency of Boolean equations for the seed. However in

disjunctive normal form the number of terms in these equations increase linearly

with iV, presumably making their solution take a time more than polynomial in

N.

5.2 One Time Pad

Pseudorandom have been used in private key cryptosystem. A private key cryp-

tosystem uses a key for two users exchange some secure which enables them both

to encrypt and decrypt message sent between them. Ciphertext should be un-

readable to anyone else and should appear "random" to unauthorized receiver,

and ideally no statistical information can be extract from the ciphertext. Most

private key cryptosystem do not achieve this, and statistical method is a main

method of cryptanalysis.

Absolute security can always be achieved by the one time pad, which uses a

key of same length as the totality of ciphertext to be exchanged. H o w much secu-

rity is possible when the key is to be shorter than a messages to be encrypted? In

this situation an analogy between pseudorandom number generation and private

key cryptosystem is apparent: the key of the one time pad supplies seed for the

pseudorandom number generator to generate longer one time pad.

Pseudorandom Number Generator o ‘ oy

5.3 Probabilistic Encryption

Probabilistic Encryption ofsingle bits have been proposed to replace deterministic

block encryption, since adversary cannot distinguish between a random encryp-

tion of “0” and T .

There is a example that proposed in [18 •

To send a message M to Alice using a probabilistic scheme, Bob proceeds as

follows. Let M=mi . rri2 .. . m in binary notation. For i = 1，. . .t:

1. Bob randomly choose an integer n from Z^.

2. Ifmi=0, Bob sends f^=rfmod n to Alice; if rrii=l, Bob sends Ci=y ... rfmod

n to Alice.

W h e n mi=Q, Bob send a random square to Alice, whereas when rUi=l, Bob

send a random pseudosquare. (Alice need to include y in her public key just so

that Bob will be able to generate random pseudosquares.)

Since distinguishing squares from pseudosquare modulo n is easy if the fac-

torization of n is known, Alice can decode the message.

However, for an adversary, the problem of distinguishing whether a given piece

of cipher text d represents a 0 or a 1 is precisely the problem of distinguishing

square from pseudosquare, which was assumed to be hard.

Pseudorandom Number Generator o ‘ oy

5.4 Probabilistic Encryption with RSA

R S A cryptosystem is a public cryptosystem that has its security depended on

the computational complexity of factorizing large integers. However, for any de-

terministic encryption, partial information of plaintext can always be computed

from ciphertext.

The following scheme have been proposed to hide all partial information bit-

by bit.

Let N be a Blum integer which is the product of two primes each congruent

to 3 (mod 4) and ^(N) be the Euler-phi function.

For Alice, choosing a suitable Blum integer, hides the two primes and publics

the key N.

W h e n Bob sends a message x with length n to Alice, first he chooses 5o uni-

formly from {l,.",7V}. Next, for i 二 l,".,n + l, computes Si = s?_i (mod N)

and cTi =lsb(si). Finally, computes y=x X O R a1a2 cFn. The ciphertext

will be (Sn+1,2/) •

After Alice receives the ciphertext, first computes d 二 2"^ m o d N. Next using

this d to compute ai such that ai=4+i m o d N. Then, for i 二 1, ...,n, computes

Q =lsb(ai) and ai+i=a? (mod N). Finally, the plaintext is y X O R ^1¾ n̂

The scheme security will depend on the length of N.

Pseudorandom Number Generator o ‘ oy

5.5 Prove yourself

The following is a scheme for a person to prove himself.[20

Assume that Alice wants to prove that she is Alice to Bob, first Alice publics

a Blum integer, and select a x^ from the set {1,..., N} and public yA=^A (mod

AO.

Alice publics a Blum integer her public key. W h e n Alice wants to prove her-

self, she uniformly select a r from the set { 1 ,…，N} and sends s=r^ m o d N to Bob.

Bob uniformly select a challenge a from {0,1}，and sends it to the Alice.

Alice replies with z=r ... x^ (mod N) to Bob.

Bob finally accepts if and only if z^ 三 s ... y; (mod N).

The above scheme can be repeated to maintain reliability.

The protocol depends on that Alice is the only party to know the square root

of VA-

Bibliography

1] J. C . Lagarias, Pseudorandom Number Generators in Cryptography and

Number Theory, Proceeding of Symposia in Applied Mathematics, Vol. 42

(1990), R115 - P.143.

2] D. Knuth and A. C. Yao, The Complexity of Nonuniform Random Number

Generation, Algorithms and Complexity (J. F. Trabu,Ed.), Academic Press,

P.357-428.

3] M . Blum and S. Micali, How to generate cryptographically strong sequences

ofpseudomndom bits, S I A M J. Comp. 13 (1984), R850-864.

•4] G. Marsaglia, A currect view of random number generators, Proc. Computer

Sci amd Statistics, 16th Sympos. on the Interface, P.1-10

"5] S. Wolfram, Random Sequence generated by cellular automata, Adv. Appl.

Math. 7, P.123-169.

'6] E. F. Codd, Cellular Automata, A C M Monograph Series.

7] S. Wolfram, Statistical mechanics of cellular automata, Reviews of Modern

Physics 55 (1983), P.601-644.

"8] 0. Martin and Andrew M . Odlyzko, Algebraic Properties of Cellular Au-

tomata, Communications in Mathematical Physics. 93 (1984), R219-258.

9] D. Lind Application of ergodic theory and sofic systems to cellular automata,

Physics 10D (1984) P.36-.

66

Pseudorandom Number Generator o ‘ oy

10] S. Wolfram, Universality and Complexity in Cellular Automata, Physics 10D

(1984) P.115-157.

11] Ya. Sinai, An answer to a question hy J. Milnor, Comment. Math. Helv. 60

(1985), P.173.

12] M . Garey and D. Johnson, Computer and Intractability: A Guide to the

Theory of NP-completeness W . H. Freeman, San Francisco(1979).

13] R. Brayton, G. Hachu, c. McMullen and A. Sangiovanni-Vincentelli, Logic

Mimmization Algorithms for VLSI Synthesis，, Kluwer, Boston(1984).

14] R. Rudell Espresso Software Program Computer Science Department, Uni-

versity of California. Berkeley(1985).

15] P. Grassberger, Towards a quantitative theory of self-generated complexity

Wuppertal preprint (1986).

16] M . Minsky, Computation: Fimte and Infinite Machines Prentice-Hall, Ea-

glewood Cliffs, N.J., 1967.

17] S. Wolfram, Cryptography with Cellular Automata CRYPTO'85 Proceedings:

Advances in Cryptography.

18] S. Goldwasser, The Search for Provably Secure Cryptosystems Proceeding of

Symposia in Applied Mathematics, Vol. 42 (1990), P.89 - P.114.

19] M . Blum and S. Goldwasser, An Efficient Probabilistic Puhlic-key Encryp-

tion Scheme Which Hides All Partial Information CRYPTO'84 Proceedings:

Advances in Cryptography.

.20] A. Fiat and A. Shamir, How to Prove yourself: Practical solutions to Iden-

tification and Signature Problems CRYPTO'86 Proceedings: Advances in

Cryptography.

^o
Pseudorandom Number Generator 。。

21] D. Kruth, Seminumerical Algorithms Addison-Wesley, Reading, Mass., 1981.

.'.:•. . .,. ••• . •-. .• • ;i•• . ,
):‘......•••;•: '‘...-'.. ； , . . ‘.. , .

• ,.•. . ‘ .. .) , - , • •

•

- ，..

、:
、

r. . .* • •
i:y:../.. .,::: ‘‘ •、•:::.•••::•: • •‘“：

CUHK Libraries

DD373Tfl7D

