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Abstract 

Single Wheel Robot: Gyroscopical Stabilization on 
Ground and on Incline 

by 

Loi-Wah Sun 

A single wheel gyroscopically stabilized robot is a thin sharp-edged wheel with an 

actuation mechanism fitted inside the wheel domes that exploit gyroscopic forces for 

steering and stability. In order to enhance the static stability without losing dynamic 

stability of a single wheel, an angular momentum of a high spinning flywheel is imposed 

to achieve the stability in the lateral direction of the robot. At the same time, it 

performs a steering motion under the gyroscopical precession. It is subjected to a 

nonholonomic systems with rolling constraints under the non-slip condition. Increasing 

attention have been paid for a nonholonomic system as it cannot be stabilized to an 

equilibrium via any smooth time-invariant feedback. In this system, there are two 

kinds of nonholonomic constraints with different order in our system. Nonholonomic 

constraints arise from the existence of non-slip rolling condition, high coupling effect 

between the flywheel and the wheel and the underactuation in the roll direction of 

the robot. Its dynamics are described by a set of highly nonlinear coupled differential 

equations and it is unstable in the lateral direction. It is an inherently nonlinear, 

underactuated, nonholonomic and non-minimum phase system and it is significant to 

determine the complete study of the dynamics characteristic of the single wheel robot 

in a cluttered environment. In this thesis, the dynamics and controls of a single wheel 

robot rolling without slipping on ground and on incline are studied. The motion of a 

single wheel robot is analyzed using Lagrangian dynamics with no assumptions that 

the robot is constrained to remain vertical and performs along the horizontal plane. 

The effects of internal pendulum motion and the inclination angle of the plane are 

addressed. Linearizing the model around the perpendicular position to the surface, 

the state feedback controllers for stabilizing the robot from falling over on ground and 

on incline are proposed respectively. The backstepping control method is designed to 

balance the robot following a straight path with a general heading angle. The condition 

of rolling up of the robot on the inclined plane is investigated and different motion 

strategies are proposed for the robot when violation of the condition of rolling up. The 

feasibility of the method is then verified by simulation analysis. 
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摘要 

单轮机器人： 
地面与斜坡上基于陀螺仪的稳定方法 

单轮陀螺仪稳定机器人采用具有刃状边缘的扁平式轮状结构， 

在拱形轮盖内安装有驱动机构，利用陀螺力进行机器人的方向操纵和 

保持稳定。为在不损失单轮动态稳定性的前提下增强其静态稳定性， 

利用一个高速旋转飞轮的转动惯量来获得机器人的横向稳定性。同 

时，在陀螺的运动过程中也产生一种行驶运动。在无滑动条件下，由 

于存在滚动约束，它属于一种众所周知的典型非完全约束系统。由于 

非完全约束系统不能通过平滑非时变反馈稳定于一个平衡点而受到更 

多的重视。在本文工作中，系统存在两种不同阶次的非完全约束。非 

完全约束来源于机器人存在无滑动滚动状态，飞轮和单轮间有强稱合 

效应，以及机器人滚动方向上欠缺驱动作用。机器人的动态过程由一 

组强锅合非线性微分方程所描述，且其横向是不稳定的。它是一个固 

有非线性，欠驱动，非完全约束和非最小相位系统。这促使我决定全 

面研究单轮机器人的动态特征。在研究工作中，考虑了单轮机器人在 

地面和斜坡上无滑动滚动状态时的动态过程和控制方法。在未假设机 

器人由于受到约束而保持垂直且工作于水平面上的前提下，采用拉格 

朗日动态法分析了单轮机器人的运动。论述了内部单摆运动和平面倾 

斜角的效应。分别提出了围绕表面垂直位置的模型线性化方法和用于 

稳定机器人避免其在地面和斜坡上跌倒的状态反馈控制器。设计了一 

种控制方法来稳定机器人使其按通常的前进方位角沿直线路径运动。 

计算了机器人滚上斜坡的条件，提出了当这些条件被违反时机器人的 

运动策略。通过仿真分析验证了该方法的灵活性。 
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Chapter 1 

Introduction 

1.1 Motivation 

A single wheel gyroscopically stabilized robot originally was developed by Xu & B. 

Brown at Carnegie Mellon University since 1992 [7]. The concept of mobility they 

proposed is a sharp-edged wheel, with an actuation mechanism fitted inside the wheel 

domes. The robot itself uses a high spinning flywheel as a gyroscope for stabilizing the 

robot, and it also actuated by a spinning flywheel for steering and a drive motor for 

propulsion. 

In this research work, the author deals with the system of dynamically stable but 

statically unstable. A nice example illustrating many features of dynamically stable 

but statically unstable systems is the bicycle. The bicycle always fall sideways when it 

is stationary. Consequently, the bicycle itself is assumed to be balanced by the action 

of its rider. Rider pedal so as to keep the bicycle upright. When riding a bicycle faster, 

it is more stable and could not fall over even. When he feels the vehicle falling, he 

steers into the direction of leaning and so traverses a curved trajectory of such a radius 

as to generate enough centrifugal force to correct the fall. The faster a bicycle moves 

the easier it is to ride. Also when a bicycle pushed and released riderless, it will stay 

up on its own, traveling in a long curve and finally collapsing. It can travel much 

more time without falling, comparing to it would take if static. Almost everyone have 

experience with bicycle and probably this common sense by observation, yet apparently 

not everyone knows how it works. The phenomenon it is describing can be explained in 

term of gyroscopic procession. The detail of description you can refer to Section 1.1.2. 

It also falls into the class of systems which cannot be stabilized to an equilibrium 

via any smooth time-invariant feedback. Nonholonomic system defined as system in 

1 



1.1 Motivation — 2 

which there are constraints on the velocities of the robots which cannot be integrated 

to give constraints which are exclusively a function of the configuration variables. For 

instant, systems with linear velocity constraints of the form Wi(x)x = 0, i = 1，…，k, 

however, it cannot be written as an algebraic constraint in the configuration space such 

as hi(x) ^ Ci. A constraint is said to be nonholonomic or nonintegrable. 

The static roll stability of bicycle should be sacrificed in order to enhance the dy-

namic roll stability. Nevertheless, its configuration conveys significant advantage over 

high speed operation of a mobile robot. If the vehicle moves in relative high speed, 

it has much difficult to roll over compared with the static stable system. The torques 

generated by the dynamic disturbances at the wheels, can be reduced for preventing 

upset the vehicle about the roll, pitch and yaw axes. The obstacle crossing ability 

of the vehicle may be enhanced. The dynamic effect consideration have much signifi-

cance especially in high speed operation, weak gravity environment and great dynamic 

disturbance situation. 

The new dynamic mobility which is unstable statically are proposed [7]. A single 

wheel, gyroscopically stabilized robot connected by a spinning flywheel through a ma-

nipulator at the wheel bearing. In order to augment static stability without loss of 

dynamic stability, the spinning flywheel is used to provide an angular momentum for 

lateral stability even when the wheel operated very slow or is idling. Its ideal is to 

take advantage of the dynamic stability of a single wheel, but augment it with a gy-

roscope to achieve static stability. A series of single wheel robots, whose family name 

is Gyrover, had been developed at Carnegie Mellon University. Gyrover comes from 

two words, Gy-roscopic and rover respectively. It means as a rover, which relies on gy-

roscopic action for dynamic stability, is delivered to a planet's surface for exploration 

and transportation. Three prototypes have been developed. 

1.1.1 Literature review 

There are precedents for single-wheel-like vehicles [15, 16, 19, 29]. In ancient time, the 

single wheel vehicles were designed as operator who was circling by the domes and he 

rides inside the vehicle. In the past of the western countries, a large wheel encircling the 

rider was created by R.C. Hemmings in 1869 [15], executing the dream of more peoples. 

A Velocipede, got patents for Hemmings, which used hand cranks for controlling. Later, 

Pallmer describes several single-wheel vehicles. A 1935 publication [29] he introduced 

the Gyroauto, which carried the riders between a pair of large, side-by-side wheels, and 

was claimed capable of a speed of 187 kph. Moreover, he describes Dyno-Wheel [29]. It 

is a concept having a bus-like chassis straddling a huge central wheel. The relative large 
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diameter of a single-wheel vehicle enhances its obstacle-crossing ability, smoothness of 

motion and rolling efficiency. 

Many researchers took their effort on the dynamics and control of autonomous 

unicycle and bicycle [35, 36, 41]. An autonomous stabilized unicycle was studied by 

Schoonwinkel [35]. Consider a unicycle acts as three rigid bodies composed of a wheel, 

a frame and a rotary turntable. He modeled the motion of a unicycle operated by the 

human. And he separated the lateral and longitudinal dynamics by perturbated the 

yaw rate to specific quantities and constructed a autonomous stabilized robot. 

The study of dynamics on inclined surfaces has a long history in Physics since the 

time of Galileo's experiments [9] and the work of Coulomb on friction in the 18th cen-

tury. However, all of Galileo's theorems and propositions are only restricted for spheres 

rolling down an incline. Rui [31] proposed a controller for asymptotically path track-

ing of a rolling disk which is allowed to perturb from the vertical position. However, 

one strong assumption is that there is a torque generated directly acting on the roll 

direction of the disk for balancing. 

Not until recently some researchers started to work with gyroscopical stabilization 

2, 3, 5, 7, 27, 40, 44, 45, 47]. Gyroscopical stabilization of bicycle was studied by 

Beznos et al. [5]. It is consisting of two coupled gyroscopes spinning in the opposite 

directions. He linearized the system model, but the yaw dynamics of bicycle were not 

considered and the steering angle was decoupled from the dynamics. It was assumed 

to be a input for directly controlling of the steering front wheel. Besides, the motion 

was only restrict on the horizontal plane. 

Our research group concentrated on this kind of concept [2, 3, 7, 27, 44, 45] and 

studied about the dynamics of the single wheel robot. Using constrained Lagrangian 

method, the kinematics constraints and system dynamics were determined. They pro-

vided the linearized model around the vertical position and investigated the controlla-

bility of non-minimum phase characteristic of the system. An algorithm was proposed 

for tracking the reference steering velocity by restricting the robot to an equilibrium 

lean angle which corresponds to that steering velocity. 

They studied its nonholonomic constraints, its stabilizing effect of the flywheel to 

the system through simulation and tilting up of the flywheel on the robot by both of 

simulation and experiments. The work is of significant in understanding of utilizing 

this type of mobility with dynamically stability yet statically instability in the field and 

service application. 

However, their work [2, 3，7, 27, 44, 45] have suffered from some limitations; (1) 

The dynamic models developed previously assumes that the single wheel robot remains 
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strictly on the flat plane and it fails to represent the actual motions when the robot 

is perturbed from the vertical position and it rolls up a slope. (2) In the deviation of 

the robot dynamics, a single wheel robot in general should be considered as a single 

wheel, actuated through a spinning flywheel attached through a two-link manipulator 

at the wheel bearing and a drive motor, but for simplifying of the model, the previous 

approach assumed that the mass center of flywheel and the internal mechanism was 

assumed to be coincident with the center of the robot, and the horizontal offset between 

the plane of wheel and the moving body frame was neglected. The variation of this 

simplified model will be studied on the following chapter. Based on the linear, simplified 

model, all simulations were conducted on his dissertation. For steady motion of the 

robot, the pendulum motion of the internal mechanism was only to be neglected. The 

pendulum swinging motion was without under consideration as 6 was assumed to be 

zero. 

Tsai [40] developed robot dynamic model. The model of the single wheel robot 

was investigated as the control point of view. He applied Extended Kalman filter 

EKF to estimate the state vector of the Gyrover and the complete state too. The 

pendulum swinging motion considered in his work. The nonlinear dynamics equations 

of motion about the unstable equilibrium point was then linearized. The operation point 

stated that the robot is upright and gyro is horizontal. However, dynamics were not 

symbolically yet analytically. For instance, when non-minimum phase of the system 

was proved, the matrix was a number instead of symbol form. The observer-based 

controller experimental result was provided but the simulations result was missing. 

For the work of Yu [48], the input selection of tilting up task of a simple wheel robot 

was determined. Sensitivity Analysis and Factor Analysis were proposed for selecting 

state inputs of the system. The Human Control Strategies (HCS) model was learned 

modeled human control input from the human point of view. And then the sensitivity 

analysis for input selecting based on the simplified model of Au, which is only limited 

to the model without li. 

As those limitations stated before, it motivates the author to exploit the whole pic-

ture of dynamics of the single wheel robot research. The research work of the author 

reveals that dynamics of a single wheel gyroscopically stabilizing robot posses richer 

and more complicated dynamical aspects in comparison with the simplified systems 

proposed that the model develops without /i and 6. Many researchers have viewed 

wheeled robots with high maneuverability, capable of dynamic behavior, high speed 

traveling on rough terrain. The goal of our research group are concentrated on de-

veloping an automatic control for a single wheel robot on rough terrains. Essentially, 
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the single wheel robot is a novel concept for mobility that employs gyroscopic effect to 

stabilize a single wheel robot. The model established in this thesis is more general in 

the sense that it should not be difficult to describe the real robot in practical. 

1.1.2 Gyroscopic precession 

In this section, we would like to highlight the fundamentals of gyroscopic precession 

and the principles of steering of the single wheel robot. Now, we take a rolling coin as 

an example for explaining the fundamentals of gyroscopic precession. 

Consider a coin rolling on the flat plane. After rolling for a while, the coin not 

only starts to fall over, but it also begins to turn. It is so interesting to see that a 

rolling coin actually turns in the direction that it is leaning. This phenomenon can be 

explained by the clenched fist rule and the right hand rule. The clenched fist rule: Hold 

the right hand so that the fist is tightly clenched with fingers curled and the thumb 

is straight and pointing away from the fingers. If we consider a rolling coin leans to 

the right hand side, the gravitational torque induced is: r = r x mg cos 6. The fingers 

curled is used as the direction of gravitational torque and the straight thumb will point 

into the paper i.e the forward direction. The direction of the straight thumb is called 

as Dgrav ‘ As the coin is rolling, by the clenched fist rule, the curled fingers show the 

direction of spinning rate 7 and then the straight thumb which points into the paper 

are represented by Dgpin- The right hand rule: the forefinger and the middle finger 

represent Dspin and Dgra respectively. The thumb will show the axis of precession of 

the coin, by the clenched fist rule again, the direction of the curled fingers are the 

direction of precession rate. It is shown in the Figure 1.1. 

It is the same phenomenon as riding a bike. A bicycle can be balanced by the action 

of its rider. The rider can steer the bike in the direction of fall when he/she wants to 

prevent the bike from falling. This theory is formalized mathematically. Because of 

its angular momentum, a spinning wheel tends to precess at right angles to an applied 

torque, according to the fundamental equation of gyroscopic precession [7]: 

T = J7 X (1.1) 

where 7 is the angular speed of the wheel, Q is the wheel's precession rate, normal to 

the spin axis, J is the wheel polar moment of inertia about the spin axis, J7 is the 

angular momentum of the wheel and T is the applied torque, normal to the spin and 

precession axes. It is shown in the Figure 1.2. Therefore, when a rolling wheel leans to 

one side, rather than just fall over, the gravitationally induced torque causes the wheel 
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1.2 Thesis overview 7 

1.2 Thesis overview 

In this Chapters of the thesis we discuss important problems related to the modeling, 

dynamics and control of a single wheel robot either in the horizontal plane or on inclines 

that have not yet been studied in the past. The outline of this thesis is as follow: 

In Chapter two, we consider the dynamics and feedback control of a single wheel 

robot rolling without slipping on a rough horizontal plane; In general the single wheel 

robot system is considered as a sharp-edged wheel actuated by a spinning flywheel at-

tached through a manipulator. The vertical offset of the actuation mechanism from the 

axis of the wheel was not been neglected. The general rolling single wheel robot system, 

when the pendulum swinging motion included, represents much richer dynamics and 

deserves attention. The derivation of the dynamical equations is similar to the devel-

opment in Au [7, 27, 44, 45], During the developing of the model, variable reduction 

of the dynamics itself was applied. We used state variables [a, 7 & to describe the 

whole systems. Its approaching of input selection is totally different from the work of 

Yu [48；. 

In this work, the author was concentrated to estimate the stabilizing of the robot 

around vertical position and the tilting up of flywheel on the robot when the internal 

mechanism are to swing inside the wheel. We are analysized these three kind of dynamic 

characteristics on rolling disk, simplified model of the robot (model proposed by Au) 

and modified model of the robot (the general model). The simplification of the model 

by Au is only applied when the robot reaches at the steady state. These models fail 

to represent the actual dynamics especially in the transient state. On the simulation 

analysis for the tilting up motion of flywheel, preliminary experimental results are 

shown for verifying the developed model. It is more general in the sense that model 

should not be difficult to extend for description of the real robot in practical. Despite 

of it, the dynamic models we developed previously fails to represent the actual motion 

when the robot is perturbed from the vertical position and it rolls up a slope. It was 

because that the robot remains strictly on the flat plane. 

In Chapter three, the dynamics of a robot rolling without slipping on an inclined 

plane are established. The general model of the single wheel robot on incline is studied. 

The new dynamics of a single wheel robot without slipping on an inclined plane were 

also investigated. We pay much attention for study the gyroscopical stabilization of 

the robot on inclined plane when the dynamics of a robot rolling without slipping on 

an inclined plane are established. 

We first derived the kinematics and dynamics of a rolling disk without slipping on 
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the inclined plane. After that we developed the model of the single wheel robot which 

is considered as a combination of three rigid body components： a wheel, an internal 

mechanism and a flywheel. The general model of the single wheel robot on incline 

is established. For model simplification, the flywheel is located at the center of the 

wheel and the swinging effect is terminated. It is because the extension of the general 

single wheel robot system on an inclined plane is extremely complicated. The equation 

of motion of a single wheel robot on an inclined plane differs significantly from that 

on horizontal plane. On an incline, some components of the gravity forces act on the 

system. The motion of a single wheel robot is analyzed using Lagrangian dynamics with 

no assumption that the robot is constrained to remain vertical. We then linearized the 

dynamic model around the position perpendicular to the surface. 

In Chapter four, we proposed a feedback controller for stabilization of the robot 

from falling over on an inclined plane , which based on the linear model. Moreover, the 

backstepping control was designed to balance the robot following a straight path with 

a general heading angle. The feasibility and efficiency of the method is then validated 

by simulation study. 

In the Chapter five, we addressed the condition of rolling up of the robot on an 

inclined plane from the system dynamics itself. Furthermore, we developed a measure 

that Safety Factor is actually a performance index which measures the robot's ability 

successfully to roll up a slope from its at rest. And then, we suppose some method for 

planning of rolling up by tracking the robot's motion in different motion strategies. 



Chapter 2 

Dynamics of the robot on ground 

In this chapter, we investigate the dynamics and control of a single wheel robot when 

it rolls without slipping on a horizontal plane. Using the constrained generalized La-

grangian formulation, general form of dynamical equations of a single wheel robot is 

derived. We linearize the dynamical model around the vertical position. The stabiliz-

ing effect of the robot as its upright and the tilting up of flywheel on the robot are 

determined respectively. We then study dynamics characteristic of a single wheel robot 

on the basis of the dynamical equations. The effect of swinging motion is estimated. 

We summarize that the elimination of the pendulum motion from the dynamics by Au 

2, 3, 7, 27, 44, 45] is only applied to the robot which is reached at the steady state. 

Moreover, the modified model of the single wheel robot is validated by the prelimi-

nary experimental results. The dynamic analysis of some important parameters is also 

determined. 

z 

C 1 
w 

Figure 2.1: A single wheel robot rolls on ground 
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Figure 2.2: Top view of a single wheel robot f igure 2.3: Front view of a single wheel 
robot 

2.1 System model re-derivation 

We developed dynamical model of a single wheel robot using the constrained Lagrangian 

method, as well as kinematics constraints [44]. However, so far no attempt has been 

considered the internal pendulum swinging of the robot. A single wheel robot consists 

of a rim and two polycarbonates domes that carry the drive shaft. Around this shaft 

swings the main body of the Gyrover, this motion is so called pendulum swinging. Past 

research on the Gyrover [2, 3，7, 27, 44, 45] assumed that the pendulum motion of the 

internal mechanism is sufficiently small to be neglected when the robot reaches in the 

steady state. And then the parameter of 6 should be taken out from the dynamics. 

On the contrary, at the transient state, there are significant coupling effects between 

the steering (gyro-tilt) and propulsion (pendulum swinging). The system will possibly 

come to singularity without considering pendulum swinging motion properly. 

Now we discuss with the model derivation of a single wheel robot on ground. In 

Figures 2.1,2.2 and 2.3 show that a single wheel robot, is a sharp-edged wheel actuated 

by a two-link manipulator, with a spinning disk (gyro) attached at the end of the second 

link. Figure 2.2 shows that the first link of length li represents the vertical offset of 

the actuation mechanism from the axis of the single wheel robot. And the second link 

of length I2 represents the horizontal offset of the spinning flywheel. There is no offset 

between the axis of tilt & gyro rotor and the middle plane of whole structure on the 

robot. The I2 is set to be zero. It means that the flywheel's center of mass coincides 

with that of the internal mechanism. A summary of the definition of model variables is 
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Table 2.1: Variable definition 

a Precession angles of the wheel measured about the vertical axis 
p Lean angles of the wheel 
Pa Tilt angle between the link h and Za-aods of the flywheel 

7a Spin angles of the wheel and the flywheel, respectively 
0 Angle between link h and rE^-axis of the wheel 
m^, mi,mf Mass of the wheel, internal mechanism and flywheel respectively 
m Total mass of the robot 
R, r Radius of the wheel and the flywheel respectively 
I 勸 lyyj, Izw Moment of inertia of the wheel about x, y and z axes 
I 小 ly f , Izf Moment of inertia of the flywheel about x, y and z axes 
fjLsiHg Friction coefficient in yaw and pitch directions, respectively 
ui, U2 Drive motor torque and the tilt motor torque, respectively 

shown in Table 2.1. The coordinates frames of the system are divided into three major 

frames: 

1. The inertial frame E o X Y Z , whose XY plane is anchored to the flat surface and 

Z is vertical position, 

2. The body coordinate frame SsX&Yft队 whose origin is located at the center of 

the single wheel, and whose 2;-axis represents the axis of rotation of the wheel, 

3. The flywheel coordinates frame E^jX^ld-^d, whose center is located at the center 

of the flywheel, and whose 么-axis represents the axis of rotation of the flywheel. 

Note that Yj, is always parallel to 

We have derived the general dynamical equation of a single wheel robot using the 
constrained generalized Lagrangian formulation, showed as detailed in [45]. Those 
velocity constraints are 

X = RifiCcc+aCaCp- ^SccSp) (2.1) 

Y = RijSa + aCpSc + (2.2) 

Z = Z = RSff (2.3) 

Equations (2.1) and (2.2) are nonintegrable and hence are nonholonomic while Equa-

tion (2.3) is integrable. 

The dynamics equations of a single wheel robot are 

M{q)q + N{q,q) = Bu (2.4) 
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Figure 2.4: Definition of coordinate frames and system variables of the robot model 
‘ M i l 0 Mi3 0 Ml5 • 

0 M22 0 M24 M25 r n n 1 n 7 - _ _ O O l O f c 
M = M i3 0 M33 0 編 ， 万 二 0 0 0 1 0 

0 M24 0 M44 0 L -
_ Ml5 M 2 5 M 3 5 0 M 5 5 • 

where, 
Mil = Ixj + Ixw + IxwCp + mE^C�+ Ixf C| — CpCp^CeSpSp^ + CgS^S^^) — 2limaRCeC^ 
Mi3 = {llxw + mR^ - hrriaRCe) 
Mi5 = hruaCp (1 — RCe) 
M22 = Ixf + Ixw + m丑2 + mjlCg - 2mahRCeS0 
M 2 4 二 IxfCe 

M25 = -hruaRSipSe 
M 3 3 = 2hw + mR^ 
M35 = -hmaRCe 
M55 = llrua 

= {2hfC0S0iC^ - 1) + + CpClS^S}^ - C^Cj^Sp - ClC^^CeSp^) 
-{Ixw + mB?)S20 + mJiCpCeSp + AmJiRCpCeSlSp + 

+ C^CeSpS}^ - CpC^^CeSp — 
-hmaRSeaj + {-hniaRC^Se + llmaC^CgSe + hfC^^S^Sp^Se + hfCpCeSl^Se}^'' 

{-\llmaC20S9 + 2hmaRC�Se + l\maCeSe + — 2I:,fCeSlsl^Se]die 
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+{2llmaCl - hfCpCp^CeS^^ + hfClS^S}^ - + hruaRC曰 

{-2hfCp^CeSp - 2hfC^S0jl3aia - 一 hfSpCeM - 2SpSeS^Jia 

N2 = {(Ixw + m丑2) SpC/s + Ixf + CeC2i3S20a) — 2hmaRCeS^Cp + llruaSeCe 
+l\maSeCl}a^ + {-llmaSp + l\maSpC2e - 2limaRCeSp)ad + mgRCp - ghrriaCpCe 
+ { 2 J 測 + mF!% - hmaRCeSp�dt�+ hfC^Sea^a + + 

+{(52/3„C20)/x/ - IxfSeCe + 2mahRSe - 2llmaSeCe]e^ - hfS^^CeOja - hfSeM 
+2hmaRSpCpCe谷2 - I无fSeCp力aga 

Ns = hmaRSeia'̂  + P + - 2{J測 + mR̂  - hmaRCe�Spdt台 

m = {C} - C�S��S0aW - Se 的 _ cs^ad - 妒 + 
+{-C日 + C^Cl - CpSla - + 2�CpJJeS0 + CpSp脚a 

N5 = ghmaSpSe + {-hmaRCipSp + llniaCeSe + i {IxfC20aCeSe - hfCeSe)}^'^ + \{IxfS2e 
i o 

+ (1 — 4i?) C2pSe — 2IxfS20Se — 2IxfS20S20a^d — ^iRliuiaSe — 2llmaS20S2e — IxfCh 玲 Sie 
-2hfC2^SlS2e]a + hfCeSpa$a - hmaRC/sSeaj + 2hfCeSpJ'ya - 2IifSpSeSpj�a 

+ {^S^ [lxfC20a + 2lima(l + 2RCff) 一 (1^/ + 2llma)C2e) + /̂x/C/sCê a/ŝ jd/? 

M{q) G ]R5x5 jg the inertial matrix of the single wheel robot which is a positive definite. 

And N{q, q) E R^^^ is nonlinear term. The generalized variable and inputs variables are 
fjn rjn 

represented hy q = [ a , 6 ] and u = [wl, u2] respectively. The configuration of 

the single wheel robot can be described by five generalized coordinates [a, p,7，权厂. 

The single wheel robot has more degrees of freedom than a rolling disk, owing to the 

swinging motion of the link li and the tilting motion of the flywheel. The flywheel's 

angular momentum produces lateral stability when the wheel is stopped or moving 

slowly. A tilt mechanism enables tilting the flywheel's axis about the roll axis with 

respect to the wheel. Because the flywheel acts as an inertial reference in attitude, 

the immediate effect of the tilt action is to cause the wheel leaning left or right, which 

in turn causes the wheel to steer in the direction of leaning. Torques generated by 

a drive motor, reacting against the suspended internal mechanism which pendulum 

swings as well as produce thrust for acceleration and braking. The turning (steering) 

of the wheel is the result of gyroscopic procession about the yaw axis, caused by roll 

torques as explained before, in the Section 1.1.2. Because the wheel have large angular 

momentum of flywheel in order to provide a good low speed or static stability. The 

flywheel spins very fast. The spin motor cannot generate an enough torque for sudden 

change of angular velocity. It is reluctance to change the spinning rate of flywheel so 

the angular velocity of the flywheel is set to be constant. It is not used for the control 

purposes. In this case, the control of a single wheel robot is achieved by two generalized 
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Figure 2.5: Side view of a single wheel robot 

inputs:(1) the drive torque (wi) for propulsion 7 as well as swinging pendulum (2) 

the tilt torque (W2) for tilting the flywheel for lateral stability. 

The system dynamics can be decoupled by the tilting variable pa. Similar as the 

case of decoupling the steering variable from the bicycle dynamics shown in [5],[12]. As 

Pa denotes as a new input w礼,the dynamics model in Equations (2.4) re-determined. 

The dynamic model of the robot on ground (System[l]) is 

+ = Bu. (2.5) 

Pa = u^a 

rp 
with q = [a ,卢,7,9] , 

-Mil 0 Mi3 MI4 ] �ili^ii 0 MI3 MI5 -
- 0 M22 0 M24 0 M22 0 M25 M = - _ = _ _ 

Ml 3 0 M33 M34 Ml 3 0 M33 M35 
_ Mi4 M24 M34 M44 J L MI5 M25 M35 M55 . 

r n T 
- 0 0 1 0 

B B n S = NI,N2,N3,N4 ,U=[U1,U0J t>l JD2 U L J 

Ni = {2hfCpS0iCl — 1) + + C^ClSpSl̂  — CpCĵ Ŝ  - CjC^̂ CeSpJ 
— {Ixw + UlR^ 

)S20 + mJlCpCeSp + AmahRC^CgSlS^ + 2hfC/3Si3S^}a$ 

—limaRSedt�+ {-limaRCpSe + lhnaC0C0Se + + Ia:fC0CeSl^Se�台 2 

{-^llmaC20Se + 2hmaRC^Se + llruaCeSe + - 21 工fCeS�S��台 

+{2llmaC^e - IxfCpCp^CeSp^ + hfC'^eSpS}^ - I^^fSpSl^Sl^台台 + hmaRC^SeS'' 
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+ {-2hfCi3,Si3 - 2hfC0C0Si3j$ia - — '^SpSeSpJia 

N2 = {{Ixw + mR^) SpC0 + (C2/3„5^C/3 + CeC20S2Pa) _ IhrriaRCeSpCp + llmaSeCe 
-hllmaSeC0}a^ + + ih^aSpChe - 2hmaRCeSp�dt台 + mgRCp - ghmaCpCe 
+{11測S玲 + - hmaRCeSp]dL^ + 2hf{C^^Sj3 + C0CeSp^]a% — hfS^^Ceha 

+{iS20aC20)hf - IxfSeCe + ImJiRSe - 2llmaSeCe]e^ + IhrUaRSpCffCe炉 

Ns = hniaRSeia^ + 沪 + 2C0a9) - 2{/測 + mR^ - hrUaRCi^Spdt台 

N4 = ghmaSpSe + {-hmaRCh^Sp + llniaCeSe + ^ (IxfCip^CeSe - hfCeSe)}/^^ + l{IxfS29 
L o 

+ (1 — 4R) C2^Se — 2IxfS20S0 — 2IxfS2^S2/3aS0 — ARhmaSe — 2l"imaS2eS20 一 IxfCapSie 
-2hfC2fiSlS20]a — hmaRC/sSedj + 21 …eSp^ - 21 工fSpSeSp力〜a 

+ 2/ima(l + 2RCe) - {hf + 2ljma)C2e) + \hfC0CeS20a 

Bi = + CpCeSpSl - CpClCeSp - + hfSpCeO 

-{-hfCpSeC2p^ + 21 …pJJeSpSp 別 3 + 2hf{Cp^CeSp + 

B2 = -hfCpSeoL + hfSeC^^ia + IxfSeO 
Ba = —IxfCeSpd — IxfSe^ 

Equations (2.5) show the reduced dynamic model of the single wheel robot after 

decoupling the tilting variable Pa , with new matrices M{q) G R4x4 and q) G IR4x1 

Note that if the lean angle p is set to be 0° or 180°, the inertial matrix M will become 

singular as in the case of the rolling disk. Also, the lean angle p does not couple 

with the rolling angle 7 and the steering angle a in acceleration level, while they are 

coupling in velocity level through the cross terms a and p. It is different from typical 

underactuated systems such as the underactiiated manipulators because most of them 

are subjected on acceleration coupling. More discussions are given in the next chapter. 

2.1.1 Linearized model 

We at first linearize the dynamic model around its upright position. The system should 

be linearized around the vertical position such as = 90° + < 5 / 3 , = Spa,台=5台,G = 

SO P̂a = = flo + In our derivation of linearized model we make the following 

assumptions: 

• all the components are rigid 

• the wheel rolls without slipping 

• the ground is flat enough 

• there is friction on the contact between the wheel and the ground, and on the 
drive motor and transmission 
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• the angular velocity of the gyro keeps remain constant 

• the wheel remains in contact with the ground 

• • • 

• the term Spa^ <i, 0 are sufficiently small 

• • • 4-v 

• the terms are much large enough compared with 

The linearized model is given by 

+ 2IxfS$ja + 2Ixf'yaUPa - 二 (Jxf + Ixw)^ (2.6) 

(mR - lima)grn6l3-2Ixfja<^-(?Ixw+'i^R^ - hrrial^^oa = {Ixf+Ixw+i^R^ (2.7) 

-\-mall - 2mahR)6p 

(2J測 + mB?)tl = -figQ + ui (2.8) 

-hrriaR^ + llniaO = Rui (2.9) 

The key point for the stabilization of the robot is the coupling effect between the 

yaw and roll motions while no actuator direct drive the control of the roll motion. For 

the low yaw rate, a = p = j = 9 = 0, ^ = l3a = 0 = 0,ui = u知 二 0. 

^ = (hmgCe - mR)gCp 
s - (24/^/5 + mB?Sp - hmaRCeSp)^ + (C日Jp + CpC0Spj2I,fja � • ^ 

If p is not equal to 90°, the wheel turns according to the Equation (2.10). The control 

method for the stabilization of a single wheel robot is to propose an algorithm for 

tracking the reference steering velocity by stabilizing the robot to an equilibrium lean 

angle which corresponds to that steering velocity. 

2.2 A state feedback control 

In this section, the control properties of the system are determined. Prom Equations 

(2.6),(2.7),(2.8) & (2.9), it is clear to notice that a is affected by u^^ and tl k. 6 are 

affected by ui while is only indirectly affected by u^^^ui. As Vt and 9 are independent 

of the roll and yaw dynamics. We then combine Equations (2.6) and (2.7) into one 

subsystem and Equations (2.8) and (2.9) into other subsystem. 

Define state variables xi = 8p,X2 = 劝，工 3 == = O.x^ ^ 6, xq = Q, state 

equations form 

X = f{x)+g{x)u (2.11) 
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where 

' X i = X2 ( Xa = x^ 

< X2 == + a23iC3 and I x^ = c2Ui (2.12) 

‘ Xs = a22X3 4- 3̂2̂ 2 + bup [ = CSXQ + Ui 

For 

— {mR - hma)g 
Ixf + Ixw + rriR2 + mJi — amJiR 

_ -{2Ixw + rnR^ - hrUalVjO^Q - 21 工 

Ixf + hw + rnB? + mJi — amJiR 
'^Ixfja 

咖 = C T ^ 
= 

Ixw + Ixf 
R 

' ' = h 
"g 

b = 2 4 / � a 
Ixw + Ixf 

The angular velocity of flywheel keeps remain at very high speed 16000 rpm. We 

select u^ such that p^p h a converge to zero. The input up should be chose as 

u^ — - kip — k2白-ksa 

And then we select 
- he = 

C2 

The rolling speed of the wheel converges to Oq- If Mg�a�0，as a is a constant, we 

can select that up & ui such that all state variables {/S, will converge to 

zero. It is a closed loop for controlling system dynamics. 
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2.3 Dynamic characteristics of the system 

In this section, we study the controllability, observability and non-minimum phase 

characteristics of the system. Let 

C 二 刷义2召： 

• 0 0 a23& -
= 0 a23 办 

_ b a22b ^32^23 + 0-22 _ 

= a l ^ b ^ 

二 / + mi^^ - limaR)no + 2I^fja \ ^ / 2I^fja \ 
V Ixf + Ixw + mR2 + mJi - 2mahR) \Ixw + Ixf J 

If ja / 0, the rank is 3. The system is controllable when the spinning rate of 

flywheel is not equal to zero. And the system is observable when ja 0. As 

^ ^ • 

C 1 � 0 0 1 
Q = OA = 0 032 0,22 

i 021^32 ^22^32 吻 吻 + «22 J 

2 

=—021^32 
二 / (mR - lima)g \ / 24/7a ^ 

\Ixf + Ixw + + 
TTlaJl 一 ItUqIxR J \Ixw + Ixf J 

The system exhibits non-minimum phase behaviour when the steering velocity a is 

the output of the system. Consider the system in state space form, x = Ax-i-Bu, y — 
C^x. We note from linear control that the input/output behaviour of the system can 

be expressed in the companion form. 

y = cT (si — bu 

HI � = 
= (g^ -a2i)b 

— a22s2 + (023032 — 0'2l)s + 021«22 

There is a zero of the transfer function HI(s) on the right-half plane. Therefore, the 

control design objective for non-minimum phase systems should not be perfect tracking 

or asymptotic tracking. 
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Table 2.2: Parameters used in simulation and experiments 

Wheel : m = 1.25kg, R 二 17cm 
Internal mechanism: rrii = 4.4%, 
Flywheel : nif = 2Akg, r = 5cm 
Manipulator : h = 10cm 
Friction coefficients: /ig = lNm/(rad/s), fig = 0.01Nm/{rad/s) 

2.4 Simulation study 

The realistic geometric/mass parameters are shown in Table 2.2. The single wheel 

robot balanced around the vertical position. In Figure 2.6, it shows that the lean angle 

p converges to 90°. At the same time, k, Ug become zero. The robot reaches to 

an equilibrium state. The pendulum motion stops. And the swinging angle 6 is very 

small and the robot moves along the straight line as steering angle a = 30°. 

0.31 0.081 0.21 
I I • I I I 

CO CO CO 0.2 �0.06 0.1 w w w 
• c 0 . 1 . q : l 0 . 0 4 \ 0 I 
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Figure 2.6: The simulation results of the robot on ground 
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Figure 2.7: Acceleration of the robot 

In Figure 2.7, angular acceleration of the robot in yaw, pitch, roll and swing direc-

tions become zero. In Figure 2.8，the flywheel turns to be —30° with respect to the 

vertical and keeps steady at that point. The orientation of the flywheel with respect to 

the wheel keeps remain unchanged. 

0| S| 

J- f \ 
-20 \ 
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-35 

-2.5' 1 "401 
0 1 0 , , 20 30 0 1 0 , , 2 0 30 

t[s] 糾 

Figure 2.8: The rate of change of lean angle and lean angle itself of the flywheel 
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2.4.1 The self-stabilizing dynamics effect of the single wheel robot 

In this section, we make a comparison of the self-stabilizing dynamic property between 

the rolling disk and the single wheel robot on the ground. 

In the dissertation of Au [2], the self-stabilizing dynamic property of the single wheel 

robot was investigated and varied by the experiment result. It is shown as Figures 2.9 

and 2.10. The robot kept in balance without fall out, due to the gyroscopic torque. It 

is generated by the coupling motion between the roll and yaw motions, for balancing 

the gravitational torque. 

However, we must pay attention that the model of the single wheel robot by A u 

2, 45] had much simplified; The mass center of flywheel and the internal mechanism 

are coincident with the center of the robot. The pendulum motion was assumed to be 

neglected. The system model of robot proposed by Au is called as "the simplified one" 

from now on. We study the self-stabilizing dynamics of the single wheel robot again. 

The new model of the robot including li are under investigation, it is called as "the 

modified one". 

The stabilizing effect of the flywheel are demonstrated by the change of lean angle. 

In Figure 2.9b, it is clear that decreasing of lean angle p for a rolling disk without 

the flywheel is more rapidly than that of the single wheel robot either the simplified 

or the modified one, as shown in Figures 2.10b and 2.16b. In Figures 2.10a-c and 

2.16a-c, under the influence of friction in the yaw direction, the steering rate a and the 

leaning rate p converge and it tends to a steady state equilibrium as shown in Equation 

(2.10). The oscillation occurs in the rolling disk is much significant than that robot. 

This verifies that the stabilizing effect of flywheel on the robot take places. In the 

Figure 2.16, at the transient state, the effect of swinging motion cannot be neglected. 

The pendulum swings sinusoidual. The rate of change 6 is formed as Cosine function. 
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Figure 2.9: The simulation results of a Figure 2.10: The simulation results of the 
rolling disk without flywheel. simplified robot. 
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Figure 2.11: The simulation results of the modified robot 
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2.4.2 The Tilting effect of flywheel on the robot 

In this section, the tilting effect of flywheel on the robot is investigated. When the 

flywheel's orientation is not longer to be fixed with respect to the wheel, the tilting 

effect of the flywheel on the robot implies. 

Based on the conservation of angular momentum, when the tilt angle of flywheel Pa 

turns, the whole robot will lean in the opposite direction of tilting in order to maintain 

a constant angular momentum. Simulation and experiment results done by Au [2: 

are shown as Figure 2.12 and Figure 2.13. The same initial conditions are considered 

for all cases of tilting up of flywheel. The simulation results shown as Figures 2.12, 

2.14 & 2.15 and experiment result as Figure 2.13 are under the same initial conditions 

as follow: 

，卢= 90°，/3« = a = 0。， 

< 0 = a = l3a — 0 rad/s,j — 15 rad/s, 
a = 0°. 

\ 

Both Figures 2.12，2.13 & 2.14 and 2.15 show that while the tilt angle of flywheel /3a 

rotates 30° counterclockwise during 2.4 second to 2.7 second, the lean angle p leans in 

clockwise direction. The tilt angle pa rotates in 73 deg/s counterclockwise while 2.4 

second. 

In the experiment, the transient response of lean angle is more critical than the 

simulations. The small oscillation comes from the vibration of the mechanism inside 

the wheel especially the swinging motion. The phenomenon cannot be explained by Au, 

it was because that li and the pendulum motion reduced from the model he proposed. 

The swinging motion will become very significant in the transient state, it must not be 

neglected otherwise it makes the system which comes to singularity. 

In the Figures 2.14, the rate of steering and leaning change very rapidly. It occurs 

due to the pendulum motion of the robot. After some adjustment for the parameters 

of manipulator for the robot, the performance of the robot becomes better and the 

pendulum swings less. For 2.7 second, the tilt angle remains unchanged and then the 

lean angle and steering rate a converge to steady state solution in both simulations 

and experiments. 

In the experiment, we have not found any high frequency oscillations perhaps be-

cause the sensor response and the sampling time are much slower than the high fre-

quency oscillations. The simulation result Figures 2.15b-c are much similar to the 

experimental result in Figure 2.13b-c than Figure 2.12b-c. 
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Figure 2.12: The simulation results of the Figure 2.13: The experiment results of the 
simplified model with Pa = 73 deg/s robot with = 73 deg/s 
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Figure 2.14: The simulation results of the Figure 2.15: The simulation results of the 
modified model with oscillation. modified model. 
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Table 2.3: Lengths of manipulator used 

Case i Case j Case k Case 1 
l ^ g t h , h 0.033m 0.05m 0.067m 0.083m 

2.5 Dynamic parameters analysis 

Stability represents a robot's ability to produce lateral stability using gyroscopical 

force. In this section, we address the sensitivity of stability of a single wheel robot with 

respect to the geometric parameters of the robot. The effect of length of manipulator 

and moment of inertia of the robot are under investigation. 

2.5.1 Swinging pendulum 

: � (b) 
21 ^ ― j 0.05 j . j m • H 

-1.5I — -0.051 1 
° 1 2 4 5 0 1 2 f 3 4 5 

I c C j 
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t[sec] t[sec] 

Figure 2.16: Swinging pendulum motion occurs 

The parameter h investigated now. One of the most basic questions in the study 

of swinging pendulum is simply "What happen if the length of the manipulator h 

increases in causing pendulum motion?" In Figures 2.17 and 2.18，the effect of length 

of manipulator on the robot are shown. When the length of manipulator used as 

Table 2.3, it showed that the amplitude of oscillation for velocities of the robot become 

smaller when the length of manipulator increases. The moment of swinging become 

less as the length of manipulator increase. Physically, the length of manipulator should 

be limit as 0 < li < r^ — r f . 
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Figure 2.17: Change of velocities of the robot for different lengths of manipulator 
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Figure 2.18: Change of Swing angle, lean angle, steering angle and trajectory of the 
robot for different lengths of manipulator 
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Table 2.4: Radius ratios between the flywheel and wheel 

Case Radius ratio,r//r^； M.I of flywheel,4/" M.I of wheel, 

^ = 0.2940 0003 0.0181 
6 - 1 (01:7)(2) = 0.1470 0.003 0.0723 
c - 1 = 0.0735 0.003 0.2890 
d - 1 (0:0i70f(6�= 0.0368 0.6502 

2.5.2 Analysis of radius ratios 

We investigate the inertia of flywheel with respect to the stability of the robot. It is 

divided into two parts: radius ratios between the flywheel and wheel and mass ratios 

between the flywheel and wheel. In this two sections, we will study the radius ratios 

and mass rations between the flywheel and wheel respectively. We study the effect of 

length ratio between the radius of domes and the radius of flywheel on the stabilization 

of the robot. 

Imagine that if the plastic domes become bigger and bigger, we would like to discuss 

the performance of the robot when same flywheel are anchored on the robot. For the 

case of a — 1, we use the same parameters as Table 2.2, however, the radius of wheel 

dome is multiplied by two, four and six for cases 6 — 1 , c — 1 and d — 1 respectively. 

The radius ratio for cases a - 1, 6 - 1 , c - 1 and d — 1 are shown as Table 2.4. The 

initial conditions for simulation is as follow: 

， � = 80�,A^ = a = 0°, 
< = d = /3a = 0 radls, 7 = 15 rad/s, 

a = 0°. 
、 

The rate of change of steering angle d and the rate of change of leaning angle p of 

the robot for different radius ratios are shown as Figures 2.19 and 2.20. The a and p 

converge exponentially for all cases. And the rate of convergence of a and for case 

a — 1 are the fastest, compared with all three cases. 

The spectrum for a of the robot are plotted by using the discrete Fourier Transform 

Function. In Figures 2.21 and 2.22, the magnitude plots and phase plots for cases a - 1 , 

6 — 1, c — 1 and d — 1 are presented. 
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Figure 2.19: a of the robot for different radius ratios 
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Figure 2.20: P of the robot for different radius ratios 
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Figure 2.21: Magnitude plots and phase plots for case a — 1 and b — 1 
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Figure 2.22: Magnitude plots and phase plots for case c — 1 and d — 1 
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Table 2.5: The frequency and magnitude responses for different radius ratios 

Steering rate a Leaning rate p 
Case Magnitude [rad/s] Frequency [Hz] Magnitude [rad/s] Frequency [Hz] 

a - 1 23.65 ^ W 
6 - 1 17.7 12 6.94 12 
c - 1 11.1 6 5.69 6 
d - l \ \ ； ^ ^ 4.15 ^ 

_̂25r 1 aCBh 

r: \ lis \ 

~ d - 1 ~ a 一 i 

Figure 2.23: The frequent and magnitude response for different radius ratios 

We summarize the analysis of radius ratios in Table 2.5 and Figure 2.24. When the 

length ratio ^ reduces by increasing the radius of wheel 77, the magnitude response 

of steering rate and leaning rate are decreasing from case a — 1 to d — 1 with different 

gradient. Moreover, the frequency response for both of steering rate and leaning rate 

are also decreasing. It is because that when the same flywheel used on the robot with 

increasing radius of wheel. The effect of flywheel on the robot become less. On the 

same hands, we should turn the flywheel more in order to provide some leaning rate of 

the robot for steering if the wheel is larger. 

2.5.3 Analysis of mass ratios 

We study the effect of mass ratio between the domes and the flywheel on the stabiliza-

tion of the robot. Same method as the analysis of length ratio in the previous section, 

we summarize the analysis of mass ratios in Table 2.7 and Figure 2.24. When the mass 

ratio ^ become larger by increasing the mass of flywheel 77，the magnitude response 

of steering rate and leaning rate change little from case a21 to / — 2. The frequency re-

sponse for both of steering rate and leaning rate increase significantly. It is because that 
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Table 2.6: Mass ratio between the flywheel and wheel 

Case Mass ratio,m//mio M.I of flywheel,/j；/ M.I of wheel,/a；^； 

^ = 0.96 0.0015 0.0181 
6 - 2 ^ = 1.92 0.0030 0.0181 
c - 2 ^ = 3.84 0.0060 0.0181 
d - 2 = 7.68 0.0120 0.0181 
e - 2 i M = 11.52 0.0180 0.0181 
/ - 2 I 15.32 0.0240 0.0181 

Table 2.7: The frequency and magnitude responses for different mass ratios 
Steering rate a Leaning rate $ 

Case Magnitude [rad/s] Frequency [Hz] Magnitude [rad/s] Frequency [Hz] 

a-2 25.24 19.373 ^ 19.373 
6 - 2 23.65 30 7 30 
c - 2 22.65 47.6 6.8 47.6 
d - 2 22.4 68.573 6.6 68.573 
e - 2 22 81 6 81 
/ - 2 II ^ ^ ^J ^ 

the angular momentum generated into the wheel are larger if more massive flywheel 

spins with same angular velocity. The stability on the robot enhances. 
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Figure 2.24: The frequent and magnitude response for different mass ratios 
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Figure 2.25: a of the robot for different mass ratios 
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Figure 2.26: ^ of the robot for different mass ratios 



Chapter 3 

Dynamics of the robot on incline 

In this chapter, we derive the dynamics of a rolling disk and a single wheel robot 

on an inclined plane respectively. The motion of a single wheel robot is analyzed 

using Lagrangian dynamics with no assumption that the robot is constrained to remain 

vertical and performed along the horizontal plane. The model should not be restricted 

only on the flat ground as the robot supposed it can be perturbed on the rough terrains. 

The equation of motion of a single wheel robot on an inclined plane differs significantly 

from that on horizontal plane. On an inclined plane, some components of the gravity 

forces act on the system. 

3.1 Modeling of rolling disk on incline 

Consider a disk rolls without slipping along an inclined plane with an inclination angle 

^ as shown in Figure 3.1. Assume that the disk is rigid with radius R. The dynamic 

model can be developed using the Constrained Lagrangian Method. It is different with 

the derivation in [31], [45] & the Previous Section 2.1. The gravity term decomposes into 

different directions. Let T^qXYZ be a fixed inertial frame whose XY plane is anchored 

to the flat surface and Z is vertical position to the surface. Let the body coordinate 

frame T,BXbYbZb whose origin is located at the center of the disk, and whose z-axis 

represents the axis of rotation of the disk. The configuration of the system can be 

described by six generalized coordinates [X, Y, Z, a , "， 7 ]了 , where X, Y, Z represent the 

coordinates of the center of mass of the disk with respect to the inertial frame T,oXYZ, 

a is the steering angle measured from the Z axis, 0 is the leading angle measured 

from the Z axis to the axis, 7 is the spinning angle along axis. Let [i,j,k] and 

1, m, fi] to be the unit vectors of the coordinate system E q and respectively. The 

33 
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Figure 3.1: System variables of a rolling disk on incline 

transformation between these two coordinate frames Eo and is given by 

1 CaC^ Sa CaSp i 

ih = —SaCp Ca —SaSp j 

_ n J [ -S^ 0 Cp J L k . 

where sin(x) and cos{x) are simplified by Sx and Cx respectively and the subscript 

represents the angle of the trigonometical function. The angular velocity of the disk 

with respect to the inertia frame Eq , 

• A A 

COB = a m + /3j + 今k 

= + + + (3.1) 

The constraints require that the disk rolls without slipping on the surface, i.e., the 

velocity of the contact point on the disk is zero at any instant, vp = 0. Then we 

express vc as 

vc = UJB ^ TB/P + vp (3.2) 
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A 

where r^jp = —R\ representing the vector from the frame P to B. Substituting Equa-

tion (3.6) in Equation (3.7), those velocity constraints are formulated, 

X = -R{jSa + aCpSa - PCaSp) (3.3) 

Y = -Ri'yCa + aCaC^ - pS^Sp) (3.4) 

Z = RpCp ^ Z = RSp (3.5) 

Equations (3.8) and (3.9) are nonintegrable and hence are nonholonomic, while Equa-

tion (3.10) is integrable. As the disk rolls without slipping, the locus of points of contact 

defines a smooth curve in the surface plane. Let ( X � , ^c) denote the coordinates of the 

point C on this locus that coincides with a point of contact P of the disk. 

Xc = X f ) + RSaCj3 

Yc = Yt + RCaCp 

There are six variables with two velocity constraints, so the system has 3 DOF's. 

We use five generalized coordinates q = [X, Y, a, 7]^ to describe the system. The 

XY represent the coordinates of the center of mass B with respect to the inertial 

system T,XYZ^ a is the steering angle measured from the X axis to the contact line, 

P G (—f , f ) is the leaning angle measured from the Z axis to the z axis, and 7 is the 

rolling angle of the disk itself along z axis. The moment of inertia of the disk along Xb 
axis is Ix' 

The kinetic energy C and potential energy of the system V are determined 

=臺[mX^ + mY^ + mr^P^Cj + [\h)a^Sl + (i/.)/?^ + h{aCp + 7')' 

V = mg[RSpC^ + YS^] 

As a Lagrangian, 

Using of Lagrange undetermined multiplier A method, the force constraints must be 

grouped in this form E XkO'kjqj = 0. The equations of motion of a rolling disk can be 
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determined below 

mX = Ai 

mY + mgS(p = X2 

XiRSa + X2RCa = 2 4 ( a C ^ + 7 - a j S ^ ) 

XiRSaCp + X2RCaCp = + C^) - + 2jCi3 -

C - XiRCaS^ + X2RSaS^ = {mR'Cl + i S " 

+mgRCp + I^a^CpSp + 

Differential of two nonholonomic constraints equations, we have 

X = - aCpSa - iSoc - O^CpCa — jaCa + ^CaSp + 沪 

Y = R[- aCpCa - jCa + + - pS^Sp + 护SaCp\ 

We eliminate the Lagrange multipliers by obtaining X , Y and then they were substi-

tuted back into the dynamic equations. A minimum set of differential equations are 

found i.e. Normal form of the system. The dynamic equation of the entire system is 

given by 

M{q)q-VN{q,q) = Gu 

where M{q) G M̂ ^̂  and N{q,q) e I R 3 x i are the inertia matrix and the nonlinear terms 

respectively. 

- h + ( m 丑 2 + 0 {mB? + ‘ 

M = 0 + j工 0 

. + 2h)Cp 0 (mi?2 + 24) _ 

q = 0 = [0,1，of, u = T 
N = [7Vi,iV2,iV3f 

Ni = -gmRCaCpS^ - {I：, + mB?)S2^ap -

N2 = mgrCpC^ - gmRSaS^S^ + (mif + + [mB? + 

Ns = -gmRCaS^ - 2{mB? + 
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3.1.1 Disk rolls up on an inclined plane 

Figure 3.2: Disk rolls on slope 

Consider a thin disk of radius r, remaining vertical and rolling up an inclined plane 

without slipping. The nonslip condition of the disk's motion, i.e., roll without slipping, 

imposes the following nonholonomic constraint equation: 

dy = rdnf 

y = r j 

It seen very common on daily. If the disk starts from a certain position and rolls along 

two different paths, so that the final position and the point of contact between the disk 

and the ground are the same in each case, but the two final values for coordinates a and 

7 may be different. It is meanth that this constraint equation is not integrable, so is 

commonly called nonholonomic constraint. On the other hands, if there is a holonomic 

constraint, a and 7 were functions of x and y, and then the final values of a and 7 

would have been the same. The centre of the disk is subject to the holonomic constraint 

z = r and the disk is to remain vertical, i.e., it is subject to the holonomic constraint, 

lean angle /3 = 0. Force constraints are in the form Y^ajdqj = 0 by using Lagrange 

undetermined multipliers A. And virtual work principle is applied. The torque C 

applied to the shaft 8W = 

W = 8W 

= + \dy — Xrdj 

Assuming that the disk remains normal to the plane surface. We can write the La-
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grangian as 

C = + 今2 一 mg{y sin (/? + r cos (p) 

Using Lagrangian equation method 

华）一 ¥ =揪 
dt \Sq J Sq 

Deriving the equations of motion of the rolling disk for q = [y, 7]^, 

my + mg sin ip = X 

/7 = C-Xr 

Substituting, 

入 mrC + mgl sin ip 
mr2 + 1 

.. rC — mr^g sin (p 
y 二 2~7~F— 

m— + 1 
.. C — mrg sin (p 

m— + 1 
Prom the Free Body Diagram, 

my = F — mg sin cp 

Take moment at centre of the disk, 

I j = C-Fr 

F = X 

Power = Mw = Cj 
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3.2 Modeling of single wheel robot on incline 

IIIIIIIlining 
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Figure 3.3: Photograph of Gyrover on an inclined plane 

Consider a single wheel robot is a sharp-edged wheel actuated by a two-link manipula-

tor, with a spinning disk (gyro) attached at the end of the second link. In the Figure 2.2 

shows that the first link of length li represents the vertical offset of the actuation mecha-

nism from the axis of the single wheel robot. And the second link of length I2 represents 

the horizontal offset of the spinning flywheel. There is no offset between the axis of tilt 

& gyro rotor and the middle plane of whole structure on the robot. The I2 is set to 

be zero. It means that the flywheel's center of mass coincides with that of the internal 

mechanism. A summary of the definition of model variables is shown in Table 2.1. 

The coordinates frames of the system are divided into three major frames. 

1. The fixed inertial frame E q A Y Z , whose XV plane is anchored to the flat surface 

of an inclined plane and Z is a position perpendicular to the surface. 

2. The body coordinate frame EsXhYhZb, whose origin is located at the center of 

the single wheel, and whose z axis represents the axis of rotation of the wheel. 

3. The flywheel coordinates frame lloXdYdZd, whose center is on the center of mass 

of the flywheel itself, and whose z-axis represents the axis of rotation of the 

flywheel. Note that Y^ is always parallel to Yd. 
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The configuration of the system can be described by eight generalized coordinates 

X , Y", Z, Of, p, 7, Pa，“]where X, Y, Z represent the cartesian coordinates of the center 

of mass (C.M) of the system with respect to the inertial frame TiqXVZ, a is the steering 

angle measured from the Z axis, is the leading angle measured from the Z axis to 

the Zb axis, 7 is the spinning angle along axis and Pa is the leading angle measured 

from the Z^ axis to the Z^ axis. 6 is the swing angle between link li and X^-axis 

of the wheel. sin{x) and cos[x) are simplified by Sx and Cx respectively throughout 

this paper and the subscripts represent the angles of the trigonometry. The rotation 

matrix from Eo to is R^ = Rz[oi)Ry{P)- The rotation matrix from S 5 to S/) is 

3.2.1 Kinematic constraints 
^ A A 1 r 八 

Let [i, j , k] and [1, ih, n] to be the unit vectors of the coordinate system Eo and E^ 

respectively. The transformation between these two coordinate frames Eo and E^ is 

given by 

i CaCp —SQL CaSp i 

j = SaC/3 Ca SaS^ ih 

- f c J L -Sp 0 c ^ J L n . 

The kinematics constraint is presented. We define va and cjb to denote the velocity 

of the center of mass of the single wheel and its angular velocity with respect to the 

inertia frame S o . Then, we have 

UJB 二 + M + (7 + aCp)h (3.6) 

The constraints require that the wheel rolls without slipping on the surface, i.e, the 

velocity of the contact point on the disk is zero at any instant, Vc = 0. Then we express 

VA as 

V A = U J B X rAc + Vc ( 3 . 7 ) 

where tac = -Rl representing the vector from the frame C to A. Substituting Equation 

(3.6) in Equation (3.7), those velocity constraints are formulated, 

X = R{ jSa + aCpSa + 0CaSp) (3.8) 

y = - R { i C a + aCaCp - pSaS^) (3.9) 
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1 v 

M 
Figure 3.4: System variables of the single wheel robot on incline 

i = R^C^ Z = RSp (3.10) 

Equations (3.8) and (3.9) are nonintegrable and hence are nonholonomic, while Equa-

tion (3.10) is integrable. Therefore, the robot can be represented by seven independent 

variables (X, Y, a , P, 7, pa,没）instead of eight. 

3.2.2 Equations of motion 

The robot dynamics is presented. We study the equation of motion by the Lagrangian 

C = T — V oi the system, where T and V are the kinetic energy and potential energy 

of the system respectively. We divide the system into three main parts: wheel, internal 

mechanism, and spinning flywheel. 

A wheel 

The kinetic energy of a wheel is 

T w = 臺 + f 2 + ^ 2 ] + 1 [ J • � � + + 21 工扣 

=臺〜[文 2 + P + (丑购)2] + 臺 [ W 场 ) 2 + + 2I“dcC日 + 7)2] 
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The potential energy of a wheel is 

An internal mechanism and spinning flywheel 

The coordinates of the origin of the flywheel is 

xf 1 r 叉召"I r hCe 
Vf = Yb hSe 

_ Zf \ [ ZB \ [ 0 

Let T j denote the translational kinetic energy of the flywheel and the internal mecha-

nism. 

Tf = -{mi + m / ) [力 2 + 办 2 + � 2 : 

Let Uf be the angular velocity of flywheel w.r.t ^o- We then have 

‘ 0 • 

OJf = Rb^B + Pa 

- 7 a . 

The transformation from E^ to He is 

CeSpa -SqS巨 a -Cpa 
Rb — ê Cq 0 

_ CeCpa -C^a^e % -

The rotational kinetic energy of the flywheel is given by 

Vf = {rrii +mf)g{RS0C^ + YS^ - hCeS^C^) 

The Lagrangian of the system thus is 

Using the constrained Lagrangian method, the dynamic equation is determined. 
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The general model of the single wheel robot on an inclined plane is given by 

+ 仏 ⑴ = + (3.11) 

where M7(g) G R 7 x 7 肌 ( 1 Ni{q^q) G are the inertia matrix and the nonlinear 

terms respectively. B is the input matrix. 

r 1 0 -RSaC^ -RCaSp -RSa 0 0 

“ 0 1 RCpCa -RSaSp RCa 0 0 

„ � 0 0 0 0 1 0 A ; " | T 飞 t 
B — , u = U1.U2 

0 0 0 0 0 1 0 

q = [足 y , A 7, "a, , A = [Al, X2f 

The configuration of the system can be described by seven generalized coordinates 
rp 

X, y , a , 7, Al,列，where X, Y, Z represent the coordinates of the center of mass of 

the system with respect to the inertia! frame TioXVZ, a is the steering angle measured 

from the Z axis, p is the leading angle measured from the Z axis to the axis, 7 is 

the spinning angle along axis and pa is the leading angle measured from the Z^ axis 

to the Zd axis. 

The nonholonomic constraints can be formed as A{q)q 二 0. The model is also 

underactuated as there are only two control torques available on the system. One is 

drive torque (wi) and the other is the tilt torque (^2). The nonholonomic constraints 

are only restrict to the motion of the wheel only, so all elements of the last two columns 

of the matrix A are zero. It is noted that the last two columns represent the motion 

variables of the flywheel. The input torques drive the tilt angle of the flywheel (ft^), 

the rotating angle of the wheel (7) and the swinging angle of the pendulum (0). It 

imposed that there are three rows with nonzero elements on the matrix B. 

3.2.3 Model simplification 

A minimum set of differential equations, i.e., Normal form is obtained when the La-

grange multipliers eliminated. The generalized variables X and Y are eliminated and 

the number of generalized coordinates become five i.e., q = [a,/3,j, fia,^]'^ and n = 5. 

By relationship transformation q = C(q){q)2 where qi = [X, Y]^ and q2 = [a, /3,7, 没严. 
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\ 

^ Wheel Dome xjj^"i" 

W 10 
\ I 

Figure 3.5: Front and side view of a single wheel robot 

Then 

Q = C(q)q2 + C{q)q2 

Therefore, 

CT_�C(q)如=C^(q)[Bu 一 N(q, C(q}q2) 一 M(q)C(q)q2] 

where C^(q)M(q)C(q) is 5 x 5 a symmetric Positive Definite (P.D) matrix function. 

Then, the single wheel robot is considered as a rolling disk with a massive, high spin-

ning concentric flywheel, which is shown in Figure 3.5. The li is set to be zero as the 

gyroscopical stabilization is considered. The pendulum should be neglected if the robot 

reaches at the steady state. The 6 will eliminate from the system dynamics. The num-
r r i 

ber of generalized coordinates of the system will become three i.e., i.e., q == [a, p, 7, 

and n = 4. The system becomes 

mil 0 mi3 0 a 0 0 
0 m22 0 77124 •台 1 … . � 0 0 

m i 3 0 77133 0 7 1 0 

0 7 7 1 2 4 0 m 4 4 P a 0 1 

where 

mil = Ixf + Ixw + + {Ixw + 

mis = (2Ixw + 

m22 = Ixf + Ixw + mB? 
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c\ 

77133 = 2Ixw + 讯 R 

m24 二 爪 44 = Ixf 

Ni = -gmRCaCpSp - + mR2�S2p动-2Ia:njSp$�-2Ia:fS奸 

N2 = gmRCpC^ - gmRSaS^S^ + {I^w + mB?)C^Spd? 

H'^hw + + + I x f S � J)? 

Ns = -2(7：,^ + mB?)S^pa - gmRCaS^ 

We further simplify the model by decoupling the tilting variable /3� f rom Equa-

tion 3.11. For position control of the Gyro, pa is directly controlled by the tilt motor. 

The tilt actuator has an adequate torque to track the desired jSaif) trajectory exactly. 

It is similar to the case of decoupling the steering variable from the bicycle dynam-

ics shown in [5]. Consider Pa as a new control input 以“议，the number of generalized 
np 

coordinates become three i.e., q = [q:，/3,7] and n = 3. 

The dynamic model of the robot on incline [System[2]) is 

MqH + N{q, 'q) =Bu, q = [a,久 7产 (3.12) 

where Ms(q) G M3x3 肌(1 q) G M̂ ^̂  are the inertia matrix and the nonlinear terms 

respectively. B is the input matrix, u is the input variable. ui is the drive torque and 

up^ is the tilt variable. 

r -iT 
A 八 As T A 0 0 1 - np 

N = NuN2,N3 ,B= = 
L J i5l2 U U 

Ni = -gmRCaCpSp -�I狐 + mB?�S2—自—21①切Sp的-2I4S3邻/fa艮 

N2 = gmRCpC^ - gmRSaSpS^ + {h^ + 
H'^Ixw + mR^)Spaj + 21 工 fS鄉 + hfSp^p^a^ 

Ns = + mR^)SpPa - gmRCaS^ 

^21 = — 
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The model of a single wheel robot on the ground [45], assuming that the angle 

of inclination = 0, is a subset of this model. Prom the roll dynamics, the gravity 

term gmRC终C中—gmRSaS^S^p is dominant if the robot is stabilized at the position 

perpendicular to the surface of an inclined plane i.e., P —> 90°. On the other hands, 

the system dynamics becomes singularity if — 0 . Therefore, the robot is difficult to 

balance when it moves on the surface of an inclined plane. 

This type of robot possesses the typical characteristic when it reaches the equilibrium 

state. When the rate of change of yaw direction is small, and q; = ^ = 7 = 0, q ; = 

^ = 0, Q； = 0, upa = Q,/3 = 90°, the pitch dynamic can be considered as ui = —gmRSip. 
The extra drive torque is used to maintain the robot without falling over on an inclined 

plane when it reaches an equilibrium state. 

3.2.4 Linearized model 

Due to the fact that when the robot is climbling up on an inclined plane, it is in a 

configuration perpendicular to the plane most of the time. Therefore, it is reasonable 

to linearize the model around the lean angle P = 90°. We now linearize the robot at 

the position perpendicular to the surface. We assume that p = 90° + dp, pa = P = 

Pa = ŵ a and the term & are sufficiently small and the terms 7a/3,70： are 

sufficiently large compared with The linearized model is given by 

(Ixf + Ixw)^ = —gmRCaSpS^p + 

yil对5'l3�a + -

{Ixf + Ixw + mE?)6p = gmRSpCp - gmRSaS^ - 2Ixf�a& 

+ = - g m R C a S ^ + - 11 g j (3.13) 

It is clear to notice that a is affected by û ^ and 7 is affected by ui, while is only 

indirectly affected by u � a n d ui. The key point for stabilizing the robot is the coupling 

effect between the yaw and roll motions as no actuator directly drives the control of 

the roll motion. 



Chapter 4 

Control of the robot on incline 

In this chapter, we linearize the dynamic model of the single wheel robot around the 

position perpendicular to the surface. And then a linear state feedback controller is 

proposed to stabilize the robot from falling over on incline. And then the backstepping 

control method is designed to balance the robot following a straight path with a general 

heading angle. The feasibility of the method proposed is then verified by simulation 

analysis. 

4.1 A state feedback control 

The robot is stabilized without falling over and then rolls up on an incline. 

Define state variables x = [SjS^Sa, Sp^af^,the state equations form of {System[2]) is 

given by 
/ 0 0 1 0 \ / 0 \ 

x = Ax + Bu, A = 0 0 0 1 = 0 (4.1) 
« 3 1 « 3 2 0 a 3 4 0 

\ fl4i 0 “43 044 y ) 
f 

二 Xz 

X2 — , 、 
. 丄 丄 (4.2) 

、士4 = + + CLAAXA + hup^ 

For 

gmRCip 
Ixf + Ixw + rnR? 

47 
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—gmRStp 

_ -(2Ixw + - 2Ixf% 
Ixw + Ixf + 爪 

—gmRSip 

_ 2Ixw� + 2/j；/今a 
Ixw + Ixf 

二 

Ixw 
+ 4 / 

b = ^ ^ 
j-xw 十 Ixf 

The angular velocity of flywheel keeps remain constant such as 7a =-16000 rpm. 
Consider the system with the following control law 

up — —kiS/3 — kaSa — k^Sp — k^8a 

ui = —k^Q, 

Up would be selected such that 6(3 & Sa converge to zero. 

The rolling speed of the wheel converges to l̂ o. We can select that Ujs Sz ui such 

that all state variables & do;, Q) will converge to zero. Therefore, the robot 

is stabilized to the position perpendicular to the surface = 90°) and the heading 

angle become zero (a = 0). At the same time, the rate of steering and leaning convert 

to zero (a = 0, ̂  = 0, 

The controllability of the system is investigated. Let C = A^B 

0 0 0346 0326 + 0440346 

_ 0 6 0446 3̂4̂ 43& + 4̂4 6 

0 0346 032̂  + 0440346 031̂ 134̂  + 032044̂  + ̂ 34043̂  + 

b 0446 0340436 + 0446 0410346 + 032043^ + 0440430346 + a34a43a446 H- a^^b 

=(034044(032 + 044034)) 

If ia / 0, the rank is 4. The system is controllable when the spinning rate of 
flywheel is not equal to zero. 

The characteristic equation of the system is given by 

+ {bk4 — 044)5^ + (/C2& + + (031044 - bk4asi)s — asik2b 
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Table 4.1: Parameters (1) used for simulation of robot on incline 

Table 4.1: System parameters (1) 

Robot wheel: m = Ib.Okg, R = 17cm, Ixw = 0.0289%m'^ 
Flywheel: 4 / = O.OOGS^m^ 
Friction coeff.: (is = lNml{radls)^iig = {).lNm/{rad/s) 
A climbling angle: (/? = 20° 

The necessary conditions of the feedback gains are 

k i � 0 , k2 > 0, k3 > 0,k4 < ^ 
0 

4.1.1 Simulation study 

The geometric/mass parameters is summarized in the Table 4.1. The initial conditions 

are 

a = P = pa = 0 rad/s, 7 = —15 rad/s, 7a = —16000 rpm 

a = 7 = 0 � ,卢= 8 0 � , Ai = 0°, X = Y = 0 

301 1 1401 

20 120 I 

召 10 名100 
—̂  ^ 

d 0 ‘~ ^ 80 
- 1 0 60 

-20 401 

_ _ _ _ _ _ _ _ 丨 
-30 ‘ 20 

0 5 10 15 0 5 10 15 
t � t ( 5 ) 

15j 301 

^ 1o| 一 20 
«o I tc 

vb o|. ^ o l . 

•e w .A IT 
-5『 -10 I 

- 1 0 - 2 0 

-15 -30 

-20 -40 
0 5 10 15 0 5 10 15 t(s) t(s) 

Figure 4.1: System State variables x = Sp, d]^ 

In the Figure 4.1, state variables (6^,5/3, a) of the robot converge to zero at t=2s. 
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Figure 4.2: Path of the robot on an incline with ip = 20° 

The rate of steering and leaning convert to zero. The p = 90° becomes zero while 

the robot is stabilized to the position perpendicular to the surface. However, the 6a 
converges to zero until t=14s. The heading angle become zero {a = 0). At the same 

time, the robot track with the line parallel to Y-axis of the the surface. It is shown in 

the Figure 4.2 In the Figure 4.3, the rolling velocity of the robot becomes -35 rad/s. 

And the Torque r = — lOiVm is applied to overcome some components of gravity force 

of the robot on incline. In the previous section, we addressed the characteristic of 

(System[2]), when the robot reaches the equilibrium state, the extra drive torque is 

used to maintain the robot without falling over on an inclined plane. It is considered 

as T == —gmRSip. 

(p = 20� 
-15 50 50 r 

？-20 ？ ？ 2。 
1̂ -25 今 
本 OCX 0 ^ 

-30 p. -40 

-35 -70 

-40 ‘ -50 ' -100 ‘ 
0 5 10 15 0 5 10 15 0 5 10 15 

tis) t(s) t{s) 
Figure 4.3: History of 7 ， t 
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4.2 Backstepping-based control 

The backstepping feedback control was used in nonholonomic systems [22]. The back-

stepping feedback is proposed in this section. The problem we are concerned is sta-

bilization of the nonholonomic systems in a chained form. Consider x = [Sj3^ a, S'^]'^, 
Equations (3.13) can be written 

Xi = xs (4.3) 

= hi 工 1 + f22X2 + f23 工 3 + 

is = fsiXl + /32^2 + 932 

where 

J, — -gmrS^Cq 
Ixf + Ixw 

Ij；/ + Ixw 
知 _ 2 ( /•今 + Ixfia) 

Ixf + Ixw 
- gmRC^ 

31 Ixf + + 

, 2 — - 、 队 w + mB?)�-24/7a 
32 Ixf + Ixw + mR2 

2 4 / � a 
如 二 Z i T l Z 

— —gmRSaS^p 
仍 2 Ixf + Ixw + mR2 

Theorem 1 Consider the system (3.13) under the following control law are defined 

-f2lXl — f22X2 — f23X3 + " " 
社玲a = — 

921 

. - ( 1 + fzi)xi - kix^ - k2{x3 + kixi) 
= 7 

7 3 2 

m = - ( 1 + f3l)xi - 932 + klxi - k2{xs + kiXi) 

Assuming that the initial condition + 0， the system converges (perpendicular 
position to the surface) 
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Proof. Under the change of coordinates, system (4.3) becomes 

XI = + (4.4) 

X2 = X2 -

二 f21 工 1 + f22^2 + /23^3 + — 

王3 = hlXl + f32工2 + 沒32 -

We now search for the control law Ujĝ  for stabilization of Equations (4.3), using the 

backstepping approach. The first step is to find an adequate control X3 which stabilizes 

x i . In the next step, we define two new variables 0:3 and £3 and then look for a suitable 

Lyapunov function V2 for the first two of Equations (4.4) and a virtual control X2. Then 

we define two variables 0.2 and X2 and the augment V2 to obtain an adequate function 

V3 which leads to the control input u � t h a t stabilizes 企2. 

Under the system (4.3), we first choose xs such that x^ = —kixi with ki > 0. 

Let 

OLz = -kixi 

X3 = X3 - as 

xi = X3 + as 

X3 = X3 - as 

= f s i X l + f32X2 + 932 -

The Lyapunov's function is 

= + i^l > 0 

V2 — XiXi + XsXs 

= X i { x 2 + as) + XsifsiXi + f32X2 + 932 一 ^s) 

= X i a ^ +X3{xi 4- hlXl + /32工2 + 932 _ ) 

Consider/32:r2 = = m- We know V2 = - k i x \ - k 2 x l < 0. 
Then consider 

«2 = ^ as /32 + 0 
7 3 2 

X2 = X2 — CX2 

= Xs 4- as 
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X2 = X2 — Q!2 

= + /22̂ 2 + /23̂ 3 + _ 
= fzi^l + /32^2 + 932 -

The Lyapunov's function is 

= \xl + + i^i > 0 
V3 = XiXi + XsX3 + X2X2 

= - k i x j - k2xl +X2{f2lXl + / 2 2 ^ 2 + / 2 3 工 3 + " 2 1 仰 《 

Choose a suitable û ^ to make Vz be negative definite. Consider = — f2\X\ — 

f22X2 - /23冗3 + 一 &3壬2- Then 

V̂  = — kix\ — k2xl — < 0 

The feedback control is 
-f2lXl - f22X2 - f23Xs + Q!2 " h{x2 _ jb) . 

UPa = — , ^ 2 1 
921 

, . - ( 1 + /3l)i l - hxs - k2{x3 + kiXi) 
where a? = ，/32 + 0 

/ 3 2 

m = —(1 + f'il)^! — 932 + k f x i 一 k2{x3 + kiXi) 

This ensures that the system converges (perpendicular position to the surface), such 

that 

Sp = 0,6^ = a = O^S^ = a = ^ = 0, a = constant 

4.2.1 Simulation study 
The following geometric/mass parameters from the real system throughout our fol-

lowing simulations is summarized in the Table 4.2. We investigated the system when 

7a ^ 0. It is clear that the spinning flywheel provide a large angular momentum. The 

initial conditions are 

a = p = pa = Orad/s, 7 = —15rad/s，々a = 1600 rpm 

a = 5。，7 = 0\/3 = 80°,/3a = 90。，X = Y = 0 

Case 1: A straight line path 
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Table 4.2: Parameters (2) used for simulation of robot on incline 

Table 4.2: System parameters (2) 
Robot wheel: m = lb.Okg,R = 17cm, I^w = 0.02S9kgm'^ 
Flywheel: 4 / 二 0.0063fc分m^ 
Friction coeff.: fig = lNm/{rad/s),iJ,g = 0.1Nm/(rad/s) 
A climbling angle: y? = 10° 
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Figure 4.4: Sytem State variables [/3, d, p] for straight line path 
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Figure 4.5: History of a,/3q,7, t 

The robot is stabilized to keep the upright position on an inclined plane, (3 = 

90°, Spref = 0°, such that the resulting roll-up trajectory is a straight line in 

Figure 4.8. The lean angle of the robot exponentially converges to 90° and the 

steering rate a converge exponentially to zero as shown in Figure 4.4. The rolling 

speed of 7 becomes -40 rad/s as shown in Figure 4.5. The trajectory of the center 

of the robot oscillates at the beginning and then finally is restricted to follow a 
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Figure 4.7: History of for Spref = 10�（dash line) & S^ref = 5�（solid line) 

straight line path shown in Figure 4.8. 

Case 2: A curved path 

When Spref 0, the effect of change SaS^p due the gravity is also investigated. 

The initial conditions is identical to the previous case. The robot steers right 

as Spref are 5° and 10° respectively. The value of a decrease, meaning that the 

robot turns clockwise. The steady state value of becomes —0.052 and —0.1 

respectively as shown Figure 4.7. 

The paths of the robot generated while it's lean angle converges to 90°,95° and 100° 

respectively as shown Figure 4.8. When the lean angle keeps at 90°, the robot tracks 

in a straight line path. On the other hand, the robot precesses in the direction it is 

leaning. 
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Figure 4.8: Straight path & curved paths of the robot on an inclined plane with ip = 10° 

4.2.2 The effect of the spinning rate of flywheel 
Now, the effect of the spinning rate of the flywheel to the robot path generated is stud-

ied. The simulation results with different spinning rates of the flywheel IGOOOrad/s, 

8000md/s and 4000ra(i/s are shown in the Figure 4.9. The rate of change of veloci-

ties in yaw, pitch and roll and the convergence are investigated to validate the system 

performance in stabilizing the robot. Consider the system with = 16000rac?/s, the 

leaning angle of the flywheel / ? � a n d the torque applied r are small in comparison to 

other two different spinning rates of the flywheel. The steady state values of 

are significantly small. The angle of steering decreases and the trajectory of the robot 

is more straight. It demonstrates the efficiency of stabilizing the robot with a high 

spinning rate of the flywheel, in comparison to that of a low spinning rate. Even when 

a single wheel robot is statically unstable in the roll direction, it can achieve dynamic 

stability by a gyroscopic force. Steering stability generally increases with a higher spin-

ning rate due to a gyroscopic effect. The robot can balance in the flat plane, even when 

it stands still. 
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Figure 4.9: System variables for different spinning rates of flywheel 
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4.2.3 Simulation study 

The comparison between a rolling disk and the robot on an inclined plane is studied. 

The initial condition in simulation study is 

a = P •= Orad/s,7 — —15rad/s 

a = 7 = 0 ° ’ ^ = 80。，X = : r = 0 

4.2.4 Roll up case 

Case I: Rolling up case Figure 4.10 showed the simulation of a rolling disk. It is noted 

that the lean angle P of the rolling disk decrease rapidly and the lean angle p converts 

to be zero. This means the disk falls over, or, its inertial matrix will become singular, 

which it violates the assumption of rolling without slipping. Besides, the steering rate 

a rises up and down, and the trajectory of the rolling disk does not go up along the Y 

axis. The rolling disk fails to go up. 

For a single wheel robot, we investigated the system when 7a = 1600 rpm + 0. It 

is clear that the spinning flywheel provide a large angular momentum. We stabilize 

the robot to the upright position (3 = 90°, Spref = 0°, such that the resulting roll-up 

trajectory is a straight line. The feedback gains are kl = —30, k2 = —3 and k3 = 3 

respectively. The simulation results are shown in Figure 4.11. It shows that the lean 

angle p of the robot exponentially converge to 90° and the steering rate a exponentially 

converges to zero. The rolling speed of 7 becomes -35 rad/s and the trajectory of the 

center of the robot oscillates at the beginning and then finally restrict to follow a 

straight line path. 

4.2.5 Roll down case 

Case II: Rolling down case Figure 4.12 shows that a rolling disk falls down very rapidly 

from stationary. It is because that 5° turns in the lean angle from the vertical direction 

makes the disk fall down. Figure 4.13 showed the single wheel robot when rolling down, 

we select the feedback gains which are kl = 30, k2 = —3 and k3 = —3 respectively. It 

is similar to the rolling up case. This implies that the single wheel robot is balanced 

along the vertical position by the tilting of the flywheel. 
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Figure 4.13: Rolling down of a single wheel robot on incline 



Chapter 5 

Motion planning 

In this chapter, we investigate the condition of a rolling up. And then we study the 

ways to drive the wheel up on the inclined surface when the condition is violated. 

There is a strong assumption that the single wheel robot is balanced to the position 

perpendicular to the surface on an inclined plane. The lean angle of the robot is 90° 

and the rate of leaning is zero. The performance of the single wheel robot is exactly 

same as the rolling wheel. 

5.1 Performance index 

Safety Factor (SF) can be used as a performance index which measures the wheel's 

ability successfully to roll up a slope from stationary. 

SF = Irninjmr'^ + I ) 
mgr sin (p 

It is to measure how wheel successfully rolls up on plane quant it ively. It is a dimension-

less and is always larger than zero. If it becomes zero, the minimum angular acceleration 

of rolling wheel also becomes zero. The wheel never rolls up. The probability of rolling 

on plane become larger as SF increases. There are three ways to increase the value 

of SF. First of all is to provide a larger value of r̂nin- The more the value of ^min 

is, the more the probability of wheel's rolling up i.e. larger value of SF. Secondly, if 

the moment of inertia of wheel increases, SF increases too. For the case that sin*/? 

become less as the angle between the surface of plane and ground decrease, the chance 
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for rolling up is strictly larger. Therefore, the condition of wheel's roll on plane is 

C = [SF + l)mgr sin ip 

When SF is equal to one, 

.. _ mgr sin ^p 
m— + 1 

C = 2mgr sin (p 

For a constant of SF, (p become larger as applied torque C increases. However, there 

is a maximum value of ip. It was because that the condition of rolling without sliding 

is violated as the applied torque is greater than certain value. Since sliding occurs, 

F = fisN 

= U s 饥 g cos (p where jis is a static friction 

A = h m g cos (p 

((m— + I)ij,s cos cp — Isiinp]g 
C = ^ L (5.1) 

r 

5.2 Condition of rolling up 

In this section, we determine the condition of rolling up of the wheel on an inclined 

plane. The linear acceleration of the rolling wheel along the plane and the angular 

acceleration of rolling wheel are 

.. rC — mr^g sin 
y = 2~r7— 

m— + 1 
.. C — mrg sin (f 

mr 丄 + 1 

The conditon of rolling without slipping holds i.e., y = r-y. Initially 7, vq are set to be 

zero. The minimum value of the angular acceleration of rolling wheel is jmin- Therefore, 

the condition of wheel's roll up on an inclined plane is 

C > (mr^ + I)jrnin + TTigr sin 

Let's rearrange the above equation so that ip is represented as a function of the minimum 

angular acceleration of rolling wheel jmin, the moment of inertia I and the applied 
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Figure 5.1: Torque applied to the coin 

In Figure 5.2, for instance a rolling one dollar wheel, it shows the relationship 

between the torque applied and the angle of the slope. There are two curves having 

in the same figure. The former is called the critical torque line and the latter is the 

line of slipping torque. The angle between the surface of slope and the ground of the 

wheel at the critical torque line is called the critical angle (j). When the applied torque 

is greater than the critical torque, the wheel should roll up any slope which angle is 

smaller or equal to the critical angle </>. According to the condition of slipping, wheel 

impedes slip when the Equation ( 5.2) is hold. The applied torque is greater or equal 

to the torque at the line of slipping. Therefore, the Guarantee region is the area which 

promise the wheel can roll on specialized slope when certain torque is applied. And 

those equations we derived fail when it is on the region of slipping. From the Figure 5.3, 

the forward velocity and the acceleration of rolling determined for different angle (j). As 

the previous result, the wheel roll on the inclined plane when it's rolling acceleration is 

greater than a minimum acceleration. We set the value of minimum rolling acceleration 

is zero. Let's see Figure 5.3, when the applied torque is 0.0005 Nm, the velocities and 

the acceleration of wheel determined for different slopes. It is so trivial that those 

velocities and acceleration will increase when the angle • decreases. As the default 

minimum rolling acceleration or the acceleration of wheel y is set as 10 rad/s, the 

wheel cannot roll up the slopes with angle 34° and 35° from the Figure 5.3, according 

to the Equation 5.2, the critical angle of the slope for a one dollar wheel when 0.0005 



5.3 Motion planning of rolling Up 75 

min. acceleration 

卯 j ： 

3 5 - - - ^ = 3 4 ° . 

30 •••• • 气 -
— + = 3 1 ° 

2 5 . 丨 

I 20 - -

: 
1 0 - -

5 - -

0 1 I 

-51 ‘ ‘ 

0 5 10 15 
t 

8| 1 1 

— • = 3 6 " I 
7 - - - • = 3 4 。 Z " 

. - • 料 3 。 ， z " 

6 - . … ⑷ 2 。 -

” • ^ ^ ^ ^ ^ ； ^ 二 

- l l 1 1 
0 5 10 15 

t 

Figure 5.2: Velocity and acceleration of wheel 

Nm torque applied is 33.64°. 

5.3 Motion planning of rolling Up 

In this section, we would like to answer a simple question. Can we still make the wheel 

rolls up an inclined plane ip while the condition of wheel's rolling up is failure? And 

how should we acquire that? Assume that the inclined plane is fixed and the trivial 

solution for decreasing the angle of (p is omitted. We discuss how to remedy the failure 

of the condition of rolling up by planning the wheel's motion in different angles. 

5.3.1 Method I : Orientation change 

Suppose we change the direction of heading 

• , ysinip , • 
sin (p = - = sin if sin a 

yjx^ + 2 / 2 
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From the previous result, the condition of rolling up is 

C > {mr^ + I)jrnin + Tugr sin a sin (p 

Now we consider the wheel rolling on an inclined plane • instead of (p. 

ds = rdj 

dx = —ds • cos a 

dy = ds - sin a 

On using the last equation in the former two equations, we obtain two relations amongst 

the differentials as 

dx r cos adj = 0 
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Figure 5.3: Orientation change 

dy — r sin ad'y = 0 

By the same method, Lagrange undetermined multiplier A, 

Xidx + Ai(r cos a)dj = 0 

入2 办—A2(r*sina)d7 = 0 

By the virtual work principle, 

SW — CSj + Xidx + Xzdy — d'y{X2rsma —入 IT^cosq；) 

We may describe the configuration of the wheel in terms of four generalized coordinates: 

q 二 [:^,2/,«,7严.The Lagrange is become 

£ = + 沪 ) + 臺巧 2 + i ( • J) — mg{sm ipy + r cos (p) 

\ z 

Figure 5.4: wheel rolls on plane 0 
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y 

i 
Figure 5.5: Top View 

then, 

mx = Ai 

my + mg sin ip = A2 

I j = C — A2 (r sin a) + Ai (r cos a) 

These four system equations in term of the six unknowns must be solved along with 

the two nonholonomic constraints, which we rewrite as follows: 

X = —r cos 

y = r sin 

Evaluating jj, 

X = —r cos a + r sin aja 

y = r sin a 4- r cos aja 

We may express those Lagrangian multipliers as 

Ai = —mr cos a + mr sin aja 

入2 = mr sin a + mr cos aja + mg sin (p 
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Now substituting into the equations of motion we obtain, 

mx + (mr cos a^ — mr sin a'ya = 0 

my — mr sin a j — mr cos 0:76; = 0 

{I -F + mgr sin a sin (p 二 C 

= 0 

The dynamic equation of the rolling wheel is given by 

M{q)q + N{q,q) = A 

where M{q) G q) G R 4 x i are the inertia matrix and the nonlinear terms 

respectively. 

N = � - mr sin a'ya, —mr cos aja, mgr sin a sin ĉ , 0) , A = (0，0, C, 0) 了 

^ m 0 mr cos a 0 � 

0 m —mr sin a 0 ? 

0 0 m— + 1 0 

V 0 0 0 ) 

Condition of rolling up: 

C > (mr^ + I)^rnin + fugr sin a sin 

Let's consider, 

-la = 0 then a = a;̂ , a = ujzt + <^0 

If we set (jJz = a = 

mx + (mr cos a j = 0 

my — mr sin a 亏 = 0 

(/ + = C — mgr sin a sin ip 

For necessary condition of rolling up, 

C > mgr sin a sin (p => j = -i-ve ^ x = -\-ve, y = +ve 
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The direction of forward motion is ao and it rolls up an inclined plane • 

5.3.2 Method II : Change the initial velocities 

Consider a wheel rolls along a straight line and then it hits an inclined surface. Assume 

that the wheel does not bounce at the moment of hitting and the wheel can remain 

perpendicular to the surface. We increase its angular velocity and linear velocity of 

the wheel center. Before collide with the surface, assume that rolling without sliding 

occurs. 

F = ma 

I j = C -Fr 

=C — mra 
c 

7 = 2~r?' for a = n 
m— + 1 

Its angular velocity and the velocity of the wheel a r e 二 a and 二》respectively. 

After it collides with the surface based on the dynamic equations derived, the initial 

condition must be modified because 70,^0 are nonzero in this case now. Before the 

hitting on the inclined surface, we have 

..—rC — mr^gsinip 
^ = mr^ + I 
.. C — mrg sin ip 
7 = ~ m r 2 + / 

afterward we have, 

. rC — mr^g sin ip 
y = 0 — 7 — — t + vo cos (f 

m— + 1 
.. C — mrg sin , , 

m— + 1 
When y = ymin 

力= { y m i n - 幻 0 C O S ( / ? ) ( m r ^ + I ) 
rC — mr'^gsiiup 

1 /rC — mr^gsintpx o 
y = Vo + - ( 2 ~ 7 ~ 7 — — ) 亡 

2 \ m— + / ) 
I = (mr^ + I){yliin - cos cp) 

2(rC — mr'^g sin ip) 
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. .o .2 2l(rC — mr'^gsmip) 
(^0 c o s if) = Vmin 寶 2 + j 

I f Vmin 二 0, 

2 _ 21 (mr'^ g s'm (f — rC) 
外 cos (mr2 + /) 

I _ Vq c o s (p^ (mr^ + I ) 
2{mr'^g sincp — rC) 

5.4 Wheel rolls Down 

Consider a wheel of radius r rolls down at rest and no torque applied to the system. 

A thin wheel with a rim wide enough to prevent toppling sideways is to roll down an 

inclined plane. The two nonholonomic constraint equations are qiven by 

dx — r cos adj = 0 

dy — r sin adj = 0 

By the same method, Lagrange undetermined multiplier A, 

Xidx — Ai (r cos a)d'y = 0 

入2 办—A2(rsinQ;)d7 = 0 

We may describe the configuration of the wheel in terms of four generalized coordinates: 

q = [a;, 2/, a , 7]^. The Lagrange is become 

C = 臺 + 沪)+ 1/今2 + i ( i J) y + mg{sm • - r cos y?) 

then the equations of motion are derived as follow: 

mx — mg sin (p — Ai 

my = 入 2 

I j = —X2{r cosa) — Ai(rsinQ；) 

In addition we still have the constraint equations. 

X = r cos a j 
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y = r sin a j 

Evaluating 

X = r cos a — r sin 0:70; 

y = r sin a + r cos aja 

We may express those Lagrange multipliers as 

入1 = mr cos a — mr sin 0:70： — mg sin (p 

入2 = mr sin a + mr cos 0:70; 

Simple substitution will eliminate Ai and A2 from the equations. 

mx — mr cos 0:7 + mr sin aja = 0 

my — mr sin a j — mr cos aja = 0 

(I + — mgr cos a sin (p = 0 

= 。 

Integrating this equation we obtain, 

.—mgr sin (p sm{ujzt + zq) 
7 = (mr2 + 

_ mgr sin ip cos(ujzt + zq) 
7 二 (mr2 + /)a;2 

. mr'^gsiiup . . , � 
“ = + ⑴ 严 2 ( 0 ； 州 0 ) 

. _ mr'^g sin (p sm{uzt + 
^ 二 (mr2 + 

which on integration yields, 

mr^g sirup , � �� 
X = 2 — ( c o s + zq) - cos 22:0) + xq 4(mr^ + ijcji 

1 mr'^g sin if sm2{iJzt + 

1 
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If a is not equal to zero, the wheel will not move down the incline only but sideways. 

uj = zq = 0 i.e. a = 0 a = 0 

By L'Hospital's rule that 

i = " s i n � t 

^ = 0 
_ gsin^ 2 I „ _ 
_ on 4 . / / 十 冗 0 

y 二 yo 

If the elevation is h, 

力 2 = h 
2 ( 1 + ^ — ^ 

= + 

V 沒 s i n � 

. I 2gh 
^ 二 \ 

V l+mr2 

The forward velocity of rolling down wheel at rest is 2广 • 
y l + m r ^ 

5.4.1 Terminal velocity of rolling body down 

Consider different kinds of body, each having the same mass and the same radius, are 

released from rest on an incline. Determine the velocity of each body after it has rolled 

through a distance corresponding to a change in elevation h. 

I 2 的 

The same result should be get if the conservation of energy is obtained. The kinetic 

energy of rolling body are 

Ti = 0 
^ 1 2 Ir 2 T2 = -mv"^ + -/cj^ 
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Table 5.1: Different moment of inertia 

Sphere I = v = OMW'^gh 
wheel I = |mr2 ” = 0.816v^ 
Hoop I = my2 V 二 Q . 7 Q 7 v / ^ 

1 2 1 "巧 2 
=-mv + -/ -

2 2 \rJ 
1 / I \ 2 

= 豆 卜 + 才 

The change of potential energy of rolling body is U1-2 = mgh. By the principle of work 

and energy, 

T2 = Ti+Ui-2 
1 / I \ 2 
5 卜 才 

” 2 = 

1 + — 
mr力 

different moment of inertia 

Now we consider a frictionless block sliding through the same distances 

and compare the results with the velocity attained by previous different bodies. The 

velocity of a block is = y/2gh. We can make a conclusion that the velocity of the 

body is independent of both its mass and radius. However, the velocity does depend 

upon the quotient Ke = It measures the ratio of the rotational kinetic energy to 

the translational kinetic energy. Thus the hoop, which has the largest value of ke for 

a given radius r, attains the smallest velocity. At the same time, sphere has largest 

velocity compare with other two. However, the sliding block along a frictionless same 

slope, which does not rotate, so the velocity of block is larger than the sphere too. The 

velocity of body decrease as k̂  increases. 



Chapter 6 

Summary 

6.1 Contributions 

An attempt has been made in this thesis to study the modeling, dynamics and controls 

of a single wheel robot either in the horizontal plane or on inclines that have not yet 

been studied in the past. Its dynamic represents much richer dynamics and deserves 

attention. It provides a complete study of the fundamental dynamics characteristic of a 

single wheel robot in a rough terrain. Our contributions can be summarized as follows: 

• We have determined the dynamics and feedback controls of a single wheel robot 

rolling without slipping on a horizontal plane; The general rolling single wheel 

robot system, when the pendulum swinging motion included, have considered. 

During the model developing, variable reduction of the dynamics itself was applied 

to get a state variables of the system. When the internal mechanism swings, the 

stabilizing of the robot around vertical position and the tilting up of flywheel on 

the robot are investigated and also compared with the cases of rolling disk and 

simplified model of the robot proposed by Au . The requirements for simplification 

of the model was addressed. The preliminary experimental results are shown 

for the validation of the developed model. Some important parameters for the 

dynamics such as the moment of inertia and the effect of friction between the 

robot and the surface are addressed. 

• We have established the general model of the single wheel robot on an inclined 

plane. While the pendulum swinging motion are neglected and the vertical offset 

of the actuation mechanism from the axis of the whole wheel is reduced from the 

dynamics. If we set li, IqSzQ to be zero, the dynamics are exactly same as Au 

proposed [45]. We pay much attention for study the balancing effect of the robot 
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on inclined plane when augment it a high spinning flywheel and also the gyro-

scopical stabilization of the robot . We have derived the kinematics and dynamics 

of a rolling disk and single wheel robot rolling without slipping on the inclined 

plane respectively. The dynamic model around the position perpendicular to the 

surface is linearized. The state feedback controller is proposed to stabilize the 

robot without falling on an inclined plane and the robot rolls up on an incline. 

The backstepping control is designed to balance the robot following a straight 

path with a general heading angle. A stimulation study between the rolling disk 

and the robot for rolling up and rolling down on an incline is compared. The 

feasibility and efficiency of the method is then validated by simulation study. 

• We have addressed the condition of rolling up of the robot on an inclined plane 

from the system dynamics itself. A performance index, Safety Factor, is used to 

measure the robot's ability successfully to roll up a slope from its idling. And 

then, we have proposed some methods for planning of rolling up by tracking the 

robot's motion in different motion strategies when the condition of the rolling up 

is violated. 

6.2 Future Works 

In this paper, we had concentrated to study the modeling, dynamics and controls of a 

single wheel robot either in the horizontal plane or on inclines, mentioned as Section 6.1. 

There are some extensions of the work. 

1. Path Following of the Single Wheel Robot on incline. We design a controller of 

the system for tracking the path of the robot either in line or circle on incline. The 

basic idea for controller can be adopted from [17] and [18]. In [2], Au proposed a 

line following controller of the single wheel robot to track any desired line on the 

ground. However, Au and Kanayama are suffered the limitation that the system 

is constrained on the flat plane. The angle of inclination on the slope should not 

be considered. The system are become singular easily if the angle of inclination 

are included in the dynamics. 

2. Nonlinear control of a single wheel robot. We had proposed only the linear 

state feedback for controlling the system of a single wheel robot on ground and 

on incline. The global stability of the system can not be guarantee from the 

linearized model. The typical nonlinear control methods for the underactuated 

manipulators are violated due to the no existence of the off-diagonal terms of 
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the inertia matrix in the system dynamics. New nonlinear control system should 

be designed based on the coupling effect between the yaw and pitch motions in 

velocity sides. 

3. Perform experiments of the real robot. We perform some experimental verification 

of the model of the robot on an inclined plane. The proposed feedback controller 

to the single wheel robot Gyrover is implemented. 
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