
An Asynchronous Forth Microprocessor

Ping-Ki TSANG

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Computer Science & Engineering

Supervised by:
Prof. Philip LEONG

© The Chinese University of Hong Kong
Jan 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a pro-

posed publication must seek copyright release from the Dean of the Graduate

School.

’ t

M M

低功率、高代碼密度、有好的軟件開發工具、高性能及細小是嵌入系統（特

別是以電池作電源）裏的微處理器的必要條件。因此，我們開發了一枚異步

微處理器以探索異步邏輯在低電量應用的潛力及示範以異步邏輯來迎合嵌入

市場的低成本與低電量的要求。

以堆疊機器作嵌入式微處理器是十分合適的。我們開發了一個堆疊架構的微

處理器（MSU6)。MSL16擁有一個很細小的指令集及面積，我們以現場可

編程門陣列（FPGA)實施了一個同步的原型。其後’我們再以馬田合成方

法（Martin's synthesis method)實施一個異步微處理器，MSL16A。

我們g高速超大規模集成電路硬體描述語言（VHDL)描述MSL16，發現它

的最高運行時頻爲33MHz ’而此同步原型只佔據175 Xilinx 4000系列可重

構邏輯塊(CLBs) °此設計的異步實施 (MSL16A)擁有66,500個晶體管’

以1.2微米互補金屬氧化物半導體(CMOS)技術來實施’我們預期它的平

均性能爲33MIPS而功率則爲95mW。

An Asynchronous Forth Microprocessor

submitted by

Ping-Ki TSANG

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Microprocessors for embedded battery powered applications require low power

consumption, good code density, good software development tools, high perfor-

mance, and small area. An asynchronous delay-insensitive implementation of an

asynchronous processor, which directly addresses these issues, was developed to

explore the potentials of asynchronous logic for low-power applications and to

demonstrate the feasibility and practicability of using asynchronous circuits to

meet the cost and power constraints of the embedded market.

Stack machines meet all of the requirements of embedded processors and a

stack based architecture, called the minimal instruction set, small and low power

16 bit microprocessor (MSL16) was developed. A synchronous prototype imple-

mentation of the architecture was successfully tested on a field programmable

gate array device. The design was then reimplemented using Martin's synthesis

method to produce MSL16A, a 16-bit asynchronous microprocessor.

MSL16 was synthesized from a VHDL description and was found to be oper-

ational at 33MHz. This synchronous prototype occupies merely 175 Xi l inx 4000

series configurable logic blocks (CLBs) which is particularly small for i t perfor-

mance. The asynchronous implementaion, MSL16A, contains about 66,500 tran-

sistors and the expected performance is 33 MIPS, using 1.2/im CMOS technology,

i

for a power consumption of 95mW. Comparisons with previous asynchronous and

commercial low power microprocessors, are included. When scaled to the same

technology, MSL16A performs better in terms of size, power consumption and

energy efficiency because of its high code density and simple architecture. This

makes MSL16A very competitive for battery powered portable or embedded ap-

plications.

ii

Acknowledgments

I would firstly like to acknowledge the support of my advisor, Prof. Philip

Leong and Prof. Tony Lee, for the useful weekly discussions and their inspired

leadership of this project. Their insights gave me many ideas, inspiration, and

guidance to this work. I warmly thank Prof. Philip Leong for proof reading

and commenting on this thesis. Without him, this thesis would not have been

completed.

I have received a great deal of support and encouragement from my col-

leagues in Ho Sing Hang Engineering Building Room 1026, especially, Philip,

Ken, Thomas, Oldfield, Fei, Peter and Small Keung. I would like to thank ev-

eryone of them for the daily gathering, endless discussions and, above all these,

the fun and precious moments we all shared.

Finally, I wholeheartedly thank my mother, Nancy Wang for her lifelong chore

of bringing me up, her warmth and invaluable lifelong suppport.

iii

Contents

Abstract i

Acknowledgments [{[

1 Introduction 1

1.1 Motivation and Aims 1

1.2 Contributions 3

1.3 Overview of the Thesis 4

2 Asynchronous Logic g

2.1 Motivation g

2.2 Timing Models g

2.2.1 Fundamental-Mode Model g

2.2.2 Delay-Insensitive Model 10

2.2.3 QDI and Speed-Independent Models 11

2.3 Asynchronous Signalling Protocols 12

2.3.1 2-phase Handshaking Protocol 12

iv

2.3.2 4-phase Handshaking Protocol 13

2.4 Data Representations 14

2.4.1 Dual Rail Coded Data 15

2.4.2 Bundled Data 15

2.5 Previous Asynchronous Processors 16

2.6 Summary 20

3 The MSL16 Architecture 21

3.1 RISC Machines 21

3.2 Stack Machines 23

3.3 Forth and its Applications 24

3.4 MSL16 26

3.4.1 Architecture 28

3.4.2 Instruction Set 30

3.4.3 The Datapath 32

3.4.4 Interrupts and Exceptions 33

3.4.5 Implementing Forth primitives 34

3.4.6 Code Density Estimation 34

3.5 Summary 36

4 Design Methodology 3 7

4.1 Basic Notation 38

V

4.2 Specification of MSL16A 39

4.3 Decomposition into Concurrent Processes 41

4.4 Separation of Control and Datapath 45

4.5 Handshaking Expansion 45

4.5.1 4-Phase Handshaking Protocol 46

4.6 Production-rule Expansion 47

4.7 Summary 48

5 Implementation 49

5.1 C-element 49
、

5.2 Mutual Exclusion Elements 51

5.3 Caltech Asynchronous Synthesis Tools 53

5.4 Stack Design 54

5.4.1 Eager Stack Control 55

5.4.2 Lazy Stack Control 56

5.4.3 Eager/Lazy Stack Datapath 53

5.4.4 Pointer Stack Control 61

5.4.5 Pointer Stack Datapath 62

5.5 ALU Design 62

5.5.1 The Addition Operation 63

5.5.2 Zero-Checker 64

vi

5.6 Memory Interface and Tri-state Buffers 64

5.7 MSL16A 65

5.8 Summary 66

6 Results 67

6.1 FPGA based implementation of MSL16 67

6.2 MSL16A 69

6.2.1 A Comparison of 3 Stack Designs 69

6.2.2 Evaluation of the ALU 73

6.2.3 Evaluation of MSL16A 74

、

6.3 Summary 81

7 Conclusions 83

7.1 Future Work 85

Bibliography 87

Publications 95

vii

List of Tables

2.1 Categorization of Asynchronous Circuits 9

2.2 Four states of a channel 15

2.3 Characteristics of eight previous asynchronous microprocessors . . 16

3.1 The MSL16 instruction set 31

3.2 Translation of Forth primitives 34

3.3 Code Density Calculation 35

5.1 Truth table of a C-element 5I

5.2 Carry Output of a Full Adder 63

6.1 Simulated cycle time for different Stack Design 70

6.2 Power-Delay Product Comparison 71

6.3 Size of a single 16-bit stack element (automatically generated) . . . 72

6.4 Performance of the ALU 73

6.5 MSL16A chip summary 77

6.6 Characteristics of MSL16A, ASPRO-216 and T ITAC-2 79

viii

6.7 Scaled performance of MSL16A, ASPRO-216 and T ITAC-2 . . . 79

%

ix

List of Figures

2.1 Fundamental-mode circuit structure 10

2.2 CMOS inverter 11

2.3 2-phase handshaking protocol 13

2.4 4-phase handshaking protocol 14 、

2.5 Data transfer via (a)dual-rail encoding and (b)bundled data . . . 14

3.1 Instruction format for MSL16 30

3.2 The datapath of MSL16 32

4.1 Bare Communication on Channel E 46

5.1 The C-element 50

5.2 A Simple Arbitrat ion System 51

5.3 A basic arbitration circuit 52

5.4 The Stack 55

5.5 Implementation of the Eager Stack's control process 57

5.6 Implementation of the Lazy Stack's control process 59

V

5.7 Implementation of communication 60

5.8 Dual-rail to single-rail and single-rail to dual-rail converters 64

5.9 The datapath of MSL16A 65

6.1 MSL16 prototype board 68

6.2 IRSIM simulation of test program (Part 1) 76

6.3 IRSIM simulation of test program (Part 2) 76

6.4 MSL16A chip image 78

、

xi

Chapter 1

Introduction

1.1 Motivation and Aims

Driven by the growing market for portable battery operated computation devices,

performance was no longer the single most important feature of a microprocessor.

Today, many embedded applications employ a microprocessor which has require-

ments of being low power and small area with performance merely a secondary

issue. Power efficiency is becoming increasingly important as portable systems

are becoming physically smaller and battery weight is becoming more critical.

Longer battery life can only be obtained by improving the capacity of the battery

or by optimizing the power efficiency of a portable system. The advancement of

battery technology is slow, digital designers must address this issue by lowering

the power requirements of portable devices.

Asynchronous designs are believed to be ideal for low power applications as

they only dissipate power when and where they are active. Previous work has

shown that the clock power can be twice the logic power for static logic and about

three times the logic power for dynamic logic [1]. Asynchronous circuits do not

require global synchrony and thus eliminate the need for global clocks. Moreover,

the handshaking protocol of asynchronous circuits removes spurious transitions

1

Chapter 1 Introduction 2

and each transition has its own meaning which saves power by nature. Recent

research has demonstrated that asynchronous circuits techniques have matured

and implementations of asynchronous processors have been reported [2，3, 4, 5,

6, 7’ 8, 9，10, 11:.

Code density is crucial as it relates directly to the requirements of cache

and memory sizes. The power consumption in memory and related parts of a

system is inversely proportional to the code density of processor embedded in

it . A processor wi th a higher code density means i t requires a smaller cache and

memory to run at equivalent performance than a lower code density processor.

I t has been shown that a processor does not dominate a system's total power

consumption, about 50% is dissipated by the memory [12]. In addition, large

caches can occupy 90% of the total chip area and dissipate about 43% of the

total chip power [13]. As a result, the code density of a processor must also be

optimized for low power applications.

The aim of this thesis was to address these issues in low power system design

by developing a minimal instruction set, small and low power 16 bit microproces-

sor (MSL16 [14]), which was an architecture having desirable features like good

performance, high code density and small area. High code density and small area

were achieved by util izing a stack architecture with a minimal instruction set,

simple datapath and control. I t was designed to directly execute Forth, which is

a stack based portable integrated programming environment, operating system

and programming language having code density typically higher than that of C

or assembly language. Forth has been successfully used in many well known em-

bedded applications [15, 16, 17, 18] and several commercial microprocessors have

been designed to run Forth [19, 20]. A synchronous prototype implementation

of the MSL16 architecture was successfully tested on a field programmable gate

array device, which was found to be small, fast and power efficient.

An asynchronous re-implementation of the MSL16 microprocessor, called

Chapter 1 Introduction 3

MSL16A, has been developed to investigate the potential advantages that asyn-

chronous designs may enjoy, namely average-case performance instead of worst-

case performance and low power consumption. MSL16A was also developed to

demonstrate the feasibility and practicability of using asynchronous circuits to

meet the cost and power constraints in low power embedded applications.

1.2 Contributions

This thesis presents an architecture, called MSL16, which was developed to di-

rectly execute the Forth language. MSL16 (which stands for minimal instruction

set, small and low power 16 bit microprocessor) was designed to support the de-

velopment of complex software and designed to be included as a coprocessor

inside an embedded system. MSL16 has a minimal instruction set of 17 instruc-

tions, a 16 bit datapath and very simple control and datapath. This architecture

has desirable features like high speed, small number of gates and high code den-

sity. Code density is critical in power efficiency as memory and large caches may

consume up to half of the total system power [12’ 13]. The above features lead

to an FPGA implementation that was fast, small and power efficient which is

presented in Chapter 6.

Stacks are a fundamental building block in microprocessors, microcontroller

and DSPs. However, to the best of the author's knowledge, there have not been

any reported quantitative comparisons between different delay-insensitive stack

designs and implementations. Three different asynchronous stack designs and

implementations, the Eager Stack, the Lazy Stack and the Pointer Stack, were

developed in this thesis. The tradeoff among the three different designs were

analyzed in terms of performance, power and silicon area to just i fy the use of the

chosen stack design when re-implementing MSL16 asynchronously. The three

designs are competitive in size but the Pointer Stack was finally employed as i t

Chapter 1 Introduction 4

was found to be the most energy efficient.

An asynchronous re-implementation of MSL16, called MSL16A, was success-

fully developed based on Martin's synthesis method [21] to demonstrate the fea-

sibility of using asynchronous circuits in low power embedded systems. The pro-

cessor was realized both by manual layout and using the Caltech Asynchronous

Synthesis Tools (CAST). The work described in this thesis includes the devel-

opment of this asynchronous re-implementation and its performance estimation.

MSL16A was compared wi th two other previous asynchronous microprocessors,

ASPRO-216 [22] and TITAC-2 [9], as well as the commercially available syn-

chronous StrongARM 110 [13]. When scaled to the same technology, MSL16A

was found to be smaller, dissipates less power and was more energy efficient than

the other designs.

1.3 Overview of the Thesis

The thesis is arranged as follows:

Chapter 2 considers asynchronous logic, the potential benefits asynchronous de-

signs can bring, the signalling protocols and different data representation tech-

niques. A brief description of different asynchronous design styles and previous

asynchronous processors are also presented. Chapter 3 gives a brief introduction

to stack machines and the programming language Forth which explains why they

are particularly suitable to embedded applications, followed by a presentation of

architecture of MSL16. The instruction set architecture and its datapath compo-

nents are also examined, explaining how the architecture of MSL16 improves the

code density of Forth programs which can greatly enhance the power efficiency

of a low power system.

Chapter 4 describes Martin's synthesis method which was the design method-

Chapter 1 Introduction 5

ology used for MSL16A. Chapter 5 describes the implementation of MSL16A. The

stack design is critical for the overall performance of the processor, and three dif-

ferent asynchronous stack designs were compared. Evaluations of the three stack

designs and the ALU, together with other interesting implementation issues are

discussed. In Chapter 6, results from simulation of the processor are presented.

The synchronous FPGA based implementation is first presented, followed by the

evaluation procedure and the performance comparison of MSL16A with other

processors. In Chapter 7, concluding remarks about this work are presented.

Chapter 2

Asynchronous Logic

MSL16A uses asynchronous logic as this approach is believed to have benefits

over standard synchronous designs in terms of energy efficiency, speed and ro-

bustness [23]. The first section of this chapter explains the motivation for using

asynchronous logic in low power system. Different asynchronous design styles

are presented in the subsequent section. The final section reviews eight recent

asynchronous microprocessors.

As a complete treatment of asynchronous design styles is beyond the scope

of this thesis, only a brief description of current asynchronous design styles is

presented here. The design methodology adopted in building MSL16A, Mar-

tin's synthesis method, wil l be detailed in Chapter 4. More in-depth surveys on

asynchronous design styles can be found in [24, 23"

2.1 Motivation

The MSL16A processor uses asynchronous circuit because of the following po-

tential benefits.

No clock skew Clock skew is the difference in arrival times of the global clock

6

Chapter 2 Asynchronous Logic 7

signal at different parts of the system. Synchronous circuits usually rely on

an externally generated clock signal which is distributed to all of its circuit

elements. The clock period is dependent on the maximum clock skew.

Wi th today's VLSI circuits exceeding 15mm per side, several nanosecond

of clock skew is not unusual. Wi th a fixed 5 nanosecond (200MHz) clock

period, several nanoseconds of clock skew is disastrous.

Clock deskewing methods are available (like the balanced H-tree) but the

costs are extremely high. The designer of the DEC^ ALPHA took another

approach [25] but the result is a clock driver chip that occupies about 10%

of the chip area and consumes more than 40% of the total power generated

by the chip. The price to pay for keeping the clock skew under control

is very high. Asynchronous circuits, by definition, do not have a globally

distributed clock, and the clock skew problem is eliminated automatically. 、

Low power Asynchronous circuits consumes power only in areas involved in

computation. Idle components waste negligible power. The global clock in

standard synchronous circuit keeps on toggling all the time and power is

dissipated along the long clock lines. Previous work [1] has shown that clock

power is about twice the logic power for static logic and about three times

the logic power for dynamic logic. Some power management mechanisms

can shut down the idle parts of advanced synchronous systems with extra

circuitry but asynchronous system have this efficiency by nature.

In addition, in response to a clock edge, a number of signals in a syn-

chronous system change several times before reaching a stable value. These

spurious transitions do not cause the circuit to fail but every transition,

useful or not, consumes power. On the other hand, every transition in an

asynchronous circuit is meaningful. Any glitches wil l cause the circuit to

malfunction. They generally make fewer transitions and hence consume

1 Digital Equipment Corporation

Chapter 2 Asynchronous Logic 8

less power.

Average-case performance A fixed clock period is chosen depending on the

worst-case timing analysis of a synchronous circuit. However, worst-case

situation rarely occurs but still i t has to be clocked so that the rare worst-

case condition is accommodated. Asynchronous circuits take advantage of

the best- and average-case computation situations as they sense when a

computation has completed. Substantial savings can be gained for circuits

like ripple-carry adders where the worst-case delay is much worse than the

average-case delay.

Robustness Asynchronous circuits operates over a wide range of temperature

and supply voltage. They are more tolerant to variations in physical or

electrical parameters. They adapt to those variations automatically as 、

they sense computation completion, and wil l run as quickly as the current

physical and electrical properties allow.

Circuitry which guarantee correct mutual exclusion of independent signals

are subject to metastability [26], which a system can remain in an unstable

equilibrium state for an unbounded amount of time [27]. There is a chance

for such a mutual exclusion circuit to fail in synchronous systems as all

elements have to exhibit bounded response time. Asynchronous systems

can wait for an arbitrary long time, allowing robust mutual exclusion.

Along with the advantages described above, i t is worth noting that asyn-

chronous circuits have several problems as well. Asynchronous circuits are more

difficult to design as hazards must not be introduced in the circuit to avoid

incorrect results. Moreover, the signalling protocol and dual-rail data represen-

tation in asynchronous systems work against energy efficiency and silicon area.

Asynchronous circuits require extra time for synchronization, thus increasing the

average-case delay. As a result, further investigation is needed to see to what

Chapter 2 Asynchronous Logic 9

extent the potential benefits of asynchronous circuits can be realized.

2.2 Timing Models

Asynchronous design styles can be categorized by the t iming models they as-

sume. As shown in Table 2.1, they can be divided into four groups according

to the assumptions made on gate and wire delays. The t iming models wil l be

discussed in this section.

Model Gate delay assumption Wire delay assumption
Fundamental-mode Bounded Bounded
Delay-insensitive Unbounded Unbounded
Speed-independent Unbounded Negligible
Quasi-delay-insensitive (QDI) Unbounded Isochronic fork

Table 2.1: Categorization of Asynchronous Circuits

2.2.1 Fundamental-Mode Model

The fundamental-mode model, also called the Huffman model [28, 29], assumes

that both gate and wire delays are bounded. In this model, the asynchronous cir-

cuit is decomposed into two parts, the combinational logic part and the feedback

part. The fundamental-mode model asynchronous circuit structure is shown in

Figure 2.1. The environment must be able to control the timings of inputs such

that input transitions only occur when the circuit is in either the present state

or the next state. This means that the next input transition cannot take place

unti l the entire system settles into a stable state.

Chapter 2 Asynchronous Logic 10

Combinational Logic

Present State Next State

Delay ^ ^ ^ ^ ^ ^ ^
Elements

Figure 2.1: Fundamental-mode circuit structure

2.2.2 Delay-Insensitive Model

The delay-insensitive model assumes that both gate and wire delays are un-

bounded but finite. This model imposes the least restrictions on circuit delays

and a delay-insensitive circuit works correctly as long as all gate and wire delays

are finite. This is an attractive property for synthesis and testing but it has been

proved that the class of delay insensitive circuit is very limited [30]. A simple

example in [31] has shown that even the simplest CMOS inverter is delay sensi-

tive. The inverter circuit shown in Figure 2.2 would fail if there is a large delay

difference from the input to the pMOS and nMOS transistors as both may turn

on at the same time. As a result, i t is often assumed that the skew between the

wire delays after the forking is less than one gate delay in practice.

Moreover, the delay-insensitive timing model has a great impact on the re-

sulting circuit structure. I t is assumed that given enough time a subcircuit wil l

have settled in a bounded-delay model. On the other hand, in a delay-insensitive

model, a subcircuit may not be settled even after a long time as delays are un-

bounded. The recipient must send a signal to inform the sender when it has

Chapter 2 Asynchronous Logic 11

received the data. This function relies on the completion detection circuit in the

receiver which requires a new way of passing data also. The protocol and data

representation techniques wil l be discussed in Section 2.3.

Vdd

0

Input 1, • ^ Output

” G N D

Figure 2.2: CMOS inverter

2.2.3 QDI and Speed-Independent Models

These two models differentiate themselves in their choice of compromise to de-

lay insensitivity. The speed-independent model, also called the Muller model,

makes the assumption that while gate delays are unbounded but finite, all wire

delays are negligible. Quasi-delay-insensitive circuits adopt the delay-insensitive

assumption (both wire and gate delays are unbounded but finite) but forks are

isochronic. An isochronic fork [21] is a set of interconnecting wires where the

difference in delays between destinations is negligible.
While quasi-delay-insensitive and speed-independent models allow more im-

Chapter 2 Asynchronous Logic 12

plementation alternatives than the pure delay-insensitive model, the delay as-

sumptions they require can sometimes be difficult to realize in practice. In cus-

tom designs delay elements can be added to balance the delay to different fork

ends. However, in field-programmable gate arrays and deep submicron technolo-

gies, wire delays can often dominate logic delays and the automatic routing tools

may not be able to handle the isochronic constraint.

In addition, some parts of a fork may cross a chip boundary in large de-

signs and matching the delays between on-chip and off-chip destinations is al-

most impossible. To avoid this problem, Martin's synthesis method [21] restricts

isochronic forks to small localized areas.

2.3 Asynchronous Signalling Protocols

Wi th an unbounded model, communications between blocks in an asynchronous

system require some sort of handshaking mechanism. Pairs of wires called request

and acknowledge are generally used to indicates when an action should be init i-

ated and when an operation is completed. Two signalling protocols have been

proposed for handshaking using the request and acknowledge signals. They are

classified based on the number of transitions passing through the handshaking

wires.

2.3.1 2-phase Handshaking Protocol

The 2-phase handshaking protocol is a non return to zero protocol. Figure 2.3

shows an example of 2-phase communication. In a 2-phase communication, the

sender makes a single transition on the request wire to init iate the communica-

tion. The receiver senses the request, services the request and then responds by

making a single transition on the acknowledge wire. Note that only a transition

Chapter 2 Asynchronous Logic 13

I 》 _ L
y r i

Request 」 \ i \ - \
! \ I ： \
！ I ；

Y A i
Acknowledge ‘ ‘

1st communication ！ 2nd communication

Figure 2.3: 2-phase handshaking protocol

is important and the rising and falling edges are both significant and equivalent.

If the first communication starts with a transition from Low to High, the

next communication wil l start with a transition from High to Low as there is no

intermediate recovery stage.

2.3.2 4-phase Handshaking Protocol

The 4-phase handshaking protocol is a return to zero protocol and is illustrated

in Figure 2.4. The first two phases are active phases while the other two phase

are recovery phases. The rising edge of request initiates the communication and

the receiver responds by changing the acknowledge wire to a High level also.

The falling edges of request and acknowledge wires are inserted to return the

request and acknowledge signals to a logical Low level and indicates a successful .

communication.

Chapter 2 Asynchronous Logic 14

Request ^ A ^ ^

i I

I W I v/y ^
Acknowledge j ‘ 、 j ’ 、

i !
j 1st communication ！ 丨 2nd communication

Figure 2.4: 4-phase handshaking protocol

2.4 Data Representations

In asynchronous designs, the transfer of data must be handled carefully as there

is no global clock signal to indicate when a computation can start or when

it is completed. Additional wires must be used for synchronization. The two

commonly used approaches are described below.

R1 n Control
B1-。\ - C Z H
B1J ‘ ‘ ‘严

i ^ _ B 1 L
• •

Sender • Receiver Sender • Receiver

^ J T o \ •
Bn.1 • Bn ^

A c k ~ ~

(a) (b)

Figure 2.5: Data transfer via (a)dual-rail encoding and (b)bundled data ..

Chapter 2 Asynchronous Logic 15

2.4.1 Dual Rail Coded Data

By using a single wire per bit to transfer data, the receiver wil l not be able

to differentiate between a wire that wil l not change and one that has not yet

changed. Thus, every bit of information needs to be encoded with two separate

wires representing a logic '1' and a logic ’0，. Initially, both of them are zero. To

transmit a '1' (refer to Figure 2.5a), the wire representing logic，1，is raised and

vice versa. I t follows that a dual-rail encoded binary communication channel can

have four states (see Table 2.2). Hence, it is possible to detect when a data bit

is valid.

wire-1 wire-2 meaning
^ ^ 0 0

1 0 a valid one
0 l a valid zero
1 1 invalid state

Table 2.2: Four states of a channel

Unlike bundled data, the timing information is mixed with the data. The

main advantage of this approach is that the resulting circuits are delay-insensitive

but at the cost of increasing the number of wires and chip area.

2.4.2 Bundled Data

Bundled data allows a single wire for each data bit and associates one control

wire to indicate the validity of all of the data (as illustrated in Figure 2.5b).

The delay in the extra control wire must be guaranteed to be longer than that of-

each of the data wires. This bundling constraint requires that a transition on the

control wire does not occur unti l after the data lines are stable at the receiver.

The main advantage of this technique is that standard datapath components

or cell libraries can be used. Bundled data allows fewer wires to be used but

Chapter 2 Asynchronous Logic 16

violates the delay-insensitive model as it is inherently delay-bounded. It can

save considerable area at the cost of meeting the bundling constraints.

2.5 Previous Asynchronous Processors

Many asynchronous microprocessors have been previously implemented or pro-

posed [2, 3, 4, 5，6, 7, 8, 9, 10, 11]. This section briefly describes the design

styles and architectures of eight asynchronous processors which are summarized

in Table 2.3.

Processor Design Style Instruction Set | Organization
CAP 4-phase, dual rail, Own 16-bit Fetch-execute

quasi delay insensitive RISC like pipeline
A M U L E T l 2-phase, bundled data ARM Pipelined,

no forwarding
AMULET2e 4-phase, bundled data ARM Pipelined,

forwarding
~ E C S T A C Fundamental mode Own, Pipelined,

variable length no forwarding
TITAC 4-phase,dual rail Own 8-bi t No pipelining

quasi delay insensitive
TITAC-2 4-phase dual rail MIPS R2000 pipelined,

scalable delay insensitive forwarding
F ^ 4-phase, dual rail Own RISC like Pipelined

quasi delay insensitive
ASPRO-216 4-phase, dual rail 16-bit RISC like pipelined

quasi delay insensitive 64 custom instructions no forwarding

Table 2.3: Characteristics of eight previous asynchronous microprocessors

The Caltech Asynchronous Processor (CAP)

Professor Alain Mart in at Caltech built the first asynchronous processor in

1989 [2]. The processor is delay insensitive and its datapath is dual rail en-

Chapter 2 Asynchronous Logic 17

coded. I t was built based on Martin's synthesis method [21]. The processor

was described using a language that is based on Hoare's model of Communicat-

ing Sequential Processes (CSP) [32] and then complied to a circuit by means of

program transformations.

The instruction set is a conventional 16-bit-word of the RISC-like load/store

type with 16 registers. I t consists of several concurrent processes responsible for

instruction fetch, manipulating the program counter, ALU operation, memory

access... etc. The processor was implemented in a 1.6^m CMOS process. In

room temperature, i t operates at 18 millions of instructions per second(MIPS)

at 5V. The circuit is functional at very low supply voltage wi th optimum power-

delay product at around 2V. Its performance reaches 30MIPS in liquid nitrogen

at 77K.

AMULETl and AMULET2e

The A M U L E T group led by Steve Furber at the University of Manchester built

the first asynchronous implementation of the A R M instruction set, A M U L E T l

33]. AMULET2e [8] is a similar processor which achieved full code-compatibility

wi th the ARM6 processor.

The A R M instruction set was designed for synchronous processors [34] with

some of its features only convenient in the synchronous system. A M U L E T l and

AMULET2 implements this instruction set completely including the difficult

areas of interrupts and exceptions.

A M U L E T l was designed using a 2-phase bundled data design style based

on [35] I t has a 5-stage pipeline without result forwarding. A locking mechanism

is used to stall the register read stage unti l their operands have been written by

previous instructions. I t also permits out of order completion of load instruction

relative to normal A L U instruct ions.AMULETl was implemented in a 1.2/im

Chapter 2 Asynchronous Logic 18

CMOS process with a peak performance of 5.3MIPS.

AMULET2e was designed using a 4-phase bundled design style as the CMOS

implementation of 2-phase control elements in A M U L E T l was inefficient. The

pipeline of AMULET2e is slightly shorter and employs both branch prediction

and result forwarding to increase the pipeline utilization. AMULET2e was im-

plemented in a 0.5/im 3-layer metal CMOS process and its performance reaches

40MIPS at 3.3V.

ECSTAC

ECSTAC is an asynchronous processor designed by researchers at the Univer-

sity of Adelaide [7]. I t was implemented using fundamental mode circuits. I t

is deeply pipelined with 8-bi t registers and ALU. I t has a complex variable

length instruction format with a total of 113 distinct instruction types including

mode variants. There is no result forwarding scheme in the datapath and, like

A M U L E T l , a register locking mechanism is employed to stall instructions unti l

their operands are available. The anticipated throughput was 40MIPS.

The designers reported that the variable length instructions and the mismatch

between the datapath width and address size made the processor more complex

and slower.

TITAC and TITAC-2

TITAC is a simple asynchronous microprocessor buil t by a group at the Tokyo In-

stitute of Technology [5]. T ITAC is an asynchronous version of an 8-bit von Neu-

mann microprocessor based on the quasi delay insensitive t iming model. I t has

a straightforward architecture without any pipelining and a simple accumulator-

based instruction set. The datapath design uses a dual rail, multi-level AND-OR

Chapter 2 Asynchronous Logic 19

scheme with a binary decision diagram for efficient signal generation.

TITAC-2's [9] instruction set is based on the MIPS R2000. I t is a 32-bit

asynchronous microprocessor with an architecture which is very similar to the

MIPS R2000 processor. I t has a five stage pipeline and was designed using

4-phase dual rail encoding scheme. I t was fabricated in a 0.5^m 3-layer metal

CMOS process and operates at 52.3MIPS at 3.3V at room temperature. TITAC-

2 runs correctly from 1.5V to 6.0V.

FAM

FAM [11] is a 32-bit dual rail asynchronous processor wi th RISC like load-store

instruction set. The datapath contains 32 general purpose registers, 32-bit ALU,

multiplier and 32-bit barrel shifter. I t has a four stage pipeline but register

read, ALU operation and register write fit in a single stage to eliminate the need

for result forwarding. FAM was implemented in 0.5/im CMOS process and its

performance is about 300MIPS.

ASPRO-216

ASPRO-216 [22] is a 16-bit quasi delay insensitive asynchronous microprocessor.

I t was built based on Martin's synthesis method. I t is a scalar processor which

issues instructions in-order while completing their instructions out-of-order. The

processor includes sixteen 16-bit general purpose registers together with two

two distinct on-chip memories, one for data and the other for program. In

addition, there are 64 possible custom instruction slots and the processor is

heavily pipelined. ASPRO-216 was implemented in a 0.25/im five metal-layer

CMOS process and a peak processing rate of 200MIPS was expected.

Chapter 2 Asynchronous Logic 20

2.6 Summary

In this chapter, an introduction to asynchronous logic and asynchronous design

styles was presented. MSL16A uses asynchronous circuits as this approach is

believed to have benefits in terms of energy efficiency, speed and robustness.

In addition, asynchronous circuits eliminate the clock skew problem found on

synchronous circuits, exhibit average-case performance and allow robust mu-

tual exclusion. MSL16A adopts the quasi-delay-insensitive t iming model which

assumes that wire and gate delays are unbounded but finite while forks are

isochronic. Handshaking protocols and data representation techniques generally

used in asynchronous systems were discussed. Dual-rail coded data are required

to satisfy the unbounded delay t imming assumption while bundled data are sim-

pler and smaller but violates the delay-insensitive model. Finally, a review of

earlier work on asynchronous microprocessors was also presented.

Chapter 3

The MSL16 Architecture

This chapter presents the architecture of the MSL16 processor. MSL16A shares

the same architecture with different design methodology and implementation

techniques. The first section describes RISC machines. The next two sections

give a brief introduction to stack machines and the Forth programming language,

explaining why they are ideal for low power systems. The pipelining of MSL16,

its instruction format, its instruction set and the datapath wi l l be discussed in

the last section. This section also presents how MSL16 was designed to meet

the t ightly constrained power and cost requirements of low power portable ap-

plications. The code density of MSL16 are also estimated as code density relates

directly to power consumption of a complete system.

3.1 RISC Machines

The basic principles behind the original RISC (Reduced Instruction Set Com-"

puter) processors are reviewed below:

• A simple instruction set is faster than a complicated one

• Complicated addressing mode for instructions are unnecessary

21

Chapter 3 The MSL16 Architecture 22

• A large register file facilitates software

• Let the compiler handles complicated functions

• Simple processors are easy to design

Some of these principles are sti l l valid today but RISC processors tend to be

very complicated nowadays, some are even more complicated than their CISC

(Complex Instruction Set Computer) counterparts. Pipelining was introduced

to increase the throughput but the pipeline sti l l has to be flushed and refilled

whenever a branch is taken. Modern RISC architectures follow the principles

of making the common case fast, reducing the instruction set to simplify hard-

ware implementation, having a uniform instruction encoding so that i t is easily

decoded, supporting a small number of addressing modes, using large register

files and relying on caches to provide high memory bandwidth [36]. These design

criteria were chosen to maximize the performance of the machine wi th power

consumption and chip area being secondary concerns.

Large amount of cache memory is needed to buffer instructions if the core

speed of a RISC processor is much faster than the main memory because of

its lower code density. The associated cache control circuitry wi l l increase the

system complexity and large caches may take up to 90% of the total chip area [13 .

Moreover, RISC processors does not utilize cache memory efficiently as program

size for RISC machine is usually larger. A large register file is windowed to

facilitate subroutine call and return but the large register file wi l l slow down the

processor for context switches.

In portable and battery operated applications, the design criteria are different

as the system cost and power consumption are highly constrained. There is

normally no cache, the amount of memory used should be minimized, and some

performance can be sacrificed for code density, which relates directly to the total

Chapter 3 The MSL16 Architecture 37

power dissipation of a system. These issues have influenced the architecture of

MSL16.

3.2 Stack Machines

Stack machines are simpler than other CISC or RISC machines since their in-

struction sets do not need to encode operands. For example, in a RISC machine

a 3—operand addition requires the two source and the destination registers to

be encoded in the instruction. In a stack machine, however, an addition always

operates on the top two elements of the stack and leaves the result on the stack

so no operands are required in the instruction encoding. A stack architecture in

general achieves a much higher code density than that of a RISC machine with

a lower system complexity and smaller program memory requirements [19 .

A stack machine can achieve high computational power at a low cost be-

cause of its low processor complexity [19]. The cost of a chip relates directly

to the number of transistors, a lower complexity processor wi l l lower the total

system cost, which is t ightly constrained in small embedded systems. An es-

pecially favorable application area for stack machines is in real time embedded

control applications, where small size, high performance and excellent support

for interrupt handling are required [19 .

Besides, i t is easier to write compilers for stack machines since they have

very few exceptional cases and, most of the time, the operands are just the top

element of the stack and the T (top of stack) register. Wri t ing a compiler can

take up a significant amount of development time, and an efficient and error-free

compiler is essential for testing the system.

Chapter 3 The MSL16 Architecture 24

3.3 Forth and its Applications

Although the C language appears to be the ubiquitous high level programming

language for RISC machines, the development effort for a programming environ-

ment including assembler, compiler and operating system is rather large, and the

code density is not particularly good. Forth is an obvious language to consider

using on a stack machine. This is because Forth forms both a assembly and high

level language for a stack processor wi th two stacks, one for expression evaluation

and parameter passing, the other for storing subroutine return addresses. The

Forth language basically defines a stack based computer architecture which wil l

be emulated by the stack processors while executing Forth programs [19'.

A Forth system is an interactive development environment which usually

combines an assembler, stand-alone operating system, interpreter and compiler.

A Forth system is typically built upon a small number of primitives, and the

higher level routines call the lower level primitives to implement the rest of the

system. The system (which bundles the operating system and compiler) is very

simple and can be ported in a matter of several weeks, compared to man years

of development effort for a reasonable C compiler.

Forth encourages reuse of code, all primitive functions being compiled into

subroutines and all high level functions being compiled to lists of addresses (which

point either to functions or primitive functions). I t has been estimated that Forth

machines typically have 2.5 to 8 times better code density than CISC designs

and another 1.5 to 2.5 over RISC architectures [37'.

Forth is interactive in nature and is widely used in embedded applications:'

Forth programs work by extending the language to include the functions needed

to implement a given application. Unlike languages such as C or Fortran, con-

trol instructions (such as conditionals and loops) can also be extended by the

user [38]. Enhanced functionality (e.g. object oriented features) can be added

Chapter 3 The MSL16 Architecture 25

to the language by the users. Forth's functionality is achieved with binary sizes

usually measured in kilobytes. As an example, the public domain eForth 1.0 sys-

tem [39] for the Intel 8086 microprocessor is less than 5K in size and the entire

system can be ported to another microprocessor by rewriting the 31 primitive

instructions upon which the system is based.

Forth programs are characterized by a high frequency of subroutine calls

and returns, these instructions dominating all other operations. For a set of

benchmark Forth programs, Koopman found a static frequency of approximately

33% and a dynamic frequency of 22% for call/return instructions [19]. This

makes it very important to make the CALL and RETURN instructions as fast

and compact as possible.

ANS Forth is an American National Standards Institute (ANSI) standard

language [40]. Originally developed for the interactive control of telescopes in ob-

servatories using small computers [18], Forth has been successfully used in many

well known embedded applications. Some notable examples are that Forth is used

in the boot firmware for all Sun (and many other) workstations (IEEE 1275-1994

standard [16]), the Federal Express SuperTracker scanner/terminal [15], and in

many space applications [17] such as the Galileo probe, space shuttle and Hopkins

Ultraviolet Telescope. Several commercial microprocessors have been designed to

run Forth such as Novix NC4016 [19], Harris RTX 2000 [19], Silicon Composers

SC32 [19] and the Computer Cowboys MuP21 [20]. These chips achieved high

performance, low power consumption and small area using very simple hardware

designs.

Chapter 3 The MSL16 Architecture 26

3.4 MSL16

Microprocessors are being used in an extremely diverse range of applications

from low cost simple applications to extremely high performance real-time ones.

Incorporating a microprocessor enables embedded systems to perform more com-

plex tasks without requiring an external microprocessor. On the other hand, the

market for portable computing is growing rapidly as new generations of per-

sonal digital assistants (PDAs), intelligent cellular phones and other handheld

devices are now available to consumers. These applications are characterized

by their high performance computation power requirments within an exteremely

constrained cost and power budget. Energy efficiency is critical as most portable

devices are battery powered. A more energy efficient system wil l give a longer

battery life for the same capacity. A larger battery is highly undesirable since it

increases the size of a device, and a smaller device are naturally more favorable.

Traditional embedded processors which match the power and cost l imitation

cannot deliver the performance required by new applications. Incredible perfor-

mance improvements have been made at the other end of the processor spectrum,

with increased power dissipation and system cost that are not compatible with

portable systems. This called for a new class of microprocessor which gives high

computation power with small area, low power and energy efficient.

In [14], a microprocessor design and implementation called MSL16 (which

stands for minimal instruction set, small and low power 16 bit microprocessor)

which was developed to directly address these issues was presented. MSL16 has

the following features: „

• high speed

• small number of gates

• high code density

Chapter 3 The MSL16 Architecture 27

• a high level language programming language and operating system

• highly customizable for different applications

• portable to different FPGA devices and vendors (for FPGA based imple-

mentation)

MSL16 is a MISC (Minimum Instruction Set Computer) architecture. The

basic idea behind MISC is simplicity and the principle of simplicity in RISC is

strictly enforced. MSL16 has a minimal instruction set of 17 instructions, a 16-

bit datapath and very simple control and datapath. Most instructions are 4 bits

in length, contributing to a high instruction density and low memory bandwidth

requirements. Unlike RISC machines, MSL16 does not require cache memory as

the use of a slower memory wi l l not severely degrade the system performance. I t

has been shown that large caches may take up to 90% of the total chip area and

dissipate about 43% of the total chip power [13 .

MSL16 is a stack architecture which in general achieves a higher code density

than RISC machines. Additionally, MSL16 was designed to execute the program-

ming language "Forth". Forth machines typically have a higher code density

than CISC and RISC designs [37]. Code density relates directly to system power

consumption and with battery operated devices such as mobile phones, PDAs

and laptop computers becoming increasingly popular, power consumption is be-

coming increasingly important. In a portable application such as the Berkeley

Infopad project [12], the total system's power consumption (1.2 W) is dominated

by the power consumption of a static R A M memory (600 mW) rather than that

of the ARM60 microprocessor (120 mW). A processor wi th higher code density"

requires less memory to operate without lowering its performance. This implies

a processor wi th higher code density is more power efficient.

Without incorporating any cache inside the processor, having a high code

density and simple architecture, MSL16 can be fast and yet very small and low

Chapter 3 The MSL16 Architecture 28

power. These characteristics tightly match the requirments of the portable mar-

ket. The MSL16 architecture is presented below, and how it improves the code

density of Forth program is detailed in Section 3.4.6. MSL16A is the asyn-

chronous re-implementation of MSL16 which shares the same architecture and

it is a small, fast, low power and high code density microprocessor. The design

methodology and implementation detail of MSL16A are presented in Chapter 4

and Chapter 5 respectively.

3.4.1 Architecture

The architecture of MSL16 is similar to that of MuP21 [20]. The MuP21 is a

20-bit CPU which has 25 5-bi t instructions and implemented in 1.2/im CMOS

process, uses 7000 CMOS transistors and has a peak execution rate of 100 MIPS.

The synchronous prototype of the MSL16 architecture was synthesized from a

VHDL description. I t was highly portable and was designed to be easily cus-

tomized for particular applications and/or retargeted for different FPGA devices

and vendors. Compared with the MuP21, the MSL16 architecture has 16 4-bi t

instructions, and when implemented using a Xi l inx Inc, 4000 series FPGA, oc-

cupies 175 configurable logic blocks (CLBs) at a peak execution rate of 33 MIPS

on a 4006E-1 device. The results of this prototype is presented in Chapter 6.

MSL16 is a dual stack machine with 16-bit data and memory buses. The data

stack is used for temporary variable storage and subroutine parameter passing,

and the return stack is used mainly to hold subroutine return addresses. The

data and return stack are implemented internally which allows them to be ac-.

cessed in parallel wi th instruction fetches on the memory bus. A two stage

FETCH/EXECUTE pipeline is employed so that the following two steps oper-

ate in parallel

Chapter 3 The MSL16 Architecture 29

FOREVER
{

1. Fetch a 16-bit word from memory

and latch in the instruction

register (IR)

2. If the most significant bit of IR set
{

CALL instruction - other 15 bits

form the subroutine address

}
else
{

IR contains four instructions -

execute in sequence (first slot

can only use the lower 3 bits so

must have 0 <= opcode < 8).

}
}

Wi th the exception of the CALL instruction, MSL16 instructions are encoded

wi th 4 bits, allowing four instructions to be packed in one 16 bit word. A

16-bit instruction fetch generally obtains 4 instructions, excluding those with

CALL or L IT instructions, reducing the required memory bandwidth and overall

system power consumption. As a result, the effect of starvation of the pipeline on

performance is reduced and hence using a memory 4 times slower than the average

cycle time would not significantly reduce the performance of the processor. This

could also reduce the cost of building an embedded system wi th MSL16A. A

pipeline stage is said to be starved if i t is forced to wait for the previous stage

Chapter 3 The MSL16 Architecture 30

15 14 0

1 CALL ADDRESS

15 1211 8 7 4 3 0

FIRST SECOND THIRD FOURTH
SLOT SLOT SLOT SLOT

1 \ t /
0 < opcode<8 any 4-bit instruction

(restricted set of 4-bit instruction)

Figure 3.1: Instruction format for MSL16

to complete.

The execution speed of MSL16 is high because of its simple instruction set,

and a short critical delay path. The two stage pipeline has a low latency so the

effect of stalling the pipeline during memory operations and branches is reduced.

The top of stack is implemented as a separate register, the T register. Operands

to the ALU are normally the two top elements of the stack and the result is

usually stored in the T register. This scheme virtually eliminates the instruction

decoding and register fetch process normally required in a RISC machine.

3.4.2 Instruction Set

The instruction format used for MSL16 is shown in Figure 3.1. A l l of the in-

structions with the exception of CALL and L IT expect their operands to be on

the stack. If the most significant bit of the instruction register is set, i t is a

CALL instruction and the remaining 15 bits form the subroutine address. In

other words, the first slot can only contain a limited set of instructions with

opcode<8.

Chapter 3 The MSL16 Architecture 45

I f L IT appears in the first or second slot of the IR, its operand wil l be loaded

from the least significant byte of the IR. However, if L IT appears in the final

slot, the processor status word containing system flags wil l be loaded into the

T register. To load a full 16-bit literal into the T register, 2 successive LITs,

one placed in the first slot and the other in the second slot, followed by an XOR

instruction are required. The operand of the first L IT instruction contains the

most significant byte of the literal while the operand of the second L IT instruction

contains the least significant byte of the literal. The XOR instruction wil l merge

them correctly into a single 16-bit value stored in T .

Opcode Instruction Action
0 NOP no operation
1 AND T <=T AND DS, pop DS
2 XOR T ^ T XOR DS, pop DS
3 + T ^ T + DS, pop DS
4 0= T -1 if (T=0) else

T 0
5 L IT push T to DS,

if LPC = 0, T4=LSB(IR)&"00000000"
if LPC = 1’ T4="00000000"&LSB(IR)
if LPC 二 3, T<^=processor status word

6 2/ T < ^ T / 2
7 - T DS - T, pop DS
8 DUP push T to DS
9 DROP pop DS to T
10 GOTO Jump to T if T 0, pop DS to T
11 R > push T to DS, pop RS to T
12 > R push T to RS, pop DS to T
13 @ LOAD mem[T] to T •
14 ！ STORE T to mem[ds]
15 SWAP Swap T with DS

MSB=1 CALL PUSH PC to RS, jump to IR -

Table 3.1: The MSL16 instruction set

The instruction set of MSL16 is given in Table 3.1. For the synchronous

version, instructions involving a memory reference (• and ！), change the flow of

execution, (CALL and GOTO) and SWAP take two cycles and the remaining

Chapter 3 The MSL16 Architecture 46

instructions are single cycle. However, for MSL16A, all instructions are com-

pleted in a single cycle with different cycle time and the pipeline wil l adjust

automatically. Some instructions just take longer to complete.

In MSL16A, the fetch and execute stages do not have fixed cycle times. The

fetch cycle depends on the speed of the external memory while the execute cycle

depends on the instructions executed and their operands as well. For example,

1 - 1 (implemented as 1 + (—1)) wil l take longer to complete than 1 + 1 in the

ALU.

3.4.3 The Datapath

irout
1 I memo 1

飞 âluout •

\ MUX /

Sdrop \J

^^FTl ^ ^ ^ ± I
-dspop ~~dsout L̂ ~ !
-dspush • •-dsin ~ Q l j ^ ALU J

Fa CZ-
— — — 〜 L

—rspop -» rsout L^J J r ~ ^ | | L ^
—rspush* ^rsin—J^l*" 广、fi^p^ Y _ ^ ^ Control

^ wpc O

L 4 _ _ 1 _ 1
•0.

—-rO~4 \ / 1 _
\ MUX /

V I I ..
和address」

Main Memory ,_…―. ,、
‘ ~̂memi ^ 1

—memo lhJ<w£2

Figure 3.2: The datapath of MSL16

Chapter 3 The MSL16 Architecture 33

The datapath of MSL16 is shown in Figure 3.2. The main components in the

datapath of MSL16 are

• A data stack (DS) for temporary variables and subroutine parameters. The

very top element of the stack is stored in a separate register T so that the

top two stack elements are available to the ALU.

• A return stack (RS) to store subroutine return addresses

• An instruction register(IR) which holds the four 4-bi t instructions to be

executed

• A PC (Program Counter) which stores the address of the next instruction

• An IR (Instruction Register) which stores the instruction being executed

• An ALU which takes operands from T and the top element of DS or RS

the result wi l l be returned to T.

The data stack and return stack are both 32 x 16 bits in size. A study has

shown that a stack depth of 32 is sufficient for most reasonable programs [37 .

The PC is actually composed of a 2-bi t nibble PC(LPC) and and a 14-bit word

PC(WPC). The WPC stores the address of the next instruction while the LPC

is used to keep track of which of the four instructions in the IR is currently being

executed. The LPC wil l be reset to zero automatically when a L IT, CALL or

GOTO instruction is encountered.

3.4.4 Interrupts and Exceptions

MSL16 does not currently support interrupts or exceptions. Stack machines

generally have good interrupt performance since there are no registers to save.

The cause of the interrupt is easy to determine since the simple pipelining means

there is only a single instruction being executed at any time.

Chapter 3 The MSL16 Architecture 48

3.4.5 Implementing Forth primitives

Al l Forth primitives must be represented by the 17 instructions of MSL16 if the

stack architecture defined by Forth are to be emulated. A N D , X O R , + , - �

0 =，D U P , D R O P , S W A P , R > , > R , 2/，@ and ！ are directly supported.

The most frequently used Forth primitives which are not directly implemented

are translated in Table 3.2. The first column lists the most frequently used

but not included Forth primitives and the corresponding translation in MSL16's

instructions are shown in the second column. The equivalent instruction sizes in

bits are included for the estimation of code density of MSL16 to compare wi th a

16-bit Forth reference machine [19 .

Forth Primit ive Translated Instructions Instruction Size (bits)
• B R A N C H 0=, L I T addr.msb, L I T addr_ lsb 1 4 x 4 + 1 6 x 2 = 4 8 、

XOR, AND, GOTO
2* "PUP, + "4 + 4 = 8
BRANCH L I T addr_msb, L I T addr_ lsb 1 6 x 2 + 4 x 2 = 40

XOR, GOTO
DDROP DROP, DROP 4 x 2 = 8

~WER " > R , DUP, R〉，SWAP —4 X 4 = 16
" W I T " R > , GOTO —4X2 = 8

T I T LIT const.msb, LIT const一Isb, XOR 1 6 x 2 + 4 = 36

Table 3.2: Translation of Forth primitives

3.4.6 Code Density Estimation

By translating the most frequently used Forth primitives, the code density of

Forth programs implemented wi th MSL16A’s own instruction set could be es-

timated. In [19], the static instruction frequencies of all Forth primitives for

a 16-bit Forth system are listed. The list was compiled wi th four benchmark

programs. The average static frequencies (of the four benchmark programs) are

used to calculate the average instruction size for MSL16.

Chapter 3 The MSL16 Architecture 35

Forth Primitive Static Frequency Instruction X * Y average instruction
(X%) size (Y bits)

1 ^ 4 9.28 798.07 + 76.17
+ 2.90 4 11.60 =10.48 bits
- 1.52 4 6.08

OBRANCH 3.10 48 148.80
2* 1.49 8 11.92

> R 1.36 4 5.44
• 5.59 4 22.36
BRANCH 1.73 40 69.2
CALL 25.87 1 25.87
DDROP 1.42 8 11.36
DROP 1.86 4 7.44
DUP 3.28 4 13.12
EXIT 7.47 8 59.76
L IT 9.41 36 338.76
OVER 2.49 16 39.84
R > 1.50 4 6.00
SWAP ^ 4 、

TOTAL 76.17 TOTAL 798.07

Table 3.3: Code Density Calculation

The first column in Table 3.3 contains the most frequently used Forth prim-

itives and the average static frequencies listed in [19] are shown in the second

column. The third column lists the number of bits required to translate the prim-

itive into MSL16's own instructions. The average instructions size of MSL16 was

found to be about 10.48 bits long. This means that the same Forth program com-

piled for MSL16 can be 34.5% smaller than that for the 16-bit reference system.

Because of its high code density, a system built wi th MSL16 can utilize a smaller

external memory to store program codes. This also implies that MSL16 required

smaller caches to improve system performance although no cache is incorporated

in MSL16 currently.

As illustrated in the Berkeley InfoPad project [12], a processor does not dom-

inate a system's total power dissipation, the memory itself can consume 50%

of the total power. Similarly, the two large caches in the StrongARM 110 [13

Chapter 3 The MSL16 Architecture 50

consume 43% of the total chip power and fill up 90% of the total chip area. As a

result, for extremely low power systems, it is crucial to optimize the whole system

instead of just making a low power processor. A 34.5% smaller main memory

and a smaller cache can lower the total system power consumption and size

remarkably. This wi l l be particularly beneficial to battery operated embedded

systems.

3.5 Summary

A brief introduction to RISC machines, stack machines and the Forth language

was presented in this chapter. Stack machines are simple, small and fast which

are critical in real time systems and many stack machines were designed to run
%

Forth. The Forth language is based on a set of primitives that execute on a stack

machine architecture. I t has been estimated that Forth machines have 1.5 to 2.5

times better code density than RISC designs [37]. Code density relates directly

to power efficiency as i t affects the memory and cache sizes, which can consume

up to 50% of the total system power, in a low power system.

Also developed in this chapter was the architecture of MSL16. MSL16 is a

dual stack machine with 16-bit data and memory buses designed to run Forth. A

two stage pipeline is employed and the instruction set is minimal. MSL16 is fast

and power efficient because of its simple architecture, doesn't require fast memory

or caches and its high code density. The code density of MSL16 was estimated

to be 34.5% higher than a 16-bit Forth reference system which makes it highly

desirable for low power applications like battery operated portable systems. “

Chapter 4

Design Methodology

MSL16A was implemented based on Martin's synthesis method [21]. An ad-

vantage of such compilation-based method over other methods is that complex
、

concurrent systems can be described concisely in high level constructs with-

out low-level t iming concerns, which makes modification and verification of the

system behavior easier. The asynchronous circuits used are called quasi-delay-

insensitive(QDl) circuits which do not use any assumption on delays in operators

and wires [21]. The asynchronous control logic was designed using the Caltech

Asynchronous Synthesis Tools (CAST), which is discussed in Chapter 5, while

the datapath components were realized by manual layout wi th the layout editor

Magic [41 .

This chapter details how MSL16A was implemented based on Martin's syn-

thesis method. The first section gives the basic notations used in the higher

level description of the processor while subsequent sections describe the compi-

lation methods. For a more complete explanation of the algorithm, readers are

suggested to read [21 .

37

Chapter 4 Design Methodology 38

4.1 Basic Notation

The notation used in describing the processor at a high level, is based on C.A.R.

Hoare's Communicating Sequential Processes (CSP) [32]. A full description of

the notation used in this paper can be found in [21 .

An assignment of an expression e to a variable b is “b •= e". If a: is a Boolean

variable, b 个 and b | represents b := true and b := false respectively.

A selection statement is of the form [Gi —> 5 i y ... [J ^ Sn]. Gi ^ Si a.

"guarded command" where Gi through Gn are Boolean expressions (the guards of

the commands) and 5 i through 5„ are program parts. The operational semantics

of the selection statement is: "Wait until one of the Gj's is true, then choose

a guarded command with a true guard non-deterministically and execute the

corresponding program part." [G] is equivalent to [G —skip], which means

"wait until G is true".

A loop statement is of the form *[Gi — [J …U Gn Sn]. The operational

semantics is: "Choose a guarded command with a true guard, execute the cor-

responding program part and then repeat unti l all GVs are false". *[5] stands

for * [t rue S] and means "repeat S forever".

For a communication channel X , X\u means the communication action of

sending the value of expression u through channel X. Similarly, X?v denotes

the communication action of receiving the value from channel X and storing it in

variable v. The combined effect of the two statements is to assign the value u from

a process to variable v of another process. X\u cannot complete and its native

process suspends unless X l v is executed in the corresponding process. Thus,

dataless channels can be used to enforce synchronization between processes. A

communication action on such a channel is expressed by naming the action with

the channel's name. The boolean expression X，the probe of channel X, is t r ue

Chapter 4 Design Methodology 39

i f a communication action over channel X is pending, i.e. communication action

X can be completed without suspension.

Moreover, sequential composition is represented by a “;” and parallel com-

position, which is weakly fair, is denoted by “ || " . Finally, " X • F " , coincident

execution, means communication actions over channels X and Y are to complete

at the same time.

4.2 Specification of MSL16A

At the top-most level, MSL16A was described by a high level sequential program

which is a non-terminating loop containing the F E T C H and E X E C U T E stages of

the pipeline. The complete sequential program for the microprocessor is shown 、

below:

• FETCH : i,pc := mem\pc],pc + 1 ;

EXECUTE :[alu{i.op) tos aluf(tos, ds[k],i.op)

\nop{i.op) —skip

]lit{i.op) = 0 ：二 00000000"

]lpc = 1 tos := "00000000" klsb(ir)

J/pc = 3 — t o s := psw

\dup{i.op) —ds[k] := tos

\drop{i.op) tos := ds[k

\goto{i.op) ->[tos! = 0 pc := tos “

j tos 二 0 skip

\rto{i.op) —ds[k] := tos、tos : = rs[A:

\tor[i.op) rs[k] := tos; tos := ds[k

\at{i.op) —tos := mem[tos

Chapter 4 Design Methodology 40

Js亡ore(i.op) mem[ds[k]] := tos

\swap{i.op) —tos ds[k

\call{i.op) —)• rs[k] := pc]pc := ir

The sequential program is basically a loop statement which denotes the FETCH

and EXECUTE stages of MSL16A are repeated forever. The FETCH and EX-

ECUTE inside the program are labels inserted simply for illustration purpose.

Variable i contains the instruction which is currently being executed. I t is de-

scribed in the PASCAL record notation as a structured variable consisting of

several fields. Al l instructions contain an op field for opcode while the parameter 、

fields depend on the types of the instructions, which were described in Chapter 3.

The array mem describes the external memory and the indexes pc to it de-

scribe the program counter. The data stack and return stack are described by

the arrays ds[k] and rs[k] while variable k points to the currently active element

in the stacks. The design and implementation of the stacks are discussed in

Chapter 5.

Variable tos represents a separate top-of-stack register which allows concur-

rent access to tos and ds[k] (top element of data stack) for the ALU. The in-

struction register is described as ir and, similarly, the least-significant-byte of

the instructions, which is used by LIT, is represented as lsb{ir). For example,

dup{i.op) —ds[k] := tos means if the instruction currently being executed is

D U P , the value of the top-of-stack register wil l be pushed into the data stack.

In S W A P , tos ^ ds[k] indicates the value of the top-of-stack register and the

value of the currently active data stack elements is swapped.

Chapter ^ Design Methodology 41

4.3 Decomposition into Concurrent Processes

The previous sequential program was then decomposed into a set of concurrent

processes, which operate in parallel, communicate and synchronize with each

other through channels, based on Hoare's CSP (Communicating Sequential Pro-

cesses) model [32]. A channel connects two processes and the two ends of a chan- “
；I

nel are called ports. Attempts were made to convert each process into smaller ‘,

sub-processes unti l i t was simple enough such that no further decomposition is

necessary. The final program of MSL16A is discussed below in two parts.

/ * FETCH : continuously fetches instructions * /

FETCH 三 P C / 1 ; JR2] PC/2；

/ * JR : temporary instruction holder

wil l discard instructions when necessary

pre-decode for CALL, ISCALL stalls the pipeline * /

JR 三 * [[7 M JRl; DOUT?i; JR2;[INSTlk \call INSTV.i; INST2

]lNSTlkcall 4 INSTlli- INST2; ISCALL

]NEXTa4 NEXTa

f

/ * IR : instruction register

fetch instruction from JR and pass to EX 4-bit at a time * / .‘

IR 三八 INSTm',INST2.,

EIH • LPIl-[E2 4 L P / 2 ; E2- El\i • LPIl-[E2 — LPI2] E2- EV.i • LP/1；

M LP/2;五2; EV.i • LPI1-[E2 LP/2; E2;

]NEXTb E2] LPn

Chapter 4 Design Methodology 42

]NEXTb E2- LP/2

]NEXTb^ E2-LPI2

]NEXTb^ E2;LPI2

/ * LPC : nibble pc

controls the mux to EX also * /

LPC 三 L P / 1 ; X : = Ipc + 1][Tp72 Ipc \=xm L P / 2

]'LZ Ipc := 0 • L Z ; LPn

\^[[LPI\klpc = 0 - > LPn • Nal; LPI2 • Na2 、

J l P l l k l p c = 1 LPIl • Nbl-LP/2 • Nb2

JlFTlklpc = 2 - > LPIl • Ncl- L P / 2 • Nc2

]LPn klpc = 3-^ LPIl • Ndl- L P / 2 • Nd2

)

Process FETCH fetches a 16-bit word, generally containing four 4-b i t in-

structions, from the memory and stores i t in JR. Process JR is a temporary

instructions holder which also pre-decodes the first instruction to check if the

16-bit word is a C A L L instruction. Moreover, i f the instruction currently being

executed in process EXEC is goto, JR wi l l discard the pre-fetched instructions

in i t through the N E X T a communication w i th EXEC. Process IR receives the

16-bit instruction batch from JR and then sends the corresponding instruction

to process EXEC according to LPC. The process LPC updates the nibble pc

of the next instruction concurrently w i th the instruction execution. The tempo-

Chapter 4 Design Methodology 43

rary variable x is inserted to keep the value of Ipc stable during the execution of

instructions.

/ * WPC : word pc

sends instruction address to memory * /

WPC 三 * [[？ ^ - > P C / 1 ; y := wpc + 1; PC 12、wpc := y

]'PCW -^WlwpcmPCW

J P ^ -> WPC\wpc • PCR

/ * A L U : the ALU, i is the opcode * /

ALU = ^[[AC ^ AC?i; z := aluf{a, b, z); ALUlz] 、

/ * the stacks, k is the pointer * /

DS[k] =(^[[DPUSHkk — DPUSH • DSOUTlx]

I * [[DPOPkk DPOP • DSINlx]

)

RS[k] ={^[[RPUSHk k — RPUSH • RSOUT\x]

||*[[RPOPk k RPOP • RSIN?x]

)
TOS = >^[T\x',U?x

/ * EXEC : execution unit

instruction ends with NEXTa before NEXTb

GOTO: PCW inside NEXTa to make sure pre-fetch is done

CALL: ISCALL wi l l resume the pipeline * /

Chapter 4 Design Methodology 44

aluO { AND, XOR, + , - }

a lu l { 2 / ’ 0 = } * /

£；;C丑C 三 五

aluO{i) ACH • DPOP • T ; E2

]alul{i) ACH*T; E2

]nop -)• E2

]litk Ipc = 0 4 DPUSH • T ; NEXTbl]五2; NEXTh2- LZ

]litk Zpc = 1 DPUSH • T ; NEXTbl] E2- NEXTb2; LZ

] l i t k Zpc = 3 DPUSH • T ; E2

]dup-^ DPUSH • TR- E2

]drop-^ Tiy • £；2

]goto 4 [T ! = 0 -^NEXTal; TR • P C V ^ ; NEXTa2 • NEXThl-E2-

NEXTb2- LZ 、

= E2

]rto RPOPl • DPUSHl • T l ; DPUSH2 • T2 • RP0P2- E2

]tor RPUSHl • T l * RPUSH2 • T 2 • DP0P2- E2

]at T1 ;T2 ;五2

]store T • DPOP\ E2

]swap-^ DP0P,T*DPUSH]E2

]call — RPUSH • PCR\ PCW- ISC ALL., NEXThl] E2; NEXTb2] LZ

After receiving the instruction from IR, process EXEC decodes and executes

i t . Process WPC implements the word pc of MSL16A which updates the address

of the next instruction fetch. The execution of A L U instruction by process ALU

can overlap w i th the fetch operation and the update of wpc. There are two

different classes of A L U instructions and they differentiate themselves by the

Chapter 4 Design Methodology 45

need of a D P O P communication during execution. The array of processes DS[k

and RS[k] desrcibe the data stack and return stack respectively. Variable k is

the pointer in the stack which means only the stack element holding the pointer

wi l l involve in the PUSH/POP communication.

4.4 Separation of Control and Datapath

Each concurrent process must be decomposed into two parts, the control part

and its associated datapath. As the datapath of a process can be implemented

in a fairly standard way, the datapath of a process is separated from the control

part. To obtain the control part of a process, each communication command

involving data passing is replaced with a "bare" communication on the channel,

e.g. Eli and E7i would be replaced with E. Then, all data assignments are del-

egated to subprocesses and replaced wi th a communication command on a new

channel between the control part and the datapath. After these transformations,

the control part of each concurrent process consists merely boolean expressions

in conditionals and communication commands. For example, after the removal

of the datapath, the control for the TOS becomes *[T; U]. Finally, each commu-

nication command is implemented with 4-phase handshaking protocol.

4.5 Handshaking Expansion

Even though process decomposition can simplify complex control structures,

commands such as probe and selection, send and receive remain. The next

step in the synthesis method represents each communication action with oper-

ation on Boolean variables. The two ends of a channel must obey the 4-phase

(return-to-zero) handshaking protocol in order to maintain correctness.

Chapter 4 Design Methodology 46

4.5.1 4-Phase Handshaking Protocol

Consider the matching pair of actions ElH and El?i in processes IR and EXEC

respectively. The bare communication on channel E can be implemented by two

handshake wires as shown in Figure 4.1.

xo yi

IR EXEC
xi yo

4 —

Figure 4.1: Bare Communication on Channel E

%

To convert them into sets of transitions, they are expanded into 4-phase

handshaking protocol. The protocol is not symetrical: all communications in

one end are implemented as active and all communications in the other end are

implemented as passive. The standard active and passive implementations are^:

yi]] yo t； [1。； yo i (passive)

介 介

rro 个 ； x o J,; [-^xi] (active)
II

I t has been shown [42，21] that i t is easier to implement active input ports

than a passive one. Therefore, all input actions in MSL16A are implemented as

active and all output actions as passive. For example, the handshaking expansion

for the control of the TOS is

TOS 二 *[[ti] ； to 个；h力 i] ； to J, ； Uo t ； [^ii] \ UO i] [^Uj]:.

iBy convention, input and output variables are subscripted with i and o respectively

Chapter 4 Design Methodology 47

Reshuffling of transitions and insertion of state variables are often perfromed

to distinguish ambiguous states to maintain the correctness of the transition

sequence.

4.6 Production-rule Expansion

Production-rule expansion is the transformation from a handshaking expansion

to a set of production rules, which lead to a physical circuit realization. After the

handshaking expansion step with all states distinguishable is done, the explicit

sequential operators (the semi-colons, ；) are removed by transforming it into a

set of production rules. Each of the concurrent processes is represented with a

set of production rules for realization of actual circuit.
%

A production rule (PR) is of the form " G ^ 5" . G is called the guard

which is a Boolean expression and S is an assigment of TRUE or FALSE

to a Boolean variable. For any variable z, a PR for z 个 and a PR for z |

must be complementary and non-interfering (never both enabled). In addition,

self-invalidating PR's are not allowed since they never occur in actual physical

circuits. An example of a self-invalidating PR is 2；个 which the assigment

of ^ falsifies its own guard. Reset signals are added to the PR sets in order to

put the microprocessor in the proper state upon power-up.
f

I t is important to realize that the ciruits which result from this synthesis

process require complex and custom gates, which cannot be broken down into

simpler components [23 .

Chapter 4 Design Methodology 48

4.7 Summary

The design flow and circuit style used for MSL16A were an original applica-

tion of Martin's synthesis method which relies on the time-honored "divide-

and-conquer" principle. This methodology decomposes a high-level sequential

program describing the microprocessor into a set of concurrent processes writ-

ten in a language similar to Hoare's Communicating Sequential Processes and

then translates them into asynchronous circuits. Communication commands are

converted into sets of transistions and expanded based on the 4-phase handshak-

ing protocols. To eliminate indistinguishable states, trasnsitions are reshuffled

and state variables are inserted when necessary. Finally, production rules are

generated, which lead to a physical circuit realization.

In MSL16A, all datapath elements are accompanied by a small control circuit 、

{separation of control and datapath, see Section 4.4), obeying the 4-phase hand-

shaking protocol, for synchronization of request and acknowledge signals. Data

are all dual-rail encoded within the processor core. Only one out of two rails is

raised at each active phase of the four-phase protocol.

Control circuits were generated and verified with CAST, a set of tools devel-

oped at CALTECH for the synthesis of asynchronous circuits (described in Sec-

tion 5.3), while all other elements were created by manual layout wi th Magic [41 .

MSL16A was functionally verified with IRSIM [43] and the simulation results are

presented in Chapter 6.

Chapter 5

Implementation

This chapter describes the design of MSL16A in detail in a bottom-up fashion.

The first section discusses the implementation of the C-element, a widely used
、

asynchronous circuit primitive logic element, in the processor. The asynchronous

arbitration circuit used is presented in the second section. Three different stack

designs were proposed in search for a low power stack implementation and these

designs are described in the next section. A description of the ALU design follows

and the chapter concludes with an overall description of the entire MSL16A

processor.

5.1 C-element

The C-element, introduced by D.E. Muller [44] in 1959, is also called the M u l l e r

C-e lement . A C-element has two inputs x and y, and one output z. Its logical

behavior is described in Table 5.1. I f both x and y are the same, the output

wi l l become the same as the inputs; otherwise the output remains the same.

The behavior of the output can also be expressed in terms of x and y, and the

49

Chapter 5 Implementation 50

previous state of the output, z', by the following Boolean expression

z = (x -h p) • + X • y

C-elements are widely used as primitive logic elements in asynchronous VLSI

circuits to sense the completion of communication actions. Figure 5.7 in page 60

shows how C-elements can be utilized to sense the completion of a data transfer

operation in an asynchronous system.

Vdd

ln_1 ^

I 、

L r ^ ^
^ ^ Output

4
GND

Figure 5.1: The C-element

The implementation of the C-element in MSL16A,-introduced by Alain Mar-

t in and used in the Caltech asynchronous microprocessor, is shown in Figure 5.1.

This circuit utilizes an inverter latch to maintain the state of the output when

the values of the input are different. The feed-back inverter is a weak one. to

allow the changes in the state of the inverter latch.

Previous work on C-element and various designs by other researchers can be

found in [45’ 46, 47:.

Chapter 5 Implementation 51

I I y I z
0

0 1 unchanged
1 0 unchanged
1 1 1

Table 5.1: Truth table of a C-element

5.2 Mutual Exclusion Elements

MSL16A has a single memory port and a single program counter which is shared

by the FETCH and EXEC processes. As both processes were concurrent,

an arbitration circuit was required to resolve simultaneous requests of a shared

resource.

An asynchronous arbiter is a circuit that dynamically allocates a single shared

resource to the concurrent processes in an asynchronous system. Each process

issues a request when it requires the shared resource and waits unti l the arbiter

produce a grant. The process then uses the resource and releases the request

when finished. After servicing a request, the arbiter releases the grant. If the ar-

biter receives several requests from different processes, a grant wi l l be generated

to exactly one of them and leaves other requests pending unti l that process, the

one who receives the grant, has released the request. The arbiter then services

another request and all requests are serviced on a mutually exclusive basis.

R1_M 一I I R2_M

Arbiter M
_ G1_M G2_M _

FETCH EXEC
m 一 PC I R2_PC

Arbiter PC

,G1_PC G2_PC 一

Figure 5.2: A Simple Arbitrat ion System

Chapter 5 Implementation 66

In MSL16A, fairness are ensured not by the design of the arbitration circuit

but the design of the concurrent processes at the CSP (Communicating Sequen-

tial Process) level. An arbiter is strongly fair when a request is granted after

a bounded number of other requests are granted. Arbiters in MSL16A do not

have to address this issue as the execution of EXEC depends on FETCH. The

request from EXEC wi l l always be granted as FETCH can only pre-fetch a

16-bit instruction once before EXEC has finished the execution of previous in-

structions. The arbiter is thus strongly fair. The arbiter system of MSL16A is

shown in Figure 5.2.

FILTER

J l ：

y __

Figure 5.3: A basic arbitration circuit “

A number of complex asynchronous arbitration circuit designs have been

reported in the literature [48, 49, 50，51, 52]. However, in quasi-delay-insensitive

designs, the correct functioning of a circuit containing an arbiter does not depend

Chapter 5 Implementation 53

on the duration of the metastable state and relatively simple implementations

of arbiters can be used. Figure 5.3 shows the implementation of the arbiter in

MSL16A. There are totally two arbiters in the microprocessor, one for the access

of the memory port and the other for the program counter. Deadlock situations

wil l never occur as none of the execution of any instructions in process EXEC

requires the grants from both arbiters. They wil l never have to wait for a grant

signal while holding the other one.

5.3 Caltech Asynchronous Synthesis Tools

Part of the processor's layout was generated automatically with the Caltech

Asynchronous Synthesis Tools (CAST). A brief description of the CAST tools
%

used is given below. For a full description, please refer to [53 •

prs2prs The main purpose of prs2prs is to help organize a production rule set

in a hierarchical manner. Prs2prs can read a hierarchical production rule

set, apply some operations to it, and print the result. By default, no

operations are applied, but flags can be used to force, e.g., flattening of the

input file (all PRs wil l be in Disjunctive Normal Form). The input and

output languages are identical.

bubble Performs bubble-shuffling on a production rule set (PRS).

prs2tau prs2tau inputs a production rule set and, using one of four possible

t iming models, converts i t into a set of timed production rules described as a

.tau file. This output file can then be used by prsim for t iming simulations.

prsim prsim is an interactive event-driven simulator for a set of timed pro-

duction rules. A timed production rule has the same format and logical

interpretation as a standard production rule except that the former has an

Chapter 5 Implementation 54

associated timing value. This value specifies the delay between the guard

becoming true and the subsequent firing of the corresponding transition.

cellgen cellgen takes a PRS as input and produces a set of CMOS magic cells,

each one implements an element in the PRS. In all cases, it generates a

definition file, which relates the variables in the PRS to nodes in the cells,

and an output file, which specifies how the cells should be interconnected.

The two files are used by Vgladys to generate the final layout of the PRS.

Vgladys By using magic cells generated by cellgen , Vgladys generates the final

layout of the PRS.

As described in Section 4.6, each of the concurrent processes describing

MSL16A is represented by a set of production rules. CAST simulates asyn- 、

chronous circuits at the production rule level. By using this set of tools, different

circuit elements of MSL16A were allowed to be first verified at a higher level,

before creating circuit layouts, and thus reduced the development effort.

5.4 Stack Design

Stacks are a fundamental building block in microprocessors, microcontroller and

DSPs. Stack design is crucial to the performance of MSL16A as the data and

return stacks consume almost half of the total chip area. As almost all instruc-

tions involve in one or more stack push or pop operations, a poorly designed

delay-insensitive stack wil l greatly reduce the overall power efficiency of the mi-

croprocessor. However, to our knowledge, no one has made any comparison on

different delay-insensitive stack implementations.

A stack element composes of a control process and 16 datapath processes. A

stack can be implemented as an array of these stack elements by connecting the

Chapter 5 Implementation 55

Control Control

In' Out' Put' Get' In' Out' Put' Get'

Datapath “ • ‘ Datapath
/ A 卜 ^ /

Out ,、Get Out (、Get

Figure 5.4: The Stack

correct channels together (see Figure 5.4). For push operations, the In channel

allows the stack element to receive a new data word while the Put channel is used

to send out the stored data word. The Get and Out channels are used similarly

when popped. The design of the Pointer Stack is a bit different and it wil l be

explained in subsequent sections. 、

Three different stacks (the Eager Stack, the Lazy Stack and the Pointer Stack)

were implemented and performance analysis was made to find out the which

asynchronous stack implementation was most suitable for MSL16A.

5.4.1 Eager Stack Control

The Eager Stack is a simple design. The control processes of all stack elements

within an Eager Stack are the same. Each stack element wi l l reshuffle after a

push or a pop operation. Regardless of whether the value stored in a single stack

element is meaningful or not, i t wil l send out its data word stored to the next

element when pushed or get new data word from the next element when popped,

i.e. all stack elements wil l do the same job no matter the stack is full, half-full

or even empty. The control process does not have to maintain the current state

of that particular stack element. This leads to a much simpler control process.

Chapter 5 Implementation 56

I t wi l l always behave like program P.

P 三 *[[in pii力!;r;

out —out\x\get? J：

Program P means that when there is data to be received through the channel

in, the data word stored in register x wi l l be sent to the next element through

the channel put. Similarly, for pop operations, the stack wi l l pass out the data

word stored in x through the out channel and then pop the data from the next

element through the get channel.

The stack is init ial ly empty and state variable z is introduced to ensure

mutual exclusion between the push and pop communication sequences. After

handshaking expansion, we get 、

P 三 *[[2： A ini — ； m t o 个； [p w i i] ; 力卞； [t]] p u t o l ; [^puti]; mot; [-^ini]; [，t]; mo|

J z 八 outi outo^; s个；[s]] 24; [-^z A outi]] outol] get^; [geti]-,sl-, [-̂ s]; getol]

[， 个

]]

The compilation of program P gives the resulting circuit for the Eager Stack's

control process. The circuit is shown in Figure 5.5.

5.4.2 Lazy Stack Control

The epithet "lazy" means that after a pop operation, all stack elements do not

reshuffle unlike the Eager Stack. A popped stack element wi l l change its states

from full to empty and the control processes have to maintain the state informa-

tion for each stack element. Each stack element is either empty or full. When i t

Chapter 5 Implementation 57

H \
outi ^

M J ^

~ ~ 0 O ^ ^

^ puto,

——丨 。U'i

ini'

tî \ D

Figure 5.5: Implementation of the Eager Stack's control process

is empty, it behaves like program E. Otherwise, it behaves like program F.

E 三 *[[in —in!x\ F

\ out getlx] outlx] E

F 三 *[[m -> putlx] in?x; F

J out outlx\ E
»»

For push operations, if the first stack element is empty, it wi l l store(/n) the

input data word from the environment immediately and changes its state to full.

I f i t is already full, i t wil l send{Put) its data word to the second element before

storing the new data word. If the second element is also full, its content wi l l

be sent to the third element and so and so for. On the other hand, for pop

operations, if a stack element is initially empty, it wi l l pop(Gei) the next stack

Chapter 5 Implementation 58

element and pass the data out. I f i t is full, i t wi l l acknowledge the request wi th

the stored data word and go into the empty state without asking for a new data

word from the next element. This design wi l l perform best i f a pop operation

is followed by a push operation or similarly a push operation followed by a pop

operation.

The stack is ini t ia l ly empty. A channel (t, t') is introduced so that F can be

called wi th in E and z is introduced to ensure mutual exclusion between the two

guarded commands of E. After handshaking expansion [21], we get

E 三 *[[2；八 ini ino个;s个；[s]; zl]卜2;]; [->ini]; inoI] to个；[ti]; s^; [-is]; [->^2]; z卞

z A outi —)• peto个；卜oiiii];

11

F 三 *[[ti'八 ini —)• pwio个；[pii叫；[u\;putol; [-ipu^z]; mot； [-'ini]; [-lu]; mo|

ti'八 outi ouio个;ti'个；[->ti' A -'Outi]； outoi] to' | 、

]]

The compilation [21] of processes E and F gives the resulting circuit for the

control part of the Lazy stack as show in Figure 5.6.

5.4.3 Eager/Lazy Stack Datapath

After the control processes had been created, the corresponding datapath pro-

cesses must also be designed to construct the stack. The channels in, out, put,

get of the control process were renamed in,, out,, put', get, for the datapath pro-

cess to communicate w i th i t . The datapath communicates w i th the environment

via the four channels in, out, put, get (see Figure 5.4). A l l data-passing actions

are dual rai l encoded [21] which requires two wires to transfer one bi t , one for

the binary value，0’ and the other for binary value ’1，.

When a register cell has been set to the correct value of the data wire, i t wi l l

generate a completion signal which is gathered together by a C-element. Since

Chapter 5 Implementation 59

————C^————〇< 丨丨丨

r C ^

L \ geto
out! 〉 J 今

outo'
' 一

>c) ^
lu

^ 、 f c) <
\ Z J puti

Figure 5.6: Implementation of the Lazy Stack's control process

a 16-input C-element is too slow to implement [2] , a tree of smaller 4-input

C-elements, which is called a completion tree, are used to generate a completion

signal from a 16-bit datapath to the control process.

The datapath process has to implement the following channel interfaces:

*[out' • outlx

^[put'參 putloo

*[get' • get?x]

After handshaking expansion, the four channel interfaces for the Eager Stack are

expanded as

Chapter 5 Implementation 60

* [[mzl V mz2]; i n i ' t ; [ino' A inil — x t； [â] [J ino' A ini2 —)> x^.；卜2:]]; ino个；

l i n i l A ^ini2]; ini'i]卜i?io']; ino ! :

*[[rr A outot —>• owto2 个 ； o u t o 2 1

J1 八 outof —outol t； [-^outo']\ outol

^[[x A puto' —)• pwtol个；hpiito'];

J ^x A puto' 个 ； [， p z i 力 (/] ; 山]

^[[getil —x] [a;];分eti'个 U geti2 -> ->a;;卜a;];沢个];[-^pe^zl A geti2]\ geti'4

k̂ H �
Control X ^ y. Control y

Datapath Datapath 1

Datapath Datapath ^ V

Datapath Datapath ^ r

Datapath Datapath ‘

Figure 5.7: Implementation of communication •‘

Figure 5.7 shows how a datapath is generally combined wi th a control to

implement a communication command. The datapath processes for the Lazy

stack are similar except that an optimization [21] has been made to improve its

Chapter 5 Implementation 61

performance. In program E, the values of x involved in both get and out actions

are the same. Therefore, the received value does not have to be written into the

register (x) before sending i t out and can be sent directly on the Out channel

instead.

5.4.4 Pointer Stack Control

The Pointer Stack is the simplest design and delivers the best performance among

the three stacks implemented. The key idea was that only one element wil l be

active for each operation while others just idly waiting for their neighbors to

pass the pointer to them. The pointer stack control was completely different

from the two previous designs. The pointer was implemented as an internal bit

variable within the control circuit. When it is active, i t behaves like program A.
、

Otherwise, i t behaves like program I (Idle).

I 三 *[[in ^ A

J pop —> poplx] out; I

Stack elements do not have to reshuffle after any operation. The active ele-

ment wi l l send a request to the next element, asking i t to become active, after a

stack operation. As usual, the pointer wi l l be passed wi th the four-phase hand-

shaking protocol. A l l other stack elements wi l l not involve in any communication

and stay completely idle. The stack wi l l perform this way no matter i t is full,

half-full or empty.

Chapter 5 Implementation 62

5.4.5 Pointer Stack Datapath

The datapath process is different from the one designed for the Lazy/Eager

Stack as no channel interfaces have to be implemented. The in, out,put, and

get channels are now reserved for stack pointer passing within the stack and

two new channels, push and pop, are introduced for the stack to communicate

with the environment. The registers within the datapath are implemented the

same way as before. Comparisons with tables describing the performance of

the three stacks, including speed, area and power consumption, are presented in

Section 6.1.

5.5 ALU Design
%

A delay-insensitive ALU was developed as a part of an asynchronous implemen-

tation of the MSL16 microprocessor. The result was a small, simple ALU which

delivers comparable performance with more sophisticated synchronous counter-

parts. The asynchronous nature of the unit takes advantage of best- and average-

case performance while allowing rare worst-case operations to take longer to

complete, thus giving a high average throughput.

The MSL16 architecture defines a stack-based processor in which arithmetic

and logic operations normally require one or two operands to be read from the

data stack and the result is returned to the stack as well. The set of functions pro-

vided by the A L U is standard which consists of basic logic operations, arithmetic

shift, addition and subtraction. Time consumed in processing each operation is

not constrained to a fixed cycle time but depend on both the operation and the

data itself. Addit ion, or subtraction, is the most time consuming function as all

logical operations are performed in a bitwise fashion while worst case addition

operation may require communications across the entire 16-bit word length.

Chapter 5 Implementation 63

5.5.1 The Addition Operation

A single bit ful l adder requires 3 inputs, the 2 operand bits and a carry in. The

speed of the addition is l imited by the carry signal propagation speed across the

whole word. The carry output from a single bit addit ion does not always depend

on the carry input of the previous stage, e.g. both operand bits are ' I 's or，0，s

(see Table 5.2). I t is highly unlikely that a carry signal wi l l have to propagate

across all bits before giving a correct result. However, in synchronous ALUs, this

rare case must be handled and a considerable effort has been made in schemes

like carry-look-ahead and carry-select so as to speed up the addition process.

These approaches require more circuitry to accommodate the rare worst-case

condition.

A B Cout
~00 0 �

0 1 Cin
1 0 Cin
1 1 I 1

Table 5.2: Carry Output of a Full Adder

In an asynchronous ALU, addition may take different times to complete de-

pending on the input data as operation completion can be sensed. As long carry

chains are relatively rare, a simple ripple adder may be used to deliver “ typical"

performance at a smaller size. As the carry signals wi l l propagate along differ-

ent carry chains in parallel wi th in the same operation, only the longest chain

is significant in addit ion cycle time calculation. A study at Manchester Univer-

sity [54] suggests that the mean carry propagation length is about 4.4 bits for

32-bit operands, assuming operands to be random. Thus, the average longest

carry chain can be safely assumed to be over four times less than the 16-bit

worst-case of MSL16. Our adder has no special fast logic and performs addition

w i th a chain of 16 ful l adders. More in-depth discussions on asynchronous adders

can be found in [55, 56，57, 58, 59 .

Chapter 5 Implementation 64

5.5.2 Zero-Checker

Logic operations are not significantly data dependent and logic units are im-

plemented in a standard fashion. One interesting unit is the Quick-Decision

Zero-Checker based on [60]. An ordinary delay-insensitive zero-checker wil l wait

for all inputs to be valid before issuing any output. However, a Quick-Decision

Zero-Checker wil l raise the output signal whenever one of the input bits is non-

zero without waiting for all other input bits to be valid. The validity of all inputs

still have to be checked to satisfy the delay-insensitive protocol but this can be

done concurrently with other operations that would otherwise be postponed.

This is particularly useful for the condition test of a conditional branch.

5.6 Memory Interface and Tri-state Buffers �

As data were dual-rail encoded within the processor core, NAND gates (as shown

in Figure 3.2) could be used, instead of using tri-state buffers, to save area along

all 16-bit data buses. Moreover, Dual-rail to single-rail and single-rail to dual-

rail converters [5] were used to interface with the outside world with bundled

data encoding to allocate extra pins for testing. Figure 5.8 shows the gate-level

descriptions of the converters.

10 I " _ kO_1

i1_0 r ~ X _ J o~^ J k0_0

oO H ~ \
01 , ^ — L J k 1 - 0

Strobe

Figure 5.8: Dual-rail to single-rail and single-rail to dual-rail converters

Chapter 5 Implementation 79

5.7 MSL16A

The C-elements, memory interface, ALU and stacks were combined with mul-

tiplexors, incrementers and adders to form the complete datapath of MSL16A

(shown in Figure 5.9). The control logic was derived using the Matin's synthesis

method described in Chapter 4. These units together form the MSL16A design.

irout
I I memo 1

【aluout -
\ MUX Z

Sdrop Y

FTl 次 I
-dspop ""“~dsout L/ > \ \/ / DS ^ ,. \ / -dspush • ^ d s i n — O l j \ ALU j

Fa I ‘ , 、 、

I r
-rspop J ——rsout - 妾 i r ^ j T ^

RS r - l L] V W
-rspush , 一rsin — g 拿—^_ 啊 \ | Control

^ W P C P I u n i t

4 _ U

— - r 望] 4
Ui ： ^ ^ ^ U L

\ MUX / . I

〒 I IR I
—address�

Main Memory —memi A
-memo

Figure 5.9: The datapath of MSL16A

Chapter 5 Implementation 66

5.8 Summary

Implementations details of important subcircuits of MSL16A were presented in

this chapter. C-element is one of the most important circuit elements in asyn-

chronous design and its implementation was presented. A simple arbitration

circuit was employed in MSL16A to resolve the simultaneous request of shared

resources. A description of three different asynchronous stack designs, the Eager

Stack, Lazy Stack and Pointer Stack, was presented. Of the three designs the

Pointer Stack was found to be the most energy efficient and the results wil l be

presented in the next chapter. Also described in this chapter was the ALU and

MSL16A processor. An evaluation of this design wi l l be presented in the next

chapter.

•I

Chapter 6

Results

In this chapter, the performance of MSL16A is evaluated. The first section

presents the results obtained by implementing MSL16 on FPGA (Field Pro-

grammable Gate Arrays). The performance of the synchronous version was en- 、

couraging which motivated the creation of an asynchronous re-implementation

of MSL16. The second section evaluates MSL16A in which three stack designs

are analyzed in terms of performance, power consumption and silicon area. This

analysis helped in choosing the lowest power stack design for MSL16A. An evalu-

ation of the A L U based on the same three criteria is presented in the same section.

A description of the test program used and how the processor was functionally

verified is also included. Finally, the performance of MSL16A is compared with

two other asynchronous microprocessors, the ASPRO-216 and TITAC-2, and a

low power synchronous microprocessor, StrongARM 110.

6.1 FPGA based implementation of MSL16

MSL16 was first coded in VHDL (VHSIC Hardware Description Language) and

functional correctness tested by making VHDL memory images of hand coded

assembly language programs and then testing them on the Synopsys VHDL

67

Chapter 6 Results 68

I : ； mm^B

l i ^ B S I
國 更 醫 ^ W i B F 項 ：

Figure 6.1: MSL16 prototype board

%

simulator vhdldbx. The small size of the instruction set and the simplicity of the

design made design and testing of the machine very simple. The test program

uses all of the instructions of the MSL16 instruction set and also tests worst case

carry condition of the ALU (1-1=0).

The design was then targeted for Xi l inx Inc, 4000 series FPGAs and syn-

thesized using the Synopsys FPGA compiler. The resulting design occupied 175

configurable logic blocks (CLBs). The VHDL description is generic except that

the Xi l inx RAM feature was used to implement the two stacks and the program

memory (a 16 x 16 RAM which is initialized with our startup program). The

Xil inx RAM feature achieves a 16x improvement in density over a normal CLB.

Finally，a prototype printed circuit board (shown in Figure 6.1) containing

the MSL16 processor on a Xil inx 4006E-1 FPGA (which includes ROM), an

RS232 port, 32K x 16 bit static RAM, an Intel 8255 programmable peripheral

interface chip and display LEDs was developed. Using this board, the design

Chapter 6 Results 69

was found to be operational up to 33 MHz, therefore the processor has a peak

execution rate of 33 MIPS.

6.2 MSL16A

The evaluation of MSL16A is divided into three parts. The stack and ALU

designs are detailed separately, followed by the functional verification of MSL16A

and performance comparison with other low power processors.

6.2.1 A Comparison of 3 Stack Designs

To evaluate the three stack designs described in Section 5.4, three different 16-bit

stack elements were designed. A 16-bit stack element was created by connecting 、

one control process and sixteen 1-bit datapath processes together. The same

input to the stack was used in all three cases for a fair comparison. In all

cases, these results came from stack elements running at 5V power supplies. Al l

PFETs are 8A x 2A and NFETs are 4A x 2A except some of them were sized for

better performance. The stacks were implemented with CAST and simulated

with HSPICE. A l l measurements were based on HSPICE(98.2) on a A M I 1.2/i

CMOS double layer metal process, using MOSIS parametric test results of run

N81Y.

6.2.1.1 Performance

The required cycle times for push or pop operations are listed in Table 6.1. The

best-case push cycle (first element is empty) of the Lazy Stack was found to be

13.3% shorter than that of the Eager Stack. Moreover, the best-case pop cycle

(first element is full) of the Lazy Stack is 50.9% shorter. In fact, for the Eager

Stack, the worst-case is the same as the best/average-case as each stack element

wil l do the same communication actions when pushed/popped even if i t is empty.

Chapter 6 Results 70

Stack Operation Cycle Time(ns)
Eager push 17.280

pop 15.936
Lazy push {best case) 14.980

pop (best case) 7.824
push {general case) 19.510
pop {general case) 2.956xiV+ 7.824

Pointer push 11.838
pop 6.205

Table 6.1: Simulated cycle time for different Stack Design

However, if the first element is full, the Lazy Stack wil l be 12.9% slower than

the Eager Stack when performing a push operation. The Lazy Stack performs

best if and only if the first stack element is empty. For pop operations, the

Lazy Stack wil l only lose if TV > 3, where N equals to the number of empty

elements before the first full element. I t can be easily seen that the Lazy Stack

wil l perform best when a push operation is followed by a pop operation {N = 0) 、

but this wil l not always be the case. As delay-insensitive circuits take advantage

of best and average cases, the Lazy Stack should perform better than the Eager

Stack.

In terms of performance, the Pointer Stack is a clear winner. I t is about

20% faster than the best-case Lazy Stack with a constant cycle time. i.e. its

performance wil l not degrade no matter how much data is pushed into the stack.

This performance gain is achieved by eliminating the data reshuffle operation

required in the other two designs. Only one pointer passing step instead of a

series of data reshuffling.

6.2.1.2 Power Consumption

In Table 6.2, the cycle time, power dissipation and power-delay product of a

single Lazy/Eager stack element were compared. Power-delay product figures

are included because they represent the energy consumed per operation which

is a better metric for energy efficiency than power as power could be reduced

Chapter 6 Results 71

by simply lowering the clock speed of a processor. The much higher energy effi-

ciency of the Lazy Stack can be easily overlooked. For an Eager Stack with 32

elements deep, the final power-delay product is actually 32 times higher as each

stack element consumes power for each push/pop operation.

Eager Stack Lazy Stack Pointer Stack
Push Push(best) Push

"~^elay(ns) ~ 17.280 ~ 14.980 “ 11.838
" P ^ e r (m W) 18.013 _ 17.456 — 19.240
Power-Delay 311.265 261.491 227.763
Product(pJ)

Eager Stack Lazy Stack Pointer Stack
Pop Pop(best) Pop

~^e lay(ns) — 15.936 — 7.824 “ 6.205 —
Power(mW) 20.978 11.451 12.380
Power-Delay 334.305 89.593 76.818
Product(pJ) 、

Table 6.2: Power-Delay Product Comparison

The Lazy Stack takes advantage of the fact that idle components in an asyn-

chronous circuit waste negligible power. As a result, only the first element and

the full elements in front of i t consume power when pushed and only the first

full element and elements before it consume power. The Lazy Stack is thus a

more energy efficient asynchronous stack implementation than the Eager Stack

in the best case.

However, the Pointer Stack is the clear winner in terms of energy efficiency.

Although the power consumption of the Pointer Stack is higher than the other

two designs, it is more energy efficient as it actually runs faster and only the

active element consume power, resulting in a lower power-delay product.' i.e.

less energy wasted for each push/pop operation for all situations. I t consumes

12.9%/14.3% less energy even compared to Lazy Stack's best case push/pop

situations.

Chapter 6 Results 72

6.2.1.3 Silicon Area

The circuit layouts were generated with automatic layout tools which produced

stacks that are not practical (too large in area) to use in reality but the compar-

ison is still meaningful. The sizes of a single 16-bit stack element of the three

different stack implementations are shown in Table 6.3. The stack actually im-

plemented in MSL16A is much smaller as its layout was created by hand. The

final stacks can be composed by linking up these 16-bit stack elements, depend-

ing on how deep the stacks are. Thus, the size of the final stacks are directly

proportional to the size of its 16-bit stack elements.

Although the control process of the Eager Stack is much simpler, the size of

a Lazy Stack element is 5% smaller than that of an Eager Stack element. As

mentioned earlier, each 1-bit datapath process of the Lazy Stack is optimized

as it does not have to store the value of the next element when popped. This
%

saves a considerable amount of space as a single stack element contains 16 1-bit

datapath processes. A larger control process is thus insignificant. That is the

reason why the three stacks' sizes are quite close to each other as the datapath

processes are similar for the three designs.

The size of the pointer stack is slightly bigger, 6% larger than the Eager

Stack, but still i t is chosen for its energy efficiency at the cost of a slight decrease

of silicon area efficiency. However, its control process is more complicated as it

involves more communication actions which required more time to develop and

verify.

Stack Area
L a z y 2 3 6 4 x 350 = 827,400入2 ..
Eager 1980 x 441 = 873, ISOA^

Pointer 1372 x 675 = 926, IQOA^

Table 6.3: Size of a single 16-bit stack element (automatically generated)

Chapter 6 Results 73

6.2.1.4 Hand Layout vs. Auto Layout

The layout generated by the automatic layout tools (CAST) is not area opti-

mized which is only suitable for control circuit generation. Work done by other

colleagues suggests that the same design layout by hand can be seven times

smaller, with comparable performance and power consumption, but requires a

much longer development cycle. Wi th CAST, the stack layout can be generated

within several days while hand layout may take more than 2 months to complete.

The final decision was that all datapath components layouts were developed by

hand while the layout of the control circuit of MSL16A was generated by CAST

automatically.

6.2.2 Evaluation of the ALU

Performance estimates for the asynchronous ALU were made using HSPICE. In 、

all cases, these results came from an ALU running at 5V power supply. Al l

PFETs are 6A x 2A and NFETs were 3A x 2A except some of them were sized for

better performance. The layout of the ALU was created by hand and simulated

with HSPICE. Similarly, all measurements are based on HSPICE(98.2) on a A M I

1.2/i CMOS double layer metal process, using MOSIS parametric test results of

run N81Y.

operation Delay(ns) Power (mW) Power-Delay-Product (p J)
XOR 45.741 118.741
AND 2.605 43.341 112.903

2/ 3.130 50.358 157.621
0= 7.019 48.078 337.459

addition(typ.) 17.746 24.543 435.540 ..
additiQn(worst) 42.343 14.995 634.888

Table 6.4: Performance of the ALU

Simulation results are shown in Table 6.4. The timings for addition closely

Chapter 6 Results 74

resemble the findings in [54], where a 32-bit asynchronous ARM^ A L U targeted

at 1.2ii CMOS process was implemented. The longest carry chain in a “typical"

addition is assumed to be 4 bits and the worst case is a 16-bit carry propagation.

The size of the A L U is 4362X428A2.

6.2.3 Evaluation of MSL16A

The final layout of MSL16A was functionally simulated using IRSIM(9.4.1) [43

wi th a custom designed test program and i t was found to be functionally correct.

The value stored in the T register, the output of the data and return stacks, the

value output at the memory port and the decoded instructions were monitored

in the simulation process to make sure the processor ran correctly.

The following is the program which was used to test the MSL16A micro-
、

processor. I t uses all of the instructions of MSL16A, and the listing below is

organized so that each line corresponds to a 16-bit word containing 4 x 4-bit in-

structions. The first sequence computes 1 - 1 which is implemented as l + (- l)

in the ALU. This tests the worst case carry path of the processor. The program

runs forever as i t loops back to the start wi th a clean stack.

a: NOP LIT 1 (test +, SWAP,LIT and NOP)

NOP LIT 1

- L I T 1 .,

NOP SWAP + LIT

LIT FFOO

NOP LIT FF (use FFFF to complement T)

XOR XOR DUP DUP (test XOR and DUP)
la 32-bit RISC architecture developed by Advanced RISC Machines Limited

Chapter 6 Results 75

XOR >R R> NOP (set T to 0 to test >R R>)

LIT 0

0= LIT b (test 0=)

AND GOTO NOP NOP (jump to b)

b: LIT FFOO (store 10 to mem[FFOO])

NOP LIT 10 (and then read from mem[FFOO])

NOP ！ @ DROP (DROP 10)

NOP DROP NOP NOP (make the stack empty)

CALL c (subroutine call)

NOP LIT a (loop back to a)

NOP GOTO NOP NOP

、

c: NOP R> GOTO NOP (subroutine return)

Figure 6.2 and 6.3 show how MSL16A was functionally verified wi th IRSIM.

The number of monitored signals was reduced for demonstration purpose. Bus

addr was the address bus, mem was the emulated external memory, T monitored

the separate top-of-stack register and the rest monitored the correctness of the

decoded instruction. As shown in the figures, MSL16A was executing the 8th

line of code in a (XOR > R R > NOP) and fetching the instruction stored in

memory location 9. The memory returned 5000h wKich represented LIT 0. The

first X O R set T to 0 as the value stored on the top of the data stack is the

same as T (FFFEh). The value stored in T was correctly restored to 0 after the

execution of > R and R > . “

Line 9-11 implemented an unconditional jump. T became FFFFh(- l) after

0 = as T was 0. The address of 6 - l(0012h) was then stored in T as the branch

target address. A N D was used to test whether the branch condition was met

Chapter 6 Results 76

iD 而丨甜丨丨 II 甜 fi 丨 lltnfi 丨 infirriifi 币帘 fi 而 fiifn 出而 iUmPfiHilimiilP 历 l i fMM 丨 iTr_frii!«MiliBMM̂ ani||aMiri丨丨'|'II丨丨"⑴1 丨.丨'...叩丨1丨”丨門‘丨•:”1丨‘丨I'1"1“1 丨丨 I•丨‘丨"丨丄 il:ii_i〕i=:1,丨•丨“ ^^^gg^mr—
a — ^ ^ ^ ― z o o m Use window print 51

dHas; axec/nop

Figure 6.2: IRSIM simulation of test program (Part 1)

igSB âiiiilBiaiiiriaiiiiifiiit 11 111 I'v 摘删’,知ii‘,.,| I |丨||.-丨.1 . 困I

addr j ^ j j l j ^ j j ^ j ^ ^ ^ ^ j j j j l j j l l 0014

Figure 6.3: IRSIM simulation of test program (Part 2)

(set T to the target address if the condition was met, otherwise set T to 0) as

G O T O would not alter the PC if T was 0 during execution. This could be seen

in the execution of G O T O as ZERO was also raised to see if T is 0. After the

execution of G O T O , MSL16A dropped the pre-fetched instruction at OOOCh and

tried to fetch the instruction at 0013h(6) instead. The pipeline was stalled and

waited for the memory to respond. After the reception of 50FFh from memory,

L I T FFOO, the processor started execution right away and begun to pre-fetch

the next instruction from 0014h again.

A summary of the major chip features of MSL16A is given in Table 6.5.

Chapter 6 Results 77

Technology 1.2/im 2-layer metal CMOS
Chip Size 4.335mmx4.671mm
Transistors 66,500
Power Supply 5V
Power Consumption 95.09mW
Performance 33MIPS

Table 6.5: MSL16A chip summary

6.2.3.1 Performance Estimation

The performance of the stack is critical as almost all instructions push/pop

data to/from the stack. The average processing rate is expected to be 33 MIPS

because on average the EXECUTE stage delay, the critical path delay, is less

than 30ns (assuming the memory is fast enough). This was estimated from the

HSPICE simulation results of the ALU. The internal power consumption of the

chip, excluding power dissipated in the bonding pads, was found to be 95.09mW

at peak by IRSIM. 〜

6.2.3.2 Silicon Area

The chip layout is shown in Figure 6.4. A l l processor components (including

bonding pads) were integrated in 4.335mm x 4.671mm(20.249mm2) and all tran-

sistors are minimum sized, 6A x 2A for PFETs and 3A x 2A for NFETs, except

some are sized for higher performance. The area of the two stacks, which was

already heavily optimized by manual layout, took up close to half of the total

chip area. The layout of the processor is in no way optimal as the routings of

the datapath components and control signals were done by the automatic router

provided by Magic [41]. The floorplanning of MSL16A, which was done manu-

ally, is also far from perfect. The area inside the pad frame is not highly utilized

but this was not critical as it was the smallest pad frame suitable for MSL16A

on MOSIS's A M I 1.2/im 2-layer metal CMOS process.

Chapter 6 Results 78

I j g g j j ^ j ^ ^ ^ ^ y 画

^ ^ ^ ^ i N K ^ t t t i M K i 、 : i ： ••：,；•：-.MHWIIWIMWI<IWKP%、.>i」………二―;...…:.〜.,„„—_：•

Figure 6.4: MSL16A chip image

6.2.3.3 Comparing with other Low Power Processors

As a basis for comparison among the four processors, Table 6.6 shows the char-

acteristics of MSL16A’ ASPRO-216 [22], TITAC-2 [9] and StrongARM 110 [13 .

The TITAC-2 chip is a 32-bit microprocessor which was fabricated using 0.5/x

CMOS standard cell technology and it occupied 12.15mmx 12.15mm. Similarly,

ASPRO-216 is a QDI 16-bit RISC microprocessor targeted on a 0.25/i five layer

metal CMOS technology and i t occupied about 4mm^ The StrongARM 110 is

a commercially available low power 32-bit microprocessor which was fabricated

using 0.35/im three-metal CMOS process with a die size of 50mm^. "

The power consumption is very low although MSL16A contains 66,500 tran-

sistors and operates at 5V. The reason is that the pointer stack is a highly energy

efficient design, and the two stacks dominate the transistor count and yet only

Chapter 6 Results 79

MSL16A ASPRO-216 TITAC-2 StrongARM 110

Process 1.2/Ltm 2-layer 0.25/Ltm 5-layer 0.5pm 3-layer 0.35/Lxm 3-layer

metal C M O S metal C M O S metal C M O S metal C M O S

Chip area 20.2mm^ 147.6mm'^ 50mm^

No. of transist^ 66,500 400,000 496,400 2,500,000

Cache size W / A 8 K B 16KB data

16KB instruction

"Performance — 33MIPS@5V 200MIPS@3V 52.3MIPS@3.3V 185MIPS@1.65V

"^ssipation 95.09mW 0 .5W “ 2 .11W 45QmW

Power-Delay 2.882nJ 2.5nJ 40.34nJ 2.432nJ

Product

Table 6.6: Characteristics of MSL16A, ASPRO-216 and TITAC-2

the active stack element consumes power. This is a good example to demonstrate

the potential benefits asynchronous designs may enjoy.

For a fair comparison, the results of MSL16A, TITAC-2 and StrongARM 110

are scaled to the same technology as the ASPRO-216 (0.25/im and 3V) based on 、

the short channel devices general scaling model. Th is is the most realist ic model

for todays situation as voltages and dimensions scale with different factors [61 .

The performance is scaled by a factor of 1 /5 (dimension) while the power con-

sumption is scaled by a factor of l / f / ^ (voltage). Table 6.7 shows the scaled

results.

P MSL16A ASPRO-216 TITAC-2 StrongARM 110
Chip area 0.876mm^ 36.9mm^ 25.51mm2

l^erformance 158.4MIPS “ 200MIPS— 104.6MIPS 259MIPS
d i ss ipa t i on ~ 34.23mW “ 0.5W “ 1.744W _ 1.488W

Power-Delay0.2161nJ 2.5nJ 16.67nJ 5.745nJ
Product

Table 6.7: Scaled performance of MSL16A, ASPRO-216 and TITAC-2

I t can be easily seen that, when scaled to the same technology, MSL16A is

much smaller than the TITAC-2, ASPRO-216 and StrongARM 110. This can

be deduced from the fact that both ASPRO-216 and TITAC-2 used at least six

Chapter 6 Results 80

times more transistors compared to MSL16A. MSL16A can be smaller not only

because of its simple architecture, but also its high code density. 90% of the 2.5

mil l ion transistors in StrongARM 110 are in the two 16KB caches. Because of

the high code density and minimal instruction set of the architecture, MSL16A

does not require any cache to improve performance. This is why MSL16A could

be implemented by using much less transistors.

The performance of MSL16A is lower in terms of MIPS but i t is not a very

good performance measure. MIPS depends on both the instruction set design

and the instruction frequencies. ASPRO-216 provides a way to embed a specific

hardware unit into the processor core while adding the instructions which control

i t in the instruction set and there are 64 possible custom instruction slots. The

instruction set of the T ITAC-2 is similar to MIPS R2000 and the StrongARM

110 implements the ARM^ V4 instruction set. The four processors listed have
、

very different instruction sets and the MIPS figures are provided for reference

only.

The power dissipation of MSL16A is much lower than that of the other two

processors and the lower transistor count cannot be the only reason to account for

this. The power consumption is much more than six times lower than ASPRO-

216. The pointer stack is a very low power design and the transistor count is

dominated by the data and return stacks. In fact, the number of active transistors

during run time is much smaller than 66,500 and thus the power consumption of

MSL16A can be 14 times lower than ASPRO-216. On the other hand, simulation

results showed the power of StongARM 110 is dominated (43%) by its two large

16 kB caches. Again, as cache was not implemented in MSL16A and each 16-bit

access fetches four instructions, the power of MSL16A is very low. ..

The power-delay products of T ITAC-2, ASPRO-216 and StrongARM 110

2ARM and StrongARM are registered trademarks of Advanced RISC Machines Ltd.

Chapter 6 Results 81

are higher as their architectures are more complex. T ITAC-2 is a 32-bit proces-

sor wi th a 5-stage pipeline while ASPRO-216 supports out-of-order execution.

StrongARM 110 is a 32-bit processor wi th features like load and store multiple

instructions, auto-increment and auto-decrement for loads and stores, and con-

ditional execution of all instructions. These make the energy required for each

instruction higher compared to MSL16A. Low power-delay product means that

MSL16A is a fast and energy efficient architecture. Moreover, MSL16A is small

and these features make it eminently suited to low power embedded applications.

6.3 Summary

The FPGA based implementation of MSL16 was first presented. The results were

encouraging and motivated the development of an asynchronous re-implementation. 、

This chapter detailed the evaluation of the three stack designs presented in Chap-

ter 5. The Pointer Stack was found to be the fastest and most power efficient.

The Pointer Stack performed at least 20% faster and consumed at least 12.9%

less energy than the other two designs in HSPICE simulations. Generating cir-

cuit layouts wi th CAST required less development effort but those layout were

found to be about seven times larger than manual layout. Control circuits in

MSL16A were realized automatically wi th CAST and all datapath elements were

optimized by hand.

The performance estimation of MSL16A and a comparison wi th three other

asynchronous processors, including a commercially available low power processor,

were also presented in this chapter. The final layout of MSL16A was functionally

verified using IRSIM. MSL16A was targeted to a 1.2/im 2-layer metal CMOS

process and contains 66,500 transistors at the size of 20.2mm2. The estimated

performance was 33 MIPS at 5V consuming a maximum of 95.09mW power. For

a fair comparison, MSL16A, ASPRO-216, T ITAC-2 and StrongARM 110 were

Chapter 6 Results 82

scaled to the same technology. MSL16A was found to consume the least amount

of energy per instruction because of its high code density, simple instruction

set and architecture. These showed that MSL16A is a fast and energy efficient

design and meets the size and power limitations of portable devices.

t'

Chapter 7

Conclusions

MSL16 was targeted for low power embedded applications as i t offered good code

density, high performance at a small area which meet the power consumption

and size constraints of such applications. This thesis presented an asynchronous
%

re-implementation of MSL16, called MSL16A, which is a quasi delay-insensitive

Forth microprocessor developed based on Martin's synthesis method.

Previous low power asynchronous processors have applied mainly low level

power efficiency techniques to maintain code compatibil ity wi th previous syn-

chronous architectures. In this work, architectural considerations were explored

to achieve low power consumption. The most radical feature was the use of 4-bi t

instructions to achieve high code density and low memory bandwidth. This is

beneficial to power efficiency as the energy consumed in the memory system is

in proportion to the amount of code that must be fetched and the memory may

consume 50% of the total power of a low power system. The instruction set is

minimal and the architecture of MSL16 was designed to efficiently execute the

Forth language, which has a higher code density than C or assembly language.

An asynchronous re-implementation of MSL16 was undertaken to explore the

potentials of asynchronous logic for low power applications and to demonstrate

the feasibility and practicability of using asynchronous circuits to meet the cost

83

Chapter 7 Conclusions 84

and power constraints of the embedded market.

MSL16A was also developed to demonstrate the feasibility of building a low

power embedded processor using asynchronous design techniques. The MSL16A

design employs a two stage pipeline and incorporates a simple ripple-carry asyn-

chronous ALU adder wi th a data dependent propagation time which gives mean

performance at a low hardware cost. This architecture allows the use of slower

memory and no cache without significantly degrading its performance. I t has

been shown that large caches are costly in terms of silicon area and power con-

sumption. By eliminating the requirement of cache memory for performance, the

chip power of MSL16A could be greatly reduced.

The stack design was critical in MSL16A as each instruction execution in-

volves the use of the data stack or the return stack and no previous work on

comparisons of asynchronous stack designs has been reported. Three custom 、

designed asynchronous stacks, namely the Eager, Lazy and Pointer Stacks, were

described and analyzed. I t was shown that the Pointer Stack was the best so-

lution for MSL16A as it was the most power and energy efficient of the three

designs, but slightly larger in area than the Eager Stack.

The estimated performance, power consumption and chip area showed that

the MSL16A design has advantages over previous designs. MSL16A contains

about 66,500 transistors incorporated in 20.2mm^ and the expected performance

is 33 MIPS, using 1.2/im CMOS technology, for a power consumption of 95mW.

Compared with a commercial low power processor, StrongARM 110 and two pre-

viously reported asynchronous microprocessors, the ASPRO-216 and ECSTAC,

i t was shown that, when scaled to the same technology, MSL16A is the smallest,

having the lowest power-delay product and lowest power consumption among

the four processors. MSLlGA's small area and low power-delay product indicate

i t is both area and energy efficient and thus well suited to low power applica-

tions. The success of MSL16A is attributed to its simple stack based architecture

Chapter 7 Conclusions 85

and high code density. I t is clear that such an architecture closely matches the

highly constrained power and cost requirements of battery operated, portable

and embedded applications.

7.1 Future Work

The layout of the MSL16A processor presented in the thesis could certainly be

improved, resulting in smaller area. A smaller chip would definitely help reduce

the total system cost, which is a highly constrained factor of portable systems. In

order to reduce the area of MSL16A, better floorplanning and layout of MSL16A

are required.

The stacks consumed most of the chip area although the layout was made

manually. One possible approach to reduce the stack size is to transmit data 、

using the bundled-data technique (presented in Chapter 2). This would result

in a smaller stack but this would also violate the delay assumption made by

the quasi delay-insensitive circuit style (unbounded wire delays). In a bundled-

data system, the datapath uses a single wire for each bit and provides a single

t iming control signal. The control signal must be greater than longest delay

of any of the data bits and some suitable safety margin are generally added

but this would lower the performance of the processor. This would be a good

way to investigate the tradeoffs between area and performance of the two data
t«

representation techniques.

Interrupts or exceptions should be added to MSL16 since they are of high im-

portance in embedded systems. Stack machines have good interrupt performance

since the cost of state saving and restoring, and returning to the interrupted rou-

tine is low. RISC machines must go through a complex pipeline saving and

restoring procedure to avoid losing information of partially executed instruc-

Chapter 7 Conclusions 86

tions. Moreover, some registers are usually saved to create working room for the

interrupt routine in the register file. MSL16 has a simple pipeline and only the

address of the next instruction needs to be stored. The data or return stack do

not need to be saved and the interrupt service routine may push its information

on top of the stacks without destroying the interrupted program. This means

that MSL16 can treat an interrupt as a hardware generated procedure call. As

the cost of procedure calls is very low in MSL16, fast interrupt processing time

can be achieved.

The overall benifits of asynchronous designs are hard to qualify. Although

they gave advantages in speed and perhaps power consumption, they are larger

in area and more difficult to design. A synchronous implementation of MSL16A

using the same technology would allow for a direct comparison between syn-

chronous and asynchronous design methodologies.

Bibliography

1] D. L iu and C. Svensson, "Power consumption estimation in cmos vlsi chips,"

IEEE Journal of Solid-State Circuits, vol. 29, pp. 663-670, June 1994.

2] A. J. Mart in , S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus,

"The design of an asynchronous microprocessor," in Advanced Research in

VLSI (C. L. Seitz, ed.), pp. 351-373, M I T Press, 1989.

3] J. A. Tierno, A. J. Mart in, D. Borkovic, and T. K. Lee, "A 100-MIPS GaAs

asynchronous microprocessor," IEEE Design & Test of Computers, vol. 11,

no. 2，pp. 43-49, 1994.

4] A. J. Mart in , A. Lines, R. Manohar, M. Nystroem, P. Penzes, R. South-

worth, and U. Cummings, "The design of an asynchronous MIPS R3000

microprocessor," in Advanced Research in VLSI, pp. 164-181, Sept. 1997.

5] T . Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura, "T ITAC:

Design of a quasi-delay-insensitive microprocessor," IEEE Design & Test of

Computers, vol. 11, no. 2，pp. 50—63, 1994.

6] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods,

" A M U L E T l : A micropipel ined A R M , " in Proceedings IEEE Computer Con-

ference (COMPCON), pp. 476-485，Mar. 1994.

87

Bibliography ^

7] S. V. Morton, S. S. Appleton, and M. J. Liebelt, "ECSTAC: A fast asyn-

chronous microprocessor," in Asynchronous Design Methodologies, pp. 180-

189，IEEE Computer Society Press, May 1995.

8] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver,

"AMULET2e: An asynchronous embedded controller," in Proc. Interna-

tional Symposium on Advanced Research in Asynchronous Circuits and Sys-

tems, pp. 290-299, IEEE Computer Society Press, Apr. 1997.

9] A. Takamura, M. Kuwako, M. Imai, T. Fujii, M. Ozawa, I. Fukasaku,

Y. Ueno, and T. Nanya, "TITAC-2: An asynchronous 32-bit microproces-

sor based on scalable-delay-insensitive model," in Proc. International Conf.

Computer Design (ICCD), pp. 288-294, Oct. 1997.

10] S. B. Furber, J. D. Garside, and D. A. Gilbert, "AMULETS: A high-

performance self-timed A R M microprocessor," in Proc. International Conf.

Computer Design (ICCD), pp. 247-252, Oct. 1998.

11] K.-R. Cho, K. Okura, and K. Asada, "Design of a 32-bit ful ly asynchronous

microprocessor (FAM) , " in Proc, of the Midwest Symposium on Circuits and

Systems (R. W. Newcomb, B. Geller, and M. E. Zaghloul, eds.), pp. 1500-

1503，IEEE Computer Society Press, Aug. 1992.

12] T. D. Burd and R. W. Brodersen, "Processor design for portable sys-

tems," Journal of VLSI Signal Processing, vol. 13(2/3) , pp. 203-222, Au-

gust/September 1996.

13] J. Montanaro and e al, “A 160-MHz, 32-b, 0.5-W CMOS RISC micropro-

cessor," IEEE Journal of Solid-State Circuits, vol. 31’ pp. 1703-1714, Nov.

1996.

14] P. H. W. Leong, P. K. Tsang, and T. K. Lee, "A FPGA based Forth mi-

croprocessor," in IEEE Symposium on FPGAs for Custom Computing Ma-

Bibliography ^

chines (K. L. Pocek and J. Arnold, eds.), (Los Alamitos, CA), pp. 254-255,

IEEE Computer Society Press, Apr. 1998.

15] Forth Inc, "Federal express supertracker." h t t p : //www. f o r t h . com, 1997.

16] IEEE Standard 1275-1994 ——Standard for Boot (Initialization Configura-

tion) Firmware: Core Requirements and Practices. IEEE, 1994. I E E E 1275

Technical Committee.

17] J. Rash, "Space related applications of forth."

h t t p : / / g r o u c h o . g s f c . n a s a . g o v / f o r t h , 1997.

18] C. H. Moore, "The evolution of FORTH, an unusual language," Byte: the

small systems journal, vol. 5，pp. 76-92, Aug. 1980.

19] P. Koopman, Stack computers : the new wave. Ellis Horwood series in

computers and their applications, Chichester : E. Horwood, 1989. 、

20] C. H. T ing and C. H. Moore, "Mup21

- a high performance misc processor," Forth Dimensions, (also available

at http://www.dnai.com/ jfox/mup21.html), Jan. 1995.

21] A. J. Mart in , "Programming in VLSI: From communicating processes to

delay-insensitive circuits," in Developments in Concurrency and Communi-

cation (C. A. R. Hoare, ed.), U T Year of Programming Series, pp. 1-64,

Addison-Wesley, 1990.
ti

22] M. Renaudin, P. Vivet, and F. Robin, "ASPRO-216: A standard-cell QDI

16-bit RISC asynchronous microprocessor," in Proc. International Sympo-

sium on Advanced Research in Asynchronous Circuits and Systems, pp. 22-

31, 1998.

23] S. Hauck, "Asynchronous design methodologies: An overview," Proceedings

of the IEEE, vol. 83, pp. 69-93, Jan. 1995.

http://groucho.gsfc.nasa.gov/forth
http://www.dnai.com/

Bibliography ^

24] G. Gopalakrishnan and P. Jain, "Some recent asynchronous system design

methodologies," Tech. Rep. UUCS-TR-90-016, Dept. of Computer Science,

Univ. of Utah, Oct. 1990.

25] D. W. Dobberpuhl, R. T. Witek, R. Al lmon, R. Anglin, D. Bertucci, S. Br i t -

ton, L. Chao, R. A. Conrad, D. E. Dever, B. Gieseke, S. M. N. Has-

soun, G. W. Hoeppner, K. Kuchler, M. Ladd, B. M. Leary, L. Madden,

E. J. McLellan, D. R. Meyer, J. Montanaro, D. A. Priore, V. Rajagopalan,

S. Samudrala, and S. Santhanam, "A 200-MHz 64-bit dual-issue CMOS mi-

croprocessor," Digital Technical Journal of Digital Equipment Corporation,

vol. 4，pp. 35-50, Fall 1992.

26] T. J. Chaney and C. E. Molnar, "Anomalous behavior of synchronizer and

arbiter circuits.," IEEE Transactions on Computers, vol. C-22, pp. 421-422,

Apr. 1973. 、

27] C. Mead and L. Conway, Introduction to VLSI Systems. London: Addison-

Wesley, 1980.

28] S. H. l inger , Asynchronous Sequential Switching Circuits. New York: Wi ley-

Interscience, John Wiley k Sons, Inc., 1969.

29] D. A. Huffman, "The synthesis of sequential switching circuits," in Sequen-

tial Machines: Selected Papers (E. F. Moore, ed.), Addison-Wesley, 1964.

30] A. J. Mart in , "The l imitations to delay-insensitivity in asynchronous cir-

cuits," in Advanced Research in VLSI (W. J. Dally, ed.), pp. 263-278, M I T

Press, 1990.

31] J. Liu, "The design of an asynchronous mult ipl ier," MSc Thesis., Depart-

ment of Computer Science, University of Manchester, Sept. 1995.

'32] C. A. R. Hoare, "Communicating sequential processes," Communications of

the ACM, vol. 21, pp. 666-677, Aug. 1978.

Bibliography ^

33] N. C. Paver, The Design and Implementation of an Asynchronous Micropro-

cessor. PhD thesis, Department of Computer Science, University of Manch-

ester, June 1994.

34] S. B. Furber , VLSI RISC Architecture and Organization. USA: Dekker,

1989.

35] I. E. Sutherland, "Micropipelines," Communications of the ACM, vol. 32’

pp. 720-738, June 1989.

36] D . A . Pat terson and J. L . Hennessy, Computer Organization and Design:

The Hardware/Software Interface. 2929 Campus Drive, Suite 260, San Ma-

teo, CA 94403’ USA: Morgan Kaufmann Publishers, 1994.

37] P. Koopman, "Why stack machines?," Computer Architecture News,

vol. 21(1), Mar. 1993. 、

38] L . Brod ie , Starting Forth: an introduction to the Forth language and oper-

ating system for beginners and professionals. Prent ice Ha l l , 1981.

39] B. Muench and C. Ting, "eforth 1.0 source code."

f t p : / / f t p . f o r t h . o r g / p u b / F o r t h / c o m p i l e r s / c r o s s / e F o r t h , 1990.

40] ANS Forth Standard - document X3.215-1994. Amer i can Na t i ona l Stan-

dards Institute, 1994. X3J14 Technical Committee.

41] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo,.W. S. Scott, and G. S. Taylor,

"Magic: A VLSI layout system," in ACM IEEE 21st Design Automation

Conference, (Los Angeles, Ca.，USA), pp. 152-159, IEEE Computer Society

Press, June 1984. „

42] A. J. Mart in, "A synthesis method for self-timed VLSI circuits," in Proc.

International Con}. Computer Design (ICCD), (Rye B rook , N Y) , pp. 224 -

229，IEEE Computer Society Press, 1987.

ftp://ftp.forth.org/pub/Forth/compilers/cross/eForth

Bibliography ^

43] A. Salz and M. Horowitz, "IRSIM: An incremental MOS switch-level simula-

tor , " in Proceedings of the 26th ACM/IEEE Design Automation Conference

(A. S. IEEE, ed.)，(Las Vegas, NV), pp. 173—178，ACM Press, June 1989.

44] D. E. Muller and W. S. Bartky, "A theory of asynchronous circuits," in

Proceedings of an International Symposium on the Theory of Switching,

pp. 204-243, Harvard University Press, Apr. 1959.

45] M. Shams, J. Ebergen, and M. Elmasry, "A comparison of CMOS imple-

mentations of an asynchronous circuits primitive: the C-element," in Inter-

national Symposium on Low Power Electronics and Design, pp. 93-96, Aug.

1996.

46] M. Shams, J. C. Ebergen, and M. I. Elmasry, "Optimizing CMOS implemen-

tat ions of the C-element," in Proc. International Conf. Computer Design

(ICCD), pp. 700-705, Oct. 1997. 、

'47] S. B. Furber and 0 . A. Petlin, "Designing C-elements for testability," Tech.

Rep. Technical Report UMCS-95-10-2, Department of Computer Science,

University of Manchester, 1995.

48] M. Valencia, M. J. Bellido, J. L. Huertas, A. J. Acosta, and S. Sanchez-

Solano, "Modular asynchronous arbiter insensitive to metastability," IEEE

Transactions on Computers, vol. 44, pp. 1456—1461, Dec. 1995.

49] M. B. Tosic, M. K. Stojcev, and G. L. Djordjevic, "Asynchronous controller

for token-ring mutual exclusion: delay-insensitive arbiter cell," in Proc. of

the 21st International Conference on Microelectronics, pp. 819-822, Sept.

1997. •

50] M. B. Tosic, M. K. Stojcev, and G. L. Djordjevic, "Asynchronous controller

for token-ring mutual exclusion: r ing design," in Proc. of the 21st Interna-

tional Conference on Microelectronics, pp. 823—826, Sept. 1997.

Bibliography ^

51] S. M. Mahmud and S.-U. Alam, "A new arbitration circuit for synchronous

multiple bus multiprocessor systems," in Proceedings of the First Interna-

tional Conference on Systems Integration (R. T . Ng, Peter A. ; Ramamoor-

thy, C.V.; Seifert, Laurence C.; Yeh, ed.), (Morristown, NJ), pp. 57-62,

IEEE Computer Society Press, Apr. 1990.

52] A. Yakovlev, A. Petrov, and L. Lavagno, "A low latency asynchronous arbi-

t ra t i on c i rcui t , " IEEE Transactions on VLSI Systems, vol. 2, pp. 372-377,

Sept. 1994.

53] Man pages for Caltech Asynchronous Synthesis Tools, 1993.

54] J. D. Garside, "A CMOS VLSI implementation of an asynchronous ALU,"

in Asynchronous Design Methodologies (S. Furber and M. Edwards, eds.),

vol. A-28 of IFIP Transactions, pp. 181-207, Elsevier Science Publishers,

1993. 、

55] A. J. Mart in, "Asynchronous datapaths and the design of an asynchronous

adder," Formal Methods in System Design, vol. 1，pp. 119-137, July 1992.

56] D. J. Kinniment, "An evaluation of asynchronous addition," IEEE Trans-

actions on VLSI Systems, vol. 4，pp. 137-140, Mar . 1996.

57] D. Johnson and V. Akella, "Design and analysis of asynchronous adders,"

lEE Proceedings, Computers and Digital Techniques, vol. 145, no. 1, pp. 1—8,

1998. ,,

58] D. J. Kinniment, J. D. Garside, and B. Gao, "A comparison of power con-

sumption in some CMOS adder circuits," in Power and Timing Modeling,

Optimization and Simulation (PATMOS), pp. 106-118, 1995. •‘

59] M. A. Franklin and T. Pan, "Performance comparison of asynchronous

adders," in Proc. International Symposium on Advanced Research in Asyn-

chronous Circuits and Systems, pp. 117-125, Nov. 1994.

Bibliography 94

60] T . K . Lee, A General Approach to Performance Analysis and Optimization

of Asynchronous Circuits. PhD thesis, California Inst i tute of Technology, 、

1995. Technical report CS-TR-95-07.

61] J. M . Rabaey, Digital Integrated Circuits A Design Perspective. Upper Sad-

dle River, USA: Prentice-Hall Verlag, 1996.

%

*i

Publications

• P.H.W. Leong, P.K. Tsang, and T.K. Lee. A FPGA based Forth micropro-

cessor. In Kenneth L. Pocek and Jeffery Arnold, editors, IEEE Symposium

on FPGAs for Custom Computing Machines, pages 254-255, Los A lami tos,

CA, Apr i l 1998. IEEE Computer Society Press.

• P.K. Tsang, C.C. Cheung, K.H. Leung, T.K. Lee, and P.H.W. Leong.
、

MSL16A: An Asynchronous Forth Microprocessor. In Proc. of the IEEE

Region 10 International Conference (TENCON), volume 2, pages 1079-

1082, September 1999.

•f

95

CUHK Libraries

_ l _ l _ | | |
DD3f la3f im

