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Abstract 

Time series indexing has aroused much interest recently. Time series stored 

as feature vectors can be indexed by multi-dimensional index trees like R-Tree 

for fast retrieval. Due to the dimensionality curse problem, transformations 
.‘，>. 

are applied to time series to reduce the number of dimensions of the feature 

vectors while preserving most of the information. The transformation commonly 

used is the Discrete Fourier Transform (DFT) which maps the time series to the 

frequency domain. There are also different transformations available like Discrete 

Wavelet Transform (DWT), Karhunen-Loeve (K-L) transform or Singular Value 

Decomposition (SVD). 

While the use of DFT and K-L transform or SVD have been studied in the 

literature, to our knowledge, there is no in-depth study on the application of 

D W T on this problem. In this paper, we propose to use Haar Wavelet Transform 

for time series indexing. 

The major contributions are: (1) we show that Euclidean distance is pre-

served in the Haar transformed domain and no false dismissal will occur, (2) we 

show that Haar transform can outperform DFT through experiments, (3) a new 

similarity model is suggested to accommodate vertical shifts of time series, (4) 

iii 



a two-phase method is proposed for efficient n-nearest neighbor query in time 

series databases, and (5) we propose two efficient strategies for approximation 

of time warping distance and show experimentally that they achieve significant 

speedup; The approximation function is also shown to be effective in suppressing 

the number of false alarms when acting as filtering function. 
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高效率的子波時間序列索弓丨 

作者:陳健邦 

論文摘要 

時間序列索引是近期熱門的課題。建立特徵向量之索弓丨於多維索引樹上， 

如R-樹，可提供快捷的時間序列檢索。基於維數詛咒的問題，我們會利用 

變換來減低特徵向量之維數，而又能同時保存豐富的資訊，使到檢索速度 

得以大幅改善。離散傅里葉變換被普遍採用作爲時間序列從時域到頻域之 
>、： 

映射，另外尙有奇異値分解亦被經常應用作爲變換，而我們則提倡弓丨入離 

散子波變換以取代離散傅里葉變換作爲映射過程變換函數。本論文主要貢 

獻包括：(1 )證明Haar子波變換能保持Euclidean位距，與及防止誤解除’ 

(2)驗証Haar子波變換比離散傅里葉變換更有效，（3)提供解決縱向移 

位的相似性模型，（4)提出時間序列數據庫有效之二步最鄰域搜尋，（5) 

提供兩個有效近似time warping distance的策略，並驗證此策略作爲節選函 

數時能有效壓抑誤警報的數目。 
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Chapter 1 

Introduction 

Time series data are of growing importance in many new database applications, 

such as data warehousing and data mining [4, 13, 2]. A time series (or time 

sequence)丄 is a sequence of real numbers, each number representing a value for 

an interested attribute at a time point. Typical examples include stock prices or 

currency exchange rates, the volume of product sales, biomedical measurements, 

weather data, etc . . . collected over time. Hence, time series databases supporting 

fast retrieval of time series data and similarity queries are desired. For instance, 

we may want to retrieve stock prices around February 1997; or look for stocks that 

have a sharp drop after some price consolidations; or find stocks with similar price 

movements for a given stock. For these types of queries, approximate matching 

rather than an exact matching is needed. 

In order to depict the similarity between two time series, we have to define 

a similarity measurement during the matching process. Given two time series 

X = (a:o, xi, ...，X n - i ) and y = (y。，Vi-> •", Vn-i)-> a standard approach is to compute 

the Euclidean distance D{x, y) between time series x and y 

0 (茫 ,釣二 ( £ 1 | $广从 | 2 ) ' (1-1) 

^We shall use the terms time series and time sequence interchangeably. 
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By using this similarity model, we can retrieve similar time series by considering 

distance D{x^ y). 

In order to support efficient retrieval and matching of time series, we resort 

to indexing to speed up the searching time. The general strategy in time series 

indexing and matching is depicted in Figure 1.1. 

：Index Creation: Querying: 

^ ^ 丨 ： ^ ^ i 
Simlarity Query 
model  

^ ^ 
” Pre-processing 
' V. / 

rri. . i Feature vector 
Time series • 

pre-processing y^\^ 

& Feature vectors X \ 

Index creation / Index t r e e \ 

/ of time sequence \ 

Candidate sequences 
^ ^ ‘ V  

Reference of sequences ( N 

Timeseries ： ' " ^ ^ ^ j Post-processing ) 

database | 

ZQualified time / 
sequences / 

Figure 1.1: Time Series Indexing 

For index creation, the time series are pre-processed, the pre-processing may 

include normalization, transformation, noise reduction, etc . . . to produce a set of 

feature vectors. These vectors are then inserted into a multi-dimensional index 

tree, on which user can raise query. Upon the arrival of a query, pre-processing 

is done the same way as for the time series database in index creation. The 

feature vector acquired is matched against the index tree, which results in a set 

of candidate sequences. Non-qualified sequences or false alarms are filtered in a 
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post-processing step, by matching with the query sequence in time domain using 

full dimension. QuaMed sequences are thus reported to the user. 

In the pre-processing step of time series, some important issues have to be 

considered: 

1. Dimensionality reduction - Many multi-dimensional indexing methods [19, 

12, 9, 28] such as the R-Tree and R*-Tree [28, 9, 17] scale exponentially 

for high dimensionalities, eventually reducing the performance to that of 

sequential scanning or worse. Therefore, transformation is applied to map 

the time sequences to a new feature space of a lower dimensionality. The 

energy of the time sequence should be concentrated on as few coefficients 

as possible in the new space so that they are sufficient to differentiate 

between two sequences. These coefficients constitute a feature vector of a 

time sequence, which are inserted into multi-dimensional index tree. 

2. Completeness and Effectiveness - In many cases, Euclidean distance is used 

as a similarity measure. When the number of dimensions is reduced, to 

avoid missing any qualifying object, the Euclidean distance in the reduced 

A:-dimensional space should thus be less than or equal to the Euclidean dis-

tance between the two original time sequences. One of the transformations 

that satisfies this condition is the Discrete Fourier Transform (DFT) [2, 36 . 

It is shown by Parseval's Theorem [36] that the Euclidean distance is pre-

served in both frequency and time domains. The power concentration of a 

transformation on the reduced dimensionality should be effective to ensure 

a small amount of false alarms, which are filtered in the post-processing 

step. 

3. Nature of data series - The effectiveness of power concentration of a particu-

lar transformation depends on the nature of the time series. The worst-case 

signal for DFT is white noise, where DFT fails to concentrate energy into 
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the first few coefficients and leads to tremendous amounts of false alarms. 

It is believed that only brown noise or random walks exists in real signals. 

In particular, stock movements and exchange rates can be modeled suc-

cessfully as random walks in [16], for which a skewed energy spectrum can 

be obtained. 

Discrete Fourier Transform (DFT) has been one of the most commonly used 

techniques. However, it misses the important feature of time localization. Piece-

wise Fourier Transform ^ [36] is proposed to mitigate this problem, but the size 

of the pieces leads to other problems. While large pieces reduce the power of 

multi-resolution, small pieces have weakness in modeling low frequencies. 

1.1 Wavelet Transform 

Wavelet Transform (WT) , or Discrete Wavelet Transform (DWT) [15, 26] has 

been found to be effective in replacing DFT in many applications in computer 

graphics[43], image [35], speech [1] and signal processing [10, 5]. We propose to 

apply this technique in time series for dimension reduction and content-based 

search. DWT is a discrete version of W T for numerical signal. Although the 

potential application of DWT in this problem was pointed out in [33], no further 

investigation has been reported to our knowledge. Hence, it is of value to con-

duct studies and evaluations on time series retrieval and matching by means of 

wavelets. 

The advantage of using DWT is multi-resolution representation of signals. It 

has the time-frequency localization property. Thus, DWT is able to give location 

in both time and frequency. For instance, the wavelet representation of a musical 

score can tell when the tones occur and what their frequencies are. Therefore, 

2or short-time Fourier Transform (STFT) 
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wavelet representations of signals bear much more information than that of DFT, 

in which only frequencies are considered. While DFT extracts the lower harmon-

ics which represent the general shape of a time sequence, D W T encodes a coarser 

resolution of the original time sequence with its preceding coefficients. 

The differences between matching signals of coarser resolutions and matching 

only their frequency contents are discussed and we show by experiments that 

Haar Wavelet Transform ,̂ [15], which is a commonly used wavelet transform, 

can outperform DFT significantly. 

We propose a similarity definition to handle the problem of vertical shifts 

of time series. We propose an algorithm on n-nearest neighbor query for the 

proposed wavelet method. The algorithm makes use of the range query and 

dynamically adjusts the range by the property of Euclidean distance preservation 

of the wavelet transformation. 

1.2 T i m e Warping 

For the sake of robustness, Euclidean distance is frequently adopted as the sim-

ilarity model in time series matching. Other similarity models may also be em-

ployed. The choice of appropriate model, in accordance with a particular kind 

of time series, gives rise to better interpretation and semantics of the similarity 

between two sequences. In the speech recognition field, time warping techniques 

37, 13] are used extensively for similarity matching. The idea of time warping 

is that word recognition is usually based on matching pre-stored word templates 

against a waveform of continuous speech, converted into a discrete time series. 

Successful recognition strategies are based on the ability to match words ap-

proximately in spite of wide variations in timing and pronunciation. The time 

^We shall use Haar wavelet transform and DWT interchangeably throughout this paper, 
unless specified particularly. 
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warping approach tries to align the time series and a specific word template so 

that some distance measure is minimized. On the contrary, Euclidean distance 

fails to offer time axis alignment since it matches linearly two time sequences 

based on the same, fixed time axis. 

Algorithms for time warping are proposed in [41, 40, 34]. Although they are 

able to match sequences with time shifts, the computations involved are rather 

high. This imposes a restriction to use this technique in an online system where 

prompt response is demanded. In general, index tree supporting time warping 

distance could be built following the model in Figure 1.1. Unfortunately, unlike 

Euclidean distance, time warping distance does not satisfy the triangle inequality. 

The consequence is that we are unable to guarantee the retrieval of all qualified 

sequences for a given query, thus giving rise to false dismissals. 

The details of time warping technique based index are described and its 

drawbacks are identified. We propose a novel approximation function based 

on wavelets for time warping distance, which results in lower time complexity 

by trading off tiny amount of accuracy. On the other hand, this approximation 

function can also be employed as the filtering function in the post-processing 

step of the querying model of Figure 1.1, which is shown to be both effective and 

efficient experimentally. 

1.3 Outline of the Thesis 

The thesis is organized as follows. 

In Chapter 2, we will give some backgrounds and state the previous works in 

time series retrieval, including the similarity models used in time series matching 

and various indexing methodologies. We will pay particular attention to dimen-

sion reduction applied to time series database. Moreover, we will introduce other 
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time series retrieval approaches. 

In Chapter 3, we will describe our proposed approach, time series matching 

by means of wavelets. First of all, two similarity models are defined for our 

time sequence matching technique. We will introduce wavelets transform, in 

particular the Haar wavelet transform. Important properties of feature extraction 

by Haar transform are discussed. Second, the overall strategy of applying D W T 

to dimension reduction is given and the method for nearest neighbor query in 

dimension reduction problem is proposed. Third, performance evaluations using 

real and synthetic data, together with scalability test are given. 

In Chapter 4, we will give the details of time warping techniques, and describe 

our strategy in approximating time warping distance between two time series. 

Moreover, approximation function is applied to post-processing step as filtering 

function. Experiments are carried out to evaluate the performance. 

We will give a conclusion and summarize our future work in Chapter 5. 



Chapter 2 

Related W o r k 

Time series is primarily concerned with the study of the time variations of pro-

cess. The states for a duration of n time units of a process can be represented 

by a vector of real numbers 

Xo 

Xl 

x= : (2.1) 
xt 

• ^n-l _ 

where Xt is the state recorded at time t. For the sake of convenience, we depict 

time series in Equation (2.1) as x 二 {a;o,zi,...,a:;n-i} unless otherwise specified. 

2.1 Similarity Models for T i m e Series 

The matching of text subsequences [8] is considered as one kind of time series 

matching. In [8], algorithms are presented to find all the occurrences of a pattern 

8 
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in a text. There are various similarity models [14, 20, 18, 3] proposed in time 

series matching. A similarity function that can deal with outliers and different 

scaling factors is introduced in [14]. The basic idea is to find two longest common 

subsequences s^x and 5¾ in x and y respectively, with distance between slc and sy 

under e. Scaling and outliers can be tolerated by applying different linear trans-

formation to s"x and s~jj to maximize the length 1 of the common sequence which 

is an indication of the similarity. A more detailed version of [14] can be found in 

'20]. The computation incurred in finding the linear transformation is quadratic, 

which can be modified to a linear-time randomized approximation of the trans-

formation. If a quadratic algorithm is used, it seems that the computation time 

will be too long when searching the whole database. If a linear algorithm is 

chosen, accuracy is sacrificed. In real practice, a linear algorithm can be used as 

a pruning strategy and a post-processing step should be introduced to filter out 

false alarms. 

In [18], the slope of sequence is considered. The slope of segments {xi , Xi+i} 

and { y ” y i + i } for sequences x and y should be confined within a range [-e, e . 

Two sequences are slope similar if 

- e < {yi+i - Vi) — {xi^i - Xi) < e (2.2) 

Linear scale of sequence can be dealt with by comparing the slope of non-

consecutive sequence points 

- e < {Vz - Vi-i) — ( z � f | - 2^[ii-i) < e 5 > 1 (2.3) 

—e《（"「+l—y�+]—i) — ( z ‘ _ Z t i ) S e 0 < s < l (2.4) 

where s is a scaling factor, ratio of the length of x to y is 1 : 5. This similarity 

measure can reflect human interpretations in matching similar sequences to a 

higher extent. The upward and downward trends are emphasized. However, 
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dimension reduction of the first derivative of sequences are not possible. White 

noises will certainly exist in slope of segments of sequences. It is not very efficient 

to index by multi-dimensional index tree through DFT [2]. Instead, the author 

uses a dynamic hashing function for accessing sequences in order to reduce the 

number of disk accesses. 

In [3], a similarity model with noise tolerance and translation is introduced. 

Two subsequences x and y of equal length are considered similar if one can be 

enclosed within an envelop of a specified width by allowing the amplitude of 

one of the two sequences to be scaled by any suitable amount and its offset 

adjusted appropriately such that the distance between them is within threshold 

e. The similarity between two sequences with 'gap' has also been addressed. For 

a maximum gap size 7 , a stitching window of size o;, two sequences x and y are 

said to be similar if after some removal of non-matching gap with size < 7 , the 

total length of similar subsequence pairs with size equal to uj is greater than 

A times the total length of x and y. Small atomic sequence sets are indexed 

on R-Tree [28] family of structure that can represent all the original sequences 

up to amplitude scaling and offset. As a result, all atomic subsequence matches 

within a user-specified distance e can be efficiently computed by doing self-join on 

this structure. The methodology to process sequences with gaps and amplitude 

variations is novel. Unfortunately, there is no experimental result provided in 

the original paper. We have no way to evaluate the effectiveness of the similarity 

model and the time complexity involved in self-join. 

A general framework for similarity queries for time series is introduced in 

31]. A pattern language, a transformation rule language, and a query language 

are defined in this framework which enable a formal definition of the notion of 

similarity. To specify objects that match a pattern approximately, we attach to 

patterns in some transformation rules defined in a transformation language. An 

object A is considered to approximate an object B, if B can be reduced to it 
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by a sequence of transformations. Moreover, a calculus-based query language is 

devised that is an extension of the tuple relational calculus with function symbols, 

and with some built-in predicates. The framework is further specialized in [22] to 

adapt to real-valued sequences. It shrinks the data sequences into signatures, and 

the signatures are searched instead of the real sequences, with further comparison 

being required only when a possible match is indicated. Comparisons can be 

made faster with shorter signatures than the original sequences. Framework 

that facilitates a broad class of approximate queries over sequences is proposed 

in [42], where a more general notion of approximation appropriate for the complex 

queries is presented. For this kind of framework, there is no general rule to seek 

an appropriate transformation for a particular type of time series. Therefore, the 

effort still remains to the domain experts. 

2.2 Dimensionality Reduction 

Discrete Fourier Transform is often used for dimension reduction [2, 23] to achieve 

efficient indexing. An index built by means of DFT is also called an F-index 

2]. It works as follows. Given N sequences, all of the same length n, we apply 

the n-point DFT to sequence x 

Xj = l/V^J2 而 exp(-j'27T^) f = 0 , 1 , . . . , n — 1 (2.5) 
t=o 几 

where j is the imaginary unit j = \[^. The original signal can be recovered by 

the inverse transform 

xt = l/^A^¾ Xf exp(j27T^^) t = 0,1,...，n - 1 (2.6) 

f=o 几 
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X f is a complex number (with the exception of X。，which is real provided that 

the signal x is real). Suppose the DFT of a time sequence x is denoted by X. 

There is a mapping of signals from n-dimensional time domain to n-dimensional 

frequency domain. For many applications such as stock data, the low frequency 

components are located at the preceding coefficients of X which represent the 

general trend of the time sequence x where most energy is concentrated. These 

coefficients can be indexed in an R-Tree or R*-Tree for fast retrieval. In a query, 

a time sequence of length n and a tolerance e are given. To resolve the query, 

n-point DFT is applied to the query sequence and again first fc features are used 

for similarity matching by F-index, which returns all sequences within Euclidean 

distance e. In most previous work, range querying is considered. A range query 

(or epsilon query) evaluation returns sequences with Euclidean distance within 

e from the query point. 

Parseval's Theorem [36] shows that the Euclidean distance between two sig-

nals X and y in time domain is the same as their Euclidean distance in frequency 

domain 

\\x-y\\' = \\X-Y\\' (2.7) 

Therefore, F-index may raise false alarms, but guarantees no false dismissal. Af-

ter a range query in the F-index, qualified sequences are then checked against the 

query sequence in the original time domain. This post-processing step eliminates 

the false alarms. 

F-index is further generalized and subsequence matching are proposed in [23 . 

This is called the ST-index which permits sequence query of varying length. 

Instead of mapping directly the whole sequence into the A;-dimensional space, 

a sliding window of size u; is covered on the original sequence. Upon a shift 

of the sliding window, cj-point DFT is applied to the covered sequence and fc 

coefficients are extracted as feature vector. Each time sequence is broken up 

into pieces of subsequences by a sliding window with a fixed length cu for DFT. 
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In view of the fact that feature points in nearby offsets will form a trail due to 

the effect of stepwise sliding window, the minimum bounding rectangle (MBR) 

of a trail is being indexed in an R-Tree instead of the feature points themselves. 

When a query arrives, all MBRs that intersect the query region are retrieved 

and their trails are matched. However, additional false alarms are introduced 

as there are cases where sub-trails do not intersect the query region while their 

MBRs do. 

New similarity models are applied to F-index based time series matching 

in [38]. It achieves time warping, moving average, and reversing by applying 

transformations to feature points in the frequency domain. Given a query q, a 

new index is built by applying a transformation to all points in the original index 

and feature points with a distance less than e from q are returned. However, a 

lot of computations are involved in building the new index, which has a great 

impact on the actual query performance. 

Another method that has been employed for dimension reduction is Karhunen-

Loeve (K-L) transform [46]. (This method is also known as Singular Value De-

composition (SVD) [33], and is called Principle Component analysis in statistical 

literature.) Given a collection of n-dimensional points, we project them on a k-

dimensional sub-space where k < n, maximizing the variances in the chosen di-

mensions. The key weakness of K-L transform is the deterioration of performance 

upon incremental update of the index, as the projection axes are pre-determined 

(static) by the covariance matrix in the first collection of feature vectors. Al-

though the projection is optimal for a fixed set of vectors, new projection matrix 

should be re-calculated and the index tree has to be reorganized periodically to 

keep up the search performance. Efficient methods for incremental update of 

SVD-based index are discussed in [32 . 

Clustering with Singular Value Decomposition (CSVD) is introduced in [44 
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to improve the efficiency of standard SVD. Generally, SVD relies on global in-

formation derived from all the vectors in the dataset, which is more effective for 

datasets consisting of homogeneously distributed feature vectors. For databases 

with heterogeneously distributed vectors, more efficient representation can be 

generated by subdividing the vectors into more similar groups such that the 

points in each group or cluster are more amenable to dimensionality reduction 

than the original dataset by SVD. It is shown experimentally that CSVD achieves 

higher dimensionality reduction than SVD in terms of total variance preserved. 

However, the overhead in updating the clusters as well as the SVD axes makes 

it less attractive to other dynamic-based methods. 

The Pyramid-Technique adapting well to high dimensional data queries is 

introduced in [11]. In contrast with all other index structures, the performance 

of the Pyramid-Technique does not deteriorate when processing range queries on 

data of high dimensionality. It is based on a special partitioning strategy, which 

divides the data space into pyramids sharing the center point of the space as a 

top. Single pyramid is cut into slices parallel to the basis of the pyramid which 

is shown in Figure 2.1. 

Pyramid 

\ ^ y / ^ ^ ^ X y ^ 2 S x Partition 
N^ y/^ ^y"^^ /^ \ _ ŷ  :• ；)；； _::: 二、《，i!!̂î l̂̂  y^ 

center _ _ ^ ^ X / ^ Z : -、、乂,、、、̂ :̂:々 ^̂̂  
_ ^ ^ \ ^y^ >ffHIMMMIIIIIIIIIIIMItMltltttnilllllllllMMItlltlMtnilimMIIMIIMâ  

noint / \ Z / - \ 
|JV^lllL Z f \ ^^ yOt)ntM1>*W<IMtllMllt>lttMttllllllllllllllllMI>>>>ttMlllllllllltlllllMMtjMÎ IIMIIlK 

/ � ‘ ‘ p< /zzn^^^^^s^^^^^K. 
/ ^ / 、\令少恐> ‘ 

Figure 2.1: Partitioning the data space into pyramids (2-dimensional data) 

This partition enables a mapping from the given c^-dimensional space to a 

1-dimensional space which can be handled efficiently by B+-Tree. An entry in 

B+-Tree composes of the 1-dimensional index key and the original o?-dimensional 
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feature. However, it is shown in [11] that this technique performs worse than the 

sequential scan for very skewed queries. Moreover, range query is evaluated only 

and no insight into nearest neighbor query has been shown. 

2.3 Wavelet Transform 

Wavelets are basis functions used in representing data or other functions. Wavelet-

based algorithms process data at different scales or resolutions in contrast with 

DFT where only frequency components are considered. The origin of wavelets 

can be traced to the work of Karl Weierstrass [45] in 1873. The construction 

of the first orthonormal system by Haar [29] is an important milestone. Haar 

basis is still a foundation of modern wavelet theory. Another significant advance 

is the introduction of a nonorthogonal basis by Dennis Gabor in 1946 [24]. In 

this work we shall advocate the use of the Haar wavelets in the problem of time 

series search. 

To get some idea of what wavelet transform is, lets consider its loose defi-

nition. A signal or a function f{t) can often be better analyzed, described, or 

processed if expressed as a linear decomposition by 

m = T M < t ) (2.8) 
1 

where 1 is an integer index for the finite or infinite sum, ai are the real-valued 

expansion coefficients, and ^pi{t) are a set of real-valued functions of t called the 

expansion set. If the expansion in Equation (2.8) is unique, the set is called a 

basis for the class of functions that can be so expressed. If the basis is orthogonal, 

meaning 



Chapter 2 Related Work 16 

(^fc(t),办⑴〉二 f Mt)Mt) dt = 0 for k + 1 (2.9) 

then the coefficients can be calculated by the inner product 

ak = {m^Mt)) = / mMt)dt (2.10) 

One can see that substituting Equation (2.8) into Equation (2.10) and using 

Equation (2.9) gives the single a^ coefficient. For a Fourier series, the orthogonal 

basis functions ^k{t) are s'm{kiOot) and cos{kcoot) with frequencies of kuJot. 

For the wavelet expansion^ a two-parameter system is constructed such that 

Equation (2.8) becomes 

/ W = E E ^ . > f e W (2.11) 
k j 

where both j and k are integer indices and the ^j,k{t) are the wavelet expansion 

functions that usually form an orthogonal basis. The set of expansion coefficients 

aĵ k are called the Discrete Wavelet Transform (DWT) of f{t) and Equation (2.11) 

is the inverse transform. 

2.4 Similarity Search under T i m e Warping 

The ability of time warping to match sequences with time shifts makes it an 

important similarity model in speech recognition, since human speech consists of 

varying durations and paces. 

The time warping distance for two sequences x and y is defined as 
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Dtimewarp{0^ ()) = •， 

Dtimewarp{X) ()) 二 Dtimewarp{{)) ̂  ~ ^ ? 

Dtimewarp{x, v) = Dbase{Head{x),Head{^) (2 12) 

Dtimewarp{x, Rest{y)) X - stuttei 

+ min Dtimewarp{Rest{x),y) y - stutter ^ 
Dtimewarp{Rest{x),Rest{^) no stutter � z 

where () denotes a null sequence. Dbase can be any of the distance functions, like 

the city-block distance, although our primary concern is the Euclidean distance. 

Also note that this definition does not require two sequences to be of the same 

length. The symbols can be looked up in Table 2.1. 

Symbol Definition  

Dbase base distance function, e.g., Di and D2 
Dtimewarp time waiping distance function  
f , y time sequences 
0 null time sequence 
Head{x) the first element of x 
Rest{x) the remaining elements of x other than the first 

Table 2.1: Notations in the definition of time warping distance 

As for Euclidean distance, searching techniques are proposed to support the 

retrieval of similar time series based on the increasingly important time warping 

distance. In [47], a time series database supporting time warping is proposed 

whose strategy is shown in Figure 2.2. 

It follows the architecture of the general strategy shown in Figure 1.1，by 

further specifying the transformation used in index creation/pre-processing and 

the filtering functions in post-processing. To elaborate, two steps are involved. 

First, K-L transform is applied to map the original time sequences to lower 

dimension feature vectors, then a multi-dimensional index is built (Fastmap in-

dex). If we are looking for set of sequences y within time warping distance 
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:Querying: 

r ^ ^ 
Query 

；Index Creation:  

^ ^ i ; ( _ ^ ^ _ ^ ^ : 
Simlarity. Pre-processing: 

Time warping 
K-L transform y 

1 r Feature vector 

Time series / \ 
pre-processing： ： Feature vectors > / \  

： / Fastmap \ 
K-L transform / . , \ 

/ index \ 

“ ^̂  Candidate sequences 

广 ： 
� Z ^ Post-processing: 

Time series Referenceofseguences _ False alarmfiltering by 

database n & D 
1 lb timewarp 

\ y 
I 

ZQualified time / 
sequences / 

Figure 2.2: Time series indexing supporting time warping distance 
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^timewarp of query f , i.e. Dtiyŷ ewarp{̂ -, v) < t̂,mewarp, thcii the Fastmap index is 

queried using the same search range Ctimewarp with Euclidean distance function’ 

i.e. D{x,xj') < Cjastmap = ^timewarp, vvliere ij' aie set of candidate sequences con-

taining some false alarms as vvell as false dismissals. As tinie warping distance 

cloes not satisfy the triangle inequality, any indexing technique which assumes 

the triangle inequality, can not avoid producing false dismissals, so does the 

Fastinap index. VVe just use Cttmewarp as aii estimation to the search range of 

Euclidean distance function D in order to retrieve a smaller set of candidate se-

quences in tlie database. Second, a filtering function is proposed to prune away 

false alarms from the caridklate sequences in a post-processing step. This lower 

l)ouiul distance function Dib underestimates the time warping distance fiiiict,i()ii, 

such that Dtb{x, y) < Dtr.newarp{^, v)- To get a better intuition and insight of 

/)",, coiisiclcr an illustration in Figure 2.3, with time sequences x (solid) aiid iJ 

(clashed), having corrcsponding vertical ranges Rs and R,j overlapped. 

• Reg>on A 

• Region B 

» 
max(x) A 

K ^ JLM 
瞻(y) /^^^^^^^^^^^ / 

/ > \ / � \/ /�- , � _» 
^ / / � - '� - - � Y / � � z \ _z7 

^ > ^ ^ > ^ ^ ^ v 
mr(7 ^ ^ 

• 
Time 

Figure 2.3: Intuitive idea behind Dib 

Thc shaded region between the two sequences is separated into two disjoint 

parts .4 and B. .4 is the shaded region above max(y) and below min( f ) , and B 

lies in between. Note that D,,„;euarp(-?' y) is equal to area(.4) + area(5) after 

time warping. Time warping attempts to minimize this area sum, however, it 
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may reduce area(B), but not area(A). The reason is that the horizontal span 

of Region A is widen upon stuttering (refer to Equation (2.12)), leading to an 

increase in area(A). As time warping attempts to minimize area(A) + area(^), 

area(B) should only decrease as area(v4) increases, such that the area sum can 

be reduced. This gives rise to the following observation 

area(A) < area(A') < area(A') + area(B') = Dtimewarp{x,^ 

where A' and B' denote A and B after time warping respectively. This obser-

vation provides the fundamentals to the definition of the lower bound distance 

function 

Dib{x,y) 

E.,>max(y) l̂ "̂ 一 瓜 及 又 ⑷ | + Ey,<min{^) lVj 一 ^H^) I ^̂  ^ and % OVeilap 

< E^,>max(y) ^^ _ max(y)| + Ex,<min(y) ^ . — min(y)| if R^ encloses R^ 

max(E^i \xi — max(y)|,Ej=i lVj — min(;r)|) if R^ and R^ are disjoint 
(2.13) 

Instead of merely using Dumewarp (C>(||f|| x ||y||) complexity), D^ (linear com-

plexity) can be used as a filter in addition to prune away quickly non-qualified 
~4 

time series in the candidate sequences set y'. As a result of Dumewarp underesti-

mation, some false alarms may not be pruned by Dib, and any remained sequences 

in y' are checked against the Dtimewarp to obtain the answer set y. Experiments 

in [47] show that a significant speedup can be achieved by trading off a tiny 

amount of false dismissals. We will describe the drawbacks of this approach in 

detail in Chapter 4 and suggest a more efficient mechanism. 



Chapter 3 

Dimension Reduction by 

Wavelets 

3.1 T h e Proposed Approach 

Following a trend in the disciplines of signal and image processing, we propose 

to study the use of wavelet transformation for the time series indexing problem. 

Before we go into the details of our proposed techniques, we would first like to 

define the similar models used in sequence matching. The first definition is based 

on the Euclidean distance D{x,^ between time sequences x and y. 

Definition 1 Given a pre-determined threshold e, two time sequences x and y 

of equal length n are said to be similar if 

n ( x , ^ ) = ( z ( y . - x , y ) ' < e (3.1) 
\i=o ) 

• 

A shortcoming of Definition 1 is demonstrated in Figure 3.1. Consider the two 

time sequences x and y. From human interpretation, x and y may be quite 

21 
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similar because y can be shifted up vertically to obtain x. However, if Definition 

1 is used as the similarity measure, they will be considered not similar because 

errors are accumulated at each pair of Xi and yi. Hence, we attempt to introduce 

another similarity model. 

Definition 2 Given a pre-determined threshold e, two time sequences x and y 

of equal length n are said to be v-shift similar if 
i 

D{x , y) = f E ( ( y . - 而 ) — ( y A — X A ) r ] ‘ < e (3.2) 
Vi=o / 

where 

1 n - l 1 n-l 

XA 二 一 X l Xi and yA = J 2 V̂  
几7^0 几i=o 

• 

From Definition 2, any two time sequences are said to be v-shift similar if the 

Euclidean distance is less than or equal to a threshold e neglecting their vertical 

offsets from x-axis. This definition can give a better estimation of the similar-

ity between two time sequences with similar trends running at two completely 

different levels. 

选 
Time 

Figure 3.1: Example of vertical shifts of time sequences 
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3.1.1 Haar Wavelets 

We want to have a decomposition that is fast to compute, requires little storage 

for each sequence. The Haar wavelet is chosen for the following reasons: (1) it 

allows good approximation with a subset of coefficients, (2) it can be computed 

quickly and easily, requiring linear time in the size of the sequence and simple 

coding, and (3) it preserves Euclidean distance (see Section 3.1.3). 

The Haar wavelets are defined as 

^i{x) = ^{2'x - i) i 二 0,..., 23 - 1 (3.3) 

where 

1 0 < t < 0.5 

• = —1 0.5 < t < 1 (3.4) 

0 otherwise 

together with a scaling function 

1 0 < t < 1 , n r � 

ip{t) = (3.5) 
0 otherwise 

\ 

y 

1 . 0 - -  

0 . 0 — -

- 1 . 0 - -

~ ~ I 1 1 一 t 
0.0 0.5 1.0 

Figure 3.2: Haar wavelet for i^o{t) 

They are shown graphically in Figure 3.2 and Figure 3.3 respectively. 
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y 

1.0 

0 . 0 - -

__I 1 t 
0 . 0 1 -0 

Figure 3.3: Haar scaling function 

= 6 X  

+ 2x  
« 

+ 1 X  

+ (-l)x  

Figure 3.4: An example of Haar transform 
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Example For the piecewise constant function / ( t ) , we illustrate with an example 

taken from [15]: 
9 0 < t < 0.25 

7 0.25 < t < 0.5 , �p � 

m = - (3-6) 

3 0.5 < t < 0.75 

5 0.75 < t < 1 
\ We can express f{t) as a linear combination of ^ and ip 

m = cvK4 + ^o^o'(^) + 械工)+ d l^ l {x ) (3.7) 

which is shown in Figure 3.4. We notice that c = 6, d^ = 2, 4 = 1, and d{ = _ 1 . 

These coefficients {6,2,1,-1} are actually the Haar transform of the discrete 

function f{x) = {9,7,3,5}. It should be pointed out that c is the overall average 

value of the whole time sequence, which is equal to (9 + 7 + 3 + 5) /4 = 6. • 

Concrete mathematical foundations can be found in [15, 27] and related im-

plementations in [21]. 

Haar transform can be seen as a series of averaging and differencing operations 

on a discrete time function. We compute the average and difference between 

every two adjacent values of f{x). The procedure to find the Haar transform of 

a discrete function f{x) = {9,7,3,5} is shown below. 

Example 

Resolution Averages Coefficients 

4 {9,7,3,5} 

2 {8,4} {1,-1} 

1 {6} {2} 

Resolution 4 is the full resolution of the discrete function f ( x ) . In Resolution 2, 

{8 ,4} are obtained by taking averages of {9,7} and {3,5} at Resolution 4 respec-

tively. {1,-1} are the differences of {9,7} and {3,5} divided by two respectively. 
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This process is continued until a resolution of 1 is reached. The Haar trans-

form H{f{x)) = {c,d^Q,dl,d{} = {6,2,1,-1} is obtained which composes of the 

last average value 6 and the coefficients found on the right most column, 2, 1, 

and -1. It should be pointed out that c is the overall average value of the whole 

time sequence, which is equal to (9 + 7 + 3 + 5) /4 二 6. Different resolutions 

can be obtained by adding difference values back to or subtract difference from 

an average. For instance, {8 ,4} = {6+2,6-2} where 6 and 2 are the first and 

second coefficients respectively. This process can be done recursively until the 

full resolution is reached. • 

Haar transform can be realized by a series of matrix multiplications as illus-

trated in Equation (3.8). Envisioning the example input signal x as a column 

vector with length 工 n — 4, an intermediate transform vector w as another column 

vector and Haar transform matrix H 

-x'o 1 [ 1 1 0 0 1 [ Xo 

礎 = i 1 —1 0 0 X A (3.8) 
x[ 2 0 0 1 1 â2 

d\ 0 0 1 - 1 â 3 
_ J L � L -

The factor 1 /2 associated with the Haar transform matrix can be varied according 

to different normalization 飞 conditions. After the first multiplication of x and 

H, half of the Haar transform coefficients can be found which are d^ and d\ in w 

interleaving with some intermediate coefficients XQ and x[. Actually, d^ and d{ 

are the last two coefficients of the Haar transform. Xg and x[ are then extracted 

from w and put into a new column vector x' — [âQ ̂ i 0 0]^-工'is treated as the 

new input vector for transformation. This process is done recursively until one 

element is left in x'. In this particular case, c and dg can be found in the second 

^As for DFT, the length of the signal is restricted to numbers which are power of 2. 
^The normalization is described in Section 3.1.3. 
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iteration. 

The complexity of Haar transform can be evaluated by considering the num-

ber of operations involved in the recursion process. 

Lemma 1 Given a time sequence of length n where n is an integral power of 2, 

the complexity of Haar transform is 0{n). 

Proof: There are totally n matrix additions or subtractions in the first iteration 

of matrix operation. The size of the input vector is halved in each iterations 

onwards. The total number of operations are formulated as 

iog2«- , 
, . 9l"S2 ^ — 1 
n + n /2 + . . . + 2 = 2 ^ ^ = 2(n - 1) 

z 一 丄 

which is bounded by 0{n). • 

3.1.2 DFT versus Haar Transform 

Our motivation of using Haar transform to replace DFT is based on several 

evidences and observations, some of which are also the reasons why the use of 

wavelet transforms instead of DFT is considered in areas of image and signal 

processing. 

1. Better Pruning Power 

The nature of the Euclidean distance preserved by Haar transform and 

DFT are different. In DFT, comparison of two time sequences is based 

on their low frequency components, where most energy is presumed to be 

concentrated on. On the other hand, the comparison of Haar coefficients 

is matching a gradually refined resolution of the two time sequences. The 

time-frequency localization property possessed by DWT may probably be 
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the reason for more effective pruning of Haar wavelets, such that fewer 

false alarms are produced which is confirmed by experiments in Section 

3.3. This in turn can save disk accesses as well as computation, especially 

when the time sequences are long and the size of the database is large. 

2. Lower Complexity 

The complexity of Haar transform is 0(n) whilst 0{n log n) computation 

is required for Fast Fourier Transform (FFT) [25]. Both impose restric-

tion on the length of time sequence which must be an integral power of 

2. Although these computations are all involved in pre-processing stage, 

the complexity of the transformation can be a concern especially when the 

dataset is large. From experiments, the pre-processing time for DFT is 3 

to 4 times longer than Haar transform. 

3. Better Similarity Model 

Apart from Euclidean distance, our model can easily accommodate v-shift 

similarity of two time sequences (Definition 2) at a little more cost. That 

is，the situation where vertically shifted signals can match is accommo-

dated. On the contrary, previous study on F-index did not make use of 

this similarity model. 

Note that similar to DFT, D W T will not require massive index re-organization 

because of database updating, which is a major drawback in using the K-L trans-

form or SVD approach. 
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3.1.3 Guarantee of no False Dismissal 

For FT and DFT, it is shown by Parseval's Theorem [36] that the energy of a 

signal conserves in both time and frequency domains. Parseval's Theorem also 

shows that this situation is true for wavelet transforms. Moreover, the Euclidean 

distances of both time and frequency domains are the same for DFT by Equation 

(2.7). This is a very important property in order that dimension reduction of 

sequence data is possible. It guarantees that no qualified time sequence will be 

rejected, thus no false dismissal. However, this property has not been shown for 

D W T in general, and not for the Haar wavelets. The following lemmas show 

how the Euclidean distance in time domain can be formulated in terms of the 

coefficients of Haar wavelet transform. 

Lemma 2 Given a sequence x 二 {â o，a:;i} and a sequence y = { "o , " i } . The 

Haar transforms of x and y are H{x) s 二 { so ,Si } and H{y) = r = { r o , r i } 

respectively. Lengths of x, y, 5, and rare all equal to 2. Then Euclidean distance 

D{x, y) is 22 times of Euclidean distance D{s, f) 

D{x ,y ) = 2 '^D{ l f^ (3.9) 

Proof: Express s'm terms of x and f i n terms of y by applying Equation (3.8) 

accordingly, 

- ― f ^0 + ^1 ^0 ^ i l 
s = t T " " , " " ^ / 

^ f yo + yi yo — yi 1 
r = l " ^ , " ^ J 

Square of Euclidean distance of s and f 

2/- ^ —,工0 + 3：1 yo + yiV fxp-xi yo-yiV 
^ (明 二 \ 2 厂 ) 十 1 2 2 y 
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一 fxp - yo x i - y i y /xp - yp xi - y i y 
二 V ~ ~ 2 ~ ~ ~ ~ 2 ~ ~ ； 1 ~ " 2 2 ~ " 
一 fxp - yo)2 /xi-yiy rxp-yoy p i ViV 
= l " ^ " " J V ^ " ^ ) V 2 ； V 2 J 

(xo — yof I (^1 — yif 
= ^ ^ 2 ^ + " ^ ^ 
=(3^0 — "0)2 + (3；1 — "1)2  
= 2 
= D \ x , y ) 

一 2 

Thus, 

D V , r > ^ 

D{x,y) = 2'2Dis,f^ 

• 

L e v e l S i o g n ^log n,0 ^log n,l ^Iog n,n-2 ^log n,n-l 

I V — I - — - V 
L e v e l S i + 1 ^i+i,2} ^i+i,2j+1 ^i+i,2j+2 ^i+i,2j+3 

d2^\y^ 2̂̂ !̂ N̂ y/ 

Level S； îJ >̂J+1 (2 ‘ terms) 

Level Sj î,o ^i,i 

V Level So Xo,o 
Figure 3.5: Hierarchy of Haar wavelet transform of sequence x of length n 

Lemma 3 Given two sequences x and y, and the Haar transforms of x, y are 5, 

r respectively. Lengths of x, y, 5, and r are all n {n > 2 and n is a power of 2). 
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f - 5 = {C, Di, Z>2,... ’ A x - i } . The Euclidean distance D(x, y) = S\og^ n can be 

expressed in terms of {C , D! , D 2 , . . . , D ^ - i } recursively by 

& + 1 = 2 l X {{Sf + Dl + 7 ¾ + ! + • •. + i ^ 2 V 1 _ 1 ) } ' for 0 < 1 < l0g2 n — 1 

So = C 
(3.10) 

Proof: In Figure 3.5, the original sequence x is represented at level l0g2 n. The 

values of Xij and 0̂ 2t+j are defined by 

_ ^i+l,2j + Xj+i^2j+l 
〜 = 2 

j — Xj+i^2j - 3:^,2j+l 
^v+j ―一 2 

The Haar transform of x, H{x) is represented by {xo^o,di,d2,- •. ,c?2»+j’<^»+j+i, 

. . . 4 n - i } - A similar hierarchy exists for another sequence y. Denote C = a:o,o — 

yo,o and Di 二 di of sequence x - di of sequence y, where 1 < i < n — 1. 

We can treat the elements at each horizontal level of the hierarchy to be a 

data sequence. Hence the sequence at level Si contains data {x,-^o, a î,i, •", Xi ,v-i } . 

Let us define Si to be 
1 

(2'-l 2 

Si 二 { Y. ( ¾ - vi.jf ‘ 
1 3=0 

Si can be seen as the Euclidean distance between the data sequences at level i 

in the hierarchies for x and y. Also, 5\og2 n is the Euclidean distance between the 

given time series. 

Next we prove the following statement: 
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&+1 = 2^ X { ( ^ + i ^ + 1 ¾ + , + . . . + i ^ + i _ i ) } * for 0 < I < log2 n - 1 

So = C 

(3.11) 

The base case is shown true by Equation (3.9) of Lemma 2 when i = 0, 

^1 = 2 ^ x { ( & 2 + i ^ } ! 

We next prove the case for i = k > 0. In order to do this, we first note that 

in the given hierarchy, for a pair of adjacent elements at a level > 0 of the form 

{xi+i^2j,Xi+i^2j+i}, we have the following relation 

{xi+l,2j 一 y^+l,2Jf + (^i+l,2j+l - yi+l,2j + l)^ 
/ 2 ( x2\ (丄丄」） 

= 2 (^(a:,-,j — m,j) + [d2^+j 一 d � ) j 

where <,丄-is the element in the hierarchy for y corresponding to d2t+j. 
2 +J 

This can be shown by repeating the proof in Lemma 2, replacing x by {a:i+1,2j, 

^z+i,2j+i}, y b y {y,+i,2j,y^+i,2j+i}, 5 b y {^,0^2^+^}, and f b y {y,-, , ,^.+^}. Note 

that ((f2^+j — 4^+j) = ^l^+j-
For i = k, 

(2^+^-1 2 

^ + 1 = { Y1 {xk+i,j — yk+i,jY > 
1 J=o 

={{xk+i,0 - Vk+i,oY + (a^A;+i,i — yk+i,iY H h 
.2 上̂ 

(a^fc+l,2^+i-l - yA:+l,2^+i-l) }2 

By Equation (3.12), we have 
SWl = {2[OrA^,0_"M)2 + >^22*]+2[O^L-" iM)2 + i ^ + i ] + - - -

11 2 
+ 2 [{xk,2k-1 - Vk,2^-if + ^2H2^-1Jj ' 
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= { 2 [{xk,o - Vk,of + {xk,i — Vk,iY + f- {xk,2^-1 - Vka^-if 

2 2 11 h 
+ 2 D)k + D2k_^1 + . . . + D2k^2^_1 I 

Finally by the definition of Sk, 

&+1 = 2lx{(&2 + D2\+Z^ + l+... + D22̂ -i)}̂  

which completes the proof. • 

Example To illustrate, consider two sequences x — {1,4,5,6,3,2,4,5} and y = 

{2,5,4,3,2,5,6,8} with Euclidean distance 

D{x, y) = (l2 + l2 + l2 + 32 + l2 + 32 + t + 32)1 = 35^ 

Their Haar transform are found to be 

i 7 ( f ) = 5 = {3.75,0.25, - 1 . 5 , - 1 . 0 , - 1 . 5 , -0 .5 ,0 .5 , - 0 . 5 } 

H{y) = r = {4.375, -0.875,0.0, -1 .75 , -1 .5 ,0 .5 , - 1 . 5 , - 1 . 0 } 

Moreover, 

� — 8二 {C ,L>i , i^ , . . . ,L>7} = {0.625, -1.125,1.5, -0.75,0.0,1.0, - 2 . 0 , - 0 . 5 } 

From Equation (3.10), 

D{x,y) = {((((((0.6252 + 1.1252) X 2) + 1.52 + 0.752) >< 2) 

+0.02 + l.Q2 + 2.02 + 0.52) X 2 ) } 2 

= 3 5 i 

which shows its correctness. • 

The expression of the Euclidean distance between time sequences in terms 

of their Haar coefficients is not sufficient for proper use in multi-dimensional 
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index trees until Euclidean distance preserves in both Haar and time domains, 

as for DFT in Equation (2.7). This can be achieved by a normalization step 

which replaces the scaling factor in Equation (3.8) from 1/2 to 1/22 in the 

Haar transformation. After the normalization step, Euclidean distance between 

sequences in Haar domain will be equivalent to 5iog2n in Equation (3.10). The 

preservation of Euclidean distance of Haar transform ensures the completeness 

of feature extraction as in DFT. 

If only the first h^ dimensions (1 < hc < n) of Haar transform are used in 

calculation of Euclidean distance in Equation (3.10), then we should replace 0's 

in the Haar transformed sequences. This replacement starts from /zc+l th to 

n th coefficients in the transformed sequences. 

Lemma 4 If the first h �( 1 < K < n) dimensions of Haar transform are used, 

no false dismissal will occur for range queries. 

Proof: Considering the inequality in Definition 1 and Lemma 3 

D{x,y) = 5'iog2n < e (3.13) 

Using the first hc dimensions as index, the value of D{ in Equation (3.10) will 

become zero for i > hc. Thus the Euclidean distance between two sequences is 

< 5\�g2 n < e. This completes the proof. • 

3.2 T h e Overall Strategy 

In this section, we present the overall strategy of our time series search and pro-

pose our own method for nearest neighbor query. Before querying is performed, 

we shall do some pre-processing to extract the feature vectors with reduced di-

mensionality, and to build the index. After the index is built, content-based 
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search can be performed for two types of querying: range querying and n-nearest 

neighbors querying. 

3.2.1 Pre-processing 

1. Similarity Model Selection 

According to their applications users may choose to use either the simple 

Euclidean distance (Definition 1) or the v-shift similarity (Definition 2) as 

their similarity measurements. For Definition 1, Haar transform is applied 

to time series. For Definition 2, Haar transform is applied to time series, 

but the first Haar coefficient will not be used in indexing, as there is no 

need to match their average values anymore. 

2. Index Construction 

Given a database of time series of varying lengths. We pre-process the 

time series as follows. We obtain the cj-point Haar transform by applying 

Equation (3.8) with normalized factor, to each subsequences with a sliding 

window of size uj for each sequence in the database. 

An index structure such as an R-Tree is built, using the first h � ^ Haar 

coefficients where h � i s an optimal value found by experiments based on 

the number of page accesses. This is because of a trade off between post-

processing cost and index dimension. 

3.2.2 Range Query 

After we have built the index, we can carry out range query or nearest neighbor 

query evaluation. For range queries, two steps are involved: 

^Using Definition 2，one dimension can be saved in the index tree. 
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1. Similar sequences with distance < e from the query are looked up in the 

index and returned. 

2. A post-processing step is applied to these sequences to obtain the actual 

distance in time domain to remove all false alarms. 

3.2.3 Nearest Neighbor Query 

For nearest neighbor query, we propose a two-phase evaluation as follows. A 

viewgraph is shown in Figure 3.6. 

鲁 Phase 1 

In the first phase, n nearest neighbors of query q are found in the R-Tree 

index using the algorithm in [39]. The Euclidean distances D in time 

domain (full dimension) are computed between the query sequence and all 
— — 

n nearest neighbors obtained which are D{q,nnj), where nnj denotes the 

nearest neighbor i (1 < i < n), with nnj^ farthest from the query q. Note 

that the nearest neighbors found in current phase are not the final answer 

to the query, since the number of dimensions of sequences is reduced in the 

index tree. We just aim at acquiring a range that will be employed in the 

epsilon search in next phase. 

• Phase 2 

A range query evaluation is then performed on the same index by setting 

e 二 D(<^,n7^) initially. During the search, we keep a list of n nearest 

sequences nnj found so far and their Euclidean distances in time domain 
— 

(full dimension) D{q,nn]) with query q (1 < i < n). The post-processing 

step mentioned in Section 3.2.2 is avoided since the Euclidean distances 

are found already in time domain during the search. 
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During the search we keep updating ^ the value of e by D{q, nnl) which is 

the distance of the current farthest neighbor. 

The n nearest neighbors stored in the list are returned as answers when 

the range query evaluation is finished. The distance of the farthest nearest 

neighbor with query q is D{q^ nn^^). 

^^^^ Ca^S> 
Phase 1: yi!s5v 

N-nearest neighbor query y ^ \ ^ 

7 — \  
^-""--^ 

( N nearest neighbors J 

Set Epsilon = Distance of 
Phase 2- farthest nearest neighbor 

Range query  

w ̂ ^ , ^ C s ^ ) 

^̂̂X"̂̂^̂̂^̂̂!!̂̂^̂!̂̂!̂̂""""̂̂N̂  

(^^^^^^^^ sequen̂ T̂  

Figure 3.6: Two-phase nearest neighbor query 

The correctness of the above algorithm can be shown by considering two cases, 

which are shown in Figure 3.7. For the first case (upper diagram), assume the 

^The updating process begins only when the list storing the nearest neighbors has been 
filled up already. 
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— 

n nearest neighbors in the final answer all appear in the results in Phase 1, nnj 
— 

二 nrî Y"s, where 1 < i,j < n and i need not be equal to j. Obviously, D { q , n n l ) 

二 Z)((f,nn^n”. In the second case (lower diagram), assume some or no nearest 
— 

neighbor obtained in the final answer appears in the results in Phase 1, nn} + 

nn^^% where 1 < iJ < n for some i and j. Thus, D(q,nujJ > D(q,nn^^^). 
J 

— — 

Therefore, combining the two cases, D{q,nn^) > D{q, nn^') and by Lemma 

4 there are only false alarms produced in the range query of Phase 2 since the 

value of e upper bounds the distance of the farthest neighbor nn^^. 

Case 1: 

Q ^ Q 0 ^ Q I 0 0 〇 
~ * ^ Epsilon 

Result sequences of Phase 1 ( nn ) 
i 

Case 2: ^ ^ ^ ^ ^ _____ ĵ̂ ^^^^^|^^^^^oes not appear in Phase 1 

o © © : • © 0 O | © O … 〇 

~ " • Epsilon 
Result sequences of Phase 1 ( nn ^ ) 

i 

(||̂ ^̂ ^̂  Actual answer( nn ^^ ) (̂ ^^^^^ Non-answer 

Figure 3.7: Epsilon used in the second phase ensures no false dismissal 

The effectiveness of this n-nearest neighbor search algorithm arises from the 

value of D(g, nn\) found in Phase 1 which provides a sufficient small query range 

to prune away a large amount of candidates in Phase 2. No false dismissal will 

occur in Phase 2 as D{q,nn\) gives the upper bound distance for D{q,nnl^') 

which is the farthest n nearest neighbor in the final answer. 

The extra step introduced in Phase 2 to update e can enhance the performance 

by pruning more non-qualified MBRs during the traversal of R-Tree. 
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3.3 Performance Evaluation 

Experiments using real stock data and synthetic random walk data have been 

carried out. All experiments are conducted on a Sun UltraSPARC-1 workstation 

with 686MBytes of main memory. Page size is set to 1024 bytes. A branching 

factor of 20 is chosen for the R-Tree so that the index tree nodes can be fitted 

within one disk page. We have pointed out earlier that pre-processing time for 

Haar wavelet is much less than that for DFT. Here we shall compare the querying 

performance. 

3.3.1 Stock Data 

Real data are extracted from different equities of Hong Kong stock market from 

12/7/90 to 7/11/96. The data have been collected daily over the time period. 

Totally 10k feature vectors are extracted by a sliding window of size cj = 512 

and inserted into an R-Tree. 

Both range and nearest neighbor queries are examined and the results are 

shown from Figure 3.8 to Figure 3.15. Random queries are applied with varying 

epsilons e, which range from 0.5% to 5% of the database size. The number of 

nearest neighbors for nearest neighbor query is between 20 and 40. All results 

are obtained from the average of 100 trials. In each figure, transformations 

using Definition 1 as similarity model are denoted by their abbreviations, while 

transformations using Definition 2 are denoted by (V-shift) in addition. For 

instance, Haar transforms using Definition 1 and Definition 2 as similarity models 

are denoted as 'Haar' and 'Haar(V-shift)' respectively. 

In Figure 3.8, precision against the first tenth indexed coefficients/dimensions 

of range query is investigated using Definition 1 (non-v-shift similarity model). 
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Figure 3.8: Precision of range query (Non-v-shift) 
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Figure 3.9: Precision of range query (V-shift) 
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Figure 3.10: Precision of range query (Haar) 
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Figure 3.11: Page accesses of range query 
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Figure 3.12: Node accesses of R-Tree for range query 
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Figure 3.13: Precision of nearest neighbor query 
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Figure 3.14: Page accesses of nearest neighbor query 
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Figure 3.15: Node accesses of R-Tree for nearest neighbor query 
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It is defined as 

Precision = *^—e_ (3.14) 
^transform 

where Stime refers to the number of time sequences qualified in time domain while 

Stransform is the nuHiber of time sequences qualified in the transformed domain. 

As we can observe, K-L transform gives the best precision at each dimension. 

On the other hand, the precision attained by Haar transform is close to the 

best and it outperforms DFT significantly at all except the first dimension. The 

enhancement in precision of Haar transform over DFT increases with the number 

of dimensions. 

Moreover, we evaluate the precision of the three transformations using Def-

inition 2 (v-shift similarity model). For Haar transform, we can achieve v-shift 

similarity matching by removing the first Haar coefficient prior to indexing, as 

the first coefficient stores the average value of the time series. Unfortunately, 

there is no evidence or result at present showing that we can apply this tech-

nique to DFT or K-L transform. Therefore, we achieve v-shift similarities for 

DFT and K-L transform in a static way by normalizing/shifting the time series 

in database, resulting in zero average value of each sequence. 

The precision of the three transformations using v-shift model is shown in 

Figure 3.9. We observe that DFT(V-shift), Haar(V-shift), and K-L(V-shift) 

report a loss in precision when compared with their non-v-shift counterparts. 

The main reason is that the time series of financial data consist of a sequence of 

time values fluctuating around a relative constant level, which is the average value 

of a time sequence. This average value is very effective in discriminating time 

series in the sense that every sequence distributes farther away in the x-axis. As 

a result, its removal will cause a sudden drop in precision. Another observation is 

that the gain of precision upon addition of extra coefficients diminishes after the 

removal of average value. K-L using two coefficients in indexing gains 12% more 

precision, contrasting with that using one coefficient. However, only 9% more can 
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be gained for K-L(V-shift). With reference to the same figure, despite the loss in 

precision in v-shift model, K-L(V-shift) still gives the highest precision, and the 

precision of Haar(V-shift) is close to that of K-L(V-shift). The performance gap 

between DFT and Haar in Figure 3.8 still exists for v-shift model in this case. 

For clarity, the precision of Haar and Haar(V-shift) is shown in Figure 3.10. 

Obviously, the precision of the non-v-shift model outperforms the v-shift model 

by 20% at most. The large difference is attributed to the removal of the first 

Haar coefficient to achieve v-shift similarity, which poses a loss of discrimination 

power addressed in previous paragraph. From another point of view, precision 

is traded for a better similarity model. 

As most of the page accesses ^ of a query are devoted to remove false alarms 

and only a small proportion arises from index accesses, the precision is crucial 

to the overall performances of query evaluation. This agrees with the result 

depicted in Figure 3.11, where the page accesses of the best dimensions of DFT, 

Haar and Haar(V-shift) are shown. Page accesses increase linearly with e. Haar 

has the minimum page accesses while DFT performs the worst. Page accesses 

of Haar(V-shift) model have been traded for better similarity model. Even so, 

it outperforms DFT. The page accesses of K-L transform are not shown. K-

L transform is static-based as opposed to Haar transform and DFT, which are 

dynamic transformations. Therefore, it is more appropriate to compare only the 

performances between Haar transform and DFT. Nevertheless, the evaluation of 

precision in Figure 3.8 and Figure 3.9 give us some idea for the close performance 

of Haar and K-L transforms. 

In Figure 3.12, the percentage of node access of R-Tree against e is shown. All 

results follow a linear trend and have approximately the same value. Therefore, 

^Performance is measured in terms of page access due to I /O time domination over com-
putation time in database applications. Page accesses = non-leaf node accesses + leaf node 
accesses + post processing page accesses 
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the page accesses involved in index traversal are the same. The difference in 

performances is dominated by the precision of transformations. The percentage 

of node access for Haar(V-shift) is slightly higher than that of DFT and Haar 

because Haar(V-shift) needs more dimensions to attain sufficient precision in 

building the R-Tree. The best dimension of DFT (dimension 5) is smaller than 

Haar (dimension 7) and Haar(V-shift) (dimension 10) as there is no significant 

gain in precision with additional dimensions. 

Results of nearest neighbor query are shown from Figure 3.13 to Figure 3.15. 

Figure 3.13 shows the precision of nearest neighbor query of DFT, Haar, and 

Haar(V-shift). In nearest neighbor search, the result is similar to that of range 

search. Haar attains the highest precision among the three. As expected, Haar 

outperforms Haar(V-shift) in the nearest neighbor query according to the same 

argument. There is no observable improvement with additional coefficients for 

DFT. 

The trends for page access ® in Figure 3.14 are consistent with those in range 

query in Figure 3.11, Haar and Haar(V-shift) still outperform DFT. The node 

accesses in Figure 3.15 are higher than that of Figure 3.12 since the number of 

nodes that are accessed must be relatively high for nearest neighbor than range 

query. 

3.3.2 Synthetic Random Walk Data 

Since many real data like stock movements and exchange rates can be modeled 

successfully by random walks [16], we study here the performance of our pro-

posed technique for random walk data. Synthetic random walk data consisting 

of 30k time sequences are generated. As we want to show the effectiveness of 

our approach for different sequence lengths, we set u; = 1024. The same set of 

6page accesses = non-leaf node accesses + leave node accesses 
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experiments as for the real data are performed and the results are shown from 

Figure 3.16 to Figure 3.23. 
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Figure 3.16: Precision of range query (Non-v-shift) 
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Figure 3.17: Precision of range query (V-shift) 

The precision of non-v-shift model is shown in Figure 3.16. As the value 

of Lj is doubled, more dimensions have to be used to attain sufficient precision. 

Therefore, we show the first twentieth dimensions. Similarly, the precision of 

Haar is near optimal while DFT flats out starting at dimension 8. The difference 

in performances among various transformations enlarges for longer time series. 

The precision of v-shift model is depicted in Figure 3.17. The precision drops of 

all transformations are consistent with the experiment using real dataset, which 
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Figure 3.18: Precision of range query (Haar) 
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Figure 3.19: Page accesses of range query 
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Figure 3.20: Node accesses of R-Tree for range query 
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Figure 3.21: Precision of nearest neighbor query 
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Figure S.22: Page accesses of nearest neighbor query 
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Figure 3.23: Node accesses of R-Tree for nearest neighbor query 
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is caused by the deterioration of discriminating power without the average value. 

In Figure 3.18, Haar(V-shift) has 20% loss of precision with respect to Haar 

which agrees with Figure 3.10. 

Page access of range query is shown in Figure 3.19, Haar outperforms both 

Haar(V-shift) and DFT, with DFT performs the worst. Haar scales the best 

with epsilon. The differences in performances of the three methods enlarge since 

we use a larger dataset size and longer time sequences of synthetic data. Figure 

3.20 shows the percentage of node access with Haar(V-shift) being the worst. 

Although Haar(V-shift) accesses at most 10% more index nodes than DFT, it 

still outperforms DFT in terms of page accesses. This confirms our expectations 

that the number of page accesses associated with index node is relatively small. 

The precision of nearest neighbor query of DFT, Haar, and Haar(V-shift) 

is shown in Figure 3.21. As in Figure 3.13, Haar outperforms the others. An 

exception is that the precision of DFT outperforms Haar(V-shift) a tiny amount 

in the first eight dimensions. However, this will not affect the overall performance 

of Haar(V-shift) in terms of number of page accesses, as the optimal number 

of dimension is found to be greater than 10. Again, both Haar and Haar(V-

shift) outperform DFT in nearest neighbor query which is shown in Figure 3.22, 

agreeing with the results in range query. Haar outperforms DFT significantly in 

particular. On the other hand, Figure 3.23 depicts a similar result as in Figure 

3.15. 

Therefore, our approach using Haar or Haar(V-shift) for time series match-

ing justifies for real and synthetic datasets in both range and nearest neighbor 

queries. Moreover, the two-phase nearest neighbor query is shown to be effective 

by considering the low page access associated with both datasets. 
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Figure 3.24: Database size (Range query) 
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Figure 3.25: Database size (Nearest neighbor query) 
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Figure 3.26: Sequence length (Range query) 
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Figure 3.27: Sequence length (Nearest neighbor query) 

3.3.3 Scalability Test 

We study the scalability of our method by varying the size (Figure 3.24 and 

Figure 3.25) or the length (Figure 3.26 and Figure 3.27) of synthetic time series 

database. For scalability in database size, different time sequence databases of 

size ranges from 5k to 30k are generated as described in Section 3.3.2. Length 

of sequence is fixed to 512. For scalability in sequence length, databases with 

sequence of length 256, 512, 1024, and 2048 are generated. Size of each database 

is fixed to 10k sequences. 

Figure 3.24 and Figure 3.25 show the scalability of both range and nearest 

neighbor queries. In both cases, Haar and Haar(V-shift) have a better scaling 

with database size increase than DFT. The difference in the amount of page 

accesses is tremendous and significant for large database size. A similar situation 

exists for database with long sequences which is shown in Figure 3.26 and Figure 

3.27. The difference in page accesses is enormous for sequence of length 2048. 

As revealed from previous experiments, a considerable portion of page accesses 

is devoted to the post-processing step. The poorer precision of DFT creates 

more works in the post-processing step and this affects the overall performance, 

especially in terms of the amount of disk accesses for large databases with long 
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sequences. 
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Figure 3.28: Visualization of query and result time sequences 

Figure 3.28 shows the best time sequences matching a query using both non-v-

shift and v-shift models. The reader mayjudge that the upper sequence returned 

by v-shift model has a more similar shape to the query, while the time sequence 

returned by non-v-shift model fails to follow a consistent shape with the query 

at some regions. This phenomenon can be explained by their differences in the 

similarity model definition. In the extreme case, an identical shape sequence 

can not be returned with the simple non-v-shift model if its vertical offset with 

respect to the query is large. 

3.3.4 Other Wavelets 

There are many kinds of known wavelets, we have tried some other wavelets 

in our experiments. The precision of different wavelets is compared using both 

real (Figure 3.29) and synthetic (Figure 3.30) data. Daub4 corresponds to the 

Daubechies wavelets with 4 coefficients in wavelet filter while Coif6 corresponds 

to the Coiflet wavelets with 6 coefficients in wavelet filter. We observe that Haar 
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Figure 3.29: Precision of range query (Real data) 
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wavelets performs better than the Daubechies and Coiflet wavelets. Moreover, 

it is computationally less expensive than the other wavelets. 
••*• 

We have discovered that'not all the wavelets are suitable for dimensionality 

reduction for time series data. From our experiments, not all the wavelets are 

able to concentrate energy at the first few coefficients. Haar, Daub4, and Coif6 

are the best wavelets we have found so far in their families. From experiments, we 

find that the other wavelets seem to also preserve Euclidean distances, however, 

so far we have a proof of this property only for the Haar wavelets. It will be 

interesting to see if we can apply different kinds of wavelets to different data 

series. 



Chapter 4 

T i m e Warping 

Most ofthe time series similarity models are based on Euclidean distance between 

two time sequences. This linear matching process ignores the vertical (y-axis) 

and time (x-axis) shifts of sequences, which are indispensable to practical time 

series matching in reality. The problem of vertical shifts can be handled by the 

v-shift similarity model that we have proposed. On the other hand, time shifts 

of sequences can be coped with by means of time warping techniques [37, 13 . 

Time warping is widely used in speech and word recognition fields, in which 

human speech consists of varying durations and paces. The problem associated 

with sequence comparison for speech comes from the fact that different acoustic 

renditions, or tokens, of the same speech utterance (e.g., word, phrase, sentence) 

are seldom realized at the same speed (speaking rate) across the entire utterance. 

Thus, when comparing different tokens of the same utterance, speaking rate 

variations as well as duration variation should not contribute to the linguistic 

dissimilarity. Hence, there is a need to normalize speaking rate fluctuation in 

order for the utterance comparison to be meaningful before a recognition decision 

can be made. 

Figure 4.1 shows two time series before time warping. When matched by 

time warping, the two sequences are aligned according to their peaks and valleys 

55 
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Algorithm 4.1 TimeWarpDistance(x,y) 
1 ^len — ^ , 
2 yien 二 |MI; 
3 Cmatrtx[0][0] = 0.0； 

4 f o r ( 1 < i < a : /en) 

5 C ' m a t r t x [ i ] [ 0 ] = OO； 

6 for (1 < j < yien) 
I C 'ma<"or_ =⑴； 

8 for (1 < i < .T/en) 
9 for (1 < j < yien) 
10 Cmatrix j . j . 二 1 

II {D^{Xi, yj) + m\\\^[Cmatrix[i - mj],Cmatrix[i][j _ l],<^mairtrr[?; — W — l]))^5 
1 2 r e t u r n Cmatrix[^len][yien]] 

Figure 4.3: Algorithm for finding time warping distance 
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Figure 4.4: Cumulative distance matrix for template and data time series 
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by extending time values in order to minimize the distance between the series, 

this is shown in Figure 4.2. This is very different from simple Euclidean distance 

matching, where values of two sequences are matched based on the same time 

axis. Therefore, time warping is capable of extracting time series with similar 

shapes in different phases. Additional constraints [41] may also be applied to 

restrict the degree of freedom of the warping process for different applications. 

An algorithm for time warping by dynamic programming method [47] can 

be found in Figure 4.3. The general principle is to find the shortest cumulative 

distance for each pair of time values between sequences x and y, starting from 

the first pair (xo, yo), till the last pair ( ^ , , , y y , , J - The time warping distance is 

actually the shortest cumulative distance of the whole sequences. 

E x a m p l e To illustrate, consider two sequences x 二 {4,3,1,2,3,0} and y 二 { l ,2,0,-

1,1,2} from Figure 4.1, the corresponding cumulative distance matrix is found 

using algorithm in Figure 4.3 and is shown in Figure 4.4. Each box corresponds 

to an entry in the cumulative distance matrix Cmatrix{i][j]- Those pairs consti-

tuting the overall shortest cumulative distance are in grey, and the time warping 

distance is found to be Dumewarp{x,y) = 4.2 (upper right corner of the matrix). 

• 

Though time warping technique can accommodate time shifts of sequences, 

it is not as popular as Euclidean distance in time series matching. There are 

two limitations in using time warping distance. First, for length n sequences, 

the complexity of time warping distance function is 0{n^) ^ as revealed from the 

distance matrix calculation, compared with 0{n) of Euclidean distance matching. 

This hinders the use of time warping distance for similarity searching in enormous 

time series databases where response time is a critical issue. Second, we cannot 

directly apply indexing techniques for time warping distance as in [23, 2] to 

speed up sequences retrieval. For multi-dimensional index trees like R-Tree, 

iStrictly speaking, the complexity should be 0(||̂ || x ||̂ |) 
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the distance function under consideration is assumed to be a metric, and time 

warping distance fails to fulfill this requirement. The definition of metric space 

is given as follows. 

Definition 3 Given a nonempty set A', a distance function or metric D on Af 

is a function which assigns to each pair of points a non-negative real number 

satisfying the following for all x,y G A': 

1. D(x,y) > 0 and D(x,y) = 0 if and only if x = y; 

2. D(x,y) = D(y,x); 

3. For all x,y,z G A', D(x,y) < D(x,z) + D(y,z), (triangle inequality). 

The pair(A',D) is called a metric space. Different metrics defined on the same 

set can produce different metric spaces. • 

The most widely used distance function for similarity search in time series 

database is the Euclidean distance L2 of the Lp metric family of distance function 

D , { x J ) = ( ^ J 2 \ x , - y , \ ^ y (4.1) 

We can show that time warping distance violates the triangle inequality by 

the following example. 

Example Given three time sequences x = {0 , l ,3 } , y={3 ,2 ,2 } , and z = {2,3,2}. 

Dtimewarp{x, v) = H > Dtimewarp{x, z) + DtimewarpiV, ^) = 6 + 1 二 7 • 

It is inappropriate to employ multi-dimensional index trees for direct indexing 

based on time warping distance, since it may give rise to false dismissals. 
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To deal with the problem of high time complexity, we propose approximation 

functions to time warping distance, which results in less computation by trading 

off tiny amount of accuracy. Before looking into our solution to the second 

problem of false dismissals, we would first elaborate on an index-based similarity 

search supporting time warping distance. 

4.1 Similarity Search based on K - L Transform 

An approach [47] that makes use of K-L transform and lower bound distance 

function to support matching with time warping is described in Section 2.4. K-L 

transformed sequences is inserted into an index tree (Fastmap index), and lower 

bound distance function filters false alarms in the post-processing step. The main 

drawback of this technique is that the search range of time warping distance 
— 

Ctimewarp, wheH used in extracting sequences in the Fastmap index, i.e D{x, y') < 

Cfastmap 二 ttimcwarpi is Hot efFective in finding a relatively small candidate set with 

little false dismissals .̂ Therefore, large amounts of sequences have to be checked 

with the lower bound distance function Dih and then the time warping distance 

function Dtimewarp to obtain the answer. To demonstrate the ineffectiveness of 

using Ctimewarp as the search range for the Fastmap index, we have conducted 

experiments based on precision and recall (excluding the pruning step by A t ) -

Precision and recall are defined as follows. 

T^ . . >^RetrievedAndQualified / A r>x 
Precision = (4.^j 

^Retrieved 

TT, 11 ^RetrievedAndQualified / A Q\ 
Jiecaii 二 (4.c>j 

^Qualified 

^In fact, the value of Cfastmap is increased to 4 > n e T p in [47] to reduce the number of false 
dismissals. 
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where Suetrieved is the number of sequences retrieved from Fastmap index, Squaiified 

is the number of sequences qualified, and SRetrievedAndQuaiified is the number of 

sequences retrieved and qualified. 

Totally 50 random sequences are queried on a database of 5k synthetic random 

walk sequences of length 256. The value of tUmewarv is fixed such that the number 

of qualified sequences in the result set is 2.75% of the database size. On the other 

hand, the value of cjastmap is varied such that 1 qualified sequence is extracted 

at the minimum range and all qualified sequences are extracted at the maximum 

range. Result is shown in Figure 4.5. 
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Figure 4.5: Precision and recall of range query on Fastmap index 

It is observed that when we want to have higher recall, the value of Cfastmap 

should be increased. However, precision drops rapidly with cjastmap, which results 

in large amounts of false alarms. The consequence is that more processing time 

is devoted to matching of candidate sequences with Dib and Dumewarp- As the 

complexity of Dumewarp is 0(n^), the performance drops drastically with lengthy 

time series, which is confirmed in [47]. 

Even worse, Dib underestimates Dumewarp to a great extent. For the same 

time series database we use, the fraction of distance estimated by Dib is shown in 
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Figure 4.6. The pruning power of Dib is low such that only 25% to 35% of time 

warping distance on the average can be estimated. Therefore large amounts of 

remaining sequences still should be checked with Dumewarp, which involves the 

most computations. 
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Figure 4.6: Fraction of distance estimated by Dih {Dib / Dtimewarp) 

We observe no simple solution to the second problem of false dismissals oc-

currence. Even for the K-L transform based index we have mentioned, the search 

range cjastmap should be enlarged with respect to Ctimewarp to avoid possible false 

dismissals. Rather than modifying Fastmap index to guarantee no false dis-

missals, we try to improve the overall performance of the similarity querying of 

Fastmap index, by replacing the lower bound distance function with our pro-

posed approximation function as a more effective filter in the post-processing 

step, which is capable of pruning a large number of false alarms arising from 

large ejastmap- Two approximation functions are suggested, which are Low Res-

olution Time Warping and Adaptive Time Warping. The former one can act as 

both an approximation and a filtering functions, while the latter one is solely for 

time warping distance approximation. 
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4.2 L o w Resolution T i m e Warping 

In order to reduce the time complexity of sequence matching in time warping 

distance, we propose to obtain a lower resolution version of the time sequences 

such that an approximation to the time warping distance can be found using an 

acceptable computation time. To achieve low resolution time warping, two steps 

are involved, resolution reduction and distance compensation. 

4.2.1 Resolution Reduction of Sequences 

To achieve different resolutions of sequences, we employ the technique in multi-

resolution representation of Haar wavelets .̂ Upon application of Haar transform 

on time sequences, Haar coefficients can be obtained. Conversely, we may also 

reconstruct time sequences by applying an inverse Haar transform to Haar coef-

ficients. 

For a time sequence, its Haar transformation, or decomposition can be found 

by Equation (3.8) in Section 3.1.1. The inverse Haar transformation, or re-

construction goes in a similar manner, but actually reversing what we do in 

decomposition. It is shown in Equation (4.4), 

xo 1 [ 1 1 0 0 1 [ j:'o 

- 二 1 - 1 0 0 X 必 (4.4) 

X2 0 0 1 1 X； 

^3 0 0 1 - 1 d{ 
_ � L. J L J 

with Haar coefficients w = [x^ d^ x\ d\]^ as input and x = [ a : � x i X2 X3]^ as 

^Restriction is imposed on the length of time series. However, the problem of inconsistent 
sequence lengths was not addressed in [47] such that K-L transform can be applied properly. 
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output 4. The number of iterations for recovering the original sequence in the 

reconstruction is exactly the same as needed in decomposition. Note that the 

inverse Haar transform matrix H ' is equal to two times the Haar transform matrix 

H, i.e. H' 二 2H，H x H' 二 2H x H 二 I. Diflferent resolutions of time series can 

be achieved by varying the number of iterations performed in Equation (4.4) of 

the reconstruction process. The more the iterations, the higher the resolution 

we can obtain. 

Referring to Figure 4.7, we show different resolutions of an input sequence 

z = {3,1,0,2,-3,-4,1,2}. Decomposition and reconstruction correspond to down-

ward and upward traversals of the tree respectively, with upper levels repre-

senting higher resolutions. By reconstruction of Haar coefficients of z, we can 

obtain 4 different resolutions which are {0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25}, 

{1.5，1.5,1.5,1.5,-1.0,-1.0,-1.0，-1.0}，{2.0,2.0,1.0,1.0,-3.5,-3.5,1.5,1.5}, and i ' itself. 

Note that the lengths of sequences are preserved at different resolutions. The 

main drawback of this approach is the insufficiency of diversity of resolutions 

for a sequence. Even for a sequence of length 256, there are only 8 resolutions 

available. This is not very flexible and efficient for practical use in database 

index where diverse variations of resolutions are desired. Therefore, we allow the 

resolution reached by each branch to be different, i.e. the resolutions of sequence 

segments can vary. For instance, we can obtain a finer resolution of sequence 

{2.0,2.0,1.0,1.0,-3.5,-3.5,1.5,1.5} by expanding the last two values {1.5,1.5} to 

{1.0,2.0}, which becomes {2.0,2.0,1.0,1.0,-3.5,-3.5,1.0,2.0}. A systematic way to 

achieve this variety of resolutions is described below. 

Instead of running different number of iterations of Equation (4.4), we obtain 

different resolutions of zhy first truncating Haar coefficients H{z), then perform-

ing a full reconstruction (a full iteration of matrix multiplication) of Equation 

(4.4). The number of coefficients truncated determines the resolution of sequence 

^Normalization can be achieved by adding a scaling factor of 1/22 in Equation (4.4). 
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Figure 4.7: Resolution reduction by variations of iterations 
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Figure 4.8: Resolution reduction by truncation and full reconstruction of Haar 
coefficients 
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Figure 4.9: Removal of duplicated values by sampling 
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z. Possible resolutions of sequence i 'are shown in Figure 4.8, with no truncation 

at Level 0, and 7 coefficients truncated at Level 7. The underlining signifies the 

value pair with resolution reduced. 

Although we obtain lower resolution versions of a sequence, their lengths 

are still equal to the original sequence length. This does not constitute any 

improvement on time complexity as the lengths of sequences remain unchanged. 

Therefore, sampling is introduced for sequence length reduction. 

From Figure 4.8, there exists some repeated values in different resolutions of 

sequences. One sample value can thus be taken out of those repeated ones. Con-

sider the same figure, the sequence at Level 2 is sampled from {3.0,1.0,0.0,2.0,-

3.5,-3.5,1.5,1.5} to {3.0,1.0,0.0,2.0,-3.5,1.5}, with the last two value pairs sampled 

down to one value each. By the same rule, the sampled sequence at the last level 

will be of length 1 which is {0.25}. Figure 4.9 shows the result after sampling of 

sequences in Figure 4.8. 

4.2.2 Distance Compensation 

With reduced sequence length, the computations involved in time warping dis-

tance can be drastically reduced. However, it is still inappropriate to estimate 

the original distance by the distance of lower resolution sequences, as distances 

arose from discarded value pairs are lost owing to the down sampling process, 

leading to severe underestimation of original time warping distance. The aim of 

using lower resolution sequences, down sampling, and then time warping is to 

first pair up as rapidly as possible the peaks and valleys of the two sequences 

accordingly. Afterwards, we should compensate for the distances lost owing to 

the down sampling process. 

The compensation process is done as follows. Given two sequences x and y of 
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Figure 4.10: State transitions in finding time warping distance 
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length > 4, without loss of generality, we denote their low resolution versions as 

X = {Xo, X1,X2,X3} and Y 二 { % , ¥^¥2, % } , and assume that they have a time 

warping path shown in grey on the distance matrix in Figure 4.10. The length of 

the path corresponds to the number of pairs of matching values in time warping, 

which are five pairs in this case, namely, ( ¾ , Vo), (X i ,F i ) , ( ¾ , l^i), ( ¾ , Y2), and 

(X3, Ys). They are visualized in lower part of the figure consisting of five different 

states, with arrows pointing to the matched pairs. The positions of these arrows 

are able to indicate where and how we make the distance compensation. 

Case 1: X 
arrow 

I i 
Xi Xi+1 Xi Xi+1 
Yj Y j + i ^ Yj 回 . . . . . . . . . 0 Y j + i 

t 令 Y+ ^ 
arrow 

Case 2: 

I i i n ^ ^ 

Xi X i+1 > Xi [ ^ … … [ ^ X i+1 

Yj Y j + i “ Yj 0 0 Yj+i 
f 令 t 令 

Figure 4.11: Distance compensation 

There are two possible movements of the arrow pair when proceeding from 

one state to the next: either one arrow moves a unit forward, or both arrows move 

a unit forward. These situations are shown in Figure 4.11. For any consecutive 
— — 

elements Xi , Xi+i and Y j , Yj+i of sequences X and Y respectively, where i 

need not equal j, there exists some repeated values or elements which are in-

between (removed by down sampling), represented as Xi and Yj. Denote the 

arrows pointing sequences X and Y as Xarrow and Yarrow respectively. 

• Case 1 

Either Xarrow oi Yarrow mov6s forwaid. Without loss of generality, we 

assume Yarrow Hioves a step forward pointing Yj+i (shown in hollow arrow). 
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As the only movement is Yarrow, we just need to compensate for distances 

between point Xi and subsequence {Y j^ . . . , Yj } , which is 

D C = { ( X i - Y , y X 1 1 ¾ , . . . , ¾ } ! ! } ^ 

such that the transition of Yarrow from Y j to Yj+i is in continuity. 

• Case 2 

Both Xarrow and Yarrow move a unit forward. Distances from both sub-

sequences { X i , . . . , X i ] and { Y j , . . . , Y j ] should be considered. Euclidean 

distance between { X i , . . . , X i ] and { V } , . . . ， Y j } could be used, however, a 

better estimation involves the use of time warping distance. It is computed 

as follows. 

DC = { ^ _ p ( { X i , x . , . . . , x . , x i + i } , { Y j , r , , . . . , r , , Y j + i } ) 

— pCi — Yj)2 — ( X i + i - Y j + i ) 2 } i 

Using time warping distance is a better estimation to compensate for dis-

tances as it gives closer approximation to the original distance between the 

two time series. As the length of the repeated segment for a sample point 

is relatively short, the amount of computation involved is small. 

Knowing how to compensate distance may lead us to the formula for finding 

the overall low resolution time warping distance between two time series x and 

y which is shown in the following equation 

I 
{ N o . o f s t a t e s ^ 2 

Dumewarp{^^^) + Y1 ^^s | (4.5) 

where X and Y are the lower resolution versions of sequences x and y respectively, 

and DCs is the distance compensated at state 5. We can thus use DiowresTW to 

approximate Dumewarp closely. The procedures in finding low resolution time 

warping distance are summarized in Figure 4.12. 
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Figure 4.12: Procedures in finding low resolution time warping distance 
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Example To obtain the low resolution time warping distance between two se-

quences X = {3,1,0,2,-3,-4,1,2} and y = {2,3，l，-3，-4,l,0,l} of length n 二 8, the 

following procedures are taken. 

First we obtain the lower resolution versions of both x and y by finding 

their Haar coefficients using Equation (3.8)，which are H{x) = {0.71,3.54,1.0,-

5.0,1.41,-1.41,0.71,-0.71} and H{y) = {0.35，1.77,3.5’-2.0，-0.71,2.83,-3.54,-0.71} 

respectively. In order to determine the best fc^am, we employ both Equation 
1 ( 2 �i 

(4.7) and Equation (4.10) and then take the average, &麵=(^^ + ( ^ ^ j ' ) / 2 = 

3. Therefore, we replace the (8-3)=5 right most Haar coefficients each in H{x) 

and H{y) with zeros, resulting in H{x) 二 {0.71,3.54,1.0,0,0,0,0,0} and H{y) 

={0.35,1.77,3.5,0,0,0,0,0}. Haar reconstructions are then performed using the 

modified JI(x) and F ( y ) to obtain lower resolution sequences of x and y, which 

are {2.0,2.0，1.0,1.0,-1.0,-1.0，-1.0,-1.0} and {2.5,2.5,-1.0,-1.0,-0.5,-0.5,-0.5,-0.5} re-

spectively. They are then reduced to X = {2.0,1.0,-1.0} and V = {2.5,-1.0,-0.5} 

separately after sampling of duplicated time values. 

Next, we find the value of D u - p ( ^ , f ) which is 1.66, with time warping 

path (Xo,Fo), ( ^ 1 , ¾ ) , (X2,Fi) , and ( ¾ , ¾ ) - Afterwards, we perform the dis-

tance compensation. According to this path, two Case 1 and one Case 2 distance 

compensations are required. The last pair of time values ( ¾ , ^2) also needs com-

pensation as duplicated values follow after them, i.e. {-1.0,-1.0’-1.0，-1.0} ofx and 

{-0.5,-0.5,-0.5,-0.5} of y. The procedure for this compensation is nearly the same 
— — 

as for those described in Case 2. Finally, by substituting D t i m e w a r p [ X , Y ) = 1.66, 

DCi = 0.5, DC2 = 1.5, DC3 = 0，and DCU = 0.87 into Equation (4.5), we obtain 

Diou^resTW 二 {!-66^ + 0.5^ + 1.5^ + 0.87^}^ = 2.45. • 
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4.2.3 Time Complexity 

Since the computation time of low resolution time warping depends on the num-

ber of samples taken in resolution reduction, we are able to estimate the optimal 

number of sample that leads to minimum computation. Denote n as the length of 

time series and we reduce the resolution of sequences to only ksam sample points. 

Hence, r ^ corresponds to the length of repeated segment for each sample point. 
ksam 

Since it is impossible to exhaust the state space for different paths in the cumu-

lative distance matrix, we consider two representative paths that produce close 

approximations to the lower and upper bounds of the true computation, which 

are denoted as Poptimistic and Ppessimistic respectively. 

• Pttth Poptimistic 

+ _ J k 
Sequence Y sam 

— • 

Sequence X 

Figure 4.13: Cumulative distance matrix of Poptimistic 

The first path Poptimistic is shown in Figure 4.13. It composes of two shorter 

linear paths perpendicular to the x-axis and y-axis respectively. The trace 

of Poptimistic leads to faster computation time in distance compensation, 

since only compensation of the first case (Figure 4.11) is involved which 

has a linear complexity. With 2n computations in resolution reduction of 

time sequence, k]^^ computations in finding the time warping path of the 
/ \ 2 

resolution reduced time series, and 2ksam X r ^ + ( r ^ ) computations 
‘ f^sam \ f^sam / 
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involved in distance compensation, the overall computation A is expressed 

in Equation (4.6). 

A = 2n + k � _ + ^^sam X k^ + ( ^ ) (4 g) 

二 4n + fcLn+(t)2 

Differentiating A with respect to ksam, 

d\ ^, 2n" 
— 9^  

• � — 霞 ^3 
^yf^sam) ^sam 

n — ^h 2 ^ u — ^^sam 3u3 ^sam 

k t _ = - 2 (4.7) 

ksam — 几乏 

Moreover, 

d^X — o 6n2 
~ M U ~ ~ ^ 二 7^~~^〉 
^\^sam ) \^sam ) 

Hence A | i gives the minimum computation, and 
ksam—^ 2 

n - a = 4n + n + ( i ) 2 
f^sam一厂也力 71 ^ 

=6n (4.8) 

< n^ for n > 6 
• 

參 Pdth Ppessimistic 

For the second path Ppessimistic in Figure 4.14, it runs along the diagonal 

of the cumulative distance matrix, which leads to slower computation in 

distance compensation, since all compensations involved are of Case 2. 

With the same computations involved in resolution reduction and time 
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+ k 
Sequence Y sam 

_L_J X 
- • 

Sequence X 

Figure 4.14: Cumulative distance matrix of Ppessimistic 

warping path selection as for Poptimistic, and h a m x ( ^ ) computations 

for distance compensation, the overall computation is shown in Equation 

(4.9). 

2 ( n � 2 

A = 2n + Kam + ^sam X ( ^ j (4.9) 

= 2 n + g ^ + £； • 

Differentiating A with respect to k^am, 

仏—2k - ( ^ y 
7 / 7 \ — ^^sam 1 7 j 

d^y^sam ) \ ^sam / 

0 — ĥ,sam — ( T ) 
\ f^sam / 

kLrn = f (4.10) 

k - (r^Y' 
^sam — y 2 ) 

Moreover, 

d^X — 2 I 2 n 2 �0 

d{ksam)^ (&sam)3 

Hence A 2,1 gives the minimum computation, and 
fcsam = ( % - ) 3 
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n _ ( ^ ) i 二 2 , + ( 宇 ) “ 錢 

二 2 n + 4 + 2 l X n s 
23 

=2n + 2 " t X 3 X n 3 ( 4 工 工 ) 

=2n + 1.9 X ni 

< 2 ( n + n t ) 

< n? for n > 6 

• 

From both Equation (4.8) and Equation (4.11), we discover that the time 

complexity of low resolution time warping is rather linear, A 二 6n for ksam — ^^ 

and A = 2n + 1.9 x nl for ksam = ( f ) ^ - In Table 4.1, the estimated and 

experimental values of Ksam are compared for various sequence lengths ^ 

Sequence length ŝam 丄 

n r12 [^)^ Experimental values {r12 + ( 引 ” / 2 
M 8 13 8 - 20 11 
128 T l 20 16 - 17 16 
256 ~T6 32 26 - 32 24 
512 23 51 34 - 37 37 

Table 4.1: Optimal number of Ksam in low resolution time warping 

In the table we show our estimated lower and upper bounds of optimal Ksam 

for a variety of sequence lengths. On the other hand, the experimental results 

are tabulated and they show the values of ksam that give rise to minimum CPU 

time. We observe that the experimental values of ksam are within the range of 

the bounds, except for sequence length of 64, where the maximum value of ksam 

二 20 exceeds the upper bound value which is 13. 

^The same experimental setup is used as in Section 4.4. 
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From another point of view, we are making use of these bounds to find optimal 

ksam, therefore, we try to use the averages of these bounds as an estimation, which 

are shown in the last column. Excluding the third case, all the average values 

coincide with the experimental values. Though 24 is not the optimal &面 for 

sequence length of 256, it is close enough to 26 such that the CPU time is nearly 

at the minimum. 

4.3 Adaptive T i m e Warping 

We propose another method of estimation to time warping distance by splitting 

the original time series into subsequences. The overall time warping distance 

is then estimated by summations of the partial time warping distances of these 

subsequences. The way of breaking sequence x = {a:̂ o, a î, X2, X3, X4, X5, xe, x7} is 

shown in Figure 4.15. 

Level 0 x ^ x ^ x ^ x 3 x 4 x 5 x ^ x 7 

^ ^ \ 
X 0 X 1 X 2 X 3 X 4 X 5 X 6 X 7 

； 八 八 
X 0 X 1 X 2 ^ 3 X 4 X 5 X 6 又 7 

: A 八 八 八 
Level log 之 n x ^ x ^ x ^ x 3 x 4 x 5 x ^ x 7 

Figure 4.15: Sequence partition in adaptive time warping 

At each level, each sequence is being partitioned into two equal halves. The 

last level is reached when x is splitted into separate time points, {xo ) , {a ; i } , . . . ,{a^7}. 

Denote the subsequences of x as sx, { sxi\sxi G x and sXi fl sxj 二 0 } . The 

adaptive time warping distance is defined as 
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I 

DadaptiveTw{x,y) = ^ Dl^ewarpi^^i^^^) [ (4.12) 
^sxiex,syiEy ) 

Prior to any partition (Level 0), DadaptiveTW = Dtimewarp obviously. If we 

partition the sequence into separate time points (Level l0g2 n), then DadaptiveTW 

=DEuciidean- Physically, splitting sequences into pieces to achieve adaptive time 

warping corresponds to the imposition of restrictions on the original time warp-

ing path in cumulative distance matrix. For splitted sequences at Level 1, the 

situation is shown in Figure 4.16. 

-| I I I I I I •  
6 

- ‘ : f f i = = 

2 

°y 111111. 
0 1 2 3 4 5 6 7 

—• 
Sequencex 

i I 
^ 0 X3 X 4 X7 ^ ^ ^ 0 X3 X 4 X7 ^ 

yo 3̂ y4 y? ^ ^ ^ yo h >u y? 
i t 

i + 

X 0 X 3 X 4 X 7 X o X 3 X 4 X 7 

Yo y3 y4 y? " ~ ^ ^0 y3 y4 y? 
t t 

Figure 4.16: Pair restrictions in adaptive time warping 
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We show the cumulative distance matrix of sequences x and y in full length 

for better explanation. As a matter of fact, the time warping path should always 

pass through (xo,yo) and {x7,y7) of the cumulative distance matrix, as they are 

the starting and ending points of the two sequences. Partitions at the middle 

of X and y restrict this warping path to pass through (x3,y3) and (^4,^4)- The 

reason is that (x3,y3) becomes the new ending point of the first subsequences, 

whilst (j;4, y4) is the new starting point of the second subsequences. These four 

restriction pairs correspond to four different states depicted in the diagram of 

Figure 4.16. With these restriction pairs, the search space now has been re-

duced by half, which is shown as light grey regions. Therefore, only half of the 

computations are needed. The more the partitions of the sequences, the faster 

the computation time, however, the larger deviation from the real time warping 

distance. This is a trade off between accuracy in distance estimation and time 

complexity. 

4.3.1 Time Complexity 

The real time warping distance Dumewarp always gives the shortest cumulative 

distance in the matrix. With more pair restrictions, the cumulative distance 

will increase. Therefore, DadaptiveTW would upper bound Dumewarp all the time. 

Denote DadaptiveTW obtained at partition Level i as DAi , 

Dtimewarv < DAi for 0 < Z < lo& 71 (4.13) 

From the facts that DAo = Dumewarp and DA\og^ n = DEudidean, hence the 

time complexity of adaptive time warping is 

0{n) < OoA, < 0{n^) for 0 < i < log^ n 
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Note that we can achieve more flexibility of sequence partition by allowing 

unsynchronized splitting of subsequences, the methodology is similar to the ones 

introduced in Section 4.2.1 for low resolution time warping in achieving a diver-

sity of resolutions. 

4.4 Performance Evaluation 

Experiments using synthetic data have been carried out. All experiments are 

conducted on a Sun UltraSPARC-1 workstation with 592MBytes of main mem-

ory. Synthetic random walk data consisting of 5k time sequences are generated. 

The length of sequences ranges from 64 to 512. All results are obtained from the 

average of 50 trials. 

4.4.1 Accuracy versus Runtime 

Since we aim to show the accuracy and effectiveness of low resolution and adap-

tive time warpings for real time warping approximation, query is raised following 

by an exhaustive match of each time series in the database. Results are shown 

from Figure 4.17 to Figure 4.21. 

In Figure 4.17, the fraction of distance to real time warping against sample 

length / number of partitions is investigated (original length of time series is 256). 

To low resolution time warping, sample length refers to the number of sample 

values taken, that is Ksam- To adaptive time warping, number of partitions refers 

to the number of subsequences resulting from partition process. 

The approximation of low resolution to real time warping distance is accurate 

as observed, the fraction of estimation is close to 1.0 and is bounded between 1.0 

and 1.3 on average. The larger the value of Ksam of low resolution time warping, 
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the more accurate the approximation to the real time warping distance. Larger 

Ksam means fewer time values of the original time series are being sampled. 

Moreover, the number of distance compensations are also reduced. Both of them 

lead to a closer approximation to the actual time warping distance. DiowresTW 

will be equal to Dumewarp in the extreme when Ksam is the same as the full length 

of the original time series. 

For adaptive time warping, the distance estimated ranges from 1.0 to 1.75 

on average and should always be greater than or equal to 1.0 by the upper 

bounding property in Equation (4.13). With no partition, the fraction is equal to 

1.0, and rapidly stabilizes to around 1.75 with increasing number of partitions, 

as more restrictions are imposed on the time warping path. We observe that 

the saturation occurs around 60 partitions and it finally converges to Euclidean 

distance of time series. 

The distance estimated by the lower bound distance function Du> mentioned 

in Section 4.1 is also shown for reference. As the lower bound distance function 

makes use of the full time series, the distance estimated is invariant to the sample 

length and is found to be around 0.3, i.e 30% of the real time warping distance. 

2 p 1 1 1 ‘ 一 ^ 

Lowres Time Warping  
Adaptive Time Warping  

- _ - _ _ Lp_wer Boun_d Function -_-:•- __ 

/ 
1.5 - / -

I 

S r ^ v ^  
§ I � 
S ——^ 
0 ^ 
B 1 -c g 1 1̂  

0.5 _ _ 

0 L_ 1 1 "• >~ 
50 100 150 200 250 

Sample Length / No. of Partitions 

Figure 4.17: Fraction of distance estimated (Sequence length 二 256) 

The CPU time required by various time warping methods is shown in Figure 
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Figure 4.18: CPU time of different time warping methods (Sequence length = 
256) 
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Figure 4.19: Speedup (Sequence length = 256) 
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Figure 4.20: Fraction of distance estimated at best CPU time 
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Figure 4.21: Best CPU time at various sequence lengths 

4.18. The real time warping consumes enormous CPU time compared with other 

three methods due to its 0{n^) complexity. Initially low resolution time warping 

experiences a drop in CPU time to a minimum, followed by a gradual increase 

until it reaches the same CPU time required by real time warping. Low resolution 

time warping using full sample length is equivalent to real time warping, thus, 

they have the same CPU time and the fraction of distance estimated would 

be equal to 1.0 which is depicted in Figure 4.17. Minimum CPU time of low 

resolution time warping could be obtained by determining the optimal sample 

length ksam for time series being described in Section 4.2.3. In this experiment, 

the optimal dimension ranges from 26 to 32 for sequences of length 256, which 

follows the prediction in Table 4.1 and Figure 4.18. 

On the other hand, the CPU time required by adaptive time warping de-

creases with the number of partitions. The initial drop in CPU time is similar to 

low resolution time warping, and it continues to decrease upon further partitions 

on the sequence. Meanwhile, the complexity goes from 0{n^) to 0{n). The min-

imum CPU time would be the time taken to find the Euclidean distance between 

two time series, which corresponds to the point with number of partitions = full 

length of time sequence. Lower bound distance function requires the least CPU 

time by having 0{n) complexity and the simplicity in finding Dib. 
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The speedup in terms of ratio of CPU time is found in Figure 4.19. The 

maximum speedups attained by low resolution and adaptive time warpings are 

14 and 24 times respectively. At these speedup factors, low resolution time 

warping achieves an estimation of distance at 1.21, while adaptive time warping 

attains 1.7 on average. The accuracy of adaptive time warping can be improved 

by trading off CPU time. Though the lower bound distance function achieves a 

speedup of 36 times, the distance estimated is too low (30%) to be effective for 

distance approximation or filtering purpose. Moreover, the inability to trade off 

CPU time for accuracy makes it prohibitive. 

In order to ensure performance at different sequence lengths, we carry out the 

experiment as in Figure 4.17 with different lengths of sequences. The fraction 

of distance estimated at best CPU time for various sequence lengths is shown in 

Figure 4.20. The fraction of distance that low resolution time warping estimated 

is relatively constant around the value 1.2, while the estimation by lower bound 

distance function is close to 0.3. In the figure, it is obvious that low resolution 

time warping is able to give a better approximation to real time warping distance 

(an +0.2 overestimation) compared with the lower bound distance function (an 

-0.7 underestimation), and this phenomenon seems to persist in a variety of se-

quence lengths. The persistence of fraction of distance is important in the sense 

that different lengths of sequences share nearly the same factor, thus other se-

quence lengths will produce likely the same amount of overestimation, which is 

used in turn to estimate the real time warping distance. There is no best CPU 

time exists for adaptive time warping as CPU time is a direct trade off for accu-

racy of distance estimation. Therefore, it is inappropriate to make comparison 

in this case. 

Figure 4.21 shows the best CPU time attained for various sequence lengths. 

Having high complexity, real time warping scales bad in CPU time with sequence 

length. Doubling in sequence length gives rise to quadruple of CPU time. In the 
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meantime, both low resolution time warping and lower bound function maintain 

a linear increase in CPU time and the speedup could be enormous for lengthy 

sequences. The linearity of low resolution time warping is consistent with the 

estimations in both Equation (4.8) and Equation (4.11). 

4.4.2 Precision versus Recall 

The following experiments are carried out to evaluate the performance of low 

resolution time warping when acting as a filtering function in the post-processing 

step of similarity search. Performance is described in terms of precision and recall 

defined in Equation (4.2) and Equation (4.3) respectively. The number of false 

alarms as well as the number of false dismissals generated are also studied. The 

experimental setup is all kept the same with only two exceptions. First, we want 

to perform a search ® to look for candidate sequences, rather than exhaustively 

match all sequences in the database with the query as in Section 4.4.1. Therefore, 

an appropriate epsilon range % _ _ r p should be employed to obtain a reasonable 

amount of candidate sequences. In our experiment, the values of epsilon range 

from 0.5% to 5% of the database size, and results are drawn from the average of 

these epsilon ranges. 

Moreover, the original epsilon range eumewarp should be adjusted in accor-

dance with the fraction of distance obtained in previous experiments (Figure 

4.20) when matching sequences using low resolution time warping in the post-

processing step, the adjusted epsilon is denoted as tiowresTW- After all, more false 

alarms but fewer false dismissals appear for an increase in epsilon range, while a 

decrease in the range reverses the effect. Our task is to obtain a modest range 

that results in a tiny number or none of false dismissal, and at the same time 

suppresses the number of false alarms. 

6Note that we emphasize on the performance comparison of filtering functions, hence we 
bypass the use of Fastmap index for the sake of simplicity. 
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The fraction of distances estimated for various sequence lengths are from Fig-

ure 4.20 and tabulated in Table 4.2 accompanied with their standard deviations. 

The value of fraction of distance estimated and its associated standard deviation 

act effectively as an indicator for the adjustment of the epsilon range cioujresTW in 

low resolution time warping. The adjustment can be expressed by the following 

equation 

eiowresTW = distJrac x 〜 脈 飄 厂 ？ > + c x s.d. for c > 0 (4.14) 

where Ctimewarp is the epsilon range used in real time warping distance, distJrac 

represents the fraction of distance estimated, s.d. is the standard deviation at 

a particular distJrac. By varying the value of c, the range cio^jresTW can be 

systematically adjusted. The best dimensions used in the experiments for low 

resolution time warping are listed in the same table for reference. 

Sequence length Fraction of Distance S.D. Best Ksam 
n dist_frac  

~ ~ 64 1.25 ~ O X r 20 — 
128 一 1.24 0.13 17 

— 256 1.21 ~ 0 W 32 — 
512 1.21 0.12 37 

Table 4.2: Fraction of distance estimated and associated standard deviation 

Figure 4.22 to Figure 4.25 show the performance with different epsilon ranges 

cioujresTW- In Figure 4.22, the number of false alarms and false dismissals are 

shown for querying a database of sequence length of 256. We observe that when 

we scale the value of the epsilon only by a factor of dist_frac with zero s.d., i.e. 

eiowresTW 二 1.21 X cumewarp, there ai6 85 false dismissals ^ being generated. On 

^Number of false alarms and dismissals should be compared to the average number of 
qualified sequences in the answer set, which is = database size x average epsilon cumewarp = 
5000 X 2.75 = 137.5. 
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Figure 4.22: Number of false alarms and false dismissals (Sequence length 二 

256) 

500 V — ^ ^ ^ 

E3 False Alarms 

B False Dismissals 

400 — : ™ ^ 

3 300    
«J s ~ 
f *A 

Z 200 i *™*"" 

100 —   

0 m ^ ^ 圖 M _ „ 鬥 一 1川丨丨11丨11 ,     

0 1 2 3 4 5 6 
No. of SD 

Figure 4-23: Average number of false alarms and false dismissals 
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Figure 4.24: Average number of false alarms compared with Dib 
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Figure 4.25: Average precision and recall 
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Figure 4.26: Number of false alarms at various sequence lengths 
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Figure 4.27: Precision at various sequence lengths 

the contrary, the number of false alarms being generated is small. This seems 

to be natural since we are using solely dist_frac as the scaling factor, which 

measures the overestimation on average. As reflected in the figure, the larger 

the value of eiou>resTW (through increment of c in Equation (4.14)), the fewer the 

number of false dismissals, but the more the number of false alarms. For c 二 5, 

no false dismissal is recorded while the number of false alarms increased to 390 

sequences. 

The same experiment is carried out separately for databases of sequence 

length of 64, 128, and 512. Their results are averaged and shown in Figure 

4.23. A similar trend is observed as in Figure 4.22. Moreover, we notice that 

for the same value of c, there are more false alarms in this case than that for 

256 units long sequence database. It is because more false alarms appearing for 

shorter sequence lengths (64 and 128), hence more false alarms are observed in 

the figure. This phenomenon is explained later with Figure 4.26. 

We have demonstrated in Section 4.1 that the fraction of real time warping 

distance estimated by the lower bound distance function is quite small, although 

no false dismissal will be generated. The enormous amounts of false alarms 

produced by Afc shown in Figure 4.24 confirms this fact. There are 3k false 
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alarms being generated by Dib compared with 0.35k (recall = 1.0), i.e. a 8.5 

times improvement. The amount of false alarms produced by low resolution 

time warping is still tiny for large S.D. value with respect to A&-

This enables a significant performance gain by low resolution time warping 

technique, since most computations are involved in the matching between the 

candidate sequences and the query in the post-processing step. Having 0{n^) 

complexity, the matching in real time warping distance will consume enormous 

CPU time if the filtering function fails to prune away false alarms effectively, 

which is the case for lower bound distance function. In contrast, the filtering 

power of low resolution time warping is overwhelming which results in a conceiv-

able significant outperformance. 

In Figure 4.25, the precision and recall of low resolution time warping are 

shown. The precision of lower bound function is also included for reference. 

For low resolution time warping, precision decreases while recall increases with 

ciowresTW- Their trends correspond to the rise of false alarms and the drop of 

false dismissals respectively in Figure 4.23. The value of recall recorded is 0.4 at 

c 二 0, and gradually increases to 1.0 at c = 5, where no false dismissal occurs. 

Meanwhile, precision drops from 0.82 to 0.25. On the other hand, low bound 

function offers a precision of 0.04, meaning that 96% of the retrieved sequences 

go to false alarms, which require a great deal of computations to get rid of. 

The performance of the two techniques are compared for a variety of sequence 

lengths in Figure 4.26 and Figure 4.27. For Figure 4.26, we show the number of 

false alarms generated by both filtering functions (recall = 1.0 for low resolution 

time warping). Both methods experience a decline in the number of false alarms 

with lengthy sequences. We observe that for lengthy sequences, the alignments of 

those peaks and valleys are rather localized, since the time series of financial data 

consist of time values fluctuating around some levels, which are relatively con-
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stant locally without abrupt change. Therefore, it is very unlikely that the head 

of a sequence will align with its tail. This leads to a more uniform distribution of 

DiovjresTW and Dib- In addition, both A^erTW and Dw will distribute in neater 

proportion to the real time warping distance Dumewarp^ such that large Dumewarp 

is less likely to end up with relatively small DiowresTW and Dib. Thus, more 

non-qualified sequences can be filtered yet without appearing as false alarms. 

The performance gap is maintained for different sequence lengths. Compared 

to low resolution time warping, at most 15 times more false alarms are recorded 

for lower bound function for sequence length of 512，and at least 8 times im-

provement is recorded for sequence length of 64. 

The precision at various sequence lengths is depicted in Figure 4.27. While 

lower bound function maintains a low precision around 0.04 for different sequence 

lengths, low resolution time warping offers tremendous improvements in preci-

sion, ranging from 0.2 to 0.3 at recall 二 1.0 (or 100% recall), which is 6 times 

better on average. The rise in precision for longer sequences directly corresponds 

to the drop in the number of false alarms in Figure 4.26. 

In addition, we show the precision of low resolution time warping at recall 

= 0 . 9 8 and 0.95. Smaller recall value provides better precision, since the epsilon 

range cioujresTW is reduced, which can suppress the generation of further false 

alarms. The results are encouraging, the improvements of low resolution time 

warping over lower bound distance function are 8 and 10 times at 98% and 95% 

recall respectively. 

4.4.3 Overall Runtime 

In this experiment we measure the overall CPU time of similarity search based 

on our strategy. The time measurement commences once the query is raised 
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and ends when all result sequences are returned from the post-processing step. 

Experimental setup is kept the same as in Section 4.4.2. Results are shown in 

Figure 4.28 and Figure 4.29. 
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Figure 4.28: Overall CPU time (Sequence length 二 256) 
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Figure 4.29: Overall CPU time at various sequence lengths 

For Figure 4.28, we consider the CPU time with varying epsilon ranges 

Ctinvewarp at sequenc6 length of 256. We observe 5 times and 3 times improve-

ments of low resolution time warping (recall 二 1.0) over lower bound function at 

search range cumewarp = 0.5% and 5% respectively. The smaller the tumewarp, the 

greater the outperformance. Roughly 50 seconds more CPU time are recorded 

for both methods when tumewarp is widen from 0.5% to 5%. Hence, they share 
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a similar linear scaling with epsilon range increase, though a performance gap 

is maintained between the two methods. The CPU time of low resolution time 

warping at recall = 0.98 and 0.95 is shown in addition. Lower recall values re-

quire less computation time since fewer qualified time sequences are retrieved, 

thus fewer sequences are being matched using real time warping distance. This 

accounts for the reduction in CPU time for lower recall values. 

The CPU time of different time series lengths is shown in Figure 4.29. Low 

resolution time warping outperforms lower bound distance function in tremen-

dous amounts, especially for lengthy sequences. It has a much better scaling 

with sequence length increase. The CPU time is kept relatively low for different 

sequence lengths by employing low resolution time warping, compared with the 

drastic increase for the lower bound distance function. Numerically, a 6 times 

improvement is achieved for sequence length of 512, and at least 2 times improve-

ment is recorded for sequence length of 64. Being consistent with the previous 

experiment, low recall value of low resolution time warping consumes less overall 

CPU time at different lengths of sequences. 

4.4.4 Starting Up Evaluation 

Note that in our performance evaluation, the two important indicators includ-

ing the fraction of distance estimated in Figure 4.17, and the best epsilon range 

eiowresTW iH EquatioH (4.14) are obtained statistically. These results are valid for 

our particular time series database. However, for other sets of time series data, 

results may vary accordingly. Therefore, before starting up a new similarity 

querying database based on our strategy, we advise the two kinds of experiments 

being carried out as in our evaluation to find the values of these indicators. In 

case for enormous database, sampling of sequences could be adopted to reduce 

the running time of the evaluation process. Upon incremental update of new 
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time series, evaluation could be carried out again, depending on the number of 

new sequences added and the nature of time series. For database composed of 

heterogeneous time series, more re-evaluations are anticipated upon incremental 

updating. In fact, these evaluations could be performed at the same time when-

ever Fastmap index is reorganized (Section 2.2), to keep up the performance of 

similarity search. 



Chapter 5 

Conclusion and Future W o r k 

5.1 Conclusion 

As time series data are of growing importance, we need to manage sequence data 

in database systems. For many applications such as prediction, decision making, 

the system is given a query sequence and we should return similar time sequences 

efficiently and precisely. 

First we propose an efficient time series matching technique through dimen-

sion reduction by Haar Wavelet Transform. The first few coefficients of the Haar 

transformed sequences can be indexed in an R-Tree or other similar indices for 

similarity search. Experiments show that our method outperforms the F-index 

(Discrete Fourier Transform) method in terms of pruning power, number of page 

accesses and complexity. In addition, a new similarity model is introduced to 

deal with vertical shifts of sequences. The proposed v-shift model has a better 

description of similarity between two sequences and is also shown to have better 

performance when compared with the non-v-shift model of DFT. Furthermore, 

an efficient two-phase nearest neighbor search is proposed and its effectiveness is 

demonstrated by experiments. 

95 
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Our time series matching strategy is capable of handling Euclidean distance 

or v-shift based similarity search effectively. For similarity search of time shifted 

sequences, we turn to the extensively used time warping techniques. However, 

the high complexity involved hinders its use. Even worse, false dismissals are 

produced when we directly apply indexing techniques for time warping distance. 

Therefore, we suggest the low resolution and adaptive time warpings to approxi-

mate the real time warping. In addition, low resolution time warping can act as 

a filtering function in the post-processing step in index-based similarity search. 

Experiments show that both techniques provide close approximation and achieve 

significant speedup. Moreover, low resolution time warping is shown to be effec-

tive in suppressing the number of false alarms generated in the post-processing 

step, this in turn consumes fewer computations in matching with real time warp-

ing distance that follows. It outperforms the lower bound distance function with 

an order of magnitude improvement. 

5.2 Future W o r k 

We have some suggestions for future work. 

5.2.1 Application of Wavelets on Biomedical Signals 

We are seeking for opportunity to apply families of wavelets that do not work 

well with stock data in biomedical signals, such as electrocardiographs (ECGs) 

and electrogastrograms (EGGs) for dimension reduction. Stock data are more 

stationary in the sense that the trends of stocks are gentle without abrupt change. 

This is totally different from biomedical signals which may be full of chirps. An 

example of ECG is shown in Figure 5.1. 
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Figure 5.1: An example of ECG signal 

The effects on various kinds of signals using different wavelet families may 

vary. Haar wavelets are shown to be effective in extracting features for stock 

sequences. But they may fail when applying to ECG sequences. However, the 

wide choice of wavelet family enables us to select the tailored one for a particular 

kind of signal, that can maximize the extraction of features. Using DFT or 

Piecewise Fourier Transform on biomedical signals, is thus less appealing and 

effective. 

In fact, wavelets have been widely used as analyzing tools in biomedical sig-

nals [7, 6] for signal detection, de-noising, compression, and feature extraction. 

Although wavelets are found to be useful in many areas of biomedical signals, 

nothing has been done related to signal retrieval. Therefore, we are going to eval-

uate wavelet families for these kinds of signals and try to develop mathematical 

property on Euclidean distance preservation. 
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5.2.2 Moving Average Similarity 

Moving average on time series eliminates short term fluctuations by averaging 

adjacent time values. While the transformation by Haar wavelets is equivalent 

to averaging the original sequence of adjacent pairs to achieve multi-resolution 

representation. This close relationship between moving average and Haar trans-

formation suggests us to match Haar coefficients in order to retrieve similar 

moving-averaged sequences. Though Haar coefficients provide good estimation 

of moving-averaged distance of two sequences, false dismissals will result as we 

can not guarantee the distance of Haar coefficients lower bounds the moving-

averaged distance. We will evaluate the effectiveness of this matching strategy 

by considering both the precision and the recall of query experimentally. 

5.2.3 Clusters-based Matching in Time Warping 
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Figure 5.2: Querying on clustered time series database 

It has been revealed in Section 4.1 that time warping matching based on K-L 

transform is inefficient in terms of precision and recall. High precision leads to 

low recall, while high recall gives rise to low precision. To mitigate this problem, 



we suggest to partition the time series database into different clusters in a pre-

processing step using one of the many clustering methods like K-Mean [30] , which 

aims at grouping similar-shaped time series into clusters prior to the building of 

Fastmap index. Given a query sequence x, we try to extract sequences from 

these clusters, Ci where 1 < i < N and N is the total number of clusters. Search 

ranges for clusters are independent. A heuristic to determine the search range 

for cluster i maybe comparing the time warping distance between the centroid 
— 

of cluster i and the query point, which is Dtimewarp{x, Centroidi). In addition, 

the search range should be chosen by taking into the consideration of Ctimewarp-

The advantage of querying in terms of clusters is demonstrated in Figure 5.2. 

Without loss of generality, we assume the time series database is partitioned 

into four clusters. For the given query point, a large search range (outer dotted-

lined circle) should be used in the original approach to attain high recall. How-

ever, this high recall sacrifices the precision, so that almost all time series in 

the database are retrieved and results in large amounts of false alarms. On the 

contrary, if we query time series cluster by cluster, the search range (inner dotted-

lined circle) can be reduced tremendously and fewer false alarms will appear from 

each cluster. 

The performance of this clusters-based approach is enhanced with the replace-

ment of the lower bound function, which is shown to be inefficient in previous 

experiment, with the proposed low resolution or adaptive time warping functions 

as described before. 
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