
I N D E X I N G M E T H O D S FOR M U L T I M E D I A DATA OBJECTS

G I V E N PAIR-WISE DISTANCES

B Y

I s

CHAN M E I SHUEN POLLY -

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF M A S T E R OF PHILOSOPHY DlVISION OF COMPUTER SCIENCE AND ENGINEERING T H E CHINESE UNIVERSITY OF HONG HONG 1997

/ ^ 1 ? ¾
#,统系馆書圖\，

n 2 2 腿 1998 ji^ ,

^ UNIVERSITY ~J_il
VrXLIBRARY SYSTEM / ^ / J ^^^^

Abstract

By means of feature extraction, multimedia data can be mapped into points in k-

dimensional space, and thus, any feature-based indexing method can be used to orga-

nize and efficiently search the k-d points. For some multimedia applications, however,

it has been found that domain objects cannot be represented as feature vectors in a

multidimensional space. Instead, pair-wise distances between the data objects are the

only input. To support content-based retrieval, one approach transforms each object

to a k-d point from some unknown high-dimensional space and tries to preserve the

distances between the points. Then existing feature-based indexing methods such as

R-trees and kd-trees, etc, can support fast searching on the resulting fc-d points. In-

formation loss is inevitable with such an approach since the distances between data

objects can only be preserved to some extent. We show by experiments that the dis-

tance preserving approach introduces considerable inaccuracy for n-nearest neighbor

search. In this thesis we investigate the use of distance-based indexing methods. In

particular we apply the Vantage-Point tree (vp-tree) method. This approach allows

for an index construction directly based on the distance information. Previous work

on the vp-tree has not explored algorithms for n-nearest neighbor search. We propose

three n-nearest neighbor search algorithms, which are shown by experiments to scale

up well with the size of datasets and the dimensionality. In addition, we propose a

solution to the update problem for the vp-tree, which has been left open in previous

work. We also study various methods for minimizing the distance computations in-

volved in the vp-tree for handling queries. Our methods are shown by experiments to

perform better than some previous methods.

ii

Acknowledgement

Foremost, I would like to express my eternal gratitude to my supervisors, Profes-

sor Ada Fu and Professor Yiu Sang Moon, for their guidance, support and patience

throughout the work on this thesis. I would also like to extend my gratitude to the

other members of my examining committee, Professor Chin Lu, Professor Man Hon

Wong and Professor Siu Cheung Chau, for useful input which helped shaping the final

version of this thesis.

I sincerely thank S. Berchtold, D. A. Keim and Hans-Peter Kriegel for giving me

the data I used in my experiments. My thanks too to my fellow classmates, Kingly

Cheung and Terence Wong, for enduring me in the past two years. Finally, I am

grateful to my dearest Frank, my parents and my younger sister and brothers for their

love and encouragement.

iii

Contents

Abstract ii

Acknowledgement iii

1 Introduction 1

1.1 Definitions 3

1.2 Thesis Overview 5

2 Background and Related Work 6

2.1 Feature-Based Index Structures 6

2.2 Distance Preserving Methods 8

2.3 Distance-Based Index Structures 9

2.3.1 The Vantage-Point Tree Method 10

3 The Problem of Distance Preserving Methods in Querying 12

3.1 Some Experimental Results 13

3.2 Discussion 15

4 Nearest Neighbor Search in VP-trees 17

4.1 The sigma-factor Algorithm 18

4.2 The Constant-a Algorithm 22

4.3 The Single-Pass Algorithm 24

4.4 Discussion 25

4.5 Performance Evaluation 26

iv

4.5.1 Experimental Setup 27

4.5.2 Results 28

5 Update Operations on VP-trees 41

5.1 Insert 41

5.2 Delete 48

5.3 Performance Evaluation 51

6 Minimizing Distance Computations 57

6.1 A Single Vantage Point per Level 58

6.2 Reuse of Vantage Points 59

6.3 Performance Evaluation 60

7 Conclusions and Future Work 63

7.1 Future Work 65

Bibliography 67

V

List of Tables

4.1 Parameters for calculating the branching factor of internal nodes. . . . 28

4.2 Parameters for calculating the maximum number of data objects stored

in a leaf node 28

5.1 Access cost of splits and redistributions at non-leaf nodes with the

redistribute-first strategy - synthetic clustered sample 52

5.2 Access cost of splits and redistributions at non-leaf nodes with the split-

first strategy - synthetic clustered sample 52

6.1 Number of distance computations per search 61

6.2 Page accesses per search 61

vi

List of Figures

2.1 Partitioning mechanism of the vantage-point tree method 10

3.1 Query accuracy vs. number of dimensions 14

4.1 The meaning of the threshold cr 18

4.2 Illustration of the constant-a algorithm 23

4.3 Page accesses vs. dataset size. Comparison among the three proposed

algorithms on synthetic clustered data, dimension=30, #nearest neigh-

bors=8 29

4.4 Page accesses vs. number of nearest neighbors requested. Compari-

son among the three proposed algorithms on synthetic clustered data,

dataset size=30000, dimension=30 29

4.5 Page accesses vs. number of dimensions. Comparison among the three

proposed algorithms on synthetic clustered data, dataset size=30000,

#nearest neighbors=8 30

4.6 Page accesses vs. dataset size. Comparison among the three proposed

algorithms on synthetic uniform data, dimension=20, #nearest neigh-

bors=8 30

4.7 Page accesses vs. number of nearest neighbors requested. Compari-

son among the three proposed algorithms on synthetic uniform data,

dataset size=30000, dimension=20 31

vii

^̂ ĝ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ĝ̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ĝ||̂ ^̂ ^̂ ^̂ ^̂ ^̂ ĝ m̂ ^̂ ĝ̂ m̂ ^̂ ^̂ m̂̂ ĝ |̂ ^̂BBIHHÎ ^̂ ^̂ ^̂ ^̂ Ĥ Ĥ̂ B̂̂ ^̂ "̂"

4.8 Page accesses vs. number of dimensions. Comparison among the three

proposed algorithms on synthetic uniform data, dataset size=30000,

#nearest neighbors=8 32

4.9 Page accesses vs. dataset size. Comparison among the three proposed

algorithms on real data, dimension=16, #nearest neighbors=8 32

4.10 Page accesses vs. number of nearest neighbors requested. Comparison

among the three proposed algorithms on real data, dataset size=30000,

dimension=16 33

4.11 Page accesses vs. number of dimensions. Comparison among the three

proposed algorithms on real data, dataset size=30000, #nearest neigh-

bors=8 33

4.12 Page accesses vs. dataset size. Comparison with the i^*-tree on syn-

thetic clustered data, dimension=30, #nearest neighbors=8 35

4.13 Page accesses vs. number of nearest neighbors requested. Compari-

son with the R*-tree on synthetic clustered data, dataset size=30000,

dimension=30 35

4.14 Page accesses vs. number of dimensions. Comparison with the R*-tree

on synthetic clustered data, dataset size=30000, #nearest neighbors=8. 36

4.15 Page accesses vs. dataset size. Comparison with the R*-tree on syn-

thetic uniform data, dimension=20, #nearest neighbors=8 37

4.16 Page accesses vs. number of nearest neighbors requested. Compari-

son with the i?*-tree on synthetic uniform data, dataset size=30000,

dimension=20 37

4.17 Page accesses vs. number of dimensions. Comparison with the R*-tree

on synthetic uniform data, dataset size=30000, #nearest neighbors—8. 38

4.18 Page accesses vs. dataset size. Comparison with the _R*-tree on real

data, dimension=16, #nearest neighbors=8 38

4.19 Page accesses vs. number of nearest neighbors requested. Comparison

with the R*-tree on real data, dataset size=30000, dimension=16. . . . 39

viii

4.20 Page accesses vs. number of dimensions. Comparison with the R*-tvee

on real data, dataset size=30000, #nearest neighbors=8 39

5.1 Redistribution among leaf nodes . • 42

5.2 Splitting of leaf node 43

5.3 Redistribution among subtrees 45

5.4 Splitting of non-leaf node 47

5.5 Page accesses vs. number of insertions on a synthetic clustered dataset

of 10000 objects 51

5.6 Page accesses vs. number of insertions on a synthetic uniform dataset

of 10000 objects 54

5.7 Page accesses vs. number of insertions on a real dataset of 10000 objects. 54

5.8 Page accesses vs. number of deletions on a synthetic clustered dataset

of 10000 objects 55

5.9 Page accesses vs. number of deletions on a synthetic uniform dataset

of 10000 objects 56

5.10 Page accesses vs. number of deletions on a real dataset of 10000 objects. 56

6.1 Node structures for (a) a binary vp-tree and (b) a binary mvp-tree. . . 58

ix

List of Algorithms

2.1 The Select_vantage_point Algorithm 11

4.1 The sigmaJactor Algorithm 20

4.2 The Range_search Algorithm 21

4.3 The Constant-a Algorithm 22

4.4 The Single-Pass Algorithm 24

5.1 Algorithm for redistributing objects between two adjacent subtrees. . 46

5.2 Algorithm for merging adjacent subtrees 50

X

Chapter 1

Introduction

With the advent of large-scale multimedia database systems, there is a need to ef-

ficiently answer users' queries. Content-based retrieval is typically required. One

advantage of such an approach is that it bypasses the difficult problem of specifying

the desired multimedia objects in terms of formal query languages. A popular form

of content-based query employs the query-by-example paradigm. For example, in a

collection of images, users can use existing images as query templates and ask the

system for images similar to the query images. This is the so-called “like-this” query.

Alternatively, user can sketch a picture that serves as the query template.

To support content-based retrieval, often we have to rely on feature extraction

capabilities to map each domain object into a point in some A;-dimensional space

where each object is represented by k chosen features. The resulting A;-dimensional

points are called feature vectors. Examples of feature vectors are color components

of an image [25], shot cuts of a video clip [11], shape descriptors [17], Fourier vectors

33], etc. Besides the capability to extract key features from data objects, we also

need the ability to capture, what we humans perceive as, a similarity between two

objects. Hence, processing content-based queries typically requires some measurement

of similarity between the fc-dimensional points. The similarity (or distance) between

two objects is measured using some metric distance function over the A:-dimensional

space. The most common metric distance function is the Euclidean distance, although

other metrics such as the city-block distance can also be used (definitions will be given

1

Chapter 1. Introduction

later). The entire problem of content-based retrieval is then formulated as storing and

retrieving ib-dimensional points, for which there are many fine-tuned indexing methods

available. In general, these methods are called feature-based indexing methods.

However, it has been found that the above setting cannot be applied to certain

applications. Consider the application in genetics, finding similar DNA or protein

sequences from a genetics database would be a commonly-asked query. In informa-

tion retrieval, we need to find sentences semantically similar to a user's query in a

large database of documents. We would like to match digitized voice excerpts in voice

recognition. In these applications, selecting a suitable set of features to accurately

represent objects is not always an easy task since objects like strings and patterns

cannot be easily represented as vectors. When the feature elements are complex and

domain dependent, the process of feature extraction is complicated. Fortunately, it

is relatively easier for a domain expert to assess the similarity or distance between

two objects [34]. Given only the distance information, feature-based indexing meth-

ods cannot offer the required access mechanism. Nevertheless, we need some index

structures to facilitate query and update operations. This is precisely the motivation

behind this work.

For this problem, one approach uses the distance information to deduce k-

dimensional points for the data objects so that we can subsequently make use of any

readily available feature-based indexing methods such as the R-tree. The FastMap

algorithm [22] and Multidimensional Scaling [21] fall into this category. The main

challenge for this approach is to preserve the distances between objects as much as

possible. Because of the discrepancy between the actual distances and the transformed

distances over the k-d space, errors result in finding all the required nearest neighbors

to a query object. Our experimental results show that such an approach can incur a

considerable amount of inaccuracies in doing 7z-nearest neighbor search.

This thesis attempts to solve the problem with an alternative approach, distance-

based indexing. In particular we apply the Vantage-Point tree (vp-tree) method [16,

36, 8]. The partitioning mechanism of distance-based indexing methods allows us

to construct an index structure for domain objects directly based on the distance

2

Chapter 1. Introduction

information provided. This approach can obviously save the overhead of inferring

points in a multidimensional space, and can also avoid the difficulty in preserving

distances so that the correctness of search results can be guaranteed. Besides, this

approach can be applied not only to the distance case but also to the vector case where

data objects are well represented by feature vectors, once the distance function has

been defined. In fact, some recent work has proposed distance-based indexing methods

as the solution to the problems arising from indexing high-dimensional vectors [32 .

There has been a wealth of previous work on distance-based indexing for multidi-

mensional data. However, as far as we know, none of the previous work explored the

problem of n-nearest neighbor search, for n > 1. We propose three n-nearest neighbor

search algorithms for the vp-tree method. In our experiments, the search algorithms

demonstrate promising performance. We also note that the update problem has been

left open for the vp-tree and its variants [32]. In this work we propose mechanisms

for these operations on the vp-tree. The distance calculations involved in distance-

based index structures contribute largely to the computation cost. Some techniques

in reducing the number of these calculations will be investigated.

1.1 Definitions

Content-based retrieval of multimedia data relies on similarity measures to assess the

distance between data objects. Metric distance functions are one prevalent form of

similarity measures although some applications may use similarity matrix. Below we

describe various distance functions and state their common properties.

Similarity Measures Most multimedia data objects are represented by a k-

dimensional feature vector, and as such are represented as points in a A;-dimensional

space. 'Distance，between a pair of such points represents the dissimilarity between

those objects. The farther the points are from each other, the more dissimilar the

objects are and vice versa. The distance function defined below can be mapped into

the range [0,1] to represent dissimilarity, which when subtracted from unity yields the

similarity measure [18].

3

Chapter 1. Introduction

Minkowski r-metric refers to a class of metric distance functions defined as follows:
�̂ 1 1 "

dr{x,y) = J2\^' ~ yi\^ , r > l (1.1)
-i=l -

doo(x, y) = max |a:,- - y,| (1.2) i

where x and y are two points in a A;-dimensional space with components, x ,̂ yi,

i =l,2,...,A;. For r 二 2, it is the Euclidean metric, for r — 1, it is the city-block metric,

and for r 二 oo, it is the dominance metric.

The Euclidean metric is the most common metric used in multimedia applica-

tions. However, there are other complicated distance functions specifically designed

for certain applications. In medical databases where X-ray images and brain scans are

stored, the distance functions must involve some warping of the two images to make

sure the anatomical structures are properly aligned, before the differences can be as-

sessed [2]. In DNA and string databases, the distance function is typically the editing

distance which refers to the minimum number of insertions, deletions or substitutions

that are needed to transform one string to the other [22]. These distance functions

must exhibit the properties of a metric distance function.

By definition, a metric distance function, d{x, y), has three properties [18, 9]:

1. Symmetry: d(x,y) = d(y,a;);

2. Positivity: 0 < d(x, y) < oo, x • y and d(x^ x) = 0;

3. Triangle inequality: d(x^ y) < d[x^ z) + d[z, y).

Query types Having realized the similarity between data objects, we are ready

to answer users' queries. There are various kinds of queries on multimedia objects.

The most typical ones are listed below:

1. Exact match queries. Find if a given query object is in the database.

2. Nearest neighbor queries. Find the first n (n > 1) objects that are closest to the

query object.

3. Range queries. Find objects that are within distance e from the query object.

When e = 0 the query corresponds to an exact match query.

4

Chapter 1. Introduction

1.2 Thesis Overview

The rest of the thesis is organized as follows. Previous work on multimedia indexing

and in particular the vp-tree method are described in Chapter 2. In Chapter 3 we

analyze the problem of the distance preserving transformation approach in handling

nearest neighbor queries, and demonstrate the applicability of the approach we pro-

pose. Chapter 4 introduces the concept behind n-nearest neighbor search and details

our three algorithms for n-nearest neighbor search in vp-trees. In addition to the per-

formance studies on the proposed algorithms, we compare the vp-tree with the R*-tree

which is one well-known feature-based indexing method. Update mechanisms for the

vp-tree are presented in Chapter 5, along with performance results. We provide in

Chapter 6 some methods for minimizing distance computations. Finally, we conclude

the thesis in Chapter 7 with an outline of future work.

5

Chapter 2

Background and Related Work

The state of the art in multimedia indexing is based on feature extraction [17, 20 .

With proper feature extraction functions, domain objects are represented as feature

vectors (points in a multidimensional space). Feature-based index structures are then

used as a major filtering mechanism. In the more complex case where objects cannot

be mapped to points in the multidimensional space, and we only have an expert-

defined distance function that computes the distance (dissimilarity) between objects,

we have two main approaches to tackle the indexing problem. One approach is to use

distance preserving methods to deduce multidimensional points for the objects from

the given distance function and then to apply feature-based index structures. Another

approach is to use distance-based index structures. Note that distance-based index

structures can be also used to index feature vectors once the distance function has

been determined. This review will briefly describe various choices of feature-based

index structures, distance preserving methods and distance-based index structures.

2.1 Feature-Based Index Structures

Feature-based index structures are conventional indexing techniques for multimedia

datasets that can be described by means of feature vectors. Since feature vectors

are multidimensional, feature-based index structures are also called multidimensional

indexing methods. A large amount of work has been done on this subject. Many

6

Chapter 2. Background and Related Work

structures, such as grid-files [15, 26] and linear quadtrees [12, 1, 30], do not scale well

to high dimensions^ whereas structures based on the kd-tree [4] (kdB-trees [28] and

hB-trees [24]) and structures based on the R-tree [13] are methods that can extend

to higher dimensions. Among these, the R-tree and its most successful variant, the

R*-tree [3], have been the most popular structures for indexing high dimensional data

'34]. Experiments in [10, 14] show that R*-trees work well for up to 20 dimensions.

The R-tree can be imagined as an extension of the B-tree for multidimensional

objects [27]. Every object is represented by its Minimum Bounding Rectangle (MBR).

Entries in non-leaf nodes are of the form {R, ptr) where R is the MBR that covers all

rectangles in the child node pointed to by ptr. Leaf nodes contain entries of the form

[R, object-id) where R is the MBR that encloses the data object pointed to by object-

id. The tree grows in a bottom-up fashion. Extensions, variations and improvements

to the original R-tree structure include the packed R-tree [29], the R+-tree [31], the

R*-tree [3], the Hilbert R-tree [19], etc.

The TV-tree [23], the SS-tree [35] and the X-tree [5] are recent methods proposed

specifically for indexing high dimensional data. Both TV-trees and SS-trees performed

better than the R*-tree. The X-tree was compared with the R*-tree as well as the

TV-tree and was shown to be superior to either method. The idea of the TV-tree

is to use only the features needed to distinguish between data objects at the top

levels of the tree, and to store more and more features in the nodes that are closer

to the leaves. This leads to smaller internal nodes and a higher fanout, resulting in

a better query performance [5]. The SS-tree uses ellipsoid bounding regions, instead

of rectangular shapes as in the R-tree structure, to enclose data objects. The R-

tree family, TV-trees and SS-trees suffer from the overlap problem of bounding boxes

34, 5]. Berchtold et. al. [5] addressed this problem and introduced the X-tree that

uses an overlap-minimizing split algorithm and extended variable size internal nodes

(so-called supernodes) to avoid or eliminate overlap between search regions.
^This is the well-known "dimensionality curse" problem, which means that the performance of

indexing methods degrades with the dimensionaHty, eventually reducing to that of sequential scanning.

7

Chapter 2. Background and Related Work

2.2 Distance Preserving Methods

In the distance preserving approach, we try to deduce for each object a corresponding

point in a multidimensional space so that the distances between objects are preserved

as much as possible. One example is an old method from pattern recognition, namely,

Multidimensional Scaling (MDS) [21]. Another is the FastMap algorithm proposed by

Faloutsos and Lin [22]. As experiments in [22] showed that FastMap achieves dramatic

time savings over MDS, without loss in quality of the results, we shall focus only on

the FastMap method. The details of MDS are omitted for brevity.

The FastMap algorithm assumes that objects are points in some unknown high-

dimensional space, and projects these points on k mutually orthogonal directions {k

being user-defined), such that objects are mapped to points in this A;-dimensional

space. One important requirement that FastMap must fulfill is to preserve the dis-

tances between objects as much as possible such that the Euclidean distances between

the points in the resulting A:-dimensional space match the pair-wise distances given.

Faloutsos and Lin [22] claimed that FastMap can accelerate the search time for

queries. This is mainly because a number of highly fine-tuned feature-based indexing

methods like the R-tree [13，3, 31] can be employed to provide fast searching for range

queries and n-nearest neighbor queries. However, FastMap inevitably introduces pre-

processing costs to both index construction and querying since all domain objects and

the query objects must first be mapped to corresponding k-d points before an index

structure is built or queries are processed.

The mapping of N objects into N k-d points requires k recursive calls to the

FastMap algorithm. For example, if our target is to deduce 2-d points for N objects,

FastMap will determine the coordinates of the N objects on one axis in the first

recursive call, and those on the other axis in the second recursive call. The first

coordinate of an object i (for i = 1 to N) is computed according to the given distance

function D{). To determine the second coordinate, the object i has to be projected

on another axis. Let object i' stand for the projection of object i. Then, there is

a need for another distance function D'{) which measures the distances between the

projections of all the N objects. D'{^ can be transformed from the original distance

8

Chapter 2. Background and Related Work

function D{) as follows:

� , “ ,, � � 2 � “ . . 2 AD(a.^)?-(D{b.^)r-{D(a.J)r+{D{b.J))'
O D (z ")) 二 {D{i,j)) -[2 x (D (a , 6))],

i , j = l , . . , 7 V (2.1)

where objects a and b are called pivot objects. The line that passes through them is the

axis for the projections of all other objects. The above procedure can be generalized

to the case of k dimensions, for k > 1. In that case, there should be k axes and thus,

k pairs of pivot objects, and the computation will be repeated k times.

2.3 Distance-Based Index Structures

Quite a number of distance-based index structures have been proposed. A good sum-

mary of these methods can be found in [32’ 6]. Previous work in [7] contains some of

the basic ideas for later methods, namely the generalized hyperplane tree (gh-tree) [16],

the Geometric Near-neighbor Access Tree (GNAT) [6], the vantage point tree (vp-tree)

36, 8], and the multi vantage point tree (mvp-tree) [32] which is a variation of the

vp-tree.

A gh-tree partitions a dataset by first choosing two reference objects at the root

level, and dividing the remaining objects based on which of the two reference objects

they are closer to. Then the two branches are constructed recursively in the same

way. One weakness of the gh-tree is that two distance computations are required at

each node and its branching factor can only be two [6 .

The GNAT generalizes the idea of the gh-tree to the case of m-ary trees. In

GNAT each node stores m split objects. At the root level, the dataset is divided

into m groups and every data object is assigned to one of the m groups according

to which split object it is closest to. Similarly, each of the m groups is partitioned

recursively. In [6] the GNAT was compared to the gh-tree and the binary vp-tree in a

set of experiments and was found to incur more expensive construction cost but fewer

distance computations in doing range queries. The experiments also showed that the

gh-tree performs the worst.

9

Chapter 2. Background and Related Work

C7) ^ . 八

V l V ,.：：!•：：. Z:Si:i
Figure 2.1: Partitioning mechanism of the vantage-point tree method.

The mvp-tree is a variation of the vp-tree. Similar to the vp-tree, the mvp-tree

partitions the dataset with respect to vantage points. The key difference between

vp-trees and mvp-trees is that the vp-tree uses only one vantage point at each node

whereas the mvp-tree uses more than one. The mvp-tree also keeps pre-computed

(at construction time) distances between the data objects and the vantage points in

the leaf nodes for effective filtering of non-qualifying objects during search operations

32]. It was shown by experiments in [32] that the mvp-tree introduces fewer distance

computations in range querying compared to the vp-tree. However, n-nearest neighbor

search has not been considered for the GNAT as well as for the vp-tree and its variants,

and the performance studies in both [32] and [6] concentrated only on the number

of distance computations for range queries. In this thesis, we focus on the vp-tree

structure, and thus, we shall describe it in detail next.

2.3.1 The Vantage-Point Tree Method

Consider a finite set S of N data points^. In the vp-tree method [36, 8], a particular

data point is chosen as the first vantage point, v. Then, let jj, be the median of the

distance values of all the other points in S with respect to v, S is partitioned into two

subsets of approximately equal sizes, Si and ,¾, defined as:

51 = {s e S - {?;} I d(s,v) < ^}

52 = {seS-{v)]d(s,v)>|^}

^Since vp-trees use the term point to refer to data objects, we shall use the terms data points and
data objects interchangeably.

10

Chapter 2. Background and Related Work

Algorithm 2.1 The Select_vantage_point Algorithm.

Pick a set of candidate vantage points from the dataset;
For each vantage point

Pick a set of sample objects from the dataset;
Compute the distance values from the vantage point to each of the

sample objects;
Calculate the mean and the standard deviation of these distance values;

Endfor
Choose the candidate vantage point with the maximum standard deviation.

where d{p, q) is the distance between points p and q. Figure 2.1 illustrates the concept.

This partitioning procedure is then applied to Si and S2 recursively. Every subset,

such as Si and S2, corresponds to one node of the vp-tree. At each node, a distinct

vantage point is chosen to partition the data points in the corresponding subset. The

tree is constructed in a top-down fashion. Eventually, the entire dataset is organized

as a balanced tree as in other index structures.

The m-ary vp-tree construction is similar to the case of binary vp-trees. The

dataset S is split into m subsets, Si, i — 1 to m, according to the distance values

between the chosen vantage point and other data points. Each of Si,s has roughly

the same number of data points, fi{, i = 1 to m—1, is used to denote the boundary

distance value, so that for all s G Si, |j>i_i < d{s, v) < m. Again, each of S:s is

recursively partitioned into smaller subsets using the same partitioning mechanism.

A particular data object is selected to be the vantage point based on a randomized

algorithm given in [36] as shown in Algorithm 2.1.

11

Chapter 3

The Problem of Distance

Preserving Methods in Querying

The problem that distance preserving methods attempt to solve is defined as follows.

Given N objects, their pair-wise distances and the desirable dimensionality k, distance

preserving methods are required to map objects into points in A;-dimensional space,

so that the distances between the objects are preserved as much as possible. Basi-

cally, these methods have to overcome two main difficulties. First of all, the distances

between objects must be well preserved. If the overall distances are not preserved suf-

ficiently, some of the information that distinguishes the objects cannot be maintained.

Secondly, the choice of k plays an important role in the accuracy of the mapping,

but it is not always easy to determine an appropriate value for it. For most distance

preserving methods, the larger the value of k, the more precisely the methods can

deduce the points. Furthermore, in most multimedia datasets the number of features

(or dimensions) per object is often of the order of 10 or 100 [25, 11]. As such, a

large value of k should be used to help visualize the distribution of objects into some

appropriately chosen space, which however implies high-dimensional vectors will be

generated. Notice that indexing high-dimensional data with most multidimensional

index structures usually leads to performance degradation of the structures. [22] im-

plicitly assumes that users are responsible for the choosing of k. In that case, users

12

Chapter 3. The Problem of Distance Preserving Methods in Querying

must have certain specific knowledge on the domain. However, we believe that there

should be some efficient methods for determining an appropriate value of such an

important parameter, k.

To handle queries, distance preserving methods cannot directly provide the index-

ing facility. They must rely on some conventional multidimensional index structures,

such as the R-tree. The dimensionality of the generated k-d points must therefore be

carefully chosen. Alternatively, our approach is to adopt distance-based index struc-

tures to offer an efficient access mechanism to answer queries. The vp-tree method is

chosen for this purpose.

Next, we shall provide some experimental results that can illustrate the problem

of inferring multidimensional points for objects in answering queries. As experiments

in [22] showed that the FastMap algorithm is superior to previous related methods,

the discussion will focus on FastMap.

3.1 Some Experimental Results

We implemented the vp-tree and FastMap in C and UNIX on an UltraSPARC. As

FastMap must work in conjunction with some multidimensional indexing method to

provide the search facility and the R-tree family is one popular approach, we used the

original implementation of the R*-tree by Berchtold, Keim and Kriegel [5]. For the

experiment, we generated a dataset of 2000 points in a 10-dimensional space. The

points form 10 clusters, with the same number of points in each cluster. Centers of

clusters are uniformly distributed and the distances of the points in each cluster from

the centers follow a normal distribution. The Euclidean distances between such data

points are the only input for both the vp-tree and FastMap. We performed tests on

8-nearest neighbor queries relative to points chosen from the dataset. The results were

averaged over the performance for 15 randomly chosen query points. Since the search

algorithm presented for the original vp-tree can locate only one nearest neighbor, we

adopted one of the three n-nearest neighbor search algorithms that we shall propose

in Chapter 4. The R*-tree that we used is able to handle n-nearest neighbor search.

13

Chapter 3. The Problem of Distance Preserving Methods in Querying

100 4 » ^ » » » » » ；)• vp-tree “®~ / . FastMap -+-- /
90 - / -

/ I 80- / -
i /
o /
< 70 - / -
r / 0 y' •S 60 - z -
S. , ,
1 Z
1 50 - Z ' -
Q- ,+ -—'
S> Z 2 z' ® 40 - / -
< Z z Z — '

30 - ,Z' -

20 I I I I I 1 1 2 3 4 5 6 7 8 9 10
Numb6r of Dimensions

Figure 3.1: Query accuracy vs. number of dimensions.

To study the accuracy of doing n-nearest neighbor queries as the dimensionality k

increases, we varied k from 2 to 10. The vp-tree and the FastMap were both required

to find 8 nearest neighbors for each of the 15 query objects. In our approach a vp-

tree holding 2000 data objects was constructed, then we ran our search algorithm^ to

obtain the results. Note that the value of k does not affect our method. In FastMap

9 sets of 2000 k-d points were generated, for k = 2 to 10. Each set of points was

then organized in a distinct i?*-tree. FastMap was also required to map the 15 query

objects to the corresponding A;-d space, such that they were submitted to the R*-tvee

whose search algorithm was run to obtain the results.

We expressed the accuracy of an 8-nearest neighbor search as a percentage of how

many answers out of 8 are indeed the true nearest neighbors of the query object.

We obtained the 8 true nearest neighbors by sequential scanning. We reported an

average percentage over the 15 queries. Figure 3.1 plots the average percentage of

query accuracy as a function of the number of dimensions. The number of dimensions

is not a relevant parameter for the vp-tree method, we plotted the accuracy for it

only for comparison. As seen from the figure, the vp-tree method guarantees 100%

accuracy in all 15 queries. With FastMap, the lower the dimensionality, the more

^We used the single-pass algorithm. Details of it will be discussed in Chapter 4.

14

Chapter 3. The Problem of Distance Preserving Methods in Querying

nearest neighbors have been missed. This is mainly because FastMap cannot preserve

the actual distances between objects while k is getting smaller.

As every data point in the given synthetic dataset is 10-dimensional, we had ex-

pected that the set of 10-d FastMap-generated vectors would allow for a 100% query

accuracy. Such an anticipation is valid only because the dimensionality of the given

dataset is known in advance. In real cases where the only input would be the pair-

wise distances between data objects, the dimensionality k must be carefully estimated.

Theoretically, k should be set as large as possible, this would however introduce sig-

nificant cost in the storage requirement as well as in the search performance for most

multidimensional index structures.

3.2 Discussion

While FastMap suffers from the difficulties in preserving the distances between objects

and in determining a proper k value to achieve high accuracy, our method is able to

locate every nearest neighbor with a fast response. The advantages of the vp-tree

approach mainly lie in the following:

1. There is no need to infer multidimensional points for domain objects before an

index can be built. Instead, we build an index directly based on the distances

given. This avoids pre-processing steps. There are two major problems with the

pre-processing in the FastMap approach:

(a) The computations involved in these steps can be costly.

(b) It is difficult to determine the number of dimensions, k, that can preserve

the distances to a satisfactory level.

2. It avoids the difficulty in preserving the actual distances between objects as

faced by the Fastmap method.

3. The updates on the vp-tree are relatively easier than that for the Fastmap

method. For Fastmap, after a certain amount of data objects are inserted or

deleted, the mapping for the data points will no longer be as distance-preserving

15

Chapter 3. The Problem of Distance Preserving Methods in Querying

as before. There will be a point when Fastmap has to be executed once again

for all the objects, and it is not clear how to determine when is a good time for

the reconstruction. By comparison, the updates for the vp-tree are much more

straightforward (see Chapter 5).

4. A distance-based indexing method such as the vp-tree is flexible: it is not only

applicable to multimedia objects given pair-wise distances, but is also able to

index objects that are represented as feature vectors of a fixed number of dimen-

sions (the case when feature extraction functions are available). In this latter

case, we use the Euclidean distances between the feature vectors.

16

Chapter 4

Nearest Neighbor Search in

VP-trees

For content-based retrieval, it is rare to have an exact match on multimedia data,

nearest neighbor queries are more desirable. The search methods for the vp-tree

presented in [36, 8] locate a single nearest neighbor. We believe that finding a single

nearest neighbor usually cannot satisfy users' needs. In practice, users often ask for a

certain number of objects similar to a given query object so that they can select part

of the returned collection to issue other queries or to do further processing. Therefore,

we aim at finding n nearest neighbors to a query object, where n is usually greater

than one.

The single-nearest-neighbor search algorithm in [8] relies on a specific threshold,

<j, which estimates an upper bound on the distance between a query object and its

nearest neighbor. If it turns out that the distance between a query object and its

nearest neighbor is greater than cr, the nearest neighbor is meaningless and therefore

not interesting. Let d(p, q) be the distance between points p and q. Given a a value,

the algorithm in [8] will look for the single nearest neighbor to q within the range

d[v^ q) 士 <j (see Figure 4.1). Recall that at each node of a vp-tree, a vantage point

determines m subsets, Si (for i — 1 to m), according to m—1 boundary distances

donated by ju^, i 二 1 to m—1. If the hypersphere depicted in Figure 4.1 falls inside the

17

Chapter 4- Nearest Neighbor Search in VP-trees

z 一 ~ " 、

, 、

/ \

I \
V ' - ^ ^ I \ 0 ^ /

\ / \ X
� z

Figure 4.1: The meaning of the threshold a.

boundary of only one subset Si, i.e., when p “ i + a < d(v, q) < fj,{ — cr, the algorithm

only needs to explore that particular subset. Otherwise, multiple subsets need to be

explored.

The choice of a represents the tradeoff between the likelihood of locating the

nearest neighbor and the searching efforts. A tighter value of a ensures that fewer

subtrees will be explored, but it also increases the chance that no nearest neighbor is

found. Clearly, the question is how the value of a is chosen. For rz-nearest neighbor

search we even have to take the value of n into account. In that sense, within the

hypersphere in Figure 4.1 there must exist at least n nearest neighbors.

We propose two approaches to solving the problem of n-nearest neighbor search. In

the first approach, we have two different methods for estimating a a value that must

guarantee the presence of n nearest neighbors. Then we perform a range search

with the estimated a value. The two a estimation methods are incorporated into two

separate n-nearest neighbor search, algorithms, namely the sigma_factor algorithm and

the constant-a algorithm. In the second approach, we set the a value to be infinitely

large and dynamically optimize a whenever we encounter a candidate answer in the

search. The single-pass algorithm uses such an approach.

In the following sections we describe our methods. For simplicity we focus on the

binary partitioning case, but the discussion can easily be generalized to the case of an

m-ary vp-tree, for m > 2.

4.1 The sigma—factor Algorithm

Intuitively, the value of a should be determined based on the distribution of the

distance values with respect to the vantage point. Thus, there should be a different

18

Chapter 4- Nearest Neighbor Search in VP-trees

a value associated with each vantage point within a vp-tree. As every vantage point

must be selected during the construction of a vp-tree, we attempt to estimate the

corresponding a value in the same period of time.

Our construction algorithm for the vp-tree is similar to the original vp-tree con-

struction algorithm in [36] except that we compute a sigmaJactor for each node.

Suppose S is the set of data objects in a node and v is the vantage point for the node,

sigmaJactor of S is given by

distance of furthest s e S from v — distance of closest s E S from v , ̂ ^�
(4.1)

5| - 1 ^ ,

Therefore, sigmaJactor is an average value for the distance we need to search for each

nearest neighbor if the objects in the node are arranged in a straight line according to

their distances from ”, and the query is at the boundary. We can see that it is a rough

guess but it is sufficient for our purpose. This sigmaJactor is stored in the node. Each

of these factors will be used to estimate a when the query object is known.

Now we are ready to describe our first n-nearest neighbor search algorithm. The

pseudocode for the algorithm is given in Algorithm 4.1. The algorithm consists of two

different types of search: Sigma_factor_search and Range_search. Sigma_factor_search

may be activated for one or more times. As a result, the entire search process involves

two or more passes of search.

At each non-leaf level, Sigma_factor_search (Algorithm 4.1) i derives a different

threshold (nodef.sig x n x enlarge) from the sigmaJactor of each node to guide the

exploration of the tree. After one or more activations of Sigma_factor^earch, we get

an initial set of at least n nearest neighbors (so far). Then we let a be the distance

between the query and the n-th neighbor in this set. This a guarantees that the n

requested nearest neighbors will at most be at a distance a from the query object.

Range_search (Algorithm 4.2) uses this a to explore the tree again. When the range

search is finished, we obtain a final set of results in which the first n closest objects

from the query will be our answer set.
^In Algorithm 4.1, nodet-v is the vantage point at the node, nodet.mu is the median value at the

node, nodef.left is the pointer to the left child node, nodet right is the pointer to the right child node,
and nodet-sig is the sigma-factor for the node, enlarge is a global variable which has an initial value
of 1 when the nNN search begins, and is incremented after each invocation of Sigma_factor_search.

19

Chapter 4- Nearest Neighbor Search in VP-trees

Algorithm 4.1 The sigmaJactor Algorithm.

Procedure nNN_Search(q,n,root)
Input: q (query point), n (number of nearest neighbors requested), root (root node of vp-tree).
Output: W (a final set of n nearest neighbors to q).

begin
enlarge : = 1; W : = ¢-,
while |W| < n do

Sigma_factor_search(q,n,root,enlarge,W);
increment enlarge;

endwhile
sort w G W in the order of increasing distance f rom q;
cr ：= d(wn,q);
Range_search(q,n,root,cr,W);
sort w G W in the order of increasing distance f rom q;
return W ;

end

Procedure Sigma_factor_search(q,n,node,enlarge,W)
Input: q (query point), n (number of nearest neighbors requested), node (vp-tree node),

enlarge (enlargement factor), W (a set of nearest neighbors obtained so far).
Output: updated W.

begin
if node is leaf then

add node to W;
else

dist : = d(nodet .v ,q) ;
if dist < nodet-mu then

if {d is t < nodet .mu + (nodet-sig x n) x enlarge} then
Sigma_factor_search(q,n,nodet.left,enlarge,W);

if {d is t > node^.mu — (node|.s ig x n) x enlarge} then
SlgmaJactor_search(q,n,nodet.r ight,enlarge,W);

else
i f {d is t > nodet".mu — (nodet.sig x n) x enlarge} then

Sigma_factor_search(q,n,nodet.right,enlarge,W);
if {d is t < nodet .mu + (node^-sig x n) x enlarge} then

Sigma_factor_search(q’n,nodet\left ’enlarge’W);
endif

endif
end

20

Chapter 4- Nearest Neighbor Search in VP-trees

Algorithm 4.2 The Range_search Algorithm.

Procedure Range_search(q,n,node,o",W)
Input: q (query point), n (number of nearest neighbors requested), node (vp-tree node),

cr (search range threshold), W (a set of nearest neighbors obtained so far).
Output: updated W.

begin
if node is leaf then

if d(node,q) < a then add node to W;
else

dist : = d(nodef .v ,q) ;
jTdis t < nodef .mu then

if {d is t < nodet-mu + a} then
Range_search(q,n,nodet.left,cr,W);

if {d is t > nodet .mu — cr} then
Range_search(q,n,nodet.right,cr,W);

else
i f {d is t > nodet-mu — cr} then

Range_search(q,n,nodet.right,cr,W);
if {d is t < nodet .mu + cr} then

Range_search(q,n,nodet.left,cr,W);
endif

endif
end

In Sigma_factor_search, the value of n x sigmaJactor is used in the pruning of nodes

during the search. Since sigmaJactor represents a certain average distance between

two data objects in a node, the value "nx sigmaJactoi^^ can be used to estimate <j if

we are requesting n nearest neighbors. If in a pass, less than n objects are returned,

we repeat Sigma_factor^earch, but this time increasing the search range by adjusting

an enlargement factor, the enlarge variable in the pseudocode. The main objective

of Sigma_factor_search is to yield a set of candidate nearest neighbors from which we

can achieve a good estimate on a. Then Range_search should be able to locate the

real nearest neighbors using this value of a which is derived from a sample of nearest

neighbors of the query object.

The traversal strategy of Range_search is very similar to Sigma_factor_search. The

only difference is that we use a as the search range and a is also used to filter unqual-

ified objects. The pseudocode description of Range_search is in Algorithm 4.2.

21

Chapter 4- Nearest Neighbor Search in VP-trees

Algorithm 4.3 The Constant-a Algorithm.

Procedure nNN_Search(q,n,root)
Input: q (query point), n (number of nearest neighbors requested), root (root node of vp-tree).
Output: W (a final set of n nearest neighbors to q).

begin
W : = ¢-,
Constant_alpha_search(q,n,root,W);
sort w G W in the order of increasing distance f rom q;
0- -•- d(wn,q);
Range_search(q,n,root,a-,W);
sort w G W in the order of increasing distance f rom q;
return W ;

end

Procedure Constant^lpha_search(q,n,node,W)
Input: q (query point), n (number of nearest neighbors requested), node (vp-tree node),

W (a set of nearest neighbors obtained so far).
Output: updated W.

begin
dist : = d(nodet .v ,q) ;
levels_to_traverse : = a constant a ;
while levels_to_traverse > 0 do

if dist < nodet .mu then
node : = nodet- left ;

else
node :二 nodef . r ight ;

endif
levels_to_traverse : = levels_to_traverse — 1;

endwhiIe
W : = all data objects stored in the subtree rooted at node;

end

4.2 The Constant-a Algorithm

In the sigma-factor algorithm, it is possible for the Sigma_factor_search procedure

to explore multiple subtrees once the search range d\”，q�d:tkreshold touches multi-

ple subsets. In that case, the search process has to make considerable access cost.

Sigma_factor_search basically aims at providing information for a estimation. It is

desirable to minimize the cost incurred by it. This is the fundamental idea behind the

constant-a algorithm.

22

Chapter 4- Nearest Neighbor Search in VP-trees

應
\ Objects retumed in the first-pass search

Figure 4.2: Illustration of the constant-a algorithm.

Algorithm 4.3 presents the constant-a algorithm. It has the same Range^earch

procedure as described in the sigma_factor algorithm, but a new method for esti-

mating a to replace the sigmaJactor approach. The new method is implemented

in Constant^lpha_search. Note that we no longer need any sigma_factor,s in the

vp-tree. Thus, we are not required to perform the related calculations during index

construction.

The traversal strategy of Constant_alpha_search mainly depends on a constant a.

The algorithm traverses from the root of the tree down to the level which is equal to

the constant a, provided that the level number for the root is zero. In other words, a

represents the number of levels required to traverse. An important point is that the

algorithm only explores the tree in a single path for a levels.

To begin with, the distance between the query object and the vantage point of the

current node is first computed. The algorithm then explores the one subtree if the

distance value is smaller than fJL, or the other subtree if the distance value is greater

than or equal to /x. Eventually, the algorithm examines a set of data objects in the

subtree rooted at level a. By choosing a suitable ce, Constant_alpha_search will deliver

at least n objects, a is then determined by the distance between the query object and

the n-th nearest object to it. Figure 4.2 illustrates such a search. Observe that the

performance can be further enhanced if the vp-tree is modified so that the leaf nodes

are linked up by pointers in a sequential order, similar to the B+-tree; and a non-leaf

node X records the number of data objects in the subtree rooted at x.

The rationale behind the constant-ce algorithm is based on the assumption that

the nearest neighbors of an object and the object itself are likely to be organized in

23

Chapter 4- Nearest Neighbor Search in VP-trees

Algorithm 4.4 The Single-Pass Algorithm.

Procedure Single4)ass_search(q,n,n0de,cr,W)
Input: q (query point), n (number of nearest neighbors requested), node (vp-tree node),

a (search range threshold), W (a set of nearest neighbors obtained so far).
Output : W (a final set of n nearest neighbors to q).

begin
if node is leaf then

if d(node,q) < a then
insert node t o W ; (W is a sorted list of objects in increasing distance from q)
if |W| = n then a : = d (Wn ,q) ;

else
dist : = d (node t .v ,q) ;
i f dist < node t .mu then

if {d is t < node t .mu + a} then
Single_pass_search(q,n,nodet.left,o-,W);

i f {d is t > node t .mu — a} then
Single_pass_search(q,n,node^.right,cr,W);

else
if {d is t > node t .mu — a] then

Single_pass_search(q,n,nodet.right,o",W);
if {d is t < node t .mu + a} then

Single_pass_search(q,n,nodet.left,cr,W);
endif

endif
end

the same subtree. Given that subtree, we should have a rough estimation of the n

requested nearest neighbors. The Constant_alpha_search of the algorithm attempts to

locate the subtree that holds enough objects for estimating a precise a. The method

achieves this by means of an optimal value of the constant a. As the value of a

increases, Constant_alpha_search descends further down the tree, which leads to a

smaller size of subtree to be traversed and a less precise a. Using a less precise ¢7,

Range_search requires more time. Therefore, an optimal a value represents a balance

between the searching efforts of the two types of search.

4.3 The Single-Pass Algorithm

Both of the previous two algorithms require some initial set of candidate nearest

neighbors to estimate the a value. To guarantee a final set of results containing

24

Chapter 4- Nearest Neighbor Search in VP-trees

n nearest neighbors, we take the distance between the query object and its n-th

nearest candidate as the search range threshold (¢7) for the subsequent range search.

In practice, a encloses more than n. During the range search, we notice that if the

distance between the query object and the current n-th nearest neighbor candidate is

smaller than a, a can be reduced to that distance value. This dynamical optimization

of cr can avoid unnecessary probing in succeeding search steps.

In other words, we may set a as infinitely large and dynamically optimize it when-

ever a nearer n-th neighbor is found. The single-pass algorithm uses such a simple

strategy to perform the search. It does not involve any initial estimation of a (ini-

tially, a — 00). Instead, we do a depth-first search; once the leaf level is reached, the

algorithm keeps a record of the objects encountered, and lets a be determined by the

distance between the query object and its current n-th nearest neighbor. We believe

that if we can promptly improve a to an optimal value, many nodes will be pruned

away, making the search more efficient. Algorithm 4.4 depicts such an algorithm. Note

that the algorithm is triggered by the procedure call Single_pass^earch(q,n,root,oo,0).

4.4 Discussion

In the sigma_factor algorithm, sigmaJactor refers to an average distance we need to

search for each nearest neighbor of a query object. If we request n nearest neighbors

for a query object, we expect the range "nXsigma-factor^^ would cover all the desired

nearest neighbors in most cases. However, in the case when the nearest neighbors

are distant from the query object, not every nearest neighbor falls within the said

range. Then the search range has to be enlarged. As shown in the pseudocode of

the algorithm, the enlarge variable will be incremented to increase the search range

after each pass of search. Here the concern is how the range should be increased. If

the increase is too much, the range will certainly be large enough to include sufficient

nearest neighbor candidates, but the cost for this will be more nodes being visited.

On the contrary, an inadequate enlargement of the range will cause the search to be

repeated until n candidates are found. In short, the enlargement factor is an important

25

Chapter 4- Nearest Neighbor Search in VP-trees

parameter for the sigma_factor algorithm.

The main drawback of the sigma_factor algorithm is that the process of the a

estimation may lead to more than one passes of search. The constant-a algorithm gives

a guarantee of one by means of a single-path traversal of the tree. This definitely saves

the search time and node accesses. The a estimation process does not use any search

range as in the sigma—factor method. Instead, it only examines, at each non-leaf level,

which partition the query object falls into. The search then stops at the one partition

that includes the query object and also contains at least n nearest neighbor candidates

for deriving a. As discussed before, how many of those objects is determined by the

constant a, and we aim at finding an optimal value of it to balance the efforts between

the estimation process and the subsequent range search. We see that the constant-a

algorithm adopts a simpler approach to obtain the set of candidate answers.

The single-pass algorithm provides two advantages over the previous two methods.

Firstly, no pre-set parameters, such as sigma_factor,s and ce, are required. Secondly,

it involves only one pass of search. It begins by descending the tree in a single-path
\

fashion towards the leaves. As soon as n objects have been encountered, the value of

a is set as the distance between the query object and its n-th nearest object. From

that point onwards, branches that exceed the a range will get filtered out. As a is

refined to a smaller value due to much nearer objects being encountered, more and

more branches will be pruned away. If cr can be quickly refined to a precise value,

only a small part of the tree needs to be accessed.

4.5 Performance Evaluation

To study the performance of our three proposed n-nearest neighbor search algorithms

for the vp-tree, we implemented the vp-tree and the search algorithms in C and UNIX

on an UltraSPARC, and ran two sets of experiments. In the first, the three algorithms

were compared with each other. In the second, we compared the vp-tree with the R*-

tree. The R*-tree is found to be the fastest known variation of R-trees. We used the

original implementation of the R*-tree by Berchtold, Keim and Kriegel [5], which is

26

Chapter 4- Nearest Neighbor Search in VP-trees

able to support n-nearest neighbor queries. Next we describe the setup, as well as our

results and observations.

4.5.1 Experimental Setup

We used 2 synthetic datasets and 1 real dataset. The synthetic datasets are similar

to the ones used in [34] and the details of them are:

• Clustered 10,20,30,40,50D: sets of 10000，20000, 30000, 40000 and 50000 vectors,

each consisting of 100 clusters of equal size. Each cluster was centered on a point

chosen from a uniform distribution in the interval [0,1] on each dimension and

each point in the cluster was uniformly distributed in the interval [-.05,+.05

relative to the cluster center in each dimension.

• Uniform 5,10,15,20,25D: sets of 10000, 20000, 30000, 40000 and 50000 uniformly

distributed vectors in the interval [0,1] on each dimension.

The real dataset was provided by Berchtold, Keim and Kriegel [5] and contains about

70 Mbyte ofFourier points of variable dimensionality, representing shapes of polygons.

We randomly extracted five groups (in sizes of 10000, 20000, 30000, 40000 and 50000)

of points in dimensions of 2, 4, 6, 8, 10, 12, 14 and 16 out of the entire dataset.

Here we provide the details of our disk-based implementation of the vp-tree. In

every internal node, we store one vantage point, m — 1 boundary distance values,

m child pointers, and the sigmaJactor value (for the sigmaJactor algorithm), m

denotes the branching factor. In a leaf node we keep the actual data objects (feature

vectors). The branching factor of internal nodes and the maximum number of data

objects contained in a leaf are determined by the page size. Tables 4.1 and 4.2 list the

parameters that we use in the calculations. A 4K page size is used, and we assume

vantage points and data objects are represented as feature vectors in dimensions of

D, each dimension occupying a 4-byte float.

We measured the total number of pages accessed per search, assuming the whole

tree (except the root) is stored on the disk. All results were averaged over 100 query

points that were randomly chosen from the test dataset.

27

Chapter 4- Nearest Neighbor Search in VP-trees

Parameters Descriptions
page size of a page (4K bytes)
flag indicator of an internal or a leaf node (1 byte)
no—of—entries number of internal nodes stored in a page (4 bytes)
header flag + no_of_entries (5 bytes)
vantagejpoint represented as a feature vector (4xD bytes)
sigma-factor used in the sigma-factor algorithm (4 bytes)
mu boundary distance value for partitioning (4 bytes)
pointer pointer to child node (4 bytes)
inode size of one internal node,

=vantagejpoint + sigma_factor + (m — l)xmu
+ m X pointer

m, branching factor of internal nodes, = 「 叩 二 工 “ ^̂ J

Table 4.1: Parameters for calculating the branching factor of internal nodes.

Parameters Descriptions
page size of a page (4K bytes)
flag indicator of an internal or a leaf node (1 byte)
no-of—entries number of data objects stored in a page (4 bytes)
header flag + no—of—entries (5 bytes)
data_object represented as a feature vector (4xD bytes)
max. number of data objects = [Z a t g J ^ [l

Table 4.2: Parameters for calculating the maximum number of data objects stored in
a leaf node.

4.5.2 Results

Comparison among the three search algorithms Note that for the constant-a

algorithm the value of a was set to 2 in all the following experiments because such a

value results in generally good performance for all the datasets we used.

In Figure 4.3 we present the performance of the three algorithms on various sizes of

synthetic clustered datasets. Each algorithm was required to answer 8-nearest neigh-

bor queries. As expected, we see that the constant-a' algorithm performs better than

the sigma_factor algorithm and the single-pass algorithm provides the best results.

Since the cr estimation involved in the sigma_factor algorithm may require multiple-

path searching and may also lead to more than one passes of search, this algorithm has

to make considerable effort in handling the queries. As opposed to the sigma-factor

28

Chapter 4- Nearest Neighbor Search in VP-trees

160 I 1 1 1 1 1 I I
sigma_factor ^ “

constant-alpha -+--
. single-pass -Q--

140 - ^ ^

^ ^ ^ :) '
sr 120 - ^.- - . . •
S 力 <

1 X-->^
« Z Z
*i 100 - y^'< -

I >
i 80 - ^^<¾- -
0 ^ ^ . ' . -

t ^ ^
^ eo- ^ ^ ^ 7 -

^ • • ^
4 0 ; ^ Z -

ir-'
20 1 ‘ 1 1 1 1 1
10000 15000 20000 25000 30000 35000 40000 45000 50000

Dataset Size

Figure 4.3: Page accesses vs. dataset size. Comparison among the three proposed
algorithms on synthetic clustered data, dimension=30, #nearest neighbors=8. 94 I I I I I » I

sigmaJactor ~^~
constant-alpha -+--

single-pass • • . •

92 - _

90 - ^ ^ ^ 办""""̂ 一 " " " " " """̂ -

1 y - ^ ^ ^ 一 一 - - 一 ::::， 1 88- X z Z-•••-"-T5 Z „•'• „ . - - -i / z ' a I 86- X , z ' " • • , -
1 Z z ' ... ^ 84 - Z ' ..-•- -g, ,'"••-
(0 z ,'•
CL Z ,.-Q'

82 - . . - - " -
„ . - - • ' • " " "

8 0 - -

78 I I I I I 1 I
4 6 8 10 12 14 16 18 20

Number o(Nearest Neighbors

Figure 4.4: Page accesses vs. number of nearest neighbors requested. Comparison
among the three proposed algorithms on synthetic clustered data, dataset size=30000,
dimension=30.

algorithm, the constant-a method guarantees its a estimation must be completed in

one pass of a search that can eliminate multiple-path traversal. Consequently, the

constant-a method requires on average 6% fewer page accesses than the sigmaJactor

algorithm. Because the single-pass algorithm does not need an extra pass (or passes)

to do a estimation, it has the best performance, making around 6% and 11% savings in

page accesses over the constant-a algorithm and the sigmaJactor method respectively.

29

Chapter 4- Nearest Neighbor Search in VP-trees

160 I 1 1 1 1 1 1 1 _̂
sigmaJactor ^ ~ y ^ ;

constant-alpha 十… y ^ ^ \ i
i single-pass -D - ^ ^ y .••' 140 - y^'^ -

X 0
f 12°- y ^ : y -
1 乂 ： .

I 1�� - X--''''' “
i ^ ^ ' -
1 80 - ^ ^ ^ ^ -

凌 ^ '

I >
- 6 0 - ^ - -^

4 � ^ -
[r'

20 I I I I I I 1 1
10 15 20 25 3 0 35 4 0 4 5 5 0

Number of Dimensions

Figure 4.5: Page accesses vs. number of dimensions. Comparison among the three
proposed algorithms on synthetic clustered data, dataset size=30000, #nearest neigh-
bors=8.

1100 I 1 1 1 1 1 1 1 ^ I

sigmaJactor • « ~ ^ ^ ^
constant-alpha -+-- ^ < ^

1000 - single-pass -•-- ^ ^ -

y
900 - j ^ -

i y^
® 800 - / -

I z
® 7 0 0 - y ^ -

i X % 600 - y^ -
I X
§> 500 - Z -

‘ z
400 - y ^ -

300 - ^ / -

20QL̂ 1 1 1 1 1 1 1
10000 15000 20000 25000 3 0 0 0 0 35000 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0

Dataset Size

Figure 4.6: Page accesses vs. dataset size. Comparison among the three proposed
algorithms on synthetic uniform data, dimension—20, #nearest neighbors=8.

To see the dependency on the desired number of nearest neighbors, we ran n-

nearest neighbor queries, for n—4, 8, 12, 16 and 20, on the dataset of 30000 objects.

Figure 4.4 gives the page accesses versus the number of nearest neighbors requested.

The single-pass algorithm is still better than the other two methods although the

actual differences between the three methods are not very significant.

Figure 4.5 illustrates the results as the dimensionality of the data increases. Again,

the single-pass algorithm achieves the best performance. The amounts of savings it

30

Chapter 4- Nearest Neighbor Search in VP-trees

668 I 1 1 1 1 —t 1 1
sigmaJactor - ^ -

constant-alpha - —
、 single-pass -•--

667 ;̂ - t • •

f .,.-.�
1 ...---"
« 666 - ...--• -I ... «s .'•• U) .••• g ,••
I 665 - ,.••• -
ffi
o) «
Q.

664 - -

663 I I 1 I I I I 4 6 8 10 12 14 16 18 20
Numberof Nearest Neighbors

Figure 4.7: Page accesses vs. number of nearest neighbors requested. Comparison
among the three proposed algorithms on synthetic uniform data, dataset size=30000,
dimension=20.

makes in page accesses are similar to those for different sizes of datasets.

Then, we conducted similar experiments on the synthetic uniform data. As the

data objects of a uniform dataset are far apart, finding n nearest neighbors to a query

object will most likely require a search over a very large portion of the search space.

This explains why the three algorithms access almost the same number of pages as

the dataset size increases (Figure 4.6). In fact, we recognized that all three algorithms

had searched over 95% of the total nodes of the index tree. This result is consistent

with the performance reported in other indexing techniques [6, 32 .

For the same reason, the three algorithms visit relatively the same number of

pages for varying numbers of nearest neighbors (Figure 4.7). It seems that there is

a gap between the single-pass algorithm and the other two, but the largest difference

attained at 4-nearest-neighbors is indeed only about 0.3%.

From Figure 4.8 we observe that the single-pass algorithm gives good results for

dimensions lower than 15. It needs up to 43% fewer page accesses compared to the

sigmaJactor algorithm. Recall that the superiority of the single-pass algorithm de-

pends on how fast the a value is dynamically improved. For uniform datasets where

every nearest neighbor candidate is distant from the query object, the algorithm has

to take a large amount of time to optimize cr. Thus, it cannot maintain its good

31

Chapter 4- Nearest Neighbor Search in VP-trees

900 I 1 1 1
sigma_factor “®~

constan^aIpha -+-- ^ ^ ‘
、 800 - single-pass -o-- ^ ^ -

700 - ^ ^ -

® 600 - ,̂̂f̂ '̂ '̂̂ '̂ -
1 ^ ^ / ^
I 500 - ^ j ^ -
i / ^
S 400 - ,̂ J??̂ . -
I / < ^ -
I 300 - / % . . - - -

“ z,，.

200 - Z ,," -
/^ ," .

100#, -
oT 1 1 1 5 10 15 20 25

Number of Dimensions

Figure 4.8: Page accesses vs, number of dimensions. Comparison among the three
proposed algorithms on synthetic uniform data, dataset size=30000, #nearest neigh-
bors=8.

450 I 1 1 1 1 1 1 1
sigma_faclor -©—

constant-alpha -+— ^ ^

一 ― . / ^ ^

350 - y ^ -
f / X 一-----------一
® z z + — I 300 - y , z -
I y^ Z "
i 25�- ^ ^ Z ' " " .• “
S ^ ^ z,' ..-•••""
I 200 - y ^ ..'••"" ..-••••'"" _

� ^ ^ z : z
150 - y C z--•• -

Z z . " .
100.< ..••' -„---•"
50 I 1 I I I I I 10000 15000 20000 25000 30000 35000 40000 45000 50000

Dataset Size

Figure 4.9: Page accesses vs. dataset size. Comparison among the three proposed
algorithms on real data, dimension=16, #nearest neighbors=8.

performance as for clustered datasets. However, data in low dimensions are not as

scattered as in high dimensions, leading to some of the nearest neighbors being close

to the query object. In that case, the single-pass algorithm is able to perform better.

Figures 4.9-4.11 display the results for the real data. The three algorithms behave

consistently as in the experiments for the synthetic clustered datasets, in that the

single-pass algorithm performs the best. In Figure 4.9 the sigma_factor algorithm

appears to perform better than the constant-ce algorithm with small sizes of datasets.

32

Chapter 4- Nearest Neighbor Search in VP-trees

350 I 1 1 1 1 1 1 1
sigmaJactor •©~

constant-atpha -n~-
, single-pass -o--

300 - ^̂ __,-o-'̂ "̂ "‘̂ -

I ^ ^ ^ ^ ^ " ^ ^ ^ ^ 一一一^
1 咖 . ^ ^ ,,.一一一- 一-一 -

皇 z ' Z „

i . z _..-.-.-.o
I 200 - � -
|> . .-°
‘,i.............z

150 - -

100 I " 1 1 1 1 “ "
4 6 8 10 12 14 16 18 20

Number of Nearest Neighbors

Figure 4.10: Page accesses vs. number of nearest neighbors requested. Comparison
among the three proposed algorithms on real data, dataset size=30000, dimension=16.

3 0 0 I 1 1 1 1 1 1
sigmaJactor ^~~

constanfalpha •一 v
single-pass -•-- ^ /

250 - jiT -

窗 y^ x""
® 200 - -•̂-‘外、、、 Z Z -
1 , z Z _ > < � � � Z ..-
I /y^^^ + ,
§ 150 - ,z /---^ -i f / ...••••••••--U / / .--'
^ / / ...--°'
§) 100 - / / .fl-"" -
^ 1 , . . ,

5�- /..•••-• -j . ,
0 fc^ 1 I I 1 I I 2 4 6 8 10 12 14 16

Number of Dimensions

Figure 4.11: Page accesses vs. number of dimensions. Comparison among the three
proposed algorithms on real data, dataset size=30000, #nearest neighbors=8.

Similarly, Figure 4.11 also show that the sigmaJactor algorithm performs better than

the constant-a algorithm for dimensions lower than 10. It is mainly because the vp-

trees for low-dimensional datasets are so shallow that we cannot find an optimal value

for a. As the datasets described in Figure 4.9 are all in dimensions of 16 which is

lower than those in Figure 4.3, the above trend does not occur in Figure 4.3 even the

dataset sizes in both figures are the same.

We can summarize our observations as follows:

33

Chapter 4- Nearest Neighbor Search in VP-trees

• The single-pass algorithm performs better than both the sigma_factor algorithm

and the constant-o； algorithm.

• Our experiments show that the constant-a algorithm is not applicable to shallow

vp-trees.

• The performance of all three algorithms deteriorates rapidly for uniform data.

• The search cost required by all three algorithms is insensitive to the amount of

nearest neighbors requested.

Comparison with the iT-tree The partitioning strategies adopted in vp-

trees and i^*-trees are different, in that the vp-tree partitions the search space based

on the distances between objects (distance-based indexing), whereas the i^*-tree uses

the absolute coordinate values of a multidimensional vector space (feature-based in-

dexing) . S o far as we know, none of the previous work compared the performance

of the two structures. However, we believe such a comparison is significant because

distance-based index methods can be applied to both the distance case and the vector

space case. In fact, some recent work has proposed that distance-based indexing is

one solution to the problem of indexing high-dimensional spaces [32].

Note that in all comparisons with the i?*-tree, the single-pass algorithm was used

to perform the search, and all results were obtained by averaging the results of 100

runs of 7i-nearest neighbor queries. We first tested on the synthetic clustered datasets.

Figures 4.12-4.14 show the performance of the vp-tree and the i?*-tree (in terms of

page accesses) as a function of the dataset size, the number of nearest neighbors, and

the dimensionality, respectively. As seen from the figures, the vp-tree consistently

outperforms the R*-ivee.

Figure 4.12 plots the results of experiments in which we fixed the dimensionality

at 30 and made 8-nearest neighbor queries on varying sizes of datasets. The vp-tree

makes 55-65% savings in page accesses. The savings increase with the size of the

datasets, indicating that the vp-tree method scales up well. For different numbers of

nearest neighbors, we see from Figure 4.13 that the vp-tree makes around 54% fewer

34

Chapter 4- Nearest Neighbor Search in VP-trees

350 I ^̂ ~̂" I I ^̂^̂~ I ^̂^̂~ I I I
vp-tree -©—

^ RMree -n~-- , ' - "

300 - ^ Z _

z'""
窗 250 - ,Z -

•2 ,z'
1 Z
« ,'' 1 200 - Z -
1 一 - 一 乂

I 150 - ,广 - - - 一 - -

i , z _ _ . ^ - - ^ ^ ^
°- 100 _ Z ^.^-^-^-""^ -

_ ^ - - - ^ ^ ^
50 - ^ _ _ _ . - - - ^ ' ^ -

0 I 1 1 1 ‘ ‘ ‘ ‘
10000 15000 20000 25000 30000 35000 40000 45000 50000

Dataset Size

Figure 4.12: Page accesses vs. dataset size. Comparison with the iT-tree on synthetic
clustered data, dimension=30, #nearest neighbors=8.

200 I 1 1 1 1 1 1 1
vp-tree ~ « “
RMree 十―

180 - -

C- 160 - -g
1 (0
* | 140 - -

i t
0)

I 12�- -
① o>

^ 100 - -

80 ‘= 夺~~ -

60 1 1 1 1 1 1 1
4 6 8 10 12 14 16 18 20

Number of Nearest Neighbors

Figure 4.13: Page accesses vs. number of nearest neighbors requested. Comparison
with the iT-tree on synthetic clustered data, dataset size=30000, dimension=30.

page accesses than the jR*-tree. Notice that the increment in the number of nearest

neighbors leads to only a small increase in the search effort for both vp-trees and

i?*-trees. On the other hand, the impact of the dimensionality on the vp-tree and on

the R*-tree greatly differs from one another (see Figure 4.14). As the dimensionality

increases (from 10 to 50), the vp-tree visits 39-62% fewer pages compared to the R*-

tree. The curves illustrate that the vp-tree scales up better with the dimensions than

the R*-tree does, and also provide further support for the findings made by previous

work that R-trees stop being efficient for dimensionalities greater than 20 [10, 14’ 32:.

35

Chapter 4- Nearest Neighbor Search in VP-trees

400 I 1 1 1 1 1 1 1

vp-tree •©~ Z
V 内厂内 R'-tree -+— Z

350 - , Z -

, z

300 - Z •

^ + z

1 /
c 250 - Z -
1 y"
I ,"
g 200 - ,z -w ,Z 3 'Z
U Z'
<^ 150 - z ' ' _ ^

& Z ^ ^ ^ ^ ^ ^
(Q Z _.-.--̂
^ Z ' " _ ^ ^ ^ - - ^

100 - , , ' ' ' ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ , - ^ ^ ' ^ -

^r：.^^^^^^^^^^.^--^'"^^ -
0 I 1 I I I I 1 1

10 15 20 25 30 35 40 45 50
Number of Dimensions

Figure 4.14: Page accesses vs. number of dimensions. Comparison with the R*-tree
on synthetic clustered data, dataset size=30000, #nearest neighbors=8.

The reasons why the vp-tree achieves better performance are discussed as below.

(a) Since in an R*-tvee two limits for a closed bounded interval are stored on each

dimension^, the size of an internal node of the R*-tvee is larger than that of the vp-tree.

This leads to a lower fanout and a larger tree size, resulting in more cost on querying.

(b) The partitioning methods of the vp-tree and the jR*-tree belong to two entirely

different approaches. Their rz-nearest neighbor search algorithms should accordingly

have certain specific properties that make them perform differently, (c) The disk blocks

used by our vp-tree were highly utilized. As the R*-tree implementation focused on

other issues, such as the prevention of overlap between bounding boxes, the utilization

rate was not as high as the vp-tree's.

Next, our test dataset was the synthetic uniform one. Recall that the dimensions of

this set of data are varied from 5 to 25, much lower than those of the clustered dataset.

Figures 4.15-4.17 show the results. Compared to the results for the clustered dataset,

the curves in these figures display considerable similarity in terms of the general trend;

that is, the savings in page accesses increase with the size of the datasets, and both

structures do not respond strongly to the increase of the number of nearest neighbors.

For various dataset sizes, there are around 33% savings in page accesses (Figure 4.15).

For the number of nearest neighbors from 4 to 20, the corresponding savings are

^See Section 2.1 for a more detailed description on the structure of the R-tree.

36

Chapter 4- Nearest Neighbor Search in VP-trees

1800 I 1 1 1 1 ~ I 1 1

vp-tree ^ ~
、 R*-tree -+—

1600 • Z'
,z'"

1400 - Z -f z " " ^ z E 1200 - ,,' -S. ,,'
I , z y
I 1000 - ,̂ '''' ^ ^ -
« z'z ^^
S Z ^^
0 z ^^
<̂ 800 - Z , ^ ^ -
1 Z ' ^ ^ ^ ^

6 � � - X \ . ^ -
4 0 0 - , Z ^ ^ ^ ^ -200't_ 1 1 1 1 ‘ “ ‘

10000 15000 20000 25000 3 0 0 0 0 3 5 0 0 0 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0
Dataset Size

Figure 4.15: Page accesses vs. dataset size. Comparison with the i?*-tree on synthetic
uniform data, dimension=20, #nearest neighbors=8.

1050 I 1 1 1 1 1 ~ r 1

vp-tree - ^ -
R*-tree -n~-

1000 - --

一 一 ― …
9 5 0 - - 一 … -

i
® 900 • -
•o

Q
1 850 - -g
三
i 800 - -u ^

I 750 - -
o.

700 - -

650 - -

600 I ‘ ‘ 1 ‘ 1 ‘ “
4 6 8 10 12 14 16 18 20

Numberof Nearest Neighbors

Figure 4.16: Page accesses vs. number of nearest neighbors requested. Comparison
with the E*-tree on synthetic uniform data, dataset size=30000, dimension=20.

around 32% (Figure 4.16). The savings achieved by the vp-tree can also be explained

by the three reasons we have mentioned before. However, we can see that these savings

are lower than those for the clustered datasets. This is due to the fact that the data

objects in these uniform datasets are distant from each other, making it harder to

filter out non-qualifying objects for the n-nearest neighbor search.

The curves in Figure 4.17 exhibit a slightly different trend from the above. In lower

dimensions (5-12) the iT-tree performs better than the vp-tree. But in dimensions

higher than 12, the vp-tree gives better results. This indicates that i?*-trees can

37

^^^^^^^^^^•^^•l^^^^^H^^^^HH^HHII^^^H^HH^^^^^^^^^^^^^^^WHi^^HHnnHBnnH^^HnHB^BH^^^^B>

Chapter 4- Nearest Neighbor Search in VP-trees

1400 I 1 1
vp-tree ~^—
RMree十…

^ , ' ' '
1200 - z ' -

Z
Z

^ 1000 - , Z _
S ,z 1 / ^ ,
*§ 800 - / ^ ^ ^ .

i / ^ ^ . ^ ^ - ^ g 600 - Z' -̂̂ "̂ ^ -
逢 , \ ^ ^ ^

1 , : :>>^
° - 4 0 0 - ^ ^ ¢ ^ ^ -

^ f
200 - ^-^^ /Z -
. . ^ _ _ _ , ,

5 10 15 2 0 2 5
Number of Dimensions

Figure 4.17: Page accesses vs. number of dimensions. Comparison with the i?*-tree
on synthetic uniform data, dataset size=30000, #nearest neighbors=8.

7 0 0 I 1 1 1 1 1 1 1
vp-tree - ^ -
R*-tree -n~--

600 _ Z

" ' z '

5^ 500 • , z -

2 ,Z
Y 一一—Z « _̂
ffl 4 0 0 - Z _

1 z'
一 ,'
w ,'
% 300 - Z -
0 Z
< , _ _ _ _ _ _ _

1 z 'Z _ ^
°- 200 - , , , ____--------*--̂ • : : : ^ ^ ^ ^ ^ ^ ^ ^ ^ 100 - ^ ^ _ ^ - " ^ -

0 1 1 I I 1 I I

10000 15000 20000 25000 3 0 0 0 0 35000 4 0 0 0 0 4 5 0 0 0 5 0 0 0 0
Dataset Size

Figure 4.18: Page accesses vs. dataset size. Comparison with the R*-tree on real
data, dimension=16, #nearest neighbors=8.

provide fast query performance for low-dimensional data although the performance

degrades with the dimensions.

For the real data, we first studied the dependency on the dataset size. We used

datasets in five sizes (10000, 20000, 30000, 40000 and 50000) and fixed the dimension-

ality at 16. Figure 4.18 presents the number of page accesses versus the dataset size.

The vp-tree performs better than the i?*-tree, making 43-61% fewer page accesses.

The gap seems to open up as the dataset size increases. Figure 4.19 gives the perfor-

mance results for varying numbers of nearest neighbors. The test dataset contained

38

Chapter 4- Nearest Neighbor Search in VP-trees

500 I 1 1 1 1 1 1 1
vp-tree - ^ -
R*-tree -n~-

450 - 一+ -
一—

. - - -i- 400- , . - - -
«2 ,--'' "0 g
5 350 - -
CD
c i
% 300 - -o ^ 0 o>
A °- 250 • -

200 - ^ _ _ _ _ _ ^ ""̂ ^ ^ -

^ ^ - - ^ - ^ ^ 150 ^ « 1 1 1 1 1 " 4 6 8 10 12 14 16 18 20
Numberof Nearest Neighbors

Figure 4.19: Page accesses vs. number of nearest neighbors requested. Comparison
with the i^*-tree on real data, dataset size=30000, dimension=16.

450 I 1 1 1 1 1 1
Vp-tree ~̂~
R*-tree -+•- ,' 400 - z

350 - ,,' -
^ /
® 300 - / -
1 /
S 250 - / -皇 / % 200 - .-'-" -8 ^"" ^
凌 , ' ' ^ ^ S> 150 - ,''' ___——«̂ -
‘ ^ ^ : : : : _ ^ ^ ^ ^ ^ ^ ^ ^ ^

100 - ^>^^ -y ^
50 - Z / -

_ ^ ^ - ^ '
0 4 =̂=̂ "̂̂^ I I I I I
2 4 6 8 10 12 14 16

Number of Dimensions

Figure 4.20: Page accesses vs. number of dimensions. Comparison with the R*-tree
on real data, dataset size=30000, #nearest neighbors=8.

30000 16-dimensional objects. Again, the vp-tree outperforms the i?*-tree, with an

average of 58% fewer page accesses. The same dataset size (30000 objects) was chosen

to experiment the impact of the dimensionality of data. As shown in Figure 4.20,

both structures behave in a similar way as in the experiments on the uniform data

(Figure 4.17). The R*-tvee gives better results in dimensions from 2 to 7, while the

vp-tree performs much better in higher dimensions.

Since the overall dimensions of the real data are considerably lower than those of

the clustered ones, even though the vp-tree achieves similar percentages of savings

39

Chapter 4- Nearest Neighbor Search in VP-trees

in the query cost, both vp-trees and i?*-trees have in fact put more effort into doing

the search on the real data. By observing the actual number of page accesses being

reported in Figures 4.18-4.20, it is clearly seen that the query cost required for the

real data is larger than that for the clustered, but smaller than that for the uniform.

As mentioned before, objects in uniform datasets are distant from each other, that

explains why the cost involved in searching through the uniform data is the most. We

believe that the original set of real data provided by Berchtold, Keim and Kriegel [5],

like most of the real datasets, is correlated or clustered. But because we randomly

selected only a small part from the whole set (containing about 1.3 million objects),

the clustering effect could not be fully maintained. Therefore, the search effort for the

real data corresponds to somewhere between what the clustered and uniform datasets

require.

j

40

Chapter 5

Update Operations on VP-trees

Because of the top-down partitioning strategy, updates of the vp-tree are complex

to manage and a global reorganization of the structure may often result. Unlike

the B-tree and its variants, we cannot conveniently split a node and propagate the

splitting up the vp-tree, this is because the partitioning at the parent node affects the

partitioning at the child nodes. As such, handling update operations that can maintain

a balanced tree with minimal restructuring has been left as an open problem.

We detail the procedures for doing inserts and deletes on the vp-tree. We assume

an m-ary vp-tree. The branching factor of non-leaf nodes and the maximum number

of objects contained in a leaf are determined by the page size. For a non-leaf and

non-root node, the number of child nodes varies between a minimum value and a

maximum value m, as in a B-tree. The root can either be a leaf node or have at least

2 and at most m child nodes.

5.1 Insert

To insert a new object, at each level of the vp-tree, the distance d between the asso-

ciated vantage point and the new object is first computed. We then traverse the tree,

choosing the subtree Si whose distance range covers d, i.e.,仏_1 < d < m, until a leaf

node L is found. If there is room in L, we insert the new object and the insertion is

done. If L is full, let P be the parent node of L, and we employ the following strategy.

41

Chapter 5. Update Operations on VP-trees

• • • to upper non-leaf nodes

node P V ,| ^^ I I ^^ I
.̂ ^̂ •̂̂ •̂̂ "̂ "̂̂ ^̂ "̂"̂ ^̂ "̂""̂ !̂!̂ ‘̂̂ y ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ “ ^

a _ b C d e f _g__h 一 leaf nodes

(a) A new object e' needs to be inserted into L
and sibling leaf nodes are not full.

• • • to upper non-leaf nodes

n o d e P V

l̂l* l̂2*

^^..^"'^^^^^^^^^^d& L , ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^
a b C d e e' f g h 一 leaf nodes

(b) All objects under P have been redistributed, e' gets
inserted and boundary distances have been updated.

Figure 5.1: Redistribution among leaf nodes.

Examples are given in Figures 5.1 to 5.4.

1. If any sibling leaf node of L is not full, redistribute all objects under P among

the leaf nodes (Figure 5.1).

Let F be the number of leaf nodes under P. Retrieve all objects stored in the

F leaf nodes, and let S be the set of objects retrieved plus the new object being

inserted. Order the objects in S with respect to their distances from P's vantage

point V. Divide S into F groups of equal cardinality, and let SSj be the F subsets,

for i=l ,2,. . . ,F. Finally update the boundary distance values and pointers stored in

P as below.

for i = 1 to F—1

42

Chapter 5. Update Operations on VP-trees

• • • to upper non-leaf nodes

node P Y

^1 r

y ^ \ ^
Z nodeL \

a b C d e f g h 一 leaf nodes

(a) e' needs to be inserted into L and all siblings are full,
but the parent node P has room for one more child.

• • • to upper non-leaf nodes

node P \ JW^
^ ^ node Lj ^ \ ^ node L2

a b C d e e ' f g h 一 leaf nodes

(b) L has been split into nodes Li and L2,
and e' gets inserted.

Figure 5.2: Splitting of leaf node.

Pt-mui :二 (max{d(v,Sj) |V$ € SSi> + min{d(v,Sj) | V $ G SSi+i}) + 2;

for i = 1 to F

P |.childj := the leaf node containing SSj.

2. Else if the parent P has room for one more child, split the leaf node L (Figure

5.2).

Assume L is the k-th child of P. Retrieve all objects stored in L, and let S be the

set of objects retrieved plus the new object. Order the objects in S with respect to

their distances from P's vantage point v. Divide S into 2 groups of equal cardinality,

and let SSi and SS2 be the two subsets in order. Again, F denotes the number of

43

Chapter 5. Update Operations on VP-trees

leaf nodes rooted at P. Then the following pseudocode describes how we shift the

boundary distances and pointers of P so as to make room for a new leaf node split

from L.

for i = k to F—1

P t.mui+i := P t-muj；

P t-muk := (max{d(v, Sj) | VSj G SSi} + min{d(v, Sj) | VSj G SS2}) ^ 2;

for i = k+1 to F

Pt-childi+i := Pt-childi；

P t.childk := the leaf node containing SSi；

P t.childk+i := the leaf node containing SS2.

3. Else, find a nearest ancestor A of L that is not full. Let B be the immediate

child node of A, and B is also the ancestor of L.

(a) If any sibling subtree of B is not full, locate the nearest not-full sibling C

and redistribute the objects among the subtrees between B and C inclu-

sively (Figure 5.3).

For simplicity, we focus on a case where two adjacent subtrees take part

in the redistribution, but the discussion can easily be generalized to cases

where any number of subtrees are involved. We shall redistribute the ob-

jects kept in the k-th and the (k+l)-th subtrees. B can be either the k-th

or the (k+l)-th subtree. Let Num(k) and Num(k+1) be the number of

objects stored in the k-th and the (k+l)-th subtrees respectively. We first

calculate the average number of objects stored in the two subtrees. If it

is found that the k-th subtree holds more objects than the average, those

(in the k-th subtree) of the farthest distances from A's vantage point will

be moved to the (k+l)-th subtree, so that both subtrees will eventually

hold the same number of objects. Certainly, the boundary distances and

pointers involved in the subtrees will be updated accordingly. On the other

hand, if we find that the (k+l)-th subtree holds more objects, its objects

44

Chapter 5. Update Operations on VP-trees

— • • • to upper non-leaf nodes

node A y îi I r ^ ^ ^ ¾ ^
node B ^ ^ ^ .̂ ~̂~̂ ~̂~̂ node C

l̂l l̂2 l̂l M-2

1 1 , ^ 7 ^ , I ^ ^ ^ : ^ . , i i i i
a b c d e f g h i j k 1 m n o p q r s t u

node L

(a) e' needs to be inserted into L, the entire B subtree is full,
since the sibling subtree C has room, we choose to
redistribute objects among B and C.

• • • to upper non-leaf nodes

node A y

j[7̂ ~̂~n
^ ^ i ^ U ^ ^

node B ^ ^ ^ . ^ ^ ^ ^ , node C

il � , �2 11 1 1 � 11^
i^^^;77^>i ^̂ ^̂ ^̂ ^̂ ^̂ ^�

a b c d e e' f h j k 1 m n o i p q r g s t u
node L

(b) Assume objects g and i are the farthest with respect to A,s
vantage point. After redistribution they have been moved
to the C subtree and e' gets inserted.

Figure 5.3: Redistribution among subtrees.

45

Chapter 5. Update Operations on VP-trees

Algor i thm 5.1 Algorithm for redistributing objects between two adjacent subtrees.

begin
average : = f l o o r (N u m (k) + N u m (k + 1)) + 2;

if N u m (k) > N u m (k + 1) then
Let S be the set o f objects stored in the k - th subtree plus the new object ;
Order the objects in S w i th respect to their distances f r o m A's vantage po in t v;
Let w be the number o f data objects tha t wi l l be moved f r o m k - th subtree t o
(k + l) - t h subtree;
w : = N u m (k) — average;

Divide S in to 2 subsets, SSi and SS2 in order, where
551 = { S 1 , S 2 , . . . , SMum(k)-w} and
552 = {SMum(k)-w+l,SNum(k)-w+2,...,SMum(k)};

for all Si G SS2

delete S; f r o m the k - th subtree;
A | . m u k : = (m a x { d (v , S j) |VSj G SSi> + m i n { d (v , S j) |VSj G S S ? }) + �；

for all Si G SS2
reinsert S; t o the (k + l) - t h subtree;

else
Let S be the set of objects stored in the (k + l) - t h subtree plus the new object ;
Order the objects in S w i th respect to their distances f r om A's vantage point v;
Let w be the number of data objects tha t wi l l be moved f r o m (k + l) - t h subtree t o
k - th subtree;
w : = N u m (k + 1) — average;

Divide S in to 2 subsets, SSi and SS2 in order, where
SSi 二 {S1 ,S2 , . . . , Sw} and SS2 : {Sw+1,Sw+2, •••, SNum(k+i)};

for all Si e SSi
delete Si f r o m the (k + l) - t h subtree;

A t - m u k : = (m a x { d (v , Sj) | V $ G S S i } + m i n { d (v , Sj) | VSj G SS2}) + 2;
for all Si G SSi

reinsert S; to the k - th subtree;
endif

end

that are the closest to A's vantage point will be moved to the k-th sub-

tree. Algorithm 5.1 gives the pseudocode description of the redistribution

of objects between two adjacent subtrees.

(b) Else if A has room for one more child, split the non-leaf node B (Figure

5.4).

Assume B is the k-th child of A. Retrieve ail objects stored in the subtree

46

Chapter 5. Update Operations on VP-trees

— • • • to upper non-leaf nodes

node A y 1̂1 r ^ ^ j ^ ^

node B ^ ^ ^ """~~-~^^ node C

Lll U,2 Lll u,2

11 , ^ 7 ^ , I, ^ ^ : ^ T r ^ , i i i i
a b c d e f g h i j k 1 m n o p q ^_s^_i_ _ u j v ^ j ^

node L

(a) e' needs to be inserted into L, the B subtree is full and
so are the siblings, but ancestor A still has room for
one more child. We do node splitting at B.

• • • to upper non-leaf nodes

node A y

Jm*|jn2*|^^

node Bi p ^ ^ ^ ^ T j ' ^ ^ ^ ^ no:̂ "̂̂ ^̂ [̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ~|"̂ ~̂ ^̂ ~̂|~~P~~~~~̂ ~~̂ ~*~ the same node C as before
Lll* ^l2* ^ll* [l2*

I I | . ^ 7 ^ i I i ^ ^ : ^ ^ : : r r ^ i i i i i
a b c d _ ^ ^ f g h i j 一 主丄

(b) B has been split to Bi and B2, and e' gets
inserted. Note that C remains unchanged.

Figure 5.4: Splitting of non-leaf node.

47

Chapter 5. Update Operations on VP-trees

rooted at B, and let S be the set of objects retrieved plus the new object.

Order the objects in S with respect to their distances from A's vantage point

V. Divide S into 2 groups of equal cardinality, and let SSi and SS2 be the two

subsets in order. Let F be the number of subtrees rooted at A. To make room

for the new subtree that is split from B, we shift the boundary distances and

pointers of A in the way as follows. Note that make_vp_tree is the procedure

for vp-tree construction, which will be called to construct two subtrees on the

sets SSi and SS2 respectively.

for i = k to F - 1

A t.muj+i := A t-mui；

A t-muk ••= (max{d(v, Sj) | VSj € S S] + min{d(v, Sj) | VSj G SS2}) ^ 2;

for i = k + 1 to F

A t-childj+i := A t-childj；

A t-childk := make_vp_tree(SSi);

A t-childk+i := make_vp_tree(SS2).

The insert algorithm described above is based on a redistribute-first strategy, that

is, we prefer redistribution to node splitting whenever both choices are allowed. We

can certainly adopt a split-first strategy in which case node splitting has a higher

order of preference. We shall compare the two strategies in our performance study.

5.2 Delete

Traverse the tree in the same way as described in the insertion case until a leaf node

L is found. Remove the object from the leaf node and see if the node underflows. If

not, the task is done.

Let level(_E) denote the level of node E. If E is a leaf node, level(^^)=0. Let

MINieaf be the minimum number of objects that should be stored in a leaf node,

MINfan be the minimum number of subtrees that a non-leaf node should have. Then

MINdata(^0 denotes the minimum number of objects that should be stored in the

subtree rooted at node E, and is defined as:

48

Chapter 5. Update Operations on VP-trees

M I N d a t a (^) - M I N i e a f X (M I N f a n ^ v e l (^)

Here we define that a leaf node underflows if the number of objects it stores is less

than MINieaf, and that a subtree at node E underflows if the number of objects stored

in that subtree is less than MINdata(^0.

If the leaf node L underflows we choose the following scheme:

1. If the parent node P of L does not underflow, let F be the number of leaf nodes

under P and we do either of the following.

(a) If the total spare room of L's siblings can hold all of the objects in L,

redistribute the objects under P among F — 1 nodes, i.e., L is to be merged

with its siblings.

(b) Else, when the total spare room is not enough to hold all of the objects in

L, redistribute the objects under P among F nodes.

2. Else, if the parent P underflows, locate a nearest ancestor A of L that does not

underflow. Let B be the immediate child node of A, and B is also the ancestor

of L. Assume B is the k-th subtree under A.

(a) If either of the following three conditions is satisfied, we perform a merge.

Note that the merge involves only adjacent subtrees. Algorithm 5.2 de-

scribes such a merge.

Case 1: if the (k+l)-th subtree has enough room to hold all the objects in

B, we move the objects in B to the (k+l)-th subtree and delete B.

Case 2: if the (k-l)-th subtree has enough room to hold all the objects in

B, we move the objects in B to the (k-l)-th subtree and delete B.

Case 3: if the total spare room of the (k+l)-th and the (k-l)-th subtrees

can hold all the objects in B, we first calculate the number of objects that

should be moved to the (k-l)-th subtree (denoted by the variable mid in

Algorithm 5.2). We then move mid objects from B to the (k-l)-th subtree

and the rest to the (k+l)-th subtree, and delete B.

49

Chapter 5. Update Operations on VP-trees

Algor i thm 5.2 Algorithm for merging adjacent subtrees.

begin
Retrieve all objects stored in the subtree B, and let S be the set of objects retrieved;
Let F be the number o f subtrees rooted at A;

if Case 1 then
for i = k to F-2

A t muj := A t-muj+i；
for all Si e S

insert S; t o the (k + l) - t h subtree;

elseif Case 2 then
for i 二 k - 1 to F - 2

A t-mui := A t-mui+i；
for all Si G S

insert Si t o the (k - l) - t h subtree;

elseif Case 3 then
Let Num(i) denote the number o f objects stored in the i - th subtree;
mid :二 { N u m (k - l) + Num(k) + N u m (k + 1) } + 2 — Num(k -1) ;
Order the objects in S w i th respect t o their distances f r o m A's vantage point v;

Divide S in to 2 subsets, SSi and SS2 in order, where
SSi = { S 1 , S 2 , ..., Smid} and SS2 = {Smid+1,Smid+2, •••, SNum(k)};

A t . m u k _ i : = (m a x { d (v , Sj) | VSj G S S i } + m i n { d (v , Sj) | VSj G SS2}) + 2;
for i = k to F—2

A t-muj := A t-muj+i；
for all Si G SSi

insert Sj t o the (k - l) - t h subtree;
for all Si G SS2

insert Sj t o the (k + l) - t h subtree;
endif

for i = k to F—1
A t.childi := A t.childi+i;

end

(b) Else, when none of the above three conditions is satisfied, redistribute all

the objects under A among its child subtrees. We apply the same method

as in step 3(a) for insertion.

The check on adjacency that the three cases outlined in step 2(a) have emphasized

is to make sure that the re-insertion involved in the merge of subtrees will not cause

50

Chapter 5. Update Operations on VP-trees

16 ‘ I i • I I I I I J
split-first ^ ~ z '

^^ redistribute-first -^•-• , ' '

‘ z - - Z ' _
14 - r - �̂ _

/
窗 13 - / -•2 / TJ / C /
I 12 - / -
i /
S 11 - i •
s / .
I 1� - l y ^ - ^ ^ ^

9 - j^ -

8 - y^ -

^ ; _ ^ - ^ ^ ^
6 ^ I I I I 1 1 1 1

100 200 3 0 0 400 500 600 7 0 0 8 0 0 900 1000
Numberof Insertions

Figure 5.5: Page accesses vs. number of insertions on a synthetic clustered dataset of
10000 objects.

redistributions. Similar to the insert algorithm, there can be redistribute-first and

merge-first strategies of doing deletes. The above procedure is the merge-first strategy

where redistributions will take place only when adjacent nodes do not have enough

room to allow for a merge. On the other hand, in the redistribute-first strategy merges

will occur only when all sibling nodes of the underflowing one are at the minimum

size (that is, MINieaf for leaf nodes or MINjata for non-leaf nodes).

5.3 Performance Evaluation

We conducted a number of experiments to show the correctness and the performance

of our insert and delete algorithms for the vp-tree. The algorithms were implemented

in C under UNIX on an UltraSPARC.

We used three samples of data (clustered 30D, uniform 20D and real 16D), each

containing 10000 objects. A separate vp-tree was constructed to organize the objects

of each of the three samples^. Then we inserted 1000 new objects into each tree

with the redistribute-first strategy as well as the split-first strategy. For every 100

insertions, we measured the average page accesses required for all the objects inserted

so far. Figure 5.5 plots the results for the clustered sample. We also counted the times

^Details of the data samples have been given in Section 4.5.1

51

Chapter 5. Update Operations on VP-trees

Intervals of Node splitting Redistribution
insertions occurrence avg. cost (pages) occurrence avg. cost (pages)

1 - 100 0 0 “ 0 0
101 - 200 0 0 “ 0 0
201 - 300 0 0 “ 0 “ 0
301 - 400 一 0 0 — 0 0
401 - 500 0 0 “ 6 34.67
501 - 600 1 38.00 38 84.05
601 - 700 0 0 “ 2 50.00
701 - 800 0 0 “ 10 - 53.40
801 - 900 0 0 — 6 95.50
901 - 1000 0 0 17 67.47

Table 5.1: Access cost of splits and redistributions at non-leaf nodes with the
redistribute-first strategy - synthetic clustered sample.

Intervals of Node splitting Redistribution
insertions occurrence avg. cost (pages) occurrence avg. cost (pages)

1 - 100 Q 0 “ 0 0
101 - 200 0 0 “ 0 0

201 - 300 0 0 — 0 0
301 - 400 0 0 “ 0 0
401 - 500 3 38.00 “ 0 “ 0
501 - 600 5 38.00 “ 9 一 44.44
601 - 700 0 0 5 — 88.60
701 - 800 一 0 一 0 — 1 55.00 ~ ~
801 - 900 0 0 1 “ 57.00
901 - 1000 0 0 1 32.00

Table 5.2: Access cost of splits and redistributions at non-leaf nodes with the split-first
strategy - synthetic clustered sample.

that node splitting and redistribution had occurred at each interval of 100 insertions.

Tables 5.1 and 5.2 show the count and the associated cost in page accesses for the

redistribute-first and split-first strategies respectively. Note that we only focused on

those which occurred at non-leaf nodes because the cost for splitting and redistribution

among leaves is comparatively low.

Both of the tables show that inserting the first 400 objects does not involve any

splitting or redistribution at non-leaf nodes, which suggests that the cost of inserting

these objects is entirely due to splits and redistributions among leaves. As such

operations are not costly, the curves in Figure 5.5 for both strategies increase slowly

52

Chapter 5. Update Operations on VP-trees

with the number of insertions.

The two strategies start to behave differently after 400 objects have been inserted.

From this point onwards, nodes tend to be fuller. There is an increasing need for

splitting and redistribution among subtrees.

During the insertion of the next 100 objects, the redistribute-first strategy has

chosen to do 6 redistributions with an average cost of 34.67 page accesses. On the

other hand, the split-first strategy has chosen to split 3 nodes, the average page

accesses required for each split are 38. As seen from Figure 5.5, the difference in

terms of the total access cost made by the two strategies at that point is indeed small.

However, when the number of insertions rises from 500 to 600, there the curve for

the redistribute-first strategy shows a definite jump. 38 redistributions and 1 split

have occurred. We recognize that prior insertions have already moved the nodes close

to saturation. Hence, more and more redistributions are required, and each of these

redistributions is very costly because a large number of subtrees are involved. When

no more redistribution can be done, the strategy has to do the one node splitting. Even

though one split has occurred, subsequent insertions still result in costly redistributions

because there exist many full nodes. All these explain the high average cost for those

38 redistributions and the big jump shown in the figure.

Having done the split followed by considerable redistributions, the utilization of

nodes has been averaged out, leading to a slight drop of the total page accesses for 700

insertions. Soon after that, nodes become fuller and fuller due to the insertion of the

last 300 objects. The trend there resembles the one at the beginning. We can expect

that the pattern between 500 and 1000 insertions of the curve will repeat continuously

until the point when the whole tree is full.

With the split-first strategy, choosing splitting rather than redistribution creates

much room well before nodes become saturated. This strategy is able to avoid frequent

subtree-based redistributions. Therefore, the overall access cost made by the split-

first strategy is much lower than the redistribute-first. In Figure 5.5 the curve for the

split-first strategy stops increasing from 700 to 1000 insertions, for the reason that the

utilization of nodes is generally low after certain number of splits and redistributions.

53

Chapter 5. Update Operations on VP-trees

14 I 1 1 1 1 1 1 1 1

spHt-first - ^ - /
^^ redistribute-first -—• , ' '

、 13 - , ' -

/
12 - , Z -

,' Z'
百 11 - z ' -- z "S / B 10 - / -
T5 /
I /
1 9 - / -
g 六’

% / 8 8 - / -
1 / z"""^“““^~~~~~^

：：_^J .̂:
4 i 7 1 I I I 1 1 1
100 200 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1000

Numberof Insertions

Figure 5.6: Page accesses vs. number of insertions on a synthetic uniform dataset of
10000 objects.

8 I I I I I I I I
split-first - ^ ―

redistribute-first -^"… ，扣
7.5 - Z _

/
7 - / -

i / ® /
1 6.5 - / _

flS »
1 /
皇 6- / Z——^ 8¾ / /
I s.s- / Z -

0) / /
‘ - j^ -

4.5 - Z -

. • . _ _ _ _ ^ ^ ^ ^ , , .
4 i « T"~ I I 1 I I

100 200 3 0 0 4 0 0 5 0 0 6 0 0 700 8 0 0 900 1000
Number of Insertions

Figure 5.7: Page accesses vs. number of insertions on a real dataset of 10000 objects.

The results for the uniform and real data are shown in Figures 5.6 and 5.7 respec-

tively. We can see from the figures that the two strategies exhibit a similar trend for

both uniform and real samples as for the clustered one, and hence, the detailed counts

of corresponding splits and redistributions are omitted for brevity. Since the tree for

the clustered data is one level deeper than the trees for the other two samples due to

a higher dimensionality, the insertions on the clustered sample require relatively more

page accesses.

54

Chapter 5. Update Operations on VP-trees

8 I 1 1 1 1 1 1 1 1
merge-first " e~

redistribute-first -—-

7.5 - / -

f /
1 / I /
® 7 - i -
c •
B i

I /
Ŝ 6.5 - / -
Q- /

. _ _ - ^ - - ^
I I I I I -—I 1 1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Deletions

Figure 5.8: Page accesses vs. number of deletions on a synthetic clustered dataset of
10000 objects.

For measuring delete performance, we removed 5000 objects from each of the vp-

trees built for the three data samples using the redistribute-first strategy and the

merge-first strategy. We set MINfan to 2 and MINieaf to be 50% of the maximum

number of objects contained in a leaf.

For every 500 deletions, we measured the average page accesses required for all

the objects deleted so far. Figures 5.8-5.10 give the results for the clustered, uniform

and real samples. All the curves show a similar trend. Given that the heights of the

trees for clustered and uniform samples are 3 and 2 respectively, we observe that the

first 2000 deletions for both samples require only the corresponding minimum cost of

deletes (6 and 4 page accesses respectively) with both merge-first and redistribute-first

strategies. This is also true for the first 3000 deletions for the real data sample as the

tree height for this sample is 2. In other words, deleting such amounts of objects has

not caused any underflows.

However, as more and more objects are removed, redistributions or merges occur

more often. Consequently, the average page accesses made increase steadily with

the number of deletions, as shown in all three figures. The reason that the merge-

first strategy needs fewer page accesses than the redistribute-first strategy is because

merging of nodes reduces the total number of nodes, and in turn increases the average

utilization of nodes. Thus, underflows do not occur as frequently as in the case of

55

Chapter 5. Update Operations on VP-trees

5.6 I r 1 1 1 1 1 1 ：.

merge-tirst -«— ！
, redistribute-first -n—• ！

5.4 • / -

5.2 - / _
I

_® 5 - '' -
i / « / « X « ••
® 4.8 • 1 -

皇 /
% 4.6 - / -

I / S) 4.4 - / -
« /
CL /

4 . 2 - . _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

4 • • -

3.8 I 1 1 1 1 1 1 ~ 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Deletions

Figure 5.9: Page accesses vs. number of deletions on a synthetic uniform dataset of
10000 objects.

1 I I i I 1 I I
merge-first ~«~~ •'

4 g redistribute-first -+—• [

1 4.6- / -

§ / •5 /
•？ /
C '
0 4.4 - / -

I 8 ,''
0 I

1 I
9 I
1 4.2 - / -

- _ ^ ^ ^
I J I I I I I I

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Deletions

Figure 5.10: Page accesses vs. number of deletions on a real dataset of 10000 objects,

redistribute-first.

Note that we found neither redistributions nor merges at non-leaf nodes for the

deletions we made. This indicates that it is rare for a subtree to underflow.

56

Chapter 6

Minimizing Distance

Computations

In a high-dimensional space, the distance calculations between data objects are ex-

pected to be computationally expensive. As such, the major concern in most previous

work on distance-based indexing is to minimize the number of distance computations

in order to aim at efficient query processing. The mvp-tree [32] is one recent example.

The mvp-tree uses two vantage points in every node. In binary mvp-trees, the first

vantage point divides the space into two parts, and the second vantage point divides

each of these partitions into two, making the fanout of a node in a binary mvp-tree

four. As seen from Figure 6.1, each node of the mvp-tree can be viewed as two lev-

els of a vp-tree, but involving fewer vantage points^. Because of using more than one

vantage point in a node, the mvp-tree has fewer vantage points compared to a vp-tree.

For query processing, most of the distance computations made are between the query

point and the vantage points. The mvp-tree structure can therefore reduce a certain

amount of distance computations. The mvp-tree approach will be compared with the

two alternatives we shall present in a number of experiments.

iln Figure 6.1, vl,v2,v3 denote the different vantage points used in the nodes.

57

Chapter 6. Minimizing Distance Computations

Vlrn m

/1 ̂ k
V2| / \ |V3 Vl| I I

• 1 P̂ ||| ||| ^ ||| v J | l ^1 l|l hl î2 ||
“ ” V ” \l u \i u

(a) (b)

Figure 6.1: Node structures for (a) a binary vp-tree and (b) a binary mvp-tree.

6.1 A Single Vantage Point per Level

In vp-trees, every node of the tree is associated with a distinct vantage point. When

the search operation traverses multiple branches, we have to make a different distance

computation at the root of each branch. Conversely, if we use a single vantage point

to partition the regions associated with the nodes of the same level, only one distance

computation will be involved at each non-leaf level. This is the idea behind our first

method for minimizing distance computations.

At the root level, we choose the first vantage point with the method depicted in

Algorithm 2.1 (also the method used in the original vp-tree [36，8]). Then we choose

the second vantage point for the next level to be one of the farthest points from the

first vantage point; the third vantage point to be the farthest from both of the previous

two vantage points; and so forth. The reason why we require the vantage points to be

far apart is to ensure a relatively effective partitioning of the dataset.

Since there is only a single vantage point for each level, in a search operation,

the number of distance computations at non-leaf nodes is equivalent to the number

of non-leaf levels of the tree, which can be assumed to be a small number. Because

of the small quantity, we can keep the vantage points outside the tree and keep only

pointers to them in the tree. This makes a higher fanout at the non-leaf nodes and a

smaller tree size, and consequently enhances the performance on querying.

58

Chapter 6. Minimizing Distance Computations

6.2 Reuse of Vantage Points

The main drawback of using a single vantage point for each level lies in the deviation

from the original partitioning strategy of the vp-tree. In the original method, every

chosen vantage point (by the algorithm in Algorithm 2.1) should suit its associated

region to a certain extent. Although we attempt to maintain a good partitioning as

in the original method by choosing vantage points that are distant from each other,

the one chosen vantage point may not be appropriate for each of the nodes at the cor-

responding level. Our second method tries to achieve a balance between a favourable

partitioning of the dataset and a reduction of distance computations.

Unlike the previous approach, each node will have its own vantage point no matter

if the nodes are at the same level or not. However, not every such vantage point is

different. Some of them are in fact the same, because the vantage points are reused.

Before building the vp-tree we fix a number p to be the maximum number of vantage

points that we shall use in total. The selection of these p vantage points is the

same as in the previous approach: the first vantage point is selected based on the

algorithm in Algorithm 2.1, and all of the p points are chosen to be the farthest from

each other. Then, we construct the vp-tree using such pre-selected vantage points.

In other words, the set of pre-selected points act as the 'candidate vantage points'

described in Algorithm 2.1. By increasing the number p, our method provides more

choices of vantage points for the partitioning at each node. Clearly, the number of

distance computations at non-leaf nodes for query processing is bounded by p. If the

number p is of a manageable amount such that keeping them in the main memory is

not costly, we can keep the p vantage points outside the vp-tree as in the previous

approach. This can significantly reduce the storage size of the tree and increase the

fanout of the non-leaf nodes, in particular if the vantage points are high-dimensional

feature vectors.

It is a good idea to keep p small so that we can store all the vantage points outside

the tree and use less time to select the p distant points out of the dataset and to

determine the best vantage point for each non-leaf node. But a minimal p may offset

good partitioning of the dataset. We believe that the value of p can be optimized for

59

Chapter 6. Minimizing Distance Computations

certain datasets.

6.3 Performance Evaluation

To compare our methods with the mvp-tree approach, we implemented the disk-

based model of the mvp-tree and extended to it one of our n-nearest neighbor search

algorithms, the single-pass method. Our original implementation of the vp-tree was

modified according to the two methods we proposed. The mvp-tree and the vp-tree

were both implemented in C on an UltraSPARC.

For each data point x in the leaves of an mvp-tree, the tree keeps the pre-computed

(at construction time) distances between the data point x and the first b vantage points

along the path from the root to the leaf node that keeps x. These distances are used for

effective filtering of non-qualifying objects during search operations. The experiments

in [32] have proved the competence of such a technique. All of the vp-trees (including

the original version) and mvp-trees we built for this performance study employed this

technique. We set b to 3, i.e., three extra distances were stored for each data point in

the leaves.

For the method that reuses a fixed number p of vantage points, we set the value

of p to be a reasonably small number 20. For only the 'single vantage point per level，

approach, we kept the vantage points outside the vp-trees.

Two performance metrics were used: the number of distance computations and

page accesses. We counted the number of distance computations and page accesses

required for 8-nearest neighbor queries by each method. All results were averaged

over 100 such queries. We used five sets of synthetic clustered data, each containing

a different amount of data points in dimensions of 30. The amounts vary from 10000

to 50000. The details of these datasets have been given in Section 4.5.1.

We present the results in Tables 6.1 and 6.2. In these tables, the column labelled

'reuse' refers to the method that reuses a fixed number of vantage points, 'single，

refers to the method that associates only a single vantage point with each non-leaf

level, 'mvpt' refers to the method adopted by the mvp-tree, and 'original, refers to

60

Chapter 6. Minimizing Distance Computations

Dataset size Number of distance computations
‘ reuse single mvpt original

10000 492.3T" 502.18 498.33 —509.66

2QQ00 1096.85 1106.77" 1105.02 1125.46
30000 1812.58 “ 1816.85 "IS29.67 1 8 7 6 i
40000 2237.Q0" 2239.46 2236.00 2320.76
50000 2743.43 2754.07 2744.59 2832.18

Table 6.1: Number of distance computations per search.

Dataset size Page accesses
reuse single mvpt original

10000 29.23 22.76 “ 31.91 ~31.06
20000 56.04 55.70 “ 56.79 ~60.18
30000 68.57 65.45 “ 82.92 ~~90.07
40000 " T O L ^ 100.83 100.66 ~20.15
50000 117.12 116.90 117.99 141.79

Table 6.2: Page accesses per search.

the original vp-tree structure. Note that the results made by the original vp-tree are

provided only for reference.

Table 6.1 reports the number of distance computations for various dataset sizes.

As seen from the table, reusing vantage points achieves the best results, and the mvp-

tree approach is better than the 'single' method. This indicates that choosing only a

single vantage point for all the nodes at the same level has certain negative effects on

the partitioning at these nodes, which leads to more multiple-path searching, and in

turn more leaf accesses. As a result, more distance computations between the query

point and the data points are involved.

Besides the better performance it offers, the 'reuse' method has two other advan-

tages over the mvp-tree method. Firstly, as its method for selecting vantage points is

straightforward and the selection process is completed well before tree construction,

it makes the construction easier and less time is required. Secondly, we can reduce

the size of the tree by storing all of the vantage points in use outside the tree, when

the total number of them is small enough (such as 20 in our experiments).

We also measured the page accesses to see how the three methods affect the access

cost of the vp-tree. Table 6.2 displays the results. All three methods in general make

61

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H ^ ^ ^ ^ ^ ^ ^ ^ ^ | ^ ^ ^ ^ ^ m ^ ^ ^ ^ ^ ^ _ g ^ ^ ^ ^ ^ ^ ^ ^ ^ | g ^ g _ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ m ^ ^ g g _ g | ^ g ^ B ^ B ^ K g H H ^ m ^ ^ B n M H ^ H M B B H n M i ^ v ^ " ^ ^ ^ ^ " ^

Chapter 6. Minimizing Distance Computations

fewer page accesses than the original vp-tree structure. The 'single' method needs the

least number of page accesses. This is merely because the trees constructed based on

this 'single vantage point per level' approach are the smallest compared to the others.

With a smaller tree size, the access cost for search operations is inevitably lower.

62

Chapter 7

Conclusions and Future Work

We have tackled the problem of n-nearest neighbor search for multimedia data objects

given only pair-wise distances between themselves. One method tries to first infer a

feature vector for every data object from the distances provided, while preserving the

distances between the objects. Then it employs some existing feature-based indexing

method as the access mechanism. Since this method assumes that objects are points

in some unknown high-dimensional space, and transforms them into a lower space,

inaccuracies may occur in preserving the distances during transformation. This makes

the index fail to locate all the required nearest neighbors in an n-nearest neighbor

search. We have proposed to apply the vp-tree method to the problem. Being a

distance-based index structure, the vp-tree solves the problem by partitioning the

search space directly based on the distances between data objects, which are in fact

the only input we have. Such an approach provides three main advantages. First, the

pre-processing steps involved in inferring feature vectors can be eliminated. Second,

the difficulty in preserving distances is avoided. More importantly, the correctness of

query results can be guaranteed. Lastly, the method can be applied to domains where

data are represented by multidimensional vectors as well. In other words, for indexing

multidimensional data, distance-based methods make another choice in addition to

feature-based indexing.

We have proposed three n-nearest neighbor search algorithms for the vp-tree.

The value of a threshold <j which bounds the distance of the n-th. nearest neighbor

63

Chapter 7, Conclusions and Future Work

from the query is critical to the problem of n-nearest neighbor search. Our first

two algorithms, the sigmaJactor algorithm and the constant-a algorithm, use their

own method for estimating a a value that must guarantee the presence of n nearest

neighbors, then perform a range search with the estimated cr value. The single-pass

algorithm, our third algorithm, does not need an estimation of a. It starts with a a

which is infinitely large and dynamically optimizes the value whenever the algorithm

encounters a candidate answer during the search.

We have shown by experiments that our algorithms scale up well with dataset

size for synthetic clustered data and our real data. From our comparison, the single-

pass algorithm performs the best and is a good choice since it requires neither a

preset value for any parameter nor an extra pass of search to estimate a. When

compared to one popular feature-based index structure, the i^*-tree, the vp-tree with

this algorithm consistently performs better for high-dimensional data in n-nearest

neighbor search, with up to 73% savings in the access cost. The main reason is that

the vp-tree scales up well with the dimensionality whereas the iT-tree does not. This

illustrates the competitiveness of distance-based methods in the indexing problem of

multidimensional data.

In order to make the functionalities of an index structure complete, we believe

that update algorithms are of the same importance as the search algorithms. We

have proposed a solution to the update problem for the vp-tree, which was left open

in previous work. We have observed that the split-first strategy of doing inserts is

better than redistribute-first insertion because the former method delays saturation

of nodes so that redistributions among multiple subtrees can be avoided. For delete

operations, merge-first deletion requires less access cost compared to redistribute-first

deletion, for the reason that the merge-first strategy helps reduce the possibility of

underflows in subsequent deletions.

When the distance function is complex or feature vectors are in high dimensions,

distance computations between data objects correspond to a critical factor to the per-

formance of the vp-tree. We have investigated two methods for reducing the number

64

Chapter 7, Conclusions and Future Work

of distance computations. One is by associating only one vantage point with each non-

leaf level, the other is by reusing a fixed number of vantage points. We have compared

these methods with the approach proposed for the mvp-tree. For the comparisons,

we have extended our n-nearest neighbor search algorithms to the mvp-tree. Experi-

mental results show that reusing vantage points performs better than both the 'single

vantage point per level' approach and the mvp-tree approach. Besides making the

least distance computations between query point and vantage points, the approach of

reusing vantage points also reduces the number of page accesses in n-nearest neighbor

search.

7.1 Future Work

We have observed that a bottom-up construction of an index structure would lead

to relatively easier procedures for doing updates. This is mainly because we can

conveniently split or merge the index nodes. As for future work, we shall focus on

developing a distance-based index structure that will grow in a bottom-up fashion but

also have the advantage of using a distance function to organize data objects. The

mvp-tree is so far as we know the only variant of the vp-tree, we shall consider other

variations of the vp-tree. It is clear that the choice of vantage points is important

to the performance of the vp-tree. The best vantage point should make the number

of data points in the boundaries of partitions as low as possible so that the chance

of exploring multiple branches can be minimized. It has been shown in our work

on minimizing distance computations that various vantage point selection methods

contribute differently to the access cost of searching. While the randomized selection

algorithm proposed in previous work operates well in practice, we are interested in

looking into other alternatives in detail. Regarding the desire to reduce multiple-

branch traversal during search operations, creating redundancy in the vp-tree seems

to be a promising approach. The idea is to duplicate the objects located on the

boundary into both partitions of it. We shall further our work in this direction.

On top of our current insert and delete algorithms for the vp-tree, we shall see if

65

Chapter 7, Conclusions and Future Work

there are heuristics of doing the updates, in particular if the tree need not be kept

balanced all the time. We shall also extend our n-nearest neighbor algorithms and

update algorithms to other distance-based index structures such as the Geometric

Near-neighbor Access Tree (GNAT).

66

Bibliography

"1] W. G. Aref and Hanan Samet. Optimization strategies for spatial query process-

ing. In Proceedings of the 17th International Conference on VLDB, pages 81-90,

September 1991.

'2] Manish Arya, William Cody, Christos Faloutsos, Joel Richardson, and Arthur

Toga. Qbism: a prototype 3-d medical image database system. IEEE Data

Engineering Bulletin, 16(l):38-42, March 1993.

'3] N. Beckmann, Hans-Peter Kriegel, R. Schneider, and B. Seeger. The R*-tree: an

efficient and robust access method for points and rectangles. In Proceedings of

the A CM SIGMOD International Conference on the Management ofData, pages

322-331, May 1990.

"4] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509-517, September 1975.

5] S. Berchtold, D. A. Keim, and Hans-Peter Kriegel. The X-tree: an index structure

for high-dimensional data. In Proceedings of the 22nd International Conference

on VLDB, 1996.

6] S. Brin. Near neighbor search in large metric space. In Proceedings of the 21st

International Conference on VLDB, pages 574-584, 1995.

.7] W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching.

Communications of the ACM, 16(4):230-236, April 1973.

67

^ • • ^ ^ ^ * ^ ^ • ^ ^ ^ ^ ^ B I ^ ^ ^ H I ^ ^ ^ ^ ^ ^ H I ^ ^ ^ ^ H H ^ H H H ^ ^ H I ^ ^ ^ ^ B ^ ^ ^ ^ ^ ^ ^ ^ H H H H H M ^ ^ H B ^ H H H B H ^ n M a ^ H M n ^ B > M ^ " ~ ^ ^ ^ ^ " "

'8] Tzi-cker Chiueh. Content-based image indexing. In Proceedings of the 20th VLDB

Conference, pages 582-593, 1994.

'9] P. Ciaccia, F. Rabitti, and P. Zezula. Similarity search in multimedia database

systems. In Proceedings of the First International Conference on Visual Infor-

mation Systems, pages 107-115, February 1996.

10] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, and

W. Equitz. Efficient and effective querying by image content. Journal of Intelli-

gent Information Systems, 3:231-262, July 1994.

.11] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani,

J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and

video content: the QBIC system. IEEE Computer, 28(9):23-32, September 1995.

12] 1. Gargantini. An effective way to represent quadtrees. Communications of the

ACM, 25(12):905-910, December 1982.

.13] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Pro-

ceedings of the ACM SIGMOD International Conference on the Management of

Data, pages 47-57, June 1984.

14] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color

histogram indexing for quadratic form distance functions. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 17(7):729-736, July 1995.

15] K. Hinrichs and J. Nievergelt. The grid file: a data structure to support proximity

queries on spatial objects. In Proceedings of International Workshop on Graph

Theoretic Concepts in Computer Science, pages 100-113, 1983.

16] Uhlmann J. Satisfying general proximity/similarity queries with metric trees.

Information Processing Letters, 40:4:175-179, November 1991.

17] H. V. Jagadish. A retrieval technique for similar shapes. In Proceedings ofACM

SIGMOD, pages 208-217, May 1991.

68

:18] R. Jain, S. N. Jayaram Murthy, and Peter L-J Chen. Similarity measures for

image databases. In FUZZ-IEEE ,95, 1995.

19] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: an improved R-tree using

fractals. In Proceedings of the 20th International Conference on VLDB, pages

500-509, September 1994.

'20] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z. Protopapas. Fast near-

est neighbor search in medical image databases. Technical Report CS-TR-3613,

University of Maryland, March 1996.

.21] Joseph B. Kruskal and Myron Wish. Multidimensional scaling. SAGE publica-

tion, Beverly Hills, 1978.

.22] King-ip Lin and C. Faloutsos. Fastmap: a fast algorithm for indexing, data-

mining and visualization of traditional and multimedia datasets. In Proceedings

of ACM SIGMOD, 1995.

.23] King-ip Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree - an index structure

for high-dimensional data. VLDB Journal, 3:517-542, October 1994.

.24] David B. Lomet and Betty Salzberg. The hB-tree: a multiattribute indexing

method with good guaranteed performance. ACM TODS, 15(4):625-658, De-

cember 1990.

:25] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic,

P. Yanker, C. Faloutsos, and G. Taubin. The QBIC project: querying images

by content using color, texture and shape. In Proceedings of SPIE: Storage and

Retrieval for Image and Video Databases, volume 1908, pages 173—187, February

1993.

.26] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: an adaptable,

symmetric multikey file structure. ACM TODS, 9(1):38-71, 1984.

27] E. G. M. Petrakis and C. Faloutsos. Similarity searching in large image databases.

Technical Report CS-TR-3388, University of Maryland, December 1994.

69

•28] John T. Robinson. The K-D-B-tree: a search structure for large multidimensional

dynamic indexes. In Proceedings of ACM SIGMOD, pages 10-18, 1981.

29] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using

packed R-trees. In Proceedings ofACMSIGMOD, May 1985.

30] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

1989.

'31] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: a dynamic index for

multidimensional objects. In Proceedings ofthe 13th International Conference on

VLDB, pages 507-518, 1987.

32] Bozkaya T. and Ozoyoglu M. Distance-based indexing for high-dimensional metric

spaces. In Procccdiugs of the ACM SIGMOD International Conference on the

Management of Data, 1997, to appear.

33] T. Wallace and P. Wintz. An efficient three-dimensional aircraft recognition

algorithm using normalized fourier descriptors. Computer Graphics and Image

Processing, 13:99-126, 1980.

.34] D. A. White and R. Jain. Algorithms and strategies for similarity retrieval.

Technical Report VCL-96-101, University of California, San Diego, July 1996.

:35] D. A. White and R. Jain. Similarity indexing with the SS-tree. In Proceedings

ofthe 12th IEEE International Conference on Data Engineering, pages 516-523,

February 1996.

36] P. Yianilos. Data structures and algorithms for nearest neighbor search in general

metric spaces. In Proceedings of the Third Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 311-321, 1993.

70

- ^ ^ ^ - ^ - W W - B i _ i H H W W I W _ i _ I M _ _ _ i l i W - _

f'

I

• •. . . . 一 - - . - - <

CUHK Libraries

mmiimii .
DQ35fiT4S3

