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Abstract 

Wavelet-based method for one-dimensional semiconductor device simulation is devel-

oped in this thesis. Wavelet alternative is given to device simulator on two part: grid 

generator and numerical solver. 

The physical device model adopted here is the classic drift-diffusion model. This 

model includes five fundamental equations: Poisson's equation, continuity equations 

for electron and hole, transport equations for electron and hole. After simplification 

and normalization, three partial differential equations (PDEs) are obtained. The 

device variables are electrostatic potential, quasi-Fermi potentials for electron and 

hole. Traditionally, the numerical solution of these partial differential equations are 

obtained by finite difference method, finite element method, etc. In this thesis, we use 

cubic spline wavelet collocation method for spatial discretization and finite difference 

method for time discretization. The concept of collocation method for PDEs is to 

expand unknown variable as a linear combination of a set of basis functions, then to 

evaluate the equation exactly at some collocation points. The set of basis functions 

we used is a wavelet family introduced by Wei Cai [1 . 

Why use wavelets? Because wavelets have multi-resolution property, and wavelet 

functions are localized both in spatial and frequency domains. We observed that 

many devices have variables varying very fast in a small region, and varying smoothly 

outside that region. Therefore, we could use higher resolution wavelets in that region 

to capture fast changing signals, and use lower resolution wavelets outside that region. 

This idea is implemented by deleting redundant collocation points/wavelet functions. 
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In the wavelet collocation method for PDEs, the collocation point number depends 

on the resolution level, for instance, L for scaling function space Vo, L x 2̂  for wavelet 

space Wj, j = 0,1, However, it is not necessary to use full scale collocation points. 

An adaptive method is developed to delete the redundant collocation points and the 

corresponding basis functions, based on the localization property of wavelet functions. 

This collocation point generation process is equivalent to the grid generation process 

of other device simulators. However, this method is much attractive because the 

algorithm is very simple and efficient. Once the collocation points (grid) is determined, 

we use it for seeking the steady state and transient response of devices. 

The major advantage of wavelet method for device simulation is that a large 

amount of wavelet basis/collocation points can be removed due to the localization 

property of wavelet functions, and this collocation point (grid) reduction scheme leads 

to a very efficient numerical solver. This method is specially good for devices with 

local rapid changing variables, which are very common. 

In this thesis, two types of semiconductor device: p-n junction diode and bipolar 

transistor, as examples, are successfully simulated by this method. Part of our results 

was published in the proceedings of ISCAS'97 [2]. 
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Chapter 1 

Introduction 

The objectives of this research are to investigate the feasibility and find a suitable way 

of wavelet-based semiconductor device simulation, and to show how wavelet method 

is suitable for physical device simulation. 

During this decade, wavelet approximations have attracted much attention as a 

potentially efficient numerical technique for solving partial differential equations. ( [3, 

4, 5]). Because of their advantageous properties of localizations in both spatial and 

frequency domains, wavelets seem to be a great candidate for adaptive and multi-

resolution schemes to obtain solutions which vary dramatically both in space and 

time and develop singularities. 

In the physical device simulation, it is quite often that the model develops sin-

gularity, for various reasons such as sharp changing in doping profile. The electric 

potential distribution in the devices usually takes sharp changing in a small region 

corresponding to sharp changing in charge distribution, and remains smooth outside 

this region. Not only does the electric potential take such phenomenon, but also 

do the carrier densities. It contains much more information inside this region than 

outside this region. A typical example is the abrupt doped p-n junction diode. 

We think it should be very effective to simulate such devices by wavelet method 

due to its nice properties mentioned above. We can use higher resolution wavelets in 

a certain region to capture fast changing signals, while use lower resolution wavelets 

outside that region. Besides, we can develop some algorithms to determine that sharp 
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CHAPTER 1. INTRODUCTION 

region automatically. 

To my best knowledge, we are the first group to apply wavelet method in physical 

device simulation. 

1.1 Role of Device Simulation 

Before going into the background theory and other details, we would like to describe 

the roles of device simulation firstly. So we can see our position clearly. 

With the increasing complexity of integrated circuit fabrication processes and di-

minishing feature sizes of device structures, the use of computer programs have proven 

to be valuable aids in the development and characterization of new Integrated Cir-

cuit(IC) technologies. 

The device modeling and simulation is an important and necessary stage in the 

whole computer aided IC design cycle. Figure 1.1 shows the simulation flow chart of 

computer aided IC design. 

The first stage is process simulation. The process simulation deals with all aspects 

of IC fabrication. Given a description of the processing steps and layout geometry, 

process simulation determines the details of the resulting device structure, including 

the boundaries of various material layers of the structure and the distribution of the 

impurities within these layers. 

Device simulation is the second stage. The output of first stage, doping profile 

and device geometry together with terminal voltages, are input of device simulator. 

Device simulator generates the device behaviors. Through some extraction program, 

the parameters of equivalent circuit of device is then generated, and input to the last 

stage, circuit simulation. One major advantage of using circuit simulator is that it is 

capable of carrying out large scale circuit simulation. 

The benefit of using computer programs to supplement the technology develop-

ment is to shorten the development cycle while reducing the development cost. During 
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CHAPTER 1. INTRODUCTION 
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Circuit 
Performance 

Figure 1.1: Interrelationship between Process, Device and Circuit Simulation. 

the device simulation stage, the simulation speed is as important as the simulation 

accuracy. By applying wavelet method, simulation time should be largely reduced. It 

will benefit the designers who use sUch simulator. 

1.2 Classification of Device Models 

Models of semiconductor devices can be categorized into several different classes. The 

major divisions are shown in Figure 1.2. One of the most important distinctions 

is that between physical device models and circuit models. As the name suggests, 
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CHAPTER 1. INTRODUCTION 

circuit models employ circuit analogue for the devices, often representing the device 

as a “black box" there the transfer function is obtained from physical device model 

simulation as described before, or from measurement of an actual device. In the 

equivalent circuit models, the values of specific circuit elements are obtained either 

from measurement or by relating their values to specific physical parameters of a given 

device. 

Circuit Physical 
models Models 

^ • Monte Semi- ^, . , Cjuantum ^ , ^, . , Olassical L ârio vvi&ssiC3;i 

Figure 1.2: Classes of semiconductor device model 

Equivalent circuit models have several advantages over physical models. First, 

they are relatively easy to solve. Therefore, they provide a computationally efficient 

means of modeling devices in applications such as large scale circuit simulation, where 

the use of complex models would results in an unacceptable computing requirement. 

However, circuit models are most often used to model devices which are already well 

characterized due to the limited predictive capability of them. Since it is often difficult 

to draw a direct relationship between the physical parameters and electrical behavior 

of a real device and the elements of its circuit model. 

In this research, we use physical device model. This type of model utilizes a more 

exact representation of the device, and the important physical parameters, such as 

material permeability, carrier mobilities, are incorporated directly into the model. 

This can result in a more accurate model, assuming, as always, that any simplifying 

assumptions used in its formulation are carefully considered. These models can pro-

vide a greater predictive capability, because the actual device is modeled based on 
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CHAPTER 1. INTRODUCTION 

the fundamental physical phenomena which govern its operation, rather than a circuit 

representation of they external electrical characteristics of the device. 

Figure 1.2 shows several sub-classes of physical models, each employing different 

assumptions in the formulation of the carrier transport model, and having different 

range of application. The applicability of a physical model to a specific device is 

often determined by the size of the important features of that device, for instance, 

the channel width of field effect transistor. Physical models generally have a lower 

size limit placed on them by the physical assumptions used in their formulation, and 

an upper size limit determined by the complexity and requirements of the solution. 

Quantum mechanical models provide solutions which are directly based on the 

underlying quantum mechanical principles which govern electron transport in the 

semiconductors, and are required for very small device in which quantum effect are 

significant. The complexity and computer resource requirements of this type of model 

tends to place an upper limit to the dimension of simulated device. This limit is about 

a couple of hundred angstroms. 

Monte Carlo models are statistical models which provide a solution for the Boltz-

mann transport equation, and yield a somewhat less complex formulation to describe 

carrier transport. These models are most often used for simulating devices in which 

the particulate nature of carriers is important, but in which the effects of very small 

scale phenomena, such as the Heisenberg uncertainty principle, becomes less signifi-

cant. They are nevertheless computationally intensive, and are generally limited by 

avaibility of computational resources to modeling moderate scale devices with dimen-

sions of a few tens of a micron. An important use of Monte Carlo model is for the 

calculations of material parameters, such as velocity-field and energy-field character-

istic of carriers in bulk semiconductor. 

Semi-classical models are based on an solutions for at least first three moments 

of the Boltzmann transport equation, and neglect the particulate nature of carriers 

by treating electrons and holes as a continuum. This means that the device be large 
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CHAPTER 1. INTRODUCTION 

enough that there are sufficient carriers so that electrons and holes can be character-

ized by local average quantities, such as density, energy and momentum. This is often 

the case of devices with dimensions above a few tens of a micron, and is true for a 

large number of the devices in common use today. 

The simplest physical model is the classical drift-diffusion model. This model 

assumes that the driving forces of carriers are the drift and diffusion effect only. The 

classical and semi-classical models are most often used at present. 

In this research, we choose drift-diffusion medel because it is the simplest and most 

popular one. In the subsequent chapters, we will focus on this model only. However, 

we should adopt more complicate model for a larger range of devices. Future research 

should be focused on this. 

1.3 Sections of a Typical Simulator 

A simulator can be broadly divided into several sections, and these are illustrated in 

Figure 1.3. 

Data Input Grid Numerical Output User 
^ —̂  —̂  —̂  丄. —； ^ 

Section generator Solver Section interface 

Figure 1.3: Sections of a typical simulator 

First, there is some means of reading and interpreting the data which information 

such as the geometry of the device, the doping profiles throughout the device, the 

voltages which are applied to the contacts, and the selection of numerical methods. 

Second, determine the topology of the numerical mesh used for the solution. In 

chapter 4, we will introduce an adaptive wavelet collocation method, which will gener-

ate a very efficient grid point based on self adaptive scheme. This scheme exploits the 

spatial localization property of wavelets to remove unnecessary collocation points(gird 

points). 
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CHAPTER 1. INTRODUCTION 

The third section is numerical solver. It is generally the actual solution of semicon-

ductor equations which requires the largest amount of computer resource of any part 

of the simulation process. The efficiency of this process is determined primarily by 

the method of solution, but this is often dictated by the type of solution required from 

the simulator, for example, whether steady state or transient solutions are required. 

We will introduce the wavelet collocation method to do it. To our best knowledge, 

we are the first one, so far the only one, to use wavelet method in device simulation. 

Later, we will see, this method is very suitable for those devices with abrupt doping 

profile or abrupt changing in other variables. 

The last section is the output section. The method of presentation is an important 

aspect of the simulation process. In general, the results of simulations are graphic 

format. It is much easier to obtain information from graphs, surface and contour 

diagrams than from columns of numbers. However, in our research, our program will 

just give the data output. We concentrate on the grid generator and numerical solver 

only. 

1-4 Arrangement of This Thesis 

This thesis is arranged as follows. The first chapter is introduction. In the second 

chapter, the most important physical models, describing the carrier transports in semi-

conductor structures, the statistics and the intrinsic carrier density, the carrier mo-

bility and the generation-recombination mechanisms are presented. The subsequent 

discussion of device simulation is based on this model. In addition, the limitations of 

this model are discussed in this chapter. In the third chapter, we will discuss various 

computational aspects of device simulation, including normalization and discretiza-

tion of device equations, and methods of solving nonlinear algebraic systems. In the 

fourth chapter, the cubic spline wavelet collocation method, which is chosen to solve 

the differential equations, in addition with schemes of determining the collocation 
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CHAPTER 1. INTRODUCTION 

range, are discussed in detail. In the fifth chapter, results of device simulation by the 

suggested methods are presented, including a one dimensional p-n junction and n-p-n 

transistor. Finally, some concluding remarks are given and further research direction 

is pointed out. 
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Chapter 2 

Classical Physical Model 

In this chapter, we present the classical physical model, which is chosen to carry out 

the wavelet-based simulation algorithm. As mentioned in the previous chapter, this 

model is the simplest and most popular physical device model compared to Monte-

Carlo and quantum models. And the computational resources required is less than 

others when simulation is carried out. The majority of contemporary devices can be 

adequately characterized using the classical model. 

As mentioned in chapter 1, Monte Carlo models are statistical models which pro-

vide a solution for the Boltzmann transport equation. The simulations based on this 

model are very time consuming. The less complex method is the semi-classical model 

based on solutions for at least first three moments of the Boltzmann transport equa-

tion, and neglecting the particulate nature of carriers by treating electrons and holes 

as a continuum. If we further assume that the free carriers are in thermodynamic 

equilibrium with the crystal lattice, in other words, three temperature parameters of 

device model - electron temperature, hole temperature and the lattice temperature, 

are same, we got the classical model - drift-diffusion model. This model assumes that 

the driving forces of carriers are the drift and diffusion effect only. 

The classical model deals with the description of the transport of charge carriers 

in semiconductor structures, under the influence of the potential distribution, the 

properties of the semiconductor material, the geometry and doping distribution. The 

semiconductor is connected to the outer world via contacts or terminals, where the 
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CHAPTER 2. CLASSICAL PHYSICAL MODEL 

bias voltages are applied. The basic equations to describe the transport and hence 

the electrical behavior of the device consist of Poisson's equation, 

V V = - ^ ( p - n + 7 V + - 7 V ; ) , (2.1) 
^ 

and the current continuity equations 

芸 = > _ R ( n , p ) (2.2) 

尝 = - ^ - V j , - R { n , p ) , (2.3) 

for the electron and hole currents jn and jp, respectively. The term R{n^p) in equa-

tion 2.2 and 2.3 represents the net recombination rate in semiconductor and will be 

discussed later in this chapter. 

The Poisson's equation describes the distribution of the electrostatic potential i[? 

in and around the semiconductor, where N^ — N ; denotes the net ionized impurity 

concentration, consisting of ionized positive donors and negative acceptors, n and 

p are the free electron and hole concentrations, and q is the magnitude of electron 

charge which is equal to 1.6 x 10~^^Columbs. The properties of the semiconductor and 

the isolating materials affect equation 2.1 via the dielectric constant e. In addition, 

a doped semiconductor contains ionized impurities, which influence the distribution 

of the electrostatic potential. The electrostatic potential can be regarded as a driv-

ing force for the charge carriers which, on the other hand, can affect the potential 

distribution by the Coulomb interaction. 

The current continuity equations 2.2 and 2.3 guarantee particle conservation. The 

change in the carrier density with time is connected with the generation-recombination 

mechanisms R(n^p) and the local carrier flux. Under steady state conditions, the time 

derivative will vanish. 

The electrostatic potential can be regarded as one driving force for the carriers to 

move through the semiconductor. This part of currents can be expressed as (Page 73 
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CHAPTER 2. CLASSICAL PHYSICAL MODEL 

in [6]) 

jn,drift = qfinnE = -^r/i^nV^ (2.4) 

jp,drift = qfhPE = -qfippVi|; (2.5) 

The last equalities in above equations are obtained by the relation between electrical 

field E and electrical potential ^: E = -W^. Yet, we will see, that it is responsible 

only for the drift part of the driving force. The other part is the gradient in the carrier 

concentrations, which results in a diffusive motion of carriers and is proportional to 

carrier concentration and its gradient. These two contributions to the carrier transport 

are written in the classical drift-diffusion approximation by 

jn = -q^nnV^ + qDnVn, (2.6) 

jp = —qfippVi^ - qDpWp. (2.7) 

The material properties of the semiconductor enter this equation by the mobility jj, 

and the diffusion coefficient D. The sign in the diffusion term is corresponding to the 

sign of charge of either the electron or the hole. 

As mentioned before, it is assumed by the drift-diffusion approximation that the 

free carriers are in thermodynamic equilibrium with the crystal lattice. This assump-

tion becomes as well invalid for the case of small devices as for deep biased conditions 

which provide the carrier with enough energy to exceed by far the global lattice 

temperature. The temperature can be treated as a constant over the whole device 

structure if the heat flow is neglected. In case the carrier temperature is different from 

the lattice temperature another driving force correlated with the energy transport has 

to be added. This one is included in the extended drift-diffusion approximation 

jn = q^nTl ( - V ^ + Y i ^ \ ^ (2.8) 
V � / 

Jp = g^pP ( - V ^ - ^ ^ ) . (2.9) 

11 



CHAPTER 2. CLASSICAL PHYSICAL MODEL 

The forces 

F . 二 - V ^ + ^ , (2.10) 
n 

Fp = - V ^ - X M i l (2.11) 
P 

are called generalized driving forces. In this derivation, we have used the Einstein 

relation 

hT 
D = fi——-fiVt (2.12) 

q 

and the thermal voltage V̂ , which describes the energy of the carriers. As long as the 

carriers are in thermodynamic equilibrium, T is a constant and equal to the lattice 

temperature Ti. 

2.1 Carrier Densities 

For pure semiconductors, they contain no doping atoms or contamination. The elec-

trical conductance is resulted only from the breakage of bonds. Free electrons are 

exited to conduction band by thermal activation of lattice, and free holes are left in 

the valance band. Thus the concentration of electrons and holes are equal. These con-

centration are the so called intrinsic carrier concentration ( n � , and is an important 

parameter of semiconductor materials. Because of the thermal generation mechanism, 

it can be expected that the intrinsic carrier concentration is dependent on lattice tem-

perature and band gap energy of semiconductor. This value is normally referring to 

the room temperature T = 300A". 

If impurity atoms with one more or less valance band, are implanted or diffused 

into pure semiconductor, they act as dopant by either supplying an additional electron 

or accepting a valence electron. The impurity which supplies an additional electron 

is called donor and which accepts a valence electron is called acceptor. After doped 

with donor or acceptor, the semiconductor changes to n— or p— type respectively. 

12 



CHAPTER 2. CLASSICAL PHYSICAL MODEL 

The carrier densities can be determined by the relative position of the Fermi levels 

Ef to the conduction band bottom and valence band top {Ec and Ey respectively), 

and can be approximated by the following equations (Page 198 of [7]) 

/Ef — E \ 
n = ^cexp \^ M (2.13) 

\ kl 

P = N.exp ( ¾ ^ ) - (2.14) 

where quantities Nc and Ny are the effective densities of conduction- and valance-band 

states respectively, as long as the Fermi level is several kT above the valence or below 

the conduction band edge. The assumption is always satisfied except in the case of 

heavily doped semiconductor. 

By introducing the concept of quasi-Fermi potentials of electron and hole (^n and 

^p) (page 269 of [7]), we can relate the carrier concentrations to intrinsic concentration 

as 

n = rii exp ( ^ y f ^ ^ , (2-15) 

P = ^i exp ( � Z ) . (2.16) 

In the thermal equilibrium both Fermi potentials have the same value 

<t>n = 4>p (2.17) 

With this equation we obtain relation between electrons and holes in thermal equilib-

rium 

p-n = n], (2.18) 

which is called the mass-action law. In the non-equilibrium case, the value of this 

product depends on the bias conditions, expressed by the difference between the quasi-

Fermi potentials � and 4>n 

(4>p - (f>n ^ …… 

p - n = n^-exp(^—"~)• (2.19) 
13 
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Substituting equations 2.15 and 2.16 into equations 2.8 and 2.9 under the constant 

carrier temperature, we can rewrite the electron and hole current densities as 

jn = -qyinnV(j)n, (2.20) 

jp = -qfi^ppV^p. (2.21) 

These equations are very elegant and convenient expressions, and will be used as 

fundamental equations for device simulation later. 

2.2 Space Charge 

To solve the Poisson's equation, the space charges N^ and N^ should be known. In 

the present of doping atoms the semiconductor becomes extrinsic. Most impurities 

used are arsenic, phosphorus, antimony and boron, which have energy levels near 

the band edges. The donors and accepted will be ionized to positively charged and 

negatively charged respectively. For low to medium doping concentrations, the donor 

or acceptor will be almost completely ionized at room temperature. In general, the 

ionized impurities can be calculated from the formula 

对 = l ^ 9 D e x p [ ( E f - E D ) / k T ] (2.22) 

N: = l^gAexp[{E^A-Ej)/kT] (2.23) 

where No and 7V̂  are concentrations of dopant, E j is the Fermi potential, E^ and 

EA are the impurity energy levels which are normally close to band edges, and go 

and QA are degenerate factor for donor and acceptor respectively. Normally, g^ is 

given as 2 and gA is 4. In the examples shown in chapter 5, we will let the dopant 

to be completely ionized. Typical value for Ec — Ejj and EA — Ey for the most 

common dopant in silicon are: 0.045eV for arsenic, 0.045eV for phosphorus, 0.039eV 

for antimony and 0.045eV for boron. 

14 
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2.3 Carrier Mobilities 

The carrier mobility is determined by the various scattering mechanisms. We will 

describe these processes in following paragraphs. 

Under thermal equilibrium, mobile electrons and atoms of the lattice are always in 

random motion. From the theory of statistical mechanics, a carrier at a temperature 

T is estimated to have an average thermal energy of ^kT/2. The thermal vibrations 

may be treated quantum-mechanically as discrete particles called phonon. The first 

kind of scattering is the collision between phonons and electrons or holes, and is called 

lattice scattering. Lattice scattering increases with increasing temperature because 

of the increased lattice vibration. It dominates other processes at and above room 

temperature in lightly doped silicon. Most semiconductor devices are operated in this 

temperature range. 

Besides lattice scattering, there are other scattering mechanisms: (1) The ionized 

impurity atoms are charged centers that may deflect the free carriers. The effect of this 

process depends on the temperature and impurity concentration, and the effect on the 

mobility is most pronounced for heavily doped samples at low temperatures, where 

lattice scattering can be ignored. As the temperature is increased, the fast-moving 

carriers become less likely to be deflected by the charged ions and the scattering is 

decreased. Therefore, mobilities due to this scattering increases with temperature. 

(2) The neutral impurity atoms may introduce scattering if the concentration of these 

atoms is high. Usually, the effect of this scattering is negligible. (3) The Coulomb 

force between carriers (electron-electron, electron-hole) can cause scattering at high 

concentration of carrier densities. 

The impurity or lattice scattering could each become the bottleneck for the electron 

movement so that 

丄 = 丄 + 丄 （2.24) 
阳 ^L fJ^I 

where the subscripts denote the lattice and impurity scattering, respectively. The 
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smaller of the two is the dominating process. Figure 2.1 shows how these two compo-

nents of mobility vary with temperatures. 

\ / 

1 “ : ， 〜 、 、 " / 

/ \ 

|A 
7 ^ 

Figure 2.1: Mobility variation with temperature showing the effect of lattice and 
impurity scattering 

In order to count the dependence on impurity concentration, the mobility can be 

expressed as 

"LJ = ^min + 1 + ^cjc^j)^' (2.25) 

where /Xo stands for the difference fjimax — /̂ mm • The quantity jJ-max contains the lattice 

scattering, whereas fimin and the term enclosed in brackets denotes the contribution 

from impurity scattering, with C as the total impurity concentration. These param-

eters are all temperature dependent. Values for them can be found in the literature 

8. 

General speaking, the drift velocity of carriers is proportional to applied electric 

field. This linear relationship is valid when the electric field is low. By increasing the 

applied field, the drift velocity eventually approaches a limit very close to the thermal 

velocity at room temperature. The velocity does not increase with the electric field 
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because at high electric field, the energy gained by the electron will be lost through 

the emission of optical phonons. Thus, the mobility decreases as the electric field is 

increased, giving rise to a nonlinear mobility. This effect is called velocity saturation, 

and can be expressed by [9 

/ 1 X i /" 

" " � " " ( j r r w ^ J • (2.26) 
where E�denotes the critical field, and is approximately 1.5 x lO^V/cm for n-type 

silicon. The |3 is 2 for electrons, and 1 for holes. The saturation velocity is related to 

the critical field by 

Vsat = flLlEc. (2.27) 

Lastly, drift mobilities for Ge, Si and GaAs at 300K are shown in Table 2.1. 

Table 2.1: Drift mobilities {cm^/V — s) in Ge, Si, GaAs at 300K 
Ge Si GaAs 
/̂ n |^p f^n f^p l^n f^p 

~~Value at 3 ^ 1^~~~U00~~4^~~8000"~~340 
300K 

Temperature T"i-^^ T'^'^^ T—2.5 T - ] ' - T-^-^ 
dependence 

"Electron mobility is dominated by polar optical-phonon scattering. 
Data taken from page 220 of [7]. 

2.4 Generation and Recombination 

In a semiconductor, electrons and holes are generated by thermal excitation of elec-

trons from valance band to conduction band. This generation process is counterbal-

anced, under thermal equilibrium, by recombination processes in which electrons and 

holes annihilate each other. Whenever the carrier concentrations are disturbed from 

their equilibrium value, they will attempt to return to equilibrium state. If the excess 

carriers are present, the recombination process will dominate. It is the purpose of 
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this section to describe various recombination process and give a model to one of the 

processes which we used in the project. 

There are two basic kinds of recombination processes. In the first process, electrons 

in conduction band make direct transition to vacant states in valance band. In the 

second process, elections and holes recombine through intermediate states known as 

recombination centers. The recombination centers are usually impurities and lattice 

imperfections of some sort. We refer the first and second one as intrinsic and extrinsic 

recombination process respectively. It is because of that the first process is an inherent 

property of the semiconductor itself, while the second process depends very much on 

the nature of the impurity or the lattice imperfection. 

The intrinsic recombination can be characterized with a lifetime, which depends 

greatly on the energy-band structure of a semiconductor. Figure 2.2 shows intrinsic 

recombination process in direct and indirect-gap semiconductors. The intrinsic re-

combination is important in direct-gap materials such as GaAs. On the other hand, 

the situation in indirect-gap semiconductor is quite different. Because the indirect 

radiative recombination process of Figure 2.2(b) is a two-step process, the probability 

of its occurrence is greatly reduced. It could be concluded that the intrinsic recom-

bination does not play an important role for the recombination of excess carriers in 

indirect-gap semiconductors such as Ge and Si. 

The extrinsic recombination takes place in the recombination centers or trap lev-

els, localized in the forbidden band gap. This mechanism has been investigated by 

Hall, [10] Shockley and Read [11], leading to the well-know formula for the net re-

combination rate 

R _ = _ _ ! ^ H Z i — — - (2.28) 

Tp[n + rit) + Tn[p + Pt) 
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^ ^ 

^-^^^:::^zzzzzZZJ^^^ -
11 h^ ^[111] I ^ ― 

11 Hu 
\ r 
Y 

^̂^̂^̂^̂î^̂^ ŷ«̂ "̂̂1̂ *̂̂^̂ \̂ 
la) {b) 

Figure 2.2: Diagram showing the intrinsic recombination process (a) in a direct-gap 
semiconductor and (b) in an indirect-gap semiconductor. The process shown in (b) 
requires phonon participation for momentum conservation. 
{Digested from figure 7.6 of [7]) 

The trap densities rit and pt follow from the trap energy level Et according to Boltz-

mann statistics 

E _ E. 

nt == rii exp \ � ‘ (2-29) 

Pt = rii exp 私枕五力. (2.30) 

The largest capture and emission probabilities are found near the middle of the band 

gap E{. Use this value for Et, the SRH recombination formula becomes 

RSRH = _ _ _ ^ Z J ± (2.31) 
Tpijl + Hi) + Tn{p^rii) 

The carrier lifetimes Tn and Tp are found to depends slightly on the total impurity 

concentration, and could be assumed to be constant for low to medium-doped semi-

conductor. In thermal equilibrium the Shockley-Read-Hall(SRH) term is vanishing. 

Besides the SRH generation and recombination in bulk, there are also other gen-

eration recombination processes for indirect-gap semiconductor. They are: surface 
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recombination, Auger process, impact ionization and others. However, we will not 

give the model for these process. Only a brief description will be given. 

In the surface, due to the discontinuity in the lattice structure, there exist a large 

amount of energy states in the forbidden gap. These energy states, called surface 

state, greatly enhance the recombination rate at the surface region. In addition to 

the surface states, other imperfections exist resulting from absorbed ions, molecules, 

or mechanical damage in the layer next to the surface. 

In the Auger recombination, the energy released by electron-hole recombination 

will be absorbed by a second electron in the conduction band. This second electron 

lose its extra energy to lattice by scattering events. Usually, Auger recombination is 

important when the carrier concentration is very high as a result of either high doping 

or high injection level. 

At high electric fields and sufficiently high current densities, the carrier can gain 

enough energy for impact ionization, which is the inverse mechanism to Auger recom-

bination. This generation mechanism is important for the modeling of MOS-transistor 

and power devices. 

2.5 Modeling of Device Boundaries 

The model described above deals with the charge distribution and carrier transport in-

side devices. These devices are connected to outside world via contacts or interfaces, 

where the biased voltages are applied or currents enter. Based on their electrical 

properties, device boundaries can be classified as (1) contacts, which allow a current 

flow into and out of the device;(2) contacts, where only voltages can be applied, such 

as the gate of MOSFET; (3) interfaces, where current flow disappears; (4) artificial 

boundaries, where neither electric field nor current flow exists, and is used to arti-

ficially isolate the device from the whole integrated circuits. Because we deal with 

one-dimensional devices, only ohmic contact, which belongs to the first type, will be 
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discussed here. Models for other boundaries could be found in section 2.5 of [12 . 

A contact is, considered from the physical point of view, a boundary between dif-

ferent conducting materials. Normally, the semiconductor contact is made by metals 

or polysilicon, which has very high conductance. For those contacts used in emitter, 

base and collector terminals of bipolar transistor and drain and source terminals of 

MOSFET, which supply biased voltage or current flow, can be simply modeled as 

ohmic contact. 

The ohmic contact assumes a constant value for the variable ^p, n and p, or • , � � 

and (pp at the contact, and neglect the transition resistance at the interface. This is 

justified, as long as the work-function difference is small, or the doping concentration 

at the contact is so high that the electrons are able to tunnel through the barrier. The 

thermal equilibrium is also assumed in the contact region. With the applied voltage 

Vappi we can express the boundary condition as 

於 = V a p p i + i^o (2.32) 

4>n = Vappl + 4>nQ (2.33) 

4>p = Vappl + p̂o (2.34) 

where i l^o,� � 0 and 4>po are values under the absence of applied voltage (thermal equi-

librium). If dopants are completely ionized, then n = Nd and p = 7V .̂ It could be 

assumed that the thermal equilibrium is hold at the boundaries, i.e., <f>n = 4>p, and if 

referring ^po/̂ nO as ground potential, we get, 

^nO 二 (|>J)Q — 0. (2.35) 

Therefore, we can get values of jpo by substituting these values of n, p, 4>no and p̂o 

into equations 2.15 and 2.16 and obtain: 

¢0 — VtlnNo/rii, n-type (2.36) 

¢0 = -VtlnNA/ui, p-type. (2.37) 
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2.6 Limits of Classical Device Modeling 

In many practical applications, the models described above have proven to be useful. 

The parameters of these models depend partially on the technology, and have to be 

adjusted properly to match experimental data. In most simulators these parameters 

can be modified in the input-file, which may be sufficient for engineering purposes. 

For the investigation of new devices and non well-understood transport phenomena, 

this method does not provide adequate description. 

However, the transport is not described completely by equations 2.1- 2.9. In cer-

tain applications additional transport mechanisms are required. There are some ex-

amples. For an accurate description of the switching behavior of power devices, where 

the current causes an inhomogeneous temperature distribution, the energy transport 

through phonons should be taken into account, leading to an additional equation for 

the heat-flow through the device. Besides, the hot electron effect should be taken into 

account for the modeling of sub-micron MOSFETs. The influence of quantum effect 

already arises at the horizon for the presence of two-dimensional electron gas (2DEG) 

devices. 

In the future, we expect the semi-classical, Monte-Carlo and even the quantum 

models will become more and more important. However, the classical model will still 

serve as an efficient and computational cost-effective model for the time being. 
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Computational Aspects 

In the previous chapter, a description of classical drift-diffusion model, which is a set 

of coupled nonlinear partial differential equations(PDE), was given. In this chapter, 

we will discuss various computational aspects of solving such PDEs. 

The first section is dedicated to the normalization of device equations. Because the 

normalization to dimensionless form is necessary to prevent overflow and underflow 

occuring in calculation due to the huge difference of magnitudes of different variables. 

It also provides elegance in formulation. 

The model description is actually a set of continuous partial differential equations. 

However, all signals which can be manipulated by computer are in discrete form. 

In order to solve those PDEs by computer, we need to discretize them. There are 

numerous discretization methods, for example, finite difference, finite element, finite 

box, and collocation method. In this thesis, we propose a wavelet-based method to 

solve this problem, which will be described in detail in next chapter. Although our 

thesis is not based on these conventional methods, we will also give a brief introduction 

to them for comparison. 

The equation set after discretization is a nonlinear system, which can be solved 

either by the famous Gummel's method or Newton's method. Both method will be 

discussed in the third section. 
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Table 3.1: List of normalization factors 
Description Normalized quantity Normalization factor 
Position coordinate x Lo — yJtVt|qni (Debye length)(cm) 
Electrostatic potential ^ ^(Thermal voltage)(volt) 
Quasi-Fermi level <̂ n, 4>p Vt (volt) 
Applied voltages Vappi Vt (volt) 
Carrier concentrations n,p rii (cm"^) 
Dopant concentrations Â D, ^A ^i {cm~^) 
Diffusion constants Dn,Dp Do = l{cm^/sec) 
Mobilities Â n,Â  Do/Vt {cm^/V — sec) 
Current densities jn^jp {qniDo/Li)) {A/cm^) 
Carrier Life time r^, r̂  lsec 

3.1 Normalization 

The quantities in device equations differ from each other in huge magnitudes. Nor-

mally, carrier concentrations n and p vary from 10̂ ^ to 10^^/cm"^; electrostatic poten-

tial and varies in the range of several volts; quasi-Fermi levels 也(j>n and <f)p vary within 

1 volt. These factors may cause overflow and underflow problems during the iteration 

process of solving the nonlinear system, which will be discussed later. Therefore, it is 

convenient to normalize these quantities and express device equations in dimension-

less form. Most people use the normalization factors as listed in Table 3.1, which is 

suggested by A. De Mari [13]. 

After normalization, for one-dimensional case, the Poisson's equation 2.1, current 

continuity equations 2.2 and transport equations 2.20 become respectively, 

g = - ( p - n + 7V), (3.1) 

L])dn djn p , 、 , q M 

^om 二 石—风“，地 （3.2) 
^D 办 djp 
W,m 二 ―石—风“，办 （3.3) 

. 8 ^ n ,<5力、 

Jn = -finn^^, [SA) 

. 物 /Q rN 

Jp 二 — � ~ ^ , (3-5) 
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where N is net doping concentration, n and p are 

n = exp(^ — </>n), (3.6) 

P = exp((̂ p - ^), (3.7) 

and the normalized Read-Shockley-Hall recombination rate is 

RSRH _ : ¾ ^P — 1 (3 g\ 
- ^ T p ( n + l )+T^ (pH- l ) ' ‘ 

In addition, the boundary conditions (equations 2.36) becomes 

於 = V a p p i + lnNo, n-type, (3.9) 

^ = Vappi - ln NA, p-type, (3.10) 

<!>n = 4>v — Vappl- (3.11) 

Note that all the quantities in the above equations are normalized quantities. 

By substituting equations 3.4 and 3.5 to equations 3.2 and 3.3, and using the 

relation n 二 e x p ( �—0 ^ ) , P = exp{^p — xp), we get 

l_ (.已閥⑷——(R + 还’） （3 12) 

d x � w dx) — V ^o dtJ ("」） 

A p . . - . ) « = i ^ + f | . (3.13) 
dx v ^ dx / Do at 

Above two equations together with equation 3.1, are the basic equation set, with three 

variables � 4 > � , � � , a n d boundary conditions 3.9, 3.10, 3.11. 

If we further assume that carrier mobilities are constants independent of x, above 

two equations becomes, 

d^n 丨 d(j)n d^ (d^n�2 二 __L fj^^：^^) (3 14) 
dx^ dx dx dx yw^n \ Do dt y 

势 + (祭)2 _ 擎 学 = 丄 ( R +昏芸). (3.15) 
ox^ ox ox dx fipp \ Do ot) 

For steady state, the time varying terms vanish, and equations 3.14 and 3.17 become: 
a ^ _̂  ̂ ^ M n . 2 二 — _ L i ? (3 16) 
dx^ dx dx dx ^n ‘ 

袋 擎 擎 学 二 丄 7 ? . (3.17) 
OX^ ox ox ox fJLpP 
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3.2 Discretization 

To solve the devices equation by computer, we need to discretize them. There exist 

various discretization schemes, including finite difference and finite element which are 

most popular. In the following these important methods will be briefly described. 

3.2.1 Finite Difference Method 

According to Taylor theorem, any function / ( x ) , having 3 continuous derivatives on 

interval [a, 6], and let x, Xo G [a, 6], then f(x) can be expressed as 

f{x) = f(xo) + f(xo)(x - xo) + r(xo)(工；广0)2 + 风 4 (3.18) 

wherei^OO = ^ ^ ^ P ^ / ( 3 ) ( 0 (3.19) 

for some ^ between Xo and x. 

Xo 7 t $N 
Xk-1 h Xk ph Xk+i 

I i 1 i 1 
a b 

Figure 3.1: Grid points in the interval [a, b 

Now, let the grid points be xo^ a^i,. •. , Xk-i, Xk, M+i , . . •，x^ where xo = a and 

XN = b, as shown in Figure 3.1. Let 

h = Xk — Xk-i (3.20) 

ph = Xk+i — Xk (3.21) 

where p is a real number, which represents the ratio between two adjacent step size. 

If we approximate f{x) as Taylor series expanded near x^ and evaluate its value at 

Xk-i and Xk+î  then 

h^ 

f{xk-i) 二 /(zfc) — hf(x,) + Yr(x,) + Rh (3.22) 

f {x .+ i ) = f{xk) + phf{xk) + ^^f{xk) + R2, (3.23) 
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for small grid size, remainder R1,R2 can be ignored. We will not discussed the error 

analysis of this method, which can be found in many books [14]. Eliminating f"{xk) in 

the above two equations, we can get the second order approximation to P^ derivative 

at 0Ck, 

r n � /(g^fc+l) - (1 -p^)f{Xk)-p^f{Xk-l) . � 
/ � = K T T ^ . (3.24) 

In the same way, by eliminating f (Xk), we can get the second order approximation 

of r{x,) 

r , n � /(^fc+l) - (l+P)/(^A:)+P/(^fc-l) /^ 9 � 

, � = P ( l + P ) " " 2 • (3.25) 

Here we use a ratio p, and this expression is more convenient than those using hk-i, hk. 

For uniform grid points, p is equal to 1. 

3.2.2 Finite Element Method 

Finite element method(FEM) is achieved by solving variational integral equations, 

which are equivalent to the differential equations 3.1 3.16 3.17. The advantages of 

FEM are [15]: (l)The application to problems with irregular geometry and different 

sizes of elements in different regions of the domain is no more difficult than for regular 

geometry and meshes. Such problems are more complex when tackled using FDM. 

(2) Once a computer code has been written for a particular order of trial function, 

only very minor changes to the code are needed in order to change the order of trial 

function. Conversely, however, in order to change the accuracy of a finite difference 

code, major modifications are usually required. (3) Procedures involving successive 

mesh refinements are more easily incorporated into finite element schemes. 

Other considerations, however, may favor FDM. Here are some cases: (1) It is 

generally much easier to write a finite difference rather than a finite element computer 

code. (2) Error analysis is much easier to perform for FDM. (3) FDM generally 

requires smaller computer memory than finite element method. 
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3.3 Nonlinear Systems 

3.3.1 Newton's Method 

After discretization, equations (3.1), (3.16), (3.17) with boundary conditions (3.9,3.10 

and 3.11) become a nonlinear system. Then, such nonlinear system could be solved 

by either Newton's method or Gummel's method. Using Newton's method for device 

simulation is first suggested by B.V. Gokhale [16]. Rewrite equation 3.1,3.16 and 

3.17 as 

^¾ 
U = ^ + ( p - n + 7V) = 0, (3.26) 

d ^ n 丄 d ^ n d � . d c j > n . 2 丄 工 p , � n /Q 0 7 � 

� = " ^ + 石石 - (石） + 3 ( n , P ) = 0, (3.27) 
aVp , (d(t>p�2 ^4>n d^ 1 ( � , � 

fp 二 & + ( 石 ） — 石 石 - & 丑 ( " , ^ = 0. (3.28) 

The Newton's method involves the linear system: 
/+i 二 yk - J{y')f{y% (3.29) 

rri where y = [^,^n,^p], 

f ~ .fi>^ fn, / p . 7 

and J{y^) is Jacobian evaluated at iteration k, where iteration number is expressed 

as superscript, 

(£^ £^ ^ \ 
d^ d4>n d4>p 

J = 势 I t f t . (3.30) 
dfp dfp dfp 

\ d^ d4>n d4>p / 

Note that all variables 也 � � and �� are updated simultaneously in each iteration. 

This method starts from a trial solution yo and stops when the difference between the 

results of two consecutive iterations is less than a specified small number. 
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3.3.2 Gummel,s Method and its modification 

Different from Newton's method, in Gummel's method [17] three variable updating 

processes in each iteration are used instead of simultaneous updating process. Here, we 

suggest a modification to Gummel's method. In our method the electrical potential 

i|; is updated by the approach used in Gummel's original method; the quasi-Fermi 

potentials of electrons �� and holes �� are updated by one-step Newton-Raphson's 

method. The following paragraphs describe the detail of the improved Gummel's 

method. 

Firstly, we choose trial waveforms ^°, ¢^ and ¢^ of the electrical potential , electron 

and hole quasi-Fermi potential respectively. 

Then, Poisson's equation (3.1) is used to update electrical potential 0^, where k 

is iteration index. Let ？/^…二 ip^ + S. For small perturbation b, neglecting the second 

order and higher order terms, ê  « 1 + 8. Then, 

8,'—补(一-《^〜6(«^”')） （3.31) 

= _ ( 0 Y + e ( ^ ' - l e ( ^ - * ' ) - 7 V . 

Equation (3.31) is a linear differential equation for 8, and is solved by finite difference 

method. The updated electrical potential 0 “ i is 

於奸1 = ¢^ + S = i|;^ + T-^B, (3.32) 

where T is a "tridiagonal matrix", and B = —(^”" + e(^'_^) - 6 � � ' � _ � - N is a 

column vector. The next step is to update electron quasi-Fermi potential �� according 

to electron transport equation 3.28. To solve it numerically, this equation is discretized 

by finite difference scheme as mentioned in previous section. Let ^ = ？/jA+i, <|>p — ¢^ in 

equation (3.28). It becomes a nonlinear equation for <j>ri now. To update ^n, one-step 

Newton-Raphson's method is used: 

€-"' = € -』德鋪, (3.33) 
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where Jn{^n) is Jacobian matrix of fn{^n)^ and it is only a portion of Jacobian matrix 

in Newton's method. It is not necessary to complete the Newton-Raphson's scheme 

since this 么 is only the intermediate result. 

The last variable needed to update is �� according to hole's transport equa-

tion 3.28. Using ?/?知+1 and ¢^^^ for i|j and ^n respectively in equation (3.28). Similar 

to ^n, we update cj)p by one-step Newton-Raphson's scheme: 

K ^ ' = <t>l - � � , (3.34) 

where Jp{4>p) is Jacobian matrix of fp{4>p)-

After updating x|;, cj>n and 4>p̂  we check if the scheme converges by evaluating the 

error between two consecutive solutions. If the error is less than a specified small 

number, the solution is obtained. 

We will now summarize the overall scheme. 

Step 1: Choose the trial waveforms of ^°, 0° and (/>°. 

Step 2: Update i|j by equation (3.32). 

Step 3: Update 4>n by equation (3.33). 

Step 4: Update 4>p by equation (3.34). 

Step 5: Check convergence, if not converges, return to Step 2. 

3.3.3 Comparison and discussion 

It should be pointed out that Gumnlers method is a decoupled system of Newton's 

method. From Jacobian matrix (equation 3.30) in Newton's method, we see that if 

the non-diagonal elements are zeros or close to zeros, the resultant linear system is 

actually that in Gummel's method. 

The Jacobian matrix of Newton's method is a multi-band matrix, and that of 

Gummel's method is a tri-diagonal matrix. The dimension of later one is only 1/3 of 

former one. 
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In general, Newton's method is more robust in the means of convergence and 

slower than Gummers method. In slightly coupled system, we prefer the Gummers 

method because of higher computational speed. However, for heavily coupled system, 

Newton's method should be adopted due to its robustness. 

Gummel's method is favourate in the following cases: (1) Low current densi-

ties where the diffusion term in the current continuity equation is dominating. (2) 

Generation-recombination term is independent of electric field •也 i.e., the electric 

field strength is lower than the avalanche threshold; (3) The mobility is indepen-

dent of electric field V^ . In these cases, the equations can be treated as decoupled. 

We like to study and compare Newton's method and Gummel's method under these 

circumstances. 

As an example an abrupt p-n junction was simulated by two methods. The choice 

of an abrupt impurity distribution is motivated by accuracy considerations, since such 

a doping profile maximizes truncation errors and represents numerically the worst 

case. 

The diode used here is taken from [13]. Its physical parameters are listed in 

Table 3.2. 

Table 3.2: Physical parameters of a diode. 
Material germanium (relative permittivity = 16) 
Temperature 300^K 
Doping Donar: 10^(or2.5 x lO^^cm"^) 

l Q 2 ( o r 2 . 5 X l Q i 5 c m _ 3 

Length N-side, M-0=2.2 (or 2.1043 x 10"^cm) 
P-side, L-M=4.0 (or 3.8267 x lQ-^cm) 

Carrier mobilities electron, 3600cm^/V — sec 
hole, 17QQcmyy - sec 

Simulation is carried out both by Newton's method and our method. Obviously, 

we should use the same trial waveform for the beginning of two methods in order 

to have a fair comparison. The grid points of the diode are not necessary of equal 

distance. 
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The simulation program has been written in Matlab, and run on SUN Ultra Sparc 

CPU. The iteration and simulation time for the diode under forward bias Vb 二 0.05V 

is shown in the Table 3.3. And the numerical solutions of 也 � � and 4>p are shown in 

Figure 3.2. 

Table 3.3: The iteration number and simulation time of Newton's and our methods 
Grid point Number 65 89 121 185 241 313 369 

Newton's 6° 7 “ 7 7 — 7 7 7 —. 
method T.88 ' 8.8 18.19 55.62— 114.44 "237.51 378.6^' 

^ 8 ~~T~ 7 7 — 7 7 7 “ 
method |"1.46 4.96 8.68 20.02 36.73 63.49 95.08| 

a the number of iteration needed for program to converge. 
b simulation time (in seconds) running on SUN Ultra Sparc. 

From the data listed in Table 3.3, we observe that for small grid point number 

(less than 65), the simulation times of two methods are competitive. However, for 

large grid point number (large than 185), the simulation time of our method is only 

1/4 of that of Newton's method. The fast computation of the modified Gummel's 

method is easy to understand. Since we just need to invert N x N matrix instead of 

inverting 37V x ZN one, where N is grid point number. In real device simulation, the 

grid point number is always over one hundred. If this technique is applied, significant 

computational cost can be saved. For large bias voltage, these methods will not 

converge. To overcome this problem, it need to increase bias voltage from small value 

by several small step. 

3.4 Linear System and Sparse Matrix 

After device equations were discretized by either FDMs or FEMs and linearized either 

by Newton's or Gummel's method, the last step is to solve a linear system in the form 

of 

A x = b. (3.35) 
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0.25| r 1 

0 . 2 - i -
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x(cm) X 10̂  

Figure 3.2: The numerical solution of 也 � � and (f>p of an N-P diode with bias voltage 
H 二 0.05V. 

There are two kinds of method to solve it: direct methods and indirect methods. 

Direct methods mean to invert the matrix A directly. Indirect methods has many 

variations. In general, they use iterative scheme to approximate the solution of equa-

tion 3.35. The advantage of direct methods is robustness. However, for very large 

scale system, indirect methods are prefered because they are faster in such case. In our 

research, we use direct method for its robustness. These methods are well understood 

and can be easily found in many textbooks related to numerical analysis [14 . 

Usually, the matrix A is very sparse, i.e, it contains many zero elements or elements 

very close to zero. To save memory space, and more importantly, to reduce the 

computational time, spare matrix technique should be used. There are many solfware 

packages with linear equation solver with sparse matrix technique, for example, the 

Matlab(〃）of the Math Works Inc. In this package, the sparse matrix command 

is "5par5e()". A very simple command can be use to solve equation 3.35: “ a ; = 

sparse{A)\b'\ 
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Chapter 4 

Cubic Spline Wavelet Collocation 

Method for PDEs 

There are various wavelet methods for discretizing differential equations published 

in this decade, including wavelet-Galerkin's method[3, 18](finite element type), and 

wavelet collocation method[18]. In finite element type methods, piecewise polyno-

mial trial functions may be replaced by wavelets, such as Doubechies wavelets. This 

method was originally proposed by Glowinski, Lawton, Ravachol and Tenenbaum[5]. 

Many interesting examples in their paper suggest that wavelets have great potential 

in the application to numerical solution of differential equations. However, computing 

integrals of products of derivatives of wavelets needed in wavelet Galerkin's method 

is very difficult. Chen [19] suggests a Haar wavelet method to PDEs, and show great 

potential in circuit analysis and in lumped and distributed-parameter systems. The 

idea of Chen's method is using orthogonal Haar wavelet functions to construct op-

erational matrices, to convert a differential equation into an algebraic equation, and 

hence the solution procedures are much simplified. 

Recently, Wei Cai develops an adaptive multiresolution cubic spline wavelet col-

location methods for initial boundary value problems of nonlinear PDEs[l]. Through 

many examples in his paper he shows that this method is suitable for nonlinear PDEs. 
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Zhou introduces this method in linear and nonlinear circuit simulation [20]. Zhou ex-

ploits the multiresolution property of this method in many examples in his papers. 

In our research, we use Cai's wavelet for discretizing device equations in spatial 

domain, and use finite difference method in time domain discretization. This idea is 

known as "the method of lines". Besides, we use adaptive method to identify col-

location points and non-truncated wavelet coefficients. This procedure is equivalent 

to the grid point generation procedure in some device simulator using finite differ-

ence scheme as described in chapter 1. However, due to the localization property of 

wavelets, a major portion of wavelets will be located on the sharp-changing region 

which contains major device information. As a result, lots of computational efforts 

will be saved. 

In this chapter, we will describe the adaptive cubic spline wavelet collocation 

method in parallel with the way of implementing it in Matlab™ programming envi-

ronment. The rest of this chapter is divided into the following sections. In section 

1, we introduce the cubic scaling functions ^(x), ^b(x) and their wavelet functions 

^{x), i/̂ b(x). An MRA and its corresponding wavelet decomposition of the Sobolev 

space H^(!) are constructed using ^{x), ^b(x), ^{x) and ^b{x)- Then, we show how 

to construct a wavelet approximation for functions in the Sobolev space H^(I). In 

addition, we will describe how to generate these functions in Matlab^^. In section 3, 

we discuss the derivative matrix for approximating differential operators. In section 4, 

we present the wavelet collocation method for static and transient device simulation. 

In section 5, we present an adaptive scheme to reduce collocation points in order to 

achieve high computational efficiency. 

4.1 Cubic spline scaling functions and wavelets 

The wavelet and MRA proposed by Cai is constructed in a Sobolev space Hl[I) . 

Because the inner product considered here is in space Hl [I ) , not in space Z^(/), 
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these two mother wavelet functions will no longer have vanishing moments of the 

first two orders as usual wavelets in space L^. For simplicity, Cai still used the term 

“wavelet，，in his paper with the understanding that it is different from the usual 

wavelet with its non-vanishing moment. Cai pointed out that despite the fact that 

these wavelet-like functions have non-vanishing moments, the projection fi of any 

function fi G H^(!) on Vj still provides a "blurred" version of function f while the 

one on space Wj keeps its local details. Hence the magnitude of coefficients in the 

wavelet expansion of functions in B^(I) does reflect the local scales and change of 

the function to be approximated. It is these features that are needed for achieving 

adaptivities and MRAs in practical computations. 

Now, we begin to describe the scaling function and its wavelet function which will 

be used in our research project. 

Let I denote a finite interval, say I = [0, L], L being a positive integer (for the sake 

of simplicity, it is assumed that L > 4), and H^{I) and H^(!) denote the following 

two Sobolev spaces: 

H'{I) = {f{x),xel{ ||/(̂ )||2<CX), z = 0 , l ,2 } . (4.1) 

H'o{I) = { / ( o O e i / 2 ( j ) | A O ) = / ' ( o ) = / ( Z ) = /'OL) = 0}. (4.2) 

I ^ ( I ) is a Hilbert space equipped with inner product 

< f , 9 > ^ j j " { x ) g ' { x ) d x . (4.3) 

thus, 

11/11 = V< f,f> (4-4) 

provides a norm for H^(I). 

Cai suggested a scaling function ¢(x) and a boundary scaling function ^b(^) to 

36 



CHAPTER 4. CUBIC SPLINE WAVELET COLLOCATION METHOD FOR PDES 

generate an MRA for the Sobolev space B^(I): 

1 4 
树工） = j v , ( a : ^ = -J20^(-^y(^-j)l' (4.5) 

j=o 

M^) = ^ < - ^ 4 + ^ ( ^ - l ) + - i ( ^ - 2 r + ' ( 4 . 6 ) 

where N4(x) is the fourth order B-spline and for any real number n, 
Z 

x^ if X > 0, , � 
x^ = — • (4.7) 

0 otherwise. 
\ 

The graphs of ^(x) and ^b(x) are shown in Figure 4.1.Note that 

supp(<^(x)) = [0,4]; 
(4.oj 

supp(^b(x)) = [0,3]; 

where supp means the nonzero interval of functions. The interior scaling function can 

0.7| 1 1 1 1 1 1 1 0.6| 1 y ^ - ^ 1 1 1 

r 7 v 1 : ^ V 1 
/ \ 0.3- / <l>b(x) \ -

/ \；：/ V -
Q* ' • ^ ^ I I 1 1 1 1 " " - ^ 1 0 ^ ^ ‘ 1 1 1 丨^ 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 

(a) (b) 

Figure 4.1: (a) Interior scaling functions ^(x) and (b) boundary scaling function ^b(^)-
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be expressed in another way as follows. 

，\x^ 0 < X < 1 

D — — 

- | ^ ' + |^' + |^ + l l < ^ < 2 

^{x) = |x3 -工2 + I 2 < X < 3 (4.9) 

- | x ' + | x ' - | x + | 3 < x < 4 

0 otherwise 

\ 

It is actually a piecewise-polynomial with knot [0,1,2,3,4]. In Matlab, we can gen-

erate these piecewise-polynomial easily. A few commands shown below can generate 

piecewise polynomial representation of <^(x). 
knotl=[0:4]； 

coefficientsl=[ 

1/6 0 0 0; 

- 1 / 2 1/2 1/2 1/6; 
1/2 -1 0 2/3; 

-1 /6 1/2 -1 /2 1 / 6 ; ] ; 
pp=mkpp(knotl,coefficientsl)； 

To evaluate its value in point x, use the command "ppval(x,pp)". Similarly, bound-

ary scaling function can be expressed as: 
Z 

- ^ x ^ + |x^ 0 < â  < 1 

^x^ — |x^ + ^x + ^ 1 < 0； < 2 , � 

M ^ ) = _ — (4.10) 
-|x^ + | x ^ - | x + ^ 2 < ar < 3 

0 otherwise 
< 

It can be generated by following commands. 

knot2=[0:3]； 

coefficients2=[ 

-11/12 3/2 0 0; 

7/12 -5/4 1/4 7/12; 

-1/6 1/2 -1/2 1/6 ]； 

ppb=mkpp(knot2,coefficients2)； 
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0.8| 1 1 I 1 1 1 1 1 1 [ 1 1 1 1— 1 

| ^ ^ ^ V ^ ; : ^ " V x ^ 
_Qsl ‘ " " 1 1 1 ‘ 1 -o.a' ‘ ‘ ‘ ‘ ‘ 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 (a) (b) • • 
_pl I I V 1 1 1 1 - 3 ' ‘ 1 ‘ ‘ ‘ 

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1-5 2 2.5 3 
(c) (d) 

Figure 4.2: (a) The first derivative of ^(x)', (b) The second derivative of 4>{x); (c) The 
first derivative of ^b{x); (d) The second derivative of 4>b{x). 

To evaluate its value in point x, use command "ppval(x,ppb)". Later in using collo-

cation method, we will need the first and second derivatives of these scaling functions. 

To get their derivatives, use the command "fnder()". For example, commands 
pp_d=fnder(pp)； pp_dd=fnder(pp_d)； 

generate piecewise polynomial representations of the first and second derivatives of 

^{x){'pp'). The first and second derivatives of ^{x) and ¢b{x) are shown in Figure 4.2 
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The scaling functions ^{x) and ^b{x) satisfy the two-scale relationships given in 

(4.11). 
4 

^{x) = Y,2-^Ct^{2x-k), 
k=0 

2 

M ^ ) = ^ - i M 2 ^ ) + ^ M ( 2 x - k ) , (4.11) 
k=0 

where "_ i =全 , " o =豈，/¾ =臺，h = •• 

For any j, k G Z, define 

<hkM = ^ 2 ½ - k); <hAx) 二 ̂ 6(2½), (4.12) 

and let Vj be the linear span of {<^ ĵ,fc(x), 0 < k < 2^L — 4, ^b,j{x), ^b,j{L — x) } , 

namely, 

Vj = span{^j^k{x), 0 < k < TL - 4, ^6j(a:), 4>b,j{^ " ^)}- (4.13) 

Theorem 4.1 Let Vj,j G 2^ be the linear span of4.13. Then Vj forms an MRA for 

H^(!) equipped with norm( 4-4) ^^ the following sense: 

(i) Vo C Vi C V2 C . . .； 

(ii) closH2i{Ujez+) = H^{I)] 

(iii) Cijez+ Vj = %； and 

(iv) for each j, {<5^>j,fc(A:), 4>h,j{x)^ ^h,j[L — a:)} is a basis of Vj. 

The proof of 4.1 was given by Cai [1], and is omitted here. For those interested in 

detail please refer to Cai's paper. 

To construct a wavelet decomposition of Sobolev space B^(I) under the inner 

product 4.3，we consider the following two wavelet functions ^{x), 7/̂ i,(a::)(shown in 

Figure 4.3): 
Q 12 3 

^(x) 二 —�^(2z ) + y<K2z — l ) - � < K 2 z — 2 ) e K . (4.14) 
24 6 

M^) 二 Y ^ < M 2 z ) - Y ^ ^ 2 o O e K . (4.15) 
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It can be verified that: 

^{n) = i;b{n) = 0 for all n G Z. (4.16) 

This is a very important feature for constructing fast discrete wavelet transform. 

Following commands can generate the piecewise polynomial representation of wavelet 

1| 1 1 yisr 1 1 1-2| 1 1 1 1 1 1 1 1 1 

1 A I : l A I 
U l _ :J\^ 
_0 01 I 1 1 1 1 1 -0 2 ^ ‘ “ 1 1 i ^ ~ > 1 1 

0 0.5 1 1.5 2 2.5 3 ‘ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

(a) (b) 

Figure 4.3: (a) Interior wavelet functions t/^(x); (b)Boundary wavelet function xl̂ (x). 
function l̂̂ {x) in Matlab: 
7ogenerate polynomial coefficients of compressed scaling function 

lk2=[ 

8*1/6 0 0 0; 
-8*1/2 4*1/2 2*1/2 1/6; 

8*1/2 -4*1 0 2/3; 

-8*1/6 4*1/2 -2*1/2 1 / 6 ; ] ; 

knot3=[0:0.5:3]； 

•/ogenerate coefficients of wavelet function from lk2 

coefficients=[ 

-3/7*lk2(l,:); 

-3/7*lk2(2,:) +12/7*lk2(l,:); 

-3/7*lk2(3,:) +12/7*lk2(2,:) -3/7*lk2(l,:); 

-3/7*lk2(4,:) +12/7*lk2(3,:) -3/7*lk2(2,:); 

+12/7*lk2(4,:) -3/7*lk2(3,:); 

-3/7*lk2(4,:);]； 
41 



CHAPTER 4. CUBIC SPLINE WAVELET COLLOCATION METHOD FOR PDES 

ww=mkpp(knot 3,co eff ic ient3)； 

To generate boundary wavelet function ^b{x), use these commands: 

7ogenerate coefficients of compressed boundary scaling function 

lk4=[ 

-8*11/12 4*3/2 0 0; 

8*7/12 -4*5/4 2*1/4 7/12; 

-8*1/6 4*1/2 -2*1/2 1 /6 ; ]； 

knot4=[0:0.5:2]； 

7ogenerate coefficients of wavelet function from lk4 

coefficients4=[ 

24/13*lk4(l,:) -6/13*lk2(l,:); 
24/13*lk4(2,:) -6/13*lk2(2,:); 
24/13*lk4(3,:) -6/13*lk2(3,:); 

-6/13*lk2(4,:);]； 

wwb=mkpp(knot4,coefficients4)； 

Now we define 

^j,k{x) 二 xp�2jx — k), j > 0, k = 0,... , rij - 3, (4.17) 

<,(^) = ^6(2½), ^l,{x) = M2][L - x)). (4.18) 

where rij 二 2*̂ L̂. For the sake of simplicity, we will adopt the following notation: 

也-，-1(工）=î bA )̂' i^j,n,-2{x)=讽，』(工). （4.19) 

So, when k = —1 and nj — 1, wavelet function 也，於⑷ will denote the two boundary 

wavelet functions, which can not be obtained by translating and dilating i^{x). 

Finally, for each j > 0, we define 

Wj = spampj^k{x) I k = —1, •.. , nj — 2. (4.20) 

We quota the Theorem 2 in Cai's paper [1] without proof: 

Theorem 4.2 The Wj^ j > 0，defined in( 4-^0) is the orthogonal compliment ofVj 

in Vj-i under the inner product (4-3), i.e., 
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(i) Vj+i = V}©Wj forj e Z^, where © stands for Vj 丄 Wj under the inner product 

(4.3) and Vj+i = Vj + Wj, therefore, 

(ii) Wj 丄 Wj+i，j e Z^, and 

(iii) H^{I) = Vo ① 缺 W,, 

This theorem constructs an MRA in Sobolev space B^(I). This theorem leads to the 

conclusion: function f(x) G B^(I) can be approximated as closely as needed by a 

function fj(x) G Vj = Vo ® Vl̂  ® •.. ® ^j-i for a sufficiently large j, and fj{x) has a 

unique orthogonal decomposition 

fj{x) = /o + 90 + gi + . • • + 9j-i• (4.21) 

where / � G Vo,gi G Vl̂ “ 0 < i < j — 1. 

4.1.1 Approximation for a function in H^{I) 

Consider the following two splines: 

f (1 - x f 0 < a: < 1 
r/i(^) = - 7 (4.22) 

0 otherwise 、 £ 

\x^ - Zx^ + 2x 0 < a: < 1 

"2(工）= - | ^ ' + | ^ ' - | ^ + | l < ^ < 2 (4.23) 

0 otherwise 

For any function f ( x ) G 炉(/), we have f ( x ) E C^(7), by the Sobolev embedding 

theorem. Therefore, we can define the following interpolating spline Ibjf (x) , j > 0; 

lb,jf{x) = airji{2'x) + a2rj2{2'x) + a37;1(2^(Z — x)) + a47/2(2^(l — x)). (4.24) 

where the coefficients a1,a2, a3 and a4 are determined by certain interpolating condi-

tions. Spline Ibj f {x) is introduced to approximate the non-homogeneities of function 

f{x) at the boundaries. 
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Now, for any function f(x) 6 lP(I), we can find a function fj(x) in the form of 

力0̂ ) = 16，,/ + /0 + 夕0 + 仍 + ...+分尸1. foeVo, gieW,,0<i<j-L (4.25) 

which approximates f(x) as closely as needed provided that j is large enough. Ac-

cording to Cai's paper [1], the approximation will be 0(2—” if fj{x) is chosen as the 

interpolating spline of f{x). 

^|T ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.4| 1 u - ^ 1 1 1 1 1 1 1 \ 1 / \ 1 0.6- \ - 0.25- / \ -

0.5- \ - 。.2- / %(xV • 

。.4- T l l W s ^ _ 0 . 1 5 - / \ -

� . j ^ " ^ ^ ^ � . � f ^ ^ ‘ 
% 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 % 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

(a) (b) 

Figure 4.4: Boundary function for approximating function in space H^{I): 
(a)7/1(j:);(b)7/2(^). 

To generate rji{x) and 7/2(^) in Matlab, use these commands: 

knot5=[0 1]； 

c o e f f i c i e n t s 5 = [ - l 3 - 3 1]； 

bbl=mkpp(knot5,coefficients5)； 

7ofirst boundary funct ion 

knot6=[0:2]； 

c o e f f i c i e n t s 6 = [ 
7/6 - 3 2 0; 
-1/6 1 / 2 -1/2 1 /6 ]； 

bb2=mkpp(knot6,coefficients6)； 

%second boundary function 

These two boundary functions are shown in Figure 4.4. 
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4.2 Wavelet interpolation 

In this section, we will introduce a wavelet interpolation method which maps discrete 

sample values of a function in Sobolev space H^{I) to its wavelet interpolant expan-

sions. Such expansion with the wavelet decomposition will enable us to compute an 

approximation of the first and second derivatives of the function. 

4.2.1 Interpolant operator Î o in Vo 

Consider any function f(x) G i f^( / ) and denote the boundary and interior knots by 

x ( ; i � = k, A; = 0 ,1 , . . . ,L (4.26) 

and the values of f{x) on {a;̂  ” } ^ � b y 

/广1) = /(4—1)). A = 0 , l , . . . , i > . (4.27) 

The cubic interpolant (1̂；。+ ^b)f{x) of data {a4_i)R=o can be expressed as 

L-4 
A A A « ^ A 

(I^ + lb)f{x) = f-i-3Vl{x) + f-l,-2V2{x) + f-i-i^b{x) + ^ f-i,k^k{x) 

k=0 

+f-i,L-sML — x) + f.1,L-2rj2{L — x) + /_i,L-i//i(X - x). (4.28) 

The (Î ;o + ^b)f{x) interpolates data fl~^\ k 二 0 ,1 , . . . , L, i.e., 

(I.0 + L)/(4_1)) = / ” ， k = 0，1,. •. , L. (4.29) 

Let B be the transform matrix between f ( - ” = (/o"^^) . . . /|"^^)^ and the coefficients 
f(-i) = (/_i，—3,.../-i,L—i)T，i.e., 

f(-i) = Bf(- i ) , (4.30) 
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where 

/ l \ 
1 7_ 1 

6 l2 6 

1 2 1 
6 3 6 

1 2 1 

6 3 6 

B = •.. ••• ... (4.31) 
1 2 1 
6 3 6 

1 2 1 
6 3 6 

1 7_ 1 

6 I2 6 

V iJ 

as shown in Figure 4.5. 

1 ^ 

t^^— 
row column 

Figure 4.5: Mesh display of matrix B(L = 16 here). 

Note that the element of f(_i) is two more than that of f(_i). To get f, we need two 

more equations besides equation 4.31. There are many methods to get it, for example, 
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Not-a-knot conditions and derivative end conditions described in Cai [1]. However, it 

is omitted here because we are not interpolating any known function, we are going to 

solve device equations using collocation method. Later, we will see that the equation 

number is exactly equal to coefficients number in wavelet collocation method. 

4.2.2 Interpolation operator I^.f in Wj 

Similarly, we can define the interpolation operator Iujjf{x) in Wj, j > 0, for any 

function f{x) in H^{I). For this purpose, we choose the following interpolation points 

in I: 

4 力 = ^ ^ . — 1 < k < n, — 2, (4.32) 

where rij = 2^L. These interpolation points in different spaces are illustrated in 

Figure 4.6. 

I I I I I I I I I I I I I I I I I I I I I I I I 
0 L 

i:(-i) for Vo 工(0) for Wo b(” for M̂ i 

Figure 4.6: Illustration of interpolation points in different spaces(Z = 8 here). 

The interpolation Iu;jf{x) of a function f{x) G B^[I) in Wj, j > 0, can be ex-

pressed as a linear combination of 也；̂；⑷，k = —1,... , Uj — 2: 

Uj-2 

^wJ{x) = ^ fj,ki^jA^)' (4.33) 
k=-i 

Now let us assume that the values of a function f{x) G H^{I) are given on all the 

interpolation points { x { } defined in ( 4.26) and ( 4.32). We intend to find the wavelet 
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interpolation Vjf{x) G VJ> 0 Wo 0 Wi • •. 0 VFj_i for J - 1 < 0, i.e., 

L - 4 

Vjf[x) = /_i,_3"i(aO + f-1,-2V2{x) + f-i,-iM^) + Yj f-hkM^) 
k=0 

A A A 

^f-l,L-sM^ - ^) + /-l,L-2"2(Z - X) + /-i,L-l"l(Z - X) 
J-1 rnj-2 -

+ X1 Y^ hk^j,k{^) 
j=o lk=-l . 

J - 1 
= / _ i ( x ) + ^ / , ( : r ) , ( 4 . 3 4 ) 

j=o 

where 
Uj-2 

f-i{x) = ( I . 0 + h)f{x), fj{x) = J2 f j M ^ ) e W ” J > 0 , ( 4 . 3 5 ) 
k=-l 

and the following interpolating conditions hold: 

Vjf{x[-'^) = / ( 4 - 1 ) ) , 0 < k < L- ( 4 . 3 6 ) 

V j f { x f ) = /(4^)), J > 0 , - l < ^ < n , - 2 . (4.37) 

Let us denote the values of f[x) on all interpolation points by 

f - (/(0), /(A:c), / (2Ax), . . . , / ( I ) f , Ao: = 2-(J+i)i:, 

and denote f = (f(—”，f(o),... , f (^"i)f , where: 

f(-i) - {/-1，]【二 

种 = 减 二 ， >̂o. 
A 

We define matrix D°, which transform f to f, i.e., 

f = D ° f . ( 4 . 3 8 ) 
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L 

。:丨 I 1 | 

0) 0.6� L y %^^M 
mw ° ° column 

(a) 

0： y | | J | 
' i ^ ^ ^ 。 

^ ^ " " \ ^ < ^ ^ ^ ^ ^ 2 � row 0 0 i •u" column 
(b) 

Figure 4.7: The mesh of matrix D � f o r L 二 8, and (a) J = 0; (b) J = 1. 
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where 

("l(0)…<i>m ... V ^ l , f c ( 0 ) … t , k W ... V\7-l’n_;-2(0) \ 
^i(Ax) ••• (/>jfc(Aar) ••• V'i,ib(Ax) ... rpj,k{^x) •.. V>J-i,nj-2(AaO 

D 0 _ "i(2Ax) ... (̂ fc(2A 0̂ …V'i,ifc(2Aa^) ... ^j,k{2Ax) ... V j _ i , „ , _ 2 ( 2 A x ) 

"i(3Ao0 ... <̂ fc(3Aa0 …V'i,ib(3Ax) ... ipj,k{^Ax)…Vj_i,„,_2(3Ax) ’ 
* • • . • ‘ . • 

\ "1(丄） ... ^k{L) ... ^l,k{L) ••• ^j,k{^) ... ^J-l,nj-2{L) / 
(4.39) 

and Ax = 2-(J+i)Z/. The dimension of matrix D° is: 
j=J 

row = L^l + ^2^L, 
j=o j=J 

column = L + 3 + ^ ^ 2^L. 
j=o 

Figure 4.7 illustrate two examples of the mesh of matrix D° for L = 8, J = 1 and 

L — 8, J 二 1, which are 17 x 19 and 33 x 35 matrices respectively. 

In next section, we will describe matrices which transform the wavelet coefficients 

to derivatives of functions at collocation points. Note that the superscript of D° 

means that the matrix transforms wavelets coefficients to 0th derivative of function 

at collocation points. 

Theorem 4.3 Let f{x) G if^(0,Z),M = maxi{f{x)), and I^^jf(x) be its interpola-

tion in Wj defined in (4-33). Iffor e > 0, —1 < ki < k] < rij — 2, 

|/(4'^)| < e f0rh<k<k2, 

defining 

L j f { x ) = Y . f{x)j,ki^j,k{x), (4.40) 
-1<k<rij-2,ke[k1+1,k2-i] 

where 1 = l{e) 二 min(^, -|^), then we have 

lLjf{x)-I^J{x)l<C{M)e. (4.41) 

where C{M) = ^ { a + M). K = 1.1726, and a 二 7 + v ^ - 13.928. 
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For the proof, please refer to [1 . 
A 

As a consequence of Theorem 4.3, the coefficients fj,k of the wavelet interpolation 

operator Ijf{x) can be ignored if the magnitudes of function f{x) at points x\^^ G 
(• \ ( '\ 

.^ki+h ^kJ î] are less than some given error tolerance e. As J becomes larger, the 
A 

coefficients fj,k of the wavelet expansion will be less than the error tolerance e in a 

larger region. Then many terms of 也’̂；⑷ can be discarded in the wavelet expansion 

of f{x). We will use this fact to achieve adaptivity for the solution of PDEs. 

4.3 Derivative Matrices 

Because a function w(x), u(x) G H^{I) can be represented by its wavelet coeffi-

cients (4.34), its derivatives can be calculated from the wavelet coefficients too. 

4.3.1 First derivative matrix 

Recall that 
L - 4 

A A A ^ ^ A 

Vjf{x) = /_i,_3"l(aO + f-i,-2Tj2{x) + f-i-i^b{x) + 2 ^ f-i,k^k{x) 
k=0 

A A A 

+ /_l,L-306(^ — x) + /_i,L-2"2(Z — x) + /_i,L-l^l,A:(^) 
J - 1 Vnj-2 -

+ X ] Y1 MjAx) • 
j=0 lA:=-l _ 

Therefore, 

(/ d d d L-4 ^ 

石 巧 / ⑷ 二 U-s^m{x) + U-2^m{x) + U-ij^M-) + E / - ' ^ ^ ^ ( ^ ) 
k=0 

^ f . l , L - 3 ^ M ^ - ^) + f-l,L-2^r|2{L — X) + /-i,L-i;^y/l(^ - X) 
(JLJu iJLJL/ ^JL JU 

+ E E ̂ -¾̂ -̂ (̂ ) . (4.42) 
j=o lk=-i -
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i : | ^ ^ 
; ^ ^ T 

^ ^ ^ : ^ X ^ ^ r ^ ^ a � 
� ° ° column 

(a) 

1 � � ] 1 I Jk 

| : L ^ ^ ^ 
^ ^ ^ ^ ° ^ \ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

row ° ° column 
(b) 

Figure 4.8: The mesh of matrix D^ for L = 8, and (a) J = 0, (b)J = 1. 
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Let us denote the values of ^ f { x ) on all interpolation points by 

f {df{x) df{x) df{x) � Y .,_,-(J+l)r 
Ix — 1 ~~ j a;=0, ~ ； x=Ax^ ~~7 x=2Ax^ . • . , ~ 1 x=L , ^ 丄 一 ^ L, 

\ dx dx ax ax / 

and use the notation f = (f(—i),f(o)，... ，f(J_i))T for wavelet coefficients. We define 

matrix D^, which approximate the first derivative of function at interpolation points 

Xĵ k defined in (4.26) and (4.32), by its wavelet coefficients: 

fx = Di f， （4.43) 

where 

(^Vl{0)…^M0)… 嘉么’“0)...嘉也.，,(0) ... i^7-l,n,-2(0) \ 
i ^ i ( A x ) … ^ 0 . ( A x ) … £ ^ i A ^ x ) … ^ V v , i k ( A 4 … £ ¢ J . ^ , n , - 2 i A x ) 

D i = ^ r ; i ( 2 A x ) … £ M 2 A z ) … ^ V ^ M ( 2 A d … � � � … ^ V ^ ; - i , n , _ 2 ( 2 A a O 
- ^ r n ( 3 A d … ^ 0 i b ( 3 A 4 … ^ V > M ( 3 A 4 …^V^,，ik(3Aa0 … ^ V ^ / - i , n r 2 ( 3 A o O 

• • • . • ‘ • • 

• . • • • • • • 

\ jML)…i^ML)…j^^iAL)…^^i,k{L)…j^^j-i,nj-2{L) y 
(4.44) 

with Ax 二 2_(J+i)iy. The dimension of matrix D^ is same as that of D°. Figure 4.8 

illustrate two examples of the mesh of matrix D^ for L = 8, J — 0 and L = 8, J 二 1. 

4.3.2 Second derivative matrix 

Similarly, 

d^ . d^ . (f2 . (/2 ^ . d^ 
斤巧/⑷= f - , , - ^ - ^ r ^ x { x ) + /_1,_2̂ 7/2(̂ ) + f-i,-ij^M^) + 2^ f-i,k^M^) 

k=0 
. d^ . d^ . d^ 

+f-l,L—3~^h�L - x) + f.1,L-2^rj2{L - x) + f-l,L-l^^m(L - x) 

J-1 rnj-2 ^2 _ 

+ Z ] Z ] / .>^v^.>(^) • (4-45) 
j=o b=-i -
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2广 fl i^^ 
^ ^ ^ > J L r ^ ^ 2 D 

r。w ° ° column 

(a) 

X 10̂  
8 i^^ 

30^\^ 1 _ ^ ^ ^ ^ 40 

^ ^ ^ ^ ^ ^ ^ ^ r ^ ^ ^ ^ 
mw ° ° column 

(b) 
Figure 4.9: The mesh of matrix D^ for L = 8, and (a) J = 0; (b) J = 1. 
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Let us denote the values of ^ f { x ) on all interpolation points by 

fd'f{x) d?f[x) d'f{x) £f{x) Y ("1) 

Ixx _ 1 7 9 x=O5 T~0“ x=Ax^ T~o“ x=2Ax^ • . • , r~^“ x=L , ^丄—� L, 
\ ax^ dx^ dx^ dx^ / 

and use the notation f = ( f ( - i ) , f (o) , . . . ,f(^-i))^ for the wavelet coefficients. We 

define matrix D^, which approximate the second derivative of function at interpolation 

points Xĵ k defined in (4.26) and (4.32), by its wavelet coefficients: 

fxx = D^f. (4.46) 

where 

/ ^m(o) ... ^4>m … ^ V ' i , . ( o ) ... ^^j,m …|^V'j- i ,n , -2(o) \ 
^ m ( A x ) … ^ 0 , ( A x ) ... ^^i,fe(Ax) ... ^ A , , ( A r ) … ^ t / . j _ i , „ , _ 2 ( A x ) 

2 _ ^^i(2A^)…^^/c(2Aa;)…^tAi,fe(2Aa:)…^t/ ' j , /c(2A:r) ... ^ V ' J - 1 , n , - 2 ( 2 A ^ ) 

二 ^m{^^x)…^4>k{^i^x) ... ^^i,fe(3Ax)…^rPj,ki^Ax) ... ^V 'j-i,n,-2(3Aa;) , 

\ £jm(L) ... ^ 0 f e ( L ) … ^ ^ l , k ( L ) … ^ ^ , , . ( L ) … S ^ J - l , n j - 2 ( L ) / 
(4.47) 

with Ax = 2_(J+i)iy. The dimension of matrix D^ is same as that of D°. Figure 4.9 

illustrate two examples of the mesh of matrix D^ for L 二 8, J = 0 and L = 8, J = 1. 

4.4 Wavelet Collocation Method for Solving De-

vice Equations 

In this section, we describe the collocation method for time-dependent device equa-

tions, and the adaptive method to utilize the spatial localization property of wavelet 

basis to save computational cost. 

Recall from chapter 3, that the one dimensional time-dependent device equations 
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are: 

U = ^ + ( p - n + N) = 0, (4.48) 

/n = § + ^ S - ( f ) 2 + i(^，P) + S t ) = 0 ’ C ) 

/p = ^ + ( t ” - t ^ - i — , P ) + f S = � ’ （ 4 . 5 0 ) 

and the boundary conditions depend on specified devices. For an abrupt doped p-n 

junction, with donor concentration No and acceptor concentration 7V ,̂ the boundary 

conditions are: 

^(0, t) 二 ln No� ^n(0, t) - MO, t) - 0; 

(4.51) 
i^L, t) = - ln NA + vi,{t); <|>n{L, t) = ^p(0, t) = Vb{t); 

where x G [0, L] and Vh{t) is applied terminal voltage. 

Let's generalize device equations as: 
y 

Uxx + Ut + g[Ux, u, x) + b{x) = 0. x G [0, L], t > 0 

. 賴 ： 询 ⑷ ； (4.52) 
ii(o") = "oOO, 
u[L,t) = gi(t). 

\ 

The boundary conditions are Dirichlet type. We will use wavelet collocation method 

for spatial discretization and finite difference method for time discretization. 

To get the transient solution, we need to solve the static solution first, i.e., calculate 

u(x, 0) first. In this step, we solve boundary value differential equations by wavelet 

collocation method. Once we get the static solution, we can go forward by Euler's 

formula. 
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4.4.1 Steady state solution 

For steady state solution, we are solving the boundary value problem: 
y 

f{u) = u^ + g{uj:, u, x) + b{x) = 0, x G [0，I], 

< u(0) -ci , (4.53) 
U(L) = C2. 

\ 

The idea of wavelet collocation method is to represent function u(x) as linear combi-

nation of wavelet basis defined in (4.12)(4.17)(4.18)(4.22) and (4.23), and evaluate the 

equation exactly at collocation points defined in (4.26)(4.32) to get the wavelet coef-

ficients. From the description of previous section, the values of the wavelet expansion 

of u(x) at collocation points can be approximated by 

u = D°u. (4.54) 

where u is the wavelet coefficients of u(x). And its first and second derivatives with 

respect to x at collocation points can be approximated by 

Ux = D^u, (4.55) 

Uxx = D ^ . (4.56) 

By using these approximation, we can rewrite (4.53) as 

DM + " (Di(i ,D4) + b = 0, 

< ii(l) = ci, (4.57) 

HN) = C2. 
\ 

where N is the index corresponding to function ^i{L — x). The boundary conditions 

of equation 4.57 come from the fact that only the first basis (7/1(a;)) is non-zero (equal 

to 1) at X � 0, and only the last basis (7/1(X — a:)) is non-zero (equal to 1) at x = L. 

Or, from boundary conditions of (4.53), we get: 

D � f i ( l ) = c i ,D4(AO = c2. 
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and from the fact that D°(1) = [1 0 . . . 0], D°(1) = [0 0 . . . 1], u(l) = Ci,w(7V) = C2. 

In (4.57), the number of unknowns, i.e., element number of u, are L + 3 + ^^_ j 2^L. 

And the number of equations, which is equal to the number of collocation points plus 

two boundary conditions, is also L + 3 + ^^=1 2^L. 

To solve nonlinear system (4.57), we can use either Newton's method or Gum-

mel's method as described in Chapter 3. Let's denote the solution of (4.57) by Uo. 

Subsequently, the solution uo(x) of (4.53) is D� i io . 

4.4.2 Transient solution 

Once we get the steady state solution Uo(x, 0) of (4.52), we can go ahead for transient 

solution. We suggest backward Euler for time discretization. Based on this scheme, 

the time discretized formula of (4.52) is: 

f(u) = ul^ + ^ ^ + g{ul, u\ x) + h\x) = 0. 0； G [0, L],t = 1，2,3 • •. 

u(x)^ — Uo{x): 
� ) � ) ' (4.58) 
• ) = 9l 
u\L)^g\. 

\ 

where A^ is the time step, and t = 1 ,2 ,3 . . . is the time index of Euler scheme. 

Apply the wavelet collocation method to such boundary value problem again, we 

obtain the following nonlinear algebraic equations: 

‘D^u^ + g{B^u\B^u') + ^ 0 ¾ ^ + b̂  - ^ D ^ ^ - i = 0, 
‘ A f) A 

u = Uo, 
(4.59) 

m = 9 i 
u'{N)=gl 

\ 

where N is the index corresponding to function r]i{L — x), g^ — go{t x At)^g{= 

gi{t X At) and û ~̂  is the wavelet coefficients of previous time step. Simplify (4.59) 

as 

A u ^ + g(u^) + 6t = 0. u\l) 二 gl u\N) = g{. (4.60) 
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where 

A = D^ + ^ D ° , 
At 

6̂  = W-^T>'u'-'. 
At 

Start from initial static solution Uo, u^,u^, u^,.. . can be solved, and we get the 

transient solution. 

4.5 Reducing Collocation Points 

In this section, we will introduce a scheme to reduce collocation points and correspond-

ing wavelet basis. Note that in (4.57) and (4.60), we use full set of wavelet basis. As 

discussed after theorem 4.3, most of the wavelet coefficients Hj,k for large j can be 

neglected within a given tolerance e. So we can adjust the number of wavelet basis and 

corresponding collocation points, reducing significantly the cost of the scheme while 

providing enough resolution in the regions where the solution varies significantly. This 

procedure is equivalent to the grid point generation process in some device simulator 

employing other numerical methods, for instance, Finite Difference Method and Finite 

Element Methods. 

4.5.1 Error evaluation 

Suppose we have obtained the solution u(a:) of (4.53) up to resolution level J. In 

other words, we get the solution vector: 

{ b = (£i(-i),{i(o)’£i(i),... , i ) f 

so that 

• ) = ujO(x), 0(x) = {r/i,7/2,如,{«feo4，¢1 rj;, rf” {MT='-i,...，{M7=-i''} 

satisfy (4.53) exactly at collocation points 

{x}['\j = - 1 , •.. J — 1； k = 0，1, • •. , _L, i f i = —1; k = —1, •.. , n, - 2, iij > 0. 
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08� jjl̂X 

t ^ ^ „ 
^^^^\JV^^ 

腳 ° ° column 

(a) 

i ; [ ^ ^ ^ C [ ^ ^ 
^ ^ ^ > ^ ^ _ _ ^ ^ ^ ^ r ^ 2 0 ^ ^ " > ^ > ^ j ^ ^ ^ ^ ^ ^ r ^ 2 0 

卿 0 0 column »®w ° ° column 

(b) (c) 

Figure 4.10: The mesh of matrices (a)fio; (b)D^; (c)fi2, for L 二 8, J = 0. 

Now we want to evaluate (4.53) for solution Uj at resolution level J + 1, i.e, at 

collocation points {a:}^^, k = —1,... , nj — 2. 

Denote the values of function u{x) at points {jr}^^\ k = —1,... , nj — 2 as uj^^(u 

expanded in level J and evaluated in level J + 1), and the first and second derivatives 

of u with respective to x at these points as u'j^^ and u''j^i respectively, uj^^,u'j^^ 

and u"j^^ can be calculated from u j by some transform matrices: 

u，i = D ^ . , 

<;+i = fii(b, 
„//«/+1 fS2-u J = D U j , 
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where 

/ Vl{^oc) ••• M ^ x ) . . . t/'i,fe{Aa;) . . . ^pJ,k{^x) ••• V'j-1,nj-2(Aa:) \ 
^i(3Aa;) . . . 0fe(3Ax) •.. V%fe(3Aa;) . . . iAj,fc(3Aa:) . . . ^ j - i , n j - 2 { 3 ^ ^ ) 
/7l(5Aor) . . . cf>k{5Ax) ••• tAi,fe(5A3:) ... iAj,fc(5Aa:) ... ^J-i,nj-2{5^x) 

— m{7Ax) ... <t>k{7Ax) ••• tAi,fc(7Aa;) ... ^j,k{7^x) ... ^j-i,nj-2{^^^) , 

\ m{L - Ax) ... 0fe(L - Ax) ... ^i,k{L- Ax) "• Vj,fe(L-Ax) ... ^j-i,nj-2{L-^x) / 
(4.61) 

and Ax 二 2-(J+2)Z^. The definitions of u'j^^ and u"]^^ are the same as u;J+i but 

performing first and second differentiations of all the basis functions respectively. 

Figure 4.10 shows meshes of these matrices for L = 8, J = 0. Practically, these 

transform matrices can be easily obtained, by subtracting even rows and first half 

columns from pre-calculated full transform matrices D°, D^ and D^ for resolution 

level J + 1. 

Then, we can evaluate (4.53) at collocation points {a;}̂ *̂ ), k = —1,... , nj — 2 by 

following matrix system: 

f - D ^ + ^(D^u,D^) + b. (4.62) 

In (4.62), f represents the vector { f {x{ ) }^ k — —1,... , n^ — 2.If 

{f(xi)} < e, for all k = - 1 , . . . , n^ - 2, (4.63) 

where e is a predefined tolerance, we stop moving up to resolution level J + 1, else 

we will move up and adopt a scheme to reduce the collocation points and the corre-

sponding wavelet basis as will be described in the following sub-section. 

4.5.2 Deleting collocation points 

The next step is to delete some collocation points where scaling functions and wavelet 

basis up to resolution level J have provided good enough approximation to the solution 

of equation (4.53). 
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We locate the range for the index k, 

_ . . . ( K n , L ) . m = m{j,e), (4.64) 

such that 

f{x() < e. k'- < k < /;，i = 1 . . . m. (4.65) 

This means that u(x) = UjO(x) gives good enough approximation of (4.53) at col-

location points {x)l^ k'- < k < l[, i = 1 . . . m. Remember the support of i^{x) is 

0,3]. Therefore, when we go up to resolution level J + 1, we can ignore Hj,k for 

ki < k < li, i = 1 . . . m, ki = k'- + 3, k = l[ — 3, namely, we redefine uj[x) as 

uj{x) '.= ^ uĵ ki ĵ̂ k{x), (4.66) 
-l<k<n j-2,keK: j 

where /Cj = Ui<Km[^n k • 

The new collocation points and unknowns in resolution level J + 1 will be 

{4^^|,wj,fc, ke{-l,...,nj-2)/JCj. (4.67) 

So, new transform matrices D°, D^ and D^ up to level J + 1 have rows correspond-

ing to collocation points 

{{^1 1)}，{^T)-l<k<no-2,ke/K:j^ . . . , Wk^)-l<k<nj-2,ke/fCj}, (4.68) 

and columns corresponding to wavelet coefficients 

n = (V-i),,)，..,n(J-i))T, (4.69) 

where 

^l(-l) = { " — l ’ ]L - l3 , 

6。）= {uj,k)-l<k<nj-2,ke/^j^ j > 0-

Practically, these reduced transform matrices can be easily obtained, by subtracting 

certain rows and columns from pre-calculated full transform matrices D。，D̂  and D^, 

which are corresponding to row index (4.68) and column index (4.69). 
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These reduced transform matrices are used to solve (4.53) in resolution level J + 1 . 

And then we repeat the error evaluation and collocation point reducing processes for 

J <— J + 1, until (4.63) is satisfied or J reaches a predefined maximum value. 

Finally, we obtain new transform matrices，7^°, V^, T>̂ , which are used for transient 

equation (4.60): 

‘ V ^ u ' + g{V^u^V^u') + ^pOu^ + b^ - ^ P ^ ^ - i = 0, 
A 0 A 
U 二 Un, 

(4.70) 

卯）=‘ 
u'{N)=gl 

\ 

where u = ({i(_i),ii(o),... ,{1(厂1))了 is defined in (4.69), and N = dim u. Since the 

sizes of these transform matrices will be reduced significantly for large j, we will save 

a large amount of computional cost as will be seen in some examples. 

From the description above, we see that the collocation points generation scheme 

of wavelet collocation method is very nature and easy to implement. In next chapter, 

we will discuss in detail on some examples. One of these examples is abrupt dopped 

p — n junction. We will see that, a large portion of wavelet basis are allocated in 

the region around the physical junction where sharp transition of device variables 

including electrostatic potential, carrier densities occurs, and only necessary basis 

are allocated in regions far away from the physical junction where device variables 

change smoothly. Completely utilizing the localization property of wavelets to save 

computational resources is the advantage of adaptive wavelet collocation method. 
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Chapter 5 

Numerical Results 

In this chapter, we will illustrate two examples. One is the simplest semiconductor 

device: p—n junction diode, and the other is a bipolar transistor. First, we will give the 

equilibrium solution, together with the illustration of grid generation process. After 

that, we will give the transient solutions under certain terminal voltages. Althought 

only two examples are illustrated, our method can be easily applied to other devices 

subject to the validity of drift-diffusion model. 

5.1 P-N Junction Diode 

The first example we carried out is an abrupt doped p — n junction diode. We 

choose abrupt doped diode but not linear or gradient doped diode because the former 

represents the numerical worst case, and it contains rapid changing information which 

is suitable for the proposed simulation method. 

The diagram of the selected diode is shown in Figure 5.1, and its physical param-

eters are listed in Table 5.1. 

Recall from Chapter 3, that the one dimensional time-dependent device equations 

—— N P 一 

0 M h 

Figure 5.1: A one dimensional p — n junction diode 
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Table 5.1: Physical parameters of a diode. 
Material Silicon (relative permittivity : 11.8) 
Temperature 300°/( 
Intrinsic Impurity Concentration(^^) 1.5 x 10^^/cm^ 
Doping Donar: 10^(orL5 x W^cm-^) 

lQ4(orl.5 X lOi4cm-3) 

Intrinsic Debye L e n g t h ( ^ ^ ) 0.00335618cm or 33.5618//m 
Length N-side, M-0=0.2 (or 6.7fim) 

P-side, L-M=0.4 (or 13.4/im) 
Carrier mobilities electron, lbOOcm^/V — sec 

hole, ibOcm^/V — sec 
Minority life time electron r^ = 10"^5ec 

hole Tp = 10"^5ec 

are: 

U = ^ ^ { p - n ^ N { x ) ) = 0, (5.1) 

d^n ^ d(j)n d^ (d4>n�2i 丄广队 L^ dn\ 
� = P ‘ ^ - ( i ) + ‘ ^ • ， … 瓦 才 。 ， ( 5 . 2 ) 

d^j , d^p ^ d(j>̂  di^ 1 f ^ ^ , ^ D ^ P \ n , � q � 

“ = @ + (石）-|石—；(^风","+ 瓦瓦)=0, (5-幻 
with boundary conditions 

V^(0,0 二 lnA^; <|>Jfi,t) = <f>p[Q,t) = 0; 

HL,t) = -lnNA + vt{t)- ^n(L,t) = ^jJfi,t) = Vk(fy, 

where n = exp{^> — � � � ’ P = exp(<;zi)p — ^p), Vh{t) is the applied terminal voltages of 

diode and 

D = Ll np — 1 

_ A ) T > + 1) + T “ ” 1 ” （叫 

Remember in the wavelet collocation method described in Chapter 4, the interval 

length L should be an integer larger than 4. We further normalize the x coordinate 

by factor 警： 

2>/o 
X < —X, JO is an integer larger than 2, 

lj 
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so that the interval becomes [0,2^°]. Therefore, derivative matrices D®, D^ and D^ 

should be updated as: 

D° — D。， 

D i - © D i ， 

/ 2 J 0 � 2 

D2 - (x) D2-

Using these transform matrices for spatial discretization and finite difference method 

for time discretization as described in Chapter 4, we obtain: 

f^ = D 2 p + pt — n* + N = 0, (5.5) 

f „ = D V V + m J D i ^ - ( B % y + ^ ( R + f ^ ) = 0^5.6) 

fp = D 2 " 一 U%'UH^ + — ; y - 去 ( R + ^ ¾ ^ ) = 0,(5.7) 

with boundary conditions 

� = l n " D ; ¢1(1) = ¢1(1) - 0; 

kN) 二 —ln7V4 + t ; “ 4 ^n(^) = KW = Mt)-

(N is the index corresponding to basis function r]i{L — x)) 

where 

superscript t = 1 ,2 ,3 , . . . are time index, 
A A A 

也 ^n, ̂ p are wavelet coefficients up to resolution level J of � ¢^1, <f>p respectively, 
J-i 

A A. A » ^ j 
dim �=dim 4>n 二 dim <f>p = L + 3 + \ 2^L = 2 L + 3, 

j=o 

dim f^ = dim fn = dim fp = 2^L + 1, 

n = exp{B^{^ - 0n)), 

p - e : r p ( D " ( 4 - ^ ) ) , 
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and R is given by (5.4). Note that the vector products in (5.6)(5.7) represent element 

by element product, and vector devisions mean element by element devision. 

When using Gummel's method as described in Chapter 3 to solve algebraic equa-

tions (5.5)(5.6)(5.7), we need to evaluate Jacobian ^ , | ^ and ^ . There are 

two methods to evaluate these Jacobian. For very small A?^, we can evaluate 急 by 

dU M^ + At^) - UW 
r>j 

d^ — A ^ • 

Evaluation of - ^ and | t are in the same way. We call it perturbation method. _90nJ L9̂ pJ 
The second method is to write explicit expressions of 势 , - ^ and ： ^ . The 

^ ^ [ d^ J [d4>n J [90p_ 

main advantage of perturbation method is that it needs no extra programming (easy 

to implement), and the main disadvantage is that it needs much longer time than 

explicit method. On the other side, the advantages of explicit method is its high 

computational speed, and the disadvantages are that it is difficult to write explicit 

form in many case, and difficult to program. In this example, we will use the explicit 

method because of its speed. The explicit forms of Jacobian of (5.5)(5.6)(5.7) will be 

described in following paragraphs. 

The explicit expressions of ^ , � and | t are: 
l^^'l l9^'n] [d^'p. 

^ ¾ = D ^ ( z , ; ) - p W ( ^ ' , j ) - n W ( z , j ) , (5.8) 
晰⑴ 

^ 7 ¾ = D2(z.,j) + D i ( v ) # D i ( z . , j ) - 2 D i ( v ^ D i ( z , j ) + 7^n(z,j), (5.9) 
^^nO) , 

^ ¾ = D2(z,j) — D^(z, : ) #Di (M. ) + 2Di(z, : )^D^(z, j ) - 7^“z " ) , (5.10) 
叫⑴ 

i 二 1，2,... , 2]L + 1, j 二 1,2,.. • , 2^L + 3, 

where 

D^(z,:) represents row i of D^, 

n(i) = e x p � _ - <M0), P(0 = exp{^p{i) - ^{i)), 
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and 
- f [rn{p'{i) + 1) + r,{n\i) + 1)] ^ — r̂  [p^iW(i) - 1] n^-i(j) 1 | L^D°(i,i) 

“'，” - " 1 [r„(pt(0 + l) + 7>(nn0 + l)]2 A/ nHO j ^ ‘ 

= [ [ r n ( p ' { i ) + 1) 4- rpK(0 + 1)] ̂  - Tn [pH^V(0 - 1] I p � i ( i ) 1 1 LlB%i,j) 
^ - { [r„(p^(0 + l) + r„K(2) + l)]' + At p'{i) 1 fipDo • 

The boundary conditions of x|j are merged to f^ as last two equations. In this sense, 

we write: 

f d / ( + l ) = 0 V l ) - l n A ^ = O, 

U(K + 2) = ^N) + ln NA - v,{t) = 0, 

where K is the dimension of old f^, and N is the index corresponding to basis function 

7/i(/y — x). Similarly, we write 

f “ / ( + l) = _ = 0, 

UK^2) = ^i{N)-v, = ^, 

W < + 1 ) 二 咖)-0, 

W < + 2) = i>l{N) — ”b = 0. 

The corresponding Jacobian for these equations are: 
• y 

dU[K + l) 1 z' = l, d U { K ^ 2 ) 1 i = N, 
X = < A = < 

^V (̂0 y 0 otherwise; d ĵ̂ {i) 0 otherwise. 

It is same for ^ ^ , ^ ^ , ^ ^ and ^ ¾ ! ! . After this merging process, 
d4>n{t) d4>n{t) d^p{t) d4>p{t) ° ° ^ ‘ 

these Jacobian matrices have equal number of rows and columns, which can be in-

verted. 

Now, let's give a brief review on the modified Gummel's method to solve algebraic 

equations (5.5)(5.2)(5.3) at each time step. 
(1) Guess a trial solution ¢)̂ , ¢̂ ^ ¢^] 

(2) Update ^ by one step Newton's method: 

^ — # - _ " f “ # , M ) ; 
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(3) Update ^ by one step Newton's method: 

Mf l_i 
^^—#n- 1 ^ fn{^^^\^l^l)� 

(4) Update ^ by one step Newton's method: 

「淋 1_i 

� + i — � -乾 梦 1 , # 1 ’ 0 。 ； 

(5) Evaluate error ^: 

^ = max {lmax{i)^^^ —�知)|, |max((^^+^ - (/>^)|, |maa:((^�+i - ¢^)1), 

If ( < e, where e is a predefined tolerance, we stop the iteration process, other-

wise, repeat step 2 to step 4 until this condition is satisfied. 

Note that the superscript here is the iteration index. 

We will show the steady state and transient solution of the selected diode in 

following subsections. 

5.1.1 Steady state solution 

Finding steady state solution is the first step for transient solution. Besides, we 

generate the reduced transform P®, V^ and T>̂  in this step. In other words, we 

generate the grid here. 

For steady state, time varying terms 普，絮 in (5.2)(5.3) vanish. Consequently, 

^ " ' ^ / 1, and & p t - = 1 in (5.6) and (5.7) are omitted. 

We will only discuss the equilibrium solution, i.e, unbiased diode here. Because 

the grid generation scheme is based on equilibrium solution. Arbitrary dc biased 

solution can be easily and quickly obtained when the reduced transform matrices are 

generated. 

Let JO 二 6, then there are 2® + 1 = 65 collocation points in the scaling function 

level. Remember the collocation point in this level is denoted as a;(—i), and all of these 
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Coefficients of scaling functions Solution of electrostatic potential in scaling function space VO 
I 1 \ 1 I 1 1 1 \ I n I 1 1 I 1 1 1 1 ‘ • “""* ‘ 

0.6- a.4_ 

0 . 5 - ? • �� 1 
0.3 - I -

0.4 Q • 1 
0 (jXpCjXjXjXjXptjXpCjXpCiXjXptjXjXjXpCpQ 丨 

0.3 - 0.2 1 

I 0.2- 9 I 0.1- \ -

I 0.1- ？ - I 
I 1 % 0 - -

� l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ^ \ 
-0.1 - i -0.1 - \ -

-0.2 - i , \ 

m y m y m m i m m u 發 \ 
-0.3 - - ^ 

o 
_0 4 - - -0.3 - -认，L I I I I I I I I I J L I I I I I I I I j J 

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 
X /micro x /micro 

(a) (b) 

Figure 5.2: Solution of ^(x) in scaling function space: (a) scaling function coefficients; 
(b) waveform. 

A 

points should not be deleted. The solved scaling function coefficients î  of ^(x) are 

shown in Figure 5.2(a). The solution i^{x) at this resolution level can be obtained 

by scaling function interpolation shown in equation (4.34). Its waveform is shown in 

Figure 5 . 2 ( b ) . � � and � are zero in equilibrium. 

From the figure, we see that this level gives the "average" information of ^>{x). 

Later, we will see that the local "detail" of xp{x) will be given in wavelet space. 

The next step is to evaluate (5.1)(5.2)(5.3) at points a::(。）in order to identify the 

necessary range of collocation points for space VFO, outside where the solution in pre-

vious level has achieved enough accuracy. Here, we evaluate only one equation (5.1) 

which is critical. The residual of (5.1) at a;(。）is shown in Figure 5.3(a). According to 

the adaptive method described in Chapter 4, we determine the range of collocation 

points as shown in Figure 5.3(b). Note that we leave some safety margin when deter-

mine range of collocation points. From the graph we see that 49 collocation points 

were deleted out of 64, so we use only 15 collocation points for wavelet space WO. 

The solution of wavelet coefficients of i|; in WO are shown in Figure 5.4(a), and the 

corresponding spatial domain waveform after interpolation is shown in Figure 5.4(b). 

For solution in VO � VKO, we simply add solutions in these two spaces. The result is 
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X 10® 2| 1 1 1 1 1 1 1 1 r - n 
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o 
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召 - 之 • 1 - 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 -•w o 

0 . 8 - -
- 3 - -

0 . 6 - _ 

小 - 0.4- -

o 
0 . 2 - -

- 5 • 

0 2 4 6 8 10 12 14 16 18 20 % 2 4 6 8 10 12 14 16 18 20 
X /micro x /micro 

(a) (b) 

Figure 5.3: (a) Residual of (5.1) in a:(。）for solution in V0; (b) Range of collocation 
points for space W^. 

shown in Figure 5.9(a). 

Again, we use the solution calculated in space yO0VTO to evaluate (5.1) at points 

a:(i), and determine the range of necessary collocation points in wavelet space W\. The 

residual of (5.1) is shown in Figure 5.3(a). The determined the range of collocation 

points is shown in Figure 5.3(b). Note that there are safety margin in the range of 

collocation points. And note that 113 collocation points were deleted out of 128, so 

we use only 15 collocation points for wavelet space W1. 

The solution of ^[x) in wavelet space W1 are shown in Figure 5.6, where Fig-

ure 5.6(a) is the wavelet coefficients, and (b) is the waveform after wavelet interpo-

lation(equation 4.34). The solution of ^{x) in space V0 0 W^ ® Wl is shown in 

Figure 5.9(a). 

It's very nature to ask when we stop increasing the resolution level? As described 

in Chapter 4, if the maximum magnitude of the solution in a wavelet space is less 

than a predefined tolerance, we stop. Otherwise we increase the resolution level until 

this criteria is satisfied or predefined maximum resolution level is reached. In this 

example, we let tolerance be O.OlV, and the maximum resolution is W2. 
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X 10"3 Wavetet coefficients in WO x 10"^ Solution of electrostatic potential in wavelet space WO 
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Figure 5.4: Solution of ^|^{x) in space WO: (a) wavelet coefficients; (b) waveform. 
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Figure 5.5: (a) Residual of (5.1) in ar(” for solution in WO; (b) Range of collocation 
points for space W1. 
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X io_3 Wavelet coefficients in W1 x 10"^ Solution of electrostatic potential in wavelet space W1 
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(a) (b) 

Figure 5.6: Solution of i^{x) in space W1: (a) wavelet coefficients; (b) waveform. 

The solution in W1 do not satisfy this condition, we increase the resolution level. 

The residual and range of collocation points are shown in Figure 5.7(a),(b). Here 246 

collocation points out of 256 were deleted, so we have only 10 collocation points for 

W2. The solution of wavelet coefficients and waveform are shown in Figure 5.8. From 

the graph, we see that the maximum amplitude of solution in this space is small than 

tolerance O.OlV, so we stop here. The solution in V0 ® WO ® W1 © W2 is shown in 

Figure 5.10. 

The solutions in all resolution levels are put together in Figure 5.11 for comparison. 

From the graph we observe: (1) outside junction range, solutions of all levels are the 

same; (2) near the junction where sharp changes occur, low resolution solution has 

ripples, and the ripples are reduced quickly when the resolution increases; (3) The 

solutions of the highest two resolution levels are almost the same, i.e, the solution is 

converged. 

From Figure 5.11(a), we also see that the device variable i[) varies very fast in a 

small region, outside where it varies smoothly. This result verifies our assumption. 

The number of total collocation points up to space W2 is 65 + 15 + 15 + 10 = 105. 

Without adaptive algorithm, we need (2H2^2^)*L+L+1 = 8*Z+1 = 8*64+1 : 513 
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Figure 5.7: (a) Residual of (5.1) in ；̂⑵ for solution in W1; (b) Range of collocation 
points for space W2. 
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Figure 5.8: Solution of ^{x) in space W2: (a) wavelet coefficients; (b) waveform. 
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Solution of electrostatic potential in VO+WO Solution of electrostatic potential in VO+WO+Wl 
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Figure 5.9: Solution of ^{x) in spaces (a) ^0 © WO (b) VO 0 WO ® W1. 
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Figure 5.10: Solution of V>(x) in space VO ® WO ® Vta ® Vt̂ 2. 
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Compare solutions in different resolution levels Compare solutions in different resolution levels 
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Figure 5.11: Solution of ^{x) in all resolution levels, (a) normal scale; (b) zoom in. 

collocation points. We see that a huge amount of collocation points (about 80%) are 

deleted without any reduction of accuracy. 

Hence reduced transform matrices TP^ T>̂ ,T>̂  are with the dimension 105 x 107, 

while full transform matrices are with dimension 513 x 515. In fact, the redundancy 

of these transform matrices are removed by the procedure describe previously. Such 

collocation points/wavelet basis reduction scheme will lead to very efficient computa-

tion in seeking the transient solution. We show this in next subsection. Besides, the 

reduced transform matrices are used for dc solution of arbitrary biased diode. 

5.1.2 Transient solution 

Once we get the reduced transform matrices P � , 2 î,X>2, we can use it in solving diode 

transient equations (5.5)(5.6)(5.7) for all time steps. Having a systematic generation 

scheme of these reduced transform matrices is a major advantage of our method. 

First, we try to investigate the forward transient response that the terminal voltage 

of diode increases from zero to a certain positive DC level. The terminal diode voltage 

is shown in Figure 5.12(a). Apply the cubic spline wavelet collocation method, we ob-

tain solutions ^{x), ^n{x), 4>p{x) in each time step, which are shown in Figure 5.13(a). 
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Figure 5.12: Diode terminal voltage waveforms: (a) from zero to positive DC; (b) 
from positive DC to negative DC. 

We calculated the solutions of carrier concentrations n(x) and p(x) by 

, � - < t > n � ，<i>p — ^ � 

n = m exp( ^^ ), p = 7ii exp( ^^ ), 

and solutions in all time steps are shown in Figure 5.13(b). 

From Figure 5.13(a), we observe that (1) The diode built-in voltage is decreasing 

when terminal voltage is increasing; (2) The relative potentials between 0 and <̂ n, 

and between i|̂  and �� in two boundaries do not change in any time step, and this is 

inferred from the assumption that majority concentrations in two boundary always 

equal to doping concentrations; (3) The quasi-Fermi levels 4>n,4h of electrons and 

holes respectively are split in the region around the junction, which is called depletion 

region in the literature. The splitting of �� and 4>p indicates that this region is 

not in equilibrium, i.e, the product of carrier np do not equal to n"f. Hole-electron 

recombination occurs in this region. The bulk region far away from the junction is in 

the equilibrium state because two quasi-Fermi levels are equal. 

From Figure 5.13(b), we observe that (1) The majority concentrations almost keep 

constant; (2) extra minorities are being injected to opposite side when the terminal 

voltage is increasing. These injected extra minorities are stored in the opposite region, 
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Figure 5.13: Diode forward transient response under terminal voltage of Figure 5.12(a) 
(a) 'ljJ, cPn and cPP; (b) carrier concentrations nand p. 
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and will lead to the charge storage effect when terminal voltage decreases. (3) When 

the diode is biased in dc steady state, the extra minorities are diffused into the bulk 

region. In addition, the concentrations of extra minorities in the edges of so called 

depletion region are more than 10 times of that in equilibrium state. 

The distributions of 也 4>n and 4>p of reverse transient response are shown in Fig-

ure 5.14(a). The excitation is shown in Figure 5.12(b). The corresponding electron 

concentration n and hole concentration p at each time step are shown in Figure 5.14(b). 

From Figure 5.14(a), we observe that (l)When the final state (negative DC biased) 

is reached, the quasi-Fermi levels ^n and 4>p are also split in the region around the 

junction. Different from forward transient, the (f)p is above ¢^ now. This indicates that 

the recombination occurred here are negative, i.e., hole-electron pairs are generated 

in this region. (2) Built-in voltage is increasing when terminal voltage is decreasing. 

From Figure 5.14(b) we observe that (1) The extra minority in N and P regions 

are not removed immediately after application of reverse terminal voltage, but been 

removed gradually. This phenomenon is called charge storage effect. (2) In the final 

negative dc biased state, the minorities in the edges of so called depletion region are 

below its equilibrium level. 

5.1.3 Convergence 

In this subsection, we discuss the convergence of wavelet collocation method in device 

simulation. The convergence we discuss here is of the Gummel's relaxation process, 

which is the only one iteration process involved in our method. 

The convergence of any iteration process is much dependent on the initial guess. 

Gummel's method is not the exception. 

In solving steady state solution, the program converges only after 2 iterations with 

proper initial guess. Experiments show that when one more iteration is completed, 

the error ^, where ^ = max [\max{^^^^ — ¢'^)], \max{^^^^ — <^=)|, |maj:((^�+i — ¢^)1), 

is reduced by 10 times, i.e, we gain one decimal accuracy each iterations. 
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Figure 5.14: Diode reverse transient response under terminal voltage of Figure 5.12(b) 
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In solving transient solution, the program converges within 20 iterations for all 

time steps. 

5.2 Bipolar Transistor 

The device equations of bipolar transistor are the same with that of p-n junction diode. 

The only difference is that the bipolar transistor is a three terminal device while p-

n junction diode is simply a two terminal device. Therefore, they have different 

boundary conditions. In the beginning of this section, we will give the boundary 

model of bipolar transistor. Then, the steady state and transient solutions of a n-p-n 

transistor will be shown. 

The parameters of a transistor which will be discussed in this section are list in 

Table 5.2. 

Table 5.2: Physical parameters of a bipolar transistor. 
Material Silicon (relative permittivity = 11.8) 
Temperature 300°A, 
Intrinsic Impurity Concentration(?!^) 1.5 x 10^^/cm^ 
Doping Emitter: A^ = 10^(orl.5 x lO^^cm-^) 

Base, Ns = 10^(orl.5 x lO^^cm"^) 
Collector, Ng = 10^(orl.5 x lO^^cm-^) 

Intrinsic Debye L e n g t h ( ^ ^ ) 0.00335618cm or 33.5618jum 
Length Emitter length= 0.2 (or 6.7/^m) 

Base length=0.05 (or 1.68//m) 
, Collector length=0.5 (or 17"m) 

Carrier mobilities electron, 1500cm^/V — sec 
hole, 450cm^/V — sec 

Minority life time electron ��=10"^5ec 
hole Tp = 10"^5ec 
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E ~ ~ N P N ~ C 
0 ~~~~ -;j 

B 

Figure 5.15: Diagram of bipolar transistor 

5.2.1 Boundary Model 

The boundary conditions at the emitter and collector terminals are very simple. Let's 

choose the electric potential at base contact as reference, and assume the carrier 

concentration at these boundary equals to the ionized doping concentration, we obtain: 

� , � � = l n N E - V b e ' , 0n(O,t) = <|>p{0,t) = -Vbe] 

0(X,t) 二 lnNc-Vkc{t)] ML.t) = M^^t) = - M O ； 

where Vbe is the applied base-emitter voltage, v̂ c is base-collector voltage, and A^j, Ns, Nc 

are emitter doping, base doping and collector doping respectively. 

Let's denote the collocation point index at base contact as B. In this point, we 

do NOT evaluate the Poisson's equation, continuity equation for electrons and holes. 

The following equation 

i ; {B,t) = lnNB, (5.11) 

is used instead of Poisson's equation. This equation is the boundary condition for ¢). 

On the other hand, the continuity equation at this point is no longer satisfied because 

of the charge injected from base terminal. Hence, we should use the following two 

equations 

j ^ { B - l ) = j n { B + l ) - j B n , (5.12) 

j ^ { B - l ) = j , { B + l ) - j B p . (5.13) 

to substitute electron and hole transport equations respectively, where jBn,jBp are the 

normalized hole and electron current density, respectively, flowing into the base region 

of transistor. The current density normalization factor is ^ f^ . For NPN transistors, 
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jBn = 0 and jsp equals to the base current. For PNP transistors, jsp = 0 and jsn 

equals to the base current. The above two equations also describe the charge flow 

continuity phenomenon. 

In wavelet collocation method, the above boundary model can be represented by: 

^ \ l ) = \nNE-Vke{t), (5.14) 

^Ul) = -We, (5.15) 

起 ⑴ 二 -”6e, (5.16) 

for the emitter terminal, and 

^ N ) = \ n N c - ” a t ) , (5.17) 

k { N ) = - v U t ) . (5.18) 

H { N ) = - v U t ) . (5.19) 

(N is the index corresponding to basis function r]i{L — a:)) 

for the collector terminal, and 

D � # = lnA^， (5.20) 

finMB - l)B\B - 1, :)<fn = flrMB + l)T>'{B + 1，:)(fn + jBn, (5.21) 

f^pP{B — l)D'(B - 1, :)<fp = fi,p(B + l)D'(B + 1, : ) 4 + jBr>, (5.22) 
A A 

for the base terminal, where n{B — 1) = exp{DO(5 — l,:)(V^ — 4>n)} is the electron 

concentration at point (B-1), and so on. 

5.2.2 DC Solution 

In this subsection, the steady state solution of unbiased transistor is presented. We 

also show the grid generation process here. The transient response will be presented 

in next subsection. 

First, the solution in scaling function space is shown in Figure 5.16(a)(b), where 

Figure 5.16(a) shows the scaling function coefficients, and Figure 5.16(b) shows the 
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Solution of electric potential in scaling function space 
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Figure 5.16: Solution of ^{x) in scaling function space, (a) scaling function coefficients; 
(b) waveform of V̂  after wavelet transform, (c) Residual of (5.1) in a;(。）for solution 
in Vo；� Range of collocation points for space WO. 
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Figure 5.17: Solution of ^(x) in wavelet space Wo� (a) wavelet function coefficients; 
(b) waveform after wavelet transform, (c) Residual of (5,1) in a:(。）for solution in V̂ o； 
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Solution of electric potential in wavelet space W1 
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Figure 5.18: Solution of /̂̂ (x) in wavelet space Wi� (a) wavelet function coefficients; 
(b) waveform after wavelet transform, (c) Residual of (5.1) in a:(” for solution in Wi� 
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X1 Q^ X 1 0 ^ Solution of electric potential in wavelet space W2 
1 1 1 1 n I 1 1 1 1 “ » 

3- - 3- -

2 - -
2 - -

① 1 - -I 1- a . 5 
I I 
f c Si I 一良。 1M 

c 

p - 1 - -
- 1 - ^ -

- 2 - -
- 2 -

o 

I I I I J 1 1 1 1 1 ~L 
0 5 10 15 20 25 0 5 10 15 20 25 

X /micro x /micro 

(a) (b) 

Figure 5.19: Solution of ^(x) in wavelet space Wi� (a) wavelet function coefficients; 
(b) waveform after wavelet transform. 

waveform of ^. The 4>̂  and <f>p are zero for this equilibrium case (unbiased transistor). 

The residual of Poisson's equation at collocation points x^ for this solution is shown in 

Figure 5.16(c). Based on this residual, we determine the collocation range for wavelet 

space Wo as shown in Figure 5.16(d). 

We repeat such procedure for higher resolution levels, and obtain simulation results 

as shown in Figure 5.17, Figure 5.18 and Figure 5.19 for space Wô  Wi and W2 

respectively. The amplitude of solution in wavelet space W2 are small enough (as 

shown in Figure 5.19(b) ). This means that the solution converged, so we stop this 

process. 

We list the full scale, reduced and remaining collocation point number at different 

resolution levels in Table 5.3. From this table, we observe that there are 343 collocation 

points are deleted out of 513. This is a huge amount, and will lead very efficient 

computation in subsequent transient simulation. 

The solutions in space V0 ® W 0̂, V0 ® WO ® Wl and V0 ® WO � W l̂ ® W2 

are shown in Figure 5.20(a),(b) and (c) respectively. And they are put together in 

Figure 5.20(d) for comparison. To see more clearly, we zoom into two different regions 
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Table 5.3: The full scale, reduced and remaining collocation point number at different 
resolution levels. 

resolution level full scale collocation deleted collocation remaining collocation 
point number point number point number 

^ 65 0 ^ 
Wo 64 34 30 
M̂ i 128 88 40 
W2 ^ m ^ 

— T o t a l 513 343 170 

of Figure 5.20(d) as shown in Figure 5.20(e) and (f). From these graph, we see that 

the solution is getting more and more accurate when the resolution level is increasing, 

and solution converges at space W2. 

5.2.3 Transient Solution 

In this section, we investigate the transistor's transient response. 

We will show the case when base-emitter and base-collector voltages are as shown 

in Figure 5.21(a) and (b) respectively. Here the base-emitter junction is forward 

biased, and the base-collector junction is reverse biased. Besides, let the base current 

be zero. Note that the transistor are slightly biased, because the transistor is slightly 

doped. 

With such excitation, we get the transient solutions of 也 � � and ¢^ as shown in 

Figure 5.22(a) and (b). The corresponding electron and hole concentrations' distri-

bution at different time step are shown in Figure 5.23. 

In transient simulation, we use the reduced transform matrices with dimension 

170 only. So we achieved very efficient computation. 
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Figure 5.21: (a) Base-Emitter voltage waveform; (b) Base-Collector voltage waveform. 
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Figure 5.22: (a) Distribution of device potential at different time steps; (b) Distribu-
tion of quasi-Fermi levels for electron and hole at different time steps. 
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Conclusions 

In this thesis, we have developed a wavelet-based method for one-dimensional semi-

conductor device simulation. Wavelet alternative is provided for a device simulator 

on two parts: grid generator and numerical solver. 

The physical device model we used is the classical drift-diffusion model. This 

model includes five fundamental equations: Poisson's equation, continuity equations 

for electron and hole, transport equations for electron and hole. After simplification 

and normalization, three partial differential equations (PDEs) are obtained. The de-

vice variables are electric potential, quasi-Fermi potentials for electron and hole. To 

solve these PDEs, we use cubic spline wavelet collocation methodioT spatial discretiza-

tion and finite difference method for time discretization. The set of basis functions 

we used here is a wavelet family developed by Wei Cai [1 . 

An adaptive method has been developed to delete the redundant collocation points 

and the corresponding basis functions, based on the localization property of wavelet 

functions. This collocation point generation process is equivalent to the grid gener-

ation process of other device simulators. However, our method is much attractive 

because the algorithm is very simple and efficient. Once the set of collocation points 

(grids) is determined, we use it for seeking the steady state and transient responses 

of devices. 

We summarize the advantages of wavelet method in device simulation as follow-

ing: (1) A large amount of wavelet basis/collocation points which are not necessary 
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can be removed due to the localization property of wavelet functions. (2) Such col-

location point (grid) reduction scheme leads to very efficient computation. (3) Full 

scale transform matrices can be pre-calculated, and reduced transform matrices can 

be subtracted from it. (4) Easy programming. This method is specially good for 

devices with local rapid changing variables, which are very common. 

Two types of semiconductor devices: p-n junction diode and bipolar transistor, as 

examples, have been successfully simulated by this method. 

Our work is the first step towards the goal of applying wavelet method in commer-

cial device simulator. The future direction of this research should be focused on two 

dimensional device, and on more complicate device models other than drift-diffusion 

model, to apply such method on more complicate devices. It is because the most real 

devices are with two dimensional structure. Besides, the drift-diffusion model is not 

adequate for many devices, for example, devices with hot electron effect. We believe 

that wavelet methods will get broad applications in this field in the near future. 
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