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Abstrac t 

The blind signal separation problem consists of recovering a set of statistically indepen-
dent source signals from observed mixtures of them, while the source signals and the 
mixing process are unknown. The problem with linear, instantaneous mixing can be 
formulated as the Independent Component Analysis (ICA) problem. Recently, a gen-
eral information-theoretic ICA scheme based on the Bayesian-Kullback YING-YANG 
learning theory (Xu 1995,96,97) is proposed by Xu h Amari (1996). This thesis aims 
at providing analysis for the information-theoretic ICA scheme, particularly in the 
relationship between nonlinearity and separation capability. 

Firstly, a number of properties of the cost function used in the information-theoretic 
ICA scheme, including continuity, singularity, asymptotic properties, etc, are discussed. 
These properties are essential for constructing convergence proofs in later sections. 

Secondly, the information-theoretic ICA scheme with cubic nonlinearity on two 
channels of signals is analyzed in details. We have proved that the information-
theoretic ICA algorithms with cubic nonlinearity can separate two 'globally sub-Gaussian' 
sources and cannot separate two 'globally super-Gaussian' sources. A theorem on the 
global convergence is provided. Some partial results on the three-channel case have 
also been worked out. The theoretical works are accompanied by experimental verifi-
cation. This investigation provides an interesting insight in the role of nonlinearity in 
adaptive ICA algorithms. 

Then, we analyze the separation capability of several nonlinearities. We experimen-
tally test the separation capability of the cubic root nonlinearity and proved another 
theorem of the convergence of the information-theoretic ICA algorithm using the cubic 
nonlinearity in one channel and linearity in the second channel. Using the compari-
son of the separation capabilities of the reversed sigmoids used by Bell & Sejnowski 
(1995), the cubic nonlinearity and the above two cases, we argue that a 'loose match-
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ing' between the nonlinearity and distribution of the sources is needed for successful 
separation. 

Meanwhile, an implementation technique using mixture of densities is proposed by 
Xu et al (1997) to achieve the matching of nonlinearity to source distribution. This 
thesis provides some experimental results and analysis. The experiment results support 
that the mixture of densities can adapt and separate sources of any density. We also 
test and suggest that mixture of two densities with only centers of the components 
changeable may be enough for achieving the loose matching of the nonlinearity to any 
source density. 

In addition, this thesis provides an investigation on the possibility of constructing 
adaptive ICA algorithms from the Bayesian YING YANG learning scheme with non-
Kullback separation functionals. An algorithm based on Positive Convex divergence 
is derived and experiments show that it possesses robustness against outliers in the 
sources. 
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Chapter 1 

Introd uction 

The main objective of this thesis is to discuss the relationship between nonlinearity 

and separation capability on the information-theoretical ICA scheme [74] for the linear, 

instantaneous blind signal separation problem. Both theoretical analysis and computer 

simulation are included in the work. 

In this chapter, we will introduce the blind signal separation problem and the 

contribution of the thesis. Section 1.1 gives brief introduction to the blind signal 

separation problem and the present research development in this topic. Section 1.2 

lists out the contribution of this thesis for an easy glance. Section 1.3 discusses the 

applications of the problem. The organization of the thesis is sketched in Section 1.4. 

1.1 The Blind Signal Separation Problem 

The blind signal separation problem generally consists of recovering a set of in­

dependent source signals solely from a set of mixtures of them (Figure 1.1). The 

mathematical definition of the problem will be presented in Chapter 2. Two sub-cases 

of the problem are often discussed, namely the convolutive and the instantaneous blind 

signal separation problem. In situations like processing mixtures of speeches in room 

acoustic environment, due to multi-path effect, the mixing is dynamic and have to be 

modeled by convolution. In situations like analysis of electro-encephalographic (EEG) 

signals, the mixing can be satisfactorily modeled to be instantaneous and linear. Und~r 

such condition the blind signal separation problem can be formulated as the Indepen­

dent Component Analysis (ICA) problem - the extraction of independent components 

(source signals) from a set of multi-variant data (observed signals). In the literature, 

the names' Blind Signal Separation', 'Blind Separation of Sources', 'Blind Source Sepa­

ration', are often used to refer immediately to the problem with instantaneous mixing, 
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Figure 1.1: The general blind signal separation problem. 

rather than the more general problem. 

Strictly speaking, the word 'blind' means that we only have the mixed signals 
available and know nothing about the source signals and mixing process, except the 
statistical independence assumption of the source signals. The 'blind' problem for-
mulation takes the advantage that no model for the source signals or mixing process 
is needed. Such problem formulation is very suitable for analyzing or processing ob-
served signals that are supposed to be mixtures of some 'more basic' sources, like those 
situations to be discussed in the application section. However, in most literature the 
number of sources is assumed to be known and the problem is actually not strictly 
blind. 

This problem has become an emerging topic in this decade, probably after C. Jutten 
and J. Herault published the seminal paper [33]. The blind signal separation problem 
becomes popular not only because it has a number of valuable applications, but also 
because it involves interesting theoretical problems in high order statistics and non-
linear systems. The problem is currently so hot that special sessions for this problem 
are held in various conferences and journals in recent years. Large proportion of the 
literature focused on the problem with instantaneous, linear mixing, while smaller pro-
portion of papers have been written on convolutive mixture and other aspects of the 
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problem. , 

1.2 Contributions of this Thesis 

Xu and Amari [74] suggested a general information-theoretic ICA scheme from the 
Bayesian-Kullback YING-YANG learning scheme [67’ 69, 70, 72]. We realized that 
the choice of nonlinearity in the algorithm is crucial to the separation capability, or 
more specifically, one nonlinearity can perform separation on sources with some class of 
distribution, but not on sources with any distribution, and different nonlinearities can 
perform separation on sources with different classes of distribution. Hence we focus on 
the investigation in the relationship between nonlinearity and separation capability. 

The contributions of this thesis is listed below for an easy glance, with the credits 
by individuals identified. 

• I worked out a theorem on the global convergence of the information-theoretic 
ICA algorithms with cubic nonlinearity on two channels of sources. I proved the 
theorem by investigating the configuration of the cost function scalar field in the 
parameter space. I provide two methods in the investigation of stabilities of the 
equilibrium points of the algorithm, one involves the analysis of the Hessian ma-
trix and the other one works through direct comparison of the cost function value 
and the simplicity of the 2-channel problem. I have also performed experiments 
and the results are consistent to the theorem. 

• Ruan and I investigated the 3-channel case of the information-theoretic ICA 
algorithms with cubic nonlinearity. Some equilibrium points are determined and 
the condition on the stability of the correct solution is determined. 

. • I observed that /i, (yi) nonlinearities (see Chapter 6) of different shapes have dif-
ferent separation capability on sources of different distribution. Xu [76] suggested 
the concept of 'loose matching' between 仏(队）nonlinearity and the source density 
for successful source separation. We then investigate the nonlinearity and sep-
aration capability. I obtained the experimental results on several nonlinearities 
that support the argument. 

• Ruan and I obtained a theorem on the convergence of the 2-channel information-
theoretic ICA algorithm with one channel using the cubic nonlinearity and the 
other channel using linearity. The theorem shows that the channel with cubic 
nonlinearity always recovers the source with flatter probability density function 
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(pdf). This result further support the intuition that the nonlinearity must have 
some ‘loose matching' with source density for signal separation to be successful. 

• I performed experiments and analysis on the implementation of the information-
theoretic ICA scheme with mixture of densities, which was suggested by Xu 
et al [75]. The experiment supports that the mixture of densities can adapt 
sources with any distribution and perform separation on them. I seek the simplest 
mixture of densities and suggest that the mixture of two densities with only 
centers of components changeable may be sufficient to achieve the loose matching 
of the nonlinearity to any source distribution» 

• Xu and I investigated the construction of adaptive ICA algorithms from ICA 
principles which is based on the use of non-Kullback separation functionals sug-
gested by Xu [72, 73]. We constructed an adaptive algorithm from the Positive 
Convex divergence but we cannot construct adaptive algorithms from the LP 

divergence and de-correlation index. I performed the experiments suggested by 
Xu and the experimental result is consistent to Xu's expectation that the ICA 
algorithms derived from Positive Convex divergence has robustness on large-
magnitude 'outliers' in the sources [73]. 

1.3 Applications of the Problem 

One importance of the blind signal separation problem is to account for the 'cocktail 
party effect,. In a noisy cocktail party, human ears actually receive mixtures of a 
large number of voices from different locations. However, human beings are capable 
of concentrating the attention on listening to one person, and occasionally switching 
to another person. Apart from factors from the cognitive process in the brain, it was 
found that there should be some mechanism in the brain to perform localization and 
separation of the sound source from the difference between the received signals by the 
two ears (see, for example, [11]). Similar effect occurs in the odor system of animals. 
Some animals are able to localize the source of odor so as to hunt food and flee from 
danger. The blind signal separation problem tries to find plausible mechanisms for the 
brain. 

The separation of noise from speech signals has important real world applications. 
Such technique may be used to reduce noise in hand-free speaker phone systems, espe-
cially those in automobile and the helmet communication system in fighter aircrafts, 
where the noise from the engine is extremely annoying. Application of noise reduc-
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tion to speech recognition system may lead to significant improvement in recognition 
rate [47]. 

In data communication, signals in different channels may have 'cross-talk' to each 
other, i.e. the signal in one channel physically affects, or leaks to, the channels adjacent 
to it. In case that the signals are statistically independent to each other, the blind 
signal separation technique may be applied to recover the signals. 

Independent component analysis can be applied to any situation that the under-
lying independent components are to be found. In the investigation of brain signals, 
different parts of the brain emit more or less independent signals but EEG electrodes 
on the skin can only receive (almost instantaneous) mixtures of them. Hence ICA is 
used to localize and extract independent signals of the brain and some encouraging 
results have been found [43, 50]. Similar technique can be used to process electro-
cardiographic (ECG) signals, from which special ECG patterns reflecting particular 
heart diseases can be identified for diagnosis. The separation of source is useful in 
observing fetus's cardiac signal from a mixture with the mother's cardiac signal [66]. 
Works have been done on processing natural image by ICA and it was found that 
edges are independent components of natural image [7], ICA has also been applied to 
natural sound to elucidate the higher-order structure of it [8]. 

1.4 Organization of the Thesis 

In Chapter 2, the blind signal separation problem will be presented mathematically. 
At the beginning the general problem will be introduced. We refine the problem to 
convolutive mixture, then to instantaneous linear mixing and the independent com-
ponent analysis problem will be formulated. The assumptions and definition of the 
problem used in the thesis will be presented. 

Chapter 3 will present a literature survey on the blind signal separation problem. 
Both the development of the approaches to the ICA problem and the separation of 
convolutive mixture will be reviewed. 

Chapter 4 reviews the information-theoretic ICA scheme proposed by Xu and 
Amari [74]. The construction of the information-theoretic ICA scheme from the 
Bayesian-Kullback YING-YANG learning scheme [67, 69，70, 72] and the derivation of 
the algorithm [74] will be reviewed. 

Chapter 5 to 9 provide the main contribution of this thesis. In Chapter 5, theoret-
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ical analysis of the information-theoretic ICA scheme on several aspects common to a 
large class of nonlinearities will be presented as lemmas and corollaries. 

In Chapter 6, the convergence behavior of the information-theoretic ICA algorithm 
with cubic nonlinearity will be theoretically analyzed in details. A theorem on global 
convergence will be provided, accompanied by experimental verification. This analysis 
serves as a case study and demonstrates a method for the investigation of nonlinearity 
and separation capability. Some theoretical and experimental results on the 3-channel 
case are also provided. 

In Chapter 7, The relationship between the nonlinearity used in the algorithm and 
the distribution of sources that it can separate will be investigated. Several cases with 
different nonlinearities will be discussed with experimental findings or verification. The 
investigation results in the suggestion of 'loose matching' between the nonlinearity and 
source distribution as the requirement for successful separation. 

In Chapter 8, the idea of implementation of the information-theoretic ICA scheme 
with mixture of densities proposed by Xu et al [75] will be reviewed. The algorithm 
will be derived and experiments will be presented. Then we present the search for the 
simplest mixture of densities that is sufficient to adapt any source. 

In Chapter 9, the suggestion of using non-Kullback separation functionals in ICA 
scheme by Xu [72, 73] will be introduced. Then we investigate the possibility of 
deriving ICA algorithm from the new cost functions. Finally, experiments on one 
algorithm derived from the Positive Convex divergence will demonstrate its robustness 
against outliers in the sources. 

At last, the conclusion of this thesis will be given in Chapter 10. 

I � 
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C h a p t e r 2 

T h e Blind Signal Separa t ion 
P r o b l e m 

The definition of the blind signal separation problem is given mathematically in this 
chapter. Section 2.1 presents the general formulation for the physical problem. Sec-
tion 2.2 formulates the case that models the mixing process to be linear and convo-
lutive. Section 2.3 formulates the case that confines the mixing process to be linear 
and instantaneous. Finally, we give the definition of the linear, instantaneous blind 
signal separation problem formulated as the Independent Component Analysis (ICA) 
problem in Section 2.4 and list out the assumptions used in this thesis. 

2.1 The General Blind Signal Separation Problem 

The name 'blind signal separation' can generally be interpreted, from its wording, 
as the problem of separating, or recovering, the source signals from mysterious mix-
tures of them, while the mixing process and the source signals are unknown (Fig-
ure 1.1). Suppose there are n channels of source signals, or simply called sources, 
s � = [ S i ⑷，.•. , sn (i)]T, t G where [.. .]T denotes matrix transpose, m sensors� 

or receivers are used in the system to pick up the observed signals, or mixed signals 
x(t) = ... , xm(t)]T, t G The mixing process is represented by a vector 
function: 

X (0 = M ( s ( 0 ) + e ( i ) , t' e [0,i]) (2.1) 

or 

而⑷=1^(8 (^1 )+^⑷， t' G [0,i], 1,...,m (2.2) 

7 
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where e(t) = ...,em(i)]T are noise contamination of the sensors. The physical 
blind signal separation problem is to obtain a set of recovered signals, or output signals, 
y(t)=[仏⑷，…,J/n'(t)]T,t G E + which is as similar to the source signals as possible. 

In digital processing, we pick up the observed signals at discrete time and the 
observed signals become x(k) = [Xl(k),..., xm(k)]T, A; 二 1 , 2 , a n d A; 二 t/M where 
At is the sampling interval. The sources are assumed to be of discrete time, 二 

[si(k),. •. too. Hence, the blind signal separation problem become to obtain 
the recovered signals y ⑷ 二 [ ^ ( k ) , . . . ,yn'(k)]T which is as similar to the source 
signals as possible. 

2.2 Convolutive Linear Mixing Process 

In situations like the separation of speech signals in room acoustic environment and 
super-sonic radar signal processing, multi-path effect occurs because sound wave travels 
at relatively low speed and the signal from one source reflected by different obstacles in 
the environment arrive one sensor at different times. The cross-coupling effect between 
channels in data communication are dynamic and have similar effect. 

In these cases, the mixing process is modeled as a Linear Time Invariant (LTI) 
system: 

I： Xi{k) = H i A k ' ) s j ( k - k ' ) + £ i (k) (2.3) 
j = l k'=0 

where Hij{k'),k' = 0 , . . . , / is the (discrete) transfer function from source j to sensor 
i. 

The whole system: 

i 
x � = J 2 - + e(k) (2.4) 

ks'=l 

where =[丑••(A/)], i = 1，...，m, j = 1 , . . . , n, is a Multi-Input-Multi-Output 
(MIMO) LTI system. The present blind signal separation problem are usually called 
separation of convolutive mixture, or MIMO channel equalization problem since it finds 
the inverse of the MIMO LTI system. 



Chapter 2 The Blind Signal Separation Problem ^ 

2.3 Instantaneous Linear Mixing Process 

In cases that the mixing process can be assumed to be instantaneous, the observed 
signals at some time, x(/b) will not depend on the sources at previous time. Further 
assuming the mixing processing is linear, we have, 

x(k) = As(k) + e(k) (2.5) 

where A 二 [a^-], < 二 1，... , m，j 二 1 , . . . , n is called the mixing matrix. In this case, 
the blind signal separation problem reduce to the determination of the inverse of A. 
A is generally assumed to be fixed in the problem. However, adaptive algorithm may 
also truck slowly changing A. 

2.4 Problem Definition and Assumptions in this Thesis 

We make the following assumptions in our work: 

(Al) The mixing process is linear and instantaneous. 

(A2) The number of sources n is known and the number of sensors m — n. 

(A3) All channels of source signals are statistically independent to each other. This is, 
we have 

P s ^ ^ f l p s M ) (2-6) 
i = l 

(A4) The mixing matrix A is non-singular. 

(A5) Each channel of source signal si(k))k = 1, 2 , . . . are identically and independently 
distributed (iid). Hence Si (k), k = 1, 2 , . . . can be regarded as realized values of 
a random variable S{ 1 with probability distribution function (pdf) pSi(Si). 

(A6) No more than one channel of the source signals can be Gaussian distributed. 

(A7) Moments exist up to necessary order, which depends on the nonlinearity used. 

(A8) Noise can be neglected. 

Small letters are used to refer to both the random variables and the realized values. Readers can 
in most case determine the nature of the symbol by its intuitive meaning or indices on it. 
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Under these assumptions, we can write the mixing process as: 

x = As (2.7) 

The blind signal separation problem is formulated as the Independent Component 
Analysis (ICA) problem. Each observed signal Xi consists of linearly superimposed 
independent components {sj, j = 1 , . . . , n} and source separation is to extract the 
independent components out. 

We use a n X n feedforward de-mixing W = [wij] to obtain the recovered signals 

y= b i , - . . ,"n]T: 

y = W x (2.8) 

We targets at obtaining y = s. However, as inspired from the matrix multiplication 
x 二 As with both A and s unknown to us, the order of the channels and the scale of 
the sources s are indeterminable. (Many combinations of A and s with different order 
of channels and scale of s give the same x.) Hence, source separation is said to be 
successful if we recover the sources up to an arbitrary scaling factor and an arbitrary 
permutation of channel index. That is, we target at obtaining 

Ui = vijisji i = 1 , n (2.9) 

where jk / 力 if fc # Z represents the permutation of channel index and v{j is the scaling 
factor. 

In matrix form, defining 

V = [vi:}] = WA (2.10) 

source separation is said to be achieved if V consists of one non-zero element viji in 
each row and each column, and other elements being zero. Such V can be written in 
the form: 

V 二 PD, (2.11) 

where D is a diagonal matrix and P is a permutation matrix. 

Remark 1 Explanation for the assumptions: 
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(a) The independence assumption (A3) is the most important assumption in the 
ICA problem. It is possible to recover the blind sources only because we know 
that they are statistically independent. Then making the output signals mutually 
independent ensures that the output signals recover the sources up a permutation 
and scalar factor. If the sources were not independent, the method of separation 
would break down. 

(b) The iid assumption (A5) is one of the conditions for ensuring convergence of 
the adaptive algorithm. This assumption can be relaxed to 'time-average in-
variance' [49] condition which also guarantee convergence. In experiments, the 
adaptive algorithms can also work on real world signals like human speech signal, 
which is non-stationary, not iid and can only be roughly approximated by the 
'time-average invariance' model. Hence, the iid assumption may not be necessary 
in practice. 

(c) Assumptions (A6) and (A7) arise because higher order statistics are used in our 
approach. As Gaussian distribution has null higher-order cumulants, algorithms 
using higher order statistics generally cannot separate two Gaussian sources. 
Assumption (A7) is satisfied by many distributions, however, for example, for 
Cauchy distribution the variance dose not exist and in an experiment on sources 
with Cauchy distribution, the algorithm failed to converge. 

Remark 2 It has been proved in [24] that the recovered signals being statistically 
independent is an equivalent criteria for source separation eq. (2.11) being achieved. It 
is obvious that if each recovered signal recovers one distinct source signal, they satisfy 
the statistical independence criteria py(y) = U7=iPyXyi) considering py(y)= 
p s(s)/det V). If source separation is not successful, different channels of recovered 
signals consists of common components of source signals. Then the recovered signals 
must be correlated and statistically"dependent. Hence, ICA can be approached by 
considering methods that make the recovered signal statistically independent. 

Remark 3 It is well-known that Higher Order Statistics (HOS) are needed to solve 
the ICA problem (with iid, or temporally white signals). If only second order statistics 
are used, we can only have n(n — 1)/2 equations to control the correlation: 

1: . “ 
t E[yiyj] = 0, i + i (2.12) 

and n equations that control the (self) variant E[yf]. Hence, there are not enough 
equations for the n x n elements of W and there would be infinite number of possible 
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solutions. If HOS is used, we have more constraints on the HOS E[y^y]] that reduce 
the number of possible solutions to finite number. In adaptive ICA algorithms； HOS 
are picked up by the nonlinearity in the algorithm, as seen from the Taylor expansion 
of the nonlinearity consisting of high order terms. 
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Li te ra tu re Review 

A literature survey will be presented in this chapter. The survey is not exhaustive 
but most important works on the blind signal separation problem will be reviewed. 
Section 3.1 reviews the approaches to separation of instantaneous mixture and Section 
3.2 presents the achievement in separation of convolutive mixtures. 

3.1 Previous Works on Blind Signal Separation with In-
stantaneous Mixture 

The independent component analysis problem has attracted much attention since Her-
ault, Jutten and Ans's seminal paper [33] in French and its English journal paper 
version [37, 26, 59] were published. Different approaches have been proposed to solved 
the problem. A popular method is to optimize some suitable objective function (so-
called contrast function defined by Comon [24]) that the global maximum or minimum 
of which ensure source separation. For some objective functions, batch-way algo-
rithm is devised for the optimization [24]. These algorithms are often named as the 
batch-way approachesr or algebraic approaches. For some objective functions, simple 
adaptive algorithms can be devised [2, 5, 14, 27, 34, 64]. Approaches that use adap-
tive algorithms are sometimes named as the neural approach [41] since most of them 
are plausible for neural network implementation. Apart from the objective function 
optimizing method, there are also some other heuristic adaptive algorithms suggested 
to solve the ICA problem [37]. 

Some approaches need spatial pre-whitening, or spatial sphering, of the observed 
signals. The pre-whitening process is to remove the second-order cross moments and 
fix the (self) variants of the mixed signals. The observed signals are multiplied by a 

13 
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whitening matrix U to give the whitened signals x: 

x = Ux (3.1) 

the whitened signals have identity correlation matrix E[SdJ] = I. The whitened signals 
are then multiplied by a de-mixing matrix W to give the recovered signals y: 

y = W x (3.2) 

The pre-whitening process can easily done by standard Principal Component Analysis 
(PCA) adaptively or by singular value decomposition in a batch-way manner. 

In the following subsections, summaries of the several popular approaches are pro-
vided. 

3.1 .1 Algebraic Approaches 

Algebraic approaches use batch-way algorithms, or recursive algorithms, to estimate 
the parameters of the de-mixing system. The whole series of signal data have to 
be obtained before running the algorithm and hence this class of algorithms have to 
be used off-line. The computation loadings are usually intensity. These undesirable 
properties of the algorithms hinder them from being used in real world applications. 

Cardoso and Comon [15] provided a summary of some algebraic methods. Car-
doso [12] suggested one algebraic method that applied diagonalization on the forth-
order cumulant tensor of pre-whitened mixed signals. He also suggested another al-
gebraic method that did not require pre-whitening and may work on cases that the 
number of sensors is less than the number of source [13]. Comon [24] developed a 
batch-way algorithm to maximize contrast functions. He used contrast function de-
rived from the truncated Edgeworth expansion of the mutual information between the 
recovered signals, or some simpler contrasts that consist of the sum of the square of 
the cumulant of each recovered signal. 

Recently, Hyvarinen [35] proposed a fixed-point iteration algorithm based on the 
minimization/maximization of kurtosis under a constraint on the norm of the recovered 
signal. The iteration algorithm works in the way that one source is extracted one time, 
and the algorithm can be repeated to extract another source. This algorithm has 
advantage of fast cubic convergence rate and having no manual adjustable parameter 
(like the learning rate). Convergence analysis of the algorithm has also been provided. 
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Figure 3.1: The Herault-Jutten network (2-channel). 

3.1.2 Neural approaches 

There have been vast number of neural approaches to the independent component 
analysis problem. Since adaptive algorithms can perform learning and process data 
online, they have high potential to be used in real application. In particular, adaptive 
algorithms with locality is plausible for VLSI implementation and biologically feasible. 
We shall introduce some popular approaches in the followings. 

The Herault-Jutten network 

The Herault-Jutten network [37，26], or simply H-J network, is very famous in last 
decade. Successive works have been followed by other researcher and analog VLSI 
implementation of the H-J network has been successful [22, 23, 38, 63]. 

The H-J network uses a feedback network C with the diagonal being zero as the de-
mixing system, such that y = [I + C]_ 1x (Figure 3.1). An heuristic adaptive algorithm 
is used to tune C: 

� A c , , oc f i s ^ g i s ^ t ) ) (3.3) 

The choice / ( r ) 二 r3 and g(r) = r works on sub-Gaussian source [59] and the choice 
/ ( r ) == r and g(r) 二 r3 works on super-Gaussian signals [28]. However, the network 
suffers from some stability problem [30] and convergence to the correct solution is not 
generally guaranteed. 
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Separation of colored sources by decorrelation at different time lags 

For narrow-band (colored) sources, the frequency spectrum consist of components con-
centrated around some frequencies and there is temporal correlation at different time 
lags. This is in contrary to wide-band (temporally white) sources that possess dis-
persed frequency spectrum and samples at different time point being independent. 
The temporal correlation of the sources provides cue for source separation. Gerven 
and Compernolle [31] make use of the cancelation of correlation of the recovered sig-
nals at different time lags for source separation: 

E[yi{k)yj(k-r)] = 0 Vr G Z (3.4) 

It should be noticed that this class of algorithm would not work on wide band sources. 

Approaches that rely on minimization/maximization of kurtosis 

Comon [24] proved that the sum of squares of (self) cumunants of order r > 2 over all 
recovered signals is a contrast function: 

J = J2[cnm^( y i)] 2 (3.5) 
i = l 

provided that the signals are pre-whitened. The forth order cumulant, which equals 
to the kurtosis of the signal: 

c u m � ( y ) = kurt(y) = E[y4] - S{E[y2]}2 (3.6) 

is of particular interest. However, Comon have only developed batch-way algorithm 
b.ut not adaptive algorithm to achieve the maximization. 

Moreau and Macchi [53] proved that the following function: 

J = ^ |ku r t (y , ) l (3.7) 
i = l 

is a contrast function if all the sources have kurtosis of the same sign and devised an 
adaptive algorithm based on it. 

The deflation approach introduced by Delfosse and Loubaton [27] uses a cascade 
de-mixing network (Figure 3.2) to extract the sources. The elements of the de-mixing 
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Figure 3.2: The network used in the deflation approach. 

matrices are parameterized by elements 0 on the unit sphere to achieve spatial sphering. 
The extraction of source signal on each layer is based on the maximization of 

I J(0) = [kurt(wT(6>)x)]2/4 (3.8) 

which has been proved to be able to work. The remaining channels are ensured to 
be a whitened mixture of the remaining sources by the algorithm. As the cascade 
de-mixing structure is recursive, extraction of all sources is theoretically proved. This 
approach is the first approach that convergence to the correct solution is guaranteed 
for the general case with arbitrary number of channel n. It has also been analyzed that 
the reconstruction errors on the last extracted source should not increase drastically 
with n. 

Cardoso and Laheld [14] proposed an adaptive algorithm that possess the 'equiv-
ariant' property, and hence exhibit 'uniform performance' that the separation perfor-
mance is independent of the conditioning of the mixing matrix in noiseless case. The 
EASI (Equivariant Adaptive Separation via Independence) algorithm uses a feedfor-
ward de-mixing matrix W like that in the problem definition and takes the following 
form: 

J A W o c [ y y T - I + g(y)yT - yg(y)T]W (3.9) 

If the nonlinear function g(y) = bi(yi),…，5n(2/n)] hi chosen to be 讲 彻 = y f , the 
algorithm is actually minimizing ^[vf] under the constraint E[yyT] = I. For the 2 
channel case, it is proved that there is no spurious local minimum and the convergence 
to correct solution is ensured for two sources with sum of kurtosis being negative [14]. 
However, cases with more channels have not been considered. 



Chapter 3 Literature Review ^ 

Wang et al [64] proposed a bigradient algorithm that minimize Ya E[vt\ u n d e F t h e 

constraint 丑[yyT] = I for separating sub-Gaussian sources. The algorithm can be 
slightly modified to perform separation on super-Gaussian sources. However, theoret-
ical analysis on the convergence of the algorithm is not provided. 

Hyvarinen [34] devised a simple one-unit neural algorithm for blind source separa-
tion. An algorithm that minimizes the kurtosis is used to extract sub-Gaussian signal 
and an algorithm that maximizes the kurtosis under a constraint on the norm of the 
weight vector is used to extract super-Gaussian signal. One additional unit is used to 
determine the sign of the kurtosis of the extracted signal. The extracting units can be 
used in parallel to extract arbitrary (< n) number of sources simultaneously by adding 
some feedback. Theoretical analysis of the algorithm is provided [36]. 

The Maximum Entropy Approach 

Bell and Sejnowski [5，6] proposed the Information Maximization approach, or called 
the INFORM AX or Maximum Entropy (ME) approach, from the viewpoint of non-
linear generalization of Linsker's INFORMAX principle [45]. In this approach, a non-
linear transformation function 力(队）is applied to the recovered signal 队 to give the 
transformed output Zi： 

z 二 ％ ) = [ 々 & ) , . . . 丄 ( 如 ) 产 （3.10) 

With {fi{yi)} suitably chosen to be close to the Cumulative Distribution Functions 
(CDF's) of the sources, the maximization of the output entropy H{z) is proposed to 
be a principle for blind source separation. Bell and Sejnowski used the gradient ascent 
algorithm in [5, 6] to perform the maximization: 

AWoc | [ w T ] _ 1 + h ( y ) x T | (3.11) 

where h(y) = ["i(2/i)，...，、(如)]，W躲)二 d'iiVi)/9i{Vi) and fif<(y») = / / ( 队 ) . I t has 
been experimentally shown that the choice 力（队）=logsig(队）=1/(1 + exp(—队）or 
fi(yi) 二 tanh(2/i) can perform separation on speech signals. 

The gradient ascent algorithm involves an undesirable matrix inversion and the 
convergence is slow. At later time, the 'natural gradient' method [2] is adopted (e.g. 
see [7]) by multiplying the positive definite matrix W W to the right of the gradient: 

AWoc [I + h(y)yT] W (3.12) 
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The new algorithm has a much faster convergence speed and have small residual fluc-
tuation after convergence with constant learning rate. 

The Minimum Mutual Information (MMI) approach 

Amari et al [2] proposed an adaptive algorithm to minimize the mutual information 
between the recovered signals, which equals to the Kullback divergence between the 
joint density of the recovered signals and the product of marginal densities of the 
recovered signals: 

：
 J ( w )

= / / 彻
 l ogn£^dy (3.13) 

The global minima of the mutual information obviously consist only of correct solu-
tions for source separation since they occur only when py(y) = Du^iPyXUi)- However, 
the difficulty is to approximate the mutual information and establish the minimiza-
tion algorithm appropriately. A truncated Gram-Charlier series (see [40]) is used to 
approximate the mutual information and the minimization is proposed to be achieved 
by a 'coarse implementation' that replace some expected values by their instantaneous 
values. The algorithm is given by 

AW oc [I + h(y)yT] W 

h(y) 二 [、(奶),••” hn(yn)]T (3.14) 
“ � 3 n 25 o 14 7 47 5 29 3 • , 
hi{yi) = --yj1 - —y- + y2/J + - ^ = i,…，n 

The success of the algorithm relies on the approximation and the effectiveness of the 
'coarse implementation'. It can be noticed that the algorithms used in the Maximum 
Entropy approach with natural gradient and the MMI approach turn out to have the 
same form but differ from the nonlinearity used. As to be discussed in later chapters, 
since hi(yi) is nevertheless a fixed nonlinearity, the algorithm is expected to be able to 
separate sources with a class of distribution (that are 'appropriately approximated' by 
the truncated Gram-Charlier series.) but not sources with any distribution. 

Other neural approaches 

Apart from that approaches mentioned above, there are a large number of algorithms 
proposed with different features. However, most of the algorithm lack theoretical con-
vergence analysis. Cichocki and Amari have proposed a biologically plausible recurrent 



Chapter 3 Literature Review ^ 

Primary 
s _ 丨叩⑴「 1 

I 丫 i 
0 ) j • Q r - | - | — • Adaptjvfefilter ； 

Reference i 乙 

Noise mput 丨 丨 E r r o r 

I 1 
Adaptive noise canceller 

Figure 3.3: The adaptive noise cancelation problem and Widrow's network. 

network [1] and a multi-layer network [21] which can handle ill-conditioned mixing ma-
trix and badly scaled input. Cichocki and Moszczynski [20] and H. Marsman [51] tried 
heuristics on the control of learning rate in order to speed up convergence. Matsuoka 
et al [52] proposed an algorithm for non-stationary signals. Oja and Karhunen [42, 54] 
also investigate the use of nonlinear PC A learning on source separation. Self-organizing 
maps has been applied to source separation by Pajunen et al [56]. The blind signal sep-
aration has also been formulated as a maximum likelihood problem by Pham et al [57] 
who carried out an adaptive implementation, and by Belouchrani and Cardoso [9] who 
used batch-way or stochastic EM algorithm. 

3.2 Previous Works on Blind Signal Separation with Con-
volutive Mixture 

Reducing unwanted components from the observed signals has long been a practical 
problem in engineering applications. In the 1970s, Widrow et al [66] proposed a well— 
known Adaptive Noise Cancelling algorithm using power minimization principle to the 
problem. In this approach, the primary sensor receive both signal and noise while the 
reference sensor is assumed to pick up the noise only (Figure 3.3). The drawback of 
this 'asymmetric' approach is that the leakage of signal to the reference sensor would 
lead to some desired signal also cancelled together with the noise. Such drawback 
limited that usage of Wid row's noise canceler. 

In late 1980s and 90s, researchers discarded the viewpoint that treats noise and 
signal distinctly, and view both noise and signal as source signals. The problem formu-
lation of blind signal separation for convolutive mixture in the last chapter are adopted 
and received much attention. Feedforward or feedback causal FIR filters are used as 
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the de-mixing network in many approaches. In earlier trials, the approaches suggested 
by Gerven and Compernolle [32], Weinstein et al [65] and Chan et al [16] relied oil 
decorrelation at all time lags, which involved only second order statistics. Convergence 
to the correct solution is not guaranteed generally. 

It became widely realized that methods using second order statistics only is not 
sufficient to ensure source separation and the work moves to using higher order statis-
tics. Yellin and Weinstein [77, 78] proved that statistical independence of the recovered 
signals is a sufficient condition for separation of convolutively mixed signals and de-
vised an algorithm that involved cross-polyspectra. Thi and Jutten [60] proved that 
the cancelation of forth-order cross-cumulants of the recovered signals is sufficient for 
source separation. They proposed an algorithm based on this cancelation and another 
algorithm with nonlinear function from the generalization of the well-known Herault-
Jutten algorithm for instantaneous mixture. Torkkola [61] and Lee et al [46] suggested 
algorithms for both causal FIR and causal IIR filter networks from the generalization 
of the Maximum Entropy approach [5] for instantaneous mixtures. The algorithms 
with causal filters succeed in separating sources from minimum-phrase mixtures but 
generally fail on non-minimum-phrase mixtures, that room acoustic condition often 
involves. This is because the inverse of a non-minimum phase system may be non-
causal. Recently, Lee et al [47] adopted a technique to realize non-causal filters for 
the de-mixing network. They obtained successful result in separating real world sound 
signals recorded in room acoustic condition. 

Besides the above contributions, Piatt and Faggin [58] considered the case of de-
layed, but non-convolutive, mixture in early 90s. Bamford and Canagarajah [4] sug-
gested the usage of time-delay estimation techniques to reduce the length of the de-
mixing filters, which were widely adopted by other researchers. Tong et al [62] gave 
theoretical discussion on the indeterminacy and identinability of blind identification. 
Comon [25] introduced 'contrasts' for̂  convolutive mixing, as an extension to the con-
trasts for instantaneous mixing [24]. Lindgren et al [48] provided some investigation on 
the local convergence on a class on blind separation algorithms with FIR filter. Feder 
et al [29] suggested an approach that seek the maximum likelihood estimates of the 
filter parameter using EM algorithms, assuming the speech signal is auto-regressive 
Gaussian random process and the noise source is Gaussian. It can be seen that the 
development in this area is amazingly fast in the last decade. 
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( T h e In fo rmat ion- theore t i c I C A 
I Scheme 

In this chapter, we review the information-theoretic ICA scheme proposed by Xu and 
Amari [74], which we shall analyze in the oncoming chapters. In Section 4.1, we review 
the Bayesian YING-YANG learning scheme [67, 69] that the information-theoretic ICA 
scheme based on. Section 4.2 gives the construction of the information-theoretic ICA 
scheme and the derivation of the information-theoretic ICA algorithm. 

4.1 The Bayesian YING-YANG Learning Scheme 

The Bayesian YING-YANG (BYY) learning theory is proposed by Xu [67, 68, 69，70, 
72]. In this thesis, we will only introduce the part of the BYY learning theory that 
the ICA framework concerns and the power of the theory. For the details of the BYY 
learning theory, please refer to the original papers [67, 68, 69, 70，72]. 

Representation Space Y ^ ^ ^ ^ ^ 
Symbol., Integers, Binary Code» P«2

(y) R, = P« (y) t W) 
R®als X 2 2 2 \ 

Encoding Decoding /X f M2 ) \ 
Recognition P̂Y1*) PM2(x|y) Generating V \ 

Representation Reconstruction \ i M ̂  J / / 

1 - _ " — — I V ^ V .. 
Figure 4.1: The joint spaces X,Y and the YING-YANG Machine 
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As shown in [67, 69，72], learning problems can be summarized into the problem 
of estimating the joint density p(x,y) 1 of patterns in the input space X and the 
representation space Y as shown in Figure 4.1. Under Bayesian framework, we have 
two representations for y). One representation is 

Pm^x, y) = pMl{y\x)pM1{x) (4.1) 

implemented by a model Mx called the YANG (male) part, which gets its name since 
it performs the task of transferring a pattern (real body) into a code (seed). The other 
representation is 

pmAx^ y) = PM2{x\y)PM2{y) (4 .2) 

implemented by a model M2 called the YING (female) part, which gets its name 
because it performs the task of generating a pattern (real body) from a code (seed). 
They are complementary to each other and together implement a cycle x y x. 
The four propabability components pMl{x), Pm1(v\x)j Pm2(x\v) a n d Pm2{v) are to be 
assigned to specific forms depending on the network architecture and the learning 
problem encountered. 

A separation functional FS(MUM2) 二 F s ( p M l ( 怎 , y ) ) is used to measure 
the 'distance' between the YING part pM2(x,y) and YANG part pMl The sep-
aration functional satisfies the requirement that FS(MUM2) > 0 and FS{MUM2) = 0 
if and only if pM l(x, y) = v) V不，V- If the Kullback divergence 

l 叫 风 具 ） = / / ^ 丨 如 肿 � g ^ | ^ g | — _ 
is used as the separation functional, the system is called the Bayesian-Kullback YING-
YANG (BKYY) Machine [67, 69]. If other separation functional, such as Convex 
divergence, Lp-divergence or de-correlation index (which shall be introduced in Chap-
ter 9)，is used, the system is called Bayesian Non-Kullback YING-YANG (BNKYY) 
Machine. 

Different choices for the four probability components PMx{y\x), PmAx\v) 
and pM2 (y) and different choices and manipulation of the separation functional results 
in a large number of potential YING-YANG pairs. Although not all of the potential 

xThe symbols in the Bayesian YING-YANG learning scheme in this chapter follow those in the 
original paper. Reader are advised to distinguish the symbols by their intuitive meaning and printing 
styles. 
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pairs provide sensible learning models, a number of them indeed lead to useful learning 
models and some of them are currently existing models. 

2 The Bayesian YING-YANG learning scheme is suggested to be a unified general 
statistical learning theory for parameter learning, scale selection, structure evaluation, 
sampling design and regularization. In parameter learning, the cosupervised learning 
scheme can unify unsupervised and supervised learning and let them coexist consis-
tently [71]. 

For unsupervised learning, as shown in [67, 69], the special cases of the BYY learn-
ing scheme can reduce to the EM algorithm related learnings, to Amari's Information 
Geometry theory and the em algorithm, to Hinton & Zemel's MDL autoencoder, and 
to multisets modeling learning - a unified learning framework for clustering, PCA-type 
learnings and self-organizing map. One of its other special case reduces to Maximum 
Information Preservation, and another special case of it reduces to the Helmholtz Ma-
chine with new understandings. The BYY learning scheme is also used to derive ICA 
approaches analysed in this thesis and other new algorithms for the blind signal sep-
aration problem that the acutual number of sources is unknown and observed signals 
are contaminatied with noise [73]. 

For supervised learning, the scheme includes the mixture of expert model as special 
case, from which new algorithms for improving learnings for RBF networks can be 
derived. The scheme also includes maximum likelihood learning (least square learning 
in particular) as special case, and provides new algorithms as alternatives for back-
propagation. Moreover, this scheme has been extended to temporal patterns with 
a number of new models for signal modeling [68], including the extensions of Hidden 
Markov Model (HMM), AMAR models, as well as the extensions of Helmholtz Machine 
and Maximum Information Preservation. 

For scale selection, the BYY learning scheme gives new criteria on the selection of 
number of densities in mixture of densities learning, in particular, the scheme gives 
new criteria oil the number of clusters in the clustering problem, which is a classical 
open problem [70]. The scheme also gives criteria on the dimension of subspace on the 
Pricipal Component Analysis (PCA) type learning [70] and number of hidden units in 
feed-forword nets [71]. 

In the following section, we review the Information-theoretic ICA Scheme derived 

2 T h e references for the learning theories that the BYY learning scheme unifies is not contained in 
the bibliography of this thesis. Please refer to the bibbliographies of the original papers of the BYY 
learning scheme [67, 68，69，70, 72]. 
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from the BKYY learning scheme. The trial of deriving ICA algorithm from BNKYY 
learning is given in Chapter 9. 

4.2 The Information-theoretic ICA Scheme 

4.2.1 Derivat ion of the cost funct ion from Y I N G - Y A N G Machine 

The YING-YANG learning scheme was used on the ICA problem by Xu and Amari [74]. 
Since the source signals s are hidden to us while the recovered signals y are the actual 
output we get, the source signals s are regarded as the 'seed' y in eq. (4.3), and the 
recovered signals y are regarded as the ‘real body' x in eq.(4.3). As the hidden s 
generates y via the information passage 

= = W x = WAs = Vs (4.4) 

we regard s y as the YING part M2. Similarly, the information passage y s 
along the inverse direction in eq.(4.4) is regarded as the YANG part Mi. 

Now we consider the designation of the four probability components. According to 
our desire that y 二 s (although only y = P D s can be achieved), we design 

PmMy)=补-y)- ^(y 一 s) = FM2(y|s) (4.5) 

As the components of the s are independent, we have 

f Ps(s) = f[pSl(si) (4.6) 
i二 1 

.However, in the blind signal separation problem, pSi(si) 1S blind to us and the most 
useful information we know is that s“i 二 1,--- , n are independent. Hence, we replace 
pSi(si) by a manually assigned continuous probability density function (pdf) (r) and 
design Pm2 (s) a s : 

n 

PM2{s)=Il9i(si) (4.7) 
i=l 

It is found that {gi(r)} has a much wider choice other than the original (unknown) 
source marginal densities. The choice of {^(r)} shall be discussed in later chapters 
and constitutes the main objective of this thesis. 
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Moreover, we let PMl (y) be the transformed density from the density of the ob-
served signals x or source signal s via the forward passage y 二 W x 二 Vs: 

織 = 蟲 （4.8) 

The Kullback divergence of the system is written as: 

肌购具）二 /，> 丨
 y)�(y)iog^gSfeSdyds (4.9) 

Putting eq. (4.5) into eq. (4.9) and performing the integration for the ^-function, we 

get: 

[ KL(MU M2) = J^ PMl (y) log ^ ^ d y (4.10) 

Putting eqs. (4.7) and (4.8) into eq. (4.10), we get the cost function: 

J = //(y)lognfikdy (4.11) 
or 

J ( W ^ / / ( x ) l Q g | d e t W | n £ ^ ( w f x ) d X 

— f V ( Z ) i Q , 咖 dS A12) 

As the two Bayesian representations PMl (s, y) and PM2(s,y) should match each 
other, we designate the minimization of J (W) as the means of the learning of W 
to perform ICA. The framework above is proposed as a general information-theoretic 
scheme for the ICA problem [74]. 

4.2.2 Connect ions to previous information-theoret ic approaches 

Connection to the Minimum Mutual Information approach 

In the special case that 仏(队）is designated as py人yi), the marginal density of y“ the 
cost function eq.(4.11) reduce to: 

J ( w )" , ( y ) 1� gn£^ d y (4.13) 
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which is exactly the mutual information used in the Minimum Mutual Information 
(MMI) approach proposed by Amari et al [2]. The MMI approach attempts to ap-
proximate nr=i Pyife) to the best. Hence the MMI approach is a special case of the 
information-theoretic ICA scheme. 

Connection to the Maximum Entropy approach 

We can establish the connection to the Maximum Entropy (ME) approach proposed by 
Bell k Sejnowski [5, 6] using the designation of the nonlinear transformation function 
fi{yi) as the integral of 仍(队)： 

fi(Vi) = r gi(n)du (4.14) 
J — oo 

Then, from applying the nonlinear transformation function to y, the transformed vector 
z 二 [zu ...,zn]T = f(y) = [ A t e ) , . . . , fn{yn) is Obtained. By the equation 

p r\ n Yl 
py(y)^pz(z) det = P ^ z ) I l 9 i ( y i ) (4.1¾ 

J ( W ) is found to be equivalent to the negative entropy of z: 

J ( W ) = f pz{z) logpz(z)dz = -H{z) (4.16) 
Jz 

Therefore, minimizing J ( W ) is equivalent to maximizing the entropy H(z) and the 
ME approach is reached. Bell k Sejnowski [5, 6] uses logistic sigmoid logsig(认•）= 
1/(1 + exp(-yi)), hyperbolic tangent taah(^) and arc-tangent arctan(yi} as fi(yi). 
These nonlinearities corresponds to hi(yi) 二 1 - 2logsig^), h^yi) 二 -2tanh(yi) and 
hi(yi) = -2yi/(l + y f ) respectively. The above three h^yi) all have reversed sigmoid 
shape (see Figure 6.1) and are suggested and experimentally verified to be able to 
separate super-Gaussian signals. This class of reversed sigmoid constitute a 
choice of nonlinearity for the information-theoretic ICA scheme. 

4.2 .3 Derivat ion of the Algor i thms 

J (W) can be considered as a scalar field in the parameter space W, which is better 
written as a column vector: 

Vec(WT) = . . . , wln, w12,..., w2n,..., wnU ..., wnn]T (4.17) 
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where Vec(-) is an operation that cascades the columns of the matrix from the left to 
the right to form a column vector. Then the following form of general gradient descent 
algorithm, which is commonly used in optimization theories, can be used to perform 
(local) minimization on J (W) : 

oc ^ -GVec ( [ V ^ ( W ) f ) (4.18) 
at ovec(W ) 

where G is a symmetric, positive definite matrix, and V ^ J (W) is a n X n matrix 
whose (i, j)-element is dJ(W)/dwij. From [5] the gradient of J (W) is: 

I； j(w) = [wT]_1 + h(y)xT} (4.19) 

where 

I h ( y ) = [ � ( 扒 ) , . . . ， � ( y „ ) ] T (4.20) 

J h ^ ) = 仏介）二 / /(r)， < = l , ” . ， n (4.21) 

The descent direction is flexible up to the choice of G. The general stochastic gra-
dient descent algorithm with any legitimate G is called an information-theoretic ICA 
algorithm. 

The gradient algorithm 

If G is chosen as the identity matrix, the general gradient algorithm reduces to the 
gradient algorithm used in [5, 6]: 

HW 
, o c -VwJ(W) (4.22) 

a t 

or in the stochastic version: 

� AW = e(t) I [WT]_ 1 + h (y )x T | (4.23) 

where e(t) is a small positive learning rate. 

However, this gradient algorithm involves an undesirable matrix inversion. Exper-
iments also show that it has a slow convergence speed, and for a fixed learning rate W 
fluctuates relatively large around the convergence point after it has converged. 
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The natural gradient algorithm 

A better choice of descent direction is the natural gradient direction [2]. The corre-
sponding G is [2]: 

G = W T W ® I (4.24) 

where % is an operation that for any m X n matrix B and p X q matrix C, 

I611C ... blnC 

l •.. ； (4.25) 

bmiC ••• bmnC 

is a mp X mq matrix. By noting the identity [2] 

V e c ( B C D ) = ( D T (G) B )Vec (C) (4.26) 

the natural gradient algorithm can be written as 
^ oc - [ V w J ( W ) ] W T W (4.27) 

d亡 

or, in the stochastic version, 

A W 二 e(t)[l + h(y)yT]W (4.28) 

Experiments show that the natural gradient algorithm yields convergence that is 
orders of magnitude faster than the gradient algorithm. In addition, for a fixed learning 
rate W fluctuates less around the convergence point after it has stabilized. Hence, the 
quality of separation is better if it converges to a correct solution. 

The learning rate e{t) can be controlled to decrease according to certain scheme 
formulated in stochastic approximation theory to obtain (almost) exact convergence 
to the solution. However, to retain the ability of the system to track show changes in 
the mixing condition, and for convenience, we use a fixed learning rate in this thesis. 
The system will attain 'weak convergence' in a small volume around the solution if the 
fixed learning rate is suitablly small. The average magnitude of the fluctuation around 
the solution decreases if smaller learning rate is used, the quality of separation will be 
better but the convergence speed will derease. 
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4 .2 .4 R o l e s and Constraints on t h e Nonl inear i t i e s 

It is important to distinguish clearly the roles and nature of the nonlinear functions 
used in the theory. /,(^-) is the nonlinear transformation function acting on yi to 
obtain z“ g ^ ) = //(y t) is the first order derivative of 力（队）.ĥ yi) 二 [log仍(队)]/& = 
d'AVi)/QiiVi) i s the derivative of log仏•(队),which is second order derivative in fi{yi). 

The role of {^(.)} is a set of manually chosen probability density functions (pdf's) 
we assign to the unknown {pSi{si)}. The role of {/“ . )} is a set of manually chosen 
Cumulative Distribution Functions (CDF's) we assign to { s j . The function /^(.) is 
the corresponding nonlinearity in the algorithm that picks up suitable higher order 
statistics and constrain them in the equilibrium condition of the algorithm. 

It is noteworthy to mention the reason why is asserted to be a pdf at the far 
beginning, i.e., why 仍(队）must be a (continuous) positive function integrable to 1 3 : 

/ o o 
gi(yi)dyi = 1 (4.29) 

-oo 

If g^yi) has discontinuity or can drop down to negative, hi(yi) would be undefined 
at the discontinuity or at the zero point of g^yi) and the algorithm would break 
down. HgiiVi) were not integrable, / , ( ^ ) would be an unbounded monotonic increasing 
function. Then the entropy H(z) can be unbounded above since the random variable 

Zi can take infinite range. Hence the maximization of H(z) (minimization of J (W)) 
w.r.t. W would result in divergence of W to infinity since this would give increasing 
H(z). 

4.3 Direction and Motivation for the Analysis of the Non-
linearity 

In the previous ME approach [5], Bell & Sejnowski suggested that the distribution 
of the sources should better be known in a priori and the nonlinear transformation 
function should be as close to the CDF's of the sources as possible. In the MMI ap-
proach [2], Amari et al suggested that the marginal densities of the recovered signals 
should be approximated to the best. Both approaches suggested that it was necessary 

3 As multiplying an arbitrary constant to gi{yi) results in the same hi(yi), and that only hi(yi) is 
material to the algorithm, we can actually allow an arbitrary multiplicative constant to g‘(y‘) with 
no effect to the algorithm. However, as gi(yi) has the role of the pdf of yi, we will stick to using the 
gi(yi) that is normalized to give an integral of one. 
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The set of rig.O'.) that can perform separation (loose matching) 

I n ^ , ) (Unknown) 明 

Figure 4.2: The choice of { ^ ( ^ ) } that is capable of separating sources with {pSi(si)}. 

to select {"“.)} as close to {抝‘⑷} or {PyXVi)} a s possible. 4 However, the general 
information-theoretic ICA scheme proposed by Xu k Amari [74] suggests a new view 
that the approximation of { 识 ⑷ } to the marginal densities {pyi{yi)} or {pSi{si)} is 
over-necessary and a much wider class q of {^(.)} can also perform signal separa-
tion successfully (Figure 4.2). This is called the 'loose matching' between { 讥 ( . ) } and 
{PyiiVi)}^ but the detailed condition of the 'loose matching' is not clear yet. 

Therefore, one main objective of this thesis is to investigate how large the class q 
is, for a particular ps(s), or the condition on the choice of the {^(.)} for that ps(s). 
Equivalently, we investigate the condition on the sources for them to be separated 
by a particular nonlinearity. Therefore, we investigate fixed nonlinearities case by 
case and find out which class of sources each fixed nonlinearty can separate. We 
perform detailed theoretical analysis and experimental verification on the simple cubic 
nonlinearity and empirical experiments on other nonlinearities. These results on fixed 
nonlinearities serve as examples of loose matching and give visualization of how loose 
the loose matching is. \ 

Secondly, we try to investigate the algorithm with flexible mixture of densities 
proposed by Xu, et al [75] that tries to adapt flexible, parameterized {^(.)} to {pyi (队)}. 
We try to determine the least flexible nonlinearity that can achieve the loose matching. 
Through these investigations, we give support to the suggestion that a much wider class 
of {^(.)} can perform separation other than {pSi(si)} and {PyXVi)}-

4 It is worth noting that p y ( y ) is changing while W is being tuned by the algorithm since y = WAs. 
However, the global minima of the cost function are guaranteed to be correct solutions if (each) gi(.) is 
kept to be equal to the changing pyi{yi), as the mutual information eq. (3.13) is a contrast. Moreover, 
each yi also equal to some Sji up to a scaling constant after successful separation. 



C h a p t e r 5 

Prope r t i e s of t h e Cost Funct ion 
and t h e Algor i thms 

In this chapter, we shall present some theoretical results on the properties of the cost 
function J(V) in the n2-dimensional V-parameter space. These results are useful for 
the analysis of the information-theoretic ICA algorithms and are common to many 
nonlinearities. We shall discuss the singularity, continuity, asymptotic behavior and 
other aspects of the cost function J(V). 

5.1 Lemmas and Corollaries 

The analysis of the information-theoretic ICA scheme follows an idea proposed by Xu k 
Amari in [74] that investigates the cost function J in the V-parameter space .., vln, 
v2i, •••, v2n, .., vnl,..., vnn) rather than in the W-parameter space (w11}.., wln, w21, •••, w2n, 

wnl,..., wnn). This is because V = WA bears a one-to-one mapping to W and is a 
set of parameters that completely characterizes the system. The mathematical analysis 
using V is simpler since it does not explicitly involve A and x. 

In particular, the analysis often involves determination of equilibrium points of the 
cost function J. A standard method to do so is to solve the equilibrium equation for 
W: 

• w J ( W ) = E x [ / + h(Wx)(Wx)T] [ w T ] _ 1 = 0 (5.1) 

However, this equation is difficult to be solved directly due to the involvement of 
mixture x. On the other hand, it is equivalent to solve the equilibrium equation for 

32 
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V: 

V v J ( V ) = £；8[/+ h(Vs)(VsT)] [V T ] _ 1 = 0 (5.2) 

since V w J ( W ) = V v J ( V ) A T and A is non-singular [74]. This equation is easier to 
solve since sources s are independent. Hence, it is more appropriate to investigate the 
J scalar field in the V-parameter space rather than in the W-parameter space. 

Secondly, the stability of the equilibrium points are determined by checking the 

Hessian matrix: 

V ^ J ( V ) 二 Q = 
_ d2j . • � d2J d2j •.. d2J _ 

dviidvn dvudvin dvndv2i dvndv n n 

‘ . • • s o * 6 
O • • • 

d2j ，.. d2j ： (5.3) 
dvindvn dvlndvlrt

 8 

d2J ••� •： 
dv2idvn 

o o • 
• • • 

d2J . d2J 
. ••• • • • _參_ •争鲁 — 

_ dv rindVii dVnnOVnn _ 

If the Hessian is positive definite, the equilibrium point is a local minimum; if the 
Hessian is negative definite, the equilibrium point is a local maximum; if the Hessian 
is neither positive definite nor negative definite, i.e., some of the eigenvalues are/is 
positive and some are/is negative, the equilibrium point is a saddle point. The stability 
can be checked by directly finding the signs of the eigenvalues or by checking the signs 
of the leading principle minors. 

5.1,1 Singularity of J (V) 

L E M M A 1 (Singular subspace) For the information-theoretic ICA scheme on any 
number of channels, as det V -> 0, J(V) -> +oo. 

Proof If det V = det W 二 0, there is a deterministic linear dependence on the recov-
ered signals, that is, any ？/,- can be written as yi = L(yu ..., yi+1,..., yn) where L(.) 
is a linear function. Hence, z{ 二 /《(队）also bear a deterministic relationship with 
{zu ..., ^ - + 1 , z n } and the conditional entropy H(zi\z1,Zi_u zi+1,zn) 
-oo . As the joint entropy H(z) 二 H(zi) + H(zi\z1,..., zi+u ..., zn), we have 
H(z) — -oo. Hence, on the singular subspace, J (V) +oo. • 
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The (n2 一 l)-dimensional subspace defined by detV = 0 (detW 二 0) in the n2-
dimensional V-parameter space (W-parameter space) is called the 'singular subspace'. 

R e m a r k 4 For the natural gradient algorithm eq. (4.28), if W is initialized as a 
singular matrix, it will subsequently be trapped in the singular subspace d e t W 二 0 
because 

d e t W t + 1 二（det[I + e(i)[I + H]])(detW t) = 0 (5.4) 

Surely, it cannot perform source separation. 

5.1.2 Continuity of J (V) 

L E M M A 2 (Continuity) For the information-theoretic ICA scheme with monotonic 
decreasing, odd nonlinearity, including: 

• the cubic nonlinearity h^yi) = Ci > 0, and other ( 队 ) = Q > 
0, p being a positive odd integer, 

• hi(yi) being reversed sigmoids like h^yi) = 1-2 logsig(队）二（exp(-yi) - 1)/(1 + 

exp(-2/t)), hi(yi) = -2tanh(?/i) or ( 讲 ) = - 2 ^ / ( 1 + y f ) , 

• hi(yi) = -Ci(yi)1/p,Ci > 0,p being a positive odd integer, 

on any number of channels of signals, J(V) is continuous at any non-singular V. 

Proof J(V) is continuous at some finite point V* if and only if the gradient V y J ( V ) 
exists and is finite at V*. Consider 

V^J(V) = — I ^ ^ + ^s[h(Vs)(s)^]J (5.5) 

where adjV denotes the adjoint of V. It is obvious that Es[hi(-vJs)si] at a finite point 
V* is finite for monotonic decreasing, odd hi(yi). The magnitudes of the elements in 
the first term are infinitely large only when det V 二 0, hence VyJ(V) exists and is 
finite for any non-singular V. Therefore, J(V) is continuous anywhere except on the 
singular subspace • . 
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5.1.3 Behavior of J ( V ) along a radially outward line 

L E M M A 3 For the information-theoretic ICA scheme with odd, monotonic decreas-
ing hi(yi) nonlinearity on any number of channels of signals, consider the value of 
J(NV) along a radially outward line passing through a non-singular V, where N = 
| |V|| = [(Vec(VT))T . VeC(VT)]"2 二 Jj2ti E" = i v f j is the norm of V, V 二 7VV, 
and V = V/N is a point on the sphere of unit norm. For any non-singular V, 
there exists a norm N0 such that J(N0'V) is the unique local minimum of J(NV), 
N e [0,+oo]. J(NV) is monotonic increasing with N (along the radially outward di-
rection) if � i V 0 , and is monotonic decreasing from +oo to J (N0V) if 0 < iV < 7V0. 

Proof The directional derivative of J(V) along the radially outward direction Vec(V ) 
is: 

轉％ =
 d J

V e c ( V T ) 
dN _ dVec{VT) K � 

{ - - . T ^ T 

Vec + I • Vec(V^) 

=-4 ( E E + E ̂ ^ (v"s) (v"s)] 1 (5.6) 
I i = l j = l i = l J 

^ 二一去{^^(ndetVH^E^vfsMvfs)]} 

i = l 

Denote V = [ v ^ , … ， T h e n 

� = ~ t { ^ N E s [ h i ( m J S ) ^ s ) ] } (5.7) 
J i = l 

where the factor 

F(N) = - { l + NE^iNvJs^vJs)]} (5.补 
i=l 

is a monotonic increasing function of N since {hi(yi)} are odd monotonic decreasing. 
Noting that F(0) = -n and F(N) -> +oo as TV +oo, we deduce F(N) must change 
sign at some N0. Since the sign 

of dJ(A^V)/d7V = F(N)/N 
is always the same as 
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A J(NV) increases 
f radially outward 

No radially outward direction 

Figure 5.1: An illustration of the behavior of J(V) along a radially outward line 
described by Lemma 3. 

F(N), we have dJ(NV)/dN < 0 if 0 < iV < iV0, dJ(NV)/dN = 0 if N = N0 and 
dJ(NV)/dN > Oif N > N0. Noting also that J(iVV) 4 +oo as iV — 0, since V = 0 
is a singularity, the theorem is proved. • 

An illustration for the behavior of J (V) along a radially outward line described in 
Lemma 3 is sketched in Figure 5.1. 

Remark 5 The increase of J (V) in the outward direction of V can be understood 
intuitively by considering entropy H(z). The sigmoidal-shaped nonlinear transforma-
tion function / / ( ^ ) is limiting to the lower bound as — - o o and limiting to the 
upper bound as y{ +oo. Both ends of 力(认)tend to be more flat as y{ ±oo, that 
is, large range of ？/,- with large magnitude is mapped into small range of Zi =力 (队 ) .As 
||V|| tends to be large, the random variable 队 generally becomes large and z{=力(队) 

is squeezed to be more concentrated at the regions near the upper and lower bound. 
Hence there is less randomness in z, the entropy H(z) decreases or equivalently, J (V) 
increases. 

5.1 .4 Imposs ib i l i ty of divergence of the informat ion- theoret ic I C A 
a lgor i thms wi th a large class of nonl inearit ies 

As the information-theoretic ICA algorithm performs descent in J (V) , by Lemma 3, 
V (any element of it) will not move in the outward direction if it is already in the 
region that J (V) is increasing outward. Hence we have the following corollary: 
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COROLLARY 1 (Impossibility of divergence) For the information-theoretic ICA 
algorithms with monotonic decreasing, odd 〜(队）nonlinearity including those listed 
in Lemma 2 acting on any number of channels of signals, if V is initialized at some 
non-singular point, then any i j = 1,..., n of V will not diverge to 士oo. 

5.1.5 N u m b e r and stabi l i ty of correct solut ions in the 2-channel case 

The following lemma states the number and forms of the correct solution in the 2-
channel case. It can be easily generalized to the n-channel case. 

L E M M A 4 For the Information-theoretic ICA scheme with monotonic decreasing, 
odd hi(yi) in 2-channel case, the correct solutions have the form: 

Solution A1-A4 V = 刻 幻 」 ° , (5.9) 
L o 士丨《2|. 

where is the unique magnitude of the solutions for 

I 1 + E^h^v^s.vn] 二 0 (5.10) 

and I � 2 1 is the unique magnitude of the solutions for 

1 + ^ 2 ^ 2 ( ^ 2 2 ^ 2 ) 5 2 ¾ ] 二 0 

(5.11) 
or 

“ 0 ±丨<2丨’ / c 1 0、 
Solution A5-A8 V = . _ 1 121 (5.12) 

L ± K i l 0 . 

where is the unique magnitude of the solutions for 

1 + ES2[h1(v12S2)s2v12] = 0 (5.13) 

and li;^ I is the unique magnitude of the solutions for 

1 + = 0 (5.14) 

There are totally 8 correct solutions in the 2-channel case. 
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Proof Substituting v12 = = 0 for Solutions A1-A4, the cross-couplirig equilibrium 
equations: 

= 列)]£Us2]I;22 = 0 (5.15) 

权["2(”22«2>1”11] = £^^2^2252) )^^1^1]¾^ = 0 (5.16) 

are automatically satisfied. As hi(yi) are monotonic decreasing and odd, the magni-
tudes K � a n d | � 2 | have unique solutions for the self-coupling equations eq. (5.10) and 
(5.11) respectively. The case for Solutions A5-A8 is similar. Counting the combination 
of signs of the elements, we conclude there are exactly 8 correct solutions. • 

L E M M A 5 For the Information-theoretic ICA scheme with monotonic decreasing, 
odd hi (yi) in 2-channel case, the sufficient and necessary condition for Solutions Al-
A4 in eq. (5.9) to be stable is: 

- - j - j > o (5.17) 
V11 v22 

Proof The Hessian matrix for Solutions A1-A4 is: 

•令�7(V) = Q = 

0 0 0 -
0 Ea[-h[(VnSi)sl) ^ 0 
o 丑j—岵(巧2幻)碎] o 
o 'o22 o 老 + 民2[—"'2(�2S2)s!] J (5.18) 

The sufficient and necessary condition for the Hessian to be positive definite is that all 
leading principal minors must be positive. The elements qlu qAA are always positive. 
Hence, the condition for all leading principal minors to be positive is: 

det [ 922 Q23 I - 私 [ 一 约 ) 4 ] 一 - r ^ T T > 0 (5.19) 
• q32 933� v22 

By the independence assumption of the source signals, the condition eq. (5.17) is 

reached. • 

Similarly, 
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L E M M A 6 For the Information-theoretic ICA scheme with monotonic decreasing, 
odd hi(yi) in 2-channel case, the sufficient and necessary condition for Solutions A5-
A8 in eq. (5.9) to be stable is: 

I - > 0 (5.20) 
v12  V21 

The above conditions are actually a partial result. To apply the lemmas to a 
particular nonlinearity, we have to substitute the { � ( . ) } and V* in to get a condition 
in terms of the statistics or distribution of the sources only. However, one difficulty is 
to pick the elements ( ¾ } out of the expectation operation. Only in the simple cubic 
nonlinearity case can we expand the term in the expectation operation and pick {v*j} 
out. We cannot analyze more general nonlinearities like reversed sigmoids or cubic 
root nonlinearities. Moreover, investigation on other equilibrium points and stability 
of them are needed for global convergence analysis. 

5.1.6 Scale for t h e equi l ibrium points 

If a family of nonlinear function can be written as ( 1 / ^ ) ^ ( ^ / ^ ) , ^ is called the 
scale parameter of 仏(队).We shall prove that this scale parameter only have the effect 
of controlling the scale of the equilibrium points and does not affect the separation 
capability of the nonlinearity. 

L E M M A 7 Consider an information-theoretic ICA system A using 丞(队)and another 
information-theoretic ICA system B using g^yi) = ( 1 / ^ ) ^ ( ^ / ^ ) , i = 1,..., n. For any 

二 [ v f ,“.，vf]T，let V 彻 = [ v f ， . " ， v f ]T such that vf* = i = 1,…，n. 
Then, VB* is an equilibrium point of system B if and only if VA* is an equilibrium 
point of system A. 

Proof For the 躲輪 used in system B, we have 知 (沾 )=(1/^)^(^ /¾)¾ where h ^ r ) = 
g'i(r)/gi(r). If VA* is an equilibrium point of system A, VA* satisfies the equilibrium 
equation: 

V v J ( V ) V T | v - = + h(VA*s)(VA*s)T] = 0 (5.21) 
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where h(y) = [^1(2/1), ...^hn(yn)]T. For the diagonal elements (self-coupling equa-
tions) ,we have, for i = 1,..., n , 

0 = l H - ^ s [ ^ ( [ v f r s ) ( [ v f T s ) ' 

— — , 2 2 ) 

I + ([vfTs) 

I 二 l + ^ % ( [ v f T S ) ( [ v f * ] T
S ) ] 

For the off-diagonal elements (cross-coupling equations), we have, for == 1,..., n , i / 

j, 

I 0 - [ ^ ( [ v f * f s) ( [ v f f s) ' 

得 ) ( 例 （-) 
I ―- h ( ^ ) ( ^ ) ] 

which implies 

I ^ [ ^ ( v f T s ) ( [ v f T S ) ] - 0 (5.24) 

Combining eq. (5.22) and (5.24), we have 

I V v J ( V ) V T | v S . = E s[I + h(VB*s)(VB*s)T] 二 0 (5.25) 

Hence, we have VB* satisfies the equilibrium equation for system B, and are equilibrium 
points of system B. The converse can be proved using the reversed direction of the above 
method and the lemma holds. • 

C O R O L L A R Y 2 For an information-theoretic ICA system using 认(队)from a scale 
family ( 1 / ¾ ) ¾ ) , i 二 1,..., n , the magnitude of vf of the equilibrium points is 
controlled by the scale parameter 0i as Vij oc 0“ j = 1,..., n, and after the system 
has converged to some equilibrium point, the magnitude of recovered signal 丑 [ |队 | ] is 
proportional to 氏. 
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COROLLARY 3 For an information-theoretic ICA system using from a scale 
family (l/ei)gi(yi/6i)1 i = 1,..., n , the values of scale parameters {^} do not affect 
the number and forms of the solutions of the equilibrium equation. 

LEMMA 8 Consider an information-theoretic ICA system A using 么(^) and another 
information-theoretic ICA system B using 仏(队）二 { 1 / 聯 办 f / 爲 ) i = h …，n. For any 
VA* 二 [ v f , . . . , let V s * = [vf v f*F such that vf* = I = 1,…,n . 
Then, the stability of VB* in system B is the same as the stability of VA* in system 
A-e 

Proof The elements of the Hessian matrix eq. (5.3) at V s * in system B is given by: 

I d2J _coivf;coiv^ 
dvijdvkt v b . (detV5*)2 

n , ,、（-1 严 + 叫 detMg,;.),(fc，0 (5.26) 

I -(1-^)(1-^) ^ ^ 
I - s ^ E m ^ r r ^ ] 

where coft;^ is the cofactor of and M(ijj),(^,/) denote the matrix V with row i, row 
k, column j and column I removed. Differentiating, we have ^ (¾) 二 ( 1 / ^ ) ^ ( ^ / ¾ ) . 

As each row [vf*]T = ^[vf*]T , we have 

I d e t V B * = ( f l ^ j d e t V A * (5.27) 

and similarly, 

/ \ n 

co fv^ = n� c o f咍* ( 5
.

2 8 ) 

m=l 
j 

I： ( n \ 
d e t M ( f * ) ) ( , ) 0 - II ‘ detM^j)>{k>l) (5.29) 

I m = 1 , j 
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Hence, we can link the elements of the Hessian of system B at V s * to the corresponding 
elements of the Hessian of system A at V *: 

\ d2J 一 cof略cof咍* 

dvi:idvkl vb.=民�(detVA*)2 

n , � n , ( - 1 ) - ^ d e t M ( t * ) ) ( f c , 0 
一（1 — ^ ) ( 1 - Oji) 

恤 det V (5.30) 

-Si^Emvtr^sjs,] 
I 1 d2J 

0i0k dvijdvki yA* 

The stability of the point is completely characterized by the signs of the leading 
principal minors which are defined by: 

[ q n … q i r 1 

； . . . 丨 (5.31) 
qn ... qrr J 

(e.g. see [3]) Note from eq. (5.30), the factor 1/(¾ is common to each element in 
the row and the factor l/6k is common to each element in the column of the Hessian 
matrix. Hence we get that the leading principal minor pr for the Hessian matrix of 
system B at VB* is proportional and has the same sign as the leading principal minor 
pr for the Hessian matrix of system A at V 

p r |VB. = SrPr\vA* r = 1,..., n2 (5.32) 

where @r is the product of some corresponding (1/^), i G {1,…，n} 

�Therefore, the lemma is proved. • 

C O R O L L A R Y 4 The scale parameter cannot affect the stability of the equilibrium 

points. 

A nonlinearity is said to be capable of separating some sources if V converge to 
a correct solution P D . The separation capability hence depends on the number of 
equilibrium points, forms (whether they are equal to some PD) of the equilibrium 
points and the stability of the equilibrium points. Since the scale parameter can affect 
none of factors, we have the following corollary. 
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COROLLARY 5 The scale parameter cannot affect the separation capability and a 
family of information-theoretic ICA system using from a scale family ( 1 / 久 ） 

have the same separation capability. 

5.1.7 Absence of local m a x i m u m of J(V) 

L E M M A 9 For the information-theoretic ICA scheme with monotonic decreasing, 
odd hi(yi) nonlinearity, including those listed in Lemma 2, on any number of channels 
of signals, there is no local maximum of J(V) in the whole V-parameter space. 

Proof The diagonal elements of the Hessian matrix of J(V) is: 

树 （ 5 測 

For any monotonic decreasing K(yi) < 0 , 五 > and hence 
d2J/dvijdvij > 0. The first leading principal minor of the Hessian matrix is a diagonal 
element, and hence is positive. Therefore, the Hessian matrix cannot be negative 
definite at any V and there is no local maximum in the whole V-parameter space. • 



I C h a p t e r 6 

T h e Algor i thms wi th Cubic 
Nonl inear i ty 

In this chapter, we shall present an analysis on the information-theoretic ICA algo-
rithms with hi (yi) being cubic nonlinearity. We shall theoretically prove the cubic 
nonlinearity can perform separation on two channels of mixtures of so-called globally 
sub-Gaussian source signals. This analysis can act as a detailed case study that visu-
alize the relationship between nonlinearity and separation capability to be discussed 
in the next chapter. Some results will also be given to the 3-channel case. 

In Section 6.1’ we will introduce the cubic nonlinearity and compare it with the 
reversed sigmoid used by Bell k Sejnowski [5]. Theoretical results on the 2-channel 
case will be presented in Section 6.2 and Section 6.3 presents some experiments to 
verify the theoretical results. Some theoretical results on the 3-channel case will be 
given in Section 6.4 and some experiments for the 3-channel case will be presented in 
Section 6.5. 

6.1 The Cubic Nonlinearity 

In this chapter, we investigate the information-theoretic ICA algorithm with 
being cubic nonlinearity. It is because the cubic nonlinearity is the simplest polynomial 
and the manipulation of it in the analysis is plausible. The cubic nonlinearity takes 
the form (Figure 6.1): 

hi(yi) = -Ciyf, Ci > 0, i = (6.1) 

44 
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h(y) 

I - ^ > � � � : 

Figure 6.1: The cubic nonlinearity and reversed sigmoid for hi(yi). 
Dashed: Reversed sigmoid that works on source signals with sharply peaked pdf's. 

Solid: The cubic nonlinearity that works on sub-Gaussian sources. 

This hi{yi) corresponds to 

I (6.2) 

and 

fiiVi) = I"' 9i(r)dr (6.3) 
J 一 OO 

where 

f
 C . — i . - V - ^ L , (6.4) 
V f ^ e x p i - ^ d y , c r 1 / 4 7 ( 1 / 4 ) ' 

7(...) being the gamma function, is a normalizing constant. Note that c � 1 / 4 is the scale 
parameter and in general c“ i = 1 , 2 , n can be arbitrarily chosen as any positive 
number and can also be either equal or different. 

In [5], the nonlinearity used by Bell & Sejnowski h^yi) - I - 21ogsig(yi)= 
(exp(-2/t) 一 1 ) / (1+ exp(—队)，hi(y{) 二 -2tanh(yi) , and h ^ ) = - 2 ^ / ( 1 + y f ) are 
all of reversed sigmoid shape (Figure 6.1). They are suggested to be able to perform 
separation on super-Gaussian sources and are experimentally verified to be able to sep-
arate human speech signals [5]. The cubic nonlinearity has different properties from 
the reversed sigmoids - it has opposite curvature and is unbounded. We assert that it 
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can separate sub-Gaussian sources and in the 2-channel case, we prove it can separate 
two 'globally sub-Gaussian' sources. 

6.2 Theoretical Results on the 2-Channel Case 

The global convergence behavior of the information-theoretic ICA algorithms with the 
cubic nonlinearity is investigated through the following three steps: 1) Explicitly and 
exhaustively determine the equilibrium points of the cost function, 2) Determine, for 
each equilibrium point, whether and under what condition it is a local minimum or 
saddle point, 3) Investigate the global configuration of the whole parameter space. 

6.2.1 Equil ibrium points 

We start the determination of equilibrium points from the idea in [74] that investigate 
the equilibrium equation in the V-parameter space: 

V F J ( V ) = 0, (6.5) 

rather than Vw«/(W) = 0 in the W-parameter space for the reasons stated in Sec-
tion 5.1. 

Provided det V + 0, we have eq.(9) in [74] (without the constraints on that theo-
rem), which can written as 

I E s [ I + h ( V s ) ( V s ) T ] = 0 (6.6) 

For the 2-channel case, we get a system of four equations with four unknowns {i?u> 

^12, ^21, ”22}: 

I 1 - c.Eiyt] 二 1 一 + Hi^rn + v ^ ) 二 0 (6.7) 

E[y\y2] = vlxv21 {v2^ + vl2m) + v12v22{v2
12^t + vnm) = 0 (6.8) 

E[ylyx] = v11v21(vl1fj,41 + v2
22m) + v12v22(vl2n4

2 + v2
21m) = 0 (6.9) 

I 1 — c2E[yt] = 1 - + 2v2
21v2

22m + v^t) = 0 (6.10) 
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where /if = and m = A key step to solve them is to write the cross-
coupling equations (6.8) and (6.9) in the following form (suggested by Jiong Ruan): 

^U ” lA m ^11^21 1 = 0 ( 6 n ) 
_ V21 V22 J L m A J L ” 12”22 J 

Denote 

M =
 171 (6.12) 

L ^2 \ [ m A . 

Eq. (6.11) implies 

I I"外lU21 "I = 0 or d e t M - 0 (6.13) 
.^12^22 . 

We treat these two exhaustive possibilities in case A and case B respectively. Case A 

^ 1 1 ^ 1 = o (6.14) 
.^12^22 . 

By eq. (6.7) and (6.10), we find that elements in any row of V cannot be all zeros 
simultaneously. Hence, putting v12 = 0 and v2i 二 0 into the self-coupling equations 
(6.7) and (6.10), we get: 

Solutions A l - A4: 

f v = [ ± ( C l ^ " 1 / 4 ° I (6.15) 
- L o 士 M - " 4 J 

Putting vn = 0 and v22 = 0 into eqs. (6.7) and (6.10)，we get: 

Solutions A5 - A8 

° 蚧 ^ 广
1 / 4

1 (6.16) 

Solution Al - A8 are the eight and only eight solutions in case A. These eight solutions 
satisfy V 二 D P , and they are correct solutions that can perform source separation. 

Case B 
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Now we consider the case 

det M = ( 屹 咗 - v i y 2 1 ) 咖 - m 2 ) 二 0 (6.17) 

Assume that 

I ^ t - m2 二 办t - [3(M?)2][3(MD2] + 0 (6.18) 

i.e., the two sources are not 'globally Gaussian', eq. (6.17) becomes 

瞧 - - o (6.19) 

Firstly, we prove that all v^ ^ 0 in case B. Again by eqs. (6.7) and (6.10), the 
elements in any row of V cannot be all zeros simultaneously. Hence, suppose vxl — 0, 
then vl2 + 0. From eq. (6.8), v22 = 0. From eq. (6.19)，v21 二 0. There is a 
contradiction that v22 二 0 and v2i = 0 simultaneously, so it is impossible that = 0. 
Using the same argument on other elements of V, the proposition all 灼j # 0 in case 
B is proved. 

Secondly, we consider the possible combinations of the signs of i ^ . Let the sign 
of v^ be Sij = vij/lvij]. As all elements in the first two matrices of eq. (6.11) are 
positive, it is necessary that ( ^ n ^ i ) and ；22) are of different signs. Hence we have 
the constraint 

S11S12S21S22 = - 1 (6 .20) 

In other words, three of the four v^j must be of the same sign, and the remaining one 

the opposite sign. \ 

Coping with the constraint on the signs, eq. (6.19) implies: 

I 、二一 (6.21) 

2̂2 

Putting eq. (6.21) back into eqs. (6.7) to (6.10), we get: 

Solutions B1 - B8 
I [ ^ ( 2 ^ ) - ^ 4 s12(2CiV2)~^ 1 
I — [ 如 ( 2 c 洲 吻 ( 2 明 J — " 4 J ‘ 
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where 

Sij = 1 or - 1 satisfying siisi2s21s22 = 一 1， ^ 

with totally 8 combinations, 

^ = ^ + (6.24) 

\ 仍 = / 4 + (6.25) 

Solutions B1 - B8 are the eight and only eight solutions in case B. However, for these 
solutions V + PD. They are spurious solutions that cannot perform source separation 
but still satisfy the four equilibrium equations. 

In a word, the equilibrium equation eq. (6.6) is determined to have exactly sixteen 
solutions, namely Solution Al - A8 and Solution B1 - B8. Solutions Al - A8 (Group 
A) are correct solutions that can perform source separation, while Solutions B1 - B8 
(Group B) are spurious solutions that cannot perform source separation. 

Remark 6 The set of equations eq. (6.7) to (6.10) are physically interpreted as fol-
lows. Eq. (6.8) and (6.9) represent the coupling of the two channels (the two rows vf 
and vj). The coupling terms h1(y1)y2 and h2{y2)yi in the algorithm are formed by the 
cubic nonlinearity on one channel and a linear counterpart of the other channel. They 
restrict the forth order cross-moment E[yfy2] and E[y\yi] to be zero in the equilibrium 
equation and determine the possible form of the solutions. Eq. (6.7) and (6.10) control 
the magnitude of each recovered signal separately by restricting the forth order (self) 
moment E[yf] to be cj1. Equivalently, they control the magnitudes of the row vectors 
vf and V2 . This result demonstrates Corollary 2. 

6.2 .2 Stabi l i ty of t h e equi l ibr ium points 

The Hessian matrix V^J (V) is checked for each equilibrium point to determine whether 
and under what condition it is a local minimum or saddle point. In Appendix A, it is 
proved that for source signals satisfying the following condition: 

I E[st]E[st\ - [S(E[sl])2mE[sl])2] < 0 (6.26) 
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Solutions Al - A8 are minima and Solutions B1 - B8 are saddle points of J(V). For 
source signals satisfying: 

I E[st]E[st\ - [msmmsi])2] > o 

it is proved that Solutions B1 - B8 are minima and Solutions Al - A8 are saddle points 
of J(V). 

Remark 7 A signal s is called sub-Gaussian if the kurtosis E[s4] - 3(E[s2])2 is nega-
tive, called super-Gaussian if the kurtosis is positive and called Gaussian if the kurtosis 
is zero. A super-Gaussian signal has sharply peaked pdf with long tail and a sub-
Gaussian signal has flat pdf with short tail. The term 丑[sfl五[动―[3(丑[g])2][3(E[s3)2] 
in eq. (6.26) and (6.27) is defined as the 'joint kurtosis' for the two signals. Two sig-
nals that satisfy eq. (6.26), i.e., with negative joint kurtosis, are called 'globally sub-
Gaussian' [28]. Similarly, two signals that satisfy eq. (6.27), i.e. with positive joint 
kurtosis, are called 'globally super-Gaussian', and two signals with zero joint kurtosis 
are called 'globally Gaussian'. 

, 6 . 2 . 3 An alternative proof for the stability of the equilibrium points 

The following is a useful equation that compares the values of J for two equilibrium 
points of the information-theoretic ICA algorithm with cubic nonlinearity on any num-
ber of channels of signals: 

LEMMA 10 For the information-theoretic ICA algorithms with cubic nonlinearity 
eq. (4.21), if VA and VB are two equilibrium points, the equation: 

I 、 粉 眷
1 ( 6

.
2 8 ) 

always holds. 
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Proof 

J (V A ) - J(VB) = Es [in ( T � 

I —私 lln|detv/r^…(巧广)_| 
[detV^l . 

_ n | d e t V A | 
n n 

- E 私[ l n9i(vLs)] + E 私 [ l n (v^-s)] 
i=l j=l 

For the cubic nonlinearity,仏(队）二 exp(—(¾认，/4). Then, 

I 粉 粉 丨 微 

n n (6.30) 

i=l j=l 
However, we have Bs[ci(vfs)4] = 1 for any equilibrium point by the self-coupling 
equilibrium equations. Hence the second term in the above equation equals to n and 
the third term equals to -n. They cancel each other and hence eq. (6.28) holds. • 

We realize that equilibrium points of the same group have the same value of J , 

since 

n 
J(V) = Es[\nps{s)] - In | detV| - ^ £;s[ln^(vf s)] (6.31) 

i=l 

and each term has the same value for the equilibrium points of the same group. By 
symmetry (scaling parameters cannot affect separation capability)，equilibrium points 
of the same group must have the same status of being local minima or saddle points. 
Owing to the continuity in non-singular regions and J tending to positive infinity on 
the singular subspace, the equilibrium point group with lower J value must be local 
minima. Since there are two groups only, the other group that has higher J value must 
be saddle points. (Otherwise, there must be a third group of saddle points.) Hence, 
we determine the condition that J(VA) < J (V B ) by Lemma 10: 

\detVA\ = ( C l c 2 ^ t ) - 1 / 4 (6.32) 

I de tV B | = 2 ( 4 ^ ^ 2 ) - 1 ^ 
, f (6.33) 

二 + + m2))"1/4 
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The condition 

J(VA) - J (V B ) = In m ) " 4 < o (6.34) 

becomes: 

" 严 < I (6.35) 
fiifit + + 爪

2 4 

3/4/4 — 2 如 》 一 m2 < 0 (6.36) 

(6.37) 

0 (6.38) 

or 

I (6.39) 

Hence the correct solution group A are local minima and spurious solution group B are 
saddle points if eq. (6.39) is satisfied. Conversely, the spurious solution group B are 
local minima and correct solution group A are saddle points if the term in eq. (6.39) 
is positive. Hence, the above argument constitute an alternative proof to the stability 
of the equilibrium points. The use of Lemma 10 with the simplicity of the 2-channel 
case avoids dealing with the complex Hessian matrix in the investigation of stability. 

6.2.4 Convergence Analysis 

The equilibrium points of the algorithm have been exhaustively found and the condition 
for stability of the equilibrium points has been investigated. By corollary 1, V will not 
diverge to infinity and hence must converge to one of the local minimum. Therefore, 
we have the following theorem on the global convergence behavior of the algorithm. 

THEOREM 1 For the information-theoretic ICA algorithms eq. (4.18), including 
the natural gradient algorithm eq. (4.28) the gradient algorithm eq. (4.23), with the 
cubic nonlinearity eq. (6.1) acting on two mixtures of two source signals, W being 
initialized at some nonsingular point, 
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• If the two source signals satisfy eq. (6.26), then V will converge to one of the 
Solutions Al - A8 eq. (6.15) and (6.16). 

• If the two source signals satisfy eq. (6.27), then V will converge to one of the 
Solutions B1 - B8 eq. (6.22). 

In a word, Theorem 1 means that the information-theoretic ICA algorithms with 
cubic nonlinearity can separate two globally sub-Gaussian sources but cannot separate 
two globally super-Gaussian sources. 

R e m a r k 8 The cubic nonlinearity is related to some forth order statistics of the sig-
nals. This is because the coupling terms ^ ( y ^ y j pick up the forth order moments 
E[yfyj] in the algorithm. In light of this relation between the cubic nonlinearity and 
forth order statistics, there is no surprise that the condition on successful separation of 
the source signals depends on the joint kurtosis of the sources. Interesting enough, the 
condition on successful separation in this work is exactly the same as those in [59] and 
[17] with cubic nonlinearity or forth order moment, although all the three works use 
different network architectures, different learning principles, different cost function (if 
any) and different algorithms. Similar conditions are found in other algorithms using 
the cubic nonlinearity [14, 64]. 

6.3 Experiments on the 2-Channel Case 

The experiments are aimed at demonstrating the theoretical results. The natural 
gradient descent algorithm eq. (4.28) with the cubic nonlinearity eq. (6.1) is used. It 
is chosen that cx = c2 = 1. For all experiments, the learning rate is kept at 0.0001. 
The following mixing matrix is used: \ 

A = [ 1 0 , 6 1 (6.40) 
0.7 1 

L J 

The experiments are run for a number of scan through the data set long enough that 
W looks having converged to a stable point. 

The performance of the separation is determined by how close to P D the matrix 
V = WA is. The element Vij determines the amplitude of source signal Sj goes into 
recovered signal yj and vfj determines the power. The greatest vfj in a row in V is 
regarded as the power of the 'signal' and the sum of other vfj of the row is regarded as 
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the power of the 'interference'. Hence, we define the interference-to-signal power ratio 
of channel i in decibel (dB) unit as: 

I / / ¾ = 10 X l o g l 0 ( ¾ ^ ) , fc 二 a r g m a x , 咍 （6.41) 

We use the mean of the interference-to-signal ratio as the performance index of source 
separation. 

6.3.1 Exper iments on two sub-Gaussian sources 

In this experiment, two channels of artificially generated independently and identically 
distributed (iid) source signals with uniform distribution in [-1,1] are used. Each 
channel consist of 100,000 data points. Statistics of the data set are: 

= 0.3326, fit = 0.1991, ^ = 0.3337, / 4 二 0.2007 (6.42) 

Both channels are sub-Gaussian, the standardized joint kurtosis is 
-5.756 and they are obviously globally sub-Gaussian. We tried two initializations of W. 
The first one is the identity matrix, which is a natural choice when no supplementary 
information is provided, and means V starts from the original mixture A. The second 
initialization is at one of the spurious Solution B, Winit = V B A _ 1 , where 

�—0.9851 0.9832 1 ( a V B = (6 .4 3) 
[0 .9851 0.9832 

to test the stability of solution group B. 

For the case W is initialized as an "identity matrix, the system converges in 30,000 
data points. The performance graph, interference-to-signal ration versus number of 
data points scanned, is plotted in Figure 6.2. For the case initialization is at the 
Solution B, the system converges in 200,000 data points. The 4-dimensiorial trajectories 
of the convergence are plotted in two 2-dimensional graphs, Figures 6.3 (a) and (b), 
each of which being the projection to two coordinates. 

V in the two cases converges to two of the correct Solution A's: 

I V , = [ ± L 4 9 7 ° � 1 (6.44) 
[ 0 1.4941 • 
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Performance Graph 
Oi 1 1 1 1 1 1 1 1 r-

- 1 0 - ^ v — A v e r a g e l/S ‘ 
^ v ——l/S of each channel 

：： 爱
 _2
。_ \ \ “ 

S � \ \ 
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I M 、、广、、，、、 ^ 
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� - ^ ir f t \f\l ？ 
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0 1 2 3 4 5 6 7 8 9 10 

No. of data points scanned x ^ Q* 

Figure 6.2: The performance graph of the algorithm with cubic nonlinearity acting 
on uniformly distributed sources. 

The Interference-to-signal ratio reach -40dB in both case. 

Hence it is experimentally verified that solution group A is stable and solution 
group B are saddle points in this case. 

6.3.2 Experiments on two super-Gaussian sources 

In this experiment, two channels of human speech signals are used. The first channel is 
recorded from a man telling a story and the second channel is recorded from a woman 
reading news. Both signals are recorded at 8kHz and consist of 100,000 data points 
(12.5 seconds). The signals are randomly permuted to get rid of non-stationarity. 
Statistics of the data set are: 

fil = 0.0625, [L\ = 0.0435, \i\ = 0.2500, ^ = 0.3342 (6.45) 

Both signals are super-Gaussian. The standardized joint kurtosis 含/[("?)2(/4)2] 一 9 

is 50.55 and obviously the source are globally super-Gaussian, We have also tried two 
initializations of W. The first one is the identity matrix. The second initialization is 
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Figure 6.3: The trajectories of convergence of V of the information-theoretic ICA 
algorithm with cubic nonlinearity on uniformly distributed sources. Solid: Winit = 
I. Dashed: W in i t 二 V ^ A - 1 . Solution A's and B's are marked of by 'A' and 'B' 
respectively. The convergence points are solution A's. 
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at one of the correct Solution A, W in i t = V^A" , where 

V 4 = [ 2 ' 1 8 9 7 ° 1 (6.46) 
0 1.3152 

to test the stability of solution group A. 

For the case W is initialized as identity matrix, the system converges in 80,000 
data points. For the case initialization is at the solution A, the system converges in 
160,000 data points. The 4-dimensional trajectories of the convergence are plotted in 
two 2-dimensional graphs, Figures 6.4 (a) and (b), each of which being the projection 
to two coordinates. 

V in both cases happens to converge to one of the spurious Solution B's: 

“1.6964 1.0187 1 & 
VB = (6.47) 

L -1.6964 1.0187 _ 

Hence it is experimentally verified that solution group B is stable and solution 
group A are saddle points in this case. 

6.3.3 Experiments on one super-Gaussian source and one sub-Gaussian 
source which are globally sub-Gaussian 

In this experiment, one signal recorded from a song at 8kHz, with the time index 
randomly permuted, is used as channel 1. One uniformly distributed signal used in 
the first experiment is used as channel 2. The statistics of the signals are: 

乂 二 0.2532, /4 二 0.2120, [i\ = 0.3326, [i\ = 0.1991. (6.48) 

The standardized joint kurtosis — 9 is -3.048 and the two signals 
are globally sub-Gaussian. We also tried the two initialization that W i n i t =I and 
Winit=VBA一丄.For the first initialization, V converged, after scanning 50,000 data 
points, to the solution A: 

• 1.474 0 1 .qn V A 二 （6.49) 
0 1.498 
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Figure 6.4: The trajectories of convergence of V of the information-theoretic ICA 
algorithm with cubic nonlinearity on permuted speech signals, Solid: W in i t 二 I. 
Dashed: Winit 二 V^A"1 . The convergence points are solution B. 
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For the second initialization, V converged, after scanning 500,000 data points, to 
the solution A; 

” 0 1.498 1 
V A 二 （6.50) 

L 1.474 0 

The Interference-to-signal ratio reached -35dB in both case. 

Hence it is experimentally verified that solution group A is stable and solution 

group B are saddle points in this case. 

6.3.4 Exper iments on one super-Gaussian source and one sub-Gaussian 
source which are globally super-Gaussian 

In this experiment, one uniformly distributed signal from the first experiment and 
one permuted speech signal from the second experiment is used. The statistics of the 
signals are: 

= 0.2500, ^ = 0.3342, = 0.3326, A 二 0.1991. (6.51) 

The standardized joint kurtosis — 9 is 0.6239 and the two signals 
are globally super-Gaussian. We also tried the two initialization that Winit二I and 
W i n i t ^ A A " 1 . For the first initialization, after scanning for about 2,000,000 data 
points, V became stabilized but still have some relatively large fluctuation. The slow 
and fluctuating convergence is plotted in Figure 6.5. A snapshot of V is 

？ 0.8703 - 1 . 1543 1 ( 6 .52) 
_ 1.0088 0.9741 

For the second initialization, after scanning for also for about 2,000,000 data points, 
V became stabilized but still have some relatively large fluctuation. A snapshot of V 
is 

I" 1.0094 0.9695 1 ” � V 二 (6.53) 

• -0.8684 1.1474 _ 

Both convergence points are a little deflected from the Solution B's: 
[“0.9339 土 1.0630 1 ^ 

WB = (6-54) 
士0.9339 1.0630 
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Figure 6.5: The convergence of W for two sources that are closed to globally Gaus-
sian, showing the relatively large fluctuation. 

The slow convergence and relatively large fluctuation occur might be because the 
J (W) scalar field is relatively flat, that might be due to the magnitude of standardized 
joint kurtosis being small, i.e., the two sources are closed to globally Gaussian. 

The above four experiments test different combination of sub-Gaussian or super-
Gaussian sources and the experimental results are consistent to the theoretical analysis. 

6.3.5 Experiments on asymmetric exponential ly distributed signals 

This experiment tests the information-theoretic ICA algorithm on sources with asym-
metrical density. 2 channels of exponentially distributed (fi = 1) sources are used. The 
samples are shifted to have zero means. Statistics of the data set are: 

I 乂二 1.0278, /4 二 15.4697，/^ = 1.0711, /4 二 15.4276 (6.55) 

Obviously both signals are super-Gaussian. W was initialized to the identity matrix. 
After scanning for 80,000 data points, V converged to the spurious solution 

1 v = [ ° - 4 0 4 — _ 3 1 (6.56) 
0.404 0.403 



Chapter 6 The Algorithms with Cubic Nonlinearity 61^ 

Hence, this experiment verifies that the convergence analysis is valid for asymmet-
rically distributed sources. 

6.3.6 Demonstrat ion on exact ly and nearly singular initial points 

This part of experiment is to demonstrate the two cases that W in i t is exactly singular, 
and W^it is only near singularity but not exactly singular. In this experiment, the 
uniformly distributed signal data set in Section 6.3.1 is used. 

In the first case, W is initialized at 

W in i t = 1 2 (6.57) 
0.5 1 

After stabilized, a snapshot of W is 

“0.3263 0.6526 1 
W = (6.58) 

' [0.3263 0.6526 J 

which corresponds to: 

v 二 [ 0.7831 0.8484 1 (6.59) 
[0.7831 0.8484 • 

which is neither in Solution Group A nor B, and satisfies det W = 0. The elements of 
W are plotted in Figure 6.6. 

Then in the second case, W is initialized at a point near singularity but not exactly 
on the singular subspace: -

“ 1 2.0001 1 ( a �� 

丨 0.5 1 J ( 6 . 6 0 ) 

After convergence, a snapshot of the V is 

� - 0 . 0 0 1 5 1.4846 1 ( a V = (6.61) 

1.4911 -0.0090 

which is one of the correct Solution A's. 
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Figure 6.6: The graph of elements of W for the case W is initialized exactly on 
de tW 二 0. 
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Figure 6.7: The graph of elements of W for the case W is initialized near det W = 0. 
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The elements of W verses the number of trained data points are plotted in Fig-
ure 6.7. We can see that this graph is similar to Figure 6.6 at the beginning but wi:j 

finally goes back to the correct solution. Hence it is demonstrated that W will finally 
leave the singular subspace if it is only near it but not exactly on it. 

6.4 Theoretical Results on the 3-Channel Case 

The 3-channel case is more complicated than the 2-channel case. The method we used 
in the previous section is difficult to scale up since the equilibrium matrix equation of 
high dimension is difficult to be solved exhaustively and the —-dimensional Hessian 
matrix is too complex to manipulate. However, Ruan and I have solved some equilib-
rium points and studied the stability of the group of correct solution. Although the 
analysis is not complete and global convergence behavior cannot be concluded, the 
partial results do provide some insight in high dimensional (n > 2) ICA problem. 

We follow the method of analysis used in the 2-channel case, that is, try to solve 
the equilibrium points from the equilibrium equation in the V-parameter space. Then, 
we study the stability of the equilibrium points if possible. 

6.4.1 Equilibrium points 

In the 3-channel case, the equilibrium equation eq. (6.6) becomes 9 equations in 9 
variables: 

Self coupling equations 

[ (V v J (V))V T ] n = 1 - ClE[yt\ 

I — + (6.62) 

+ 2(^^77112 + + ^l2V13m23)} = 0 

[ [ (VvJ^VDVTb = 1 — 
= 1 - C 2 {v^ \ + V\2[L\ + v ^ t (6.63) 

+ 2(^21^22^12 + ^21^23^^13 + ” » 2 3 ) } 二 0 

I [(VVJ(V))VT]33 = 1 - c3E[yt] 

l 二 1 - c3{vty, + + ^4/4 (6.64) 

+ 2 ( ^ 1 ^ 3 2 ^ 1 2 + ^ 3 1 ^ 3 3 ^ ^ 1 3 + 爪 2 3 ) } = 0 
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Cross coupling equations: 

I [(VVJ(V))VT]12 二 -
= + Vi2mi2 + vl3m13) (6 肪) 

+ ^12^22(^1^21 + vl2i4 + vl3m23) 

+ ^13^23(^1^31 + ^?2m32 + 3/4)} = 0 

I [(VVJ(V))VT]21 二 -c2E[y3
2yi] 

= + ^22m12 + ^23mis) ( 6 卯 ) 

+ 2̂2̂ 12 (̂ 21 m21 + 2̂2/̂ 2 + V23m23) 

+ ^23^13(^1^31 + ^22m32 + ^23/̂ 3)} = 0 

I [(VVJ(V))VT]13 = -C.ELYFYS] 
= - c ^ v u v a ^ v ^ t + v^2m12 + v^3m13) 价) 

+ ^12^32^1^21 + ^ A + U?3m23) 

+ ^13^33(^1^31 + vl2m32 + ^laMa)} = 0 

|| [(VVJ(V))VT]3I 二 -c3E[y3
3yi] 

= + ^32m12 + ^33m13) ( 6 防) 

+ v32vi2{vl1m2l + V32M2 + V33m23) 

+ ^33^13(^3im31 + ^32m32 + ^33^)} = 0 

！F [(VVJ(V))VT]23 = -c2E[y3
2y3] 

二 -G^21”31(Wi"? + ^22^12 + ^23^13) ( 6 ⑶） 

� + ^22^32(^21^21 + ^22^2 + V23m23) 

+ v23v33(vl1m31 + vl2m32 + ^4/4)} = 0 

[(VVJ(V))VT]32 = -csE[yly2] 

=-03^3^21^1^ + ^32^12 + ^33^13) (6 7 0) 

+ 3̂2̂ 22 (^3im21 + 3̂2/̂ 2 + U33m2s) 

+ ^33^23(V3im31 + ^32^32 + ^Ms)} = 0 

where m^ — 3/i tV�. 
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Unfortunately, we cannot factorize the equilibrium equations into useful form such 
that the solutions could be solved exhaustively. (It seems that the method we use 
to solve the equilibrium points exhaustively in the 2-channel case is based on the 
simplicity of 2 channels and cannot be generalized to the n-channel case.) However, 
we can try to guess some forms of the solutions, substitute them into the equations and 
determine the solutions if possible. For example, to determine the correct solutions 
the recover all sources by = VuSi, we substitute all the off-diagonal elements to be 
zero and get: 

Solut ion P 1 - P 8 

I [ 士 ⑷ / ^ ) — "
4
 0 _ 

V = 0 士 … - 幻 - 1 / 4 0 (6.71) 

I L 0 O 士 ( Q M ) -
1

/
4

-

By the symmetry between channels ({c,} only affect the scale of the recovered signals 
and do not affect the symmetry), solution of the form Solution P1-P8 with different 
permutations of order of channels are still solutions to the equilibrium equation. The 
solutions of this type have one non-zero - 1 / 4 in row i, column j and other elements 
being zero. So we have totally 8 x 3 ! = 48 solution P's. 

Then we investigate the solution that only one source is extracted but the other 
two are still mixed. For example, let yx recovers Si, we put v12 二 二 ？;21 二 v22 = 0 
into the equilibrium equations eq. (6.62) to (6.68). Using the same technique as those 
in the 2-channel case, we get, 

Solution Q1-Q16 

I [ ± ( C l / 4 ) - " 4 0 0 _ 
V = 0 s22(2c2T}23)-^ S 2 3(2明 3 2)-" 4 (6.72) 

� _ 0 s 3 2 ( 2 C 3 7 ] 2 3 ) ~ 1 ^ 533(2037/32)-174 j . 

where 

s^ 二 1 or - 1 satisfying S22S23S32S33 二 —1, 

with totally 8 combinations, 

I 恥二 w+V^^ (6.73) 

By symmetry again, solutions similar to Solution Q1-Q16 with different permutations 
of channels are also solutions to the equilibrium equations. Solution of this type have 
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a 士(qju�)-1 / 4 element in row i,column j , other elements in row i and column j being 
zero, that let recovers Sj. The remaining four elements have the form ski(20^11)-1'4 

where k is the row index, I is the column index and / ^ i ^ / is the index of the 
remaining column. There are totally 16 X 9 二 144 solution Q's. 

It is a regret that we cannot determine the solutions with all nine elements non-
zero, which experiments have verified their existence. Hence the above solutions listed 
are by no means exhaustive. 

6.4.2 Stability 

In Appendix B, it is proved that the solution group P are stable if the three sources 
are pair wise globally sub-Gaussian: 

• E[sf]E[s^] - 9(E[s^])2(E[s^])2 < 0 i,j = 1,2,3., i 乒 j (6.74) 

and are saddle points if the above condition is not satisfied. The stability of solution 
group Q is difficult to determine since the Hessian matrix is too complicated. 

As the equilibrium points have not been exhaustively found and the stability of 
solution group Q has not been determined, we can only conclude that the system may 
converge to a solution P if the three sources are pairwise globally sub-Gaussian (that 
depends on the initial point) and will not converge to solution P if any two sources are 
not globally sub-Gaussian. 

6.5 Experiments on the 3-Channel Case 

The experiments test the natural gradient algorithm with cubic nonlinearity on differ-
ent combinations of 3 sources of different kurtosis. The learning rate is kept at 0.0001， 

W is initialized as an identity matrix and the following mixing matrix is used: 

“ 1 0.6 0.3 “ 
A 二 0.8 1 0.3 (6.75) 

0.4 0.9 1 • -
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6.5.1 Exper iments on three pairwise globally sub-Gaussian sources 

In the first trial, the two channels of uniformly distributed sources used in Section 6.3.1 
and a third channel of uniform [-0.5,0.5] distributed source are used in this experi-
ment. The statistics of the third source are = 0.0832, 二 0.0125. After scanning 
for 120,000 data points, V has successfully converged to one of the solution P's: 

“1.497 0 0 

V = 0 1.494 0 (6.76) 
0 0 2.992 _ 

The interference-to-signal power ratio reaches -35dB. 

In the second trial, the same two channels of uniformly distributed sources are used 
and the third channel is replaced by the permuted song signal used in Section 6.3.3. The 
sources are pairwise globally sub-Gaussian though the song signal is super-Gaussian. 
After scanning for 240,000 data points, V converged to one of the solution P's: 

“1.497 0 0 
V = 0 1.494 0 (6 .7 7) 

0 0 1.474 _ 

The interference-to-signal power ratio also reaches -35dB. 

6.5.2 Exper iments on three sources consisting of globally sub-Gaussian 
and globally super-Gaussian pairs 

In the first trial, the first and third channels are song signals recorded at 8kHz and the 
time index of them are randomly permuted to remove non-stationarity. The second 
channel is iid uniformly distributed source. The statistics of the data are: 

I \i\ = 0.2532 fil = 0.3326 /4 = 0.2702 ^ ? g ) 

/4 = 0.2120 \i\ = 0.1991 fit = 0.2541 

The standardized joint kurtosis are: 二 -3.0471, 
9 _ 2.5113, " ! / [ ( " ! ) 2 ( " i ) 2 ] - 9 - —2.7370. After scanning for 800,000 data points, 
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V converged to one of the solution Q: 

“1.0577 0 1.0109 “ 
V = 0 1.4970 0 (6 .7 9) 

-1.0577 0 1.0109 _ 

for example, a snapshot of it is: 

“1.0448 0.0131 1.0192 “ 
V = 0.0105 1.4909 -0.0084 (6.80) 

一 1.0621 0.0180 1.0052 

Only the uniformly distributed source is extracted out. 

In the second trial, the first channel is artificially generated iid data drawn from the 
symmetrical, bimodal beta distribution beta(0.5, 0.5) shifted into [-0.5,0.5], (the pdf 
of which can be visualized from the histogram of yx in Figure 8.7 of Chapter 8). The 
second channel is one uniformly distributed signal used in Section 6.3.1 and the third 
channel of permuted speech signals from Section 6.3.2. The statistics of the sources 
are: 

= 0.1252 fi22 = 0.3326 二 0.0625 ( 6 机） 

f4 = 0.0234 f4 = 0.1991 nt = 0.0435 

The standardized joint kurtosis are: 9 = —6.307, 
9 = 7.6522, = 11.029. Channel 1 and 2 are globally sub-Gaussian, 
channel 1 and 3 are globally super-Gaussian and channel 2 and 3 are globally super-
Gaussian. 

The simulation scan for 500,000 data points and the system become stable. A 
snapshot of V is: 

“2.5528 0.0014 0.1142 “ 
0.1065 1.1112 -1.6470 (6.82) 

一0.0936 1.1073 1.6015 _ 

which is close to a solution Q 

“2.557 0 0 
0 1.107 -1.620 (6.83) 
0 1.107 1.620 
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Only the beta distributed source can be extracted, the uniformly distributed source 
and the permuted speech signal are still mixed. 

In the third trial, the two channels of uniformly distributed sources used in Sec-
tion 6.3.1 and the first channel of permuted speech signal used in Section 6.3.2 are used 
in this experiment. The permuted speech signal with either one of the uniformly dis-
tributed sources are globally super-Gaussian. After scanning for 160,000 data points, 
V is stabilized and a snapshot of it is: 

“1.4642 -0.0023 0.4935 1 
V = 0.1599 1.1086 -1.5791 (6.84) 

-0.2081 1.0823 1.6200 J 

No source can be extracted. 

6.5.3 Exper iments on three pairwise globally super-Gaussian sources 

In the first trial, the two permuted speech signal used in Section 6.3.2 are used as 
channel 1 & 2 and the permuted song signal is used as channel 3. All of the three sources 
are super-Gaussian. After scanning for 500,000 data points, the system stabilizes and 
a snapshot of V is: 

“1.6641 1.0819 0.0883 “ 
V = -1.2568 0.7323 -1.1115 (6-85) 

-1.4289 0.6536 1.0801 _ 

No source can be extracted. 

In the second trial, the two permuted speech signal used in Section 6.3.2 are used as 
channel 1 & 2 and the third channel is replaced by the uniformly distributed source used 
in Section 6.3.1. As previous calculation shown, the three channels are pairwise globally 
super-Gaussian. The system converges very slowly, using 2,400,000 data points, and a 
snapshot of V after it stabilized is: 

• 1.6141 1.0266 0.4158 “ 
V 二 -1.5908 1.0132 -0.4218 (6.86) 

-1.0109 -0.0192 1.3813 _ 

No source can be extracted. 
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In the above experiments, it is demonstrated that in the two cases that the three 
sources are pairwise globally sub-Gaussian, the system happens to converge to the 
correct solution P's; in the cases that one pair is globally sub-Gaussian and two pairs 
are globally super-Gaussian, the system may converge to one of the solution Q's or 
solution that all nine elements are non-zero; in the cases that three sources are pair-
wise globally super-Gaussian, the system converges to spurious solutions that all nine 
elements are non-zero. 



Chapter 7 

Nonl inear i ty and Separa t ion 
Capabi l i ty 

The relationship between the nonlinearity of the algorithm and the distribution of the 
sources that it is capable to separate is discussed in this chapter. In Section 7.1, we 
compare several nonlinearities and their separation capability and argue that a 'loose 
matching' between the nonlinearity and source distribution is needed for successful 
separation. In Section refsepcapexpt, we present experiment finding and verification 
for the arguments in Section 7.1. 

7.1 Theoretical Argument 

The function �(讲） is the nonlinearity in algorithms eq. (4.18) that determines the 
properties and capability of the algorithm, as it determines the constraints on the 
higher order statistics of the recovered signals in the equilibrium equations of the 
algorithms. The nonlinearities {/^(.)} follows from the choice of {^-(-)} in eq. (4.21), 
which are the pdf's we manually assign to the unknown {pSj{sj)} 

In the information-theoretic ICA scheme, minimizing J ( W ) w.r.t. W means tun-
ing W in such a way that makes py(y) and U ^ i d i M a s c l o s e t o e a c h o t h e r a s 

possible. The network is said to be workable on a particular set of source signals if 
the minimization of J ( W ) yields a correct solution W, i.e. a minima W of J ( W ) 
satisfy WA = P D given by eq. (2.11). Whether such minimization can yield a correct 
solution W depends on the choice of the set of function (?/,•)}. 

71 
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7.1.1 Nonl ineari t ies that strict ly match the source distr ibution 

If the source marginal densities were known, gi(si) = pSi(Si), i = l,...，n, would be a 
perfect choice of {&•(.)} since 仏(队）is a manual pdf that we assign to pSi{si). Con-
sidering the fundamental indeterminacy of scaling factor and channel order, we can 
inspire that {^(.)} being in the set of scale family of pSi{si) can also ensure separation. 
However, the above choices are of course impossible since {pSi{si)^ = 1 , … ， i s blind 
to us. 

On the other hand, from eq. (4.11) g^Si) = pyi{yi), i = 1,…，几,is also a perfect 
choice since the cost function would reduce to the mutual information used in [2，24]. 
The global minimization of mutual information can always yield a correct solution W 
because the mutual information attains its global minimum when 

n 

Py(y) = n^^(^) (7.1) 
i=l 

which means that the components of y are independent. Hence, theoretically 仍(队）= 
py. [yi) is a perfect choice but this choice needs some implementation technique as 
p (yi) is not known in advance and can only be estimated on-line. We call the assign-
ment gi(yi) = pyJjji), i = 'strict matching' between nonlinearities and source 
distributions. It should be noted that {PyXVi)} i s a member of the scale families of 
{pSi{si)} if separation is successful (y 二 Vs = PDs) 

7.1.2 Nonl ineari t ies that loosely match the source distribution 

Though nonlinearities that strictly match the source distribution can always yield 
source separation, it is found that a much wider class of {^(讲)， i 二 1,.. . ,^} can 
perform separation on sources with a particular {pSi(&)，i = l,."，n} (Figure 4.2). 
One objective of this thesis is to argue that the choice of {gi{yi), i = is much 
wider than (队),i = 1,…，n}, or the scale family of {pSj{sj)}. We assert that the 
use of a set of prespecified and fixed 识(^) can perform source separation on sources 
with a particular class of probability density function 'loosely matched' with 识(队)， 

but not on sources with any distribution. 

In the followings, we justify the argument of'loose matching' in case-by-case studies 
of fixed nonlinearity, using theoretical analysis whenever possible and experiments 
otherwise: 

(i) In [5], fi{yi) are chosen to be logistic sigmoid /i(yt) 二 logsig(队）二 1/(1 + 
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exp(-yi)) or hyperbolic tangent / , (^) = t a n h ^ ) , etc. The corresponding g ^ ) 
are sharply peaked and the corresponding have reversed sigmoidal shape. 
It is suggested that they can perform source separation on sources with sharply 
peaked pdf, and experimentally verified on human speech signals [5]. In the ex-
periment section, it is demonstrated that this nonlinearity cannot perform signal 
separation on some sub-Gaussian sources. 

(ii) In the experiments in the next section, the cubic root nonlinearity h^yi)— 
i 二 1 ， . . . , 7 1 , can perform separation on mixtures of sources with sharply 

peaked densities but cannot separate uniformly distributed sources, which are 
sub-Gaussian. The behavior of this nonlinearity is similar to that of {〜(认)， 

i = 1,..., n) being reversed sigmoids. 

pii) In the previous chapter, the cubic nonlinearity h^yi) 二 i = 1,..., n where 
d > 0. is both theoretically and experimentally investigated. In the 2-channel 
case we have proved that it can perform separation on the mixtures of two glob-
ally sub-Gaussian sources and cannot perform separation on the mixture of two 
globally super-Gaussian sources. We also assert that it can separate sub-Gaussian 
sources in higher-channel case. 

(iv) Case (i) and (ii) are suggested to work on sources with sharply peaked pdf 
(possibly super-Gaussian) and Case (iii) works on two channels of sub-Gaussian 
sources. Moreover, we have the following theorem for another case that performs 
separation on one super-Gaussian source and one sub-Gaussian source. 

T H E O R E M 2 Consider an information-theoretic ICA algorithm with /ii(yi) 二 

- c n y i and h2(y2) 二 - c 2 3 y | with cn > 0 and c23 > 0 acting on two channels of 
signals. If one source is sub-Gaussian and the other source is super-Gaussian, 
and W is initialized at any non-singular point, V will converge to one of the 
following eight correct solutions for source separation: 

f „ , A v [ ± ( 〜 五 0 1 f 7 2 ) 
Solution Ai： V = zrr 4 i� - i 

L 0 ±(c23丑[5¾) 4 _ 

I ^ , A v [ 0 ±(CllE[sl])-^ 1 
SolutlonAlI:

 如 丑 阅 0 J
 (7

.
3) 

such that the resulting y2 recovers the sub-Gaussian source. 

The proof of the Theorem 2 is provided in Appendix C. 
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Figure 7.1: Several nonlinearities investigated. 

^ t ) 2 ( 3 / 4 ) , " V 3 / / 3 ) � ( 1 ¾ ¾ ^ * 鄉 ( — A 2 ) 
X exp(-zy-/ ) 

hjjyi) 1 - 2logsig(yQ -yj Z^i 

M4/(M2)2 - 3 1.2216 0 -0.8118 

Sub-Gaussian samples n Q n o see Theorem 2 yes 
(uniformly distributed) 
Super-Gaussian sam- y e g y e s see Theorem 2 no 
pies (speech signals) 

Table 7.1: Properties and separation capabilities of several nonlinearities 
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Figure 7.1 plots the 仏(队)and ^(yi) used in case (i) to (iv) above. All h^yi) in 
these four cases are monotonic decreasing, odd function which span only in the second 
and forth quadrants of the graph. The standardized kurtosis ^ f / i l^ ) 2 - 3, where 
/xf =广① yfgi(yi)dyi, that describe the sharp peakedness of 仍 ) , and the separation 
capability of several samples by the nonlinearities, are listed in Table 7.1. The columns 
in the figure and table are sorted in descending order of standardized kurtosis. From 
the figure, it can be inspected that the 仏(队)in case (i) and (ii) more sharply peaked 
and have longer tails (have greater / more positive kurtosis) and the gi(yi) in case (iii) 
is more flat and have shorter tail (have smaller / more negative kurtosis). 

From the theorems developed and experiment results, it can be seen that a fixed 
nonlinearity can perform separation on the mixtures of sources with a class of densities 
that are similar to the shapes of {g(y)j- For example, the cubic nonlinearity has a 
flat gi(yi) can separate sub-Gaussian sources and the nonlinearity in case (i) and (ii) 
have sharply peaked can separate a class of sources with sharply peaked pdf. 
However, the fixed nonlinearity cannot separate sources whose density differ from 仍(队） 

too much. For example, the cubic nonlinearity cannot separate super-Gaussian sources 
and the nonlinearity in case (i) and (ii) cannot separate uniformly distributed signals. 
Hence, we can conclude that a ‘loose matching, is required between {gi{yi)} and the 
source densities. In case (iv), the cubic nonlinearity in channel 2 always selects the 
Si with sub-Gaussian (flatter) density to recover. This is a vivid example that the 
nonlinearity extract source with density matched with itself. 

In the Minimum Mutual Information approach [2], the adaptive algorithm devel-
oped has the form eq. (4.28) with nonlinearity 

3 ^ 25 a 14 7 47 5 29 3 l n 
h i M = - { y l 1

 - + y y J + - T2/f (7.4) 

and correspondingly, -

I QiiVi) = exp(-^y}2 -鲁y尸 + ^yf + fAy- ~ ^vt) (7.5) 

The nonlinearities are plotted in Figure 7.2. The �(队）function is odd but is not 
monotonic decreasing, and cross the first and third quadrant. The g^yi) function 
is not unimodal. In the experiments in the next section, the MMI algorithm can 
separate the uniformly distributed sources but cannot separate the permuted speech 
sources used in Section 6.3.2. This result is consistent to the assertion that a fixed 
nonlinearity can perform separation on sources with a class of distribution but not any 
distribution. 
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h<y> g<y> 

： 口 

I ： ： 匕 UU 
- 1 - O . S O O.S -I - S O s 

<a> <b> 

Figure 7.2: The nonlinearities used in the MMI algorithm, 
(a) h^) = —if - f y f ^ f y j - h f y f - f y f , 

(b) 9i(yi) = exp(-^2/f - 悬 化 + f2yf + f4yf - f6yf) 
7.2 Experiment Verification 
The experiments are aimed at providing empirical results or verifying theorems in this 
chapter. For all experiments, the learning rate is kept at 0.0001. The following mixing 
matrix is used: 

A 二 [
 1

 ° '
6
 1 ( 7 . 6 ) 

0.7 1 
The experiment is run for a number of scans through the data set long enough that 
W looks having converged to a stable point. 

7.2.1 Experiments on reversed sigmoid 

Sub-Gaussian sources 

The reversed sigmoid nonlinearity h^yi) 二 1 — 21ogsig(认•）二 (exp(-y) - 1)/(1 + 
exp(-y)), i 二 l，.“,w, are used in both channels to act on the uniformly distributed 
sources used in Section 6.3.1. After scanning for 500,000 data points, V stabilized and 
a snapshot is: 

“2.0961 -2.0869 1 l n V = (7.7) 
2.0844 2.0762 
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Similar experiments have been done using hi(yi) 二 - 2 tanh(?/i) and h i ( y i ) = 
- 2 ^ / ( 1 + y f ) and all result in convergence to wrong solutions. Hence, it is exper-
imentally verified that the algorithm with reversed-sigmoidal cannot perform 
separation on mixtures of uniformly distributed signals, which are sub-Gaussian. 

7.2.2 Exper iments on the cubic root nonlinearity 

This experiment tests the performance of the cubic root nonlinearity /^.(^) = 
i = 1,..., n, on super-Gaussian and sub-Gaussian sources. 

Super-Gaussian sources 

The data set is the permuted speech signals used in Section 6.3.2. The system con-
verged in 40,000 data points and a snapshot of V is: 

_ [" 5.8386 0.0015 1 (7 8) 
—[0.0230 2.6151 J 

The average interference-to-signal power ratio reach -40 dB. Hence it is experimentally 
found that the cubic root nonlinearity can separate some super-Gaussian sources. 

Sub-Gaussian sources 

The data set is the uniformly distributed signals used in Section 6.3.1. After scanning 
for 240,000 data points, V converged and a snapshot of V is: 

v � 1 . 3 8 4 3 -1.3810 1 ( 7 . 9 ) 

1.3841 1.3701 _ 

Hence it is experimentally found that the cubic root nonlinearity cannot separate some 
sub-Gaussian sources. 

7.2.3 Experimental verification of Theorem 2 

In this experiment, the nonlinearities used are (yi) = ~yi and h2(y2) = ~vl in 
Theorem 2. We use the permuted speech signal and uniformly distributed signal in 
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Section 6.3.4. The first channel is super-Gaussian and the second is sub-Gaussian. 
After scanning for 120,000 data points, V converged to one of the Solution Ai： 

V A l = 丨 2 0 I (7.10) 
1 [ 0 I . 4 9 7 

Then we swap the order of the channels of the sources. After scanning for 320,000 
data points, V converged to one of the Solution An： 

V A l = [ 0 叫 （7.11) 
_ -1.49 0 

Hence, this experiment provides verification of Theorem 2. 

7.2.4 Exper iments on the M M I algorithm 

This experiment tests the performance of the resulting nonlinearity derived in the MMI 
approach [2] eq. (7.4) on super-Gaussian sources and sub-Gaussian sources. 

Super -Gauss ian sources 

We use the data set of the permuted speech signals used in Section 6.3.2. W fluctuates 
largely and shows no tendency of convergence in scanning 500,000 data points. The 
elements of W versus the number of data points scanned is plotted in Figure 7.3. 
Hence it is concluded that the algorithm cannot separate the permuted speech signals. 

Sub-Gauss ian sources 

We use the uniformly distributed sources in Section 6.3.1. The system converge in 
20,000 data points and a snapshot of V is: 

‘1.3061 -0.0052 1 ( n 10x 
V = (7.12) 

0.0025 1.3038 • 

The average interference-to-signal power ratio reach -40dB. Hence it is experimentally 
found that the MMI algorithm can separate some sub-Gaussian sources. 



Chapter 7 Nonlinearity and Separation Capability 92^ 

Elements of W 
2.51 1 ‘ 1 
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2- : ； - fjiVi i , . i ： 
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1 P : / \ I • � ; ' i • - - W12 
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Figure 7 . 3 : T h e fluctuate o f W w h e n t h e M M I a l g o r i t h m i s a p p l i e d t o p e r m u t e d 

s p e e c h s i g n a l s . 



Chapter 8 

I m p l e m e n t a t i o n wi th M i x t u r e of 
Densi t ies 

In this chapter, we present the experimental verification of the information-theoretic 
ICA algorithm with mixture of densities and some analysis. In Section 8.1, the idea of 
implementing the information-theoretic ICA scheme with mixture of densities (Xu et 
al , 1997) will be reviewed. Then we will present the derivation of the algorithm. In 
Section 8.2，various experiment results will be provided that support the implementa-
tion with mixture of densities can adapt and separate sources of any distribution. In 
Section 8.3, we discuss the simplest form of mixture of densities that may still adapt 
any source density. 

8.1 Implementation of the Information-theoretic ICA scheme 
with Mixture of Densities 

The idea of implementing the information-theoretic ICA scheme with mixture of den-
sities is proposed by Xu et al (1997). It is targeted at performing signal separation 
on sources with any distribution automatically. The method to achieve so is to allow 
g^yi) to be a 'flexible member' of a family of functions in the function space rather 
than a fixed function. Such designation of 仍(^) as a flexible function is achieved by 
using a parameterized function for {^-(^)}. The shape of g^yi) can be changed by 
the parameters. The parameters of the flexible function are adapted such that 
approximate, or get close to, the marginal density PyXVi) (though only loose matching 
is needed). As a family of functions takes up a greater subspace of the function space, 
the flexible 仍(汸)inside the family has a greater possible to achieve the loose matching 

80 
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with VyXVi)- Thus it increases the possibility that minimizing J with this flexible 识(^) 
can achieve successful source separation. 

8.1.1 The mixture of densities 

The function 仍(队）is chosen to be the mixture of densities because it can approximate 
any density function arbitrarily well if the number of components is sufficiently large. 
The mixture of densities is given by: 

Pi Pi 

9i{Vi) 二 ' Yl a“ = 1 (8.1) 

where 

Uij = bij(yi - aij) (8.2) 

and 诊(•) is some density function. p{ is the number of components in the mixture, a^ 
is the weight of the component. b{j control the variant of the jth pdf component and 
aij is the bias, or location of the center, of the jth pdf component. 

Writing in the form 

ip{ui:}) 二 bi^'iuij) (
8
'
3
) 

we have that the 仍(队）with this 他•）corresponds to the nonlinear transformation 
function in the form of mixture of CDF's: 

P1 

力(队）二 (〜） - (
8
.

4
) 

� 

One of the choice for ¢ (^ j ) is: 

(̂ {Uij) = logsig(^) 二 1/(1 + e x p ( - ^ ) ) (8.5) 

with 

exp(-^,.,) 广、 

I 綱 二 树〜)(1 — 偏 = ( l + e x p ( - 4 ) 2 ( 8 . 6 ) 
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The constraint on o^ in eq. (8.1) introduces computing complexity in the algorithm 
to be developed. Hence, we apply a transformation on aij: 

— e x p ( 7 i j ) /g 7) 
ij - Er=iexp(7̂ ) • 

to get jij which can take any real value. Now, {7^, 6 -̂, a^-j 二 1,..., Pi} is the set of 
parameters for the configuration of 仏(队).The set of parameters of the system becomes 
{V, 7, b, a} and J 二 J ( V , 7 , b , a ) , where 7 = {7^, i = 1,…,n,j 二 1 , . . ” 内 } and the 
same notation applies to b and a. 

8 .1 .2 Derivat ion of the algorithms 

Algorithm for the de-mixing matrix 

The hi(yi) nonlinearity is given by: 

1 Pi 

I hi{yi) = ^ y J2 ^Aj^'^ij) (8.8) 

For (^{Uij) = logsig(〜)，ip'(ui:j) = 6 ^ ( 1 - 2 0 ( ^ - ) ) ^ ( ¾ ) = ( e x p ( - ^ ) - l ) e x p ( — � ) / ( 1 + 
exp(-Uij))3. We adopt the natural gradient decent algorithm eq. (4.28) and plug eq. 
(8.8) into eq. (4.28) to obtain the update equation for tuning W . 

Algorithm for the tuning of parameters of the mixture of densities 

The parameters {7, a, b} are tuned in the direction to minimize J ( V , 7 , a , b). This 
minimization has the effect of approximating the flexible 仏(^) to pyi(yi), i 二 1,…，几, 

because J ( W , 7 , a , b) would decrease If the shape of function 仏(队)is closer to the 
pyi{yi), and J would attain its lower bound 0 if 仍(队)=py i{Vi), i 二 1,…，几，and {队，i = 
1,..., n) are mutually independent. Using Bell's explanation [5, 6], the entropy of the 
transformed variable ^ would be maximized if it is uniformly distributed, which occurs 
if f ^ ) is the CDF of y“ or equivalently, g^yi) is the pdf of y{. Hence, minimizing 
J ( W , 7 , a , b) (maximizing output entropy) w.r.t. {7’a,b} can make 仏•(队)more close 
to PyXVi)- With each 仍(队)more closed to pyi{yi), (though the approximation may 
not be so good if pi is small), it is more possible that loose matching is achieved and 
W with a minimum of J (W) is a correct solution for signal separation. 

Stochastic gradient algorithms are used to achieve the minimization. They are 

derived as follows. 
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The cost function can be written as: 

^ ^ flog 
_ : L

 r (8.9) 

J=1 . 

The parameter {7^, a^, bij} for channel i only engage in term log仏(yt) in the first 
term in the above equation. Differentiating J w.r.t. the parameters and replacing the 
expectation values by their instantaneous values, the algorithms for the adaptation of 
the nonlinearity are obtained as follows: 

A v - d J d
 ^ ( (

 d 1 A7- " - ̂  5^^7 = g te1�社))} i ^ E & ^ J , � 
片

= 1 K
 一丄 ( 8 . 1 0 ) 

1 
=(�bik<f>'(uik)ocik(Skj - ocij) 

9i{yi) k=zl 

I 乾二 

• = + r i u ^ i y i - a i j )} (8.11) 

叫）+<(%)〜•} 
gdVi) 

Aai:j oc 二 ^ " " log to fe ) ) 
oaij o^ij (8.12) 

I 二 辜 ⑷ 

S-. is the Kroniker delta function. The algorithm with mixture of densities is to update 
the parameters according to eq. (4.28), (8.10), (8.11) and (8.12) on the arrival of each 
data point. 

It should be noted that the parameters {7^-,6^,0^} for each channel cannot be 

initialized in the way that all 3 = 1,.. . ,^, a r e e q u a l , a11 i = ^ …,P“ a r e 

I equal and all 邮 , j 二 1 ， … , 仍 , a r e equal. If so, there would be 'symmetry' among the 
parameters, and components of different index ( j ) would be updated in the same way. 
Then, the shape of 仍(^) would be greatly restricted and might not be able to adapt 
the source distribution. 

Remark 9 In digital computer simulations, the division by 仍（认•）in eq. (8.8), (8.10), 
(8.11) and (8.12) may have precision error when the magnitude of the data point is 
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large, since 仍(^) would be very small then. In some case, gi{yi) is rounded to zero 
and the error division by zero may occur� 

8.2 Experimental Verification on the Nonlinearity Adap-
tation 

The experiments demonstrate that the flexible mixtures of densities are able to adapt 
themselves to approximate the marginal densities of the recovered signals. Moreover, 
it also demonstrates that the adaptive mixtures of densities can separate sub-Gaussian 
sources that single logsig(-) cannot separate. W is initialized as an identity matrix. 
The learning rates for W, 7，b, a are kept at 0.0001, 0.001, 0.01, 0.001 respectively, 
which results from empirical testing. The mixing matrix used is: 

1 0 ' 6 I (8.13) 
0.7 1 

In experiment 1, the algorithm is applied to two channels of uniformly distributed 
sources and the experimental convergence behavior is discussed. Experiment 2 tests 
the algorithm on two channels of human speech signals and experiment 3 tests the 
algorithm on 3 channels of different signals. 

8.2.1 Experiment 1: Two channels of sub-Gaussian sources 

Two channels of uniform distributed sources used in Section 6.3.1 are used in this 
experiment. We try using mixtures of densities with 7 components. 

All ji:j are initialized as 1/7. bn’ …,bi7 for each channel are initialized in the 
range [10—�3,101.8] such that log10 6̂ - are in a regular interval in [-0.3,1.8], so that 
g .(y i) is rich of components of different variants. All â - are initialized as 0. The 
simulation runs for 4 scans through the data set (400,000 points). The elements of W 
versus the number of data points trained are plotted in Figure 8.1. The performance 
graph, interference-to-signal power ratios versus the number of data points trained, 
are plotted in Figure 8.2 and the graph showing the histograms of {yj，{�}, and the 
shapes of the adapted 仍(队)and /,-(^-) after 50,000 data points have been trained and 
400,000 data points have been trained are plotted in Figure 8.3 and 8.4 respectively. 

This convergence behavior can be described in two phases. In the first phase, 
approximately from the start to having been trained for 50,000 data points, W moves 
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from its initial value to a correct solution for separation. It can be seen from the 
performance graph that the system can already perform signal separation successfully 
right after trained for 50,000 data points. A snapshot of W after 50,000 data points 
trained is: 

1 L 5 3 5 8 - 0 . 9 0 9 1 1 (8.14) 

_ -1.2807 1.8149 • 

which corresponds to: 

‘0 .8994 0.0124 1 
V = WA = (8.15) 

• -0.0102 1.0465 
with average interference-to-sign al power ratio -39dB. Figure 8.3 shows that 识(队)have 
already adapted itself to be close to the pdf of uniform distribution, and 力(队)have 
already adapted itself to be closed to the CDF of uniform distribution - a straight line 
from 0 to 1 across the range. Loose matching is already achieved. 

However, W continues to increase in magnitude slowly afterward, keeping itself as a 
correct solution for separation. This can be called the second phase of the convergence 
and is reasoned as follows. As discussed in previous chapters, the magnitude of the 
recovered signals, or W, is controlled by the scaling of the nonlinearity. However, the 
scaling of {gi{yi)} is controlled by {7 ,a ,b} and are free to change. Hence the system 
can continue to search for a better scaling after the more dominant process, source 
separation has already been achieved. 

The increase in the scale of W (or y) shown in the experimental result suggests 
that the J ( W , 7 , a , b) has lower value if the scale is greater. This may be because 
the approximation of pVi{yi) by 仍(队)is better if the scale is greater, as seen from 
Figure 8.4 that the shape of 仍(讲)is more close to the pdf of uniform distribution and 
/ • • ) looks more like a slant straight line cross the range. 

8.2.2 Exper iment 2: Two channels of super-Gaussian sources 

The two channels of human speech signals used in Section 6.3.2 are used in this exper-
iment. Both channels are super-Gaussian. The initialization is the same as that in the 
previous experiment. The simulations using the algorithm with mixture of densities, 
and the algorithm with reversed sigmoids =1-2logsig(yz),〜（队）=-2tanh(y,) 
and hAyi) = - 2 ^ / ( 1 + y f ) are run for 1 scan of the data set. All of them can perform 
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Figure 8-1: Convergence of W in trial 1 of experiment 1. 
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Figure 8.2: The performance graph of trial 1 of experiment 1. 
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Figure 8.3: The result of trial 1 of experiment 1 after 50,000 data points are trained. 

First row: histograms of ？/,-. Second and third row: and /, (^) respectively.( 
adapted mixture of densities, initial mixture of densities, - 一 /,-(•) = logsig(-) 
for comparison.) Last row: histograms of z“ 
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Figure 8.4: The result of trial 1 of experiment 1 after 400,000 data points are trained. 

First row: histograms of Second and third row:仏(队)and 力(队)respectively.( 
adapted mixture of densities, initial mixture of densities,—-力(.)二 logsig(-) 
for comparison.) Last row: histograms of z{. 
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Figure 8.5: The performance graphs for Experiment 2. 

separation successfully. The performance graph of them is plotted in Figure 8.5. It can 
be noticed that the mixture of densities has highest convergence speed among the four. 
The histograms of {？/J and {z{} and the shapes of {仏(队)} and {fi{yi)} are plotted in 
Figure 8.6. It can be verified that every Zi is more or less uniformly distributed and 
hence 力(队）have been adapted to approximate the CDF of y“ and equivalently, g^yi) 
have been adapted to approximate pyi{yi)-

8.2.3 Experiment 3: Three channels of different signals 

In this experiment, the data set used in Section 6.5.2, which consists of one beta(0.5, 0.5) 
distributed source, one uniformly distributed source and one permuted speech signal, 
and the same mixing matrix, are used. We compare the result of the algorithm with 
mixture of densities and the algorithms with fixed nonlinearities. 

Result of the algorithm with mixture of densities 

The mixtures of densities with 5 components are used. All j i j are initialized as 1/5 
and all a^ are initialized as 0. biu-• - , bi5 of each channel are initialized in the interval 
[10一0.3,101.2] such that log10 b{j are at regular interval inside [-0.3,1.2]. The simulation 
runs for one scan through the data set. All sources are successfully separated. The 
histograms of {？/J and }, and the shape of {仍(队)} and {/ i fe)} are plotted in 
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Figure 8.6: The result of Experiment 2. 

First row: histograms of Second and third row: and fi(yi) respectively.( 
adapted mixture of densities, initial mixture of densities, fi(.) = logsig(-) 
for comparison.) Last row: histograms of z{. 
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Figure 8.7. 

Result of the algorithm with fixed nonlinearities 

The INFORMAX algorithm [5] with 二 1 - 21ogsig(y‘) is tested on the data set. 
The simulation runs for 5 scan through the data set and the system have converged to 
a stable solution. The snapshot of V at the end of the simulation is: 

“3.4005 -2.0905 -0.0545 “ 
V = 3.3719 2.0888 -0.0260 (8.16) 

一0 .0242 -0.0157 9.3984 _ 

Only the third channel, the super-Gaussian human speech signal, can be sepa-
rated. The sub-Gaussian uniformly distributed and beta-distributed sources cannot 
be separation. The same experiments have been done using /i,‘(y,) 二 一2tanh(2/,) and 
hi(yi) 二 一2y,/(l + y f ) and the results are similar. 

In the experiment on the same data set in Section 6.5.2, only the beta distributed 
source can be extracted and the other two sources remain mixed. 

Hence, the flexible mixture of densities is the only one that can separate these three 
different signals among the nonlinearities we tested. 

8.3 Seeking the Simplest Workable Mixtures of Densities 

8.3.1 N u m b e r of components 

The above experiments show that the mixtures of five or seven densities can approx-
imate the source densities 'quite well' (from inspection on the shapes of {仏(队)} and 
the histograms of {y,}), and they can separate all sources we tried in the experiments. 
The number of components five or seven is arbitrarily chosen in the previous section 
for empirical trials and we would like to question on "what is the minimum number 
of components that can separate sources of any distribution?". This is an important 
question since the cost of implementation decreases with simplicity of the system. We 
t ry using two components in the mixtures of densities and initialize them in another 
way: all 二 0.5, all b{j 二 1 and [atl, ai2] = h 1 , !] f o r each channel. All the three data 
sets in the previous section are tested and the mixtures of two densities can perform 
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Channel 1 Channel 2 Channel 3 
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F i g u r e 8 . 7 : The result of experiment 3. Legends are same as those in Figure 8.3 

First row: histograms of Second and third row:仏(队)and /,(队)respectively.( 
adapted mixture of densities, initial mixture of densities, - - /»(•) = logsig(-) 
for comparison.) Last row: histograms of 
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separation in all cases. The result of the test on the three channels of different source 
in Experiment 3 is plotted in Figure 8.8 and a snapshot of the parameters is: 

‘1 .4211 0.0062 -0.0469 “ 
V = — 0.0139 0.9969 -0.0224 (8 .1 7) 

一 0.0088 0.0030 3.9505 

• 一 0 . 0 0 0 0 0 . 0 0 0 0 — 

7 = -0.0486 0.0486 (8 .1 8) 
0.1183 -0.1183 _ 

“-0.4450 0.4373 ] 
a = -0.5013 0.4892 (8 .1 9) 

-0.0035 0.0613 J 

“7.6672 7.9065 1 
b 二 5.5956 5.0061 (8-20) 

13.3486 1.4946 J 

8.3.2 Mixture of two densities with only biases changeable 

The mixture of two densities is suspected to be still 'too flexible，. Firstly, the scale of 
the nonlinearity is not constrained as the discussion in Experiment 1 in Section 8.2.1 
pointed out. Secondly, the empirical results discussed in nonlinearity and separation 
capability suggest that the 'loose matching' seems so loose that only the peakedness 
(kurtosis) of 仏(队)is of concern. Hence we try using mixtures of two densities that 
only the kurtosis of whom are tunable and all other freedom is fixed. 

One of the implementation of the above idea is to fix all j i j = 0 and fix all h^ = 1. 
The biases (centers) of components {a^} are allowed to change. The biases of compo-
nents control the distance with the two bell-shape components and hence control the 
kurtosis of gi(yi). The bias {aiu ai2} for each channel are initialized in a symmetrical 
way as {—1, 1}. 

The mixture of two densities with only bias changeable is tested on the three data 
sets in Section 8.2. In all cases source separation is successful. The result of the 
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Channel 1 Channel 2 Channel 3 
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Figure 8.8: The experiment result of the algorithm with mixture of two densities. 
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experiment on the three channels of different signals are plotted in Figure 8.9. After 
the system has stabilized, a snapshot of V and a are: 

“10.2583 0.0205 -0.1169 “ 
V 二 -0.0085 5.0408 -0.0813 (8-21) 

-0.0132 —0.0095 9.3977 _ 

“-3.3378 3.3657 “ 
a = —2.4460 2.4672 (8-22) 

0.0241 0.0241 
- -J 

From the figures, the resulting {^(^)} have the distances between the two centers 
corresponding to the kurtosis of the source as expected. 
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Channel 1 Channel 2 Channel 3 
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F i g u r e 8 . 9 : The experiment result of the algorithm with mixture of two densities that 

7 and b are fixed. 



Chapter 9 

I C A wi th Non-Kul lback Cost 
Func t ion 

In this chapter, we leave the Information-theoretic ICA approach and consider the 
use of non-Kullback separation functionals in the ICA problem. In Section 9.1, we 
investigate the possibility of developing algorithms from ICA principles that use non-
Kullback separation functionals proposed by Xu [73]. In Section 9.2, experiments 
that verify the performance and capability of one non-Kullback ICA algorithm will be 
presented. 

9.1 Derivation of ICA Algorithms from Non-Kullback Sep-
aration Functionals 

Xu [72] has suggested the use of three non-Kullback separation functionals besides the 
Kullback divergence in the YING-YANG learning theory. They are suggested to be 
applied to the ICA problem and are investigated in the coming sub-sections. 

9.1.1 Posit ive Convex Divergence 

The Convex divergence is given by: 

FS(MUM2) = ¢(1) - JyPMl(y)C (^H) dy _ 

where ¢(-) is a convex function in (0,oo). We use CW = r � 0 < /5 < 1 here and the 
Convex divergence is called the Positive Convex (PC) divergence. The case with (5 二 
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0.5 is of particular interest since it reduces to the Root-Iner-Product (RIP) divergence 

I Fs (pMl, PM2) = 1 - 义 \/pM1(y)pM2(y)dy (9.2) 

The PC divergence is suggested to be the cost function of a generalized version of the 
Minimum Mutual Information approach [73]. If we use n"=i 9i(Vi) i n P l a c e of Pm2(y) 
as in the information-theoretic ICA approach, the cost function become: 

二 i - 从 � ( 9 . 3 ) 

I - i r J f i d e t w i n r = i ^ ( w f x ) y 

~ V ^x(x) ) 
The minimization of this cost function is suggested to be an ICA principle [73]. The 
derivative of this cost function w.r.t. w^ is given by 

！ 二一& L f l ^ t W i n ^ ( w f x ) y ^ + (9.4) 

dwi:j ^ \ Px(x) J VdetW /_ 

The gradient is given by: 
v . j ( w ) 二 卜( |de tW '"i;fKx))' ([w

亇
1
 +

 h
(

W x
)

x T
) (

9
.

5
) _ 

and the natural gradient is given by: 

V i y J ( W ) W T W 

� = 卜 ( ― 二 ； 严 吁 ( I + — W (9.6) 

We target at constructing an adaptive (natural) gradient decent algorithm to minimize 
the PC divergence. px(x) is a quantity that cannot be estimated from one sample, how-
ever, since l/(px(x)) / ? occurs as a multiplicative scalar in the (natural) gradient, which 
does not affect the (natural) gradient direction, we can ignore it in the construction of 
the adaptive algorithm. Hence the update equation: 

[ A W oc /3 (I det W | � ) ( I + h(y)yT) W (9.7) 
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is suggested to be an algorithm to minimize the PC divergence. 

PC divergence with mixture of densities 

Apart from using pre-fixed {^-(^)), flexible mixtures of densities for {gi(yi)} is also 
suggested to be used, so that they can adapt the source densities. The form of the 
mixture of densities is the same as that in Chapter 8. Plugging eq. (8.8) into eq. (9.7), 
eq. (9.7) becomes the update equation for learning W in the algorithm with mixture 
of densities. 

The parameters {7, a, b} are tuned in the direction to minimize J(W, 7，a, b) for 
the same reason explained in Chapter 8. The derivatives of the PC divergence in eq. 
(9.3) are calculated as follows: 

d j _ ^ [ ( | d e t W i n L i ^ ( w ? x ) ) H ( 9 8 ) 

I T ( P x ( x ) ) ^ i ( w f x ) j 

I 1L — _ E x 1 9 ) 

1 ， = aik(Skj - c^ (9.10) 
Olij 

dJ ^ dJ daik 

I h i d a i k (9 11) 

。 ^ ！ ^ ^ ^ 斤 她 调 从 - . , ) 1 . 

^ L b x ( x ) ) ^ ( w / x ) • 

丛 = — E x ["(…：”呰
1
产；1X))��K.) + ̂ (̂ )̂ )1 (9.12) 

！ 二 & […如�WlQ^ywfZ ? )1 (9.13) 

Since l / (^(x)) / 3 occurs as a multiplicative scalar of the gradient, it is ignored and we 
obtain the stochastic update equations: 

I A 7 i j oc /3\ d e t w r  ( n " = 1 f ( 7 \ X ) ) ' E —叫） （ 9. 1 4) 
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• Ab{j oc det ( n L i ^ K x ) ) + 犷 ( ) � ] (9.15) 
^•(w/x) 

Aa{j oc 一 d e t ( n L i ^ K x ) ) } (9.16) 
3
 仍(w/x) 

Again we use <t>(ui:j) = l o g s i g ( 狗 ) 二 1+exp\-Uij)，corresponding to ^ (^u ) 二 

(l+exp(-4))2 a i l d 沴（〜•）— (1+^(-^,))3 * 

9.1.2 Lp Divergence 

The Lp divergence can also be used as separation functional of two densities in the 
YING-YANG learning scheme [72]: 

fs{mum2) = f p{x)\^(PMl{y\x)PM1(x))-^(PMMy)PM2(y))\Pdxdy (9.17) 

where x is the 'real body' and y is the 'seed'. Using the same procedure as in Chapter 4 
to apply the Lp divergence to the ICA problem, the cost function for the ICA problem 
becomes (Xu, not yet published): 

1 J= f 狗⑷ _ —y)py(y))-小(y —s)f[识⑷)一 
Js,y \ i=l / 

I = / Py(y) ̂ (Py(y)) - ( (n^)) dy (9.18) 
Jy \i-i / 

I = E y � p y ( y ) ) - ^ e ( n 仏 ⑷ ) 

Two special case of the Lp divergence are: 

(Case 1) p = 2 and ^(r) 二 y/r (Xu, not yet published): 

The cost function becomes: 

• • 2" 

p；,.-； L � (9.19) 
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We tried to investigate whether adaptive implementation of the minimization is pos-
sible. The derivative of J w.r.t. Wij is: 

dW" L\VldetWl J (9.20) 

( 厲 喊 4 

and the gradient is: 

( V ^ M - 、 ^ ， — ) . 

However, as px(x) occurs in some additive terms in the gradient and is not a mul-
tiplicative scalar, we cannot construct an adaptive algorithm to minimize the cost 
function. 

(Case 2) p=l and 二 r (Xu, not yet published): 

The cost function becomes: 

J = f M y ) Py(y) 一 f[9i(yi)办 
•h i=l 

I =>(x)|^r#“wHdx (9-22) 

I . — I 織 - 昏 H : 
As there is a px(x) in one additive term of J, the gradient must also consist of px(x) 
in some additive terms, which is not common multiplicative scalar of the gradient. 
Hence, we cannot construct an adaptive algorithm to minimize the cost function. 

Since we cannot construct adaptive algorithms for the minimization of Lp diver-
gence, the use of Lp divergence to the ICA problem is not investigated further. 
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9.1.3 De-correlation Index 

The de-correlation index can also be used as the separation functional of the YING-
YANG Machine [72]: 

Fs{Ml,M2) 

fx y {pMl {y\x)vMx (^)) i (vm2 {^\y)PM2 ( y ) ) ^ y (9.23) 

\j L,yv^i2 {pM1{y\^)PM1ix)) L,yp(xH2 {pmMv)pm2 (y)) dxdy 

For the case ^(r) = y^r, and using the procedures used in the previous section, the 
cost function for the ICA problem is derived as (Xu, not yet published): 

L v p y ( y ) s ( s - y ) v / P y ( y ) v / I I L i 
J — \ - )J 

I — - y h W d s d y y ^ y P ^ y ) 岭 — � d s d y 

J v p y ( y ) v / ^ y ( y ) v / n L i 9i(yi)dy 
二 1 一 ~ — ~ = 

I y / fy Py (y)Py (y)dy ^/ j； Py (y) 9j(yj)^y 

I _ j > “ x ) v ^ R y f e i ^ - (wfx )dx 

I = 1 “ Cy/J x pX(x) n ; = l 办 ( w j x ) d x 
(9.24) 

where C 二 / X b“ x ) ] 2 dx . 

The gradient of the cost function is: 

V w J ( W ) 二 
] _ 

{ — ~ � 1 n
 rr 

/ Mx)n̂ (wJx)dx ^ h W v ^ R � n 办 《
x
)

h
(

w x
)

x
 d x 

I r r ""“ 1 r/xPx(x) ( n x � ) ) h(wx)x^dx] 1 
j - [ J m ^ ^ n - ( w f x ) d x j V i ^ ( x ) n x < x ) d x J } 

(9.25) 

Since px(x) is not a multiplicative scalar to the gradient, we cannot construct an 
adaptive gradient descent algorithm. Hence, the use of de-correlation index on the 
ICA problem is not investigated further. 
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9.2 Experiments on the ICA Algorithm Based on Positive 
Convex Divergence 

9.2.1 Exper iments on the algorithm with fixed nonlinearities 

The ICA algorithm based on PC divergence eq. (9.7) differs from the information-
theoretic ICA algorithm eq. (4.28) that eq. (9.7) has an extra (3 (| de tW| n"=i 街偏》 

factor. Xu [73] suggested that, as g ^ ) has a bell shape, samples with large mag-
nitude should have smaller effect in the algorithm based on PC divergence than in 
the information-theoretic algorithm, since the bell shape multiplier 仏(队）will act as a 
small factor for large magnitude y{. Therefore, we compare the results by the two al-
gorithms on samples with some large magnitude 'outliers'. The samples with 'outliers' 
are formed by randomly selecting 5% of data points (with order of magnitude about 
1) and superimposing ±10 to them. 

We test the hypothesis with six sets of source: 

(1) 2 channels of beta(0.5,0.5) distributed sources, scaled and shifted to be within 
[-2,2] (sub-Gaussian) 

(2) 2 channels of uniform (-1,1) distributed sources (sub-Gaussian) 

(3) 2 channels of permuted human speech signals (super-Gaussian) 

(4) The 2 channels of beta(0.5,0.5) distributed sources in (1) with outliers (super-

Gaussian) 

(5) The 2 channels of uniformly distributed sources in (2) with outliers (super-
Gaussian) 

(6) The 2 channels of permuted human speech signals in (3) with outliers (super-
Gaussian) 

The pdf of the sources are shown by the histograms of the data sets (Figure 9.1) 
and the statistics of the data set are shown in Table 9.1. It should be noted that the 
kurtosis of the sources become higher (more sharply peaked) after adding the outsiders. 
The sub-Gaussian beta distributed and uniformly distributed sources become super-
Gaussian after adding the outliers. 

In the experiments, the learning rate was fixed at 0.0001. = 0.5 was used. 100,000 
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beta uniform speech 

HQ •田• 
一 2 0 2 - 2 0 2 - 1 0 0 10 

beta with outliers uniform with outliers speech with outliers 

:oinm 
_10 0 10 -10 0 10 -10 0 10 

F i g u r e 9 . 1 : Histograms showing the pdf the six sets of sources. 
(They are of different scales and only the shapes are of reference.) 

" l w i t h o u t outliers with outliers 
~ ~ b e t a I uniform speech beta uniform speech 

f. ‘ E[sl] 2.003 0.3326~ 1.000 _ 6.877 5.202 5.872 
E\st] 6.001 0.1991 11.129~ 551.9 496.8 530.0 

E\s^/E2[sl] - 3 -1.5042 -1.2002" 8.129 8.6698 15.358 12.371 
L996 0.3337 4.0Q0~ 6.850 5.2032 8.810 

E[4] 5.9846 0.2007 85.56 547.0 496.5 673.7 
E\sj]/(E2\s2

0]) - 3 -1.4978 三1.1977 2.3475 || 8.6575 15.3391 5.6799 

T a b l e 9.1: The statistics of the 6 sets of sources used in the experiment. 



‘ 

Chapter 9 ICA with Non-Kullback Cost Function 105^ 

without outliers with outliers 
beta uniform speech beta uniform speech 

I Kullback divergence, II ^ ^ ^ t ^ 
hi{yi) = -yf 

I PC divergence, h ^ ) = ^ ^ 诚 吐 o k f a i l 

-y? 11 
Kullback divergence, … r M . , , , 

fail fail ok ok ok ok 
hj(yi) = 1 - 21ogsigfa) 

• PC divergence, h ^ ) = 础 ^ • 础 f a i l o k 

1 - 2 logsig(^) [] 

T a b l e 9 . 2 : The results of the experiments, 

data points are used in each channel of the data sets. The mixing matrix used is: 

I 1 0 , 6 I (9.26) 
0.7 1 

The cubic nonlinearity and the reversed sigmoid 二 l—21ogsig(yi) = (exp(—队)-

1)/(l+exp(-yi)) are used in the experiments. The results of the experiments are sum-
marized in Table 9.2. For the information-theoretic ICA algorithm, cubic nonlinearity 
perform separation on sub-Gaussian sources and not on super-Gaussian sources, con-
sistent to the theoretical proof in Chapter 6, and the reversed-sigmoid nonlinearity 
performed separation on super-Gaussian sources and not on sub-Gaussian sources as 
expected [5, 6]. 

The ICA algorithm based on PC divergence behaves like the information-theoretic 
algorithm for the sources without outliers. However, for the sources with outliers, the 
cubic nonlinearity can separate sources with the central patch of the pdf being flat 
although the overall kurtosis of the pdf is positive. The reversed sigmoid nonlinearity 
c a n n o t separate sources with the central patch of the pdf being flat although the 
overall kurtosis of the pdf is positive. These two fact show that the algorithm based 
on PC divergence can, to some extent, ignore, or 'filter out', the outliers as expected. 
This behavior can be regarded as the 'robustness' of the algorithm based on the PC 
divergence to outliers in the sources. Experiments on 卢 二 0.2 and (3 = 0.8 also yield 
similar results. 



Chapter 9 ICA with Non-Kullback Cost Function 106^ 

9.2.2 Exper iments on the algorithm with mixture of densities 

The ICA algorithm based on PC divergence with mixture of densities are tested on 
the three sets of data used in Section 8.2 - (1) two channels of uniformly distributed 
sources, (2) two channels of permuted speech signals, and (3) one beta(0.5,0.5) dis-
tributed source, one uniformly distributed source, and one permuted speech signals. 
The learning rates and initial settings are the same as those in Section 8.2. Experiments 
using /3 二 0.5 and (3 二 0.2 have been carried out. 

All the signals in the three data sets can be separated in the experiments using 
/3 二 0.2. All signals in the first two data sets can be separated in the experiments 
using /3 二 0.5. In the experiment on data set (3), the precision problem remarked in 
Section 8.1.2 occurs and causes division by zero error in the simulation. Nevertheless, 
the experimental results are similar to those in Section 8.2 and empirically the ICA 
algorithm based on PC divergence with mixture of densities can perform separation on 
sources with any distribution. As the mixture of densities can, as experiments support, 
adapt source with any density by itself, the algorithm based on PC divergence seems 
not have casted any advantage to the algorithm based on Kullback divergence. 
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I Chapter 10 

I Conclusions 

The general information-theoretic ICA scheme proposed by Xu k Amari [74] suggests a 
new view that it is not necessary to approximate the marginal densities of the recovered 
signals (or sources) to the best but a wide class of nonlinearity can also perform source 
separation successfully. However, the condition on the choice of nonlinearity is not 
clear yet. Therefore, we carry out investigation on the information-theoretic ICA 
scheme [74], focusing on the relation between nonlinearity and separation capability of 
the algorithms. 

Firstly, we give lemmas and corollaries on the properties of the cost function J (V) 
in the information-theoretic ICA scheme. We have proved that J(V) is continuous any-
where in the n X n dimensional V-parameter space except on the singular subspace, 
where J(V) tends to be infinitely la,rge. We have proved that for odd, monotonic 
decreasing functions, including the cubic, cubic root and reversed sigmoid non-
linearity we investigated, J(V) is monotonic increasing along the radially outward 
direction beyond some finite point, and hence the general gradient descent algorithm 
will never diverge to infinity. We have also prove that the scale parameters of the 
nonlinearities can control the magnitude of the recovered signals and have no effect on 
the separation capability of the nonlinearity. In addition, there is no local maximum of 
j ( V ) in the whole V-parameter space. These results holds for the general n-channel 
case and are common to a large class of nonlinearities. Hence, they help much in 
further analysis of the information-theoretic ICA scheme. 

We performed a detailed analysis of the information-theoretic ICA algorithm with 
cubic nonlinearity. In the 2-channel case, we have determined there are exactly 16 
equilibrium points of the cost function, 8 being correct solutions for source separation 
and 8 being spurious solutions that cannot perform separation. Then, we investigate 
the stability of the equilibrium points by inspecting the Hessian matrix. We have found 
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that the correct solutions are stable if the two sources are globally sub-Gaussian, and 
are saddle points if the two sources are globally super-Gaussian. Meanwhile, the spuri-
ous solutions are found to be saddle points if the two sources are globally sub-Gaussian, 
and are stable if the two sources are globally super-Gaussian. We have also reached 
the same conditions on stability by an alternative method that directly compares the 
value of J and uses the simplicity of the 2-channel case. With the lemmas developed 
on continuity, singularity and asymptotic behavior of J(V), we conclude the global 
convergence behavior of the information-theoretic ICA algorithms (general gradient 
descent algorithms on J(W)) in a theorem stating that the information-theoretic ICA 
algorithms with cubic nonlinearity can separate two globally sub-Gaussian sources but 
cannot separate two globally super-Gaussian sources. We have performed experiments 
on different sources and all of the experimental results are consistent to the theorem. 

We have also determined two groups of equilibrium points of the information-
theoretic ICA algorithm with cubic nonlinearity in the 3-channel case. One group is 
the correct solutions that all of the three sources are separated and the second group are 
solutions that only one source is extracted but the other two are still mixed. However, 
the determination of equilibrium points is not exhaustive. We have determined that 
the first group of solutions is stable if and only if the three sources are pairwise globally 
sub-Gaussian. The experimental results on three pairwise globally sub-Gaussian source 
is consistent to the analysis. Experimental results on other sources show that other 
solutions exist and the conditions on convergence to them are not so obvious. 

Having investigated the cubic nonlinearity in details, we proceeds to investigate 
the more general relationship between the nonlinearities used in the scheme and the 
distribution of sources they are capable to separate. It is well known that if every 识(队) 

is equal to some (unknown) pSj{sj)： or pm(y“ (strict matching), the global minima of 
J(V) must be correct solutions for separation. However, fixed nonlinearities can also 
perform separation on sources of a class of distribution. We compared the nonlinearity 
and separation capability in several cases. Firstly, from Bell & Sejnowski [5] we know 
hi{yi) being several reversed sigmoids may separate super-Gaussian sources but not 
sub-Gaussian sources. Then, we experimentally found that the cubic root nonlinearity 
also may separate super-Gaussian sources but not sub-Gaussian sources. Thirdly, we 
have theoretically proved in the 2-channel case the cubic nonlinearity can separate two 
sub-Gaussian sources but cannot separate two super-Gaussian sources. In addition, 
we have proved in a theorem that if the algorithm using a linear /ii(yi) in one channel 
and cubic nonlinearity in the second channel is applied oil one super-Gaussian source 
a n d one sub-Gaussian source, the second channel always recovers the sub-Gaussian 
source. Comparing the shape and kurtosis of g^yi) corresponding to the h^yi) in the 
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above cases and the type of source densities they can separate, we found that a fixed 
nonlinearity can separate sources with densities 'loosely matched' with gi(yi) in terms 
of shape or kurtosis. This suggestion is intuitively sound and supported by theories 
and experiments we have so far. 

B We also carried out the implementation of the information-theoretic ICA scheme 
with mixture of densities, which was proposed by Xu et al [75]. In the experiments, we 
found that the flexible mixture of densities can adapt any source density and perform 
separation in all the experiments we tried. We found that the flexibility of the mixture 
of densities can be reduced and experimentally found that the mixture of two densities 
with only centers of components changeable can still perform separation on all the 
sources we tried. 

Finally, we investigate the possibility of constructing adaptive ICA algorithms from 
the Bayesian YING YANG learning theory using non-Kullback separation functionals. 
We tried the Positive Convex divergence, Lp divergence and de-correlation index, and 
could only derive adaptive ICA algorithm based on the Positive Convex divergence. 
The resulting algorithm bear one more 'bell-shaped' factor on y“ compared with the 
information-theoretic ICA algorithm and Xu [73] proposed that it would filter out 
(ignore to some extent) the large magnitude outliers in the source. The experiments 
we carried out verified this proposal. 

There are still a number of open questions regarding the information-theoretic 
ICA scheme. For example, it is difficult to scale up the analysis method we used in 
analyzing cubic nonlinearity to the general n-channel case. The information-theoretic 
ICA algorithm with reversed sigmoid nonlinearity or cubic root nonlinearity is difficult 
to analyze since the nonlinear functions cannot be expanded in finite terms by Taylor 
series and the equilibrium points are difficult to determine. The convergence of the 
algorithm with mixture of densities to correct solution have not been theoretically 
proved yet. These questions worth further investigation. 



I Appendix A 

Proof for Stabil i ty of t h e 
Equi l ib r ium Poin ts of t h e 
Algor i thm wi th Cubic 
Nonl inear i ty on Two Channels of 
Signals 

I A . l Stability of Solution Group A 

This part is to prove that Solutions Al - A8 eq. (6.15) and (6.16) axe local minima of J (V) of the 
information-theoretic ICA algorithms with cubic nonlinearity for two source signals that satisfy 

I MM - [3(乂)
2
][3(必

2
] < 0 (A-1) 

and are saddle points for two source signals that satisfy 

I ^ 2 - [3(乂)2][3(M)2] > 0 (A - 2 ) 

w h e r e / i f = E[s^]. 

Proof 

For the cubic nonlinearity, ^ (yO 二 一 S u b s t i t u t i n g h'人y“ and V A 1 - A 4 into eq. (5.17) of 
Lemma 5, we get the sufficient and necessary condition for Solution A1-A4 to be stable (local minima) 
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is: 

=(ClC2)1/204)-1/2(A4r"2 一 ^ t ] (A.3) 
>0 

Hence, if eq. (A.l) is satisfied, then Solution A1-A4 are local minima. Otherwise, since there is no 
local maximum by Lemma 9, Solution A1-A4 would be saddle points. The case for Solution A5-A8 is 
similarly proved. • 

A.2 Stability of Solution Group B 

This part is to prove that Solution BI - B8 eq. (6.22) are saddle points of J (V) of the information-
theoretic ICA algorithms with cubic nonlinearity for two source signals that satisfy 

— [3(乂)2][3(必2] < 0 (A-4) 

and are local minima for two source signals that satisfy 

- [3(必2][3(必2] > o (A.5) 

Proof The Hessian matrix V ^ J ( V ) is 

�a2j(V) a2j(V) Q2J(V) a2j(V)-
沩 斯 沩 斯 2 ¾ ^(V2)2 

• 2 v J ( V ) = Q 二 [ 抝 ] = 紮 斯 次 斯 ^ ( V 2 ) 1 

9V2I9va2 dv2ldvn1 
d^j(V) a2J(V) a2J(V) d2J(V) 

-dv229vn dv22dv12 dv229V21 dv229v22 J (A 
� t̂ o T7! «21̂ 22 T? 1̂2̂ 22 1̂2̂ 21 

•一丑111 一""^T2- - £/112 D^ I?2 
V21V22 77 Vll J? ^11^22 

_ - -丑 112 - 1̂22 D1 D2 
= -21^2. n^L dz _ E2U -V-^-E2l2 

^12^21 - -^212 ^ • — 丑 2 2 2 

where 

D = detV (A-7) 

Eijk = 丑 [ W (
v
『

s
)

s J 朴 ]
 a n d

 = 一 （
A

.
8

) 

For Solution Bl - B8, 

1 1 2 
(det V)2 = D 2 = [(2Cim)-^(2C2r72)~^ + (2c1r ? 2)-^(2c2 m)-^]2 = - (A.9) 
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where 

n = y/mm = \/A4A4 + m � O (A 10) 

C = y/ClC2 > 0 

and from eq. (A.6)，the Hessian matrix is 

隱 = Q = 
“ v^Tpi -521^22^(7^+ 一 «12 

V^P^ SnSoo^y/fj 

-Sl2S22y/Cy/m S^S22VCy/rj y/c^pl -SuSl2y/C2{y/V + 

sus2iy/cy/rj -sus2iVcy/r^ -snsi2y/c^{y/r} + 

(A.ll) 

where 

厂丄6"?丄2m PI 二 + ~7= + ~1= V ^ Vm (A.12) 
_ 6̂ 2 2m 

I 竹 二 恥 n 
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The characteristic equation is: 

0 = det(Q - AI) = (qu - A)(g22 一 A)(g33 — A)(544 — A) 
-(gil - A)(922 -入)543934 - (933 - 入)(944 一 入)921912. 
-(gii - A)(g44 - A)g32923 - (522 — )̂(933 - )̂̂ 41914 
- ( q u - A ) ( g 3 3 - A ) g 4 2 g 2 4 一 {922 一 A ) ( g 4 4 — A ) g 3 i g i 3 

+ (gil - A)(g32?43<324 + 942923534) + (922 ~ )̂(̂ 31543514 + 541913934) 
+ (933 - A)(Qf2l942?14 + 941912?24) + (944 一 A)(g2l?32gi3 + 531912923) 
+ 9 3 1 ? 4 2 ? 1 3 9 2 4 + 9 4 1 5 3 2 9 2 3 5 1 4 一 5 3 1 ? 4 2 ? 2 3 ? 1 4 一 9 4 1 5 3 2 ? 1 3 ? 2 4 . 

- 9 2 1 9 3 2 9 4 3 9 1 4 - 5 2 1 9 4 2 9 1 3 5 3 4 一 9 3 1 ? 1 2 9 4 3 ? 2 4 一 9 4 1 9 1 2 ? 2 3 ? 3 4 

+ 921912943 934 
=A4 - A3(gn + 922 + 933 + 944) 

+ A2{(gn922 + 533944 + 911944 + 922533 + ?11933 + 922944) 
- ( ¢ 4 3 9 3 4 + 9 2 1 9 1 2 + ？ 3 2 9 2 3 + ？ 4 1 9 1 4 + 5 4 2 ? 2 4 + ? 3 1 ? 1 3 ) } 

+ A{-(gng22933 + 911922 944 + 911933944 + 922933544) (A.13) 
+ (gil + 922)943934 + (933 + 944)921912 + (QU + 944)932 923 
+ (¢22 + ?33)?41?14 + (gil + 933)942924 十 (922 + 944)931?13 
- [ ¢ 3 2 9 4 3 9 2 4 + 9 4 2 9 2 3 5 3 4 + 9 3 1 ? 4 3 ? 1 4 + 9 4 1 9 1 3 9 3 4 

+ 9 2 1 9 4 2 9 1 4 + 9 4 1 5 1 2 5 2 4 + ? 2 1 ? 3 2 ? 1 3 + ？ 3 1 3 1 2 9 2 3 ] } 

+ { ? 1 1 9 2 2 9 3 3 9 4 4 

— ( ¢ 1 1 9 2 2 9 4 3 9 3 4 + 9 3 3 9 4 4 ? 2 1 ? 1 2 + 9 1 1 9 4 4 9 3 2 9 2 3 

+ 9 2 2 9 3 3 ? 4 1 ? 1 4 + 9 1 1 9 3 3 9 4 2 924 + 9 2 2 9 3 1 9 1 3 ) 

+ [911(932943924 + 942923534) + ¢22(̂ 31543914 + 941?13934) 
+ 9 3 3 ( 9 2 1 9 4 2 9 1 4 + 9 4 1 9 1 2 5 2 4 ) + 9 4 4 ( 9 2 1 9 ^ 3 2 9 1 3 + 9 3 1 9 1 2 9 2 3 ) ] 

+ [ 9 3 1 9 4 2 ^ 1 3 9 2 4 + 9 4 1 ? 3 2 ? 2 3 9 1 4 — 5 3 1 ^ 4 2 9 2 3 5 1 4 一 9 4 1 9 3 2 ? 1 3 ? 2 4 

- 9 2 1 9 3 2 9 4 3 5 1 4 - 9 2 1 9 4 2 9 1 3 9 3 4 一 ¢ 3 1 9 1 2 ^ 4 3 9 2 4 - ? 4 1 9 1 2 ? 2 3 ? 3 4 

+ 5 2 1 9 1 2 9 4 3 9 3 4 ] } 

The listed terms are simplified as follows: 

qu + g 2 2 + g 3 3 + g44 = + 仍 ) ( A . 1 4 ) 

- qnq22 + g33g44 + gng44 + 2̂2933 + gugss + 2̂2 g44 

二 + P2)2 + (ci + C2)P1P2> 
8 

943934 + q2iqi2 + q32q23 + ?4igi4 + ¢42^24 + ^31^13 
1 w 广 4m�2 l (A.16) 

二 金 + "2 + 2r?) + (ci + c2)(v^? + > 

gi 1̂ 22̂ 33 + gi 1̂ 22̂ 44 + 911̂ 33̂ 44 + q22qssQ4A 
1 (A.17) 

=——/=c(VcT+ \/c2)PlP2(pi +P2) 
16 v 2 
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(gil + 2̂2 )̂ 43 934 + (̂ 33 + )̂ 21̂ 12 
1 ‘ 广 广、,广 4 m � 2 , � (A.18) 

= + + (pi +P2) 

( g n + g44)g32g23 + (922 + ^33)941^14 
! (A.19) 

= V c 7 + Vc2)n(pi +P2) 

(gil + 933)942924 + ( g 2 2 + g44)g3igi3 = — / = c ( V c T + V^2){mP2 + mpi) (A.20) 

¢32̂ 43̂ 24 + ¢42923̂ 34 + 3̂1̂ 43914 + 4̂1̂ 13̂ 34 
+ g21^42^14 + 941512924 + g2ig32gi3 + g3igi2g23 (A.21) 

2 
= 7=0( Vci + + v ® + 4m) 

16 v 2 

gng22g3sg44 = ^ c 2 ( p i p 2 ) 2 (A.22) 

¢11922̂ 43̂ 34 + 933 944 921912 = + ^)2(2pip2) (A.23) 

^11944^32^23 + g22g33g4igi4 = — C2J7(2pip2) (A.24) 

giig33g42g24 + g22g44g3igis = + ̂ P i ) (A.25) 

g i l (^32^43^24 + g42g23g34) + g22(g3ig43gi4 + 941^13934) 

+ g33(g2ig42gi4 + g4i ̂ 12^24) + 544(̂ 21532913 + g3igi2g2s) (A.26) 

= C2(" + 4m)(y/rnp2 + y/ri2Pi) 
64 

- 1 仏丄 4 w � 4 (A.27) g2igi2g43gs4 = ( ^ + v , 

^31^42^13924 + ̂ 41^32^23^14 一 ^31^42^23 914 一 ^41^32^13g24 二 0 (A.28) 

4 2 
-g2ig32g43gi4 一 g2ig42gi3g34 - g3igi2g43g24 — <?4igi2g23g34 = +

 4 m
) (

A
.

2 9
) 

Using the following identities, 

[m _ f K (A.30) 
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/4 丨 M : (A.31) 
m m n 

rj — m 

1 | 1 = VfA + y / i 4 (A.34) 
y/m y/m \Jr]{r] - m) 

we can simplify pip2 and (pi + P2) as: 

( r 2 m � / 厂 • , 2 m � 

r - — \ / lAiA 36w?/L«2 • 4m2 

= I S y M i A + 5m + 24 m + + — (A.36) 

= i ^ 4 9 ^ ^ + 4 2 / 7 1 ^ 1 ^ 2 + 9m 2 ) 

= i (7^/^+3771) 2 

= - ( 7 7 7 — 4m)2 

rj 

- 美 + 美 ( 夯 + 去 ） 

= f ) ( ^ t + V ^ ) (A.37) 
\\J r]-m V “ ~m) J K 

A/r?(r7 - m ) � 

Also, 

Vm>2 = y/mpi =^-Am (A.38) 

I mP2 + mPi = (7rj 一 4m) ( ^ + ^ ) = ( 巧 一 4 m ) { ^ M + ^ M ) ( A . 3 9 ) 
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Now the coefficients of the characteristic polynomial 

det(Q 一 Al) = A4 + A3X3 斗 + + (A.40) 

can be written as: 

1 
益3 = VC2 )(pi +P2) 

I (A.41) 

I A2 = I | c [(pi + / ) 2 ) 2 — (rjl + "2) - 2"] + (Cl + C2) P1P2 — 贵 ) I 

= i(c[epi^f (^+^) 2
 - 丄 0 4 作 t ) -

8 [ rj(rj — m) \ v v / rj — m rj — m 
1 1 1 

+ ( c i + c 2 ) -(7n-4m)2 - ~(rj + 4m)2 ^ 

= c (2n-^)(3^- 2m) + A ) 2 + 2 ( c i + c 2 ) ( 3 " 一4m) 

=c ^ m ) W^ + 

+ 2(ci + c2) - m ) 
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1 [ 「广 4 m \
2
 1 

Al = - + y/c^) < pip2{pi + P2) - ( -^=) + n (PI+P2) -

~(mP2 + mpi) 一 2(y/rn y/rj^)(r] 4m)} 

( [ - (7^ - 4m)2 一 % + 4m)2 _ J + 
I L" “ J y/nin - m ) V 1 

I _ ( 7 ^ - 4 ^ - j 
V ^ - m ) V J V 咖 ~ m ) v 7 J (A 43) 

1 
二 7=c(-v/CT + ) X 

16A/2 
[8(6r? - 8m) 一 “](7r/ - 4m) - (9/? + 4m)" ( r - j r~j \ 

/ . � I V^i + ) 
一叫

 v
 ‘ 

1 , , - , , - , 320r?2 - 640m?7 + 256m2 ( r ^ r r \ 

I 二 - ^ ？ ！ 仏 + ⑷ ^ ^ ⑷ + 〜 

I 二 + • 产 2 - + W 

y/r]{r] - m) v 7 

ft = + + VJ4) 
yj rj{r) 一 m) v ' 

I Ao = ^ c 2 | ( p i p 2 ) 2 - 2 罢 ) ( p i p 2 ) - (mpl + mp\) 

I -4(r7 + 4m) (y/mPi + VmP2) + (^/rj + ^ ^ -4(r? + 4m)2 | 

I = i c 2 |-i-(7r?- 4m)4 — • [ ( " + 4m)2 + r?2] (7" — 4m)2 — 2(7" - 4m)2 

B : -4(r? + 4m)[2(7r? - 4m) + (r? + 4m)] +^-(^7 + 4m)41 
r (A.44) 

=-L c
2 J - i [((49r?2 - 56m" + 16m2) - 2(2"2 十 8m" + 16)) (7rj - 4m)2 

+("2 +8mr? + 16m2)2] - 2(7/7 - 4m)2 — 4(" + 4m)(15r? _ 4m)} 

二 J_c 2 丄(2206"4 - 6032rj3m + 4064r/2m2) - 158"2 - 112m" + 32m2 

64 \_r}2 v . 

=^c2(2048^72 - 6144m" + 4096m2) 

=32c2(r? — 2m)(r) - m) 

= 3 2 c 2 ^ i t f A ( y j i U A -
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Or, putting together, the characteristic polynomial is: 

de t (Q - Al)=入 4 

+ A- U 2 ^ + 广 ) ( 3 严 + — … + ^ )
2 

I ^ - m ) V ) (A.45) 

+2(ci + c2) - m) } 

+ A (-2V2c(^T + V ^ ) 5 A i / ^ " m 2 ( y M + v ^ ) } 
{ 一

m) J 
+ 32c2 - m ) 

The eigenvalues are extremely difficult to solve out. However, the result can be proved without 
explicitly solving out the eigenvalues. This is done by inspecting the signs of the coefficients of the 
characteristic polynomial as follows. 

As the Hessian matrix is symmetrical, all of the eigenvalues must be real. For super-Gaussian 
in-average signals, - m2 > 0, we have A3 < 0, > 0, Ai < 0 and > 0. Hence, every 
eigenvalue, being the root of the characteristic polynomial, must be positive. The Hessian matrix will 
be positive definite and therefore Solutions B1 - B8 are local minima. 

For sub-Gaussian in-average signals, < 0, we have < 0 . Noting that A0 = Ai 入2 入3 入4， 

where 入1’ 入2,入3’ 入4 are the eigenvalues, we get three eigenvalues must be of the same sign and the 
remaining eigenvalue must be of the opposite sign. Hence Solutions B1 - B8 are saddle points. • 

118 



I Appendix B 

I P roof for Stabil i ty of t h e 
I Equi l ib r ium Poin ts of t h e 
I A lgor i thm wi th Cubic 
I Nonl inear i ty on Th ree Channels 
I of Signals 

This part is to prove that the solution group P in Section 6.4 is a local minimum of J (V) if 

I ^ 4 - 9 ( ^ ) 2 ( ^ ) 2 < 0 , = 1,2,3 i ^ j (B.l) 

where /if = E[sf], and are saddle points otherwise. 

Proof 

The Hessian matrix of J (V) is: -

V^J(V) = Q = 

4 - - ^ 3 1 * —馬33 ^ 贊 贊 — 兮 ^ 
+ ^ ^-E^ ^ ^ + ¾ 1 

£ ^ 1 ^ - E221 五222 ^~E 2 3 2 ^ 
+ L £ ^ - ^ ^ 警-E231 ^ - ¾ 1 ^ . 

^ + ̂  ^ ^ + ̂  ^ - ¾ 1 ^ - ^ n ^--^321 贊-E如 
+ f , ^ + ̂  1令-Esn ^ - -E332 ^ - -̂333 

H ^ 贊 + 货 ^ ^--^33! ^--^332 ^-^333 J 

' (B.2) 

where Ei j k 二 丑(^(vJ^SjSfc] = -3ciE[(vTs) 2SjS k l Vij = cof叫 and D = det V. 
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For Solution P1-P8, the Hessian matrix become: 

Q = 

-少+ ^ ¾ 0 0 0 0 0 0 0 o 
111

 0 cvnr^vh 0 丄 0 0 0 0 0 
0 o cum^vl, 0 o o ^ 0 0 
0 ^ 0 c.2m12v'i2 0 0 0 0 0 
0 0 0 0 老 + ( ^ ¾ 0 0 0 0 
0 0 0 0 22 0 c^m-i-A 0 ^； o 
0 0 -^； 0 0 0 0 0 
0 0 0 0 0 0 ĉ m v̂h 0 
0 0 0 0 0 0 0 0 * + _ 

(B.3) 

where mij = Sfjif^j. 

We prove that the Hessian matrix is positive definite under the stated condition by showing that 
all leading principal minors are positive (suggested by Jiong Ruan). The leading principal minors of 
order r is defined as: 

qn ... Qir 
pr = de t ： . . ： (B- 4 ) 

‘ ‘ 

.qn …qrr . 

a n d Q is posit ive definite if and only if all of the p i , . . . ,pn2 are positive (e.g., see [3])-

The leading principal minors are: 

Pi = gu = -4- + cifiivh > 0 (B.5) 

P 2 = P I ( C I M I 2 ^ I ) > 0 (B . 6 ) 

P3 = P 3 ( c i m i 3 ^ i i ) > o ( B . 7 ) 

p4 = pi(c?c2)mi3 îW22[m?2 - >0 if /4/4 - 9(Ai?)2(M)2 < 0 (B.8) 

p 5 = p 4 q 5 5 = + C2 / J2V22) > 0 i f P 4 > 0 ( B . 9 ) 
V 2 2 

p 6 二 p 5 ( c 2 m 2 3 d 2 ) > 0 if P5 > 0 (B.10) 

P7 二 P6(c3mi3wi3) - ^2 (c2rn23v\2)[dC2m\2v2
nv\2 — 2 ] 

1̂1̂ 33 11 2 2
 •上丄 J 

=(cic\cz)vlvvl3m23[rn 12 一 ~ 

120 



is positive if — < 0 assuming / i f / i j - 9(fii)2(fjil)2 < 0. The last leading principal 
minor: 

p& = P7(c3m23V33) 

-955 2
 1 2 (C3mi3vl3) ^^"(ClC^mLt^W^ 22")] � 

^ 1 ¾ VUV22 (B.12) 

=P7 (c3m 2 3v l 3 ) - (CiC2C3)^n ^ 2 2 ^ 3 3 {
m 1 2 — ^ 1 ^ 2 ) ( ^ 1 3 一 

=(C?C203)^^22^33(^ 12 - ^1^2)(^13 - ^1^3)(m23 -

is positive if / 4 f 4 - 9 ½ ) 2 ^ ) 2 < 0 assuming / j f ^ - < 0 and f i f^ t — 9 ½ ) 2 ½ ) 2 < 0. 
Hence, the Hessian is positive definite and Solution P1-P8 are local minimum if the three channels are 
mutually Gaussian in-average. By Lemma 9，there is no local maximum and hence Solution P1-P8 are 
saddle points if the condition that the three channels are mutually Gaussian in-average is not satisfied. 

By the symmetry between the channels, the other solutions of solution group P must have the 
same condition on stability. Therefore, the proposition is proved. • 
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Appendix C 

Proof for T h e o r e m 2 

The equilibrium equation for the algorithm is V W J ( W ) = [ V V ^ ( V ) ] A _ 1 = 0，which implies, pro-

vided that det V # 0: 

ES[I + h (Vs ) (Vs ) T ] = 0 (C-1) 

or 

Self-coupling equations: 

1 - cnEiyl] = 1 - + 1̂2̂ 2) = 0 (C.2) 

1 - C2zE[y2] = 1 - C23(«2lA«l + ^21^22^1^2 + ^22½) = • (C.3) 

Cross-coupling equations: 

E[yiy2] == wii”2i"? + vi2v22^2 = 0 (C.4) 

- E[ylyi] - vnv2i{vhfjii + + ^12^22(^2^2 ^1^2) =0 (C.5) 

where ^ = E[s^]. The cross-coupling equilibrium equations eq. (C.4) and (C.5) can be written as: 

^ VllV21 =0 (C.6) 
vhni + 3̂ 22̂ lA<2 2̂2̂ 2 + 3 ^ ^ ^ 2 [ 1̂2̂ 22 
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Denote the left matrix in eq. (C.6) as M' , then det M ' = - 3(^1)2] - — 3("?)2]. 
Since one source is super-Gaussian and one source is sub-Gaussian, we have det M ' + 0,1 and'hence 

= 0 (C.7) 
V12V22 

Coping it with the self-coupling equilibrium equations eq. (C.2) and (C.3), we get solution groups Ai 
and An eq. (7.2) and (7.3) exhaustively. 

From Lemma 5, the sufficient and necessary condition for Solutions A1-A4 to be stable is: 

丑[4][Cll]E[3C23(t;2*2S2)2] - I 2 

^11 V2Z 
I = ^222 ^SCuC23E[sl] (E[sl])2 - | 

=vl2
2c^E[s\] {3 (E[s2

2])2 — £[4]} 

> 0 

i.e., kurt(s2) = E[st] - 3 (E[sl])2 < 0, or in other words, s2 is sub-Gaussian. 

Similarly, from Lemma 6，the sufficient and necessary condition for Solution A5-A8 to be stable 
is: 

一 2
1
 2 v12 U21 

=V212 |3CUC23^[S2](丑[4])2 - J (C.9) 

=V*22
2C11C2SE[S2

2] {3 (Eisl])2 一 E[s?]} 

>0 

i.e., kurt{si) = E[s4
x] - 3 (E[sl])2 < 0, or 5i is sub-Gaussian. 

To summarize, we have: -

Sl s2 Stable Solution y\ y2 
super-Gaussian sub-Gaussian A1-A4 s\ S2 
sub-Gaussian super-Gaussian A5-A8 S2 si 

In all cases, the pdf of y2 is flatter than that of yi. Hence the theorem is proved. • 

1 Actually, if one source were exactly Gaussian and the other were non-Gaussian, we also have 
det M ' + 0. However, processing only finite number of sample points, the empirical kurtosis would 

not be exactly zero but would be either a positive or negative number with small magnitude. Hence, 
the condition that one source is exactly Gaussian is not applicable in this case. 
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