
Coordinated Collaboration for
E-commerce Based on the

Multiagent Paradigm

LEE Ting-on

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong
September 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

i
j

/ V / 统系 n

KZiZlvf
M K UrWERSITY

Acknowledgments

First and foremost, I would like to give my grateful thanks to my supervisor, Prof.

Kam-Wing Ng for his guidance throughout the two years of my postgraduate study.

If it had not been for Prof. Ng's insightful advice and his patient guidance, my

research would not have conducted reasonably. Prof. Ng's precise and thorough

review on our published papers and this thesis is most appreciated.

Next, my gratitude goes to Prof. Moon-Chuen Lee and Prof. Ho-Fung Leung who

have given me precious comments and suggestions as they marked my term papers;

and Prof. Boon-Toh Low who inspired me on thinking and research as he supervised

my final year project during my undergraduate study.

Many thanks to Ka Ho Mak, my final year project partner who kept giving me

helpful advice on various aspects evey time we met; my fellow postgraduate students,

Hing-Wing Chan, Kwong-Wai Chen, Ka-Lung Chong, Yin-Hung Kuo, Tsui-Ying

Low, Wfng-Kai Lam, Ka-Po Ma, Kam-Po Shan, Xiao-Qing Wang, Siu-Ham Wong,

Wai-Ching Wong and Wai-Chiu Wong, who shared my joy and sadness in the

postgraduate program, and dear Katso members who filled my emptiness and gave

me encouragement.

Finally, I take this chance to give my gratitude to my family for giving me support

ever since I was bom. Thanks for giving me their love and care that lead to all the

achievements I have attained thus far.

I i
i
j

Coordinated Collaboration for
E-commerce Based on the

Multiagent Paradigm

submitted by

LEE Ting-on

for the degree of Master of Philosophy
at the Chinese University of Hong Kong

Abstract

The Internet has been expanding rapidly over the recent decades as are the activities

conducting over the World Wide Web. The complexity of online services grows

along with the increasing population online. The robustness of network applications

and distributed systems can no longer be sustained by the traditional distributed

programming approaches in an effective manner. For this reason, the software agent

paradigm has emerged as a promising methodology to resolve complex distributed

computation problems at high scalability.

As more research attention is being drawn on the software agents, the multiagent

paradigm stems from employing multiple agents to add further capabilities and

performances to distributed systems. Although research over multiagent systems has

emerged in recent years to formulate open, flexible and scalable solutions to large-

scale distributed problems such as WWW information retrieval, data mining and

xiii

electronic marketplace, the full potential of the multiagent paradigm has yet to be

revealed, as most of the major mobile agent frameworks only provide primitive

support for inter-agent communication. The implementation of any collaboration

architecture is up to the system developers' responsibility.

In this thesis, we present a Componentware for Distributed Agent Collaboration

(CoDAC) as a solution to general agent coordination problems. CoDAC utilizes the

component model to offer flexible and reliable coordination support to mobile agents

distributed over the network. The major contribution of CoDAC is to embed atomic

commitment capabilities into the collaboration among distributed agents with

enhanced fault tolerance.

xiii

多代理爲本電子商務之協調協作

作者:李定安

論文摘要

隨著網上的活動日益繁忙，互聯網絡在近數十年正經歷激烈的膨脹。同時各類

網上服務的內容亦隨網絡用戶的增長而日趨複雜°傳統的離散計算範型已難以

高效率地應付當前的網上動態離散環境，爲此代理範型急速冒升成爲理想的離

散計算技術。

藉著代理範型方面多年的硏究成果，近年多代理系統的學術硏究發展迅速，其

應用範圍主要針對計算機網絡上離散以及大規模的難題,例如互聯網上分佈信息

的捜索，數据發掘以及電子商業等各方面提供靈活的解決方案但是目前大部份

主導的移動代理結構模型對多代理協作方面只提供有限的輔助,令多代理計算範

型的潛能未能盡顯。

在這篇論文中,我們提出一個輔助多代理在分散環境下協作的部件CoDAC作

爲多代理系統的骨幹並爲該類系統提供具彈性的支援，其主要貢獻在於將完整

及容錯的特性整合在多代理協作系統之上。

xiii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1

1.1 Roadmap to the Thesis 5

2 Software Agents and Agent Frameworks 7

2.1 Software Agent 7

2.1.1 Advantages of Agent 10

2.1.2 Roles of Agent 11

2.2 Agent Frameworks 13

2.3 Communication Services and Concepts 15

2.3.1 Message Channel 15

2.3.2 Remote Procedure Call 16

2.3.3 Event Channel 17

2.4 Component 18

3 Related Work 20

V

3.1 Collaboration Behaviors 20

3 2 Direct Coordination 22

3.3 Meeting-oriented Coordination 23

3.4 Blackboard-based Coordination 24

3.5 Linda-like Coordination 25

3.6 Reactive Tuple Spaces 26

4 Background and Foundations 27

4.1 Choice of Technologies 27

4.2 Jini Technology 28

4.2.1 The Lookup Service 29

4.2.2 Proxy 31

4.3 JavaSpaces 32

4.4 Grasshopper Architecture 33

5 The CoDAC Framework 36

5.1 Requirements for Enabling Collaboration 37

5.1.1 Consistent Group Membership 37

5.1.2 Atomic Commitment 39

5.1.3 Uniform Reliable Multicast 40

5.1.4 Fault Tolerance 40

5.2 System Components 41

5.2.1 Distributed Agent Adapter 42

5.2.2 CollaborationCore 44

5.3 System Infrastructure 45

5.3.1 Agent 45

5.3.2 Distributed Agent Manager 46

xiii

5.3.3 Collaboration Manager 46

5.3.4 Kernel 46

5.4 Collaboration 47

5.5.1 Global Collaboration 48

5.5.2 Local Collaboration 48

6 Collaboration Life Cycle 50

6.1 Initialization 50

6.2 Resouces Gathering 53

6.3 Results Delivery 54

7 Protocol Suite 55

7.1 The Group Membership Protocol 56

7.1.1 Join Protocol 56

7.1.2 Leave Protocol 57

7.1.3 Recovery Protocol 59

7.1.4 Proof 61

7.2 Atomic Commitment Protocol 62

7.3 Uniform Reliable Multicast 63

Chapter 8 Implementation 66

8.1 Interfaces and Classes 66

8.1.1 The CoDACAdapterlnterface 66

8.1.2 The CoDACEventListener 69

8.1.3 The DAAdapter 71

8.1.4 The DAManager 75

8.1.5 The CoDACIntemalEventListener 77

8.1.6 The CollaborationManager 77

8.1.7 The CollaborationCore 78

xiii

8.2 Messaging Mechanism 79

8.3 Nested Transaction 84

8.4 Fault Detection 85

8.5 Atomic Commitment Protocol 88

8.5.1 Message Flow 89

8.5.2 Timeout Actions 91

Chapter 9 Example 93

9.1 System Model 93

9.2 Auction Lifecycle 94

9.2.1 Initialization 94

9.2.2 Resource Gathering 98

9.2.3 Results Delivery 100

Chapter 10 Discussions 104

10.1 Compatibility 104

10.2 Hierarchical Group Infrastructure 106

10.3 Flexibility 107

10.4 Atomicity 108

10.5 Fault Tolerance 109

Chapter 11 Conclusion and Future Work I l l

11.1 Conclusion I l l

11.2 Future Work 112

11.2.1 Electronic Commerce 112

11.2.2 Workflow Management 114

Bibliography 116

xiii

！
•

t-

： Publication List 121

xiii

List of Figures

3.1 Coordination models for mobile agents 21

4.1 Architecture of the Grasshopper framework 34

5.1 Agent collaboration group 43

5.2 The agent group hierarchy 44

5.3 The distributed transaction infrastructure 45

6.1 The collaboration life cycle 51

6.2 Collaboration initialization phase 52

6.3 Resources gathering phase 53

6.4 Results delivery phase 54

7.1 The join protocol 57

7.2 The leave protocol 58

7.3 The recovery protocol for ordinary members 69

7.4 The recovery protocol for the coordinator 70

X

7.5: The atomic commitment protocol 63

7.6: The uniform reliable multicast protocol 64

8.1: Space-based communication channel 80

8.2: The atomic commitment protocol 90

9.1: The kernel launcher dialog 95

9.2: Registration of kernel 95

9.3: Initialization of the coordinator 96

9.4: Initialization of the collaboration group 97

9.5: The auction kernel dialog 98

9.6: Bid gathering 99

9.7: The agent dialog 100

9.8: On-screen output from the kernel 102

9.9: Result delivery 102

9.10: Auction termination on-screen display 103

10.1: 110

11.1: An order processing workflow system architecture 114

xiii

List of APIs

8.1 The CoDACAdapterlnterface definition 68

8.2 The CoDACEventListener API 70

8.3 The DAAdapter API 72

8.4 The DAManager API 75

8.5 The CoDACIntemalEventListner API 77

8.6 The CollaborationManager API 78

8.7 The CollaborationCore API 79

8.8 The CoDACMessageEntry API 81

8.9 The CoDACMessageChannel API 82

xiii

List of Tables

2.1 The properties of software agent 9

9.1 Auction strategy 101

10.1 Ag(n, p) 110

.1

！ I
！ I

:i ij
丨.丨
j I

...i :i
: 1
• 1 ••j

'•j

xiii

Chapter 1 Introduction 1

Chapter 1

Introduction

The Internet has been expanding rapidly over the recent decades driven by a wide

range of activities conducted over the World Wide Web. For instance, business

organizations perceive the Web as a potential market that could boost sales at

comparatively low cost. As a result the electronic marketplace has emerged as the

key growing entity over the Internet. However, the complexity of online services

grows along with the increasing population online. The robustness of network

applications and distributed systems can no longer be sustained by the traditional

distributed programming approaches in an effective manner. In particular, poor

network qualities and information overload impose indispensable burden on system

performance. For this reason, the software agent paradigm has emerged as a

promising methodology to resolve complex distributed computation problems with

high scalability.

Thanks to the mobile agent paradigm, we experience a breakthrough to move the

process to the data source. This mobility of agent (the software process) brings

I benefits in many ways. An agent continues to operate even if it is temporarily

I disconnected from the network as it essentially performs its operation locally at the

； data source. In fact, an agent can be kept offline and immune to any harm caused by

Chapter 1 Introduction 2

network latency for most of the time of its execution. In addition, it utilizes the

limited bandwidth by sending only the relevant results over the network. All these

benefits justify the deployment of agents in the distributed computation environment.

As more research attention has drawn on the software agents, the multiagent

paradigm stems from employing multiple agents to add further capabilities and

performances to distributed systems. The multiagent paradigm further unravels the

potential of software agents in realizing various attractive goals. For example, more

elaborated services can be provided from a group of cooperating agents, each

implementing different logic to address different needs and to simulate different

behaviors. These agents represent different interests and negotiate with each other to

find out the optimal solution for the best interest of all involved parties. Further,

multiagent systems utilize the autonomy of software agents to facilitate parallel

processing where a comprehensive work can be divided into several component tasks,

each performed by an individual agent concurrently so as to increase system

throughput. Further, replicated service agents can be employed to offer high

flexibility and fault tolerance.

Recent research over multiagent application focuses on formulating open, flexible

and scalable solutions to large-scale, distributed problems such as WWW

information retrieval, data mining and electronic marketplace. In particular, the

multiagent paradigm is drawing increasing interest over the areas of e-commerce

[MGM99, GTB99], virtual enterprises and intelligent manufacturing [JAS99],

scientific computing [DHRR99], home automation [Run99], and network

communities [HOY+99].

As long as multiple distributed objects (e.g. software agents) are engaged in some

kind of global behavior, the concept of knowledge reasoning [HM90] is concerned.

Reasoning about knowledge plays a fundamental role in distributed systems, where

communication within the system can be viewed as the act of transforming the

system's state of knowledge. For instance, agents can only base their actions on their

local information. This knowledge, in turn, depends on the messages they receive

I and the events they observe. Thus, there is a close relationship between knowledge

1 I

Chapter 1 Introduction 3

and action. When we consider the task of performing coordinated actions among

multiple agents in a distributed environment, it does not suffice to consider only

individual agent's knowledge. Rather, we need to look at the states of knowledge of

the groups of agents. Attaining particular states of group knowledge is a prerequisite

for performing coordinated actions of various kinds.

Common knowledge [HM90] corresponds to the facts that are universally known.

Therefore, reaching a common knowledge (i.e. the strongest stage of group

knowledge) is essential for execution of simultaneous or consistent actions within the

group.

Mole [SBH96], as a fore-runner in embedding the exactly-once semantics in the

mobility of agents, presents a protocol suite to guarantee an agent to be executed

exactly once with enhanced fault tolerance in the reduction of risk on an agent to be

blocked. This model enforces the common knowledge among the set of agent

execution environments, denoted as nodes, in order to solve the blocking problem.

In this model [RS97], the task of each agent performs in a sequence of steps. A

step corresponds to the action performed on the local resources as an agent visits an

individual network node. As an agent often has to visit several network nodes to

accomplish its task, which step the agent has to perform on which node and the order

in which the steps have to be performed is described by an itinerary, which may be

adapted during the execution of the agent [SRM98]. The itinerary is constituted of

stages, where each stage consists of a nonempty set of nodes that can alternatively

serve the agent. Each node in a stage assumes either one of two roles, worker or

observer. Only one worker exists in each stage at a time and the execution of an

agent associates to a stage the set of operations performed by the agent while it visits

the worker of this stage. This set of operations is treated as a transaction (i.e. a step

transaction). Observers simply serve as replacement in case the worker crashes.

When an agent completes a step, the agent object with the code and all private

data belonging to the object are captured and transferred to the nodes associated with

the next stage (i.e. both worker and observers). There, it is re-instantiated at the

worker and the step to be performed on this node is executed.

Chapter 1 Introduction 4

To provide reliable agent execution, the agent is executed using the protocols for

providing the exactly-once property of mobile agents presented in [RS98], namely

the monitoring protocol, the selection protocol and the voting protocol.

Although the selection protocol selects a new worker among the available

observers when the current worker is suspected to have failed in the monitoring

protocol, this protocol does not enforce a strong state of knowledge and may turn out

with multiple selected workers and hence duplicated step transactions. Therefore, the

voting protocol is designed to preserve the exactly-once semantic of the step

transaction. This protocol attains common knowledge by requesting all stage nodes

to vote for or against the commitment of a step transaction associated to a worker. If

a majority of the stage nodes agree with the worker to commit, then that step

transaction can commit mutual exclusively whereas other outstanding workers must

abort. In this sense, this protocol has enforced the common knowledge on exactly

which node commits the step within a stage.

Inspired by this model, we intended to design a tool for solving distributed

coordination problems. Clearly, the Mole model only deals with one specific

coordination problem, that is, the exactly-once commitment with added fault

tolerance to a step and, thereby, the entire task of an agent as a whole. Rather, we

develop our tool for enforcing common knowledge atop of fundamental

collaboration practices in multiagent environments. Since, the coordination effort in

the Mole model is imposed on the execution environments (i.e. the stage nodes), this

causes certain platform dependency on the mobile agents. In order to eliminate

platform dependency, we decided to integrate the coordination capability into the

software agent itself on top of standard Java facilities.

In this thesis, we will present a Componentware for Distributed Agent

Collaboration (CoDAC) as a solution to general agent coordination problems.

CoDAC utilizes the component model to offer flexible and reliable coordination

service to mobile agents distributed over the network. It takes advantages of the Jini

infrastructure [Sun99a] in order to be deployable with plug-and-play capability at

runtime. CoDAC encapsulates its constituent features with respect to the

Chapter 1 Introduction 5

enforcement of common knowledge and interacts with agents through well-defined

interfaces. It features modularized and interchangeable building blocks for

multiagent systems. On top of that, it exercises the self-managing property to manage

its own resources and adds no management burden on the associated agents.

Beyond the attainment of common knowledge, CoDAC adds flexibility and

reliability into the coordination framework. For instance, CoDAC boosts flexibility

to a new extent, as it breaks the gap between different agent platforms. With its

strong compatibility, CoDAC can bring heterogeneous agents implemented and

operating in different agent platforms together to engage in collaborations. Above all,

CoDAC offers the core functionality to manage the groups of agents regardless of

their heterogeneity. These groups are managed with enhanced reliability in a way

that failures within a group will be self-recovered in a timely fashion. In particular,

the coordination center can shift from one agent to another in a controlled manner

when failure occurs in certain members. Furthermore, CoDAC presents a

hierarchical group infrastructure which adds scalability to multiagent systems as the

coordination effort decentralizes throughout the hierarchy where dynamic changes in

the group membership can be handled effectively at the local domains.

CoDAC is a comprehensive tool for the multiagent paradigm, as it has not only

addressed the coordination issues in multiagent collaboration, but has also enhanced

such crucial factors as flexibility, reliability and scalability in support for large-scale

open multiagent systems.

1.1 Roadmap to the Thesis

In this thesis we will present the design issues and the coordination mechanisms

implemented in CoDAC. To begin with, we first have a brief introduction to the

software agent paradigm in Chapter 2. We will introduce the key players in this

Chapter 1 Introduction 6

paradigm and discuss their implications on the distributed environment. In Chapter 3,

we give a survey on existing coordination models in various agent frameworks.

In the following chapters, we go into the design issues of the CoDAC framework.

Chapter 4 presents the standard facilities that serve as the foundation for the design

and implementation of CoDAC. In Chapter 5, we identify the key requirements in the

multiagent paradigm and explain the system infrastructure of CoDAC. Chapter 6

describes the collaboration model and the protocol suite that entails the coordination

mechanisms in CoDAC will be explained in Chapter 7.

Chapter 8 details the implementation of CoDAC follows with an example for

illustration in Chapter 9. Chapter 10 summarizes the characteristics of the

collaboration framework implemented in CoDAC as the key contributions it delivers.

We complete the thesis with a summary of the contributions and a discussion of

future works in Chapter 11.

Chapter 2 Software Agents and Agent Frameworks 1_5

Chapter 2

Software Agents and Agent

Frameworks

The software agent has emerged in the last decade as a promising solution to

distributed computation problems like poor network quality, limited bandwidth and

network legacy, etc. In this chapter, we introduce the key entities in the software

agent paradigm. First, we give a definition to software agent and discuss its

implication to the distributed environment in section 2.1. Next, we define an agent

framework and identify the common communication facilities available in such

frameworks in section 2.2 and 2.3 respectively. In section 2.4, we define the

component concept which plays a key part in agent frameworks.

2.1 Software Agents

A software agent, in nature, is a computer program. However, the boundary between

the two is not precisely defined. Current research offers a variety of definitions on

Chapter 2 Software Agents and Agent Frameworks 1_5

the concept of software agent, yet there is still no systematic way to distinguish

between an agent and a program. In summarizing the many ways of describing a

software agent, we come up with a set of properties shared among typical agent

applications. A program may be usefully qualified as an agent according to this set of

properties that it may possess. These properties include:

Autonomy: One of the features of an agent that draws most attention is the

autonomy [FG96] it possesses. Agents are self-contained independent software

entities that execute continuously and autonomously in attaining their goals on behalf

of the end-users or other program entities without direct intervention by human.

Agents act pro-actively to take the initiative roles to accomplish their tasks with

authority granted by the user.

Reactive and goal-oriented: Autonomous agents are computational systems that

inhabit some complex dynamic environment, sense and act autonomously in this

environment, and by doing so realize a set of goals or tasks [Maes95] for which they

are designed. An agent can be viewed as perceiving its environment through sensors

and acting upon that environment through effectors [RN95].

Temporally continuous: Every agent acts continually over some period of time

TG96]. A software agent, once invoked, typically runs until it decides not to. In

some cases, human can kill an agent mandatory, but in most cases, human

intervention is undesirable. For example, mobile agents on the Internet may be

beyond calling back by the user.

Flexible and adaptive: Actions taken by agents are not scripted, instead, they are

driven by some knowledge or representation of the users' goals or desires in

harmony with the dynamic conditions in the environment [OW94]. Further, these

actions taken will affect conditions in the environment, changing what agents will

sense in the future and thereby effecting how the agents act subsequently.

Communicative: Social ability [WJ95] is another key feature an agent possesses to

facilitate task accomplishment. Agents equipped with this ability are capable to

interact with one another via some kind of agent-communication language, wherein

Chapter 2 Software Agents and Agent Frameworks 1_5

participating in collaborative operations. Software agents typically exercise their

social ability to engage in dialogs and negotiations, and to coordinate transfer of

information.

Mobility: Mobile agents, in particular, possess the ability to migrate from one host to

another. As an agent migrates, it is not only the code but also the state [BHRS97] of

the agent that has to be transferred to the destination. An agent may possess a

predefined itinerary at compile-time or decide on its next destination at runtime

[RS97] so as to accomplish their tasks on various data sources.

Property Meaning

Autonomous Exercises control over its own actions

Reactive Responds in a timely fashion to changes in the

environment

Goal-oriented Does not simply act in response to the environment

Temporally Continuous Is a continuously running process

Social Ability Communicates with other agents

Adaptive Changes its behavior based on its previous
experience

Flexible Actions are not scripted

Mobile Able to transport itself from one machine to another

Table 2.1: Properties of software agent

The above properties are summarized in Table 2.1. Satisfying the first four

properties, namely, autonomous, reactive, goal-oriented and temporally continuous,

qualifies a computer program as an agent in general. Fulfillment of other additional

properties produces potentially more useful classes of agents. For example, mobile

Chapter 2 Software Agents and Agent Frameworks 1_5

agents inherit the mobile property, whereas learning agents inherit the adaptive

property. A program justified as an agent utilizes these properties to pursue its goals.

2.1.1 Advantages of Agents

In the following, we examine the advantages of the software agent paradigm in terms

of the properties described in the previous section. In particular, we focus on the

advantages delivered from the mobility and autonomy of an agent.

1. To facilitate high quality, high economical mobile applications: Applications

employing mobile agents transparently utilize the network to accomplish their

tasks, while taking flill advantage of resources local to their host machines in the

network. Instead of fetching data remotely, agents perform their operations at the

data source, wherein enhancing higher performance with reduction on

communication cost in terms of the number of remote interactions and the

amount of data transmitted over the network. An overall improvement is

justifiable if the performance gains exceed the extra overhead for transferring the

agents.

2. To facilitate software-distribution on demand: In traditional client-server systems,

new code has to be installed manually by users or system operators. The

installation is sometimes rather challenging and often requires detailed

knowledge about the current state of the computer system. The software-

distribution on demand [BHRS97] paradigm emerges as an easier installation

alternative, which not only able to transport code, but also to install packages

automatically. For instance, a mobile agent system offers similar services as it

utilizes platform-independent languages like Java to deliver programs in forms of

mobile agents to the clients, which embrace an environment to install and execute

these modules.

Chapter 2 Software Agents and Agent Frameworks 1_5

3. To utilize low bandwidth, high latency, error prone communications channels

efficiently and economically: The agent network employs a store and forward

mechanism to transfer agents between nodes. This is well suited to the

problematic nature of many communications channels, especially in the mobile

arena. Queuing and persistent checkpoints enhance this further, to the point that

agents can use such channels with no degradation in reliability or response. For

example, the client part of the application can be transferred, as an agent, from a

mobile device to stationary servers in the network. Not only the individual

requests are sent to the network, but also the entire task is moved to the data

source where it is performed asynchronously. Once the task transfer is complete,

the mobile device can be disconnected from the network. Some time later, the

device can reconnect to receive the results of the task. As the data processing

takes place locally at the source, the network has no effect on the agent as it

executes.

2.1.2 Roles of Agents

As seen in section 2.1, different agents can inherit different sets of properties,

resulting in a hierarchical classification based on set inclusion. On the other hand, in

most common agent applications, where heterogeneous components can inter-operate,

the participating agents assume a variety of roles. These agents are differentiated

from one another by the roles they take and can be classified into the following

categories [HS98a]:

User agent: a user agent acts as an intermediary between the user and the system,

providing access to such resources as data analysis tools, workflows and concept-

learning tools. It supports a variety of interchangeable user interfaces (eg. query

forms, graphical query tools, etc), result browsers and visualization tools.

Chapter 2 Software Agents and Agent Frameworks 1_5

Broker agent: Broker agents implement directory services for locating appropriate

agents with appropriate capabilities. They manage a namespace service and may

store and forward messages and locate message recipients. Brokers might also

function as communication aids by managing communications among the various

agents, databases, and application programs in an environment.

Resource agent; Resource agents provide access to information stored in legacy

systems, among which three common types are classified by the resource they

present. Wrapper agents implement common communication protocols and translate

commands and results into and from local access languages. For example, a wrapper

agent may use a local data-manipulation language such as SQL to communicate with

a relational database. Database agents manage specific information resources, and

data analysis agents apply machine learning techniques to form logical concepts

from data or use statistical techniques to perform data mining.

Execution agent: Execution agents are implemented as rule-based knowledge

systems. They supervise query execution, operate as script-based agents to support

scenario-based analysis, or monitor and execute workflows. A mediator agent is a

specialized execution agent that works with brokers to determine which resources

might have relevant information. It also decomposes queries to be handled by

multiple agents and combines the partial responses obtained from multiple resources.

Security agent: Security agents provide system-wide authentication and

authorization, and can be used to enforce appropriate usage policies for system

resources.

Such variety of agents embodies diverse knowledge, reasoning approaches and

perspectives. They represent people or business interests that have different goals

and motivations and collaborate as a whole that constitute the system backbone.

Chapter 2 Software Agents and Agent Frameworks 1_5

2.2 Agent Frameworks

A framework [Lewa98] is a tool for managing a system of interacting objects and for

developing objects that will integrate seamlessly into the framework. The common

goal of every framework is to enhance well maintainable and consistent software

systems. This goal is attained through standardization on the patterns of collaboration

between the objects that constitute the framework, such that every component inside

a framework shares consistent design attributes, and may even share common

implementations.

For instance, object-oriented frameworks allow the highest common abstraction

level between a number of similar systems to be captured in terms of general

concepts and structures. Hence, a framework is essentially a large design pattern that

captures the essence of one specific kind of object system along with the elements

common to a family of the relevant systems. The bulk of the system functionality is

captured in the framework, which is maintained as a single entity. Each software

system that builds atop a framework is an instantiation of that framework.

It follows that an agent framework can be viewed as a tool which entails an

abstract design for agent-based systems. It standardizes the abstract interfaces for

which the agents and other entities within the system must conform in order to be

integrated seamlessly into the system and to utilize the basic common services

provided by the underlying facilities and middle wares.

In particular, a mobile agent framework is an infrastructure that supports the

mobile agent paradigm. Examples of mobile agent frameworks include Aglet [OK97],

Ajanta [KT98], Concordia [WPW97], Grasshopper [IKV98], etc. Although the

architectures in different mobile agent frameworks are different in their

implementation, the core functionality delivered by each framework is more or less

the same. For instance, each mobile agent framework must provide a hosting

environment for the agents, a space for which an agent resides, executes and interacts

with other entities within the system. For examples, the so-called aglet context

Chapter 2 Software Agents and Agent Frameworks 1_5

[OK97] in Aglet serves as warehouse or workplace where aglets can communicate

with each other, locations are offered in Mole [SBH96] for agents to execute upon.

Similarly, the agent server [KT98] and the agent manager [WPW97], in Ajanta and

Concordia respectively, serve the same purposes. These execution environments

(commonly known as places) typically implement the transfer protocols to offer

basic mobility support needed for agents. They perform the serialization and

deserialization of the agent codes, and recover their internal states.

On top of each place, there is a variety of components known as services, that

provides a set of common basic services including naming and trading, messaging,

security and access to various resources. For example, the directory manager

WPW97] in Concordia maintains a registry of application services and enables

mobile agents to locate the application servers they wish to interact with on each host,

the security managers in Ajanta [KT98], AMETAS [ZMG98] and Concordia are

responsible for authenticating and authorizing the received agents, monitoring

agents' behavior and granting the privileges to access system resources whereas the

communication service [IKV98] in Grasshopper supports location-transparent

interactions between agents, places and non-agent-based entities.

Services are typically employed as proxies for the systems resources, which shield

the underlying resources against direct access from agents. These proxies serve the

requests from agents, verify the requests based on the security policy, direct any

justified requests to the actual resources and finally return the results to the agents.

All mobile agents must rely on interfacing with these proxies to gain access to

system resources indirectly. This serves as a primitive solution to protect the host

against malicious agents.

Chapter 2 Software Agents and Agent Frameworks 1_5

2.3 Communication Services and Concepts

In section 2.1, we have identified social ability as one of the qualifying properties to

be an agent. This property enables an agent to communicate with one another and

even to engage in collaborations. In this section，we will see how agents exercise this

capability. In particular, we address the various types of communication services

implemented in well-known agent platforms, namely Ara, Aglet, Ajanta, Concordia,

Grasshopper and Mole.

For instance, each type of communication identified among these seven platforms

can be classified as either one of the three categories: message channel, remote

procedure call and event channel.

2.3.1 Message Channel

Message channels implement the basic form of communication, message exchange,

between different agents. Messages are implemented in the form of objects and

typically have an arbitrary object as its argument that stores the actual content of the

message. As an agent wants to talk to another agent, it has to create a message object

first, and then send it to the peer. The incoming messages are stored in a queue

before they are being processed one by one. The receiver agent can determine what

to do by checking the type of the received message.

Message channels are advantageous in terms of the simplicity to trace as well as

the flexibility to extend. In particular, various agent communication languages such

as KQML and KIF can be implemented readily on top of message channels.

In Aglet [OK97], messages can be transmitted on both local and remote scales. In

particular, the content of the messages passed by remote messaging must implement

the java.io.Serializable interface, such that it could be marshaled and unmarshaled by

the Java object serialization facilities. Sending a remote message is different from

dispatching an aglet in the sense that a remote message does not cause any transfer of

Chapter 2 Software Agents and Agent Frameworks 1_5

bytecode, and therefore the classes used in the message have to be installed in both

hosts.

The messaging mechanism in Mole [MJF96] is developed for indirect data-

oriented inter-agent communication, which can either be synchronous or

asynchronous. A message is sent from an agent to the location (the hosting place of

the agent) specifying the addresses of both sender and receiver. The destination

location will thereby direct the message to the receiving agent if that receiver exists.

Otherwise the message will be queued and sent back to the sender after a timeout.

An asynchronous remote messaging facility is available in Ara [HT97] for simple

status reports, error messages and acknowledgments. Each message is addressed to

one or more agents by their names that consist of a unique id, an identification of

their principal and an optional symbolic name from a hierarchical name space. The

message will be delivered to all agents at the indicated place whose names are

subordinates of the indicated recipient name in terms of the hierarchical agent name

space. This address scheme is applicable for place-wide message multicast or

application-level transparent message forwarding. However, in order to avoid remote

coupling, this messaging facility does not guarantee against any message losses.

2.3.2 Remote Procedure Call

Remote procedure call facilitates direct action-oriented synchronous communication,

in which the flow of control will be transferred from the caller agent to the callee

until the request is served and the results are returned. Only the public method of the

callee can be remotely invoked and any such method would be executed concurrently

to the callee's normal control flow. Obviously, the callee must never migrate during

which the RFC is executing.

Most frameworks implement the RFC mechanism based on the Java RMI facility,

for example, Mole [SBH96], Ajanta [KT98] and Grasshopper [IKV98]. An agent

Chapter 2 Software Agents and Agent Frameworks 1_5

wishing to make itself available for remote invocation specifies the interface that it

intends to support, and install an RMI proxy in the local RMI registry.

When a remote entity wishes to communicate with such an agent, it searches the

RMI registry for the RMI stub for the agent. The stub passes RMI calls through to

the agent object and relays the results back to the caller. The RMI calls are not

necessarily applied for mere remote communication purpose, they are also utilized

for local communication among agents on the same host. As the communication is

location-transparent, there is no difference between remote method invocations and

local method invocations within the agent code.

Above all, the RPC communication is not limited to the Java RMI facility in

particular. The communication service in Grasshopper supports, as well, the Internet

Inter-ORB Protocol (HOP) and provides its OMG MASIF-compliant CORBA

interfaces for remote interactions.

2.3.3 Event Channel

The distributed event model provides non-session-oriented communication channels

that enable anonymous communication among agents without the need to specify the

identities of the communication partners in advance. The service of an event channel

is essentially operated by an event manager, which is responsible for accepting event

registrations, listening for and receiving events, and notifying the interested parties of

each event it receives. Each agent must register with the event manager such that it

can forward the appropriate events to the subscriber.

In Concordia [WPW97], a customizable communication channel is provided for

individual agent as Selected Events. Each agent registers with the event manager and

specifies a set of event types it intends to receive such that the event manager will

deliver the subscribed events only.

On the other hand, Concordia implements group-oriented events to provide a

channel for agents within an application to communicate and collaborate with each

Chapter 2 Software Agents and Agent Frameworks 1_5

other in which all the involved events are delivered to this group of agents without

filtering. All agents intended to receive group-oriented events need to register with

the event manager to join a group beforehand. Whenever the event manager receives

an event from any member, it forwards the event to all other agents in the group.

2.4 Components

Components [Lewa98] are the smallest self-managing, independent, and useful parts

of a system that can be replicated, customized, and inserted into application

programs. Components promise rapid application development and a high degree of

customizability for end users, leading to fine-tuned applications that are relatively

inexpensive to develop and easy to leam. Components come in a variety of different

implementations to support a wide range of functions designed for use in a variety of

systems and to provide reliable services regardless of context. Numerous individual

components can be created and tailored for different applications.

Components are most often distributed objects incorporating advanced self-

management features. Such components rely on robust distributed-object models so

as to maintain transparency of location and implementation. Components may

contain multiple distributed or local objects, and they are often used to centralize and

secure an operation. As the implementation of a component is transparent to the

application developers, one needs only to identify the function of this component and

the means of invoking this behavior via the interface before reusing it. Interaction

with components typically occurs through event handling and method invocation.

Components revolutionize the development of scalable systems by featuring as

modularized and interchangeable building blocks. Advanced architectures offer the

end user the ability to add components, allowing simple customization of

applications.

Chapter 2 Software Agents and Agent Frameworks 1_5

Self-managing components take responsibility for their own resources, work

across networks and interact with other objects. These capabilities are frequently

given to components through a distributed object framework that acts as a

middleware to regulate the necessary inter-object communications and provides a

resource pool for each component.

Components are used easily by other objects since no management burdens are

imposed on the client object. Component objects rely on a solid event model that

allows objects to broadcast specific messages and generate certain events. These

events signal those listening objects to take appropriate actions accordingly. Each

listening object responds to a given event in its own manner. By using object-

oriented techniques such as polymorphism, closely related objects react differently to

the same event. These capabilities simplify the programming of complex

client/server systems and also help provide an accurate representation of the real-

world system modeled.

Chapter 3 Related Work 20

Chapter 3

Related Work

Research over multiagent systems has emerged in recent years to formulate open,

flexible and scalable solutions to large-scale, distributed problems such as WWW

information retrieval, data mining and electronic marketplace. Although coordination

models [Adl95] have been studied extensively in the past, mobility and the openness

of the mobile agent paradigm introduce new problems and needs. In this chapter, we

first look into a simple taxonomy of the coordination models in practice in section

3.1. Next, we will discuss the pros and cons of each model identified in this

taxonomy in section 3.2.

3.1 Collaboration Behaviors

To begin with, two main characteristics can be identified to distinguish the
collaboration behavior in different coordination models, namely spatial and temporal
coupling:

Chapter 3 Related Work 36

• spatially coupled coordination models require the involved entities to share a

common name space; conversely, spatially uncoupled models enforce

anonymous interactions.

• temporally coupled coordination models imply synchronization of the involved

entities; conversely, temporally uncoupled coordination models achieve

asynchronous interactions.

As a result, four categories of coordination models can be derived:

1 • Direct: both spatially and temporally coupled

2. Meeting-oriented: spatially uncoupled and temporally coupled

3. Blackboard-based: spatially coupled and temporally uncoupled

4. Linda-like and Reactive Tuple Spaces: both spatially and temporally uncoupled.

Figure 2.1 summarizes the four categories and associates each with the appropriate

agent frameworks.

\ Temporal

Coupled Uncoupled

Blackboard-
Direct Based

Coupled Aglet，Mole,
Agent-TCL AMETAS

Spatial
Meeting- Linda-like/

Uncoupled Oriented Reactive Tuple
Spaces

Ara Jada, TuCSoN

Figure 3.1: Coordination models for mobile agents

Chapter 3 Related Work 37

3.2 Direct Coordination

In direct coordination models, agents initiate a communication by explicitly naming

the involved partners (spatial coupling) and this usually implies synchronization

(temporal coupling) among the communicating agents as well. For inter-agent

coordination, two agents must agree on a peer-to-peer communication protocol,

whereas the coordination between agents and the resources at the hosting

environment usually occurs in a client-server manner [Adl95].

Direct coordination is session oriented. The advantage of session is to serve as an

explicit communication relationship for building stateful entities. Session-oriented

communication can essentially support stateful inter-agent collaboration.

However, direct coordination is generally not suitable for large-scale mobile agent

applications as subsequent remote interactions require stable network connections

which induce high dependence on network reliability. After all, wide-area

communications between mobile entities, whose location may change unpredictably,

require complex and highly informed routing protocols instead of rigid session-

oriented communication.

Further, as mobile agent applications are intrinsically dynamic, it may be difficult

to adopt a spatially coupled model in which the identities of the communication

partners must be identified. In some applications, agents cannot know how many

other agents compose the application, as agents are created dynamically depending

on various environment factors. In addition, when establishing a communication

session, agents must be forced to synchronize their activities that, instead, are

intrinsically asynchronous and autonomous.

Among the variety of agent applications, direct coordination models can only be

exploited effectively for gaining access to local resources where a local server is

provided as a manager to interact with agents in a client-server way. Most of the

Java-based agent systems like Aglet [OK97], Agent Tel [KGN+97] and Mole

[SBH96] adopt the client-server style communication that is based on message

Chapter 3 Related Work 23

exchange. In particular, Agent Tel provides message passing and byte streams at its

lowest level whereas higher-level communication mechanisms are implemented at

the agent level using message passing or streams.

3.3 Meeting-oriented Coordination

In meeting-oriented coordination, agents can interact with no need of explicitly

naming the involved partners. Interactions occur in the context of known meeting

points that agents join, either explicitly or implicitly, to communicate and

synchronize with each other. An active entity must assume the role of initiator to

open a meeting point. Meetings are essentially local and immune to network

problems like unpredictable delay and unreliability. A meeting takes place at a given

execution environment and only local agents can participate in it.

As agents must share the common knowledge of either the meeting venue or the

events that force them in joining a meeting, full spatial uncoupling is not achieved.

Although the meeting model partially solves the problem of exactly identifying the

involved partners, it has the drawback of enforcing a strict synchronisation between

agents. Because in many applications, the schedule and the position of agents cannot

be predicted, the risk of missing a meeting is very high.

Meeting-oriented coordination is implemented in Ara [PS97]: one agent can

assume the role of meeting server announcing a meeting point at one hosting

environment; incoming agents can enter the meeting to coordinate each other. The

Ara core provides the so-called service point, which are meeting points with well-

known name for agents located at a specific place to interact as clients and servers

through exchange of synchronous request and reply messages. Each request is

stamped with the name of the client agent and the servers may use that in deciding on

the reply.

Chapter 3 Related Work ^

3.4 Blackboard-based Coordination

In blackboard-based coordination, interactions occur via shared data spaces, local to

each hosting environment, used by agents as common repositories to store and

retrieve messages. As long as agents must agree on a common message identifier to

communicate and exchange data via a blackboard, they are obviously spatially

coupled. The most significant advantage of this coordination model derives from the

full temporal uncoupling in which messages can be left on blackboards without

needing to know, neither where the corresponding receivers are nor when they will

read the messages. This clearly suits a mobile scenario in which the position and the

schedules of the agents can be neither monitored nor granted easily. Further, in

forcing all inter-agent communications to perform via a blackboard, the hosting

environments can easily control all interactions, thus leading to a more secure

execution environment than that those models mentioned above. With regard to

agent-to-host interactions, a blackboard can be exploited to let agents retrieve the

needed information without requiring the presence of a specialized resource manager

and to let the local environment provide in the blackboard all the data it wants to

publish.

AMETAS [ZMG98] implements the blackboard-based coordination models

where there is no direct communication between agents and services. Each registered

agent and service is assigned a local mailbox and a reference to a driver object. Any

request that an agent issues to a service or other agent is sent to its associated driver

object first. The driver object, in turn, deposits the request into the mailbox of the

intended recipient. Up to this point, the communication procedure is over for the

agent and it may even leave the place.

On the other side, the driver object of the requested entity will retrieve the

message from its associated mailbox and forward it to the service or agent. In

response, the recipient might send back any reply following the same procedure.

I

Chapter 3 Related Work 40

Furthermore, group communication can be achieved through address marks that

model the creation of group mailboxes.

3.5 Linda-like Coordination

In Linda-like coordination, the accesses to a local blackboard are based on

associative mechanisms [CG89] where information is organized in tuples and to be

retrieved in an associative way via a pattern-matching mechanism. Associative

blackboards, denoted as tuple spaces, enforce full uncoupling in terms of both

temporal agreement and mutual knowledge during collaboration.

Associative coordination suits well mobile agent applications. As it is impossible

for an agent to leam a complete and up-to-dated knowledge of the hosting

environment on the Internet, agents would somehow require pattern-matching

mechanisms to adaptively deal with uncertainty, dynamicity and heterogeneity. This

associative matching provides a simple means of finding the interested objects in

according to their content, without having to know where these objects are stored.

This coordination model significantly simplifies agent programming and reduces

application complexity

The concept of associative blackboard has been implemented, atop of Java, in the

Jada system [CR97] where the so-called ObjectSpace abstraction can be used by

mobile agents to store and associatively retrieve object references. Furthermore,

agents can create private ObjectSpaces to privately interact without affecting hosting

execution environments.

Chapter 3 Related Work 26

3.6 Reactive Tuple Spaces

In the tuple space coordination model, reactivity stems from embodying

computational capacity (i.e. operations or methods) within the tuple space itself, to

let it issue specific programmable reactions that can influence the access behavior.

The tuple space is no longer a mere tuple repository with a built-in and stateless

associative mechanism, as in Linda. Instead, it can also have its own state and react

with specific actions to the accesses made by mobile agents. Reactions of a tuple

space can be triggered in order to access or modify the content in that tuple space,

and even to influence the semantics of the agents' accesses.

Reactivity of the tuple space can provide several advantages. Reactions can be

used to implement specific local policies for the interactions between the agents and

the hosting execution environment, to achieve better control and to defend the

integrity of the environment from malicious agents. In addition, reactions can adapt

the semantics of the interactions to the specific characteristics of the hosting

environment, thus simplifying the agent programming task much more than the rigid

pattern-matching mechanism of Linda.

While several proposals in the coordination area identify the necessity of adding

reactivity to the raw Linda model [CG89], a few proposals apply this concept to

mobile agents. The TuCSoN model [OZ98] defines programmable logic tuple centres

for the coordination of knowledge-oriented mobile agents in which the tuple space

defines a Linda-like interface while reactions are programmed as first-order logic

tuples. The PageSpace project [CTV+98] defines an enriched Linda-like

coordination model for distributed Web applications. The presence of special

purpose agents accessing the space and changing its content can provide the

capability of influencing the coordination activities of application agents. Reactivity

can be integrated also in different coordination models. For example, in the OMG

event-based communication model, synchronization objects can embody specific

policies to influence the interactions between the agents involved in a meeting.

Chapter 4 Background and Foundations ^

Chapter 4

Background and Foundations

In this chapter, we introduce the standard facilities that serve as the foundation for

the design and implementation of the CoDAC framework. We first describe why we

opted for Jini and JavaSpaces as the enabling technologies for implementing CoDAC

in section 4.1. Next we give a brief description on the key concepts of both

technologies in section 4.2 and 4.3 respectively. At the end of this chapter we

introduce the mobile agent platform that serves as the test bed for CoDAC in section

4.3.

4.1 Choice of Technologies

The implementation of CoDAC is greatly facilitated by both Jini and JavaSpaces

technologies. For instances, the Jini technology delivers the core functionality to

i enable network plug-and-play capability which particularly suits our collaboration

i model. As agents may roam randomly over the network, it is hard to tell where an

I agent is going in advance. In particular, the hosting environment may not necessary

I

Chapter 4 Background and Foundations ^

have installed the needed components (i.e. proxies or stubs) for an agent to access a

remote service. Here, Jini provides effective search and downloading of codes in the

so-called lookup service. With this lookup service, the agent can obtain and plug in

the appropriate proxies anytime to engage in various services regardless of the

platform heterogeneity.

The Jini architecture grants high flexibility to the CoDAC framework where the

platforms involved can vary from desktop computers to handheld PDAs and even

some simple devices like pagers and cellular phones as long as a Java virtual

machine is available. Further, Jini breaks the incompatibility between different agent

frameworks and enables agents in heterogeneous frameworks to interact.

On the other hand, JavaSpaces technology provides reliable services for storing a

group of related objects persistently and retrieving them based on an associative

value-matching lookup for specified fields. These mechanisms for storage and

retrieval of objects are accessible both locally and remotely. In either case,

JavaSpaces implements a transaction model that ensures an operation on a space to

be atomic. Transactions are supported for single operation on a single place, as well

as multiple operations over one or more spaces which are performed using the two-

phase commit model under the default transaction semantics of the Jini transaction.

4.2 Jini Technology

The Jini architecture [Sun99a] provides an infrastructure for defining, advertising

and finding services in a network. Services are defined by one or more Java

language interfaces or classes. The Jini framework is designed to allow a service on a

network to be available to anyone who can reach it, and to do so in a type-safe and

robust way. The components of the Jini framework can be segmented into three
I

categories; infrastructure, programming model and services. The infrastructure is the

set of components that enables building of a federated Jini system, while the services
1 I

i
j

1

i

Chapter 4 Background and Foundations ^

are entities within the federation. The programming model comprises interfaces that

enable the construction of reliable services.

The Jini framework is built on top of the Java technology and utilizes the

homogeneity enforced by the Java virtual machine that standardizes a common

execution environment to enable downloaded code to behave the same everywhere.

In such a homogeneous platform, the same typing system can be used for local and

remote objects as well as the objects passed between them. These objects can be

serialized into a transportable form that can later be deserialized. In the serialization,

an object can be associated with a codebase that indicates the place or places from

which the object's external codes (i.e. some classes that are referenced by the

downloaded object, but are not stored in the lookup services) can be downloaded.

Hence, such external codes can be downloaded when needed during deserialization.

After all, the Java virtual machine protects the host from viruses that could otherwise

come with downloaded code. Downloaded code is restricted to operations allowed by

the virtual machine's security policy.

In Jini everything is a service. It brings to the network facilities for distributed

computing, network based services, seamless expansion, reliable smart devices, and

easy administration. It provides lookup services and a network bulletin board (or

blackboard) for all services on the network.

4.2.1 The Lookup Service

The Jini lookup services [Sun99b] facilitate a search of services connected by the

communication infrastructure and store not only pointers to the service on the

network, but also service proxy code and interfaces that enable a user to acquire and

execute these services. The lookup service is analogous to the naming or directory

service in traditional distributed systems, a place where the clients go to find services.

Services are stored in a lookup service by a serialized proxy object.

I
i
I
I
i
i ！)
1

Chapter 4 Background and Foundations ^

When a service boots up or initially connects to a network, it typically will find a

lookup service using a Jini Discovery protocol [Sun99c] that sends messages to the

local networks asking for available lookup services. The service will then register to

each discovered lookup service with a serialized instance of the services to be

advertised.

When a client needs a service, it first contacts a lookup service. It either discovers

the lookup service using a discovery protocol (just like a service do), or talks to one

directly using a URL-style identifier. Once the client has a proxy for the lookup

service, it asks the lookup service to find one or more services that match a template.

Templates define the client's requirement on the service including the types the

client wants to use.

The Lookup service uses object oriented type rules to match a search request

against all the services currently registered. The client may ask for a single matching

proxy object, an array of matching proxy, or an array of service description

information for interactive browsing of the lookup service's contents. Finding a

usable service results initially in the downloading of the proxy code which can then

be used to configure and deploy actual services. The matching service is returned to

the client in the form of a serialized proxy object. When the client deserializes the

proxy, any necessary code will be downloaded to the client. The location of such

code is stored in the serialized proxy object as the service publishes its own code for

the client to download.

Then the client invokes methods on the proxy in order to send requests to the

associated server. The client is typically unaware of the details of the implementation

of the particular proxy. It will invoke the methods on whatever object it gets back.

The specific proxy's code will implement the relevant methods as appropriate for the

given service.

i I I
I
1 i

I

Chapter 4 Background and Foundations ^

4.2.2 Proxy

Downloadable service proxies are the key feature that gives Jini the ability to use

services and devices without doing any explicit driver or software installation. Jini

proxies provide zero-administration way to acquire and use the "glue logic" for

communicating with any arbitrary back-end service or device.

In traditional distributed computing systems, an abstract interface definition

commonly expressed in an interface definition language such as IDL describes the

methods that a remote service understands. This description defines a wire protocol.

Once this interface is defined, all servers must be able to receive and execute the

method calls. Network protocols are very rigid in the sense that they define exactly

and only what they were originally designed to define, and they place strong

requirements at the receiving end of the messages.

In the Jini framework, with the introduction of downloadable proxies, defining

network services at the API level is made much more flexible. The proxy that

implements the abstract interface can be small or large, simple or complex. For

instance, there are a number of common practices [Edw99] about how the proxy

objects are implemented:

1. The downloaded proxy object performs the service. That is, the object that is sent

to the consumers of the service does everything that the service claims to do, by

itself. This strategy would be used when the service is implemented purely in

software, and there are no external resources that need to be used.

2. The downloaded object is an RMI stub for talking to some remote service. This

case is commonly used when there is some centralized RMI-based process

somewhere on the network that implements the service. Here, the proxy is simply

the automatically generated stub object for the RMI service, which only

possesses the necessary ability to speak RMI.

3. The downloaded object is a "smart" proxy [Edw99] that can speak any private

communication protocol for talking to the service. This strategy is most

Chapter 4 Background and Foundations ^

commonly used in two cases. The first is where there is some legacy software

system involved. The proxy serves as a wrapper object that interfaces to the

legacy service using the system's expected protocols (e.g. sockets, proprietary

database languages, etc) and yet provides a pure Java interface that is accessible

remotely. The second use for this strategy is when the service is actually

provided by some hardware device. In this case, the proxy acts essentially like a

downloadable device driver and is implemented to speak whatever proprietary

back-end protocols.

This additional layer of client-side code allows the designers of remote services to

concentrate on what makes a good programming API for clients rather than what

makes a good wire protocol. In a Jini system the wire protocol designs are left to the

implementors of each service, and need not be agreed upon among vendors. Only the

API must be standardized, and only to the point of common functionality.

4.3 JavaSpaces

The JavaSpaces provides a shared, network-accessible repository for objects utilized

for persistent object storage and exchange. The system design of JavaSpaces

resembles Linda-like systems described in Chapter 3. JavaSpaces as a Java

realization of tuple spaces is similar to Linda systems in that they store collections of

information for future computation and are driven by value-based lookup.

Within the space, information is stored in entries as the common currency for all

applications. By exchanging entries, objects can communicate, synchronize and

coordinate their activities. Entries are objects, in nature, so they may have methods

associated with them to implement its behavior and operate as reactive tuple spaces.

An entry can be written into a JavaSpaces service, which creates a copy of that

entry in the space that can be used in future lookup operations. Entries that have been

Chapter 4 Background and Foundations ^

written to a JavaSpaces service can be retrieved using lookup operations with

templates. Templates are entry objects that have some or all of its fields set to

specified values that must be matched exactly. The remaining fields are left as

wildcards (null references) where these fields are not used in the lookup. Given a

template T as a potential match against an entry E, fields with values in T must be

matched exactly by the values in the same fields of E, whereas the wildcards in T

match any value in the same field of E.

The type of E must be either of the same type or as a subtype of the type of T. In

the latter case, all fields added by the subtype are considered to be wildcards. This

enables a template to match entries of any of its subtypes.

There are two kinds of lookup operations: read and take. A read request to a space

returns either an entry that matches the template on which the read is done, or an

indication that no match was found. A take request operates like a read, but if a

match is found, the matching entry is removed from the space. Obviously, an entry

written to the space can be retrieved at most once using the take operation.

4.4 Grasshopper Architecture

The Grasshopper framework [IKV98] is chosen as the test bed for the CoDAC

collaboration model due to its high reliability with full support of the Java 1.2

platform. In this section, we give a brief introduction to the system architecture of

Grasshopper. The core components in the systems include Agency, Region and

Region Registry as shown in Figure 4.1:

Agency: An agency is the actual runtime environment for mobile and stationary

agents. At least one agency must run on each host that shall be able to support the

execution of agents. A Grasshopper agency consists of two parts: the core agency

and one or more places.

Chapter 4 Background and Foundations ^

r Region i
J Region Registry [

Management
丨 MAF Li . J
I Finder Communication j

i I I I | | | i
奮 Agency ‘

I Core Agency Communication | ‘ ^ ‘

J Management (^ ^

< Persistence 4 ！'

• Regis trat ion i

J Security C v |
I MAF — ^ ― — — 奇 S \ / S \ I
I L AgentSystern Transport L L a •

I mini I rniiin r . . i .u.miuiiiii i 一―— ...immj即 j•丄 l..—._._..._.j.i i j luuiii i i i i n i

Figure 4.1: Architecture of the Grasshopper framework

Core Agencies represent the minimal functionality required by an agency in order

to support the execution of agents. This functionality includes communication,

registration, management, security and persistence services.

Places provide logical grouping of functionality inside of an agency. There may

exist a communication place offering sophisticated communication features, or there

may be a trading place where agents offer or buy information or service access. The

name of the place should reflect its purpose.

Region: The region concept facilitates the management of the distributed

components, agencies, places, and agents in the Grasshopper environment. Agencies

as well as their places can be associated with a specific region by registering them

within the accompanying region registry. All agents that are currently hosted by

these agencies will also be automatically registered by the region registry. If an agent

Chapter 4 Background and Foundations ^

moves to another location, the corresponding registry information is automatically

updated. A region may comprise all agencies belonging to a specific company or

organization.

Region Registry: The region registry maintains information about all components

that are associated with a specific region. When a new component is created, it is

automatically registered within the corresponding region registry. While agencies

and their places are associated with a single region for their entire lifetime, mobile

agents are able to move between the agencies of different regions. The current

location of mobile agents is updated in the corresponding region registry after each

migration. By contacting the region registry, other entities are able to locate agents,

places, and agencies residing in a region. Besides, a region registry facilitates the

connection establishment between agencies or agents.

Chapter 5 The CoD AC Framework ^

Chapter 5

The CoDAC Framework

Throughout an agent's lifecycle, coordination is essential to associate its activities

with other entities like various resources or other agents on the execution

environments. For instance, an application may be composed of several mobile

agents that perform a task collaboratively as they roam across remote sites to access

resources and services allocated there.

Although the multiagent paradigm is now on the move, most of the well-known

mobile agent frameworks like Aglet [OK97], Grasshopper [IKV98], Ajanta [KT98]

and Agent TCL [KGN+97] provide primitive support for inter-agent communication

only, while the implementation of any group-based coordination architecture is up to

the system developers' responsibility.

For this reason, the general goal of CoDAC is to provide building blocks for

collaborative multiagent systems that significantly shorten the development cycle for

relevant systems and applications. This componentware delivers the core software

components for a multiagent collaboration environment. Above all, CoDAC is

adaptive to various well-known and standard agent development frameworks and

customizable to meet specific system requirements of an individual application.

Chapter 5 The CoD AC Framework ^

Above all, an agent collaboration framework inherits the key requirements from

general distributed models in terms of availability and consistency issues. We will

describe the key requirements to meet the above properties in section 5.1. Next, we

introduce the key components in the CoDAC framework in section 5.2 followed with

a description on the system architecture in section 5.3. The communication and the

collaboration model will be explained in sections 5.4 and 5.5 respectively.

5.1 Requirements for Enabling Collaboration

The requirements for enabling automated collaboration are primarily addressed in the

"process groups" paradigm where the availability and consistency issues focus on

consistent group membership, atomic commitment, uniform reliable multicast and

fault tolerance. These requirements are described as follows.

5.1.1 Consistent Group Membership

Group membership [SC98] is an agreement among a group of objects that

acknowledges a member's involvement and being operational. A group membership

protocol establishes an agreement on a valid group membership and serves as the

fundamental element for maintaining availability and consistency in distributed

applications. The key objective of a group membership protocol is to provide support

for dynamic group membership for a wide range of Internet applications and service

scenarios. With the provision of dynamic group membership, an individual object is

free to join or leave a group dynamically without affecting others in the group.

The membership protocols play important roles for many distributed applications.

If consistency is not enforced on the group membership, the availability and integrity

of distributed systems cannot be guaranteed. For example, a server being visible to

one member but invisible to another in a server group may cause improper denial of

Chapter 5 The CoD AC Framework ^

service to the clients even through the requested service is available. To prevent such

error, the group membership should be agreed and maintained consistently among

the set of operational members regardless of any network failure.

To maintain a consistent group membership, a group membership protocol should

enforce both the uniqueness and the validity properties [Rei94]:

Uniqueness: If members pi and pj are correct and Vx(pi) and Vx(Pj) are defined as

their x-th version of views respectively, then Vx(pi) = Vx(Pj)

Validity: Ifpi is correct and Vx(pi) is defined, thenpt G Vx(pi) and for all correctpj e

Vx(Pi), Vx(Pj) is eventually defined

Note, a member is said to be correct as long as it behaves rationally and does not

intrude the system by manipulating the group membership. A view is a set of data

attributes that generally enlist the identities of the members associated with the same

group, it represents the owner's perception on the actual group membership. Due to

the dynamic property of the group membership, the content of a view must be

updated from time to time to reflect any change in the group membership. The

constant changes in the group membership generate a sequence of views ordered

with the version number.

The uniqueness property implies that all the views sharing the same version

identifier are the same at each correct member. The validity property states that each

correct member is a member of its own view and the correct members of this view

are eventually aware of their membership in the group. Validity and uniqueness

imply altogether that those correct pi at any V/pi) are exactly the set of correct

members that intuitively form a group and mutually believe one another to be

members.

Chapter 5 The CoD AC Framework ^

5.1.2 Atomic Commitment

In distributed systems, partial failures can occur in a way that some system entities

may be working while others have failed. For this reason, transactional behaviors are

essentially important in distributed computing, as they provide a means for enforcing

consistency over a set of operations on one or more remote participants. Transactions

[Sun99e] are a fundamental tool for many kinds of computing. A transaction allows a

set of operations to be grouped as a whole such that they either all succeed or all fail.

The operations in the set appear from outside the transaction to occur simultaneously.

In transaction processing, the algorithm that ensures consistent termination is

called an atomic commitment protocol ACP [BH87]. The ACPs are designed to

ensure a single logical action (either Commit or Abort) is consistently designed and

carried out by all parties involved in a distributed transaction as the following

conditions are enforced:

1. All participants that reach a decision reach the same one

2. A participant cannot reverse its decision after it has reached one

3. The commit decision can only be reached if all participants voted for it

4. If there are no failures and all participants voted for commitment, then the

decision will be to commit

5. If all existing failures are repaired and no new failures occur for a sufficiently

long time, then all participants will eventually reach a decision

Condition 1 ensures that the transaction terminates consistently. Condition 2 states

that the termination of a transaction at a participant is an irrevocable decision.

Condition 3 implies that a transaction cannot commit unless all participants agree to

do so, whereas condition 4 is a weak version of the converse of condition 3. It is not

required in condition 1 that all participants have to reach a decision as one may fail

and never recover, but condition 5 does require that all participants be able to reach a

decision once failures are repaired.

Chapter 5 The CoD AC Framework ^

5.1.3 Uniform Reliable Multicast

A distributed application is usually composed of different parties communicating

through message passing. Point to point appears to be the most simple

communication pattern, but in most cases, group communication or multicasts are

often more desirable. Group communication raises two issues, namely the reliability

and the ordering issue. For instance, uniform reliable multicast [SS93] is concerned

with atomicity as well as the total ordering of the multicasts. A multicast w to a

group g is uniform reliable iff the following condition holds:

• If a member in group g has received m, then all non-faulty members of g

eventually receive m.

In general, uniform reliable multicast has the property that if m has been received

by any member of a group, then m is received by all members that reach a decision.

On top of that all m's are received in total order.

5.1.4 Fault Tolerance

Distributed systems are vulnerable to network failures, these failures can be

generalized as either site or communication failures. The former occurs when a site

experiences a system failure where processing stops abruptly and the contents of

volatile storage are destroyed. In particular, as each site is either functioning or has

failed, different sites may be in different states as a result of partial failure. On the

other hand, the latter may occur for various reasons. First, a message may be

corrupted due to noise in a link. Second, a link may malfunction temporarily, causing

a message to be completely lost: or third, a link may be broken for a while, causing

all messages sent through it to be lost. Further, a combination of site and

communication failures may cause network partition, when the operational sites are

Chapter 5 The CoD AC Framework ^

divided into two or more components, where every two sites within a component can

communicate with each other, but those in different components cannot.

Fault tolerance concerns with the above issues in enhancing the availability of

distributed systems. Common practice employs replicated components for as

replacement for the failed parts but this often arise various coordination problems.

5.2 System Components

CoDAC can be viewed as a Jini technology-enabled service delivered by a set of

distributed objects, which make use of the Jini technology infrastructure [Sun99a] to

discover and interact with each other. This collection of service objects serve as a

flexible and reliable backbone that supports both local and global collaboration atop

a hierarchical structure. Such hierarchical group structure decentralizes the

coordination effort with backup support for fault recovery while enforcing

consistency and atomicity.

All participating agents are organized into collaboration groups in which they

exchange information and collaborate to take consistent actions. Agents may migrate

from place to place and are free to join or leave a group at will. Each agent is

associated with a priority, which defines the total ordering among the agents and

reflects the sequence they register with the group. Without loss of generality, the

agent associated with the highest priority is assigned as the coordinator to manage

the group.

This collaboration backbone is composed of two key components, namely the

DistributedAgentAdapter and the CollaborationCore.

Chapter 5 The CoD AC Framework ^

5.2.1 Distributed Agent Adapter

Distributed Agent Adapter (DA adapter) is a software component [Szy97]

implemented as a Jini service object that performs the foundational functions

required by a collaboration framework, namely the enforcement of consistent group

membership, atomic commitment protocol, uniform reliable multicast and fault

recovery. As a software component, the DA adapter encapsulates the above

functionality and is deployable at runtime. For instance, DA adapters rely on the Jini

framework to maintain the transparency of locations. They are registered with and

stored in the Jini lookup services such that each agent can download an instance of

them from a lookup service at runtime in order to join a collaboration group. After

deserialization, the DA adapter will perform the necessary collaboration routine on

behalf of the associated agent as long as the latter stays in the group and remains

functional. The agent will need to suspend the DA adapter upon migration to the next

spot and resume the adapter when it has settled again to continue its collaboration

work.

The DA adapter serves as a smart proxy [Edw99] to interface its associated agent

with the other collaborating parties as shown in Figure 5.1. It can be utilized as a

gateway for reliable communication with agents in the same local group or in

adjacent groups. The communication channels involved are connected on top of the

JavaSpaces technology [Sun99d]. The underlying mechanism is transparent to the

collaborating agents, as the DA adapters read and write messages into the space,

interpret the received messages autonomously and only notify the associated agents

to take corresponding actions when necessary. This will be explained in more details

in Chapter 8.

Each individual DA adapter exercises the self-managing property of software

I components to take responsibility for their own resources (the associated agents),

work across networks and interact with one another to constitute a reliable

communication backbone for the collaborating agents as a whole. The infrastructure

of the backbone is in the form of a hierarchy that spans down from the global

Chapter 5 The CoD AC Framework ^

DA Adapter

^ T X

DA Adapter DA Adapter DA Adapter

^^^ ^^^ ^ ^ ^
^HF ^HF

Figure 5.1: Agent collaboration group
coordinator to subsequent local group coordinators and terminates at the leaf level

where the collaboration members reside as shown in Figure 5.2.

The root and the consecutive levels of each subtree in the hierarchy correspond to

a local collaboration group headed by a local coordinator at the local root. In this

sense, each intermediate node in the hierarchy corresponds to a local coordinator

with dual identities as both a coordinator at its local domain and a collaboration

member with respect to the ancestral collaboration group. On one hand, the local

coordinator coordinates each individual subordinate's work into local collaboration.

On the other hand, it collaborates with the peers in the ancestral group to pursue the

global goals. A DA Adapter generally contains a Distributed Agent Manager and

conditionally embeds a Collaboration Manager, whose functionality will be

described in the next section.

Chapter 5 The CoDAC Framework ^

Global
Coordinator

Local Group Local Group Collaboration
Coordinator Coordinator Member

Collaboration Collaboration
Member Member

Figure 5.2: The agent group hierarchy

5.2.2 CollaborationCore

The CollaborationCore serves as the super-class for the implementation of the

knowledge-reasoning logic of the group coordinator. As it is impossible to generalize

all possible analytical mechanisms into a single class to handle collaboration of all

kinds, the CollaborationCore is simply an abstract interface that entails the

underlying interaction with the DA adapter such that any of its subclasses could

integrate seamlessly into the collaboration framework. It is up to the responsibility of

the system developers to implement the desired analytical approaches to meet their

specific requirements.

Object instances of the CollaborationCore subclasses (denoted as kernels for

simplicity) are user-defined Jini service objects that performs the specific analytical

works required to compute the collaboration results. Therefore, every group

coordinator must obtain a kernel from the lookup service and plug it into the

associated DA adapter before it possesses the capability to lead a group.

1

Chapter 5 The CoD AC Framework ^

5.3 System Infrastructure

The CoDAC collaboration framework enforces the consistency of the decisions

reached among the participating agents atop the distributed transaction semantic. For

instance, the CoDAC implementation conforms to the standard X/Open Distributed

Transaction Processing DTP model [Xop95] to facilitate resource sharing among

multiple distributed agents and coordinate their work into global collaboration. The

system infrastructure is illustrated in Figure 5.3 (For simplicity, only the DA Adapter

of the coordinator is shown in detail). There are altogether four entities participating

in the framework, namely the agent, the distributed agent manager, the collaboration

manager and the kernel.

Collaboration
• r ^ ^ W M M P ^ ^ r Manager .

/ -h /
/ i - /

/ /
/ /

/ /

/- z

Figure 5.3: The distributed transaction infrastructure

5.3.1 Agent

Agents are analogous to the transactional resources [Xop95] in the DTP model. They

are recoverable objects [LLK+97] containing the actual state to be changed by a

Chapter 5 The CoD AC Framework ^

transaction. The state to be updated in a transaction can be the internal state of the

agent or some shared network resources (e.g. databases, file systems, service agents,

etc) referenced by the agent. In any case, the agent should possess the ability to

recover to a consistent state in the presence of failures.

5.3.2 Distributed Agent Manager

The Distributed Agent Manager (DA manager) is analogous to the resource manager

Xop95] in the DTP model. Every DA adapter has an instance of DA manager. DA

managers structure the changes to the state and the resources of the agents they

manage as recoverable and atomic transactions. They constitute the collaboration

context and let the collaboration manager to coordinate completion of the

transactions entailed in the collaboration atomically. The DA manager, once opened

is kept open until the associated agent migrates or terminates.

5.3.3 Collaboration Manager

The Collaboration Manager is analogous to the transaction manager [Xop95] in the

DTP model. Only the DA adapter associated with the group coordinator instantiates a

collaboration manager. The collaboration manager manages collaboration and

coordinates the decision to start, commit or rollback. This ensures the collaboration

to terminate consistently. Further, the collaboration manager also coordinates the

recovery activities of the collaboration group when necessary, such as graceful

replacement of any failed coordinator.

5.3.4 Kernel

The Kernel is analogous to the application program [Xop95] in the DTP model. It is

a self-contained object associated with the group coordinator. It implements the

Chapter 5 The CoD AC Framework ^

desired logic to analyze for structured collaboration results. The kernel defines the

start and end of collaboration and specifies a sequence of consistent actions based on

the resources within the collaboration context.

5.4 Collaboration

Collaboration in CoDAC is a complete unit of work that may comprise many

computational tasks performed by individual agents such as user interaction, data

retrieval and communication. Typical agent collaboration modifies the state or the

associated resources of the collaborating agents.

Collaboration implements the transaction semantics and is able to be rolled back.

An agent may roll back the collaboration in response to an event such as the failure

of system components. Every collaborating agent subjected to transaction control

must be able to undo its work in a collaboration at any time that it is rolled back.

Each agent is associated with a DA manager that serves as a proxy to interface

with the collaboration manager. The DA manager allows the collaboration manager

to start and end the collaboration associated with the participating agents and to

coordinate the collaboration completion process. At collaboration termination, the

DA managers are informed by the collaboration manager to prepare to commit or

rollback the collaboration atop an atomic commitment protocol. When the

coordinator determines that the collaboration can complete without failure of any

kind, it commits the collaboration. This means that all collaborating agents deliver

the same collaboration result and that changes to internal state and external resources

take permanent effect. Either commitment or rollback results in a consistent state as

i

i i
！

Chapter 5 The CoD AC Framework ^

5.4.1 Global Collaboration

Every DA manager in the collaboration context must implement the transactional

semantics. Many DA managers may operate in collaboration for the same unit of

work. For example, the root coordinator might request update to several different

databases referenced by agents in separate local groups. This unit of work is a global

collaboration that occurs inside a transaction (i.e. the collaboration transaction)

where work occurring anywhere in the group must be committed atomically. Each

DA manager must let the collaboration manager coordinate its recoverable units of

work that are part of the global collaboration.

Commitment of an agent's private work depends not only on whether its own

operations can succeed, but also on operations occurring at other agents remotely. If

any operation fails anywhere, every participating DA manager and the associated

agent must roll back all operations they did on behalf of the collaboration manager.

A given DA manager is typically unaware of the work that other DA managers are

doing. A collaboration manager informs each DA manager of the existence, and

directs the completion, of global collaborations. A DA manager is responsible for

mapping the underlying recoverable units of work to the global collaboration.

5.4.2 Local Collaboration

A global collaboration may involve one or more local collaborations. A local

collaboration, refers to the collaboration among the peer members in a collaboration

group, is a part of the work in support of a global collaboration for which the

collaboration manager and the DA managers engage in an interleaved but

coordinated transaction commitment protocol. Each of the DA manager's internal

units of work in support of a global collaboration is part of exactly one work.

A global transaction might involve inter-group collaboration. For example, the

root coordinator requests its subordinates to prepare commitment to some

collaboration results. Among which, any local coordinator within the root

Chapter 5 The CoD AC Framework ^

collaboration group may, in turn, initiate a local collaboration nested within this

global collaboration. Each local group engages into a local transaction wherein the

local coordinator coordinates to delivery of the global collaboration results on behalf

of the root coordinator. Every local collaborator gives its vote to the root coordinator

as long as the local work group has reached a mutual agreement to prepare commit or

abort the transaction. The root coordinator gathers all votes from its subordinates and

coordinates their work to the final decision, whether to commit or abort globally.

Each local coordinator, thereby, terminates the local coordination in accordance with

the global decision to enforce global consistency.

i I]
) i
！
1
j

Chapter 6 Collaboration Life Cycle ^

Chapter 6

Collaboration Life Cycle

The life cycle of a collaboration consists of three phases, namely initialization,

results gathering and results delivery. A collaboration process, once initialized,

begins as the coordinator requests computation results from each individual agent

and terminates after each participating agent installs or aborts the finalized

collaboration results, as shown in Figure 6.1. We will describe each phase in that

order. A single collaboration may not necessary get the job done, in this case,

subsequent collaborations can take place before the ultimate goal is attained.

6.1 Initialization

, At the very beginning, the coordinator agent c starts a collaboration group by

I instantiating a DA adapter with a unique group ID. This instance of DA adapter, in
I .
I turn, discovers all available lookup services on the network for advertising the group.

\ The DA adapter makes the collaboration group public through registering a
I
i serializable instance of its clone as a service proxy on each lookup service it has
I
【

w.

V
i.:

Chapter 6 Collaboration Life Cycle ^

Initialization

1 r

^ Resources Gathering

1 r

Results Delivery

-^^^^.^^^^^Mission Accomplished? ^ ^

Y
1 r

「 \
End

V J
Figure 6.1: The collaboration life cycle

discovered. Each registered proxy shares the same service ID [Sun99a]. For each

agent;? that intends to participate in a collaboration group, it gains access to one or

more lookup services around as ordinary Jini service clients do. Next, p searches for

； the desired service proxy, a serialized instance of DA adapter in this case, through
i

I
I

1 I !

Chapter 6 Collaboration Life Cycle ^

the lookup service. The search criteria can be based on the group ID, the Jini service

ID [Sun99b] or even the ID of the coordinator. As long as the desired collaboration

service is located, the relevant DA adapter will be downloaded to p. After being

deserialized, the DA adapter contacts the original DA adapter (the one associated

with c) and issues a request to join the collaboration group on behalf of p. In

response, the DA adapter of c verifies the request, checks for data consistency and

grants the membership for p under mutual agreement with all available members

within the group. Such mutual agreement is enforced by the group membership

protocol to be detailed in Chapter 7. If the request is granted after all, p becomes part

of this group and is ready to collaborate. The procedure described above is

summarized in Figure 6.2.

‘：Lookup Service

IP丨毅®錄鐵；麵：：丨翅總激i!ipî ISi弦丨;ii；：^̂ !；凝

t , ： 灣

：‘‘‘‘ Adaptery discover and register

3. discover, /

/ Z . download r 1 . —
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 6. register

^ —
deserialize ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

Figure 6.2: Collaboration initialization phase

i

Chapter 6 Collaboration Life Cycle ^

6.2 Resouces Gathering

The collaboration begins with the assembling of available resources within the

collaboration context. To begin collaboration, the DA adapter of c instantiates a

collaboration manager which maps the collaboration into a transaction. Upon

initiation, the collaboration manager issues a collaboration request to each DA

adapter within the collaboration context. This request signals each participating agent

to deliver its individual computation results to c. As a DA manager receives the

collaboration request, it notifies its associated agent immediately by firing a

GatherResourcesEvent. In response, the agent presents the relevant data to the DA

manager as soon as the data is available and the DA manager simply forwards the

data to the collaboration manager. The resources gathering phase terminates after all

the participating agents have contributed their computation results or when the

collaboration manager times out. Either case, all the gathered information will be

delivered to the kernel for analysis. If c is not equipped with a kernel yet, it must

download one from the lookup service before it proceeds. The above procedure is

illustrated in Figure 6.3:

^ ,城 T5. dâ a
H^iiiifflBllllli 2. notify 1. request , , � , ： , � ： • ： ” \ _

/ + aam ,
/ …… >…,， ，， /

/ DA Adapter of Coordinator /
丄 /

Figure 6.3: Resources gathering phase

Chapter 6 Collaboration Life Cycle M

6.3 Results Delivery

After the kernel has completed evaluating the collection of data assembled, it

deduces some kind of collaboration results (e.g. identifying the optimal offer from a

bunch of merchants), and the collaboration may end. At the end of collaboration, the

kernel returns the collaboration results to the collaboration manager which, in turn,

forwards the collaboration results to each DA Manager within the collaboration

context inside a transaction. The underlying atomic commitment protocol will be

described in Chapter 7. Anyway, all collaborating agents will install the collaboration

results consistently as long as the transaction commits. The collaboration manager

terminates whereas the collaboration group persists. Each participating agent either

completes the missions stated in the collaboration results (e.g. to commit/abort its

operation on a database) or adapts its behavior accordingly (e.g. to revise its goals

and objectives) while the coordinator may initiate subsequent collaboration as

needed. The above procedure is summarized in Figure 6.4:

— r … … … … , I ^ ^ ^ ^ ^ /

. forward^ \ /

)/
~ / Collaboration

/ Manager 丨 ; , = o r a -
/ •麵_靡_籍__編麵_錢_繳觀 / / 输麵參纖讓纖___纖__ /

/ DA Adapter of Coordinator /
^ /

Figure 6.4: Results delivery phase

I

Chapter 7 Protocol Suite ^

Chapter 7

Protocol Suite

In this section we describe the protocol suite designed in CoDAC to enforce the

requirements identified in section 5.1. Since by the impossibility proof of distributed

consensus in asynchronous environment with partial failure [FLP85], where at least

one collaborating agent may fail, it is impossible to distinguish a crashed agent from

an agent connected through a slow channel. In order to preserve the atomicity of each

collaboration, we have to sacrifice the full temporal uncoupling property. Hence

these protocols involved are designed as timed asynchronous where a timeout delay

d is defined to trigger fault detection of failure.

In section 7.1 we first look into the group membership protocol that enforces

consistent group membership with fault recovery capability. Next, we describe the

underlying commitment protocol to ensure atomic commitment of a collaboration

cycle in section 7.2. In section 7.3, we will examine the uniform reliable multicast

protocol.

Chapter 7 Protocol Suite ^

7.1 The Group Membership Protocol

The group membership protocol is used for the management of the set of

participating agents among which each agent can alternatively perform the

coordinator role. In this sense, the participating agents serve as replicated object for

enhancing high availability for the coordination service.

7.1.1 Join Protocol

When an agent c starts a new group, it initializes its local view of the current group

membership: Vo{c) to {c} and serves as the default coordinator. Each group is

associated with an ID, say g, for instance. The coordinator synchronizes the

registration of each agent for joining the group. If an agent p wishes to join the group

g, it would bring about a view change to reflect the new group membership. Such

changes in the view will be delivered to each participating agent atop the group

membership protocol:

1. q first sends a join—req predicate to the coordinator c.

2. In response, c verifies the request from q (e.g. checks for any duplicated agent ID,

makes sure if q is reaching the right group, etc). If q passed the verification, then c

generates the next version of view, Vn+i{c), where

Vn.l{c) = V,(c) U {q}

Suppose 3 a g e n t i n g such that - {c,p}, then F„+/(c) = {c,;?, q)

and q is assigned with the lowest priority among g.

3. Next, c will send a new_view predicate along with Vn+i{c) to each agent in

inside a transaction.

4. Each recipient votes either yes or no to indicate its readiness to install Vn+i{c).

Chapter 7 Protocol Suite ^

time “ ^
join—req votCp votCg

new_view, V„+/(c) commit

Figure 7.1: The join protocol

5. c collects all the votes to make the decision whether to commit or abort the

transaction. If every involved agents votes yes then the decision is to commit.

Otherwise the coordinator repeats step 3 until the transaction can commit.

6. As the transaction commits, every agent receives the new_view predicate and

installs K+/(c) as the current view wherein q becomes a new member of g.

The join protocol is summarized in Figure 7.1. For simplicity, we only show the

cross-agents messages involved in this protocol (the same holds for all figures in this

chapter). Obviously, when we say a predicate P is sent to all agents in Vx(c) it implies

P is delivered to c and other group members altogether (i.e. by the validity of Vx(c)),

but internal messages exchanged among different components within c is not shown

in the figure.

7.1.2 Leave Protocol

Similarly, if/? wishes to leave the group g, it would cause a view change as well. The

protocol for an agent to unregister with the current collaboration group is described

as follows:

Chapter 7 Protocol Suite ^

t i m e ^
leave—req votCp voter

: / V / / \ \ \ -
/ \ new_view, V„+j(c) / \ commit \

q � \ / \ — — ^

\ \ leave ack

\ I \ -
new_view, F„+/(c) commit

Figure 7.2: The leave protocol
1. q first sends a leave—req predicate to c.
2. In response, c verifies the request from q (e.g. checks for any invalid or unknown

agent ID, etc). If p passed the verification, then c generates the next version of

view, Vn+i{c), where

Vn^iic) = Vn(c) 0 {q}

Suppose 3 agents p and r i n g such that Vn(c) = {c,p, q, r),

then Vn+i{c) = {c,p, r}

3. Next, c will sends a new_view predicate along with V„+j(c) to each agent in

Vn+i{c). This is delivered inside a transaction in a similar way to the join protocol.

4. Each recipient votes to indicate its readiness to install Vn+i{c).

5. c collects all the votes involved and decide to commit as long as every agent in

Vn+i{c) votes yes. Otherwise, c repeats step 3 until the transaction can commit.

6. As the transaction commits, every agent in Vn+i{c) receives the new_view

predicate and installs Vn+iic) as the current view, after which, c returns a

leave—ack predicate to q to grant the unregistration.

The protocol described above is summarized in Figure 7.2.

Chapter 7 Protocol Suite ^

7.1.3 Recovery Protocol

The recovery protocol is designed for the replacement of the coordinator whose

failure is detected by a collaboration member. The underlying mechanisms for failure

detection will be described in Chapter 8. For the time being，we look into the

recovery protocol first.

There are altogether two protocols for failure recovery. These two protocols are to

be applied depending on the subjects to be recovered, namely the ordinary members

and the coordinator. An ordinary member can be any agent but the coordinator

within the group. Suppose c detects the failure of q and has to update the view to

reflect such failure. This would initiate the recovery protocol presented in Figure 7.3.

This protocol proceeds similar to the leave protocol described in the last section

except that c assumes a leave—req has been issued from q implicitly and leaves out

the leave—ack for q at the end.

time ^
votCp voter

：\\ i \\ ：
\ new_view, V„+j(c) / \ commit

new_view, V„+j(c) commit

Figure 7.3: The recovery protocol for ordinary members

Chapter 7 Protocol Suite ^

time “ ^

c

notify_crashq notify_crashr vote \ vote V voteq voter

[ix ! \ t t \
/ \ new—coordinator / \ Vn+i{p)l / \ commit

• / V / \r / \
new—coordinator Vn+jip)/ commit

unvote
Figure 7.4: The recovery protocol for the coordinator

On the other hand, if the subject to recover is the coordinator c, then the protocol for

recovering such failure would initiate an election to appoint exactly one of the

ordinary members to replace the failed coordinator. Suppose the failure of c is being

detected through the mechanisms described in Chapter 8 then the recovery protocol

will be initiated and proceed as follows:

1. Each agent who has detected the failure of c first sends a notify—crash predicate

into the channel of its predecessors (i.e. members having higher priorities than

itself) in view(q) except c, one by one every d time units (i.e. a time out delay) in

descending priority, and stops when it gets a new—coordinator predicate from any

of its predecessors.

2. If an agent gets any new—coordinator predicate from its predecessor before it

times out, just let the predecessor handles the recovery. Otherwise proceed to 3.

3. An agent with no detectable predecessor, say p, computes a new group

membership in g, Vn+iip) by removing c and any failed predecessor (detected in

step 2) from V^ip). Then p sends a new—coordinator predicate to each agent in

Chapter 7 Protocol Suite ^

4. Upon receiving a new—coordinator predicate, each agent in Vn+i(p) replies with

either a yes or no vote in terms of its willingness to appoint p as the new

coordinator.

5. As long as the yes votes gathered by p constitute a majority of the original view

Vnip), it is guaranteed that no other competitor can get a majority vote, p can thus

coordinate all recipients to install Vn+iip) and become the new coordinator for g

mutual exclusively. Otherwise, p returns an unvote predicate to all agents that

have voted yes such that they can vote for another coordinator.

6. In either case, the Vn+i(p) or the unvote predicate will be delivered inside a

transaction to enforce consistency. The recipients vote in terms of their readiness

to install Vn+iip) or to deliver the unvote message. The transaction commits as

long as every recipient votes to commit.

Figure 7.4 summarizes the above protocol.

7.1.4 Proof

In this section, we prove the uniqueness and validity defined in 5.1.1.

Uniqueness: The proof for uniqueness is trivial. For all three protocols involved in

group membership management, each new version of view Vx(c) is defined by the

coordinator c (either the default coordinator or a newly elected coordinator) who, in

turn, coordinates all members in V^(c) to install V^(c) inside a transaction. Such that:

V/7 e VM K(p) = v,(c)

Therefore, the uniqueness property holds.

Validity: Suppose p is correct and Vx(p) is defined

we assume p 茫 Vx(p)

Since p e V^fcJ (p is correct)

Chapter 7 Protocol Suite ^

and Vx(c) = Vx(p) (proven in uniqueness)

=> p e Vx(p) which contradicts to the assumption that p 茫 Vx(p)

Hence, the validity property holds as proven by contradiction.

Further, by the atomic property of the group membership protocols, it is trivial to

prove that

y q e Vx(p), Vx(q) is eventually defined and Vx(q)= Vx(p)= Vx(c)

7.2 Atomic Commitment Protocol

During the results delivery phase described in section 5.3, the collaboration results

embedded in message could be simply delivered inside a transaction consistently. In

this way, however, we do not know whether each participating agent agrees with the

final decision (i.e. the collaboration results) in the first place. In order to let those

participating agents to have a voice in the final decision, we have designed the

atomic commitment protocol as a five round protocol [SC98].

After the coordinator c has finished computing the collaboration results R, it then

requires to coordinate all agents in to deliver R consistently in order to

terminate the collaboration transaction. The protocol involved is as follows:

1.c sends a deliver—req predicate enclosed with R to every agent within the
collaboration context (i.e. F„(c)).

2. In response, each agent checks its own state to see if it can commit to R. Every

agent then returns the appropriate vote，(either yes or no) to the coordinator to

indicate its willingness to deliver R.

3. c collects all the votes among the group

t

Chapter 7 Protocol Suite ^

time ^
vote 'p vote� votCg voter

: \ \ / / V
\ deliver—req+R / \ deliver/ / \ commit

/ w \
deliver_req-\-R pre—commit/ commit

pre—abort/
Figure 7.5: The atomic commitment protocol

• If none of the participants vetoes the transaction, the decision will be to deliver

R. The coordinator thus sends a deliver predicate to every agents involved.

• Otherwise, the coordinator will coordinate the rollback of R by sending a

rollback predicate to every agent.

4. In any case, the deliver or the rollback predicate will be delivered to the

participating agents inside a transaction. Hence, each agent has to vote in terms of

its readiness to deliver the deliver or the rollback predicate.

5. c gathers all the votes and decides to commit as long as all agents vote yes. As a

result, all agents within the group either deliver or rollback R consistently.

Otherwise, if at least one of the agents voted no, then the coordinator repeats step

4 until all agents voted yes such that the transaction could commit.

Figure 7.5 summarizes the above protocol.

7.3 Uniform Reliable Multicast

The multicast service is synchronized at the coordinator c that serves as a multicast

server. Each multicast message will be delivered to all group members through a

Chapter 7 Protocol Suite ^

transaction with enhanced atomicity. Whenever an agent p needs to multicast a

message, it issues a request to the c embedding the multicast message M. Each M

will be delivered from c to all agents in K„(c) atomically. The protocol involved is as

follows:

1. p first sends a multicast—req predicate enclosed with Mto c.

2. In response, c verifies the request from q (e.g. checks if Mis valid, etc).

3. Next, c will write a multicast predicate along with M into the channel of each

agent in Vn{c). This is delivered inside a transaction and commits in a two-phase

commit manner to guarantee M being sent to all intended recipients atomically.

4. As long as the transaction commits, every agent receives the multicast predicate

and delivers M.

The above protocol is summarized in Figure 7.6. Once M is delivered, it is totally

up to the recipient to interpret the content of these messages and take appropriate

actions if necessary.

Above all, each multicast message is totally ordered in both the request and

delivery phases. First, at the request phase, the multicast—req predicate is totally

ordered by the request message timestamp together with sender's priority (as

described in section 5.4) before being processed by the coordinator. Next, at the

time ^
multicast—req+M votep votCg

：/ \\.
, r ^ " / V

multicast+M deliver/abort

Figure 7.6: The uniform reliable multicast protocol

f.

Chapter 7 Protocol Suite ^

delivery phase, the multicast predicate is totally ordered in the same way.

By the atomicity of the two phase commit protocol, it is trivial to prove that if any

member in g has received m, then virtually all members must have received m.

Hence, the conditions in section 5.1.3 hold.

Chapter 8 Implementation T_

Chapter 8

Implementation

This chapter covers the implementation of each individual component, the messaging

mechanism as well as the protocol suite with respect to the CoDAC framework.

8.1 Interfaces and Classes

This section gives the details about the implementation of various interfaces and
classes defined in the CoDAC framework.

8.1.1 The CoDACAdapterlnterface

Despite its complexity, the implementation of DA adapter is transparent to the agent

developers. For instance, the DAAdapter class implements the interface,

CoDACAdapterlnterface which entails a minimal set of operations accessible by the

associated agents in order to simplify the complexity of multiagent programming.

Agent developers need only to identify the functions entailed in this interface before

Chapter 8 Implementation T_

engaging into collaboration groups via the DA adapters. In the meantime, this

interface does not grant more access privilege than necessary for the participating

agents so as to prevent malicious agents from causing harm to other group members

through manipulating the DA adapter.

The definition of the CoDACAdapterlnterface is listed in API 8.1. To begin with,

the addEventListenerO operation associates its subclass (i.e. the DAAdapter class)

with agents that implements the CoDACEventListener interface (see section 8.1.2),

whereas the j oinCollaborationGroupO operation lets the associated agent to engage

into the desired collaboration group given the group ID. The first startServiceQ

operation is to be invoked by the group coordinator who has instantiated a DA

adapter locally. In particular, this operation activates the DA adapter, which, in turn,

discovers the Jini lookup service for registering its clone as a service proxy. On the

other hand, the second startServiceQ operation is to be invoked by agents whose DA

adapters are downloaded from the lookup service. In this case, the agent must pass its

agent ID to the DA adapter such that the latter can engage into collaboration groups

and operate on behalf of the agent (in case of the group coordinator, the agent ID has

already been passed through the constructor operation of the DAAdapter class). The

second input parameter is an array of ServiceRegistrar objects which are to be used

for locating the JavaSpaces and the TransactionManager upon the Jini framework. In

either case, both startServiceQ operations require an instance of DAManager as an

input parameter because this class inherits the java.rmi.server.UnicastRemoteObject

class which is unserializable and cannot be stored in the lookup service (read section

8.1.4 for details). Therefore, the DA manager must be instantiated locally by the

agent and then passed to the associated DA adapter. In general, both startServiceQ

operations start the execution thread of a DA adapter after which the adapter operates

continuously in a self-managing manner.

The DA adapter continues to operate until either the suspendServiceQ or

terminateServiceO operation is invoked. Both operations stop the execution thread of

the DA adapter while the latter un-registers the agent from the collaboration group

and performs the necessary clean-up of resources. In other words, the

Chapter 8 Implementation T_

package cse.CoDAC.shared

public interface CoDACAdapterlnterface
{

public void addEventListener(CoDACEventListener listener);
public void joinCollaborationGroup(String groupID);
public void startService(DAManager mgr) throws lOException;
public void startService(String agentID,

ServiceRegistrar[] registrars,
DAManager mgr)
throws 10 Exception;

public void suspendService() throws OutStandingTxnException
public void terminateService() throws OutStandingTxnException

UnregistrationFailedException
public void resumeService(DAManager mgr)

throws lOException;
public void multicast(Object content);
public void requestResources(Object instruction)

throws UnauthorizedActionException;
public void submitResources(Object resutis);
public void startVoting(Object content)

throws UnauthorizedActionException;

}
API 8.1: The CoDACAdapterlnterface definition

terminateServiceO operation is to be invoked by agents who wish to leave a

collaboration group. This method will throw an UnregistrationFailedException if the

coordinator does not grant the unregistration. On the other hand, the suspendServiceQ

operation is normally invoked when the agent needs to migrate to another host. This

operation dissociates the agent from any unserializable objects in the DA adapter

such that it can migrate through the object serialization facility. Both the above

operations will throw an OutStandingTxnException if the DA adapter is currently

involved in an outstanding transaction, in this case the requested operation cannot be

granted until the transaction terminates.

After the migration completes, the agent can resume the DA adapter by invoking

the resumeServiceO operation. For the same reason as the startServiceQ method

invocation, an instance of DAManager is required as an input parameter. If an agent

has suspended for a long time, its membership may have expired when it resumes

Chapter 8 Implementation T_

(read section 8.4 for details). In this case, the DA adapter will re-register with the

collaboration group automatically on behalf of the associated agent.

The multicastO operation is used to initiate a uniform reliable multicast described

in section 7.3. This operation takes an instance of the generic java.lang.Object class

as the medium for storing the content of a multicast message. Once delivered, it is up

to the recipients to typecast the content back to its original class for interpretation.

The requestResourcesO operation lets the coordinator to request all group

members to devote their computation results for collaboration purpose. This method

authenticates the identities of the callers upon invocation. If the caller is the

coordinator, the authentication passes and the operation triggers the peer adapters to

fire a GatherResourcesEvent to the associated agents. Otherwise, it throws an

UnauthorizedActionException to the caller. Agents who notify of the request invoke

the submitResourcesQ operation to contribute their resources in return. To boost

flexibility, the java.lang.Object class is chosen utilized as the medium for storing the

computation resources. Hence, an agent can submit any serializable Java object to

the coordinator. The kernel will typecast these objects back into their original class

before analyzing upon them. The details on resources gathering and analysis are

given in Chapter 6.

Similarly, the startVoting() operation verifies whether the caller, who intends to

initiate a voting in terms of view update or results delivery, is actually the current

coordinator.

8.1.2 The CoDACEventListener

As the CoDACAdapterlnterface entails how an agent invokes the behavior of the DA

adapter through method invocation. In reverse, the DA adapter signals the associated

agent to take appropriate actions by generating certain events. Hence, an agent must

implement the CoDACEventListener interface, as defined in API 8.2 in order to

interact with the DA adapter. In doing so, an agent must implement its actions in

Chapter 8 Implementation T_

package cse.CoDAC.shared

public interface CoDACEventListener implements EventListener
{

public void notifyResourceRequest(GatherResourcesEvent evt);
public void notifyDeliveryRequest(PrepareDeliveryEvent evt);

throws VetoDeliveryException;
public void notifyCommitDelivery(ConnnnitDeliveryEvent evt);
public void notifyRollbackDelivery(RollbackDeliveryEvent evt);
public void notifyMulticastMessage(DeliverMulticastEvent evt);

}
API 8.2: The CoDACEventListener API

response to certain events. For example, as mentioned earlier, the

notifyResourceRequestQ operation is signaled by the DA adapter by firing a

GatherResourcesEvent, after which the involved agent should react by invoking the

submitResourcesO defined in the CoDACAdapterlnterface to submit its individual

computation in return.

The notifyDeliveryRequestO operation is triggered by the PrepareDeliveryEvent,

which encloses with some kinds of information (e.g. coordination instruction) to be

delivered to the agent. The agent can retrieve these coordination instructions from the

event object to determine whether it agrees to deliver (follow) this instruction. If it

does not agree to follow the instruction, it must throw a VetoDeliveryException to

the DA adapter. Otherwise, the DA adapter assumes an implicit agreement.

The commitDeliveryRequestO and rollbackDeliveryRequest() operations

implement the respective behaviors of an agent to deliver and rollback the

coordination instruction forwarded from the DA adapter. These operations are

triggered by the CommitDeliveryEvent and RollbackDeliveryEvent respectively and

both operations implement the actions to preserve consistency on the final state of

the agent in accordance to the final decision to deliver or to rollback that instruction.

The notifyMulticastMessageO operation simply notifies the agent to deliver a

message sent from the multicast service within the group. The content of the

!•

i
I

Chapter 8 Implementation T_

multicast can be retrieved from the DeliverMulticastEvent as a generic Java object

and is up to the agent to comprehend its meaning.

8.1.3 The DAAdapter

The DAAdapter class plays an essential role in the CoDAC framework. As each

agent can alternatively perform the role of the coordinator, the DA adapters provide

supports for both the coordinator and the ordinary members. Hence, for replication

purpose, both sets of operations for the coordinator and the ordinary members are

integrated altogether into the DAAdapter class. API 8.3 distinguishes the operations

of the DAAdapter class into 3 categories, namely coordinator, ordinary members and

all agents in general.

The first set of operations grants the coordinator access to the Jini lookup and

transaction services in enhancing atomicity and recoverability. For instance, the

atomicWriteAllO operation enforces atomic message multicasts and operates along

with both the coordinateAbort() and the coordinateCommit() operations to coordinate

all participants to commit and abort a collaboration transaction atomically. The

createProxyO operation duplicates the DA adapter as a service proxy to be registered

with the lookup service via the registerWithLookup() or the reregisterServiceQ

operation. Above all, the findKemel() operation locates and downloads the desired

kernel from the lookup services to deliver the reasoning logic to the coordinator.

Similarly, the findTransactionManager() operation locates the transaction manager

within the Jini framework for coordinating atomic transactions. The

reviseCurrentViewO operation updates the current group membership whenever an

entity joins or leaves the group. The operations, startServiceQ, startVotingQ and

requestResourcesO are inherited from the CoDACAdapterlnterface and are explained

in section 8.1.1.

Chapter 8 Implementation T_

package cse.CoDAC.service;

public class DAAdapter implements Serializable,
CoDACAdapterl nterface,
Clo 门 eable,
Runnable

{
//Methods implemented for the coordinator

protected boolean atomicWriteAII(CoDACMessageEntry msg);
protected void coordinateAbort(CoDACMessageEntry received);
protected void coordinateCommit(CoDACMessageEntry received);
protected CoDACAdapterl nterface createProxyO;
protected CollaborationCore findKernel(ServiceRegistrar reg);
protected TransactionManager findTransactionManager(ServiceRegistrar reg);
protected void registerWithLookup();
public void requestResources(Object instruction)

throws UnauthorizedActionException;
protected void reregisterService(Serviceltem item);
protected void reviseCurrentView(CoDACMessageEntry received);
public void startService(DAManager mgr);
public void startVoting(Object content)

throws UnauthorizedActionException;

//Methods implemented for ordinary members

protected void listenServiceEvent(ServiceRegistrar registrar,
ServiceTemplate template);

protected void prepareForRecovery();
protected void replaceCoordinator();
protected void requestForReplacement(String recipient);
protected void requestNextCanadidate();
public void startService(String agentID,

ServiceRegistrar[] registrars,
DAManager mgr);

API 8.3: The DAAdapter API

Chapter 8 Implementation T_

//General methods

protected void abortTxn(Long txnID);
public void addEventListener(.CoDACEventListener listener);
protected void analyzelncomingMessages(CoDACMessageEntry received);
public Object cloneQ;
protected void commitTxn(Long txnID);
protected View currentView();
protected JavaSpace findJavaSpace(ServiceRegistrar reg);
protected JavaSpace findJavaSpace(ServiceRegistrar reg,

CoDACMessageChannel template);
protected void installNewView(View view);
public void joinCollaborationGroup(String groupID);
protected void joinCollaborationGroup(CoDACMessageChannel channel);
public void multicast(content);
protected void notifyResourceRequest(CoDACMessageEntry req);
protected boolean openChannel();
protected CoDACMessageEntry readMessage();
protected void reset();
public void resumeService(DAManager mgr)

throws 10 Exception;
public void run();
public void submitResources(Long xid, java.lang.Object content);
public void suspendService() throws OutStandingTxnException;
protected void vote(CoDACMessageEntry req);
protected void voteAgainst(CoDACMessageEntry req);
protected void voteFor(CoDACMessageEntry req);
protected void writeAII(CoDACMessageEntry msg);
protected void writeExcept(CoDACMessageEntry msg, String name);
protected void writeMessage(CoDACMessageChannel outChannel,

int type,
Object content,
Long txnID,
Transaction txn);

protected void writeMessage(CoDACMessageEntry msg,
Transaction txn);

protected void writeMessage(String recipient,
int type,
Object content,
Long txnID,
Transaction txn);

}

API 8.3: The DAAdapter API (Conf)

Chapter 8 Implementation T_

The second set of operations is specific for the ordinary collaboration members to

detect failures and initiate replacement of the current coordinator. First of all, the

listenServiceEventO subscribes the DA manager to a set of remote events that would

be triggered by the availability of the service proxy for fault detection purpose, (this

will be explained in section 8.4). The prepareForRecoveryQ, the

requestForReplacementO and the requestNextCanadidate() operations notify the

potential candidates about the crash of the current coordinator and request these

candidates to take over the collaboration group. The replaceCoordinator() operation

initiates an election to appoint the caller as the new coordinator. The startServiceQ

operation is inherited from the CoDACAdapterlnterface.

The remaining sets of operations are accessible to all participating agents in

general. For example the addEventListenerQ operation subscribes each agent to the

events constantly fired by the DA adapter throughout the collaboration. The

readMessageO operations retrieve all incoming messages deposited into the

communication channel after which the analyzeIncomingMessages() operation

analyze each message received in order to determine which operation to invoke in

response. The abortTxn() and the commitTxn() operations abort and commit a

transaction given the transaction ID. The currentViewQ operation returns the current

version of view whereas the installNewView() operation updates the group

membership by installing the given view as the current view. The two

fmdJavaSpaceO operations locate the JavaSpaces in the network for establishing

remote communication channels through the openChannelQ operation. Both

joinCollaborationGroupO operations engage the DA adapter into a collaboration

group. The fist operation identifies the target group by the group ID whereas the

second operation identifies the target coordinator by its communication channel. The

vote() operation determines whether to vote yes or no by invoking the voteFor() or

the voteAgainstO operations respectively. Each of the three writeMessage()

operations send messages to an individual recipient at a time whereas the writeAll()

operation delivers the given message to all peers but does not make it in an atomic

manner. The operations multicastQ, notifyResourceRequestQ, submitResource(),

Chapter 8 Implementation T_

suspendServiceO and resumeServiceQ are inherited from the

CoDACAdapterlnterface.

8.1.4 The DAManager

The DAManager class inherits the java.rmi.server.UnicastRemoteObject in order to

subscribe to remote events fire from the lookup service and the JavaSpaces (see

section 8.4). However, it is unserializable and unlike the DA adapter, it cannot be

uploaded to nor downloaded from the lookup service. Hence, it must be instantiated

locally where it will be associated with the corresponding stub and skeleton.

package cse.CoDAC.shared;

public class DAManager extends UnicastRemoteObject
implements RemoteEventListener

{
public static final int JOINREQ = 1 ；
public static final int VOTEREQ = 2;
public static final int VOTE = 3;
public static final int CASTREQ = 4;
public static final int CAST = 5;
public static final int NEVWIEW = 6;
public static final int COMMIT = 7;
public static final int ABORT = 8;
public static final int UNVOTE = 9;
public static final int SUBMITREQ = 10;
public static final int SUBMIT = 11;
public static final int CRASH = 12;

protected CoDACInternalEventListener listener;
protected Hashtable collaborationMgrs;

public void addListener(CoDACInternalEventListener listener);
public void collectResources(CoDACMessageEntry resource);
public void countVotes(CoDACMessageEntry vote);
public void notify(RemoteEvent evt);
public void startTransaction(Long xid,

View view);
}

API 8.4: The DAManager API

Chapter 8 Implementation ^

This class defines a set of constant integers as the type identifiers for remote

messages flowing around the CoDAC framework.The JOINREQ constant indicates a

request to the coordinator for granting group membership whereas the VOTEREQ

indicates a request to the members for making their votes. The VOTE constant

signify a message that contains a vote from the sender. The CASTREQ constant

presents a multicast request from the sender whereas the CAST constant signals a

multicast message among the group. The NEWVIEW constant signals each member

to install the attached version of view. The COMMIT and ABORT constants signal

the message recipient to commit and abort a collaboration transaction respectively.

The CRASH constant notifies the receipents about the crash of the current

coordinator such that some member will initiate an election for a new coordinator,

during which the UNVOTE constant can be used to notify the recipient to forget the

vote it has made to the sender. The SUBMITREQ constant defines a request to the

recipient to submit its computational resources to the coordinator while the SUBMIT

constant distincts the submitted resources from other type of messages.

The DAManager class contains two attributes, a listener object implementing the

CoDACIntemalEventListener interface (see section 8.1.5) and a hash-table enlisting

a series of CollaborationManager (see section 8.1.6) object instances. For instance,

the addListenerO operation associates the DA manager with the given listener object

whereas the startTransaction() operation instantiates and store a collaboration

manager to the hash-table using the given transaction ID as a key. The countVotes()

and collectResourcesO operations forward the votes and the resources submitted

from the participating agents to the relevant collaboration manager for assembling.

The notifyO operation notifies the listener object about the remote events fire from

the lookup service or the JavaSpaces.

I

Chapter 8 Implementation T_

8.1.5 The CoDACInternalEventListener

The CoDACInternalEventListener entails the actions to take in response to the

underlying event occurrence among the collaboration group. This interface is

implemented as an inner class for the DAAdapter, in other words, a DA manager

signals the associated DA adapter to react to various events via the

CoDACIntemalEventListerener interface. For example, the notifyServiceFailure()

operation signals the DA adapters to elect a new coordinator once the current

coordinator is detected to has failed. The notifyMessageArrival() simply signals the

DA adapter to pick-up a remote message from the JavaSpaces as soon as it arrives.

The notifyResourcesGatheringCompleteO operation notifies and delivers the set of

resources collected among the group to the coordinator for further analysis. The

notifyTransactionCommitO and the notifyTransactionAbort() operations notify the

DA adapter of the coordintor to commit and abort a collabroation transaction

respectively.

8.1.6 The CollaborationManager

The collaboration manager is the actual entity that processes the votes and assembles

the resources forwarded from the DA andapter via the DA manager. The

package cse.CoDAC.shared;

public interface CoDACInternalEventListener {

public void notifyServiceFailure();
public void notifyMessageArrival();
public void noti1VResourcesGatheringComplete(Enumeration resources);
public void notifyTransactionCommit(CoDACMessageEntry msg); ，
public void notifyTransactionAbort(CoDACMessageEntry msg);，

}

API 8.5: The CoDACInternalEventListener API

Chapter 8 Implementation T_

CollaborationManager class contains an listener object that implements the

CoDACIntemalEventListener as an attribute. For instance, the countQ operation

counts the number of yes and no votes respectively and notify the listener object to

commit or abort via this CoDACIntemalEventListener interface as soon as it

accumulated enough knowledge to make the decision or as it times out. Similarily,

the collectO operation assembles the resources gathered from the collaboration

context and signals the kernel to analyze upon as soon as the resources are ready or

as it times out. The run() operation is inherited from the Runnable interface to start

its execution thread for timing the collaboration transaction.

8.1.7 The CollaborationCore

The CollaboratonCore interface defines only one operation that its subclasses must

implement, there are altogether three operations defined as shown in API 8.6. The

setHostO operation is invoked to associate the kernel to the host DA adapter as the

former is downloaded from the lookup service. The start() operation simply signals

the kernel to standby for request The examineResources() operation is invoked when

the coordinator requests analysis on the set of resources gathered within the

collaboration group in order to figure out some coordination instruction (as described

in Chapter 6). This operation takes a series of elements, which represents the

package cse.CoDAC.shared;

public interface CollaborationManager implements Runnable {
protected CoDACIntemalEventListener listener;

public CollaborationManager(View view,
CoDACIntemalEventListener listener);

public void colIect(CoDACMessageEntry msg);
public void count(CoDACMessageEntry msg); ’
public void run();

^ API 8.6: The CollaborationManager API

1:
. I

• i

Chapter 8 Implementation T_

package cse.CoDAC.service

public interface CollaborationCore implements Serializable {
public void setHost(CoDACAdapterlnterface adapter);
public void start();
public Object examineResources(Enumeration enum);

}
API 8.7: The CollaborationCore API

computation results of the participating agents, as an input and returns the final

collaboration result to the coordinator in the form of a generic Java object.

8.2 Messaging Mechanism

Agents engaged into a collaboration group communicate with each other by message

exchange. Each DA adapter within the collaboration context is associated with a

communication channel [FHA99]. These channels unite the collaborating parties on

top of the JavaSpaces service (see Figure 8.1) and serve as logical queues that lodge

a series of message entries at one end and deliver such entries at the other end. An

entry is simply an object that can be stored in the JavaSpaces. At the input end, every

DA adapter within the group can write messages into any channel. But at the output

end, only the associated DA adapter may retrieve the entries from a channel. The

APIs of the CoDACMessageEntry and the CoDACMessageChannel classes are

shown in API 8.8 and 8.9 respectively.

The CoDACMessageEntry class comprises the medium of communication within

the collaboration context. Each message entry has totally six identifiers namely the

IDs of the sender and the receiver of that message, the ID of the group where the

Chapter 8 Implementation T_

DA Adapter

write

广 m A

J avaSpaces . v)

DA Adapter \ .

^ ^ DA Adapter

Figure 8.1: Space-based communication channel

message is circulated, the version number of the current view and the message

timestamp derived from the Lamport logical clock [Lamp78] at which the message is

sent, and the ID of the transaction within which the message is delivered (applicable

to messages that are delivered within a transaction as described in Chapter 7).

The content of each message varies depended on the type of messages as defined

in the class DAManager. The communication content embedded in a message entry

can either be the control instructions circulating among the DA adapters (to enforce

Chapter 8 Implementation T_

consistent group membership, uniform reliable multicast or fault recovery), or the

information shared among the participating agents (to collaborate for consistent

actions). In particular for the latter case, the channel should be flexible enough for

package cse.CoDAC.shared;

public class CoDACMessageEntry implements Entry
{

public String senderlD;
public String recipientID;
public String groupID;
public Integer viewVersion;
public Integer timeStamp;
public Integer msgType;
public Object content;
public Long codacTxnID;
public Boolean total Order;
public Boolean global;
public Boolean nesting;

public CoDACMessageEntry(String sender,
String recipient,
String group,
Integer version,
Integer timeStamp,
Integer type,
Object content,
Long txnID,
Boolean orderFlag);

public String toString();
public void setGlobalQ; //set global as true
public void setNestedQ； //set nesting as true
public boolean isTotalOrdered();

}
API 8.8: The CoDACMessageEntry API

delivering various types of data. Therefore, the content of a message is stored as an

instance of the generic java.lang.Object. In this sense, the messaging service in

CoDAC can deliver virtually all serializable Java objects.

Above all, the totalOrder flag indicates whether the message should be processed

in total order. Causal messages like the instruction to coordinate the installation of a

Chapter 8 Implementation T_

package cse.CoDAC.shared;

public class CoDACMessageChannel implements Entry
{

public String channellD;
public String groupID;
public JavaSpace javaSpace;

public CoDACMessageChannel()；
public CoDACMessageChannel(台tring name, JavaSpace space)；
//write message into queue
public Lease appendMessageQueue(CoDACMessageEntry msg,

Transaction txn,
long timeout)

throws UnusableEntryException,
Transaction Exception，
java.lang.SecurityException,
Java.lang. Interrupted Exception,
java.rmi.RemoteException ；

}
API 8.9: The CoDACMessageChannel API

new view or the collaboration results, and the request for computation resources to

the agents are processed in total order. These messages are totally ordered by the

priorities of the group (in case of inter-group message exchange) and the sender

agent, together with the message timestamp.

On the other hand, non-causal messages such as the votes and the resources

devoted from the agents are simply processed in fist come first served manner. A

message entry, once instantiated by the sender, will be written into the

communication channel of the recipient and the underlying JavaSpaces will notify

the recipient to pick up that message.

After all, as long as agents are inhabited in a hierarchy, the scope of a message

needs to be specified. The flag global in CoDACMessageEntry indicates the scope of

a message as either local or global. If the flag is true, then the scope is global and the

message will be delivered to all agents that constitute the entire hierarchy otherwise

the scope is local and the message will be delivered to all agents within the local

group only. In addition, the flag nesting defines the way of delivery for global

Chapter 8 Implementation T_

messages. This attribute specifies whether a global message is to be delivered inside

a closed or open nested transaction. This nesting property will be detailed in the next

section.

The CoDACMessageChannel class implements the back-end of the

communication channel. As shown in API 8.9, this class is, by itself, an entry, hence,

each channel, once instantiated, can be stored into the space. Each channel is

identified by both the channellD and the groupID attributes. Normally, the ID of a

channel is identical to that of the associated agent (i.e. the ID of the recipient for

every message being written into this channel) whereas the groupID attribute equals

to the ID of the group that the host agent currently engaged in. In special cases where

inter-group communication is desired, the local group coordinator will be granted

with an additional communication channel whose channellD is assigned with the ID

of that local group whereas the groupID attribute is the ID of the ancestral group.

The CoDACMessageChannel class is implemented as a reactive tuple space that

provides a simple method appendMessageQueueQ to write a message entry at the

end of the queue. Any interested party who wishes to write a message to another first

matches and reads the corresponding channel entry from the space with the specific

groupID and agentID of the intended recipient, and then invokes its

appendMessageQueueQ method to deposit a message entry to the channel. The

deposited message entry is actually written and stored in the space awaiting the

recipient agent's pick up.

JavaSpaces provide support for distributed object persistency, concurrent access

and distributed transaction. In particular, distributed transactions are enforced by the

two-phase commit protocol [Sun99e]. Under this transactional semantics, multi-

operation and multi-space updates can complete atomically. In this case, an object

implementing the net.jini.core.transaction.Transaction must be passed as an input

parameter to the appendMessageQueue() operation.

Chapter 8 Implementation T_

8.3 Nested Transaction

As defined in section 5.5, a collaboration can take place either in a global or local

scale. For instance, global collaboration transactions involve coordination among

separate local groups. Such inter-group collaboration, in turn, can perform either as a

closed or open nested transaction [Elm92:.

In the first case, the collaborations of the participating agents in local groups

correspond to sub-transactions nested within the global collaboration transaction.

These sub-transactions are managed by the local group coordinators under the

coordination of the root coordinator in harmony with the top-level atomicity. This

goal is achieved by sharing the same object instance of Transaction throughout the

hierarchy such that the Jini transaction manager could coordinate the entire group of

agents to commit or abort atomically.

For the second case, the local transactions will be separated from the global

transaction such that each top-level collaboration transaction can commit

immediately before spanning down to the next level. A local coordinator must

coordinate the local collaboration transaction to commit as the top-level groups did

and then requests the consecutive lower level groups to commit accordingly and so

on. As the sub-transactions are independent from the global transaction, each local

group instantiate a separate Transaction object and let the transaction manager to

coordinate commit or abort individually. Obviously, the state of a global transaction

with open nested transaction may be inconsistent as it proceeds, but the final state

must be consistent as it terminates. Therefore, in addition to the distributed object

persistency provided in JavaSpaces, each individual local transaction must be backed

with a compensating transaction [Elm92]. The compensating transactions undo the

committed transactions, such that if a local group aborts, then all collaboration

groups on top of it must rollback through compensating transactions in order to

preserve the consistency of the final state.

Chapter 8 Implementation T_

The open nested transaction is more favorable to the actual network environment

as the network is usually not stable enough to support large-scale extensive

communication sessions. Further, due to partial failures and network latency,

simultaneous connection among the entire collaboration group during a global

transaction is impractical.

8.4 Fault Detection

Aside from the dynamic changes in the group membership triggered by requests (i.e.

join or leave requests), there are circumstances that an agent may be terminated

gracelessly due to various unexpected site failures or isolation from the group

subjecting to a combination of communication failures. In these cases, the agent will

not be able to collaborate with its peers and will be regarded as virtually gone before

it explicitly un-registers itself. Although it may be against one's free will, the

membership of a failed or isolated agent must be reclaimed to keep the collaboration

running. For this reason, the group membership protocol described in Chapter 7 is

designed to tolerate and recover from such faults in the distributed environment. But

on top of that, such failures should be detected effectively in order to trigger the

recovery in the first place.

The overhead for fault detection in CoDAC is minimal as it takes advantages of

the leasing feature in the Jini framework. A lease is a grant of guaranteed access over

a time period. Access to many of the services in the Jini system environment is lease

based. Each lease is negotiated between the user of the service and the provider of

the service. The holder of the lease may renew or cancel the lease before it expires. If

the leaseholder does neither, the lease simply expires and the leased service is freed.

For instance, our fault detection utilizes the lease model in two ways:

Chapter 8 Implementation T_

1. When a coordinator starts a collaboration group, it registers a serialized instance

of its DA adapter to the lookup service as a service proxy as mentioned in section

6.1. This registration is granted with a lease along with the service ID. The

leaseholder (i.e. the DA adapter of the coordinator) is held liable to renew the

lease repeatedly throughout its life span such that the coordination group remains

visible in the neighborhood and open to any interested agents. Such lease renewal,

in turn, testifies the existence of the coordinator. Upon joining a group, an agent

subscribes to all events associated with the collaboration group service with the

given service ID. If the coordinator crashes and is no longer active, the lease will

eventually expire. After which the lookup service will free this collaboration

service from its storage and fire a distributed event to notify the subscribers. Such

removal of a registered service proxy from the lookup service is regarded as

failure in the coordinator and is detected from remote events.

2. Whenever a DA adapter opens a communication channel, it instantiates a

CoDACMessageChannel and put it into the space as described in section 8.2.

When this channel entry is written into space, it is granted with a lease that

specifies a period of time for which the space guarantees to store this entry. The

DA adapter as a leaseholder must constantly renew the lease such that interested

parties could retrieve this channel from the space and leave messages in it. In the

meantime, this channel entry symbolizes the availability of the DA adapter as

well as the associated agent. If the agent terminates, so does the DA adapter, and

the lease of the channel will eventually expire. By then, the channel entry will be

freed from the space and no longer retrievable by other agents. In this sense, the

agent is regarded as failed.

The first approach is specific for the detection of failure in the coordinator. This is

done by the collaboration members who simply register to the lookup service for

subscription to the relevant events. When a coordinator is detected to have crashed, a

recovery protocol will be triggered to select a single collaboration member to take its

place.

Chapter 8 Implementation T_

On the other hand, the second approach is applicable to both the coordinator and

the collaboration members. When a coordinator fails to write messages to a member

whose channel is not available in the space, the coordinator will reclaim its

membership by assuming this failed member has issued a leave—req and proceeds

with the leave protocol described in section 7.1.2. The functioning of the

collaboration members is, to some extent, considered "don't care” in the sense that

the failure of one member does not directly affect the operation of another. After all,

the necessary recovery is nothing more than updating the group membership or

rolling back those outstanding transactions that a failed member has involved in.

Therefore, the presence of the collaboration members is only checked when they

need to be involved (i.e. whenever the coordinator needs to write messages to them)

where their leases on the channels may be expired long before being noticed by the

coordinator.

On the contrary, the coordinator is the core of the collaboration group. It needs to

be available all the time to serve newcomers and send off those intending to leave.

The coordinator initiates the start and coordinates the end of collaborations, which

would be blocked otherwise without it. Apparently, it is necessary to keep exactly

one coordinator working at all time. For this reason, we need to detect any failure in

the coordinator as early as possible. Therefore, in addition to the first approach of

fault detection, whenever a member detects the channel of the coordinator has gone

as it tries to reach the coordinator, it triggers the recovery protocol for replacement.

This is necessary, as there may be circumstances that the lease on the coordinator's

channel expires before the lease on the collaboration service proxy does such that the

collaboration can be resumed earlier. After all, the Jini remote event model does not

guarantee that every subscriber will receive those events atomically for some agents

may miss an event even if it has actually fired. To ensure the failure of a coordinator

to be detected by at least one member in a timely fashion, CoDAC adopts both

approaches to monitor the presence of the coordinator.

In either case, once an agent is detected to have failed, the recovery protocols will

be invoked to update the group membership. Refers to Figure 7.4, the first step is

Chapter 8 Implementation T_

necessary because, on one hand, the Jini remote event model does not deliver events

to every subscriber in a consistent manner, some members might receive such events

while some others do not. On the other hand, p may detect the failure of c earlier than

its predecessors do as it attempts to request services from c. Therefore, in any case, p

should assume its predecessors may not necessarily be notified of the failure in c, and

should notify them explicitly.

Every member has a voice in electing the new coordinator as common link

failures might isolate c from p but not from q ox r causing p to has a false perception

that c is crashed. Besides that, there may be more than one candidate competing as

the coordinator at a time. In such cases, other members (e.g. the DA adapters of q

and f) are crucial to make the right votes to ensure exactly one coordinator exists.

For instance, we adopt the simple majority (i.e.�(N+1)/21 where N is the total

number of members in a group) as the election criteria to preserve the exactly-once

semantic even when subjected to network partitioning.

At the end, the newly elected coordinator must register a clone of its DA adapter to

the lookup service as the lease on the original proxy has expired. This newly created

service proxy must be registered with the same service ID and group ID in order to

keep the collaboration group open to any potential participant in the neighborhood. A

new participant can download this proxy to engage into the collaboration group as

usual. This new proxy operates identically to the expired one as they are virtually the

same. After that, the coordinator must obtain an instance of kernel from the lookup

service and plug into the associated DA adapter before it becomes capable to

coordinate the group.

8.5 Atomic Commitment Protocol

In Chapter 7, we have described both the agent and the associated DA adapter as a

whole in terms of the design of the protocol suite. At the implementation level, the

DA adapters perform all the work on behalves of the agents in the group membership

Chapter 8 Implementation T_

protocol suite. The same holds for the multicast protocol while the DA adapters

simply notify the end results to the associated agents. However, the atomic

commitment protocol is the only protocol that involves the associated agents in

making the decision to commit or abort. In this section, we will reveal the underlying

interactions among the agents, the DA adapters and the collaboration manager.

8.5.1 Message Flow

As mentioned, after the kernel has finished computing the collaboration results R, it

returns R to the collaboration manager. The collaboration manager is then

responsible to coordinate all agents in Vn(c) to deliver R consistently in order to

terminate the collaboration transaction. The interactions involved is as follows:

1. The collaboration manager sends a deliver—req predicate enclosed with R to every

DA manager within the collaboration context (i.e.

2. Next, each DA manager fires a PrepareDeliveryEvent, embedded with R, to the

associated agent.

3. In response, each agent checks its own state to see if it can commit to R. The

agents may throw a VetoDeliveryException to vote against delivering R, or it may

remain silent to indicate an implicit agreement.

4. The DA managers return the appropriate vote 's (either yes or no) to the

collaboration manager on behalf of the participating agents

5. The collaboration manager collects all the votes among the group

• If none of the participants vetoes the transaction, the decision will be to deliver

The collaboration manager will coordinate all DA managers to delivery R

by initiating a Jini transaction to forward a deliver predicate to every DA

manager.

• Otherwise, the collaboration manager will coordinate the rollback of R by

initiating a Jini transaction to deliver a rollback predicate to every DA manager.

Chapter 8 Implementation T_

Collaboration
Agent DA Manager Manager

‘̂ ^̂ ^̂ ^̂ ^̂ ^̂ ĝ̂ ĵ ^̂ ^̂ ^̂ ^̂ """"""

“ vote'
•

‘— vofe^ ‘

— ‘ ‘ “""""""

CommitDeliveryEvent/

Figure 8.2: The atomic commitment protocol

6. Finally, each DA manager receives either a deliver or rollback predicate as the

transaction terminates. The DA manager then signals the agent whether to deliver

or abort R by firing the CommitDeliveryEvent or AbortDeliveryEvent respectively.

Figure 8.2 summarizes the above protocol. For simplicity, only one agent and one

DA manger is shown to interact with the collaboration manager. Delivery of each R

is totally ordered by the transaction ID and terminates in sequence.

Chapter 8 Implementation T_

Note that a Jini transaction corresponds to a distributed transaction between the

Jini Transaction Manager [Sun99e] and the JavaSpaces, which is transparent to the

agents and even the DA adapters. In other words, the vote shown in the above figure

does not indicate the DA adapter actually voted for or against delivering the deliver

or the rollback predicate generated in step 5. Instead, these votes are actually made

by the underlying tuples in the space to indicate their readiness to store the relevant

message entries. The same situation holds for all vote^ (x = p, q or r) in Figures 7.2 to

7.6. On the contrary, the vote，does denote the votes made at the free will of the

agents through the DA adapters and the same holds for vote，x in Figure 7.4.

8.5.2 Timeout Actions

Whenever the delivery of R starts from step 1, there are two phases in the protocol

where some CoDAC entity is waiting for remote messages: in the beginning of step 5

and step 6. As remote messages may get lost or their delivery time may vary due to

link failures or network latency, these phases are bounded to a timeout delay d to

trigger fault discovery. The actions triggered by a timeout are explained as follows.

In step 5, the collaboration manager is waiting for votes from all the DA managers.

At this stage, the collaboration manager has not yet reached any decision. In addition,

no participating agent can have decided to commit. Therefore, as it times out without

getting all vote to make the decision, (e.g. because of a vote is lost or delayed, the

agent has crashed or even the request has not reached the agent in the first place) the

collaboration manager can decide to abort and proceed to step 6 by sending a

rollback predicate to every DA manager.

In step 6, a DA manager that voted Yes is waiting for a deliver or rollback

predicate in return. In this case, the DA manager cannot unilaterally decide to

rollback because the Jini transaction guarantees that either one of these two

predicates will eventually reach all DA managers as long as the collaboration

manager (and the associated coordinator) keeps functioning, although the delivery

Chapter 8 Implementation T_

time may vary after all. Therefore, the DA manager should not decide to rollback

unless it gets a rollback predicate or has certified the coordinator as crashed. In other

words the timeout triggers a fault discovery and the necessary recovery procedure.

This is done as follows:

1. When a DA manager drngVp times out in step 6 of the commitment protocol, it

retrieves the coordinator's channel in the space and write a decision—req predicate

to it. If the channel can not be found in the first place, then the coordinator may

have failed and dmgrp thus proceeds with the recovery protocol described in

section 7.1.4. Otherwise, dmgrp, waits for another d units of time before it re-

issues the decision—req. dmgrp may also break the loop and proceed with the

recovery protocol anytime it receives a distributed event from the lookup service

that indicates the expiration of the registered proxy.

2. On the other hand, the collaboration manager, in response to the decision—req,

checks if it has gathered enough votes to make the decision. If it possesses enough

knowledge to decide or if it has actually decided but the decision somehow has not

been delivered to the agents yet (perhaps due to network latency), then the

collaboration manager retransmits the decision to all DA managers inside a Jini

transaction given the same transaction ID. Otherwise, it waits until either all votes

are gathered or its timer expires and to deliver the appropriate decision by then.

3. In the worst case where the original coordinator has crashed, the new coordinator

c' elected from the recovery protocol coordinates all agents to rollback. The

decision is to rollback because there is no way to tell what vote the original

coordinator has made before it fails and the vote made by any member that fails in

between the commitment and the recovery protocols is unrecoverable too. In any

case, the atomicity is well preserved because the Jini transaction model guarantees

no participating agent can have decided to commit thus far. Hence, c，can rollback

the delivery of R by distributing a rollback predicate inside a Jini transaction to all

agents in V„+i(c').

Chapter 9 Example 103

Chapter 9

Example

To help understand the application of CoDAC, we give a simple example to illustrate

various functionaries of the CoDAC framework in assisting multiagent collaboration.

In this example, we simulate an auction with multiple auction agents engaging into a

collaboration group of top of CoDAC facilities. The system model and the

implementations are covered in the following sections.

9.1 System Model

An auction proceeds in a sequence of rounds. Each agent engaged in the auction

group constantly quotes a bid at each round. An auction agent bids repeatedly with

the amount raised by a predefined unit in successive rounds until the amount exceeds

the maximum price specified by the agent user. The group coordinator assembles all

bids made at each round and screens out the bid that quoted the highest price (i.e. the

highest bid). This highest bid concludes the current round and is treated as the

Chapter 9 Example 103

collaboration result in a CoDAC collaboration group. Hence, the information about

the highest bid will be delivered to every agent within the group.

Upon requested to deliver the collaboration result, the bidder who made this

highest bid simply agrees to deliver the result, other agents check whether they

afford to quote a higher price in the next round, if yes, then the agents veto the

collaboration result. Otherwise, they give up bidding and agree to deliver the result.

The auction proceeds to the next round as long as at least one of the agents vetoes the

collaboration results. At the end of an auction, every participating agent will install

the collaboration result, which announces the winner of the auction who can possess

the auction item, atomically and consistently.

9.2 Auction Lifecycle

In this section, we explain how the lifecycle of our simulated auction matches to the

three phases described in Chapter 6 that constitute a general collaboration lifecycle.

9.2.1 Initialization

At the very beginning, the kernel for the auction group, denoted as the auction kernel,

must be made available to the auction agents, through the KemelLauncher class.

Upon execution, the kernel launcher prompts a simple dialog as shown in Figure 9.1

to assist the organizer of the auction to initialize the auction by specifying the auction

item (i.e. the item open for bid), together with the base price for that item (i.e. the

minimum price one must quote in order to bid the item). Once the organizer finishes

input by clicking the OK button, the launcher creates an instance of AuctionKemel

and initializes both its base price and item attributes as user input values. Afterwards,

the launcher discovers every lookup service in the network neighborhood and

Chapter 9 Example 103

Auaioii Mem Sonv LCD 15" Monitor |
Base Price |7"0D0| |

OK Cancel s •

Figure 9.1: The kernel launcher dialog

registers a serialized instance of the kernel object to every lookup service available as

shown in Figure 9.2. Once the serialized kernel is granted with a service ID, it has

been registered and stored as a service proxy successfully onto the lookup service,

and will be downloadable to the bidders on request. After all, the launcher must

remain active throughout the life span of the collaboration group, as it is responsible

to constantly renew the lease on the kernel. Otherwise, if the lease on the kernel

expires, any new coordinator elected for replacement would have nowhere to

download the auction kernel and the auction could not proceed.

Once the kernel is ready, the bidders could launch their representative agents

using facilities provided by their custom agent platforms. In this example, we choose

i Lookup Service

I and register

lease, service ID

I Figure 9.2: Registration of kernel

[

i

\
fj

Chapter 9 Example 103

discover and / / / \
^ f l H j l ^ ^ g register / / \ lease renewal

Z ^ service ID I \

instantiate • ^ ^ ^ ^ H H ^ ^ ^ ^ ^ w n l o a d and \
^ ^ f l U H y ^ f f i J ^ i m m t f ^ deserialize \

Figure 9.3: Initialization of the coordinator

Grasshopper [IKV98] as the application test bed. Suppose, our simulated auction is

expected to take place at a collaboration group with ID, group]. Then each agent

instantiated will first discover the lookup service to look for any registered instance

of DAAdapter in the form of service proxy having its groupID attribute set as group 1.

Suppose we have agent 1, instantiated from the class AuctionAgent, being the first

agent launched and none of the existing DA adapters registered in the lookup service

entitled with the group 1 ID. Hence, agent 1 creates its own instance of DAAdapter

with the desired group ID.

Upon instantiation, the DA adapter discovers all available lookup services within

its neighborhood. Next, it duplicates itself and registers its clone with each lookup

service available as shown in Figure 9.3. Once the registration is granted, the DA

adapter of agent 1 is held liable to constantly renew the lease on its clone. In the

meantime, agent 1 becomes the coordinator for group! and hence it has to download

an auction kernel for its DA adapter to deliver the necessary logic to host an auction.

I

i

Chapter 9 Example 103

On the other hand, suppose agent2 is launched next. Since, agent2 is instantiated

from the same class as agent 1, again, it first discovers all available lookup services to

look for a matching service proxy (i.e. an object instance of DAAdapter with the

groupID attribute set as group 1). Obviously, a match is found this time and hence

agent2 simply download the adapter from the network as shown in Figure 9.4. Once

deserialized, the cloned DA adapter issues a request to the original DA adapter for

engaging into group 1 on behalf of agent2. All successive agents engage into group 1

in a similar manner as agent2 does throughout the life span of group 1 and the auction

may start when significant auction agents are engaged and ready.

—_I IP. - - . '•"•""""••nil"""""""" r ^ ' * * ' ' ' - ^ ' ^ ' 1 - , , 、

z
广：. ；,‘ , ‘ ‘ ’• _ ’二
� Lookup Service
f ‘ - ‘- ：‘ ^ ‘ ‘

I 1 d a |1 麥 uction冬

i j A y e r

lease r e n e w a l / ^ \ discover

t^? “ \ f 卿 la&i^^ii^fflH' agen t !

Figure 9.4: Initialization of the collaboration group

Chapter 9 Example 103

l^^::?:，::,…；'‘ ： ：二……二; J i l l . - • • • - ‘ . - • « •
M i n n Hem jsonv LCD 15" Monitor

Base P f j Z O O O 0

mitrnM

W

I 麥
(MTtlwi OTtirmi

Start Cancel

Figure 9.5: The auction kernel dialog

9.2.2 Resource Gathering

For demonstration purpose, we have associated the auction kernel with a GUI

denoted as Auction Kernel Dialog as shown in Figure 9.5. This dialog displays the

item opening for bidding as well as the base price to begin with. Further, this dialog

will show relevant information on-screen from time to time for demonstrating the

progress of an auction. For instance, the kernel will be activated manually by

clicking the start button on the dialog.

Once the auction kernel is activated, it starts requesting the participating agents

for computational resources. The relevant resources in our model are simply the bids

that the agents could afford to quote in each round. In other words, the kernel starts

the auction by requesting all involved agents to place their bids. The requests are

actually sent to agents through the DA adapters as shown in Figure 9.6. Note that

Chapter 9 Example 103

bid \
\ j e q u e s t

^ i H B I I I I y bid A b i d \ 丨丨丨IH

J . 1 — ^request
i i — i 画 , J request B H V agent 2

Bp ilffli™ 鬧 U B I I i i i M I B
— — 1

agent 4 HHHr
agent 3

Figure 9.6: Bid gathering

starting (or ending) an auction, or any kind of collaboration in general, is the job of

the coordinator. However, there is no clear specification on where the coordination

logic should inhabit. Normally, the coordination logic can be implemented either in

the agent or the kernel classes. For simplicity, instead of replicating the coordination

logic into every instances of agent (for fault-tolerance purpose), we choose to

integrate the relevant logic into the AuctionKernel such that the AuctionAgent class

needs only to deliver the necessary logic to follow the kernel's coordination. In some

cases, where an actual coordinator agent is desirable, the coordination logic should

be integrated to the agent whereas the kernel simply performs the analytic works to

assist the coordinator agent in making decisions.

On the other hand, the AuctionAgent class is associated with a GUI as well, to

ease demonstration. As shown in Figure 9.7, the Auction Agent Dialog accepts two

constraints, namely the increment price and the maximum price. The increment price

/ defines the amount an agent should raise in its bid for each successive round

Chapter 9 Example 103

酬 i i Price 9000 |

Iricrcf net It Price 100

Co 肪 f � r 敎.容 - ----
Maxirriiiiri Price: $9000

I n c r e n T e n t Price: $ 1 0 0

J i f ^

OK I Cancel

Figure 9.7: The agent dialog

whereas the maximum price M defines the maximum amount that an agent afford to

quote for the auction items.

In response to the request from the kernel, an agent return a bid base on the

following strategy summarized in Table 9.1:

In either case, the agents define the amount they afford to quote and the associated

DA adapters bid on behalves of the agents. Afterward, the kernel assembles all the

bids from the auction agents and proceeds to the next phase.

9.2.3 Results Delivery

Upon analyzing the bids assembled among the auction group, the kernel screens

out the bid quoting the highest price H in the current round. The collaboration result

R is defined as H together with the ID of the corresponding bidder as shown in

Figure 9.8. To begin with, a request to deliver R is sent to each auction agent as

Chapter 9 Example 103

shown in Figure 9.9. In response, if the agent is the one who quoted H, it simply

agrees to deliver R. Other agents check if H is larger that their M，s, if so, the agents

cannot afford to bid at a higher price that H in the next round and thus give up and

agrees to deliver R. Otherwise, an agent may veto delivering R if it affords to quote a

higher bid in the proceeding rounds.

Case Action

1 First Round quote the base price defined for the item

2 Proceeding Rounds define P = min{H+I，M},

where H denotes the highest price quoted at the

previous round

if P>H, quote P

otherwise, give up

Table 9.1: Auction strategy

Each DA adapter will return a vote to the coordinator to indicate the agent's

intention to deliver R. If at least one agent voted to veto delivering R then the

coordinator will coordinate all agents to abort R. Otherwise, the auction terminates as

the coordinator coordinates all agents to deliver R. At the end of an auction, every

agent obtains the information about which agents has win the bid and at what price

did that agent quoted for the auction item.

If the decision is to abort, the auction will proceed to the next round as the kernel

initiates another request for bid. The cycle will loop back to the resource gathering

phase and proceed until one agent win the bidding as all others give up. The on-

screen display on the agent dialogs is shown in Figure 9.10 where agent2 has quoted

the highest price among the group to bid for the LCD monitor. agent2 is thus the

winner of the auction and every auction agent will install the final result.

Chapter 9 Example 103

Aiiciion Hem Sony LCD 15" Monitor |

Base Price |7000.00 — — J
--------Sound 2 -

agent1 quotes $7100.00 一
agerit2 quotes $7500.00
agenU quote-s $7300.00
agerit4 quotes $7200.00

agerit2 quoted the highest price: $7500.00
Round 3

agent1 quotes $7600.00
ftgefit2 quotes $8000.00 —'
agentJ quotes $7800.00
agerit4 quotes $7700.130 ^
J ^

start Cancel

Figure 9.8: On-screen output from the kernel

IRWm^^l^^^SBCL \ R agree/disagree

f ' i ^ r - - ” � \ WBSBBBBBI^Bm /
、厂 agent 1) \ • • • • • • • • /

/

BB̂H ĤHI ^̂ ^̂^
‘ ^ ^ ^ ^ H F agree/

agent// 1 \
… ， ^ ^ “ ^ / f agent 3 ‘

agree/disagree

Figure 9.9: Result delivery

Chapter 9 Example 103

MdKiiiiiifit Mnce 90D0

tiKfeiiieiil Price |100

Eoumd 4 �
- N o t i f i e d r e q u e s t ŝnd plac^e a b i d : $8100.00
- N o t i f i e d a u c t i o n r e s u l t :

agerit2 quoted the hieherst p r i c e = $9500.00
and vo te r e j e c t

- N o t i f i e d a bo r t auct ior i r e s u l t
Sound 5

-Notified request ？irtd piece a bid: $8600.00
-Notified auction result:

agerit2 quoted the h i g h e s t p r i c e : $9000.00
and vo te accept _

- N o t i f i e d commit a u c t i o n r e s u l t ^

jJ ! II

OK Cancel

Figure 9.10: Auction termination on-screen display

t I
！

I
j

丨. i

Chapter 10 Discussions 106

Chapter 10

Discussions

This chapter summarizes the characteristics of the collaboration framework

implemented in CoDAC as the key contributions it delivers. These characteristics

include compatibility, hierarchical group infrastructure, flexibility, atomicity and

fault tolerance. We will explain each of the above characteristics and their

implication to the multiaget paradigm in details in the following sections.

10.1 Compatibility

CoDAC is designed to be loosely coupled to the underlying mobile agent platform,

and is not bound to any specific agent system implementation. CoDAC is developed

on top of the standard Jini framework and is compatible with virtually all mobile

agent frameworks that operate properly atop of the Java 2 platform. For instance,

CoDAC is implemented on the Grasshopper agent framework and tested to be

operable on various platforms like Concordia and Mole.

i

!
i
1

i

Chapter 10 Discussions 10^

The major benefit from the compatibility on heterogeneous mobile agent

platforms is in the realization of collaboration among heterogeneous agents on top of

various agent platforms. The DA adapter in CoDAC provides a common interface for

heterogeneous agents to communicate and exchange messages atop platform

independent Jini and JavaSpaces technologies. As a result, heterogeneous agents can

interpret the messages from each other and take appropriate actions as long as they

agree on a common communication protocol. The group of collaborating agents may

be diverse not only in their contents but also in the forms their contents are realized.

CoDAC provides a way to manage and coordinate multiple groups of heterogeneous

agents. For example, agents developed and operating on Concordia and Grasshopper

respectively can collaborate in either a single group or in separate local groups. On

top of that, CoDAC offers the core functionality to manage the group membership,

which enables each participant to collaborate seamlessly with one another as a whole.

Such heterogeneous collaboration may sound unfavorable yet unavoidable. For

instance, various legacy systems like database and file systems are developed

separately and distributed all over the open network. They are likely to be wrapped

by heterogeneous resource agents. Hence, a collaborative information retrieval

application may involve a set of heterogeneous user agents distributed over the

variety of available platforms, where each agent is needed to interact with the

appropriate resource agents in order to gain access to the underlying information. To

take advantages of CoDAC，s cross-platform compatibility, the dispatched user

agents, heterogeneous in their implementation, can engage in the same collaboration

group and can appear to be homogeneous.

10.2 Hierarchical Group Infrastructure

Complex large-scale collaboration can be simplified by decomposing into small

subgroups. For instance, although each collaborating agent may have distinct

I

Chapter 10 Discussions 106

properties, some of which share some kind of similarity with one another, for

examples, the roles they assume, the goals they pursue, the places they physically

reside, etc. Based on these similarities, the collaborative agents can be categorized

readily into a number of local groups that constitute a hierarchy as a whole. Agents

within a local group perform a subtask with respect to the comprehensive work and

different local groups collaborate to attain the global objective. Agents with common

interests cooperate in local peer-to-peer collaboration, whereas agents with different

interests negotiate via inter-group collaboration.

More precisely, lower level local groups typically compose of comparatively

homogeneous and interchangeable agents that often work independently and pursue a

common goal. The higher level local groups, on the other hand, behave more like an

agent team [BMD99]. Each agent team comprises members (i.e. lower level local

groups) that each has specific tasks or functions that requires more dynamic

interchange of information, coordination and adjustment to demands.

This hierarchical infrastructure adds scalability and modularity to multiagent

systems and the inhabiting agents respectively. On one hand, it decentralizes the

coordination effort of the global coordinator through delegating to each local

coordinator the obligation to manage the inhabitants in its local domain. In this sense,

an agent can be added as a leaf to the hierarchy dynamically without affecting the

configuration of the rest of the infrastructure. Scalability is particularly important to

applications like information retrieval, data mining and network communities where

the population of the agents is huge and highly dynamic. With supports from the

CoDAC framework, agents can be plugged into the system dynamically where the

necessary authorization, authentication and coordination works are essentially

performed at the local domain, whereas the reconfiguration of the high-level groups

is virtually nil.

On the other hand, within the hierarchical model a comprehensive task can be

broken down into a set of component tasks to its lowest level. Each component task

can be routine and general enough such that generic agents can be developed and

reused to handle it. These generic agents can be plugged-and-played into different

Chapter 10 Discussions 106

applications and systems with negligible management burden. Furthermore, each

agent can be upgraded independently without affecting the overall system. With the

enhanced modularity in CoDAC, agents can experience the software component

paradigm and feature as interchangeable building blocks for various applications and

systems.

The infrastructure also brings benefits to communication within the hierarchy.

The message traffic incurred in serving some coordination purpose is kept at the

minimal extent as the underlying message exchange in pursuing a goal is restricted to

circulate among the interested parties only (e.g. within a local group) wherever

necessary. Instead of delivering each message to the entire collaboration group, the

unwarranted message delivery to the unintended recipients can be eliminated readily.

This saving is significant when the scale of the collaboration group is large.

10.3 Flexibility

CoDAC offers full flexibility in terms of both the language as well as the behavior of

collaboration. As mentioned in section 8.2 the content of the messages swapping

between the participating agents is not bound to any specific implementation in

CoDAC. The underlying communication protocol among the participating agents can

be based on various standard agent communication languages. For example, CoDAC

is interoperable with a framework for KQML speaking software agents, the JKQML.

This implies that agents can communicate with each other using KQML within the

CoDAC framework. In general, any Java object that has implemented the

java.io.Serializable interface can be used for communication purpose in CoDAC as

long as the intended recipients implement a common interface and know how to

interpret the collaboration language in the first place.

One the other hand, the hierarchical infrastructure in CoDAC is flexible in the

sense that it can feature as the backbone for various communication models over the

Chapter 10 Discussions 106

Internet. For example, in the server group model [Adl95], a group of server agents

can inhabit as a subtree in the CoDAC hierarchy with the so-called ServerGroup

agent to operate as the local coordinator. The local coordinator decomposes the

requested service into constituent tasks, and dispatches each of these tasks to the

appropriate server agent within the group for concurrent execution. At the end, the

coordinator collects and combines the results from those server agents into a single

response for the client.

Further, the hierarchical relation is apparent in workflow systems [HS98b] which

constitute of inter-related component tasks that share various control, data and

temporal dependencies. Workflow agents can be readily categorized and mapped into

local collaboration groups in CoDAC based on the component tasks they perform.

These component tasks are typically strongly related to one another and are

processed concurrently. The underlying workflow agents inhabit in separate local

groups and coordinate as a whole to commit each workflow.

10.4 Atomicity

CoDAC embeds atomicity into the collaboration of mobile agents in distributed

environments. It provides transactional support for enforcement of mutual consensus

within the collaboration group. Any result reached in a collaboration can be delivered

to all involved parties consistently to attain common knowledge and signal all group

members to take consistent actions. This atomicity of agent collaboration is the key

to meet the requirements in the electronic commerce environment.

10.5 Fault Tolerance

As described in section 7.1, once the default coordinator crashes, one of the agents

I will be elected as the new coordinator through the group membership protocol in the

\

\

j

Chapter 10 Discussions 106

CoDAC collaboration model. The newly elected coordinator will be responsible for

resuming the collaboration in the primary backup approach.

Given a local collaboration group g with n participating agents, each individually

has an availability p, the probability that exactly m out of these n agents are available

can be calculated using the binomial probability function: f{n, As

an agent in g needs to collect a majority of votes to be able to replace the failed

coordinator, the overall availability Ag(n, p) of g can be calculated as the probability

that a majority of agents is available:

= (*) where 足 特 -
y

Table 8.1 and Figure 8.1 show the availability of g for various values of n in typical

distributed systems having p,s above 0.75. We can observe that Ag(n, p) is generally

improving for « > 2 and the improvement is more significant for odd values oin. For

instance, Ag{l, 0.75) is 0.93, which shows a 24% improvement with respect to p. We

can conclude that the number of agents in each group should be an odd number

bigger or equal to 3.

Further, the availability of the global group Aq as the overall hierarchy can be

calculated from equation (*) by substituting p by the availability of the local groups

(for simplicity, we assume the hierarchy is symmetric such that the Ag{n, are the

same for all the local groups). Suppose in a simple scenario with a total of 9 agents

divided into 3 local groups, each having 3 agents. Let p be 0.75, then we have:

j g (3,0.75) = 0.84
^ 3

Ag = A, (3,0.84) = X . 0.84' (1 - 0.84)3-' 二 o.93

and

P
n p=0.75 p=0.85 p=0.9 厂

1 ~ 0 . 7 5 0.85 0.95
2 ~ 0.56 — 0 . 7 2 0.90
3 ~~0 .84 ~~0 .94 0.99
4 0.74 0.89 0.99
5 0.90 0.97 〜1

Chapter 10 Discussions

�(n，p) 0 I 口 " . 叫

\mp=0.95\

n 6 7

Figure 10.1: A/n, p)

1

Chapter 11 Conclusions and Future Work]J_4

Chapter 11

Conclusions and Future Work

11.1 Conclusion

We have introduced CoDAC as a comprehensive solution to general agent

coordination problems. The major contribution of CoDAC is to embed atomic

commitment capabilities into collaboration among distributed agents with enhanced

fault tolerance. It delivers the core functionality to attain common knowledge within

a collaboration group and signal all participants to take consistent actions. It fulfills

the key proprieties in the component model to offer flexible and reliable coordination

service to mobile agents distributed over the network with plug-and-play capability,

encapsulated functionality and self-managing capacity. Beyond that, CoDAC breaks

the gap between different agent platforms with its strong compatibility.

Heterogeneous agents implemented and operating in different agent platforms can

engage to the same collaboration group. In addition, the self-recovery in a

collaboration group works fine regardless of the underlying heterogeneity.

Furthermore, CoDAC presents a hierarchical group infrastructure which adds

scalability to multiagent systems as the coordination effort decentralizes all over the

Chapter 11 Conclusions and Future Work

hierarchy where dynamic changes in the group membership can be handled

effectively at the local domains.

11.2 Future Work

In order to exercise the atomic and fault tolerance features of CoDAC we suggest to

have some practical experiences on electronic commerce and workflow management

applications where transaction requirements must be fulfilled.

11.2.1 Electronic Commerce

First, let us consider a simple application for which a group of shopping agents roam

through specific commercial sites to search for a stock of given items, says CPUs. At

the beginning, the user can carry out a dialog with a system agent to state the set of

constraints like the performance and the expected price of the desired CPUs, etc. The

system agent then instantiates a shopping agent c as well as the kernel, which

implements the logic to search for such item while enforcing the above constraints

and to identify the best offer from a variety of vendors. Before launching c, the

system agent first discovers the Jini lookup service and registers the kernel as a

service proxy.

Upon arrival at a vendor, c first instantiates a DA adapter and registers a clone of

this adapter to the lookup service such that other collaborating agents can access.

Next, c downloads an instance of the kernel, and plugs it into its local instance of DA

adapter in order to possess the capability to coordinate the group.

In the simplest case that all vendors share a common agent platform, c can start a

collaboration group by duplicating itself and dispatching each of its clones to the rest

of the interested sites. Otherwise, if the execution environments in different vendors

are heterogeneous (e.g. some servers may be wrapped in Grasshopper agents whereas

1

Chapter 11 Conclusions and Future Work]J_4

the others are shielded by Concordia agents, etc), heterogeneous agents with different

implementations must be launched explicitly by the user in order to interact with the

appropriate vendors. In any case, as long as each shopping agent agrees on a

common protocol and downloads an instance of DA adapter from the lookup service,

it can engage into the collaboration group and collaborate seamlessly with other

agents within the group.

The group is ready to collaborate after each shopping agent has settled on a

specific host and obtained an instance of DA adapter. The local interaction between

the agent and the vendor may be performed atop of message exchange or RFC, etc,

depending on the platform implementation. Each shopping agent negotiates with the

associated vendor over the prices and models of CPUs until c signals each agent to

submit the offer it gets from the vendor. The DA adapter of c gathers the details of

all available offers and delivers them to the kernel.

The kernel analyzes the gathered information, compares each offer against

another and identifies the best deal that offers CPUs with the optimal performance

while satisfying the price constraints. Having identified the vendor that offers the

best deal, the coordinator defines the decision to commit the purchase from this

specific vendor as the collaboration results and delivers it to every shopping agent

within the group atomically.

In response to this collaboration result, each agent checks whether it is negotiating

with that particular vendor. The agent residing on that specific vendor will commit

the local transaction with that vendor to contract the deal. Whereas the rest of the

participating agents abort any transaction they have been involved at their local hosts.

This example will demonstrate how the CoDAC collaboration model is capable of

collaborating heterogeneous agents and enforcing the exactly-once semantic on task

accomplishment.

Chapter 11 Conclusions and Future Work]J_4

11.2.2 Workflow Management

Next, we consider a simplified order processing workflow as shown in Figure 9.1. In

this example, each of the two component tasks, namely order verification and

delivery scheduling, is performed by a local group. Each local group, in turn,

collaborates with one another to complete the overall task

Workflow
Management

Agent

^ ^ ^ ^
Order Delivery-

Verification Scheduling
Agent Agent

Payment- Inventory Truck- Flight-
Processing Management Scheduling Scheduling

Agent Agent Agent Agent

Figure 11.1: An order processing workflow system architecture

Suppose given a customer order with typical order information specifying the

order quantity, the expected time of delivery along with the payment instruction. The

order should be approved only if all the following requirements are met:

1. The inventory possesses all the requested stocks

2. The order will be delivered on time

3. The payment is authorized

As shown in Figure 9.1 the left and the right subtrees correspond to two local

groups performing the order verification and delivery scheduling respectively. In the

left subtree, the payment-processing agent interacts with the Payment Gateway to

perform payment authorization whereas the inventory management agent locates the

Chapter 11 Conclusions and Future Work]J_4

requested items from the inventory. Both agents report to the local coordinator, the

order verification agent, before making any permanent change to the database.

In the right subtree, suppose the order has to be delivered by air and then by truck,

the local coordinator, delivery-scheduling agent, must coordinate the scheduling of

flight and truck to meet certain constraints like the flight must be scheduled before

the truck, the lag between the flight arrival and the truck available times should be

short enough to eliminate warehousing cost, and above all, the delivery deadline

must be met. The flight and truck-scheduling agents find out all possible flight and

truck schedules that are likely to met the delivery deadline and let the local

coordinator to identify the optimal schedule that meets all constrains.

Above all, both the two local groups are coordinated by the root coordinator, the

workflow management agent. As long as the three key requirements are all met, the

root coordinator approves the order and coordinates all workflow agents to commit

globally. The order verification agent would commit the insertion of the new order

entry to the customer order database. The payment-processing agent would commit

the payment capture with the payment gateway. The inventory management agent

would commit the change it made to the inventory database. The delivery-scheduling

agent would commit the insertion of the new entry into the delivery schedule

database. Should there be any of the key requirements failed to satisfy, The entire

group of agents abort their operations and no change will be made to any of the

databases involved.

This application will demonstrates the hierarchical infrastructure and exercises

both local and global collaboration.

Bibliography 1 口

Bibliography

"Adl95] Adler, R.M., Distributed coordination models for client/server

computing, IEEE Computer, Volume: 28, No. 4, April 1995, Page(s):

14-22

[BHRS97] Joachim Baumann, Fritz Hohl, Kurt Rothermel, Markus StraBer,

Mole — Concepts of a Mobile Agent System,

http://www.informatik.uni-stuttgart.de/

[BMD99] Mark H. Burstein, Alice M. Mulvehill, and Stephen Deutsh, An

Approach to Mixed-Initiative Management of Heterogeneous

Software Agent Teams, Systems Sciences, 1999. HICSS-32.

Proceedings of the 32nd Annual Hawaii International Conference on,

1999, Page(s): 1-10 pp.

[CG89] Nicholas Carriero, and David Gelemter: Linda in Context,

Communications of the ACM, April (1989), Volume 32, Number 4,

444 -458

[CR97] P. Ciancarini, D. Rossi, Jada - Coordination and Communication for

Java Agents, Lecture Notes in Computer Science, Springer-Verlag

(D), No. 1222, 1997, pp. 213-226.

[CTV+98] Ciancarini, P.; Tolksdorf, R.; Vitali, F.; Rossi, D.; Knoche, A

Coordinating multiagent applications on the WWW: a reference

http://www.informatik.uni-stuttgart.de/

Bibliography 1 口

architecture. Software Engineering, IEEE Transactions on Volume:

24 5 , Page(s): 362 -375

[Edw99] W. Kenith Edwards, Core JINI, The Sun Mircosystems Press, Java

Series, Prentice Hall, Inc, Sept 1999.

[Elm92] A. Elmasri (Ed.)： Database Transaction Models for Advanced

Applications, Morgan Kaufmann Publishers, Inc. (1992)

[FG96] Stan Franklin, and Art Graesser, Is it an Agent, or just a Program?: A

Taxonomy for Autonomous Agents,

http://www.msci.memphis.edu/~franklin/AgentProg.html

[FLP85] Michael J. Fisher, Nancy A. Lynch, and Michael S. Paterson,

Impossibility of distributed consensus with one faulty process, Journal

of the ACM, 32(2) April (1985) 374-382

[HM90] Joseph Y. Halpem, and Yoram Moses, Knowledge and Common

Knowledge in a Distributed Environment, Journal of the Association

for Computing Machinery, Vol 37, No. 3, July 1990, pp549-587.

[HS98a] Huhns, M.N. and Singh, M.P. All agents are not created equal, IEEE

Internet Computing, Volume: 2 3 , May-June 1998 , Page(s): 94 -96

[HS98b] Huhns, M.N. and Singh, M.P. Worlrflow agents, IEEE Internet

Computing, Volume: 24, July-Aug. 1998 , Page(s): 94 —96

IKV98] IKV++, Grasshopper Technical Overview,

http://www.ikv.de/products/grashopper/

[KGN+97] David Kotz, Robert Gray, Saurab Nog, Daniela Rus, Sumit Chawla,

and George Cybenko, Agent TCL: Targeting the Needs of Mobile

Computers, IEEE Internet Computing 1089-7801, 1997

[KT98] Neeran Kamik and Anand Tripathi, Agent Server Architecture for the

Ajanta Mobile-Agent System, http://www.cs.umn.edu/Ajanta#papers

[Lewa98] Scott M. Lewandowski, Frameworks for Component-Based

Client/Server Computing, ACM Computing Surveys, Vol. 30, No. 1,

March 1998, pp.2-27,

•t

http://www.msci.memphis.edu/~franklin/AgentProg.html
http://www.ikv.de/products/grashopper/
http://www.cs.umn.edu/Ajanta%23papers

Bibliography 1 口

[Maes95] Maes, Pattie, Artificial Life Meets Entertainment: Life like

Autonomous Agents, Communications of the ACM, 38(1995), 11,

108-114

[OK97] Mitsum Oshima and Guenter Karjoth, Aglets Specification (1.0),
http://www.trl.ibm.co.jp/spec_versonlO.html

[OW94] Etzioni, Oren, and Daniel Weld (1994), A Softbot-Based Interface to

the Internet. Communications of the ACM, 37, 7, 72-p;79.

OZ98] A. Omicini, F. Zambonelli, Co-ordination of mobile information

agents in TuCSoN, Internet Research: Electronic Networking

Applications and Policy, Volume 8, Number 5, 1998, pp 400-413

[PS97] Holger Peine, and Torsten Stolpmann, The Architecture of the Ara

Platform for Mobile Agents, Lecture Notes in Computer Science 1219,

Mobile Agents, First International Workshop, MA ’97, Berlin,

Germany, April 1997, pp. 50-61,

[Rei94] Michael K. Reither, A secure group membership protocol, Research

in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer

Society Symposium on , 1994 , Page(s): 176-189

[RN95] Russell, Stuart J. and Peter Norvig, Artificial Intelligence: A Modern

Approach, Englewood Cliffs, NJ: Prentice Hall (1995), page 33.

RS97] Kurt Rothermel, and Markus StraBer, A Protocol for Preserving the

Exactly-Once Property of Mobile Agents, http://www.informatik.uni-

stuttgart.de/ipvr/vs/projekte/mole/papers.html

[RS98] Kurt Rothermel, and Markus StraBer, A Fault-Tolerant Protocol for

Providing the Exactly-Once Property of Mobile Agents. Proc. 17th

IEEE Symposium on Reliable Distributed Systems 1998 (SRDS'98),

IEEE Computer Society, Los Alamitos, California, pp. 100-108.

[SBH96] Markus StraBer, Joachim Baumann, and Fritz Hohl, Mole - A Java

Based Mobile Agent System, http://www.informatik.th-

darmstadt.de/~fuenf/work/agent/proj ekte_e.html

http://www.trl.ibm.co.jp/spec_versonlO.html

Bibliography 1 口

;SC98] Suciu, O., Cristian, F.: Evaluating the performance of group

membership protocols. Engineering of Complex Computer Systems,

1998. ICECCS '98, Proceedings. Fourth IEEE International

Conference (1998) 13 -23

[SROO] M. Strasser, K. Rothermel, System Mechanisms for Partial Rollback

of Mobile Agent Execution. In: Proceedings of the 20th International

Conference on Distributed Computing Systems (ICDCS 2000), IEEE

Computer Society, Los Alamitos, California, pp. 20-28

[SRM98] Markus StraBer, Kurt Rothermel, Christian Maihofer, Providing

Reliable Agents for Electronic Commerce, Trends in distributed

systems for electronic commerce: international IFIP/GI working

conference, TREC'98, Hamburg, Germany, June 1998, pp.241-253,

[Sun99a] Sun Microsystems, Jinf^Architecture Specification, Version 1.1

Alpha, Nov (1999), http://www.sun.com/jini/

[Sun99b] Sun Microsystems, Jinf^ Lookup Service Specification, Version 1.1

Alpha, Nov (1999), http://www.sun.com/jini/

[Sun99c] Sun Microsystems, Jini™ Discovery and Join Specification, Version

1.1 Alpha, Nov (1999), http://www.sun.com/jini/

Sun99d] Sun Microsystems, JavaSpaces^^ Specification, Version 1.1 Alpha,

Nov (1999), http://www.sim.com/jini/

[Sun99e] Sun Microsystems, Jini Transaction Specification, Version 1.1

Alpha, Nov (1999), http://www.siin.com/jini/

[Szy97] Clemens Szyperski, Component Software, ACM Press Books,

Addison-Wesley, 1997

WJ95] Wooldridge, Michael and Nicholas R. Jennings, "Agent Theories,

Architectures, and Languages: a Survey, “ in Wooldridge and Jennings

Eds., Intelligent Agents, Berlin: Springer-Verlag, (1995) 1-22

IEEE Vol. 1, No. 4: July-August 1997, pp. 58-67

[WPW+97] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young,

Bill Peet, Concordia: An Infrastructure for Collaborating Mobile

http://www.sun.com/jini/
http://www.sun.com/jini/
http://www.sun.com/jini/
http://www.sim.com/jini/
http://www.siin.com/jini/

Bibliography 120

Agents, Lecture Notes in Computer Science 1219, Mobile Agents,

First International Workshop, MA，97, Berlin, Germany, April 1997,

pp. 86-97

[ZMG98] Michael Zapf, Helge Muller, Kurt Geihs, Security Requirements for

Mobile Agents in Electronic Markets, Trends in distributed systems

for electronic commerce: international IFIP/GI working conference,

TREC'98, Hamburg, Germany, June 1998, pp.205-217

[Xop95] X/Open Company Lmited, X/Open CAE Distributed Transaction
Processing, April (1995),
http://www. siemensxom/servers/man/man_us/utm_man/xopen.htm

I

http://www

Publication List 121

Publication List

1. "A Componentware for Distributed Agent Collaboration" to appear in

Proceeding of the First International Workshop on Web Agent Systems and

Applications (WASA-2000), published by IEEE Computer Society Press, 2000.

2. "A Micropayment System Based on Mobile Agents", to appear in Advances in E-

commerce Agents: Broking, Negotiation, Security, and Mobility in LNAI series

published by Springer-Verlag

3. "An Efficient Fault-Tolerant Protocol for Mobile Agents", in Intelligent Agent

Technology edited by J. Liu and N. Zhong, pp. 441-445, World Scientific, 1999.

i

t
{

J

i

J

CUHK L i b r a r i e s

圓•••llllll ’
D03fl03757

I

