
GLR Parsing with Multiple Grammars for

Natural Language Queries

LUK Po Chui

陸寶翠

1
A Thesis

Submitted in Partial Fulfilment of the Requirements for the Degree of

Master of Philosophy

in

Systems Engineering and Engineering Management

©The Chinese University of Hong Kong

August 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School. .

/ 0 ? ^
/ v 統 系 馆 ^ ： ^ ， 、

|| 1 8 H • j||

\^V """"ufMsirY ~i_l
N ^ ^ B _ Y SYSTEMxW
\ ^ ^ ^

Abstract

Parsing natural language (or spoken language) is a challenging task. Natural

language is inherently ambiguous - a sentence may have more than one rep-

resentations. It may also vary significantly in style from speaker to speaker.

Consequently, a natural language parser often needs to handle a large number

of grammar rules.

This thesis presents an approach for parsing natural language queries,

which integrates multiple sub-parsers and sub-grammars; in contrast with

the traditional single grammar and parser approach. In using LR(k) proces-

sors for natural language processing, we are faced with exponential growth of

parsing table sizes with increasing grammar sizes. We propose to partition

a grammar into multiple sub-grammars, each having its own parsing table

and parser. Grammar partitioning should help reduce the parsing table sizes

when compared using a single grammar. We use the GLR parser with an

LR(1) parsing table in our framework, because GLR parsers can handle ambi-

guity. A parser composition technique then combines the parsers' outputs to

produce an overall parse which is same as the output parse of single parser.

Two different methods were implemented for parser composition — parser

composition by cascading and parser composition with predictive pruning.

i

Our experiments are conducted with natural language queries in the ATIS

domain. The unpartitioned English ATIS grammar has 72,869 states in its

parsing table, while the partitioned English grammar has 3,350 states in

total. This result shows grammar partitioning greatly economizes on the

parsing table sizes. Language understanding performances are also exam-

ined. Parser composition obtains a higher understanding performance when

compare single GLR approach. A contributing factor is partial parses for

ungrammatical sentences.

ii

摘要

語法分析（口述語言分析)是一項具挑戰性的工作，自然語言本身是含糊

不清的，同一句句子可以有多過一種的表達手法。此外，不同的講者有

著 不 同 的 説 話 方 式 ， 故 此 ， 自 然 語 言 分 析 器 經 常 要 處 理 大 量 的 文 法 規

則 °

這 篇 論 文 提 出 一 種 分 析 問 句 的 方 法 ， 這 方 法 組 合 了 多 個 語 言 分 析

器 及 文 法 規 則 ， 與 傳 統 的 單 一 語 言 分 析 器 及 文 法 規 則 作 出 對 比 。 在 使

用匕只 >)處理器分析自然語言時，我們需要面對處理大量文法規則所引

致的指數增長的分析狀態表。我們提出將一組文法規則分折成多組文法

規，每組文法規都各自有自己的分析狀態表，這種方法可以減少分析狀

態表的大小。我們使用 0匕尺分析器作爲藍本，因爲它可以處理語意含

糊。接著我們使用組合語言分析器技巧來結合所有分析器，而得出一棵

同單一分析器所得出來一樣的分析樹。我們實行了兩種不同的分析器組

合法，包括級聯式(cascading)及附有預示性修剪的（predictive pruning)組

合法。

我們測試了我們的語言分析器在八 1 1 3領域中的問句，發現了未被分

割的英語八 1 1 3文法規則具有一個有 7 2， 8 6 9個狀態的分析狀態表，而被分

劃的英語八 1 1 3文法規則卻只共有 3 , 3 5 0個狀態。由此可見，文法規則分

割有效地減少在分析狀態表的狀態。與此同時，我們也測試了語言理解

iii

能力的表現，發現了分析器組合法比起單一語言分析器在處理語法錯误

的句子取得了較好的語言理解能力。

iv

Acknowledgments

I would first like to express my sincere gratitude to my supervisor, Professor

Helen Meng, for her support, guidance and encouragement in my thesis work.

I would like to thank her for spending a lot of time to work with me on my

thesis. She also shared her life experience to me and made me feel fruitful in

these two years.

I am also grateful to the members of my thesis committee for giving me

advise and reading of my thesis: Dr. Fuliang Weng, Professor Lin-Shan Lee,

Professor Kai-Pui Lam, Professor Kam-Fai Wong and Professor Christopher

Yang. Special thanks to Dr. Fuliang Weng for arising my interests in parsing,

and providing very valuable advice and suggestions on my research.

I would like to thank all my classmates in SEEM. They gave me support

and help when I have problems, ease my difficult times and I never feel alone

when conducting my research. Many thanks to: Ah Kin, Ah Su, Carmen,

Kun-Chung, Timmy, Tony and Wai-Ip. I also want to thank all my colleagues

and fellow classmates in the Human-Computer Communications Laboratory

for providing a joyful working environment to me: Ah Fan, Brenda, Ida,

Connie, Sally, Yuk Chi and Tiffany. To my classmates and officemates Ada

Ng, Ah Lai, Jason, Chiu Chun and Jessica, who were considerate and shared

V

much fun times with me in the office throughout this two years. I also thank

all my best friends for sharing with me during my ups and downs.

Special thanks to my family, who always gave me support, take care of

me and never blame me for spending less time with them.

vi

Contents

1 In t roduc t ion 1

1.1 Efficiency and Memory 2

1.2 Ambiguity 3

1.3 Robustness 4

1.4 Thesis Organization 5

2 Background 7

2.1 Introduction 7

2.2 Context-Free Grammars g

2.3 The LR Parsing Algorithm 9

2.4 The Generalized LR Parsing Algorithm 12

2.4.1 Graph-Structured Stack 12

2.4.2 Packed Shared Parse Forest 14

2.5 Time and Space Complexity 16

2.6 Related Work on Parsing i7

2.6.1 GLR* 17

2.6.2 TINA 18

2.6.3 PHOENIX 19

2.7 Chapter Summary 21

3 G r a m m a r Par t i t i on ing 22

3.1 Introduction 22

3.2 Motivation 22

3.3 Previous Work on Grammar Partitioning 24

vii

3.4 Our Grammar Partitioning Approach 26

3.4.1 Definitions and Concepts 26

3.4.2 Guidelines for Grammar Partitioning 29

3.5 An Example 30

3.6 Chapter Summary 34

4 Parser Composi t ion 35

4.1 Introduction 35

4.2 GLR Lattice Parsing 36

4.2.1 Lattice with Multiple Granularity 36

4.2.2 Modifications to the GLR Parsing Algorithm 37

4.3 Parser Composition Algorithms 45

4.3.1 Parser Composition by Cascading 46

4.3.2 Parser Composition with Predictive Pruning 48

4-3.3 Comparison of Parser Composition by Cascading and

Parser Composition with Predictive Pruning 54

4.4 Chapter Summary 54

5 Experimental Results and Analysis 56

5.1 Introduction 56

5.2 Experimental Corpus 57

5.3 ATIS Grammar Development 60

5.4 Grammar Partitioning and Parser Composition on ATIS Domain 62

5.4.1 ATIS Grammar Partitioning 62

5.4.2 Parser Composition on ATIS 63

5.5 Ambiguity Handling 66

5.6 Semantic Interpretation 69

5.6.1 Best Path Selection 69

5.6.2 Semantic Frame Generation 71

5.6.3 Post-Processing 72

5.7 Experiments 73

5.7.1 Grammar Coverage 73

5.7.2 Size of Parsing Table 74

viii

5.7.3 Computational Costs 76

5.7.4 Accuracy Measures in Natural Language Understanding 81

5.7.5 Summary of Results 90

5.8 Chapter Summary 91

6 Conclusions 9 2

6.1 Thesis Summary 92

6.2 Thesis Contributions 93

6.3 Future Work 94

6.3.1 Statistical Approach on Grammar Partitioning 94

6.3.2 Probabilistic modeling for Best Parse Selection 95

6.3.3 Robust Parsing Strategies 96

Bibl iography 97

A ATIS-3 G r ammar 101

A.1 English ATIS-3 Grammar Rules 1 0 1

A.2 Chinese ATIS-3 Grammar Rules 104

ix

List of Figures

2.1 A model of an LR parser 1 1

2.2 The initial stage of a GSS 13

2.3 The GSS after rule reduction 15

2.4 The GSS after state shifted 15

2.5 The GSS after local ambiguity packing 15

2.6 The packed forest of parse vertex J after local ambiguity packing. 16

3.1 The calling graph of the sub-grammars Go, Gi and G) 33

4.1 An example of a lattice 37

4.2 The initial stage of a GSS 38

4.3 The GSS after rule reductions 39

4.4 The GSS after shift i 40

4.5 The input LMG for example in Modification 1 40

4.6 The initial stage of the LMG 41

4.7 Beginning steps of parser operations in the GSS 43

4.8 The trace of parser in GSS when it reads vtNP with index 7. 44

4.9 The final stage of the GSS 44

4.10 The resultant parse forest from sub-parser of Go 45

4.11 The control of parser composition by cascading 47

4.12 Changes in LMG due to sub-parsers in level 0 through parser

composition by cascading 49

4.13 Changes in LMG by parser composition with predictive pruning. 53

5.1 Examples of English sentences in the ATIS-3 training corpus,

together with their Cantonese translations 53

V

5.2 An example of a SQL query for data base access, together with

its English query 59

5.3 The calling graph of the sub-grammars in Table 5.4 65

5.4 The resultant LMG by using parser composition by cascading. 65

5.5 The resultant LMG by using parser composition with predic-

tive pruning 66

5.6 Example of a multiple parses sentence 67

5.7 Another example of multiple parses sentence 67

5.8 A subset of nodes in a LMG 69

5.9 Algorithm for shortest path problem [10] 71

5.10 The parse tree is attached to a virtual terminal vtDEPARTURE. 72

5.11 Example of a semantic frame 72

5.12 The semantic frame generated for the query (sentence 1) "i

would like to book a round trip flight from kansas city to

chicago." This frame fully matches the reference semantic

frame in Figure 5.13, and is counted as a "full match" in

Table 5.11 85

5.13 The reference frame for the query (sentence 1) "i would like to

book a round trip flight from kansas city to chicago," generated

from SQL 85

5.14 The semantic frame generated for the query (sentence 2) "find

american flight from newark to nashville around six thirty p

m." This frame fully matches the reference semantic frame in

Figure 5.15, and is counted as a "partial match" in Table 5.11. 85

5.15 The reference frame for the query (sentence 2) "find ameri-

can flight from newark to nashville around six thirty p m."

generated from SQL 86

xi

List of Tables

3.1 LR(1) parsing table for unpartitioned grammar Gs 31

3.2 LR(1) parsing table for partitioned grammar Go 32

3.3 LR(1) parsing table for partitioned grammar Gi 33

3.4 LR(1) parsing table for partitioned grammar G2 33

4.1 The left corner node sets of virtual terminals 51

5.1 Average length of the ATIS-3 queries for the English and Chi-

nese corpora 58

5.2 A subset of English ATIS grammar 61

5.3 Grammar statistics based on the original unpartitioned gram-

mar and partitioned grammar 62

5.4 A subset of partitioned English ATIS grammar 64

5.5 Grammar coverage for the English ATIS-3 corpora 75

5.6 Grammar coverage for the Chinese ATIS-3 corpora 75

5.7 Computational costs for the English ATIS-3 corpora. Itali-

cized percentages in parentheses are savings of PP relative to

CAS 77

5.8 Computational costs for the Chinese ATIS-3 corpora. Itali-

cized percentages in parentheses are savings of PP relative to

CAS 78

5.9 Computational costs for the subsets of sentences in test set of

English ATIS-3 corpora with full parses. Italicized percentages

in parentheses are savings of PP relative to CAS 80

xii

5.10 Computational costs for the subsets of sentences in test set of

Chinese ATIS-3 corpora with full parses. Italicized percent-

ages in parentheses are savings of PP relative to CAS 81

5.11 Performance in language understanding of the English ATIS-3

corpora 84

5.12 Performance in language understanding of the Chinese ATIS-3

corpora 84

5.13 Language understanding performance for the subsets of sen-

tences in test set of English ATIS-3 corpora with full parses. . 88

5.14 Language understanding performance for the subsets of sen-

tences in test set of Chinese ATIS-3 corpora with full parses. 88

5.15 Language understanding performance for the subsets of sen-

tences in test set of English ATIS-3 corpora with partial parses.

89

5.16 Language understanding performance for the subsets of sen-

tences in test set of Chinese ATIS-3 corpora with partial parses.

89

xiii

Chapter 1

Introduction

Natural language is a primary medium for human-human communication,

hence natural language conveys meaning and reflects human thinking. Natu-

ral language processing is a desirable means of human-computer interaction,

since it provides a natural, intelligible and effective way for human to inter-

act with computer, and requires no specialized learning or training. As a

result, natural language processing has become a key research area recently.

Parsing is an important technology constituting component of natural lan-

guage systems. Many practical systems involve parsing technology, such as

machine translation, speech recognition, language understanding, etc.

Traditionally, a parser is a component of a compiler. Parsing is the process

of constructing a parse tree or hierarchical structure from the terminals or

words in a sentence based on a given grammar. The methods commonly used

in parsers are top-down or bottom-up. Top-down parsers build parse trees

from the top (root) to the bottom (leaves), while bottom-up parsers build

parse trees form the leaves and work up to the root. The input to the parser

1

is scanned from left to right.

However, parsing natural language is a more challenging task than pars-

ing programming languages. First of all, natural language are inherently

ambiguous, whereas programming language are not. Moreover, natural lan-

guage (or spoken language) may vary significantly in style from speaker to

speaker. Consequently, the natural language parser need to handle a large

grammar, even for restricted to a specific domains. However, it is difficult to

write a grammar that can fully cover most of natural language, so robustness

is another key issue. In addition, parsing natural language for a human-

computer interface requires a real-time response to the user, so efficiency in

parsing is a major concern as well. Memory is closely related to efficiency in

parsing technology. Large memory needed parser is not only expensive for

data storage, and also time consuming to access data.

Efficiency, memory, ambiguity and robustness are the central issues in

natural language parsing. Different parsers have exhibited different charac-

teristics with respect to these issues. Some researchers focus on [8][18], while

others look for alternative ways to tackle these difficult parsing issues. Mod-

ular parsing architectures also receive much attention [l][5] [6]. We also focus

on these several aspects in developing our parsing framework, the perfor-

mance of particular parsing algorithms

1.1 Efficiency and Memory

We choose to begin with an implementation of LR parsing, because it is easy

to implement and computationally efficient. Parsing a sentence of length N

2

can be accomplished in 0{N) time and space. We will review the principle

of LR parsing algorithm in Chapter 2.

In a practical natural language system, a parser need to handle many

variations in a set of grammar rules. The grammar grows due to variabil-

ity for different users (or speakers if we are parsing spoken language from

speech recognition). For instance, there are many different ways to express a

date, such as march first, first of march, etc. Users' queries often start with

"i need", "may i", "i would like to know", etc. However, the computation

required for constructing LR(k) parsing table increases rapidly with the size

and complexity of the grammar and with the value of k. Earley [7] shows a

class of grammars for which the number of states grow exponentially with

grammar size. In order to handle a large set of grammar, we propose a gram-

mar partitioning approach in this thesis. We partition the entire grammar

into a number of sub-grammars. This reduces total number of states (rows)

of parsing table and hence computation time for generating the parsing ta-

ble. A smaller size of parsing table can save space for storage. The parsing

architecture is modular, since all parsing tables are constructed separately.

Hence if any single sub-grammar needs to be modified, we only need to regen-

erate the corresponding parsing table. This eases the development of natural

language parsers, because grammar can be reused and incorporated easier.

1.2 Ambiguity

A sentence is ambiguous if it has multiple parses. Ambiguity is nonexistent

in programming languages, a sentence must always have only one parse.

3

However, ambiguity is prevalent in natural language. The problem is worse

if only syntactic grammar rules are used. Consider the famous example "i

saw a man with telescope". The prepositional phrase "with a telescope"

can be attached to the sentence phrase "i saw a man" or the noun phrase "a

man". Ideally, the parser should only produce one parse out of an ambiguous

sentence. However, some sentences are ambiguous, that even a human cannot

disambiguate them. For example, "new york" can represent a city name or

a state name. Therefore, it is not acceptable for a practical natural language

parser to produce only one arbitrary parse. The GLR parsing algorithm

is able to handle ambiguous grammars. Hence, we adopt the GLR parsing

algorithm is instead of LR parsing algorithm in our work. In Chapter 2, we

will to describe the GLR parsing algorithm in detail.

1.3 Robustness

Due to writing or speaking errors, natural language parser usually need to

deal with extra-grammatical sentences. A robust parser should parse the core

part of the sentence, and extract the coherent meaning from these imperfect

sentences.

GLR parsing algorithm is designed to analyze grammatical input sen-

tence. It can detect ungrammatical input as soon as possible, but fail to

parse any input which is found to be ungrammatical. Sentences that are

grammatical in the large sense may fail to be completely covered by the

grammar. We try to release the strict syntactical condition of GLR parsing.

After entire grammar is partitioned into small parts of sub-grammar,

4

parser composition algorithm is needed to integrate sub-parsers for parsing.

Parser composition by cascading - one of parser composition algorithm, is

able to deal with extra-grammatical queries. It is because it allows all sub-

parsers to start and end at any position of the input sentence. However, it

has a problem of over generation of semantic and syntactic structure during

parsing. Parser composition with predictive pruning - another parser com-

position algorithm, gives an improvement in parsing speed at the expense of

less robustness. .

1.4 Thesis Organization

This thesis explores the issues introduced above and evaluates the parsing

performance based on these issues. The parsing framework is implemented

and tested for natural language queries in Air Travel Information System

(ATIS) domain.

Chapter 2 introduces some general background on parsing and natural

language understanding. It describes LR parsing algorithm - an efficient al-

gorithm, but it cannot deal with ambiguity in natural language system. Then

it explains how GLR parser to generate multiple parses from an ambiguous

sentence. Then it overviews some natural language systems.

In order to deal with large grammar size for natural language process-

ing, we propose a grammar partitioning approach in Chapter 3. We describe

the concepts of virtual terminals, and the iNPUT/oUTPUT sets which cap-

tures the relationships between sub-grammars. Each sub-grammar has its

own specialized sub-parser, and we need to combine the sub-parsers by a

5

technique called parser composition in order to provide an overall parse for

the input sentence. We describe two approaches for parser composition — (i)

composition by cascading and (ii) composition with predictive pruning.

Chapter 4 describes how to integrates sub-parsers during parsing. It in-

troduces the concepts of Lattice with Multiple Granularity (LMG), which is

an interface of the sub-parsers and describes how to modify GLR parsing al-

gorithm to adapt a lattice input. Two parser composition algorithms — parser

composition by cascading and parser composition with predictive pruning are

implemented. In Chapter 5, experiments are carried out to evaluate different

parsing strategy.

Chapter 5 describes parsing experiments on English and Chinese queries

in ATIS domain. Our observations include the size of the parsing tables,

computational costs, degrees of parse coverage and understanding accura-

cies. It also presents our semantic interpreter for generating semantic frame.

It explores the trade-offbetween language understanding accuracies and com-

putational costs for the two different parser composition algorithms.

The last chapter summarizes our experimental results and the contri-

butions of this work. We also present our conclusions and future research

directions.

6

Chapter 2

Background

2.1 Introduction

The parsing framework developed in this thesis is based on Tomita's Gen-

eralized LR (GLR) parsing algorithm. In this chapter, we first introduced

the definitions and notations of context-free grammars (CFG), which is sup-

ported by the LR parser. Next, we described the principles of the LR parsing

algorithm. Since LR parsers were originally developed for parsing program-

ming languages, it cannot handle an ambiguous grammar for natural lan-

guage. So we introduce Tomita's GLR parser which can tackle ambiguities.

We will also describe some previous work related to complexity analyses for

GLR parsing algorithm. It provides a evidence that the GLR parser is an

efficient parsing technique.

Parsing technology is embedded in many natural language systems and

will review some of these systems, such as GLR*, TiNA and PHOENix in the

last section.

7

2.2 Context-Free Grammars

A grammar is a (finite) mechanism for producing sets of strings (language).

A context-free grammar consists rules that have only a single symbol on the

left-hand side. Given a context-free grammar rule: X — W, symbol X

can be replaced by W when it appears in a string, no matter the context. A

context-sensitive grammar only allows a rule to replace symbol X by W when

X occurs between Y and Z in a string: YXZ — YWZ. Most programming

languages are defined by context-free grammar, it is because there are efficient

algorithms for parsing these languages, such as LR parsing algorithm. We

tied to use LR parser in the thesis, so context-free grammar is chosen.

A context-free grammar (CFG) can be defined as G = (VN,Vr,P,Zo).

V^ and Vr are the nonterminal and terminal vocabularies of grammar G.

P is a finite set of grammar production rules of the form A ~> cj. The Vj^

set includes all left hand side of any production rule, and Vr set includes

all symbols appearing on the right hand side of any production that are not

members of VN- Zo is a particular member of V^, called the starting symbol.

The common used notations for symbols in CFG as shown below! [2j:

1. Upper-case letters occurring early in the alphabet, such as A, B, C,

etc. are used for nonterminal symbols.

2. Lower-case letters occurring early in the alphabet, such as a, b, c, etc.

are used for terminal symbols, lower-case.

3. Upper-case letters occurring late in the alphabet, such as X, Y, Z rep-

^We will use these notations throughout the remainder of the thesis.

8

resent grammar symbols, either nonterminals or terminals.

4. Letters occurring late in the alphabet, such as t, u,…，z are used for

strings of terminals.

5. Lower-case Greek occurring letters, a, P, 7, etc. represent strings of

grammar symbols.

6. For the production rule A ~> a i | a2 | ... | ak, a i , a2, ..., ak are the

alternatives for A.

7. Unless otherwise stated, the left side of the first production is the start

symbol, i.e. a root node of a parse tree by a given grammar.

If a i — a2 — ... — OLn and n> l , then a i =^ a„. The sequence

a1,a2, ...,o;n is a derivation of a„ from ai . If each step of a derivation of

the form aAt — aut, then the derivation is a rightmost derivation, since the

rightmost nonterminal symbol is rewritten at each step.

2.3 The LR Parsing Algorithm

In this section, we review the principles of the LR parsing technique [2][3][4 •

LR parsers were originally developed for parsing programming languages in

the late 1960s and early 1970s [13]. LR(^) parser is an efficient, bottom-up^

parsing technique that can be used to parse a class of context-free grammars.

The "L" stands for left-to-right scanning of the input, the "R" refers to the

construction a rightmost derivation in reverse, and the ‘‘k” for the number

^An LR parser builds the parse tree from the bottom leaves up to the root.

9

of input symbols of lookahead that is used for parsing. When {k) is omitted,

k is assumed to be 1.

It needs an LR parser generator for constructing LR parsing table for a

grammar, such as YACC [l l f . The parsing table is pre-compiled from a

given grammar. Throughout this thesis, LR(1) parsing table is used which

is implemented in C. Figure 2.1 shows a model of an LR parser. An LR

parser consists of a linear stack, a parsing program and a parsing table.

The parsing program is the same for all LR parsers; only the parsing table

changes from one parser to another. The parsing program reads words from

an input buffer one at a time. The program uses a stack to store a string

of the form 50X1S1X2S2...X^S^, where s^ is on top. Each Xi is a grammar

symbol and each Si is a symbol called a state. Each state symbol summarizes

the information contained in the stack below it, and the combination of the

state symbol on the top of the stack and the current input symbol are used

to index the parsing table and determine the shift-reduce parsing decision.

The parsing table consists of two parts, an ACTiON table and a GOTO

table. The GOTO table takes a state s and grammar symbol A as arguments

and produces a state, which represents as GOTO[s, A]. The ACTiON table

takes the state s currently on top of the stack and the current input symbol

a as arguments, which represents as ACTiON[s, a] and produce one of four

values:

1. shift s, where s is a state. The parser shifts both the current input

^YACC is available as a command on the UNIX system, and has been used to help

implement hundreds of compilers.

10

parsing table

LR
a set of rules ~> parsing table — action goto

generator

input I a! 1... I a. | ... | a„ | $

output

stack s m < LR ^ ^

^ parsing program / R

S m-l rj Q Q
^ . 1 r ^ 1 ai -2 a3
...

s

0 action goto a set of rules

parsing table

Figure 2.1: A model of an LR parser.

symbol and the next state s onto the stack.

2. reduce by a grammar production A ~> P. Assume s=GOTO[sm-r, ^],

Sm is the state at the stack top and r is the length of p. The parser

first pops 2r symbols ofF the stack, exposing state Sm—r. It then pushes

both A and s onto the stack. The current input symbol is not changed

in a reduce action.

3. accept, i.e. parsing is completed.

4. error, i.e. the parser discovers an error.

Only a subset of context-free grammars called LR grammars can have an

11

LR parsing table, which do not have multiple entries. Natural language is

inherently ambiguous, whereas programming language are not. Therefore,

LR parsing technique cannot be directly used for natural languages. Other

algorithms suitable for handling context-free grammars can be used for pars-

ing natural language grammars. In particular, Earley's algorithm [7], GLR

algorithm [16][28][30], Chart Parsers [12], and the CKY parsing algorithm

39] were widely used.

2.4 The Generalized LR Parsing Algorithm

Generalized LR (GLR) parsing was introduced by Tomita in 1985 [28]. He

proposed a general and efficient method for dealing with action conflicts in

the parsing table, this parsing algorithm could handle acyclic context-free

grammars. Instead of a linear stack, a graph-structured stack (GSS) is used

to simulate non-determinism. He also introduced packed shared parse forest

- a compacted way of representing the possible parse trees for an ambiguous

sentence. In this section, we review some major features of GLR and an

example in [28][30 .

2.4.1 Graph-Structured Stack

A GSS is similar to a linear stack in an LR parser, it contains state nodes

and symbol nodes. The state nodes are grouped in a layer field U” which is

created when parsing terminal in position i in the sentence. In some entries of

parsing table, they may contain more than one rule reduction or shift action

12

if the table is generated from an ambiguous grammar. A GLR parser will

perform all rule reductions before shift action. In the following, we describe

how it handles multiple reduction and shift actions.

If a stack can be reduced in more than one way, then the top of the

stack is made to split to accommodate the various possibilities. Assume the

current GSS configuration is displayed in Figure 2.2. The circle represents

state node, and square represents symbol node. The English letter from a

to d are terminals in GSS. For simplification, layer field Ui and some useless

state and symbol nodes are omitted in the following GSS figures. Suppose the

stack is to be reduced with each the following three productions in parallel:

F ^ c d, G] c d, and H ~^ b c d. After rule reductions, the stack becomes

Figure 2.3, where the top of GSS is split into three branches. Notice that F,

G and H are the "stack" tops.

、 S N �* �
I I ‘ 1 ‘ I ‘ I . I
I , � I ‘ I • I ‘

i O " O t o K > ^ > ^ ^ y ^ 3 ^ !
I I • I • I � • •
I i _ I • I _ • _
I I ‘ I • I ‘ I , ‘
1 , \ / V / V / * •

、u7 u , U, U3 U4

Figure 2.2: The initial stage of a GSS.

If an input symbol needs to be shifted onto more than one stack top, it

is done only once by combining the tops of the stack. To continue from the

previous example, if i is to be shifted to F , G and H, then the stack becomes

Figure 2.4. Observe that i becomes the only stack top.

If two or more branches of the stack turn out to be identical, then they

13

represent local ambiguity. These branches are merged and treated as a single

branch. To continue from the previous example, suppose we are now to

reduce the stack by each ofthe following productions: J ~^ F z,and J ~> G i.

The resultant stack is shown in Figure 2.5. The corresponding packed forest

of packed vertex J is displayed in Figure 2.6. We can observe that packed

vertex J have two subtrees and say input phrase "c d i" is ambiguous.

2.4.2 Packed Shared Parse Forest

The LR parser can only produce a single parse or sub-parse for a given

input. However the GLR parser can produce multiple parses. An efficient

representation for multiple parse trees is the packed shared parse forest

If two or more trees have a common subtree, the subtree should be rep-

resented only once in the parse forest. This is called subtree sharing and a

parse forest with such property is called a shared forest.

Then it can further minimize the representation of the parse forest by

local ambiguity packing, which works in the following way. The top vertices

of subtrees that represent local ambiguity are merged and treated as if there

were only one vertex. It is called a packed vertex, such as vertex J in Fig-

ure 2.5 reduced from GSS in Figure 2.4. A parse forest with both subtree

sharing and local ambiguity packing is called a packed shared forest.

14

C M Z M X p < y S S

^ ^ - ^ K ^

Figure 2.3: The GSS after rule reduction.

stack top

O t K X ^ ^ I ^ ^ 3 ^

Figure 2.4: The GSS after state shifted.

C M D O ^ K > CK3

'\"^~0K>t>O

Figure 2.5: The GSS after local ambiguity packing.

15

4
c d i

Figure 2.6: The packed forest of parse vertex J after local ambiguity packing.

2.5 Time and Space Complexity

LR parsing parser is a deterministic parser and is highly efficient. The fun-

damental LR(k) parsing algorithms have a time complexity of 0(n), where

n is the length of the input.

Tomita [28] showed that parsing time and space complexity of GLR pars-

ing algorithm depends on sentence length, sentence ambiguity and grammar

size.

There are some studies to compare GLR parsing algorithm with the other

algorithms. Tomita [28] compared the performance of the GLR parser with

Earley's algorithm by a similar implementation. GLR parser performs at

least two times faster than Earley's algorithm with respect to sentence length,

sentence ambiguity and grammar size respectively. Shann [24] compared

GLR parser with four different chart parsers: top-down, left-corner, Cocke-

Kasami-Younger (CKY) and Bi-directional [26]. The results showed that in

the most cases, the GLR parser performed better than other parsers, espe-

cially for high ambiguity grammar. Shann attributes the efficiency results to

16

the parse forest representation.

2.6 Related Work on Parsing

There are a variety parsers which have been proposed for use in natural

language systems. This section provides a report of some of these parsers.

GLR* algorithm allows skipping words for robust parsing. The TINA parser

integrates ideas from CFG, Augmented Transition Networks (ATN) gram-

mar and the unification concept. The PH0ENIX parser spots phrases form

the sentence. They are applied to corpora such as Air Travel Information

System (ATIS), Resource Management (RM), etc.

2.6.1 GLR*

Lavie [15][16] proposed GLR*, a grammar-based parsing system based on

Tomita's Generalized LR parsing algorithm, that was designed to be robust

to two particular types of extra-grammaticalities, including noise in the in-

put, and limited grammar coverage. GLR* tries to overcome these types of

extra-grammaticalities by ignoring the unparsable words and fragments and

conducting a search for the maximal subset of the original input that is cov-

ered by the grammar. The parser is coupled with a beam search heuristic,

that limits the combinations of skipped words considered by the parser, and

ensures that the parser will operate within feasible time and space bounds.

The GLR* parsing algorithm is designed to find and parse all possible

17

grammatical substrings of a given input. It uses the same SLR(0)^ parsing

tables that are pre-compiled from the grammar. The difference is the run-

time process of the algorithm.

GLR* skips words of the input string by allowing shift operations to be

performed from inactive state nodes in the GSS. Since the parser is LR(0),

reduce operations need not be repeated for skipped words. Information about

skipped words is maintained in the symbol nodes that represent parse sub-

trees.

The GLR* parsing algorithm constructs parses for all parsable subsets of a

given input sentence. To find the "best" parse from the set of parses returned

by the parser, a scoring procedure that ranks each of the parse found is used.

The scoring procedure takes into account the number of words skipped and

the fragmentation of the parse. Both measures are weighed equally.

In order to guarantee a reasonable running time, a heuristic is developed

and added to the parser to prune parsing options that are unlikely to produce

a maximal parse. The heuristic limits the number of inactive state nodes from

which a input symbol is shifted.

2.6.2 TINA

TINA [22] [23] is a natural language system, which was developed for spoken

language applications. It combines key ideas from context-free grammars,

Augmented Transition Networks (ATN's) and the unification concept.

^SLR(0) stands for simple LR without lookahead input symbol, its parsing table is the

easiest one to implement compared with all the other LR parsing tables.

18

TINA is based on a context-free grammar augmented with a set of fea-

tures used to enforce syntactic and semantic constraints. The grammar rules

represent syntactic structure at the high levels of parse tree and represent

semantic structure at the low levels. All meaning-carrying content of the

sentence is encoded in the names of categories of the parse tree. The gram-

mar is converted to a network structure by merging common elements on

the right-hand side (RHS) of all rules sharing the same left-hand side (LHS)

category. Probabilities on all arcs in the network are assigned automatically

from a set of example sentences.

The parser consists of a stack decoding search strategy, with a top-down

control flow, and includes a feature-passing mechanism to deal with long-

distance movement, agreement, and semantic constraints. The stack is sim-

ilar to the stack in LR parsing algorithm, it performs one of four actions:

shift, reduce, accept and reject. At any time, a distinguished subset of active

parse nodes are arranged on a priority queue. Parse nodes are placed on

queue prioritized by probability. The parsing process can terminate on the

first successful completion of a sentence, or the nth. successful completion if

more than one hypothesis is desired.

2.6.3 PHOENIX

The CMU PHOENIX system [32][33][34] is developed for understanding spon-

taneous speech, is implemented for the Air Travel Information Systems (ATIS)

task. The speech recognition and language parsing are two components of the

system. The recognizer produces a single best word string from the speech

19

input, and then the word string is passed to the frame-based parser. The

PHOENIX parser can accommodate extra-grammatical text input.

The concept of flexible parsing combines frames-based semantics with a

semantic phrase grammar. Semantic information is represented in a set of

frames. Each frame contains a set of slots representing a pieces of informa-

tion. A partitioned semantic phrase grammar is used to fill the slots in the

frames. Each slot type is represented by a separate finite-state network which

specifies different ways of saying the meaning represented by the slot. The

non-terminals of the grammar rules are semantic concepts, instead of parts of

speech. An input which do not form a grammatical English sentence are still

parsed. The grammar is compiled into a set of finite-state networks. Many

small networks instead of one large network for partitioned grammar, that

significantly reduces the overall size of the system. Networks are top-down

and left-to-right oriented.

The operation of the parser resembles "phrase spotting". A beam of

possible interpretations are generated. An interpretation is a frame with some

filled slots. The finite-state networks are used to perform pattern matches

against input word strings. When a slot matches, it extend all active frames

that contain that slot and activate any currently inactive frames that contain

the slot.

When a single phrase can be parsed with two or more frames, leading to

multiple interpretations, then the one with the lower score is pruned. The

score for an interpretation is the number of input words that it accounts for.

The best scoring interpretation becomes the system's output. In addition,

20

slots have be different levels of hierarchy. Higher levels slots can contain sev-

eral lower level slots. When two interpretations have the same score, higher

level slots are preferred to lower level ones since the associations between

concepts are more tightly bound.

2.7 Chapter Summary

In this chapter, we described some relevant background information for this

thesis. We first reviewed the definitions of context-free grammars, which are

used by LR parsers and many other parsers. Then we introduced an LR

parser, which is efficient but cannot handle ambiguity. The GLR parser is

modified from LR parser was also presented, that can handle ambiguity. In

addition, we discussed time and space complexity analyses for GLR parsing

algorithm. Finally, we introduced some recent parsers for natural language

understanding. In the next two chapters, we will describe in detail how to

embed the GLR parser in our parsing framework.

21

Chapter 3

Grammar Partitioning

3.1 Introduction

This chapter discusses in detail the method of grammar partitioning. The

main objectives of grammar partitioning are to reduce the size of parsing

table for a large grammar, and to obtain a modular parser in natural language

processing, as described in Section 3.2. We review previous work on grammar

partitioning in Section 3.3. Then we present the features of our grammar

partitioning approach, including the concepts of virtual terminals, INPUT

and OUTPUT non-terminal sets. In the last section, we show an example to

illustrate how to partition a grammar into several smaller sub-grammars.

3.2 Motivation

Natural language is inherently ambiguous. There are many ways to express

the same meaning. Therefore, to understand natural language we may need

22

to handcraft a lot of grammar rules, even for a restricted domain. The LR

parsing algorithm is efficient and widely used. However, it is not practical

for large grammars. In order to obtain an efficient and modular parser, we

propose a grammar partitioning approach.

Since CFGs are the backbones for many natural language processing sys-

tems, such as [9][23], we will focus on CFGs. Earley [7] and Ukkonen [31

proved that the following artificial grammar G„ is exponential for LR(k)

parsers, and even for any right parsers respectively:

S ^ Ai{l < i < n)

Ai 4 ajAi{l < i + j < n)

Ai ^ CLjBi I &i(l < i < n)

Bi ^ ajBi I &(1 < i,j < n)

These results present a potential problem for LR(k) parsers and their ap-

plications to natural language processing. Korenjak [14] proved that gram-

mar partitioning and parsing table regeneration for partitioned grammars

significantly reduces the computation required to generate an LR(1) parsing

table for a large grammar. Weng and Stolcke [36] provided a more flexible

scheme for grammar partitioning and parser composition. He proposed to

partition a grammar into subsets based on production rules and compose

sub-parsers of different types. As an example, he proposed an algorithm

based on Tomita's GLR parsers and composed in strict top-down manner.

From a practical viewpoint, sublanguages in a large parser may be de-

scribed by pre-existing sub-grammars using specialized parsing algorithms.

Implementation and maintenance constraints may prevent integration of the

23

sublanguage modules into a monolithic system. A framework for partition-

ing grammars and composing parsers of different types would be useful for

the modularity of a parsing system. If the parsing tables can be constructed

separately, then if any single sub-grammar needs to be modified, we only

need to regenerate the parsing table to the modified sub-grammar.

3.3 Previous Work on Grammar Partitioning

Korenjak developed a practical method for constructing LR(k) processors in

14]. His technique is based on the original LR(k) processors described by

Knuth [13]. It involves partitioning the given grammar into a number of

smaller parts to reduce the effort required to construct the LR(k) parsing

table as well as the overall sizes of the resulting parsing tables.

LR(k) grammar is a context-free grammar G, which can be defined as G =

(Viv, Vr, P, Zo). Korenjak mainly considered LR(1) grammars. His approach

is to partition the grammar based on non-terminals. The following describes

the general scheme for grammar partitioning. Let G : (V;v, Vr, P, ^o) be

a large grammar for constructing an LR(1) processor. Choose Z i ,…，Z„

be distinct nonterminal symbols other than Zo in V^r, and let zi, ...,Zn be

new terminal symbols not in VW or Vr- Rules in P are from 1 to n. Let

G' = {VN, Vr', P', Zo) be the 1-augmented grammar^ associated with G,

and assign the production Zo' ^ Z0#2 the number 0. For 0 < i < n,

^G' = (V^r', Vr', P', Zo') is called the k-augmented grammar associated with G =
{VN,Vr, P, Zo) for fixed k > 0 and Zo', # • V, if W = V^ U {Zo'}, Vr' = V^ U {#} and

P' = P U {Zo' ^ Zo#*^}. Number the productions of G' as in G, assigning Zo — Z*k
the number 0.

^The symbol # is called the endmarker, which is same as "$" symbol in [2].

24

let Gi = {VNijVTi,Pi,Zi), be the reduced form^ of (V/v, Vr, Pi, ^i), where

Vr = Vr U {zj | 0 < j < n} and Pi = {A ^ a \ A — a € P and a is

obtained from a by replacing every occurrence of Zj (j / i) by Zj}. Assign

the rule A — a in Pi the number that A ~> a has in P. For each i, let

Gi' = (VAr/, Vr/, P i , Z i) be the 1-augmented grammar associated with Gi,

with endmarker #i. We can say the grammar G is partitioned into Gi for

0< i < n.

After an LR(k) processor is constructed for every subgrammar by Knuth's

algorithm, Korenjak propose an algorithm for constructing an LR(k) proces-

sor for the entire grammar from them, which is also contained Knuth's ideas

for decreasing the computation time for an LR(k) table. Obtaining a parsing

table using this partitioning scheme is a trial-and-error process, since a par-

tition must be chosen and the corresponding table generated. If a particular

partition fails to produce an LR(1) parsing table (the parsing table contains

multiple entries), the entire process may have to be repeated.

Korenjak's grammar partitioning scheme had been used for generating

programming language parsers, such as ALGOL, BASIC and CDL1. However,

this scheme is not suitable for partitioning grammar for natural language,

since it cannot handle non-LR(l) grammars.^ Due to poor partition choices,

the constructing table algorithm may fail even for LR(1) grammars.

^A grammar is in reduced form if all "useless" nonterminals are removed. For each A
e VN, Ba, /?, t such that S=> aA|3 =^ at(3.

^The generated parsing table contains multiple entities if non-LR(l) grammar is used.

25

3.4 Our Grammar Partitioning Approach

3.4.1 Definitions and Concepts

Similar to CMU PHOENix parser, we partition the entire grammar into a

set of sub-grammars. Instead of finite-state networks, we compile the sub-

grammars into a set of LR(1) parsing tables in order to reduce the overall

size of the parsing table for the entire grammar.

Basically, we use Korenjak's partitioning scheme and Weng and Stolcke's

calling graph concept [36] for our approach. We partition a grammar into

subsets based on non-terminals, and create sub-grammars for the subsets ac-

cordingly. Suppose the original entire CFG is defined as G = {¥^, Vr, P, 5),

where S is the start symbol. In the remainder of the thesis, we will use the

following definitions for grammar partitioning:

26

Def in i t ion 1: {Gi = (¾ , V^ ,P“ Zi)} is called a partition of G, where

i is an integer 0< i < n. G is partitioned into n sub-

grammars, according to Korenjak's partitioning scheme.

Def in i t ion 2: Virtual terminal is prefiexed with vt. It essentially a

non-terminal, but acts as if it were a terminal. vtZ is

same as 乏 in Korenjak's definition.

Def in i t ion 3: Virtual terminal in V^ is called the input of

Gi, INPUToi and Z � i s called the output of Gj,

OUTPUTc,.

Def in i t ion 4: {Go = (VATo,V^),Po,5)} is called the master sub-

grammar of G. {Gi = (VNi,VT^,Pi,Zi)} for 1< i < n

is called the slave sub-grammar of G.

The interaction among different sub-grammars is through non-terminal

sets, i.e., INPUT and OUTPUT, and a virtual terminal technique. For a sub-

grammar, its INPUT is a set of virtual terminals that were previously parsed

by other sub-grammars. To be more precise, these virtual terminals vtA are

on the right-hand side (RHS) of some rules in this sub-grammar and non-

terminals A are on the left-hand side (LHS) of certain rules in some other

sub-grammar(s). The OUTPUT of a sub-grammar are those non-terminals A

that were parsed based on this sub-grammar and their virtual terminal vtA

used by other sub-grammars as their lNPUT symbols. To be more precise,

those non-terminals A are on the LHS of some rules in this sub-grammar and

their vtA are INPUT set members of some other subset(s). In other words,

27

we may view a partitioned subset of production rules of a grammar as a one-

value function, it takes virtual terminals in INPUT as its input, and returns

a non-terminal in 0UTPUT as its output. A directed calling graph for the

sub-grammar set of G is then defined as (V, E), where V is the sub-grammar

set and E = {(C, B)}, with the overlap of the OUTPUT of B and the INPUT

of C being nonempty, where C and B are the sub-grammars in V. It can

be proven that the partitioned grammar will lead to the same recognizable

language.

Each partitioned sub-grammar is assigned with level index (ID). The level

ordering criteria are: a sub-grammar is assigned to level i if its input are

virtual terminals with level < i. The master sub-grammar is assigned with

the highest level index. The lowest level index should be zero. If the calling

graph of the sub-grammar set contains cycle, the involved sub-grammars

are assigned with the same indices. This level index is used for composing

sub-parsers and will be described in the next chapter.

The difference between our approach and Korenjak's approach is that

we use a GLR parser to handle each partitioned sub-grammar. We consider

the problem of grammars other than LR(1) grammar. Besides, we also use a

flexible parser composition algorithm to integrate sub-parsers instead of using

a trail-and-error LR(1) table regeneration algorithm for the entire grammar.

We will describe it in detail in the next chapter.

28

3.4.2 Guidelines for Grammar Partitioning

Korenjak [14] provided some useful guidelines for grammar partitioning. As

an initial step towards automatic grammar partitioning, Weng et al. [35

also proposed a few guidelines, including merge and split operations based

on the statistical and non-statistical characteristics of the calling graph. Due

to the lack of training data, we use a non-statistical guidelines for grammar

partitioning. We summarize the guidelines as below:

1. Each partitioned grammar Gi can have as many rules as possible, as

long as the generated parsing table is within an affordable size.

2. Partition the overall grammar G into Gi for z=0,l, ...，n such that there

are frequent interactions within Gi, but fewer interactions between Gi.

This will reduce the complexity of composing parser for highly ambigu-

ous grammars.

3. Select a non-terminal as OUTPUT of a Gi which appears in many dif-

ferent parts of grammar. This will help to reduce duplicate grammar

rules after partitioning.

Actually, there is no unique way to partition a grammar. We try to use

the above guidelines to reduce total size of parsing table and complexity of

composing sub-parsers.

29

3.5 An Example

In this section, we are using the following toy grammar Gs^ to illustrate how

to partition grammar into several sub-grammars:

Gs:
1. S">NP VP

2. S ^ S PP

3. NP">n

4. NP^de t n

5. N P ^ N P PP

6. PP">prep NP

7. V P ^ v NP

From the above grammar, S denotes sentence rule (start symbol), NP

denotes noun phrase, VP denotes verb phrase, PP denotes prepositional

phrase, n denotes noun, det denotes determiner, prep denotes preposition and

V denotes verb. In general, the terminals of the grammar are in lower-case,

the non-terminals are in upper-case, and the virtual terminals are prefixed

with vt. The parsing table of Gs is shown in Table 3.1. In the ACTiON table,

sh s means shift state s, re n means reduce by a grammar production n and

acc means accept. In the GOTO table, the number s means goto state s.

Besides, empty entity means error.

We select S, NP and P P non-terminals for partitioning. Then the origi-

nal Gs is partitioned into Go, Gi and G2 as shown in below, their respective

parsing tables are shown in Table 3.2, 3.3 and 3.4. Go is the master gram-

mar, and Gi and G2 are the slave grammars. The calling graph of these

^This grammar is taken from Tomita's book [28].

30

Act ion Go to

State n det prep v $ s NP VP PP

0 ~shT" sh 4 丁 2

1 sh 6 acc 5

2 sh 10 sh 9 — ~1 8~

3 re 3 re 3

4 " s h ^

5 re 2 re 2 —

6 ^ i T T ^ sh 14 一 l2

7 re 1 re 1

8 re 5 re5

9 l h l i y " sh 14 — l5

10 ~^hY~ sh 4 — 16

11 re 4 re 4

12 —sh 6,re 6 re 6 TT

13 _ re 3 _ re 3 —

14 sh 1 [— —

15 —sh 6,re 7 re 7 一 T T

16 ^ h 10,re 6 1 ^ — ^

17 re 5 re 5

18 re 4 re 4

Table 3.1: LR(1) parsing table for unpartitioned grammar Gs.

three sub-grammars are shown in Figure 3.1, which shows their input and

output relationship. The lNPUT of Go are vtNP and vtPP, the OUTPUT of

Gi and G2 are PP and NP respectively. Therefore, the directed edges E

from Go to Gi and G2 are added to the calling graph. In the same way, there

are two edges between Gi and G。. The level indices are assigned accord-

ing to our level ordering criteria. We can observe that parsing table of Gs

has more states than sum of states of these three partitioned sub-grammars.

The parsing table of Gs has 19 states, and partitioned grammars has totally

7+6+4=17 states.

31

Act ion Go t o

State vtNP vtPP V $ s VP

0 " ^ h T " 丁

1 sh 3 acc

2 “ ^ r~
^ ^ re 2 — re 2 —

4 re 1 re 1

5 ~ ^ 6 —

6 ~re 3 ~re 3

Table 3.2: LR(1) parsing table for partitioned grammar Go.

Go：

INPUT = {vtNP, vtPP}

OUTPUT = {S}

1. S ^ v tNP VP

2. S ^ S vtPP

3. VP—v vtNP

Gi：

INPUT = {vtPP}

OUTPUT = {NP}

1. N P ^ n

2. NP^de t n

3. N P ^ N P vtPP

G: •
INPUT = {vtNP}

OUTPUT = {PP}

1. PP^prep vtNP

32

Act ion Go t o

State n det vtPP I ~ NP

0 sh Y sh 3 1

1 sh 4 acc

2 r ^ ~ ~ r ^

3 sh 5—

4 "7eT" re 3]]] ^ ^

^ 5 re 2 re 2~ ~^^^^^^

Table 3.3: LR(1) parsing table for partitioned grammar G\.

Act ion Go t o

State prep vtNP $ ~~PP~~

0 — sh 2 — — 1

1 acc

~ 2 ~shT" —

3 r ^ ^ ^

Table 3.4: LR(1) parsing table for partitioned grammar G2.

广 subgrammar Ĝ ^ ^

(s)
X ^ ^ level 1 ^ y

^ ^ > ^ S ^

C
subgrammar. G, >v ^ ^ -_^ 广 subgrammar G! N^

NP y C _ ^ PP)
level 0 ^ y X ^ level 0 ^ y

Figure 3.1: The calling graph of the sub-grammars Go, G\ and G).

33

3.6 Chapter Summary

In this chapter, we first motivated the need for grammar partitioning. We

then described related previous work and presented our grammar partitioning

approach in terms of definitions, concepts and guidelines. Finally, we showed

a grammar partitioning example, and demonstrated how partitioning can

reduce the total size of the parsing tables. In the next chapter, we will

describe how to compose sub-parsers for partitioned sub-grammars.

34

Chapter 4

Parser Composition

4.1 Introduction

As mentioned previously, a grammar is partitioned into several sub-grammars,

each operates with its own specialized sub-parser. We need to compose all

sub-parsers in order to obtain an overall parse of the input. Each sub-parser

is a GLR parser and contains an LR(1) parsing table. A lattice is introduced

to serve as an interface among different sub-parsers. Each sub-parser follows

GLR lattice parsing algorithm which will be described in Section 4.2. We

also present two approaches towards parser composition. The first one is

the parser composition by cascading, which describes in Section 4.3.1. The

second one is the parser composition with predictive pruning, which will be

described in Section 4.3.2. At the end of this chapter, we also compare these

two composition algorithms.

35

4.2 GLR Lattice Parsing

4.2.1 Lattice with Multiple Granularity

The input to our parser is a string of words. With grammar partitioning of

sub-parsers, our parsing framework needs a medium to communicate between

sub-parsers. In the other words, it requires an interface to record the INPUT

and OUTPUT of all sub-parsers. We introduce a lattice representation to

play this role. Our lattice is a directed acyclic graph (DAG), which is a

set of virtual terminals, terminals and transitions. All virtual terminals and

terminals are nodes in the lattice and connected by transitions. It is an

efficient way to represent a set of (virtual) terminal nodes. Each node is

assigned a name and an index. There is a sentence start node <s> and a

sentence end node '$'. The sentence START is assigned the index 0, and the

sentence END is assigned the index n+1�when n is the sentence length. The

terminals are indexed according to their position in the sentence. Virtual

terminals are indexed with the last positions they cover in the lattice. Upon

parsing, an input sentence is converted into a lattice. For example, the input

sentence is "i saw a man with a telescope", i.e. "n v det n prep det n" is

converted to a lattice as shown below:

<s> 0 , 1—v 27^det 3">n 4^prep 5^de t 6—n 7 ^ $ 8

The number in each lattice node indicates its index. Assume there is a

virtual terminal node vtNP and it covers two terminal nodes det with index

3 and n with index 4，then vtNP is assigned with index 4. The lattice is

shown in Figure 4.1

36

^ ^ ^ ^ V tNP 4 \ _ ^

<s> 0 ~ > n 1 ~ > V 2 ‘ det 3 ~ > n 4 ~ > prep 5 ~"> det 6 ~ ^ n 7 ~ > $ 8

Figure 4.1: An example of a lattice.

During parsing, both terminals and virtual terminals are represented

in the same lattice, but nonterminals that are not the output of any sub-

grammar cannot be placed there. This implies that only the granularity

represented by sub-grammars is present in the lattice. Therefore, the struc-

ture is termed lattice with multiple granularity (LMG). This representation

provides a good way for book-keeping during parsing.

4.2.2 Modifications to the GLR Parsing Algorithm

Each partitioned sub-grammar has a GLR sub-parser. However, our parser

cannot handle CFGs with cycles^ or e productions. A grammar is cyclic,

if there exists a nonterminal which can be reduced to itself. To handle the

LMG, we modify our GLR parser in a way similar to that proposed in [29 .

Parsing strictly follows the topological order of the lattice nodes, i.e. a lattice

node will be parsed only after all its previous nodes (i.e. left neighbors) are

parsed. Basically, there are two modifications to the original string version

GLR algorithm:

^Tomita's original version of GLR algorithm cannot to handle infinitely ambiguous

and cyclic grammars. Farshi [19] proposed a modified version of GLR algorithm to handle

these cases.

37

� Modi f ica t ion 1: Act ive and Inact ive States Nodes

As mentioned in Section 2.4.1, our GLR parsers use a graph-structured stack

(GSS). The GSS contains a group of layer fields Ui. As shown in Figure 4.2,

LU is at the top ofthe GSS, and Uo is at the bottom, i.e. U4 is the "stack" top,

and Uo is the "stack" bottom. If we let Un be the "stack" top in a GSS, and

Um be the layer field immediately underneath, then n must be greater than m.

If the GLR parser only processes input in the form of a string, then n = m+ l .

Furthermore, as we move from the "stack" top to the "stack" bottom, the

sequence of layer fields is arranged as Un, Un-i, Un-2---Uo- However, if the

GLR parser needs to process input in the form of a lattice, then n > m but

n = m + 1 may not necessarily be true. In other words, as we move from

the "stack" top to the "stack" bottom, our sequence of layer fields may not

occur in consecutive order.

； ^ i i ^ 1 ； ^ '丨 ； ^ : ； 急 i re "F->c d"

丨 O ^ O Q O ^ O ^ M 'i re"G->cd"
； 1 ； I ； 1 ； I ; 1 re "H->b c d"

’ � _ _ _ _ / ‘�_ _ _ _ / � � _ _ _ _ / � ‘ • _ _ _ • I、 /
U„ u, U, U, U,

Figure 4.2: The initial stage of a GSS.

In Figure 4.2, we only have a single active state at the stack top U^.

Going from Figure 4.2 to 4.3, since we are using an LR(1) parsing table, we

read in the next input symbol i, and find three possible reductions according

to the rules: F ~^ c d, G — c d, and H — b c d. Upon reduction, the node in

U4 of Figure 4.2 is inactivated, and our reductions produce three new active

38

nodes in f/4 of Figure 4.3. Here, only the active nodes are shaded for the

layer field U^.

JJ」_、 JJ,_^ _u」_、 _u」_、 u.
‘ t ‘ I ‘ 1 ‘ I ‘

ioH3^p^^&p^pk)|"QHoi

L : ; 、 - … \ '--^^^ :̂:A^>^|shv

\ \ — 0 ^ i - ,

\ [3 ^ # 卜 ’ 丨 ’

Figure 4.3: The GSS after rule reductions.

Proceeding to Figure 4.4, the GLR parser then reads in the input symbol

i, checks against each ofthe three active nodes, and finds that i can be shifted

onto the GSS for all three nodes. Hence i is pushed to the stack top as a

single active state. By now, the three states have become inactive, and we

are left with a single active state (shaded) at the stack top in Figure 4.4.

Suppose the lattice (LMG) input we are processing is shown in Figure

4.5. Since we have just processed the input symbol i (with index=5 as seen

in Figure 4.5), according to the topological order, we will be processing the

input symbol k (also with index=5) as our next step. The LMG shows that

the left neighbor of k is d, which has index=4. Hence we refer back to the

layer field f/4 in the GSS (Figure 4.4). The state node connected to the

input symbol d in U4 is hence reactivated, and we refer to the parsing table

to process k. Thereafter we proceed back to the LMG (Figure 4.5) and read

39

JJ」_、 JJ」_、 _u」_、 u, _u_4__ U,
‘ I ‘ I ‘ • ‘ I ‘ ‘ I
• I • I • I • I • I • I

i o K > M ^ s ^ c ^ p i a " & t a I I

U L \ — V ^ ^ : M v l i
\ \——g^jgpJ^i

\ I

Figure 4.4: The GSS after shift i

八
< s > 0 > - a 1 ^ b 2 ^ c 3 ^ d 4 ^ ^ i 5 ^ 6 ~ ~ > $ 7

Figure 4.5: The input LMG for example in Modification 1 .

the next input symbol, i.e. m with index=6.

• Modi f ica t ion 2: Insert ing a Robus t E n d for Par t i a l Parses

Sub-parsers need to decide where to end a partial parse (or sub-tree) ac-

cording to their sub-grammars. A partial parse can end within a sentence.

A straightforward implementation is to consider the alternative of a robust

END symbol '$' whenever we read in a new input symbol (terminal or virtual

terminal) from the LMG input. In practice, when the sub-parser reads in a

new input symbol from the LMG, the sub-parser refers to the symbol's left-

neighbor in order to figure out where to insert the new symbol in the GSS.

At this point, we have modified our sub-parser such that it also considers the

40

insertion of a robust END '$'.

• A n Examp le

This section traces through the lattice parsing algorithm with the partitioned

grammar shown in Section 3.5. Corresponding parsing tables are also given

in that section. The input sentence is "n v det n prep det n". Suppose

the input sentence becomes an LMG as in Figure 4.6 after several parsing

operations.

^ _ _ , - ^ ^ v t P P 7 ^ ^ _ ^

y f V t N P 1 \ ^ ^ V t N P 4 < c ; : ; ; ^ ^ ^ ^ ^ ^ _ ^ ^ ^ V t N P 7 ^ ^

< s > 0 ^ ^ n 1 ~ ^ V 2 < ^ ^ ^ 3 ~ » n 4 ^ ^ p r e p 5 ^ ^ d e t 6 ~ ^ n 7 j ^ ^ $ 8

- ^ v t N P 7 " ^ " " " " "

Figure 4.6: The initial stage of the LMG.

Now, suppose sub-parser of Go starts at vtNP node with index 1, which

is connected to the start symbol <s>. Go will create a virtual terminal with

label vtS if it parses successfully. Figure 4.7 shows the first several steps

of parser operation in GSS. As mentioned in Section 2.4, a circle represents

a state node, a square represents a grammar input symbol node and Ui

represents the layer field of GSS. A shaded state node represents an active

node, while a blank state node represents an inactive node. Similar to the

regular GLR algorithm, the GSS only contains one active state 0 node at the

beginning. The parser reads the first input symbol vtNP and a robust END

'$' together. Since state 0 with '$' produces an error according the parsing

table of Go in Table 3.2, it only performs sh 2 - shift vtNP together with

41

state 2 onto the GSS as shown in the first diagram in Figure 4.7. The next

input V can connected to vtNP in GSS, so the parser reads it in the next

step as displayed in second diagram in Figure 4.7. From the input lattice

in Figure 4.6, there are three next connected node det with index 3，vtNP

with index 4 and 7 can be proceeded in the following step. Since det does

not belong to the terminal or nonterminal sets of Go, it cannot be processed

by Go parser. Then the parser reads xjtNP with index 4 first as shown in

the third diagram in Figure 4.7. Since ^)tNP is assigned with index 4, U4 is

created when it is pushed onto GSS, as in the fourth diagram in Figure 4.7.

We can observe that U3 is skipped. However, Ui is still keep in descending

order from the top of the GSS. Active state 6 with utPP and '$' produce

re 3 — reduce rule VP — v vtPP in the fourth diagram in Figure 4.7. VP

and state 4 are created in U^ in the fifth diagram in the Figure 4.7. After

rule 1 reduction {S ^ ^ P VP)，the GSS becomes the sixth diagram in

the Figure 4.7. State 4 with '$' produces acc — the phrase "n v det n" can

be successfully parsed. Then it can create a virtual terminal node with label

^ S onto the lattice. Therefore, sub-parser is not restricted to end at the

sentence end, it can be ended anywhere if it can.

After some similar parser operations, the GSS becomes Figure 4.8. Before

the parser reads the sentence END symbol '$', it should read vtNP with index

7 first as it needs to parses the input node according to topological order.

This vtNP node's previous connected node is v with index 2. The parser

reactivates state 5 node in U2, which is predecessor of v in GSS. Then the

parser reads vtNP together with '$' in the same manner as before. The final

42

, - i 、

#• i ACTION[0, vtNP]=sh 2
;ACTION[0,$]=error

“

Un Ui
,---"--x vtNP ,一-』--、，

©' î ~ | i ^ ^ ACTIONl2, v]=sh5
1 “ “ _ _ r ^ w i ACTION[2, $]=error

I I I I
• ‘ I I
I J « I

Un. Uj u,
r � vtNP , ' " � � V •'_ 、.
©_ ‘ ~~ ；/O' ~ i ^ i ACnON[5, vtNP]=sh6

r " _ 7 ^ ^ V _ 1 _ ACnON|5,$l=error
I I I I , I
I _ I < , I
I * I i I f

Uo Uj U, U4
•" \ VtNP ••- --\ V '“丄、 ,---̂-v 1 ‘ vinr 1 c V I 1 ,,,MP 1 1

她 i o m 4 0 m ^ 0 ^ m # i : : : : ; : r
I ‘ I ‘ I I , I
I • I • I I _ I
»、 J •、 J X I � •

Ufl Uj U, U4
•••w._ …J.- ,_•L__ … � �

:VtNP ； � V ； �� ； 、,
I _̂̂ ^ ‘ I v " — ^ • » ^̂ »««. I v i i N r , ^ ^ I

- l © f " C H ^ C H © H > f © i
1 ！ I ~̂~)̂ ^ _ _ 1 1

I ~~~~~~~^ I I 1 1 i I 1 • ""̂ t̂ (I , I ^ ‘ ^̂ î ĵ ^̂ z VP 1 1
^"^^^p"l^_4^^i ACnON[4, vtPP]=re 1

i*^Pj ACnON[4, $l=re 1
,-Vo..̂ Jh..、 ,.V2.. .VA.

： ' ： 二 : ^ 1 二 ： '： vtNP ；‘：

她 i q ^ ^ % g ^ l < D H > f D |
’…-‘^^^5^^^^^^^^^^oi

^^\~^~L_iAl' ACnON[l,vtPP]=sh3
_ r " T ^ P i ACnONll,$J=acc

Figure 4.7: Beginning steps of parser operations in the GSS.

stage of GSS is shown in Figure 4.9. The parser can successfully parse till the

end of the sentence. The resultant parse forest is displayed in Figure 4.10.

Notice that the five virtual terminals in the parse forest are the same with

those in the input lattice in Figure 4.6. Including the previous created virtual

43

terminal vtS, the parser can created two virtual terminals onto the LMG and

the resultant parse forests are attached on the virtual terminals.

A C n O N [5 , v t N P) = s h 6

Z A C n O N [5 , $ l = e r r o r

Ufl Uj u, u. u.
-—-*‘-*. -,_ .^-^- -. ~ -^ - . — • -̂ - ̂ — - � -
. 、， V t N P ,' 、, V ； 、， v t N P ‘ ； : 、，

| o j ^ 0 ^ g j # | o 4 0 ! i 1

:、…-‘^^i;ii:J;^^^"^^G| I I
^N^ ^ \ r ^ i ^ � fOER, i ^ i

X;^^^^>^H^ i
^ ^ ^ > («)

Figure 4.8: The trace of parser in GSS when it reads vtNP with index 7.

Ufl Uj U, U4 U7
r -, vtNP ~--\ V '―丄-、 ,�_4--、 � � � - �
； ； v t N r ； ； V , ; v t N P ； ； ; ：

e ^ ^ |

X v > y ^ i

^ ~ ^ ^ < 5 丨

Figure 4.9: The final stage of the GSS.

44

// yk
n/h

vtNP / / vtNP/ / vtNP

r / A / 大

n V det n prep det n

i saw a man with a telescope

Figure 4.10: The resultant parse forest from sub-parser of Go.

4.3 Parser Composition Algorithms

After we introduced how each sub-parser parses an LMG input, we will de-

scribe how all sub-parsers cooperate to parse the input sentence into a parse

forest. The parse forest should be same as the one produced by one parser

for the overall grammar. We propose two parser composition algorithms -

parser composition by cascading and parser composition with predictive prun-

_ . There are some common aspects for these two composing algorithms:

1. Each sub-parser is a GLR parser capable of lattice parsing;

2. The GSS and the resultant shared-packed forest are private to each

sub-parser;

45

3- The LMG is shared by all sub-parsers for input and output during

parsing.

4.3.1 Parser Composition by Cascading

Parser composition by cascading is straight-forward and relatively easy to

implement. The indices of lattice nodes is used to determine the parsing

order of each sub-parser. For two integers i and j where i < j, each sub-

parser will parse a lattice node with index i before another one with index

j- This makes sub-parser parses the input node in topological order in the

lattice. The level indices of sub-grammars, which defined in Section 3.4, are

used to determine the sequence of invocation of sub-parsers. Figure 4.11

shows the control flow of cascading.

There is a stack 9 which stores all initial terminal nodes in the input

sentence. The first node in the sentence is pushed onto the stack first and

the last node in the sentence becomes the top of the stack 6. During parsing,

newly created virtual terminals are dynamically added to the stack 9. This

stack 9 acts as an input list. The sub-parsers in the same level start to parse

at the (virtual) terminal on the top of stack 0, and until it reaches the last

(virtual) terminals in the stack 9. As a result, a sub-parser can read virtual

terminals which have the same level index. This characteristic is important

if there is a cycle in the calling graph of sub-grammars.

The mechanism take a query sentence and converts it into an LMG. The

sub-parsers at the lowest level are activated to parse the LMG, and leave their

corresponding virtual terminals on the LMG when they parse successfully. If

46

For each level i from the lowest level (0) to the highest level (integer N):

For each node w in the lattice:

For each parserj in level i:

• if the parserj can be successfully parsed and return a parse tree with

root node labeled as OUTPUJy.

—if there does not exists a virtual terminal with label M U T P U T j

which covers the (virtual) terminal(s) as the newly created node

* create a virtual terminal label as vtOUTPUTj with root node

OUTPUTj

* add the virtual terminal onto the lattice by linking the transi-

tions

-else

* add the successor list to the corresponding virtual terminal

node

Figure 4.11: The control of parser composition by cascading.

all sub-parsers in the same level finish their processing at every node in the

LMG, the sub-parsers at one level higher are activated and start to parse the

same LMG. This process continues until the highest level is reached. This

is a flexible way to deal with extra-grammatical queries even without any

sentence-level grammar rules. Since the parsing process starts from level 0

to the highest level, level by level, it is called cascading.

• A n Examp le

We use an example to illustrate the parser composition by cascading. The

partitioned grammars and their corresponding parsing tables in Section 3.5

are used. These sub-grammars are assigned from level 0 to level 1. The

OUTPUT of Go, Gi and G2 are 5, NP and PP respectively. The input

47

sentence is "n v det n prep det n". Figure 4.12 shows how the LMG changes

by sub-parsers in level 0. First, the input sentence is converted to an LMG,

and the terminal nodes are pushed onto the stack 0. Stack 6 contains seven

elements from top to down in this sequence "n det prep n det v n". Then the

sub-parsers of Gi and G2 start to parse at n with index 7 in LMG as seen

in the first diagram in Figure 4.12. Since sub-parser of Gi can successfully

parse, its output virtual terminal vtNP is created on the LMG, as seen in

the first diagram in Figure 4.12. It is then pushed onto the stack 6. Next,

the sub-parsers of Gi and G2 start to parse at vtNP, which is on the top of

6>. Since no sub-parsers can successfully parse at vtNP, no virtual terminal

can be created. vtNP is popped out from stack 6 and det with index 6

becomes the top of 9. Then they start to parse at det. We can trace the sub-

parsers how to add virtual terminal on LMG from first to fifth diagrams in

Figure 4.12, and sixth diagram is the final stage of LMG after all operations

in level 0 • In the following, the control go to level 1. This process continue

until master parser is activated at every node in LMG.

4.3.2 Parser Composition with Predictive Pruning

The previous cascading composition algorithm attempts to invoke sub-parsers

at every position in the input lattice. In order to avoid excessive invocation,

we implemented an alternative parsing algorithm with predictive pruning.

Instead of using indices of lattice nodes to determine parsing order, we use a

stack a to store the initial sorted lattice input, and dynamically add newly

found virtual terminals to the stack a in such a way that the topological

48

1st: <s> 0 ~ > - n 1 ~ > V 2 ^ det 3 ~ > n 4 — prep 5 ~ ^ det 6 ^ ^ n 7 ~">- $ g

vtNP 7 Z

^ ^ vtNP7^^^
2rd: <s> 0 ~ 3 ^ n 1 ~"^- v 2 一 det 3 ~ > - n 4 — prep 5 ^ = ^ det 6 ^ n 7 ^ ^ $ g

vtNP7 ,

vtPP 7 ^ ^ ^

^ ^ ^ ^ vtNP 7^^^^:v

3rd: <s> 0 ~ > n 1 ~ ^ v 2 ~ ^ det 3 ~ ^ n 4 ^ prep 5 ^ ^ det 6 ^ n 7 “ ^ $ 8

vtNP7 Z

^ ^ v t P P 7 ^ ^ ^

vtNP ^ < ^ ^ ^ ^ vtNP 7-^^^v

4th: <s>0 — ^ n l ^ v 2 ^ det3 ^ n 4 ^ prep5 ^ d e t 6 v ^ n7 ~ ^ $8

X /
vtNP7 Z

/ ^ v t P P 7 ^ ^

vtNP 4 ^ > ^ ^ ^ vtNP 7 ^ ^ ^

5th: < s > 0 " ^ n l " ^ v 2 " ^ det3 ^ ^ n 4 ^ prep5 ^ d e t 6 ^ n 7 ^ $8

^ \ ^ ^ ^ vtNP7^^

^ ^ ^ vtNP 7 “ ^ "““

vtNP 4 — ~ ^ ^ ^ vtPP 7 ^ ^ ^

Z — 1\ y ^ ^ v t N P ^ ^ ^ ^ ^ ^ v t N P ^ ^ ^
6th: < s > 0 “ n l ^ v 2 < ^ d e t 3 ^ ^ n 4 ^ prep5 ^ d e t 6 ^ n 7 ^ $8

^\^^ ^ ^ \ \ ^ ^ ^ vtNP7^^^

\ ^ ^ ^ ^ ^ ^ v tNP7 """^2^X

^ ^ ^ vtNP7

Figure 4.12: Changes in LMG due to sub-parsers in level 0 through parser

composition by cascading.

order is always preserved for the changing LMG. Notice that this stack is not

GSS. This can avoid repetitive topological sorting.

49

The detail of this parsing algorithm was presented in [35]. We briefly

describes some features of this algorithm here. This algorithm replaces

PARSE() and PARSEWORD() in Tomita's algorithm. It mainly contains

two functions psrm{dt, a) and PREDICTIVE-SUB-PARSING(c/t, a), where

dt is a (virtual) terminal in a lattice, a is a stack as mentioned previously

and m = 0 , 1 ,…，K .

psrm is the parser for sub-grammar Gm. psro is the master parser, psVm

for m = l , 2，•••，K are the other sub-parsers. Each psrm reads the next input

from the top of a and returns a list of virtual terminals if parsed successfully.

Otherwise, it returns nothing, psr^ calls PREDICTIVE-SUB-PARSING to

add virtual terminals to the stack a and lattice, and these virtual terminals

will be processed. However, our algorithm uses ACTOR(), REDUCER() and

SHIFTER() in original Tomita's algorithm instead of Farshi's version [19] of

GLR algorithm in psr^. Therefore, our parser could not deal with grammar

having e and cycles.

In PREDICTIVE-SUB-PARSING, P V T (R ^ ^) acts as a filter to con_

strain sub-parser activation. It returns virtual terminal(s), which contains w

as their left corner node and can be produced shift or reduce with Ui. w is a

word label of dt, i is the index of dt,s left-neighbor and Ui is a layer field of

GSS. The relationship between virtual terminal vt and its left corner nodes

切 can be represented as: v t ^w , where ^ means "derives in one or more

steps".

When a caller sub-parser reads a node in the LMG, the sub-parser that

gets activated must have the node as its left corner and must be able to return

50

Vir tua l termina l {vt) Left corner nodes {w)

vtNP n, det

vtPP prep

Table 4.1: The left corner node sets of virtual terminals.

a virtual terminal predicted by the caller sub-parser in order to successfully

proceed. Notice that the left corner node can be either a terminal or a virtual

terminal, and the predictive constraints can be loosened when necessary. For

our implementation, each virtual terminal's left corner node is precomputed

before parsing. All the other sub-parsers in the caller's INPUT set that do not

satisfy these predictive conditions are pruned. The entire parsing progresses,

with the master GLR sub-parser starting at the leftmost lattice node, and

it ends when it reaches the final node of the LMG. Since the activated sub-

parsers must satisfy the caller sub-parser's predictive constraint and the ones

that do not satisfy the constraint are pruned, it is called predictive pruning.

• A n Examp le

We use the same input query in the sub-section 4.3.1 to illustrate how to

compose parsers with predictive pruning. Table 4.1 shows the left corner

node sets of virtual terminals of partitioned grammar in Section 3.5. Similar

to parser composition by cascading, the input sentence is first converted to an

LMG. Then the parser topologically sort the lattice by push all the terminal

nodes2 onto stack a in the reverse order, so that the resultant stack a has 8

elements with n on the top and '$' at the bottom of a.

^The LMG only contains terminals before parsing.

51

At the beginning, master sub-parser (with Go as its grammar) is activated

to parse the LMG at symbol n, which is the top of stack a. Sub-parser of

Gi satisfies master-parser's predictive constraints, since ACTiON[initial state

0, vtNP]^euor from parsing table, and vtNP ^ n according to Table 4.1.

Therefore, sub-parser of Gi is activated at symbol n. Since it can successfully

parse, it returns a virtual terminal with label vtNP which will be added on

the LMG as shown in the first diagram in Figure 4.13, and also pushes vtNP

onto stack a top. Then the sequence of stack a from top to down becomes:

vtNP, V,…，‘$’.

Master sub-parser starts at vtNP now. It shifts vtNP and then v onto

its GSS, the stage of GSS is similar to the third diagram in Figure 4.7.

Following that reads det as the next input. At this stage, sub-parser of Gi

satisfies the predictive condition of master parser, since ACTlON[current state

5, vtNP]^euor and vtNP 4^ det. Then sub-parser of Gi is invoked at det.

Sub-parser of Gi starts to parse at det. It shifts det and n onto its GSS.

Then it activates sub-parser of G2 at prep and it can successfully parse the

phrase "prep det n". The LMG becomes the third diagram in Figure 4.13.

Return to the sub-parser of G i , it reads vtPP which is on the top of stack

a. Then it can successfully parse and end at '$'. The resultant LMG is seen

as the fourth diagram in Figure 4.13.

Finally, the control return to the master sub-parser and it is going to read

vtNPs with index 4 or index 7. Two vtNPs is shifted onto its GSS one by

one and parsing proceeds until '$' is reached.

When we compare the example of parser composition by cascading in

52

Section 4.3.1 and this example, we can observe cascading produces more

virtual terminals than predictive pruning. The LMG in the sixth diagram

of Figure 4.12 contains eight virtual terminals, while the LMG in the fourth

diagram of Figure 4.13 contains five virtual terminals. Both of these two

algorithms create the same parse forest as shown in Figure 4.10, ifthe master

parser is called.^ In this example, we see some of virtual terminals created

by cascading that are not attached in the resultant parse forest.

1st: Z v t N P l \

<s> 0 ^ ^ n 1 ~ " ^ V 2 — ^ det 3 ~ > n 4 ~ ^ prep 5 ~ > det 6 ~ ^ n 7 ~ > $ 8

}

Z vtNP 1 \ ^ ^ ^ vtNP 7 ~ ~ ~ ^

2rd: <s> 0 ^ ^ n 1 ~ ~ ^ v 2 ~ ^ det 3 ~~> n 4 ~ ^ prep 5 " ^ det 6 ~ ^ n 7 - ^ $ 8

vtPP 7 ^ - ^ ^ ^

Z vtNP 1\ ^ y ^ ^ ^ vtNP 7 ^ ^ v

3rd: <s> 0 " ^ ^ n 1 ~ ^ v 2 - ^ det 3 ~~> n 4 ^ prep 5 ^ ^ det 6 ~ ^ n 7 J ^ $ 8

^ " ^ vtPP 7 ^ ^ ^ ^

Z vtNP 4 ^ ^ ^ ^ ^ ^ ^ \

^ v t N P 、 Z N r ^ " ' ' ' ~ ^
4th: <s> 0 ^ ^ n 1 ~ ^ V 2 ^ ¾ ^ ^ ^ ^ ^ ~ ^ n 4 " ^ prep 5 -==^ det 6 - ^ n 7 - ^ $ 8

~~~"~~~~‘~~~̂  vtNP7 ""•"•"" 

Figure 4.13: Changes in LMG by parser composition with predictive pruning. 

3lf we use one GLR parser for overall grammar to parse this sentence, the same parse 

forest without virtual terminals can be generated. 

53 



4.3.3 Comparison of Parser Composition by Cascading 

and Parser Composition with Predictive Pruning 

After we described these two algorithms in the previous two sections, we try 

to compare them in the following aspects: 

1. Sub-parsers for cascading can activate at any virtual terminal or termi-

nal node in LMG; Sub-parsers (not including master parser) for predic-

tive pruning can only activate at the node that satisfies its predictive 

constraint. 

2. Cascading can proceed without the master parser in its framework. 

However, predictive pruning requires a master parser, since other sub-

parsers are driven by master parser. 

3. Cascading does not terminate the parsing process until the highest 

level sub-parser(s) (or master parser) is parsed. Predictive pruning 

terminates the parsing process when it detects a grammatical error in 

the input sentence. 

4. Cascading produces more virtual terminals node on LMG than predic-

tive pruning in general, even though some of them do not contribute 

to final parse forest. 

4.4 Chapter Summary 

This chapter introduces the LMG, which serves as an interface for the sub-

parser operations. Then we described GLR lattice parsing algorithm which 

54 



is used by each sub-parser. We also presented two parser composition algo-

rithm to integrate all sub-parsers and discussed the difference between them. 

We give an example sentences that is parsed by these two parser composition 

algorithms respectively, and showed parser composition with predictive prun-

ing is comparatively more efficient than cascading composition. In the next 

chapter, we will try to use our parsing framework on English and Chinese 

queries in ATIS. We will evaluate parsing performance across partitioned 

and unpartitioned grammar approach, as well as the two different parser 

composition algorithms. 

55 



Chapter 5 

Experimental Results and 

Analysis 

5.1 Introduction 

We applied our parsing framework for parsing natural language queries in the 

Air Travel Information Systems (ATIS) [20]i corpus, which is widely used 

in evaluating natural language system. We first introduce how the ATIS 

grammar was developed for our parser based on training sets. We used (i) a 

single GLR parser with unpartitioned grammar and (ii) multiple sub-parsers 

with partitioned grammar to parse ATIS queries. With the GLR parsing 

algorithm, both cases can provide multiple parses. A semantic interpreter 

is used to select the best path or parse from the LMG or parse forest, and 

extract semantic concepts from the parse tree(s). 

iThis research program was sponsored by DARPA. Its corpus is available through LDC 

membership (http://www/ldc.upenn.edu). 

56 

http://www/ldc.upenn.edu


Later in this chapter, we report our experimental results based on de-

gree of grammatical coverage, size of parsing table, computational costs and 

understanding accuracies across grammar partitioning approach and tradi-

tional single GLR approach, and two different two composition algorithms 

for grammar partitioning. 

5.2 Experimental Corpus 

The ATIS corpus contains queries inquiring air travel information, such as 

flights leaving from or arriving at locations at various dates and times, avail-

ability of good transportation, airline routes, etc. We translated the English 

ATIS-3 queries in class-A, a subset of ATIS that are processed individually 

without context, into Cantonese Chinese, as a parallel corpus for our exper-

iments. Some are in a colloquial Cantonese style, the predominant Chinese 

dialect used in Hong Kong, South China, Macau and many overseas Chinese 

communities. There are some example queries in Figure 5.1. 

For the parallel ATIS-3 corpus, the training set has 1564 queries, the 1993 

test set has 448 queries, and the 1994 test set has 444 queries. Each query is 

labeled with a corresponding SQL query for database access. Table 5.2 shows 

an example of a SQL query. The average sentence lengths of the various data 

sets are shown in Table 5.1. The lengths of English sentences are measured 

in words, while the lengths of the Chinese sentences are measured in the 

characters. 

57 



Engl ish: Show me the most expensive one way flight from detroit to 

westchester country 

C h i n e s e : 話俾我知由底特律飛去西赤斯城最貴既單程航機 

Engl ish: Show me the flights arriving on baltimore on june fourteenth 

Chinese: 話俾我知係六月十四號飛到巴的摩爾既航機 

Engl ish: Show me all united airlines first class flights 

Chinese: 話我知所有聯合航空既頭等航班 

Engl ish: How many first class flights does united have today 

Chinese: 今日有幾多班聯合航空既頭等航機起飛 

Engl ish: Show me all the northwest flights from new york to milwaukee 

that leave at seven twenty a m 

Chinese: 話 俾 我 知 所 有 係 上 畫 七 點 廿 分 由 紐 約 飛 去 密 耳 瓦 基 既 航 

m 

Figure 5.1: Examples of English sentences in the ATIS-3 training corpus, 

together with their Cantonese translations. 

ATIS-3~~Class~~A Train ing set Test set 93 Test set 94 

queries 

English Corpus IT^ l 0 3 ITE 

(in words) ‘ 

Chinese Corpus 1 ^ 1 ^ ^51 

(in characters) 

Table 5.1: Average length of the ATIS-3 queries for the English and Chinese 

corpora. 

58 



Query: show me the flights arriving on baltimore on june fourteenth 

SQL: 

SELECT DISTINCT ”，’||vO.flight」d||，，’ ’， ""||vl.airport_code||"", 

""||v2.city_code||"", ""||v2.city_name||"", ""||vO.flight_days||"", 

vO.departure_time, vO.arrivaLtime, vO.time_elapsed FROM flight vO, air-

port_service vl, city v2 

WHERE (((vO.to_airport = ANY vl.airport_code) 

AND ((vl.city_code = ANY v2.city_code) 

AND (v2.city^ame = 'BALTIMORE'))) AND (((vO.fiight_days IN ( 

SELECT v3.days_code FROM days v3 

WHERE (v3.day_name IN ( 

SELECT v4.day_name FROM date.day v4 

WHERE (((v4.year = 1993) 

AND (v4.month_number = 6)) AND (v4.day_number = 13)))))) 

AND (((vO.departure_time > vO.arrivaLtime) 

AND ((vO.time_elapsed > = 60) OR (vO.arrivaLtime < 41))) 

AND ( 1 = 1))) OR ((vO.flight_days IN ( 

SELECT v5.days_code FROM days v5 

WHERE (v5.day_name IN ( 

SELECT v6.day_name FROM date_day v6 

WHERE (((v6.year = 1993) AND (v6.month_mimber = 6)) 

AND (v6.day-number = 14)))))) AND NOT (((vO.departure_time > 

vO.arrivaLtime) 

AND ((vO.time_elapsed > = 60) OR (vO.arrivaLtime < 41))) 

AND ( 1 = 1))))); 

Figure 5.2: An example of a SQL query for data base access, together with 

its English query. 

59 



5.3 ATIS Grammar Development 

The grammar is a set of context-free rules. Our parser requires that the 

rules are acyclic and have no e-productions. The grammar contains both 

semantic and syntactic structures. The low level grammar rules are mainly 

semantic concepts typical of the ATIS corpus, such as CITY-NAME, CLASS-

TYPE, MONTH-NUMBER, etc. The high level grammar rules are sentences 

phrases, such as a time phrase, flight preposition phrase, etc. 

The low level grammar rules are obtained by a semi-automatic grammar 

induction algorithm [25]. This algorithm forms non-terminals bottom-up by 

means of statistically clustering of un-annotated training corpus, and the 

output non-terminals are post-processed by hand, e.g. merging and label-

ing non-terminals as semantic concepts. The set of semantic concepts are 

characteristic of the domain, and hence common between the English and 

Chinese grammars. 

By applying the parser composition by cascading, sub-parsers with low 

level indices IDs parsed each training sentence to form a lattice. Then SEN-

TENCE-level grammar rules are obtained from the "best" path (shortest-path) 

through the lattice. The grammar so derived maximizes the coverage of our 

training set. Thus we formed grammars for the English and Chinese corpora, 

with unpartitioned and partitioned grammar sizes are listed in Table 5.3. 

Since the grammars are semi-automatically derived from parallel corpora, 

the grammar statistics are comparable across languages. Table 5.2 displays 

a simplified unpartitioned English ATIS-3 grammar. A subset of English and 

Chinese ATIS-3 grammar is included in Appendix A. 

60 



Gs'-

* S "> QUANT DEPARTURE [TIME_NP]| ... 

* DEPARTURE — leaving CITY_NAME [TIME_NP]| ... 

* TIME_NP ~> [on] DAY_NAME| ... 

* FLIGHT ^ flights|flight| ... 

* QUANT ^ all|an|any| … 

* CITY_NAME — phoenix|new york|seattle ... 

* DAY_NAME ~^ monday|tuesday|wednesday ... 

Table 5.2: A subset of English ATIS grammar. 

The main difference between English and Chinese queries in the ATIS 

domain is Chinese needs one or more characters to represent a English word. 

For example, three Chinese characters “西雅圖，，to represent "Seattle". 

Besides, there is no singular or plural concept in Chinese noun. For example, 

both "flights" and "flight" are translated to “航班，，in Chinese. Therefore, 

English requires more low-level rules than Chinese. In addition, there is 

less strict structure in Chinese queries, while compare with English queries. 

For example, both Chinese sentences “ 由 他 科 馬 飛 去 蒙 特 利 爾 既 單 程 

收費有幾多種” and “有幾多種由他科馬飛去蒙特利爾既單程收費，， 

are commonly used to represent "how many fares are there one way from 

Tacoma to montreal". In English, the question subject (such as "how many 

fares�’�usually appears at the beginning of the sentences. This makes Chinese 

requires more SENTENCE-level rules than English. 

61 



N o Par t i t ion ing Par t i t ioned G r a m m a r 

G r a m m a r Statis- Engl ish Chinese~~English Chinese 

tics 

Number of rules 1650 1538 " ~ m S i ^ 

Number~~~^~~~SEN^ 337 ^ ^ ^ 

TENCE-level rules 

Number of terminals ^ ^ ^ ^ 

Number of non- ^ 85 97 ^ 

terminals 

Number of virtual ter- ~~N/A N/A ^ 63 

minals 

Total number of states~~72,869 29,734 3,350 3 ^ 

in parsing table 

Table 5.3: Grammar statistics based on the original unpartitioned grammar 

and partitioned grammar. 

5.4 Grammar Partitioning and Parser Com-

position on ATIS Domain 

5.4.1 ATIS Grammar Partitioning 

Based on our grammar partitioning scheme, we manually partitioned our 

rule sets into sub-grammars by choosing non-terminals, such as STATE-NAME, 

CITY-NAMES, AIRPORT-CODE, etc., with corresponding virtual terminals pre-

fixed with vt. Most of these non-terminals selected are semantic concepts, 

so that they can be presented in the lattice. Each sub-grammar is assigned 

with ID, according to level ordering criteria in Section 3.4. The calling graph 

of our partitioned grammars is a directed acyclic graph (DAG). 

The sizes of the unpartitioned and partitioned grammars are listed in 

Table 5.3. We partitioned the English and Chinese ATIS grammar into 65 

62 



and 63 sub-grammars respectively. Both English and Chinese sub-grammars 

are assigned from level 0 to level 8. A sub-grammar is assigned to the 0th 

level (i.e. ID=0) if all nonterminals on the LHS of its production rules are 

preterminals. There is only one sub-grammar with level 8 for each English 

and Chinese grammar sets, which is the master grammar with SENTENCE-

level rules. 

We observe from Table 5.3 (first row) that the partitioned English gram-

mar has 1818 rules, and the unpartitioned English grammar has 1650 rules. 

Hence the partitioned grammar seems larger than the unpartitioned. This is 

because some rules have been duplicated across multiple sub-grammars. The 

duplicated non-terminals do not constitute the output of any sub-grammars. 

For example, production rule DIGIT ^ one may appear in sub-grammar of 

COST, TIME, etc, but DIGIT is not the OUTPUT of any sub-grammar. 

Table 5.4 shows an example of partitioned grammars for the subset of 

English ATIS-3 grammar as shown in Table 5.2. The sub-grammar Gs in 

level 3 acts as a master grammar. Figure 5.3 shows an an example of calling 

graph of the sub-grammars after partition, which is a DAG. 

5.4.2 Parser Composition on ATIS 

After we partitioned the ATIS grammar, we use two parser composition algo-

rithms to integrate sub-parsers - parser composition by cascading and parser 

composition with predictive pruning. Given a ATIS query such as "all flights 

leaving phoenix on wednesday". The partitioned grammars in Table 5.4 are 

used. The output LMG from cascading and predictive pruning are shown in 

63 



Gs： (level 3) 

INPUT = {vtDEPARTURE, vtQUANT, v tTIME_NP,…} 

OUTPUT = {S} 

* S ~> vtQUANT vtDEPARTURE [vtTIME.NP]| ... 

GoEPARTURE'- (level 2) 

INPUT = {leaving, vtCITY_NAME, v tTIME_NP,…} 

OUTPUT = {DEPARTURE} 
* DEPARTURE ^ leaving vtCITY_NAME [vtTIME_NP]| ... 

GriME^p'- (level 1) 

INPUT = {vtDAY_NAME, on, ... } 

OUTPUT = {TIME_NP} 

* TIME_NP — [on] vtDAY_NAME|[on] vtDATE ... 

GpLiGHT' (level 1) 

INPUT = {flights, ... } 

OUTPUT = {FLIGHT} 

* FLIGHT — flights|flight ... 

GquANT- (level 0) 

INPUT = {all, ... } 

OUTPUT = {QUANT} 

* QUANT — all|an|any ... 

GciTY.NAME' (level 0) 

INPUT = {phoenix, ... } 

OUTPUT = {CITY_NAME} 

* CITY_NAME ~> phoenix|new york|seattle ... 

GoAY.NAME- (level 0) 

INPUT = {wednesday, ... } 

OUTPUT = {DAY_NAME} 

* DAY_NAME ~> monday|tuesday|wednesday ... 

Table 5.4: A subset of partitioned English ATIS grammar. 

64 



Cmaster grammar ̂ ^X 

level 3 _ _ ^ ^ 

M^ 
/ / 广 subgrammar>̂ N,̂  

/ / i DEPARTURE) \^^ 

/J^;^f^^ 
/ f subgrammaN ^ '̂̂ graninwrX 

/ ( FLIGHT ) ( TIME_NP ) 
/ V^^|eN^n^ V^leveH」 

Csubgrammm̂  f subgranunarN̂  广 subgranunarX 

QUANT ) ( CITY_NAME j f DAY_NAME J 
_level O ^ ^ X^evel 0 夕 V^level 0 ) 

Figure 5.3: The calling graph of the sub-grammars in Table 5.4. 

Figure 5.4 and Figure 5.5 respectively. Notice that using predictive pruning 

can save one virtual terminal ?;^TiME_NP on LMG for the same output parse 

in Figure 5.7. 

^ _ _ v t S _ _ _ _ ^ 

Z vtDEPARTURE —~^^^ • £ N^\ 

^ m ^ ^ J ^ ^ ^ H ^vtCITY_NAME^ vtDAY_NAM^ 

<s> ̂  all "^ flights ^ leaving ^ phoenix ̂  on ^ wednesday ^ ^ 

\^V \ vtTIME_NP ŷ 

^ vtDEPARTURÊ""""""̂"""""""̂  

Figure 5.4: The resultant LMG by using parser composition by cascading. 

65 



/ ^ ^ ” ^ ^ ^ ^ ^ y ^ vtDEPARTURE — 丁_ ^ ^ 

^ m t < ^ ^ ^ ^ ^ H ^vtCITY_NAME^^ vtDAY_NAM^ 

<s> ^ all ̂  flights “^ leavmg ~^ phoenix ̂  on ~* wednesday ~̂  $ 

X ) 
、VtDEPARTURE-"-""-""̂  

Figure 5.5: The resultant LMG by using parser composition with predictive 

pruning. 

5.5 Ambiguity Handling 

A GLR parser is able to handle ambiguity and provide multiple parses. GLR 

parsers act as a core component in our parsing framework, our parser can 

also handle ambiguity. Our parsing framework can produce the same parses 

as a single GLR parser with the same set of grammar rules. In this section, 

we provide some example queries from that contains multiple parses. 

The input query: "what does fare code h mean" can generate two parse 

trees, which are shown in Figure 5.6. The ambiguity of this sentence is due 

to two representation of 'h' - booking class and fare basic code. In this case, 

these two representation are possible. 

Another input query: "all flights leaving phoenix on wednesday" can also 

produce two parse trees, as seen in Figure 5.7. The ambiguity ofthis sentence 

is due to generalization of SENTENCE-level rules. In this case, the parse tree 

that contains 3 leaf nodes is better than the one that contains 4 leaf nodes. 

It is because the former one can represent "wednesday" as a departure day, 

the latter one treats "on wednesday" be a prepositional phrase attached to 

66 



s 

QUEST 

/ OBJ \ 

/Af^ 
Z ^ y ^Ock lNG_CLASS^^ v̂ 

^^^WF^ ^^/^^11 ^^ARE_BASIC_CODE\^^^^^ 
what does fare code h mean 

Figure 5.6: Example of a multiple parses sentence, 

"all flights leaving phoenix". 

# V ^ 
/ / /DEPARTURE DEPARTURE 、 

/̂ ATx 
QUANT FLIGHT FROM CITY_NAME / DAY_NAME 

all flights leaving phoenix on wednesday 

Figure 5.7: Another example of multiple parses sentence. 
For this reason, we select a parse from sentence node S if it contains 

67 



more than one parses. For grammar partitioning approach, a shortest-path 

algorithm is used to select the "best" path. The detail is described in the 

next section. For a single GLR, we select a parse with minimum number 

of leaf nodes if multiple parses are obtained. Then some non-terminal inner 

nodes of the parse tree can cover more terminal nodes, this manner is similar 

to finding the shortest path in grammar partitioning approach. 

68 



5.6 Semantic Interpretation 

5.6.1 Best Path Selection 

With grammar partitioning, the output of our parsing framework is an LMG. 

There are multiple paths from the sentence START to sentence END to repre-

sent the original sentence. We apply the shortest-path algorithm in [10] to 

find the best path in the LMG for representing the input sentence. 

The shortest-path algorithm is to find the path which connects sentence 

START <s> and sentence END ‘$，，and has minimum total distance. This 

algorithm starts from the sentence START to successively identify the directed 

path to each nodes, until the sentence END is reached. Figure 5.9 shows the 

algorithm for shortest path problem [10 . 

The transitions in our LMG are equally weighted, i.e. the distance be-

tween any two direct connected (virtual) terminal nodes are the same (dis-

tance=!). Figure 5.8 shows a subset of nodes in an LMG. There are two 

paths from terminal from to to — one path passed through i;iciTY_NAME 

and another path passed through seattle. 

ID=0 

<vtCITY_NAME^^ 

^ ^ ^ ^ ^ t o 
i " - ” ^ seattle ^ ^ ^ ^ lD=-l 

‘ ID=-I 

Figure 5.8: A subset of nodes in a LMG. 

The ID of sub-grammars are assigned during partitioning grammar. The 

virtual terminal nodes in an LMG are assigned with the same ID with their 

69 



sub-grammars. The terminal nodes in an LMG are assigned with ID = -1. 

The IDs of virtual terminals and terminals in LMG are indicated in Fig-

ure 5.8. 

However, in most cases, we prefer finding a path passed through a node 

with relative high ID. For the example in Figure 5.8, we prefer the path 

passed through ?;^CITY_NAME, since level index of ?;^CITY_NAME {ID=0) is 

higher than seattle {ID=-1). Then we scale the distance by multiplying it 

by a level cost. The higher the level number of the target node, the lower 

the level cost of the transition. Equation (5.1) is used to compute the level 

cost. 

c = t - i (5.1) 

where 

c denotes level cost of a transition, 

t denotes total number of level, 

i denotes the target node level index. 

70 



Objective of nth iteration: Find nth nearest node to origin. 

(To be repeated for n=l, 2, ..., until nth nearest node is 

the destination.) 

Input for nth iteration: (n-l) nearest nodes to origin (solved 

for at previous iterations), including their shortest path and 

distance from the origin. (These nodes, plus the origin, will 

be called solved nodes] the others are unsolved nodes.) 

Candidates for nth nearest node: Each solved node that is 

directly connected by a link to one or more unsolved nodes 

provides one candidate - the unsolved node with the shortest 

connecting link. (Ties provide additional candidates.) 

Calculation of nth nearest node: For each such solved node 

and its candidate, add the distance between them and the 

distance of the shortest path from the origin to this solved 

node. The candidate with the smallest such total distance is 

the nth nearest node (ties provide additional solved nodes), 

and its shortest path is the one generating this distance. 

Figure 5.9: Algorithm for shortest path problem [10 . 

5.6.2 Semantic Frame Generation 

A semantic frame contains a list of key-value pair(s) to represent the meaning 

of the sentence. The keys are designed according to the schema of SQL of 

ATIS queries, such as CITY-NAME, FLIGHT-NUMBER, CLASS-TYPE. After the 

best path is selected from the LMG, only virtual terminals are considered 

and terminals are ignored. Because virtual terminals carry semantic content. 

The virtual terminal nodes in an LMG actually corresponds to a sub-tree 

(or multiple sub-trees) in the paired shared parse forest. But the sub-tree is 

not displayed in the LMG. The semantic interpretor walks through the parse 

71 



trees which attached to the virtual terminals in the best path. If the root 

node or inner node of the parse tree matches with the keys, it extracts the 

terminal(s) under the key. The extracted terminal(s) becomes the value of 

the key-value pair. There is an operand represents the relationship between 

the key and value, such as ‘=’’ ‘<，，‘〜，，'<',etc. 

Figure 5.10 shows an example parse tree. The keys are DEPARTURE, 

TIME, CITY_NAME, then the semantic frame is shown in Table 5.11. 

DEPARTURE 

4^ 
/ / TIME_NP 

/ / TIMERANGE 

/ / 八 
FROM CITY_NAME BEFORE TIME 

leaving phoenix before noon 

Figure 5.10: The parse tree is attached to a virtual terminal vtDEPARTURE. 

DEPARTURE_TIME<noon 

DEPARTURE-CITY_NAME=phoenix 

Figure 5.11: Example of a semantic frame. 

5.6.3 Post-Processing 

Post-processing is included to refine the generated semantic frame, which 

is designed according to the training sets. There are two post-processing 

72 



heuristics: (i) if the frame contains a TIME key, but we cannot determine 

whether it is DEPARTURE_TIME or ARRIVAL_TIME, we will default to DE-

PARTURE_TIME. (ii) if the frame contains a COST key, we will classify it as 

ONE_DlRECTiON_COST or ROUND_TRiP_COST according to the other keyword 

appeared in the sentence, such as "round trip", "nonstop"，etc. 

5.7 Experiments 

Our experiments compare the two parsing approaches: (i) single GLR for 

the overall unpartitioned grammar, (ii) parser composition by cascading and 

parser composition with predictive pruning. Comparison is based on gram-

mar coverage, parsing table sizes, computational costs and understanding 

accuracies. 

For the tables in this section, CAS abbreviates parser composition by 

cascading, PP abbreviates for parser composition with predictive pruning 

and GLR abbreviates for single GLR parser approach. 

5.7.1 Grammar Coverage 

Experiments are conducted with ATIS-3 queries. Grammar coverage of En-

glish and Chinese ATIS are shown in Table 5.5 and Table 5.6 respectively. 

Full parse means there is a parse forest covering the whole query. Partial 

parse means there is at least one parse chunk covering part of query. No 

parse means there is no parse at all for the query. 

Full parse coverage for English sentences vary between 60% to 62%, while 

73 



that for Chinese sentences are lower at 44% to 57%. Since our SENTENCE-

level grammar rules are derived from shortest paths through the training 

lattices, they tend to be rather specific in structure, and may contribute to 

the relatively low full parse coverage. We observe from Table 5.3 (second row) 

that Chinese grammar has 508 SENTENCE-level rules, and English grammar 

has 337 SENTENCE-level rules. English grammar requires fewer SENTENCE-

level rules to obtain comparable grammar coverage in the training set. This 

implies English grammar is more general and can obtain higher grammar 

coverage in the test sets as shown in Table 5.5 and 5.6. 

Since we use the same grammar across different parsing methods, percent-

age of full parse queries are the same in English and Chinese respectively. 

For single GLR parser approach, it cannot create any partial parse. For the 

parser composition by cascading, sub-parsers can be activated and allows a 

parse to end at any position of the input query. A sub-parser creates virtual 

terminal node on an LMG if it can successfully parse. For parser composi-

tion with predictive pruning, sub-parsers only can be activated if they satisfy 

the predictive pruning conditions. The parsing process terminates when the 

master parser detects an error from the parsing table. Therefore, cascading 

obtains the highest percentage of partial parse and zero percentage of no 

parse queries in test sets 93 and 94. 

5.7.2 Size of Parsing Table 

We use the same LR(1) parsing table generator to construct an LR(1) table 

for the unpartitioned English and Chinese grammars. We also construct 65 

74 



Based on the ~~~~ 
English Trammg set Test set 93 Test set 94 

ATIS-3 
Corpus G L R C A S P P G L R C A S P P G L R C A S P P 

"Full parse (%) 99.4 9 ^ 99.4 6 W 60.9 ~60.9 62.4 ~62l 6 ^ 

Partial~~parse 0 06 ^ 0~~Wl~~342 6 ~ ~ ^ ~ ~ 3 ^ 

_TO 

~No parse (%) 0.6 Q 0.1 39.1 0 4.9 37.6 0 2.5 

Table 5.5: Grammar coverage for the English ATIS-3 corpora. 

Based on the “ ~ ~ ‘ 
Chinese Traming set Test set 93 Test set 94 

ATIS-3 
Corpus G L R CAS P P G L R C A S P P G L R C A S P P 

~Fn\\ parse (%) ~ 98.7 ~ 9 ^ 98.7 " ^ l ^ ^ l ^ ^ ^ 57.4 57.4 57.4 

Partial~~parse 0 L3 Eo 0 ~ ~ ^ ~ ~ ^ 0~~4^ "~37T 

_TO 

"No parse (%) 1.3 0 0.3 55.4 0 4.0 42.6 0 5.2 

Table 5.6: Grammar coverage for the Chinese ATIS-3 corpora. 

tables for the partitioned English grammar and 63 tables for the partitioned 

Chinese grammar. The total number of states (rows) in the parsing table for 

partitioned grammars is the sum of the number of states in all sub-parsers. 

For unpartitioned grammar, there is a single parsing table. From Table 5.3 

(last row), the unpartitioned English grammar has 72,869 states and the 

unpartitioned Chinese grammar has 29,734 states in their parsing tables. 

In comparison, the partitioned English grammar has 3,350 states and the 

partitioned Chinese grammar has 3,894 states in total. Grammar partitioning 

greatly economizes on parsing table sizes. This decreases the computation 

required to generate the parsing tables, space or memory to store the tables, 

75 



and time to access the tables during parsing. This result shows that the 

simple LR parsing technique becomes impractical for large grammars for 

natural language processing. We can also see that with a comparable number 

of rules, the unpartitioned English ATIS grammar obtained a higher parse 

coverage than the unpartitioned Chinese grammar, for both test sets. This 

may suggest that the English rules are more general than the Chinese rules. 

We also noticed that the number of parsing table states for English is twice 

that for Chinese. Hence the English parsing table is more expensive to store 

and access. From this we can see that the parsing table size is dependent not 

only on the number of grammar rules (grammar size), but also the structure 

of the grammar rules. 

5.7.3 Computational Costs 

We compared the computational costs between the two parser composition 

algorithms, measured in terms of the total parsing time, the number of states 

visited, and the number of rules reduced. Results are tabulated in Table 5.7 

and Table 5.8 for English and Chinese ATIS respectively. 

The total parsing time does not include the load time for data, such as 

parsing table, it is simply the amount of CPU time used by the parsing 

process. All experiments in this section are conducted on a Sun Solaris 

Ultra 5 machine in order to minimize time variation due to different system 

architectures. 

From Table 5.7 and Table 5.8, we observed that the single GLR parser 

is the most economical parsing strategy, when compared with the other two 

76 



Based on the ^ . . 
English Training set Test set 93 Test set 94 

ATIS-3 

C o r p u s G L R C A S P P G L R C A S P P G L R C A S P P 

Total pars- 42.8~~~^~~5^~~K2 ^ 2 ~ ~ l 0 9 ~ ~ ^ 2T7~~l2X" 

ing t ime (in (s6.s%) (43.2%) (41.0%) 

seconds, Sun 

Ultra 5) 

Average no. of 60.0~~134.2 95.0~~37^5~~107.8 60.6~~47l~~122.9 75.7 

states visited (29.2%) (43.8%) (38.4%) 

included failed 

sub-parsers 

Average no. of 3 4 . 5 ~ ~ W ^ ~ ~ 4 ^ ~ ~ ^ ~ ~ ^ ~ ~ ^ ~ ~ 2 7 ^ ~ ~ ^ ~ " 3 6 ^ 

rules reduced (3i.o%) (45.5%) (39.6%) 

included failed 

sub-parsers 

Average no. 59.8~~109.7 8 4 . 3 ~ ~ ^ ~ " K l ~ " ^ ~ " ^ ~ " ^ " " ^ 6 ^ 5 ~ 

of states vis- (23.2%) (39.0%) (32.5%) 

ited, successful 

sub-parsers 

only 

Average no. of 3 4 . 4 ~ ~ ^ ~ ~ 4 ^ ~ ~ 1 ^ ~ ~ ^ ~ ~ ^ ~ ~ ^ ~ " ^ ~ ~ 3 6 X ~ 

rules reduced, (31.1%) (45.5%) (38.4%) 

successful sub-

parsers only 

Table 5.7: Computational costs for the English ATIS-3 corpora. Italicized 

percentages in parentheses are savings of PP relative to CAS. 

parsing methods. This is true for both Chinese and English ATIS. Our obser-

vation is based on the following measurements: the total parsing times, the 

number of states visited and the number of rules reduced. This is because 

the single GLR only handles a string as input, but the composed subparsers 

need to handle a lattice as input. Parsing a lattice involves searching for the 

left-neighbor of the input symbol in the GSS, and hence is more computa-

77 



Based on the : ~ ~ ~ 

Chinese Tra inmg set Test set 93 Test set 94 

ATIS-3 
Corpus G L R C A S P P G L R C A S P P G L R C A S P P 

Total pars- 3 0 . 2 ~ " 8 ^ ~ ~ ^ ~ " K l 57^9~"TH"""^67 K s ~ ~ K T ~ 

ing t ime (in (40.1%) (35.8%) (51.0%) 

seconds, Sun 

Ultra 5) 

Average no. of 54.9~~138.8 81 .4" " "MA~~Wl~~M^~~4^~~145.1 65.9 

states visited (41.4%) (44.9%) (54.6%) 

included failed 

sub-parsers 

Average no. of 22.1 ~ ~ 4 ^ ~ ~ ^ 1 ~ ~ 1 ^ ~ " 2 9 5 ~ ~ 1 ^ ~ ~ 1 ^ ~ ~ 4 4 8 ~ ~ 5 ^ ^ 

rules reduced (42.6%) (46.5%) (55.3%) 
included failed 

sub-parsers 

Average no. 5 4 . 5 ~ ~ ^ ~ ~ ^ ~ ~ ^ ~ ~ ^ ~ " 4 ^ ~ " ^ ~ " M J ~ ~ 5 L ^ 

of states vis- (30.3%) (35.4%) (47.3%) 

ited, successful 

sub-parsers 

only 

Average no. of 2 2 . 0 ~ ~ ~ 4 ^ ~ ~ ^ ~ ~ ^ W ? ~ ~ 1 ^ ~ ~ m ~ ~ 4 4 ^ ~ ~ l 9 ^ 

mles reduced, (42.6%) (46.1%) (s6.i%) 

successful sub-

parsers only 

Table 5.8: Computational costs for the Chinese ATIS-3 corpora. Italicized 

percentages in parentheses are savings of PP relative to CAS. 

tionally expensive, as reflected by our measurements. Besides, partitioned 

sub-parsers insert a robust END to active state nodes in the GSS during 

parsing. This robustness feature would also increase the parsing time. 

However, we should note that the single GLR parser has the largest pars-

ing table. This will require a much longer loading time. Furthermore, run-

time parsing will also slow down if the parser needs to request a lot of mem-

78 



ory from the machine. Therefore from this perspective the single GLR parser 

may be impractical. 

As we migrated from cascading to predictive pruning, we observed consis-

tent improvements in all aspects of the parsing computation. For predictive 

pruning, the master G L R sub-parser (SENTENCE-level sub-parser) starts at 

the leftmost lattice nodes. For cascading, we also restricted the master sub-

parser (SENTENCE-level sub-parser) starts at leftmost lattice nodes. We try 

to treat this two algorithms in the same manner to provide a fair comparison. 

The total parsing times for the test sets are shortened by 35.8% to 51.0%, and 

the trend maintains for the subset of the sentences with full parses, i.e., the 

parsing times are shortened by 19.0% to 38.9%. The results are tabulated in 

Table 5.9 and Table 5.10 for English and Chinese ATIS. The number ofstates 

visited is reduced by 25.4% to 41.8% when failed sub-parsers are counted, 

and by 26.6% to 46.2% when only successful sub-parsers are counted. Fi-

nally, the number of rules reduced are lower by 19.8% to 36.3% when failed 

sub-parsers are counted, and by 26.5% to 46.2% when only successful sub-

parsers are counted. Notice that for training sets, their grammar coverage 

are identical, and therefore, their parsing times are reflected in Table 5.7 and 

Table 5.8. 

Chinese also seems to have a greater gain than English. This is because 

the Chinese word consists of one or more characters, and as we parse char-

acter by character in Chinese, we often encounter characters that can be 

derived form multiple sub-grammars. For example,三 may be found in city 

name 三蕃市 ( S a n Francisco), time 三點 ( three o'clock) as well as airline 

79 



name 三角州航空 (De l ta ) . Composition using predictive pruning provides 

stronger word constraints for the selection of an appropriate sub-grammar. 

~ “ ~ ~~Test set 93 ~~Test set 94 
Based on the ,»»„ • 、 .^^^ • 、 

English ATIS-3 (27? q u e n f (277 queries) 

Corpus G L R CAS P P G L R C A S P P 

Total parsing time (in 7.2 VL9 0 M U ^ W l ~ 

seconds, Sun Ultra 5) (25.2%) (27.9%) 
Average no. of states~~^ 113.0~~MA ^ 131.7~~M^ 

visited included failed (25.6%) (25.4%) 
sub-parsers 

Average no. of rules 32.2 ^ iT2 W ^ 67^ 4 ^ ~ 

reduced included (27.1%) (26.6%) 
failed sub-parsers 

Average no. of states 53.5 W?j T ^ ^ 109.1 ~ ~ ^ ^ 

visited, successful sub- (19.8%) (19.8%) 
parsers only 

Average no. of rules 32.2 ^ A i O 37^ WL2 i ^ l ~ ~ 

reduced, successful (27.1%) (26.5%) 
sub-parsers only 

Table 5.9: Computational costs for the subsets of sentences in test set of 

English ATIS-3 corpora with full parses. Italicized percentages in parentheses 

are savings of PP relative to CAS. 

80 



~^~~~T~~T “ “ T e s t set 93 ~~Test set 94 
Based on the .^^^ . 、 …— . 、 

Chinese ATIS-3 (20? queries) (255 queries) 

Corpus G L R C A S P P G L R C A S P P 

Total parsing time (in 3.5 K l Ks ^ H ^ ^ 1 

seconds, Sun Ultra 5) (19.0%) (38.9%) 

Average no. of states 49.0 108.2~~Wl ^ 156.5~~W71 ~ ~ 

visited included failed (31.9%) (41.8%) 

sub-parsers 

Average no. of rules~~^2 ^ W 7 2 ^ ^ f f ^ 

reduced included (32.8%) (46.2%) 

failed sub-parsers 

Average no. of states~~4^ ^ ^ ^ 113.0~~7^ 

visited, successful sub- (20.0%) (36.3%) 
parsers only 

Average no. of rules 20.2 ^ m ^ ^ ^ ~ ~ 

reduced, successful (32.8%) U6.2%) 
sub-parsers only 

Table 5.10: Computational costs for the subsets of sentences in test set of 

Chinese ATIS-3 corpora with full parses. Italicized percentages in parenthe-

ses are savings of PP relative to CAS. 

5.7.4 Accuracy Measures in Natural Language Under-

standing 

Our semantic interpreter extracts semantic information to form a semantic 

frame. The contents of the frame are compared against with "reference" 

semantic frame, which is derived from the list of attributes of corresponding 

of our parse outputs. For the example SQL in Table 5.2, the underlined 

attributes are the key-value pairs of reference semantic frame. Thus we can 

evaluate the performance in natural language understanding of our parse 

outputs. For each query, we measured in term of the error rate for comparing 

81 



the understanding accuracy. First of all, matching accuracy is calculated by 

Equation (5.2). We also accounted for the insertion error by Equation (5.3) if 

number of keys in our frame is more than that in reference frame. Otherwise, 

the insertion error is zero. Equation (5.4) is the error rate for each query. 

mk , � 
ma = — (5.2) 

. ok - rk , � 

- = " ^ (5.3) 

er = 1 - {ma — ie) (5.4) 

where 

ma denotes matching accuracy, 

ie denotes insertion error, 

er denotes error rate, 

mk is no. of matched keys for our frame and reference frame, 

rk is no. of keys in reference frame, 

ok is no. of keys in our frame. 

82 



Full match refers to queries with exact matches between the generated 

semantic frame and the reference semantic frame. In the other words, the 

error rate is zero. Partial match refers to the situation when the error rate 

is between zero and one for the sentence, with the error types being inser-

tion, deletion, and substitution. No match refers to the situation when the 

error rate equals or exceeds 100% for the sentence. There are some example 

queries extracted from ATIS test set 1993 for full match and partial match. 

For full match, the example query is: "i would like to book a round trip 

flight from kansas city to chicago" (sentence 1). Generated semantic frame 

and the corresponding reference frame are shown in Figure 5.12 and 5.13 

respectively. The key-value pairs in the generated frame with symbol ^J can 

match with the key-value pairs in reference frame. The partial matched ex-

ample query is: "find american flight from newark to nashville around six 

thirty p m" (sentence 2). Generated semantic frame and the corresponding 

reference frame are shown in Figure 5.14 and 5.15 respectively. In this case, 

our semantic frame is missing one key-value pair. 

Results of matching accuracy are shown in Table 5.11 and Table 5.12 for 

English and Chinese ATIS respectively. We observe that the error rates of 

English ATIS is lower than for Chinese. This is due to translation errors. For 

example, the word "nonstop" is translated to 直航(direct flight) instead of 

不停站（non-stop). The translation may also be missing some key concepts. 

Besides, the parser may not recognize all representations of a translated word, 

e.g. San Diego may be translated to 聖地亞哥 or 聖地牙哥. 

For the sentences with full parse, there may not could be a full match 

83 



Based on the “ ~ ~ ~ 

English Trammg set Test set 93 Test set 94 

ATIS-3 
Corpus G L R C A S P P G L R C A S P P G L R C A S P P 

Error i i ^ Ko 7 l 7^~~4h2 ^ ~ ~ ^ ~ ~ i S i ~ ~ u 7 r ~ ~ 2 ^ 

in semantic 

concepts (%) 

Full match ( % " " " M I " ~ ^ " ~ M I " " " ^ " ~ 8 7 . 7 6 0 . 5 ~ ~ ^ " ~ f T o ~ ~ 5 ^ 

of sentences) 

Partial match~~Ko~~1^3~~1^2 4 ^ " " " K o ~ ~ ^ 7?7~~1^~~2^ 

(% of sen-

tences) 

No match (% of ^ " ~ 2 ^ ~ ~ ^ ~ ~ m ~ ~ 4 2 ~ ~ W f ~ ~ f f J ~ ~ 0 ~ ~ 2 ^ 

sentences) 

Table 5.11: Performance in language understanding of the English ATIS-3 

corpora. 

Based on the “ ~ ~ ~ 

Chinese Traming set Test set 93 Test set 94 

ATIS-3 

Corpus G L R C A S P P G L R C A S P P G L R C A S P P 

Error r ^ ~ ~ W s 7^ ^ ~ ~ ^ ~ ~ i T o ~ ~ ^ ~ ~ 4 4 ^ ~ ~ 1 ^ ~ ~ 2 ^ 

in semantic 

concepts (%) 

Full match ( % ~ ~ 7 7 ^ ~ ~ M I ~ ~ ^ ~ ~ ^ ~ ~ m ~ ~ ^ " ~ 4 ^ ~ ~ 7 ^ ~ ~ 5 8 ； ^ 

of sentences) 

Partial ma tch~~i^~~Kd~~ l 7A Ko~~i^~~m 7A~~^~~24T 

(% of sen-

tences) 

No match (% of ~ " ^ " ~ ~ ^ " ~ ^ ~ ~ K b ~ ~ 4 . 7 1 5 . 2 " ~ 4 ^ " ~ 5 . 0 17.3 

sentences) 

Table 5.12: Performance in language understanding of the Chinese ATIS-3 

corpora. 

84 



for its semantic interpretation. One reason is due to some implicit infor-

mation inferred from the query appears on the reference frame. For exam-

ple, the word "tonight" represents "time>=1800" and "time<=2359" today, 

"time>=0" and "time<=600" in the following day. However, we could only 

generated one key-value pair "time=tonight" in our frame. 

Our semantic frame: (error rate=0) 

DEPARTURE_ciTY_NAME=kansas city>/ 

ARRIVAL_CITY_NAME=chicagOy^. 

R0UND_TRiP_C0ST=r0und tripy/ 

Figure 5.12: The semantic frame generated for the query (sentence 1) "i 

would like to book a round trip flight from kansas city to chicago." This 

frame fully matches the reference semantic frame in Figure 5.13, and is 

counted as a "full match" in Table 5.11. 

SQL reference frame: 

city_name='KANSAS CITY’ 

city_name='CHICAGO' 

round_trip_cost IS NOT NULL 

Figure 5.13: The reference frame for the query (sentence 1) "i would like to 

book a round trip flight from kansas city to chicago," generated from SQL. 

Our semantic frame: (error rate=0.8) 

AiRLiNE_CODE=americany^ 

DEPARTURE_CITY_NAME=newarkv^ 

ARRIVAL_CITY_NAME=nashvilley^ 

DEPARTURE_TlME~six thirty p my/ 

Figure 5.14: The semantic frame generated for the query (sentence 2) "find 

american flight from newark to nashville around six thirty p m." This frame 

fully matches the reference semantic frame in Figure 5.15, and is counted as 

a "partial match" in Table 5.11. 

85 



SQL reference frame: 

airline_code='AA' 

city_name='NEWARK' 

city_name=，NASHVILLE， 

departure_time>=1800 

departure_time<=1900 (missing) 

Figure 5.15: The reference frame for the query (sentence 2) "find american 

flight from newark to nashville around six thirty p m." generated from SQL. 

From Table 5.11 and Table 5.12, we found that the single GLR method 

obtains the highest error rate in matching semantic concepts, since the single 

GLR parser obtains no parse if the input query is grammatically incorrect. 

However, partitioned grammar approach may provides partial parse on LMG 

even the sentence is grammatical wrong. For the training set (first to third 

column), these three parsing strategies do not obtain the same error rate due 

to the different partial coverage. 

In addition, performance on language understanding suffers a decline as 

we shifted from cascading to predictive pruning. This is highly correlated 

with the grammar coverage. Cascading attempts to parse chunks ofthe input 

at all lattice nodes, while predictive pruning invokes virtual terminals only 

if they abide to the left corner predictive constraints. 

If we focus on the subset of test sentences with full parse, we expect that 

they should have comparable language understanding performance. However, 

we see from Tables 5.13 and 5.14 that the single GLR parser has higher 

error rates in language understanding. It should be noted that the semantic 

frame is generated different for the single GLR parser, when compared to 

the composed subparsers. In the former, we selected the parser tree with the 

86 



fewest leaf nodes. For the latter, we ran the shortest-path algorithm through 

the LMG. This has been described previously. 

The performances on language understanding are identical across lan-

guages and composition algorithms. This is true except for the single GLR 

approach. 

Except for the single GLR approach, there is a little variation due to 

different best parse selection methods as discussed in Section 5.6.1. The 

results are displayed in Table 5.13 and Table 5.14 for English and Chinese 

respectively. 

However, cascading generates more partial parses than predictive pruning, 

and the single GLR parser cannot generate any partial parse as discussed 

in Section 5.4.1. If we focus on the subset of test sentences with partial 

parses, cascading salvages many more to attain full understanding, when 

compared to predictive pruning. This resulted in a significant difference in 

the overall performance in language understanding as shown in Table 5.15 

and Table 5.16. For example, in the 1993 Chinese test set, there were 200 full 

parse sentences, of which 171 were fully understood. Cascading produced 248 

partial parses of which 181 were fully understood, while predictive pruning 

method produced 230 partial parses of which only 105 were fully understood. 

Overall this constitutes a difference of 17.0% (a decline from 78.6% to 61.6% 

in Table 5.12) on fully understood queries. The other test sets shows similar 

trends. These results suggests the need for more versatile SENTENCE-level 

grammar rules, as well as enhanced robustness in parsing should predictive 

pruning composition be adopted. 

87 



Based on the ^ e ^ set 93 ~ ~ Test set 94 

English ATIS-3 (27个 queries) (277 queries) 

Corpus G L R C A S P P G L R CAS P P 

Error rate in semantic 3.5 3.5 ^ 4^ 44 4.4 
concepts (%) 

Full match (% of sen- ^ 9 ^ 9 ^ ^ ^ ~ ~ s f T T 

tences) 

Partial match (% of ^ 6 ^ K6 1 ^ H ^ u X 

sentences) 

No match (% of sen- 0 0 0 04 04 o T 

tences) 

Table 5.13: Language understanding performance for the subsets of sentences 

in test set of English ATIS-3 corpora with full parses. 

Based on the 了= set 93 ~ ~ Test s e F ^ 

Chinese ATIS-3 (20丫 queries) (255 queries) 

Corpus G L R C A S P P G L R C A S P P 

Error rate in semantic 7.3 6.7 ^ 0 0 i T " 

concepts (%) 

Full match (% of sen- M S ^ S ^ ^ s ^ 8 ^ 

tences) 

Partial match (% o f ~ ~ 1 ^ ~ ~ 1 ^ K o ^ 9 1 ^ ~ ~ " 1 ^ 

sentences) 

No match (% of sen- ^ ^ ^ 0 04 ^ 

tences) 

Table 5.14: Language understanding performance for the subsets of sentences 

in test set of Chinese ATIS-3 corpora with full parses. 

88 



Based on the Test set 93 Test set 94 

English ATIS-3 

Corpus G L R CAS P P G L R C A S P P 

Number of queries 0 ~~Ifb IEs 0 1 ^ 156 

Error rate in semantic N/A 1 ^ 7^2~~WjA 2 ^ 68.2 

concepts (%) 

Full match (% of sen-~~NjA 806 T^1 ~~WjA ^ 1 ^ 

tences) 

Partial match (% o f ~ ~ ^ ^ ~ ~ " 1 ^ ~ ~ f T O ~ ~ ~ W f k ~ ~ W b ~ ~ 3 ^ 

sentences) 

No match (% of sen-~~WjA ^1 W6~~~WjA 1 ^ 5 0 ^ 

tences) 

Table 5.15: Language understanding performance for the subsets ofsentences 

in test set of English ATIS-3 corpora with partial parses. 

Based on the Test set 93 Test set 94 

Chinese ATIS-3 ^ _ _ _ ^ _ _ 

Corpus G L R C A S P P G L R C A S P P 

Number of queries ^ ^ ^ ^ 8 2 ^ 0 l89 1 ^ 

Error rate in semantic N/A ~ H ^ 3 ^ N/A ^ A s K ^ 

concepts (%) 

Full match (% of sen-~~WjA ^ 4 ^ ~ ~ W j A ^ 2 ^ 

tences) 

Partial match (% of~~NjA ^ 348~~WjA M ^ 4 4 ^ 

sentences) • 

No match (% of sen-~~NjA ^ m~~~WjA T O 3 0 " 

tences) 

Table 5.16: Language understanding performance for the subsets ofsentences 

in test set of Chinese ATIS-3 corpora with partial parses. 

89 



5.7.5 Summary of Results 

In this section, we summarize the experimental results in the different dimen-

sions. We compare the difference between (i) the multiple parsers and single 

GLR parser approaches; (ii) parser composition by cascading and parser 

composition with predictive pruning; and (iii) English and Chinese ATIS 

grammars. 

First, we compare the difference between multiple parsers and single GLR 

parser approaches. Grammar partitioning significantly reduce the size of 

parsing table, i.e. this save time to construct and space to store the parsing 

table. We have provided strong evidences that single GLR approach is not 

practical for large grammars. In addition, composing multiple parsers for 

parsing can obtain higher understanding accuracies that contributed by par-

tial parses. However, composing parsers requires higher computational costs 

due to robustness. 

Second, we compare the difference between parser composition by cas-

cading and parser composition with predictive pruning. Predictive pruning 

can save computational costs when comparing with cascading. Predictive 

pruning can solve the problem of overgeneration of virtual terminals in cas-

cading. However, predictive pruning cannot parse as good as cascading for 

the extra-grammatical input queries. This make predictive pruning suffers a 

decline on language understanding. 

Third, we compare the difference between English and Chinese grammar. 

We observe there is no significant difference in our results across English 

and Chinese. We have proved our parsing frame is portable for different 

90 



languages. 

5.8 Chapter Summary 

In this chapter, we presented our investigation of grammar partitioning and 

parser composition based on English and Chinese ATIS corpora. We devel-

oped the ATIS grammar based on training sets. Then we partitioned it into 

more than 60 sub-grammars and compose these sub-parsers by two parser 

composition methods which described in Chapter 5. We also use a single 

GLR parser for unpartitioned grammar as our benchmark. We found that 

grammar partitioning significantly reduces the sizes of LR(1) parsing tables 

and is suitable for handling large grammars, when compared with the single 

parser. For the two different parser composition algorithms, the parsing ef-

ficiency of predictive pruning is better than cascading algorithm. However, 

cascading can produce a greater number of partial parses and thus obtains a 

better performance on understanding accuracies. 

In the next chapter, we will give a brief summary of this thesis and 

summarize major contributions. 

91 



Chapter 6 

Conclusions 

6.1 Thesis Summary 

In this thesis, we have developed a modular parsing framework - grammar 

partitioning and parser composition, for natural language processing. It aims 

to handle ambiguity, space and efficiency problems for large grammars, and 

can also handle extra-grammatical sentences. 

As demonstrated in the experiments described in Chapter 5, the tech-

niques of grammar partitioning and parser composition successfully meets 

these objectives. Our parsing framework is developed based on the GLR 

parser, which can generate multiple parses for an ambiguous sentence. We 

used a shortest-path algorithm to find the "best" path from the output LMG 

to represent the input sentence. 

We translated the English ATIS-3 queries in class-A into Cantonese Chi-

nese, as a parallel corpus for our experiments. Our unpartitioned English 

grammar has 72,869 states in its parsing table, while partitioned English 

92 



grammar has 3,350 states. The unpartitioned Chinese grammar has 29,734 

states in its parsing table, while partitioned Chinese grammar has 3,894 

states. Grammar partitioning greatly economizes on the parsing table sizes. 

This can save time to construct and space to store a large size of table. 

Parser composition imparts robustness for parsing, it can produce par-

tial parses while GLR parser could not. We have applied two techniques for 

parser composition: (i) parser composition by cascading and (ii) parser com-

position with predictive pruning. Cascading differs from predictive pruning 

as it does not constrain the parser where to start. Robustness in parsing led 

to higher understanding performance for cascading. For ATIS English test 

set 94, semantic concept error rates are 40.4% for the single GLR, 11.7% for 

cascading and 29.1% for predictive pruning. For Chinese test set 94，the val-

ues are 44.9% for single GLR, 12.7% for cascading and 28.4% for predictive 

pruning. 

6.2 Thesis Contributions 

The major contributions of this thesis are the following: 

1. Development ofamodular parsing framework based on the GLR parser, 

capable of significantly reducing the size of the LR parsing table for 

handling large grammars in natural language. Reducing the parsing 

table size can save time for constructing the table and space for storing 

the table. Hence if any grammar rule needs to be modified, we only 

need to regenerate the corresponding subparser's table, instead of the 

93 



entire parsing table (for an unpartitioned grammar). 

2. Implementation of two parser composition algorithms - parser com-

position by cascading and parser composition with predictive pruning. 

We explore the trade-off between language understanding accuracies 

and computational costs for the two different parser composition al-

gorithms. Predictive pruning is more efficient but obtained a lower 

understanding accuracy. 

3. The demonstration of the language portability, robustness and effi-

ciency of our parsing framework in ATIS domain in terms of the size of 

the parsing tables, grammar coverage, computational costs, and under-

standing accuracies. Cascading and predictive pruning greatly increase 

the percentage of partial parses in the test sets when compared to origi-

nal GLR parsing algorithm. Our parsing framework is directly portable 

from English to Chinese. 

6.3 Future Work 

There are several areas for future work which may further improve the perfor-

mance of the parsing framework. They are related on grammar partitioning, 

best path selection and robust parsing. 

6.3.1 Statistical Approach on Grammar Partitioning 

Grammar partitioning is desirable, but it is not clear how it should be done 

in general case. Weng et al. [35] proposed statistical guidelines for grammar 

94 



partitioning. 

Each sub-grammar is a cluster in the entire grammar. First, a weighted 

graph is created to describe the connections among different clusters. When 

training data is available, probability weights on the edges of weighted graph 

can be computed based on the actual calls between the corresponding clus-

ters. This way is related to the grammar chunking approach by Rayner [21 . 

For better cluster quality, a set of simple heuristics for the refinement of 

grammar is used. There are two types of refinements, merge to form a bigger 

clusters, and split to form smaller clusters. The merge operations are: 

1. Compute the transitive closures of the calling relations for clusters, and 

replace the original clusters with their closures. 

2. If a cluster has an empty INPUT set, duplicate the cluster for each of 

its parent clusters, and merge the copies with its parents. 

The split operations can be through removing the edges with low weights 

or the ones that lead to minimum changes with respect to its original graph 

using Kullback-Leibler distance. 

6.3.2 Probabilistic modeling for Best Parse Selection 

We have reported encouraging results in the ATIS domain in terms of under-

standing accuracy. However, we need a more general and systematic method 

to select the best parse from multiple parses. 

We plan to use a probabilistic context-free grammar (PCFG) [27][17][37], 

instead of a CFG. Wright[38] proposed a GLR parser to handle probabilistic 

95 



grammars. We can estimate the rule probabilities of a PCFG by parsing a 

training corpus. The frequencies of rule firing can be determined from the 

training corpus. Then we can normalize these frequencies into rule probabil-

ities. 

6.3.3 Robust Parsing Strategies 

Since the parsing efficiency of predictive pruning over cascading is highly 

desirable, we will continue with the future task of improving performance 

in parse coverage and language understanding. The incorporation of robust 

parsing strategies with predictive pruning will be our another future direction 

as well. 

A straight-forward to achieve robust parsing is to allow word skipping 

to handle several types of extra-grammatical phenomena, such as unknown 

words, ellipses, redundancy, etc. 

In this thesis, we have obtained encouraging parsing results for Chinese 

and English queries from an ATIS corpus. In the future, we will try to expand 

our work in these directions. 

96 



Bibliography 

1] S. Abney. Parsing by Chunks, chapter In Principle-Based Parsing: Com-

putation and Psycholinguistics, pages 257-278. Kluwer Academic Pub-

lishers, 1991. 

2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, 

and Tools. Reading, MA: Addison-Wesley, 1986. 

3] A. Aho and J. Ullman. The Theory ofParsing, Translation and Compil-

_ , volume 1 of Parsing. Prentice-Hall, Englewood Cliffs, N. J., 1972. 

4] A. Aho and J. Ullman. Principles of compiler designer. In Computer 

Science and Information Processing. Addison-Wesley, 1977. 

5] J. Amtrup. Parallel parsing: Different distribution schemata for charts. 

In Proceedings of the 4th International Workshop on Parsing Technolo-

gies, 1995. 

6] R. Basili, M. T. Pazienza, and F. M. Zanzotto. Customizable modular 

lexicalized parsing. In Proceedings of 6th International Workshop on 

Parsing Technologies, 2000. 

7] J. Earley. An Efficient Context-free Parsing Algorithm. PhD thesis, 

Carnegie Mellon University, 1968. 

8] J. Eisner and G. Satta. Efficient parsing for bilexical context-free gram-

mars and head automation grammars. In Proceedings ofACL, 1999. 

97 



9] D. Goddeau. Using probabilistic shift-reduce parsing in speech recog-

nition systems. In Proceedings of International Conference on Spoken 

Language Processing, pages 321-324, October 1992. 

10] F. S. Hillier and G. J. Lieberrnan. Introduction to Operations Research. 

McGraw-Hill, Inc., 6 edition, 1995. 

11] S.C. Johnson. Yacc-yet another compiler compiler. CSTR 32, Bell Lab-

oratories, Murray Hill, N.J., 1975. 

12] M. Kay. Algorithm schemata and data structures in syntactic processing. 

CSL-80 12, Xerox PARC, 1980. 

13] D. E. Knuth. On the translation of languages form left to right. Inform. 

Contr., 8:607-639, December 1965. 

14] A. Korenjak. A practical method for constructing lr(k). CACM 12, 11, 

1969. 

15] A. Lavie. GLR* ： A Robust Grammar-Focused Parser for Spontaneously 

Spoken Language. PhD thesis, Carnegie Mellon University, May 1996. 

16] A. Lavie and M. Tomita. Recent advances in parsing technology, vol-

ume 1 of Text, speech and language technology, chapter GLR*-An Ef-

ficient Noise-Skipping Parsing Algorithm for Context-Free Grammars, 

pages 183-200. Kluwer Academic Publishers, 1996. 

17] W. J. M. Levelt. Formal grammars in linguistics and psycholinguistics. 

Mouton, 1, 1974. 

1¾ R. Moore. Improved left-corner chart parsing for large context-free gram-

mars. In Proceedings of the 6th International Workshop on Parsing 

Technologies, 2000. 

19] R. Nozohoor-Farshi. GLR Parsing for e-Grammars, chapter 5, pages 

61-75. Kluwer Academic Publishers, 1991. 

98 



20] P. Price. Evaluation of spoken language systems: The atis domain. In 

Proceedings ofthe ARPA Human Language Technology Workshop, pages 

91-95, 1990. 

21] M. Rayner and D. Carter. Fast parsing using pruning and a grammar 

specialization. In Proceedings ofl996ACL, 1996. 

22] S. SenefF. Tina: A probabilistic syntactic parser for speech understand-

ing systems. In Proceedings of Speech and Natural Language Workshop, 

pages 168-178，February 1989. 

23] S. Seneff. Tina: A natural language system for spoken language appli-

cations. Computational Linguistics, 18(1):61-86, 1992. 

24] P. Shann. Generalized LR Parsing, chapter Experiments with GLR and 

Chart Parsing, pages 17-34. Kluwer Academic Publishers, 1991. 

25] K. C. Siu and H. Meng. Semi-automatic acquisition of domain-specific 

semantic structures. In Proceedings of Eurospeech., 1999. 

26] S. Steel and A. De Roeck. Bi-directional parsing. In Hallam and Mellish, 

editors，Proceedings of the 1987 AISB Conference, London, 1987. J. 

Wiley. 

27] P. Suppes. Probabilistic grammars for natural languages. Synthese, 

22:95-116, 1968. 

28] M. Tomita. Efficient Parsing for Natural Language. Kluwer Academic 

Publishers, Boston, MA, 1985. 

2¾ M. Tomita.- An efficient word lattice parsing algorithm for continuous 

speech recognition. In Proceedings of IEEE-IECEJ-ASJ International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 

1569-1572, April 1986. 

30] M. Tomita and See-Kiong Ng. The Generalized LR Parsing Algorithm, 

chapter 1，pages 1-16. Kluwer Academic Publishers, 1991. 

99 



31] E. Ukkonen. Lower bounds on the size of deterministic parsers. Com-

puter and System Sciences, 26:153-170, 1983. 

32] W. Ward. Understanding spontaneous speech. In Proceedings of Speech 

and Natural Language Workshop, pages 137-141, February 1989. 

33] W. Ward. The cmu air travel information service: Understanding spon-

taneous speech. In Proceedings of Speech and Natural Language Work-

shop, pages 127-129, June 1990. 

34] W. Ward. Evaluation of the cmu atis system. In Proceedings of Speech 

and Natural Language Workshop, pages 101-105, 1991. 

35] F. Weng, H. Meng, and P.C. Luk. Parsing a lattice with multiple gram-

mars. In Proceedings of the 6th International Workshop on Parsing 

Technologies, 2000. 

.36] F. Weng and A. Stolcke. Partitioning grammar and composing parsers. 

In Proceedings of the 4th International Workshop on Parsing Technolo-

gies, September 1995. 

37] C. S. Wetherall. Probabilistic languages: A review and some open ques-

tions. Computing Surveys, 12:361-379, 1980. 

38] J. H. Wright and E. N. Wrigley. GLR Parsing with Probability., chap-

ter 8，pages 113-128. Kluwer Academic Publishers, 1991. 

39] D. H. Younger. Recognition and parsing of context free languages in 

time n^. Information and Control, 10:198-208, 1967. 

100 



Appendix A 

ATIS-3 Grammar 

This appendix contains a subset of the English and Chinese ATIS-3 SEN-
TENCE-level rules, high level syntactic rules and low level semantic rules. 

A.1 English ATIS-3 Grammar Rules 

sentence-level rules 

S :=AIRLINE_CODE FLIGHT_PP 

S :=AIRLINE_CODE TIME_NP FLIGHT_PP 

S :=ASK ASK FLIGHT_PP MEAL_PP 

S :=ASK FLIGHT_ID 

S :=ASK FLIGHT_NP 

S :=ASK QUANT AIRLINE_CODE FLIGHTS 

S :=ASK QUANT FLIGHT 

S :=FLIGHT LOC FLIGHT_PP 

S :=FLIGHT_NP AND CLASS_TYPE 

S :=PLEASE ASK FLIGHT_NP 

S :=PLEASE ASK FLIGHT_NP TIME_NP 

S :=PLEASE ASK QUANT FLIGHT_NP 

S :=QUEST AIRLINE_CODE 

S :=QUEST AND QUEST 

S :=QUEST FLIGHT_PP TIME_NP 

S :=QUEST TIME_NP 

S :=WHAT FLIGHT are FLIGHT_PP 

S :=WHAT QUANT FLIGHT_NP 

101 



S :=WHETHER QUANT FLIGHT_NP LOC 

S :=which FLIGHT_NP 

high level rules 

FLIGHT_NP :=FLIGHT_NP AND FLIGHT_NP 

FLIGHT_NP :=FLIGHT FLIGHT_PP 

FLIGHT_NP :=FLIGHT FLIGHT_PP FLIGHT_PP 

FLIGHT_NP :=TIME_NP FLIGHT FLIGHT_PP 

FLIGHT_PP :=which FLIGHT_PP 

FLIGHT_PP :=that FLIGHT_PP 

FLIGHT_PP :=ARRIVAL 

FLIGHT_PP :=BETWEEN [ROUND_TRIP_REQUIRED] 

FLIGHT_PP :=DEPARTURE 

FLIGHT_PP :=DEPARTURE [AND] ARRIVAL [TIME_NP] 

FLIGHT_PP :=DEPARTURE ARRIVAL [THEN] ARRIVAL 

FLIGHT_PP :=STOP 

ARRIVAL :=TO LOC 

ARRIVAL :=TO TIME_NP 

ARRIVAL :=be there by TIME_NP 

ARRIVAL :=TO TIME_NP in LOC 

DEPARTURE :=FROM LOC TIME_NP 

DEPARTURE :=FROM [either] LOC 

DEPARTURE :=FROM TIME_NP 

LOC :=CITY_NAME [STATE_NAME] 

LOC : =AIRPORT_CODE 

LOC :=CITY_NAME COUNTRY_NAME 

LOC :=LOC OR LOC 

LOC :=anywhere 

TIME_NP :=[on] DATE 

TIME_NP :=UPDATE 

TIME_NP :=[on] DATE TIMERANGE 

TIME_NP :=TIMERANGE [on] DATE 

TIME_NP :=TIME of DATE 

TIMERANGE :=ABOUT TIME 

102 



TIMERANGE :=TIME TIME_TO TIME 

TIMERANGE :=ABOUT TIME TIME_TO TIME 

TIMERANGE :=BEFORE TIME 

QUEST :=WHICH OBJ 

QUEST :=WHICH FLIGHTS 

QUEST :=WHICH_TYPE FLIGHT 

QUEST :=HOW_MANY FLIGHT—NP 

low level rules 

TO :=into 

TO :=fly to 

TO :=arrive to 

TO :=arrive 

TO :=arrives 

FROM :=from 

FROM :=departing from 

FROM :=depart from 

FROM :=leave from 

FROM :=leaving 

ASK :=may i 

ASK :=need to 

ASK :=want to 

ASK :=like to 

ASK :=would like to 

DAY_NAME :=yesterday 

DAY_NAME :=tuesday 

DAY_NAME :=wednesday 

DAY_NAME :=friday,s 

DAY_NAME :=sundays 

CITY_NAME :=westchester 

CITY_NAME :=atlanta 

CITY_NAME :=chicago 

CITY_NAME :=milwaukee 

APM :=morning 

103 



APM :=afternoon 

APM :=evening 

APM :=day 

WHETHER :=does 

WHETHER :=is there 

WHETHER :=do 

WHETHER :=are they 

A.2 Chinese ATIS-3 Grammar Rules 

sentence-level rules 

S :=AIRLINE QUEST 

S :=AIRLINE_CODE 既 QUEST 

S :=ASK FLIGHT_NP 

S :=ASK FLIGHT_PP 

S :=ASK QUANT FLIGHT_NP 

S :=ASK QUEST 

S :=ASK TIME_NP QUEST 

S :=ASK 係 FLIGHT_PP 

S :=FLIGHT_NP HOW_MUCH 

S :=FLIGHT_PP 既 FLIGHT_NUMBER FLIGHT 

S :=FLIGHT_PP 要 QUEST 

S :=HOW—MUCH 係 AIRLINE 

S :=HOW_MUCH 係 AIRLINE AND AIRLINE 

S :=PLEASE ASK ASK FLIGHT_NP 

S :=PLEASE ASK FLIGHT_NP AND OBJ 

S :=PLEASE ASK FLIGHT_PP TIME_NP 又 FLIGHTS 

S :=PLEASE ASK QUANT TIME_NP OR FLIGHT_NP 

S :=PLEASE ASK QUEST 有 FLIGHT_NP 

S :=PLEASE ASK TIME_NP FLIGHT_NP 

S :=PLEASE ASK TIME_NP QUEST 

S :=TIME_NP QUEST MEAL_DESCRIPTION 

S :=WHETHER QUANT FLIGHT_NP 

high level rules 

FLIGHT_NP :=[會][係]FLIGHT_PP [既]FLIGHT 

104 



FLIGHT_NP :=FLIGHT_PP 同 時 FLIGHT_PP [既]FLIGHT 

FLIGHT_NP :=FLIGHT [係]FLIGHT_PP 

FLIGHT_NP :=FLIGHT_PP AND FLIGHT_PP [既]FLIGHT 

FLIGHT_PP :=ARRIVAL 

FLIGHT_PP :=ARR_DEPART 

FLIGHT_PP :=BETWEEN 

FLIGHT_PP :=DEPARTURE 

FLIGHT_PP :=DEPARTURE ARRIVAL 

FLIGHT_PP :=DEPARTURE ARRIVAL [THEN] ARRIVAL 

ARRIVAL :=[係]LOC 降 落 

ARRIVAL :=[係]TIME_NP [係 ] L O C 降 落 

ARRIVAL :=[係]TIME_NP 到 LOC 

ARRIVAL :=[係]TIME—NP 到 達 LOC 

DEPARTURE :=[TIME_NP]由 LOC 

DEPARTURE :=[TIME_NP]從 LOC 

DEPARTURE : = [TIME_NP]係 LOC 起 飛 

DEPARTURE :=TIME 機 去 

DEPARTURE :=TIME 機 返 

TIME_NP :=DATE TIME 

TIME_NP :=DAY_NAME TIME 

TIME_NP :=FLIGHT_DAYS TIME 

TIME_NP :=WEEK TIMERANGE 

TIMERANGE :=ABOUT TIME TIME_TO TIME 

TIMERANGE :=TIME TIME_TO TIME 

TIMERANGE :=[ABOUT] TIME 左 右 

TIMERANGE :=TIME BEFORE 

QUEST :=HOWlONG 

QUEST :=HOW_MUCH OBJ 

QUEST :=WHICH OBJ 

low level rules 

ASK : = 我 想 榲 

ASK : = 話 比 我 知 

ASK : = 話 我 知 

105 



ASK : =請問 

DAY_NAME : = 星 期 一 

DAY_NAME : = 工 作 天 

DAY_NAME : = 禮 拜 一 

DAY_NAME : = 星 期 三 

AIRLINE_CODE : = 三 角 州 

AIRLINE_CODE : = 加 拿 大 國 際 航 空 

AIRLINE_CODE : = 聯 合 航 空 公 司 

AIRLINE.CODE : = 美 國 航 空 公 司 

APM : =上畫 

APM : =下畫 

APM : =上午 

APM : =下午 

TIME_TO : = � 

TIME_TO : =至到 

WHETHER : = 係 唔 係 

WHETHER : = 是 不 是 

WHETHER : =有冇 

WHETHER : = 可 唔 可 以 

106 





CUHK L i b r a r i e s 

1_圓_1111111 
DD3flD37S3 


