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Abstract 

Elliptic Curve Scalar Multiplication is the dominant computation of Elliptic 

Curve Cryptography, and each usual ECC cryptographic operation takes just one 

or two Elliptic Curve Multiplications. Using Optimal Normal Basis in GF{2'^), 

we achieve 60ms to 88ms per iteration for bits length ranges from 173 to 179 on a 

Pentium II-400Mhz PC in C without using assembly. No such result using ONB 

has ever been reported in the literature before. The competitive performance 

is due to an adaptation of the Almost Inverse Algorithm for an implementation 

of fast field inverses for ONB. Since we have only used the standard addition-

subtraction method for Scalar Multiplication, vast improvements can still be 

possible. 

In the final chapter, we present our findings of a particular extension of the RSA 

public-key cryptosystem from using integers modulo n to a version using matrices 

whose entries are integers modulo n, where n is the product of two large primes. 
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橢圓曲線數量乘法是橢圓曲線密碼學之主要運算，而一個一般 

的橢圓曲線密碼操作只需要一至兩個橢圓曲線數量乘法。 

在 有 限 體 G F ( 2 A m ) 使 用 最 適 正 規 基 ， 對 1 7 3 至 1 7 9 位 元 長 

度，一個橢圓曲線數量乘法只需要0.060-0.088秒。這是使用 

C語言，在奔騰二 •四百百萬赫個人電腦上作出的，而且沒 

有使用過組合語言。 

使用正規基，沒有這樣的結果在文獻上出現過。 

其良好的性能是由於在使用最適正規基，履行了一個快速的 

逆，這是把差不多逆算法改編而作出的。 

對數量乘法’因爲我們只是使用過加減算法，故還有很多改 

良的空間。 

在最後--章，我們推廣RSA公開密碼系統至矩陣，其元素是 

整數模n，n係兩個大質數之乘積。 



Contents 

1 Theory of Optimal Normal Bases 3 

1.1 Introduction 3 

1.2 The minimum number of terms 5 

1.3 Constructions for optimal normal bases 7 

1.4 Existence of optimal normal bases 10 

2 Implementing Multiplication in 爪) 13 

2.1 Defining the Galois fields GF(2饥） 13 

2.2 Adding and squaring normal basis numbers in GF{2'^) 14 

2.3 Multiplication formula I5 

2.4 Construction of Lambda table for Type I ONB in GF{2'^) 16 

2.5 Constructing Lambda table for Type II ONB in GF{2'^) 21 

2.5.1 Equations of the Lambda matrix 21 

2.5.2 An example of Type Ila ONB 23 

2.5.3 An example of Type l ib ONB 24 

2.5.4 Creating the Lambda vectors for Type II ONB 26 

2.6 Multiplication in practice 28 

3 Inversion over optimal normal basis 33 

3.1 A straightforward method 33 

3.2 High-speed inversion for optimal normal basis 34 

3.2.1 Using the almost inverse algorithm 34 

1 



2 CONTENTS 

3.2.2 Faster inversion, preliminary subroutines 37 

3.2.3 Faster inversion, the code 41 

4 Elliptic Curve Cryptography over 49 

4.1 Mathematics of elliptic curves 49 

4.2 Elliptic Curve Cryptography 52 

4.3 Elliptic curve discrete log problem 56 

4.4 Finding good and secure curves 58 

4.4.1 Avoiding weak curves 58 

4.4.2 Finding curves of appropriate order 59 

5 The performance of 17x bit Elliptic Curve Scalar Multiplication 63 

5.1 Choosing finite fields 63 

5.2 17x bit test vectors for onb 65 

5.3 Testing methodology and sample runs 68 

5.4 Proposing an elliptic curve discrete log problem for an 178bit curve 72 

5.5 Results and further explorations 74 

6 On matrix RSA 77 

6.1 Introduction 77 

6.2 2 by 2 matrix RSA scheme 1 80 

6.3 Theorems on matrix powers 80 

6.4 2 by 2 matrix RSA scheme 2 83 

6.5 2 by 2 matrix RSA scheme 3 84 

6.6 An example and conclusion 85 

Bibliography 9 1 



Chapter 1 

Theory of Optimal Normal 
Bases 

1.1 Introduction 

In this chapter the theory of optimal normal bases in the finite fields GF{p^) is 
presented. We explain the use of an optimal normal basis so as to reduce the com-
plexity of multiplying field elements. Constructions for these bases in and 
extensions of the results to GF{p^) are presented. Important applications of finite 
field arithmetic include: cryptography [Men93] and error correction coding [Ber68], 
since a reduction in the complexity of multiplying and exponentiating elements of 
G厂(2爪)is achieved for many values of m, some prime. 

A normal basis in GF{p爪、is a basis N of the form N = {P, pP, f3P\ ..., f }. 

It is well known that a normal basis exists in every finite field. Every B e GF{p^) 

may be uniquely expressed in terms of A/" as S = X]二丄 , hi e GF{p). 

Further，let A = ；C S ^ a,'，and let C = AB = J^TJq^ aftp' ’ where ĉ  is referred 
to as a product digit. Now C = {YTJo^ a , * � 

=ET=~q ET=o ^ibjPP'P^' • The expressions are referred to as cross-product 
terms. Since iV is a basis for the vector space, we can write /̂ p'/̂ p" = Y!k=o Aijfc/̂ P知， 

Xijk e GF{p). Substitution yields 

m—1m—1 
^ijkCiihj. (1.1) 

i=0 j=Q 

For X e let X = . . . ,Xm-i) denote the coordinate vector for X 

3 



4 CHAPTER 1. THEORY OF OPTIMAL NORMAL BASES 

in the basis N. Since N is normal, we have A^'' = (a_fc,a_fc+i,. •. ’a—jt—i) where 
the subscripts are taken modulo m. 

Also = 

广 - 、 广 ” ’ . . . ’ � 爪 广广一））’ so equating co-
efficients yields Ck{A,B) = co{Ap"' '\ 

Therefore viewing c^ as a bilinear form, the form Ck is obtained from cq by an 
A;—fold cyclic shift of the variables involved. 

Define a matrix Tn as follows: index the rows of Tn by the ordered pairs (i, j ) , 0 < 
hj < m - 1 . In row column k put Xijk, the coefficient of pp" in the expansion 
of pP'pP'' • Let Cn denote the number of nonzero terms in the form cq, and therefore 
Cfc, in the basis N. 

As an example, consider the finite field GF{2^) as generated by the irreducible 
polynomial f{x) = + 1. If we choose a to be a zero of f{x) and set (3 = 

then N = {fi, , (3'^''] is a normal basis. The matrix Tn for this basis 

is given in Table 1.1a. The value of Cn in this example is 15. If = o；̂, then 
{从/52,/322’ 卢23’ 沪 i s again a normal basis. Its matrix is given in Table 1.1b, and 
Cat = 9 for this basis. 
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Table 1.1a. Tn for a normal basis N in GF{2^) with Cn = 15. 

2fc 

2 ^ 2 � 1 2 4 8 16 

1 1 0 1 0 0 0 
1 2 0 1 1 1 0 

1 4 1 1 1 0 1 

1 8 1 0 1 1 1 

1 16 1 1 1 0 0 

~ ~ 2 1 ~ ~ 1 1 ^ 

2 2 0 0 1 0 0 

2 4 0 0 1 1 1 

2 8 1 1 1 1 0 

2 16 1 1 0 1 1 

1 1 1 1 0 r 

4 2 0 0 1 1 1 

4 4 0 0 0 1 0 

4 8 1 0 0 1 1 

4 16 0 1 1 1 1 

~ ~ 8 1 r ~ o r ~ i r 

8 2 1 1 1 1 0 

8 4 1 0 0 1 1 

8 8 0 0 0 0 1 

8 16 1 1 0 0 1 

~ 1 6 1 1 1 1 0 ^ 

16 2 1 1 0 1 1 

16 4 0 1 1 1 1 

16 8 1 1 0 0 1 

16 16 1 0 0 0 0 
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Definition 1 We define N to be an optimal normal basis of GF{p^) if and only 

if Cn = 2m — 1. 

Table 1.1b. T^ for an optimal normal basis N in GF{2^). 

2fc 
2' 1 2 4 8 16 

1 1 0 1 0 0 0 

1 2 1 0 0 1 0 

1 4 0 0 0 1 1 

1 8 0 1 1 0 0 

1 16 0 0 1 0 1 

2 1 1 0 0 1 0 

2 2 0 0 1 0 0 

2 4 0 1 0 0 1 

2 8 1 0 0 0 1 

2 16 0 0 1 1 0 

4 1 0 0 0 1 1 

4 2 0 1 0 0 1 

4 4 0 0 0 1 0 

4 8 1 0 1 0 0 

4 16 1 1 0 0 0 

8 1 0 1 1 0 0 

8 2 1 0 0 0 1 

8 4 1 0 1 0 0 

8 8 0 0 0 0 1 

8 16 0 1 0 1 0 

~ i 6 1 o ~ ~ o ~ ~ 1 0 r 
16 2 0 0 1 1 0 

16 4 1 1 0 0 0 

16 8 0 1 0 1 0 

16 16 1 0 0 0 0 

1.2 The minimum number of terms 

We prove that 2m - 1 is the minimum possible number of terms in equation (1.1)， 

Cfc = Zl E Xijkaibj. The proof of the following theorem is based on an examina-
i=0 j=0 

tion of m rows of a submatrix of T^. 
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Theorem 2 If N is a normal basis for GF{p^) with matrix Tn, then Cn � 2 m — 1 . 

Proof . Let N = . . . and, for simplicity, denote by A . 
m—1 

Since N is a normal basis, ^ /5i = trace (3. 
i=0 

Let b denote trace f3. Consider the m x m submatrix To of Tn consisting of the 

m rows of Tn corresponding to the elements /5o/3i,0 < i < m — 1. Now bj3o = 
m—l m—1 

Po Pi — Ylt PoPi. Therefore, the sum of the rows of To is an m—tuple with 
t = 0 i=0 

a 6 in position 1 and zeros elsewhere. Hence, each column of To contains at least 
two nonzero elements with the possible exception of column 1 because each column 
of To must contain at least one nonzero element since the rows of To are linearly 
independent or equivalently, {PoPi : 0 < i < m - 1} is a basis for G F { p ^ ) . 

Therefore, the total number of nonzero elements in To is at least 2m — 1. If we 

define Tj to be the matrix obtained from To by raising each element (associated 

with a row) of To to the jP th power, then PoPi in To becomes mod m in 

Tj for 0<i,j <m- 1. 

Prom the definition of a normal basis, Tj must also contain a total of at least 

2m — 1 nonzero elements. Thus, the total number of nonzero elements in Tn is at 

least m{2m — 1) and since each column has Cn nonzero elements, Cm�2m — 1. 口 

Corollary 3 Given an optimal normal basis in GF(j/^)，for every 0 < k <m — l, 
m—l m—l 

equation (1.1), i.e., Ck = ^ ^ XijkfHbj will contain two occurrences of subscript 
i=0 j=o 

i for every 0 < i < m — 1, and one occurrence of subscript j. This is also true for 

the subscripts j. 

1.3 Constructions for optimal normal bases 

By appropriately choosing (3, we can generate an optimal normal basis N = 

{(3, /5P, � . . . , 广 - 1 } in GF(p饥),for certain values of m. 

Lemma 4 Suppose that K = GF[p爪)contains {m + l)st roots of unity. If the m 

nonunit roots of unity are linearly independent, then K contains an optimal normal 

basis. 

Proo f . Let (3 denote a primitive (m + l)st root of unity in K. Then the con-

jugates of P are pp,pp\...,广.Since N = {/3, /3p’ 妒 、 . . ” 广 } is linearly 

independent, it is a normal basis for K. But N is the set of zeros of p{x)= 

(工 m+i _ l)/(x- 1); that is, N is the set of nonunit roots of unity in K. Let = (3, 
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and /3i — i = 1 ,2 , . . . ,m - 1. Recall that the number of nonzero terms in the 

bilinear form for cq is also the number of nonzero terms in the expansion of the 

set {PoPi : 0 < z < m - 1} in the basis N. But if pi ^ then 隨 = P j for 
m—1 

some exponent j (depending on i) whereas Pq/Sq^ 二 E Hence there are 2m — 1 
i=0 

nonzero terms in the expansion, and N is optimal. • 

The above can be restated as below. 

Theorem 5 The field K = GF{p^) contains an optimal normal basis consisting 

of the nonunit (m + l)st roots of unity if and only if m + I is a prime and p is 

primitive in Zm+i • 

Proof. If m + 1 is prime, then m+1 divides 广 — 1 and K contains a primitive 
(m + l)st root of unity (3. Since p is primitive in 1 ’ the minimal polynomial of 
P is - l)/{x — 1) and the nonunit (m + l)st roots are linearly independent. 

Conversely if these roots are independent in K then p has order m modulo m + 1 
and m + 1 is prime. • 

The above theorem cannot produce optimal normal bases in GF{p^) for prime 
m unless m = 2. This liability can be overcome in extensions of in some 

instances by the following theorem. 

Theorem 6 If 

(a) 2 is primitive in Z2m+i, or 

(b) 2m + 1 is a prime, congruent to 3 modulo 4 and 2 generates the quadratic 
residues in Z2m+i, 

then there exists an optimal normal basis in G_F(2爪). 

Proof. Since 2m + 1|22爪-1’ there exists a primitive (2m + l)st root of unity, 7 
in L e t = 7 + 7 -1 . 

Since 2爪三 士 1 mod (2m + 1), either 7 - 1 二- or 7 = 72"*. Now " 2 ” ' = 
+ 7-1)2"" = — + = 7 + 7-1 = 尽 

Hence, (3 is an element of the subfield 

We claim that {/?, an optimal normal basis of the subfield. 
m—1 m—1 i i 

If = 0,then E 从 千 I + 7 - 2 ' ) = 0. Now since either 2 is a generator 
i=0 i=0 

of the multiplicative group of GF{2m + 1) or 2 generates the quadratic residues of 
GF{2m + 1) with 2m + 1 三 3 mod 4 then + - E S ^ W + 
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m_l i 2m 
Ya=o = Yj where each \ occurs in {/Xi,/X2,... ,/U2m}- Therefore 7 j=i 

2m-l 
is a zero of the polynomial j{X) = ^ /J^+iX�Since f(j) = 0’ the minimal 

z = 0 
polynomial of 7’ m^{X) divides f(X). 

If hypothesis (a) holds then m^{X) = 1 + Jj： + +... + ；̂：之爪 since m^{X)\f{X) 

we conclude that f{X) = 0 and all Xi = 0. 

If hypothesis (b) holds then m^{X) has degree m as does m^-i(X) and ；爪+1 _ 
1 = (X-l)m^(X)m^-i(X). But m^(X) since / ( 7 ) = 0 and m ^ - i ( X ) \f(X) 

since / ( 7 - 1 ) = 0 and, hence, 1 + + •. • + 义2爪|八义)implying that f{X)三 0 
and that all Â  = 0. Therefore, we conclude that N is & normal basis for GF{2"^). 

The cross-product terms are P^' = + + 7 - 2 ^ ) = � + 2 ” + 

(2'+2J)) + ⑵—2” + ⑵-2勺).Now if 2 is primitive modulo 2m + 1 then each 
nonzero residue has the form 2 知 for some integer k satisfying 0 < k < 2m - 1, 

whereas if 2 generates the quadratic residues modulo 2m + 1 and is congruent to 
3 modulo 4, then each nonzero residue has the form of either 2知 or —2知 for some 
integer k satisfying 0 < A; < m - 1. 

Therefore if 2' ^ ±2"̂ ' mod (2m + 1), then there exist integers k and k' such that 
2' + = ±2知 and 2' - 2) = 士 f o r at least one choice of the + or — sign in each 
case. In this event, P ^ ' = + . 

One the other hand, if 2' = ±2) mod {2m + 1), then one of 2' + is not zero 
modulo 2m + 1, and so there exists a k such that at least one of the equations 
2' + 力 = 2 " ， + 2) = — - 2) - - = -2& is satisfied. In this case, 
since we are in a field of characteristic 2, = . 

Let Pi = i = 0 , l , 2 , . . . , m - 1. Then, since (/3of = there are at most 
2m — 1 terms in the expansion of the set in terms of the basis N, and 

therefore there are precisely 2m - 1 such terms and iV is an optimal normal basis. 
• 

The minimal polynomial M/3(X) as defined in the above Theorem can be easily 

determined recursively. Over GF(2), define the sequence of polynomials fi{X), i = 

0,1,2,... as follows. Let fo{X) = 1’ / i ( X ) = X + 1, and ft{X) = Xft-i{X) + 

f t - 2 { X ) , i > 2. If m is such that the hypotheses of the theorem are satisfied, then 

fm{X) is the minimal polynomial of P. Indeed, it is easily shown by induction that 

M Y + 广 1) = 1 + E l i ( y ' + 广”.Therefore 副 = 1 + J:T=i(Y + 7""” = 

1 + J2i=i 7 ' = 0, since 7 is a primitive (2m + l)st root of unity. 
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Definition 7 Let N = {(3, } be a normal basis over Let 

= i = 0,1,... ,m - 1. The basis N will be said to be of type I if with the 

exception of one value of i, 0 < i < m - 1, there exists an integer ki satisfying 

0 <ki <m-l such that /3oA = /5fc.. 

The basis N is said to be of type II if, for every i, satisfying 1 < i < m - 1, there 

exists integers ki and rrii such that 二 + 

Clearly every optimal basis constructed by the method of Theorem 5 is a type-I 
basis and every optimal basis constructed by the methods of Theorem 6 is a type-II 
basis. 

It is easily shown that every type-I basis can be obtained by the construction 
of Theorem 5. It can be shown that every type-II basis can be obtained by the 
construction of Theorem 6，[MOVW89]. 

1.4 Existence of optimal normal bases 

It is known, see [MOVW89], that 

• 2 is primitive in Zp for a prime p ii p = 4q + 1 and q is an odd prime, 

• 2 is primitive in Zp for a prime p ii p = 2q + 1 where g is a prime congruent 
to 1 modulo 4, 

• 2 is a generator of the quadratic residues in Zp if p = + 1 where ^ is a prime 
congruent to 3 modulo 4, and 

• 2 cannot be primitive modulo p if p is a prime congruent to 1 modulo 8. 

In view of these results, the testing of the hypotheses in Theorems 5 and 6 becomes 
easier in certain cases. Computer searches give a complete list of m < 1200 for 
which we can construct an optimal normal basis in Table 1.4, has 23% of 

all possible values of m. 



1.4. EXISTENCE OF OPTIMAL NORMAL BASES 11 

Table 1.4. Values of m for which an optimal normal basis can be constructed in 

2 3 4 5 6 9 10 11 12 14 18 23 

26 28 29 30 33 35 36 39 41 50 51 52 

53 58 60 65 66 69 74 81 82 83 86 89 

90 95 98 99 100 105 106 113 119 130 131 134 

135 138 146 148 155 158 162 172 173 174 178 179 

180 183 186 189 191 194 196 209 210 221 226 230 

231 233 239 243 245 251 254 261 268 270 273 278 

281 292 293 299 303 306 309 316 323 326 329 330 

338 346 348 350 354 359 371 372 375 378 386 388 

393 398 410 411 413 414 418 419 420 426 429 431 

438 441 442 443 453 460 466 470 473 483 490 491 

495 508 509 515 519 522 530 531 540 543 545 546 

554 556 558 561 562 575 585 586 593 606 611 612 

614 615 618 629 638 639 641 645 650 651 652 653 

658 659 660 676 683 686 690 700 708 713 719 723 

725 726 741 743 746 749 755 756 761 765 771 772 

774 779 783 785 786 791 796 803 809 810 818 820 

826 828 831 833 834 846 852 858 866 870 873 876 

879 882 891 893 906 911 923 930 933 935 938 939 

940 946 950 953 965 974 975 986 989 993 998 1013 

1014 1018 1019 1026 1031 1034 1041 1043 1049 1055 1060 1065 

1070 1090 1103 1106 1108 1110 1116 1118 1119 1121 1122 1133 

1134 1146 1154 1155 1166 1169 1170 1178 1185 1186 1194 1199 

� This table leads to the following: 

Conjecture. If m does not satisfy the criteria for Theorem 5 or Theorem 6, then 
GF{2^) does not contain an optimal normal basis. 

It was proved in [GL92]. 

Finally, here are some pointers for hardware implementations. 

Massey and Omura, [OM86] ’ constructed a serial-in serial-out multiplier to exploit 
this particular aspect of normal bases. An architecture for a hardware implementa-
tion is given in [AM0V91], of the Journal of Cryptology. In this paper, G. Agnew, 
R. Mullin, I. Onyszchuk and S. Vanstone examine the development of a high-speed 
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implementation of a system to perform exponentiation in fields of the form 爪). 
The use of optimal normal bases and observations on the structure of multiplica-
tions have led to the development of an architecture which is of low complexity and 
high-speed. Using this architecture a multiplication can be performed in m clock 
cycles. 



Chapter 2 

Implementing Multiplication 
i n GF{2爪) 

2.1 Defining the Galois fields GF(2爪) 

A normal basis can be found for any finite field GF{p^), see chapter 1. For com-
puters we use p = 2, i.e., 广 — . . A n element e in a field GF{2^) 

written in a normal basis 朋：e = + . . . + + 已工沪 i + 己。卢 

Here is the first header file, called field2n.li，which helps to define Galois Fields 
for the C code. 

/*•* f i e l d 2 n . h ••*/ 

#def ine WORDSIZE ( s i z e o f ( i n t ) * 8 ) 
#def ine NUMBITS 173 

#def ine NUMWORD (NUMBITS/WORDSIZE) 

#define UPRSHIFT (NUMBITS7.W0RDSIZE) 
#def ine MAXLONG (NUMWORD+1) 

#def ine MAXBITS (MAXLONG*WORDSIZE) 

#def ine MAXSHIFT (WORDSIZE-1) 

#def ine MSB (1L«MAXSHIFT) 

#def ine UPRBIT (1L«(UPRSHIFT-1)) 

#def ine UPRMASK (-1L«UPRSHIFT)) 

#def ine SUMLOOP(i) f o r ( i = 0 ; KMAXLONG; i++) 

1 3 
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typedef short in t INDEX; 

typedef unsigned long ELEMENT； 

typedef s t r u c t { 

ELEMENT e[MAXLONG]； 

} FIELD2N; 

WORDZISE is the number of bits in a machine word. NUMB ITS is the number of bits 

the normal basis math will be expected to work on. NUMWORD is the maximum index 

of machine words into a normal basis coefficients array. UPRSHIFT is the number of 

left shifts needed to get to the most significant bit in the zero offset of the coefficient 

list. MAXLONG is the number of machine words to hold the normal basis coe伍dents. 

The term MAXBITS is used in a few places; it is the maximum number of bits we 

can store in MAXLONG machine words. The term MAXSHIFT is the largest number of 

shifts we need to move the most significant bit to the least in a single bit block. 

Since we are doing a lot of shifting, this will be useful later. MSB is a mask for the 

most significant bit in a WORDZISE block of bits. 

The term UPRSHIFT is used to compute the most significant bit position, and 

UPRBIT, a mask for the high-order ELEMENT UPRMASK. We will use UPRBIT for rota-

tions and UPRMASK to clear bits after rotations and shifts. 

SUMLOOP is a macro. An INDEX is used for bookkeeping. We call an unsigned long 

an ELEMENT, because it is the simplest thing we can work with. An ELEMENT is one 

machine word in size. 

Finally，we define the fields storage structure FIELD2N. This comes from the math-

ematical symbols, which means a field of characteristic 2 and vector length 

m. Since we are going to reference each field element in the array, we use a single 

letter "e, “ for ELEMENT. The coefficients are in big-endian order. This is an arbitrary 

choice, so if one changes the order, make sure he changes it everywhere. 

2.2 Adding and squaring normal basis numbers in 

In base 2, all the coefficients can only be 0 or 1, and addition is simply an exclusive^ 
or，XOR operation. For m = 8,16，32,or 64 we would have perfect word-size align-
ment for 

any processor. Unfortunately, these are too small for cryptographic pur-
poses and not mathematically optimal-
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The nicest aspect of this representation is that squaring a number amounts to a 
rotation. There are two reasons for this: 1 . ( 沪 下 = / 5 2 … 2 . = p. The first 
statement is obvious. The second statement comes from the rules of finite fields 
and is similar to Fermat's Little Theorem. So squaring e amounts to shifting each 
coefficient up to the next term and rotating the last coefficient down to 0 position. 
Squaring is thus very fast in a normal basis. 

The first weird or interesting thing to recognize is what 1 is in a normal basis: 
护 • In other words, the fundamental constant, 1’ is represented as "all 

bits set" in a normal basis. So, adding 1 to a normal basis number amounts to 
flipping all the bits~not counting as we are used to. 

2.3 Multiplication formula 

Multiplication over a normal basis gets a touch complicated and is the main theme 
of this chapter. The basics are the same in any mathematical system, just multiply 
coefficients and sum over all those that have the same power of x. What makes 
optimal normal bases slick is that most of those terms are 0. 

To show how multiply works, let us recall those material in Chapter 1, section 1 
first. 

Take two elements in GF(2,: A = E t ' o ' a n d B = ZT=o'The 
formal multiplication is C = AB = ZTJo' ET=o a扣萨 but C = ZT=o CkP'' 

by definition of an element in a normal basis. So the double sum in the first equation 
has to match the single sum in the second equation. In fact, we must have each 
cross-product term map to a sum over the basis terms 

m—1 
� = \ijk(3^\ Xijk e GF{2). 

k=0 

The Xijk coefficient is called "the lambda matrix" or "multiplication table." 

If we substitute the multiplication table formula into the C = AB formula, we get 
a mess. FVom that mess we can find the solution to each Ck coefficient of in 
C = EETqI Cfc卢 ’ which is "only" a double sum: 

m—1m—1 
Cfc = [ [ aibjXijk. 

i=0 j=0 

which is equation 1.1 in Chapter 1 section 1. 
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The equation Ck = "yI E cLi^j^ijk can be transmogrified into a form that requires 
i=0 j=0 . . 

only Xijo. From the discussions following equation 1.1 of Chapter 1 section 1’ it is 

readily seen that 
m—1m—1 

Cfc = ^ ^ ai+fc&j+fcAijO. (2-1) 
i=0 二 0 

That reduces the amount of work required to construct the 入 matrix (multiplication 

table). What makes equation 2.1 so awesome is that all we need to do is shift the 

inputs by the correct amount and all coefficients can be computed in parallel. 

Because there is no carry, even high-level languages can reasonably implement 

normal basis math using very little memory. Of course, assembler and hardware 

will always be faster. 

An "optimal" normal basis has the minimum number of nonzero terms. This 

number is called the "complexity" of the multiplication table. For fields GF{2" ' ) 

the optimal (minimum) complexity is 2m — 1’ chapter 1 theorem 1. 

Recall that there are two types of optimal normal basis over GF�2爪、mentioned in 

Chapter 1’ Section 3. They are called Type I and Type II. The only real difference 

between them is the way we find which bits in the 入 matrix are set. For Type I 

ONB we only need to store one vector; for Type II ONB we'll need to store two 

vectors. For the code here, we'll make them both look the same so that the multiply 

routine will work in either case. A Type I ONB multiply could be made quicker 

with a few math tricks. 

2.4 Construction of Lambda table for Type I ONB 

in 

According to Chapter 1’ Section 3’ the rules for creating Type I Optimal Normal 

Basis in the field are: 

1. m + 1 must be prime, 

2. 2 must be primitive in hm-vi-

Rule 2 means that 2 raised to any power in the range 0 . . . m - 1 modulo m + 1 

must result in a unique integer in the range 1 . . . m . Z is used to mean the set of 

integers. 

We need to find the cross-product terms of in 萨 = 入 i j f c / ^ 2 知 ， X i j k e 
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GF{2) to make the multiplication work. Because we can transform the A matrix to 

A; = 0 for all cross-terms, we really only need to solve the equation: = (3 .̂ 

There is also the special case: P̂ ^ — 1, when 2' + is congruent to 0 modulo 

m+1. 

To proceed, we need to know some math rules. For all the above to work optimally 

we must have P be an element of order m + 1 in GF{T^) . Since 2 is primitive 

in Zm+i, mod m + 1 will run through all the integers between 1 and m as i 

runs through all values 0,1，...，m — 1. The combination 产 is just another way of 

counting through all powers of (3, which is what generates our basis. The order is 

scrambled compared to , but all powers of the generator are accounted for. These 

are just simple matters, see [Ros98], p.80. 

The easy way to solve equations = /^i, and also = 1 is to rewrite 

them as modulo m + 1 and to "step into the exponent." We only need to solve: 

+ = 1 mod m + 1, 

2' + = 0 mod m + 1 . 

Let's start with i = 0. = 1 and 二 1, since m + 1 is prime. This last point 

comes from Fermat's Little Theorem. The first equation + = I mod m + 1 

cannot have a solution for z = 0. Only the second equation 2 � + = 0 mod m + 1 

can. 

This second equation + 2-̂  = 0 mod m + 1, can be solved, like this: If we take 

the square root of = 1, we find: 2—2 = mod m + 1. But we already know 

that 2® = +1, and, since 2 generates all the numbers mod m + 1, there is only one 

choice: T̂ 丨 1 = —1 mod m + 1. The equation + V = 0 mod m + 1 thus has a 

solution for i = 0’ which is: 2 � 2 — 2 二 • mod m + 1 . We mentioned previously that 

the Type I ONB only needs a single vector to keep track of all the cross-product 

terms. The first entry in the table is at offset 0 (we are programming in C) and 

has value m/2. We don't need to store any more of the values to solutions of this 

equation, because we can multiply equation 2° + — • mod m + 1 by 2 and still 

have 0 on the right-hand side. For every i, the nonzero element Xijo element from 

the equation + = 0 mod m + 1 will always be: j = m/2 + i mod m. 

Now for the first equation + = 1 mod m + 1, we do have to tabulate the values 

from this equation once and then use those to look up the correct shift amounts. 

The first value for i = 1 is easy, since: 2 + = 1，or = —1，so j = m/2. After 

that we need to use antilog and log tables so we can find mod m + 1 easily and 

j from 1 — 2̂  mod m + 1 just as easily. 
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Let's look at a set of simple tables for m = 4. 

The antilog table, see below, is really simple; just multiply by 2 modulo 5 for 

each entry. 

Antilog Table for 2七 for m = 4 

i 0 1 2 3 4 

2' 1 2 4 3 1 

The log table, see below, takes each value of as the index and places i as the 
entry. 

Log Table for 2' for m = 4 

2' 1 2 3 4 

i 0 1 3 2 

The zero offset isn't used in this case, but we'll find a use for that storage location 

later. The log table is sometimes called the Zech logarithm and has uses in other 

places such as spread-spectrum communications. 

The code for generating the single vector we need is given below. It does two 

things. The first is a construction of log tables for 2' mod m + 1 . We call the prime 

number m + 1 “f ield_prime” in the code. This must be set in a header file. The 

best thing to do is a simple addition to the f i e ld2n .h file with the following line: 

#de f ine f i e ld_pr ime (NUMBITS+1) 

The second step is to create a lambda vector, which stores all the values of j for 

each value of i that satisfies the equation + = 1 mod m + 1 . The lambda 

vector, and the log table as well, are globals and are defined using these lines: 

s t a t i c INDEX Lambda[2][f ield_prime]； 

s t a t i c INDEX l o g 2 [ f i e l d _ p r i m e + l ]； 

A two-dimensional vector is not needed for the Type I ONB, but it is required for 

the Type II ONB. To make both types work with one multiply routine, the solutions 

to the equation 2' + = 0 mod m + 1 is copied into the Lambda [0] array. The 

Lambda [1] array holds the lambda vector solution to the equation 2' + 2^ = 1 mod 

m + 1 , which is the single vector we need. 

Here's the code that creates the Lambda Table. 

/ • c reate Lambda [ i , j ] t a b l e , indexed by i , each entry contains the 

value of j which s a t i s f i e s 2 " i + 2 " j = 1 || 0 mod f ield一prime. There are 
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two 16 b i t e n t r i e s per index i except f o r z e r o . 

Since 2"0 = 1 and 2~2n = 1, 2~n = - 1 and the f i r s t entry would 

be 2^0 + 2~n = 0. Mult ip ly ing both s ides by 2, i t s tays congruent t o 

z e r o . So Half the t a b l e i s unnecessary s ince mul t ip ly ing exponents by 

2 i s the same as squaring i s the same as r o t a t i o n once. Lambda[0][0] 

s t o r e s n = ( f i e l d一p r i m e - l ) / 2 . The terms congruent t o one must be found v i a 

lookup in the l o g t a b l e . Since every entry f o r ( i , ; j ) a l s o generates an 

entry f o r ( j , i ) , the whole ID t a b l e can be b u i l t q u i c k l y . 

* / 

v o id genlambdaO 
{ 

INDEX i , l o g o f , n, index, twoexp; 

f o r ( i=0 ; i<f ield一prime; i++) l o g 2 [ i ] = - 1 ; 

/ * b u i l d l o g t a b l e f i r s t •/ 

twoexp = 1； 

f o r ( i = 0 ; i< f i e ld_pr in ie ; i++) 

•C 

log2[twoexp] = i ; 

twoexp = (twoexp « 1) % f ield—prime; 

} 

Creating the log table takes four lines of code, only two of which are inside the 

loop. Each multiple of two is stored in the variable twoexp. The first line of code 

initializes twoexp to 1’ since 2° 二 1. Log base 2 of 1 is 0’ so the first entry in the 

loop sets offset 1 to the value 0. 

The next line of code shifts twoexp left once, which is the same as multiplying by 

2. That value is reduced modulo field—prime. The value of i is incremented at 

the bottom of the loop, and the next entry in the log table is log base 2 of twoexp, 

which equals i. All values of i will be stored somewhere in the log table and never 

overlap as long as the fundamental rule that 2 is a generator modulo f ield_prime 

(m + 1 ) is not broken. It is awesome to watch the vector get filled using a debugger, 

a very controlled chaos. 

Because the lambda matrix is symmetric, we only need to do half of it. The 

variable n in the code is used more than once, so it is convenient to define it as the 

following: 

/ • compute n f o r easy r e f e r e n c e •/ 
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n = (field—prime — l ) / 2 ; 

/ • f i l l in f i r s t vector with indices s h i f t e d by half tab le s i ze * / 
Lambda[0] [0] = n; 
f o r ( i = l ； i<field_p:rime; i++) 
Lambda[0] [ i ] = (Lambda [0] [ i - 1 ] + 1) •/• NUMBITS ； 

The above code fills in the Lambda [0] table. Starting with i = 0 in equation 
+ 二 0 mod m + 1, each succeeding value is just 1 plus the previous value 

modulo NUMBITS. For memory-constrained systems using only Type I ONB math, 
only one vector is needed. 

Here is the code that generates the single important lambda vector. 

/ * i n i t i a l i z e second vector with known values •/ 

Lambda[1][0]= - 1 ; / * never used * / 

Lambda[1] [1] = n; 

Lambda [1] [n] = 1; 

/ * loop over resu l t space. Since we want 2 " i + = 1 mod f ie ld_pr ime 

i t ' s a ton eas ier to loop on 2 " i and look up i than so lve the s i l l y 

equations. Think about i t , make a t a b l e , and i t ' l l be obvious. •/ 

f o r ( i=2; i<=n; i++) { 

index = l og2 [ i ]； 

logof = l og2 [ f i e ld_pr ime - i + 1 ] ; 

Lambda[1][index] = logof； 

Lambda[1][logof] = index; 
} 

/ • l a s t term, i t ' s the only one which equals i t s e l f . •/ 

Lambda[1] [ l og2 [n+ l ] ] = log2[n+l]； 

} 

Let's see how this works. The first thing to recognize is that equation 2' + 2) = 1 

mod m + 1 is symmetric. If entry A^o = 1, then 入jio = 1 too. The counter i is 

taken as the value of 2'. Because we'll hit every value only once, the counter steps 

through every possible value of 2' (mod m + 1). The variable index is log base 2 of 

i , so that tells us where to store the value of i in the Lambda vector. 

Since 1 — 2̂  modulo f ield_prime does not change if we add f ield_prime, we can 
write the equation as: = f ield_prime + 1 - 2 \ Take log base 2 of both sides, 
and we have the second line of code in the loop. This eliminates negative lookups, 
which would give the code some major headaches. 
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The last two lines in the loop simply set the entry point index to the value of j 

(called logof in the code) and entry point j to the value of index. The very last 

line in the above listing fills in the only nonsymmetric term. 

2.5 Constructing Lambda table for Type II ONB in 

2.5.1 Equations of the Lambda matrix 

For a Type II optimal normal basis we have the same number of terms. But both 
sets are scrambled, so we end up with two sets of vectors. There are two possible 
Type II ONBs: let us call them Type Ila and Type lib. 

According to Chapter 1’ Section 3. A Type II optimal normal basis over 
can be created if : 

1 2m + 1 is prime 
and either 

2a 2 
is primitive in Z2m+i 

or 

2b 2m + 1 = 3 mod 4 and 2 generates the quadratic residues in Z2m+i. 

What does 2a mean? If we take mod 2m + 1 for /c = 0,1, 2 , . . . , 2m - 1 then we 

get every value in the range [1 . . . 2m] back. What does 2b mean? The first part is 

simple: The last two bits are set in the binary representation of the prime 2m + 1. 

The second part means that even if 2知 mod 2m + 1 does not generate every element 

in the range [1 . . . 2m], we can at least take the square root mod 2m + 1 of 2''. 

For Type II ONB we need to modify the f i e l d 2 n . h header file again. To make 
life a bit simpler, we add some additional code. This allows all the modifications 
to work when needed. By simply changing TYPE2 to TYPEl in one place the entire 
code package will compile correctly. 

#def ine TYPE2 

# i fde f TYPE2 

#def ine field—prime ((NUMBITS«1)+1) 
#e lse 

#def ine f ie ld_pr ime (NUMBITS+1) 
#endif 
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To generate a Type II ONB we use two field elements from two different fields. 
First pick an element 7 of order 2m + 1 in We use that to find (5, which 

is in the field We won't actually have to find the 7 element; we are just 
going to use it symbolically to help us create the A matrix. Form the sum of 7 + 7 " ^ 
This element gives us the first element, of our normal basis, recall Chapter 1’ 
Section 3. 

The cross-product terms of P � ' ' a r e = + = 

(7(2妨）+ 7—⑵+2勺）+ ⑵-2勺 + (2^2勺）.Since = (y + , we 
get 

裕 i _ / + if ^ ±2). mod (2m + 1) , 
" " = i & if 2 � 士 m o d (2m + 1 ) . 於 肌 � / c are two possible 

solutions to the multiplication of any two basis elements. That is what makes this 

normal basis optimal: It has the minimum number of possible terms. In the case 
of = ±2 ) , the terms + 7 - � c a n c e l , because the exclusive-or of anything with 
itself is 0. 

In the case of — ±2) mod (2m + 1), at least one of these equations: 

+ 力 = m o d (2m + 1) 

21 + 2•？ = - 2 ^ mod (2m + 1) will have a solution, and at least one of these 
equations: 

- -- mod ( 2 m + 1 ) 

2' 一 = -2'= mod (2m + 1) also has a solution. 

In the case of = mod (2m + 1 ) , at least one of the following four equations 
has a solution: 

+ T = 2知 mod (2m + 1) 

- 义 = 2 知 mod (2m + 1) 
+ V = 一2& mod (2m + 1) 

T + = - 2 ^ mod ( 2 m + 1 ) . 

In the first set of equations, there are two possible solutions, and in the second 

set of equations, there is only one possible solution. It is easy to see that, [Ros98]， 

p.87, the equations are all similar, so instead of working with two different sets we 

can combine them and work with just one group of four equations. To build our A 
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matrix, we set /c = 0 and find solutions to: 

2' + = 1 mod (2m+1)， 

2' + = - 1 mod (2m+1)， 

2' - = 1 mod ( 2 m + 1 ) , 
2i - 23 = - 1 mod ( 2 m + 1 ) . 

2.5.2 An example of Type Ila ONB 

As an example of Type Ila, take 2m + 1 = 19. Then our field size m = 9. This will 
be the length of the A matrix. The first thing we need to build are log and antilog 
tables. 

Powers of mod 19 (antilog) 

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

2' 1 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1 

The antilog table, see above, takes an index, i, and returns I = mod 2m + 1. 

The log table, see below, takes an index, I, and returns the value of i. 

Log base 2 of i mod 19 (log table) 

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Log2(i) — 0 1 13 2 16 14 6 3 8 17 12 15 5 7 11 4 1 0 V 

The code to compute the log table is as follows: 

twoexp = 1； 

f o r ( i=0 ; i<NUMBITS; i++) 
{ 

log2[twoexp] = i； 

twoexp = (twoexp « 1) •/• field—prime; 

} 

Note that the log table is built using modulo field—prime as the subscript, and 
the loop counter i is the value. This builds the log table in the order of the antilog 
table. 

To continue the example, let us start with i = 1 in the equations 

2' + 2^ =1 mod ( 2 m + 1), 
2' + = - 1 mod (2m+1)， 

=1 mod ( 2 m + 1 ) , 

2' - = - 1 mod ( 2 m + 1 ) . 
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Writing down all four equations mod 19 and subtracting 2 from both sides gives 
2' = -l = 18 j = 9 

= - 3 = 16 = A 
-2^ = - 1 = > j = 0 

us the following: -2^ = - 3 力•二 13 

Since the A matrix has only nine entries per column, the solutions for j must be 
in the range of 0 . . . 8. Only two terms for j are less than 9. These are the two 
terms we need. So we have our first nonzero entries in the A matrix: Ai,o = 1 and 
Ai,4 = 1. All other entries X i j must be 0. 

Continuing in this manner we can find two values of j for each value of i, which 

give us nonzero entries in the A matrix. We'll mark these with two vectors: Aq and 

Ai，and call them Lambda[0] [] and Lambda[l][] in the code. Each position in the A 

table corresponds to a value of i in cross-product term and each entry is 

the matching value of j, which gives one of the terms in equation 

j + P�' if ^ ±2 ) mod (2m + 1) , 
p p = S that has k or k 二 0. The 

[ i f 2' = 土2) mod (2m + 1) 
results are shown below. 

i Aq = ji A I = j2 

~0 1 

1 4 0 

2 4 7 

3 6 8 
A Vectors for m = 9 

4 2 1 

5 6 7 

6 5 3 

7 2 5 

_8 8 ^ 

The choice of value in either column for any row does not really matter, since we 
are going to combine matching coefficients in the multiply routine eventually. Note 
that there are a total of 2m - 1 terms. The zero entry will always be 1 for any 
Type II ONB. We fill in this spot just to make the code simple, but we will take 
advantage of it when we do the actual multiply. 

2.5.3 An example of Type lib ONB 

Now, ley us look at a Type lib ONB. When the field—prime is 23，for example, 
we have a Type l ib ONB, which is congruent to 3 mod 4 and in which 2 generates 
the quadratic residues of mod 23. Look at the antilog table below to see what this 
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really means. 

Powers of mod 23 (antilog) 

i 0 1 2 3 4 5 6 7 8 9 10 

2' 1 2 4 8 16 9 18 13 3 6 12 

i 11 12 13 14 15 16 17 18 19 20 21 22 

2' 1 2 4 8 16 9 18 13 3 6 12 T 

Note that only half the values of 1 . . . 22 appear in the anti-log table. But if we 
take 23 - 2' for all values greater than 11, we get the results shown in the following 
table, that is fairly straightforward, [Ros98], p.89. 

Powers of 2' mod 23 (antilog) 

i 0 1 2 3 4 5 6 7 8 9 10 

2' 1 2 4 8 7 9 5 10 3 6 11 

1 11 12 13 14 15 16 17 18 19 20 21 22 
2 叫 1 2 4 8 7 9 5 10 3 6 1 1 ~ ~ T 

Now, 23 - 2' modulo 23 is just -2\ It, after building half the log table, we find 

that twoexp ( = 2 ” equals 1’ then we know we will cycle through the same values 

of 2' that we just finished. To solve this problem we can restart at i = 0 but do the 

subscript on negative values of 2\ Since subscripts need to be positive (for us to fill 

in a useful table relative to the rest of the code anyway), we can start with twoexp 

= f i e l d - r i m e - 1 = 2*NUMBITS, which is congruent to - 1 . This following code 

then fills in the rest of the log table. 

i f (twoexp == 1) / * i f so , then deal with quadratic res idues * / 
{ 

twoexp = 2*NUMBITS; 

f o r ( i=0 ; i<NUMBITS; i++) 
{ 

log2[twoexp] = i ; 

twoexp = (twoexp « 1) % f i e l d . p r i m e ; 

} 
} 

The final Log table is shown here. 

Log base 2 of i mod 23 (log table) 

J 1 2 3 4 5 6 7 8 9 10 " T T 

Log2{i) | 0 1 8 2 6 9 4 3 5 7 10 
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_ i 12 13 14 15 16 17 18 19 20 21 2 � 

Log2{i) I 10 7 5 3 4 9 6 2 8 1 ~ 0 ~ 

All we are doing is bookkeeping: tracking all the coefficients we need to add in 

order to compute the multiplication of two normal basis numbers. Since all we had 

to solve for was k = 0’ instead of a complete 入 matrix, we only need to store two 

vectors. 

2.5.4 Creating the Lambda vectors for Type II ONB 

Once we have the log and antilog tables, creating the vectors is easy. Here is the 

code for generating the vectors for a Type II ONB. 

/ * Type 2 ONB i n i t i a l i z a t i o n . F i l l s 2D Lambda matr ix . •/ 

v o i d genlambda2() 
{ 

INDEX i , l o g o f [ 4 ] , n , index , j , k , twoexp; 

/ * b u i l d l o g t a b l e f i r s t . For the case where 2 generates the quadrat i c 

r e s i d u e s ins tead of the f i e l d , d u p l i c a t e a l l the e n t r i e s t o ensure 

p o s i t i v e and negat ive matches in the lookup t a b l e ( that i s , - k mod 

f ield一prime i s congruent t o entry f ield一prime - k ) . •/ 

twoexp = 1； 

f o r ( i = 0 ; i<NUMBITS; i++) 
{ 

l og2[ twoexp] = i ; 

twoexp = (twoexp « 1) % f ie ld一prime; 

} 
i f (twoexp == 1) / • i f s o , then dea l with quadrat i c r e s i d u e s * / 
{ 

twoexp = 2*NUMBITS; 

f o r ( i = 0 ; i<NUMBITS; i++) 
{ 

l og2[ twoexp] = i ; 

twoexp = (twoexp « 1) % f ie ld一prime; 

} 
} 
e l s e 
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{ 

f o r (i=NUMBITS; i<field一prime—1; i++) 
{ 

l og2 [twoexp] = i； 

twoexp = (twoexp « 1) % f ie ld一prime; 

} 
} 

/ • f i r s t element in v e c t o r 0 always = 1 • / 

Lambda [0] [0] = 1; 

Lambda [1] [0] = -1； 

/ * again compute n = ( f ield一prime - l ) / 2 but t h i s time we use i t t o see i f 
an equat ion a p p l i e s • / 

n = ( f i e l d _ p r i m e - l ) / 2 ; 

/ * as in genlambda f o r Type I we can l o o p over 2- i i idex and l ook up index 

from the l o g t a b l e p r e v i o u s l y b u i l t . But we have t o work with 4 

equat ions ins tead of one and only two of those are u s e f u l . Look up 

a l l f o u r s o l u t i o n s and put them i n t o an array . Use two c o u n t e r s , one 

c a l l e d j t o s tep thru the 4 s o l u t i o n s and the o ther c a l l e d k t o t r a c k 

the two v a l i d ones . 

For the case when 2 generates quadrat i c r e s i d u e s only 2 equat ions are 

r e a l l y needed. But the same math works due t o the way we f i l l e d the 

l o g 2 t a b l e . 

*/ 
twoexp = 1； 

f o r ( i = l ; i<n; i++) 
{ 

twoexp = ( t w o e x p « l ) % f ie ld—prime; 

l o g o f [ 0 ] = l og2 [ f i e ld一pr ime + 1 - twoexp]； 

l o g o f [ 1 ] = l og2 [ f i e ld一pr ime - 1 - twoexp]； 

l ogo f[2] = log2[ twoexp - 1]； 

l o g o f [ 3 ] = l o g 2 [twoexp + 1]； 

k = 0 ; 

•j = 0; 

whi le (k<2) 
{ 
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i f ( l o g o f [ j ] < n) 
{ 

Lambda[k] [ i ] = logof [ j ]； 

k++; 

} 

} 
} 

The genlambda2 routine is very similar to the previous genlambda routine. The 
main difference is that we now have to check four equations instead of one. The 
four equations are solved as a look up in the log table and saved in the logo f [] 
array. 

Since there are two solutions and four variables to check, we use two counters. 
The variable j counts over the logof [] array, and the variable k counts over the 
solutions. A solution is valid only if less than n. For Type l ib that is automatic, and 
only the first two equations will ever be used. But anything modulo f ield_prime 
will give us an index into the array in the range of 1.. .2+NUMBITS, and for Type Ila 
we have to check that we get the right two solutions. 

Going from 1 to m - 1 and getting two solutions gives us 2m — 2 terms. The first 
term is already known and is set at offset 0 in Lambda [0] [] • So we have found all 
the terms, Chapter 1, Section 2. 

2.6 Multiplication in practice 

The starting point for multiplication is the multiplication formula 
m—1m—1 

Cfc = Z) Z ] ai+kbj+kXijo in section 2.3. 
i=0 j=0 

Prom the previous efforts we know that there are only two values of j for each 
value of i (or vice versa, since multiplication is independent of order). Note that 
each subscript of a and b is shifted by the same value of k. This means we can shift 
all the a coefficients and all the b coefficients for any particular values of i and j to 
find one term for all the c coefficients. 

An example will help. Let's take the i = 2 index of the Type Ila GF{2^) example 
worked out before. 



2.6. MULTIPLICATION IN PRACTICE 29 

i AQ = ji A I = j2 

0 1 

1 4 0 
2 4 7 
3 6 8 

A Vectors for m = 9 
4 2 1 

5 6 7 

6 5 3 

7 2 5 

_8 8 ^ 

Prom this table we have Ao’2 = 4 and Ai’2 = 7. Consider one explicit term of the 
multiplication formula, which looks like this: Cfc = +a2+fc(64+fc + 67+fc) + 

For k = 0, the partial sum is £12(64 + 67)- For k = 1, the partial sum is 03(65 + 63) 
and so one through k = 8. All of these bitwise manipulations can be done in parallel. 
What we have to do is rotate the A vector right two places and multiply it with the 
sum of the B vector rotated right four and seven places. As an example, graphically 
this appears as follows: 

di ao as ay QQ a^ (24 <23 ai 

H H BI BO BG 67 BE 65 H 
+ 

be &5 h 63 62 bo bg 67 

i i i i i i i i i 
C8 Cj C6 C5 C4 C3 C2 Ci Co 

The addition is performed by using exclusive-or XOR. The multiplication is per-
formed using AND. Depending on machine size, we can do 8’ 16’ 32’ or 64 coefficients 
simultaneously. 

Since multiplication is commutative, we can choose either A or B to be summed. 
In the code, we shift B once for each term and use the count of that offset as the 
index into the lambda vector table to find each proper shift of A. 

The first routine we need is a rotate. Going right, the least significant bit needs 
to be placed into the most significant bit. Going left we do the opposite. Here are 
single bit rotation routines. 

vo id r o t _ l e f t ( a ) 
FIELD2N •a; 
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{ 
INDEX i ; 
ELEMENT bit , temp; 

b i t = (a->e[0] & UPRBIT) ？ IL : OL; 
f o r (i=NUMWORD; i>=0; i一一） •[ 

temp = ( a - > e [ i ] & MSB) ？ IL : OL; 
a - > e [ i ] = ( a - > e [ i ] « 1) | b i t ; 
b i t = temp; 

} 
a->e[0] &= UPRMASK; 

} 

void rot—right(a) 
FIELD2N •a; 
{ 

INDEX i ; 

ELEMENT bit , temp; 

b i t = (a->e[NUMWORD] & 1) ? UPRBIT : OL; 

SUMLOOP(i) { 

temp = ( a - > e [ i ] >> 1 )丨 b i t ; 
b i t = ( a - > e [ i ] & 1) ? MSB : OL; 
a - > e [ i ] = temp; 

} 
a->e [0] &= UPRMASK; 

} 
The first routine is actually a squaring operation, and the second is a square root 

operation in a normal basis. This is a great speed advantage over polynomial basis 
applications. However there are more things we have to do than just square and 

‘ square root. 

For every sum we need two shifts of A. So it is faster to compute all the shifts 
once and store them in a lookup table. This is the first f o r ( ) loop in the opt_mul 
routine. This section of code would be much faster if implemented assembler. It 
might even be possible to eliminate it for those processors that have barrel shifters. 

/ * Generalized Optimal Normal Basis mult ip ly . Assumes two dimensional 
Lambda vec tor already i n i t i a l i z e d . Wil l work f o r both type 1 and 
type 2 ONB. Enter with po inters to FIELD2N a, b and r e s u l t area c . 
Returns with c = a*b over GF(2~NUMBITS). 

*/ 
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vo id opt_mul(a, b , c ) 

FIELD2N •a, •b, * c ; 
{ 

INDEX i , j ; 

INDEX k, zero_ index , one_index; 

ELEMENT b i t , temp; 

FIELD2N amatrix[NUMBITS], copyb; 

/ * c l e a r r e s u l t and copy b t o p r o t e c t o r i g i n a l * / 

n u l l ( c )； 

copy(b , &copyb)； 

/ * To perform the mult ip ly we need two r o t a t i o n s of the input a. Performing a l l 

the r o t a t i o n s once and then using the Lambda v e c t o r as an index in to a t a b l e 

makes the mult ip ly almost twice as f a s t . 

* / 

copy( a, feamatrix;[0]); 
f o r ( i = 1; i < NUMBITS; i++) 
{ 

copy( & a m a t r i x [ i - l ] , &amatr ix [ i ] ) ; 

r o t _ r i g h t ( feamatrix[i])； 

} 

The basic idea of the multiply is really simple: Look up the two terms we need 

from the shifted table, XOR them, then AND that with the present B vector. X O R 

this term with the C vector as a partial sum. Rotate the B vector and repeat until 

all m partial terms have been summed with the result. 

/ • Lambda[1][0] i s non e x i s t e n t , deal with Lambda[0][0] as s p e c i a l case . •/ 
zero—index = Lambda[0][0]； 

SUMLOOP ( i ) c - > e [ i ] = c o p y b . e [ i ] & amatr ix [zero . index ] . e [ i ] ; 

/ * main l oop has two lookups f o r every p o s i t i o n . •/ 
f o r ( j = 1; j<NUMBITS; j++) 
{ 

r o t _ r i g h t ( fecopyb)； 

zero—index = Lambda[0][j]； 

one一index = Lambda[1][j]； 

SUMLOOP ( i ) c - > e [ i ] c o p y b . e [ i ] & 
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(amatrix [zero—index:] . e [ i ] "amatrix [one_index] . e [ i ] ) ; 
} 

} 

Optimizing the code for speed is obviously important but implementation depen-
dent. For a Type I ONB, there is no need for two lookup vectors. In fact, we only 
need to perform the multiplication (AND) of A rotated half its length with B and 
take the "trace" of the result, which gets summed with the single lookup vector 
result for a very high speed Type I ONB algorithm. The trace function for ONB it 
is identical to a parity bit calculation, see [Ros98], p.95. 



Chapter 3 

Inversion over optimal 
normal basis 

3.1 A straightforward method 

To begin with, let us look at a very straightforward method of inversion over a 

normal basis. Observe that if a e GF(2爪)，a ^ 0, then using Fermat's Little 

Theorem, a—i = =(“广一‘—�• At this point we could just exponentiate 

directly. But this would require m squarings and m - 1 multiplies. For m on the 

order of 200 this would be exceptionally slow. 

The following is a way around the problem. The most efficient technique, from the 

point of view of minimizing the number of multiplications, was proposed by Itoh, 

Teechai and Tsujii in 1986. 

If m is odd, then since 2爪—i — 1 = (2(爪一丄)"-1)(2——1)/2 + 1 ) ’ we have = 

- 1 ) . Hence it takes only one multiplication to evaluate 

once the quantity ”Z2-i ĵ ^̂ g been computed (we are ignoring the cost of squar-

ing). 

If m is odd, then we have ！ 一 丄 = ^ ^ ^ consequently 

it takes two multiplications to evaluate once ^ ^ been com-

puted. The procedure is then repeated recursively. 

Here is an example: Consider the field We have 

2155 —2 = 2(277 — 1)(277 + 1)， 

277 — 1 = 2(219 - 1)(219 十 1)(238 + 1) + 1’ 

3 3 
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219 —1 = 2(29 _1) (29 + 1) + 1 ’ 

29 - 1 = 2(2+ 1)(22 + 1)(24 + 1) + 1， 

so an inversion in takes ten multiplications. 

It can easily be verified by induction that this method requires exactly I{m)= 

[log2(m - 1)J + - 1) - 1 field multiplications, where w { m - l ) denotes the 
number of l，s in the binary expansion of m - 1，see [Men93]. 

3.2 High-speed inversion for optimal normal basis 

3.2.1 Using the almost inverse algorithm 

The following method combines polynomial basis and optimal normal basis to im-

plement a very high speed inversion algorithm. Most research into elliptic curve 

crypto systems over the past few years has concentrated on finding mathematical 

tricks to increase throughput. Many of these tricks rely on the structure of certain 

fields. Others rely on finding specific irreducible polynomials. 

In finite field arithmetic, most inversion routines require two to five times as long 
as a multiply. The routine presented here was first developed by Dave Dahm, see 
[Ros98]. This inversion routine is as fast as a single optimal normal basis multiply. 
But notice, however that special polynomial bases can be made much faster in 
general.. 

Dahm's inversion algorithm is based on [SOOS95] for the "almost inverse algorith-
m" and on the results of Chapter 1 for the irreducible polynomial, which converts 
from Type I and Type II ONB to polynomial basis. The "almost inverse algorithm" 
is based on Euclid's algorithm, but it leaves a final factor of a;知，which has to be 
divided out. Fortunately, this is a trivial operation for ONB, so the conversion to 
and from polynomial basis and the elimination of the final factor turns out to be 
much faster than the inversion algorithm described in section 1 of this chapter. 

The basic idea of the almost inverse algorithm is the same as polynomial inversion. 
We keep the following formula constant, see [Ros98], p.285: B • F + C G = 1 mod 
M , where M is the prime polynomial. For an ONB the prime polynomial is very 
specific; we will describe it later. 

The almost inverse algorithm is initialized with: 

B = 1 
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C = 0 

F ^Source Polynomial 

G = M =Prime Polynomial 

A: = 0 

The variables B,C,F, and G are polynomials, and k is an integer. The almost 

inverse algorithm proceeds by repeating the following steps: 

While the last bit of F is 0: 

shift F right (divide by a:) 

shift C left (multiply by x) 

increment k by 1. “ 
If F = 1, return B,k. (3.1) 

If degree(F) < degree(G), then exchange F, G and B, C. 

F = F + G. 

B = B + C. 

Repeat entire loop. 

The reason this is an "almost" inverse routine is that we have the final result with 
an extra factor of x'', which must be divided out. For optimal normal basis this 
factor is very easy to find, and we don't need a full-scale multiply to remove it. 

There are additional tricks that Schroeppel et al. [SOOS95] include in their paper 
to help speed up the algorithm. These include using two separate loops rather 
than exchanging polynomials, using registers, and expanding structures to explicitly 
named variables. Many of these tricks reduce portability but increase throughput. 

In Chapter 1’ Section 3’ an irreducible polynomial for a Type Ila optimal normal 
basis, for which 2 is primitive in Z2m+i, is: Mjja = l + x + + 

It follows that for a Type I ONB (with 2 primitive in Zm+i) an irreducible poly-
nomial is given by: M / = 1 + ;r + re? + … + x"". 

For the Type l ib optimal normal basis, for which 2 generates the quadratic 

residues, the polynomial Mua = 1 + a: + + . . . + has two factors, so it 

is not irreducible. Fortunately, the almost inverse algorithm will still work. This is 

due to the requirement that the source polynomial be relatively prime to the basis 

polynomial M. This will always be the case for sources of Type II ONB. 

Let us look at how to convert a Type I normal basis representation to a polynomial 
basis representation. Each term in a normal basis is of the form: aiX^\ But since 
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2 is a generator modulo m + 1, we can also write this term as: aix''. Since Mi = 
1 + a; + ;r2 + . . . + a：饥’ we can move the i th coe伍dent of Type I ONB to the k 

position to convert form normal to polynomial basis. This is just a permutation of 
all the bits, and we only have to move the ones that are set. 

The only problem we have is when 2' 二 m. This term is not represented in the 
polynomial basis, because it has the power of the most significant coefficient in 
M/ = 1 + a; + a;2 + .. • + In the normal basis case, there is no representation 
for x®. For this case, we map the coefficient of the most significant bit of the ONB 
to the least significant bit of the polynomial representation, and nothing is lost. 
Here is Rosing's explanation: As vector spaces, the basis vectors are exactly the 
same (except for order) at all places except 1. Each set of basis vectors contains 

.. • ,0；爪—1. The only difference is that ONB contains x"^ and polynomial 
basis contains 1. In the Type I field these two representations are related by: 
1 + a: + + . . . + = 0. 

For a Type II optimal normal basis, things are almost as easy, [Ros98], p.287. The 
polynomial basis is twice as long as the normal basis. For each bit in the ONB we 
will have 2 bits in the polynomial basis. It turns out that the 2 bits are palindromes; 
if bit i is set, then so is bit 2m + 1 — i. 

In chapter 1, section 3’ we took the basis to be of the form: 7 + 7 - 1 _ 

The combination of these two terms created a new one, which was the basis for 

the Type II ONB. Using this, along with the polynomial Mua = 1 + x + x^ i-

. . . + we can derive a simple conversion scheme to go from Type II ONB to 

polynomial representation and back by flipping just 2 bits in a known permutation. 

Since the permutation is predefined for any ONB, we can create a lookup table at 

initialization, along with the creation of the multiplication vectors. 

For simplicity, let p = 2m + 1. Since we are doing base 2 field math, we have: 
(7 + 7-1)2' = + 7-2* = ^ r + ^ p - r j^g^ as with the Type I ONB, we have 
a permutation form the coefficient of each term to a corresponding one in the 
polynomial representation. But there are now 2 bits that we have to map: one 
that maps 2' to k and one that maps p - to p - k. 

By creating the permutation map as a set of indices and bit masks, the conversion 
is very fast. The almost inverse algorithm is then simple to invoke. The whole 
process is identical for both Type I and Type II (other than the number of bits 
needed). 
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3.2.2 Faster inversion, preliminary subroutines 

There are several steps to creating this faster inversion routine. The first is a pair of 

tables used in the conversion from normal basis to polynomial and back. Another 

is the multiplication of re—知 as the final step in the almost inverse algorithm. Then 

there is the inversion routine itself. The latter has been expanded using some of 

the suggestions in [SOOS95]. 

Let us start with some new constants, which are defined in a header file: 

#de f ine LONGWORD (field_prime/WORDSIZE) 

#def i i ie LONGSHIFT ((field一prime—1)%W0RDSIZE) 

#de f ine LONGBIT (1L«(L0NGSHIFT-1)) 

#de f ine LONGMASK C (-1L«L0NGSHIFT)) 

These are used to create the polynomial basis representation, as we will see below. 

LONGWORD is the number of ELEMENTS needed to hold the polynomials we will be 

using. LONGSHIFT is the number of left shifts needed to get to the most significant 

bit in the most significant ELEMENT of the polynomial representation. LONGBIT is 

the most significant bit we will need in the polynomial basis, and LONGMASK is a 

mask that keeps the most significant bits in the most significant ELEMENT of the 

polynomial basis. 

Next comes some additional initialization code, which needs to be called only once. 

The initializations are for the following arrays, which need to be added to the .c file 

(chapter 3 subroutines): 

s t a t i c INDEX l o g 2 [ f i e l d _ p r i m e + l ]； 

s t a t i c INDEX two一 inx[field—prime]; 

s t a t i c ELEMENT two一bit [field一;prime]; 

s t a t i c unsigned char shi f t一by[256] ; 

The variable l og2 is the same; it is just global for use in the conversion process. 

The two arrays two_* are used to find specific bits. Rather than save the bit position, 

as in the l og2 array, we save the ELEMENT index and bit offset within an ELEMENT. 

This speeds execution with only a minor increase in memory requirements. The 

array sh i f t _by is used as one of the speed enhancements. Instead of shifting the F 

polynomial only once and incrementing k as stated in the algorithm, we do several 

shifts at once if possible. 

We have seen the genlambda routines before; the only change there is the removal 

of variable log2, because it is now global. The routine i n i t . t w o fills in the arrays 
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two-inx and two_bit. It's pretty simple too, [Ros98], p.288. 

s t a t i c vo id init—two(void) 
{ 

INDEX n, i , j ; 

j = 1； 

n = ( f i e l d _ p r i m e - 1 ) / 2 ; 

f o r ( i=0 ; i<ii; i++ ) { 

t w o _ i n x [ i ] = LONGWORD-(j / WORDSIZE)； 

two一bit [ i ] = IL « ( j 7, WORDSIZE)； 

two一inxlii+ii] = LONGWORD —（（field一prime—j) / WORDSIZE)； 

•two一bit [ i+n] = IL « ( ( f i e l d . p r i m e - j ) •/• WORDSIZE)； 

j = ( j « 1) 7, f i e l d - p r i m e ; 

} 
two一inx [field一prime—1] = two_inx[0]； 

•two_bit [ f ield一prime-1] = two_bit [0]； 

f o r ( i = l ; i<256; i++ ) 

s h i f t _ b y [ i ] = 0; 

shi f t—by[0] = 1; 

f o r ( j = 2 ; j<256; j+= j ) 

f o r ( i=0 ; i<256; i+=j ) 

sh i f t—by[ i ] ++; 

} 

The variable s h i f t . b y is really simple, [Ros98], p.289. By masking the last 8 bits 

of a FIELD2N ELEMENT, and using that as an index into the array, it tells us how 

many bits are clear. 

The initialization code, which was put in the main routine in Chapter 3’ is now 

combined with the above initialization routine. 

vo id in i t_opt_math( ) 
{ 

# i f d e f TYPE2 

genlainbda2()； 

# e l s e 

genlambdaO ； 

#endif 

iiii1;_two()； 

} 
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There is yet another type of variable. It is used to hold double-size arrays for 

Type II optimal normal basis conversions to "customary" polynomial basis repre-

sentations. For Type I optimal normal basis, it is the same size as FIELD2N, but 

this makes the code more general. 

typedef s t r u c t { 

ELEMENT e [LONGWORD+1]； 

} CUSTFIELD; 

Basic operations on this structure are similar to operations on FIELD2N and DBLFIELD 

structures. To copy values from one CUSTFIELD to another, we use the following 

code segment: 

vo id copy一cust ( a , b ) 

CUSTFIELD * a , * b ; 
{ 

INDEX i ; 

f o r ( i = 0 ; i<=LONGWORD; i++) b - > e [ i ] = a - > e [ i ]； 

} 

And to clear out a variable, the following routine is used. 

vo id n u l l _ c u s t ( a ) 

CUSTFIELD *a; 
{ 

INDEX i ; 

f o r ( i=0 ; i<=LONGWORD; i++) a - > e [ i ] = 0; 

} 

The last step of the almost inverse algorithm is the multiplication of the extra 

factor Let us see how this routine works. 

/ * se t b = a * u~n, where n>0 and n <= field一;prime * / 

vo id cus一times_u_to一ii(CUSTFIELD •a, int n, CUSTFIELD •b) 
{ 

#de f ine SIZE (2+L0NGW0RD+2) 

ELEMENT w, t [SIZE+l]； 

INDEX i , j , n l , n2, n3; 
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The constant SIZE is used here to make the dimension of the array t hold twice 
as many bits as the normal basis representation. The check for n being equal to 
f ie ld-pr ime is robust code; in practice, it should never happen. 

i f ( n == field—prime ) { 
copy_cust(a, b)； 

return; 

} 

The next line of code clears the t array. Since this array is special, this could be 
done with a pointer, too. The variables nl and n2 determine the index into the t 
array and the bit within an ELEMENT of that array. The offset is from the end of the 
array rather than the start-this is why SIZE - nl appears everywhere. 

f o r ( j=0 ; j<=SIZE; j++ ) t [ j ] = 0; 

nl = n / WORDSIZE; 

j = SIZE-nl; 

n2 = n & (WORDSIZE-1)； 

The next block of code then shifts every word of the input. If the bit position is 
0, then whole ELEMENTS can be moved. Otherwise, the variable n3 is used to 
shift a word up a portion, and n2 is used to shift a word down a portion. Each 
word is put into t shifted by the amount SIZE - nl. Note that j is decremented 
after being used as the subscript, so that the second line in the f o r loop uses the 
previous value of j . 

i f ( n2 ) { 

n3 = W0RDSIZE-n2; 

f o r ( i=LONGWORD; i>=0; i — ) { 

t [ j ~ ] 1= a - > e [ i ] « n2; 

t [ j ] 1= a - > e [ i ] » n3; 

} 
} e l s e { 

f o r ( i=LONGWORD ； i>=0; i — ) { 

t [ j — ] 1= a - > e [ i ] ; 

} 
} 

At this point we have actually multiplied the input by x"" (presumably the value 
for n was computed modulo f ie ld-prime) . This is just a shift by n bit positions, 
since each coefficient is multiplied by its appropriate power of x. 
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The next block of code then shifts the upper portion by the correct amount to 

account for the fact that the field size does not fill a complete word. This moves 

the upper portion of an ELEMENT at an offset, which holds the most significant 

bits of the result back to the least significant ELEMENT position. The code works 

because: x^ - 1 = (x - 1)M, where M is Mi or Mua as discussed before. Now 

x^ = l + {x - 1)M. Multiply both sides by x'^ and reduce modulo M, we have the 

relationship: = x^. So every reduced modulo M will simply be x^. 

n3 = LONGSHIFT+1; 

i = SIZE-LONGWORD; 

f o r ( j=SIZE; j>=SIZE-nl; j — ) { 

t [ j ] 1= t [ i — ] » n3; 

t [ j ] 1= t [ i ] « (W0RDSIZE-n3)； 

} 

The final step is to move the data from the t array to the output b array. This 
includes one important check: If the coefficient to is set, we can reduce this 
power by adding in the rest of M (since M = 0 mod M) . This is just all bits set, 
and the variable w is used to contain these bits for each ELEMENT. 

w = t[SIZE-LONGWORD] & (IL « LONGSHIFT ) ? : 0; 

f o r ( i=0; i<=LONGWORD; i++ ) 

b - > e [ i ] = t[i+SIZE-LONGWORD] 
b ->e[0] &= LONGMASK; 

#undef SIZE 
} 

Finally, the upper bits are cleared to complete the operation and clean up the 
output. (The term SIZE was previously defined at the beginning of the routine. 
Since the name is common, it is good to limit the scope.) 

3.2.3 Faster inversion, the code 

The fast inversion algorithm does not translate into pretty code. It uses all the 

methods described previously, including the conversion from optimal normal basis 

to polynomial basis and back using Mi or Mua. The almost inverse algorithm is 

included, along with several speed ups mentioned in [SOOS95]. 

/ * This algorithm i s the Almost Inverse Algorithm of Schroeppel , et a l . 
given in ‘ ' F a s t Key Exchange with E l l i p t i c Curve Systems‘ ‘ 
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* / 
vo id opt_inv(FIELD2N *a, FIELD2N *dest ) 
{ 

CUSTFIELD f , b , c , g ; 

INDEX i , j , k, m, n, f _ t o p , c_ top ; 

ELEMENT b i t s , t , mask; 

/ * f , b , c , and g are not in optimal normal b a s i s format: they are held 

in ‘customary f o r m a t ' , i . e . aO + a l * u " l + a2*u"2 + . . .； For the 

comments in t h i s r o u t i n e , the polynomials are assumed t o be 

polynomials in u. •/ 

The first thing is to initialize G to the prime polynomial M , as in the algorithm 

3.1. This is all bits set, including 1 extra bit past the defined limit of LONGSHIFT. 

/ • Set g t o polynomial ( u " p - l ) / ( u - l ) * / 

f o r ( i = l ; i<=LONGWORD; i++ ) 

g . e [ i ] = "0 ; 

g . e [ 0 ] = LONGMASK I (IL « LONGSHIFT)； 

The next chunk of code converts the input value a from normal basis to polynomial 

basis using the predefined offset and bit masks created in init_two. For a Type II 

normal basis we need 2 bits set. 

/ * Convert a t o ,customary f o r m a t ) , put t ing answer in f * / 

nu l l _ cus t (&f )； 

j = 0; 

f o r ( k=NUMWORD; k>=0; k— ) { 

b i t s = a->e[k]； 

m = k>0 ? WORDSIZE : UPRSHIFT; 

f o r ( i=0 ; Km; i++ ) { 

i f ( b i t s & 1 ) { 

f . e [ t w o . i n x [ j ] ] |= two一bit [ j ]； 

# i f d e f TYPE2 

f . e [two一inx [ j +NUMBITS] ] I = two一bit [ j +NUMBITS]； 

#endif 

} 
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b i t s » = 1; 

} 
} 

After initializing the remaining variables of algorithm 3.1. We then eliminates 
powers of x (which called u here), as stated in the first step of the almost inverse 
algorithm. The variables c_top and f_top are used to track the unused (zeroed out) 
ELEMENTS in b, c and f , g, respectively. This also helps speed up the code, since 
it eliminates loop executions, which have null results. 

/ * Set c t o 0， b t o 1, and n to 0 * / 
null_cust(&c)； 

null_cust(&b)； 

b.eCLONGWORD] = 1; 
n = 0; 

/ * Now f i n d a polynomial b , such that a*b = u~n •/ 

/ * f and g shrink, b and c grow. The code takes advantage of t h i s . 

c_top and f _ t o p are the var iables which contro l t h i s behavior * / 

c_top = LONGWORD; 
f一 t op = 0 ; 

do { 

i = s h i f t _ b y [ f .eliLONGWOIlD] k Oxff]； 

n+=i; 

/ * Sh i f t f r ight i (d iv ide by u " i ) * / 

m = 0; 

f o r ( j = f _ t o p ; j<=LONGWORD; j++ ) { 

b i t s = f . e [ j ]； 

f . e [ j ] = ( b i t s » i ) I ((ELEMENT) m << (WORDSIZE-i)); 
m = b i t s ; 

} 
} while ( i == 8 && (f.e[LONGWORD] & 1) == 0 ) ; 

Everything is now initialized, and we're ready for the main loop. 

li F = 1’ then the routine is finished. This will happen on occasion if you enter 
with a single bit set; the above code shifts the bit down and the main routine would 
not be needed. We check for that here. 
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f o r ( j=0 ; j<LONGWORD; j++ ) 

i f ( f . e [ j ] ) break; 

i f ( j<LONGWORD I| f.e[LONGWORD] ！= 1 ) 
{ 

Assuming F is not equal to 1，we enter the "almost inverse algorithm's" main 
loop. 

/ * There are two loops here: whenever we need t o exchange f with g and 

b with c , jump t o the other loop which has the names reversed! * / 
do 
{ 

/ • Shorten f and g when p o s s i b l e •/ 

while ( f . e [ f一 t op ] == 0 kk g .e [ f一 top] == 0 ) f _ top++ ; 

/ * f needs to be b igger - i f no t , exchange f with g and b with c . 

(Actual ly jump t o the other l oop instead of doing the exchange) 

The published algorithm requires deg f >= deg g , but we d o n ' t 

need t o be so f i n e * / 

i f ( f . e [ f _ t o p ] < g . e [ f _ t o p ] ) goto loop2 ; 
l o o p l : 

/ * f = f + g , making f d i v i s i b l e by u •/ 

f o r ( i = f _ t o p ; i<=LONGWOIlD; i++ ) 

f . e C i ] -= g . e [ i ] ; 

/ • b = b+c * / 

f o r ( i=c_ top ; i<=LONGWOIlD; i++ ) 

b . e [ i ] c . e [ i ]； 

do { 

i = shift_by[f.e[LONGWORD] & Oxff ]； 

/ * S h i f t c l e f t i (mult iply by u~i)， lengthening i t i f needed * / 
m = 0; 

f o r ( j=LONGWORD; j>=c_top ; j — ) { 

b i t s = c . e [ j ]； 

c . e [ j ] = ( b i t s « i ) | m; 

m = b i t s » (WORDSIZE—i)； 

} 
i f ( m ) c . e [ c _ t o p = j ] = m; 

/ * S h i f t f r i gh t i ( d i v i d e by u ' i ) * / 

m = 0; 

f o r ( j = f _ t o p ; j<=LONGWORD; j++ ) { 
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b i t s = f . e [ j ]； 

f . e [ j ] = ( b i t s » i ) I ((ELEMENT) m « (WORDSIZE-i)); 
m = bits； 

} 
} while ( i == 8 && (f.e[LONGWORD] & 1) == 0 ) ; 

/ • Check i f we are done ( f = l ) * / 

f o r ( j = f _ t o p ; j<LONGWORD; j++ ) 

i f ( f .e [ j ] ) break; 

} while ( j<LONGWORD || f•e[LONGWORD] ！= 1 ) ; 

There are two loops here that are identical; only the variable names have been 

flipped to do the correct operations. The last step in the loop is to check to see if 

F = 1. If it is, then the above while loop ends. Note that if we exit the loop this 

way, the value of j will always be equal to LONGWORD. The use of goto's may violate 

most C programming styles, but it is very useful here. 

i f ( j>0 ) 

goto done； 

do { 

/ • Shorten f and g when poss ib le •/ 

while ( g . e [ f _ t o p ] == 0 && f . e [ f _ t o p ] == 0 ) f_top++; 

/ * g needs to be bigger - i f not , exchange f with g and b with c . 

(Actual ly jump to the other loop instead of doing the exchange) 

The published algorithm requires deg g >= deg f , but we don ' t 

need to be so f i n e •/ 

i f ( g . e [ f _ t o p ] < f . e [ f _ t o p ] ) goto l oop l ； 

loop2: 

/ • g = f+g , making g d i v i s i b l e by u * / 

f o r ( i = f _ t o p ; i<=L0NGW0RD5 i++ ) 

g . e [ i ] � f . e [ i ] ; 

/ * c = b+c * / 

f o r ( i=c_top ; i<=LONGWOIlD; i++ ) 
c . e C i ] 八 = b . e [ i ]； 

do 
{ 

i = sliift_by[g.e[LONGWORD] & Oxff]； 

n+=i ； 

/ * Sh i f t b l e f t i (multiply by u ~ i ) , lengthening i t i f needed •/ 
m = 0; 
f o r ( j=LONGWORD; j>=c_top; j — ) { 
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b i t s = b.eCj]； 

b . e [ j ] = ( b i t s « i ) I m; 

m = b i t s » (WORDSIZE-i)； 

} 
i f ( m ) b . e [ c _ t o p = j ] = m; 

/ * Sh i f t g r ight i (d iv ide by u~i) •/ 

m = 0; 

f o r ( j = f _ t o p ; j<=LONGWORD; j++ ) { 

b i t s = g . e [ j ]； 

g . e [ j ] = (b i t s>>i ) I ((ELEMENT)m << (WORDSIZE-i)); 
m = bits； 

} 
} while ( i == 8 && (g.e[LONGWORD] & 1) == 0 ) ; 

/ • Check i f we are done (g=l ) * / 

f o r ( j = f _ t o p ; j<LONGWORD; j++ ) 

i f ( g . e [ j ] ) break; 

} while ( j�LONGWORD || g.e[LONGWORD] ！= 1 ) ; 

copy_cust(&c, &b); 

} 

The guts of the routine are straightforward executions of the almost inverse algo-

rithm. The variable c_top and f_top are both adjusted along the way to reduce 

the number of execution loops as the procedure progresses. If we exit the last loop, 

then we have to swap b and c so we can finish the algorithm correctly. The shifting 

is done using the least significant byte of f or g as an index into the shi f t_by array. 

Instead of calling a subroutine, we has made the code inline for this shift. 

The final stage is to multiply b by the appropriate power of x and then convert 
that value back to normal basis so we'll get the right answer. 

done: 

/ • Now b i s a polynomial such that a*b = u~n, so mult iply b by u~(-n) •/ 

cus_times_u_to_n(&b, field一prime - n •/• field一prime, &b)； 

/ * Convert b back to optimal normal bas is form ( in to dest ) * / 

i f ( b.e[LONGWORD] & 1 ) 
one(dest)； 
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e l se 

nul l (dest )； 

j = 0; 
f o r ( k=NUMWORD； k>=0; k_- ) { 

b i t s = 0; 
t = 1； 

mask = k > 0 ? "0 : UPRMASK; 
do { 

i f ( b . e [ t w o _ i n x [ j ] ] & two 一 b i t [ j ] ) b i t s "= t ; 

t « = 1; 

} while ( t&mask )； 

dest ->e[k] b i t s ; 

} 

} / • opt一inv * / 

This version of the inverse algorithm requires about as much time to compute as 

a normal basis multiply. This routine is at 
least ten times faster than the 

straightforward method found in section 1 of this chapter. So, although it looks 

messy, it is much quicker to execute. As usual, it takes up more code space to reduce 

run time, but inversion is called by every elliptic sum or doubling, see chapter 4. It 

is extremely useful to use this if one has ROM to spare. 
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Chapter 4 

Elliptic Curve Cryptography 
over 

Elliptic curve cryptography (ECC) was proposed independently by Victor Miller 

and Neil Koblitz in the mid-eighties. 160bit ECC are considered to be of the same 

security level as 1024bit RSA. Elliptic curve Cryptography offers many advantages 

over RSA. For the same level of security, especially over 160bit, ECC is faster, 

requires less computing power, permits reduction in key and certificate size which 

saves memory and bandwidth. 

ECC has received increased commercial acceptance as evidenced by its inclusion in 

standards by accredited standards organizations such as IEEE (Institute of Electri-

cal and Electronics Engineers), ISO (International Standards Organization), NIST 

(National Institute of Standards and Technology), and ANSI (American National 

Standards Institute), see [ECC standard]. It is being promoted as the best method 

for implementing digital signatures for banking smartcard applications. 

4.1 Mathematics of elliptic curves 

There are several kinds of defining equations for elliptic curves, but the most com-

mon are the Weierstrass equations. For the binary finite fields GF{2^), the Weier-

strass equation is 

y^ + xy ^x^ + ax^ + b (4.1) 

where a and b are elements of GF{2^) with b # 0. 

There is another kind of Weierstrass equation over GF(2"^), giving what are called 

super singular curves. However, these curves are cryptographically weak, see section 

4 9 
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3 below; thus they are omitted. 

Given a Weierstrass equation, the elliptic curve E consists of the solutions {x, y) 

over GF{2饥、to the defining equation, along with an additional element called the 

point at infinity (denoted The points other than are called finite points. The 

number of points on E (including t^) is called the order of E and is denoted by 

There is an addition operation on the points of an elliptic curve which possesses 
the algebraic properties of ordinary addition (e.g. commutativity and associativity). 
This operation can be described geometrically as follows. 

Define the inverse of the point P = (x, y) to be (x, x + y). Then the sum P + Q 
of the points P and Q is the point R with the property that P, Q, and -R lie on a 
common line. The point at infinity d plays a role analogous to that of the number 
0 in ordinary addition. Thus P + ^ P, p + ( _ p ) = ^ for all points P. Under 
this addition operation, it can be shown that E forms a group. 

When implementing the formulae for elliptic curve addition, it is necessary to 
distinguish between doubling (adding a point to itself) and adding two distinct 
points that are not inverses of each other, because the formulae are different in the 
two cases. Besides this, there are also the special cases involving By full addition 
is meant choosing and implementing the appropriate formula for the given pair of 
points. Algorithms for full addition are given here: 
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Full Addition 

Input: a field GF{2'^)- coefficients a, b for an elliptic curve 

E -{-xy = + +b over 
points Po = {xo,yo) and Pi = {xi,yi) on E. 

Output: the point P2 := Pq + Pi. 

1. If 尸0 = then output P2 <— Pi and stop 
2. If Pi = 1?, then output 尸2 Po and stop 
3. If xo / xi then 

3.1 set A — (yo + yi)/(a:o + ;ri) 
3.2 set X2 — a + 入2 + 入 + + 工1 

3.3 go to step 7 
4. If yo + yi then output P2 —必 and stop 

5. If a：! = 0 then output P2 —必 and stop 
6. Set 

6.1 A <— a：! +2/1/a；! 

6.2 0：2 — a + A2 + A 
7. y2 卜(a；! + a:2)A + X2 + 2/1 

8- P2 一（3̂2 ’y2) 
The above algorithm requires 2 general multiplications, a squaring, and a multi-

plicative inversion. To subtract the point P = (a:,y), one adds the point -P = 

Elliptic curve points can be added but not multiplied. It is, however, possible 
to perform scalar multiplication, which is another name for repeated addition of 
the same point. If /c is a positive integer and P a point on an elliptic curve, 
the scalar multiple kP is the result of adding k copies of P. Thus, for example, 
^P = P + P + P + P + P. The notion of scalar multiplication can be extended to 
zero and the negative integers via OF = 'd, {-k)P = k{-P). 

Scalar multiplication can be performed efficiently by the addition-subtraction 
method outlined below. 
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Elliptic Curve Scalar Multiplication 

Input: an integer k and an elliptic curve point P. 

Output: the elliptic curve point kP. 

1. If A; = 0 then output and stop. 
2. lik <0 the set Q — ( - P ) and K — {-k), else set Q ^ P and ^ /c. 
3. Let hihi-i . . . hiho be the binary representation of 3K, where the most 

significant bit hi is 1. 

4. Let KiKi-i... KiKo be the binary representation of K. 

5. Set S ^Q. 

6. For i from I — 1 downto 1 do 
Set S <- 25. 
If /li = 1 and Ki —0 then compute 5 <— 5 + Q. 
If /li = 0 and Ki = I then compute S S — Q . 

7. Output S. 

There are several modifications that improve the performance of this algorithm. 

These methods are summarized in [Gor98]. Elliptic Curve Multiplication is the 

computation that dominates the operations of Elliptic Curve Cryptography. 

4.2 Elliptic Curve Cryptography 

Let us explain some more terms of Elliptic Curves first. 

If u is the order of an elliptic curve over GF{2^), then the Hasse bound is + 
1 — < u < + 1 + Thus the order of an elliptic curve over G i ^ ( 2 1 ’ 

#£;(Gi^(2"^))’ is approximately 2爪. 

The order of a point P on an elliptic curve is the smallest positive integer n 

such that nP = d. The order always exists and divides the order of the curve 

If k and I are integers, then kP = IP if and only if k三I mod n. 

Suppose that the point P on E has large prime order n where r? does not divide 
the order of the curve P is called a base point of the curve. Then a key pair 
can the defined as follows. (However, one needs to know what are good and secure 
curves, see section 4 below.) 
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EC key pair generation 

Input: elliptic curve E with base point P of order n. 

Output: private key d and the corresponding public key Q 

1. select a statistically unique and unpredictable integer d 

in the interval [ 1 . . .n — 1] 

2. compute the point Q = dP on the curve E. 

3. the private key is d, the public key is Q. 

Of course, public key is public, the curve is also public, and a user must kept his 
own secret key secret. 

It is necessary to compute an elliptic curve discrete logarithm, see section 3 below, 
in order to derive a private key from its corresponding public key. For this reason, 
public-key cryptography based on key pairs of this type relies for its security on the 
difficulty of the elliptic curve discrete logarithm problem, ECDLP. 160 bits Elliptic 
Curve Cryptography are being viewed as equivalent to 1024bits RSA in terms of 
security. It is still extremely difficult to break them in the year 2000 even if one 
hundred thousands of computers can be used together, see section 3 below. 

Now we briefly outline how elliptic curves can be useful in cryptography. See the 
standards [ECC standard] for more details, nevertheless these are simple protocols. 

For encrypting or decrypting a file, it is important to note that these are essentially 
carried out by traditional secret key algorithm, such as DEA. The key for use with 
the traditional secret key algorithm is generated randomly in a particular session, 
and is called a session key. The role of ECC is to encrypt or decrypt this session 
key only. For 160bit ECC, we should choose a 80bit session key for a comparable 
security level, see [ECC standard]. 

The advantage of public key cryptography here is that no key management is 

necessary. When Alice wants to send a message to Bob, he only needs to find out 

the public key of Bob, which is of course publicly available. Alice can then encrypt 

messages using this public key, none can decrypt them except Bob, as only Bob 

processes the private key of Bob. The reader can then imagine what would the 

situation be if traditional secret key algorithm was used when each of his Bob's 

(girl) friends wanted to communicate to Bob. 

Digital Signature are the electronic equivalent of traditional handwritten signa-

tures. Digital Signature is hard to forge. One of its main function is authentication, 

another is data integrity. 

How can Bob proves that a message is written by Bob himself? 
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Answer: Bob applies his private key, Privatebob, to the message using a digital 

signature algorithm to generate a digital signature, see below. He then sends the 

message along with the digital signature to Alice. Alice checks, or verifies, the 

signature by applying Bob's public key, Publicbob, to the signature using a digital 

signature verification algorithm. Since only Bob is in possession of Privatebob, Alice 

knows: if in case the signature verification passes, the message was from Bob and 

that the data has not been changed. 

How can Bob proves that he is Bob, to Alice? 

Answer: By the process of random challenge. Alice randomly chooses a message 

and ask Bob to sign it. Alice can then verify the signature. Since none except Bob, 

as only Bob processes Privatebob, can produce a valid signature, Alice knows that 

he is Bob if the verification passes. 
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ECDSA signature generation 
Input: message M, private key d, 

elliptic curve E with base point P of order n. 
Output: signature for M. 

1. select a statistically unique and unpredictable integer k 

in the interval [1. . . n — 1] 

2. compute kP = {xi,yi) 

3. compute r = xi mod n 

4. compute e =Hash(M) 

5. compute s = + dr) mod n 

6. the signature for M is (r, s) 

ECDSA signature verification 

Input: message M, signature for message (r, 5 ) , public key Q, 

elliptic curve E with base point P of order n. 

Output: accept or reject the signature. 

1. compute e =Hash(M) 

2. compute s—1 mod n 

3. compute ui = e - mod n 

4. compute U2=r • mod n 

5. compute u i P + U2Q = (x i ,y i ) 

6. compute v = xi mod n 

7. accept the signature ii v = r 

Hash is a one-to-one function that maps a message M to a integer of length 160bit, 

it is also called a message digest function and runs very fast, see [ECC standard]. 

Since hash functions or modulus computations are relatively cheap, it is clear 

that Elliptic Curve Scalar Multiplication is the computation that dominates elliptic 

� curve cryptography. 

Signature ~1 single EC point multiplication, 

Signature verification ~1.5 times of a single EC point multiplication, 

Encryption ~2 EC point multiplications 

Decryption "slightly > a single EC point multiplication, 

The reason for the number 1.5 rather than 2 in signature verification is due to the 

time taken to do a simultaneous elliptic curve multiplications. 
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4.3 Elliptic curve discrete log problem 

Let E be an elliptic curve defined over a finite field Let P € E{GF{2"')) 

be a point of order n, where n is a prime number and n > 2)60. 

The elliptic curve discrete logarithm problem (ECDLP) is the following: given the 
curve E, P and Q G E{GF{2'^)), determine the integer l,0<l <n-l, such that 
Q 二 IP, provided that such an integer exists. 

The best general algorithms known to date for ECDLP are the Pollard-p method 

and the Pollard-入 method, [Pol78]. The Pollard-p method takes about y^7rn/2 steps, 

where each step is an elliptic curve addition. The Pollard-/? can be parallelized (see 

[OW99]) so that if m processors are used, then the expected number of steps by each 

processor before a single discrete logarithm is obtained is y/Trn/2/m. The PoUard-A 

method takes about 3.2S^/n steps. It can also be parallelized (see [OW99]) so that if 

m processors are used, then the expected number of steps by each processor before 

a single discrete logarithm is obtained is about 2y/n/m. 

Some special classes of elliptic curves, including supersingular curves, see section 1， 

have been prohibited in the ECC standards, see [ECC standard], by the requirement 

of the MOV condition [MOV93]. These curves have been prohibited because there 

is a method for efficiently reducing the discrete logarithm problem in these curves 

to the discrete logarithm problem in a finite field, which is much easier. 

Also, the special class of elliptic curves called GF(2"")-anomalous curves have been 

prohibited by the requirement of the Anomalous condition (see section 4 below) be-

cause there is an efficient algorithm for computing discrete logarithms in E{GF{2'^)) 

where E is an anomalous curve over (i.e. = 2"^). 

Assume that a 1 MIPS (Million Instructions Per Second) machine can perform 
4 X 104 elliptic curve additions per second. (This estimate is indeed high, an ASIC 
(Application Specific Integrated Circuit) built for performing elliptic curve oper-
ations over the field has a 40 MHz clock-rate and can perform roughly 
40,000 elliptic additions per second.) Then, the number of elliptic curve additions 
that can be performed by a 1 MIPS machine in one year is (4 x 10^) • (60 x 60 x 
24 X 365) « 1.261 x 10^2 

The following table shows the computing power required to compute a single 

discrete logarithm for various values of n with the PoUard-p method. 
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Field size Size of n MIPS years 

(in bits) (in bits) 

163 160 280 8.5 x lO^ 

191 186 293 7.0 X 1015 
239 234 2117 1.2 x lO^^ 

359 354 2177 1.3 x 

431 426 2213 9.2 x ICP 

Note: The strength of any cryptographic algorithm relies on the best methods 
that are known to solve the hard mathematical problem that the cryptographic 
algorithm is based upon, The discovery and analysis of the best methods for any 
hard mathematical problem is a continuing research topic. The state of the art in 
solving the ECDLP is subject to change as time goes by. 

To put the numbers in the above table into some perspective, the following ta-
ble, [Odl95], shows the computing power required to factor integers with the 1995 
versions of the general number field sieve. 

Size of integer to be factored (in bits) MIPS years 

512 3 X 104 

768 2 X 108 

1024 3 X IQii 

1280 1 X 1014 

1546 3 X IOI6 

2048 3 X 102O 

Odlyzko, [Odl95] has estimated that if 0.1% of the world's computing power were 
available for one year to work on a collaborative effort to break some challenge 
cipher, then the computing power available would be 10^ MIPS years in 2004 and 
IQio to lOii MIPS years in 2014. 

As an example, if 10,000 computers each rated at 1,000 MIPS are 

available, and n « then an elliptic curve discrete logarithm can be 

computed in 85,000 years. Take a look of 

http://cristal.inria.fr/~harley/ecdl7/readMe.html 
http://cristal.inria.fr/bin/ecdldb?m=AP 

http://cristal.inria.fr/bin/ecdldb?m=P;i=501 

to see how this can be possible in the future. 

A Pentium 11-400 is a many-splendored Thing but it is at most a 800 MIPS 
machine. The fact that the chip has 400 Million cycles per second and that at most 
2 instructions can be started per second means I have a machine capable of 800 

http://cristal.inria.fr/~harley/ecdl7/readMe.html
http://cristal.inria.fr/bin/ecdldb?m=AP
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MIPS by definition of the numbers. (The Pentium has two pipelines for processing 
instructions, so 2 instructions can start in each cycle.) But MIPS is a bad number 
because it only tells how many instructions begin in a second, and has nothing to 
do with how long it takes fully execute the instructions. 

On the other hand, how weak is 32bits ECC? 

On January 2000, I wrote a program in MAPLE implementing the Pollard-p 

method. It broke the 32 bits ECDLP over GF(p), where p is a prime, in 2.5 

minutes and for 40bits in 1.5 hours on a Pentium 11-400. Since 32 bits is the 

usual wordsize of a processor, it might be the case that many students 

in many parts of the world are still going on to implementing 32bits 

Elliptic Curve Cryptography. Yet no explicit evidence as to how weak 

32bits E C C are, probably because it is too small, that the usual research 

journals simply chose to forget it! But this was why I wrote this program. So 

although this M A P L E program was rather simple, at least on a second 

thought, there is still of value in trying to publish it. 

4.4 Finding good and secure curves 

4.4.1 Avoiding weak curves 

To guard against existing attacks on ECDLP, one should select an elliptic curve E 

over such that: 

1. The order is divisible by a large prime n > 2i60; 

2. The MOV condition holds; and 

3. The Anomalous condition holds. 

� The MOV Condition 

The reduction attack of Menezes, Okamoto and Vanstone, [MOV93] reduces the 

discrete logarithm problem in an elliptic curve over G_F(2爪)to the discrete loga-

rithm in the finite field for some B>1. The attack is only practical if B 

is small; this is not the case for most elliptic curves. The MOV condition ensures 

that an elliptic curve is not vulnerable to these reduction attacks. Most elliptic 

curves over a field will indeed satisfy the MOV condition. 

Before performing the algorithm, it is necessary to select an MOV threshold. This 
is a positive integer B such that taking discrete logarithms over is at least 

as difficult as taking elliptic discrete logarithms over G_F(2爪).A value of B > 20 is 
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required. Selecting B > 20 also limits the selection of curves to non-supersingulax 
curves, section 1. Suppose E is an elliptic curve defined over and n is a 

prime divisor of 

The MOV Condition 

Input: An MOV threshold B, q = 2爪,and a prime n. 

Output: The message true if the MOV condition is satisfied for an elliptic curve 
over GF{2'^) with a base point of order n; 
the message false otherwise. 

1. Set i = 1 

2. For i from 1 to 5 do 

2.1 Set t = t • q mod n 

2.2 lft = l, then output "false" and stop 
3. Output "true" 

The Anomalous Condition 

Smart [Sma99] and Satoh and Araki [SA98] showed that the elliptic curve discrete 

logarithm problem in anomalous curves can be efficiently solved. An elliptic curve 

E defined over GF{2"') is said to be GF(2"')-anomalous if # E ( a F ( 2 " " ) ) = 2爪. 

The Anomalous condition checks that #五 ( 6 ^ ( 2 爪 ) ) / this ensures that an 

elliptic curve is not vulnerable to the Anomalous attack. Most elliptic curves over 

a field will indeed satisfy the Anomalous condition. 

4.4.2 Finding curves of appropriate order 

In order to perform EC-based cryptography it is necessary to be able to find an 
elliptic curve. The task is as follows: given a field size 2饥 and lower and upper 
bounds Tmin and Vmax for base point order, find an elliptic curve E over 
and a prime n in the interval r饥�„ < n < r^ax, which is the order of a point on 
E. Since factor large numbers are difficult in general, a trial division bound Uax is 
chosen and the search is restricted to nearly prime curve orders. 

There are four approaches to selecting such a curve: 

1. Select curve coefficients with particular desired properties, compute the curve 

order by using formulae, and repeat the process until an appropriate order is found. 

2- If m is divisible by a small integer d, then select a curve defined over 勺 

and compute its order over GF{2^) by using formulae. Repeat if possible until an 
appropriate order is found. 

3. Select a curve at random, compute its order directly, and repeat the process 
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until an appropriate order is found. 

4. Search for an appropriate order, and construct a curve of that order. 

These material are highly technical and the mathematics involved is far from being 
trivial, especially if one demands a program that can produce reliable results in a 
reasonable amount of time. See [SSB99] and the standards [ECC standard] for more 
details. 

For the first and second approach, attention must be paid to a new kind of attack, 
[GHS2000], since m might be composite here. The fourth approach is implemented 
using the complex multiplication (or CM) method. The third approach: Selecting 
a curve at random, is considered to be the best. Since, to guard against possible 
future attacks against special classes of non-supersingular curves, it is prudent to 
select an elliptic curve at random. 

We briefly outline how "Selecting a curve at random" can be accomplished. The 
main difficulty is point-counting, which is omitted. To explain them need another 
thesis. Despite this, even an outline can be quite cumbersome. 

We explain the input parameters first: 

1. Tmin shall be selected so that Tmin > The security level of the resulting 
elliptic curve discrete logarithm problem can be increased by selecting a larger Tmin 
(e.g. T f j i i f i � 2 ). 

2. The order u of an elliptic curve E over satisfies + 1 - < 

w < + 1 + and u is even. Hence for a given Vmin should be < 

3. Imax is typically a small integer (e.g. 1麵工=255) . 
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Selecting an appropriate curve and point at random 

Input: A field size q = 2爪,lower bound rmin, and trial division bound Imax-

Output: Field elements a,6 e G_F(2爪)which define an elliptic curve over GT(2爪)， 

a point P of prime order n > rmin, n > the curve, 

and the cofactor h = 

1. Generate an elliptic curve verifiably at random, see note 1 below 

2. Compute the order u of the curve defined by a and b, see note 2 below 

3. Verify that 6 0, 

the curve equation is E : y^ + xy = x^ ax^ + b over GF{2'^) 

4. Test u for near primality, 

if the result is not nearly prime, then go to step 1. Otherwise, u = h • n, 

where h is /^ax-smooth, and n > Vmin, n > is probably prime, 

see note 3 below 

5. Check the MOV condition, with inputs B >20, q = and n, 

if the result is false, then go to step 1 

6. Check the Anomalous condition, 

if the result is false, then go to step 1 

7. Find a point P on E of order n, see note 4 below 

8. Output the curve E, the point P , the order n, and the cofactor h 

Note: 

1. select parameters {SEED, a, b) arbitrarily, see [ECC standard], to understand 

what "verifiably at random" means. 

2. the order #E(J3F{2饥Y) can be computed by using Schoof's algorithm, [Sch87] 

and its modifications. Although the basic algorithm is quite inefficient, several dra-

matic improvements and extensions of this method have been discovered in recent 

years. In 1998, it was feasible to compute orders of elliptic curves over G_F(2饥) 

where m was as large as 1300. Cryptographically suitable elliptic curves over fields 

as large as could be randomly generated in about 5 hours on a worksta-

tion, [Ler97]. In 2000，M. Fouquet, P. Gaudry and R. Harley could count the points 

on a curve of cryptographic size in seconds. Their program could also be combined 

with an early-abort strategy to examine lots of random curves until a secure one is 

found. E.g., generating a secure 163-bit curve took about 20 seconds on an Alpha 

750 server, [FGH2000]. 

3. Given a trial division bound Imax, a positive integer h is said to be Z爪aa：-smooth 

if every prime divisor of h is at most Imax- Given a positive integer Vmin, the positive 

integer u is said to be nearly prime if w = /i • n for some probable prime value of n 

such that n > Tmin and some Imax-smooth integer h. 
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4. If the order u = of an elliptic curve E is nearly prime, the 
following algorithm efficiently produces a random point on E whose order is the 
large prime factor n of u = hn. 

1. Generate a random point R (not 'd) on E 

2. Set P = hR 

3. If P = i9, then go to step 1, 
otherwise output P. 



Chapter 5 

The performance of 17x bit 
Elliptic Curve Scalar 
Multiplication 

5.1 Choosing finite fields 

There are specific values of m for which an optimal normal basis exists in G_F(2爪). 

Prom chapter 1’ section 4; chapter 2, section 4 and 5’ we have the following: 

m for which a Type I ONB exists in 

100, 106’ 

130’ 138’ 148’ 

162，172，178, 180, 

196’ 210’ 

226, 

268, 

292，316, 

346, 348, 

372，378, 

388， 

418, 420, 442 

460, 466 

6 3 
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m for which a Type II ONB exists in GF{2'^) 

105’ 113’ 119’ 

131’ 134’ 135’ 146，155’ 158， 

173, 174, 179, 183，186, 189，191, 

194, 209，221’ 

230, 231，233, 239, 243, 245，251，254, 
261, 270, 273，278, 281, 

293，299，303, 306，309， 

323’ 326, 329, 330，338, 350, 

354，359, 371, 375, 

386，393, 398, 410, 411, 413，414， 

419，426’ 429, 431，438, 441, 443, 

453, 470, 473 

Those m < 100 have all been deleted since the Certicom ECDL challenge has been 
solved up to ECC2K-108 on 4th April 2000. 

See http://www.certicom.com/research/ecc_challenge.html 

for the number of machines, time and computing power that was involved. 

How about leObit ECC? Would the news of ECC2K-108 influence our belief t o 
wards the security of 160bit ECC? 

Answer: V ^ / V ^ = 2̂ 6 « 67,000’ 000. See section 3 of this chapter. 

Those m < 160 are included here for reference only. Notice that I have classified 
the table into rows. The rationale for this arrangement is after taking into account 
of the size of a 32bit processor, so that we have a category of 161 to 192 bits, the 
next row would then be 193 to 224 bits. 

It should be pointed out that a new kind of attack was discovered recently, 
[GHS2000] and they recommended to choose m that was prime so that this at-
tack would not work. However, this will eliminate many many interesting field 
sizes, such as all field sizes with Type I ONB exists. Whether their attack will 
work practically to some or all curves on these field sizes is not clear. For this 
reason, in the above two tables, I have marked those field sizes with m prime with 
a bold-faced type. 

Now for our work on testing the "The performance of Elliptic Curve Scalar Mul-
tiplication" : 

For type II ONB, we choose GF(2爪)with m = 173,179. 

For type I ONB, we choose m = 178. Note that 178 = 2-89 which is nearly prime. 

http://www.certicom.com/research/ecc_challenge.html
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5.2 17x bit test vectors for onb 

According to the information in the section "Finding good and secure curves," we 
found secure curves according to the standard, [ECC standard]. 

Numbers are presented in hexadecimal form. Each hexadecimal digit expands 
in the natural way to four bits, except possibly the most significant digit, which 
expands to the approximate number of bits. Once expanded, the bits are from high 
orders to low orders, left to right. 

Example 8 m=173 bits 

use Type II ONB in 

The curve is y^ ^ xy = x^ + ax^ + b over 

a = IFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

b = 020 65676EBA 2BD7E13A EE225240 52D30C43 B66CFC30 

Base point P 

^ = 1F51 4AC1C477 27B9B985 57195120 7A62EE52 66A287DC 
y = 1EF2 A6F631E0 7D953066 289BC9AA F04EF67F 82137C2E 
Order of P (size is 173 bits) 
n = 1000 00000000 00000000 005A7FC9 654DD68B 04AFBC97 
h = 2 

Example 9 m=173 bits 

use Type II O N B in 

The curve is y^ xy = x^ + ax^ + b over 

0 

b = C69 7988DD3E 2FE085BD 2C1472AB 067B8F0C F119704E 

Base point P 

^ = 171F E4505005 1C356898 A5D9508B 81C0B3C7 CF9F7A2E 
y = C5F 0165A54D 14B2590D FC6C4EB6 4B3347AB F50CFCF4 
Order of P (size is 171 bits) 
n = 7FF FFFFFFFF FFFFFFFF FFE2DC3A 3FBDB80E 5A93E6B3 
h = 4 
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Example 10 m=178 bits 

use Type I ONB in 

The curve is y^ + xy = x^ + ax^ + b over 

a = 1 

6 = 2C7E5 439E4C8B 270D7F84 475F527A D5B2AB28 5804C450 

Base point P 

^ = ICAAC 5F88C818 29548641 B2908BB2 EE5AAE1A CE99E7AB 
y = D2CD A4044CA1 0EB0E98D 7C4E2934 1FF24D75 49861AD5 
Order of P (size is 178 bits) 

20000 00000000 00000000 01A9C35E A2EBCADC A3E11E47 
h = 2 

Example 11 m=178 hits 

use Type I ONB in 

The curve is y^ + xy = x^ + ax^ + b over 

a = 0 

b = 21BE6 CB54480A E8FF68F3 CFBD12B5 C1DDEF59 77635C79 

Base point P 

^ = 104CB 99623987 82FDE024 19DD68ED 63E5463E 2425A7E6 
y = F175 A82716AE 6B52049E 317B951A 8C90C9D0 C3A3E564 
Order of P (size is 177 bits) 

n = 10000 00000000 00000000 00AD9B22 331C2A11 F16A0F29 
h = 4 
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Example 12 m=179 bits 

use Type II ONB in 

The curve is y^ + xy = x^ + ax^ + b over 

a = 7FFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 

b = 5FB16 DAD38D11 EAFD5A08 EEBE9C56 C231CFB2 AFBIBAIF 

Base point P 

^ = 30804 3E46FB55 2577734C 6245AEBB DB575C38 06D3D1E5 
y = 4345 999023A7 952127AD F8D81B4E DE0D60F9 6F0937B6 
Order of P (size is 179 bits) 
n = 40000 00000000 00000000 0225CBA7 682E2598 9A153953 
h= 2 

Example 13 m=179 bits 

use Type II ONB in 

The curve is y^ + xy = x^ i- ax^ + b over 

0 

b = AB46 EEAE9E1D 2298F20D C3D98307 772D0DFC 9FC25A6D 

Base point P 

a: = 4F8B4 E1272856 F022CAD2 E9091089 CFAEEAFC 4E8146B1 
y = EF71 3BE26E57 567F3F43 AB8B0E3B 1C718157 542ECDE5 
Order of P (size is 177 bits) 
n = IFFFF FFFFFFFF FFFFFFFF FED96217 1E865BCD CA029BD7 
h = 4 

There appeared a question about ONB test vectors in the IEEE PI363 mailing list 

a /e犯 days ago, and that was my question a while ago. Today is 22 Jan 2001, 

nobody has reacted to this question yet. Note that the first draft of IEEE PI363 

dated at least back to 1995. The answer has been given above. 

>Date: Thu, 18 Jan 2001 12:14:38 +0100 (MET) 

>From: B i r g i t Henhapl <birgit®cdc.Informatik.TU-Darmstadt.DE> 

>To: P1363 Diskussionsgruppe <stds-pl363-discuss@majordomo.ieee.org> 
>Subject: P1363: examples f o r EC Domain Parameters in ONB representat ion 

>Sender: owner-stds-pl363-discussQieee .org 

mailto:stds-pl363-discuss@majordomo.ieee.org
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>X-Resent-To: Multiple Recipients <stds-pl363-discuss0majordomo.ieee.org> 
>X-Info: [Un] Subscribe requests to niajordomo@majordomo.ieee.org 

>X-Moderator-Address: stds-pl363-discuss-approval(3maj ordomo. i eee . org 

>This i s a s tds -p l363-d iscuss broadcast. See the IEEE P1363 web page 

> ( h t t p : / / g r o u p e r . i e e e . o r g / g r o u p s / 1 3 6 3 / ) f o r more information. For l i s t 

> in fo , see http : / /grouper . ieee .org /groups /1363/WorkingGroup/mai l l i s t .html 

> 
>Hi, 

>I,m implementing ECDSA over GF(2~n) in ONB-representation. I need to f i n d 

>some t e s tvec to r s in order to v e r i f y my implementations. 

>P1363 unfortunatly does not include any t e s t v e c t o r s . 

>The only examples I found are those of X9.62-1998, but I 'm not able to 

>extract the y -coordinate based on the given (compressed) basepoint . My 

> f i n i t e - f i e l d - a r i t h i n e t i c seems to be correc t ( I got some t e s t v e c t o r s ) . 

>Can e i ther anybody give me the y -coordinates of the X9.6* examples (J4 .3 , 

>exc. 4 + 5, p. 109/110) or any other examples WITH y -coord inate or at 

>least confirm that the given x -coordinates of the base po ints are not 

>correc t . 
> 

>Many thanks, 

> B i rg i t Henhapl 

>Birgit Henhapl b irg i tQcdc . informatik . tu-darmstadt .de 

>Technische Universitaet Darmstadt phone: +49 6151 16 5541 
>FB Informatik fax : +49 6151 16 6036 

>Inst i tut fl ier Theoretische Inf ormatik 

>Lehrstuhl Pro f . J. Buchmann 

>Alexanderstr. 10 
>64283 Darmstadt 
>Gemany] 

5.3 Testing methodology and sample runs 

For each bit length, 

• Two SECURE, according to the IEEE P1363 November 1999 documents, 
curves were generated. 

mailto:niajordomo@majordomo.ieee.org
http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/WorkingGroup/maillist.html
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• Verify the sample curve parameters matched with each other. See note 1 
below. 

• 1000 times of ( m ) • P, P is the base point, where rn is a random number 
satisfies 0 < = rn < order of P, were performed. 

• Several runs on each of the two curves were then followed. See note 2 below. 

Note: 

• 1. Check that the order of P was correctly specified in the data of a 
sample curve. 

Now P = {x, y), and let pnt.order be the order of P as specified in the data of a 
sample curve. It suffices to check that [pnt-order — 1) . P = (re, a； + y). 

Reason: If {pnt.order - 1) • P = (x, a: + y) then {pnt.order - i ) . p ^ _ p by the 

inverse formula. Therefore (pnt.order) • P = {pnt.arder-I) • P + P =-P + P = 

Since pnt-order is a prime number, so from simple group theory, the actual order 

of P is either 1 or pnt.order. Obviously P is not i9, therefore the actual order of P 
is indeed pnt.order. 

• 2. But no significant variance was observed. 

Here is a sample run of the "Elliptic Curve Scalar Multiplication" C program for 

the 178 bit curve of example 3 in the last section on a Pentium II-400Mhz PC. 

po int P 

X : Icaac 5f88c818 29548641 b2908bb2 eeSaaela ce99e7ab 

y : d2cd a4044cal 0eb0e98d 7c4e2934 I f f24d75 4986lad5 

X XOR y 

: 1 1 8 6 1 fb8c84b9 27e46fcc cedea286 f la8e36 f 871f fd7e 

(pnt_order - 1 ) P 

X : Icaac 5f88c818 29548641 b2908bb2 eeSaaela ce99e7ab 

y ： 11861 fb8c84b9 27e46fcc cedea286 f la8e36 f 871f fd7e 

User time: 0.0500000000 seconds 

Real t ime: 0.0000000000 seconds 



70CHAPTER 5. THE PERFORMANCE OF 17X BIT ELLIPTIC CURVE SCALAR MULTIPLICATION 

random seed i s 1046851076 
I am running . . • (random)P . . . f o r 1000 times 

User time: 59.6650000000 seconds 

Real t ime: 60.0000000000 seconds 

FYI, the l a s t rn i s 

: c l c 6 a f8c5ca l 105348ab 78a8d9f0 ea4e4672 5f35caab 

FYI, the l a s t (rn)P i s 

X : 398e9 daf7da6b 448a3b6b be f ce5c5 50125580 414fbe52 

y ： 19361 4ba20af5 bebdbl24 ad61b0b5 72bc0ad9 c7244fa9 

random seed i s 975226737 
I am running •.• (random)P . . . f o r 1000 times 

User time: 59.7760000000 seconds 

Real t ime: 59.0000000000 seconds 

FYI, the l a s t rn i s 

: 1 6 8 e f 95ca9911 029ble le b8209691 5d224c8d 2f814c26 

FYI, the l a s t (rn)P i s 

X : 36424 05a78ce8 a291512c 6602839c 19a6232b 50192993 

y ： 729d afe77al9 75bdaf94 24009e23 13756bc6 7036f514 

random seed i s 2632629705 
I am running . . . (random)P . . . f o r 1000 times 

User t ime: 59.8160000000 seconds 

Real t ime: 60.0000000000 seconds 

FYI, the l a s t rn i s 

: 1 5 e c 6 c889e808 c f e c l 8 4 1 9334e3de 60e6665a 01b4ebb7 

FYI, the l a s t (rn)P i s 

X : a336 6 9 2 c f 5 f f 9aa fd2 f l 31d390d6 a589e724 a3d09639 
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y : 14641 b82b0083 dbf2f57d 260ee831 43199f65 885c030e 

random seed i s 1527782800 
I am running .•. (random)P . . . f o r 1000 times 

User time: 59.6660000000 seconds 

Real time: 60.0000000000 seconds 

FYI, the l a s t rn i s 

: a c 8 8 3 f 7 9 b l f d 68588745 d9b50ea8 56c9f7b8 6a548ad9 

FYI, the l a s t (rn)P i s 

X : f379 56ea7a2e 7b5b00ad 3379c485 346caaaf 759bb29f 

y ： 23908 c6158fa3 02229a57 a46f271f 2celded7 dbb8c38b 

random seed i s < s t u f f d e l e t e d � 

I am running . . . (random)P . . . f o r 1000 times 

User time: 59.8460000000 seconds 

Real t ime: 60.0000000000 seconds 

FYI, the l a s t rn i s 

: < f o r ECDL problem > 

FYI, the l a s t (rn)P i s 

X : 35b7a lc281adf 93562c4c f0506c lb ec8dfb28 d0031c81 

y ： 342fc 94043645 1283a0d2 e8a35d41 2a3a4207 03aeld98 

s t u f f de le ted 

Notice that (random) . P took 0.060 seconds per iteration. 
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5.4 Proposing an elliptic curve discrete log prob

lem for an 178bit curve 

Once we have the "Elliptic Curve Scalar Multiplication" C program working, it is 

very easy to propose an elliptic curve discrete log problem- simply look at the last 

few lines of the previous section. This 178 bit curve is considered secure according 

to the standard of IEEE P1363 November 1999 documents. But why do we need 

to propose an elliptic curve discrete log problem? Because there was a new kind 

of attack discovered by Nigel Smart, et al. in January 2000. The following is an 

excerpt, see [GHS2000] for details of the attack. 

>From nigeLsmart@hplb.hpl.hp.com Sat Jan 15 08:34:24 2000 

>Date: Fri, 14 Jan 2000 15:38:18 +0000 

> From: Nigel Smart <nigeLsmart@hplb.hpl.hp.com> 

>To: stds-pI363-discuss@majordomo.ieee.org, nsma@hplb.hpl .hp.com 

>Subject: P1363: ECC Stuff 

> 
> I think it would be a good idea for the P1363 document to recommend 

>that in ECC systems in char 2 that the finite field used should be 

>chosen to be of the PRIME degree over F _2. 

> 
> It is has been suspected by the experts for some time that curves 

>over fields of composite degree over F _2 could be weaker. Indeed G . 

>Frey gave a talk in Waterloo in 1998 which mentioned this idea, as 

> have a number of other people in other meetings over the last couple 

>of years. 

> 
> Just before Xmass at a meeting in Cirencester (UK) on "Coding and 

> Cryptography" , Steven Galbraith presented a joint paper with me 

>describing further details of the possible problems with such 

> curves. (The proceedings are available as an LNCS volume). 

> 
> At this conference we also announced that Florian Hess (Uni. 

>Sydney), Pierrick Gaudry (\'{E}cole Poly technique) and myself have 

>discovered the following fact.. .. 

> 
Let q=2

A
t and fix an integer n>=4. 

Consider an elliptic curve over F _{ qAn}. Then for "most" 

such curves one can solve the dlog problem on E(F _{ qAn}) in 

mailto:nigel_smart@hplb.hpl.hp.com
mailto:stds-pl363-discuss@majordomo.ieee.org
mailto:nsma@hplb.hpl.hp.com
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time 0 ( q A {2+epsilon}) this should be compared to Pollard 

rho which would give a time of O(qA {n/2}). 

> It should be pointed out that "random" curves defined over 

> i) A prime field F_p 

>or 

> ii) A field of prime degree over F_2, F_{2 Ap} 

> 
>ARE NOT AFFECTED IN ANY WAY by this new result. Neither are 

>Koblitz type curves defined over fields of any degree over F_2. 

> 
> Making P1363 recommend only prime fields or those of prime degree 

>over F _2 would bring P1363 into line with the recently recommended 

> NIST curves and the way the ANSI standards are progressing. Hence 

>such a move would make sense not only from the security perspective 

> but also from the standards and interoperability perspective. 

> 
>Nigel 

> 
>Nigel P. Smart I mail: nigeLsmart@hpl.hp.com 

The important points have been high-lighted by me. Notice that it was a very 

serious and strong attack, provided it worked! However, there have been no 

further discussions on this attack and its improvements in the IEEE P1363 mailing 

list since then. Notice that 178 = 2 . 89 which is not prime, nearly prime though, 

and may as well be subject to this attack. It would be valuable to know the answer 

because the program under consideration on Scalar Multiplication over a field with 

Type I ONB exists is always faster than that of over a field with Type II ONB exists, 

for similar bit lengths, see section 5 below. The reason is due to the differences in 

their polynomial basis representation for the implementation of the Fast Inverse, 

chapter 3, section 3.2.1. 

Now we propose the following elliptic curve discrete log problem: 

mailto:nigel_smart@hpl.hp.com
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ECDLP on a 178bit curve (178 = 2 * 89) 

Find the integer l, 0:::; l :::; n - 1, such that Q = lP, where n , Q, P 

and the curve are defined as follows: 

use Type I ONB in GF(2178 ) 

The curve is y2 + xy = x3 + ax2 + b over GF(2178 ) 

a = 1 

b= 2C7E5 439E4C8B 270D7F84 475F527A D5B2AB28 5804C450 

Base point P 

x = 1CAAC 5F88C818 29548641 B2908BB2 EE5AAE1A CE99E7AB 

y = D2CD A4044CA1 OEBOE98D 7C4E2934 1FF24D75 49861AD5 

Order of P (size is 178 bits) 

n = 20000 00000000 00000000 01A9C35E A2EBCADC A3E11E47 

h= 2 

Point Q 
x= 35b7a lc281adf 93562c4c f0506clb ec8dfb28 d0031c81 

y = 342fc 94043645 1283aOd2 e8a35d41 2a3a4207 03ae1d98 

Let us know the answer so that we will then stop to use GF(2178 ). 

5.5 Results and further explorations 

Platform 

Pentium II-400MHz, compiled with Microsoft VC++ Version 6.0, with 

standard /02 compiler optimization. No assembly was being used. 

The performance of Elliptic Curve Scalar Multiplication over GF(2m) 

bit length onb Elliptic Curve Scalar Multiplication r . P 

173 type II 0.082 seconds per iteration 

178 type I 0.060 seconds per iteration 

179 type II 0.088 seconds per iteration 

This result was also posted on http://itec.erg.cuhk.edu.hk/wb/r/wb.html 

It is the scalar multiplication that dominates the computations of elliptic curve 

cryptography, chapter 4, section 2. Since an usual elliptic curve cryptographic 

operation only requires 1 or 2 elliptic curve multiplications, ECC based on this 

scalar multiplication program is thus fully functional on a Pentium II-400Mhz Pc. 

Yet only the addition-subtraction method was used for scalar multiplication, one 

http://itec.erg.cuhk.edu.hk/wb/r/wb.html
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obvious way to improve the performance is to use better methods of Multiplication, 
[Gor98]. Other techniques that might as well benefit normal basis arithmetic such 
as point-halving and Probenius expansions, [SSB99] might also be valuable. 

However, our next target is to make Elliptic Curve Cryptography runs smoothly 
on embedded devices, such as a smart card, PDA or mobile phone. That is perhaps 
a long journey. 
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Chapter 6 

On matrix RSA 

In this chapter, we present our findings of a particular extension of the RSA pubUc-

key cryptosystem from using integers modulo n to a version using matrices whose 

entries are integers modulo n, where n is the product of two large primes. In 

contrast to the methods found in the existing literature, our schemes do not require 

matrices of a special form, such as triangular matrices, and essentially work on 

all plaintext message matrices, whether non-singular or not. The derivation of the 

theorems on matrix powers depends on the consideration of eigenvalues of matrices 

over GF{p) and GF(n) , rather than on counting the number of matrices that form 

a group under matrix multiplication. Several numbers are encrypted and decrypted 

in a single run. By using the Cayley-Hamilton theorem, our method reduces the 

computation of a matrix exponentiation with a large exponent to the computation 

of an exponentiation of x modulo the characteristic polynomial of a matrix, which 

can be accomplished by the square and multiply method or any other methods of 

fast exponentiations. Thus computational saving can be achieved. 

6.1 Introduction 

In the RSA public-key cryptosystem, integers modulo n, where n is the product of 

two large primes p and q�are used. The public key consists of the integer n and 

the encryption exponent e. The private key consists of the decryption exponent 

丄 It is required that d . e 三 1 mod (p — - 1). Note that a slightly different 

version requires that d • e 三 1 mod l.c.m.[(p — 1)，(g - 1)]. Let integer x, 0 < x < n 

denote the plaintext. The encryption process computes the cyphertext y = mod 

n, 0 S y < n. Given a cyphertext y, the decryption process computes x = p^ mod 
n. 

77 
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Note that the encryption process or the decryption process computes the expo-
nentiation of integers modulo the integer n. 

In the matrix extension of RSA, we compute the exponentiations of matrices, 
rather than integers, in the encryption or the decryption process. The central idea 
is to use matrices whose entries are integers modulo n. The plaintext shall take 
on the form of a k-hy-k matrix X, and the cyphertext shall also take on the form 
of a k-hy-k matrix Y. The entries of either matrix are integers modulo n where 
n is the product of two large primes p and q. Given a plaintext matrix X ’ the 
encryption process computes the cyphertext 三 Ĵi：巨 mod n. Given a cyphertext 
y, the decryption process computes the plaintext X 三 mod n. 

The motivation of using matrix extensions of RSA public-key cryptography is that 
it has the potential of speeding up the RSA encryption and decryption computa-
tions, particularly when multiple rounds of integer encryption and decryption are 
present. One may use the square and multiply technique for matrices exponentia-
tion mod n [V085], but because of the Cayley-Hamilton Theorem, exponentiation of 
matrices with a large exponent can be reduced to the computation of a matrix poly-
nomial of moderate degree, [CD90]. By using the Cayley-Hamilton theorem, our 
method reduces the computation of a matrix exponentiation with a large exponent 
to the computation of an exponentiation of x modulo the characteristic polynomial 
of a matrix, which can be accomplished by the square and multiply method or any 
other methods of fast exponentiations, section 6. 

Attention must be paid to ensure that the encryption and the decryption process 

returns the original plaintext under all conditions of relevance. For example, the 

relationship between the encryption exponent e and the decryption exponent d 

become modified. Additional constraints on usable plaintext X also arise. 

Our proposed 2 by 2 matrix RSA scheme 1 is our first step towards an extension of 

RSA scheme to matrices. Three numbers can be encrypted and decrypted in each 

single run. However, it requires the sender to check whether a plaintext message 

matrix is non-singular or not: if it is singular, he cannot encrypt that particular 

message. This is not very appropriate for cryptographic application although the 

proportion of singular matrices over Z„ , where for instance n = p • ^ and p, ^ are 

large distinct primes, is very much close to zero. It is not good to restrict arbitrary 

plaintext matrices to be non-singular. This problem was also mentioned in [V085] 

and [CD90]. In order to solve this problem, they used upper triangular matrices. 

In our proposed 2 by 2 matrix RSA scheme 2 and 3，we can stiU use matrices 

without a special form over Z^. The condition for the sender to check is just one or 

two gcd computations of n with an integer depending on the entries on the plaintext 
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matrix. What are required are only those gcd's would not equal to one. This will 

always be the case for otherwise n would get factored, as we know that factoring 

large numbers is hard. Hence it is not a demanding assumption. 

In section 3，some theorems of matrix powers over GF{p) and GF(n) , are ex-

plained. These theorems look similar to Fermat's little theorem. But unlike the 

usual approach by counting the number of matrices that form a group, [V085]’ the 

derivation of these theorems depends on the consideration of eigenvalues of matrices. 

Given a square matrix A, the characteristic polynomial of A is det(Ai - A), where 

det denotes the determinant of A. For example, \i A = \ ^ ^ \ , then the char-
\ c d 厂 

acteristic polynomial of A is det (A/ — A), which is A^ - (a + d)A + {ad — be). 

The Cayley-Hamilton Theorem: Every matrix satisfies its only characteristic poly-

nomial. For example: “ ^ j , then A^-{a + d)A + {ad-hc)I = 0 ’ where 

/ here denotes 2 by 2 identity matrix, and O denotes 2 by 2 zero matrix. 

Throughout this chapter, we let p, q be large primes, ajidn=pxq. 
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6.2 2 by 2 matrix RSA scheme 1 

Key preparation: 

1. Choose two large strong primes p and q. Compute n = p x q. 

2. Choose a random large integer e such that 0 < e < 2(p - l ) (g - 1) and is 
relatively prime to 2 ( p - - 1). 

3. Calculate d such that e-d=l mod 2{p - - 1). 

Note: e stands for encrypt, d stands for decrypt. 

Public key is (n,e). Secret key is d. 

P and q should be discarded or kept secret. 

Encryption: 

1. Suppose a, b, c are non-negative integers less than n, with 

+ 6c 0 mod n. 

_ ( a h \ 
Let X = I ^ ^ j be the plaintext message matrix. 

2. X is encrypted to r 三 X互 mod n, where modulo n is taken element-wisely. 

Decryption: 

Y^ mod n. ‘ 

Note that three integers are encrypted and decrypted in a single run. For matrix 

exponentiations mod n, we may use the standard square and multiply method. 

However, notice that = (a^ + 6c) / . So y 三 X 芒 三 ( a � + b c ) ^ X mod n. 

Moreover, 三（X)，= {{a^+ mod n. But X一议=+ mod 

n, so Y^ = ((a2 + he)^ f{a? + hc)^X mod n. Now {{o?+ hc)^f{o?+ 三 

(a2 + be疗三一 1 mod n If a^ + be mod n. This last fact comes from the 
definitions of e, d and the theory of basic RSA scheme. 

In this way, encryption and decryption of a matrix take just a single exponentiation 
of numbers modulo n. 

6.3 Theorems on matrix powers 

We let p, q be large primes, a n d n ^ p x g . I denotes 2 by 2 identity matrix. 
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Lemma 14 Let A be a 2 by 2 matrix whose entries are elements of GF{p). Let 

fix) e GF{p)[x]. Then 

( / ( A 2 ) - / ( A I ) . A 2 / ( A I ) - A I / ( A 2 ) R -R . , . 
A2-A1 A 十 A,-Ai ] y T 

m = < 

� / ' ( A i M + ( / (Ai ) - A i f ( A i ) ) / if Ai =入 2 

where Ai and X2 are eigenvalues of A in GF{p'^) and f'{x) is the formal derivative 

affix). 

Proof: Suppose Ai ^ A2, there exists Q{x) e GF{p)[x], e,h e GF{p) such that 
f � = ( x - 入 - 入 2 ) Q ( a ： ) + ex + h. Thus / (A i ) = eAi + h, /(A2) = eAs + h, 
and e = h = W • 胸 , ^ h e result then follows from the Cayley-

Hamilton theorem. 

For the case Ai = X2, there exists Q(x) e GF{p)[x], e,h e GF{p) such that 
/ � = M)^Q(x) + e x + h. So f'{x) = 2(x - Xi)Q(x) + (x -入丄尸^‘⑷ + e. 
Thus / (A i ) = eAi + h, / ' ( A i ) = e. Therefore h = / (A i ) - Ai / ' (Ai ) , and the result 
follows from the Cayley-Hamilton theorem. • 

Theorem 15 Let A be a 2 by 2 matrix whose entries are elements of GF{p). Sup-
pose A has no zero eigenvalue, 

(1) Then 三 / modp if A has distinct eigenvalues in GF{p^), and Ap(p-i)三 / 

mod p if A has repeated eigenvalues in GF{p^). 

(2) 1)三 / modp. 

Proof: Let f{x) = x^ in the above lemma. 

Suppose Ai + A2, where Ai,入2 € G F { p � . = ^ ^ + ^ ' ^ Z ^ f ^ 1. Since Ai， 

A2 € Ai 0, A2 — 0’ then A^p'—i) = =1 in G F ( p ' ) . We have 

� 二 + - / • Thus 三 I mod p. 

Suppose Ai = A2, in this case Ai actually equals to ^ ’ which is in GF{p). Using the 
above lemma, we have A'' = /c. + (入卜 Ai = + 

Thus 乂P(P-i)三 0 . A f - i J + (Ar^)P(l — 0 ) / 三 / mod p. 

This proves (1). (2) follows easily from (1). • 

Theorem 16 Let A be a 2 by 2 matrix whose entries are non-negative integers. 

^ P-eigenvalue of A means an eigenvalue of A mod p, where modulo p is taken 

element-wisely, in GF{p^). Let p, q be two large primes, n = p • q. 

� // the p-eigenvalues of A are non-zero and the q-eigenvalues of A are non-zero, 

then 三 J mod n. 

(V // the p-eigenvalues of A are non-zero and distinct, and the q-eigenvalues of A 
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are non-zero and distinct, then i )三 j 誦歧化 

Proof: Let Ap 三 4 mod p. Since Ap has no zero eigenvalue, from the above 
theorem, ] ? ( ”二 i )三 I mod p. Thus " (p ' - i )三趟(”‘一”三 j mod p. Similarly 

jWf—1)三 1)三 一_i)三 /modp’andAP(p2_i)9(92 — i )三 

J mod q. Hence 三 / mod pq. This proves (1). The proof of (2) is 
similar. • 

Remark 1 Suppose 01,02,03,04 are non-negative integers, and A = ( ^^ ^^ \ . 
V 0,4 J 

Let p, q be two large primes, n = p • q. 

If gcd{n, aia4 - (22*23} = 1 then the p-eigenvalues and q-eigenvalues of A are non-
zero. 

Proof: The characteristic equation of A mod p is obtained from Â  - (a i+a4)A + 
(aia4 - 0203)三 0 by taking each coefficients mod p. If A has zero /^eigenvalue’ 
then aia4 - a2az 三 0 mod p. So gcd{n, 0104 - 0203} g 1•口 

Remark 2 Suppose ai,a2,a3,a4 are integers, and A = ( \ . Let p, q be 
V 04 J 

two large odd primes, n = p • q. 

^f9cd{n, (ai — a4)2 + 4a2a3} = 1 then the p-eigenvalues (and q-eigenvalues as well) 
of A are distinct. 

Proof: The characteristic equation of A mod p is obtained from 入2 - (ai + 04) A + 

(aia4 - 0203)三 0 by taking each coefficients mod p. Suppose A has repeated p-

eigenvalues, Â  - (ai + a4)A + {a^a^ - asag)三(A _ Ai)(A — Ai) mod p. So Ai + Ai 

三 ai + a4, . 三 aiCH - a2a3 mod p. Thus (ai + “4)2 - 4(0104 — 0303)三 0 or 

(ai - a4)2 + 40203 = 0 mod p. Thus gcd{n, (ai — a^f + 40203} ^ 1. • 
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6.4 2 by 2 matrix RSA scheme 2 

Key preparation: 

1. Choose two large strong primes p and q. Compute n = p x q. 

2. Choose a random large integer e such that 0 < e < — 1)^(^2 _ i ) 肌 」 

is relatively prime to — —丄). 

3. Calculate d such that e . d 三 1 mod - l)q{q'^ - 1). 

Note: e stands for encrypt, d stands for decrypt. 

Public key is (n,e). Secret key is d. 

P and q should be discarded or kept secret. 

Encryption: 

1. Suppose ai,a2,a3,04 are non-negative integers less than n, 

with gcd{n, aia4 - 02as} = 1. 

/ ai a2 \ 
Let X = be the plaintext message matrix. 

\ <̂ 3 «4 / 
2. X is encrypted to F = mod n, where modulo n is taken element-wisely. 

Decryption: 

Y^ mod n. 

Prom theorem 16, part (1) in the last section, it is easily seen that Y^ = 

=X I = X mod n if gcd{n, aia4 — 0203} = 1. Thus this method works. 

Notice that in the encryption step, the assumption on the gcd is not demanding. 

The probability of plaintexts not satisfying the assumption is securely small. The 

cost of the adversary exploiting this deficiency is high. There are also additional 

techniques to shore up this shortcoming. Reserve a few bits in the plaintext group 

{ai’a2’a3，a4} for redundant random bits. For example, let the last few bits of 04 

be bits randomly generated by the encoder which do not carry any useful infor-

mation. The encoder checks if the plaintexts { a ! ’ � 2 ’ a] ’ a j satisfy the encryption 

assumption. If the assumption is not met, the encoder re-generate the redundant 

bits anew using random methods. The process is iterated until the encryption con-

ditions are met. This way, the encryption-decryption process are guaranteed to 

recover the original plaintexts. The random and redundant bits are then discarded 

after decryption. Another alternative is to use our matrix RSA encryption without 

checking whether the assumption is satisfied. The errors that are caused in the rare 
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event when the assumption fails can be controlled by some higher-level error-control 
protocols. Or, this scheme can be used in non-critical application when some rare 
errors can be tolerated, such as in the transmission of audio or video signals. 

6.5 2 by 2 matrix RSA scheme 3 

Key preparation: 

1. Choose two large strong primes p and q. Compute n=pxq. 

2. Choose a random large integer e such that 0 < e < (p^ - - 1) and is 
relatively prime to (p^ - - 1). 

3. Calculate d such that e • d= 1 mod {p^ — — 1). 

Note: e stands for encrypt, d stands for decrypt. 

Public key is (n,e). Secret key is d. 

p and q should be discarded or kept secret. 

Encryption: 

1. Suppose ai ’ (22, a3’04 are non-negative integers less than n, with 

9cd{n, aia4 - 0203} = 1 and gcd{n, (ai - a^f + 40203} = 1. 

I ai \ , 
Let A = be the plaintext message matrix. 

\ 0,4 J 
2. X is encrypted to 三 mod n, where modulo n is taken element-wisely. 

Note: the assumptions on the gcd's are not demanding, for otherwise n 

could be factored, as we know factoring large integers is hard. 

Decryption: 
Y^ mod n. ‘ ‘ 

Recall theorem 16 part (2), 三 / mod n if JC has non-zero distinct p-

eigenvalues and non-zero distinct q-eigenvalues. The remarks following the theorem 
tell us that gcd{n, aia4 - a s a s } = 1 ensures that the ^^eigenvalues and ^-eigenvalues 
of X are non-zero; gcd{n, (ai — a4)2 + 4�2仃3} = 1 ensures that the ^^eigenvalues 
(and ^-eigenvalues as well) of X are distinct. Hence = 三；i： • / 三；j： mod 
n. 
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6.6 An example and conclusion 

We give an example of the 2 by 2 matrix RSA scheme 3 of which n is of 309 decimal 

digits or 1026 bits. 

Key preparation: 

1. Choose two large strong primes p and q. Compute n = p x q. 

P = 

5896965768945957659506848854848456584565846475464756523090596596 
5759675495657595758959659655689586570457399239597056573484643584 
56348684568232904355043 

q = 

6993473047856239092735783473460784738934658993465248946347456458 
9465473465894576458884940690326373646740564390234237692264589340 
623456789347854789346458038027 
n = 

4124027116925439711126060931808648993334089023057628654438782005 

8490963316778489586544982873192444063098900835306669287267394571 

9731718556494282326143641378318068862636587831418262182791117543 

5090643859085237746617164309199463151765154957393221400334174850 

09909257489839125067993249361919927504159141603220161 

2. Choose a random large integer e such that 0 < e < {p^ — — 1) 

and is relatively prime to {p^ - - 1). 

e = 

5478965967947956697584956247457459475905983467348484685484648546 
45636458462373647464579579 
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3. Calculate d such that e • 3 三 1 mod {p^ - - 1). 
d = 

9923240211909365778848877528951513579922604194672572727019940456 

8570790644969068642922856211895221823541150145226513378196320128 

3973253102175776758252065837326375454719634284015552559687447152 

1419955052608189812387599741311101262220303205164690763165145997 

6134826814726292911624908280764774329459542546838255418437615505 

0827240132064784647435316534458968175815024683545843608689025382 

3045517035957219202519910398519269670128273506121035205851522651 

2580395121854814468020236757564466643666393093837073145085485797 

3427320724523756765789123475013954336481784447403658305767772709 

77068980148177871561262555536450906903795 

Encryption: 

1- Suppose ai，<22’ 03，a4 are non-negative integers less than n, with 
9cd{n, aia4 — 0203} = 1 and gcd{n, {ai 一 04)^ + 40203} = 1. 

f ai a2 \ 
Let X — be the plaintext message matrix. \ 0,3 

f 11454 12565 \ 
Now we l e t X = 

\ 21566 22383 J 

2. X is encrypted ioY = mod n, where modulo n is taken 
element-wisely. 

The c h a r a c t e r i s t i c polynomial of X i s x^-33837-x-14601908, 

by taking each c o e f f i c i e n t s modulo n. 

The remainder when x^ is divided by x2-33837 x-14601908, 
i s : 

1950829288770222018713629364393431717125995418211561487348386417 

7998443221197765240714027731325654830308510663222278016130569737 

1207648203670098683402302473623738437900475281628660334889206598 

0718977792084010607705294682580058868663904246382026578750567602 

83600912527505492708551092326071870815155941496043064 • x + 

2513987506549215393273510133287053898679067857850315308532004913 

5062914548305648648416756665365023519291716222337612263216339872 

3897373644751479230764877481927864943224713226853503062854373911 

5404713054275266136342984918286601678709456239313681950605182315 

31831808880491331160236681720786664014304539197822364 

Computation i s carr ied out by the square and mult iply 
method, and by taking modulo n. 
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Using the Cayley-Hamilton theorem, 

- [hi \>2 \ 
Y = X mod n = ， where b i , b2, ba, b4 i s given by: 

\ bs b4 y 
bi = 

3333741578639862858186121356393695975736261126843541647629126702 

5192319841652135886173184312753516003128127078775810608018317902 

9848759396040155874488422640930834890235718377384472521551897494 

9467915060714655620992051947589527091459135142572567949047167362 

08326818980025196517023141665827763276229228628245122 

b2 = 

3076857509951461914572845864668558303641365796782995202793878893 

8644082735356636734925228724157875829668819160387698450482805685 

8496297869270092678269869737990221570230431545384955555269343699 

0259502992025357671220197046030173821640944002249179814880795495 

54748645992595603860594119202927635216626349843682337 

bs = 

2383821862197562381183307128720030538175064939665132225286244604 

8109713893632908893351764332950182761453542088314296457174922048 

0880165551174197262769445946922684005817455305996255568439432682 

5817057555262512530692006377825950449413257106533692525823276900 

52943914334540934013720363120785529725630809215855863 

b4 = 

2726844043872998857706427361493636908499937553058893429641316597 

1897936567237289212220805565899350223523846899572033726585037794 

5251040231109040615626230970352202873370982864597787495613107880 

8547453276187437221418159303828408093417514128786407386316523744 

51838609619278406746811972179278705612751750234659208 

Decryption: 

Y^ mod n. 

By taking each c o e f f i c i e n t s modulo n, 
the c h a r a c t e r i s t i c polynomial of Y i s x^+g-x+h, where 
g = 

2187468611338017706359573145729965102431979366212822231607120711 

9891670224667554074695975867732021899545827692265494239931433446 

4363637485839368162172629145353099961666474420854264348417229711 

2165919381268382650824117366980991118653660643427467465304658593 

59653086380374646872151384878733386119337304343535992 
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h = 

2971529609793130698253871307514711775027886094335886665783599271 
1359086510283230107949939821727489662091985322518446804195992170 
6557710547545990662643023124245675673203745173891352814896418537 
7939964027643756223919242983349465260822915029269194559492481737 
76196918497698579466020427391304787988209422147786331 

The remainder when x^ is divided by x^+g-x+h, is: 

4724431822767357708633858269500451525678979594569086354633325516 
8309891298815609968297457968757969446549194893720348943878483795 
7876393042492896486670443031848656813299934973503723458949012705 
8899921393995782945663161357645284643708636136459974304767992817 
9381869392497760263433179785744763573664361217755321 . x + 
1639858936427350125875151408769611780908491882660646260694038998 
4520165840921973365616170762683442794625306714735875110585782691 
2278120828972067278769478326208027958387325931837516853927190123 
5224913500417546787877840984066146855672705871487396463428439023 
25154068484276037259980633780859836447908628184402293 
Computation is carried out by the square and multiply 

method, and by taking modulo n. 

Using the Cayley-Hamilton theorem, 

] (11454 12565 \ 
mod n 二 . 

\ 21566 22383 / 

Essentially all plaintext message matrices can be used as the assumptions on the 
gcd's are not demanding, for otherwise n could be factored, as we know factoring 
large integers is hard. Four numbers are encrypted and decrypted in each single 
run. A matrix exponentiation with a large exponent can be computed by using 
the Cayley-Hamilton theorem, of which one exponentiation of x modulo the char-
acteristic polynomial of a matrix is required, which can be accomplished by the 
square and multiply method or any other methods of fast exponentiations. Thus 
computational saving can be achieved. 
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