
ForeNet: Fourier Recurrent Neural Networks
::or Time Series Prediction

By
Ying-Qian ZHANG

Supervised By

Prof. Lai-Wan CHAN

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

June, 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis

in a proposed publication must seek copyright release from the Dean of the

Graduate School.

Pi 13 m m
r~— "'，"

V： A UN!VEnS!TY _
^ ^ R V S Y S ^ ^

ForeNet: Fourier Recurrent Neural
Networks for Time Series Prediction

submitted by

Ying-Qian ZHANG

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract
Recurrent neural networks have been established as a general tool for fit-

ting sequential input/output data. Traditionally, recurrent networks have been

regarded as non-linear ARMA models and the parameters are chosen via some

dedicated learning algorithms, such as RTRL (Real-Time Recurrent Learning)

or BPTT (Back-Propagation Through Time). In this thesis, we investigate

recurrent networks from another viewpoint, i.e. from the perspective of spec-

tral analysis. We know that Fourier analysis is a useful tool for time series

analysis. With some approximations, we rewrite the Fourier analysis of a time

series into a recursive form. This recursive form is linked and compared with

the recurrent network architecture. As a result, we derive the ForeNet (Fourier

Recurrent Neural Networks).

ForeNet uses the Fourier recursive equation for the initialization of its

weights. Some experiments on the prediction of various time series are per-

formed. The simulation results prove the efficiency of the proposed initializa-

tion. It assigns the weights in the region not far away from the minimum.

Therefore, the network output is very close to the target values even before

training has been taken place.

i

Unlike traditional recurrent neural networks, complex values are used in

ForeNet. Thus we apply the CRTRL (Complex Real-Time Recurrent Learn-

ing), a training algorithm for complex weights, for the learning of ForeNet.

We show that CRTRL is able to provide fine tune to the prediction result.

We have also compared ForeNet with some other models, such as AR model

and TDNN (Time-delay Neural Networks). Experimental results show that

ForeNet speeds up the learning, and the generalization performance is supe-

rior to traditional networks.

ii

摘 要

反饋神經網路具有很強的自學習能力。它能通過訓練使

得對於給定的輸入產生期望的输出。對於反饋神經網路在

時間序列預測的應用中，通常我們將它類比成一個自回歸

移動模型，並且通過一些給定的演算法，如RTRL (即時反

饋學習演算法），來修正它的權值。在這篇論文當中，我

們用頻譜分析法來觀察反饋神經網路°首先，我們用近似

法將用於時間序列分析的付立葉變換轉換成一種遞迴的形

式。然後，建立了遞迴方程與反饋神經網路結構之間的聯

繫。根據這種聯繫，我們提出了一個新的預測模型FORNET
(付立葉反饋神經網路）。

我們利用付立葉遞迴方程來設置FORNET網路的初始權

值。通過一些時間序列的預測實驗，我們證明了這種初始

化方法的有效性。它能使網路參數在初始狀態時就接近局

部極小點。這使得網路在還未進行訓練之前，它的输出值

已經比較接近期望值。

與一般的神經網路不同的是，FORNET的參數是複數。

所以傳統的訓練演算法並不適用於FORNET。因此，我們提

出了 CRTRL演算法（複數即時反饋學習演算法）來調整網

路的複權值。實驗結果證明CRTRL能很好地訓練網路參

數，能使預測結果進一步得到改善。同時，我們還將

FORNET與其他的一些預測模型進行比較，發現FORNET有

相對比較快的收敛速度，並且能取得較滿意的預測結果。

Acknowledgment
I would like to take this opportunity to convey my sincere thanks and deepest

gratitude to my supervisor, Professor Lai wan Chan, who has introduced me

to the challenging academic world. She always has door open when I have

questions, and gives me the valuable guidance during these two years.

I would also acknowledge Prof. Irwin King and Prof. Fungyu Young. They

give me valuable comments on this work.

I would give thanks to Mr. Lawrence Cha and Ms. Xiu Gao, who are

members in Prof. Chan's study group. They give many warm discussions and

suggestions on my work, and create a pleasant atmosphere of research. I wish

to thank other fellow graduate students for their encouragements.

Moreover, I would like to express my sincere gratitude to my family and

my friends for their supports.

iii

Contents

Abstract i

Acknowledgement iii

1 Introduction 1

1.1 Background 1

1.2 Objective 2

1.3 Contributions 3

1.4 Thesis Overview 4

2 Literature Review 6

2.1 Takens' Theorem 6

2.2 Linear Models for Prediction 7

2.2.1 Autoregressive Model 7

2.2.2 Moving Average Model 8

2.2.3 Autoregressive-moving Average Model 9

2.2.4 Fitting a Linear Model to a Given Time Series 9

2.2.5 State-space Reconstruction 10

2.3 Neural Network Models for Time Series Processing 11

2.3.1 Feed-forward Neural Networks 11

2.3.2 Recurrent Neural Networks 14

2.3.3 Training Algorithms for Recurrent Networks 18

iv

2.4 Combining Neural Networks and other approximation techniques 22

3 ForeNet: Model and Representation 24

3.1 Fourier Recursive Prediction Equation 24

3.1.1 Fourier Analysis of Time Series 25

3.1.2 Recursive Form 25

3.2 Fourier Recurrent Neural Network Model (ForeNet) 27

3.2.1 Neural Networks Representation 28

3.2.2 Architecture of ForeNet 29

4 ForeNet: Implementation 32

4.1 Improvement on ForeNet 33

4.1.1 Number of Hidden Neurons 33

4.1.2 Real-valued Outputs 34

4.2 Parameters Initialization 37

4.3 Application of ForeNet: the Process of Time Series Prediction . 38

4.4 Some Implications 39

5 ForeNet: Initialization 40

5.1 Unfolded Form of ForeNet 40

5.2 Coefficients Analysis 43

5.2.1 Analysis of the Coefficients Set,"几 43

5.2.2 Analysis of the Coefficients Set, /in{d) 44

5.3 Experiments of ForeNet Initialization 47

5.3.1 Objective and Experiment Setting 47

5.3.2 Prediction of Sunspot Series 49

5.3.3 Prediction of Mackey-Glass Series 53

5.3.4 Prediction of Laser Data 56

5.3.5 Three More Series 59

5.4 Some Implications on the Proposed Initialization Method 63

V

6 ForeNet: Learning Algorithms 67

6.1 Complex Real Time Recurrent Learning (CRTRL) 68

6.2 Batch-mode Learning 70

6.3 Time Complexity 71

6.4 Property Analysis and Experimental Results 72

6.4.1 Efficient initializationxompared with random initialization 74

6.4.2 Complex-valued network:compared with real-valued net-

work 78

6.4.3 Simple architectureicompared with ring-structure RNN . 79

6.4.4 Linear model: compared with nonlinear ForeNet 80

6.4.5 Small number of hidden units 88

6.5 Comparison with Some Other Models 89

6.5.1 Comparison with AR model 91

6.5.2 Comparison with TDNN Networks and FIR Networks . 93

6.5.3 Comparison to a few more results 94

6.6 Summarization 95

7 Learning and Prediction: On-Line Training 98

7.1 On-Line Learning Algorithm 98

7.1.1 Advantages and Disadvantages 98

7.1.2 Training Process 99

7.2 Experiments 101

7.3 Predicting Stock Time Series 105

8 Discussions and Conclusions 109

8.1 Limitations of ForeNet 109

8.2 Advantages of ForeNet I l l

8.3 Future Works 112

Bibliography 115

vi

List of Figures

2.1 Time Delay Neural Networks 13

2.2 FIR Multilayer Networks 14

2.3 The Jordan Networks 15

2.4 The Elman Recurrent Networks 16

2.5 NARX Recurrent Neural Networks 17

3.1 Architecture of ForeNet 31

5.1 The trends of u with the increasing time steps. Different curves

present different trends with various p 44

5.2 Coefficients changing with time 46

5.3 Portion of Sunspot series 50

5.4 Illustration of the testing RMS error on sunspot series using

different values of p 51

5.5 Prediction performance of the proposed model. The solid line

represents the true series and the dotted line is the model out-

put 51

5.6 Illustration of transient when starting training iterations 53

5.7 Illustration of the testing RMS error on Mackey-Glass series

using different value of p. The left pane illustrates the results

with delay r — 17 and the right one is on the series generated

by T = 30 55

vii

5.8 Prediction performance of the proposed model. The left pane

is Mackey-Glass series with r = 17 and the right pane shows

series with T 二 30. The solid line represents the true series and

the dotted line is the model output 55

5.9 Laser Series 57

5.10 Illustration of the testing RMS error on laser series using differ-

ent values of p 58

5.11 Prediction performance of the proposed model using p = 1. • • 58

5.12 The first figure shows a portion of training series, the correct

curve (solid line) and the model output (dotted line). The sec-

ond figure is the weighting of model inputs with time increases. 59

5.13 Two sinusoidal series 61

5.14 Illustration of the testing RMS error using different values of p. 61

5.15 Prediction performance of the proposed model on time-varying

sinusoidal series. The solid line represents the true series and

the dotted line is the model output 62

5.16 Prediction performance of the proposed model on computer-

generated series. The solid line represents the true series and

the dotted line is the model output 62

5.17 Discrete Fourier Transform of the laser series 66

6.1 The learning curve of ForeNet with proposed initialization . . . 76

6.2 learning curve of ForeNet with random initialization 76

6.3 Predictions on time-varying sin series 77

6.4 Ring-structure Recurrent Model (RRN) 81

6.5 The prediction performance of ForeNet with self-connection in

the hidden layer. The solid line represents the correct outputs

and the dotted line shows the network output 82

viii

6.6 The prediction curves of the model with ring-structure in the

hidden layer. The solid line represents the correct outputs and

the dotted line shows the network output 83

6.7 Architecture of the nonlinear ForeNet model 85

7.1 Time-varying sinusoidal series prediction using batch-mode learn-

ing. The first graph shows the performance on training data set;

the second graph shows the prediction on testing data set. • . . 103

7.2 Time-varying sinusoidal series prediction using on-line method . 104

7.3 Learning curve of on-line method on time-varying sinusoidal

series prediction 104

7.4 Changes on a self-connected weight during on-line prediction;

the upper graph shows the changes on magnitudes, and the

lower graph shows the changes on its phases 105

7.5 The prediction curves of the stock returns 108

ix

List of Tables

5.1 Root mean square error on sunspot series prediction 50

5.2 Root mean square error on Mackey-Glass data prediction 54

5.3 Root mean square error on laser series prediction, with p = 1 . . 57

5.4 Root mean square error on time series predictions 61

6.1 The prediction performance of ForeNet with proposed initial-

ization 76

6.2 The prediction performance of ForeNet with random initialization 76

6.3 The prediction performance of the real-valued RNN 79

6.4 Prediction performance of the model with self-connection in hid-

den layer 81

6.5 Prediction performance of the model with ring-structure in hid-

den layer 81

6.6 The prediction performance of the linear and nonlinear model

on different time series 87

6.7 The prediction performance using various number of hidden

units in ForeNet 90

6.8 Comparisons of prediction performance among ForeNet, AR(1)

model and AR(16) model 92

6.9 Prediction performance comparison among three networks. . . . 94

6.10 Prediction performance comparisons 95

V

6.11 Summarization of the prediction performance using various meth-

ods on four time series 97

7.1 Comparison between on-line learning and bach-mode learning

on 4 time series prediction 103

7.2 Prediction results on stock returns 107

xi

Chapter 1

Introduction

1.1 Background

Modelling of time series is an important task in many fields of research, includ-

ing medicine, economics, communication, speech processing, control, biology

and mechanical engineering. Mathematical models are often used for time

series prediction. If there are known underlying deterministic equations, the

future observations can be predicted based on the knowledge of the past and

current conditions. The relationship between the past observations and the

future value of time series can be inferred by an assumed function, which can

be implemented by the use of either a linear model or a nonlinear perspective,

such as a Neural Network (NN). On one hand, the advantage of the linear

model approach is that the calculation speed is very fast. However, the linear

model is of limited applicability. On the other hand, the NN methods are

powerful, but the selection of the proper architecture and learning algorithm

is time consuming.

Feedforward artificial neural network has gained significant popularity dur-

ing the last decade. Time Delayed Recurrent networks are essentially feedfor-

ward networks with the addition of feedback connections. Due to the existence

1

Chapter 1 Introduction 2

of these recurrent links, the recurrent neural network models preserve informa-

tion through time and are more powerful than the static feedforward networks,

especially in dynamic problems. They have been successfully applied to many

areas, such as speech recognition [59, 42], grammar learning [22, 26] and the

parsing problem [34]. Time series prediction [72, 4, 64, 16, 12] is also a major

applicational area of recurrent networks. The internal memory of past inputs

in recurrent networks is adaptive. At present, recurrent networks are mostly

formulated as nonlinear autoregression models [15] when applied to time series

prediction problem. In our work, we use a novel approach to interpret and

construct the recurrent networks.

1.2 Objective

The objective of this thesis is to investigate a proper recurrent neural network

model for time series prediction. One approach of time series forecasting is

to perform an initial analysis of the data and to choose an appropriate NN

architecture, and possibly initial values for the NN parameters according to

the most adequate linear model.

Here, first we decompose the time series into different frequency compo-

nents by Fourier transform, and a prediction equation is achieved using the

reconstruction from the frequency components. Then a recurrent network is

built to interpret the proposed prediction equation. Our recurrent network is

called Fourier Recurrent Neural Networks (ForeNet).

The Fourier transform has proven to be a versatile tool that gives a bet-

ter handle on the series data. A result of using the Fourier Analysis is that

the parameters involved are complex numbers. Thus ForeNet is a complex-

valued recurrent network. At present, most commonly used neural network

Chapter 1 Introduction 3

learning algorithms assumed real parameters. Previous works have been done

to extend neural networks to cope with complex weights. The backpropaga-

tion algorithms for training a feedforward neural network with complex weights

have been proposed [8] [24]. Georgious and Manolakos [38] used Complex Real

Time Recurrent Learning algorithm to train a fully recurrent network. Using

the complex parameters to construct neural network avoids the problem of

the standstill in learning [49], and can also deal with dynamic time-sequential

signal more stably and smoothly than the conventional recurrent networks [33 .

In our work, ForeNet was trained by Complex Real Time Recurrent Learn-

ing algorithm (CRTRL), which combines [12] and [38]. We also provide a

method of parameters initialization which reduces the initial network error

and prevents the network from getting stuck with the initial weights. The

experimental results show that ForeNet is computational efficient. It increases

the rate of convergence and attains better generalization performance.

1.3 Contributions

We list here the main contributions of this thesis:

• Based on Fourier Analysis, we propose a Fourier Recursive Equation,

which can compute recursively to generate the forecasts.

• Based on Fourier Recursive Equation, we build a recurrent model, Fourier

Recurrent Networks (ForeNet). The proposed network has a very simple

architecture. The recurrent links only exist on the hidden units.

• The proposed method is used to initialize ForeNet Some experiments

are demonstrated to show the efficiency of the initialization of ForeNet.

The optimal initialization makes the initial state of the network much

close to a local minimum.

Chapter 1 Introduction 4

• A Complex Real Time Recurrent Learning algorithm (CRTRL) is pro-

posed for ForeNet whose parameters are complex values. Trained by

CRTRL, ForeNet increases the convergent rate and achieves better gen-

eralization performance.

• The batch-mode and the online-mode learning have been combined to do

time series forecasting. We have applied this method to the prediction

tasks and found it does well in the time series which show nonstationary.

• We also give a way to assess on the effective internal memory in ForeNet

And it is usually not easy to analyze the memory in a recurrent model.

We have published a part of our work in [79 •

1.4 Thesis Overview

This thesis is organized into 8 chapters. Chapters 3 — 7 constitute the main

parts of the thesis and are about the proposed model to handle time series

prediction. The contents of the individual chapters are as follows:

Chapter 1 is the present chapter. It is an introduction chapter.

Chapter 2 reviews the time series prediction problems using linear models

and nonlinear models, such as Neural Networks. Relevant feedforward

and recurrent models and their corresponding learning algorithms are

reviewed.

Chapter 3 describes the Fourier Recursive Prediction Equation which is

derived based on Fourier analysis of time series. Further, a recurrent

neural network, ForeNet, is built to represent the proposed prediction

equation.

Chapter 1 Introduction 5

Chapter 4 gives more applicable architecture of ForeNet Then the initial-

ization method of ForeNet is proposed.

Chapter 5 analyzes the coefficients in ForeNet by unfolding the original

recursive equations. Some experiments are demonstrated to show the

performance of ForeNet initialization.

Chapter 6 introduces complex-valued Real Time Recurrent learning algo-

rithm for ForeNet And the ForeNet model is further analyzed by some

designed experiments. The comparisons between ForeNet and some

other models also provided in this chapter.

Chapter 7 suggests a on-line learning for the proposed model.

Chapter 8 is a discussion and conclusion part. We include the main limita-

tions and advantages of ForeNet and mention some future works.

Chapter 2

Literature Review

A time series is a collection of observations made sequentially in time [14 •

Suppose we have an observed time series x(l) ,x(2) , . . • , x{N). Then the basic

problem is to estimate future values such as x{N + k), where the integer k

is called the lead time. Prediction (forecasting) the future values of an ob-

served time series is an important problem in many areas, including medicine,

economics, communication, speech processing, control, biology and mechanical

engineering. Commonly, time series prediction problems are approached either

from a linear model or from a nonlinear model, especially, a Neural Network

model. In this chapter, we give a brief introduction of these approaches.

2.1 Takens, Theorem

Embedding theorem, introduced first by Takens and extended in [61], shows

that, under very general conditions, the state of a dynamic system can be

accurately reconstructed by a finite windows of the time series. This window

is called a time delay embedding.

Vt 二 [工t, •..，工t-(nd—1)5] (2-1)

Where Xt is the value of time series at time t, rid is the embedding di-

mension, and 6 is the embedding delay. Takens' theorem implies that if very

6

Chapter 2 Literature Review 7

general assumptions are satisfied, there exists a function g{-) such that

Xt+l 二 g(OCt, Xt-5, ... , Xt-(n-l)s)
(2.2)

二 9{yt)

For time series prediction, this is an important theorem because it implies

perfect predictions are possible using only a finite segment of the values im-

mediately preceding the point to be predicted. In order to achieve perfect

prediction, Takens' theorem requires the time series to be noise-free and the

function g{') to be known. However, in practice, these conditions are not satis-

fied and the selection of S and Ud may critically affect the prediction accuracy.

Many methods have been proposed to find S and n .̂ The goal of these methods

is usually to find these parameters that can minimize the embedding dimension

Ud without reducing the accuracy of the reconstructed state yt. For simplicity

but without loss of generality the embedding delay can be set equal to unity 1.

One may be able to find a minimum embedding dimension to unfold the state

space, but the mapping function may be too complicated to approximate.

2.2 Linear Models for Prediction

Linear time series models have two particularly desirable features[70]:they can

be understand in great detail and they are straightforward to implement. How-

ever, they may be inappropriate for complicated systems. In the following

section, there are discussions on the role of external inputs (moving average

models) and internal memory (autoregressive models).

2.2.1 Autoregressive Model

Autoregressive Model (AR) was invented by Yule in the end of the 20，s in order

to predict sunspots. The general AR model expresses future values of the time

Chapter 2 Literature Review 8

series as a linear combination of past values plus a random noise component:

d

y(t) = � r M t - 爪) (2 . 3)

m=l
This is called an dth-order autoregressive model {AR{d)). Because of the

feedback loop existed in the equation, the output can continue indefinitely. So

such model is called an infinite impulse response (IIR) filter.

To generate a specific realization of the series, we must specify the initial

conditions, usually by the first d values of series. If there was no input, de-

pending on the amount of feedback, after iterating it for a while, the output

produced can only decay to zero, diverge, or oscillate periodically.^

The dependence of y{t) on previous values of y also complicates the process

of finding coefficients a爪 that fit the model to time series data [47 •

2.2.2 Moving Average Model

One of the simplest ways to use an algebraic equation to describe a system's

behavior is to model its next state as a weighted sum of its previous states.

That is, if one has measured a series of values Xi{t), one predicts its output

using the equation:

L

认t) = YM办-1� (2.4)

The model is called L仇 order moving average (MA) model. Fitting such

model to a data set involves choosing the window size L and finding appro-

priate values for the bi. The impulse response of such a filter is described by

iln the case of a first-order AR model, this can easily be seen that if the absolute value
of the coefficient is less than unity, the value of y exponentially decays to zero; if it is larger
than unity, it exponentially explodes.

Chapter 2 Literature Review 9

the coefficients bi. As I goes from 0 to L, the impulse first "hits" bo, then bi,

and so on. Because this response dies out after L time steps, MA model is a

member of the class of finite impulse response (FIR) filters. When viewing the

linear combination as a discrete filter of the noise signal, the MA model can

be viewed as thus: A noise process usually has a frequency spectrum contain-

ing all or a large number of frequencies ("white" noise). A filter-like the MA

model can thus cut out any desired frequency spectrum, leading to a specific,

non-random time series.

Properties of the output series y{t) clearly depend on the input series x.

For a linear system, the response of the filter is independent of the input.

2.2.3 Autoregressive-moving Average Model

Combining MA and AR models yields the autoregressive-moving average (ARMA)

model:

L d

y(t) 二 — I)) + J^iamVit - m)) (2.5)
1=0 m=l

The ARMA model[46] is both more general and more difficult to work

with because one must choose L and d intelligently. Despite these difficul-

ties, ARMA models dominated the time series analysis for more than half a

century[70 .

2.2.4 Fitting a Linear Model to a Given Time Series

In order to fit AR, MA or ARMA models to the time series prediction, two

estimations should be made:

• Fitting the coefficients. The coefficients of an AR(M) model from the

observed correlational structure of an observed signal. Another approach

Chapter 2 Literature Review 10

is the estimation of the coefficients as a regression problem: expressing

the next value as a function of M previous values. This can be done by

minimizing squared errors. For finding MA and full ARM A coefficients

from observed data, standard techniques exit, often expressed as efficient

recursive procedures.

• Fitting the order of the model. There are several heuristics to find

the "right" order, such as the Akaike Information Criterion (AIC)[1],

the minimum description length (MDL)[57] and the SVD approach[39:.

There is not a unique best choice for the values or even for the number

of coefficients to model a data set.

Detailed discussion on how to select the order of ARMA model can be

found in [29] [17] [11；.

2.2.5 State-space Reconstruction

An ARMA model can be rewritten as a dot product between vectors of the

time-lagged variables and coefficients:

yt = a 'Yt . i + b- Xt-i (2.6)

where Yt = [ytyt-i •. .2/t—(d-i)^, and a 二 [aia2 .. -a^]^. Such lag vectors

are called tapped delay lines. They are used in the context of signal processing

and time series analysis.

There is a deep connection between time-lagged vectors and underlying

dynamics. This connection was proposed in 1980 by Ruelle, Packard et al

(1980) and Takens (1981). Delay vectors of sufficient length are not just a

representation of the state of a linear system. It turns out that delay vectors

can recover the full geometrical structure of a nonlinear system.

Chapter 2 Literature Review 11

2.3 Neural Network Models for Time Series

Processing

Neural Networks form the basis of an entirely different nonlinear approach to

the analysis of time series. NNs have proven to be a promising alternative

to traditional techniques for nonlinear temporal prediction tasks. Recurrent

and feedforward Neural Networks have been proposed[23][54] for simulating

nonlinear-ARMA and nonlinear-AR models respectively. And several authors

have given an overview of different types of neural networks for use in time

series processing [19, 48, 40, 9]. For instance, [40] reviewed connectionist net-

work architectures and training algorithms and provided comparisons on the

different models structures and predictive power; [48] concerned the different

NN models based on the type of memory: delay (akin to time windows and

delays), exponential (akin to recurrent connections) and gamma (a memory

model for continuous time domains). This section provides a description of

various neural model structures.

2.3.1 Feed-forward Neural Networks

Among the most wide-spread neural networks are feedforward networks.

Time Delay Neural Networks

A special case in this study is the approximation of a linear AR model by a

feedforward Neural Network. The approximation of an AR model of order n

by a feedforward NN with n input units was proposed in [66] [41]. Feedforward

networks with tapped input delay lines can be used to represent time series

with limited context (2.1). Such memory form is a buffer containing the n

most recent inputs. It is also called a delay space embedding and forms the

Chapter 2 Literature Review 12

basis of traditional statical autoregressive (AR) model. Such network struc-

ture incorporating embedded time delays is the Time-Delay Neural Network

(TDNN){Figure (2.1)). The input vector X consists of the recent samples,

L steps backward in time, X � = [x { t) , x { t _ 1) , . . . , — L + 1)严.Via the

weighted connections these values enter the first hidden layer of units whose

outputs y[t) are calculated as

L-l
= (2.7)

k 二0

where wjb represents a bias weight. And the outputs from the hidden layer

are fed into the output layer

N

z(t) = (J ^ w � M t) + Woî) (2.8)

The TDNN can be used for nonlinear prediction of a stationary time series,

i.e. a time series with statistics that remains unchanged over time [31]. When

using it for prediction, we should be not only faced with the problem of deter-

mining how many hidden units are appropriate, it is also necessary to choose

the number of the delay used as input. If using too few previous values then it

will not be possible to capture the dynamics of the system that generated the

data from which are modelling, and prediction accuracy will suffer. If using

too many previous values, training the network may possibly suffer due to re-

dundancy in the inputs as well as from the increased number of parameters to

be determined from the data. Some literatures contain several suggestions on

how to choose an appropriate lag space, such as trial-and-error, information

theoretic methods [52] and generalization based on methods [28 •

FIR Multilayer Networks

The network structure of TDNN is static in nature; there are no internal

dynamics. In order to get a dynamic structure, Wan proposed a Finite Impulse

Chapter 2 Literature Review 13

-1 •

Feed-
^ �-iVl) . J ？re dieted

^0>)n ^ — d
neyml

Dday �;mt • network
V l y :<t-2)

Delay unit
v l / :<t-3)

Delay unit

Figure 2.1: Time Delay Neural Networks

Response (FIR) model to simulate a simple Autoregressive Moving Average

(ARMA) model[68] [67]. A modification of the basic neuron is accomplished

by replacing each static synaptic weight by an FIR linear filter. Figure 2.2

shows a dynamic model of a neuron using FIR filters as synapses. A synapse

i is then represented by a vector

Wi 二 lwi(0),Wi(l),...,Wi(M)],

and the delay line

Xi(n) = lxi(n),xi(n — 1) , X i (n — M) .

The filter operation is the scalar product Wi • Xi(n). Finally, we have the

neurons output

2/⑴= 办)） （2.9)

Wan derived temporal backpropagation algorithm to train FIR networks.

An FIR network constitutes a powerful tool for use in time series prediction

Chapter 2 Literature Review 14

狄 —

Figure 2.2: FIR Multilayer Networks

69]. And similar with TDNN model, the FIR networks also suffer some prob-

lems.

2.3.2 Recurrent Neural Networks

Various enhancements of the basic feedforward architecture has been suggested

in order to make the network "memory" of previous inputs more flexible, thus

relaxing the accuracy with which the dimension of the externally provided lag

space vector must be determined. In the following sections, it is described how

this flexibility can be obtained by making the networks recurrent.

Jordan Networks

Jordan network[37] consists of a multilayer perception with one hidden layer

and a feedback loop from the output layer to an additional input (or context)

layer. In addition, self-recurrent loops on each unit in the context layer are

introduced in this model, i.e. each unit in the context layer is connected with

itself, with a weight Vi smaller than 1. Without such self-recurrent loops, the

networks form a non-linear function of p past sequence elements and q past

Chapter 2 Literature Review 15

copy

Figure 2.3: The Jordan Networks

estimates:

x{t) = f{x{t - 1)， x [t — p),x{t — 1), ...,x(t - q)) (2.10)

So the nonlinear ARMA model discussed above can be said to be implicitly

contained in this network.

Elman Networks

The Elman network[22] is an MLP with an additional input layer, called the

state layer, receiving as feedback a copy of the activations from the hidden

layer at the previous time step (see Figure (2.4)) . The Elman network can

be trained with any learning algorithm for MLPs, such as backpropagation

or conjugate gradient. It belongs to the class of so-called simple recurrent

networks(SRN)[32]. Even though it contains feedback connections, it is not

viewed as a dynamical system in which activations can spread indefinitely.

Instead, activations for each layer are computed only once at each time step

(each presentation of one sequence vector).

Chapter 2 Literature Review 16

copy

Figure 2.4: The Elman Recurrent Networks

Similar observations can be made about the Elman recurrent network as

with respect to the Jordan network. A number of time steps is needed until

suitable activations are available in the state layer, before learning can begin.

Standard learning algorithms like backpropagation is easy to apply, but can

cause problems or lead to non-optimal solutions. And this kind of recurrent

net also cannot really deal with an arbitrarily long history[7]. Some examples

of applications with Elman networks can be found in [27] [18 .

N A R X Recurrent Neural Networks

NARX are inspired by nonlinear autoregressive models with exogenous inputs.

They compute their current output using past inputs and past outputs. The

models were proposed in [44][45] (shown in Figure (2.5)):

y{t) = f{x{t - At) , x{t — l),x{t),y{t — A /)， y { t - 1)) (2.11)

where x{t) and y{t) represent input and output of the network at time t, D^

and Dy are the input-memory and output-memory order, and the function f

Chapter 2 Literature Review 17

Figure 2.5: NARX Recurrent Neural Networks

is a nonlinear function. Outputs of NARX are used to compute activation val-

z, lies of internal nodes, which in turn are used to recompute output activations.

This recurrence gives NARX the ability to encode a history of activations ex-

tending back arbitrarily in time. Empirical studies on system identification

and grammatical inference problems have demonstrated that NARX networks

generally converge much faster and generalize better than other network ar-

chitectures,including fully recurrent networks. Furthermore, in [44] [45] [43] the

authors proved that NARX networks can reduce the problem of learning long-

term dependencies.

Long Short-term Memory Recurrent Neural Networks

A second-order approach has been proposed in [35] [36]. This network is called

long short-term memory (LSTM), and designed to avoid some of the limitations

associated with the training of recurrent networks, such as long-term depen-

dency in fully recurrent networks [6][7],i.e. error signals propagated back in

time over the activations of a training sequence and can either blowup or van-

ish exponentially. The basic idea is to use both node activations and the net

Chapter 2 Literature Review 18

inputs to the nodes' transfer functions, provide a self connected node, with

a linear activation function that will ensure constant error flow over the self

connection. If the weights between these connections are equal to one, the

error flow through the unit will be constant for infinite time steps.

The network must learn when to propagate an incoming signal into the

unit or to protect the activation value from the incoming signals. If both ac-

tions need to be done by the same set of weighted connections into the unit,

such connections will receive conflicting weight updates. In LSTM, a variant

of RTRL learning algorithm is used which properly takes into account the al-

tered, multiplicative dynamics caused by input and output gates.

Experiments with long input sequences, i.e. with more than 100 data

points, have shown that LSTM successfully bridges long time lag, i.e. it is

able to simultaneously store information over long periods of time and still

learn efficiently[9 .

2.3.3 Training Algorithms for Recurrent Networks

In [51], the author reviewed some learning algorithms for dynamic recurrent

networks. In the following section, we only discuss two most common algo-

rithms used for recurrent networks.

Back-Propagation Through Time

The back-propagation-through-time (BPTT) algorithm for training a recur-

rent network is an extension of the standard back-propagation algorithm. It

may be derived by unfolding the temporal operation of the network into a lay-

ered feedforward network, the topology of which grows by one layer at every

time step.

Chapter 2 Literature Review 19

BPTT algorithm proceeds as follows (Williams and Peng, 1990) [74]:

• Let no denote the start time of an epoch and rii denote its end time. First,

a single forward pass of the data through the network for the interval

(no, ni) is performed. The complete record of input data, network state

(i.e., synaptic weights of the network), and desired responses over this

interval is saved.

• A single backward pass over this past record is performed to compute

the values of the local gradients

•) = - ()
where

1 ni
e:totai(no,ni) = - ^ (几） (2.13)

n=no je?fi

for all j e ^ and no < n < Ui. ej(n) is the error signal at the output of a

neuron measured with respect to some desired response. This computa-

tion is performed by using the formula:

f

(p'uj{n)ej{n) for n — rii,
咖）=

+ Y^km + 1)] for uq <n<ni
(2.14)

Where is the derivative of an activation function with respect to its

argument, and Vj (n) is the induced local field of neuron j. The use of

this equation is repeated, starting from time Ui to time n � .

Chapter 2 Literature Review 20

• Once the computation of back-propagation has been performed back to

time no + 1, the following adjustment is applied to the synaptic weight

Wji of neuron j :

A — _ d£totax{no,ni)
池如 二 1 ^ ^

ni (2.15)
Y^ Sj{n)xi{n-1)

n—no+l

where rj is the learning rate parameter and Xi{n — 1) is the input applied

to the ith synapse of neuron j at time n — 1.

Real-Time Recurrent Learning (RTRL)

Another learning algorithm is real-time recurrent learning (RTRL). The synap-

tic weights of a fully connected recurrent network in real time, that is, while

the network continues to perform its signal processing function (Williams and

Zipser, 1989).

RTRL algorithm proceeds as follows:

• Initialization:

- S e t the synaptic weights of the algorithm to small values selected

from a uniform distribution.

- S e t the initial value of the state vector x(0) = 0.

—Set A^ (0) = 0 for j = 1, 2 , q .

• Computations: Compute for n — 0,1, 2,...,

Aj{n + 1) = (l){n)[Wa{n)Aj{n) + U^-(n)] (2.16)

e(n) = d(n) — Cx(n) (2.17)

Aw^-(n) = r]CAj{n)e{n) (2.18)

Chapter 2 Literature Review 21

Three matrices Aj (n), Vj (n), and 0(n) are described as follows:

A j (n) is a g — — (g + m + 1) matrix defined as the partial derivative

of the state vector x(n) with respect to the weight vector wj：

二 ^ ^ j = …,q (2.19)

JJj (n) is a g — — (g + m + 1) matrix whose rows are all zero, except

for the jth row that is equal to the transpose of vector Wj^(n) :

0

彻 J. = 1,2,…，g (2.20)

0

(j){n) is h q — by — q diagonal matrix whose kth. diagonal element is the

partial derivative of the activation function with respect to its argument,

evaluated at

= dmg(咖讯n)),..., ^'(wje(n)), (^'(w�e(n))) (2.21)

• Parameters:

m = dimensionality of input space;

q — dimensionality of state space;

p = dimensionality of output space;

Wj = synaptic weight vector of neuron j，j = 1, 2 , q .

The main problem with BPTT is the need for large resources because of the

duplication of units. For long sequences, or for sequences of unknown length,

the approach becomes impractical. Compared to BPTT, RTRL can be run

on-line, learning while sequences are being presented rather than after they

are complete, and it doesn't need to duplicate the units. Several examples

Chapter 2 Literature Review 22

investigated by Williams and Zipser [1989] [75] demonstrate the power and

generality of the RTRL method.

2.4 Combining Neural Networks and other ap-

proximation techniques

Recently, the Neural Networks are be complemented with other successful ap-

proximation techniques based on wavelets [50] [3] [78], kernel estimators, nearest

neighbors, B-splines, projection pursuit regression and fuzzy models [21 •

In [78], the authors proposed a wavelet network as an alternative to feed-

forward neural networks for approximating arbitrary nonlinear function based

on the wavelet transform theory. The basic idea of the wavelet network is to

replace the neurons by "wavelons", i.e., computing units obtained by cascading

an affine transform and a multidimensional wavelet. Then these transforms

and the，，synaptic weights" are identified from noise input/output data. The

authors mentioned some properties of such wavelet network. First, because

wavelet decomposition is a powerful tool for approximation, the network can

guarantee the “ universal approximation" property. Second, they built an ex-

plicit link between the network coefficients and some appropriate transform,

which can automatically provided by the wavelet decomposition. And an initial

guess for the network parameters can be derived by using the decomposition

formula, which also helped drastically to improve backpropagation algorithm

behavior. Inspired by [78] and [75], a Recurrent Wavelet Network was pro-

posed in [55], which was trained by the real time recurrent learning algorithm.

The forecasting strategy in [3] is based on the subdivision of the prediction

task into elementary tasks. They used a particular wavelet transform aimed

Chapter 2 Literature Review 23

at laying bear useful information, which is then treated by the neural network.

The wavelet transform decomposes the input signal into detail signals, and a

residual. The original signal can be expressed as an additive combination of the

wavelet coefficients, at the different resolution levels. Therefore, it suffices to

run a DRNN model on each resolution level and then recombine the individual

predictions to form the final forecast.

Chapter 3

ForeNet: Model and

Representation

In this chapter, a prediction model, ForeNet, is proposed. In the first section,

we derive a prediction equation based on Fourier analysis of time series. The

equation, called Fourier Recursive Equation, is in a recursive form. In the

second section, we build some links between Fourier Recursive Equation and

Neural Networks. The proposed equation is then represented by a recurrent

network. We call this network Fourier Recurrent Neural Networks (ForeNet).

3.1 Fourier Recursive Prediction Equation

The Fourier Analysis of a time series is to decompose the time series into a

sum of sinusoidal components [10]. According to the basic result of Fourier

analysis, it is always possible to approximate an arbitrary analytic function

defined over a finite interval of the real line, to any desired degree of accuracy,

by a weighted sum of sine and cosine functions of harmonically increasing

frequencies [53]. In our method, we decompose the time series into several

frequency components, then reconstruct them to derive a prediction function,

which is used for time series forecasting.

24

Chapter 3 ForeNet: Model and Representation 25

3.1.1 Fourier Analysis of Time Series

Consider a sequence of time series data x{l),... , cc(t), •..，x(N). As the time

is discrete, we use the Discrete Fourier Transform (DFT) to form

N

Cn = ^ x (t) exp{-jUnt) n = 1,2, (3.1)
t=l

in this equation̂ ，0；几 二 警 is a so-called Fourier frequency. Equation (3.1)

is called the Fourier decomposition of Cn. The data x{t) may be recovered from

the inverse transform

1 N
x{t) = expijunt) t = l,2,...,iV (3.2)

n=l

Thus the finite sequence can be expressed exactly using all Cn, where n is

from 1 to N. Now in Equation (3.2), we define

hn{t) = ^Cn exp{juJnt) (3.3)

So Equation (3.2) becomes

N

x{t) = t 二 …,N (3.4)
n=l

3.1.2 Recursive Form

In this part, we derive the recursive equation to calculate the time series value

at the next time step x{t + 1) based on its previous data x(2) , . . . , x(t).

From Equations (3.2) and (3.3), we can get the value of x{t + 1):

iln the original DFT, the range of summation should be n = 0，1,…,TV — 1. Here, in order
to be consistent with the expression of time series x(l) , • • • ,x[N), we modify the index as
n 二 1,2, ...iV. And there have no effect on the transformation results.

Chapter 3 ForeNet: Model and Representation 26

1 N
:z:(t + 1) == — ^ Cn expCMi(t + 1))

(3.5)
N 、)

= ^ h n { t) exp(加n)
n—1

It suggests that x{t + 1) can be estimated by the value of h at the last

time step t. Suppose we append the series x (l) , x (2) , . . . ,x[N) by an extra

value x{N + l) and the series becomes x(l) , • • • • • • ,x{N),x{N+ 1). The

number of data is changed to TV + 1. Therefore the new TV + 1 points DFT is

updated as follows

N+l

4 = E 冲)expH心） (3-6)
t=i

for n = 1 , 2 , i V + 1, where u j ' 几 = I f the length of time series, N, is

sufficiently large, we approximate o^ by uon. Thus

4 = c, + x{N + 1) e x p (— 加 + 1)) (3.7)

for n = 1, 2, ...N. The corresponding + 1) becomes

聰 + 1) = ^ 4 e x p (K (i V + l))

兰 Cn^M3^n{NI)) -\-x{N ^ I)
— N + l ^ •)

It suggests that the value of the function h'^ at time N + l can be de-

rived from its value at previous time step N and the current time series value

Chapter 3 ForeNet: Model and Representation 27

x{N-\-l). Given an initial value /i(0), the equations can be used recursively to

compute forecasts. And forecasts can easily be achieved using only the latest

observation and the previous forecast:

N

f (力+ 1) = Z " “ t) e x p (j a ; ;)
i=i

N 1
Kit + 1) = ^ ^ eMM 测 + 力 + 1) (3-9)

where x{t) is model input. We call this equation Fourier Recursive Equa-

tion, that can be used to compute the future value. In this equation, only the

current series data, x{t), acts as the model input to calculate the next time

step value +1) . The other past values are stored in the form of the internal

memory of the model, and they are memorized by h{t).

3.2 Fourier Recurrent Neural Network Model

(ForeNet)

As we mentioned before, time series prediction can be approached either from a

linear model or from a nonlinear perspective, such as a Neural Network model.

In the previous section, the Fourier Recursive Equation has been derived to

perform time series prediction. On one hand, an obvious advantage of such

linear approach is the calculation speed is very fast. However, the linear model

is of limited applicability. On the other hand, the NN methods are powerful,

but the selection of the proper architecture and learning algorithm is time con-

suming. In this section, we build a direct relationship between time series and

Neural Network model by using a recurrent network to perform the proposed

Fourier recursive prediction equation. In this way, the network architecture

and its accordingly learning algorithm can be properly determined.

Chapter 3 ForeNet: Model and Representation 28

3.2.1 Neural Networks Representation

We have shown that the Fourier recursive equation can be approximated as

Equation (3.9), which is in a recursive form. Thus, when we represent the

model by a Neural Network, we need a recurrent NN because it can contain

internal memory by the feedback weights.

Now we consider our input to the recurrent network is x{t) at each time

step t. The network output and hidden units outputs are obtained as follows.

N

= ^ViViit)

N

yj(t + l) 二 f(J2Wijyj(t)+Uix(t + l)) (3.10)

where f represents the activation function of the hidden units. Wij is the

recurrent weights. Ui and Vi are the weights connecting input to hidden units

and hidden to output units. N is the number of hidden units in the network.

To predict the future time series x{t + 1) based on historical observations

x(l) , x(2), we input x{t) to the network at each time step t. The net-

work is expected to output the next step prediction +1)，i.e., prediction of

x{t + 1) can be obtained after we have inputted the whole sequence, x{t), to

the network. As recurrent networks are used, the hidden units can also serve

as internal memories to store the intermediate states of the system.

Comparing neural network representation (3.10) to the Fourier Recursive

Equation (3.9), we can find a direct correspondence between them. So based

on the proposed equation, we build ForeNet model as follows:

• First, we remove all recurrent links except those are self-connections on

the hidden units.

Chapter 3 ForeNet: Model and Representation 29

• Let N represents the number of hidden units in the recurrent model.

• The output of each hidden unit yi in recurrent model is approximated

by hi in Equation (3.9). Hence, each hidden unit has recurrent weight

connected only to itself.

• As for the weights in the recurrent network, let ui 二 ； v i =

and Wij = 赤 exp(jcji) for j 二 L

• The accordingly recurrent model has the linear activation function both

on hidden layer and output layer according to Equation (3.9).

In this way, the output of the network z{t) represents the predicted value

x(t + 1).

3.2.2 Architecture of ForeNet

According to neural network representation, the hidden unit h{t) is derived

from its previous value h{t — 1) recursively. It suggests that there exist recur-

rent weights in the hidden layer of neural networks and the recurrent links are

diagonally connected only, that is, the recurrent weight matrix R几乂几 is in the

following form

〜11 0 0、

0 『22

R= 0 0 ••• (3.11)
• • •

• • •

乂 0 0 n̂n j

On one hand, Fully Recurrent Network (FRN) is a very general architec-

ture, which has a great freedom to build its own internal representations for

encoding temporal information, and has shown a strong ability to time series

Chapter 3 ForeNet: Model and Representation 30

learning. On the other hand, locally connected recurrent models have been

suggested as an alternative to FRN because of its gain in complexity in both

computational time and storage space [12]. In addition, it has been shown

that a FRN with linear activation functions is inherently equivalent to some

band diagonally connected recurrent networks [13]. Therefore, we adopt the

architecture of the self-connected locally connected recurrent network.

The model architecture is shown in Figure 3.1. The model is made up three

layers, input layer, hidden layer and output layer. The inter-layer connections

are all running forward and recurrent links exist in the hidden layer only. In

the model (3.9), we only use one current input to predict the value at the next

time step, that is, only one input and one output exist in the neural network.

And according to the links built above, there are N number of hidden units in

the hidden layer.

Since the value of N is related to the length of time series to perform Fourier

Transform, we will show in the next chapter how to estimate the value of N

to make the recurrent network applicable while not losing much information

during Fourier transform.

Chapter 3 ForeNet: Model and Representation 31

_

input layer

hidden layer
Figure 3.1: Architecture of ForeNet

Chapter 4

ForeNet: Implementation

In the previous chapter, we have built ForeNet to represent the proposed

Fourier prediction equation. The architecture of the model is 1 — N — 1, i.e.

one input unit, N hidden units and one output unit. According to Fourier

transform, N should be a large number because it is the length of time series.

Further, since ForeNet is built based on Fourier analysis, its parameters are

complex values, and because of some approximations made during the model

derivation, the predicted values computed from the equation are also complex

numbers. However, most of time series are real-valued.

These two problems, a large number of hidden units in the network and

the complex-valued output, make ForeNet inapplicable when it is applied to

time series forecasting.

In this chapter, we will do a little modifications on the proposed prediction

equation to make the implementation of ForeNet easier.

32

Chapter 4 ForeNet: Implementation 33 ‘

4.1 Improvement on ForeNet

Since ForeNet is proposed by NNs analysis and Fourier analysis, we would

modify ForeNet by the idea from these two methods.

4.1.1 Number of Hidden Neurons

In neural networks, the number of hidden units should be not too large, how-

ever, when the Fourier transform is performed on a time series, the period can

not be too small or it can not keep original information well after transforma-

tion. In this section, we consider the selection of number of hidden units in

ForeNet as follows.

• In the view of the architecture of NNs, in ForeNet, there are one input

unit, one output unit and N hidden units. Based upon the proposed

method, the output unit is evaluated using the summation of N terms,

where N corresponds to the number of hidden units. And it is not

practical to have a recurrent network with N hidden units where N is

comparable to the length of the sequence, which is supposed to be long.

So we would use a smaller value p {p < N) to construct the recurrent

network. In most time-series, the component frequencies are usually with

low orders. High order frequencies usually are of small magnitude and

they may correspond to the undesirable noise term. Thus, we can assume

that the higher frequency terms are negligible in Equation (3.5).

• As we know, most of time series are nonstationary, that is, the frequency

of the signal is changing during the measurement interval. So if we

suspect that the frequency content of the series may change while it is

being measured, we may need a different analysis procedure in stead of

doing DFT on the whole series. In Equation (3.9), we replace N (the

Chapter 4 ForeNet: Implementation 34 ‘

length of time series) by p, where p is a fixed small positive value. In this

way, we use the shorter section of data to do Discrete Fourier Transform.

Moreover, the prediction task is single-step prediction^ . To approach the

short-term prediction, by analyzing only a small number of neighbors,

we may get more relevant information of the predicted data.

4.1.2 Real-valued Outputs

Since most of time series are real values, when we apply ForeNet to compute

the forecasts, we need to transform the complex-valued outputs to the real

values. There are two possible ways to do such transformation. The first one

is to keep the real part of the complex data and discard the imaginary part; the

second one is to use the magnitude of the complex data as the model output

directly. However, both approximations would cause the loss of the original

information.

In this section, we will introduce a way to make the outputs of ForeNet

become the real values. The proposed estimation is based on the symmetry

properties of the Fourier transform.

Symmetry Properties of the Fourier Transform

The basic properties of the sine and cosine functions which underlie the Fourier

transform give rise to certain symmetry conditions which lead to useful sim-

plifications in the computing of the discrete Fourier transform of a finite

sequence[53]. To demonstrate the symmetry conditions, we rewrite Equation

(3.1) as

iwhen we mention prediction in our work, if no especial statement, we mean one-step
ahead prediction.

Chapter 4 ForeNet: Implementation 35 ‘

N
Cn = ^Xt exp{-juJnt)

t=l
N

= + jxt^){cOs{uJnt) — j Sm{uJnt))
t=l

= c o s (u n t) + x r s inK^)) (4-1)
t=l

N
—^ 工�6 sm{ujj) — x'^ cos{uJnt))

t=l

= 叫) - 讽 ⑴ n)) .

When there is no presumption that Xt is real, Equation (3.2) can be written

as

1 N

n=l

1 N
= ^ 幻�(0；几)-jP{uJn)){cOs{Unt) + j Sm{uJnt))

n=l
1 N (4.2)

= ^ COs{uJnt) + ^{uJn) •
n=l

1 N
+ j 涵 Xl W叫)sin{u)nt) + I3{ujn) COs{uJnt)

n二 1

Consider setting x^^ 二 Xt and x]^ = 0 in (4.1), which is the case when

x{t) = Xt is a real-valued series. Then Equation (4.1) becomes

N
Cn = COs{Unt) — jXt Sm{uJnt))

(4.3)

=-{a{Un) -jl3{uJn)).

Chapter 4 ForeNet: Implementation 36 ‘

In view of the properties of the trigonometrical functions, it can be seen

that x{t) has a Fourier transform of which the real part a(cjn) = o^{—uJn) is

now an even function and the imaginary part {̂uJn) = is now an

odd function. When the latter conditions are applied to Equation (4.2), it can

be seen that the imaginary term vanishes, since the trigonometric functions

sweep out exactly one period across the time extent.

Improvement

When we derived the prediction equation, we made some approximations,

which may cause information loss and original real-valued series can not be

guaranteed in Equation (3.5). Moreover, the inverse Fourier transform re-

quires exactly N number of Cn to recover the original series. If only a small

number of c几 can be chosen, the phase will not be aymmetrized and the inverse

Fourier transform would not be real, thus Equation (3.5) can not be fulfilled

and x{t + 1) will not be a real number anymore.

In Equation (3.5), only the first small number of Cn is chosen to compute

the output. Assume we are using all Fourier coefficients c^ to recover the

original series, then the outputs of the equation should be real values because

of the contributions of the symmetrical c^, where the imaginary parts are

cancelled. In order to get real data, we should only choose the real part of the

output in Equation (3.5). Furthermore, we would use two times of the real

part as the predicted output imagining the last a few c几 should be included.

Therefore, the Fourier recursive equations (3.5) (3.8) are modified as:

p
x{t + l) = 2 X REAL{J2 exp(i(j；))

n=l

_ 二 + ^ (4.4)

Chapter 4 ForeNet: Implementation 37 ‘

And ForeNet (Equations (3.10)) is modified as:

z{t) = 2x謂

y{t) = j y 佩 I
j=l

hj{t) = Wjjhj{t - 1) + Wkjx{t) (4.5)

The outputs of the network become real. ForeNet is now more applicable

for NNs learning.

4.2 Parameters Initialization

An initial guess for the network parameters can be derived by the links found

in the previous section. Comparing the Fourier Recursive Equation (4.4) and

ForeNet model (4.5), we have an initial estimation of the weights and the

value of hidden units at initial time. The proposed initialization is as follows:

1. The recurrent weights to hidden units, Wij, can be initialized based upon

the coefficients of hn{t — 1) in Equation (4.4). That is

= (4.6)

where p represents the number of hidden units, Wn — 諧 .

Similarly, the weights between output units and hidden units are initially

estimated by

Wji{0) = expiju'J (4.7)

where w '几二错 .n represents the n仇 hidden units.

Chapter 4 ForeNet: Implementation 38 ‘

The weights between input and hidden units

够) 二 工 （4.8)

When we determine the value of p, accordingly the number of hidden

units and the initial weights in ForeNet can be determined.

2. The recurrent model needs an initial estimation of the state of hidden

units. In the Fourier prediction Equation (4.4), the internal memory is

controlled by nature of the time series as well as the model coefficients.

We just randomly initialize the values of hn and let the model build

proper internal states.

Thus, the network initialization is finished. ForeNet a recurrent model,

with the architecture as shown in Figure 3.1 and with the initialization method

as described above.

4.3 Application of ForeNet: the Process of

Time Series Prediction

In the forecasting task, we would use the recurrent network, ForeNet We can

perform time series prediction as following three stages.

• Initialization Stage. Before ForeNet has been trained, it is initialized

by the proposed method described in the previous section. We will an-

alyze this initialization method and show its performance in the next

chapter, Chapter 5.

• Training Stage. Then for NNs learning, Complex Real Time Recur-

rent Learning Algorithm (CRTRL) is used to update complex-valued

parameters in ForeNet We will introduce the algorithm in Chapter 6.

Chapter 4 ForeNet: Implementation 39 ‘

• Prediction Stage. After parameter updates, we apply the ForeNet to

perform prediction on various time series. This stage will be introduced

in Chapter 6 and Chapter 7.

4.4 Some Implications

There are some more implications of using the correspondence between the

Fourier Recursive Equation and its NN representation, ForeNet

• First, ForeNet is built based upon the Fourier Recursive Equation. The

parameters in ForeNet are corresponding to the coefficients in the pro-

posed equation. At the beginning of training, we can first determine

the coefficients in ForeNet, then the architecture of ForeNet is fixed and

furthermore, initialization of ForeNet is achieved.

• The weights of the recurrent networks are pre-defined constants and are

evaluated from the input sequence. However, it has to be computed off-

line. If we do not allow any off-line computation of the weights, we can

apply the recursive equations to estimate the weights. In addition, in the

computation, we have made a few approximations. Further, in case if the

time series is non-stationary, the pre-defined weights cannot reflect the

latest statistics of the time series. Thus, a learning algorithm to adapt

the weights is still desirable.

• The internal memory in ForeNet is stored in the hidden units. When the

training hasn't been started, we can analyze the effective memory in the

model.

Chapter 5

ForeNet: Initialization

We have built a recurrent model, ForeNet, to represent the proposed predic-

tion equation. In this chapter, in order to analyze the prediction model in a

more convenient way, first, we will unfold the recursive equation and suggest

some properties of the model. After that, ForeNet with initial parameters is

applied to time series prediction. The experimental results show the proposed

initialization method for ForeNet is efficient.

5.1 Unfolded Form of ForeNet

The proposed model (4.4) is in an recursive form. In this section, we expand

the recursive equation. In the expanded form, the next time step value x(t + l)

can be directly represented by its previous value x{t),x{t 一 1),. • • , with

different coefficients.

First, we use three variables � p n and 7几 to replace the coefficients in

Equation (4.4). Where a^ = 齿 / 3几=击,7n = exp(jcj；), and

(jjn — 27rn/(p + 1) cĵ = 27rn/(t + 1). Equation (4.4) is then rewritten by

40

Chapter 4 ForeNet: Implementation 41 ‘

= 2x (p(t+i)r p

g{t + l) = � 7 n

n=l

hnif) = h n { t - l) a n + x{t)l3n (5.1)

where, x{t) is model input.

Now we unfold the third equation in Equation (5.1) and computes hn{t)

iteratively as follows

hn{t) = hn{t - l)an +

=0^n[K{t - 2)Q̂ n + X{t — 1) /^ + x{t)pri

= a l K i t — 2) + anl5nX{t - 1) + ^nX{t)

= a l K { t — 3) + - 2) + a^Aocit — 1) + /3nx{t)

二 A z X ⑴ + an^nX{t - 1) + alpnXit _ 2) + … + Q^—Vn工(1) +

t-1

d=0
(5.2)

where d represents the time-lag to the current input. In this way, we use

infinite past data x{t) and the initial value of hn to represent the current value

of hn{t). Now using unfolded hn{t) to rewrite g{t + 1) in Equation (5.1)

V

9{t-\-l) = � 7n

H (5 .3)

- 公 Yy•、妳-d)) + c4rrnh 肩)
n=l d=0

Chapter 4 ForeNet: Implementation 42 ‘

According to the first equation in Equation (5.1), we only use the real part

of g{t + 1) to estimate the value of x{t + 1). In order to take the real part

from the complex number in Equation (5.3), we replace an, Pn and 7几 by the

original coefficients, that is, a 几 = A z = 击 , 7 n = exp(ja;；), so

Equation (5.3) becomes

p t-i rf
9{t + 1) = E (E (二 vm ^Mji^nd + Uj'J)x{t — d))

n=l d=o 十丄） (5.4)

p + 1

As we know, the complex value exp(ja) can be expressed by a real part

cos a and an image part sin a, that is, exp(ja) = cos a + j sin a. To get the

real part of g{t + 1)，we can use cos(-) to replace the complex number exp(-)

in Equation (5.4). Thus the estimation of x{t + 1) can be achieved by

x{t + l) = 2x{g{t + l)Y'
P t-i d

=2 E (D (二 严 + 力—d)) (5.5)
Ti 1 rf^^O

p + 1

In the unfolded Equation (5.5), x{t-\-l) is estimated by a set of past values

x{t). In order to make the expression Equation (5.5) simpler, we introduce

two set of variables /in � and "几 to represent the coefficients of different past

value. Define

î n = + (5.6)

thus, Equation (5.5) becomes

Chapter 4 ForeNet: Implementation 43 ‘

P t-i
xit+l) = 2x — d)) + Unhnm (5.7)

n=l d=0

Equation (5.7) is the unfolded form of Equation (4.4). d represents the

time-lag between the current model input and previous input. Time series

value at next time step x{t + 1) is estimated by the previous t data points.

Equation (5.7) is a linear model. Compared to the recursive Equation (4.4), it

has one more variable, d. Thus one may assume that d is the "hidden" variable

in the recursive form and it is related to other variables. Actually, the value

of x{t + 1) is only estimated by a finite number of past data because of larger

time lag d, smaller weighting the data has. In the following, we will analyze

the weighting of the past data at different time lag. Also we will indicate how

the internal memory of the model is built.

5.2 Coefficients Analysis

Let's consider the unfolded equation (5.7). This model expresses future values

of the time series as a linear combination of past values. Once the coefficients

have been estimated, the number of past data which contribute to the data at

the next time step will be determined. We call the number of past data needed

embedding dimension. According to Equation (5.7), finid) are the weights of

the past data. And according to Equation (5.6), we only give a value to the

variable p. The coefficients yLt̂ (ci) are then estimated.

5.2.1 Analysis of the Coefficients Set,"几

The coefficients ẑ几，Vn = ^̂ 2，... , î p]- are defined by Equation (5.6). They

are determined by p and time length t. Since p is a positive integer number,

齿I < 1 and I cos(.)| < 1, thus

"几I 二 I南 X COs{uJnt + Uj'Jl < 1

Chapter 4 ForeNet: Implementation 44 ‘

1 1 1 1 1 1 1 1
0.8 tA : - ：………:…P=4

% ： 令 p=10 \ \ : •• : …分…p=6
0.6 4 \ ； : - X - p=20

* 層 ： j ： j j .：.....丨..j：…….-
-0.6 - » r ： ： : -

-0.81 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

time steps

Figure 5.1: The trends of v with the increasing time steps. Different curves
present different trends with various p.

Since the absolute value of is less than unity, the value of hn (0) expo-

nentially decays to zero. Figure (5.1) shows how fast the coefficients diminish

as the time increases. /i„(0) will have no effect on the prediction value x{t+l)

when t is large enough. And the decaying rate depends upon the selected value

of p. With the larger p, the effect of will last for a longer time.

In Equation (5.7), the coefficients iin{d) control the weights of inputs at

different previous time steps. In the following, we analyze this set of coefficients

and suggest a way estimate the parameters.

5.2.2 Analysis of the Coefficients Set, fiĵ d)

The coefficients iin{d), fin{d) = [fii{d), fi2{d), ‘ ‘ • , p l a y an important

role in the prediction model because they are the weights of x{t) and control

the internal memory of the model. It is defined by

fj^nid) 二 (p + 1 严 cos{ujnd + uj'J (5.8)

Chapter 4 ForeNet: Implementation 45 ‘

The values of fin {d) are determined by p, and vary with different time-lag

d. Both d and p are positive integers, thus we have

pd
" n � I = COs(Und + Cj'JI < 1 (5.9)

With time lag d increases, x{t — d) decays exponentially to zero due to its

coefficient /i^ becomes extremely small. It implicates after d time steps, the

value of x{t — d) will have no contribution to the calculation of the value at

next time step, x{t + 1), according to Equation (5.7).

Figure (5.2) illustrates the behavior of the coefficient fii{d) as the time lag

d increase from 1 to 80. It is clearly shown that the latest model input has the

largest contribution to the prediction. And the coefficients of x drop gradually

from the first time lag onwards.

This figure also suggests the relationship between the value of p and time-

lag d. We define the maximum value of time-lag as M. M is related to the

value of p. Different curves in the figure show the decay rates of coefficient

with different values of p. With p = 16, the model contains more past inputs

than that with p = 2, which lost the memory of its initial input after roughly

d = 10 time steps. It suggests larger p achieves larger time delay and the model

memorize more past states. We define the maximum time-lag the model can

memorize as M. Here M is related to the value of p. If we set

where the value of p is fixed and e is an arbitrary small value and d —

1，2,…，M is the maximum number of time delays that satisfies the above

condition. M represents the "hidden" order or the embedding dimension of

the model. And M also implies how many past values can be saved in the

model. In our proposed model, once the coefficients of different inputs have

Chapter 4 ForeNet: Implementation 46 ‘

0.35 j— ！ ！ ！ ！ ！
0.3 - ； I 令 P = 2 ! . . _ P = 6

“ ― • D = 1 0

0.25- | -
0 . 2 - ： ； ： \ ： -

0 . 1 5、： ： ： ； ： -

0.1 "xj? • ' 9 ： ： ： ； ： -

o.�5 户yr ； ； ； ； ；

- 0 . 1 ； ： ： ‘； ： -

- 0 . 1 5 1 1 1 1 1

0 10 20 30 40 50 60

Time steps

Figure 5.2: Coefficients changing with time

been defined, the hidden order M is then detected. Thus, unlike general AR

model, we need not determine the number of model order.

In the above section, by analyzing the unfolded equation (5.7), we implied

the relationship between the selection of p and the internal memory of the

model.

However, finding a proper p is a tough task. As we know, if a linear model

is used to solve the time series prediction problem, the determination of model

parameters is heavily dependent on the nature of the time series. As we have

analyzed before, the value of p determines how much memory the model has.

That is, p decides how many past series data will be used to reconstruct the

time series for next time step prediction. And, p is related to the number of

hidden units in ForeNet

In the following section, we will demonstrate some experiments with dif-

ferent p.

Chapter 4 ForeNet: Implementation 47 ‘

5.3 Experiments of ForeNet Initialization

5.3.1 Objective and Experiment Setting

In this section, some investigations of the proposed prediction model are re-

ported. We tested the performance of the model on some well-known time

series, namely the standard sunspots, Mackey-Glass series and several series

generated by chaotic processes. The main goals are:

• to assess the predictive ability of proposed prediction equation,

• to infer some "hidden" properties of the proposed model; to observe

how much information of the past can be encoded by the prediction

equation, and how the embedding dimension can be inferred regarding

the underlying process.

For these tasks, we present single-step ahead prediction, i.e. we predict

one step into the future given real (measured) values as input. The whole time

series are divided into two parts: training set and testing set.i

Performance Measure

A measure of fit is given by the Root Mean-squared Error(RMSE) of the testing

dataset, i.e.

1 N
Rmse = . i Y M t) - 着 (5-10)

\ t=i

where x(t) is the true value of the sequence, x(t) is the prediction. N is

the number of data points in the testing set. The prediction accuracy of naive

predictor is defined as

1 Training and testing sets mentioned in this chapter are different to those in NNs training.
Here since ForeNet hasn't been trained by the learning algorithm, the training set is not
used for adjustment of parameters in the model. Using testing set in this chapter is only for
purpose of comparison with the performance of ForeNet with training in the later chapter.

Chapter 4 ForeNet: Implementation 48 ‘

1 N
R M S E 皿 — - . - — x{t - 1))2 (5.11)

\ t=i

where where x{t) is the true value of the sequence, and x{t — 1) represents

the prediction.

We used the Root Mean Square Error to compare the results. Also, we

used another common method for examining prediction results, that is to plot

the predicted curve along with the correct curve. There are usually two main

errors which can be found from the plotted curves, amplitude error and phase

error. Amplitude error shows that the amplitude of the predicted curve is

smaller or larger than the amplitude of the true curve. Most of the phase

errors are lagging phase errors, i.e. the predicted curve lags the actual curve.

Phase errors may be due to frequency errors. These two types of error cannot

be reflected individually in RMSE.

Prediction Steps

As we have mentioned, since only one variable, i.e.p exists in the recursive

prediction equation (4.4)，it is much convenient to perform predictions with

Equation (4.4) than with the unfolding form (5.7). There are several steps

involved:

• choose the number of hidden units, p, which is a positive integer value,

to get the value of an and fin.

• choose the initial value for hn. Observed from the unfolding form, the

value of hn decays exponentially as the time increases. So is set

randomly between —1 and 1.

• perform the Equation (4.4),

Chapter 4 ForeNet: Implementation 49 ‘

- i n p u t the current time series value, calculate the current h:

hn{t) = hn(t — l)an + Oc{t)/3n

- c o m p u t e the predicted next time step value:

- u p d a t e

- R e p e a t till whole training series are processed.

• use the fixed parameters to perform prediction on testing series.

5.3.2 Prediction of Sunspot Series

Sunspots are dark blotches on the sun. They were first observed around 1610,

and yearly averages have been recorded since 1700. The series is shown in

Figure (5.3). The time between maxima ranges from 7 to 15 years and is 11

years on average. The exact underlying mechanism for sunspot appearances

has not been known. The sunspot series has served as a benchmark for time

series prediction problems in the statistical and connectionist literatures.

In the experiment, we normalize the data to be in the range [0,1.0]. The

whole dataset is tabulated from 1700 to 1979 and is partitioned into a training

set from 1700 to 1920 and a testing set from 1921 to 1979. Various p are

provided to predict sunspot behavior.

Results

For purpose of illustration, Figure (5.4) shows the testing error as the value

of p increases. When p 二 3, the model is the "best" model^ for prediction.
2 When we talk about a best model, we will mean the model that has the least root mean

square error in its one-step-ahead forecast. This is a convenient but basically arbitrary
criterion.

Chapter 4 ForeNet: Implementation 50 ‘

1 1 1 1 1 i
0.9 - Sunspot Series -

0.8 - I -

0.7 - I

0.6 - I -

0.5 - n -

�.4- [j I •
0.3- I [1 I -

A

1曙丨丨W卿IWWI訓-
0 50 100 150 200 250 300

TIME Figure 5.3: Portion of Sunspot series

— M e t h o d p二3 p=4 p=6 p=IO~
proposed methocT 0.0874 "oTlQGl 0.1391" 0.3279

~ a i v e predictor 0.1116 0.1116 0.1116 0.1116"

Table 5.1: Root mean square error on sunspot series prediction

The training and testing results with p = 3 are indicated by the upper and

lower panels respectively in Figure (5.5). The one-step ahead prediction root

mean square errors (RMSE) are shown in Table (5.1). In the table, we also

compare the proposed model with the naive predictor.

When p 二 3 and p = 4 are chosen, the model outperforms the naive pre-

dictor according to errors in Table (5.1). In Figure (5.5) we illustrate the

prediction curve using the best model with p = 3. Compared with the true

curve, the predicted curve did well in amplitude prediction but lagged the ac-

tual curve.

Chapter 5 ForeNet: Initialization 51

0.41 1 1 1 1 1 1 1

......； ： ；.......-

QI I I I I I I 1
0 5 10 15 20 25 30 35 40

P

Figure 5.4: Illustration of the testing RMS error on sunspot series using dif-
ferent values of p

1.21 1 1 1 1
I target 1 _ || predicted “

0.8- 1| » ’ ‘ -

yMlLMkfJ ；
-0.2 L̂ 1 1 1 1

0 50 100 150 200 250 1.2 I 1 1 1 1 / \ _

IixaMkm
0 - M ‘ ‘

-0.21 1 1 1 1 ‘
220 230 240 250 260 270 280

Figure 5.5: Prediction performance of the proposed model. The solid line
represents the true series and the dotted line is the model output.

Chapter 5 ForeNet: Initialization 52

Hidden memory analysis of sunspot data

To characterize some essential properties underlying the data, Weigend et al.

varied the input delay vector length of a standard MLP and observed the re-

sulting performance of sunspot prediction [71]. They estimated the dimension

of the recursion around 12 and pointed out that for the sunspot data, three

degrees of freedom suffice to characterize a point on the solution manifold of

the underlying, unknown system. Similar results are also found in [2]. As to

our experimental results, we found that using 3 Fourier coefficients to recon-

struct original time series recursively can achieve the optimal solution in terms

of prediction error on testing data set.

In our model, we build the hidden state vector h{t) during iterations of the

equation based on the previous input values x{t). When the iteration com-

mences, the internal state of the model /i(0) is randomly set, so the memory of

past observations are gradually built up during the iterations. When reaching

the enough iterations, i.e. the internal memory contains a full representation

of the previous data to do prediction, the model becomes convergence. And at

the moment, the number of iterations needed is considered as the embedding

dimension (number of past values). For sunspot series, we plot the training

curve in Figure (5.6). The upper panel shows the true output and model

output. The lower panel is errors when time is from the beginning to the last

training data. We randomly initialize the value of h between —1 and 1. Note

the transient exists at the beginning of training and its effect will become neg-

ligible as is the case in the limit in Equation (5.7), and the prediction errors

decay as the network becomes the steady-state mode. It is found from two

graphs that after 11 time steps the model approaches stable state. It also in-

fers that 11 past data are enough to build the effective memory in the system

to predict the series value at the next time step. And in fact, 11 is roughly

Chapter 5 ForeNet: Initialization 53

1-5p—I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I
|l : : : : : : ; : : : : : : : : :|——̂ ^ ^ ^
丨 丨 ： ： ： ： ： ： ： ： ： ： ： ： ： ： ： ： correct output

； ： ： ： ： ： ： j ： ： ： ； ： ； ： :——model output _

I丨丨'：；；；：：；；：：；；；；；；；；；；；
一0 51 丨丨丨丨丨 I I I I I I I I I I I I I I 1 1 1 1 1 1

• 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0

1
0 . 5 - … … ： . . : ： : ； : . . . -

DC
o ： ： ： ； ； ； ： ： ： ： ： ； ： ： ： ： ： ； ： ： ：

; M M M I M M M M ；' M M
一Q 5 I"丨I I I I I I I I I I I I I I I I 1 1 1 1 1 1

• 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0 2 2 0

TIME

Figure 5.6: Illustration of transient when starting training iterations

the period of sunspot series.

5.3.3 Prediction of Mackey-Glass Series

Mackey-Glass series

Mackey-Glass chaotic time series is generated by a delay differential equation

Mackey and Glass, 1977

警 = - (5 . 1 2)

The parameter t is the time variable, x is a function of t, and a, b and r are

constants. We set a = 0.2 and b = 0.1. Different values of r produce various

degrees of chaos. We use the delay r = 17, which is just beyond the onset

of chaos. Solving Equation (5,12) yield the time series x{t). Mackey-Glass

series is chosen to show model performance with high dimensional systems,

Chapter 5 ForeNet: Initialization 5 4

— Method p=3 p=4 p=6 p=10
proposed method 0.0474" 0.0128 0.0339 0.087^

naive predictor 0.0228 0.0228 0.0228 0.0228

Table 5.2: Root mean square error on Mackey-Glass data prediction

and it possesses many dynamic properties. The prediction equation is used for

one-step ahead prediction. For comparison, r = 30 is also used to generate

the series for prediction. The whole dataset consists of 1000 data points. The

first 600 points are used for training, and the remaining 400 are testing data.

Results and Analysis

Figure (5.7) demonstrates that how the different values of p effect the model

prediction performance. The left pane illustrates the results with delay r = 17

and the right one is on the series generated by r 二 30. For two series, both

using p = 4 built the optimal prediction model. And the figures implicate

that to predict two series with different degrees of chaos, the model behaviors

with various values of p are very similar. When p begins from value 1, the

testing error is decreasing till p becomes 4, thereafter, with p increases, the

model error also becomes larger. The model uses the same parameter {p = 4)

achieve the optimal predictions on two Mackey-Glass series. In Figure (5.8)，

Mackey-Glass time series and the model predicted series are shown. Both are

done with p 二 4. We can see that in this case, not only the magnitude of the

series fit well, but the frequency of the extrapolation curve is almost equal to

that of the correct curve. In Table (5.2), we also compare the proposed model

with the naive predictor. Only using p = 4, the model can do better than the

naive predictor.

Chapter 5 ForeNet: Initialization 55

0.41 1 1 1 , 1 , 1 n 0-351 1 i i 1 1 1 1 ^

03......丨......丨.........：._..........丨.......：：:：工二

QI 1 1 1 1 1 1 1 Q\ I I I I I I
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

(a) (b)

Figure 5.7: Illustration of the testing RMS error on Mackey-Glass series using
different value of p. The left pane illustrates the results with delay r = 17 and
the right one is on the series generated by t = 30.

l/VvvvywAii fVWW:
Q 2I—J I I I I I I 111 ！ I I 1 1

“ 0 100 200 300 400 500 600 0 100 200 300 400 500 600

Q 2 ' I I I I I I I I 0 2 ' I I I I I 1 I
600 650 700 750 800 850 900 950 1000 600 650 700 750 800 850 900 950 1000

(a) (b)

Figure 5.8: Prediction performance of the proposed model. The left pane is
Mackey-Glass series with r = 17 and the right pane shows series with r = 30.
The solid line represents the true series and the dotted line is the model output.

Chapter 5 ForeNet: Initialization 56

5.3.4 Prediction of Laser Data

Laser data

We also test the Fourier recursive prediction equation on the laser data of the

Santa Fe competition[70]. The data set consists of laser intensity collected

from a laboratory experiment. Its behavior is chaotic as seen in Figure (5.9).

This data set is chosen because

• they are a good example of the complicated behavior that can be seen in

a clean, stationary, low-dimensional non-trivial physical system for which

the underlying governing equations dynamics are well understood.

參 the data set is short; in many fields, such as economics, the data sets

may only be a few hundred points long. The data set that was known to

have low-dimensional dynamics to use as a test case for analyzing short

data sets to help make the task more manageable.

• it is very predictable on the shortest time scales (relatively simple oscil-

lations), but that has global events that are harder to predict.

We adopted total 1500 data points. The first 900 points are for training

and the following 600 are for testing.

Results and Analysis

The Figure (5.10) suggests using p = 1 can achieve the optimal prediction.

The Figure (5.11) illustrates the training and testing results.

The number of time delays (or the order) of the AR model that makes

successful predictions provides an upper bound on the minimum embedding

dimension [70]. For the laser data, according to the experimental results p = 1

is clearly better than other values. Let observe the Figure (5.12), where the

Chapter 5 ForeNet: Initialization 57

5| 1 1

4 - -

3 - -

2 - I I ||

:l I _ f̂ il f4l
- 21 ‘ ‘

0 500 1000 1500

Figure 5.9: Laser Series

Proposed Model Naive Predictor
RMSE on testing set 0.4973 0.6664

Table 5.3: Root mean square error on laser series prediction, with p = 1

upper graph shows 7 past points can build up the effective memory to do

prediction, and the lower graph is the weighting of input data at different time

steps when p is set to 1, which also shows after 7 time steps, the effect of

input vanishes. Both indicate that when p = 1 used in the model, accordingly

hidden dimension would he M = 7. Let we observe the laser series. It is

obvious that there are two “ dominant" periods in the series: one is very short

but the other is much longer so that it cannot be easily detected using the

limited data points. And the ForeNet is a local model, so in stead of learning

the long trend of time series, the model catches the short period and consider

it as the “ dominant" period, which is around 7. In [71], weigend showed when

the number of delays d — 6 the model had the lowest out-of-sample errors.

Chapter 5 ForeNet: Initialization 58

0.5 -
I I I I I 1 1

0 5 10 15 20 25 30 35 40
P

Figure 5.10: Illustration of the testing RMS error on laser series using different
values of p

4 j 1 1 1 1 I Z] 1
丨 一 target

îmMMMkmrnSMmM
一 2 LI I I I 1 1 1 1

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 1 1 1 1 1 1 1 1 1

丨 HlllMllteMli
-2! I I I 1 1 1 1 1 1

4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0

4 1 1 1 1 1

一 2 1 — I — I — - 1 - — I — I —

9 0 0 9 5 0 1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0

4 1 1 1 1 1 1

: W \ m m m m m m m M M M M M M
一 2 1 1 1 1 1 1

1 2 0 0 1 2 5 0 1 3 0 0 1 3 5 0 1 4 0 0 1 4 5 0 1 5 0 0

data

Figure 5.11: Prediction performance of the proposed model using p = 1.

Chapter 5 ForeNet: Initialization 59

31 1 1 1 1 1 1 1 1 1 1 1 1 1 r -

"iT ••：• :" ：• : : : : : : : : :' •...:. ••••：'
« ； ； ； ； ； ； ； ； ； ： ； ： ： ：

- 2 ! I I I I I I I I I 1 1 1 1 L .

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

0.51 Q 1 ！ 1 ！ ！ ！ ！ 1 ！

0 . 4 . • … \ ： ： ： ： ： ： \ -

0.3- U -

0 . 2 - + . . - . ：• ： ： -

LU \ ；

1 0-1 - . .二 • . . . •.-
0 - I Y' • • V： -~ ~ e e e ~ e ~ e ~ ~ e e ~ e ~ © ~ e ~ © ~ e o

-0.3' 1 1 1 1 i 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

TIME

Figure 5.12: The first figure shows a portion of training series, the correct
curve (solid line) and the model output (dotted line). The second figure is the
weighting of model inputs with time increases.

5.3.5 Three More Series

Series Description

Some more experiments are demonstrated in this part. Consider the following

time series:

• Time-varying sinusoidal series (Figure (5.13)), which is generated from

the equation:

y{t) = sin{wtt) t = 1,2, ...n

where Wt — 0.0081尤 is the frequency varying with time, n is set to 600.

The first 300 data is specified as training data, and the following 300

data is used as testing data.

• The sinusoidal series with noise generated from the equation:

y{t) = sin{wt) + a

Chapter 5 ForeNet: Initialization 60

where a uniformly distributed random value a in the interval [—0.5, +0.5

is added to the sin function at each time step. And w = 1, “ s from 1

to 200. The first 100 points were used as training data. The next 100

points were testing data. Figure (5.13) shows the series.

• Computer-generated series. It is also from the Santa Fe competition[70 •

The series was generated by numerically integrating the equations and

has nine degrees of freedom. From the data file, we choose 1000 data,

using 600 points for training and 400 for testing.

Results and Analysis

The model performance depends on the various values of p, as shown in Fig-

ure (5.14). The model did best when using p = 2 to predict noisy sinusoidal

series; using p = 3 to predict the time-varying series and using p = 4 to predict

computer-generated series. It is noted that the series with shorter hidden pe-

riod have smaller p to do prediction, which also means that the model need the

small number of embedding dimension (the number of past values) to compute

value at next time step.

Table (5.4) is the comparisons between the proposed model (with "optimal"

p) and the naive predictor. And Figure (5.15) and Figure (5.16) illustrate the

training and testing curves respectively. We can find that the model can detect

the changes of the frequencies in series well according to the prediction results

on time-varying sinusoidal series shown in Figure (5.15). And it can also do

well in the noisy series prediction.

Chapter 5 ForeNet: Initialization 61

time varying~ noisy sinusoidal computer
sinusoidal series series generated series

"proposed m e t h ^ 0.1951 0.2931 — 0.0501 —
value of p 3 2 4

~ naive predictor 0.342 0.4795 0.0635

Table 5.4: Root mean square error on time series predictions

j , , 1 i 1 1 1 1 ‘ ‘ — n ‘

i l i l i _ :
i _ III P fflf™l III

- 1 - V 11 n f - I ;
, I I I J 5I I 1—-——I 1—1—I 1

100 200 300 400 500 600 ‘ 0 20 40 60 80 100 120 140

(a) time-varying sinusoidal series (b) noisy sinusoidal series

Figure 5.13: Two sinusoidal series

0.31 I 1 1 1 1 ‘ ‘
1-5(！ ！ ！ 1 ！ [！ I

I 1-………f\……；A- v A；….....T\ U........丨..…….-I 丨……….-

• 。 , — 屋 n ^ ： ； . ：
： ： ： ： ： • • 0.1 - • A • • — ； ；

„ i I 1 I I i i 0 051~"No ô ' 1 i 1 1 1 1
°0 S Ti i o Ts 30 Ts 40 0 5 10 15 20 25 30 35 40

P P

(a)noisy sinusoidal series (b)computer-generated seris
i| 1 1 i 1 1 ！ ！

0.8 - .. ‘
I 0.6- ：/ :• ; ； 丨 丨 ^
io.4J...........i ；

0.2 • •： : \ ； ： ；

ol I i i ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40

P

(c) time-varying sinusoidal series

Figure 5.14: Illustration of the testing RMS error using different values of p.

Chapter 5 ForeNet: Initialization 62

hMMM
- 1 . 5 1 ‘ ‘ ‘ ‘

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

target
predicted 21""“1 1 1 1 1 1 1

0 - 1 1
J 謂 謂 爾 V 劑 哪 ; 爛 謂 哪

‘ ‘ I ‘ , 1 M 1
_2 l 1 I I I 1 1 1

2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

Figure 5.15: Prediction performance of the proposed model on time-varying
sinusoidal series. The solid line represents the true series and the dotted line
is the model output.

： ： ‘
Orl . I u , 、 I » 1 -|l -0 2^ ‘ 1 1 1 1
• 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

- 0 . 5 ' 1 1 1 1 1 ‘ 1

6 0 0 6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

Figure 5.16: Prediction performance of the proposed model on computer-
generated series. The solid line represents the true series and the dotted line
is the model output.

Chapter 5 ForeNet: Initialization 63

5.4 Some Implications on the Proposed Ini-

tialization Method

We would like to point out some more implications on our proposed model

based on the derivation of the prediction method and the experimental results.

• It is mentioned that the series with shorter hidden period have smaller

p to do prediction. It is not surprising that with smaller value of p the

model can do better on time series with shorter "period". It may be

because of the following relationships:

- T h e smaller p in the model is related to the relative less embedding

dimension of the time series;

- T h e embedding dimension of a given time series has somehow cor-

respondence to the “ dominant period" of the time series. So shorter

period is related to smaller embedding dimension which is needed

to reconstruct the given time series.

• Most of the phase errors we found are lagging phase errors; the predicted

curve lags the actual curve. Phase errors may be due to frequency errors.

In the proposed model (Equation (4.4)), the intermediate states h{t) are

complex values, which include both magnitude and phase information.

Therefore, one can consider when the prediction is processed, the am-

plitude error is introduced by estimations of the magnitude of variables,

which are related to the selection of p. And the phase error is due to the

estimation on the phase of variables. As we known, to reconstruct a time

series, it is important that the phases be symmetrized in such a way that

the inverse Fourier transform is real and the power at each frequency is

unaffected. However, in the most cases, using fourier transform to re-

cover original time series cannot satisfy such vital condition since only

Chapter 5 ForeNet: Initialization 64

some frequencies can be used. But in our proposed method, we have

shown that some approximations were made to remedy it. Thus, one of

advantages of the proposed complex-valued model is that the changed

phase information in time series may be detected. This can be verified

by the above experiments. Especially when observing Figure (5.15), the

model can catch the phase changes with time. Thus the predicted curve

has small phase error although with obvious amplitude error.

• The proposed model is a local linear model, which is trying to divide the

data set to smaller sets and each is modelled by Fourier analysis. The

k nearest past data points are decomposed into several frequency coef-

ficients, which are then reconstructed to forecast the value at next time

step. Such local linear model is able to capture the geometry well. So its

advantage is the ability of adhearing to the local shape of an arbitrary

surface; the corresponding disadvantage is that it may be insufficient to

understand the global characteristics of the underlying system.

• The prediction performance of the proposed model is dependent on both

the coefficients and the nature of given time series, including the length

of the data set, the sampling rate, and the embedding dimension. From

all performed experiments, we found that the proposed model usually

do worse predictions on those time series whose dominant frequencies

are high in terms of the phase error and the amplitude error. And usu-

ally the small p is selected to predict these time series, including laser

series, noisy sinusoidal series and sunspot series. Such phenomena may

be caused by the approximations introduced during model derivation,

that is, we assume the "important" parts of the series are with low fre-

quencies. In linear systems, such assumption is often safe. However in

nonlinear systems, for example laser series, the important part of the sig-

nal often cover the entire spectrum (shown in Figure (5.17)). Therefore,

Chapter 5 ForeNet: Initialization 65

such assumption makes some information of signal lost. It is also one

shortcoming of our approach.

• If ForeNet hasn't been trained, the internal memory is nonadaptive, and

it is not appropriate for most time series. In the later chapter, we will

train ForeNet to make its internal memory adaptive with time.

• The first several data points in time series is used to initial an internal

memory of the model. We have realized that the internal memory plays

an important role in time series prediction. We can control the model's

memory by setting different value of p. However, it is difficult to exactly

decide how many training points should be chosen, as the length of the

transient will depend on both the nature of time series and the model

parameters. When we apply ForeNet to a test set in the next chapter,

we will not set the internal hidden state to zero before starting the iter-

ations. That is, we always choose the test series to immediately follow

the training series. When estimating the generalization error, iterations

are initiated on the proceeding training series in order that the internal

memory of the recurrent networks has been properly built.

• The last implication is the weights involved in the recurrent network

are no longer real but complex. Traditional BPTT or RTRL learning

algorithms are not applicable. In the later chapter, we will propose a

complex-valued recurrent learning algorithm to train ForeNet

Chapter 5 ForeNet: Initialization 66

3501 1 1 1 1 1 1 1

300 - -

250 - -

2 0 0 - -

150 - I

1 � � ’ I ill -
0 100 200 300 400 500 600 700

Figure 5.17: Discrete Fourier Transform of the laser series

Chapter 6

ForeNet: Learning Algorithms

We have proposed a recurrent network structure whose parameters are complex

values and constructed to perform the predict task. In the previous chapter,

we analyse the property of Fourier Recursive model, i.e. ForeNet model with-

out training. This chapter shows the algorithms for adjusting the parameters

of ForeNet The learning is based on a sample of time series input/output

pairs {x{t),x{t + 1)) for t = 1,2,..., Â - 1. The most widely used algorithm

for training Recurrent Networks is the Real Time Recurrent Learning (RTRL)

algorithm proposed by Williams and Zipser [75] as described in Chapter 2.

However, RTRL is not suitable in our case to process complex parameters

because it assumes all parameters are real-valued. Thus we are showing the

learning algorithm for the complex-valued recurrent network.

There are two steps in our learning process. The first one is the network

initialization which has been described in Chapter 4 5. The second is the

training of the network using the modified complex RTRL algorithm. We

introduce here two basic weight-update methods, bath-mode learning and on-

line learning.

67

Chapter 6 ForeNet: Learning Algorithms 68'

6.1 Complex Real Time Recurrent Learning

(CRTRL)

The Complex RTRL algorithm was proposed in [38] to train Fully Recurrent

Networks. In this section, CRTRL is modified to suit our model. Real and

complex numbers are denoted by lower and upper case letters. The real and

imaginary parts of a complex number W is denoted by wr and w! respectively.

Consider a RRN with p inputs, n hidden units and m output units. We use P,

N and M to denote the set of input units, the set of hidden units and the set

of output units respectively. All units are interconnected as described above.

The cost function is

= \ E 4 � (6-1)
UkEM

where

e,(t) = B,(t)-n(t) (6.2)

and

Vk(t) = 2 X zjik(t) (6.3)

ek(t) is the error of the k仇 output unit at time t. Dk{t) denotes the k仇

target and Zk{t) is the k̂ ^ network output. Based on the prediction method

of proposed semi-AR model, when we calculate the network error, we adopt

two times of the real part of Zk{t) as network output.

Forward Phase: For j 二 1,…,N

+ 二 f(^WijYj(t) + Y^ WMt + 1)) (6.4)
UieN UkEP

Chapter 6 ForeNet: Learning Algorithms 69'

Zj{t + 1)= 恢jzKj•(力+ 1) (6-5)
uiEM

where

Yj{t + 1) : output of hidden unit j at time t + 1;

Wij : weights between hidden units;

Wkj ： weights from input units to hidden units;

Wji : weights from output units to hidden units;

Xk{t + 1) : k仇 input at time t + 1.

f ： denotes the linear activation function. That is, f{X) = X.

Expressing this equation with the real and imaginary parts of Wij, Wkj, Yj

and Xk

VRjit + 1) = f i Y l {wRijVRjit) wujyij{t))
we" (6.6)

+ + 1) - WikjXikit + 1)))
Uk^P

Learning Phase: Since e(t) is a real-valued function, we compute its gradi-

ent with respect to Wij

de{t) ^ dejt) ^ .dejt) (6.7)
dWij dvjRij dwiij ‘

Now, differentiating Equation (6.1), we get:

= - 2 E e “力

——2 E 幼 (6 - 8)
OWiij t u OWiij 1” UkeNuM “J

and differentiating (6.5),

= (6.9)
owRij dwRij

Chapter 6 ForeNet: Learning Algorithms 70'

The weights between the hidden layer and the output layer are non-recurrent

in our model and can be updated easily by error backpropagation.

= + (6.10)
OWRij

where, Uk e M and ui G N. The weights to the hidden units are recurrent

and we can propagate the error terms one step back from the output layer to

the hidden layer and update the weights according to equation

加剛 u% 〜 (6.11)

where
1 for Ui = Uk , \

S i k = { (6.12)
0 for Ui + Uk

\

In the similar way, we derive the recursive equation for

Finally, the weight update equation becomes

z X W z , � = + aAW,j(t — 1) (6.13)

where, rj is the learning rate, a is the momentum coefficient and AWij (t) is

the change in Wij at time t. The weight changes are calculated at each epoch

along the way and take the full change as the time-sum of AWij � at the end

of the training sequence.

6.2 Batch-mode Learning

There are two basic weight update methods, batch-mode and on-line learning.

In batch mode learning, every pattern p is evaluated to obtain the derivative

Chapter 6 ForeNet: Learning Algorithms 71'

dEp/dw. After all training pattern are inputted into the network, the total

derivative can be obtained and only then the weights are updated[56]. An-

other method, on-line learning, will be described later in this chapter. And all

experiments in the next section will be performed by batch-mode method only.

The whole training steps of ForeNet are:

(1) The coefficients of Fourier recursive model are adopted to initialize ForeNet

(2) Learning phase

• For every pattern p in the training set,

—apply a pattern p in the training set,

-calculate the pattern error Ep and the single-pattern derivatives

dEp/dw.

• Add up all the single-pattern terms to get the total derivative.

• Update the weights according to CRTRL.

• Apply the validation data set, calculate the validation error ey(t).

• Compare to the validation error of the last training epoch.

- I f ev{t) > ev{t -!)>•"> ey(t - n) >, stop training.

- e l s e , repeat the learning phase.

(3) Apply the testing set, use the trained model to perform the prediction.

6.3 Time Complexity

We have shown in Figure (3.1) that the recurrent links exist only in the hid-

den layer and all the feedback links are self-connections of hidden units. We

define the degree of connectivity, q, which is equal to the number of incoming

recurrent connections of each hidden unit. In ForeNet, q is 1 since only the

Chapter 6 ForeNet: Learning Algorithms 72'

self-feedback loop exists.

The computational requirements of ForeNet are mainly on the need to store

and update the p ĵ values {p ĵ = For each element pf力 we go through

Equation (6.11) once in each time step and there are q {q = 1 in our case)

operations to get the updated value in (6.11). In our model, there are total

n{p + q) weights in the hidden layer so updating Equation (6.11) in each time

step needs the computational complexity of order 0{nq{q + p)) operations.

Considering the other operations, the total computational complexity is order

0{mn-\-nq{q-\-p)), that is order 0(mn + n), where m is the number of output

units and n is the number of hidden units. The order of fully recurrent network

(FRN) derived by Williams and Zipser[75] is 0{J^”, where N is equal to the

number of non-input units. Compared to FRN, ForeNet has much smaller

computational complexity.

6.4 Property Analysis and Experimental Re-

sults

In the following sections, we show properties of ForeNet by some experiments.

The architecture of ForeNet is a 1 —p — 1 network (shown in Figure (3.1)), i.e.,

the network had one input unit, one output unit and p hidden units, where

p can be determined by the proposed Fourier recursive model as described in

Chapter 5. The activation function in the network is a linear function. As

mentioned, ForeNet initialization is not randomly done. It performs based on

Fourier recursive model.

In the algorithm, the learning rate rj is set to 0.1 and the momentum co-

efficient a is 0.5. And the maximum learning iterations is set to 500. We

Chapter 6 ForeNet: Learning Algorithms 73'

used the root mean square error (RMSE) to monitor prediction performance

of the network. The whole data set is divided into three parts in sequence:

the first is training data set (used for parameter estimation); the second part

is validation set, which serves as the stopping criteria of training process to

determine the stopping point before overfitting occurs; the last is testing data

set. The network would stop training when the largest learning iterations are

reached or the error on validation set becomes increase.

Time Series

We perform the prediction tasks on the following time series.

• Mackey-Glass series generated from Equation (5.12). The series includes

1000 data. The first 400 are used for training and the following 600 points

are for validation and testing.

• The laser series from the Santa Fe time series competition. The series is

illustrated in Figure (5.9). The network is trained to perform a one step

ahead prediction. All samples are scaled to zero mean and unit variance.

There are 1500 points in laser series. The first 900 data are the training

data. After training, we perform the forecasting on the following 600

data.

• Time-varying sinusoidal series (figure (5.13)). The first 300 data is

specified as training data, and the following 300 data is used as testing

data.

• The sinusoidal series with noise. The first 100 points were used as train-

ing data. The next 60 data were used for validation. The remaining 40

points were testing data. Figure (5.13) shows the series.

Chapter 6 ForeNet: Learning Algorithms 74'

• Computer-generated series. We use total 1000 data, the 600 points for

training and 400 for testing.

All experiments are performed with MATLAB and running under UNIX

OS, Solaris 7. We did the experiments for several times and reported their

average performance in the following tables.

6.4.1 Efficient initializationxompared with random ini-

tialization

Objective

We have proposed a NN initialization method that is based on the Fourier

recursive model. In this section, we show the efficiency of such initialization

for NN training. With the optimal NN parameters are determined, the initial

error is substantially smaller and the number of iterations required to achieve

the convergence is also significantly reduced. We perform the prediction tasks

using ForeNet and for comparison, we also train ForeNet with randomly gen-

erated complex initial parameters.

Results and Analysis

Table (6.1) and (6.2) show the network performance using the proposed

method and random initialization respectively. In the problem of Mackey-

Glass prediction, the proposed method generates the good initial parameters,

which make the pretty smaller initial training error (0.0205) than that using

randomly setting initial values (2.2589). The network convergent only after

13 iterations with better generalization. The learning curves are shown in

Figure (6.1)and Figure (6.2). Similar result can be found on laser series

forecasting. The proposed initialization has small initial error thus speed up

Chapter 6 ForeNet: Learning Algorithms 75'

the convergence speed. Figure (6.3) illustrates the different network perfor-

mance using different initial method, (a) and (b) present the network outputs

computed with the proposed initialization, before training and after training

respectively. From the graphs, we can see that the network output is very

close to the target values even before training has been taken place. Further

training only provides small fine tune to the results, (c) shows the correspond-

ing ForeNet'output with random initialization. Although this data set is a

non-stationary series, our method is able to deal with the time-varying signals.

From the prediction of noisy sinusoidal series, we find that the the proposed

initial method seems get worse performance in terms of initial root mean square

error than random initialization. But compared to random method, which take

52 training iterations to convergent, the proposed method only use 18 iterations

to achieve much better generalization according to the final RMS error. One

may wonder why the model can get the fast convergence speed even with larger

initial error. It has to be noted that RMS error measures network performance,

but it show no indication of the closeness to the optimal point in the weight

space. Thus small initial error does not necessarily imply better initialization.

The efficient initialization methods should be those assigning the weights in

the region not far away from the minimum. In addition, the region should not

be flat if training is carried out by gradient methods. An efficient initialization

can prevent the model from getting struck with the initial weights thus help

to achieve good testing results.

Chapter 6 ForeNet: Learning Algorithms 76'

series No.of Initial Testing No. of Time
hidden units training error RMSE iterations taken (sec)

Mackey-Glass
series 4 0.0205 0.0102 13 63

laser data 4 — 0.7449 0.5049 19 “ 142
time-varying

sine series 3 0.0746 0.1251 103 257
noisy sinusoidal

series 4 0.699 0.0729 | 18 | 24

Table 6.1: The prediction performance of ForeNet with proposed initialization

series Initial Testing No. of Time
training error RMS error iterations taken (sec)

—Mackey-Glass series 一 2.2589 “ 0.0558 198 — 866
一 laser data _ 1.1961 “ 0.4784 202 1324
time-varying sine series 0.9676 0.3203 ^ 184

" l^isy sinusoidal series 0.6889 0.4285 52 60

Table 6.2: The prediction performance of ForeNet with random initialization

1 1 1 1 1 1—
LU 0.04 - -
(/)
乏
O 0.02 =

DC

Q I I 1 1 1 1

2 4 6 8 10 12
no. iteration

Figure 6.1: The learning curve of ForeNet with proposed initialization

0.2 r-j ： .

LU 0.15 - -
CO 1

o \
0.05 - - =

0 ' ‘ ‘ ‘
0 50 100 150 200

no. iteration

Figure 6.2: learning curve of ForeNet with random initialization

Chapter 6 ForeNet: Learning Algorithms 77'

predicted
target

r w
5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

(a) with proposed initialization before training

‘ I W / V
5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

(b)with proposed initialization after training

mmmmi
5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

(c)with random initialization before training

Figure 6.3: Predictions on time-varying sin series.

Chapter 6 ForeNet: Learning Algorithms 78'

6.4.2 Complex-valued network:compared with real-valued

network

Objective

The parameters in ForeNet are complex-valued and ForeNet is trained by

complex-valued learning algorithm. As we known, a complex number provides

not only the magnitude information but the phase state. Therefore a neuron

with complex value has more representational power than a real-valued neuron.

Moreover, Akira proved the behavior of complex-valued recurrent network is

more stable than real-valued recurrent network[33]. For comparisons, we train

a recurrent network with randomly generated real-valued weights.

Results and Analysis

Table (6.3) shows the training results using real-valued network. Comparing

to Table (6.1), it is obvious that on the predictions of Mackey-Glass series,

time-varying sinusoidal series and noisy sinusoidal series, the complex-valued

network has more powerful computational ability in terms of testing error and

training time. As to laser data forecasting, real-valued model achieve bet-

ter testing result (with RMS error 0.3906) than complex-valued model, whose

testing RMS error is 0.5049. However, to perform the better prediction, real-

valued model took 32 minutes to convergent, which is much longer than com-

plex model, whose training time is around 3 minutes.

In [76] [77], the authors used the phase of the complex value to represent

multiple orientations in a recurrent network thus more stable population ac-

tivity patterns can be formed in the model.

Chapter 6 ForeNet: Learning Algorithms 79'

series Testing RMSE Iterations Time taken (Sec)
Mackey-Glass series 一 0.0601 500 “ 2117

一 laser data 0.3906 “ 300 — 1868 _
time-varying sine series 0.2836 75
noisy sinusoidal series 0.3267 500

Table 6.3: The prediction performance of the real-valued RNN

6.4.3 Simple architectureicompared with ring-structure

RNN

Objective

Since ForeNet is a self-connected recurrent model, each hidden unit is con-

nected to itself only. Thus, compared with fully connected recurrent mode

(FRN), the structure of ForeNet is very simple, and its simplicity also reduces

the computational complexity. One may double the computational ability of

such simple recurrent model. In [12], the author suggested a ring-structure

locally recurrent model (RRN) and showed that it needs a much shorter time

to train the RRN model and its performance is comparable to that of FRN.

In this section, we test the computation power of our model.

In order to verify whether other recurrent weights between hidden units

are helpful to improve our model's performance, we also use a ring-structure

recurrent model (shown in Figure (6.4)) to do the same prediction tasks. We

do such verification in the following way

• We assume in the beginning of training, RRN has the same architecture

as ForeNet model. That is, in RRN, the weights constructed as those

in ForeNet are initialized by the proposed method. The weights, those

from hidden units to their two nearest neighbors, are set to zeros at the

beginning of training.

Chapter 6 ForeNet: Learning Algorithms 80'

• RRN is also trained by the proposed CRTRL algorithm. All recurrent

weights are updated in the same way.

Results and Analysis

We demonstrate here three prediction tasks: the sinusoidal series with noise;

Mackey-Glass series; laser series. Table (6.4) and Table (6.5) show the pre-

diction results. The results presented are the root mean square error of testing

data, the number of iterations required and the training time taken. The pre-

dicted three curves are shown in the Figure (6.5) and Figure (6.6).

The learning speed of self-connected model is faster than ring-structure

model according to the number of iterations required and the training time

taken. In Mackey-Glass prediction task, RRN needs more time than ForeNet

in order to achieve the same generalization error. The advantage of the conver-

gence speed is more obvious in laser series prediction problem, which includes

a large training data set (1500 data points). The additive recurrent links in-

crease the computational complexity of the model, and RRN requires almost

double time to convergence. As to the generalization ability, from the tables,

the self-connected recurrent model outperforms the ring-structure recurrent

model in terms of the root mean square error. Thus, ForeNet with only self-

connections in the hidden layer is practically more useful especially in the tasks

involved a large number of training data.

6.4.4 Linear model: compared with nonlinear ForeNet

Objective

In the proposed ForeNet, all units are linear. That makes the recurrent model

very simple. In the previous chapters, we have proved that such simple linear

Chapter 6 ForeNet: Learning Algorithms 81'

series No. of RMS Error No. o f T i m e taken
recurrent links iterations (sec)

noisy sinusoidal series 4 0.0679 22 ^
Mackey-Glass series 4 0.0102 13 63

laser data 4 0.5049 19 142

Table 6.4: Prediction performance of the model with self-connection in hidden
layer

series No. of RMS Error No. o f T i m e taken
recurrent links iterations (sec)

noisy sinusoidal series 12 0.1041 ^ 26
Mackey-Glass s e d ^ 12 0.0102 13 81

一 laser data 12 0.5139 23 219

Table 6.5: Prediction performance of the model with ring-structure in hidden
layer

At�
/ \

input layer 、\ I y/ output layer

、一
hidden layer

Figure 6.4: Ring-structure Recurrent Model (RRN)

Chapter 6 ForeNet: Learning Algorithms 82'

m m m
1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0

no. data

(a) noisy sinusoidal series
I / \ ' I n ' \

:_八八謹編謹謹誦誦 i 而爾画vv謂冒國爾酬p
I I I I LI I

3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0

no. data

(b) time-varying sinusoidal series

:/vaaVAAV
qI I I 1 1 1 1 1 1

6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

no. data

(c) Mackey-Glass series

^ JHlWMiW
n -

I ！ I I I I 1 1

6 5 0 7 0 0 7 5 0 8 0 0 8 5 0 9 0 0 9 5 0 1 0 0 0

no. data

(d) computer-generated series

4 1 i t k H H ft i Laser series testing data set 1
- 2 - ‘ »
一 4 b I I I I I 1

9 5 0 1 0 0 0 1 0 5 0 1 1 0 0 1 1 5 0 1 2 0 0

4 r Laser series testing data set 2

:MmjmmmmMMMJWMMI
- 2 - ‘

- 4 ' ‘ ‘ 1 1 ‘ ‘
1 2 5 0 1 3 0 0 1 3 5 0 1 4 0 0 1 4 5 0 1 5 0 0

no. data

(e) laser series

Figure 6.5: The prediction performance of ForeNet with self-connection in the
hidden layer. The solid line represents the correct outputs and the dotted line
shows the network output.

Chapter 6 ForeNet: Learning Algorithms 83'

prediction
- e - target

mmmmM
110 120 130 140 150 160 170 180 190 200

no. data

(a) noisy sinusoidal series

qI I I I 1 1 1 1 1
650 700 750 800 850 900 950 1000

no. data

(b) Mackey-Glass series
4h L

- 4 h I I 1 I I I
950 1000 1050 1100 1150 1200

4 - Laser series testing data set 2

丨 ^ a a a a m m m m m m m a m a a m m A M M A M M A W
- 4 1 I I I I I I
1200 1250 1300 1350 1400 1450 1500

no. data

(c) laser series

Figure 6.6: The prediction curves of the model with ring-structure in the
hidden layer. The solid line represents the correct outputs and the dotted line
shows the network output.

Chapter 6 ForeNet: Learning Algorithms 84'

model also has power computational ability. Some interesting aspects of lin-

ear NN models have been proposed in [5]. However, since a linear model can

only represent linear input-output mapping, one may consider using nonlinear

units in ForeNet to achieve better generalization, especially to high nonlin-

ear time series problems. In this chapter, we will show the nonlinear ForeNet

model and its computation ability and discuss whether it is suitable in our case.

Architecture of nonlinear ForeNet

As described in chapter 3，in ForeNet model, the activation functions in hid-

den layer and output layer are both linear functions, which are derived based

upon the Fourier recursive equation. In order to extend the linear model to

the nonlinear model, one common way is to define the activation function as

one nonlinear function. In our case, when finding a proper nonlinear transfer

function, we consider it as the follows.

Based on the linear Fourier recursive equation (4.4), ForeNet model was

proposed with linear activation functions, both in initialization stage and train-

ing stage. And because of the proposed initialization method, the network can

attain faster convergence and better generalization. Therefore, in order to

preserve the advantages of proposed linear modelling, the nonlinear function

should be properly defined. That is, should we use nonlinear activation func-

tion on hidden units directly or on output units?

As we analyzed before, in the proposed equation (4.4)，the recursive vari-

able h plays an important role. Moreover, the linear aspect of the recurrent

units make the network more stable. Thus it suggests to preserve the linear

transfer function on the hidden units. Further, because the time series x{t),

t — 1,2, ."” could be any value, a linear transfer function is needed in the

Chapter 6 ForeNet: Learning Algorithms 85'

Hidden layer
J. Nonlinear

function

input J / (•) I Output layer

Figure 6.7: Architecture of the nonlinear ForeNet model

output layer. From the above discussion, we add a nonlinear function between

hidden layer and output layer as shown in figure (6.7). The activation function

on hidden units is linear, and the outputs of hidden layer have been feeded

back before entering into a nonlinear transfer function /(•). After the nonlin-

earity, all signals are summed with different weights in the linear output layer.

Similar feedback architecture was discussed in [64 .

We choose a “ symmetrical" nonlinear function, whose outputs are between

-1 ,1] . Thus ForeNet becomes:

z{t) = 2 X
N

y{t) = E 肩 稱
j=i

hj{t) = Wjjhj{t - 1) + Wkjx{t) (6.14)

where /(•) = tanh(-).

Chapter 6 ForeNet: Learning Algorithms 86'

Learning Algorithm and Simulation Results

Similar to learning algorithm for linear ForeNet model, to train the model

with nonlinear activation function, there are two steps in our learning process.

The first one is the network initialization which is a linear method the same

as described in the previous chapter. The second is to train the network using

the modified complex RTRL algorithm.

Our simulation results are summarized in Table (6.6), we present the

out-of-sample Root Mean Square Error (RMSE) for ForeNet with linear and

nonlinear activation functions respectively.

From the results, we find that for laser series prediction, the additive non-

linear function in the model can help to improve the ability of learning and

prediction in terms of training time and testing root mean square error. In

the case of noisy series prediction, the nonlinear ForeNet can get better gener-

alization ability, but it needs more training time to convergent. Similarly, for

sunspot data forecasting, the nonlinearity seems to be helpful to achieve bet-

ter generalization according to the smaller testing error compared to one using

linear ForeNet However, the network used 167 iterations to convergent. That

is more than 10 times longer than the training time of the linear model. The

same situation can be found in Mackey-Glass prediction. Compared to the lin-

ear model, which is convergent after 63 seconds with error T R M S = 0.0102,

the nonlinear model paid much more time (450 seconds) to achieve a little

better generalization (TRMS = 0.0097). As to the prediction of time-varying

series, the nonlinearity worked even worse than the linear model, no matter in

the aspect of convergence speed or generalization ability.

From the experimental results, we show that the nonlinearity in NN can

Chapter 6 ForeNet: Learning Algorithms 87'

M t i d Testing No. of Time
RMS error RMS error iterations taken (sec)

laser data
linear ForeNet 0.7449 0.5049 19 142

nonlinear ForeNet 0.7599 0.4703 108

sunspot series
linear ForeNet 0.0401 0.0885 14 ^

nonlinear ForeNet 0.0717 0.0824 m 299

Mackey-Glass Series
^l inear ForeNet 0.0205 0.0102 13 ^

nonlinear ForeNet 0.0216 0.0097 438

time-varying sine series
^l inear ForeNet 0.1251 103 W l

nonlinear ForeNet 0.0749 0.1633 ^ 1226

noisy sinusoidal series
linear ForeNet 0.699 0.0729 18 U

nonlinear ForeNet 0.6526 0.0436 ^ 59

Table 6.6: The prediction performance of the linear and nonlinear model on
different time series.

Chapter 6 ForeNet: Learning Algorithms 88'

be helpful to forecasting time series, especially to predict highly nonlinear

or noisy time series such as laser series and noisy sinusoidal series. But we

argue that the nonlinearity in NN does not always provide more powerful

computation than linear NN model, especially in our case, the linear model

is built with the specific purpose. Recently, many methods with linear or

semilinear transfer functions have been studied, such as [73] [20] [30]. And in [5],

the author mentioned that from the standpoint of theoretical biology, certain

classes of neurons may be operating most of the time in a linear or quasi-

linear regime and linear input-output relations seem to hold for certain specific

biological circuits (see [58] for an example). Moreover, usually the nonlinear

transfer function has lower and upper saturation limits, then the dynamics

may be bounded.

6.4.5 Small number of hidden units

Objective

As we known, in Recurrent Neural networks, with the increasing of number of

hidden units, the generalization ability of RNN is also improved ignoring ac-

cordingly increased computation time. However, we have shown in Chapter (5)

the weights are related to the number of hidden units, thus the different num-

ber of hidden units make the different initialization performance of ForeNet

That means the relationship between hidden units number and computation

ability may not exit in our model.

In order to analyze this relationship and find a trade-off between them, we

design some experiments. We use the ForeNet model with various number of

hidden units and test their prediction. We illustrate here the number of hidden

units, the initial training error, the generalization error and training time.

Chapter 6 ForeNet: Learning Algorithms 89'

Results and Analysis

Table (6.7) shows the training results. When 10 hidden units are used in the

model, the error after network initialization becomes significantly larger and

finally the network achieve much larger prediction error. Also, because the

initial state may be farther away from the local minimum, using the increased

hidden units need more training time to convergent according to training iter-

ations. Such cases are in the prediction of time-varying series, noisy sinusoidal

series and Mackey-Glass.

From thees experimental results, we find that increasing the number of

hidden units in ForeNet may not improve its prediction ability. It is because

the number of hidden units implies the embedding dimension of the time se-

ries. And It is obviously when the estimated dimension is close to the true

dimension, the model is near to local minimum.

The special case is appeared in laser series prediction. Using 1 — 10 — 1

model, the network can achieve better generalization in terms of testing error

with the comparative training time. Since ForeNet use linear transfer function

which makes its limitation on handling high nonlinear time series. Thus, by

adding the number of hidden units, the network improves its computation

power which helps to solve high nonlinear problem.

6.5 Comparison with Some Other Models

In the above sections, we showed some properties of proposed prediction model

ForeNet. In this section, we will compare ForeNet with AR model, TDNN Net-

work and FIR Network. The brief descriptions of AR model, TDNN Network

and FIR Network can be found in chapter 2.

Chapter 6 ForeNet: Learning Algorithms 90'

No. of Initial Testing No. of Time
Hidden Units RMS error RMS error iterations taken (sec)

Laser data
4 0?7449 0.5049 19 142
10 0.7638 0.3601 164

Mackey-Glass series
4 O m 0.0102 l3 ^
10 0.0401 0.0127 ^ 2564

Time-varying sine series
3 00746 O l m 103 Wf
10 0.1951 0.3162 765

Noisy sinusoidal series
4 0.0729 18 U
10 0.5620 0.0848 13 29

Table 6.7: The prediction performance using various number of hidden units
in ForeNet

Chapter 6 ForeNet: Learning Algorithms 91'

6.5.1 Comparison with AR model

First, we do the comparison between AR model and ForeNet model. Recall

the general AR model:

M

X � = ^ amx{t - m) + e � （6.15)
m = l

where M is the order of AR model. e{t) represents either a controlled input

to the model or noise.

Compared the ForeNet with AR model, since there is only one input in

the model, the proposed model is similar with AR model with one order, i.e.

AR(1) model. However, in our model, the coefficients are represented by the

complex values.

For comparisons, AR(1) model is implemented with MATLAB. The coef-

ficients in AR model are estimated by a set of training data using the least-

squares algorithm. After determination of the coefficients, AR model then is

applied to do prediction on a set of testing data. In order to show the ability

of high order AR model, we provide the prediction results of AR(16) model.

Here we use ForeNet without training to do the same prediction tasks.

Results and Analysis

We test on five time series. And we use Root Mean Square Error on testing

data as measurement. The results are shown in Table (6.8). It is easy to find

that ForeNet outperforms AR(1) model on all five series. AR model with only

one order seems difficult to model the given series, which may be caused by

insufficient memory. But since in our model, there are p hidden units, which

all act as the storage of the information from past data, thus only using one

input variable, it can contain and present more efficient memory for prediction.

Chapter 6 ForeNet: Learning Algorithms 92'

methods ForeNet before training AR(1) model AR(16) model
Mackey-Glass

series 0.0128 0.038 2.4Q9e-Q4
Laser
data 0.4973 0.8267 0.3579

Sunspot
data 0.0874 0.1546 0.0907

noisy sinusoidal
series 0.2931 0.5968 0.0060

time-varying
sinusoidal series 0.1951 0.5071 0.0106

Table 6.8: Comparisons of prediction performance among ForeNet, AR(1)
model and AR(16) model.

When we increase the order of AR model from 1 to 16，as shown in Table

(6.8), AR model shows its prediction ability more powerful than our model

on Mackey-Glass series, Laser data, noisy series and time-varying series. It

is not surprising that systematically increasing the order of AR model, the

model will fit the time series better. Nevertheless, it is unfair to compare an

AR(16) model with our model which has one order. Moreover, the selection

of "right" order of AR model is also a tough task since too large order may

induce over-fitting problem [25], that is, the fitting error on the measured data

decreases, but the test error of the forecasts beyond the training set will start

to increase. Comparing the testing error using ForeNet and AR(16), we found

that our model can still get better generalization than AR(16). In this case,

AR(16) may be fitting extraneous noise in the series.

Chapter 6 ForeNet: Learning Algorithms 93'

6.5.2 Comparison with TDNN Networks and FIR Net-

works

In this section, we will compare the prediction performance of ForeNet with

TDNN Networks and FIR Networks. The comparison is done by forecasting

two time series, Mackey-Glass series and Laser series. Here we use the predic-

tion results from [9 .

In the case of Mackey-Glass series prediction, the architecture of TDNN

was 5 — 5 — 1, that is, 5 input units, 5 hidden units and 1 output unit. The

architecture of FIR network was 1 - 5 - 1 with 5 taps in the hidden layer and

5 taps in the output layer, respectively. As to ForeNet, we use a 1 — 4 — 1

model. The simulation results are shown in Table (6.9). It is shown our model

outperforms other two models in terms of testing root mean square error.

As for Laser data forecasting, in [9], the authors used a 1 — 12 — 12 - 1 FIR

network with 25 taps in the first hidden layer, 5 taps in the second hidden layer

and 5 taps in the output layer. TDNN with a delay line of 25 nodes and 12

nodes in the first and second hidden layer were chosen. We still use 1 - 4 — 1

ForeNet model to perform the same prediction task. Table (6.9) shows the

RMS error on testing set. TDNN and FIR networks performed nearly equal

in one step ahead prediction. But ForeNet did the best prediction with the

smallest error 0.5049.

There were two hidden layers in both TDNN and FIR networks, and they

used a large number of neurons in the networks, which can increase their

computational ability. And in our model, there is only one hidden layer with

4 hidden units. Though the model size of TDNN and FIR networks is much

larger than that of ForeNet, ForeNet still demonstrates best generalization

Chapter 6 ForeNet: Learning Algorithms 94'

methods ForeNet TDNN Networks FIR Network^
Mackey-Glass series " "OOlO^ 0.102 “ 0.0624

Laser data 0.5049 0.738 0.762 —

Table 6.9: Prediction performance comparison among three networks.

ability among these three networks, and shows its efficient learning ability

with a small model size.

6.5.3 Comparison to a few more results

In this section, we survey the best results on the prediction of sunspot data ob-

tained by other methods. Following previous publications[63, 71], comparisons

are made on the basis of the average relative variance (ARV), given by

义丑V 二 ⑴—到力))2 (6-16)
t—1

where x{t) is the true value, x{t) is the prediction, and is the variance

of the true series over the prediction duration N.

Table (6.10) illustrates the one-step-ahead prediction ARV measures for

ForeNet and two standard benchmark models for the sunspots, namely the

TAR model[63] and the multilayer perceptron[71]. In this table, we also show

the number of adjustable parameters needed by each model. The ForeNet

model seems to offer no dramatic advantage over a multilayer perceptron in

terms of training error and prediction performance on the first testing set

1921 — 1955. Due to the nonstationarity of the time series, for TAR and MLP

models, the performance on the second testing set drops largely, thus the

ForeNet achieves the best prediction on the data from 1956 to 1979. Further,

the number of parameters in our model has been significantly reduced from 43

to 13.

Chapter 6 ForeNet: Learning Algorithms 95'

Model Training set Testing set Testing set number of parameters
(1701-1920) 1921-1955 1956-1979

TAR model “ 0.097 0.097 “ 0.280 “ 18
MLP 12 X 3 X 1 0.082 0.086 0.350 43

—ForeNet 0.09 0.11 0.17 13 一

Table 6.10: Prediction performance comparisons

6.6 Summarization

In the previous sections, we predicted several time series with various training

methods and models. Table (6.11) shows the comparisons among different

learning methods on the forecasting of 4 time series, i.e. laser data, Mackey-

Glass series, time-varying sinusoidal series and noisy sinusoidal series. In this

section, we summarize the performance of ForeNet on the prediction of the

series with different properties:

• Series with noise. Such data include noisy sinusoidal series and Mackey-

Glass series. From the table, we show that in the case of noisy time series

prediction, the performance of ForeNet is not as good as that of model

with nonlinear activation function in terms of RMS error. However, for

the clean time series, such as time-varying sinusoidal series, ForeNet can

demonstrate the best generalization.

• Series with nonstationary property. Such series include time-varying si-

nusoidal series. As shown in the table, ForeNet model with the proposed

learning method can get good prediction results on the nonstationary

time series.

• Series with nonlinearity. Laser data is highly nonlinear time series. We

found that linear ForeNet model has the limitation on handling such

series. Using the nonlinear function in the networks or increasing the

Chapter 6 ForeNet: Learning Algorithms 96'

number of hidden units can both help to improve the prediction ability

of ForeNet.

Chapter 6 ForeNet: Learning Algorithms 97'

Methods Initial Testing No. of Time
RMS error RMS error iterations taken (sec)

Laser data
ForeNet with

proposed initialization 0.7449 0.5049 19 142
ForeNet with

random initialization 1.1961 0.4784 ^ 1324
—Real-valued ForeNet 0.668 0.3906 300 1868 “

Ring-structure
Recurrent networks 0.7449 0.5139 ^ 219
nonlinear ForeNet 0.7599 0.4703 15 108

一 AR(1) model - 0.8267 — _

Mackey-Glass
ForeNet with

proposed initialization 0.0205 0.0102 13 63
ForeNet with

random initialization 2.2589 0.0558 866
—Real-valued ForeNet 0.6455 0.0601 500 2117 “

Ring-structure
Recurrent networks 0.0205 0.0102 13 81

—non l inear ForeNet 0.0216 0.0097 100 438 “
AR(1) model - 0.038 - _

Time-varying
sinusoidal series

ForeNet with
proposed initialization 0.0746 0.1251 m 257

ForeNet with
random initialization 0.9676 0.3203 ^ 184

~Real-valued ForeNet 0.501 0.2836 75 166 “
Ring-structure

Recurrent networks — — = 二

nonlinear ForeNet 0.0749 0.1633 ^
— AR(1) model - 0.5071

Noisy sinusoidal
series

ForeNet with
proposed initialization 0.699 0.0729 ^ ^

ForeNet with
random initialization 0.6889 0.4285 ^ 60

“Real -va lued ForeNet 0.5450 0.3267 500 575
Ring-structure

Recurrent networks 0.6163 0.1041 ^ 26
~ nonlinear ForeNet 0.6526 0.0436 46 59
— AR(1) model - 0.5968 - — 一

Table 6.11: Summarization of the prediction performance using various meth-
ods on four time series.

Chapter 7

Learning and Prediction:

On-Line Training

On-line learning is an alternative to bach-mode learning. In this chapter, we

introduce the advantages and disadvantages of on-line method then propose

a prediction method. We show how to perform online prediction, and give

the comparison between batch-mode and online-mode learning by some exper-

imental results.

7.1 On-Line Learning Algorithm

In on-line learning, the weights are updated after each pattern presentation,

using the gradient of the single-pattern error. Generally, the patterns are

presented in a random to void cyclic effect [56]. However, for time series

prediction task, it is impossible to change the order of patterns. Thus, the

pattern is chosen according to time order.

7.1.1 Advantages and Disadvantages

There are some advantages of on-line approach:

• First, there is no need to store and sum the individual derivatives; each

pattern derivative is evaluated, then discarded immediately.

98

Chapter 1 Learning and Prediction: On-Line Training 99

• Second, although the proposed fourier recursive model is derived as a

local model, it still hasn't shown its ability of capturing the changes in

the different sets of data. It is because we only use the same value of

parameters when modelling each set of data. Even in the previous sec-

tion, ForeNet is used to train the parameters, since batch-mode learning

method is adopt, and in batch-mode learning, the weights are updated

only one time according to the contribution of a whole training set. One

may consider after batch-mode training , Neural Networks can capture

global data characterize. However, on-line learning adjusts weights ac-

cording to one recent pattern's contribution. So it can detect the changes

in the data distribution. This is important for short-term prediction task,

especially when the time series is nonstationary.

With batch-mode learning, since the training patterns can be used repeat-

edly during training phase, we can check whether we are making progress.

We can minimize the objective function to a desirable precision. And we can

compute the error function on a validation set and stop training when the

generalization error becomes go up. However, with on-line learning, we cannot

do the above things. We cannot compute the error function on the training set

or validation set for a fixed set of weights because the patterns are discarded

after use [60]. Hence, on-line learning is generally more difficult and unreliable

than batch-mode learning. Moreover, updating the parameters only based

on one time step estimation error, the network cannot capture the temporal

information of the whole data set.

7.1.2 Training Process

From the analysis of the advantages and the disadvantages of on-line learning,

we propose a learning method which is a balance between bath-mode and on-

line mode. The whole data set is divided into two parts, named training set

Chapter 1 Learning and Prediction: On-Line Training 100

and testing set. First, the network is trained by both-mode learning algorithm

with the training data set. Then the on-line learning is applied to perform

prediction task. In such way, in the bath-mode learning phase, the network is

expected to learn the global distribution of the time series. And then in the

on-line learning phase, the network detects the changes in the data distribu-

tion and perform better short-term prediction.

The whole training steps are:

(1) ForeNet is initialized by the proposed method as described before,

(2) Learning phase:

• For every pattern p in the training set,

- a p p l y a pattern p in the training set,

-calculate the pattern error Ep and the single-pattern derivatives

dEp/dw.

• Add up all the single-pattern terms to get the total derivative,

• Update the weights according to CRTRL,

• Apply the validation data set, calculate the validation error ey(t),

• Compare the validation error with it in the last training epoch,

—If ey(t) > ev{t - !) > • " > ev{t - n) >, stop training.

- e l s e , repeat the learning phase.

(3) Apply the testing data set

• Pick a pattern p from the testing data set,

1. apply pattern p and forward propagate to obtain network out-

put (prediction), and

Chapter 1 Learning and Prediction: On-Line Training 101

2. calculate the pattern error Ep and back-propagate to obtain the

single-pattern derivatives dEp/dw,

• Update the weights,

參 Repeat until finish the prediction of testing data.

7.2 Experiments

In this section, we apply on-line method to some time series prediction tasks.

Compared with batch-mode learning, on-line learning can learn the latest

statistics of the time series, hence it can help to improve the network per-

formance on one-time step ahead prediction, especially to the time series that

are non-stationary. In the following experiments, during batch-mode training

process, the learning rate is set to 0.1 and the value of momentum is 0.5. And

in the on-line prediction process, we reduce the learning rate to 0.05 and the

momentum to 0.25. The network architecture is 1 — 4 — 1 model. Here we test

on 4 time series. Each is also divided into training data, validation data and

testing data.

Table (7.1) shows the on-line prediction results on four time series. We

report the root mean square error on testing data in the table.

The first predicted time series is time-varying sinusoidal series. Shown in

Figure (5.13), the frequency of time series is increasing with measure time,

and there are nonstationarities on the time scale of the sampling time. In

Table (7.1), the root mean square error on testing data is reported. Using

on-line mode, the error is 0.0304. Comparing to that with batch-mode learn-

ing, (RMSE=0.2346), we can find that to predict the time series which show

high nonstationary, on-line method outperforms batch-mode method. For the

purpose of comparison, Figure (7.1) shows the network performance using

Chapter 1 Learning and Prediction: On-Line Training 102

batch-mode method. It is obvious that though the network can do well on

the small training data set, its prediction on testing data is much worse. It

is because that the frequencies of testing set are much different than those

in training set, so it is impossible for the network to discover the changes of

frequencies. Compared with Figure (7.1), Figure (7.2) illustrates the pre-

diction result using on-line method. The network can detect the changes of

frequencies thus get much better prediction.

In Figure (7.3), the on-line learning curve is shown. With on-line learning,

jitter in the E{t) graph is normal. Because weights are updated after each

pattern presentation, there is a tendency for the error to be lower on the most

recently presented patterns, and it also introduces noise that shows up in the

error curves. The graph implies that the learning is working well because the

error curves has a downward trend. The curves is overlaid with noise, whose

amplitude is related to the learning rate rj.

Figure (7.4) demonstrates the changes on the magnitudes and the phases

of recurrent weights during on-line prediction. As we have explained before,

the predefined values of weights are somehow related to the frequencies of time

series. Based upon the proposed idea in the previous chapters, the time series

. with the large dominant frequency would need the small weights to do good

prediction. As we can see in Figure (7.4) that with the frequencies increase,

the values of weights decrease correspondingly to match the changes of fre-

quencies. The experimental results match well to our proposed method.

Similar results are found on the cases of Mackey-Glass and sunspot series.

The network also improved its performance with on-line mode learning. On

both experiments, on-line prediction can improve the prediction accuracy ac-

cording to testing RMS error.

Chapter 1 Learning and Prediction: On-Line Training 103

m e t h o d s t i m e - v a r y i n g M a c k e y - G l a s s sunspot laser
sinusoidal series series series series

o n - l i n e 0 . 0 3 0 4 0.0084 0.0839 0.7163—
batch-mode 0.2346 0.0102 0.0891 Q . 5 W

Table 7.1: Comparison between on-line learning and bach-mode learning on 4
time series prediction

iKAAAAAAA
20 40 60 80 100 120 140 160 180 200

predicted
target

• m m m m i r n
I I I I I I \ _ L U _ _ I _ 1 _ I _ J —I

250 300 350 400 450 500 550 600
no. data

Figure 7.1: Time-varying sinusoidal series prediction using batch-mode learn-
ing. The first graph shows the performance on training data set; the second
graph shows the prediction on testing data set.

However, as shown in Table (7.1), on the laser series prediction task, on-

line learning works not good as batch-mode learning. In the experiments, we

tested the series from 901 to 1500. As we can see from Figure (5.9), around

1050认 data in the series, there is a collapse, which is difficult to be predicted

only paying attention to the previous several data points. This may be one

of the reasons that on-line learning does not work in the case of laser series

prediction. Another possible reason is laser data is stationary[70]. And as we

know, online learning is do well in the series which show nonstationary. So it

is of little benefit to stationary time series prediction.

Chapter 1 Learning and Prediction: On-Line Training 104

• 縫 _ } _ 1 _ 龍 • 画

-。 :題麗腿腿！醒國腦驅纖
250 300 350 400 450 500 550 600

epoch

Figure 7.2: Time-varying sinusoidal series prediction using on-line method

xicr"
5| 1 1 1 1 1 1 T -

4.5 - -

4 - _

3.5 - j -

r ' l i -
LU
CO 2.5 - -
芝

QC

2 - -

1.5- -

I 画丨丨 IIIILJtiwii
0 50 100 150 200 250 300 350

epoch

Figure 7.3: Learning curve of on-line method on time-varying sinusoidal series
prediction

Chapter 1 Learning and Prediction: On-Line Training 105

0.821 1 1 1 1 1 1 I
magnitude

0 . 8 1 - ：

0 . 8 . : ； : : : ： -

0 . 7 9 - ；• : -

0.78 - : : : : -
0.77 - : ： TT""-"-""̂ "̂ "̂ ---̂ -
0 761 1 1 1 1 1 1 ‘
• 0 50 100 150 200 250 300 350 400

Epoch
1.265 1 1 1 —1 1 1 I ~~~~

phase

1 . 2 6 - ： ： ——： ' -

1.255 j : -
1 . 2 5 - ：； : ： -

1 . 2 4 5 - : : : : ： -

1 . 2 4 - : ； 卜 ； ： -

1 . 2 3 5 - ： ： .’. ； “

1 231 1 1 1 1 1 1 ‘
• 0 50 100 150 200 250 300 350 400

Epoch

Figure 7.4: Changes on a self-connected weight during on-line prediction; the
upper graph shows the changes on magnitudes, and the lower graph shows the
changes on its phases.

7.3 Predicting Stock Time Series

In this section, we apply our method to predict the future values of the stock

entities. Since the stock market behaves very much like a random-walk process,

prediction of stocks is generally believed to be a very difficult task. Thus the

different evaluation method should be used.

Returns Prediction

In the case of stock predictions, returns R(t) are often chosen instead of the

original stock prices. A common variant is the log-return

邵)=log 爲 （7.1)

Chapter 1 Learning and Prediction: On-Line Training 106

where y{t) denote close values for the stock for each day of trading (Monday-

Friday). R(t) has a relatively constant range even if stock data for many years

are used as input. Thus the returns R{t) are used as model input series.

Evaluating Performance

The naive prediction of stock returns asserts today's return as the best es-

timate of tomorrow return. It is a good idea to measure the goodness of a

predictor in relation to this trivial predict or [62]. In our work, we compare the

model performance to that of the naive return predictor and adopt relative hit

rate as measurement.

The hit rate of a predictor indicates how often the sign of the return is

correctly predicted. Let the series R{t),t = 1，.. •，iV denote the prediction of

returns at time t, R(t),t = 1,...,N denote the actual returns. The hit rate

is computed as the ratio between the number of correct non-zero predictions

R(t) and the total number of nonzero moves in the stock time series.

H 二 t\R{t)R{t)>0,t = l,...,N (7.2)
—t\R{t)R{t) 0,t = ‘

The corresponding measure for the naive return predictor is

二 t 剛 邮 - 1) � 0 , t 二
N 二 力 � — 力 = l , . . . , i V � •)

The ratio between the two hit rates is

H o 4 (7.4)

where, Hq is called “ Relative hit rate", compares the hit rate of the pre-

dictor to that of the naive return predictor. For Hq < 1 the predictor is worse

than the naive return predictor, while Hq > I implies that the predictor is

making better predictions.

Chapter 1 Learning and Prediction: On-Line Training 107

— Stock Hit Rate H Relative Hit Rate HP RMS error
H A N G SENG BANK 0.526Q 1.0204 0.0457
"HENDERSON LAND ~~0.5477 1.0058 0.0402
一 SHK PPT 0.4983 0.9605 0.0352

Table 7.2: Prediction results on stock returns.

Experimental Results

We predict here the stock returns for 3 stocks, i.e. Hang Seng Bank, Hen-

derson Land and SHK PPT, from 1993 — 03 — 15 to 1998 — 01 — 16, totally

1200 data. The last 360 data points act as testing data. The architecture of

ForeNet is 1 — 4 — 1 network. The online CRTRL algorithm is used to update

the parameters.

Table (7.2) shows the model's performance on the prediction of stock

returns. Because the levels of noise in financial markets are so high, the model

can only get the hit rate slightly better than 50% (for Hang Seng Bank: 52.6%,

for Henderson Land: 54.77%)，and it is even worse than 50% (for SHK PPT:

49.83%). For the stocks Hang Seng Bank and Henderson Land, the model

made better predictions than those of the naive return predictor in terms of

relative hit rate Hq.

Chapter 1 Learning and Prediction: On-Line Training 108

0 1 — ： ••

“ ： 来 ： 米 Predicted return

* *

-01 I——1 ‘ ‘ 1
8 5 0 9 0 0 9 5 0 1 0 0 0

I I I I I I L O _ f 1 1 1
1 0 2 0 1 0 4 0 1 0 6 0 1 0 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0

no. data

(a) HANG SENG BANK

-0.1 — ： ：

I I 1 1
8 5 0 9 0 0 9 5 0 1 0 0 0

I I I I I I ^ I I 1
1 0 2 0 1 0 4 0 1 0 6 0 1 0 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0

no. data

(b) HENDERSON LAND
0 - 1 1 ； ； *：

一 0 1 I — — 1 1 ‘ ^
8 5 0 9 0 0 9 5 0 1 0 0 0

来 • ：来 ：米： 米」

1 I I I I I l i^__* I I I
1 0 2 0 1 0 4 0 1 0 6 0 1 0 8 0 1 1 0 0 1 1 2 0 1 1 4 0 1 1 6 0 1 1 8 0 1 2 0 0

no. data

(c) SHK PPT

Figure 7.5: The prediction curves of the stock returns.

Chapter 8

Discussions and Conclusions

In our work, we proposed the Fourier Recursive Equation, and based on it,

ForeNet model was built. We analyzed the model initialization, and trained

the model with complex-valued RTRL learning algorithm. Some experiments

were demonstrated to show the properties of ForeNet

In the following, we analyze the limitations and advantages of the proposed

ForeNet. Some future works are mentioned as the concluding remarks.

8.1 Limitations of ForeNet

There are some limitations in our proposed model.

• The proposed ForeNet model is a restricted model. There are only a

few free parameters in the model. The selection of number of hidden

units and parameters initialization combine into one task because they

are both controlled by one variable. Once we decide the architecture of

ForeNet, the parameters initialization is determined, thus the initial state

of the model is set. Such restricted model is very simple on modelling and

learning, however, it may also encounter some computational difficulties.

• In the proposed ForeNet model, the activation function on hidden layer

and output layer are both linear functions. We have demonstrated that

109

Chapter 8 Discussions and Conclusions 110

such linearity can also get good predictions on some time series, but may

suffer if the time series is high nonlinearity. As shown in Chapter (6),

when the linear transfer function is replaced by a nonlinear function,

tanh, the network can better predict high nonlinear time series, for ex-

ample, laser series. The similar improvement can be found if we increase

the number of hidden units.

• According to the initial method (from equation (4.4)), after network

initialization, the recurrent weights in the neural network are symmetric.

That is, we give redundant weights to the network at the beginning of

training, and it seems that only using half-number of recurrent weights

can also achieve the same performance. However, in the experiments,

we found that keeping all recurrent weights (even they are symmetric)

are important to prediction because it can keep the phase symmetric,

that is vital to recover original time series as described in Chapter 4. We

thus introduce the bias to the network, and later training also makes the

weights asymmetric.

• In ForeNet, we have shown by some experiments that the selection of

parameters corresponds to the nature of the given time series. If the

"hidden memory" can be built properly, the network achieves conver-

gence quickly. However, how to choose the proper parameters based on

different time series is still unknown in our current work.

• ForeNet is only used for time series prediction tasks because it is derived

based upon a prediction method. And it only uses one variable as the

model input, i.e. the network model can only be 1 — p — 1 model.

Chapter 8 Discussions and Conclusions 111

8.2 Advantages of ForeNet

Despite some limitations of our proposed model, ForeNet still shows its strong

ability of handling time series prediction problems.

• The proposed prediction method has been applied to predict the time

series. From the experimental results, there is no doubt that the network

can achieve the predictions with much faster convergence speed. And

the initial method of ForeNet is quite efficient, which makes the training

faster and better generalization.

• The architecture of ForeNet is very simple compared to other recurrent

models. The self-recurrent links only exist on the hidden unit. Through

simple, as a recurrent model, it can also store and process internal mem-

ory and do good prediction.

• ForeNet is a complex-valued network. With complex values, the neurons

can contain more information and may be more stable in training process

compared with real-valued network. And trained by complex-value learn-

ing algorithm, the complex-valued model outperforms the real-valued

model on time series prediction in terms of convergence speed and gen-

eralization ability.

• ForeNet is derived based on Fourier recursive equation. Therefore, by

analyzing the prediction equation, we can understand the ForeNet bet-

ter. In ForeNet, the model stores internal memory in the hidden units.

And since there is only one input unit in the network, it is much easier

to analyze the memory. We have given some implications on the rela-

tionship between the internal memory in the model and the embedding

dimension of a given time series. And the proper memory is important

to the network performance on prediction of time series. In our model,

we can adjust the value of coefficients to control the memory. And as we

Chapter 8 Discussions and Conclusions 112

known, usually it is not easy to analyze a recurrent model because of its

complexity.

8.3 Future Works

ForeNet was proposed and some of its properties were analyzed in the thesis.

However, there are still many interesting topics related to the proposed model.

Multi-step prediction.

All prediction tasks discussed in the previous chapters are single-step predic-

tion. We can extend single-step to multi-step prediction by feeding back the

predicted output as input for the next prediction.

An alternative to the iterated single-step prediction is direct multi-step

prediction. That means the network is trained to predict directly several step

ahead. However, our recursive prediction equation was derived to perform

one-step-ahead prediction problem, accordingly the proposed ForeNet is just

suitable for forecasting the next time step time series. Because of this limita-

tion, problems of multiple-step-ahead forecasting can not be solved directly.

We can approach multi-step-ahead prediction through iterated one-step-

ahead predictions. The estimate value is feeded back as input to the network.

x{t) = f{x{t - 1)) (8.1)

Equation (8.1) can be iterated forward in time to achieve predictions as far

into the future as desirable.

Chapter 8 Discussions and Conclusions 113

Muti-variables

The architecture of ForeNet is l-p-1. That is, only one current data can be

inputted to the network, so the prediction is calculated based upon one input

variable, as well the internal memory. As we shown in Chapter (6), AR model

with high order significantly outperforms AR model with one order. We may

doubt here whether our model is the same case, and whether it can improve

performance if the order is increased.

For future work, the single variable may be extended to multi-variables

based on the Fourier analysis of time series. In this way, the model becomes

high order model just similar with AR model with high order, which can

contain more past information by inputting more past data. Thus, the corre-

sponding ForeNet network can be updated to n - p - 1 model, that is, there

will have n input units in the network. In this way, we can combine Time-delay

Neural Networks (TDNN) and current ForeNet In such combined networks,

the model memory will be presented by the "external" memory (by the order

of input) and the "internal" memory (by the recurrent links on hidden units).

This updated model may achieve more powerful computational ability.

More applications

At present, ForeNet is only used for time series prediction. We may consider

to do some modifications on the model and apply it to perform other tasks,

such as classification problem, in the future.

Different learning algorithms in ForeNet

Now we use a complex real-time recurrent learning algorithm (CRTRL) to

train the weights in ForeNet Some other training methods can be tried. For

Chapter 8 Discussions and Conclusions 114

example, in [65], the author developed the derivative-free extended kalman fil-

ter for parameter estimations and neural networks training. They mentioned

that such forms have better numerical properties and provide similar perfor-

mance without the need to analytical calculate Jacobians. Similar methods

may be considered in our proposed model to estimate the parameters in stead

of CRTRL.

Bibliography

1] H. Akaike. A new look at the statistical model identification. In IEEE

Trans. Automat Control, volume AC-19, pages 716-723, 1974.

"2] A. Aussem. Dynamical recurrent neural networks towards prediction and

modeling of dynamical systems. In IEEE Trans, on Neural Networks,

volume 28, pages 207-232, 1999.

•3] A. Aussem and F. Murtagh. Combining neural network forecasts on

wavelet-transformed time series. In Connection Science-special issue on

Combining Neural Nets 9, volume 9, pages 113-121, 1997.

4] A. Back and A.C. Tsoi. FIR and IIR synapses, a new neural network

architecture for time series modelling. In Neural Computation, volume 3,

pages 375-385, 1991.

5] P.F. Baldi and K. Hornik. Learning in linear neural networks: A survey.

In IEEE Trans, on Neural Networks, volume 6, pages 837-858, July 1995.

6] Y. Bengio, P. Frasconi, and P. Simard. The problem of learning long-

term dependencies in recurrent network. In Proceeding of the 1993 IEEE

International Conference on Neural Networks, volume 3，pages 1183-1188,

San Francisco, 1993. IEEE Press.

115

7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies

with gradient descent is difficult. In IEEE Trans. On Neural Networks,

volume 5, pages 157-166, 1994.

8] N. Benvenuto and F. Piazza. On the complex backpropagation algorithm.

In Signal Processing, volume 40, pages 967-969, 1992.

9] T. Bitzer and C.W. Omlin. Neural networks for chaotic time series pre-

diction.

.10] Peter Bloomfield. Fourier Analysis of Time Series: An Introduction. John

Wiley and Sons, Inc., Canada, 1976.

11] Elizabeth Bradley. Analysis of time series. In Michael Berthold and

David J. Hand, editors, Intelligent Data Analysis:An Introduction, pages

167-193. Springer-Verlag, 1999.

12] Lai Wan Chan and Fung Yu Young. Ring-structured recurrent neural net-

work. In World Congress on Neural Networks 1993, Portland, volume 4，

pages 328-331, 1993.

13] Lan Wan Chan. Connection reduction of the recurrent networks. In

Proceeding of ICONIP'95, Beijing, volume 2, pages 813 一 816, 1995.

14] Chris Chatfield. The analysis of time series an introduction. Chapman-

Hall, fifth edition, 1996.

15] Jerome Connor, Les E. Atlas, and Douglas R. Martin. Recurrent net-

works and NARMA modeling. In John E. Moody, Steve J. Hanson, and

Richard P. Lippmann, editors, Advances in Neural Information Processing

Systems, volume 4, pages 301-308. Morgan Kaufmann Publishers, Inc.,

1992.

116

16] J.T. Connor, R.D. Martin, and L.E. Atlas. Recurrent neural network

and robust time series prediction. In IEEE Trans, on Neural Networks,

volume 5, pages 240-254, 1994.

17] J.R. Dickie and A.K. Nandi. A comparative study of ar order selection

methods. In Signal Processing, pages 259-255, 1994.

18] G. Dorffner, E. Leitgeb, and H. Koller. Toward improving exercise ecg

for detecting ischemic heart disease with recurrent and feedforward neural

nets. In et al. J. Vlontzos, editor, Neural Networks for Signal Processing,

volume 4, pages 499—508，New York, 1994. IEEE.

.19] Georg Dorffner. Neural networks for time series processing. In Neural

Network World, volume 6, pages 447-468, 1996.

.20] R. Douglas, c. Koch, M. Mahowald, K. Martin, and H. Suarez. Recurrent

excitation in neocortical circuits. In Science, volume 269, pages 981-985,

1995.

21] R. Drossu and Z. Obradovic. Efficient design of neural networks for time

series prediction.

22] J.L. Elman. Finding structure in time. In Cognitive Science, volume 14,

pages 179-211, 1990.

23] J.T. Connor et al. Recurrent neural networks and robust time series

prediction. In IEEE Trans, on Neural Networks, volume 5, pages 240-

254, 1994.

24] George M. Georgiou and Oris Koutsougeras. Complex domain backprop-

agation. In IEEE Trans, on Circuits and Systems II: Analog and Digital

Signal Processing, volume 39, pages 330-334, 1992.

117

25] Neil A. Gershenfeld and Andreas S. Weigend. The future of time series:

Learning and understanding. In Andreas S. Weigend and Neil A. Ger-

shenfeld, editors, Predicting the future and understanding the past, pages

1-70. CA:Addison-Wesley Publishing, 1993.

26] C.L. Giles, G.Z. Sun, H.H. Chen, Y.C. Lee, and D. Chen. Higher order

recurrent networks and grammatical inference. In D.S.Touretzky, editor,

Advances in Neural Information Processing Systems, 2, pages 380-387.

Morgan Kaufmann Publishers, 1990.

27] A. Gordon, J.P.H. Steele, and K. Rossmiller. Predicting trajectories using

recurrent neural networks. In et al. C.H. Dagli, editor, Intelligent Engi-

neering Systems Through Artificial Neural Networks, pages 365-370, New

York, 1991. ASME Press.

.28] C. Goutte. Extracting the relevant delays in time series modelling. In Pro-

ceedings of the IEEE Workshop on Neural Networks for Signal Processing,

volume 2, 1997.

29] G.K. Grunwald, R.J. Hyndman, L. Tedesco, and R.L. Tweedie. A unified

view of linear ar(l) models. 1997.

.30] R.L.T. Hahnloser. On the piecewise analysis of linear threshold neurons.

In Neural Networks, volume 11, pages 691-697, 1998.

31] Simon Hay kin. Neural Networks A Comprehensive Foundation. Prentice

Hall,Inc., second edition, 1999.

32] J.A. Hertz, R.G. Palmer, and A.S. Krogh. Introduction to the Theory of

Neural Computation. Addison-Wesley, Redwood City, CA, 1991.

33] Akira Hirose and Hirofumi Onishi. Proposal of relative-minimization

learning for behavior stabilization of complex-valued recurrent neural net-

works. In Neurocom/puUng, volume 24, pages 163-171, 1999.

118

34] Edward Ho and Lai Wan Chan. How to design a connectionist holistic

parser? In Neural Computation, volume 11, pages 1995-2016, 1999.

35] S. Hochreiter and J. Schmidhuber. Long short-term memory. In Neural

Computation, volume 9, pages 1735-1780, 1997.

36] S. Hochreiter and J. Schmidhuber. Lstm can solve hard long time lag prob-

lems. In M.I. Jordan M.C. Mozer and T. Petsche, editors, Advances in

Neural Information Processing Systems, volume 9, pages 473-479, Cam-

bridge, MA, 1997. MIT Press.

37] M.I. Jordan. Attractor dynamics and parallelism in a connecctionist se-

quential machine. In Prvcccdiugs of the Eighth Annual Conference of the

Cognitive Science Society, pages 531-546. Erlbaum, 1987.

38] George Kechriotis and Elias S. Manolakos. Training fully recurrent neural

networks with complex weights. In IEEE Trans, on Circuits and Systems

II ： Analog and Digital Signal Processing, volume 41, pages 235-238, 1994.

39] K. Konstantinides. Threshold bounds in svd and a new iterative algorithm

for order selection in ar models. In IEEE Trans. Signal Process, volume 39，

pages 1218-1221, May 1991.

40] Stefan C. Kremer. Spatiotemporal connectionist networks:a taxonomy

and review. In Neural Computation, volume 13, pages 249-306, 2001.

41] K.J. Lang, A.H.Waibel, and G.E.Hinton. A time-delay neural network

architecture for isolated word recognition. In Neural Networks, volume 3,

pages 23-43，1990.

42] Tan Lee, P.O. Ching, and L.W. Chan. Recurrent neural networks for

speech modeling and speech recognition. In ICASSP-95, Proceedings of

IEEE InVl Conference on Acoustics, Speech, and Signal Processing, vol-

ume 5, pages 3319-3322, 1995.

119

43] T. Lin, B. G. Home, and C. L. Giles. How embedded memory in re-

current neural network architectures helps learning long-term temporal

dependencies. In Neural Networks, volume 11, pages 861-868, 1998.

44] T. Lin, B. G. Home, P. Tino, and C. L. Giles. Learning long-term depen-

dencies in NARX recurrent neural networks. In IEEE Trans, on Neural

Networks, volume 7, pages 1329-1338, November 1996.

45] T. Lin, B. G. Home, P. Tino, and C. L. Giles. Learning long-term de-

pendencies is not as difficult with NARX recurrent neural networks. In

M. Mozer D. Touretzdy and M. Hasselmo, editors, Advances in Neural

Information Processing Systems, volume 8, page 577，Cambridge, MA,

1996. MIT Press.

.46] L. Ljung, editor. System Identification: Theory for the User. Prentice-Hall,

Englewood Cliffs, NJ, 1987.

47] M.Berthold and D.Hand, editors. Intelligent Data Analysis: An Introduc-

tion. Springer-Verlag, 1999.

48] Michael C. Mozer. Neural net architectures for temporal sequence process-

ing. In Andreas S. Weigend and Neil A. Gershenfeld, editors, Predicting

the future and understanding the past. CA:Addison-Wesley Publishing,

1993.

49] T. Nitta. An extension of the back-propagation algorithm to complex

numbers. In Neural Networks, volume 10, pages 1391-1415, 1997.

50] Y.C. Pati and P.S. Krishnaprasad. Analysis and synthesis of feedforward

neural networks using discrete affine wavelet transformations. In IEEE

Trans, on Neural Networks, volume 4, pages 73-85, 1993.

120

51] B.A. Pearlmutter. Gradient calculation for dynamic recurrent neural net-

works: A survey. In IEEE Trans, on Neural Networks, volume 6, pages

1212-1228, Sep. 1995.

52] F.J. Pineda and J.C. Sommerer. Estimating generalized dimensions and

choosing time delays: A fast algorithm. In Andreas S. Weigend and

Neil A. Gershenfeld, editors, Predicting the future and understanding the

past. CA:Addison-Wesley Publishing, 1993.

.53] D.S.G. Pollock, editor. A Handbook of Time-Series Analysis, Signal Pro-

cessing and Dynamics. ACADEMIC PRESS, 1999.

54] P.Werbos. Neural networks, system identification and control in the chem-

ical process industries. In D.A. White and D.A. Sofge, editors, Handbook

of Intelligent Control Neural, Fuzzy, and Adaptive Approaches, pages

283-356. Van Nostrand Reinhold, 1992.

55] S.S. Rao and B. Kumthekar. Recurrent wavelet networks. In 1994 IEEE

International Conference on Neural Networks. IEEE World Congress on

Computational Intelligence, volume 5, pages 3143-3147, 1994.

56] Russell D. P.eed and Robert J. Marks 11. Neural Smithing:Supervised

Learning in Feedforward Artificial Networks. The MIT Press, 1998.

57] J. Rissanen. Modelling by shortest data description. In Automatica, vol-

ume 14, pages 465—471，1978.

58] D.A. Robinson. The use of control systems analysis in the neurophysiology

of eye movement. In Annu. Rev. NeuroscL, volume 4, pages 463-503, 1981.

59] T. Robinson and F. Fallside. A recurrent error propagation network speech

recognition system. In Computer Speech and Language, pages 259-274,

1991.

121

•60] D. Saad. On-Line Learning in Neural Networks. Cambridge University

Press, Cambridge, 1998.

61] T. Sauer, J. Yorke, and M. Casdagli. Embedology. In J. Statist Phys.,

volume 65, pages 579-616, 1991.

62] T.Hellstrom and K.Holmstrom. Predicting the stock market. Technical

Report IMa-TOM-1997-07, Malardalen University, P.O.Box 883,8-721 23

Vast eras, Sweden, August 1997.

63] H. Tong. Non-linear Time Series: A Dynamical Systems Approach. Ox-

ford University Press, Oxford, 1990.

64] A.C. Tsoi and A. Back. Locally recurrent globally feedforward networks,

a critical review of architectures. In IEEE Trans, on Neural Networks,

volume 5, pages 229-239, 1994.

65] R. van der Merwe and E. A. Wan. Efficient derivative-free kalman filters

for online learning. In European Symposium on Artificial Neural Networks

(ESANN), Bruges, Belgium, Apr. 2001. To appear.

66] A. Waibel. Modular construction of time-delay neural networks for speech

recognition. In Neural Computation, volume 1, pages 39-46, 1989.

67] Eric Wan. Temporal backpropagation: An efficient algorithm for finite im-

pulse response neural networks. In Proceedings of the 1990 Connectionist

Models Summer School, pages 131-140, 1990.

68] Eric Wan. Temporal backpropagation for fir neural networks. In Pro-

ceedings of the International Joint Conference on Neural Networks, pages

575-580, 1990.

69] Eric A. Wan. Time series prediction by using a connectionist network

with internal delay lines. In Andreas S. Weigend and Neil A. Gershenfeld,

122

editors, Predicting the future and understanding the past, pages 195-217.

CA:Addison-Wesley Publishing, 1993.

70] Andreas S. Weigend and Neil A. Gershenfeld, editors. Time Series Predic-

tion: Forecasting the Future and Understanding the Past. Addison-Wesley

Publishing, Redwood City, 1993.

71] A.S. Weigend, D.E. Rumelhart, and B.A. Huberman. Predicting the fu-

ture: a connectionist approach. In International Journal of Neural Sys-

tems, volume 1, pages 193-209, 1990.

.72] P.J. Werbos. The roots of hackpropagation : from ordered derivatives to

neural networks and political forecasting. John Wiley and Sons, Inc, 1994.

.73] H. Wersing, W.J. Beyn, and H. Ritter. Dynamical stability conditions

for recurrent neural networks with unsaturating piecewise linear transfer

functions. In Neural Computation, 2000. In Press.

74] R.J. William and J. Peng. An efficient gradient-based algorithm for on-

line training of recurrent network trajectories. In Neural Computation,

volume 1, pages 490-501, 1990.

75] Ronald J. Williams and David Zipser. A learning algorithm for contin-

ually running fully recurrent neural networks. In Neural Computation,

volume 1, pages 270-280, 1989.

76] Richard S. Zemel and Jonathan Pillow. Encoding multiple orientations

in a recurrent network. In Neurocomputing, volume 32-33, pages 609-616,

2000.

77] R.S. Zemel, C.K.I. Williams, and M.C. Mozer. Lending direction to neural

networks. In Neural Networks, volume 8，pages 503-12, 1995.

123

78] Q.H. Zhang and A. Benveniste. Wavelet networks. In IEEE Trans, on

Neural Networks, volume 3, pages 889-898, 1992.

.79] Y.Q. Zhang and L.W. Chan. Forenet: Fourier recurrent networks for time

series prediction. In ICONIP-2000, Proceedings of 7th Int,l Conference on

Neural Information Processing, 2000.

124

.

：

 ：：•

 •.…_

考
、
/
，

-

.

,

.

.

.

.

:

•

丨

二

：

J
 U
-
L

 .
i

•

乂

•

 1

 .

 --

 .

...

 .

 r
f
l
^

 ̂

广

 t
c

.
 ̂

 .

 •

 .

 •

 -

 “

)
〜
j

？

-

.
 ..

,

,

•

1

.

\

.

-

 ̂
^

I
 .

 -

 ̂

.

、

 -

 .

a
 .

 .

 •••

 .

 ..

 .。

 ..

 -
 -
I

 J

-
 .

 .

 、
.
L
v

 r

 ⑶

I
T

 •

 r
-

 、

 1

,

 •

 .

 .

 .

 .

 f

 i
 p

 >

 1

.

-.iv.
 -.
:

二

.

 •

 .

 /

 s
^

•

•

•

.

.

•

-

-

^

！

-

-

r
.

丄

1

.
 •

 -

 .

 .

 .

 •

J
-

、
.
.
.
•
.

—
.
 J

 ‘

 •

 r
.
l
,

 r
i

 l
^
s

.

丄

.

•

.

卜

.

.

 •？.

，

 r

 ：
.
.
广
I

 V.X..

•

 •

 ..

 •

 ̂
^

〜..
 .

 -

-

,

.

 ：
》

•

 ..

•

^

_

.

•

•

-

.

 ..

 .
.
•
-
.
:
」
.

•
 •

...

...

 .

 C/
.
,
务
.
.

-
：
.
”
 .
r

 -

 •

 •

 .,•

 ̂

.
 ‘

 •
•
•
•
-

。

.

.

.

•

..

•
 •

 •

...

 .

.

.

.

.

.

.

•

 --

 .

....

 •

 .

.

...

,
 -
:

；._.

 ..

.

.
 .

、
-

；

•

 V

 .

-
 •

 •

 -

 •

 1

 -
.
.
.

•

,

......

1
 ...

•

.

.

.

.

•

 -
-

；

‘

.
 ；

-

“

.

i
-
 -

 一.一

 _.

•

？...
 J
.
-
“

 -

C U H K L i b r a r i e s

l l l _ _ I P i i
i

