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Abstract 
Recurrent neural networks have been established as a general tool for fit-

ting sequential input/output data. Traditionally, recurrent networks have been 

regarded as non-linear ARMA models and the parameters are chosen via some 

dedicated learning algorithms, such as RTRL (Real-Time Recurrent Learning) 

or BPTT (Back-Propagation Through Time). In this thesis, we investigate 

recurrent networks from another viewpoint, i.e. from the perspective of spec-

tral analysis. We know that Fourier analysis is a useful tool for time series 

analysis. With some approximations, we rewrite the Fourier analysis of a time 

series into a recursive form. This recursive form is linked and compared with 

the recurrent network architecture. As a result, we derive the ForeNet (Fourier 

Recurrent Neural Networks). 

ForeNet uses the Fourier recursive equation for the initialization of its 

weights. Some experiments on the prediction of various time series are per-

formed. The simulation results prove the efficiency of the proposed initializa-

tion. It assigns the weights in the region not far away from the minimum. 

Therefore, the network output is very close to the target values even before 

training has been taken place. 
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Unlike traditional recurrent neural networks, complex values are used in 

ForeNet. Thus we apply the CRTRL (Complex Real-Time Recurrent Learn-

ing), a training algorithm for complex weights, for the learning of ForeNet. 

We show that CRTRL is able to provide fine tune to the prediction result. 

We have also compared ForeNet with some other models, such as AR model 

and TDNN (Time-delay Neural Networks). Experimental results show that 

ForeNet speeds up the learning, and the generalization performance is supe-

rior to traditional networks. 
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摘 要 

反饋神經網路具有很強的自學習能力。它能通過訓練使 

得對於給定的輸入產生期望的输出。對於反饋神經網路在 

時間序列預測的應用中，通常我們將它類比成一個自回歸 

移動模型，並且通過一些給定的演算法，如RTRL (即時反 

饋學習演算法），來修正它的權值。在這篇論文當中，我 

們用頻譜分析法來觀察反饋神經網路°首先，我們用近似 

法將用於時間序列分析的付立葉變換轉換成一種遞迴的形 

式。然後，建立了遞迴方程與反饋神經網路結構之間的聯 

繫。根據這種聯繫，我們提出了一個新的預測模型FORNET 
(付立葉反饋神經網路）。 

我們利用付立葉遞迴方程來設置FORNET網路的初始權 

值。通過一些時間序列的預測實驗，我們證明了這種初始 

化方法的有效性。它能使網路參數在初始狀態時就接近局 

部極小點。這使得網路在還未進行訓練之前，它的输出值 

已經比較接近期望值。 

與一般的神經網路不同的是，FORNET的參數是複數。 

所以傳統的訓練演算法並不適用於FORNET。因此，我們提 

出了 CRTRL演算法（複數即時反饋學習演算法）來調整網 

路的複權值。實驗結果證明CRTRL能很好地訓練網路參 

數，能使預測結果進一步得到改善。同時，我們還將 

FORNET與其他的一些預測模型進行比較，發現FORNET有 

相對比較快的收敛速度，並且能取得較滿意的預測結果。 
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Chapter 1 

Introduction 

1.1 Background 

Modelling of time series is an important task in many fields of research, includ-

ing medicine, economics, communication, speech processing, control, biology 

and mechanical engineering. Mathematical models are often used for time 

series prediction. If there are known underlying deterministic equations, the 

future observations can be predicted based on the knowledge of the past and 

current conditions. The relationship between the past observations and the 

future value of time series can be inferred by an assumed function, which can 

be implemented by the use of either a linear model or a nonlinear perspective, 

such as a Neural Network (NN). On one hand, the advantage of the linear 

model approach is that the calculation speed is very fast. However, the linear 

model is of limited applicability. On the other hand, the NN methods are 

powerful, but the selection of the proper architecture and learning algorithm 

is time consuming. 

Feedforward artificial neural network has gained significant popularity dur-

ing the last decade. Time Delayed Recurrent networks are essentially feedfor-

ward networks with the addition of feedback connections. Due to the existence 
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Chapter 1 Introduction 2 

of these recurrent links, the recurrent neural network models preserve informa-

tion through time and are more powerful than the static feedforward networks, 

especially in dynamic problems. They have been successfully applied to many 

areas, such as speech recognition [59, 42], grammar learning [22, 26] and the 

parsing problem [34]. Time series prediction [72, 4, 64, 16, 12] is also a major 

applicational area of recurrent networks. The internal memory of past inputs 

in recurrent networks is adaptive. At present, recurrent networks are mostly 

formulated as nonlinear autoregression models [15] when applied to time series 

prediction problem. In our work, we use a novel approach to interpret and 

construct the recurrent networks. 

1.2 Objective 

The objective of this thesis is to investigate a proper recurrent neural network 

model for time series prediction. One approach of time series forecasting is 

to perform an initial analysis of the data and to choose an appropriate NN 

architecture, and possibly initial values for the NN parameters according to 

the most adequate linear model. 

Here, first we decompose the time series into different frequency compo-

nents by Fourier transform, and a prediction equation is achieved using the 

reconstruction from the frequency components. Then a recurrent network is 

built to interpret the proposed prediction equation. Our recurrent network is 

called Fourier Recurrent Neural Networks (ForeNet). 

The Fourier transform has proven to be a versatile tool that gives a bet-

ter handle on the series data. A result of using the Fourier Analysis is that 

the parameters involved are complex numbers. Thus ForeNet is a complex-

valued recurrent network. At present, most commonly used neural network 
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learning algorithms assumed real parameters. Previous works have been done 

to extend neural networks to cope with complex weights. The backpropaga-

tion algorithms for training a feedforward neural network with complex weights 

have been proposed [8] [24]. Georgious and Manolakos [38] used Complex Real 

Time Recurrent Learning algorithm to train a fully recurrent network. Using 

the complex parameters to construct neural network avoids the problem of 

the standstill in learning [49], and can also deal with dynamic time-sequential 

signal more stably and smoothly than the conventional recurrent networks [33 . 

In our work, ForeNet was trained by Complex Real Time Recurrent Learn-

ing algorithm (CRTRL), which combines [12] and [38]. We also provide a 

method of parameters initialization which reduces the initial network error 

and prevents the network from getting stuck with the initial weights. The 

experimental results show that ForeNet is computational efficient. It increases 

the rate of convergence and attains better generalization performance. 

1.3 Contributions 

We list here the main contributions of this thesis: 

• Based on Fourier Analysis, we propose a Fourier Recursive Equation, 

which can compute recursively to generate the forecasts. 

• Based on Fourier Recursive Equation, we build a recurrent model, Fourier 

Recurrent Networks (ForeNet). The proposed network has a very simple 

architecture. The recurrent links only exist on the hidden units. 

• The proposed method is used to initialize ForeNet Some experiments 

are demonstrated to show the efficiency of the initialization of ForeNet. 

The optimal initialization makes the initial state of the network much 

close to a local minimum. 
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• A Complex Real Time Recurrent Learning algorithm (CRTRL) is pro-

posed for ForeNet whose parameters are complex values. Trained by 

CRTRL, ForeNet increases the convergent rate and achieves better gen-

eralization performance. 

• The batch-mode and the online-mode learning have been combined to do 

time series forecasting. We have applied this method to the prediction 

tasks and found it does well in the time series which show nonstationary. 

• We also give a way to assess on the effective internal memory in ForeNet 

And it is usually not easy to analyze the memory in a recurrent model. 

We have published a part of our work in [79 • 

1.4 Thesis Overview 

This thesis is organized into 8 chapters. Chapters 3 — 7 constitute the main 

parts of the thesis and are about the proposed model to handle time series 

prediction. The contents of the individual chapters are as follows: 

Chapter 1 is the present chapter. It is an introduction chapter. 

Chapter 2 reviews the time series prediction problems using linear models 

and nonlinear models, such as Neural Networks. Relevant feedforward 

and recurrent models and their corresponding learning algorithms are 

reviewed. 

Chapter 3 describes the Fourier Recursive Prediction Equation which is 

derived based on Fourier analysis of time series. Further, a recurrent 

neural network, ForeNet, is built to represent the proposed prediction 

equation. 
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Chapter 4 gives more applicable architecture of ForeNet Then the initial-

ization method of ForeNet is proposed. 

Chapter 5 analyzes the coefficients in ForeNet by unfolding the original 

recursive equations. Some experiments are demonstrated to show the 

performance of ForeNet initialization. 

Chapter 6 introduces complex-valued Real Time Recurrent learning algo-

rithm for ForeNet And the ForeNet model is further analyzed by some 

designed experiments. The comparisons between ForeNet and some 

other models also provided in this chapter. 

Chapter 7 suggests a on-line learning for the proposed model. 

Chapter 8 is a discussion and conclusion part. We include the main limita-

tions and advantages of ForeNet and mention some future works. 



Chapter 2 

Literature Review 

A time series is a collection of observations made sequentially in time [14 • 

Suppose we have an observed time series x( l ) ,x(2) , . . • , x{N). Then the basic 

problem is to estimate future values such as x{N + k), where the integer k 

is called the lead time. Prediction (forecasting) the future values of an ob-

served time series is an important problem in many areas, including medicine, 

economics, communication, speech processing, control, biology and mechanical 

engineering. Commonly, time series prediction problems are approached either 

from a linear model or from a nonlinear model, especially, a Neural Network 

model. In this chapter, we give a brief introduction of these approaches. 

2.1 Takens, Theorem 

Embedding theorem, introduced first by Takens and extended in [61], shows 

that, under very general conditions, the state of a dynamic system can be 

accurately reconstructed by a finite windows of the time series. This window 

is called a time delay embedding. 

Vt 二 [工t, •..，工t-(nd—1)5] (2-1) 

Where Xt is the value of time series at time t, rid is the embedding di-

mension, and 6 is the embedding delay. Takens' theorem implies that if very 

6 
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general assumptions are satisfied, there exists a function g{-) such that 

Xt+l 二 g(OCt, Xt-5, ... , Xt-(n-l)s) 
(2.2) 

二 9{yt) 

For time series prediction, this is an important theorem because it implies 

perfect predictions are possible using only a finite segment of the values im-

mediately preceding the point to be predicted. In order to achieve perfect 

prediction, Takens' theorem requires the time series to be noise-free and the 

function g{') to be known. However, in practice, these conditions are not satis-

fied and the selection of S and Ud may critically affect the prediction accuracy. 

Many methods have been proposed to find S and n .̂ The goal of these methods 

is usually to find these parameters that can minimize the embedding dimension 

Ud without reducing the accuracy of the reconstructed state yt. For simplicity 

but without loss of generality the embedding delay can be set equal to unity 1. 

One may be able to find a minimum embedding dimension to unfold the state 

space, but the mapping function may be too complicated to approximate. 

2.2 Linear Models for Prediction 

Linear time series models have two particularly desirable features[70]:they can 

be understand in great detail and they are straightforward to implement. How-

ever, they may be inappropriate for complicated systems. In the following 

section, there are discussions on the role of external inputs (moving average 

models) and internal memory (autoregressive models). 

2.2.1 Autoregressive Model 

Autoregressive Model (AR) was invented by Yule in the end of the 20，s in order 

to predict sunspots. The general AR model expresses future values of the time 
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series as a linear combination of past values plus a random noise component: 

d 

y(t) = � r M t - 爪 ) ( 2 . 3 ) 

m=l 
This is called an dth-order autoregressive model {AR{d)). Because of the 

feedback loop existed in the equation, the output can continue indefinitely. So 

such model is called an infinite impulse response (IIR) filter. 

To generate a specific realization of the series, we must specify the initial 

conditions, usually by the first d values of series. If there was no input, de-

pending on the amount of feedback, after iterating it for a while, the output 

produced can only decay to zero, diverge, or oscillate periodically.^ 

The dependence of y{t) on previous values of y also complicates the process 

of finding coefficients a爪 that fit the model to time series data [47 • 

2.2.2 Moving Average Model 

One of the simplest ways to use an algebraic equation to describe a system's 

behavior is to model its next state as a weighted sum of its previous states. 

That is, if one has measured a series of values Xi{t), one predicts its output 

using the equation: 

L 

认t) = YM办-1� (2.4) 

The model is called L仇 order moving average (MA) model. Fitting such 

model to a data set involves choosing the window size L and finding appro-

priate values for the bi. The impulse response of such a filter is described by 

iln the case of a first-order AR model, this can easily be seen that if the absolute value 
of the coefficient is less than unity, the value of y exponentially decays to zero; if it is larger 
than unity, it exponentially explodes. 
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the coefficients bi. As I goes from 0 to L, the impulse first "hits" bo, then bi, 

and so on. Because this response dies out after L time steps, MA model is a 

member of the class of finite impulse response (FIR) filters. When viewing the 

linear combination as a discrete filter of the noise signal, the MA model can 

be viewed as thus: A noise process usually has a frequency spectrum contain-

ing all or a large number of frequencies ("white" noise). A filter-like the MA 

model can thus cut out any desired frequency spectrum, leading to a specific, 

non-random time series. 

Properties of the output series y{t) clearly depend on the input series x. 

For a linear system, the response of the filter is independent of the input. 

2.2.3 Autoregressive-moving Average Model 

Combining MA and AR models yields the autoregressive-moving average (ARMA) 

model: 

L d 

y(t) 二 — I)) + J^iamVit - m)) (2.5) 
1=0 m=l 

The ARMA model[46] is both more general and more difficult to work 

with because one must choose L and d intelligently. Despite these difficul-

ties, ARMA models dominated the time series analysis for more than half a 

century[70 . 

2.2.4 Fitting a Linear Model to a Given Time Series 

In order to fit AR, MA or ARMA models to the time series prediction, two 

estimations should be made: 

• Fitting the coefficients. The coefficients of an AR(M) model from the 

observed correlational structure of an observed signal. Another approach 
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is the estimation of the coefficients as a regression problem: expressing 

the next value as a function of M previous values. This can be done by 

minimizing squared errors. For finding MA and full ARM A coefficients 

from observed data, standard techniques exit, often expressed as efficient 

recursive procedures. 

• Fitting the order of the model. There are several heuristics to find 

the "right" order, such as the Akaike Information Criterion (AIC)[1], 

the minimum description length (MDL)[57] and the SVD approach[39:. 

There is not a unique best choice for the values or even for the number 

of coefficients to model a data set. 

Detailed discussion on how to select the order of ARMA model can be 

found in [29] [17] [11；. 

2.2.5 State-space Reconstruction 

An ARMA model can be rewritten as a dot product between vectors of the 

time-lagged variables and coefficients: 

yt = a 'Yt . i + b- Xt-i (2.6) 

where Yt = [ytyt-i •. .2/t—(d-i)^, and a 二 [aia2 .. -a^]^. Such lag vectors 

are called tapped delay lines. They are used in the context of signal processing 

and time series analysis. 

There is a deep connection between time-lagged vectors and underlying 

dynamics. This connection was proposed in 1980 by Ruelle, Packard et al 

(1980) and Takens (1981). Delay vectors of sufficient length are not just a 

representation of the state of a linear system. It turns out that delay vectors 

can recover the full geometrical structure of a nonlinear system. 
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2.3 Neural Network Models for Time Series 

Processing 

Neural Networks form the basis of an entirely different nonlinear approach to 

the analysis of time series. NNs have proven to be a promising alternative 

to traditional techniques for nonlinear temporal prediction tasks. Recurrent 

and feedforward Neural Networks have been proposed[23][54] for simulating 

nonlinear-ARMA and nonlinear-AR models respectively. And several authors 

have given an overview of different types of neural networks for use in time 

series processing [19, 48, 40, 9]. For instance, [40] reviewed connectionist net-

work architectures and training algorithms and provided comparisons on the 

different models structures and predictive power; [48] concerned the different 

NN models based on the type of memory: delay (akin to time windows and 

delays), exponential (akin to recurrent connections) and gamma (a memory 

model for continuous time domains). This section provides a description of 

various neural model structures. 

2.3.1 Feed-forward Neural Networks 

Among the most wide-spread neural networks are feedforward networks. 

Time Delay Neural Networks 

A special case in this study is the approximation of a linear AR model by a 

feedforward Neural Network. The approximation of an AR model of order n 

by a feedforward NN with n input units was proposed in [66] [41]. Feedforward 

networks with tapped input delay lines can be used to represent time series 

with limited context (2.1). Such memory form is a buffer containing the n 

most recent inputs. It is also called a delay space embedding and forms the 
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basis of traditional statical autoregressive (AR) model. Such network struc-

ture incorporating embedded time delays is the Time-Delay Neural Network 

(TDNN){Figure (2.1)). The input vector X consists of the recent samples, 

L steps backward in time, X � = [ x { t ) , x { t _ 1 ) , . . . , — L + 1)严.Via the 

weighted connections these values enter the first hidden layer of units whose 

outputs y[t) are calculated as 

L-l 
= (2.7) 

k 二0 

where wjb represents a bias weight. And the outputs from the hidden layer 

are fed into the output layer 

N 

z(t) = ( J ^ w � M t ) + Woî ) (2.8) 

The TDNN can be used for nonlinear prediction of a stationary time series, 

i.e. a time series with statistics that remains unchanged over time [31]. When 

using it for prediction, we should be not only faced with the problem of deter-

mining how many hidden units are appropriate, it is also necessary to choose 

the number of the delay used as input. If using too few previous values then it 

will not be possible to capture the dynamics of the system that generated the 

data from which are modelling, and prediction accuracy will suffer. If using 

too many previous values, training the network may possibly suffer due to re-

dundancy in the inputs as well as from the increased number of parameters to 

be determined from the data. Some literatures contain several suggestions on 

how to choose an appropriate lag space, such as trial-and-error, information 

theoretic methods [52] and generalization based on methods [28 • 

FIR Multilayer Networks 

The network structure of TDNN is static in nature; there are no internal 

dynamics. In order to get a dynamic structure, Wan proposed a Finite Impulse 
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Figure 2.1: Time Delay Neural Networks 

Response (FIR) model to simulate a simple Autoregressive Moving Average 

(ARMA) model[68] [67]. A modification of the basic neuron is accomplished 

by replacing each static synaptic weight by an FIR linear filter. Figure 2.2 

shows a dynamic model of a neuron using FIR filters as synapses. A synapse 

i is then represented by a vector 

Wi 二 lwi(0),Wi(l),...,Wi(M)], 

and the delay line 

Xi(n) = lxi(n),xi(n — 1 ) , X i ( n — M ) . 

The filter operation is the scalar product Wi • Xi(n). Finally, we have the 

neurons output 

2/⑴= 办)） （2.9) 

Wan derived temporal backpropagation algorithm to train FIR networks. 

An FIR network constitutes a powerful tool for use in time series prediction 
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Figure 2.2: FIR Multilayer Networks 

69]. And similar with TDNN model, the FIR networks also suffer some prob-

lems. 

2.3.2 Recurrent Neural Networks 

Various enhancements of the basic feedforward architecture has been suggested 

in order to make the network "memory" of previous inputs more flexible, thus 

relaxing the accuracy with which the dimension of the externally provided lag 

space vector must be determined. In the following sections, it is described how 

this flexibility can be obtained by making the networks recurrent. 

Jordan Networks 

Jordan network[37] consists of a multilayer perception with one hidden layer 

and a feedback loop from the output layer to an additional input (or context) 

layer. In addition, self-recurrent loops on each unit in the context layer are 

introduced in this model, i.e. each unit in the context layer is connected with 

itself, with a weight Vi smaller than 1. Without such self-recurrent loops, the 

networks form a non-linear function of p past sequence elements and q past 
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Figure 2.3: The Jordan Networks 

estimates: 

x{t) = f{x{t - 1 )， x [ t — p),x{t — 1), ...,x(t - q)) (2.10) 

So the nonlinear ARMA model discussed above can be said to be implicitly 

contained in this network. 

Elman Networks 

The Elman network[22] is an MLP with an additional input layer, called the 

state layer, receiving as feedback a copy of the activations from the hidden 

layer at the previous time step (see Figure (2.4)) . The Elman network can 

be trained with any learning algorithm for MLPs, such as backpropagation 

or conjugate gradient. It belongs to the class of so-called simple recurrent 

networks(SRN)[32]. Even though it contains feedback connections, it is not 

viewed as a dynamical system in which activations can spread indefinitely. 

Instead, activations for each layer are computed only once at each time step 

(each presentation of one sequence vector). 
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Figure 2.4: The Elman Recurrent Networks 

Similar observations can be made about the Elman recurrent network as 

with respect to the Jordan network. A number of time steps is needed until 

suitable activations are available in the state layer, before learning can begin. 

Standard learning algorithms like backpropagation is easy to apply, but can 

cause problems or lead to non-optimal solutions. And this kind of recurrent 

net also cannot really deal with an arbitrarily long history[7]. Some examples 

of applications with Elman networks can be found in [27] [18 . 

N A R X Recurrent Neural Networks 

NARX are inspired by nonlinear autoregressive models with exogenous inputs. 

They compute their current output using past inputs and past outputs. The 

models were proposed in [44][45] (shown in Figure (2.5)): 

y{t) = f{x{t - At ) , x{t — l),x{t),y{t — A / )， y { t - 1)) (2.11) 

where x{t) and y{t) represent input and output of the network at time t, D^ 

and Dy are the input-memory and output-memory order, and the function f 
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Figure 2.5: NARX Recurrent Neural Networks 

is a nonlinear function. Outputs of NARX are used to compute activation val-

z, lies of internal nodes, which in turn are used to recompute output activations. 

This recurrence gives NARX the ability to encode a history of activations ex-

tending back arbitrarily in time. Empirical studies on system identification 

and grammatical inference problems have demonstrated that NARX networks 

generally converge much faster and generalize better than other network ar-

chitectures,including fully recurrent networks. Furthermore, in [44] [45] [43] the 

authors proved that NARX networks can reduce the problem of learning long-

term dependencies. 

Long Short-term Memory Recurrent Neural Networks 

A second-order approach has been proposed in [35] [36]. This network is called 

long short-term memory (LSTM), and designed to avoid some of the limitations 

associated with the training of recurrent networks, such as long-term depen-

dency in fully recurrent networks [6][7],i.e. error signals propagated back in 

time over the activations of a training sequence and can either blowup or van-

ish exponentially. The basic idea is to use both node activations and the net 
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inputs to the nodes' transfer functions, provide a self connected node, with 

a linear activation function that will ensure constant error flow over the self 

connection. If the weights between these connections are equal to one, the 

error flow through the unit will be constant for infinite time steps. 

The network must learn when to propagate an incoming signal into the 

unit or to protect the activation value from the incoming signals. If both ac-

tions need to be done by the same set of weighted connections into the unit, 

such connections will receive conflicting weight updates. In LSTM, a variant 

of RTRL learning algorithm is used which properly takes into account the al-

tered, multiplicative dynamics caused by input and output gates. 

Experiments with long input sequences, i.e. with more than 100 data 

points, have shown that LSTM successfully bridges long time lag, i.e. it is 

able to simultaneously store information over long periods of time and still 

learn efficiently[9 . 

2.3.3 Training Algorithms for Recurrent Networks 

In [51], the author reviewed some learning algorithms for dynamic recurrent 

networks. In the following section, we only discuss two most common algo-

rithms used for recurrent networks. 

Back-Propagation Through Time 

The back-propagation-through-time (BPTT) algorithm for training a recur-

rent network is an extension of the standard back-propagation algorithm. It 

may be derived by unfolding the temporal operation of the network into a lay-

ered feedforward network, the topology of which grows by one layer at every 

time step. 
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BPTT algorithm proceeds as follows (Williams and Peng, 1990) [74]: 

• Let no denote the start time of an epoch and rii denote its end time. First, 

a single forward pass of the data through the network for the interval 

(no, ni) is performed. The complete record of input data, network state 

(i.e., synaptic weights of the network), and desired responses over this 

interval is saved. 

• A single backward pass over this past record is performed to compute 

the values of the local gradients 

•) = - ( ) 
where 

1 ni 
e:totai(no,ni) = - ^ (几） (2.13) 

n=no je?fi 

for all j e ^ and no < n < Ui. ej(n) is the error signal at the output of a 

neuron measured with respect to some desired response. This computa-

tion is performed by using the formula: 

f 

(p'uj{n)ej{n) for n — rii, 
咖）= 

+ Y^km + 1)] for uq <n<ni 
(2.14) 

Where is the derivative of an activation function with respect to its 

argument, and Vj (n) is the induced local field of neuron j. The use of 

this equation is repeated, starting from time Ui to time n � . 
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• Once the computation of back-propagation has been performed back to 

time no + 1, the following adjustment is applied to the synaptic weight 

Wji of neuron j : 

A — _ d£totax{no,ni) 
池如 二 1 ^ ^ 

ni (2.15) 
Y^ Sj{n)xi{n-1) 

n—no+l 

where rj is the learning rate parameter and Xi{n — 1) is the input applied 

to the ith synapse of neuron j at time n — 1. 

Real-Time Recurrent Learning (RTRL) 

Another learning algorithm is real-time recurrent learning (RTRL). The synap-

tic weights of a fully connected recurrent network in real time, that is, while 

the network continues to perform its signal processing function (Williams and 

Zipser, 1989). 

RTRL algorithm proceeds as follows: 

• Initialization: 

- S e t the synaptic weights of the algorithm to small values selected 

from a uniform distribution. 

- S e t the initial value of the state vector x(0) = 0. 

—Set A^ (0) = 0 for j = 1, 2 , q . 

• Computations: Compute for n — 0,1, 2,..., 

Aj{n + 1) = (l){n)[Wa{n)Aj{n) + U^-(n)] (2.16) 

e(n) = d(n) — Cx(n) (2.17) 

Aw^-(n) = r]CAj{n)e{n) (2.18) 
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Three matrices Aj (n), Vj (n), and 0(n) are described as follows: 

A j (n) is a g — — (g + m + 1) matrix defined as the partial derivative 

of the state vector x(n) with respect to the weight vector wj： 

二 ^ ^ j = …,q (2.19) 

JJj (n) is a g — — (g + m + 1) matrix whose rows are all zero, except 

for the jth row that is equal to the transpose of vector Wj^(n) : 

0 

彻 J. = 1,2,…，g (2.20) 

0 

(j){n) is h q — by — q diagonal matrix whose kth. diagonal element is the 

partial derivative of the activation function with respect to its argument, 

evaluated at 

= dmg(咖讯n)),..., ^'(wje(n)), (^'(w�e(n))) (2.21) 

• Parameters: 

m = dimensionality of input space; 

q — dimensionality of state space; 

p = dimensionality of output space; 

Wj = synaptic weight vector of neuron j，j = 1, 2 , q . 

The main problem with BPTT is the need for large resources because of the 

duplication of units. For long sequences, or for sequences of unknown length, 

the approach becomes impractical. Compared to BPTT, RTRL can be run 

on-line, learning while sequences are being presented rather than after they 

are complete, and it doesn't need to duplicate the units. Several examples 



Chapter 2 Literature Review 22 

investigated by Williams and Zipser [1989] [75] demonstrate the power and 

generality of the RTRL method. 

2.4 Combining Neural Networks and other ap-

proximation techniques 

Recently, the Neural Networks are be complemented with other successful ap-

proximation techniques based on wavelets [50] [3] [78], kernel estimators, nearest 

neighbors, B-splines, projection pursuit regression and fuzzy models [21 • 

In [78], the authors proposed a wavelet network as an alternative to feed-

forward neural networks for approximating arbitrary nonlinear function based 

on the wavelet transform theory. The basic idea of the wavelet network is to 

replace the neurons by "wavelons", i.e., computing units obtained by cascading 

an affine transform and a multidimensional wavelet. Then these transforms 

and the，，synaptic weights" are identified from noise input/output data. The 

authors mentioned some properties of such wavelet network. First, because 

wavelet decomposition is a powerful tool for approximation, the network can 

guarantee the “ universal approximation" property. Second, they built an ex-

plicit link between the network coefficients and some appropriate transform, 

which can automatically provided by the wavelet decomposition. And an initial 

guess for the network parameters can be derived by using the decomposition 

formula, which also helped drastically to improve backpropagation algorithm 

behavior. Inspired by [78] and [75], a Recurrent Wavelet Network was pro-

posed in [55], which was trained by the real time recurrent learning algorithm. 

The forecasting strategy in [3] is based on the subdivision of the prediction 

task into elementary tasks. They used a particular wavelet transform aimed 
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at laying bear useful information, which is then treated by the neural network. 

The wavelet transform decomposes the input signal into detail signals, and a 

residual. The original signal can be expressed as an additive combination of the 

wavelet coefficients, at the different resolution levels. Therefore, it suffices to 

run a DRNN model on each resolution level and then recombine the individual 

predictions to form the final forecast. 



Chapter 3 

ForeNet: Model and 

Representation 

In this chapter, a prediction model, ForeNet, is proposed. In the first section, 

we derive a prediction equation based on Fourier analysis of time series. The 

equation, called Fourier Recursive Equation, is in a recursive form. In the 

second section, we build some links between Fourier Recursive Equation and 

Neural Networks. The proposed equation is then represented by a recurrent 

network. We call this network Fourier Recurrent Neural Networks (ForeNet). 

3.1 Fourier Recursive Prediction Equation 

The Fourier Analysis of a time series is to decompose the time series into a 

sum of sinusoidal components [10]. According to the basic result of Fourier 

analysis, it is always possible to approximate an arbitrary analytic function 

defined over a finite interval of the real line, to any desired degree of accuracy, 

by a weighted sum of sine and cosine functions of harmonically increasing 

frequencies [53]. In our method, we decompose the time series into several 

frequency components, then reconstruct them to derive a prediction function, 

which is used for time series forecasting. 

24 
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3.1.1 Fourier Analysis of Time Series 

Consider a sequence of time series data x{l),... , cc(t), •..，x(N). As the time 

is discrete, we use the Discrete Fourier Transform (DFT) to form 

N 

Cn = ^ x ( t ) exp{-jUnt) n = 1,2, (3.1) 
t=l 

in this equation̂ ，0；几 二 警 is a so-called Fourier frequency. Equation (3.1) 

is called the Fourier decomposition of Cn. The data x{t) may be recovered from 

the inverse transform 

1 N 
x{t) = expijunt) t = l,2,...,iV (3.2) 

n=l 

Thus the finite sequence can be expressed exactly using all Cn, where n is 

from 1 to N. Now in Equation (3.2), we define 

hn{t) = ^Cn exp{juJnt) (3.3) 

So Equation (3.2) becomes 

N 

x{t) = t 二 …,N (3.4) 
n=l 

3.1.2 Recursive Form 

In this part, we derive the recursive equation to calculate the time series value 

at the next time step x{t + 1) based on its previous data x(2) , . . . , x(t). 

From Equations (3.2) and (3.3), we can get the value of x{t + 1): 

iln the original DFT, the range of summation should be n = 0，1,…,TV — 1. Here, in order 
to be consistent with the expression of time series x( l ) , • • • ,x[N), we modify the index as 
n 二 1,2, ...iV. And there have no effect on the transformation results. 
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1 N 
:z:(t + 1) == — ^ Cn expCMi(t + 1)) 

(3.5) 
N 、 ) 

= ^ h n { t ) exp(加n) 
n—1 

It suggests that x{t + 1) can be estimated by the value of h at the last 

time step t. Suppose we append the series x ( l ) , x (2 ) , . . . ,x[N) by an extra 

value x{N + l) and the series becomes x(l) , • • • • • • ,x{N),x{N+ 1). The 

number of data is changed to TV + 1. Therefore the new TV + 1 points DFT is 

updated as follows 

N+l 

4 = E 冲)expH心） (3-6) 
t=i 

for n = 1 , 2 , i V + 1, where u j ' 几 = I f the length of time series, N, is 

sufficiently large, we approximate o^ by uon. Thus 

4 = c, + x{N + 1) e x p ( — 加 + 1)) (3.7) 

for n = 1, 2, ...N. The corresponding + 1) becomes 

聰 + 1) = ^ 4 e x p ( K ( i V + l)) 

兰 Cn^M3^n{NI)) -\-x{N ^ I) 
— N + l ^ •) 

It suggests that the value of the function h'^ at time N + l can be de-

rived from its value at previous time step N and the current time series value 
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x{N-\-l). Given an initial value /i(0), the equations can be used recursively to 

compute forecasts. And forecasts can easily be achieved using only the latest 

observation and the previous forecast: 

N 

f (力+ 1) = Z " “ t ) e x p ( j a ; ; ) 
i=i 

N 1 
Kit + 1) = ^ ^ eMM 测 + 力 + 1) (3-9) 

where x{t) is model input. We call this equation Fourier Recursive Equa-

tion, that can be used to compute the future value. In this equation, only the 

current series data, x{t), acts as the model input to calculate the next time 

step value +1) . The other past values are stored in the form of the internal 

memory of the model, and they are memorized by h{t). 

3.2 Fourier Recurrent Neural Network Model 

(ForeNet) 

As we mentioned before, time series prediction can be approached either from a 

linear model or from a nonlinear perspective, such as a Neural Network model. 

In the previous section, the Fourier Recursive Equation has been derived to 

perform time series prediction. On one hand, an obvious advantage of such 

linear approach is the calculation speed is very fast. However, the linear model 

is of limited applicability. On the other hand, the NN methods are powerful, 

but the selection of the proper architecture and learning algorithm is time con-

suming. In this section, we build a direct relationship between time series and 

Neural Network model by using a recurrent network to perform the proposed 

Fourier recursive prediction equation. In this way, the network architecture 

and its accordingly learning algorithm can be properly determined. 
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3.2.1 Neural Networks Representation 

We have shown that the Fourier recursive equation can be approximated as 

Equation (3.9), which is in a recursive form. Thus, when we represent the 

model by a Neural Network, we need a recurrent NN because it can contain 

internal memory by the feedback weights. 

Now we consider our input to the recurrent network is x{t) at each time 

step t. The network output and hidden units outputs are obtained as follows. 

N 

= ^ViViit) 

N 

yj(t + l) 二 f(J2Wijyj(t)+Uix(t + l)) (3.10) 

where f represents the activation function of the hidden units. Wij is the 

recurrent weights. Ui and Vi are the weights connecting input to hidden units 

and hidden to output units. N is the number of hidden units in the network. 

To predict the future time series x{t + 1) based on historical observations 

x(l) , x(2), we input x{t) to the network at each time step t. The net-

work is expected to output the next step prediction +1)，i.e., prediction of 

x{t + 1) can be obtained after we have inputted the whole sequence, x{t), to 

the network. As recurrent networks are used, the hidden units can also serve 

as internal memories to store the intermediate states of the system. 

Comparing neural network representation (3.10) to the Fourier Recursive 

Equation (3.9), we can find a direct correspondence between them. So based 

on the proposed equation, we build ForeNet model as follows: 

• First, we remove all recurrent links except those are self-connections on 

the hidden units. 
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• Let N represents the number of hidden units in the recurrent model. 

• The output of each hidden unit yi in recurrent model is approximated 

by hi in Equation (3.9). Hence, each hidden unit has recurrent weight 

connected only to itself. 

• As for the weights in the recurrent network, let ui 二 ； v i = 

and Wij = 赤 exp(jcji) for j 二 L 

• The accordingly recurrent model has the linear activation function both 

on hidden layer and output layer according to Equation (3.9). 

In this way, the output of the network z{t) represents the predicted value 

x(t + 1). 

3.2.2 Architecture of ForeNet 

According to neural network representation, the hidden unit h{t) is derived 

from its previous value h{t — 1) recursively. It suggests that there exist recur-

rent weights in the hidden layer of neural networks and the recurrent links are 

diagonally connected only, that is, the recurrent weight matrix R几乂几 is in the 

following form 

〜11 0 0、 

0 『22 

R= 0 0 ••• (3.11) 
• • • 

• • • 

乂 0 0 n̂n j 

On one hand, Fully Recurrent Network (FRN) is a very general architec-

ture, which has a great freedom to build its own internal representations for 

encoding temporal information, and has shown a strong ability to time series 
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learning. On the other hand, locally connected recurrent models have been 

suggested as an alternative to FRN because of its gain in complexity in both 

computational time and storage space [12]. In addition, it has been shown 

that a FRN with linear activation functions is inherently equivalent to some 

band diagonally connected recurrent networks [13]. Therefore, we adopt the 

architecture of the self-connected locally connected recurrent network. 

The model architecture is shown in Figure 3.1. The model is made up three 

layers, input layer, hidden layer and output layer. The inter-layer connections 

are all running forward and recurrent links exist in the hidden layer only. In 

the model (3.9), we only use one current input to predict the value at the next 

time step, that is, only one input and one output exist in the neural network. 

And according to the links built above, there are N number of hidden units in 

the hidden layer. 

Since the value of N is related to the length of time series to perform Fourier 

Transform, we will show in the next chapter how to estimate the value of N 

to make the recurrent network applicable while not losing much information 

during Fourier transform. 
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_ 

input layer 

hidden layer 
Figure 3.1: Architecture of ForeNet 



Chapter 4 

ForeNet: Implementation 

In the previous chapter, we have built ForeNet to represent the proposed 

Fourier prediction equation. The architecture of the model is 1 — N — 1, i.e. 

one input unit, N hidden units and one output unit. According to Fourier 

transform, N should be a large number because it is the length of time series. 

Further, since ForeNet is built based on Fourier analysis, its parameters are 

complex values, and because of some approximations made during the model 

derivation, the predicted values computed from the equation are also complex 

numbers. However, most of time series are real-valued. 

These two problems, a large number of hidden units in the network and 

the complex-valued output, make ForeNet inapplicable when it is applied to 

time series forecasting. 

In this chapter, we will do a little modifications on the proposed prediction 

equation to make the implementation of ForeNet easier. 

32 
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4.1 Improvement on ForeNet 

Since ForeNet is proposed by NNs analysis and Fourier analysis, we would 

modify ForeNet by the idea from these two methods. 

4.1.1 Number of Hidden Neurons 

In neural networks, the number of hidden units should be not too large, how-

ever, when the Fourier transform is performed on a time series, the period can 

not be too small or it can not keep original information well after transforma-

tion. In this section, we consider the selection of number of hidden units in 

ForeNet as follows. 

• In the view of the architecture of NNs, in ForeNet, there are one input 

unit, one output unit and N hidden units. Based upon the proposed 

method, the output unit is evaluated using the summation of N terms, 

where N corresponds to the number of hidden units. And it is not 

practical to have a recurrent network with N hidden units where N is 

comparable to the length of the sequence, which is supposed to be long. 

So we would use a smaller value p {p < N) to construct the recurrent 

network. In most time-series, the component frequencies are usually with 

low orders. High order frequencies usually are of small magnitude and 

they may correspond to the undesirable noise term. Thus, we can assume 

that the higher frequency terms are negligible in Equation (3.5). 

• As we know, most of time series are nonstationary, that is, the frequency 

of the signal is changing during the measurement interval. So if we 

suspect that the frequency content of the series may change while it is 

being measured, we may need a different analysis procedure in stead of 

doing DFT on the whole series. In Equation (3.9), we replace N (the 
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length of time series) by p, where p is a fixed small positive value. In this 

way, we use the shorter section of data to do Discrete Fourier Transform. 

Moreover, the prediction task is single-step prediction^ . To approach the 

short-term prediction, by analyzing only a small number of neighbors, 

we may get more relevant information of the predicted data. 

4.1.2 Real-valued Outputs 

Since most of time series are real values, when we apply ForeNet to compute 

the forecasts, we need to transform the complex-valued outputs to the real 

values. There are two possible ways to do such transformation. The first one 

is to keep the real part of the complex data and discard the imaginary part; the 

second one is to use the magnitude of the complex data as the model output 

directly. However, both approximations would cause the loss of the original 

information. 

In this section, we will introduce a way to make the outputs of ForeNet 

become the real values. The proposed estimation is based on the symmetry 

properties of the Fourier transform. 

Symmetry Properties of the Fourier Transform 

The basic properties of the sine and cosine functions which underlie the Fourier 

transform give rise to certain symmetry conditions which lead to useful sim-

plifications in the computing of the discrete Fourier transform of a finite 

sequence[53]. To demonstrate the symmetry conditions, we rewrite Equation 

(3.1) as 

iwhen we mention prediction in our work, if no especial statement, we mean one-step 
ahead prediction. 
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N 
Cn = ^Xt exp{-juJnt) 

t=l 
N 

= + jxt^){cOs{uJnt) — j Sm{uJnt)) 
t=l 

= c o s ( u n t ) + x r s inK^) ) (4-1) 
t=l 

N 
—^ 工�6 sm{ujj) — x'^ cos{uJnt)) 

t=l 

= 叫 ) - 讽 ⑴ n ) ) . 

When there is no presumption that Xt is real, Equation (3.2) can be written 

as 

1 N 

n=l 

1 N 
= ^ 幻�(0；几)-jP{uJn)){cOs{Unt) + j Sm{uJnt)) 

n=l 
1 N (4.2) 

= ^ COs{uJnt) + ^{uJn) • 
n=l 

1 N 
+ j 涵 Xl W叫)sin{u)nt) + I3{ujn) COs{uJnt) 

n二 1 

Consider setting x^^ 二 Xt and x]^ = 0 in (4.1), which is the case when 

x{t) = Xt is a real-valued series. Then Equation (4.1) becomes 

N 
Cn = COs{Unt) — jXt Sm{uJnt)) 

(4.3) 

=-{a{Un) -jl3{uJn)). 
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In view of the properties of the trigonometrical functions, it can be seen 

that x{t) has a Fourier transform of which the real part a(cjn) = o^{—uJn) is 

now an even function and the imaginary part {̂uJn) = is now an 

odd function. When the latter conditions are applied to Equation (4.2), it can 

be seen that the imaginary term vanishes, since the trigonometric functions 

sweep out exactly one period across the time extent. 

Improvement 

When we derived the prediction equation, we made some approximations, 

which may cause information loss and original real-valued series can not be 

guaranteed in Equation (3.5). Moreover, the inverse Fourier transform re-

quires exactly N number of Cn to recover the original series. If only a small 

number of c几 can be chosen, the phase will not be aymmetrized and the inverse 

Fourier transform would not be real, thus Equation (3.5) can not be fulfilled 

and x{t + 1) will not be a real number anymore. 

In Equation (3.5), only the first small number of Cn is chosen to compute 

the output. Assume we are using all Fourier coefficients c^ to recover the 

original series, then the outputs of the equation should be real values because 

of the contributions of the symmetrical c^, where the imaginary parts are 

cancelled. In order to get real data, we should only choose the real part of the 

output in Equation (3.5). Furthermore, we would use two times of the real 

part as the predicted output imagining the last a few c几 should be included. 

Therefore, the Fourier recursive equations (3.5) (3.8) are modified as: 

p 
x{t + l) = 2 X REAL{J2 exp(i(j；)) 

n=l 

_ 二 + ^ (4.4) 
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And ForeNet (Equations (3.10)) is modified as: 

z{t) = 2x謂 

y{t) = j y 佩 I 
j=l 

hj{t) = Wjjhj{t - 1) + Wkjx{t) (4.5) 

The outputs of the network become real. ForeNet is now more applicable 

for NNs learning. 

4.2 Parameters Initialization 

An initial guess for the network parameters can be derived by the links found 

in the previous section. Comparing the Fourier Recursive Equation (4.4) and 

ForeNet model (4.5), we have an initial estimation of the weights and the 

value of hidden units at initial time. The proposed initialization is as follows: 

1. The recurrent weights to hidden units, Wij, can be initialized based upon 

the coefficients of hn{t — 1) in Equation (4.4). That is 

= (4.6) 

where p represents the number of hidden units, Wn — 諧 . 

Similarly, the weights between output units and hidden units are initially 

estimated by 

Wji{0) = expiju'J (4.7) 

where w '几二错 .n represents the n仇 hidden units. 
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The weights between input and hidden units 

够 ) 二 工 （4.8) 

When we determine the value of p, accordingly the number of hidden 

units and the initial weights in ForeNet can be determined. 

2. The recurrent model needs an initial estimation of the state of hidden 

units. In the Fourier prediction Equation (4.4), the internal memory is 

controlled by nature of the time series as well as the model coefficients. 

We just randomly initialize the values of hn and let the model build 

proper internal states. 

Thus, the network initialization is finished. ForeNet a recurrent model, 

with the architecture as shown in Figure 3.1 and with the initialization method 

as described above. 

4.3 Application of ForeNet: the Process of 

Time Series Prediction 

In the forecasting task, we would use the recurrent network, ForeNet We can 

perform time series prediction as following three stages. 

• Initialization Stage. Before ForeNet has been trained, it is initialized 

by the proposed method described in the previous section. We will an-

alyze this initialization method and show its performance in the next 

chapter, Chapter 5. 

• Training Stage. Then for NNs learning, Complex Real Time Recur-

rent Learning Algorithm (CRTRL) is used to update complex-valued 

parameters in ForeNet We will introduce the algorithm in Chapter 6. 
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• Prediction Stage. After parameter updates, we apply the ForeNet to 

perform prediction on various time series. This stage will be introduced 

in Chapter 6 and Chapter 7. 

4.4 Some Implications 

There are some more implications of using the correspondence between the 

Fourier Recursive Equation and its NN representation, ForeNet 

• First, ForeNet is built based upon the Fourier Recursive Equation. The 

parameters in ForeNet are corresponding to the coefficients in the pro-

posed equation. At the beginning of training, we can first determine 

the coefficients in ForeNet, then the architecture of ForeNet is fixed and 

furthermore, initialization of ForeNet is achieved. 

• The weights of the recurrent networks are pre-defined constants and are 

evaluated from the input sequence. However, it has to be computed off-

line. If we do not allow any off-line computation of the weights, we can 

apply the recursive equations to estimate the weights. In addition, in the 

computation, we have made a few approximations. Further, in case if the 

time series is non-stationary, the pre-defined weights cannot reflect the 

latest statistics of the time series. Thus, a learning algorithm to adapt 

the weights is still desirable. 

• The internal memory in ForeNet is stored in the hidden units. When the 

training hasn't been started, we can analyze the effective memory in the 

model. 



Chapter 5 

ForeNet: Initialization 

We have built a recurrent model, ForeNet, to represent the proposed predic-

tion equation. In this chapter, in order to analyze the prediction model in a 

more convenient way, first, we will unfold the recursive equation and suggest 

some properties of the model. After that, ForeNet with initial parameters is 

applied to time series prediction. The experimental results show the proposed 

initialization method for ForeNet is efficient. 

5.1 Unfolded Form of ForeNet 

The proposed model (4.4) is in an recursive form. In this section, we expand 

the recursive equation. In the expanded form, the next time step value x(t + l) 

can be directly represented by its previous value x{t),x{t 一 1),. • • , with 

different coefficients. 

First, we use three variables � p n and 7几 to replace the coefficients in 

Equation (4.4). Where a^ = 齿 / 3几=击,7n = exp(jcj；), and 

(jjn — 27rn/(p + 1) cĵ  = 27rn/(t + 1). Equation (4.4) is then rewritten by 

40 
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= 2x (p(t+i)r p 

g{t + l) = � 7 n 

n=l 

hnif) = h n { t - l ) a n + x{t)l3n (5.1) 

where, x{t) is model input. 

Now we unfold the third equation in Equation (5.1) and computes hn{t) 

iteratively as follows 

hn{t) = hn{t - l)an + 

=0^n[K{t - 2)Q̂ n + X{t — 1) /^ + x{t)pri 

= a l K i t — 2) + anl5nX{t - 1) + ^nX{t) 

= a l K { t — 3) + - 2 ) + a^Aocit — 1) + /3nx{t) 

二 A z X ⑴ + an^nX{t - 1) + alpnXit _ 2 ) + … + Q^—Vn工(1) + 

t-1 

d=0 
(5.2) 

where d represents the time-lag to the current input. In this way, we use 

infinite past data x{t) and the initial value of hn to represent the current value 

of hn{t). Now using unfolded hn{t) to rewrite g{t + 1) in Equation (5.1) 

V 

9{t-\-l) = � 7n 

H (5 .3) 

- 公 Yy•、妳-d)) + c4rrnh 肩 ) 
n=l d=0 
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According to the first equation in Equation (5.1), we only use the real part 

of g{t + 1) to estimate the value of x{t + 1). In order to take the real part 

from the complex number in Equation (5.3), we replace an, Pn and 7几 by the 

original coefficients, that is, a 几 = A z = 击 , 7 n = exp(ja;；), so 

Equation (5.3) becomes 

p t-i rf 
9{t + 1) = E ( E ( 二 vm ^Mji^nd + Uj'J)x{t — d)) 

n=l d=o 十丄） (5.4) 

p + 1 

As we know, the complex value exp(ja) can be expressed by a real part 

cos a and an image part sin a, that is, exp(ja) = cos a + j sin a. To get the 

real part of g{t + 1)，we can use cos(-) to replace the complex number exp(-) 

in Equation (5.4). Thus the estimation of x{t + 1) can be achieved by 

x{t + l) = 2x{g{t + l)Y' 
P t-i d 

=2 E ( D ( 二 严 + 力—d)) (5.5) 
Ti 1 rf^^O 

p + 1 

In the unfolded Equation (5.5), x{t-\-l) is estimated by a set of past values 

x{t). In order to make the expression Equation (5.5) simpler, we introduce 

two set of variables /in � and "几 to represent the coefficients of different past 

value. Define 

î n = + (5.6) 

thus, Equation (5.5) becomes 
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P t-i 
xit+l) = 2x — d)) + Unhnm (5.7) 

n=l d=0 

Equation (5.7) is the unfolded form of Equation (4.4). d represents the 

time-lag between the current model input and previous input. Time series 

value at next time step x{t + 1) is estimated by the previous t data points. 

Equation (5.7) is a linear model. Compared to the recursive Equation (4.4), it 

has one more variable, d. Thus one may assume that d is the "hidden" variable 

in the recursive form and it is related to other variables. Actually, the value 

of x{t + 1) is only estimated by a finite number of past data because of larger 

time lag d, smaller weighting the data has. In the following, we will analyze 

the weighting of the past data at different time lag. Also we will indicate how 

the internal memory of the model is built. 

5.2 Coefficients Analysis 

Let's consider the unfolded equation (5.7). This model expresses future values 

of the time series as a linear combination of past values. Once the coefficients 

have been estimated, the number of past data which contribute to the data at 

the next time step will be determined. We call the number of past data needed 

embedding dimension. According to Equation (5.7), finid) are the weights of 

the past data. And according to Equation (5.6), we only give a value to the 

variable p. The coefficients yLt̂ (ci) are then estimated. 

5.2.1 Analysis of the Coefficients Set,"几 

The coefficients ẑ几，Vn = ^̂ 2，... , î p]- are defined by Equation (5.6). They 

are determined by p and time length t. Since p is a positive integer number, 

齿I < 1 and I cos(.)| < 1, thus 

"几I 二 I南 X COs{uJnt + Uj'Jl < 1 
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Figure 5.1: The trends of v with the increasing time steps. Different curves 
present different trends with various p. 

Since the absolute value of is less than unity, the value of hn (0) expo-

nentially decays to zero. Figure (5.1) shows how fast the coefficients diminish 

as the time increases. /i„(0) will have no effect on the prediction value x{t+l) 

when t is large enough. And the decaying rate depends upon the selected value 

of p. With the larger p, the effect of will last for a longer time. 

In Equation (5.7), the coefficients iin{d) control the weights of inputs at 

different previous time steps. In the following, we analyze this set of coefficients 

and suggest a way estimate the parameters. 

5.2.2 Analysis of the Coefficients Set, fiĵ d) 

The coefficients iin{d), fin{d) = [fii{d), fi2{d), ‘ ‘ • , p l a y an important 

role in the prediction model because they are the weights of x{t) and control 

the internal memory of the model. It is defined by 

fj^nid) 二 (p + 1 严 cos{ujnd + uj'J (5.8) 
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The values of fin {d) are determined by p, and vary with different time-lag 

d. Both d and p are positive integers, thus we have 

pd 
" n � I = COs(Und + Cj'JI < 1 (5.9) 

With time lag d increases, x{t — d) decays exponentially to zero due to its 

coefficient /i^ becomes extremely small. It implicates after d time steps, the 

value of x{t — d) will have no contribution to the calculation of the value at 

next time step, x{t + 1), according to Equation (5.7). 

Figure (5.2) illustrates the behavior of the coefficient fii{d) as the time lag 

d increase from 1 to 80. It is clearly shown that the latest model input has the 

largest contribution to the prediction. And the coefficients of x drop gradually 

from the first time lag onwards. 

This figure also suggests the relationship between the value of p and time-

lag d. We define the maximum value of time-lag as M. M is related to the 

value of p. Different curves in the figure show the decay rates of coefficient 

with different values of p. With p = 16, the model contains more past inputs 

than that with p = 2, which lost the memory of its initial input after roughly 

d = 10 time steps. It suggests larger p achieves larger time delay and the model 

memorize more past states. We define the maximum time-lag the model can 

memorize as M. Here M is related to the value of p. If we set 

where the value of p is fixed and e is an arbitrary small value and d — 

1，2,…，M is the maximum number of time delays that satisfies the above 

condition. M represents the "hidden" order or the embedding dimension of 

the model. And M also implies how many past values can be saved in the 

model. In our proposed model, once the coefficients of different inputs have 
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Figure 5.2: Coefficients changing with time 

been defined, the hidden order M is then detected. Thus, unlike general AR 

model, we need not determine the number of model order. 

In the above section, by analyzing the unfolded equation (5.7), we implied 

the relationship between the selection of p and the internal memory of the 

model. 

However, finding a proper p is a tough task. As we know, if a linear model 

is used to solve the time series prediction problem, the determination of model 

parameters is heavily dependent on the nature of the time series. As we have 

analyzed before, the value of p determines how much memory the model has. 

That is, p decides how many past series data will be used to reconstruct the 

time series for next time step prediction. And, p is related to the number of 

hidden units in ForeNet 

In the following section, we will demonstrate some experiments with dif-

ferent p. 
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5.3 Experiments of ForeNet Initialization 

5.3.1 Objective and Experiment Setting 

In this section, some investigations of the proposed prediction model are re-

ported. We tested the performance of the model on some well-known time 

series, namely the standard sunspots, Mackey-Glass series and several series 

generated by chaotic processes. The main goals are: 

• to assess the predictive ability of proposed prediction equation, 

• to infer some "hidden" properties of the proposed model; to observe 

how much information of the past can be encoded by the prediction 

equation, and how the embedding dimension can be inferred regarding 

the underlying process. 

For these tasks, we present single-step ahead prediction, i.e. we predict 

one step into the future given real (measured) values as input. The whole time 

series are divided into two parts: training set and testing set.i 

Performance Measure 

A measure of fit is given by the Root Mean-squared Error(RMSE) of the testing 

dataset, i.e. 

1 N 
Rmse = . i Y M t ) - 着 (5-10) 

\ t=i 

where x(t) is the true value of the sequence, x(t) is the prediction. N is 

the number of data points in the testing set. The prediction accuracy of naive 

predictor is defined as 

1 Training and testing sets mentioned in this chapter are different to those in NNs training. 
Here since ForeNet hasn't been trained by the learning algorithm, the training set is not 
used for adjustment of parameters in the model. Using testing set in this chapter is only for 
purpose of comparison with the performance of ForeNet with training in the later chapter. 
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1 N 
R M S E 皿 — - . - — x{t - 1))2 (5.11) 

\ t=i 

where where x{t) is the true value of the sequence, and x{t — 1) represents 

the prediction. 

We used the Root Mean Square Error to compare the results. Also, we 

used another common method for examining prediction results, that is to plot 

the predicted curve along with the correct curve. There are usually two main 

errors which can be found from the plotted curves, amplitude error and phase 

error. Amplitude error shows that the amplitude of the predicted curve is 

smaller or larger than the amplitude of the true curve. Most of the phase 

errors are lagging phase errors, i.e. the predicted curve lags the actual curve. 

Phase errors may be due to frequency errors. These two types of error cannot 

be reflected individually in RMSE. 

Prediction Steps 

As we have mentioned, since only one variable, i.e.p exists in the recursive 

prediction equation (4.4)，it is much convenient to perform predictions with 

Equation (4.4) than with the unfolding form (5.7). There are several steps 

involved: 

• choose the number of hidden units, p, which is a positive integer value, 

to get the value of an and fin. 

• choose the initial value for hn. Observed from the unfolding form, the 

value of hn decays exponentially as the time increases. So is set 

randomly between —1 and 1. 

• perform the Equation (4.4), 
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- i n p u t the current time series value, calculate the current h: 

hn{t) = hn(t — l)an + Oc{t)/3n 

- c o m p u t e the predicted next time step value: 

- u p d a t e 

- R e p e a t till whole training series are processed. 

• use the fixed parameters to perform prediction on testing series. 

5.3.2 Prediction of Sunspot Series 

Sunspots are dark blotches on the sun. They were first observed around 1610, 

and yearly averages have been recorded since 1700. The series is shown in 

Figure (5.3). The time between maxima ranges from 7 to 15 years and is 11 

years on average. The exact underlying mechanism for sunspot appearances 

has not been known. The sunspot series has served as a benchmark for time 

series prediction problems in the statistical and connectionist literatures. 

In the experiment, we normalize the data to be in the range [0,1.0]. The 

whole dataset is tabulated from 1700 to 1979 and is partitioned into a training 

set from 1700 to 1920 and a testing set from 1921 to 1979. Various p are 

provided to predict sunspot behavior. 

Results 

For purpose of illustration, Figure (5.4) shows the testing error as the value 

of p increases. When p 二 3, the model is the "best" model^ for prediction. 
2 When we talk about a best model, we will mean the model that has the least root mean 

square error in its one-step-ahead forecast. This is a convenient but basically arbitrary 
criterion. 
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— M e t h o d p二3 p=4 p=6 p=IO~ 
proposed methocT 0.0874 "oTlQGl 0.1391" 0.3279 

~ a i v e predictor 0.1116 0.1116 0.1116 0.1116" 

Table 5.1: Root mean square error on sunspot series prediction 

The training and testing results with p = 3 are indicated by the upper and 

lower panels respectively in Figure (5.5). The one-step ahead prediction root 

mean square errors (RMSE) are shown in Table (5.1). In the table, we also 

compare the proposed model with the naive predictor. 

When p 二 3 and p = 4 are chosen, the model outperforms the naive pre-

dictor according to errors in Table (5.1). In Figure (5.5) we illustrate the 

prediction curve using the best model with p = 3. Compared with the true 

curve, the predicted curve did well in amplitude prediction but lagged the ac-

tual curve. 
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Figure 5.4: Illustration of the testing RMS error on sunspot series using dif-
ferent values of p 
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Figure 5.5: Prediction performance of the proposed model. The solid line 
represents the true series and the dotted line is the model output. 
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Hidden memory analysis of sunspot data 

To characterize some essential properties underlying the data, Weigend et al. 

varied the input delay vector length of a standard MLP and observed the re-

sulting performance of sunspot prediction [71]. They estimated the dimension 

of the recursion around 12 and pointed out that for the sunspot data, three 

degrees of freedom suffice to characterize a point on the solution manifold of 

the underlying, unknown system. Similar results are also found in [2]. As to 

our experimental results, we found that using 3 Fourier coefficients to recon-

struct original time series recursively can achieve the optimal solution in terms 

of prediction error on testing data set. 

In our model, we build the hidden state vector h{t) during iterations of the 

equation based on the previous input values x{t). When the iteration com-

mences, the internal state of the model /i(0) is randomly set, so the memory of 

past observations are gradually built up during the iterations. When reaching 

the enough iterations, i.e. the internal memory contains a full representation 

of the previous data to do prediction, the model becomes convergence. And at 

the moment, the number of iterations needed is considered as the embedding 

dimension (number of past values). For sunspot series, we plot the training 

curve in Figure (5.6). The upper panel shows the true output and model 

output. The lower panel is errors when time is from the beginning to the last 

training data. We randomly initialize the value of h between —1 and 1. Note 

the transient exists at the beginning of training and its effect will become neg-

ligible as is the case in the limit in Equation (5.7), and the prediction errors 

decay as the network becomes the steady-state mode. It is found from two 

graphs that after 11 time steps the model approaches stable state. It also in-

fers that 11 past data are enough to build the effective memory in the system 

to predict the series value at the next time step. And in fact, 11 is roughly 
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Figure 5.6: Illustration of transient when starting training iterations 

the period of sunspot series. 

5.3.3 Prediction of Mackey-Glass Series 

Mackey-Glass series 

Mackey-Glass chaotic time series is generated by a delay differential equation 

Mackey and Glass, 1977 

警 = - ( 5 . 1 2 ) 

The parameter t is the time variable, x is a function of t, and a, b and r are 

constants. We set a = 0.2 and b = 0.1. Different values of r produce various 

degrees of chaos. We use the delay r = 17, which is just beyond the onset 

of chaos. Solving Equation (5,12) yield the time series x{t). Mackey-Glass 

series is chosen to show model performance with high dimensional systems, 
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— Method p=3 p=4 p=6 p=10 
proposed method 0.0474" 0.0128 0.0339 0.087^ 

naive predictor 0.0228 0.0228 0.0228 0.0228 

Table 5.2: Root mean square error on Mackey-Glass data prediction 

and it possesses many dynamic properties. The prediction equation is used for 

one-step ahead prediction. For comparison, r = 30 is also used to generate 

the series for prediction. The whole dataset consists of 1000 data points. The 

first 600 points are used for training, and the remaining 400 are testing data. 

Results and Analysis 

Figure (5.7) demonstrates that how the different values of p effect the model 

prediction performance. The left pane illustrates the results with delay r = 17 

and the right one is on the series generated by r 二 30. For two series, both 

using p = 4 built the optimal prediction model. And the figures implicate 

that to predict two series with different degrees of chaos, the model behaviors 

with various values of p are very similar. When p begins from value 1, the 

testing error is decreasing till p becomes 4, thereafter, with p increases, the 

model error also becomes larger. The model uses the same parameter {p = 4) 

achieve the optimal predictions on two Mackey-Glass series. In Figure (5.8)， 

Mackey-Glass time series and the model predicted series are shown. Both are 

done with p 二 4. We can see that in this case, not only the magnitude of the 

series fit well, but the frequency of the extrapolation curve is almost equal to 

that of the correct curve. In Table (5.2), we also compare the proposed model 

with the naive predictor. Only using p = 4, the model can do better than the 

naive predictor. 
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Figure 5.7: Illustration of the testing RMS error on Mackey-Glass series using 
different value of p. The left pane illustrates the results with delay r = 17 and 
the right one is on the series generated by t = 30. 
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Figure 5.8: Prediction performance of the proposed model. The left pane is 
Mackey-Glass series with r = 17 and the right pane shows series with r = 30. 
The solid line represents the true series and the dotted line is the model output. 
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5.3.4 Prediction of Laser Data 

Laser data 

We also test the Fourier recursive prediction equation on the laser data of the 

Santa Fe competition[70]. The data set consists of laser intensity collected 

from a laboratory experiment. Its behavior is chaotic as seen in Figure (5.9). 

This data set is chosen because 

• they are a good example of the complicated behavior that can be seen in 

a clean, stationary, low-dimensional non-trivial physical system for which 

the underlying governing equations dynamics are well understood. 

參 the data set is short; in many fields, such as economics, the data sets 

may only be a few hundred points long. The data set that was known to 

have low-dimensional dynamics to use as a test case for analyzing short 

data sets to help make the task more manageable. 

• it is very predictable on the shortest time scales (relatively simple oscil-

lations), but that has global events that are harder to predict. 

We adopted total 1500 data points. The first 900 points are for training 

and the following 600 are for testing. 

Results and Analysis 

The Figure (5.10) suggests using p = 1 can achieve the optimal prediction. 

The Figure (5.11) illustrates the training and testing results. 

The number of time delays (or the order) of the AR model that makes 

successful predictions provides an upper bound on the minimum embedding 

dimension [70]. For the laser data, according to the experimental results p = 1 

is clearly better than other values. Let observe the Figure (5.12), where the 
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Figure 5.9: Laser Series 

Proposed Model Naive Predictor 
RMSE on testing set 0.4973 0.6664 

Table 5.3: Root mean square error on laser series prediction, with p = 1 

upper graph shows 7 past points can build up the effective memory to do 

prediction, and the lower graph is the weighting of input data at different time 

steps when p is set to 1, which also shows after 7 time steps, the effect of 

input vanishes. Both indicate that when p = 1 used in the model, accordingly 

hidden dimension would he M = 7. Let we observe the laser series. It is 

obvious that there are two “ dominant" periods in the series: one is very short 

but the other is much longer so that it cannot be easily detected using the 

limited data points. And the ForeNet is a local model, so in stead of learning 

the long trend of time series, the model catches the short period and consider 

it as the “ dominant" period, which is around 7. In [71], weigend showed when 

the number of delays d — 6 the model had the lowest out-of-sample errors. 
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Figure 5.10: Illustration of the testing RMS error on laser series using different 
values of p 
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Figure 5.11: Prediction performance of the proposed model using p = 1. 
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Figure 5.12: The first figure shows a portion of training series, the correct 
curve (solid line) and the model output (dotted line). The second figure is the 
weighting of model inputs with time increases. 

5.3.5 Three More Series 

Series Description 

Some more experiments are demonstrated in this part. Consider the following 

time series: 

• Time-varying sinusoidal series (Figure (5.13)), which is generated from 

the equation: 

y{t) = sin{wtt) t = 1,2, ...n 

where Wt — 0.0081尤 is the frequency varying with time, n is set to 600. 

The first 300 data is specified as training data, and the following 300 

data is used as testing data. 

• The sinusoidal series with noise generated from the equation: 

y{t) = sin{wt) + a 
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where a uniformly distributed random value a in the interval [—0.5, +0.5 

is added to the sin function at each time step. And w = 1, “ s from 1 

to 200. The first 100 points were used as training data. The next 100 

points were testing data. Figure (5.13) shows the series. 

• Computer-generated series. It is also from the Santa Fe competition[70 • 

The series was generated by numerically integrating the equations and 

has nine degrees of freedom. From the data file, we choose 1000 data, 

using 600 points for training and 400 for testing. 

Results and Analysis 

The model performance depends on the various values of p, as shown in Fig-

ure (5.14). The model did best when using p = 2 to predict noisy sinusoidal 

series; using p = 3 to predict the time-varying series and using p = 4 to predict 

computer-generated series. It is noted that the series with shorter hidden pe-

riod have smaller p to do prediction, which also means that the model need the 

small number of embedding dimension (the number of past values) to compute 

value at next time step. 

Table (5.4) is the comparisons between the proposed model (with "optimal" 

p) and the naive predictor. And Figure (5.15) and Figure (5.16) illustrate the 

training and testing curves respectively. We can find that the model can detect 

the changes of the frequencies in series well according to the prediction results 

on time-varying sinusoidal series shown in Figure (5.15). And it can also do 

well in the noisy series prediction. 
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time varying~ noisy sinusoidal computer 
sinusoidal series series generated series 

"proposed m e t h ^ 0.1951 0.2931 — 0.0501 — 
value of p 3 2 4 

~ naive predictor 0.342 0.4795 0.0635 

Table 5.4: Root mean square error on time series predictions 
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Figure 5.13: Two sinusoidal series 
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(c) time-varying sinusoidal series 

Figure 5.14: Illustration of the testing RMS error using different values of p. 
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Figure 5.15: Prediction performance of the proposed model on time-varying 
sinusoidal series. The solid line represents the true series and the dotted line 
is the model output. 
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Figure 5.16: Prediction performance of the proposed model on computer-
generated series. The solid line represents the true series and the dotted line 
is the model output. 
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5.4 Some Implications on the Proposed Ini-

tialization Method 

We would like to point out some more implications on our proposed model 

based on the derivation of the prediction method and the experimental results. 

• It is mentioned that the series with shorter hidden period have smaller 

p to do prediction. It is not surprising that with smaller value of p the 

model can do better on time series with shorter "period". It may be 

because of the following relationships: 

- T h e smaller p in the model is related to the relative less embedding 

dimension of the time series; 

- T h e embedding dimension of a given time series has somehow cor-

respondence to the “ dominant period" of the time series. So shorter 

period is related to smaller embedding dimension which is needed 

to reconstruct the given time series. 

• Most of the phase errors we found are lagging phase errors; the predicted 

curve lags the actual curve. Phase errors may be due to frequency errors. 

In the proposed model (Equation (4.4)), the intermediate states h{t) are 

complex values, which include both magnitude and phase information. 

Therefore, one can consider when the prediction is processed, the am-

plitude error is introduced by estimations of the magnitude of variables, 

which are related to the selection of p. And the phase error is due to the 

estimation on the phase of variables. As we known, to reconstruct a time 

series, it is important that the phases be symmetrized in such a way that 

the inverse Fourier transform is real and the power at each frequency is 

unaffected. However, in the most cases, using fourier transform to re-

cover original time series cannot satisfy such vital condition since only 
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some frequencies can be used. But in our proposed method, we have 

shown that some approximations were made to remedy it. Thus, one of 

advantages of the proposed complex-valued model is that the changed 

phase information in time series may be detected. This can be verified 

by the above experiments. Especially when observing Figure (5.15), the 

model can catch the phase changes with time. Thus the predicted curve 

has small phase error although with obvious amplitude error. 

• The proposed model is a local linear model, which is trying to divide the 

data set to smaller sets and each is modelled by Fourier analysis. The 

k nearest past data points are decomposed into several frequency coef-

ficients, which are then reconstructed to forecast the value at next time 

step. Such local linear model is able to capture the geometry well. So its 

advantage is the ability of adhearing to the local shape of an arbitrary 

surface; the corresponding disadvantage is that it may be insufficient to 

understand the global characteristics of the underlying system. 

• The prediction performance of the proposed model is dependent on both 

the coefficients and the nature of given time series, including the length 

of the data set, the sampling rate, and the embedding dimension. From 

all performed experiments, we found that the proposed model usually 

do worse predictions on those time series whose dominant frequencies 

are high in terms of the phase error and the amplitude error. And usu-

ally the small p is selected to predict these time series, including laser 

series, noisy sinusoidal series and sunspot series. Such phenomena may 

be caused by the approximations introduced during model derivation, 

that is, we assume the "important" parts of the series are with low fre-

quencies. In linear systems, such assumption is often safe. However in 

nonlinear systems, for example laser series, the important part of the sig-

nal often cover the entire spectrum (shown in Figure (5.17)). Therefore, 
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such assumption makes some information of signal lost. It is also one 

shortcoming of our approach. 

• If ForeNet hasn't been trained, the internal memory is nonadaptive, and 

it is not appropriate for most time series. In the later chapter, we will 

train ForeNet to make its internal memory adaptive with time. 

• The first several data points in time series is used to initial an internal 

memory of the model. We have realized that the internal memory plays 

an important role in time series prediction. We can control the model's 

memory by setting different value of p. However, it is difficult to exactly 

decide how many training points should be chosen, as the length of the 

transient will depend on both the nature of time series and the model 

parameters. When we apply ForeNet to a test set in the next chapter, 

we will not set the internal hidden state to zero before starting the iter-

ations. That is, we always choose the test series to immediately follow 

the training series. When estimating the generalization error, iterations 

are initiated on the proceeding training series in order that the internal 

memory of the recurrent networks has been properly built. 

• The last implication is the weights involved in the recurrent network 

are no longer real but complex. Traditional BPTT or RTRL learning 

algorithms are not applicable. In the later chapter, we will propose a 

complex-valued recurrent learning algorithm to train ForeNet 
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Figure 5.17: Discrete Fourier Transform of the laser series 



Chapter 6 

ForeNet: Learning Algorithms 

We have proposed a recurrent network structure whose parameters are complex 

values and constructed to perform the predict task. In the previous chapter, 

we analyse the property of Fourier Recursive model, i.e. ForeNet model with-

out training. This chapter shows the algorithms for adjusting the parameters 

of ForeNet The learning is based on a sample of time series input/output 

pairs {x{t),x{t + 1)) for t = 1,2,..., Â  - 1. The most widely used algorithm 

for training Recurrent Networks is the Real Time Recurrent Learning (RTRL) 

algorithm proposed by Williams and Zipser [75] as described in Chapter 2. 

However, RTRL is not suitable in our case to process complex parameters 

because it assumes all parameters are real-valued. Thus we are showing the 

learning algorithm for the complex-valued recurrent network. 

There are two steps in our learning process. The first one is the network 

initialization which has been described in Chapter 4 5. The second is the 

training of the network using the modified complex RTRL algorithm. We 

introduce here two basic weight-update methods, bath-mode learning and on-

line learning. 

67 
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6.1 Complex Real Time Recurrent Learning 

(CRTRL) 

The Complex RTRL algorithm was proposed in [38] to train Fully Recurrent 

Networks. In this section, CRTRL is modified to suit our model. Real and 

complex numbers are denoted by lower and upper case letters. The real and 

imaginary parts of a complex number W is denoted by wr and w! respectively. 

Consider a RRN with p inputs, n hidden units and m output units. We use P, 

N and M to denote the set of input units, the set of hidden units and the set 

of output units respectively. All units are interconnected as described above. 

The cost function is 

= \ E 4 � (6-1) 
UkEM 

where 

e,(t) = B,(t)-n(t) (6.2) 

and 

Vk(t) = 2 X zjik(t) (6.3) 

ek(t) is the error of the k仇 output unit at time t. Dk{t) denotes the k仇 

target and Zk{t) is the k̂ ^ network output. Based on the prediction method 

of proposed semi-AR model, when we calculate the network error, we adopt 

two times of the real part of Zk{t) as network output. 

Forward Phase: For j 二 1,…,N 

+ 二 f(^WijYj(t) + Y^ WMt + 1)) (6.4) 
UieN UkEP 
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Zj{t + 1)= 恢jzKj•(力+ 1) (6-5) 
uiEM 

where 

Yj{t + 1) : output of hidden unit j at time t + 1; 

Wij : weights between hidden units; 

Wkj ： weights from input units to hidden units; 

Wji : weights from output units to hidden units; 

Xk{t + 1) : k仇 input at time t + 1. 

f ： denotes the linear activation function. That is, f{X) = X. 

Expressing this equation with the real and imaginary parts of Wij, Wkj, Yj 

and Xk 

VRjit + 1) = f i Y l {wRijVRjit) wujyij{t)) 
we" (6.6) 

+ + 1) - WikjXikit + 1))) 
Uk^P 

Learning Phase: Since e(t) is a real-valued function, we compute its gradi-

ent with respect to Wij 

de{t) ^ dejt) ^ .dejt) (6.7) 
dWij dvjRij dwiij ‘ 

Now, differentiating Equation (6.1), we get: 

= - 2 E e “力 

——2 E 幼 ( 6 - 8 ) 
OWiij t u OWiij 1” UkeNuM “J 

and differentiating (6.5), 

= (6.9) 
owRij dwRij 
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The weights between the hidden layer and the output layer are non-recurrent 

in our model and can be updated easily by error backpropagation. 

= + (6.10) 
OWRij 

where, Uk e M and ui G N. The weights to the hidden units are recurrent 

and we can propagate the error terms one step back from the output layer to 

the hidden layer and update the weights according to equation 

加剛 u% 〜 (6.11) 

where 
1 for Ui = Uk , \ 

S i k = { (6.12) 
0 for Ui + Uk 

\ 

In the similar way, we derive the recursive equation for 

Finally, the weight update equation becomes 

z X W z , � = + aAW,j(t — 1) (6.13) 

where, rj is the learning rate, a is the momentum coefficient and AWij (t) is 

the change in Wij at time t. The weight changes are calculated at each epoch 

along the way and take the full change as the time-sum of AWij � at the end 

of the training sequence. 

6.2 Batch-mode Learning 

There are two basic weight update methods, batch-mode and on-line learning. 

In batch mode learning, every pattern p is evaluated to obtain the derivative 
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dEp/dw. After all training pattern are inputted into the network, the total 

derivative can be obtained and only then the weights are updated[56]. An-

other method, on-line learning, will be described later in this chapter. And all 

experiments in the next section will be performed by batch-mode method only. 

The whole training steps of ForeNet are: 

(1) The coefficients of Fourier recursive model are adopted to initialize ForeNet 

(2) Learning phase 

• For every pattern p in the training set, 

—apply a pattern p in the training set, 

-calculate the pattern error Ep and the single-pattern derivatives 

dEp/dw. 

• Add up all the single-pattern terms to get the total derivative. 

• Update the weights according to CRTRL. 

• Apply the validation data set, calculate the validation error ey(t). 

• Compare to the validation error of the last training epoch. 

- I f ev{t) > ev{t -!)>•"> ey(t - n) >, stop training. 

- e l s e , repeat the learning phase. 

(3) Apply the testing set, use the trained model to perform the prediction. 

6.3 Time Complexity 

We have shown in Figure (3.1) that the recurrent links exist only in the hid-

den layer and all the feedback links are self-connections of hidden units. We 

define the degree of connectivity, q, which is equal to the number of incoming 

recurrent connections of each hidden unit. In ForeNet, q is 1 since only the 
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self-feedback loop exists. 

The computational requirements of ForeNet are mainly on the need to store 

and update the p ĵ values {p ĵ = For each element pf力 we go through 

Equation (6.11) once in each time step and there are q {q = 1 in our case) 

operations to get the updated value in (6.11). In our model, there are total 

n{p + q) weights in the hidden layer so updating Equation (6.11) in each time 

step needs the computational complexity of order 0{nq{q + p)) operations. 

Considering the other operations, the total computational complexity is order 

0{mn-\-nq{q-\-p)), that is order 0(mn + n), where m is the number of output 

units and n is the number of hidden units. The order of fully recurrent network 

(FRN) derived by Williams and Zipser[75] is 0{J^”, where N is equal to the 

number of non-input units. Compared to FRN, ForeNet has much smaller 

computational complexity. 

6.4 Property Analysis and Experimental Re-

sults 

In the following sections, we show properties of ForeNet by some experiments. 

The architecture of ForeNet is a 1 —p — 1 network (shown in Figure (3.1)), i.e., 

the network had one input unit, one output unit and p hidden units, where 

p can be determined by the proposed Fourier recursive model as described in 

Chapter 5. The activation function in the network is a linear function. As 

mentioned, ForeNet initialization is not randomly done. It performs based on 

Fourier recursive model. 

In the algorithm, the learning rate rj is set to 0.1 and the momentum co-

efficient a is 0.5. And the maximum learning iterations is set to 500. We 
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used the root mean square error (RMSE) to monitor prediction performance 

of the network. The whole data set is divided into three parts in sequence: 

the first is training data set (used for parameter estimation); the second part 

is validation set, which serves as the stopping criteria of training process to 

determine the stopping point before overfitting occurs; the last is testing data 

set. The network would stop training when the largest learning iterations are 

reached or the error on validation set becomes increase. 

Time Series 

We perform the prediction tasks on the following time series. 

• Mackey-Glass series generated from Equation (5.12). The series includes 

1000 data. The first 400 are used for training and the following 600 points 

are for validation and testing. 

• The laser series from the Santa Fe time series competition. The series is 

illustrated in Figure (5.9). The network is trained to perform a one step 

ahead prediction. All samples are scaled to zero mean and unit variance. 

There are 1500 points in laser series. The first 900 data are the training 

data. After training, we perform the forecasting on the following 600 

data. 

• Time-varying sinusoidal series (figure (5.13)). The first 300 data is 

specified as training data, and the following 300 data is used as testing 

data. 

• The sinusoidal series with noise. The first 100 points were used as train-

ing data. The next 60 data were used for validation. The remaining 40 

points were testing data. Figure (5.13) shows the series. 
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• Computer-generated series. We use total 1000 data, the 600 points for 

training and 400 for testing. 

All experiments are performed with MATLAB and running under UNIX 

OS, Solaris 7. We did the experiments for several times and reported their 

average performance in the following tables. 

6.4.1 Efficient initializationxompared with random ini-

tialization 

Objective 

We have proposed a NN initialization method that is based on the Fourier 

recursive model. In this section, we show the efficiency of such initialization 

for NN training. With the optimal NN parameters are determined, the initial 

error is substantially smaller and the number of iterations required to achieve 

the convergence is also significantly reduced. We perform the prediction tasks 

using ForeNet and for comparison, we also train ForeNet with randomly gen-

erated complex initial parameters. 

Results and Analysis 

Table (6.1) and (6.2) show the network performance using the proposed 

method and random initialization respectively. In the problem of Mackey-

Glass prediction, the proposed method generates the good initial parameters, 

which make the pretty smaller initial training error (0.0205) than that using 

randomly setting initial values (2.2589). The network convergent only after 

13 iterations with better generalization. The learning curves are shown in 

Figure (6.1)and Figure (6.2). Similar result can be found on laser series 

forecasting. The proposed initialization has small initial error thus speed up 
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the convergence speed. Figure (6.3) illustrates the different network perfor-

mance using different initial method, (a) and (b) present the network outputs 

computed with the proposed initialization, before training and after training 

respectively. From the graphs, we can see that the network output is very 

close to the target values even before training has been taken place. Further 

training only provides small fine tune to the results, (c) shows the correspond-

ing ForeNet'output with random initialization. Although this data set is a 

non-stationary series, our method is able to deal with the time-varying signals. 

From the prediction of noisy sinusoidal series, we find that the the proposed 

initial method seems get worse performance in terms of initial root mean square 

error than random initialization. But compared to random method, which take 

52 training iterations to convergent, the proposed method only use 18 iterations 

to achieve much better generalization according to the final RMS error. One 

may wonder why the model can get the fast convergence speed even with larger 

initial error. It has to be noted that RMS error measures network performance, 

but it show no indication of the closeness to the optimal point in the weight 

space. Thus small initial error does not necessarily imply better initialization. 

The efficient initialization methods should be those assigning the weights in 

the region not far away from the minimum. In addition, the region should not 

be flat if training is carried out by gradient methods. An efficient initialization 

can prevent the model from getting struck with the initial weights thus help 

to achieve good testing results. 
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series No.of Initial Testing No. of Time 
hidden units training error RMSE iterations taken (sec) 

Mackey-Glass 
series 4 0.0205 0.0102 13 63 

laser data 4 — 0.7449 0.5049 19 “ 142 
time-varying 

sine series 3 0.0746 0.1251 103 257 
noisy sinusoidal 

series 4 0.699 0.0729 | 18 | 24 

Table 6.1: The prediction performance of ForeNet with proposed initialization 

series Initial Testing No. of Time 
training error RMS error iterations taken (sec) 

—Mackey-Glass series 一 2.2589 “ 0.0558 198 — 866 
一 laser data _ 1.1961 “ 0.4784 202 1324 
time-varying sine series 0.9676 0.3203 ^ 184 

" l^isy sinusoidal series 0.6889 0.4285 52 60 

Table 6.2: The prediction performance of ForeNet with random initialization 
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Figure 6.1: The learning curve of ForeNet with proposed initialization 
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Figure 6.2: learning curve of ForeNet with random initialization 
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Figure 6.3: Predictions on time-varying sin series. 
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6.4.2 Complex-valued network:compared with real-valued 

network 

Objective 

The parameters in ForeNet are complex-valued and ForeNet is trained by 

complex-valued learning algorithm. As we known, a complex number provides 

not only the magnitude information but the phase state. Therefore a neuron 

with complex value has more representational power than a real-valued neuron. 

Moreover, Akira proved the behavior of complex-valued recurrent network is 

more stable than real-valued recurrent network[33]. For comparisons, we train 

a recurrent network with randomly generated real-valued weights. 

Results and Analysis 

Table (6.3) shows the training results using real-valued network. Comparing 

to Table (6.1), it is obvious that on the predictions of Mackey-Glass series, 

time-varying sinusoidal series and noisy sinusoidal series, the complex-valued 

network has more powerful computational ability in terms of testing error and 

training time. As to laser data forecasting, real-valued model achieve bet-

ter testing result (with RMS error 0.3906) than complex-valued model, whose 

testing RMS error is 0.5049. However, to perform the better prediction, real-

valued model took 32 minutes to convergent, which is much longer than com-

plex model, whose training time is around 3 minutes. 

In [76] [77], the authors used the phase of the complex value to represent 

multiple orientations in a recurrent network thus more stable population ac-

tivity patterns can be formed in the model. 
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series Testing RMSE Iterations Time taken (Sec) 
Mackey-Glass series 一 0.0601 500 “ 2117 

一 laser data 0.3906 “ 300 — 1868 _ 
time-varying sine series 0.2836 75 
noisy sinusoidal series 0.3267 500 

Table 6.3: The prediction performance of the real-valued RNN 

6.4.3 Simple architectureicompared with ring-structure 

RNN 

Objective 

Since ForeNet is a self-connected recurrent model, each hidden unit is con-

nected to itself only. Thus, compared with fully connected recurrent mode 

(FRN), the structure of ForeNet is very simple, and its simplicity also reduces 

the computational complexity. One may double the computational ability of 

such simple recurrent model. In [12], the author suggested a ring-structure 

locally recurrent model (RRN) and showed that it needs a much shorter time 

to train the RRN model and its performance is comparable to that of FRN. 

In this section, we test the computation power of our model. 

In order to verify whether other recurrent weights between hidden units 

are helpful to improve our model's performance, we also use a ring-structure 

recurrent model (shown in Figure (6.4)) to do the same prediction tasks. We 

do such verification in the following way 

• We assume in the beginning of training, RRN has the same architecture 

as ForeNet model. That is, in RRN, the weights constructed as those 

in ForeNet are initialized by the proposed method. The weights, those 

from hidden units to their two nearest neighbors, are set to zeros at the 

beginning of training. 



Chapter 6 ForeNet: Learning Algorithms 80' 

• RRN is also trained by the proposed CRTRL algorithm. All recurrent 

weights are updated in the same way. 

Results and Analysis 

We demonstrate here three prediction tasks: the sinusoidal series with noise; 

Mackey-Glass series; laser series. Table (6.4) and Table (6.5) show the pre-

diction results. The results presented are the root mean square error of testing 

data, the number of iterations required and the training time taken. The pre-

dicted three curves are shown in the Figure (6.5) and Figure (6.6). 

The learning speed of self-connected model is faster than ring-structure 

model according to the number of iterations required and the training time 

taken. In Mackey-Glass prediction task, RRN needs more time than ForeNet 

in order to achieve the same generalization error. The advantage of the conver-

gence speed is more obvious in laser series prediction problem, which includes 

a large training data set (1500 data points). The additive recurrent links in-

crease the computational complexity of the model, and RRN requires almost 

double time to convergence. As to the generalization ability, from the tables, 

the self-connected recurrent model outperforms the ring-structure recurrent 

model in terms of the root mean square error. Thus, ForeNet with only self-

connections in the hidden layer is practically more useful especially in the tasks 

involved a large number of training data. 

6.4.4 Linear model: compared with nonlinear ForeNet 

Objective 

In the proposed ForeNet, all units are linear. That makes the recurrent model 

very simple. In the previous chapters, we have proved that such simple linear 
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series No. of RMS Error No. o f T i m e taken 
recurrent links iterations (sec) 

noisy sinusoidal series 4 0.0679 22 ^ 
Mackey-Glass series 4 0.0102 13 63 

laser data 4 0.5049 19 142 

Table 6.4: Prediction performance of the model with self-connection in hidden 
layer 

series No. of RMS Error No. o f T i m e taken 
recurrent links iterations (sec) 

noisy sinusoidal series 12 0.1041 ^ 26 
Mackey-Glass s e d ^ 12 0.0102 13 81 

一 laser data 12 0.5139 23 219 

Table 6.5: Prediction performance of the model with ring-structure in hidden 
layer 

At� 
/ \ 

input layer 、\ I y/ output layer 

、一 
hidden layer 

Figure 6.4: Ring-structure Recurrent Model (RRN) 
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Figure 6.5: The prediction performance of ForeNet with self-connection in the 
hidden layer. The solid line represents the correct outputs and the dotted line 
shows the network output. 
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Figure 6.6: The prediction curves of the model with ring-structure in the 
hidden layer. The solid line represents the correct outputs and the dotted line 
shows the network output. 
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model also has power computational ability. Some interesting aspects of lin-

ear NN models have been proposed in [5]. However, since a linear model can 

only represent linear input-output mapping, one may consider using nonlinear 

units in ForeNet to achieve better generalization, especially to high nonlin-

ear time series problems. In this chapter, we will show the nonlinear ForeNet 

model and its computation ability and discuss whether it is suitable in our case. 

Architecture of nonlinear ForeNet 

As described in chapter 3，in ForeNet model, the activation functions in hid-

den layer and output layer are both linear functions, which are derived based 

upon the Fourier recursive equation. In order to extend the linear model to 

the nonlinear model, one common way is to define the activation function as 

one nonlinear function. In our case, when finding a proper nonlinear transfer 

function, we consider it as the follows. 

Based on the linear Fourier recursive equation (4.4), ForeNet model was 

proposed with linear activation functions, both in initialization stage and train-

ing stage. And because of the proposed initialization method, the network can 

attain faster convergence and better generalization. Therefore, in order to 

preserve the advantages of proposed linear modelling, the nonlinear function 

should be properly defined. That is, should we use nonlinear activation func-

tion on hidden units directly or on output units? 

As we analyzed before, in the proposed equation (4.4)，the recursive vari-

able h plays an important role. Moreover, the linear aspect of the recurrent 

units make the network more stable. Thus it suggests to preserve the linear 

transfer function on the hidden units. Further, because the time series x{t), 

t — 1,2, ."” could be any value, a linear transfer function is needed in the 
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Hidden layer 
J. Nonlinear 

function 

input J / ( • ) I Output layer 

Figure 6.7: Architecture of the nonlinear ForeNet model 

output layer. From the above discussion, we add a nonlinear function between 

hidden layer and output layer as shown in figure (6.7). The activation function 

on hidden units is linear, and the outputs of hidden layer have been feeded 

back before entering into a nonlinear transfer function /(•). After the nonlin-

earity, all signals are summed with different weights in the linear output layer. 

Similar feedback architecture was discussed in [64 . 

We choose a “ symmetrical" nonlinear function, whose outputs are between 

-1 ,1] . Thus ForeNet becomes: 

z{t) = 2 X 
N 

y{t) = E 肩 稱 
j=i 

hj{t) = Wjjhj{t - 1) + Wkjx{t) (6.14) 

where /(•) = tanh(-). 
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Learning Algorithm and Simulation Results 

Similar to learning algorithm for linear ForeNet model, to train the model 

with nonlinear activation function, there are two steps in our learning process. 

The first one is the network initialization which is a linear method the same 

as described in the previous chapter. The second is to train the network using 

the modified complex RTRL algorithm. 

Our simulation results are summarized in Table (6.6), we present the 

out-of-sample Root Mean Square Error (RMSE) for ForeNet with linear and 

nonlinear activation functions respectively. 

From the results, we find that for laser series prediction, the additive non-

linear function in the model can help to improve the ability of learning and 

prediction in terms of training time and testing root mean square error. In 

the case of noisy series prediction, the nonlinear ForeNet can get better gener-

alization ability, but it needs more training time to convergent. Similarly, for 

sunspot data forecasting, the nonlinearity seems to be helpful to achieve bet-

ter generalization according to the smaller testing error compared to one using 

linear ForeNet However, the network used 167 iterations to convergent. That 

is more than 10 times longer than the training time of the linear model. The 

same situation can be found in Mackey-Glass prediction. Compared to the lin-

ear model, which is convergent after 63 seconds with error T R M S = 0.0102, 

the nonlinear model paid much more time (450 seconds) to achieve a little 

better generalization (TRMS = 0.0097). As to the prediction of time-varying 

series, the nonlinearity worked even worse than the linear model, no matter in 

the aspect of convergence speed or generalization ability. 

From the experimental results, we show that the nonlinearity in NN can 
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M t i d Testing No. of Time 
RMS error RMS error iterations taken (sec) 

laser data 
linear ForeNet 0.7449 0.5049 19 142 

nonlinear ForeNet 0.7599 0.4703 108 

sunspot series 
linear ForeNet 0.0401 0.0885 14 ^ 

nonlinear ForeNet 0.0717 0.0824 m 299 

Mackey-Glass Series 
^l inear ForeNet 0.0205 0.0102 13 ^ 

nonlinear ForeNet 0.0216 0.0097 438 

time-varying sine series 
^l inear ForeNet 0.1251 103 W l 

nonlinear ForeNet 0.0749 0.1633 ^ 1226 

noisy sinusoidal series 
linear ForeNet 0.699 0.0729 18 U 

nonlinear ForeNet 0.6526 0.0436 ^ 59 

Table 6.6: The prediction performance of the linear and nonlinear model on 
different time series. 
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be helpful to forecasting time series, especially to predict highly nonlinear 

or noisy time series such as laser series and noisy sinusoidal series. But we 

argue that the nonlinearity in NN does not always provide more powerful 

computation than linear NN model, especially in our case, the linear model 

is built with the specific purpose. Recently, many methods with linear or 

semilinear transfer functions have been studied, such as [73] [20] [30]. And in [5], 

the author mentioned that from the standpoint of theoretical biology, certain 

classes of neurons may be operating most of the time in a linear or quasi-

linear regime and linear input-output relations seem to hold for certain specific 

biological circuits (see [58] for an example). Moreover, usually the nonlinear 

transfer function has lower and upper saturation limits, then the dynamics 

may be bounded. 

6.4.5 Small number of hidden units 

Objective 

As we known, in Recurrent Neural networks, with the increasing of number of 

hidden units, the generalization ability of RNN is also improved ignoring ac-

cordingly increased computation time. However, we have shown in Chapter (5) 

the weights are related to the number of hidden units, thus the different num-

ber of hidden units make the different initialization performance of ForeNet 

That means the relationship between hidden units number and computation 

ability may not exit in our model. 

In order to analyze this relationship and find a trade-off between them, we 

design some experiments. We use the ForeNet model with various number of 

hidden units and test their prediction. We illustrate here the number of hidden 

units, the initial training error, the generalization error and training time. 
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Results and Analysis 

Table (6.7) shows the training results. When 10 hidden units are used in the 

model, the error after network initialization becomes significantly larger and 

finally the network achieve much larger prediction error. Also, because the 

initial state may be farther away from the local minimum, using the increased 

hidden units need more training time to convergent according to training iter-

ations. Such cases are in the prediction of time-varying series, noisy sinusoidal 

series and Mackey-Glass. 

From thees experimental results, we find that increasing the number of 

hidden units in ForeNet may not improve its prediction ability. It is because 

the number of hidden units implies the embedding dimension of the time se-

ries. And It is obviously when the estimated dimension is close to the true 

dimension, the model is near to local minimum. 

The special case is appeared in laser series prediction. Using 1 — 10 — 1 

model, the network can achieve better generalization in terms of testing error 

with the comparative training time. Since ForeNet use linear transfer function 

which makes its limitation on handling high nonlinear time series. Thus, by 

adding the number of hidden units, the network improves its computation 

power which helps to solve high nonlinear problem. 

6.5 Comparison with Some Other Models 

In the above sections, we showed some properties of proposed prediction model 

ForeNet. In this section, we will compare ForeNet with AR model, TDNN Net-

work and FIR Network. The brief descriptions of AR model, TDNN Network 

and FIR Network can be found in chapter 2. 
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No. of Initial Testing No. of Time 
Hidden Units RMS error RMS error iterations taken (sec) 

Laser data 
4 0?7449 0.5049 19 142 
10 0.7638 0.3601 164 

Mackey-Glass series 
4 O m 0.0102 l3 ^ 
10 0.0401 0.0127 ^ 2564 

Time-varying sine series 
3 00746 O l m 103 Wf 
10 0.1951 0.3162 765 

Noisy sinusoidal series 
4 0.0729 18 U 
10 0.5620 0.0848 13 29 

Table 6.7: The prediction performance using various number of hidden units 
in ForeNet 
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6.5.1 Comparison with AR model 

First, we do the comparison between AR model and ForeNet model. Recall 

the general AR model: 

M 

X � = ^ amx{t - m) + e � （6.15) 
m = l 

where M is the order of AR model. e{t) represents either a controlled input 

to the model or noise. 

Compared the ForeNet with AR model, since there is only one input in 

the model, the proposed model is similar with AR model with one order, i.e. 

AR(1) model. However, in our model, the coefficients are represented by the 

complex values. 

For comparisons, AR(1) model is implemented with MATLAB. The coef-

ficients in AR model are estimated by a set of training data using the least-

squares algorithm. After determination of the coefficients, AR model then is 

applied to do prediction on a set of testing data. In order to show the ability 

of high order AR model, we provide the prediction results of AR(16) model. 

Here we use ForeNet without training to do the same prediction tasks. 

Results and Analysis 

We test on five time series. And we use Root Mean Square Error on testing 

data as measurement. The results are shown in Table (6.8). It is easy to find 

that ForeNet outperforms AR(1) model on all five series. AR model with only 

one order seems difficult to model the given series, which may be caused by 

insufficient memory. But since in our model, there are p hidden units, which 

all act as the storage of the information from past data, thus only using one 

input variable, it can contain and present more efficient memory for prediction. 
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methods ForeNet before training AR(1) model AR(16) model 
Mackey-Glass 

series 0.0128 0.038 2.4Q9e-Q4 
Laser 
data 0.4973 0.8267 0.3579 

Sunspot 
data 0.0874 0.1546 0.0907 

noisy sinusoidal 
series 0.2931 0.5968 0.0060 

time-varying 
sinusoidal series 0.1951 0.5071 0.0106 

Table 6.8: Comparisons of prediction performance among ForeNet, AR(1) 
model and AR(16) model. 

When we increase the order of AR model from 1 to 16，as shown in Table 

(6.8), AR model shows its prediction ability more powerful than our model 

on Mackey-Glass series, Laser data, noisy series and time-varying series. It 

is not surprising that systematically increasing the order of AR model, the 

model will fit the time series better. Nevertheless, it is unfair to compare an 

AR(16) model with our model which has one order. Moreover, the selection 

of "right" order of AR model is also a tough task since too large order may 

induce over-fitting problem [25], that is, the fitting error on the measured data 

decreases, but the test error of the forecasts beyond the training set will start 

to increase. Comparing the testing error using ForeNet and AR(16), we found 

that our model can still get better generalization than AR(16). In this case, 

AR(16) may be fitting extraneous noise in the series. 
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6.5.2 Comparison with TDNN Networks and FIR Net-

works 

In this section, we will compare the prediction performance of ForeNet with 

TDNN Networks and FIR Networks. The comparison is done by forecasting 

two time series, Mackey-Glass series and Laser series. Here we use the predic-

tion results from [9 . 

In the case of Mackey-Glass series prediction, the architecture of TDNN 

was 5 — 5 — 1, that is, 5 input units, 5 hidden units and 1 output unit. The 

architecture of FIR network was 1 - 5 - 1 with 5 taps in the hidden layer and 

5 taps in the output layer, respectively. As to ForeNet, we use a 1 — 4 — 1 

model. The simulation results are shown in Table (6.9). It is shown our model 

outperforms other two models in terms of testing root mean square error. 

As for Laser data forecasting, in [9], the authors used a 1 — 12 — 12 - 1 FIR 

network with 25 taps in the first hidden layer, 5 taps in the second hidden layer 

and 5 taps in the output layer. TDNN with a delay line of 25 nodes and 12 

nodes in the first and second hidden layer were chosen. We still use 1 - 4 — 1 

ForeNet model to perform the same prediction task. Table (6.9) shows the 

RMS error on testing set. TDNN and FIR networks performed nearly equal 

in one step ahead prediction. But ForeNet did the best prediction with the 

smallest error 0.5049. 

There were two hidden layers in both TDNN and FIR networks, and they 

used a large number of neurons in the networks, which can increase their 

computational ability. And in our model, there is only one hidden layer with 

4 hidden units. Though the model size of TDNN and FIR networks is much 

larger than that of ForeNet, ForeNet still demonstrates best generalization 
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methods ForeNet TDNN Networks FIR Network^ 
Mackey-Glass series " "OOlO^ 0.102 “ 0.0624 

Laser data 0.5049 0.738 0.762 — 

Table 6.9: Prediction performance comparison among three networks. 

ability among these three networks, and shows its efficient learning ability 

with a small model size. 

6.5.3 Comparison to a few more results 

In this section, we survey the best results on the prediction of sunspot data ob-

tained by other methods. Following previous publications[63, 71], comparisons 

are made on the basis of the average relative variance (ARV), given by 

义丑V 二 ⑴—到力))2 (6-16) 
t—1 

where x{t) is the true value, x{t) is the prediction, and is the variance 

of the true series over the prediction duration N. 

Table (6.10) illustrates the one-step-ahead prediction ARV measures for 

ForeNet and two standard benchmark models for the sunspots, namely the 

TAR model[63] and the multilayer perceptron[71]. In this table, we also show 

the number of adjustable parameters needed by each model. The ForeNet 

model seems to offer no dramatic advantage over a multilayer perceptron in 

terms of training error and prediction performance on the first testing set 

1921 — 1955. Due to the nonstationarity of the time series, for TAR and MLP 

models, the performance on the second testing set drops largely, thus the 

ForeNet achieves the best prediction on the data from 1956 to 1979. Further, 

the number of parameters in our model has been significantly reduced from 43 

to 13. 
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Model Training set Testing set Testing set number of parameters 
(1701-1920) 1921-1955 1956-1979 

TAR model “ 0.097 0.097 “ 0.280 “ 18 
MLP 12 X 3 X 1 0.082 0.086 0.350 43 

—ForeNet 0.09 0.11 0.17 13 一 

Table 6.10: Prediction performance comparisons 

6.6 Summarization 

In the previous sections, we predicted several time series with various training 

methods and models. Table (6.11) shows the comparisons among different 

learning methods on the forecasting of 4 time series, i.e. laser data, Mackey-

Glass series, time-varying sinusoidal series and noisy sinusoidal series. In this 

section, we summarize the performance of ForeNet on the prediction of the 

series with different properties: 

• Series with noise. Such data include noisy sinusoidal series and Mackey-

Glass series. From the table, we show that in the case of noisy time series 

prediction, the performance of ForeNet is not as good as that of model 

with nonlinear activation function in terms of RMS error. However, for 

the clean time series, such as time-varying sinusoidal series, ForeNet can 

demonstrate the best generalization. 

• Series with nonstationary property. Such series include time-varying si-

nusoidal series. As shown in the table, ForeNet model with the proposed 

learning method can get good prediction results on the nonstationary 

time series. 

• Series with nonlinearity. Laser data is highly nonlinear time series. We 

found that linear ForeNet model has the limitation on handling such 

series. Using the nonlinear function in the networks or increasing the 
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number of hidden units can both help to improve the prediction ability 

of ForeNet. 
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Methods Initial Testing No. of Time 
RMS error RMS error iterations taken (sec) 

Laser data 
ForeNet with 

proposed initialization 0.7449 0.5049 19 142 
ForeNet with 

random initialization 1.1961 0.4784 ^ 1324 
—Real-valued ForeNet 0.668 0.3906 300 1868 “ 

Ring-structure 
Recurrent networks 0.7449 0.5139 ^ 219 
nonlinear ForeNet 0.7599 0.4703 15 108 

一 AR(1 ) model - 0.8267 — _ 

Mackey-Glass 
ForeNet with 

proposed initialization 0.0205 0.0102 13 63 
ForeNet with 

random initialization 2.2589 0.0558 866 
—Real-valued ForeNet 0.6455 0.0601 500 2117 “ 

Ring-structure 
Recurrent networks 0.0205 0.0102 13 81 

—non l inear ForeNet 0.0216 0.0097 100 438 “ 
AR(1 ) model - 0.038 - _ 

Time-varying 
sinusoidal series 

ForeNet with 
proposed initialization 0.0746 0.1251 m 257 

ForeNet with 
random initialization 0.9676 0.3203 ^ 184 

~Real-valued ForeNet 0.501 0.2836 75 166 “ 
Ring-structure 

Recurrent networks — — = 二 

nonlinear ForeNet 0.0749 0.1633 ^ 
— AR(1) model - 0.5071 

Noisy sinusoidal 
series 

ForeNet with 
proposed initialization 0.699 0.0729 ^ ^ 

ForeNet with 
random initialization 0.6889 0.4285 ^ 60 

“Real -va lued ForeNet 0.5450 0.3267 500 575 
Ring-structure 

Recurrent networks 0.6163 0.1041 ^ 26 
~ nonlinear ForeNet 0.6526 0.0436 46 59 
— AR(1) model - 0.5968 - — 一 

Table 6.11: Summarization of the prediction performance using various meth-
ods on four time series. 



Chapter 7 

Learning and Prediction: 

On-Line Training 

On-line learning is an alternative to bach-mode learning. In this chapter, we 

introduce the advantages and disadvantages of on-line method then propose 

a prediction method. We show how to perform online prediction, and give 

the comparison between batch-mode and online-mode learning by some exper-

imental results. 

7.1 On-Line Learning Algorithm 

In on-line learning, the weights are updated after each pattern presentation, 

using the gradient of the single-pattern error. Generally, the patterns are 

presented in a random to void cyclic effect [56]. However, for time series 

prediction task, it is impossible to change the order of patterns. Thus, the 

pattern is chosen according to time order. 

7.1.1 Advantages and Disadvantages 

There are some advantages of on-line approach: 

• First, there is no need to store and sum the individual derivatives; each 

pattern derivative is evaluated, then discarded immediately. 

98 
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• Second, although the proposed fourier recursive model is derived as a 

local model, it still hasn't shown its ability of capturing the changes in 

the different sets of data. It is because we only use the same value of 

parameters when modelling each set of data. Even in the previous sec-

tion, ForeNet is used to train the parameters, since batch-mode learning 

method is adopt, and in batch-mode learning, the weights are updated 

only one time according to the contribution of a whole training set. One 

may consider after batch-mode training , Neural Networks can capture 

global data characterize. However, on-line learning adjusts weights ac-

cording to one recent pattern's contribution. So it can detect the changes 

in the data distribution. This is important for short-term prediction task, 

especially when the time series is nonstationary. 

With batch-mode learning, since the training patterns can be used repeat-

edly during training phase, we can check whether we are making progress. 

We can minimize the objective function to a desirable precision. And we can 

compute the error function on a validation set and stop training when the 

generalization error becomes go up. However, with on-line learning, we cannot 

do the above things. We cannot compute the error function on the training set 

or validation set for a fixed set of weights because the patterns are discarded 

after use [60]. Hence, on-line learning is generally more difficult and unreliable 

than batch-mode learning. Moreover, updating the parameters only based 

on one time step estimation error, the network cannot capture the temporal 

information of the whole data set. 

7.1.2 Training Process 

From the analysis of the advantages and the disadvantages of on-line learning, 

we propose a learning method which is a balance between bath-mode and on-

line mode. The whole data set is divided into two parts, named training set 
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and testing set. First, the network is trained by both-mode learning algorithm 

with the training data set. Then the on-line learning is applied to perform 

prediction task. In such way, in the bath-mode learning phase, the network is 

expected to learn the global distribution of the time series. And then in the 

on-line learning phase, the network detects the changes in the data distribu-

tion and perform better short-term prediction. 

The whole training steps are: 

(1) ForeNet is initialized by the proposed method as described before, 

(2) Learning phase: 

• For every pattern p in the training set, 

- a p p l y a pattern p in the training set, 

-calculate the pattern error Ep and the single-pattern derivatives 

dEp/dw. 

• Add up all the single-pattern terms to get the total derivative, 

• Update the weights according to CRTRL, 

• Apply the validation data set, calculate the validation error ey(t), 

• Compare the validation error with it in the last training epoch, 

—If ey(t) > ev{t - ! ) > • " > ev{t - n) >, stop training. 

- e l s e , repeat the learning phase. 

(3) Apply the testing data set 

• Pick a pattern p from the testing data set, 

1. apply pattern p and forward propagate to obtain network out-

put (prediction), and 
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2. calculate the pattern error Ep and back-propagate to obtain the 

single-pattern derivatives dEp/dw, 

• Update the weights, 

參 Repeat until finish the prediction of testing data. 

7.2 Experiments 

In this section, we apply on-line method to some time series prediction tasks. 

Compared with batch-mode learning, on-line learning can learn the latest 

statistics of the time series, hence it can help to improve the network per-

formance on one-time step ahead prediction, especially to the time series that 

are non-stationary. In the following experiments, during batch-mode training 

process, the learning rate is set to 0.1 and the value of momentum is 0.5. And 

in the on-line prediction process, we reduce the learning rate to 0.05 and the 

momentum to 0.25. The network architecture is 1 — 4 — 1 model. Here we test 

on 4 time series. Each is also divided into training data, validation data and 

testing data. 

Table (7.1) shows the on-line prediction results on four time series. We 

report the root mean square error on testing data in the table. 

The first predicted time series is time-varying sinusoidal series. Shown in 

Figure (5.13), the frequency of time series is increasing with measure time, 

and there are nonstationarities on the time scale of the sampling time. In 

Table (7.1), the root mean square error on testing data is reported. Using 

on-line mode, the error is 0.0304. Comparing to that with batch-mode learn-

ing, (RMSE=0.2346), we can find that to predict the time series which show 

high nonstationary, on-line method outperforms batch-mode method. For the 

purpose of comparison, Figure (7.1) shows the network performance using 
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batch-mode method. It is obvious that though the network can do well on 

the small training data set, its prediction on testing data is much worse. It 

is because that the frequencies of testing set are much different than those 

in training set, so it is impossible for the network to discover the changes of 

frequencies. Compared with Figure (7.1), Figure (7.2) illustrates the pre-

diction result using on-line method. The network can detect the changes of 

frequencies thus get much better prediction. 

In Figure (7.3), the on-line learning curve is shown. With on-line learning, 

jitter in the E{t) graph is normal. Because weights are updated after each 

pattern presentation, there is a tendency for the error to be lower on the most 

recently presented patterns, and it also introduces noise that shows up in the 

error curves. The graph implies that the learning is working well because the 

error curves has a downward trend. The curves is overlaid with noise, whose 

amplitude is related to the learning rate rj. 

Figure (7.4) demonstrates the changes on the magnitudes and the phases 

of recurrent weights during on-line prediction. As we have explained before, 

the predefined values of weights are somehow related to the frequencies of time 

series. Based upon the proposed idea in the previous chapters, the time series 

. with the large dominant frequency would need the small weights to do good 

prediction. As we can see in Figure (7.4) that with the frequencies increase, 

the values of weights decrease correspondingly to match the changes of fre-

quencies. The experimental results match well to our proposed method. 

Similar results are found on the cases of Mackey-Glass and sunspot series. 

The network also improved its performance with on-line mode learning. On 

both experiments, on-line prediction can improve the prediction accuracy ac-

cording to testing RMS error. 
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m e t h o d s t i m e - v a r y i n g M a c k e y - G l a s s sunspot laser 
sinusoidal series series series series 

o n - l i n e 0 . 0 3 0 4 0.0084 0.0839 0.7163— 
batch-mode 0.2346 0.0102 0.0891 Q . 5 W 

Table 7.1: Comparison between on-line learning and bach-mode learning on 4 
time series prediction 
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Figure 7.1: Time-varying sinusoidal series prediction using batch-mode learn-
ing. The first graph shows the performance on training data set; the second 
graph shows the prediction on testing data set. 

However, as shown in Table (7.1), on the laser series prediction task, on-

line learning works not good as batch-mode learning. In the experiments, we 

tested the series from 901 to 1500. As we can see from Figure (5.9), around 

1050认 data in the series, there is a collapse, which is difficult to be predicted 

only paying attention to the previous several data points. This may be one 

of the reasons that on-line learning does not work in the case of laser series 

prediction. Another possible reason is laser data is stationary[70]. And as we 

know, online learning is do well in the series which show nonstationary. So it 

is of little benefit to stationary time series prediction. 
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Figure 7.2: Time-varying sinusoidal series prediction using on-line method 
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Figure 7.3: Learning curve of on-line method on time-varying sinusoidal series 
prediction 
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Figure 7.4: Changes on a self-connected weight during on-line prediction; the 
upper graph shows the changes on magnitudes, and the lower graph shows the 
changes on its phases. 

7.3 Predicting Stock Time Series 

In this section, we apply our method to predict the future values of the stock 

entities. Since the stock market behaves very much like a random-walk process, 

prediction of stocks is generally believed to be a very difficult task. Thus the 

different evaluation method should be used. 

Returns Prediction 

In the case of stock predictions, returns R(t) are often chosen instead of the 

original stock prices. A common variant is the log-return 

邵)=log 爲 （7.1) 
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where y{t) denote close values for the stock for each day of trading (Monday-

Friday). R(t) has a relatively constant range even if stock data for many years 

are used as input. Thus the returns R{t) are used as model input series. 

Evaluating Performance 

The naive prediction of stock returns asserts today's return as the best es-

timate of tomorrow return. It is a good idea to measure the goodness of a 

predictor in relation to this trivial predict or [62]. In our work, we compare the 

model performance to that of the naive return predictor and adopt relative hit 

rate as measurement. 

The hit rate of a predictor indicates how often the sign of the return is 

correctly predicted. Let the series R{t),t = 1，.. •，iV denote the prediction of 

returns at time t, R(t),t = 1,...,N denote the actual returns. The hit rate 

is computed as the ratio between the number of correct non-zero predictions 

R(t) and the total number of nonzero moves in the stock time series. 

H 二 t\R{t)R{t)>0,t = l,...,N (7.2) 
—t\R{t)R{t) 0,t = ‘ 

The corresponding measure for the naive return predictor is 

二 t 剛 邮 - 1 ) � 0 , t 二 
N 二 力 � — 力 = l , . . . , i V � • ) 

The ratio between the two hit rates is 

H o 4 (7.4) 

where, Hq is called “ Relative hit rate", compares the hit rate of the pre-

dictor to that of the naive return predictor. For Hq < 1 the predictor is worse 

than the naive return predictor, while Hq > I implies that the predictor is 

making better predictions. 
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— Stock Hit Rate H Relative Hit Rate HP RMS error 
H A N G SENG BANK 0.526Q 1.0204 0.0457 
"HENDERSON LAND ~~0.5477 1.0058 0.0402 
一 SHK PPT 0.4983 0.9605 0.0352 

Table 7.2: Prediction results on stock returns. 

Experimental Results 

We predict here the stock returns for 3 stocks, i.e. Hang Seng Bank, Hen-

derson Land and SHK PPT, from 1993 — 03 — 15 to 1998 — 01 — 16, totally 

1200 data. The last 360 data points act as testing data. The architecture of 

ForeNet is 1 — 4 — 1 network. The online CRTRL algorithm is used to update 

the parameters. 

Table (7.2) shows the model's performance on the prediction of stock 

returns. Because the levels of noise in financial markets are so high, the model 

can only get the hit rate slightly better than 50% (for Hang Seng Bank: 52.6%, 

for Henderson Land: 54.77%)，and it is even worse than 50% (for SHK PPT: 

49.83%). For the stocks Hang Seng Bank and Henderson Land, the model 

made better predictions than those of the naive return predictor in terms of 

relative hit rate Hq. 
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Figure 7.5: The prediction curves of the stock returns. 



Chapter 8 

Discussions and Conclusions 

In our work, we proposed the Fourier Recursive Equation, and based on it, 

ForeNet model was built. We analyzed the model initialization, and trained 

the model with complex-valued RTRL learning algorithm. Some experiments 

were demonstrated to show the properties of ForeNet 

In the following, we analyze the limitations and advantages of the proposed 

ForeNet. Some future works are mentioned as the concluding remarks. 

8.1 Limitations of ForeNet 

There are some limitations in our proposed model. 

• The proposed ForeNet model is a restricted model. There are only a 

few free parameters in the model. The selection of number of hidden 

units and parameters initialization combine into one task because they 

are both controlled by one variable. Once we decide the architecture of 

ForeNet, the parameters initialization is determined, thus the initial state 

of the model is set. Such restricted model is very simple on modelling and 

learning, however, it may also encounter some computational difficulties. 

• In the proposed ForeNet model, the activation function on hidden layer 

and output layer are both linear functions. We have demonstrated that 

109 
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such linearity can also get good predictions on some time series, but may 

suffer if the time series is high nonlinearity. As shown in Chapter (6), 

when the linear transfer function is replaced by a nonlinear function, 

tanh, the network can better predict high nonlinear time series, for ex-

ample, laser series. The similar improvement can be found if we increase 

the number of hidden units. 

• According to the initial method (from equation (4.4)), after network 

initialization, the recurrent weights in the neural network are symmetric. 

That is, we give redundant weights to the network at the beginning of 

training, and it seems that only using half-number of recurrent weights 

can also achieve the same performance. However, in the experiments, 

we found that keeping all recurrent weights (even they are symmetric) 

are important to prediction because it can keep the phase symmetric, 

that is vital to recover original time series as described in Chapter 4. We 

thus introduce the bias to the network, and later training also makes the 

weights asymmetric. 

• In ForeNet, we have shown by some experiments that the selection of 

parameters corresponds to the nature of the given time series. If the 

"hidden memory" can be built properly, the network achieves conver-

gence quickly. However, how to choose the proper parameters based on 

different time series is still unknown in our current work. 

• ForeNet is only used for time series prediction tasks because it is derived 

based upon a prediction method. And it only uses one variable as the 

model input, i.e. the network model can only be 1 — p — 1 model. 
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8.2 Advantages of ForeNet 

Despite some limitations of our proposed model, ForeNet still shows its strong 

ability of handling time series prediction problems. 

• The proposed prediction method has been applied to predict the time 

series. From the experimental results, there is no doubt that the network 

can achieve the predictions with much faster convergence speed. And 

the initial method of ForeNet is quite efficient, which makes the training 

faster and better generalization. 

• The architecture of ForeNet is very simple compared to other recurrent 

models. The self-recurrent links only exist on the hidden unit. Through 

simple, as a recurrent model, it can also store and process internal mem-

ory and do good prediction. 

• ForeNet is a complex-valued network. With complex values, the neurons 

can contain more information and may be more stable in training process 

compared with real-valued network. And trained by complex-value learn-

ing algorithm, the complex-valued model outperforms the real-valued 

model on time series prediction in terms of convergence speed and gen-

eralization ability. 

• ForeNet is derived based on Fourier recursive equation. Therefore, by 

analyzing the prediction equation, we can understand the ForeNet bet-

ter. In ForeNet, the model stores internal memory in the hidden units. 

And since there is only one input unit in the network, it is much easier 

to analyze the memory. We have given some implications on the rela-

tionship between the internal memory in the model and the embedding 

dimension of a given time series. And the proper memory is important 

to the network performance on prediction of time series. In our model, 

we can adjust the value of coefficients to control the memory. And as we 
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known, usually it is not easy to analyze a recurrent model because of its 

complexity. 

8.3 Future Works 

ForeNet was proposed and some of its properties were analyzed in the thesis. 

However, there are still many interesting topics related to the proposed model. 

Multi-step prediction. 

All prediction tasks discussed in the previous chapters are single-step predic-

tion. We can extend single-step to multi-step prediction by feeding back the 

predicted output as input for the next prediction. 

An alternative to the iterated single-step prediction is direct multi-step 

prediction. That means the network is trained to predict directly several step 

ahead. However, our recursive prediction equation was derived to perform 

one-step-ahead prediction problem, accordingly the proposed ForeNet is just 

suitable for forecasting the next time step time series. Because of this limita-

tion, problems of multiple-step-ahead forecasting can not be solved directly. 

We can approach multi-step-ahead prediction through iterated one-step-

ahead predictions. The estimate value is feeded back as input to the network. 

x{t) = f{x{t - 1)) (8.1) 

Equation (8.1) can be iterated forward in time to achieve predictions as far 

into the future as desirable. 
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Muti-variables 

The architecture of ForeNet is l-p-1. That is, only one current data can be 

inputted to the network, so the prediction is calculated based upon one input 

variable, as well the internal memory. As we shown in Chapter (6), AR model 

with high order significantly outperforms AR model with one order. We may 

doubt here whether our model is the same case, and whether it can improve 

performance if the order is increased. 

For future work, the single variable may be extended to multi-variables 

based on the Fourier analysis of time series. In this way, the model becomes 

high order model just similar with AR model with high order, which can 

contain more past information by inputting more past data. Thus, the corre-

sponding ForeNet network can be updated to n - p - 1 model, that is, there 

will have n input units in the network. In this way, we can combine Time-delay 

Neural Networks (TDNN) and current ForeNet In such combined networks, 

the model memory will be presented by the "external" memory (by the order 

of input) and the "internal" memory (by the recurrent links on hidden units). 

This updated model may achieve more powerful computational ability. 

More applications 

At present, ForeNet is only used for time series prediction. We may consider 

to do some modifications on the model and apply it to perform other tasks, 

such as classification problem, in the future. 

Different learning algorithms in ForeNet 

Now we use a complex real-time recurrent learning algorithm (CRTRL) to 

train the weights in ForeNet Some other training methods can be tried. For 
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example, in [65], the author developed the derivative-free extended kalman fil-

ter for parameter estimations and neural networks training. They mentioned 

that such forms have better numerical properties and provide similar perfor-

mance without the need to analytical calculate Jacobians. Similar methods 

may be considered in our proposed model to estimate the parameters in stead 

of CRTRL. 
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