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ABSTRACT 

This paper presents a new test and it variations for the fit of proportional 
hazards model. The procedure is based on the likelihood ratio principle and is 
inspired by the work in change-point problems. In order to specify the alternative, 
a change-point hazard ratio model is introduced and the new tests can also be 
viewed as tests for a change in this model. Sampling distribution of the statistics 
can be generated through simulations if the baseline hazard function is known. 
Sampling distributions in a simple case for some small to moderate sample sizes 
are also given. Large sample properties are discussed and we show that essentially 
they are the same as those in the change-point problem. We also note that unless 
the sample size is really large, the use of the asymptotic distribution can be 
misleading. We apply the bootstrap algorithm and show it works even for small 
sample size. The tests are compared with the procedures of Wei (1984) and found 
that they complement each other. We apply the new procedures to real data 
sets such as male mice data and CGD data. The new procedures are favorably 
compared and should be adopted in practice. 
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mjt 
本論文介紹一個新的驗證辦法及其變種來驗證比例危險模型 

的恰當性。這程序是基於槪似比原理，而靈感是來自轉點 

問題。備擇假設將命爲轉點危險比例模型，因此這驗證辦法 

可視爲轉點存在的驗證。如果基線危險函數是已知，抽樣 

分佈可籍模擬法形成，我們將提供小型到中等樣本大小的抽 

樣分佈。新的驗證辦法的大樣本理論將被探討，除非樣本 

大小真的很大，否則漸近分佈會被誤用。當這驗證辦法與 

Wei的驗證辦法作一比較，發覺他們互補不足。我們應用 

這新的驗證辦法於一些真實例子當中，發覺效果更佳及應被 

使用在實例中。 



INTRODUCTION 

Analysis of Survival Data is important in clinical trials. This thesis is consist 
of 3 chapters. Chapter 1 presents some ingredients for analyzing survival data 
related to the contents in chapter 2. Chapter 2 and chapter 3 are self-contained 
presenting the main purpose of this thesis. Chapter 3 presents the large sample 
properties of our proposed test and some final comments. One can skip the basic 
concepts in chapter 1 and start the reading from the chapter 2. 
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Chapter 1 

Basic Concepts 

1.1 Survival data 

Survival data is a dataset describing the time until an event occur on a subject 
(e.g. a patient, a male mice). The time variable we interested is called survival 
time. The event of interest usually is (1) death, (2) incidence of a disease or (3) 
recovering from a disease. Sometime it is termed as failure even a positive event 
is of interest. The corresponding survival time may represent (1) the number of 
years patients remain alive until their death, (2) the number of years the patients 
are healthy or (3) the time interval the patients stay in remission. Survival data 
normally is incomplete due to the procedure of data collection. Special statistical 
analysis have to be employed in extracting information from such a incomplete 
dataset. The coming example illustrates some concepts of survival data. 

1.1.1 An example 

For patients who received a heart transplant, one may want to know how long 
can the patient survive or how large the risk of death at some specific time after 
the transplantation. Because of the limitation of time and money, investigation 
normally has restricted to a fixed period of time, say 5 years. Fig 1.1 shows 5 
patients entering the study at different time in the 5-year study period. 

Patient A receives a heart transplant at month 0 and die at month 18. He 
survived 18 months after the transplantation. 

Patient B receives a heart transplant at month 12. Because of some reasons, 
he is unwilling to continue the study and lost to follow-up at month 18. In this 
case, we can only say that he survived at least 6 months but may be longer. It is 
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Figure 1.1: A graphical presentation of survival data 

A X 
0 Censored 
X a die 

B o lost to follow-up 

G o car accident End of Study 

D— x 

E 1 
r 1 r 1 1 1 i 
0 10 20 30 40 50 60 

months 

an example of incomplete data point in describing the survival time. 
Patient C receives a heart transplant at month 6. Because of car accident, 

he die at month 24. Since we are interested in survival time due to the heart 
transplant, we say patient C survived at least 18 months. It is an incomplete 
data point in reference to the survival time of interest. 

Patient D receives a heart transplant at month 24 and die at month 48. He 
survived 24 months after the transplantation. 

Patient E receives a heart transplant at month 12. He still survives until the 
end of study. We say patient E survived at least 48 months. It is an incomplete 
data point in reference to the survival time of interest. 

For the patient A and D, we know exactly their survival time that is the time 
period between they received a heart transplant and their death. However, for 
the patient B, C and E, we do not know the exact survival time. Instead, we 
know they survived up to certain months. These 3 incomplete data points are 
called censored data points. To be more specific, it is right-censored data since 
the survival time is incomplete at the right. The reasons of censoring are roughly 
described as follow: 
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• no event occur before the end of study (e.g. Patient E), 

• the patient, for some reasons, is unwilling to continue the study before an 
event occur (e.g. Patient B), 

• due to the unrelated death (e.g. Patient C). 

In the heart transplant example, the period of study is fixed in the data 
collection plan. The number of censored data is thus a random quantity. It is 
called random censorship. Under the random censorship, survival data can be 
best described in this way: Let n be the number of individuals in the study, T,- be 
the actual survival time for the ith individual we want to investigate, C{ be the 
censoring variable for ith individual. Because of censoring, we can only observe 
a vector (Xi, Si), i = 1,.. •, n, where Xi = min(T,-, 6¾, 8 二 1 if Xi 二 T“ 5 二 0 if 
Xi = Ci. In this setting, 5 二 1 indicate the actual survival time is equal to the 
observed survival time. While 5 = 0 indicate the actual survival time is larger 
than the observed survival time. Thus the variable, S, is an indicator variable 
to show the data is censored or not. The data set corresponding to the heart 
transplant example is shown in Table 1.1: 

Table 1.1: A presentation of survival data in a table 

Patient X S 
~ ~ A 18 1 

B 6 0 
C 18 0 
D 24 1 
E 48 0 

We only focus on the survival data which are right-censored, telling us the 
data are incomplete or truncated at the right-side. On the other hand, for the 
left-censored survival data, the data are incomplete or truncated at the left-side. 
We will not consider left-censored data in this thesis. 

1.2 Some important functions 
In the survival analysis, it is more natural to express information in survival 
function, S{t) and hazard function, X{t). Similarly to the probability density 
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function, f{t), and the cumulative density function, F(t), the distribution of 
a non-negative random variable, T, can be uniquely specified by the survival 
function or the hazard function. 

1.2.1 Survival function 

Survival function, S(t), is the probability that a person can survive longer than 
time t, i.e. Pr{T > t). It is a non-increasing function with S{0) 二 1 and S{oo)— 
0 similar to Fig 1.2. With this definition, we can show that S{t) = 1 - F{t). 

1.2.2 Hazard function 

Hazard function is defined as: 
P r ( Z g T < Z + A | T 2 0 

X(t) = lim T . 
V ) A^0+ A 

It is the probability of die at time t given that a person has survived up to time t. 
This function tells us the simultaneous risk attaching to the subject who still alive 
at time t. Fig 1.2 show an example of hazard function for exponential distribution 
(A = 1) . 

With the definitions just presented, the following equations can be derived: 

S{t) = l-F{t), 

m = m/s{t), 

f(t) = A(t)exp[- / X{u)du . 
Jo 

A typical example is a continuous non-negative random variable, T, with 
Exponential{X) distribution. The four interested functions can be easily written 
as: 

m = Aexp(-AZ), 

F{t) = l - e x p ( - A t ) , 

S{t) 二 exp(-At), 

A(t) = A. 

The random variable, T, can be characterized by any one of the four functions 
above. Fig 1.2 gives a visualization. The hazard plot shows the risk is constant 

12 



over the life time for the exponential distribution. This is the reason why expo-
nential distribution is no good to serve as a model for the life time of a machine, 
which should have an increasing hazard function. 

Figure l.2: Four Important Functions for Exponential(l) 
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1.3 Cox Proportional Hazards Model 
Some variables may have an effect on the survival time. For example, a treat-
ment may prolong one's survival time. The heart transplant example presented 
in section 1, higher the age may result in higher the hazard rate. This is a typical 
regression problem for the survival data. In 1972, Cox introduced the Propor-
tional Hazards Model. Denote the survival time by T and the covariates by Z. 
The model assumes that given Z — z the hazard function at t is, 

X{t I 之）=Xo{t)exp{|3'Z). 

It is a semiparametric model since Ao(t) is not specified. Some features of the 
model are listed below: 

• Xo{t) is called the baseline hazard function which depends only on t, 
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• z is assumed to be time-independent covariates and so exp(/9'Z) is constant 
over t, 

• An exponential linkage is assumed between the covariates and the hazard 
function. In other words, the covariates link to the logarithm of the hazard 
function in additive way, 

• hazard ratio between two individuals is a constant over t, that is, X{t 

Zi)/X{t I z2) = exp{P'{zi - z2)). 

Estimation of the parameters |3 is based on the maximization of the partial 
likelihood function: 

" “ � - T T [ 够 I -̂) 1̂ -
• 二 M L E - . x A ( X . U , ) l [ ^ x J 

— “ r Xo{Xj) e x p ( f e ) 1 ^ .—合 r exp ( /^ ) 1 ̂ . 

= L \ ^ZU MXi)exp{Pz,)l[x,>x.]^ 'LV^U^MP'j)kx,>x.]^ • 

The unspecified baseline hazard is canceled out and partial likelihood depends 
only on /3 and the data values. Newton-Raphson Algorithm can be applied to 
maximize the function L(/3) by iterating 

严=/3!. + /-1(灼̂/(/9勺， 

where 

: 糊 = ^ l o g L ( ^ ) , 

d^ 
m 二 -^iogL(/9). 

1.3.1 A special case 

Let consider a case of one covariate which takes values either 0 or 1. It is used 
as an indicator variable for treatment. The proportional hazard model can be 
applied to investigate the treatment effect on the survival time. 

For X = 0, representing the control (or placebo) group, the hazard function 
is, 

X{t I z = 0) = Ao(t). 
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For X 二 1, representing the treatment group, the hazard function is, 

A(t 丨 z = 1) 二 Ao(t)exp(;^). 

Consider their hazard ratio, 

A(t I ^ = 1) … 
W ^ = e x P ^ , 

which is a constant over t. Fig 1.3 is a plot for \(t | z 二 1) against \{i | z = 0). 
For this special case, x = 0 or 1’ visual inspection like Fig 1.3 can indicate a fit 
of the Cox proportional hazards model. 

Figure 1.3: A straight line representing a fit of Cox proportional hazards model 
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1.3.2 An example (continued) 

In the previous heart transplant example, higher the age may result in higher 
the hazard rate. For each patient who received a heart transplant, their age are 
measured also. Now the observed data becomes {Xi, Z{, 5i), i — 1, • • •, n, where 
Zi is the age of patient and the same definition of Xi and ^ as previous section. 
A modified dataset is shown in Table 1.2. 

15 



Table 1.2: A presentation of survival data in a table 

Patient X 6 Z 
~~~A 18 1 53 

B 6 0 60 
C 18 0 52 
D 24 1 42 
E 48 0 35 

1.4 Extension of the Cox Proportional Hazards 
Model 

In the proportional hazards model, the covariates are independent to time. For 
the case of time-dependent covariates, an extension of proportional hazards model 
is needed. The extension assumes the hazard function to be 

p 
X{t I z) 二 Xo{t)exp{J2P^^^9^{t))' 

i=i 

g[.) is assumed a known function but which is not always the case. Some special 
cases are discussed below. The first case is transformed back to proportional 
hazards model. The second case is our interest of this thesis which is the change-
point hazard ratio model. 

• If gi{t) — c, Vi, where c is a constant over t, then the extended model reduces 
to the proportional hazards model. 

• If p = 2,gi{t) 二 l[i<T],5^2(0 = h>rJi 二 /^,^2 = 7, then the equation 
becomes 

X(t I z) = Ao(i)exp(jSzlit<r] + 7^1[t>r])-

For t < T, X(t I z) = Ao(Z) exp(/3z). 

For t > T, X{t I z) = Xo{t) exp(72). 
Different hazard function is contributing before and after the time t : r. 
The time t = r is called change-point. Later, in chapter 2, we will call it a 
change-point hazard ratio model. Unlike the proportional hazards model, 
the hazard ratio between two individuals is no longer a constant over t and 
it does depend on the time, t. 
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1.5 Bootstrap 

Bootstrap is a computer-intensive statistical method dealing with estimation and 
inference. For illustration, we focus on the situation that X i , • • •, Xn follow a 
distribution F identically and independently. A statistics T{F) = g{Xi,-. . ,Xn) 
is our interest. We write T{F) instead of T because we want to emphasize it 
depends on F. Usually, statistical procedure requires to find the 

• Variance of T[F), V, 

• quantiles of T(F) , Q{p), 

• distribution of T(F) , or specifically, Pr{T{F) < s), P{s). 

When the function g is complicated, deriving the distribution of T{F) is dif-
ficult and sometime impossible . Even asymptotic approximate distribution of 
T{F) is available, it may not work on small sample size. 

Bootstrap can help in such a complicated case. Since F is normally not known, 
we use F to approximate it, where F is the empirical distribution function of 
(Xi = xi, ‘ • • ,Xn — Xn)- In a parametric model with parameter (3, we use 
(Xi = xi, •. •, Xn — Xn) to obtain an estimate of (3 and then use this estimate to 
construct P. Thus, T{F) is approximated by T{F). With F, we can simulate a 
dataset (xi,...，x^Y from F and then calculate t* 二 g{X^ = xl,. •.，X* = < ) . 

Now, we have a simulated values t* from T(F). Repeat this process, we get 
( r \ r ^ , . . . ) . Only a finite number of simulation, say B, can be made which is 
( r i , . • .,t*B). The simulation estimates can be done on the above problems: 

A 

• Variance estimate of T(F), Vg： 

V B - ^ E ( t : - t r where r = ^ g t * , 

A 

• quantiles estimate of T(F) , Qsip)' 

Qeip) = approximately the p(B + 1产 ordered value of ( r \ .. -,t*^), 
A 

• probability estimate of Pr(T(F) < s), Psis)： 

^ 1 B 
,B(S) = ^Yl^h:<s]-
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We can see from the above algorithm that there are 2 stages of approxima-
tion. Use the probability estimate as an example. The first is the approximation 
between F and F contributed from the data variability. The second is the approx-
imation between Ps and P contributed from the finite simulation. As B ^ oo, 

A A 

the error between /¾ and P is removed. 
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Chapter 2 

A New Method 

2.1 Introduction 
It is increasingly popular to use the proportional hazards regression model (Cox, 
1972) to analyse life time data. This is partly due to the semiparametric nature 
of the model and it is often unrealistic to make full parametric assumptions in 
biomedical statistical inference. However, the assumptions of the model may 
fail and experts have long warned us of the possible detrimental effects of the 
misspecification of the model. See, for example, Lagakos k Schoenfeld (1984), 
Struthers k Kalbfleisch (1986), Lagakos (1988), Lin k Wei (1989). 

To test against model misspecification, a series of goodness-of-fit type of 
statistics and model checking techniques have been proposed, namely, Schoenfeld 
(1980), Wei (1984) and more recently Therneau, Grambsch & Fleming(1990), 
Liang, Self k Liu (1990), Lin, Wei h Ying (1993). All of the methods so far 
proposed are of kolmogrov-Smirnov type, namely, they consider the maximum 
difference between the observed and the expected under the model and reject the 
model when the difference gets too large. 

Inspired by the work in change-point problems, the present paper proposes a 
test against any model misspecification based on the (partial) likelihood principle. 
This test can also be viewed as a test against a change in the proportionality of 
the hazards in Cox regression model. Even though the final form of our test is 
also of Kolmogrov-Smirnov type, our test is a likelihood ratio test and therefore 
should be efficient in some sense. The behavior of the test is very similar to those 
in the change-point problems (Siegmund, 1988) and the asymptotic distribution 
of the test is well known in the change-point problem literature. 

Another close relative of our test is the change-point hazard rate model pro-
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posed by Matthew and Farewell (1982). We shall discuss this model, its rela-
tionship to ours and subsequent developments in Section 2. Simulations show an 
inadequacy of large sample theory. We propose to use bootstrap distribution to 
implement the test. 

This chapter and the coming chapter are organized as follows. In Section 2.2, 
we will define the test and present some basic properties. Alternative tests given 
by Liang, Self k Liu (1990) and Wei (1984) are also presented in this section. In 
Section 2.3, some variations of the test are discussed. In Section 2.4，bootstrap 
method is applied to the test and compared with the simulation in Section 2.2. 
We illustrate our test in Section 2.2 and 2.4 by applying them to some real data 
sets in Section 2.5. 

2.2 Definition of the test 

2.2.1 Our test statistic 

Let T represent some failure time and Z be the corresponding covariate. We 
assume that the conditional hazard function of T at t given Z 二 z as 

A(t I z) = Ao(Z)exp[(/9z/[i<T] + 72/[i2r])], 

where Ao is an unknown baseline hazard function, r is an unknown parameter. 
If Ho : (3 = 7, it corresponds to the proportional hazards model. If Hi : /3 + 7 , 
we call it a change-point hazard ratio model. 

Denote the actual observations by (Z,-, X“^)，% = 1,.. •, n, where Xi = min{Ti, Ci) 
and Ci is the censoring variable for the zth life time T,. The test statistic we pro-
pose is 

( . . . \ 
A 二 —2 log LiJ3, P, 0) - sup log L(J3” � , r ) , 

V 丁 / 

where L{|3^ 7 , r) is the partial likelihood function: 
_ ^. 

j.n X — TT [ eXp(/9Z,-^<r] + lZiI^X.>r]) ‘ 
M " , 7 , T j — i i [x:j^^ exp(/3Z,^<r] + lZ,kx.>r])I[X,>X.]. ’ 

P is the MLE of /3 under Ho, ^r and 7^ are the MLEs of /3, 7 under Hi conditional 
on fixed r. 

The preceding test statistic originates in the change-point problems. Specifi-
cally, it is related to the work by Matthew and Farewell (1982). They proposed a 
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change-point hazard rate model for the time from remission induction to relapse 
of patients with leukemia and assumed that the failure rate to be Ai before r and 
A2 after r. The problem has later been discussed in detail by Mathews, Farewell 
& Pyke (1985), Worsley (1988), and more recently, Loader (1991), among others. 
The change-point hazard ratio model can be viewed as a regression generalization 
to the change-point hazard rate model. 

It is interesting to note that A is a function of rank statistics when there is 
no censoring and a function of generalized rank statistics (Prentice, 1978) when 
censoring is present. This is quite different from the likelihood ratio statistic 
generated from the change-point hazard rate model, which is sensitive to the 
actual magnitude of the observation, see Worsley (1988). As a function of r, 
L(/3^,7^,r) changes its value only at an uncensored observation. Consequently, 
the sup in the definition is taken over the uncensored failure times only. 

In practice, the sampling distribution of A under Ho can be obtained by 
simulation. Since the exact baseline hazard has relatively small effect on the 
statistic and its sampling distribution, we can always assume the baseline hazard 
to be constant. Using simulation, some percentage points of the statistics under 
Ho with |3 = 7 = 0 and one half of the Z's to be 0 and the other half to be 1 are 
given in Table 2.1. (The results for the sample size 00 is derived from asymptotic 
distribution , see section 3.1) No censoring is assumed and 20,000 simulations 
were generated for each sample size in Table 2.1. 

Compared with the likelihood ratio statistic in the change-point hazard rate 
model, the percentage points in Table 2.1 is much smaller than those in Table 1 
of Worsley (1988). This is because our test is a rank procedure while in change-
point hazard rate model, it is not. Same differences exist for the modified tests 
appearing in the next section. 

From Table 2.1, we see that even if the sample size is large than 200, the 
distribution of the statistic does not stabilize even though it does converge to a 
limiting distribution (see section 3.1). Blind use of large sample theory could be 
very misleading. 

In general, the distribution under Ho can be simulated as long as the baseline 
hazard function is known and the range of the values of the covariates is not too 
large. If censoring is present, some simulations not presented here show that the 
simulated table with no censoring can still be used to approximate the sampling 
distribution, where the sample size corresponds to the number of deaths. 
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Table 2.14: Percentage points of M* based on different datasets 

Sample Percent 
size 70 80 90 95 99 
10 3.86 4 . 2 6 ~ ~ ^ " " " ^ ~ ~ 1 0 . 5 9 
20 4.65 5.45 6.76 8.16 11.16 
30 5.03 5.86 7.30 8.69 11.66 
40 5.27 6.14 7.61 9.01 12.34 
50 5.42 6.30 7.77 9.23 12.46 
70 5.63 6.54 8.03 9.52 12.72 
100 5.84 6.75 8.28 9.73 13.28 
200 6.15 7.12 8.69 10.16 13.42 
500 6.67 7.63 9.21 10.70 14.12 
oo 8.16 9.14 10.78 12.40 15.93 

2.2.2 The alternative test statistic I 

Liang, Self k Liu (1990) proposed a different statistic to the change-point prob-
lem. The notation for the test is different from our test but the hypothesis are 
equivalent. With the same meaning of T, Z, X , 5, r, Ao as before, the conditional 
hazard function of T at t given Z — z is 

X{t I z) 二 AoCOexp[(0 + 7%T]H (2.2.1) 

When Ho : 7 = 0, it corresponds to the proportional hazards model. When 
H i : 7 + 0, it corresponds to a change-point hazard ratio model. The statistic 
they proposed is, under Ho 

M 二 sup S{r), (2.2.2) 
rG[a ,6 ] 

where, 

di 

外 ) 二 r _ ^ — r _ ^ v l ^ V _ ^ ^ l 1 / 2 A , (2.2.3) 
\ ~ ^ ~ V d # ) � d ( 3 2 ) � d̂ |3n /5=/3,7=0 

and exp(/) is the partial likelihood function: 

exp(/) = n [ ^ M W + l h x . < r m 广 （2.2.4) 
exP(” M [ E - = i e x p P + 7 / [ x , < . ] ) ^ ] f e > x d， 、 
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p is the MLE of |3 under Ho. 
This statistic requires a known range for r, say G [a, b]. In the case of unknown 

range, M 二 siip^(”<^<^>) ^i^)y (except the sample size oo, which were obtained 
from the asymptotic distribution) we did a 20,000 simulations, similar to previous 
subsection, for each sample size in Table 2.2. 

Table 2.2: Percentage points of M 

Sample Percent 
size 70 80 90 95 99 

~~^0 1.40 1.63 1.94 2.19 2.88 
20 1.60 1.81 2.12 2.39 2.88 
30 1.71 1.92 2.24 2.50 3.05 
40 1.77 1.98 2.30 2.55 3.05 
50 1.81 2.04 2.35 2.61 3.12 
70 1.88 2.10 2.42 2.69 3.18 
100 1.93 2.16 2.48 2.74 3.26 
200 2.03 2.26 2.58 2.86 3.38 
oo 2.86 3.02 3.28 3.52 3.99 

Again, from Table 2.2, the distribution of the statistic, M does not stabilize 
even when sample size is large than 200. 

2.2.3 The alternative test statistic II 

Wei (1984) proposed a statistic to test a fit of proportional hazards model. With 
the same meaning of T, Z, X , 5, Ao as before, we present his test in the regression 
form. The null hypothesis of the test is describing the proportional hazards 
model, i.e. Ho is 

A(t I z) 二 Ao(t)exp(^^). 

The statistic he proposed is, under Ho 

— I i^CJJ3,T) I 
ln 二 sup - Q2 广 /^ TT77̂  ， 

0<r<cx. [-^Cn(/5,00)JV^ 卢=卢 

where CJj3, oo) is the logarithm of the partial likelihood function with 
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n � n 
CnW,r) = J2Si |3zi - log[J2^MP^j)Mxj>x.]] l[X.<r], 

i=n L j=l -

and P is the MLE of j3 under Ho satisfying 
Cn0,oo) = maxCn(^,oo). 

It can be proved that T^ converges to the maximum of a Brownian bridge process. 
Ho is rejected if Tn is too large. 

2.3 Variations of the test 

2.3.1 Restricted test 

As in change-point problems, the likelihood ratio test statistic tends to put an 
undue weight on the tail where there is little information to actually detect a 
change-point. In practice a change-point may be thought to lie within a restricted 
range of the observations. It is a common practice to restrict the change-point 
to lie between the pth-quantile and the (1 - p)th-quantile of the sample, where 
0 < p < .5. 

In the Cox proportional hazards model, because of censoring, it seems more 
appropriate to restrict the change in the following way: let I{r,|3) be the infor-
mation under Ho for observations before r, i.e. 

H “、— sr X ( S 2 i ^ — s j i ^ ] 
、丁,") 二 知[M^) — W ^ J ， 

where for k 二 0,1,2 

^(^,^) = E^'exp(^ZO/[x.>t] /n, 
i=i 

and let t̂  = / ( r ,^ ) / / ( oo ,^ ) . Then a restricted statistic can be defined by 

Ap = - 2 ( l o g L 0 J , O ) - sup logL(4r ,7r ,T) . 
V p<tr<l-p / 

Some percentage points for p = .05 and p = .1 under Ho and same conditions 
as in Table 2.1 are presented in Table 2.3 and Table 2.4. (The results for the 
sample size 00 is derived from asymptotic distribution, see section 3.1) We see 
that the distribution stabilizes to some degree as the sample size gets beyond 100. 
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Table 2.14: Percentage points of M* based on different datasets 

(a) p = 0.05 
Sample Percent 

size 70 80 90 95 99 
"""5jO 3.86 4.26 5.84 6.43 10.59 

20 4.65 5.45 6.72 8.16 11.11 
30 4.96 5.79 7.21 8.58 11.58 
40 5.24 6.11 7.57 9.01 12.23 
50 5.42 6.30 7.77 9.23 12.46 
70 5.55 6.54 8.04 9.52 12.72 
100 5.33 6.42 8.11 9.64 13.28 
200 5.28 6.29 7.99 9.58 13.27 
500 5.40 6.35 8.14 9.81 13.71 
oo 5.65 6.67 8.27 9.78 13.47 

Table 2.4: Percentage points of Ap 

(b )p = 0.1 
Sample Percent 

size 70 80 90 95 99 
~~~Io 3.86 4.25 5.84 6.43 10.59 

20 4.65 5.49 6.72 8.16 11.09 
30 4.94 5.79 7.21 8.58 11.58 
40 4.81 5.98 7.57 9.01 12.21 
50 4.67 5.75 7.66 9.23 12.46 
70 4.67 5.63 7.20 8.87 12.48 
100 4.67 5.63 7.23 8.91 12.56 
200 4.79 5.82 7.39 8.95 12.56 
500 4.83 5.76 7.32 8.89 12.57 
oo 5.11 6.09 7.69 9.25 13.00 
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Table 2.14: Percentage points of M* based on different datasets 

(a) p = 0.05 
Sample Percent 

size 70 80 90 95 99 
10 1.34 1.62 1.86 2.15 2.70 
20 1.59 1.81 2.11 2.38 2.88 
30 1.69 1.91 2.23 2.49 3.05 
40 1.76 2.98 2.30 2.55 3.05 
50 1.78 2.03 2.35 2.61 3.12 
70 1.82 2.07 2.41 2.68 3.18 
100 1.85 2.10 2.45 2.73 3.26 
200 1.89 2.15 2.49 2.80 3.34 
oo 2.38 2.58 2.88 3.13 3.67 

For the statistic M = siipTe[—] S{r), if the range for r is not known, let define 

Mp 二 sup ^(r), (2.3.5) 
p < t r < l - p 

with the same definition of tr. 
Similar simulations for the percentage points of Mp are presented in Table 2.5 

and Table 2.6 and we can see an improvement as compared with Table 2.2. 

2.3.2 Adjusting for other covariates 

It is rare that a clinical data consists of only one covariate. If we have more than 
one covariate, it is desirable to check the assumption of proportional hazards 
in the main covariate adjusting for the other covariate(s). The omnibus test of 
Wei (1984) works only for one covariate or when the off diagonal element of the 
covariance matrix is zero, see Therneau et al. (1990). 

Assume that W is the other covariate, and write L{|3,^,T,0) as the partial 
likelihood adding OWi to the corresponding terms inside the exponent in the defi-
nition of L[|3,7, T). There are two ways of generalizing the test of the last section 
adjusting covariate W. The first is to construct conditional partial likelihood 
ratio statistic by 
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Table 2.14: Percentage points of M* based on different datasets 

(b) p = 0.1 
Sample Percent 

size 70 80 90 95 99 
"""T5 1.34 1.62 1.86 2.15 2.70 

20 1.54 1.78 2.09 2.37 2.87 
30 1.65 1.89 2.22 2.49 3.05 
40 1.70 1.93 2.27 2.54 3.05 
50 1.69 1.96 2.31 2.60 3.11 
70 1.71 1.97 2.33 2.63 3.17 
100 1.73 1.98 2.36 2.67 3.22 
200 1.77 2.03 2.39 2.70 3.26 
oo 2.26 2.47 2.77 3.04 3.61 

A' = - 2 ( log L0,良 0, e) — sup log L 0 r . > , 丁,句)， 

where 6 is the MLE of 0 under the null hypothesis of no change. The second way 
is based on the likelihood ratio principle: 

A 二 —2 (log L0,久 0,0) - sup log 1 0 ” � , r , ^ ) )， 

V 丁 / 
where Or is the MLE of 9 under Hi that there is a change. 

It seems that A^ is simpler to implement than A but the latter should be more 
powerful than A^ under the alternative hypothesis. Under the null hypothesis and 
any particular pattern of covariates distribution, the simulated percentage points 
of these two statistics can be obtained by modifying the program which gives 
Table 2.1. The large sample properties of these two statistics are discussed in 
Section 3.1. The restricted version of these two statistics can be constructed in 
an obvious way and their percentage points under the null hypothesis can also be 
simulated easily if the baseline hazard function is known. 
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2.4 Apply with bootstrap 

In practice, the percentage points of the statistic Ap (or Mp) are not available if 
we do not know the baseline hazard function, A。(,)，and the actual value of |3. 
However, with the bootstrap algorithm introduced in section 1.5，an approximate 
percentage points of Ap (or Mp) can be approximated. Recall , given Zi, Ci is 
the censoring variable for the ith life time Ti and observe Xi = min(T“ Ci) with 
Si 二 /[T,<C7i]. Suppose Ti � F and Ci � G , then the distribution of the statistic Ap 
(or Mp), can be expressed as a function of F and G, i.e. A^(F, G) (or Mp{F, G)). 

A A 

With appropriate estimates of F and G, say F and G, we can approximate the 
corresponding distribution by Ap{F,G) (or Mp{F,G)). Assuming the censoring 
time also satisfies the proportional hazards model: 

Ac(c I 2) 二 Ao,c(c) exp{|3cz) 

Let Ao^r{t) and Ao,c(c) be the baseline cumulative hazard function of Ti and 
Ci respectively under Ho and which can be estimated by the Breslow estimator 

AoAt) = E f e - ] ^ ~ ^ ~ i ^ T " ^ , (2.4.6) 
i=i E^=i ^w{hzj)I[x,>x.] 

Ao,c{c) = E fe<c]-~~^^"^, (2.4.7) 
i=l J2]=1 ^Ml^CZj)I[X,>X.] 

A 

where Pr is the MLE of ^r under Ho with dataset {zi,Xi,Si) and /¾ is the MLE 
of |3c under Ho with dataset {zi,Xi, 1 — &•)’ 

With these estimates, we use the following to estimate the survivor function of 
Ti and Ci given the covariate 

• 1 exp(/§T̂ ) 
1 - F{t I z) = e x p ( - i o , T ( t ) ) ， （2.4.8) 

• 1 exp0c^) 
1 - G{c I z) = e x p ( - 4 o , c ( c ) ) . (2.4.9) 

In parallel to section 2.2, generate T* from (2.4.8) and C* from (2.4.9) given 
z^ = Zi. Denote the bootstrap observations by (z^,X^^,S*),i = l , - . . , n , where 
X* = min{T^^,C-) with 5- = I[T*<c*]- Again, the percentage points of A* (or 
M*) can be computed with 20,000 simulations. Then use these as an approximate 
percentage points of the actual percentage values of Ap (or Mp.) 
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Table 2.14: Percentage points of M* based on different datasets 

p = 0 

Sample Percent 
size 70 80 90 95 99 

~~~^0 3.81 4.26 5.84 6.42 10.60 
20 4.33 5.09 6.49 7.87 10.68 
30 4.71 5.55 6.98 8.31 11.42 
40 4.82 5.71 7.15 8.58 11.72 
50 4.90 5.80 7.29 8.71 12.05 
70 5.07 5.97 7.48 8.87 12.08 
100 5.29 6.25 7.81 9.35 12.53 
200 5.62 6.57 8.14 9.71 13.22 

Table 2.7, Table 2.8 and Table 2.9 show the approximated percentage points 
of A* based on one simulated data set from the model as in Table 2.1, Table 2.3 
and Table 2.4. Table 2.10, Table 2.11 and Table 2.12 show the approximated 
percentage points of M* based on one simulated data set from the model as in 
Table 2.2, Table 2.5 and Table 2.6. We can see the approximated percentage 
points agree closely with the actual percentage points. 

Table 2.13, Table 2.14 and Table 2.15 show the approximated percentage 
points of M* based on several simulated dataset of simple size 100 from the 
model as in Table 2.2，Table 2.5 and Table 2.6 (the percentage points from true 
distribution and asymptotic distribution are also included). We can see the val-
ues of the approximated percentage points do not vary very much and give a 
better approximation than the asymptotic distribution. Thus, bootstrap should 
be employed to implement the test for small sample size. 

2.5 Examples 
In this section, we analyze some real data sets using our methods. The p-value 
reported in this section are all obtained by the bootstrap distribution with 20,000 
simulations. The results are compared with the test of Wei (1984). The examples 
show that our test is more efficient than Wei's test in their particular settings. 
The reason why these happen is discussed with the representation of A in the 
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Table 2.14: Percentage points of M* based on different datasets 

p = 0.05 
Sample Percent 

size 70 80 90 95 99 
~ ^ 0 3.76 4.25 5.82 6.42 10.60 

20 4.33 5.09 6.49 7.86 10.68 
30 4.65 5.52 6.97 8.31 11.42 
40 4.81 5.70 7.15 8.58 11.72 
50 4.77 5.73 7.27 8.71 12.05 
70 4.90 5.87 7.43 8.85 12.08 
100 5.06 6.06 7.69 9.32 12.53 
200 5.28 6.25 7.87 9.48 13.03 

Table 2.9: Percentage points of A* 

p = 0.1 
Sample Percent 

size 70 80 90 95 99 
~ " T o 3.76 4.25 5.82 6.42 10.60 

20 4.18 5.02 6.46 7.85 10.68 
30 4.42 5.38 6.88 8.26 11.42 
40 4.38 5.38 6.97 8.52 11.72 
50 4.43 5.40 7.05 8.58 12.00 
70 4.61 5.54 7.13 8.58 12.00 
100 4.69 5.69 7.28 8.89 12.18 
200 4.72 5.67 7.24 8.85 12.52 

30 



Table 2.14: Percentage points of M* based on different datasets 

p = 0 
Sample Percent 

size 70 80 90 95 99 
~ ~ I o 1.30 1.53 1.80 2.15 2.70 

20 1.55 1.77 2.07 2.33 2.86 
30 1.58 1.80 2.11 2.37 2.89 
40 1.73 1.94 2.24 2.50 3.04 
50 1.91 2.13 2.43 2.69 3.23 
70 1.99 2.21 2.52 2.78 3.27 
100 1.89 2.12 2.45 2.73 3.25 
150 1.97 2.19 2.51 2.79 3.29 
200 2.03 2.26 2.58 2.86 3.43 

Table 2.11: Percentage points of M* 

p = 0.05 
Sample Percent 

size 70 80 90 95 99 
~~~^0 1.28 1.51 1.78 2.12 2.70 

20 1.54 1.76 2.07 2.33 2.86 
30 1.57 1.80 2.11 2.37 2.89 
40 1.72 1.94 2.24 2.50 3.04 
50 1.87 2.11 2.42 2.68 3.23 
70 1.90 2.15 2.50 2.77 3.27 
100 1.82 2.08 2.43 2.72 3.25 
150 1.86 2.10 2.45 2.75 3.29 
200 1.89 2.14 2.51 2.80 3.39 

31 



Table 2.12: Percentage points of M* 

p = 0.1 

Sample Percent 
size 70 80 90 95 99 

~~^0 1.28 1.51 1.78 2.12 2.70 
20 1.50 1.73 2.05 2.32 2.85 
30 1.53 1.77 2.10 2.37 2.89 
40 1.66 1.90 2.23 2.50 3.04 
50 1.74 2.01 2.37 2.66 3.20 
70 1.76 2.02 2.39 2.70 3.25 
100 1.71 1.98 2.35 2.66 3.24 
150 1.75 2.00 2.36 2.67 3.22 
200 1.77 2.03 2.41 2.70 3.32 

Table 2.13: Percentage points of M* based on different datasets 

p = 0 
Sample Percent 

size 70 80 90 95 99 
~ ~ m 1.89 2.12 2.45 2.73 3.25 

100 1.90 2.14 2.46 2.73 3.26 
100 1.91 2.14 2.46 2.72 3.25 
100 1.87 2.09 2.42 2.69 3.22 
100 1.91 2.13 2.44 2.71 3.25 
100 1.91 2.13 2.45 2.73 3.26 
100 1.94 2.16 2.47 2.74 3.26 
100 1.90 2.13 2.45 2.73 3.26 
100 1.85 2.08 2.40 2.67 3.19 
true 1.93 2.16 2.48 2.74 3 . ^ 

~ ^ 2.86 3.02 3.28 3.52 3.99 
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Table 2.14: Percentage points of M* based on different datasets 

p = 0.05 
Sample Percent 

size 70 80 90 95 99 
~~rOO 1.82 2.08 2.43 2.72 3.25 

100 1.83 2.09 2.43 2.72 3.25 
100 1.83 2.08 2.42 2.71 3.24 
100 1.81 2.06 2.40 2.69 3.22 
100 1.83 2.09 2.42 2.70 3.25 
100 1.83 2.08 2.43 2.72 3.26 
100 1.85 2.11 2.45 2.73 3.26 
100 1.82 2.08 2.43 2.72 3.25 
100 1.79 2.05 2.39 2.66 3.19 
true~~1.85 2.10 2.45 2.73 3.26 
oo 2.38 2.58 2.88 3.13 3.67 

Table 2.15: Percentage points of M* based on different datasets 

p = 0.1 
Sample Percent 

size 70 80 90 95 99 
~ m 1.71 1.98 2.35 2.66 3.24 

100 1.72 1.98 2.35 2.65 3.22 
100 1.71 1.97 2.34 2.64 3.21 
100 1.71 1.97 2.32 2.64 3.19 
100 1.73 1.99 2.33 2.62 3.22 
100 1.72 1.98 2.34 2.65 3.22 
100 1.74 2.00 2.36 2.66 3.20 
100 1.72 1.98 2.34 2.64 3.23 
100 1.70 1.96 2.31 2.60 3.17 
true 1.73 1.98 2.36 2.67 3.22 

~ ~ o o 2.26 2.47 2.77 3.04 3.61 
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next section. 

2.5.1 Male mice data 

This data set is given in Hoel (1972) and goodness-of-fit for proportional hazards 
model was tested by Wei (1984). Two groups of sizes 22 and 29 of male mice 
were given 300 rads of radiation and followed for cancer incidence. For more 
detailed descriptions, see the two papers mentioned above. In Wei (1984), the 
goodness-of-fit test yields a value 1.29 with an approximate-;> value 0.06. In our 
case, A.o5 二 11.24, which corresponds to an p-value 0.02 If the size of the test is 5 
percent, A will reject the null hypothesis that the data set obeys the proportional 
hazards model while Wei's test won't. 

2.5.2 Stanford heart transplant data 

Stanford heart transplant data has been analyzed using different methods in many 
papers. See, for example, Miller (1981). The reason this data set has received so 
much attention is partly because the proportional hazard model does not fit it 
very well. We analyzed the data set as it is in Miller and Halpern (1982). We only 
included the patients who actually received a transplant. The total number of 
patients is 157, among whom 55 were censored. We assume the age covariate is of 
interest. It seems that the logarithm of the age covariate fits the data better than 

A 

without the transformation. Using this transformation, we get (3 = .815 with 
standard deviation .399. Our test with p = .1 yields a value A.i = 7.83, which 
corresponds to an j9-value 0.10. Wei's test yields a value 0.49 which corresponds 
to an approximate p-value 0.97 indicating a very good fit. 

2.5.3 CGD data 

The chronic granulotomous disease trial was a placebo controlled randomized 
trial. The data set is described and analyzed using Cox regression in Harrington 
and Fleming (1991). We only included the patients at the first infection. The total 
number of patients is 128, among whom 44 have died. Assuming the treatment 
covariate is of interest, a test of fit A.i = 7.32 yields an p-value 0.067, which is not 
significant, but to a careful investigator, it suggests some degree of dissatisfaction 
with the proportional hazards model. In comparison, Wei's test gives 0.87 with 
approximate p-value 0.45, which indicates a very good fit. 
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Chapter 3 

Large Sample Properties and 
Discussions 

A brief discussion of the large sample properties of the test is given in the Section 
3.1. Some final comments and discussions on possible further researches are given 
in Section 3.2. 

3.1 Large sample properties and relationship to 
goodness of fit test 

3.1.1 Large sample properties of A and A^ 

For fixed r, define 

A(r) = 2[ log L0T, 7r, 丁) — log L0,台,0)]. ( 3 . U ) 

It is easy to see that A 二 supT A(r). 
Using asymptotic representations of P,Pr->lr and two-term Taylor expansion, 

after some lengthy algebra, we can show that (details are presented in the Ap-
pendix) 

A(r) 二 {IU(T) — I{r)UY|{I{r)[I — I{r)]I] + o, ( l ) , (3.1.2) 

where U{r) and / ( r ) are the first derivative and minus the second derivative of 
log L(/3,7,r) with respect to |3 respectively, and U = U{oo) and I 二 / (oo). Since 
U { r ) " " 2 converges weakly to a time changed-Brownian motion process in r (An-
derson and Gill, 1982) and I{r) is a consistent estimator for the variance of U{r), 
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we see that A(r) converge to B^{t)|t{l — t), the square of a Ornstein-Uhlenbeck 
process at t = EI{r)/EI and A converges to supo<,<i B^{t)/t{l-t). It is easy to 
see that for 0 < p < .5,Ap converges in distribution to supp<� i -p B^{t)/t{l — t). 

The goodness-of-fit test of Wei (1984) is equivalent to 

s u p | y ( T ) - M 7 | / / " 2 , (3.1.3) 
T 

where t̂  二 I i j )|L The square of the test is equivalent to sup^A(r)t^(l — U), a 
weighted version of our test, which is more powerful to test a change ifthe change 
occurs in the middle, or, if the change occurs at r, where I(r)/I is close to 1/2. In 
the three examples of Section 2.5, the maximums occur at 丁 where T ( r ) j I is close 
to 0 or 1, and therefore our test is more powerful than the goodness-of-fit test of 
Wei. If the opposite happens, Wei's test is more powerful but the performance 
of our test is not bad. In practice, if there is prior information as to where the 
change will occur, we can choose the appropriate test to achieve the maximum 
efficiency. Because of the structure of the Wei's test, there is very little power to 
detect a change if the change-point is close to 0.1 or 0.9 while our procedure still 
preserves some power to detect a change if the change-point is in the middle. 

� � 

3.1.2 Large sample properties of Â  and A 

The asymptotic distributions ofboth statistics h and A under the null hypothesis 
do not converge to any well known probability distribution in general, which is, 
at first sight, rather surprising. On the other hand, this is a possible reason 
why people have been refrained from discussing the covariate adjustment in this 
situation other than in the special case when Z and W are independent. From the 
asymptotic expressions of these two statistics (see Appendix), we can see that if 
EIzw{r)|EIJj) is a constant in r, then both of them have the same asymptotic 
distribution as that of A, where h^{r) is minus the second partial derivative of 
logL(/9,7,T,6>) with respect to |3 and /^ (T) is minus the cross derivative with 
respect to /3 and 0. Note that if Z and W are independent, then £7^(T) 二 0. 
Obviously, restricted versions of A^ and A converge to that of A under the same 
condition. 
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3.2 Discussions 

In contrast to recent work in this field, this paper puts emphasis on the change in 
the hazards ratio alternative rather than trying to find the alternative functional 
form when the simple proportional hazards model does not fit. It is natural in our 
approach that if the initial test rejects the null hypothesis, a change-point hazard 
ratio model can be tried, where the change occurs at the point which maximized 
the likelihood function. There are certainly advantages and disadvantages. One 
advantage is that it is simple to introduce one more parameter (as opposed to 
introducing ;̂ ,̂. •.) and it is easy to interpret(hazard ratio change from exp(/?) 
to exp(7) for life time larger that r with 1 unit of covariate increase). Another 
advantage is that the alternative is within the framework of Cox regression model 
(as oppose to generalized risk model) and the computation for the change-point 
hazard ratio model can easily be carried out with available statistical packages. 
Two disadvantages are that it introduces one more parameter and the model 
represents a non-smooth change in the hazard ratio. 

Since our procedure is based on the likelihood ratio principle, the efficiency 
of the procedure is expected to be good. We emphasize here that the procedure 
developed in this paper in only a first step in linking the model checking problems 
of survival analysis to the change-point problems. Under the change-point hazard 
ratio model, some other procedures for the model checking problems of survival 
data can be readily found from their counterparts developed for the change-point 
problems. For example, the Bayesian procedures originated by Chernoff and 
Zacks (1964) can be generalized to the model checking problems. See also Zacks 
(1991). Similar tests based on the alternative of more than one change-point in 
change-point problems. 

In multivariate covariate situations, we might have more than one change, 
with different changes corresponding to different covariates. Likelihood ratio 
tests certainly can be constructed based on these models. 

In recent work of Lin, Wei k Ying (1993), new omnibus tests for the fit of 
proportional hazards model have been proposed and it is demonstrated that it is 
very powerful. Their test is still of the Kolmogrov-Smirnov type while the test 
proposed here is of likelihood ratio type. It would be interesting to see what will 
happen if the two ideas blend together. 

Exact distribution can be simulated only when we know the baseline hazard 
function. The large sample percentage points cannot be used because of inade-
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quacy. Bootstrap is thus introduced to find better percentage points for the test 
statistics. Similar approach may be applied to other statistics having a limiting 
distribution if bootstrap distribution is better. 
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Appendix 

The asymptotic expression for A(r): 

Under the null hypothesis, we have 

^ — /9 - U|I^o,{n-^l^), 

^ — /9 = U{T)|I{r)^-o,[n-'l% 

7 r - 7 = [U-U{T)]|[I-I{r)]^o,[n-"'). 

Define UiJ3, r) to be the first derivative of log L(J3,7, r) with respect to |3. Using 
a two-term Taylor expansion we have 

A(r) = 2 [ 0 r - ^ ) U 0 , T ) - 0 r - ^ Y l { r ) / 2 

+(7r — h \ - U 0 , r)] — (7r - /5)2[/ — /(r)] /2] + o,(l) , 

Substitute / i , > ,冷 and U0, r) by U{r) - 0 — P)I{r) + o(n"2), and after some 
algebraic simplification(using Mathematica), we get the proof. 

The asymptotic expressions for A^ and A: 

In addition to the notation used above, we denote W as the first derivative of 
log(/3,7,r,6') with respect to 0 and U{r) 二 U-U[T) and 7(r) = / — /(T). Under 
the null hypothesis, we have 

^-p - u/h, - hU0-e)!h, + o (̂n"̂ /'), 
e-0 二 （ - / - " / / , z + T )̂/F + Op(n-"2), 

束 - 々 = U { r ) / l U r ) - h4r){Or - 0)|h.{r) + o,(n"^/2), 

7 r - 7 = t^(r)/ / . . (r) - 7 .^ (r ) ( i - ^) / / . . (r ) + o,(n"^/^), 
K - 0 = ( - / . . ( r ) t / ( r ) / / . . ( r ) - J. . (r)t / (r) /7, . (r) + W)|F, + o,{n-' '^), 

where 
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F — Iww — ^WZ Izw / ̂ zz 

Fr = Lw - Iwz{r)Iz^{r)/I,,{r) - Lz{r)Izw{r)/I,,{T). 

Then, similar to the expansion of A(r), we have 

A(r) 二 作 ) /乂—则 )+ o , ( l ) , (1) 

where 

X{t) = -[I^J.. - lLW{t) + [Iu.n.Izz{t) - lUt)^zv]U 

^[Izn^{t)Izz - hwhz{t)]W, 

Var{X{t)) 二 [/浦/“,)-/細(力)/彻]/“如[/細敝广/“01-]/“,). 

If Eh^{t) /Eh^{t) is constant in t, then in (1), X(t) can be replaced by 

X{t) = h,F[-U{t) + Uhz{t)/h,l 

and Var{X{t)) by 

Var{X{t)) = h,F'hz{t)IUt). 

so the right side of (1) converges to square of a Ornstein-Uhlenbeck process. 
For the proof of A% we observe theat if Eh^{t)/EI:,^{t) is constant in t, then 

0 has the same expression as Or up to 0(n"^/^), so A^ is equivalent to 入 in this 
case. 
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