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Abstract 
Classification and Association Rules Mining are two important data min-

ing techniques. These two techniques are complements of each other. Decision 

trees classification is a supervised learning that requires a training dataset to 

develop a classifier, while itemsets mining is an unsupervised learning that 

requires no apriori knowledge. Both of them are essential to practical appli-

cations. In this thesis, we aim at improving these two techniques for large 

databases. 

Classification has been widely used to assist decision making processes in 

various applications. Among the techniques for classification, decision tree has 

caught most attention recently due to its conceptual simplicity and accuracy. 

In the first half of this thesis, we investigate several strategies to speed up 

the process for building decision trees under the database oriented constraint: 

the main memory space is l imited and usually much smaller than the dataset. 

Our methods for building decision trees are all based on pre-sorting. We 

pay particular attention to the problem of how to minimize I / O operations 

under the l imited memory space. Our study shows that by emphasizing on 
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different aspects such as the order of hashing, allocation of memory buffers, 

the amount of disk space, and the tradeoff between I / O and CPU costs, we 

can obtain schemes w i th different performance characteristics. Thus they can 

meet different requirements for different applications. 

On the other hand, mining association rules in a large database is another 

important data mining problem. In particular, mining the TV-most interest-

ing itemsets is a new technique that eliminates the requirement of a suitable 

user-specified support threshold, which is typically hard to be set by the users. 

In the second part of this thesis, we propose three algorithms, LOOPBACK, 

BOLB, and BOMO, for mining the TV-most interesting itemsets by variations 

of the FP-tree approach. Experiments show that our new methods outper-

form the previously proposed Itemset-Loop algorithm, and the performance 

of BOMO can be an order of magnitude better than the original FP-tree al-

gori thm even wi th the assumption of an optimally chosen support threshold. 

We further investigate the problem of mining association rules in a constraint-

based approach. Realistically, users may only be interested in particular item-

sets or rules that contain certain items. Thus, we define the item constraints in 

such a way that users can specify the number of required itemsets containing 

different types of items. Based on BOMO, we propose the Double FP-trees 

algorithm for mining the TV-most interesting itemsets wi th item constraints. 
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論文題目：數據採集技巧：決策樹信息分類與約束性項集挖掘 
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學系：計算機科學與工程 
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摘要： 

信息分類和關聯規則挖掘是兩種重要的數據採集技巧 .這兩種技巧 

具互補性質 .決策樹信息分類是一種監督學習，需要一些數據來訓 

練出一個分類器 .集項採集則是一種非監督學習，不需要任何已知 

的知識 .兩者在應用上均很重要 .此論文的目的在於改善這兩種在 

大數據庫中的採集技巧. 

信息分類已廣泛地作支援決策的應用.由於; f既念簡單而且準確度高， 

在眾多信息分類技術中，決策榭較為人矚目 .在論文的上部分，我 

們將研究數種在數據量大但記憶體不足的情况下加速建立決策樹的 

策略.據我們的研究，這些策略在不同的環境條件下，如散列的次 

序，記憶體的分配，硬碟的容量， I / O 和 C P U 的速度和價錢等， 

都具有不同的特質 .因此，它們可供不同應用之需要 . 

另方面，關聯規則挖掘是另一重要數據採集之研究 .而挖掘 N 個最 

頻繁的項集則是一種無須用戶提供難以設定的合適支持度閨之新技 

術 .我們在論文的第二部分，提議三種由F P - t r e e演變出的算法： 

LOOPBACK, BOLB，和BOMO來挖掘N個最頻繁的項集. 

實驗證明我們的方法勝越以前的 I t e m s e t - L o o p方法；而且B O M O 
更以十倍的速度超越用最合適支持度閾來挖掘的F P - t r e e算法. 

我們將這種技術加入限制性法作更深入的研究 .由於用戶可能只對 

個別的項集或規則感興趣，固我們定義了項目約束 .此乃由用戶表 

明挖掘包含不同類項的項集之數目限制 .我們以B O M O為基礎，提 

議Double FP_trees算法來挖掘N個受項目約束限制的最有趣項 

集。 
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Chapter 1 

Introduction 

Data mining, which is also known as knowledge discovery in databases, is the 

exploration and analysis of large datasets to discover meaningful patterns and 

rules. 

Nowadays, data mining is an important technology for business data pro-

(:(、ssing. I t is ncccssary to develop tools and techniques to retrieve useful and 

iii iportaiit ii irorinatioii in an efficient, accuratc, and user controllable way. 

1.1 Data Mining Techniques 

T h r r r a r c v a r i o u s i i i t e r o s t i n g a i T a s i n d a t a i i i i i i i i i g a n d \v(、ii(、(、（l ( l i f f e n ^ n t t o o l s 

f o r s t u d y i n g a n d h a i i d l i i i g d i f f e r o u t a r r a s . I n t h i s s e c t i o n , w e i n t n x l i i c c s i x 

I d m l s o f ( l a t a m i n i n g p r o b l e m s [9] i n c h i c l i n g c l a s s i f i c a t i o n , a s s o c i a t i o n rul(、‘s 

m m i n ’ i ; , (\st i i n a t i o n . prcMl ic t i o n . r l u s h T i n j i ^ , a n d ( l ( \s( ‘ i , ipt i o n . 

1.1.1 Classification 

C l a s s i f i c a t i o n . a l s o k n o w n as s u p f M v i s r d I r a r i i i i i ^ . is a f u n c t i o n t h a t i d c i i t i f i f \ s 

a m、w o b j e c t as i n 、 l n叩 i n g t o () i i (、of s(、vri’al pn>r lof i i i (>( l (.la.ss(、‘s b a s c f l ()n a sf-t 

o f pr(、(‘lassifit、(l r x a n i p l r s . F o r ( ^ x a n i p l c : c l a s s i f y i i a l i i r a l ( j h j f c t s i m o d i f f f T r i i t 

k i n ‘ i ; ( l o m s s u c h as a n i m a l .丨 ) h u i t , a n d i n i n r r a l . 
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Chapter 1 Introduction 2 

1.1.2 Association Rules Mining 

In market basket analysis, i t is valuable to explore interesting associations be-

tween different items, e.g. Is i t true that most of the customers who buy bread 

also buy milk? We can interpret this association using the rule: buys (bread)々 

buys (butter). Min ing association rules is to find such interesting rules accord-

ing to some user defined thresholds such as the support of a rule, which is the 

fraction of the transactions in the database that contain all the items in the 

rule. 

1.1.3 Estimation 

While classification deals w i th discrete outcomes, estimation is a task to deal 

w i th continuously valued outcomes. Each record can then be ranked into one 

of the categories. 

1.1.4 Prediction 

Prediction is different from classification and estimation in a way that objects 

are classified according to some predicted future behaviors or estimated future 

values. Historical data are used to build models for predicting the future 

behavior. 

1.1.5 Clustering 

Clustering is an unsupervised task to identify classes for a set of unclassified 

objects according to some similarity measurement of their attributes. I t is 

different from classification as there is no predefined set of classes. 
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1.1.6 Description 

Description is a task of describing what happens in a complicated database. 

I t helps users to understand people, products or processes in the database. I t 

gives an explanation for the behavior of them. 

1.2 Problem Definition 

From business-oriented applications to personal-computer-based web users, 

mining interesting information from large databases is of paramount impor-

tance. However, i t is usual that users are in general not experts in controll ing 

the mining process. I t is important that the data mining tools have to be 

user-friendly and easy to control. Another problem in data mining is the t ime 

efficiency in retrieving a small amount of useful information from very large 

databases. In this thesis, we handle these two problems by investigating two of 

the data mining techniques: classification and association rules mining. Both 

of them are NP-Complete [25, 61], but they are complements of each other 

and are essential to practical applications. 

In Part I, we study the problem of classification. In particular, we focus on 

the decision tree classifier. To extract useful information from the increasing 

size of databases, we propose several strategies for building decision trees in a 

disk-based approach. We attempt to preserve the quality of the decision trees 

while minimizing the 1/O operations under the assumption of l imited amount 

of main memory space. This avoids the I / O bottleneck to inhibit the data 

mining. 

In Part I I , we pay attention to the problem of setting support threshold for 

conventional association rules mining. Since setting such threshold is non-user-

friendly, difficult and indirect, finding frequent itemsets based on the support 

threshold is not practical. We propose new algorithms for mining N A;-itemsets 

wi th the highest supports for A; up to a certain value. We further handle the 
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problem in a constraint-based approach so that we can mine N A:-itemsets 

w i th the highest supports while at the same time, each of these itemsets sat-

isfies certain conditions specified by the users. This problem re-definit ion is 

important since, realistically, users would like to focus on only certain types 

of interesting patterns. 

W i t h these two investigations, we are able to efficiently handle situations 

which need both the classification and the association rules mining techniques. 

This comes to the case in query by examples when we want to find the most 

interesting patterns or rules for all objects similar to the given object. We han-

dle this problem by first classifying this object, and then using our proposed 

constraint-based association rules mining approach to find the interesting pat-

terns for all the similar objects. We believe that this combined approach is 

valuable for many applications. 

1.3 Thesis Organization 

There are six chapters following this introduction chapter. Part I, classifica-

tion, consists of two chapters while Part II，association rules mining, consists 

of 3 chapters. 

Chapter 2 gives an introduction to the classification problem, and we par-

ticularly focus on decision tree classifiers. In Chapter 3, we propose sev-

eral schemes for building decision tree classifiers for large databases in which 

the main memory space is l imited. A l l those schemes benefit from the pre-

evaliiation technique for finding spli t t ing points, and they provide different 

perforinance characteristics under different aspects, e.g. the order of hashing, 

allocation of buckets, the amount of disk space, and the tradeoff between I / O 

and CPU costs, etc. 

A survey on association rules mining is given in Chapter 4. We study some 

of the state-of-the-art algorithms and the variety of association rules mining. 
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We then present our algorithms for min ing large itemsets w i thout support 

thresholds in Chapter 5. In Chapter 6，we further extend this technique for 

min ing constraint-based association rules. We propose algorithms for min-

ing large itemsets w i t h i tem constraints. Finally, we draw the conclusion in 

Chapter 7. 

i 



Part I 

Decision Tree Classifiers 
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Chapter 2 

Background 

Classification is a function that identifies a new object as belonging to one of 

several predefined classes. Since late 70，s, i t has been used to assist in decision 

making process in a variety of applications such as medical diagnosis, credit 

approval, weather prediction, etc. I t has emerged now as an important branch 

of data mining in databases. Among the techniques for classification, decision 

tree has caught most attention recently due to its conceptual simplicity and 

accuracy. In this chapter, we give an introduction to decision tree classifiers 

and the recent work for this area. 

2.1 Introduction to Classification 

Since late 70's, classification has been used to assist in decision making process 

in a variety of applications such as medical diagnosis, credit approval, weather 

prediction, etc. I t was not however unti l the 90，s that data mining became an 

important discipline and classification emerged as one of the major branches 

in data mining. Early applications of classification were restricted only to 

small datasets, which were assumed to fit into main memories. Thus accuracy 

was the only concern. W i th the rapid growth of the computer's capability to 

collect and store large amounts of data, assuming the entire dataset to fit into 

the main memory is no longer realistic. This results in new issues such as fast 

7 



Chapter 4. Background 8 

classification, scalability, etc. 

Simply put , classification is a funct ion that identifies a new object as be-

longing to one of several predefined classes. I t is performed using a tool called 

the classifier. A classifier is constructed through a learning process which uses 

as input a collection of sample objects (called the training set). A n object is 

associated w i t h a number of attr ibutes, among which one is termed a target 

and the rest are called predictors. The domain of the target a t t r ibute con-

sists of the class labels. Dur ing the learning process, both the values of the 

predictors and that of the target attr ibutes for the sample objects are known. 

The classifier encodes the statistical dependencies between the target a t t r ibute 

and the predictors of the sample object set, and is then used to predict the 

target at t r ibute value of a new object f rom its predictors values. 

Several kinds of classifiers were proposed in the past [13, 46, 19, 10, 58 . 

Among them decision tree has caught most attent ion recently due to its sim-

plicity, conceptual cleanness, and accuracy [10, 2, 41，42, 43]. On the other 

hand, other methods like neural networks may require extremely long t ra in ing 

times even for small datasets, and cannot expl ici t ly return the characteristics 

of classes. 

2.2 Classification Using Decision Trees 

A decision tree is usually constructed in two phases, growing and pruning 

10，44]. In the growing phase, children of the nodes are generated and thus 

the tree grows. This process continues unt i l the leaf nodes become "pure" 

(see the discussion in Section 2.1.)• In the pruning phase, selected nodes are 

pruned bot tom up, start ing from the leaf level. I t requires less computational 

t ime than the bui lding phase, This pruning step is used to alleviate the impact 

caused by statistic irregularities. The mostly used technique for the pruning 

phase is based on min imum description length principle (MDL) [44，15, 33 . 
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Let t be a record. Let X i , • • •, Xm be the predictor attributes and C be the 

target at tr ibute of t. The domain of X“ denoted as dom{Xi), can be either 

continuous or categorical In the former case, the attr ibute values are ordered 

and in the latter case, they are not. The domain of C is a set of class labels. A 

decision tree can be viewed as a function dom{Xi) x . . . x dom{Xm) — dom{C). 

Each node in a decision tree is associated w i th a set of records. Let N he a 

node in the decision tree and S{N) its associated set. Let D be the original 

t raining set. I f N is the root, S{N) = D. Let N i , •.具 be the children of 

node P. We have = S[P). 

Each node in a decision tree is associated wi th a set of predicates. A 

predicate is defined as p{r) = ( r . X i , . . . , r .Xm) G T where r is a record variable 

and T C dom{Xi) x . •. x dom{Xm)- I t is required that for any internal node 

N and any record r G S{N) exactly one predicate in the predicate set for N 

is true. Let PRE{N) be the predicate set for N. We generate | PRE{N) 

children for N , each of which corresponds to a predicate in PREiJ^T). Let 

Pi G PRE{N). Ni is N's child corresponding to pi i f and only i f S{Ni)= 

{r : r e S{N) k Pi{r) 二 true}. The predicates for the nodes in the decision 

trees is selected in such a way that each leaf node L is pure, namely, all the 

records in S{L) belong to the same class (i.e, have the same value for the target 

attribute.) 

One of the main issues in the construction of decision trees is how to select 

the set of the predicates for each node. To simplify our discussion, let us con-

sider the case where each node is associated wi th two predicates, given by p{r) 

and i [ r ) , resulting in a binary decision tree. The ideas can be easily extended 

to non-binary cases. For any internal node N, let p{r) be the predicate for i t 

and Nl and Nr be its left child and right child, respectively. Then S{Nl)= 

{r:RE S{N) & p{r) = true} and S{Nr) = {r : r G S(N) k p(r) = false}. 

In addition, in most applications only a simplified form of predicate is 

used, that is, p(r) = (r.Xi) G T where 1 < z < m and T C dom{Xi). These 
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Table 2.1: A training database in an insurance company. 

Age Marriage-Status Years .Driving Risk_Class Rid 
40 I M I 15 I L I 1 

� 3 H 2 ~ ~ 
55 M 30 L 3 
55 M 35 L 1 
20 S 2 H 5~~~ 
26 M 1 L ~6 
65 M 40 ~H 7 
70 I S I 20 I H I s 

assumptions are used to ease the task of constructing decision trees. Most 

applications have shown that the accuracy of decision trees can be satisfactory 

wi th these assumptions. In the following, we consider the decision trees only 

under these assumptions. In Figure 2.1, a decision tree is shown for the sample 

training set in Table 2.1. 

2.2.1 Constructing a Decision Tree 

A decision tree is constructed in an top down fashion. At each node, an 

attribute is chosen to 'split' the data set associated with that node. Let N be an 

internal node, and X be a continuous attribute. Each value x of X is a potential 

splitting point that partitions S{N) into two sets: Sl = {r : r e S{N) & 

< x} and Sr 二 {r ..r e S{N) k r.X > x). I f X is a categorical attribute, 

each subset B of its values is a potential splitt ing point: Sl 二 {r •. r e SiJS^、 

& r.X G B) and Sr^ {r -.r ^ S{N) k r.X 牛 B}. To determine the actual 

splitt ing point among the potential splitting points for all the attributes, a 

criterion Gim Index is used. For any node N, suppose that in S{N), the 

fraction of data records belonging to class i is given by p,. The Gini Index of 

N is defined as G in i (SXA⑴=1 — Z p I If a splitting point partitions the set 

S(iV) into Sl and Sr, then the Gini Index of N for split at that splitt ing 
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Age<=55 

A Years_0f_Driving<=3 Q ) 

© 
Figure 2.1: A decision tree. 

point is defined as 

GimsMS{N)) 二 Y^I^^GMSL) + (况. (2.1) 

Among all the potential spl i t t ing points for all the attributes, the one w i th 

the lowest Gini Index for split is the best spl i t t ing point, called final splitting 

point. We call the attr ibute for which the final spl i t t ing point is chosen splitting 

attribute and other a t t r ibu tes non-splitting attribute. 

Other than the Gini index, entropy is also a popular measurement for 

deciding on the spli t t ing point. 

2.2.2 Related Work 

Almost all the work proposed for building decision trees sort attr ibute values. 

The methods in [10, 43] sort the data at every node, which would cause high 

computation overhead if the dataset is large. SLIQ [32] improves over this 

repeated sorting by employing a presorting method, which sorts the attr ibute 

values only once, i.e., at the root. The advantages of pre-sorting attributes are 

twofold. First, it maintains the pre-sorted order of the attr ibute values without 

incurring sorting related overhead at each node. Thus the performance is 

improved. Second, compared with other methods, the input data i t creates at 

each node is less sensitive in size to the inter-dependencies between different 

attributes. Thus its performance is relatively stable under different datasets 
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wi th different data distributions. 

Many attempts have been made to improve the performance over early 

pre-sorting algorithms. The weakness of the scheme proposed in [32] is its re-

quirement for some data structure (called 'class lists') to be memory resident 

all the time. This has been improved by SPRINT [48], where no permanent 

residence in memory is required of any data structure. SPRINT separates 'at-

tr ibute lists' from datasets and uses hashing to jo in them together i f necessary. 

The work in [35] reduces the amount of computations by exploring the con-

vexity property of impur i ty function used to split attr ibute lists. I t is aimed 

at handling large categorical attributes. In CLOUDS and CMP [8, 55], the 

authors propose schemes to reduce the number of split points that must be 

evaluated in order to find the best split point for an attr ibute list. However, 

8] introduces an extra scanning of the data set and [55] introduces restrictions 

which may introduce inaccuracy in the result. 

An assumption made by many recent work is that some structures whose 

sizes depend on the datasets can fit into the main memory. For example, in 

18] the authors propose a method called ' R a i n f o r e s t I t uses a data structure 

called the AVC-set, instead of the attr ibute list. An AVC-set in some sense is 

a summary table, which groups entries wi th the same attr ibute value into one 

entry, recording the count. Therefore, the number of entries in the AVC-set 

is the number of distinct attr ibute values in the attr ibute list. The AVC-set 

is usually smaller than an attr ibute list, and therefore has a better chance to 

fit in memory. However, in this scheme the dataset must be scanned at every 

node to extract necessary information. The AVC-sets must be sorted at every 

node. This can be costly i f the AVC-sets are large. Moreover, the chance that 

AVC-sets does not fit in the memory sti l l exists. 

In some other work, the main memory resident data is an sampling of the 

1 Rainforest is not basted on pre-sorting. 
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dataset. In BOAT [17], an optimistic approach is used, in which a sampling 

of the dataset wi l l give us a solution that is the correct solution w i th high 

probabil ity. However, the chance st i l l exists when the estimated solution is 

not correct and we are back to the original problem. To reduce the cost, [35' 

uses a randomized sampling to evaluate the split. The work in [17] first bui l t 

the tree using a small sample and then refine i t . The performance of these 

schemes, therefore, depend on the samples selected. The work in [45] uses a 

different approach to attacking efficiency problem: i t integrates the growing 

phase and the pruning phase. We observe that this technique is orthogonal to 

the technique used specifically for the growing phase. 



Chapter 3 

Strategies to Enhance the 

Performance in Building 

Decision Trees 

Classification using decision tree is an important data mining technique. One 

class of methods for building a decision tree pre-sort the attr ibute values for 

each attr ibute. As the decision tree grows, the attr ibute values wi l l be dis-

tr ibuted (recursively) to each node in such a way that their relative orders 

are preserved. The advantages of this pre-sorting methods are twofold. First, 

i t maintains the pre-sorted order of the attr ibute values without incurring 

sorting-related overhead at each node. Second, compared wi th other methods, 

the input data set i t creates at each node is less sensitive in size to the inter-

- dependencies between different attributes. Thus, its performance is relatively 

stable under different data distributions. In this chapter, we study several 

strategies for pre-sorting based methods in building decision trees under the 

database oriented constraint: the main memory space is l imited and is smaller 

than the dataset. We pay particular attention to the problem of how to min-

imize the I / O operations under the l imited memory space. Our study also 

shows that by emphasizing on different aspects, we can obtain schemes wi th 

14 
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different performance characteristics. Thus, they can meet different require-

ments of different applications. 

3.1 Introduction 

In this chapter, we study strategies to speed up the pre-sorting based ap-

proaches for bui lding decision trees under the database oriented constraint: 

the main memory space is l imited, and is much smaller than the dataset size. 

We make no assumption that the main memory can hold any dataset depen-

dent on the structures of the original dataset for the major evaluation steps. 

Also, we do not introduce any restriction that may compromise the accuracy. 

Therefore we provide absolute improvements on previous methods w i th no 

trade-off. Since in general the growing phass dominates the performance, we 

consider the growing phase only. 

In our schemes, we pay special attention to the problem of how to minimize 

the I / O operations under l imited main memory space. We use a technique, 

called (pre-evaluation，，whereby split points can be evaluated for an attr ibute 

list while the attr ibute list is being generated, instead of evaluating i t after 

generation. This vir tual ly reduces the amount of I / O operations required for 

evaluating split points to zero. Our study also shows that by emphasizing on 

different aspects, one can obtain schemes wi th different performance charac-

teristics. Thus they can meet different requirements of different applications. 

3.1.1 Related Work 

One approach for constructing a decision tree for large dataset is proposed in 

SPRINT [48], which is based on the use of attr ibute lists, one for each pre-

dictor attribute. An attribute list for attribute X at node TV is a projection 

of dataset S{N) on X, C, and Rid. I f X is a continuous attribute, then the 

attr ibute list is ordered by the values of X . Figure 3.1(a) is the attr ibute list 
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Age Risk—Classes Rid 
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Figure 3.1: At t r ibute list and count matrix. 

Preprocessing: construct a set A of sorted attr ibute lists. 
BmldTree(Node TV, Attr iSet A) 
0. I f all data in N are of the same class then return. 
1. Further spl i t t ing is necessary: find spli t t ing attr ibute list L and spl i t t ing point v. 
2. Generate Nl and Nr as the left child and right child of TV; 
3. 
4. BiiildTree(7Vzo似； 

5. BuMTiee{NR,AR). 

Figure 3.2: Scheme 0 (SPRINT). 

for attr ibute Age in Table 2.1. A framework for this approach is shown in 

Figure 3.2. In the preprocessing, attribute lists are created for both the split-

t ing attr ibute and non-splitting attributes. Then BuildTree(7V,yl) is called, 

where parameter A is the set of constructed attribute lists. Further spl i t t ing 

is necessary if all records in S{N) do not have a unique class label. In this 

case we search for the best splitt ing point in any attribute list. 

Let L be an attribute list for attribute X . Assume X is a continuous 

attr ibute and x e X. Let 二 { r : r.X < xkr G L} and R^ = {r \ r.X > 

xkr e L}. Then the Gini Index at x is 

Gmi工 二 + (3.1) 

To evaluate all the splitt ing points for X , we scan L in a top-down fashion. 
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Suppose r and e are two entries, we say that r ^ eif and only i f the value of the 

spl i t t ing attr ibute in r is less than or equal to that of e. For each scanned entry 

e, and for any class label z, the count y^ =\ {r : r e S[N)kr ：< ekr.C = z} | is 

accumulated. These counts can be used to calculate the Gini Index for each 

spl i t t ing point of X 

On the other hand, consider X as a categorical attr ibute and x C X. Let 

U^ = {r : r.X G xkr E L} and V； = { r : r.X 车 xkr e L}. Then the Gini 

Index at x is 

Gmi 工 = + (3.2) 
-L L/ 

In SPRINT, a count matrix is constructed when the attr ibute list is scanned. 

Each row in the count matr ix corresponds to a value in the domain of the at-

tr ibute and each column corresponds to a class label of the target attr ibute. 

An entry in the matr ix indicates the count of records wi th the class label for 

the column and the value of the attr ibute for the row. Figure 3.1(b) shows 

the count matr ix for attr ibute MarriageStatus. After the count matr ix is con-

structed, the Gini Index can be calculated for each possible part i t ion of the 

attr ibute domain. 

In either case, we can determine the best spl i t t ing point for each attr ibute 

list. Among all these spli t t ing points, we choose the best one as the final 

spl i t t ing point and the associated attr ibute list as the spli t t ing attr ibute list. 

Once the spli t t ing attr ibute and the final splitt ing point are chosen, every 

attr ibute list can be split accordingly, wi th one portion going to Nl and the 

other to NR. This task is carried out by the subroutine Split. 

In the subroutine Split, we know the splitt ing point of the spl i t t ing at-

tr ibute. Let L be the splitt ing attr ibute list. I t wi l l be split into Ll belonging 

to NL and LR belonging to NR. This splitt ing is done by simply scanning the 

iln SPRINT, these counts are stored and updated incrementally in a data structure called 
'histogram'. 
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entries in L top down. For each entry scanned, we compare the attr ibute value 

i t contains wi th the spli t t ing point, and determine its destination (i.e., either 

LL or LR) immediately. After this splitting, we then split the non-splitt ing at-

tr ibute lists. We load either Li^ or L r into the main memory. (For performance 

reason, we should bring in the shorter one). Wi thout loss of generality, we as-

sume Ll is shorter and we bring in Ll- Then we can bring in non-splitt ing 

attr ibute lists Ln one by one to do the split t ing on them. For each record in 

Ln： we see if i t exists in Ll by matching the record id (rid). I f so, i t belongs 

to NL, else i t belongs to NR. TO reduce the search time, we build a hash table 

for Ll using the rid as the key. Each record in Ln can then "probe" the hash 

table using the rid value. 

I f an attr ibute list cannot fit into the main memory, the attr ibute list is 

divided into buckets. The buckets are brought in one at a time to the main 

memory. For the splitt ing attribute, each time a bucket X is brought in from 

Ll, a hash table is built for the bucket only. W i th the hash table in the main 

memory, we bring in every bucket from each non-splitting attr ibute list one by 

one, and do the probing of the hash table to determine whether a record should 

go to Nl or Nr. Then we repeat the entire process wi th the next bucket in 

Ll. After the last bucket of Ll is brought into the memory, all the entries in 

each bucket of each non-splitting attribute list have their destinations. This 

essentially splits each non-splitting attribute list into two sub-lists, one for Nl 

and the other for NR. A diagram for this scheme is shown in Figure 3.3. 

The rest of this chapter is organized as follows. In Section 3.1.2, we intro-

duce the pre-evaluation technique. In Section 3.2, we present several strategies 

for building decision trees. In Section 3.3, we analyze the performance for these 

strategies. We conclude the chapter by summarizing the main results in Sec-

tion 3.4. 
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^ ^ ^ ^ bucket ] 

Z Non-splitting 
step 2 / Attribute List 1 

bucket 2 

Splitting 

j ^ ^ b u t e splitdng Non-splitting ^ ： ! ^ ^ 

Z Attribute Attribute ^ ^ ^ - bucket 3 
^ ^ Buffer Buffer 0 \ s t e p 5 

bucket 1 Z step 1 ^ J \\ 

\ / bucket 1 
bucket 2 \ / \ \ 

V / \ Non-splitting 

\ Attribute List 2 

Hash Table \ \ bucket 2 

\ bucket 3 

Figure 3.3: SPRINT and the One-to-Many Hashing. 

3.1.2 Post-evaluation vs Pre-evaluation of Splitting Points 

In the SPRINT framework, splitt ing points are evaluated after the attr ibute 

lists have been constructed, as indicated by the order of the related statements 

(i.e., preprocessing precedes step 1, and step 2 precedes step 3). We call 

this way of evaluating splitt ing points post-evaluation. The post-evaluation 

scheme has a negative impact on the performance. This is because if the 

attribute lists cannot fit into the main memory, they have to be writ ten to 

disk, and I / O operations are needed for them to be fetched into the memory 

for splitt ing point evaluation. 

Is i t possible to evaluate splitting points without incurring extra I / O oper-

ations? For each attribute list, the required data such as the counts for class 

labels to evaluate the splitting point is obtained by accumulating those at the 

previous relevant entries. Therefore, the evaluation is possible only when all 

those entries have been generated. Those entries are, for a continuous at-

tribute all the entries preceding the one with the splitting point value, and for 

a categorical attribute all the entries for each value in the splitt ing point set. 
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To make the evaluation possible, the counts for the entries that were already 

over-written must be kept in the memory when the current spl i t t ing point is 

being evaluated. We shall now give a more formal description of the idea. 

In the following discussion, we assume that any attr ibute list, starts from an 

(imaginary) empty entry e, is always memory resident. We assume that e is 

the 0-th entry in any attr ibute list. 

Definition 1 Let L be an attr ibute list for attr ibute X and e be an entry in 

L. Let c E dom{C) be a class label. Then e is a statistic point at time t i f 

1. e 二 e, or 

2. there exist / 、 l e and t' < t such that / is a statistic point at t' and 

every entry g wi th f -<l 9 e is in the memory at t 

I f the second condition is true, we say that f is an S-predecessor for e (S 

for Statistics). • 

Our intention here is to be able to collect incrementally various counts up 

to the statistic point using the information only residing in the memory. These 

counts are necessary to calculate the Gini Index for a splitt ing point. 

Definition 2 Let L be an attribute list for a continuous attribute X and e 

be a statistic point in L at time t. Let c G dom{C) be a class label. Then the 

statistics on c up to e, denoted as S'e(c), is 

• if e = e, then Se{c) = 0 

• otherwise, let f be an S-predecessor of e, then Se{c) 二 5>(c)+ | {g ： 

f -<L 9 :<L ekg.C 二 c } . 

• 
2The statement 'Entry e of L is in memory' implies that not only e is physically in the 

memory but also it is known to belong to L. 
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Definition 3 Let L be an attr ibute list for a categorical attr ibute X and e be 

a statistic point in L at time t. Let c G dom{C) and x G dom{X). Then the 

statistics on x and c up to e, denoted as Se{x, c), is 

• i f e = e, then Se{x^ c) = 0 

• otherwise, let f be an S-predecessor of e, then Se(x, c) = Sf(x, c)+ | {g : 

f ^L g diL ekg.X = xkg.C = c } . 

• 

I t is easy to see that statistics up to a statistic point at time t can be 

calculated using the data only residing in memory, as long as (recursively) the 

statistics of its S-predecessor is in the memory at that time. The following 

theorem shows that the statistics provides the exact information we need to 

calculate Gini Indexes. 

Theorem 1 Let L, X , c, e and Se{c) be defined in the same way as in Defi-

nit ion 2. Then, Se{c) =\ {g ： g ekg.C ——— c} • 

Proof: Suppose e is the z-th entry in L. We prove the theorem by induction 

on i. 

Base: i 二 0. Thus, e = e. By the definition of statistics, Se{c) = 0. On 

the other hand, \ {g ： g ekg.C 二 c} |二 0. 

Inductive step: i > 0. There exists a j, 0 < j < i, such that the j - t h 

entry, say / , is a statistic point and Se{c) 5'/(c)+ \ {g : f g i ekg.C = 

c} I. By induction hypothesis, Sf{c) 二| {g : p ^̂  fkg.C 二 c} Combining 

the last two equalities yields the desired value for Se{c). • 

Theorem 2 Let L, X，x, c, e and Se{x, c) be defined in the same way as in 

Definition 3. Then, Se{x, c) =| {^N ekg.X 二 二 c } . 
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Proof: Similar to the proof for Theorem 1, except that Se{c),Sf{c), | {g ： 

f ^L g -<1 ekg.C = c} and \ {g ： g f^g-C = c} | are substituted, 

respect ively, by Se{x,c), Sf{x,c), \ {g •• f g diL ekg.X = xkg.C = c } 

and I {々：• f^g-X = xkg.C 二 c } • 

The two theorems state that the statistics up to a statistic point is the 

count of certain entries up to that point. We observe that these counts are 

all we need to calculate the Gini Indexes. For a continuous attr ibute X and 

an arbitrary value x G dom{X), i f e is the last entry in L such that e.X -- x, 

then the collection of Se{c) on all c G dom{C) enables us to calculate the Gini 

Index at splitt ing point x. For a categorical attr ibute X and an arbitrary set 

y ^ dom{X), i f e is the last entry in L, then the collection of Se{x,c) on all 

oc e dom{X) and c G dom[C) enables us to calculate the Gini Index at splitt ing 

point y. Note however that our interest is not to just evaluate any particular 

splitt ing point. Rather, we need to evaluate all the splitt ing points in an 

attribute list among which we wi l l choose the best. This is possible i f every 

entry becomes a statistic point at the same point in time. Furthermore, for a 

continuous attribute list, whose domain may contain a large number of values, 

we would like the preceding entries to become statistic points earlier than the 

succeeding entries, so that their Gini Indexes can be compared incrementally. 

(For a categorical attribute list, we do not have a choice but selecting the 

best Gini Index after the last entry becomes the statistic point.) We shall 

now describe such a condition. We make the following assumptions. For any 

attribute list, in addition to the buckets i t actually contains, there is a dummy 

bucket that contains a single entry, e. We use last{B) to denote the last entry 

in bucket B and 双 to denote the z-th bucket. The dummy bucket is the 0-th 

bucket. We assume e is a special splitting point and Girlie : oo. We assume 

the existence of a secure storage area ^ that is large enough to store all the 

3lt is 'secure' in the sense that the data stored there is persistent with respect to the 
execution of any program. 
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statistics up to a single entry in each at t r ibute list. (This means the statistics 

up to one entry may overwrite the statistics up to another entry i f both entries 

belong to the same at t r ibute list and compete for the storage area.) Also, we 

assume this storage area has sufficient capacity to store the value of the Gin i 

Index at a single spl i t t ing point in each at t r ibute list. 

L e m m a 1 Let L be an at t r ibute list for at t r ibute X and b be the number of 

buckets in L. I f there exists a t ime sequence to < ti < • • • < tt such that for 

a lH , 0 < 2 < b, al l the entries in bucket B i are in memory at t ime % then for 

al l e G Bi, 

1. e is a statistic point at ti., 

2. i f z > 0 then last[Bi—i) is an S-predecessor of e; 

3. for all c G dom{c) and x G dom{X), Se{c) in case of X being continuous, 

and Se{x, c) in case of X being categorical, can be calculated while Bi is 

in memory. 

Proof: We prove the claim by induction on i, 0 < i < b. 

Base: i = 0. We have e = e. By Definit ion 1, clause 1 is true. Clause 2 is 

t r iv ia l ly true. By Definitions 2 and 3, Se{c) = 0 or c) = 0, depending on 

whether X is a continuous or a categorical attr ibute. Surely both of them can 

be obtained when BQ is in memory. 

Inductive step: 1 < i < b. By induction hypothesis lastifii—i) is a 

statistic point. Since all entries in B i are in memory at t ime U and last(Bi—i) 

immediately precedes B^ by Definit ion 1, any e G is a statistic point and 

is its S-predecessor. Thus, clauses 1 and 2 are true. To prove 

clause 3, we first assume X is a continuous attr ibute. By induction hypothesis, 

Siast{B,_i){c) can be calculated while B i _ i is in memory. By the assumption 

about storage space in memory, i t can be stored in memory. By Definit ion 2, 
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Se{c) can be calculated while B i is in the memory. In case X is a categorical 

attr ibute, the argument is similar. • 

The following theorem describes our main results. 

Theorem 3 Let L be an attr ibute list for attr ibute X which meets the con-

ditions given in Lemma 1. Then the Gini Index for the best spli t t ing point in 

L can be obtained while Bb is in memory. 

Proof: We first assume X is a continuous attribute. We prove by induction 

on i that the Gini Index for the best splitt ing point in the prefix preceding 

(inclusive) last{Bi) can be obtained while Bi is in memory. 

Base: i = 0. Note last{Bo) = e. By assumption, Gini^ = oo 4. This is 

the only Gini Index and hence the best in the case. I t can be stored at to. 

(Indeed, i t can be put in memory at any time.) 

I n d u c t i v e step: i > 0. Let y be the best splitt ing point in the prefix 

preceding last{Bi_i). By induction hypothesis, Giniy can be obtained while 

Bi-i is in memory. By assumption about the secure storage capacity, Giniy can 

be stored in the memory unti l B^ is brought into the memory. Let x G dom{X) 

such that there exists e e Bi wi th e.X = x. We stil l use e to denote the last 

entry wi th e.X = x in Bi. By Lemma 1, the statistics up to e (i.e., Se{c) for 

all c e dom(C)) can be obtained while Bi is in memory. By Theorem 1 and 

Equation 3.1, Gini^^ can be calculated while Bi is in the memory. Thus among 

Giniy and Gini：^ for all such x we can select the smallest one when Bi is in the 

memory. This completes the induction. By substituting b for i in the claim 

we prove the theorem for continuous attribute X. 

Now we assume X is a categorical attribute. Let e be the last entry in L. 

Thus e == last{Bt). By Lemma 1, for all c G dom{C) and x e dom(X), Se(x, c) 

can be calculated while B^ is in memory. By Theorem 2 and Equation 3.2, 

4ln the implementation this is represented by the largest number that can be stored. 
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Giniz can be calculated for any 2： C X while Bb is in memory. Thus, we can 

select the smallest one among them. • 

To see how Theorem 3 is applied, we first consider the root. Continuous 

attr ibute lists are constructed at the root by sorting algorithms. We observe 

that almost all the popular sorting algorithms (such as selection sort, bubble 

sort, merge sort, quick sort, etc.) can ensure that any preceding element is 

inserted before any other element that follows it. As a result, we can ensure 

that for any attr ibute list, entries in preceding buckets are in memory before 

those in succeeding buckets. Thus the conditions in Theorem 3 are true. For a 

categorical attr ibute list, those conditions are guaranteed automatically: since 

the attr ibute list is not sorted, we are allowed to view the buckets created 

earlier as preceding buckets. 

Now consider an arbitrary internal node that is not the root. Let i t be 

TVl, its sibling be Nr, and its parent be N. Any attr ibute list, generated at 

Nl [ N r ) , is a result of splitt ing some attribute lists at N. I f i t is generated 

by splitt ing a splitt ing attribute list, say I / , at TV, then the conditions in 

Theorem 3 are clearly satisfied, since the entries are generated in the order 

they are placed in U . 

Now suppose it is generated by splitt ing a non-splitting attribute list, say 

ZA Note that we split U" after L\ Suppose 1/ has been split into and Lf^, 

which are at Nl and Nr, respectively. As described in Section 3.1.1, we split 

！/几 by bringing the buckets of into memory. For each bucket that has been 

brought in we generate a hash table, and then we bring in the buckets of U" 

one b}̂  one in a top-down fashion, in order to determine whether their entries 

belong to L I or L J (by probing the hash table). When the last bucket of L I 

is brought into the memory, for each bucket of U" that is brought in, all its 

entries wil l have their destinations determined. If we view all the entries in a 

bucket of L^ that belong to LJ (LJ) as a bucket of LJ (L》)，then for L I (L^) 

the order its buckets are generated in the memory are compatible with the 
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Figure 3.4: Pre-evaluation. 

order they are stored. This means the conditions in Theorem 3 are satisfied. 

Thus for both the root and internal nodes，we can apply Theorem 3. That 

is, after the last bucket of entries is created for each attribute list, the best 

splitt ing point for that list is determined while that bucket is sti l l in memory. 

We then select the best of them as the final splitt ing point and the correspond-

ing attribute list as the splitt ing attribute list. 

To summarize, wi th the kind of pre-sorting mentioned above, the SPRINT 

framework can be improved in such a way that once the attribute lists are 

generated at a node we can determine for further splitt ing the splitt ing at-

tribute list and the final splitt ing point without incurring any extra I /O . We 

call this scheme of evaluating splitt ing points pre-evaluat ion. (The prefixes 

‘post，and 'pre' are referring the time we write the attribute lists to the disk.) 

Figure 3.4 shows an example of pre-evaluation. In this example, assume 

we have only two predictor attributes: Age and Years^Driving. Assume that 

at a certain node of the decision tree, Age and Years—Driving are, respectively, 

the splitting and non-splitting attributes, and A and V are the corresponding 

attribute lists. Thus, at that node A is split into AL and AR first. Then, Y is 
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split into YL and YR. The column under 'memory contents' shows the three 

occasions where some buckets have been brought into memory in the process 

of spl i t t ing A and V. The inner box on the top row in that column indicates 

the last bucket of AL having been brought into the memory. A t this t ime 

the best spl i t t ing point for AL is determined. Likewise the box on the second 

row determines the best spl i t t ing point for AR The three inner boxes on the 

bot tom row indicate that, f rom left to r ight, the last bucket of AL the hash 

table and the last bucket of Y are in memory. Note that the last bucket of V 

being in memory implies that the last bucket of VL, which is the entry w i th 

Rid of 4, and the last bucket of VR, which is the entry w i th Rid of 7，are 

in memory. Under such scenario, spl i t t ing Y into YL and YR is completed 

and at the same t ime the best spl i t t ing point for YL and that for YR are 

determined. 

3.2 Schemes to Construct Decision Trees 

In this section, we describe several schemes to construct decision trees (only for 

the growing phase) based on pre-sorting. A l l the schemes use pre-evaluations. 

3.2.1 One-to-many Hashing 

This is simply the SPRINT approach except that the pre-evaluation of spl i t t ing 

points is used. As described before, in this scheme for each bucket of records in 

the spl i t t ing attr ibute list, we create a hash table and then read every bucket 

from each non-splitt ing attr ibute list to probe the hash table. We use the 

phrase one-to-many because the buckets of the spl i t t ing attr ibute are loaded 

into the memory only once while the buckets of non-splitt ing attributes are 

loaded many times (see Figure 3.3). 

5For performance reason we should use AR which is shorter than AL. We use AL here 
for better illustration. 
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3.2.2 Many-to-one and Horizontal Hashing 

A merit of the one-to-many hashing is that the hash table is created only once 

in the memory. However, for each bucket from the spli t t ing attr ibute list, 

each bucket of a non-splitting attr ibute list can possibly be brought into the 

memory multiple times. Each time i t is brought into the memory, i t must be 

subsequently wri t ten back to the corresponding disk file. To reduce the I / O 

cost, we can use an alternative to do the hashing, which we call many-to-one 

hashing. Like one-to-many hashing, we divide each attr ibute list into buckets. 

However we fetch the buckets from non-splitting attr ibute lists first. For each 

bucket fetched from a non-splitting attr ibute list, we bring in all the buckets 

from the splitt ing attr ibute list and create hash tables one by one. These hash 

tables are probed by the bucket of the non-splitting attr ibute list. When all 

the records in that bucket are resolved, we write them to the corresponding 

files, and then repeat this process for the next bucket from the non-splitting 

attr ibute list. Thus each bucket from a non-splitting attr ibute list wi l l be read 

and writ ten only once, while each bucket from the splitt ing attr ibute list can 

possibly be fetched multiple times, but without involving write operations. 

Our performance analysis in later sections wi l l show that i t indeed causes less 

I / O overhead compared to one-to-many hashing. We call this scheme many-

to-one because the splitt ing attribute list has to be brought into the main 

memory many times while the non-splitting attribute lists are brought in only 

one time. 

A question here is how to construct a bucket from the non-splitting at-

tribiite lists. One way of doing this is to let each bucket contain the records 

entirely from one list. We call the resulting scheme the many-to-one s im-

ple hashing scheme. The other is to divide the bucket into k slots, where 

k is the number of the non-splitting attribute lists, and let each slot contain 

the records from one list. We call this second method horizontal hashing. 
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Figure 3.5: Horizontal Many-to-One Hashing. 

A diagrammatical example of horizontal hashing is shown in Figure 3.5. In 

this example, Buffer 1 and Buffer 2 together make up the bucket for the non-

spl i t t ing attributes. In Appendix A, we give some probabilistic comparison of 

the performance of the two methods. 

3.2.3 A Scheme using Paired Attribute Lists 

For this scheme, the overall framework is the same as that of the previous 

schemes. I t differs from the previous schemes in the structure of the attr ibute 

lists and the way they are split. At each internal node N we maintain a set of 

paired attribute lists. Let X and Y be two attributes. The paired attr ibute 

list for X paired with Y , denoted as (X, F, C, Rid), is a list of tuples of the 

values for these four attributes. Furthermore, i f X is a continuous attr ibute 

the tuples are listed in the ascending order of the values of X . We say that X 

is the host and Y is the guest in the list. 

The idea behind the attribute pairing is in the following. Suppose there ex-

ists another attribute list (y, Z, C, Rid) at the same node. Then the values of 
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y in (X , y , C, Rid) can reference those of Y in (F, Z、R, Rid). I f (F, Z, R, Rid) 

is the spl i t t ing at t r ibute list at the left child, this reference can faci l i tate 

the process to distr ibute the entries in Rid), as described below. 

To make i t possible for any at t r ibute to reference any other at t r ibute at a 

node, we maintain a cycle of m paired at t r ibute lists: Rid),.. 

(^m-l, , Xm, C, Rid), {Xm,而，C, Rid). 

The at tr ibute lists at the root are created as a result of preprocessing. 

Again, pre-evaluation of spl i t t ing points can be made for its children. Now, 

consider how to construct the attr ibute lists at the two children Nl and Nr of 

P- Suppose the attr ibute lists for P have been created, and at t r ibute has 

been chosen as the spl i t t ing at tr ibute and x as the spl i t t ing point of X i . There 

is no diff iculty to split at t r ibute l ist〈Xi, X2, C, Rid) for node Nl and NR. Let 

the attr ibute list at Nl be ( X i , X 2 , C , Rid)^ as a result of that spl i t t ing. To 

determine the entries that must go to node Nl (and respectively Nr) for the 

non-spli t t ing attr ibute lists at P, we start from Rid). 

• First, assume Xi is a continuous attr ibute. Since x is the spl i t t ing value 

for Xi at node P, any entry in〈X叫 X i , C, Rid) w i th a value for Xi being 

less than or equal to x goes to NL and otherwise goes to NR. Thus, we 

scan the entries in Rid) top down. For each entry scanned, 

we can determine where i t goes by examining its value for X：. 

• Second, assume X i is a categorical attr ibute. We also scan the entries in 

list {Xm,Xi,C, Rids). For each entry scanned, we check i f its Xi value 

is in set x. I f i t is the case, the entry goes to Nl, otherwise i t goes to 

NR. 

We have split〈X爪，Xi, C, Rid). Le t〈X_ X i , C, R%d)^ be the attr ibute list 

at node Nl as a result of that splitt ing. Note that this list is sti l l sorted on the 

value for Xm in case i t is a continuous attribute. Now consider how to split 

attr ibute list {Xm-i,Xm,C, Rid). Assume Xm is a continuous attr ibute. Let 
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Figure 3.6: Spl i t t ing at tr ibute by at t r ibute pairing. 

Kn be the largest value for Xm in list ( X ^ , X i , C, Rid)^. We scan the entries 

in list {Xm-i,Xm, C, Rid) top down. I f an entry contains a value for Xm larger 

than i t w i l l surely go to Nr, otherwise we use the hashing method similar 

to the previous schemes to determine the destination of the entry. 

I f Xm is a categorical attr ibute, we scan Rid). For each 

entry scanned, we use hashing to determine which child i t must go to. Once 

the list {Xm-uXm,C, Rid) splits, we then split X ^ - i , C, Rid), then 

Xm-2, c, Rids), etc, by using the same procedure. Eventually, the list 

(A"2, C, Rid) w i l l be split. We observe that these lists are split following 

the reverse order of their subscripts. We therefore refer to this order reverse 

splitting order. Figure 3.6 gives an example of this scheme. (The boldface 

numbers indicate the order the attr ibute l i f ts are split, assuming the top left 

most list is the spl i t t ing attr ibute list.) 

3.2.4 A Scheme using Database Replication 

We notice that when we do the reverse spl i t t ing in the attr ibute pairing scheme, 

spl i t t ing the first non-splitt ing attr ibute list (i.e, the second in the reverse 
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spl i t t ing order) is much easier than spl i t t ing other non-spl i t t ing attr ibutes. 

This is because the value used for spl i t t ing that list is the spl i t t ing value of the 

spl i t t ing at tr ibute list. Is i t possible to use this spl i t t ing value for the spl i t t ing 

of all other non-spl i t t ing attr ibute lists? The answer is yes. We can make u 

copies of the entire dataset, where u is the number of continuous attributes. 

These copies are sorted based on the values of different continuous attributes. 

We use notation ( X i , • • • • • •) to indicate that this dataset copy is sorted 

based on the value of X i . (If there is no continuous attr ibute, a single copy 

must be maintained.) 

A t the root, all the copies are created in a preprocessing phase. As usual 

for any continuous attr ibute, the best spl i t t ing point can be determined when 

the copy is sorted. For categorical attributes we can choose any copy to do the 

evaluation when that copy is sorted in memory. Thus the spl i t t ing attr ibute 

and the spl i t t ing point are determined in a pre-evaluation of the spl i t t ing 

points. Now consider the children, Nl and Nr, of an internal node TV, assuming 

the existence of u copies of the datasets, the spl i t t ing attr ibute X , and spl i t t ing 

point X at node N. Since every copy contains X , spl i t t ing is easy. We can 

simply compare the value for X in each entry wi th x. I f X is continuous, a 

value smaller than or equal to x implies that the entry must go to N^, otherwise 

to Nji. I f X is categorical, a value belonging to x implies that the entry must 

go to NL, otherwise i t must go to NR. Figure 3.7 describes this scheme. The 

asterisk indicates the attr ibute on which the database is sorted. 

3.3 Performance Analysis 

We have proposed the following new schemes: 

(1) Scheme 1: one-to-many hashing, 

(2) Scheme 2: many-to-one simple hashing, 

(3) Scheme 3: many-to-one horizontal hashing, 
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Figure 3.7: Splitt ing attr ibute using replicated datasets. 

� Scheme 4: paired attributes (one-to-many), 

(5) Scheme 5: paired attributes (many-to-one), 

(6) Scheme 6: dataset replication. 

We also call the scheme of SPRINT Scheme 0. In this section, we compare 

the performance of these schemes. We first derive a general result for the 

amount of I / O operations involved in each scheme (in the worst case behavior). 

Then we apply these schemes to a specific database to gain some concrete idea 

of the performance of each of them. 

We assume the available main memory space is fixed. A l l the data init ial ly 

resides on disk, which are grouped into blocks. A block is the minimum unit to 

be transferred between the disk and the main memory. The original dataset is a 

table with k + 1 fields. Listed in Table 3.1 are the symbols for the parameters 

required by our derivation. Note that to simplify the derivation, we have 

assumed that all the fields (including the rid field) are of equal sizes. 

Since all schemes need preprocessing, we wil l first concentrate on the num-

ber of disk blocks that must be fetched from or written to the disk when 

splitting takes place at any particular node for each scheme in the worst case. 
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Table 3.1: Notations for the parameters. 

notations unit meaning 
Z bytes available main memory space 
f bytes field size of a record 
b bytes block size 
n records size of dataset at a node 
k attri number of predictor attributes 
u attri number of continuous attributes 

Bs bytes "bucket size for the splitting attribute 
Bn bytes bucket size for non-splitting attributes 

We call this number the cost. After that we wi l l derive the cost for the pre-

processing. 

• First consider Scheme 0. Let N be an internal node of the decision tree. 

(1) The attribute list for the splitt ing attribute contains 平 blocks. To 

split the attribute list, all its blocks are read and then writ ten back. This 

amounts to 字 block accesses. 

(2) After the splitt ing attribute list has been split into two lists, the 

smaller of the two lists, letting i t be L^, wi l l be fetched into memory to 

form hash tables. Therefore the greatest possible size of this list is |_n/2 

entries, or bounded by「暂 ] b locks . This list wi l l form at m o s t 「 f ^ ' 

buckets. 6 

To split non-splitting attribute lists, for each bucket of L^ brought into 

the main memory, all the entries of non-splitting attribute lists must be 

fetched. The total size of them is ^ blocks. Each of these blocks is read 

and subsequently written 载 times. Hence the total cost for splitt ing 

non-splitting attribute lists is + Note that the hash table 

created for L , and the non-splitting bucket B̂ ^ must fit into the main 

memory. I f H is the hash table size, then H Br^ < Z. The number 

6To simplify our discussion, we shall ignore the floors and ceilings in similar terms in the 
following analysis. 
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of entries in the hash table should be greater than that of Lg. However, 

each entry in the hash table has a small size, since i t only needs to record 

the record id. In the implementat ion of the hash table, we can vary the 

ut i l izat ion factor in the hash table, and typical ly H = fBg, where / is a 

factor close to 1. We have 

Bs + B n - Z (3.3) 

(3) Af ter both the spl i t t ing and non-spl i t t ing attr ibutes have been split, 

they must be brought to memory again to evaluate the split points. This 

requires another ^ block accesses. 

Adding the above three values together, the to ta l I / O cost for Scheme 0 

at node N is 

6 n / 3nf k(3nff 3knf _ nf kj^nff 
h ^ 2h ^ hBs ^ h - 1 7 . 5 + 3 / c ) — + (3.4) 

• For Scheme 1, we save on the th i rd step because of the pre-evaluation. 

Hence, the tota l I / O cost is 

6n/ 3n / kj^nff — nf k(3nff 
T " + i + — ( 7 . 5 ) 1 + (3.5) 

• For Scheme 2, we have many-to-one hashing. First, to split the spl i t t ing 

attr ibute list, we use 平 block accesses. After the spl i t t ing at t r ibute list 

lias been split into two lists, let the the smaller of the two lists be Let 

the size of L^ be n/2 entries, or ^ blocks. The non-spli t t ing at t r ibute 

lists amounts to ^ ^ buckets. Then to split the non-spli t t ing at t r ibute 

lists, Ls is brought into the main memory ^ ^ times. Hence the cost 

involved in this step is 勞 + 警 二 勞 + The total I / O 

cost is 

W , 3n/ k{3nff _f 3kb\ nf /c(3n/)2 
T + 丁 + ̂ ^ = (6 + 瓦 片 + ̂ ^ (3.6) 
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• The analysis for Scheme 3 is the same as that for Scheme 2. 

• For Schemes 4 and 5, the cost to split each of the first two at t r ibute 

lists in the reverse spl i t t ing order is 毕.which includes cost for both 

reading and wri t ing. The derivation for the block accesses for each of the 

remaining k — 2 attr ibutes is similar to that for spl i t t ing a non-spl i t t ing 

at t r ibute list in Scheme 1 and Scheme 2，except that now each record in 

the at t r ibute list contains four fields, instead of three. Thus we omit the 

detail. The cost of Scheme 4 is: 

8n/ 8nf 4n / ( fe-2) (4n/ )^ nf {k-2){Anf)^ 
T + " F + i + 風 = I S j + ^ ( 3 . 7 ) 

The cost of Scheme 5 is: 

Snf Snf Aknf {k-2){Anff — nf (k — 2)(4nf)2 . . 
" T + T + 丁 + 風 =〜 + ^ ( 3 . 8 ) 

• Lastly, we consider Scheme 6. Now an attr ibute list for an attr ibute 

(i.e, the entire dataset sorted on the value of that attr ibute) contains 

k + 2 fields. This amounts to {k + 2)nf bytes, or blocks. Twice 

this value is the cost to split any replicated copy. Assuming there are 

u continuous attr ibute lists, the total cost for spl i t t ing all the attr ibute 

lists is 

2uik + 2)nf 
b (3.9) 

Equation 3.9 indicates that Scheme 6 would have better I / O performance 

for large dataset since i t is linear in n, i t also requires less CPU time since 

no hashing is necessary, but this scheme requires much more disk space to 

accommodate the replicated datasets. 

From Equations 3.4, 3.5, and 3.7, we see that for the one-to-many schemes, 

i t is better to use a larger Bs to minimize the I / O cost. From Equations 3.6 
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and 3.8，for the many-to-one schemes, i t is better to use a larger Bn Since 

the buckets f rom the spl i t t ing and non-spl i t t ing at t r ibute lists must share the 

l imi ted memory space, a larger Bg {Bn) would lead to a smaller B^ {Bs). 

Thus i f we set Bn too large, we w i l l have a lot of overhead in bringing in small 

portions of records f rom disk and in creating a large number of small hashing 

tables. The CPU cost w i l l go up. Similarly, i f we set Bg too large, we wi l l have 

a lot of overhead in bringing in small portions of records for the non-spl i t t ing 

attributes. Therefore, we expect that there is a value of Bg or B^ neither too 

large nor too small, where the overall performance is optimal. 

The equations derived earlier also indicate that the many-to-one schemes 

have better I / O cost than one-to-many schemes i f Bs and B^ are comparable. 

However, the many-to-one approach requires each bucket of the spl i t t ing at-

t r ibute list to be brought into memory and the corresponding hash table to 

be created mult iple times. This wi l l incur more CPU costs. Therefore the 

choice would depend on the I / O performance and the CPU performance of the 

system. 

The above derivation is only for the worst case behavior. For example, in 

Scheme 1, for each bucket of the split at tr ibute list that has been brought into 

the memory, we read all buckets of the attr ibute list being split to probe the 

in-memory hash table entries. In reality, however, we may need to read only 

a fraction of the buckets of that list to do the probing, since the in-memory 

hash table is generated only by a port ion (i.e., a bucket) of the split at t r ibute 

list. The same thing can be said to the other hash table based schemes. 

In l ight of this, Schemes 4 and 5 have a probabilistic advantage. In addi-

t ion to hashing, attr ibute values are used to resolve (i.e., find the destination 

of) each record of the attr ibute list being split. W i t h such a double resolution 

method, each record in a bucket of the attr ibute list being split may be re-

solved earlier, but never later than i t would be in the single resolution scheme 

where only hashing were used. In other words, the fraction of the buckets 
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being brought into the memory from the spl i t t ing attr ibute list in the dou-

ble resolution scheme is likely to be smaller than i t is in the single resolution 

scheme. 

Now consider the preprocessing. For the first three schemes, each attr ibute 

list contains 平 blocks. Thus i t requires ^ l o g ^ ^ block accesses to be sorted. 

Thus the cost to sort all the attr ibute lists is ^ ^ l o g平 .S c h e m e 4 requires 

^ ^ l o g ^ block accesses to sort all the attr ibute lists. Finally, Scheme 5 re-

quires block accesses to sort all copies. These results show 

that, except for Scheme 5, the pre-sorting costs for all the schemes are domi-

nated by the costs for spl i t t ing attr ibute lists. 

3.4 Experimental Results 

STATLOG [34] is a common benchmark for classification. However, since the 

largest dataset provided contains only 57,000 training records, we use the syn-

thetic database proposed in [3] for all our experiments. There are ten classifi-

cation functions proposed in [3] to produce datasets wi th varying complexities 

in distributions. In our experiments, we use two of these functions. Function 2 

produces relatively small decision trees, while Function 6 results in very large 

trees. Both these functions divide the database into two classes: Group A and 

Group B. Figure 3.8 shows the predicates for Group A for each function. We 

use four attributes for Function 2 and six for Function 6，Table 3.2 shows the 

attr ibute descriptions. 

3.4.1 Performance 

We compare the total response time as well as the number of logical page access 

for all the schemes presented in this paper on the training sets of various sizes. 

Since other schemes either are shown to be less efficient than SPRINT or they 

make assumptions or restrictions different from ours, we choose not to include 
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Function 2 - Group A 

{{age < 40) A (50i^ < salary < lOOiT)) V ((40 < age < 60) A < salary < 12^K))\J 
{{age > 60) A {2hK < salary < 76K)) 

Function 6 - Group A 
({age < 40) A {50K < (salary + commission) < lOOi^)) V ((40 < age < 60)八 

(75ii： < {salary + commission) > l2bK)) V {{age > 60) A {2bK < {salary + commission) < 75K)) 

Figure 3.8: Classification functions for synthetic data. 

Table 3.2: Description of attr ibutes for synthetic data. 

Attribute Description Value “ “ 
salary salary uniformly distributed from 20000 to 150000 
commission commission salary > 75000 commission = 0 else 

uniformly distributed from 10000 to 75000 
age age uniformly distributed from 20 to 80 
hvalue value of the house uniformly distributed from 0.5x2x100000 to 1.5x^x100000 

where z e {0 . . • 9} depends on zip code of the place 
hyears years house owned uniformly distributed from 1 to 30 
loan total loan amount uniformly distributed from 0 to 500000 

them into the comparison (see Section 3.1.1.) 

Experiments are conducted under UN IX plat form on a Sun Ul t ra 5 w i th 

128MB main memory and 270MHz clock rate. We use a 9GB hard disk, for 

which the average I / O rate is 8000 blocks per second. We enforce any wri te or 

read operations bypassing the cache memory. A l l the schemes are implemented 

in C language. In our experiments, we force each page access to go to the hard 

disk and hence the logical page accesses correspond to physical page accesses. 

Table 3.3 shows various parameters setting for our experiments. We have 

employed both linear probing and coalesced chaining ? for hash operations and 

find that the latter incurs less number of collision. As i l lustrated before, when 

we split a non-splitt ing attr ibute list, we bring into memory the buckets from 

the spl i t t ing attr ibute list to create hash tables. In the actual implementation, 

'See Appendix B. 
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however, to make efficient use of memory space we do not need to put an entire 

bucket to the spli t t ing attr ibute list in the memory. Instead, we use a working 

space the size of a single block and fetch into i t the blocks from the spl i t t ing 

attr ibute list one after another. For each block fetched, we insert entries into 

the hash table. Thus, we need to put only a hash table and a bucket from 

non-splitt ing attr ibute list into the memory. As a result we have 

H + B n ^ Z (3.10) 

Although we have 128MB main memory, we restrict the usage of the main 

memory to be 5MB for the hash table and the buckets. The reason is that we 

want to simulate the case where the main memory is substantially smaller in 

size than the dataset. Under this circumstance the scalability for each scheme 

can be best observed. 

3.4.2 Test 1 : Smaller Decision Tree 

The first set of experiments is conducted with Function 2, which has 4 predictor 

attributes, and produces a very small decision tree. The range of total number 

of nodes is from 25 to 31 with different dataset size. We call this set of 

experiments Test 1. Our experiments confirm our expectations in the earlier 

analysis. Scheme 6 stands out as the best in response time and in page accesses 

for large datasets, since both I / O cost and CPU cost are low. I t also has the 

linear scalability. However, the disk space requirement is much bigger than 

the other methods. 

For the other schemes, given the fixed main memory allocation, we vary the 

bucket sizes, Bs and We discover that the overall response time follows 

a U-shaped curve with an optimal minimal point. This is shown in Figure 

3.9 (a). If we measure only the page accesses ( I /O time), the performance of 

the many-to-one schemes would improve with the value of Bn, while that of 
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Table 3.3: Parameters setting for the experiment. 
Parameters Descriptions “ — 
page size of a page (4K bytes) 
data—size training dataset size (number of records) ‘ “ 

= lOOOK, 2000K, 3000K, lOOOOK 
record-size number of bytes for a record entry in an attr ibute list ‘ 

二 3 X 4 for SPRINT, One-to-Many, Many-to-One Simple and Horizontal 
= 4 X 4 for Paired A t t r ib (O), Paired A t t r i b (M) 
= n X 4 for DB Replication 
where n is the total number of continuous attributes 
and field size = 4 bytes 

buffer size total main memory allocated 
= 5 M B 
> hashSize + other Bucket Size 

bucket-ratio ra t io of other Bucket Size to hashSize “ 
= Q.Ql, 0.05, 0.1，0.15，.••，0.9 

hashSize memory size required for hash table (in bytes) ‘ 
hashRow number of entries in hash table ~ 

= [ M ^ I ^ J for linear probing 
= L ^ ^ J for coalesced chaining 

load—factor, a load factor (util ization) of hash table (see Appendix B) 
二 50%, 60%, 70% or 80% 

splitBucketSize main memory size used for the splitt ing attr ibute bucket ( = Bs in Figure 3.3) 
— load-factor x hashSize (bytes) 

splitBucketRow number of entries in splitt ing attr ibute bucket 
一 splitBuf ferSize 

L record sizp. 」 

otherBucketSize main memory size used for the non-splitting attr ibute bucket { = B几 in Figure 3.3) 
= buf fer_size - hashSize (bytes) 

other Bucket Row number of entries in non-splitting attribute bucket ‘ 
_ other BucketSize 

L record-size+1 -
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one-to-many schemes deteriorates. This is shown in Figure 3.9 (b). 
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Figure 3.9: Dataset size二lOM’ total buffer size二5MB，load factor=:80%, using 
Function 2. 

Next we choose the optimal bucket allocation for each scheme and perform 

measurement on the response time and the page accesses with varying database 

size. For page accesses, the many-to-one single and horizontal are the second 

h(、st methods, which wc can predict from Equation 3.G. The paired attribute 

sch(、m(、s are not as good siiicc the attribute lists are bigger in size and reciiiirc^s 

m()r(、I/O oi)eratioiis. Tli(、proposed inetliods are better than SPRINT as 

(、xi)(、（.t(、（l. The total response time includc both the CPU tiiric and the I / O 

tim(、. Since the system wo use has a \-er\' high I /O performance, the offcct 

of tlu�CPU tiino is quit(�(lomiiiaiit. The oiie-to-inany schcinos arc hcUcr 

than 

niaiiy-to-oii(̂  sinco niucli loss hashing arr nocflccl. In particular, the) oric�-

to-inany paired attrihuh、sclieinc is the socond best. This is becaiisc! there 

is no hashing for the first two attribute lists at each node. On the other 
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Figure 3.10: Total buffer size=5MB, load factor=80%, using Function 2. 

hand, SPRINT and the horizontal scheme show very similar behavior, because 

in this case the SPRINT's high CPU performance is off-set by its poor I / O 

performance while the other way is true for horizontal scheme. We also observe 

that second to the database replication scheme, one-to-many scheme and one-

to-many paired attr ibute scheme have excellent scalability in terms of the total 

response time. This is because the decision tree is relatively small and therefore 

the inferior I / O performance for one-to-many schemes is not significant. I t is 

largely compensated by its high CPU performance. 

We find that the disk usages are 1542MB and 623MB for the database repli-

cation scheme and SPRINT respectively for a lOM dataset size using Function 

2. I f the disk usage is feasible, the database replication scheme is superior to 

the other schemes. 
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Figure 3.11: Total buffer size=5MB, load factor=80%, using Function 6. 

3.4.3 Test 2: Bigger Decision Tree 

Next we experiment wi th Function 6, which has 6 predictor attributes, and 

which produces a much larger decision tree. The range of total number of 

nodes is from 2500 to 6000 with different dataset size. We call this Test 

2. The results are similar to Test 1 when varying bucket sizes in that an 

optimal point can be found for the different schemes (except for the dataset 

replication scheme). Next we carry out experiments by varying the dataset 

size and choosing the optimal bucket sizes in each scheme. The result is shown 

in Figure 3.11. 

From Figure 3.11, our proposed schemes again outperform SPRINT. The 

1/〇 cost of the database replication scheme has linear scalability in the dataset 

size. The many-to-one schemes also have good scalability. (The many-to-one 

simple and many-to-one horizontal are nearly linear.) For the total response 

time, the results are somewhat different from Test 1. In Test 1, the paired 
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at t r ibute schemes have pretty good performance. However, in Test 2, they 

are the worst among the proposed schemes. This is because the number of 

attr ibutes have increased from 4 to 6. The paired attr ibutes provides advan-

tages for the first two at t r ibute lists at each node, but demands slightly bigger 

at t r ibute list sizes. In Test 1, we provide savings to 2 out of 4 attr ibutes, while 

in Test 2, the rat io becomes 2 out of 6. The benefit becomes less significant 

while the overhead becomes more significant. The other difference is that the 

many-to-one schemes now have a better performance than they did in Test 

1. We explain this as follows: since our decision trees are binary, when the 

decision tree becomes bigger, the number of levels increases and many nodes 

are found at the deeper levels of the tree. Such nodes typical ly correspond to 

smaller data sets. I f data sets are large, the disk access are more contiguous, 

and the average disk access t ime per page is smaller. W i t h smaller data sets, 

the disk access is fragmented, and the average disk access t ime per page in-

creases. Therefore, the I / O t ime becomes more significant when the tree is 

bigger. Since the many-to-one schemes win over the one-to-many schemes in 

1/0，this results in better overall performance for the many-to-one schemes. 

Finally, we note that the horizontal scheme becomes better when the dataset 

size reduces to 3 millions. I t can be explained by the probabilistic argument 

given in Appendix A. Since the data set sizes are small at many of the tree 

nodes, the probabilistic advantage becomes noticeable. 

Next, we vary the load factor, a, of the hash table. Figure 3.12(a) shows 

the result. Increasing the load factor means increasing the ut i l izat ion of the 

hash table. This allows more record entries of both spl i t t ing and non-split t ing 

attr ibute lists to be loaded to the buffers in each cycle of hashing, thus decreases 

the total number of hash cycles needed during the distr ibution of record entries 

to the children of each node. As a result, the total number of I / O access for 

each node decreases. Note that, since Database Replication is independent of 

the load factor, the number of page access remains constant throughout the 
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Figure 3.12: Total buffer size=5MB, dataset size=10M, using Function 2. 

experiment. We also investigate the performance on hashing. Figure 3.12(b) 

shows the total number of insertion, probing and collisions for each of the 

schemes. 

From the above analytical and experimental results, we conclude that the 

different proposed schemes are all better compared to SPRINT. The database 

replication scheme can be chosen when there is sufficient disk space. The other 

proposed schemes can be used in different scenarios. The many-to-one scheme 

has better I / O performance, while the one-to-many scheme has better CPU 

performance. The paired attribute scheme provides more savings if the number 

of attributes is small. 
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3.5 Conclusion 

Pre-sorting at t r ibute lists is an important technique for growing a decision tree. 

Compared w i th other techniques, i t is less sensitive in performance to data 

distributions. Such a stabi l i ty in performance has the advantage of, among 

other things, allowing us to analyze the algori thm by concentrating on its 

internal structures in order to improve its performance. 

In this chapter, we present a family of schemes that grow decision trees 

based on pre-sorting. We start f rom the framework proposed in SPRINT. 

Then we show how the performance can be improved by using careful design 

and implementation of the procedures for spl i t t ing the at t r ibute lists. We in-

troduce techniques for the pre-evaluation of split points. We study several 

methods to split the dataset, including one-to-many and many-to-one hash-

ing, horizontal hashing, at tr ibute pairing and database replication, and derive 

results relating to their performance. We also report on experimental results, 

providing evidence to our expectations on the new schemes. 
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Chapter 4 

Background 

4.1 Definition 

Min ing association rules is an important aspect in data min ing [1, 7, 11, 16, 

20, 23, 27, 29, 30，38, 47, 49, 51]. This technique furnishes our understanding 

on large datasets by exploit ing interesting regularities inside the data. Given 

a database of sales transactions, we find the relationships between different 

items in the database and represent such relationships in rule format, which 

helps us to trace the buying patterns in consumer behavior. 

Here is an example of such a rule: 

Vx G persons, buys{x, ''bread")令 buys{x, ''butter") 

where a; is a variable and huy(x,y) is a predicate that represents the fact the 

person x buys i tem y. This rule indicates that a high percentage of people 

who buy bread also buy butter. 

A formal definition of association rules given in [7] is as follows. Let I : 

, … ， ^ m } be a set of items (itemset). Let L) be a database of a set of 

transactions. Each transaction, T, consists of a set of items from / , i.e. TCI. 

Each transaction is identified by a unique identifier called TID. A transaction 

T is said to contain X i f X C T , and X C I. An association rule of the form 

4 9 
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X where X, F C / , and X n F = 0. 5 is the support of rule X Y 

in D i f s% of transactions in D contain X UY. c is the confidence of rule 

X y i f c% of transactions in D that contain X also contain Y. 

Basically, the problem of mining association rules can be divided into two 

subproblems. 

1. Find all set of items (itemsets) that have transaction supports above 

a predefined threshold called minimum support. These itemsets are 

called large itemsets. 

2. Generate association rules from the large itemsets discovered in the pre-

vious step. These rules must have a confidence level above another pre-

defined threshold called minimum confidence. 

Recent work on mining association rules focus on the following aspects [1]： 

1. Improving the computational efficiency and I / O costs in finding large 

itemset. 

2. Introducing parallel algorithms for association rules generation. 

3. Using sampling techniques for large datasets. 

4. Supporting on-line generation of association rules. 

5. Various extensions to the conventional problem, such as generalized as-

sociations, quantitative association rules and weighted association rules. 

6. Constraints based association rules mining. 

In this chapter, we give a brief survey on different kinds of association rules 

mining and introduce some of the state-of-the-art association rules mining 

algorithms. 
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4.2 Association Algorithms 

4.2.1 Apriori-gen 

Most large itemset computation algorithms are related to the Apr ior i algo-

r i thm [7]. I t outperforms two of the earliest algorithms AIS [6] and SETM [24 

by creating less candidate itemsets and avoiding the creation of candidates re-

peatedly for every transaction. The algorithm generates the candidate itemsets 

to be counted in a pass by using only the itemsets found large in the previous 

pass, without considering the transactions in the database. I t is based on the 

observation that any subset of a large itemset must be large. Therefore, the 

candidate itemsets having k items can be generated by joining large itemsets 

having k-1 items, and deleting those that contain any subset that is not large. 

This is commonly known as subset closure property. This procedure generates 

a much smaller number of candidate itemsets. The number of database scan 

is kmax + 1 where kmax is the maximal cardinality of a large itemset. 

Algorithm : Apriori 

L i = {large 1-itemsets}; 
Answer = 0; 
for {k=2\ Lk-i ^ 0; A;++) do begin 

Ck = apriori-gen(L/c_i); / / New candidates 
forall transaction t e V do begin 

Ct = subset(Cfc,i); / / Candidate contained in t 
forall candidates c e Ct do 

c.count++; 
end 
Lk = {c e Ck I c.count < minsup } 

end 
Answer = 厂 

Figure 4.1: The Aprior i Algorithm. 

Figure 4.1 outlines the Aprior i algorithm. The first pass of the algorithm 

simply scans the database and counts the support of each item to determine 

the large 1-itemsets. A subsequent pass, say pass k, consists of two phases. 
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First, the large itemsets L k - i found in the {k — l ) - t h pass are used to generate 

the candidate itemsets Ck. Next, the database is scanned and the support 

of candidates in Ck is counted using a hash tree. Itemsets in Ck of supports 

> thershold form For the generation of candidate itemsets Ck, i t con-

sists of two steps: join and prune. First, in the join step, we jo in p and 

g, where (1) p, q e Lk—i, (2) assume all items in an itemset is in lexico-

graphic order, the first k - 2 corresponding items in p and q are the same, 

and (3) the {k — l ) t h i tem inp < that in q. We form a candidate A:-itemset: 

p.itemi,p.item2,...,p.iterrik-i, q.iterrik-i. Next, in the prune step, we delete 

all itemsets c e Ck such that some (k — l)-subset of c is not in L^-i. 

Transactions 1-itemset support LI support C2 

Tl:c,d a 4 a 4 b，c 

T2:a,b _ > _ b ^ _ _ b _ _ ^ ^ 

T3:a’b’c’e c 3 c 3 c,e • • ,p , -J_ joined & pruned 
T4:a,e _ d 1_ | e | 2 | ^ 

T5:a, b,c e 2 a, c 

|a,e 

C3 
L2 support 

L3 support i l L ^ k J 3 ^ 

|a’b’c| 2 I 一 … 一 & “ “ ； ； ^ 工 

_ joined t . 
J -J count support 

b,c 2 

Figure 4.2: An example using Apriori-gen wi th threshold 二 2. 

Figure 4.2 shows an example of the Apriori-gen algorithm wi th a user spec-

ified threshold 二 2. First, the database is scanned and the support of each 

1-itemset is counted. Since the support of item d is 1, i t is eliminated, and 

we get 二 { a, 6，c, e }。Then we form C2 using the itemsets in L i by the 

jo in step. C2 is unchanged after the prune step. Next, we scan the database 
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and count the support for each 2-itemset in C2. A l l candidate 2-itemsets of 

support > threshold are considered large and put into L2. We form C3 using 

the large 2-itemsets. After the jo in step, we have C3 = { abe, abc } . However, 

since be is not in L2, we prune abe. We scan the database again, and find the 

support of abc to be 2. Since L3 consists of only one element, abc, we cannot 

form any candidate 4-iteniset, and the mining process terminates. 

4.2.2 Partition 

Part i t ion [47] uses a part i t ioning technique to reduce the I / O overhead by 

processing one database port ion at a t ime in memory. 

The algorithm divides the database into several non-overlapping partit ions 

such that the size of each part i t ion can be fit into the main memory. The 

mining process consists of two phases. In phase I, we consider one part i t ion at a 

time. We define the local support, which is equal to the fraction of transactions 

containing that itemset in the partit ion, and generate all the large itemsets 丄 

for this partit ion. In the end of phase I, we merge the large itemsets to generate 

all potential large itemsets. In phase I I , we count the actual supports of these 

itemsets so as to identify large itemsets. Since any potential large itemset must 

be large in at least one of the partitions, the potential set is a superset of all 

large itemsets which may contain false positives but no false negatives. 

This method requires just two scans of the database to find the large item-

sets, and is highly parallelizable. Other methods for parallelization, includ-

ing the use of a shared hash-tree among multi-processors, can be found in 

4, 36, 59, 60: 

1 Itemsets having local support not less than the predefined minimum support. 
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4.2.3 D i e 

Instead of considering only k-itemsets in pass k, like that in the Aprior i , Dy-

namic Itemset Counting (DIG) [11] reduces the number of passes made over 

the data by counting an itemset as soon as we suspect i t may be necessary to 

count the itemset without waiting unt i l the end of the previous pass, i.e. we 

can count the itemsets of different cardinality simultaneously. 

A lattice structure is used to add and keep track of itemsets. The idea 

of the algorithm is that we part i t ion the database into a number of blocks, 

initialize the lattice wi th all singleton sets, and scan the database block by 

block. For each block being scanned, the support of each itemset stored in the 

lattice is adjusted. After we process a block, we add an itemset to the lattice 

whenever all of its subsets are potentially large according to the support count 

of each of the subsets and the portion of transactions visited. When the last 

block has been scanned, we rewind to the first block and resume the algorithm 

unti l all the support count of each itemset in the lattice is determined. The 

resulting lattice is a superset of all the large itemsets. 

4.2.4 FP-tree 

An FP-tree (frequent pattern tree) is a variation of the trie data structure, 

which is a prefix-tree structure for storing crucial and compressed information 

about frequent patterns. The following is the definition of FP-tree stated in 

23]: An FP-tree consists of a root labeled as “NULL”, a set of item prefix 

subtrees as the children of the root, and a frequent-item header table. Each 

node in the item prefix subtree is composed of three fields: item-name, count, 

and node-link, where item-name indicates which item this node represents, 

count indicates the number of transactions containing items in the portion of 

the path reaching this node, and node-link points to the next node in the 

FP-tree carrying the same item-name, or null if there is none. There are two 



Chapter 4. Background 55 

fields in each entry of the frequent-item header table: item-name and head 

of node-link. The latter points to the first node in the FP-tree carrying the 

item-name. 

Algorithm : FP-tree construction 
Input: A transaction database, D, and a user specified minimum support threshold, 
Output: A frequent pattern tree, T. 

buil±FPtree(D, 
(1) Scan the transaction database, D. Find the support of each item. 
(2) Sort the items by their supports in descending order. 

Choose all the items with support > ^ to be the large 1-items. 
(3) Build the FP-tree, T, by first creating its root with label being "NULL". 

For each transaction, Trans in D: 
Select and sort the frequent items (large 1-items) in Trans according to their supports. 
Let [z|/] be the sorted frequent item list in Trans, where i is the first element and 
I is the remaining list. Invoke insert.FPtree([i\I], T). 

msert-FPtTee([i\I], T) 
(1) If T has a child C such that C.item-name = z.item-name, then increment C's count by 1; 

else create a new node C, and set its count to 1’ link its parent to T 
and let its node-link be linked to nodes with the same item-name via the node-link structure. 

(2) If I is non-empty, invoke insert^FPtree{I, C). 

Figure 4.3: FP-tree construction. 

Table 4.1: A transaction database. 
T I P Items Sorted Frequent Items— 
0 0 1 a,b,c,d c,d,a,b 
002 b,c,d,e 
003 a,c,d c,d,a 
004 I e, / I e — 

Figure 4.3 shows the algorithm to build an FP-tree using a user specified 

threshold, . Let us illustrate by an example the algorithm to build an FP-tree 

using (J. Suppose we have a transaction database shown in Table 4.1 wi th f 

二 2. By scanning the database, we get the sorted (item:support) pairs,〈(c:3)， 

(of:3)，(a:2), (6:2), (e:2), ( / : ! ) ) . The frequent 1-itemsets are: c, d, a, b, e. We 

use the tree construction algorithm in [23] to build the corresponding FP-tree. 

We scan each transaction and insert the frequent items (according to the above 
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Figure 4.4: FP-tree. 

sorted sequence) to the tree. First, we insert (c, d, a, h) to the empty tree. This 

results in a single path: Y00i{NULL) (c : 1) (d : 1) ^ (a : 1) ^ (6 : 1). 

Then, 

we insert (c, c/, 6, e). This leads to two paths wi th c and d being the 

common prefixes: Toot{NULL) {c : 2) ^ {d : 2) (a : 1) ^ (b : 1)， 

Toot{NULL) ^ ( c : 2 ) - > ( d : 2 ) - > ( & : l ) - > ( e : l ) . Third, we insert (c, d, a). 

This time, no new node is created, but the counts in the first path is changed 

to: Toot{NULL) ^ (c : 3) -> (c/: 3) (a : 2) (6 ： 1). Finally, we insert (e) 

to the tree and we get the complete tree as shown in Figure 4.4. The header 

table shows the horizontal link for each frequent 1-itemset. 

W i th the init ial FP-tree, we can mine frequent itemsets of size k, where 

/c 2 2. An FP-growth algorithm [23] is used for the mining phase. We may 

start from the bottom of the header table and consider item e first. There are 

two paths: { c:3, d:3, b : l , e:l ), { e:l ). Since the second path contains only 

item e, we get only one prefix path for e: ( c: l , d : l , b : l ), which is called e's 

cond i t i ona l p a t t e r n base (the count for each item is one because the prefix 

path only appears once together with e). We also call e the base i t e m of 

this conditional pattern base. Construction of an FP-tree on this conditional 

pattern base (conditional FP-tree), which acts as a transaction database 
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Algorithm : FP-growth 
Input: FP-tree constructed based on the construction algorithm. 
Output: The complete set of frequent itemsets. 

FP-growthpVee, a, 
{ 

If Tree contains a single path P 
then for each combination, j3, of the nodes in the path P do 

generate pattern jSUa 
with support 二 minimum support of nodes in j3\ 

else for each CH in the header of Tree do { 
generate pattern jS = a iU a with support = CH.support; 
construct P's conditional pattern base using ^ and 

then P's conditional FP-tree Treep] 
if Treep + 0 
then call FP-growth(Tree；?, (3, ( ) } 

} 

Figure 4.5: Algor i thm for mining frequent patterns using FP-tree. 

w i th respect to i tem e, results in an empty tree since the support for each 

conditional i tem < in the building phase. Next, we consider i tem b. We 

get the conditional pattern base: ( c: l , d : l , a : l ), ( c: l , d : l ). Construction 

of an FP-tree on this conditional pattern base results in an FP-tree wi th a 

single path: T00t{NULL) ^ (c : 2) (d : 2). Mining this resulting FP-tree 

by forming all the possible combinations of items c and d w i th the appending 

of b, we get the frequent itemsets {cb : 2)，{db : 2), and {cdb : 2). Similarly, 

we consider items a, d and c to get the frequent itemsets. The resulting large 

itemsets after this mining phase are: {c : 3, d \ 3, a : 2,b : 2, e : 2, cd : 3, ac : 

2，ad :2,bc: 2M : 2,acd : 2, bed : 2). 

The FP-tree algorithm is found to be much faster than the apriori based 

algorithm by experiments. I t avoids the costly generation of candidate item-

sets. 
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4.2.5 Vertical Data Mining 

Many association rules algorithms use horizontal data layout in which the 

database can be viewed as a set of rows wi th each row representing a transac-

t ion of items purchased by a customer. Recently, vertical data representation 

has been considered. In such an alternative, we have a set of items, each asso-

ciates w i th a column of values representing the transactions in which this i tem 

is present. 

The advantages of using the vertical layout include the speed-up of support 

counting, dynamic reduction of database size during mining, and the support 

of compact storage of the database. However, most of the "vertical mining" 

algorithms suffer from some l imitations such as special database size, special 

database schemas, and special characteristics of the database contents. 

V IPER [49] uses a compressed bit-vector structure, called snakes, to rep-

resent itemsets. The algorithm requires multi-passes over the database, and 

works in a bot tom up manner. I t employs a DAG-based snake intersection 

scheme to efficiently count the supports of candidates of mult iple levels in a 

single pass. 

4.3 Taxonomies of Association Rules 

4.3.1 Multi-level Association Rules 

W i t h the development of database query technique used in data warehous-

ing, i t is more meaningful and practical to arrange data at multiple levels of 

abstraction. The mining of multi-level association rules [21] provides a more 

concrete and specific information than the conventional single-level approach. 

However, using the Aprior i like algorithm wi th a uniform support threshold is 

no longer suitable for the multi-level approach, i t may generate a large amount 

of uninteresting itemsets at high levels of the concept taxonomies of the data. 
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Instead, we need to apply new technique such as using different min imum 

support thresholds for mining associations at different levels of abstraction. 

Extensions to this approach includes mining multiple-level correlations and 

multiple-level sequential patterns in large databases. 

4.3.2 Multi-dimensional Association Rules 

In classical association rule mining, each transaction in the database contains 

only the purchased items. Information about the items or transactions, such as 

purchase time and place, have been ignored. However, such information may 

be useful for mining interesting patterns. For example, in stock marketing, in 

addition to items, the time of the transactions is an important contextual infor-

mation. In multi-dimensional association rule mining, we associate each record 

a set of attributes, known as dimensional attributes. These attributes form 

a multi-dimensional space, and a point in the space represents a transaction. 

Therefore, classical association rules can be viewed as a single dimensional 

space. Another enhancement is the multi-dimensional inter-transaction 

association rules which allows representing the associations of items among dif-

ferent transactions [28，22]. In this way, we can mine more interesting patterns 

for a more complicated problem, such as "If company X's stock goes down on 

day 1, Y's stock will go up on day 2, hut go down on day 3.” [31 . 

4.3.3 Quantitative Association Rules 

Mining quantitative association rules was proposed in [52] to handle the prob-

lem of mining association rules in large relational tables containing both quan-

titative and categorical attributes. This allows association rules to indicate 

how a given range of quantitative and categorical attributes may affect the 

values of other attributes in the database [1]. The problems we have to con-

sider include the discretization of a quantitative attribute which may generate 
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a large number of rules, etc. 

4.3.4 Random Sampling 

In large transaction database, i t may be desirable to use sampling technique 

54] to mine large itemsets in order to minimize the I / O costs. The weakness of 

random sampling is the presence of data skew which incurs rule inaccuracies. 

4.3.5 Constraint-based Association Rules 

From the view of human-interactive discovery of knowledge, conventional as-

sociation rules mining, which acts as a black-box, suffers from the following 

serious shortcomings [37]: (i) Lack of user intervention during mining, (ii) 

Lack of concentration on particular types of query that the user may want, 

(iii) L imitat ion on the flexibility for users to choose the significance metrics 

instead of using support and confidence, and the criteria to be satisfied by the 

relationships to be mined. 

Recent work has highlighted the significance of constraint-based mining 

technique [40]: users can specify their focus in mining, by means of a specific set 

of constraints that allow them to explore and control the interesting patterns. 

For example: In a supermarket, we may only want to know the relationships 

between items of particular types, such as soft drink and alcohol. We would 

like to focus on efficient techniques that allow the set of constraints to be 

pushed deep inside the mining process so as to efficiently prune the search 

space of patterns to those of interest to the users. 

22] divides constraints into five types as follows: Knowledge type con-

straints specify the type of knowledge to be mined, such as association, clas-

sification, prediction, clustering, concept description, or anomaly. D a t a con-

s t ra in ts specify data set relevant to the mining task. D imens ion / l eve l con-

s t ra in ts specify the dimension(s) or level(s) of data to be examined. Ru le 
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constraints specify a set of constraints on the rules to be mined. Interest-

ingness constraints measure the interestingness of discovered patterns using 

particular methods of measurement. 

We focus on rule constraints for association rules mining. Here is the defini-

t ion from [39]. A constraint C is a predicate on the powerset of a set of items 

/ . A pattern or itemsets S satis fies a constraint C i f and only i f C{S) is true. 

The complete set of patterns satisfying a constraint C, denoted as SAT。(J), 

is called satisfying pattern set. Given a transaction database, a support 

threshold and a set of constraints C, the problem of mining frequent patterns 

wi th constraints is to find the complete set of frequent patterns satisfying C. 

Support Constraints Conventional association rules use only a single 

user-specified minimum support. In reality, the minimum support is not uni-

form. 

57 proposes support constraints as a way to specify general constraints 

on minimum support. I t employs a support pushing technique that allows the 

highest possible minimum support to be pushed so as to tighten up the search 

space while preserving the essence of the Apriori. 

Consider a set of items, / , partitioned into several bins . . . 
1 ， ^} J III 

where each bin Bi contains a set of items in 1. A support constraint of 

the form: SCi、Bi” B “ ) > ^ where 5 > 0 and Bi^ and may be equal, 

specifies that any itemset containing at least one item from each Bi. has the 

minimum support threshold ( i [57]. W i th such definition, we can mine different 

itemsets using different minimum support thresholds. 
We wi l l further investigate the constraint-based mining in Chapter 6. 
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Mining Association Rules 
without Support Thresholds 

In classical association rules mining, a minimum support threshold is assumed 

to be available for mining frequent itemsets. However, setting such a threshold 

is typically hard. I f the threshold is set too high, nothing wi l l be discovered; 

and i f i t is set too low, too many itemsets wi l l be generated. In this chapter, 

we handle a more practical problem, roughly speaking, i t is to mine the N 

/c-itemsets wi th the highest support for A: up to a certain kmax value. We call 

the results the TV-most interesting itemsets. Generally, i t is more straight-

forward for users to determine N and kmax- This approach also provides a 

solution for an open issue in the problem of subspace clustering. However, 

w i th the above problem definition without the support threshold, the subset 

closure property of the apriori-gen algorithm no longer holds. In this chap-

ter, we propose three new algorithms, LOOPBACK, BOLB, and BOMO, for 

mining TV-most interesting itemsets by variations of the FP-tree approach. A 

lower bound technique is introduced to determine a set of dynamic support 

thresholds. Experiments show that all our methods outperform the previously 

proposed Itemset-Loop algorithm, and the performance of BOMO can be an 

order of magnitude better than the original FP-tree algorithm even wi th the 

assumption of an optimally chosen support threshold. 

62 
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5.1 Introduction 

Classical association mining for association rules of the form X Y, where 

X , y C / , and X n F = 0, is to first find large itemsets from transaction 

database D. That is, for all itemsets of cardinality > 1, we would like to mine 

any itemset X UY such that its support, s, is greater than a certain value. 

Typically, this method requires a user specified minimum support threshold. 

However, without specific knowledge, users wi l l have difficulties in setting this 

support threshold to obtain their required results. I f the support threshold is 

set too large, there may be only a small number of results or even no result. In 

which case, the user may have to guess a smaller threshold and do the mining 

again, which may or may not give a better result. I f the threshold is too small, 

there may be too many results for the users, too many results can imply an 

exceedingly long time in the computation. As an example of the difficulty in 

choosing a threshold, for the census data of United States 1990 available at 

the web site of IPUMS-98 [26]，for two different sets of data, the thresholds 

for finding a reasonable number of itemsets are found to differ by an order of 

magnitude. See Tables 5.4 and 5.5 in Section 5.4 for an example where the 

reasonable support thresholds may vary from 0.3 to 21.42 for different data 

sets. 

Another argument against the use of a uniform threshold for all itemsets 

is that the probability of occurrence of a larger size itemset is inherently much 

smaller than that of a smaller size itemset. Other objections to a uniform 

threshold are raised in [57], where it is believed that different items may have 

different characteristics that warrant different thresholds. 

From our observations, it would be better for users to specify a threshold 

on the amount of results instead of a fixed threshold value for all itemsets of 

all sizes. For example, in multimedia data querying, we find that i t is much 

more natural to allow users to specify the number of nearest neighbors rather 
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than to specify a certain threshold on the "distance" from their query point. 

We have first introduced this problem definition for mining association rules 

in [16], in which we proposed two algorithms to mine the interesting itemsets 

wi th the constraint on the number of large itemsets instead of the minimum 

support threshold value. The resulting interesting itemsets are the N-most 

interesting itemsets of size k for each 1 < A: < k而,given N and kmax-

Definition 4 A A;-itemset is a set of items containing k items. 

Definition 5 The TV-most interesting A;-itemsets : Let us sort the k-

itemsets by descending support values, let S be the support of the 7V-th k-

itemset in the sorted list. The TV-most interesting /^itemsets are the set of 

/c-itemsets having supports > S. 

Definition 6 The TV-most interesting itemsets is the union of the TV-most 

interesting A;-itemsets for each l<k< kmax. where k � is the upper bound of 

the itemset size we would like to find. We say that an itemset in the TV-most 

interesting itemsets is interesting. 

To simplify our discussion we adopt the following definition for the support 

of an itemset. 

Definition 7 The support of an itemset I is the number of transactions that 

contain / . 

Other than basket data, an important application for mining the TV-most 

interesting itemsets is for the problem of sub space clustering, where we are in-

terested to find clusters hidden in different subspaces of the given data space. 

W i th the CLIQUE [5] algorithm, each dimension of the data space is par-

titioned into equal number of intervals, and with this partitioning, the data 

space is partitioned into grid units. For any subspace of the full space, i f the 

data density inside a grid unit is above a certain threshold, the grid unit can 
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Figure 5.1: Two correlated variables X and Y. 

be considered part of a cluster. Hence the basic idea is very similar to finding 

large itemsets, and the algorithm of apriori-gen is used in CLIQUE. 

However, we know that the total number of grid units in a subspace grows 

exponentially w i th the number of dimensions in the subspace, hence naturally 

higher dimensional grid units are much more sparsely populated compared 

wi th grid units in lower dimensional subspaces, so using a single threshold is 

problematic. Therefore algorithms such as CLIQUE [5] and the approach in 

14] are not capable of dealing wi th some datasets in which some subspaces 

have good clustering but their projections on lower dimensional subspaces look 

uniform. Figure 5.1 shows two kinds of clustering which would be missed by 

CLIQUE unless i t accepts uniform distribution as clustering. This problem 

can be resolved i f we consider instead the iV-most interesting dense units in 

subspaces wi th the same number of dimensions, which corresponds to the N-

most interesting itemsets in the basket data scenario. Then in Figure 5.1, the 

two-dimensional subspace shown has a high chance to be considered interesting 

since we only compare i t wi th other two-dimensional subspaces. 
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5.1.1 Itemset-Loop 

To our knowledge, Itemset-Loop [16] is the first algori thm for the min ing of 

TV-most interesting itemsets. The idea is to apply a variation of the apriori-

gen algor i thm [7] repeatedly, using different support thresholds and a modified 

candidate generation mechanism. Based on the high probabi l i ty that frequent 

itemsets of a larger size are formed by frequent itemsets of smaller size, we use 

a bot tom up approach and form the candidate set of (k + l)- itemsets f rom the 

frequent /c-itemsets. To prevent false dismissals, the algori thm checks i f the 

iV-t l i highest support of candidate {k + l)-itemsets (denoted as supportk+i) is 

greater than the (7V+ l ) - th highest support of the frequent A:-itemsets (denoted 

as lastsupportk). I f the condition holds, i t is unnecessary for looping back. 

Otherwise, i t means that we have not uncovered all A:-itemsets of sufficient 

support that may generate a (A: + l)-itemsets w i th supports > supportk+i. The 

system wi l l loop back to find new potential {k + l)-itemsets，whose supports 

are not less than supportk+i. Another case when loop back is necessary is i f the 

number of [k + l)-itemsets discovered is less than N. The loop back wi l l then 

apply a smaller support threshold value. I t has been shown that the proposed 

algori thm is efficient and is better than the result of the apriori-algorithm i f 

the support threshold is set to be smaller than the opt imal value which can 

uncover all the TV-most interesting itemsets. The proposed method wi l l be 

inherently much better when the guess of the support threshold is above the 

optimal, so that the conventional approach cannot uncover the proper results. 

Figure 5.2 shows an example of the loop back mechanism. 

Although Itemset-Loop has good performance, i t makes use of the apriori 

candidate generation mechanism which relies on the property of subset closure: 

i f a /c-itemset is large then all its subsets are also large. This property does 

not hold for mining TV-most interesting itemsets. That is, i f a /c-itemset is 

among the TV-most interesting A:-itemsets, its subsets may not be among the 
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Transactions 1-itemset support PI support C2 support 
c ,d a 2 _ b b, c 2 

T2: b, c, e _ _ > b 3 _ c 3 _ 3 
T3: a, b, c, e c 3 e 3 c , e 2 
T4: b, e d 1 

e 3 lastsupportl = 2 
support! = 3 

I 
fupport PI support C2 support P2 support 

— I b I 3 | b , c | 2 I I b，e I 3 
— < _ _ _ c _ _ ^ b ,e 3 i 2 

c, e 2 , “ ^ — “ 
— e 3 c，e 2 c’e 2 
a, c 2 Z ~ ~ r ] 

I a I M i l ^ _！_ i lastsupportl = 0 
support2 = 2 a’c 2 ： support2 = 2 
lastsupport2 = 1 ‘ ： 

3，e 1 . 
lastsupportl 二 1 ： support2 <= lastsupportl 
supportl = 2 ： therefore, loop back 

P K : A k-itemset that can potentially form part of an interesting (k+l)-itemset. 

Ck : A k-itemset that potentially has sufficient support to be interesting and is gernerataed 
by joining two potentially (k-l)-itemsets. 

Figure 5.2: An example using Itemset-Loop. 

TV-most interesting itemsets. Therefore we examine other algorithms for the 

association rule mining problem and find that the FP-tree [23] approach does 

not rely on the candidate generation step. We therefore consider how to make 

use of the FP-tree for the TV-most interesting itemsets mining. 

5.2 New Approaches 

In this section, we introduce three new algorithms for mining TV-most interest-

ing itemsets. We adopt ideas of the FP-tree structure [23] in our algorithms. 
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D the given transaction database. 

^max upper bound on the size of interesting itemsets to be found. 

resuUk the current resulting set of TV-most interesting k-itemsets. 

i current support threshold for all the itemsets 

ik current support threshold for the k-itemsets 

5.2.1 A Build-Once and Mine-Once Approach, BOMO 

In the original FP-tree method [23], the FP-tree is built only wi th the items 

wi th sufficient support. However, in our problem setting, there is no support 

threshold given initially, so we cannot choose items wi th sufficient support. We 

therefore propose to build a complete FP-tree wi th all items in the database. 

Note that this is equivalent to setting the ini t ial support threshold f to zero. 

The size of an FP-tree is bounded by the size of its corresponding database 

because each transaction wi l l contribute at most one path to the FP-tree, wi th 

the length equal to the number of items in that transaction. Since there is 

often a lot of sharing of frequent items among transactions, the size of the tree 

is usually much smaller than its original database [23]. As a result, i t does not 

require a large amount of memory to store the complete tree. 

Adjusting Thresholds “ and 

Although the init ial value of ^ is zero, i t wi l l be dynamically increased as 

we progress with the mining step. Besides we use different thresholds for 

itemsets of different sizes. When nothing is known about the itemsets, we 

can set “ to be zero for dl\ k, 1 < k < kmax- This means that we do not 

know any lower bound for the thresholds of interest. Wi th “ 二 0, we would 

blindly include any A:-itemsets in our current set of result, resultk. However, in 

the process of mining, we shall generate /c-itemsets with their supports. Once 

we have encountered any N /c-itemsets for some k < kmax, we know that we 
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are interested in A;-itemsets wi th supports at least as great as any of these N 

/c-itemsets. 

Lemma 2 Given any N /c-itemsets for some 1 < A: < kmax, the TV-most 

interesting /c-itemsets have support > any of these N itemsets. 

Therefore during the mining phase, we adjust these “ once we have found 

at least N itemsets of size k\ we assign “ to be the support of the 7V-th most 

frequent /c-itemset discovered so far. In order to do this, we maintain a sorted 

list of the support values of the N most frequent A:-itemsets discovered, for 

each 1 < k < kmax- Figure 5.3, 5.4, and 5.5 show the main algorithm, the 

tree-building step and the mining step. The values of “ are used to determine 

if an itemset should be included in the current resultk. Here is an example. 

Suppose N 二 5 and kmax 3, we set = 0, = (2 = <̂3 = 二 0. Suppose 

we have found the following 1-itemsets: { a : 8, 6 : 8, c : 6，（i : 6, e : 4, / : 4 }. 

Then 二 4. Considering large 2-itemsets, suppose {cd : 5,a6 : 8, ac : 6,bd : 

4, be : 6,ad : 6) have been found so far in the mining process. We can set & 

to 5 since the support of the 7V-th most frequent 2-itemset so far, cd, is 5. 

Therefore, we need no longer consider 2-itemsets of support less than 5. 

In the mining phase, we set the init ial threshold value of f to be zero. 

During mining, we increase f by assigning to i t the minimum value among the 

supports of the 7V-th most frequent A;-itemset discovered so far for 1 < A: < 

'^max. 

•e 二 (5.1) 

We shall see later that as the threshold becomes greater, the pruning power 

wi l l also be greater. 

Lemma 3 At the end of the first for loop of 7VFP-mine() (see Line (1) in 

Figure 5.5), if there are at least N different items in the set of 於-itemsets 

discovered so far, then for j < k,。> 
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Proo f : I f ^k 二 0 then the lemma is tr ivial ly true, since。 is never set negative. 

I f ^k > 0, i t means that we have uncovered at least N A;-itemsets and the 

smallest among their N highest support counts equals ‘ For each A;-itemsets 

X , any subset of X has support at least that of I f the TV-most frequent 

A:-itemsets contains N different items, let the itemsets be From 

h we can form k subsets of {k — l)-itemsets. In if i t contains items not 

contained in / i , / ^ - i , then if there is only one such item oo, we can form 

k — 1 subsets wi th k-1 elements, each subset formed by removing each of the 

items not equal to x. These subsets are different from all the (k — l)-itemsets 

generated from / i , k - i . I f l i contains more than one items which are not in 

/ i , . . . ， o n e can form k subsets wi th A: - 1 elements by removing any item 

from l i . Therefore when we finish the subset formation from / i ， . . . ， w e can 

get sufficient N {k - l)-itemsets, and their supports are > We can repeat 

the argument wi th smaller subsets unti l we come to the 1-itemsets. In the 

FP-tree mining process, the subsets are generated either earlier or at the same 

iteration as the generation of the A;-itemset 1. Therefore, for j < k, > • 

Corollary 1 At the end of the first for loop of 7VFP-mine(), if there are at 

least N different items in the set of A:-itemsets discovered so far, then t 二& 

The above is true since f = rn in i^ i , “ . . . , 6；舰 : J and Lemma 3 implies that for 

j < kmax, > ^kmax- Therefore, if the condition in the Corollary is satisfied, 

then instead of updating ^ as m m ( f i，…，O c — J , we can update f only when 

k̂max is updated. The pruning effect wi l l be unchanged, while less work is spent 

on the update of 

Pre-evaluation Step 

To enhance the performance of BOMO, we use a pre-mining step to evaluate 

a better init ial lower bound for ^ and ^k, 2 < k < k 聰 . W e assign an array, 

Ck, of size N for ^ for 2 < A: < The FP-tree built from A^FP-build() 
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is scanned from the root to the k-th element of each path. We store to Ck the 

N largest values among the counts stored in the nodes of the A;-th element of 

all the paths. Then we assign。 to the 7V-th largest count value stored in Ck. 

Using Equation (5.1) we can determine We use these ini t ial lower bounds 

for our mining phase. 

Pruning Conditional FP-trees 

Based on the fact that an element of the header table cannot form a conditional 

pattern tree that consists of itemsets having supports greater than the support 

of this element, we have the following pruning step for BOMO: When forming 

the conditional FP-tree for an element, a, in the header table, we compare the 

support of a, which is equal to the total sum of the counts in the horizontal 

l ink of a, w i t h I f i t is smaller than f , we can stop forming the conditional 

FP-trees for all the elements starting from a to the bottom element of the 

header table. 

Algorithm : NFP-tree algorithm 
Input: D 
Input： kmax 

Input: N 
Output: iV-most interesting /c-itemsets for 1 < A; < kmax-

(1) Let resultk be the resulting set of interesting k-itemsets. Set resultk = 0. 
(2) Scan the transaction database, D. Find the support of each item. 
(3) Sort the items by their supports in descending order, denote it as sorted-list] determine 
(4) 6 = 6 = • • • = = € = 0 
(5) Create a FP-tree, T, with only a root node with label being "NULL". 
(6) iVFP-build(T’ D, sorted-list, i ). 
(7) resulti,result2,...,resultk^^^ — iVFP-mine(r, 0, t ^i- 6 ) 

Figure 5.3: TVFP-tree algorithm for mining iV-most interesting itemsets. 
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Algorithm : NFP-tree Building Phase 

NFP-build(T, D, sorted-list, 
(1) selected-list ^ sorted 1-itemsets list whose supports > 
(2) Update the FP-tree as follows: 

For each transaction, Trans in D 
If Trans consists of some items which are in selected-list 

Select and sort the items, which are in selected-list, in Trans according to their supports. 
Let [z|/] be the sorted frequent item list in Trans, where i is the first element and 
I is the remaining list. Invoke Insert^NFPtree([i|/], T). 

Insert.NFPtree([i|/], T) 
(1) If T has a child C such that C.item-name = i.item-name, 

then increment C's count by 1; 
else create a new node C’ and let its count be 1’ its parent link be linked to T, 

and its node-link be linked to nodes with the same item-name via the node-link structure. 
(2) If I is non-empty, invoke Insert_NFPtree[I’ C). 

Figure 5.4: TVFP-tree construction. 

Al^^oritliin : NFP-trcc Mining Phase 
NfP-m\ne[Trce, n. ^ v> (a,…） 

If Tree contains a single path P 
(1) then for each combination, 3, of the nodes in the path P do 

(a) generate itemset /j U n with support = iniiiiiuum support of nodes in fi 
(b) if ^jjuol < support 

then insert 3 U f\ to update update ( if necessary 
(2) else for each (i, in the header of Tree do 

(c) generate itemset J = U rt with support = (i,.suj)])or( 
(d) construct J's conditional pattern base using ( and 

then J's conditional FP-tree Trccj 
^ (e) if Trccj • 0 then .YFP-mine(7>rr]’ .i. E^’ , 。 ’ … ) 

Figiirr 5.5: Algorit hm for mining i)liaso of A'-iiiost intrrrst ing it。ins(>t、. 
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Figure 5.6: FP-tree. 

Construction Order of Conditional FP-trees 

We also study the starting position when processing the frequent-item header 

table (Line (2) of Figure 5.5). In the original FP-tree method [23] the ordering 

is not important since the same amount of work wi l l be done independent 

of the ordering. However, in our settings, the ordering can have significant 

impact since the thresholds /̂c, 1 < A; < A ;聽，a r e updated dynamically and 

if we encounter more suitable itemsets wi th high support counts earlier, we 

can set the thresholds better and increase the subsequent pruning power. 

Top-down: One possible choice is to start from the top of the header table 

and go down the table to form conditional pattern base for each item in the 

table. For example, in Figure 5.6, the ordering wil l be {c, d, a, b, e}. This 

is based on the observation that frequent items are most likely located at the 

top levels of the FP-tree and hence we can prune the less frequent itemsets 

by finding the more frequent itemsets first. However, itemsets of larger sizes 

are usually distributed widely throughout the tree, and as a result, wi th this 

ordering, the increase rate of & for large k is slow while that for small k is 

fast. According to Equation (5.1)， is also increased slowly. This leads to a 

large number of large conditional FP-trees. 
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Bottom-up: The other extreme is to go from the bottom of the header-

table upwards to the top. For example, in Figure 5.6, the ordering wi l l be {e, 

b, a, d, c}. However, the bottom items have the smallest supports and the 

corresponding itemsets discovered wi l l also have small supports, and hence the 

pruning power is also small. 

Starting from the middle: We have tried different starting positions and 

scanning orders of the header table in our experiments, and find that starting 

at the middle of the header table; then from the middle item going upwards to 

the top and then from the (middle+1) item down to the bottom of the table, is 

a good choice. For example, in Figure 5.6, the ordering wi l l be {a, d, c，b, e}. 

The reason is that the increase rate of f is faster and less conditional FP-trees 

are formed. This ordering wi l l be used in all of our experiments discussed in 

Section 5.4. 

5.2.2 A Loop-back Approach, LOOPBACK 

Table 5.1: A transaction database. 
T I P Items Sorted Frequent Items 
001 a, b, c, d c, d, a, b 
002 b, c, d, e c, d, b, e 
003 a, c, d c, d, a 
004 I e’ / I e 

Compared to the original FP-tree algorithm in [23]，BOMO requires build-

ing an init ial FP-tree with all items, while the original method may build an 

init ial FP-tree for a subset of the items. Hence we may consider the possi-

bi l i ty of building a smaller init ial FP-tree. In order to do so, we should have 

an init ial support threshold ^ > 0. Here we suggest such an approach, the 

init ial value of f is determined by the smallest support of the N most frequent 

1-itemsets. Let us consider the example in Table 5.1, with TV 二 3. Since the 

support of the third largest 1-itemset is 2, the threshold is set to 2. We use 
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the tree bui lding algori thm to bui ld the FP-tree. Therefore, we get c, d, a, b, 

and e as the large 1-itemsets. The constructed FP-tree is the same as that in 

Figure 5.6. 

Using the previous example to i l lustrate the mining mechanism, we start 

f rom the top of the header table and invoke TVFP-mine(Tree滅，NULL, 

f i , .. •，ikmax)' Assume kmax = 3, i.e., we find large itemsets up to size 

k = 3, the resulting large itemsets once we execute A^FP-mine() are: k=l: 

(c : : 3 , a : 2 ,6 : 2 ,e : 2); k=2: {cd : 3，ac : 2, ad : 2, be : 2,hd : 2); k=3: 

{acd : 2,bed : 2). 

Up to this point, there may be cases that the number of A;-itemsets, where 

^ > 2, is less than N because the threshold, f，found in the bui lding phase 

is not small enough. For the above example, there are only two large 3-

itemsets found. There are not enough 3-itemsets, since N = 3. Therefore, 

a smaller ^ should be used in order to mine more itemsets in the mining phase. 

However, this method is exhaustive and we use a loop-back method to handle 

the problem. As long as there are not enough itemsets for certain level(s), 

we decrease ^ by a factor / , 0 < / < 1, such that ^^ew = ^ x f- Let us call 

the original value Ud- We call 7VFP-build() to update the FP-tree in an 

incremental mariner (see the discussion of incremental tree building below). 

Then we can call 7YFP-mine() to mine itemsets of supports > This is 

our basic idea for LOOPBACK. 

f a factor used to reduce in the loop-back 

？o/f/ support threshold for all itemsets in the previous round 

Aftc r we have sorted the supports of items we can find the /V-most interest-

ing 1-itenisets. We initialize the support threshold value, For LOOPBACK 

approach, we set《 to be the support of the A'-th sorted largest 1-itemset.丄 

^ However, if k > A', we are sure that using only the large 1-itemsets for the initial FP-
tree is not enough to form itemsets of size >�\". Therefore, we should choose the support 
of the {k + l)-th 1-itemset as the threshold during the building phase of the initial round. 
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Figure 5.7: FP-tree after round 2. 

Some Pruning Considerations 

We use an incremental approach to build or update the FP-tree. For each loop 

back (round), there is no need to rebuild the whole tree using the building 

phase. We only need to consider transactions which contain any new added 1-

itemsets (itemsets wi th support smaller than ^ou in previous round, but larger 

than or equal to。叫 in the current round) in the current round. We only 

need to insert new branches to or modify the counts of existing branches of 

the FP-tree built in the previous round. Figure 5.7 shows the resulting FP-tree 

after round 2. Only one new branch is created for item f and its corresponding 

horizontal l ink from the header table is established. 

Skipping A:-itemsets: In each round of loop-back, we keep itemsets which 

have been found so far from previous rounds, and use both “ and f 卿 to 

filter the itemsets found during the mining phase. We do not need to generate 

itemsets whose supports > Ud, because they have already been found and 

kept in previous rounds. 

Each time we loop back and redo iVFP-mine(), we do not need to consider 

any more A;-itemsets if we have already found N or more number of itemsets 

of size k because we have found iV-most interesting A;-itemsets which have 
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supports > ^oid- I f we continue to consider A:-itemsets we shall only discover 

/c-itemsets of smaller support values. 

Lemma 4 I f TV or more /c-itemsets are found in a current round, then the 

TV-most interesting /c-itemsets are found. 

Skipping old items: In the mining phase, we do not need to consider all 

the items in the header table. We only need to consider items which are newly 

added to the header table in the current round as well as old items which were 

the base items of some itemsets having supports < ^oid in previous round. 

Using the previous example in Figure 5.7, since we cannot get enough 3-

itemsets in the first round, we use a smaller threshold, ^new 二 1, in the building 

phase to insert an new item, f , to the header table. Therefore, we get a header 

table having items c, d, a, b, e, f in the second round. However, we only need 

to form the conditional pattern base of each of items b, e, / . We consider 

item f because we have not considered any itemsets which consist of f in the 

previous round(s). We consider items b and e because there exist itemsets 

{cab : l,dab : l,dbe : l,cbe : 1} which have not been selected in the first round 

since the threshold was 2. 

5.2.3 A Build-Once and Loop-Back Approach, BOLB 

Finally we consider a hybrid approach of BOMO and LOOPBACK, in which 

we build the complete FP-tree only once, but in the mining we apply the 

technique of looping-back. 

5.2.4 Discussion 

In the LOOPBACK approach, we incrementally update the FP-tree in each 

loop back to build a new FP-tree with items of supports > Cnew. This avoids 

building the entire tree, but wi l l introduce overhead in the loopback. W i th 
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B O L B and B〇M〇，we build a complete FP-tree wi th all items in the trans-

actions. This method ensures that the building phase takes place only once 

during the whole mining process. W i t h BOLB and LOOPBACK, each t ime 

we loop back to redo mining, there would be redundant work in forming condi-

t ional patterns since some of the patterns should have been formed in previous 

rounds and have to be reformed in the current round. The B O M O algo-

r i thm eliminates this redundant work. Another problem wi th L O O P B A C K 

and BOLB is that we need to determine a factor / to decrease the threshold 

f for the next round. There is no need of such a parameter in BOMO. 

5.3 Generalization: Varying Thresholds Nk for 

k-itemsets 

In the previous consideration, we fix a number N on the resulting number 

of itemsets for itemsets of all sizes considered. However, in general frequent 

itemsets wi l l be more numerous for smaller itemsets and less so for itemsets of 

greater size. I t would be more flexible i f we allow the user to specify possibly 

different numbers, Nk, of resulting A;-itemsets for different values of k. This is 

a generalization of the original problem definition. W i t h the generalization, we 

need to modify the three algorithms we proposed before. However, the change 

is very minor. We only have to change the meaning of f；,, 1 < A: < kmax- 6 

wi l l be the support of the Nj^-th. most frequent A;-iteniset discovered so far 

6： 二 0 i f the number of /c-itemsets discovered so far is less than Nk. The other 

parts of the algorithms remain intact. 

5.4 Performance Evaluation 

We compare the performance of our new approaches wi th the Itemset-Loop 

algorithm and a modified version of FP-tree algorithm for mining iV-most 
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interesting itemsets. A l l experiments are carried out on a SUN ULTRA 5—10 

machine running SunOS 5.6 wi th 512MB Main Memory. Both synthetic and 

real datasets are used. 

Real Data: Two sets of real data are from the census of United States 

1990 [26]. One is a small database ( t i ny .da t ) wi th 77 different items and 5577 

tuples, another set is a large database (sma l l .da t ) wi th 77 different items and 

57972 tuples. 

Table 5.2: Parameter setting. 
Parameter Description “ Value 

|-P| Number of transactions lOOK 
|T| Average size of the transactions 5, 10, 20 
|/| Average size of the maximal potentially Large itemsets 2，4, 6，8, 10 

1̂ 1 Number of maximal potentially large itemsets 2000 
M Number of items IK 
C Correlation between patterns 0.25 

Table 5.3: Synthetic data description. 
Dataset |r| |/| 丨/}| 

T5.I2.D10QK I 5 I 2 I lOOK 
T20.I6.D1Q0K ~ ~ ^ lOOK 
T20.I8.D100K 20— 8 IQOK 
T20.I10.D1Q0K I 20 I 10 I lOOlT 

Synthetic Data: Several sets of synthetic data are generated from the 

synthetic data generator in [12]. The generator follows the data generation 

method in [7] with the parameter setting and datasets shown in Table 5.2 and 

Table 5.3. 

For each dataset (real or synthetic), we perform the experiment under 

different values of N in the iV-most interesting itemsets. The different values 

of N are 5, 10, 15, 20, 25, and 30. We set kmax to be 4 or 10, i.e. we mine 

itemsets up to size 4 or 10, hence /e-itemsets are mined for 1 < A: < 4, or 

< ^ < 10. We compare the performance of our new approaches with the 

Itemset-Loop algorithm. W'e also evaluate the performance of the FP-tree 

algorithm when a known (optimal) threshold, •‘ is given, i.e. a threshold 
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Table 5.4: Ideal thresholds, “ (%), for different datasets wi th kmax = 4. 
Dataset N 

5 I 10 I 15 I 20 I 25 I 30 
tiny.dat 9.79 7.02 " T M " 6.06 5.73 5.48 

small.dat 21.42 19.39 14.13 12.58 10.50 
T5.I2.D10QK 0.30 0.29 0.27 0.25 0.23 0.22 

Table 5.5: Ideal thresholds乂叩亡(％)，for different datasets wi th kmax = 10. 
Dataset N 

5 I 10 I 15 I 20 I 25 I 30 . 
tiny.dat ~0.23 0.21 "0.19 0.17 0.17 0.17 “ 

small.dat 7.46~ 7.46 ~~6.9 6.9 KS 
T20.I1Q.D100K 0.49 0.49 0.46 0.54 0.51 0.49 

which is just small enough to make sure that all the required TV-most interesting 

A:-itemsets are of supports greater than or equal to this threshold, this method 

does not need any loop-back. Tables 5.4 and 5.5 show the ideal thresholds for 

different datasets.^ We measure the total response time as the total CPU and 

I / O time used for both building and mining phases. Each data point plotted 

in the graphs determined by the mean value of several runs of the experiment. 

First, we compare the performance using different datasets. For each level 

K we find N most interesting itemsets. The threshold decrease rate, / , is set 

to 0.2. We find that all our approaches outperform Itemset-Loop and have 

similar performance as the FP-tree algorithm wi th ideal t h r e s h o l d , f o r 

real datasets. The execution times for Itemset-Loop in Figures 5.8 (b) and 5.9 

(b) are too large to be shown. For example, for tiny.dat wi th N 二 20, k � 

二 10, the execution time of Itemset-Loop is about 32000 sec, which is several 

orders of magnitude greater than our methods. 

I t may be expected that wi th 叩力，the original FP-tree algorithm [23] dis-

cussed in Section 4.2.4 should be the fastest because it does not require any loop 

back and it can build the smallest necessary init ial FP-tree. However, Figure 

5.8 (b) shows that this method (denoted by FP-tree with ideal threshold) 

2The support values listed here are in terms of the percentage of the transactions that 
contain an itemset. 
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requires more total response time than our methods. The reason is that the 

number of /c-itemsets of supports > ^opt is too large for some of k so that a 

large number of itemsets are generated. From experiment, we find that if ̂ opt is 

too small and N is large, then the original FP-tree algorithm does not perform 

well even wi th an ideal threshold. An example is the dataset T5.I2.D100K 

wi th N = 20, kmax = 10 a n d 。 = 0.002%, the execution time of FP-tree 

algorithm (180000 sec) is more than 100 times of that of our methods (about 

1400 sec for LOOPBACK). 
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Figure 5.8: Real dataset: tiny.dat. 

To improve the performance of the original FP-tree method, we use the set 

of thresholds, C/c, 1 < /c < kmax, and dynamically update “ as in our A^FP-

tree algorithm for the pruning of small itemsets. We denoted this method as 

Improved FP-tree with ideal threshold. 

Figure 5.9 shows that LOOPBACK is faster than BOLB and BOMO for 

the small real dataset. The whole mining process only requires a few number 

of loopbacks, and “ is large. Therefore, building a complete FP-tree in 
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BOLB and B〇M〇 becomes an overhead relative to the small trees bui l t in 

LOOPBACK, and the enhancements in B〇M〇 are not significant. 

For synthetic data, since the datasets are much larger, i t requires a longer 

t ime to scan the database in the building phase of each loop. Also, the mining 

phase requires much more t ime than the building phase. The avoidance of 

redundant work in BOMO becomes significant. Therefore, LOOPBACK takes 

the longest t ime to complete the mining. See Figures 5.10 to 5.11. 

Among the new approaches, BOMO is the fastest and is comparable to the 

Improved FP-tree method. BOMO does not require any loopbacks as required 

in LOOPBACK and BOLB and hence eliminate any redundant work in both 

building and mining. A l l experiments show that the main memory requirement 

for storing the complete FP-tree is less than 100MB. This shows that B O M O 

is a good choice for mining TV-most interesting itemsets. 
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Figure 5.9: Real dataset: small.dat. 
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Figure 5.10: Synthetic datasets w i th kmax = 4. 
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Figure 5.11: Synthetic datasets with kmax 二 10. 
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5.4.1 Generalization: Varying N^ for A;-itemsets 

Next, we test the performance of our algorithms under different N for different 

values of k. We set N to be 30, 27, 24, .. .，3 for = 1, 2，3，. • 1 0 respectively 

when kmax = 10. We set N to be 30, 20, 10, 5 for A; = 1, 2, 3, 4 respectively 

when kmax = 4. Table 5.6 shows the execution times for different methods. 

Again, B O M O is comparable to the improved FP-tree algorithm. 

Table 5.6: Execution t ime (sec) w i th different N for different k. 
Dataset kmax LOOPBACK BOLB BOMO Improved FP-tree 

with ideal threshold 
tiny.dat | 4 | 0.5 0.6 0.8 0.5 
tiny.dat 10 “ 2.7 一 2.3 “ 2.3 17 

small.dat 4 ~ 6.6 25.0 ^ 
small.dat 10 — 25.6 26.0 

T5.I2.D10QK 4 96.4 — 81.3 70.4 60.5 一 

T2Q.I6.D1QQK 4 1829.0 1860.5 ~1505.6 1446.0 _ 
T20 . I8 .D1Q(^ 10 — 1763.5 _ 1754.1 ~ i m J ~ 1 ^ 4 
T2Q.I10.D1Q0K 10 1687.5 1600.0 1332.0 1279.5 

5.4.2 Non-optimal Thresholds 

In real applications, i t is generally very diff icult to pick an opt imal support 

threshold. I f the guess is too large, then the conventional approach would not 

get the proper results, and therefore our approach is definitely much better. 

We evaluate the effect of guessing a non-optimal threshold that is too small for 

the FP-tree method. We decrease ^opt by different factors and use the resulting 

values as the non-optimal thresholds for the algorithm. Figure 5.12 (a) shows 

the increase in the number of itemsets for each size k and the total response 

t ime when the non-optimal threshold gets smaller. Figure 5.12 (b) shows that 

when user guess a non-optimal threshold, the LOOPBACK algorithm can 

greatly outperform the FP-tree method. 

Similarly, we evaluate the effect of using a large threshold (> ^^pt)- We 

increase “力 by 2, 4’ 6, and 8, and use these values as the thresholds for the 



Chapter 5 Mining Association Rules without Support Thresholds (;r) 

1 1 1 1 1 1 1 1 X 600 j ： , , ^ ,_, I 

卜=义 ‘ / • / FP-tree with ideal threshold ——i—— 
= 2 — X — / / FP-tree with ideal threshold / 10 — x — 

K = 3 FP-tre© with Ideal threshold / 20 --
7nnn - K = 4 ……ej••…？ ，. FP-tree with ideal threst;iold / 30 ……o…… 

/ - / FP-tree with Ideal threshold / 40 ——,-
/ / FP-tree with ideal threjihold / 50 - -o- -
•‘ L O O P B A C K -

！ ； ！ 
/ 500 - / / _ 

/ /• / 
6000 - / / / / / / ‘ / / / / / •• / 

/ / / 
5 0 0。 - / - 4 0 0 " 广 _ 

"g / / 
° / f / 
I 400。- / - 凑 / 
5 / ^ / 
i X ^ 300,; ^ 

3000 - Z -

z z . 
2000 - - 200 - ...•••••• -

.....••••-• 
- . - - • - - - - - • - - - - - - . - - ^ • - - - - • ‘ “ 

乂 Z 
, … 。 / -械 -- [ 1 , • 
1000 - / * -

/ "“ 
.. - T . . . . . .... ^ 

: r ^ “ “ . 0 0 。 100 _ * _ 

o [ V " “ ？ 1 1 1 1 I I I - I T T T" 今 : 

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 5 10 15 20 25 30 

threshold (x ideal threshold) N 

(a) number of itemsets for kma工=4, N = 3 0 (b) response time for kma工=4： 

Figure 5.12: Small thresholds, synthetic dataset: T5.I2.D100K. 

FP-tree method. Figure 5.13 (a) shows that the total number of missing large 

itemsets in each round in the mining phase. Figure 5.13 (b) shows the different 

total response time for different non-optimal thresholds. 

5.4.3 Different Decrease Factors, f 

We test the use of different decrease factor, / ’ for LOOPBACK as shown in 

Figure 5.14. In each loop-back, we decrease the threshold by a certain factor 

(decrease factor) which is ranged from 0.1 to 0.8. In general, the smaller the 

/ ’ the faster is our algorithm as the number of loop-back is reduced. However, 

if f becomes smaller, the difference between the new and old thresholds {^new 

and ^oid) in each loop becomes large, the number of itemsets wi th supports that 

fall between these two thresholds increases and therefore the pruning effect of 

i becomes insignificant. This explains why there is an increase in execution 

time if f is too small as shown in Figure 5.14. 
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5.5 Conclusion 

In this chapter, we study the problem of mining TV-most interesting A:-itemsets. 

This method can solve an important problem in the conventional mining of 

association rules, namely, i t is difficult to specify the support threshold. In 

addition, experiments show that our proposed method outperforms the pre-

vious Itemset-Loop algorithm by a large margin and i t is also comparable 

to the FP-tree algorithm, even when given an ideal threshold, and equipped 

w i th different proposed improvements. In the original problem definition of 

large itemsets, even an ideal threshold may induce a lot of unnecessary com-

putation, since the support threshold is for itemsets of all sizes. For TV-most 

interesting itemsets, we can make use of the different support thresholds for 

itemsets of different sizes. Therefore, we find that in some cases, the original 

FP-tree algorithm, even wi th an ideal threshold, can be an order of magnitude 

slower than our proposed algorithms. For thresholds that are too small for the 

original FP-tree algorithm, our proposed methods can have a much superior 

performance in both the time efficiency and the generation of useful results. 

For thresholds that are too large, the original FP-tree algorithm wi l l not give 

a proper answer, in fact i t may not return any itemsets. 

In the future we may investigate other methods or data structures that can 

solve the problem of mining TV-most interesting itemsets, or the generalized 

version of this problem. Finally, we are interested in the problem of mining 

frequent itemsets wi th constraints. For example, we can specify that the N 

most interesting itemsets among all itemsets containing item A are required. 

The rationale behind the having such constraints of item “A，’ can be found in 

57], in which a support threshold version of the problem is studied. We shall 

investigate this problem in the next chapter. 



Chapter 6 

Mining Interesting Itemsets 
with Item Constraints 

In previous chapter, we have mentioned the problem of setting a min imum 

support threshold. Recently, constraint-based mining is proposed for the min-

imum support problem for mining interesting itemsets. However, the user st i l l 

need to supply the support thresholds. We propose a more practical approach, 

which is mining the "TV-most interesting A:-itemsets wi th i tem constraints", for 

A: up to a certain kmax value. Generally, i t is more straightforward for users to 

determine N and kmax together wi th a set of constraints specifying different 

characteristics of different items. We propose the Double FP-trees algorithm 

for the constraint-based mining without the support thresholds. Experiments 

show that our proposed algorithm is highly efficient in generating interesting 

itemsets. 

6.1 Introduction 

Conventional association rules mining algorithms [7, 11, 38, 47, 49, 23] use only 

a single user-specified minimum support. In reality, the minimum support is 

not uniform [16, 57]: (i) Interesting itemsets (e.g. deviations and exceptions) 

may have smaller supports than non-interesting itemsets (general trends), (ii) 

88 
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There may be different support requirement for itemsets having items of differ-

ent supports, ( i i i) I tem absence usually has higher support than i tem presence, 

(iv) Items of higher concept levels usually have higher support than items of 

lower concept levels, (v) Setting the threshold value is typical ly hard: i f the 

threshold is set too large, we may miss some interesting itemsets; i f i t is set 

too small, many itemsets w i l l be returned and useless to the users. 

In the case of different min imum supports for different itemsets, the Apr ior i -

generation of a frequent itemset f rom its frequent subsets is lost. A naive way 

to handle the non-uniform supports is to apply conventional algorithms at the 

lowest min imum support ever specified and then fi lter the result using higher 

m in imum supports. This method is inefficient since i t w i l l generate many can-

didates that are later discarded. [57] proposes support constraints, described 

in Section 4.3.5，as a way to specify general constraints on min imum support. 

I t employs a support pushing technique that allows the highest possible mini-

mum support to be pushed so as to t ighten up the search space while preserving 

the essence of Aprior i . However, the algori thm st i l l requires a user specified 

support threshold. 

In previous chapter, we introduce the mining of TV-most frequent itemsets 

w i th our BOMO algorithm to handle the problem of setting support thresholds. 

In this chapter, we define a more practical problem of finding iV-most frequent 

itemsets w i th constraints which are interesting to users. We propose our Double 

FP-trees algorithm in Section 6.2.2. Experimental results are shown in Section 

5.4. 

I f we mine the TV-most interesting itemsets, though we have removed the 

requirement of support threshold, the uniform threshold on the number of 

itemsets is st i l l a restriction. As pointed out in [57], a more desirable set up 

is to allow users to set different thresholds for different items or itemsets. A n 

example that is given in [57] is that in a supermarket scenario, the itemset 

{bread, milk]- is usually much more frequent than the itemset { food processor 
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pan}. However, the latter is a valuable itemset even though the occurrence is 

less frequent. Here we aim at achieving this flexibility. 

Consider a set of items, I, partit ioned into several bins B i , B 2 , . . . , B m 

where each bin B^ contains a set of items in / . We define item constraint 

in a way similar to the support constraint defined in [57], however, instead of 

a constraint by support, we set a constraint by the number of itemsets. I tem 

constraint { ICi ) has the form: . . , B i J = N “ where 5 > 0, and B^. 

and B^i may be equal. 

We adopt the concepts of open and closed interpretations in [57]. An 

itemset (or pattern) I matches a constraint ICi in the open interpretation 

i f I contains at least one item from each bin in ICi and these items are distinct. 

An itemset I matches a constraint IQ in the closed interpretation i f I 

contains exactly one item from each bin in ICi and these items are distinct, I 

does not contain any other items. 

W i t h open interpretation, consider the set X of all A;-itemsets containing 

at least one item from each B” for a given IC” for \IC^\ < k < A:歸，where 

kmax is a user defined parameter for the maximum size of an itemset to be 

mined. We sort these /c-itemsets according to their supports in descending 

order. Let the A ^ t h greatest support be then we say that all A:-itemsets 

in X wi th support not less than ^ are interesting for the constraint. We 

call these itemsets the iV广most interesting itemsets for I Q in the open 

interpretation. 

For closed interpretation, consider the set A： of all /c-itemsets containing 

exactly one item from each B” for a given ICi, therefore k 二 We sort 

these A:-itemsets according to their supports in descending order. Let the N,-

th greatest support be then we say that all /c-itemsets in X with support 

not less than are interesting for the constraint. We call these itemsets the 

iV广most interesting itemsets for I Q in the closed interpretation. 

Given I C ” and A^ for 1 < i < (：�工,where工 is the number of constraints, 
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we would like to find the TV广most interesting itemsets for each / Q , in either 

the open interpretation, or the closed interpretation. Note that kmax is also 

necessary for the open interpretation. 

Table 6.1: Part i t ion of items into different bins. 
Bin Items 
Bi a 

b, c 
Bs d, e 

I 4 f 

Table 6.2: Item constraints. 
Constraint Bins Ni 

ICi Bh B2 Nl 
IC2 Bs, B^ 
ICs B2 ~W 
IC4 Bh B2, Bs 
IC5 — Bu B2, B , W 
ICe Bi, B2, Bs, B, 7V6 

Consider that we parti t ion a set of items into four bins as shown in Table 

6.1 and specify the constraints in Table 6.2. Consider itemsets h = {acd), I2 二 

(a6/), I3 = (be), the corresponding bin patterns for /丄，/之，Is are {B i , B2, Bs), 

(B i , B2, B4), and (^2, B2) respectively. We say that h matches I C i , ICs, and 

ICU in the open interpretation, and matches only /C4 in the closed interpre-

tation; I2 matches / C i , /C3, and IC5 in the open interpretation, and matches 

IC5 in the closed interpretation; I3 matches IC3 in the open interpretation, 

but matches none of the constraints in the closed interpretation. 

6.2 Proposed Algorithms 

In this section we propose two algorithms for mining TV-most interesting item-

sets wi th item constraints. The first algorithm is a straightforward modifi-

cation of the B〇M〇 algorithm introduced in previous chapter. The second 



Chapter 6 Mining Interesting Itemsets with Item Constraints 92 

algori thm improves on the first one by maintaining the constraints information 

w i th a second FP-tree. 

6.2.1 Single FP-tree Approach 

W i t h the closed interpretation, an itemset that matches a given constraint 

I C i must be of size | / Q | since i t contains exactly one element from each bin 

in IC i . Therefore, we need only one dynamic support threshold & for such 

itemsets. The value of ( i is set to be the support of the itemset that matches 

I C i which has the N i - th highest support among all such itemsets that match 

I C i discovered so far. We also set a global threshold, 

f = m m ( f i , < e 2 ， . . . ， & ( 6 . 1 ) 

W i t h the open interpretation, an itemset that matches I C i can have size 

equal to or greater than \ICi\. Therefore the itemset size ranges from \ICi 

to kmax- We assume that kmax is greater than the size of all i tem constraints 

For each constraint IQ and each possible itemset size k, we use a 

support threshold “ for pruning. The value of “ is set to be the support of 

the A;-itemsets that matches I Q which has the A^^-th highest support among 

all such A:-itemsets that match I C i discovered so far. Any newly encountered 

A:-itemset that satisfies I Q but is smaller than “ is not considered interesting. 

^ik is initialized to zero, for all possible values of i and k. We also set a global 

threshold, 

？ = mm(values of “ for all possible i and k) (6.2) 

We use the BOMO algorithm as the basic architecture and apply a simple 

constraint matching mechanism. We build an FP-tree for all the items in the 

transactions and mine for interesting itemsets based on the BOMO algorithm. 

C is used as the support threshold for building conditional FP-trees. W i t h the 
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closed interpretation, an itemset, I, having support > & is to be matched wi th 

ICi. I f there is a match, we add I to the result set and update W i t h the 

open interpretation, i f \ICi\ < k < kmax, then an A:-itemset, / , having support 

> ^ik is to be matched wi th ICi. I f there is a match, we add I to the result 

set and update “ i f necessary. 

6.2.2 Double FP-trees Approaches 

Using the single FP-tree approach, we require either a lot of memory space or 

disk space for the memory-based mining or disk-based mining respectively. In 

addition to the FP-tree, there is a set of user specified constraints for match-

ing. I f the number of constraints is large, the single FP-tree approach wi l l 

consume a lot of computation in the matching process and storage. We t ry to 

use a compact data structure to store the constraints. We propose to employ 

an FP-tree for storing the set of constraints since i t is a highly compact struc-

ture. We observe three advantages in doing this: (1) The FP-tree is usually 

substantially smaller than the original constraint set [23] since constraints may 

share common bins. Hence we save on the storage. (2) W i th this approach, we 

can perform the matching of itemsets and constraints in a more efficient way 

instead of matching the set of constraints one by one for a given itemset. (3) 

We can also have a better support pruning strategy instead of simply employ-

ing the lower bound technique as shown in Equations 6.1 and 6.2. We propose 

to employ a special order of scan on the FP-tree storing the constraints so as 

to speed up the pushing of the dynamic minimum support threshold as well 

as using a pruning strategy to tighten the threshold value. 

Closed Interpretation 

We build an FP-tree, transaction FP-tree, for the items in the transactions. 

We can also build another FP-tree, constraint FP-tree, for the bins in the 
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Table 6.3: A transaction database. 
T I D Items Items sorted by support 
001 a, b, c, d c, d, a, b 
002 b, c，d, e c, d, b, e 
003 a, c, d c, d, a 

"004 I e，/ I e, / 

〔root) 
Item Header Table ^ ^ 

、、、 / 

丄 � : � : x ^ 序 ， i 
f 、 、 --V-r^ / ‘ ‘ 

� . \ 、下、、 / ‘ ‘ 

N 、 I --〜‘ / ‘ 
、 • 

� - -

Figure 6.1: Ai i FP-tree for a set of transactions. 

co i i s t r a i n t s . T h e first o b v i o u s a d v a n t a g e is t h a t i t g r e a t l y reduces t h e i n e i n o r y 

si'/(、for s t o r i n g t h e ( •o i is t ra ints by s h a r i n g c o i n i n o n b i n s as m u c h as poss ib le . 

For t h e s a m e reason it w i l l a lso reduce t h e c o m p u U i t i o i i t i m e for m a t c h i n g 

it(、ms(、ts w i t h t he co i i s t r a i n t s . 

Tal)l(、6.4: El(、m(、nts in a c on s t r a i n t FP-tT(、(、node. 
Not at ion D r s r i i p t i o i i 

n . h i n Th(、b in r(、iM-(、s(、m(、(l l)‘v t l i r n ode , n . 

"•(‘ ".(' : ‘ if'"i(、（.onstraint IC\ is r(、i)r(、s(»ntrd by tli(> bins froin the root to ikkIc n. 
If 二 I’ is t l i r .V,-tli largest support of itemsets niatclii i i^ IC, so far. 

^mni(fi) 'Hu、miiiiiiuiin vahi(、of ^ anions the nodes of (he siihtrcc n)()tr(i by'a nodv. n. 
nodi-link The iKWt m)(l(、in the FP-trco carrying th(、saiiic bin, or null if there is lujiic. 

r，igur(、s ().l a n d G.2 shows the FP-tr(>(\s (•(jiisinict(>(l f r om the rh i t abase in 

丁 a l ) l ( 、 a n d cons t r a i n t s in Svctum G . l . The n o d e s t n i r t i i r r of a c-dusIrriiut 

F P - t m 、 i s s h o w n in Tab l e 6. 1. wh i c h is (lifff>rrnt f rom tho i i od f、s tn i r t i i r f of a 
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^ ^ ( ^ N I I ^ ^ ^ Nodes 
Bin Header Table 

/'^Node2 / 
， 二 Q Node4 

B1 Z / , / 

B3 " O V G o 
^ o d e 6 ,>-^Node7 

B4 、-.、 ^ / 
山、、、、、众， 

Nodes 

Figure 6.2: An FP-tree for a set of constraints. 

transaction FP-tree described in Section 4.2.4. 

In constructing the constraint tree, we first scan the constraint set and find 

the support for each bin. Then, we create an empty constraint FP-tree wi th 

root = "NULL" . For each constraint, I Q , the bins are sorted in descending 

order of their supports. We insert all the bins in the constraint as a path to 

the tree in a way similar to the transaction FP-tree, except we do not need 

to worry about the counts since there wi l l not be any repeated constraints. 

Common prefixes between patterns of different constraints share the same 

tree path, otherwise we create a path with new nodes. For the node, Node, 

representing the last bin of the pattern IQ, we set Node.c to i denoting IQ. 

We say that Node corresponds to constraint IQ. I f no such constraint can 

be determined for Node, then Node.c=0, indicating it does not correspond 

to any constraint. For each node Node, ^min{Node) is initialized to zero. I f 

Node.c=Q, then we set ^{Node) 二 MAXINT, where MAX I NT is a large 

number greater than the number of transactions in the given database. This 

wi l l indicate that the node does not get involved in setting the overall global 

threshold f。If Node.c ^ 0，then we set 卵ode) = 0 as an init ial value. 

Lemma 5 A bin pattern formed by the bins from the root to any node of 



Chapter 6 Mining Interesting Itemsets with Item Constraints 96 

the constraint FP-tree can only match at most one constraint in the closed 

interpretation. 

Using the previous example, there is no constraint matching the pattern 

represented by the bins from the root to its right child Nodes representing the 

bin pattern (Bs), therefore the element Node^.c is undefined (zero). On the 

other hand, element Nodeq.c = 1 because the pattern (B<2,Bi) represented by 

the root node down to Node) matches ICi{Bi, B2). 

The basic idea of our Double FP-trees approach is that we visit each item a 

in the header table of the conditional transaction FP-tree, T, of a base pattern 

a，and form the conditional transaction FP-tree for the base pattern a U a 

using the minimum support threshold from the constraint FP-tree, T/c- Note 

that the ini t ia l transaction tree can be treated as a conditional transaction 

FP-tree wi th a = 

Update of r̂nin at the root node: This minimum support threshold can 

be set to ^rnin of the root of T/c and is exactly equal to in Equation 6.1. 

This minimum support threshold can be increased during the mining process, 

whenever we found an itemset interesting for a constraint I Q , by updating f 

of the corresponding constraint FP-tree node and pushing of the ancestors 

of this node t i l l the root. 

We perform the above steps recursively unti l a single path conditional FP-

tree is obtained for a base pattern. Then we generate each possible itemset 

combination from the single path and try matching the itemset wi th the con-

straints in the constraint FP-tree in a top-down manner: We sort the bin 

pattern in the itemset according to the top-down order in the constraint header 

table. At each tree level 1 I, there is at most one node matching the l-th bin in 

the pattern. If this is the case，we match the next bin with the subtrees of this 

1 Level of root is zero. 
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node. We say that the itemset matches a constraint ICi if its sorted bin pat-

tern matches exactly a tree path and the constraint represented by the bottom 

matched node, n, of this path is ICi. We inc lude the i temset i n the cur ren t 

resulting set i f we find a match between the itemset and constraint IC i , and 

the support of the itemset is not less than the A^^-th greatest support of the 

interesting itemsets (for IC i ) found so far, i.e. Figures 6.3 to 6.6 show 

the Double FP-trees algorithm. 

Lemma 6 The value of ^rnin at the root of T jc is equal to the value of ^ of 

Equation 6.1 at any point of the execution. 

Examp le : We illustrate the algorithm in more details using the previous 

running example. We set 7Vi = _/V2 = . •.二 = 1，and kmax 二 4. We build 

the transaction FP-tree and the constraint FP-tree according to the supports 

of items and bins respectively using functions NFP-build (from BOMO) and 

Tic-build. Assume we start from the bottom of the header table of the FP-

tree, T, in Figure 6.1, we visit the item f first. The corresponding bin pattern 

of / U a, where a {= 0) is the base pattern for T, is (B4). Since (rnin (=0) of 

the root of the constraint tree, T ic , is not greater than the support of / U a 

(二 1), we t ry to match the bin pattern B4 wi th T/c using function Mapping. 

There is no match between B4 and the child nodes of the root of T!。, so we 

discard f U a. Next we form the conditional FP-tree of f using threshold 二 

fmm (=0) of root of Tjc- We get ( /e : 1)，which form the sorted bin pattern 

(^3 ,^4) and it is interesting for IC2. So we update ^min{Node^) = ^{Node^) 

: s u p p o r t of fe = 1, and push the value of Cmm upwards to the ancestors of 

Node^ using function Update—Tic. 

Next we consider item e in T, the corresponding bin pattern of eUa is (B3). 

Since support of e (=2) is greater than ^rnin of root of T/c, we try matching 

eUa wi th TIC. Although Nodes matches B3, Node- is undefined, therefore we 

discard eUa . Then we consider the conditional FP-tree of e, which is a single 
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path tree, root[NULL) (c : 1) (t/ : 1) (6 ： 1). We get the possible 

itemset combinations: (eb : 1)，(ebd : 1), [ehdc : 1), {ed : 1), {edc : 1)，(ec : 1)， 

and the corresponding bin patterns: (^2 ,^3) , ( ^2 , ^3 ,53 ) , ( ^ 2 , ^ 2 , ^ 3 , ^ 3 ) , 

(^3,-^3), (^2,^3,^3),(召2,召3). Since none of them matches T/c, they are 

discarded. 

Then we consider item b from T, the corresponding bin pattern is {B2). I t 

matches Nodei which corresponds to IC^, so {b : 2) is an interesting itemset. 

We add i t to the result set, and update ^{Nodei), imin{Nodei) and ^rnin of 

root of TIC. Consider its conditional FP-tree: root{NULL) {c : 2) {d : 

2) (a : 1). We get the itemset combinations: {ba : 1), {bad : 1), {bade : 

1), {bd : 2), {bdc : 2), {be : 2), and the corresponding bin patterns: {B2, Bi), 

( B 2 , B i , B 3 ) , (^2, ^1 , ^3 ) , (^2 ,^3) , (^2,^2,^3) ,(战,召2) . {ba : 1) is inter-

esting for I C i , we add it to the result set and update 认Node]、, ^min{Node2) 

and upwards, {bad : 1) is also interesting for ICU, we include i t to the result 

set and update 认Nodeo), ^min{Nodee) and upwards. 

Then we consider item a corresponding to the bin pattern (Bi). I t is 

not interesting. Consider its conditional FP-tree: root{NULL) (c : 2) ^ 

{d : 2). We get the itemset combinations: {ad : 2), {adc : 2), (ac : 2), and 

the corresponding bin patterns: {B2,Bi). {adc : 2) is 

interesting and replaces (bad:l) in the result set. (ac : 2) is interesting and 

replaces (ba:l) in the result set. 

Similarly we can process the items d and c in the item header table. I 

Although there is an updward pushing o f 6 m n of root of T ic remains 

unchanged since imin{Nodej), and imin[Node^) are stil l equal to zero. We 

handle this problem using the following ordering strategy. 

Order of Scan： Instead of visiting each item in the item header table 

sequentially from head to tai l or from tai l to head of the table for the transac-

tion FP-tree, we employ a new ordering scheme. Starting from the bottom of 

the bin header table for the constraint FP-tree, for each bin B, we build the 
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Algorithm : DFP-tree algorithm 
Input: D 
Input: 
Input: kmax 
Input: = 
Input: NI,N2,…具… 

Output: TVi-most interesting /c-itemsets for each ICi where 1 <i < Cmax. 1 < A: < kmax-

(1) Let resultik be the resulting set of interesting /c-itemsets matching constraint ICi. 
Set resultik = 0-

(2) Scan the transaction database, D. Find the support of each item. 
(3) Sort the items by their supports in descending order, denote it as sorted-item-list. 
(4) Build a transaction FP-tree, T, with all the items. 
(5) Scan the constraints, IC. Find the support of each bin. 
(6) Sort the bins by their supports in descending order, denote it as sorted-bin-list. 
(7) Create a constraint FP-tree, T jc , with only a root node with label being "NULL". 
(8) r /c -bu i ld ( r /a , IC, sorted-bin-list). 
(9) resultii,resultr2,. •. ^ DfP-m\ne{T, Tjc, 0) 

Figure 6.3: L^FP-tree algorithm for mining TV-most interesting itemsets w i th 
constraints. 

Algorithm : Tic-tree Building Phase • 

TIC-build (TIC, IC, sorted-list) 
Update the FP-tree as follows: 

For each constraint, ICc in IC 
(a) Sort the bins in IC�according to the order in sorted-list 
(b) Let [ i |/] be the sorted item list in IC�where i is the first element and 

I is the remaining list. Invoke Insertjrictree{[i\I], Tic, c). 

Insert-Tic tree([i\/], Tic, constraint) 
(1) Let C be the child node of Tic such that C.bin = i.bin, 

(a) If no such C, then create a new node C, and let its parent link be linked to Tjc, 
and its node-link be linked to nodes with the same bin name via the node-link structure. 

f - MAXINT, Crmn(C) [ 0 ’ 
(2) If I is non-empty, 

then 
(b) C.c ^ 0 
(c) invoke Insert.Tictree(I, C, constraint) 
else 
(d) C.c constraint 
(e) — 0 

Figure 6.4: Construction of constraint FP-tree. 
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Algorithm : DFP-tree Mining Phase 
L>FP-mine(r, Tjc, a) 
{ 

If T contains a single path P 
(1) then for each combination, of the nodes in the path P do 

(a) generate itemset U a with support = minimum support of nodes in /3 
(b) Mapping(T/c- U a, support) 

(2) else for each ai in the header of T do 
(c) generate itemset p = aiU a with support = ai.support 
(d) € — 6nin(root of TIC) 
(e) construct /3's conditional pattern base using ( and 

then /3's conditional FP-tree Tf3 
(f) if 0 then DVP-mme{Tp, T ic , P) 

} 

Figure 6.5: A lgor i thm mining iV-most interesting itemsets w i th constraints. 

Algorithm : Mapping 

Mapping(r/c, 7’ support) { 
Find the path P, if any, from Tjc that matches the bin pattern of 7 

Let P.lowest be the last node in P 
If P.low est.c ^ 0 and ^{P.lowest) < support 

(a) add 7 to the result set, resultck, 
where c is the matched constraint ICc = P.lowest.c, k is the size of 7 

(b) ^{P.lowest) the iVc-th largest support in re suit ck 
(c) 亡) 

} 
Update_r/c(no(ie/c) { 

(1) iminijiodeic) ^ min( ^{nodeic), min( ^rnin of all children of nodejc )) 
(2) If there is change of value of imin{nodeic) 

then invoke Update_r/c(parent of noderc) 
} 

Figure 6.6: Matching itemset wi th constraints in constraint FP-tree. 
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condit ional transaction FP-trees which consist of any i tem in the i tem header 

table that belongs to B first. This bot tom-up approach allows the values of 

i and ^rnin of the leaf nodes to be updated (increased) as soon as possible, 

and hence we can speed up pushing the nodes in upper levels of the constraint 

FP-tree. Since the propagation of ^rnin w i l l increase the value of f , we can 

achieve better pruning power. In other words, whenever we update ^rnin of a 

node and its ancestors after we visited its child node Node, we do not need to 

consider ^rnin{Node) for the update. 

From the running example, the order of v is i t ing for the i tem header table 

in Figure 6.1 is / -> e ci a 6 ^ c. Therefore, after we visited b in 

Ba, we can set ^rnin of Node^, Node，and Nodes t o MAXINT and invoke 

f u n c t i o n Update J^jc t o push ^rnin of Node], Nodes, Nodes and the i r ancestors 

i f necessary. 

Pruning Strategy： When generating the condit ional FP-tree of an 

i tem a, instead of setting the threshold to be ^rnin of the root of T j c as shown 

in step 2(d) in Figure 6.5，we set f to be the min imum value of ^rnin among 

all the constraint FP-tree nodes belonging to the bin of a. This increases the 

pruning effect during mining. 

Lemma 7 An itemset containing an i tem a w i th support s is not interesting 

i f s is less than the min imum value of f爪& among all the constraint FP-tree 

nodes belonging to the bin of a in the closed interpretation. 

For example, the threshold for i tem / ' s conditional FP-tree is the min imum 

Cr»zn among Node^, Nodej and Nodes in Figure 6.2. 

C o r o l l a r y 2 Given an itemset I w i th support s, let Biowest be the last bin in 

the sorted bin pattern for I according to the constraint header table, I is not 

interesting i f s is less than the min imum value of among all the constraint 

FP-tree nodes belonging to Bioy^est-
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Therefore we can further strengthen the pruning power of ^ in step 2(e) 

of Figure 6.5 by finding a suitable (rnin from the items in j3 for building the 

conditional FP-trees of (3. 

Open Interpretation 

We employ similar strategies for the open interpretation as for the close inter-

pretation. There is some more complication since for each constraint / Q , we 

need to consider the A:-itemsets for \ICi\ <k< kmax- Therefore, at each node 

Node in the constraint FP-tree, i f i t corresponds to a constraint ICi, we keep 

a list of values & for \ICi\ < k < kmax- Instead of at most one branch of the 

constraint FP-tree matching an itemset, there may be more than one branch 

matching an itemset in the open interpretation. As a result, the Mapping 

function in Figure 6.6 would take more time. 

6.3 Maximum Support Thresholds 

In this section, we consider the case of pruning interesting itemsets which have 

supports greater than a user specified maximum support threshold r̂nax-

In other words, we would like to find the TVi-most interesting itemsets for each 

constraint IC, where the supports of these itemsets are less than or equal 

to the maximum support threshold。ax。The rationale of employing《而 is 

that itemsets wi th very high supports can be tr ivial to the users and thus we 

do not need to mine these itemsets from the database. Suppose we have a 

database for maternity medical records at a local hospital, then all patients in 

the records wi l l be female and almost all wi l l be l iving in the same country. 

Hence the support of the itemset containing "female" and the country name 

wi l l be very high. Such tr ivial frequent itemsets are typically not interesting. 

On the other hand, itemsets with smaller supports may be more interesting 

since users may not have the explicit knowledge about these itemsets. 
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A simple way to employ the maximum support thresholds wi th our algo-

r i thm is to discard itemsets of supports greater than r̂nax instead of insert-

ing them into the resulting sets. The other parts of the algorithm remain 

unchanged. We wi l l investigate the performance of our proposed algorithm 

for mining the constraint-based interesting itemsets wi th maximum support 

thresholds in Section 6.4. 

6.4 Performance Evaluation 

We compare the performance of the Double FP-trees and the exhaustive Single 

FP-tree. A l l experiments are carried out on a SUN ULTRA 5」0 machine run-

ning SunOS 5.6 wi th 512MB Main Memory. Both synthetic and real datasets 

are used. Note that in this section, the support values listed are in terms of 

the percentage of the transactions that contain the corresponding itemsets. 

Real Data: We use the real census data provided in 1990 [50]. The 

dataset has 23 attributes, 63 items and 126229 transactions. To generate 

support specifications, we grouped the items from the same attr ibute into a 

bin, giving 23 bins B i , B2，...，B23 [57]. Let Vi be a bin variable. We specify 

constraint I C i in the closed interpretation: 

..., Vk) = Ni, where 0 < A: < k 歸 . (6.3) 

We specify Ni in two ways: (1) Ni is specified by the user. (2) Ni = 

number of itemsets matching I Q with supports > 9i{Vi, • • •, T4), where 

氏 04 ’ 乂2,..., Vk) = m m ( 7 L i X S{Vi) x . . . x S{Vk), 1), 7 > 1, S{Vj) is the 

smallest support of the items in the bin represented by 1̂ -。 

Synthetic Data: The synthetic datasets are obtained from the genera-

tor in [12]. We set the number of transactions = lOOK，number of items 二 

500, average length of transactions = 10, and the default setting for all other 
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parameters. We partit ioned the support range into 4 intervals such that B i 

contains the items wi th support in the z-th interval and the number of items 

in Bi is approximately equal [56]: | Bi |= 122, | B2 |= 122, | B^ |二 122, 

and I B4 I二 124. Table 6.5 shows the constraints in the closed interpretation, 

where Ni is determined by Equation (4). 

Table 6.5: Constraints for synthetic data in the closed interpretation. 
Ni II Ci JSU 

~TCi{Bi) 122 II 7 ^ 9 ( ^ 2 ) 122 
~ I C讽 ,B 2 ) 一 14884 ICio{B2,Bs) 1233 
~JC3{Bi,B2,Bs) 一 453348 ICn{B2, Bs, B^) 13209 
-IC4(Bi,B2,B3,B4) 36131" ICi2iB2,B^) 11372 “ 
~IC5(Bi,B2,B4) 120005" ICisjBs) 122 “ 
~TC6(Bi,B3) 一 14884 ICi4(B3,B4) 8243 
—ICMBi,B3,B4) 43492— /Ci5(B4) 124 ‘ 
ICs jBuB^) 13176 II 

In the experiment, we also test the case for the Double FP-trees when a 

known (optimal) support t h r e s h o l d , 。 i s given, i.e. a threshold which is just 

small enough to make sure that all the required TV-most interesting A;-itemsets, 

which match the item constraints, are of supports greater than or equal to 

We denote this method as Double FP-trees with ideal threshold. 

Figure 6.7 shows the performance of the two approaches using the real 

dataset. We vary the constraint set size by randomly choosing 10%, 20%, 40%, 

100% constraints out of the original set. We set N using Equation 6.3 with 

7 = 5, and / c 紐 = 5 . The Double FP-trees approach outperforms the Single 

FP-tree approach in several order of magnitudes in the closed interpretation. 

It also gives an optimistic result in the open interpretation. Table 6.6 gives 

the result for the synthetic data. Since the optimal threshold is very low, 

the Double FP-trees with ideal threshold gives the same performance as the 

Double FP-trees. 

As expected, the matching in the closed interpretation is faster than that 

i l l the open interpretation. An itemset can at most match one constraint in 
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the closed interpretation while i t can match several constraints in the open 

interpretation. Moreover, we can apply Lemma 7 for the closed interpretation, 

and we cannot do so for the open interpretation since any item in the base of 

a conditional FP-tree can both be included and excluded during matching. 

60000 I » I 1 1 1 1 1 I I 250000 • , • , . • 
Double FP-troos ‘ ‘ • Double FP-troos I 
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(a) Closed interpretation (b) Open interpretation 

Figure 6.8: Real dataset, uniform TV = 5. 

less number of conditional FP-trees w i th smaller sizes by making use of a local 

and larger ^^nm, instead of a global min imum ^rnin as used in the Single FP-tree 

approach, for pruning when bui lding conditional FP-trees. Table 6.7 shows the 

strength of the scanning order of the Double FP-trees algori thm from the tota l 

number of itemsets, which are generated and inserted to the resulting lists. The 

number of extraneous itemsets mined by the Single FP-tree can be an order 

of magnitude more than the Double FP-trees. 

We also test their performance against different N and kmax- Figure 6.9 

shows the result for N = 10，…’ 30. Since the constraint set is much smaller 

than that of the real data, the mining t ime required for different N of the same 

approach does not vary much. However, using a tree structure for constraint 

matching benefits our Double FP-trees approach to a certain extent as shown 

in the figure. 

Figure 6.10 shows the result of different k 歸 . W e set kmax = 2, 4, . . . ， 1 0 . 
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Figure 6.9: Synthetic dataset, uni form N = 5, 10，...，30. 

2 0 0 0 ‘ ‘ ‘ ‘ D i u b l e Fp' -trees 8 0 0 0 , , • , — — ^ . ’ — — ‘ 
Single FP tree x - - D o u b l e F P - t r e e s 1 

D o u b l e FP- t rees with ideal threshold …雀… D o u b l e F P - , r e e s with i f “"a竹fpf二-二二了•？：—一:： 

. 7000 - Z ' " -

！ / 

1500 - ！ - 6000 - / . / / 
/ 5000 - ,/ _ 

1 / f / 
^ 1000 - / CD 一 M /乂 
• ^ 4000 - _ 

E / i / 
^ / ^ / 

/ ‘ 3000 - / _ 

丨 Z / 
500 - 2000 - / _ 

/ 
1000 - / _ 

3 4 S 6 7 S 9 10 3 4 5 ^ 7 B 9 ^ 
k - m a x k _ m a x 

(a) Closed interpretation (b) Open interpretation 

Figure 6.10: Synthetic dataset, iV = 5, different kmax-



Chapter 6 Mining Interesting Itemsets with Item Constraints 108 

Table 6.7: Total number of itemsets mined. 
Data Method | Interpretation | N | Number of itemsets 
Real Double FP-trees close 丨 5 | 5 | 222289 

Single FP-tree close ~~5 5 223023 
Double FP-trees — open 5 5 306535 
Single FP-tree open 5 5 1220388 

Synthetic Double FP-trees close 5 ^^5 ^ 
Single FP-tree close 5 5 1675 

Double FP-trees close 5 5 \ M 
with ideal threshold 

Double FP-trees close 5 2069 
Single FP-tree 一 close ^ 5 4099 

Double FP-trees close 30 ^ 5 1116 
with ideal threshold 

Double FP-trees open 5 ^^4 1663 
Single FP-tree open 5 ^^4 7177 

Double FP-trees open 5 4 ^ 
with ideal threshold 

The Double FP-trees method gives a linear performance in both interpreta-

tions. 

In conclusion, the Double FP-trees algorithm is much more scalable than 

the exhaustive Single FP-tree method. I t is highly effective no matter the 

number of constraints is large like that in the real dataset or small like that in 

the synthetic dataset. The algorithm is also comparable to the case when an 

optimal support threshold is given. 

Mining with Maximum Support Thresholds: We vary the maximum 

support threshold ^rnax in the following ways: (1) For real data, ^rnax 二 20%, 

3 0 %， 4 0 %， 5 0 % , or 100%. (2) For synthetic data, “ 工 = 5 % ， 6 % , 7 % , 8 % , 

9%’ or 100%. The cases where ^̂ nax = 100% are cases where we do not have 

any overhead in handling maximum support thresholds, as there is essentially 

no threshold. From experiment, we find that the performances of the Double 

FP-trees algorithm with different “ are similar. For the real dataset wi th N i 

specified by Equation 6.3, the execution time varies from 590 to 650 seconds. 

For the synthetic dataset with TV = 5， the time varies only from 750 to 
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770 seconds, which is less than 10%. Therefore the overhead in handling the 

maximum support threshold is very small, and mining interesting itemsets w i th 

maximum support thresholds can be considered as an alternative when users, 

who may have some special knowledge for the data, want to find interesting 

but non-tr iv ial itemsets. 

6.5 Conclusion 

In this chapter, we study the problem of mining TV-most interesting A;-itemsets 

w i th a set of user specified i tem constraints. We employ BOMO for the i tem 

constraints problem by using a double FP-trees approach. We also provide the 

maximum support threshold mining mechanism for el iminating t r iv ia l large 

itemsets. Experiments show that our methods provide good performances. 

In the future, we may investigate the mining of TV-most interesting asso-

ciation rules in a constraint-based manner. In this case, both high support 

and high confidence wi l l be required in determining the N best rules to be 

returned. 
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Conclusion 

Classification and association rules mining are usually considered indepen-

dently for different applications. However, they are complements of each other 

that the former is a supervised learning process while the later is an unsuper-

vised one. Both of them are essential to practical applications. In this thesis, 

we combined these two important data mining techniques for a practical prob-

lem of mining interesting patterns that contain objects belonging to the same 

class given only a query example. 

To handle this problem in an efficient and user-controllable way, we studied 

several strategies in building decision trees, and investigated the mining of TV-

most interesting itemsets wi th constraints. 

We proposed a pre-sorting technique for building decision trees in that 

the spli t t ing criteria for each node can be evaluated during the generation 

of attr ibute lists, so as to reduce the amount of I / O operations required for 

the evaluation to zero while preserving the accuracy. We also considered the 

difference in bucket size allocation and the methods in spli t t ing the dataset, 

including one-to-many and many-to-one hashing, horizontal hashing, attr ibute 

pairing and database replication. Under the l imitat ion of main memory space 

compared wi th the very large databases, we provide absolute improvements on 

previous methods. We can also meet user wi th different requirements by the 

different performance characteristics of our proposed methods. 
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On the other hand, we investigated the constraint-based mining of inter-

esting itemsets into two steps. We first proposed three algorithms for mining 

TV-most interesting itemsets. We allowed users of any type to control the num-

ber of results they are interested by the elimination of specifying a min imum 

support threshold. W i t h the efficient mining of our methods, we then consid-

ered the constraint-based itemsets mining. We defined i tem constraints which 

allow users to specify the particular set of items they are interested. This is 

always the case that particular users would only like to look for certain in-

teresting patterns. We made use of our BOMO algorithm, and proposed the 

Double FP-trees approaches for mining constraint-based interesting itemsets. 

W i t h the effectiveness of the algorithms, we can handle our mining of in-

teresting patterns for similar objects in an more efficient and practical way. In 

future, i t is worth investigating the combination of decision tree classification 

and association rules mining steps into a single component. 



Appendix A 

Probabilistic Analysis of 
Hashing Schemes 

Here we give some probabilistic analysis of the many-to-one simple hashing 

scheme and the horizontal hashing scheme introduced in Section 3.2.2. Assume 

equal probabil i ty of a record appearing in any slot in the attr ibute list. Assume 

that there are in total N records. Assume that we have scanned p records in 

the spl i t t ing list (we can neglect the hashing details for this analysis). Let us 

call this set of records A. The chance that the p records scanned contain a 

particular record is p/N. In the simple many-to-one hashing scheme, suppose 

we bring in k records in the non-splitting attr ibute list (from one single non-

spli t t ing attr ibute) then the probability that all the records are contained in 

the p records in A is (p/N)^. 

Next consider the horizontal hashing scheme. Assume we have n non-

split t ing attributes. I f we use horizontal hashing, we bring in k records from 

the n non-splitting attr ibute lists. From each list we take L records where 

Ln 二 k. Let us call the set of k records B. Let us call the L records from 

an attr ibute P the bucket of P. For any non-splitting attr ibute P, in the L 

records for P, some of them may be repeated in B. The chance that a record 

for P appear in the bucket of another non-splitting attr ibute is L/N. The 

chance that i t does not appear in the other bucket is (1 - L/N). The chance 
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that i t does not appear in the buckets of i other non-splitt ing attr ibute is 

(1 — L/N)\ Therefore the expected number of distinct records in the bucket 

for P is given by m = L+L{l-L/N)+L{l-L/Nf +.. . + 1 ( 1 - L / T V ^ — i . The 

probabil i ty that all the k records from non-splitting attributes are contained 

in the p records in B is therefore (p/N)^. 

This value is greater than {p/N)^. For example, i f TV = 4, A; = 2 and n = 2, 

L = I. Suppose p/N = 0.5, then for the first scheme the chance that B is 

contained in A is 0.5^ = 0.25. For the second scheme, the expected number 

of unique records in 5 is 1 + (1 - 0.25) = 1.75. Hence the chance that B is 

contained in A is 二 0.30. Therefore, i t is more likely wi th the horizontal 

hashing method than i t is wi th the simple many-to-one method that we need 

to fetch only p records from the splitt ing attr ibute list to resolve the records 

in B. This may not have any effect i f k is large, because {p/N)^ wi l l be very 

small. Also, nm is sti l l large and (p/TV)腿 is sti l l very small. However, i f k is 

small, the effect wi l l be noticeable. 
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Hash Functions 

Table Table 
address contents Tab le Tab le 

A address contents 
[0] empty "“ 
[1] empty .^dress 啊 t y 
[2] empty ‘ ^ t y 
[3] empty [2] 17 
[4] empty [3] e m p t y 

11 [4] 19 

[5] empty �� 

[6] empty cellar J e m p t y 
^ I [6 ] ep la 

(a) Initial hash table with seven buckets (b) After inserting key 17 and 19 

Figure B . l : Hash table for coalesced chaining. 

Linear probing is one of the open addressing methods and is also the sim-

plest one among all hash methods. Probing is done by 

probci 二 [rid + i x c) mod TableSize 

where rid is the record ID of an entry to be probed; c is a constant representing 

the jump size; TableSize is the size of the hash table, i.e. the number of record 

entry the table can contain; prohei is the hash table entry to be probed at in 

the z-th tr ial. Init ial ly, i is zero, i f the record entry fails at the probe。position 
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Table Table Table Table 
address contents address contents 

[0] empty [0] empty 
[1] empty [1] empty 
[2] 17 [2] 17 
[3] empty [3] epla 
[4] 19 [4] 19 

[5] epla [5] 24 ^ — — 
[6] 22 ^ [6] 22 ^ 

(a) After inserting key 22 (b) After inserting key 24 

Figure B.2: Resulting content of the hash table. 

of the hash table, i wi l l be incremented by one and the record wi l l t ry to 

probe at the probe! position. Probing wi l l continue unti l there is a hit for 

the record or certain termination condition is reached. The size of the hash 

table, TahleSize, is an important parameter. I t must be large enough to 

hold the elements we want to store, i.e. the record entries to be loaded and 

inserted to the hash table in each distribution cycle. In general, to give a better 

randomizing effect, TableSize should be a prime number. Another important 

parameter is the load factor , a, which is the fraction or uti l ization of the 

table that contains records at any time. 

o- = a{t) = n/TableSize 

where n is the number of records that is actually stored in the table. This 

kind of probing is simple and computationally efficient. However, i t suffers the 

clustering problem. The expected collision rate for linear probing is relatively 

high compared to other hash methods. 

Coalesced chaining [53] is shown to require less number of collision. The 

hash table consists of two parts: the address region and the cellar. Figure 
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B. l (a ) shows an example of a hash table using coalesced chaining, addresses 0 

to 4 make up the address region, and addresses 5 to 6 make up the cellar. We 

map each record into the address region using a hash function. The resulting 

address f rom the hash function is called home address. We use the cellar to 

store records only i f collision occurs. In our example, we use the division hash 

function H{key) = key mod 5，where key is an integer. Af ter inserting key 

values 17 and 19, we have Figure B . l (b ) . Then we insert 32. Since i t collides 

w i th 17，we store 32 to the empty position w i th the largest address, i.e. the 

address represented by epla. In addition, i t is added to a list that begins at its 

home address (address 2). The result is shown in Figure B.2(a). Next, we add 

key value 24. Again, collision occurs w i th key 19. We placed 24 in address 5 

(the empty posit ion w i th the largest address pointed by epla) and l ink i t to a 

list beginning at location 4. The result is shown in Figure B.2(b). 
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