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摘 要 

在 近 幾 年 裏 ’ 一種被稱爲”0710〃61”的單輪機器人正在成爲熱門的機器人硏 

究 專 案 • G y r o v e r 是一種旋轉平衡類型的機器人，它最初由卡內基梅隆大學開 

發•這種機器人有許多潛在的用途，例如，基於它可以在崎嘔不平或軟質的地面 

上高速賓士的特點，它可廣泛地應用於運輸，探險及拯救等作業• 

由於這種機器人的高親合性，非完整性和低驅動等特性，使得傳統的控制方 

法應用在其上會産生一連串的問題•另外，考慮到人具有能夠自如地控制複雜的 

機器人的技能，這啓發我們得到首先硏究人的控制技能，然後再將它傳授給該機 

器人的想法•我們發現，從自動機器人到人機協調的廣泛領域中，模型化人類控 

制技能 ( 1 ^ 3 )的方法被大量使用，借助於 H C S 方法，本論文從中提取了適用於 

G y r o v e r的人的控制技能策略• 

在應用模型化方法的過程中，爲提取人的控制技能，模型輸入的選取是相當 

重要的一步 _由於存在很多的輸入變數，而且互相關性差的輸入變數會影響 H C S 

模型的效能’所以應該選取一些能夠與動態 H C S 準確吻合的變數•爲此，我們 

發展了兩套應用在不同情況下評價方法，以幫助選取適當的變數• 

在第一種評價方法中，我們首先從機器人的動態模型中選取相關的狀態變 

數，作爲 H C S 模型的輸入，然後，我們定義了一種相對於操作者控制輸入所産 

生的每一狀態變數敏感性的量度方法’以確認狀態變數的重要性• 

對第二種評價方法，我們弓丨用了一種稱爲因數分析的統計方法來選取合適的 

狀態變數•利用因數分析，變數將被分爲不同的組，在同一組內的變數互相關性 

強，而不同組間的變數的互相關性弱，這便於我們選取與人的控制策略有強相關 

性的一組作爲輸入變數•這種評價方法的優點是無須先對系統的動態模型有所認 

識，而且能夠推廣到任何一種未知模型的系統上，作爲分析和選取輸入變數的手 

段 . 

最後，我們分別應用兩種評價方法演示了 ：在已學習了人的控制輸入模型的 

前提下，這種機器人幾種運動方式的自動控制情況•演示表明，本論文對模型化 

人的控制技能，並應用于該機器人的動態穩定性控制是十分有意義的• 



Abstract 

A single wheel, gyroscopically stabilized robot, called Gyrover, is a novel concept of 

mobi le robot wh i ch provides dynamic stabil i ty for rap id locomotion. I t is a sharp-

edged wheel actuated by a spinning flywheel for steering and a dr ive motor for 

propulsion. The spinning flywheel acts as a gyroscope to stabilize the robot. This 

conf igurat ion conveys significant advantages over mul t -wheel , statically stable ve-

hicles, inc lud ing good dynamic stabil i ty and insensit iv i ty to att i tude disturbances; 

h igh maneuverabi l i ty; l ow ro l l ing resistance; abi l i ty to recover f r om falls and am-

phibious capability. Thus, successful development of autonomous control of such 

k i n d of robotic system w i l l expand the range of robotic applications. 

I t is complicated and di f f icul t to control the robot by classical control method be-

cause of its h igh ly coupled, nonholonomic and underactuated nature. O n the other 

hand, humans are capable of mastering complex, sk i l l control to the robot. Taking 

advantage of human ski l l i n teleoperation control of the robot, the goal of this thesis 

is to study the learning and transferring human strategy i n control l ing the robot. 

We apply the methodology i n model ing the human control strategy (HCS) i n this 

thesis, developed by X u and Nechyba, to abstract human ski l l i n d r i v ing on the 

robot. Then we develop a human-based controller for control l ing such a dynami-

cally stable but statically unstable robot. 

I n the model ing, the selection of model input plays an impor tant role for ex-

tracting human skills. There are many parameters and variables i n inpu t and out-

pu t space. I t is impossible and inaccurate to include al l variables i n the model ing, 

therefore, selecting a set of variables that contributes signif icantly to the HCS is one 

of the most important tasks in the modeling. To this end, we develop two eval-

• • 
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uat ion methods to select suitable inpu t variables to handle the selection problem 

i n dif ferent situations. I n the first evaluation method, we f irst select the relevant 

state variables f r om the mathematical model of the robot as the HCS mode l input . 

Then, w e define a measure of sensit ivity of each state variables w i t h respect to the 

operator 's control i npu t to validate the importance of mode l input . I n the second 

evaluat ion method, we present a statistical method, factor analysis , to select the 

suitable state variables. By using factor analysis, the variables can be classified into 

dif ferent groups. Intra-group variables have higher correlations among themselves 

wh i le inter-group variables have lower correlation among themselves. Then, we 

select the groups of variables wh i ch have h igh correlation w i t h the human strate-

gies as the inpu t variables. The advantage of this evaluat ion method is that pr ior 

knowledge of the dynamic model of the system is unnecessary. By this feature, this 

method can be further appl ied to any systems w i thou t any mode l for analyzing and 

selecting inpu t variables. Finally, we ver i f ied the HCS models th rough simulat ion, 

and experimental ly implemented the human-based controller for control l ing the 

" t i l t -up" mot ion of the robot. We demonstrated that the robot can be automatically 

recovered f rom fall ing. 



Acknowledgments 

I w o u l d l ike to express m y sincere grat i tude to m y supervisor Prof. Yangsheng X u 

for his patience and intellectual guidance on al l aspects of the work . 

I am indebted to Kwok-Wai A u for his invaluable comments and suggestions i n 

m y work . I w o u l d l ike to give special thanks to Prof. Michael C. Nechyba and Wai-

Keung Fung for many he lp fu l discussions on several issues. Thanks are also given 

to Prof. Jun Wang, Prof Jie Huang, Prof. Yunhui L iu , Jinyang Song, Ka-keung Lee 

for their he lp fu l discussions du r ing m y research. Also, I w o u l d l ike to thank Win-

ston Sun, Lo-Wai Sun, Chi - t in Yang, Wai-hung Tang, Yantao Shen, Yau-fai Kwok , 

Ming-ho Chan and K in- fung Lei for their helps in these two years. 

FinaUy, I w o u l d l ike to give m y sincere appreciation to m y parents. 

» 

/ 

V 



Contents 

1 Introduction 1 

1.1 Robot Concept 1 

1.2 Mot ivat ions 3 

1.3 Related Work 5 

1.4 Overv iew 6 

2 Single Wheel Robot 8 

2.1 Mathematical Mode l 8 

2.1.1 Coordinate Frame 9 

2.1.2 Equations of Mo t i on 10 

2.1.3 Mode l Simpli f icat ion 12 

2.2 Hardware Descriptions 13 

2.2.1 Actuators 14 

2.2.2 Sensors 14 

2.2.3 Communicat ion Subsystem 15 

2.2.4 Computer Subsystem 16 

2.3 Software Descriptions 16 

2.3.1 Operat ing System 17 

2.3.2 Software Architecture 18 

3 Human-based Control 21 

3.1 W h y Human-based Control 21 

3.2 Mode l ing H u m a n Control Strategy 22 

vi 



Contents vii 

3.2.1 H u m a n Contro l Strategy 22 

3.2.2 Neura l Ne two rk for Mode l ing 23 

3.2.3 Learning Procedure 24 

3.3 Task Descriptions 28 

3.4 Mode l ing HCS i n Contro l l ing the Robot 29 

3.4.1 Mode l Inpu t and Outpu t 30 

3.4.2 Human-based Control ler 31 

3.5 Result and Discussion 31 

4 Input Selection 38 

4.1 W h y Inpu t Selection 38 

4.2 Mode lVa l ida t ion 39 

4.2.1 W h y M o d e l V a l i d a t i o n 39 

4.2.2 Root Mean Square Error Measure 40 

4.3 Experimental Setup 40 

4.4 Model-based Method 41 

4.4.1 Problem Def in i t ion 41 

4.4.2 Inpu t Representation 43 

4.4.3 Sensit ivity Analysis 44 

4.4.4 Experimental Result 47 

4.5 Model-free Method 51 

4.5.1 Problems Def in i t ion 51 

4.5.2 Factor Analysis 54 

4.5.3 Experimental Result 63 

4.6 Model-based Method versus Model-free Method 66 

5 Conclusion and Future Work 71 

5.1 Contr ibut ions 71 

5.2 Future Work 72 

Appendix A Dynamic Model of the Robot 74 

A.1 Kinematic Constraints: Holonomic and Nonholonomic 74 



Contents v m 

A.1.1 Coordinate Frame 74 

A.2 Robot Dynamics 76 

A.2.1 Single Wheel 77 

A.1.1 Internal Mechanism and Spinning Flywheel 77 

A.2.3 Lagrangians of the System 78 

Appendix B Similarity Measure 80 

Bibliography 82 



List of Figures 

1.1 The t h i r d prototype of Gyrover 2 

1.2 Pr inc ip le of gyroscopic precession 3 

2.1 De f i n i t i on of coordinate frames and system variables 9 

2.2 The basic conf igurat ion of Gyrover 10 

2.3 In terna l conf igurat ion of single whee l robot 13 

2.4 Commun ica t ion equipments: radio t ransmit ter ( left) and laptops 

w i t h wireless M o d e m (r ight) 16 

2.5 Hardware Archi tecture of the single whee l robot 17 

2.6 Software Archi tecture of the System 18 

2.7 Some sensor data i nc l ud ing state variables and contro l variables 

of t ra in ing strategy are i l lust rated 20 

3.1 Learn ing procedure of cascade neural ne twork 25 

3.2 A dynamic system can be mapped in to a static cascade neura l net-

w o r k b y p r o v i d i n g a t ime h is tory of data as i n p u t to the ne twork . 28 

3.3 The interact ion of the Wheel and flywheel d u r i n g t i l t -up mot ion . . 29 

3.4 T i l t -up mo t i on strategy of Gyrover. 29 

3.5 H u m a n operator t i l ts u p the single whee l robot at the b e g i n n i n g . . 30 

3.6 H u m a n operator t i l ts up the single whee l robot at the end 30 

3.7 System diagram of human control strategy mode l 31 

3.8 Operator's s k i l l i n cont ro l l ing the t i l t -up mo t i on 33 

3.9 Exper imental result done b y human-based control ler: case I . . . . 34 

3.10 Experimental result done b y human-based control ler: case I I . . . . 34 

ix 



LIST OF FIGURES x 

3.11 Exper imenta l result done b y human-based control ler : case I I I . . . 35 

3.12 Exper imenta l result done b y human-based control ler : case I V . . . 35 

3.13 Exper imental result done b y human-based control ler : case V . . . 36 

3.14 Exper imenta l result done b y human-based control ler : case V I . . . 36 

3.15 Exper imenta l result done b y human-based control ler : case V I I . . . 37 

4.1 The flow d iagram of i npu t -ou tpu t re lat ionship of HCS mode l . . . 43 

4.2 Inconsistent m a p p i n g f r o m state var iable space X to ou tpu t con-

t ro l command space U 43 

4.3 Compar ison of leamed mode l t ra ined w i t h i n p u t vectors X, Xi and 

Xs 49 

4.4 Relat ive error increase of leamed mode l t ra ined w i t h i n p u t vectors 

X i and Xs 50 

4.5 R M S error of HCS models t ra ined w i t h d i f fe rent i n p u t vector . . . 54 

4.6 Sensi t iv i ty analysis affected b y the d i f fe rent degree of noise . . . . 56 

4.7 Structural d iagram of common factor mode l on the robot 57 

4.8 Variables can be classified in to d i f ferent groups based on the mag-

n i tude of factor load ing 60 

4.9 Compar ison of the leamed mode l t ra ined w i t h i n p u t vector X and 

reduce vector X r 65 

4.10 sample 1: leamed mode l t ra ined w i t h i n p u t vector X 65 

4.11 sample 1: leamed mode l t ra ined w i t h reduced i n p u t vector X r . . 65 

4.12 sample 3: leamed mode l t ra ined w i t h i n p u t vector X 66 

4.13 sample 3: leamed mode l t ra ined w i t h reduced i n p u t vector X r . . . 66 

4.14 sample 6: leamed mode l t ra ined w i t h i n p u t vector X 66 

4.15 sample 6: leamed mode l t ra ined w i t h reduced i n p u t vector X r . . . 67 

4.16 Brms of leamed models t rained b y the model-based method and 

the model-free method 69 



List of Tables 

2.1 Variables De f i n i t i on 10 

4.1 Sensi t iv i ty Analys is on h u m a n t i l t -up s k i l l data 47 

4.2 I n p u t vector for each HCS mode l 48 

4.3 Performance of leamed mode l t ra ined w i t h i n p u t vector X 50 

4.4 Performance of leamed models t ra ined w i t h X i and Xg 51 

4.5 Performance of HCS models t ra ined b y d i f fe rent i n p u t vector . . . 55 

4.6 Factor analysis on sample 1 61 

4.7 Factor analysis on sample 2 62 

4.8 Factor analysis on sample 3 62 

4.9 Factor analysis on sample 4 62 

4.10 Factor analysis on sample 5 63 

4.11 Factor analysis on sample 6 63 

4.12 I n p u t vector for each experiments 64 

4.13 Performance of leamed mode l t ra ined the i n p u t vector X 68 

4.14 Performance of leamed mode l t ra ined the i n p u t vector X r 68 

4.15 Model-based method vs model-free method 70 

xi 



Chapter 1 

Introduction 

1.1 Robot Concept 

I n this thesis, we concern about a robot called Gyrover wh i ch was or ig inal ly de-

veloped at Carnegie Me l lon Univers i ty and has been cont inuously studied here in 

H o n g Kong. Gyrover is a novel, single-wheel robot that is stabil ized and steered 

by means of an internal, mechanical gyroscope. Figure 1.1 shows the latest version, 

the th i rd prototype of Gyrover called Gyrover I IL The robot was designed w i t h 

equipping numerous inert ial sensors and wireless communicat ion. I t includes a ra-

dio system for remotely control, and an on-board computer and sensors to permi t 

data-acquisition and remotely control. I t is bu i l t w i t h a l ight -weight bicycle tire and 

a set of transparent domes so that the entire system is enclosed and thus, protected 

w i t h i n the wheel. 

This configurat ion conveys significant advantages over mul t i -wheel , statically 

stable vehicles, inc lud ing 

• good dynamic stabil i ty and insensit ivity to att i tude disturbances; 

• h igh maneuverabi l i ty; 

• l ow ro l l ing resistance; 

• abi l i ty to recover f rom falls; 

1 
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^^ 
Figure 1.1: The third prototype of Gyrover 

• amphibious capability. 

The robot concept is based on the pr inciple of gyroscopic precession as exhibited in 

the stabil i ty of a ro l l ing wheel. Because of its angular momentum, a sp inning wheel 

tends to precess at r ight angles to an appl ied torque, according to the fundamental 

equation of gyroscopic precession: 

T = J-ux Q (1.1) 

where u is the angular speed of the wheel, Q. is the wheel 's precession rate, normal 

to the spin axis, J is the wheel polar moment of inertia about the spin axis, and T 

is the appUed torque, normal to the spin and precession axes. Therefore, when a 

ro l l ing wheel leans to one side, rather thanjust fal l over, the gravi tat ional ly induced 

torque causes the wheel to precess so that i t t ums i n the direct ion that i t is leaning, 

the robot supplements this basic concept w i t h the addi t ion of an internal gyroscope 

— t h e spinning flywheel 一 nominal ly aUgned w i t h the wheel and spinning in the 

direct ion of fo rward mot ion. The flywheel's angular momen tum produces lateral 

stabiUty when the wheel is stopped or mov ing slowly. Figure 1.2 il lustrates the 

concept of gyroscopic precession. 

Potential appUcations of the robot are numerous. As i t can travel on both land 

and water, i t may f ind amphibious use on beach or swampy area, for general trans-

portat ion, exploration, rescue or recreation. Similarly, w i t h appropriate tread, i t 
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Figure 1.2: Principle of gyroscopic precession. 

should travel we l l over soft snow w i t h good traction and m in ima l ro l l ing resis-

tance. As a surveillance robot, the robot could use its s l im prof i le to pass through 

doorways and nar row passages, and its abi l i ty to t u rn i n place to maneuver i n t ight 

quarters. Another potent ial appl icat ion is as a high-speed lunar vehicle, where the 

absence of aerodynamic disturbances and low gravi ty w o u l d permi t efficient, h igh-

speed mobi l i ty. 
1.2 Motivations 
The robot control is challenging due to the special characteristics of the robot[2]. 

First, i t is a h igh ly coupled dynamic system between the wheel and the flywheel. 

Second, i t is subject to two nonholonomic constraints due to the ro l l ing constraints 

and underactuation i n the roUing direction. Thi rd, i t is inherent ly unstable in the 

lateral direction. Prel iminary studies i n the research on the model ing and control 

of the robot has been conducted. However, the model and the controller i n [2] rely 

on the assumption that the robot roUs w i thou t sUpping. Thus, some kinds of robot 

motions cannot be analyzed by using this model, such as " t i k - u p " or s l id ing mo-

tions. 
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I n the practical po in t of v iew, i t is also di f f icu l t to mode l the system precisely be-

cause i t largely depends on various unmodeled parameters, such as fr ict ion. These 

parameters are relatively more impor tant i n the dynamical ly stabil ized system dis-

cussed here than a conventional static or quasic-static system, l ike a 4-wheel vehi-

cle. Moreover, the existence of s l id ing mot ion of the robot makes i t more di f f icul t 

to obtain a complete model. 

O n the other hand, humans are capable of mastering complex, control skil ls for 

the robot. A human operator can dr ive the single wheel f luent ly after learning for 

a whi le . Thus, w e natural ly come up the idea of learning human control strategy 

(HCS) to abstract the operator 's d r i v ing ski l l and develop a human based con-

trol ler for control l ing the robot. 

We can t ra in different HCS models for carrying out dif ferent tasks. Thus, mod-

el ing HCS has potent ial impact i n a number of applications ranging f r om autonomous 

control and teleoperation to human-robot coordinat ion and human-machine sys-

tem simulat ion. For example, the Intel l igent Vehicle H i g h w a y System (IVHS), cur-

rent ly being developed through massive init iatives i n the Un i ted States, Europe, 

and Japan[30], envisions automating much of the d r i v ing on our h ighways. The re-

quired automated vehicles w i l l need significant intell igence to interact safely w i t h 

variable road condit ions and other traffic. Mode l ing human intell igence offers one 

w a y of bu i ld ing up the necessary skills for this type of intel l igent machine. 

A l though model ing HCS has many potential applications, i t introduces a chal-

lenging problems i n implementat ion: input selection prob lem - H u m a n control 

data are acquired by sensors for model ing HCS. There are numerous sensor vari-

ables and their corresponding derivatives available f rom the systems,e.g. Euler 

angles (rol l-pitch-yaw) of the robot and their corresponding angular velocities and 

angular accelerations. What variables should we select as mode l input? 

b i this thesis, our goal is to design a human-based controller for the robot. For 

effective model ing HCS, the robot leams the correct behaviours by observing suit-

able variables f rom the human control data. I n our approach, we apply cascade 

neural network to model human ski l l through learning experimental ly by suitable 

input selection. 
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1.3 Related Work 

There are some researches on the single wheel robot because i t is a novel concept, 

on ly a few studies i n model ing and control of the robot have been carried out. X u 

and A u [2][5][10][11] have done on model ing and control of Gyrover. They de-

veloped a mathematical model for Gyrover and designed a straight l ine tracking 

controller. Also, X u and Sun [12] has wo rked on stabil ization of Gyrover on an 

incl ined plane by a back-stepping controller. These studies solely rely on analyti-

cal approach and depend on the assumption that the wheel rolls w i t hou t sl ipping, 

some mot ions are inva l id to this assumption. O n the other hand, HCS controller 

has potent ia l to be developed as a controller i n this situations because model ing 

HCS is a general methodology to abstract human ski l l and do not depend on this 

assumption. I t can be appl ied on different cases prov ided that the operator is able 

to control Gyrover i n these cases. 

Early research i n model ing human skills was based on control theory paradigm, 

wh i ch attempted to model i n the loop as a simple feedback control system [41]. By 

that approach, human was often modeled as a simple t ime delay i n the overal l 

human machine system. I n recent works, different approaches have been done to 

learn more advanced human skills. Fuzzy control is one type of approaches. I n 

fuzzy control schemes[36][37], human experts are asked to specify " i f - then" con-

t ro l rules w i t h fuzzy l inguist ic variables. A n d i t has been demonstrated for auto-

mobi le steering and ships helmsmen [42]. A l though fuzzy system is we l l suited 

to apply for control tasks w i t h few inputs and outputs, they do not scale we l l to 

the system w i t h h igh dimensional input space and output space. I t means that the 

" i f - then" rule-based is too complex to handle the input -output relationship. Asade 

and L i u der ived control rules f rom human input pattern and corresponding out-

pu t actions to a deburr ing robot[13][14]. They used Lipchi tz 's condi t ion to ver i fy 

the consistency of the human control data. But they only implemented the method 

on the statically stable system w i t h few input variables. Yang, X u and Chen[5] 

appl ied H idden Markov Models ( H M M ) to open-loop ski l l learning in the telel-

operation control of a space system. Nechyba and X u [ l ] [6 ] [7] appl ied machine 
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l eaming techniques and statistical analysis towards abstracting models of human 

control strategy. The leaming architecture is based on flexible cascade neural net-

w o r k w i t h node-decoupled extended Kalman f i l ter ing. They also val idated the 

models by s imi lar i ty measure, wh i ch measure the level of s imi lar i ty between mul t -

dimensional, stochastic trajectories. 

The researches so far has not addressed the inpu t selection prob lem as w e men-

t ioned i n the above section. Most recent w o r k i n learning f r om human data dealt 

w i t h either action skills, quasi-static skills, or high-level abstraction of human ski l l 

(e.g., assembly). People usual ly interested i n leaming methodology rather than 

inpu t selection. Since most intel l igent control methods appl ied on the problems 

that already had a solut ion by classical control before, e.g. neural ne twork ap-

p l ied on control a robot manipulator [39] and fuzzy appl ied on control an inverted 

pendulum[40]. Therefore, the impor tant variables for control l ing the systems are 

already we l l -known. People can direct ly apply the intel l igent methods w i t h al-

ready we l l - known inpu t variables. However, i n our case, we are st i l l developing 

the control system of the robot and we only part ia l ly understand the mechanism of 

the robo t , and therefore, we need to f ind the variables for mode l input . 

1.4 Overview 

L i our project, we focus on development of selection methods to analyze and select 

suitable state variables for HCS model input . We experimental ly implement HCS 

model w i t h input selection method on the robot. The thesis is organized as fol lows: 

• Chapter 2: We w i l l iUustrate the general frame w o r k of the single wheel robot. 

We w i l l f irst describe the mathematical model of the single wheel robot wh ich 

has been developed by Xu, A u and Brown [2][9][10]. Then, w e w i l l introduce 

the system development of the th i rd prototype of the robot for automatic con-

trol. We w i l l present hardware component and the software design of the 

robot. 
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• Chapter 3: I n this chapter, we describe the methodology to abstract human 

control strategy(HCS). Then, we implement the methodology i n control l ing 

， the robot. We first record the operator's control skil ls and the corresponding 

states of the robot when he drives the robot. Second, w e use these data to t ra in 

HCS mode l by using the flexible cascade neural ne twork learning architecture 

w i t h node-decoupled extend Kalman f i l ter ing. Th i rd , we transfer the HCS 

mode l i n control l ing the single wheel robot. We experimental ly demonstrate 

that the robot can be automatical ly control led by the Human-based controller. 

• Chapter 4: we develop two methods to select suitable i npu t variables to 

handle the selection problem i n different situations. I n the f irst evaluation 

method, we first select the relevant state variables f rom the mathematical 

mode l of the robot as the HCS model input . Then, w e define a measure of 

sensit ivity of each state variables w i t h respect to the operator 's control input 

to val idate the importance of model input . I n the second evaluation method, 

we present a statistical methodJactor analysis, to select the suitable state vari-

ables. By using factor analysis, the variables can be classified into different 

groups. Then, we select the groups of variables wh i ch have higher correla-

t ion w i t h the human strategies as the inpu t variables. 



Chapter 2 

Single Wheel Robot 

The single wheel robot can be considered as a single wheel actuated by a spinning 

flywheel attached to a two- l ink manipulator at the wheel bearing and dr ive motor 

[2]. The robot uses the spinning flywheel, as a gyroscope, to stabilize itself. The 

single robot have several advantages over mul t i -wheel , statically stable vehicle. 

The advantages include good dynamic stabil i ty and insensit iv i ty to att i tude distur-

bances, h igh maneuverabil i ty, l ow ro l l ing resistance and abi l i ty to recover f rom fall. 

I n this chapter, w e w i l l f irst describe the mathematical mode l of the single wheel 

robot wh i ch has been developed by Xu, A u and Brown [2][9][10]. Then, we present 

the system development of the robot for automatic control inc lud ing hardware 

component and the software design of the robot. 

2.1 Mathematical Model 

h i this section, we present the simpl i f ied model of the single wheel robot. For 

details, see Append ix A or [2] for the descript ion of the mathematical model of 

the robot. The fo l lowing descript ion i n this section is the w o r k done by X u et. al. 

[2][9][10]. 

8 
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2.1.1 Coordinate Frame 

Figure 2.1 illustrates the general coordinates(Xc, Fc,«, P, l) for the single wheel 

robot. Four coordinate frames are defined as fol low: (1) the inertia frame YjO' 

(2) the body coordinate frame X)^ {xB,VB,ZB] , (3) the coordinate frame of internal 

mechanism Y1^ {xc, yc, Zc}, whose center is located at po int D, and whose 之-axis 

is always parallel to zs , and (4) the flywheel coordinates frame Y jE {^a,2/a,^a}/ 

whose center is located at the center of the f lywheel, and whose 么-axis represents 

the axis of rotat ion of the flywheel. L ink h is rotated about the ^:^-axis by a swing 

angle, 0. The swing angle is zero when l ink h is parallel to XB axis. The flywheel is 

t i l ted about the yc-axis by the t i l t angle, |3a € (0,7r). Note that ya is always parallel 

to yc' Therefore, the configuration of the single wheel robot can be described by 

seven generalized coordinated (Xc, Y^ ¢̂ , |3,7，0, Pa)- The def ini t ion of model vari-

ables is shown i n table 2.1. 

^ 

Z 0 . yB 

> fe l^^^~"^����^x^^^ y^^^ Xdirection 

- ¾ ¾ : 

^£ 

Figure 2.1: Definition of coordinate frames and system variables 
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Table 2.1: Variables Definition 

a , Qo Precession angles of the wheel and for the flywheel, respec-

tively, measured about the vertical axis 

)9 Lean angles of the wheel 

Pa Tdt angle between the Unk li and 2:a-axis of the flywheel 

7，7a Spin angles of the wheel and the flywheel, respectively 

9 Angle between Unk 11 and x 3 -axis of the wheel 

rritu，rrii，m/ Mass of the wheel, mass of the internal mechanism and mass 

of the flywheel respectively 

m Total mass of the robot 

R, r Radius of the wheel and the flywheel respectively 

Ixxw，Iyyw，hzw Moment of inertia of the wheel about x, y and z axes 

IxxfJyyfj hzf Moment of inertia of the flywheel about x, y and z axes 

fjia， ĝ Friction coefficient in yaw and pitch directions, respectively 

uo, ui Drive torque of the drive motor and tilt torque of the tilt mo-

, tor, respectively 

2.1.2 Equations of Motion 

The equation of mot ion can be der ived by calculating the Lagrangian L = T - P of 

the system, where T and P are the kinetic energy and potential energy of the sys-

tem respectively. The system can be d iv ided into three parts: 1) wheel, 2) internal 

mechanism and 3) spinning flywheel. 

The spinning rate of the flywheel always keeps constant because i t is reluc-

tance to change the spinning rate due to the large moment of inertia, thus torque 

y^^'^^^^ 

1^^^-W^m 
RorView SdeView 

Figure 2.2: The basic configuration of Gyrover 
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acting on the sp in motor can be approximately constant. Thus, w e on ly concern on 

t w o generalized force acting the single wheel robot. One is dr ive torque (wo) and 

ihe other is the t i l t torque {ui). Consequently, using the constrained Lagrangian 

method, the dynamic equation of entire system is g iven by, 

M{q)q + N{q, q) = A^X + Bu; (2.1) 

Where M(q) e i?7x7 and N(q, q) G B J x i are the inert ia matr ix and nonl inear terms 

respectively. 

[ 1 0 -Rcac|3 Rsas|3 -Rca 0 0 A{q) = (2.2) 
[ 0 1 -Rc|3sa -Rcoisj3 -Rsa 0 0 

. X 1 r 0 0 -
Y 0 0 
a r 1 0 0 「 1 

Ai wo 
q = j3 , A = , B = 0 0 ,u = 

X2 ui 
7 L J kl 0 L J 

Pa 0 1 

$ k2 0 
• J L- J 

The nonholonomic constraints can be wr i t ten as, 

A{q)q = 0. (2.3) 

I t is noted that the last two columns of matrix A are all zero as the nonholonomic 

constraints only restrict the mot ion of the wheel, not the f lywheel. The last two 

columns represent the mot ion variables of the f lywheel. Moreover, the matrix B 

only have three rows that are nonzero since the input torques on ly dr ive the t i l t angle 

of the flywheel (|3a) and the rotat ing angle of the wheel (7), so that the f i f th and the 

sixth rows of B are non-zero as they represent the t i l t ing mot ion of the flywheel 

and the rotat ing mot ion of the wheel respectively. Furthermore, when the wheel 

rotates, the pendu lum mot ion of internal mechanism is introduced, thus 6 changes. 

Therefore, the dr ive torque of the wheel w i l l also affect the pendu lum mot ion of 

the internal mechanism (0), so that the seventh row of the matr ix B is not zero. 
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2.1.3 Model Simplification 

Practically, h and l2 are assumed to be zero, thus mass center of flywheel and the 

internal mechanism are coincident w i t h the center of the robot. Moreover, the pen-

d u l u m mo t ion of the internal mechanism is suff iciently small to be neglected, thus 

0 equal to zero. The spinning rate of the flywheel 7 is assigned to be constant. Based 

on the previous derivat ion, the normal f o rm of the mathematical mode l is 

M{q)q = F{q,q) + Bu (2.4) 

rp 
whereq = [a,/3,7,^aJ , 

M i i 0 M i3 0 

一 0 Ixxf + Ixxw + mB? 0 Ixxf 
M = _ , 

Mi3 0 2/a,x^; + rnH? 0 

0 I x x f 0 I x x f _ 

F= [ A , ^ , ^ , A ] T , 

r 1 了 r 1 0 0 1 0 uo 
B 二 ,u = 

0 0 0 1 ui 
• J L _ 

M l l = I x x f + Ixxw + IxXwC^ + mR^Cp + I x x f C \ ^ ^ 

Mi3 = 2IxxvjCfi + mR^C^ 
— r% • • • 

F i = {Ixxw + mR^)S2pa|3 + IxxfS2^pa^l^ + I x x f S 2 p ^ a ^ P a 

+2IxxwSfih + ^IxxfSp,fiaMa + 2Ia;fSp^^Jaia 一 — 

p2 = -gmRC|3 - {hxw + mR^)CpSpa^ 一 IxxfC^,^^S^^^^d? 

-(2Ixxw + mR^)Spa^ - 2IxxfS^^^^dcia 

F3 = 2{h^^ + mR^)Spa^ 

F4 = -IxxfC^,p,Sp^p^a^ - 24a;/5^,^,d7a 

where M(q) G R^^^ and F(q, q) e i?4xi are the inert ial matr ix and nonlinear term 

of the single wheel robot respectively. The descript ion of the notions shows i n the 
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Z ™ ^ \ Radio Receiver 

Accelerometer \ I / O Board 

- 碰 -
— ’ ^ ^ ^ ® ^ ^ ^ B a -C.o -^^^^^^^~-

Speed Controller / ^ ^ * ® ^ ^ ^ ^ | j | J j ^ P ^ ^ ^ i i ( ? L _ Tilt Servo 

* # i * B f l ^ ' A _ Drive Motor and Encoder 

— 

Figure 2.3: Internal configuration of single wheel robot. 

table 2.1. For details, the appendix w i l l describe the mathematical model of the 

Gyrover. 

2.2 Hardware Descriptions 

Compared w i t h the previous two prototype of the robot, the th i rd version was de-

signed on a larger scale to equip numerous inert ial sensors and a computer (486 

PC) for data acquisit ion and control. The single wheel robot was bu i l t w i t h a l ight-

weight bicycle tire and a set of transparent domes so that the entire system is en-

closed. The robot travels up to 10 m p h and runs about 25 minutes per charge of its 

N iCad batteries. A n internal gyroscope (high spinning flywheel) is installed and 

is maintained a constant angular velocity (approximately 1500 RPM) by servo con-

trol led motor. Overal l weight is about 7 kg. 

I n this section, the main components of the hardware w i l l be described as 
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fo l lows: actuators, sensors, communicat ion subsystem and computer subsystem. 

Then, w e w i l l overv iew the structure of the robot's hardware. 

2.2.1 Actuators 

The robot consists of three actuators. They are 

1. Dr ive motor UQ.- I t drives the wheel and thus, moves the robot fo rward and 

backward. 

2. Ti l t motor u i - I t t i l ts the angle of Gyro and thus, generates a torque, normal 

to the spin and precession axes. 

3. Spin motor U2- I t spins the flywheel and thus, increases the angular momen-

t u m of flywheel. 

I n our experiments, the speed of spin motor is always kept at constant since the 

operator usual ly controls the motors uo, u i v ia two joystick of the radio transmitter 

(f igure 2.4). operator can control the U2 by pressing the other bo t tom on the radio 

transmitter. For convenience, we usual ly set max imum speed of flywheel. 

2.2.2 Sensors 

A number of on-board sensors have been installed on the the robot to prov ide infor-

mat ion about the state of the machine to the on-board computer. They can measure 

• 

• Gyro t i l t angle 

• T i l t servocur rent 

• Dr ive motor current 

• Dr ive motor posi t ion/speed 

• Gyro speed 
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• Acceleration (three axes) 

• Angu la r rate (three axes) 

• Ti l t angle ( two axes) 

A l l these signals, p lus the control inpu t f rom the radio transmitter, can be read by 

the on-board computer. The signals may be i n the f o rm of analog inpu t quadrature 

(e.g. encoder) inputs; pulse frequency (e.g. Ha l l sensors); or pu lse-wid th modu-

lated signal (standard R / C signals). 

The t i l t potentiometer is to measure the t i l t angle of the gyro. The two pulse en-

coders are to measure the spinning rate of flywheel and the single wheel. The two 

gyros and accelerometer are to detect the angular velocity of yaw, pi tch, rol l , and 

acceleration respectively. A 2-axis t i l t sensor is developed and instal led for direct 

measuring the leaning and p i tch angle of the robot. The two current-sense resistors 

are to measure t i l t servo current and dr ive motor current. These sensors and others 

electronic devices are essential for automatic control. 

Some sensors such as t i l t sensor can acquire accurate, l ow noisy data. Mean-

whi le , some sensors such as accelerometer acquire noisy data. Figure 2.7 shows 

some data acquired by sensors. 

2.2.3 Communication Subsystem 

The communicat ion subsystem is composed of radio l inks wh i ch transmit data and 

commands between the robot and the ground station or the radio transmitter. The 

robot can be remotely control led by these two remote consoles (Figure 2.4). For the 

radio transmitter, human operator remotely controls the robot by the two joysticks 

of the transmitter. He /she controls the dr ive speed and t i l t angle of the robot via 

the transmitter. The ground station is to download the sensor data fi le f rom the 

on-board computer and start / terminate any program in the robot. For example, 

human operator controls the robot via the radio transmitter and then, the ground 

station downloads the sensor data file to the laptop so that we can analyze the 

real-time motion. 
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¢ 3 
s ^ ^ 5 ^ B 

4^'^, 1 ‘〜”二2 -、广 * » • 

Figure 2.4: Communication equipments: radio transmitter (left) and laptops with 

wireless Modem (right). 

2.2.4 Computer Subsystem 

A 486 computer embedded on the robot to provides enough computat ion power for 

complicated task. The computer also responds for integrat ing other components of 

the robot and thus, the circuit board contains 

• interface circuitry for the radio system and servos 

• logic components to control power of the actuators 

參 interface for the on-board sensors 

A l l sensors and actuators are connected to the on-board computer. Figure 2.5 shows 

the hardware architecture of the robot. 

2.3 Software Descriptions 

The complexity of the robotic systembeing developed requires a software architec-

ture where different subsystems can run independently and i n parallel, whi le able 

to exchange informat ion an activate or inhibi t each other. Therefore, i n our robotic 

system, a real-time operating system, QNX, is used to run HCS-based controller 
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Figure 2.5: Hardware Architecture of the single wheel robot. 

so that the controller program can access on hardwares quick ly and coordinates 

we l l on system resources. I n addit ion, client-server p rogramming architecture is 

appl ied so that any applications can be easily embedded on the system. 

2.3.1 Operating System 

QNX, a real-time microkernel operating system is used i n our system. Q N X is a 

microkernel wh ich do not contain device drivers. I n fact, a device dr iver is un-

necessary for a program to communicate w i t h hardware device. I f a user program 

is g iven sufficient privi lege, i t can directly access memory and I / O ports, attach 

hardware interrupt service routines, etc. This makes w r i t i ng hardware interface 

software very easy. Moreover, Q N X has very low context swi tch times (6 / i on a 486 

DX2/66) and l ow interrupt latency (7 / i on a 486D2/66). See [31] for more details 
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about the architecture of QNX. 

HCS 
“ Controller 

Program 

令 

User mode 

Kemel mode 

V “ % , _ ^ 
E ^ e r _ ; I _ Actuators 

Figure 2.6: Software Architecture of the System 

2.3.2 Software Architecture 

The software system contains three main programs. One program called HCS con-

troller and the other programs are called sensors server and communicat ion server. 

The sensor server is to acquire the system state by the sensors and control the actu-

ators. The communicat ion server is to provide wireless communicat ion interface. 

The HCS controller is responsible for comput ing complicated task and accessing 

hardware components v ia sensor server and communicat ion server. 

The programs of the robot can be classified into two groups. A n y application 

inc lud ing HCS controller belongs to user mode. Other programs, wh i ch can access 

hardware components, belong to kemel mode. Sensor server and communicat ion 

server belong to kemel mode. Figure 2.6 shows the software architecture of the sys-

tem. Appl icat ion program must get permission f rom the kernel when i t accesses 

any hardware component. The advantage of this architecture is that i t provides 

data abstraction and protection of the hardware components. Therefore, any faulty 

accessing on hardware components by application programs is forbidden. More-

over, any application program can be easily embedded on the system because i t 
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can access hardware resources more conveniently w i t hou t considering hardware 

control procedures such as t imer interrupt. 



2.2 Hardware Descriptions ^ 

. J : ； i ： |./W : l ； : ； ； :1\丨 1 
/ o 100 I • 

• • : : : ] * : h E m l 
1 2 3 4 5 6 1 2 3 4 5 6 

t(sec) t(sec) 

30...：...丨 口 . . m J E 5 E E 
| 2 0 . . . . • . . . . . . … … . . . . : . : . . . _ I 2一........；……......……;..1；..... 

:Sf3sUl:[ 5 ^ ¾ ¾ ! ^ 
1 2 3 4 5 6 1 2 3 4 5 6 

t(sec) , t{sec) 
x 1 0 

1.5 . . r~i——. . . 1.6001 , ' 1 ‘ \ ： 
. . • • • ‘ ‘ . : 寺 , . 
• • • • • • ‘ ‘ ‘ . . . 

8 1 ……；..... : . . . : . : r r [ ' 1.6……...…………—.......•...... 

! : : _ _ | | | I --：：：：：： 
c5̂  . ； 1 ：‘ : ft'; 1.5999……；•....:………………：.....\…… 

^ _1 . . . . . . . |- •, 
- 1 - 5 ^ ~ ~ ^ ~ ~ 2 “ “ 3 4 5 ~ ~ 6 1 . 5 9 9 9 1 2 3 4 5 6 

t{sec) t(sec) 
~ ！ ~ ‘ ~ ~ " ‘ ~ r r ^ ~ ~ ^ 40| • ： ！ ~ ~ 

: : : : [ : : : r i / t ^ " 30...................；......f^.. 
^20 _ ^ J " W : 晉 ： 
215_....•/.......…............. •......... 〒 0 ....:.._.. 
b / 3^ 

、。../丨.....：............…….......... 10 . . . 丨 rJ.....：...... 
5 • / • ：•.....•： 

J ； i i i i i—— 0' 
1 2 3 4 5 6 0 2 4 6 

t(sec) t(sec) 

Figure 2.7: Some sensor data including state variables and control variables of 

training strategy are illustrated. 



Chapter 3 

Human-based Control 

I n this chapter, we first describe the methodology to abstract human control strat-

egy(HCS). The frame w o r k was developed by X u and Nechyba [ l ] [6] [7] . Then, 

w e mode l human control strategy (HCS) of the single wheel robot and transfer the 

HCS mode l i n control l ing the robot. We record the operator's control skil ls and the 

corresponding states of the robot when he/she drives the robot. We use these data 

to t ra in HCS model by using the flexible cascade neural ne twork learning archi-

tecture w i t h node-decoupled extend Kalman f i l tering. Then, we transfer the HCS 

model i n control l ing the single wheel robot. We experimental ly demonstrate that 

the robot can be automatically control led by the Human-based controller. 

3.1 Why Human-based Control 

O w i n g to its nonholonomic, underactuated and laterally unstable characteristics[2], 

i t is very di f f icul t to design a model-based controller that ensures cont inuously tra-

jectory tracking. Furthermore, the unmodeled parameters such as fr ict ion are rel-

atively more important i n the dynamical ly stabilized system discussed here than 

a conventional statically stable system, l ike a 4-wheel vehicle. A l though, a mathe-

matical model and model-based controller have been developed for stabil i ty action 

and path fol lowing[2]. The model and the controller solely rely on the assumption 

that the robot rolls w i thou t sl ipping. Thus, some kinds of robot motions cannot be 

21 
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analyzed by using this model , such as " t i l t -up" or s l id ing motions. I n the t i l t -up 

mot ion, the robot in i t ia l ly lies on the ground. Then, the robot can be " t i l t - up " by 

changing the angular momen tum of the flywheel. Because the robot do not ro l l at 

the beginning, i t violates the above assumption. 

O n the other hand, humans are capable of mastering complex, control skills 

on the robot. A human operator can control the robot fluently after operat ing the 

robot for a whi le . Thus, we natural ly come up the idea of leaming human control 

strategy (HCS) and develop a human-based controller for the robot. From previ-

ous works [ l ] [6 ] [7 ] , model ing HCS can abstract human control skil ls and transfer i n 

control l ing a vehicle. Moreover, human-based controller is a task-based controller 

that is der ived f rom empir ical data of the task, we can develop different human-

based controllers for per forming different tasks. 

3.2 Modeling Human Control Strategy 

The fo l low ing descriptions i n this section are the w o r k developed by X u and Nechyba 

[ l ] [6] [7] . 

3.2,1 Human Control Strategy 

Generally speaking, human skills can be classified into t w o groups: ( l )act ion ski l l 

and (2) reaction skil l . Ac t ion is the state or process of do ing or acting and, the 

associated ski l l is called action skil l. The main characteristic of action ski l l is that 

sensory feedback is unnecessary i n the process, or sensory in format ion is unavail-

able f rom observation. O n the other hand, the characteristics of reaction ski l l is 

much more complex. Sensor, decision-making and feedback are necessary for exe-

cut ing reaction ski l l successfully. K ick ing a bal l is an example of action ki l l . Dr i v ing 

a car is an example of reaction skil l , where the human closes the feedback control 

loop. H u m a n control strategy we study in this thesis is a subset of this type of re-

action skil l . H u m a n control strategy lies between low-level feedback control and 

high-level reasoning, and has numerous potential applications w i t h a reasonably 
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wel l -def ined numeric input -output representation. 

H u m a n intell igence is complex and di f f icul t to understand at all. We cannot 

analyze h u m a n intel l igent analytically v ia existence of scientific knowledge. There-

fore, Mode l ing human control strategy must rely on observation or learning f rom 

empir ical data rather than analytical derivation. Because an ind iv idua l HCS is 

unique, complex, and u n k n o w n properties i n nature, we require a learning paradigm 

wh i ch can cope w i t h many di f f icul t challenges. 

I n the model ing, some factors such as structure, order, granular i ty and con-

t ro l delay inherent i n a part icular ind iv idual 's internal controller are necessary 

to be considered. However, since each person has h i s /he r unique characteristic, 

these controller properties can vary substantially f rom one ind iv idua l to the others. 

Structure refers to the funct ional f o rm wh ich can best approximate the under ly ing 

control strategy; order refers the extent to wh i ch an ind iv idual 's control strategy 

depends on pr ior histories of sensor inputs and control action outputs; and granu-

lar i ty and control delay quant i fy the m i n i m u m controller t ime resolut ion and reac-

t ion t ime for a given ind iv idual , respectively. 

Moreover, human control strategy is characterized by dynamic and nonlinear 

natures. Humans are not machines and their actions are prone to errors and grad-

ual changes over t ime. I n addit ion, human control actions can vary smoothly as 

we l l as discontinuously w i t h sensory inputs. Thus, human control strategy is a 

nonlinear and discontinuous mapp ing f rom present and pr ior sensory inputs and 

control actions, to future control action outputs. 

3.2.2 Neural Network for Modeling 

Here we introduce a continuous leaming architecture for model ing human con-

tro l strategy. This architecture is called the cascade neural network architecture 

(CNN)[16][17]. Cascade neural networks can leam complex, nonlinear HCS map-

p ing f rom input-output data. Unl ike most conventional neural network, the struc-

ture of cascade neural network is not fixed before leaming begin. The structure of 
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cascade neural ne twork evolves i n learning process. Moreover, the cascade learn-

ing a lgor i thm consists of bo th aspects of funct ion approx imat ion- the selection of 

an appropriate funct ional f o rm and the adjustment of free parameters i n the func-

t ional mode l to opt imize some error criterion. These features are significant for 

model ing HCS because few pr ior knowledge is k n o w n on the human controller 

structure. 

The cascade neural ne twork can adjust the size of the neural ne twork as part of 

learning by the fo l low ing two features. 

• Feedforward cascade architecture: H i d d e n units of the ne twork are automat-

ically added one at a t ime to an in i t ia l ly m in ima l network. 

• Learning algori thm: I t creates and installs new units to reduce the root mean 

square error 已簡 between model output and the source human control out-

put . 

3.2.3 Learning Procedure 

Mode l ing proceeds i n several steps. 

1. A t the beginning, the network is only direct input -output connections. There 

is no h idden un i t i n the network. 

2. These weights are trained to reduce the Crms- These nodes and weights de-

scribe any linear relationship between the inputs and outputs. 

3. When the erms decreases s lowly enough, the first h idden un i t is added to 

the network f rom a pool of candidate units. Using the quickprop a lgor i thm, 

these candidate units are trained independently and i n parallel w i t h different 

random ini t ia l weights. 

4. The best h idden uni t is selected f rom the pool and installed i n the network, 

after no more appreciable error can be further reduced. 

5. The weights of h idden uni t input are frozen whi le the weights to the output 

are retrained. 
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6. W h e n the erms is suff iciently small for the t ra in ing sets, or the number of the 

h idden uni ts reaches as specified m a x i m u m number, the mode l ing procedure 

、 stops, otherwise repeat step 2. 

令會, 
0 Input Uni t • Output Uni t • Bias Uni t 〇 Hidden Unit 

Figure 3.1: Learning procedure of cascade neural network 

The process is repeated un t i l the a lgor i thm succeeds i n reducing the erms suffi-

ciently for the t ra in ing set or the number of h idden units reaches a specified max-

i m u m number. Figure 3.1 illustrates, for example, h o w a two- input , single-output 

ne twork grows as two h idden units are added. Note that a new h idden uni t re-

ceives as inpu t connections f rom input units as we l l as al l previous hidden(hence 

the name "cascade")- A cascade network w i t h rn inpu t units ( inc luding the bias 

unit) , rih h idden units, and no output units, w i l l have 7½ connections where, 

riyj = ThiUo + nh{rii + Uo) + (n" 一 l)n/^/2 0.1) 

Recent theorems done by K. Funahasi[22] and K. H o m i k , et. al.[23] proven that 

standard layered neural networks are universal funct ion approximators. These re-

sult can be extended to the cascade network topology. Because a cascade neural 

ne twork w i t h k h idden units w i t h some weight connections equal to zero is a spe-

cial case of a mult i - layer feedforward neural network w i t h k h idden units arranged 

i n m layers, fu l ly connected between consecutive layer. That is w h y cascade neural 

ne twork is used to obtain the model of human control strategy. 

The pr ior assumptions of the functional fo rm of the model, that is structure of 

neural network, are relaxed by the cascade architecture. These assumptions can be 
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fur ther relaxed b y a l low ing new h idden uni ts w h i c h have variable act ivat ion func-

tions. Di f ferent variable activations are assigned to the candidate units. D u r i n g 

the candidate t ra in ing, the best candidate w h i c h can reduce the most erms of the 

t ra in ing data are selected and instal led i n the ne twork . Therefore, the candidate 

un i t w i t h the most appropr iate act ivat ion funct ion at that po in t d u r i n g t ra in ing is 

selected. Typical alternatives to the s igmoidal act ivat ion func t ion are the Gaussian 

funct ion, Bessel funct ions, and sinusoidal funct ions of var ious frequency. 

For t ra in ing the mul t i - layer neural networks, the back propagat ion a lgor i thm 

is usual ly employed. The ma in weakness of this a lgor i thm is that the convergence 

speed is s low and thus, the corresponding learning t ime is long. The t ra in ing t ime 

may last for hours or even days w h e n the system is complex, h igh-d imensional 

and the resultant ne twork has large number of nodes. The qu ickprop a lgor i thm is 

employed to improve the speed of t ra in ing t ime over standard back propagat ion 

a lgor i thm. I t is st i l l a gradient descent based a lgor i thm, w h i c h a l though simple, 

can require many iterations un t i l satisfactory convergence is reached [15]. Here, 

the standard cascade learning is mod i f ied by replacing the qu ickprop a lgor i thm 

w i t h node-decoupled extended Ka lman f i l ter ing (NDEFK), w h i c h has better con-

vergence propert ies and faster t ra in ing than gradient-descent techniques for mu l t i -

layer feed- forward networks[6][18]. 

Computat iona l and storage complexi ty can be reduced b y N D E F K as i t decou-

ples weights by nodes so that on ly the interdependence of weights feeding into the 

same uni ts are considered. Jn this formulat ion, the weights i n the neural ne twork 

are considered to represent the state of a nonlinear, f in i te-dimensional, discrete-

t ime system. The result ing we igh t update recursion is g iven b y 

4 ^ i = 4 + m f M M (3-2) 

where u\ is the input-side we igh t vector of length rrn at i terat ion k, for un i t i G 

{0 ,1 , . • . , n o } , where i = 0 corresponds to the current h idden un i t being trained, 

and i G { 1 , . . . , n o } corresponds to the i t h ou tpu t uni t . “ is the no-dimensional 

error vector for the current t ra in ing pat tem, ^){ is the no-dimensional vector of par-
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t ia l der ivat ives of the ne twork 's ou tpu t un i t signals w i t h respect to the ith un i t 's 

net i npu t , and 

‘ 4 = m 1 (3.3) 

A , = f / + E { ( a f f t ) ( ^ w i f ) ) (3.4) 
\ i=0 / 

P U i 二 n - { W 4 ) T ( A f c V 4 ) K 4 ( 4 f } + " / (3.5) 

where ^ is the no-dimensional i npu t vector for the ith. un i t , P^ is the rrii x rrii 

approximate condi t ional error covariance matr ix for the i t h un i t , and rj is a smal l 

number (0.0001) w h i c h alleviates s ingular i ty problems for P^[18]. 

Network Model 

The class of models w e used i n this thesis is restricted to static mapp ing between 

inputs and outputs. Since h u m a n control strategy is dynamic i n nature, HCS mode l 

depends not on ly the current sensory in fo rmat ion bu t also previous sensory data. 

For example, f igure 3.2 i l lustrates h o w this is done for a SISO system of the form. h\ 

general, any u n k n o w n dynamic system can be approx imated b y p rov id i ng a t ime 

h is tory data[28]. 

We can approximate a dynamic system b y a difference equat ion of the general 

fo rm, 

(u{kT),u({k-l)r),...,u{{k-n)T), \ 
^x((A; + l )T ) = r (3.6) 

y x{{k + l)T),x{kT),...,x{{k-m)r) 

where r ( . ) is some arbi t rary u n k n o w n funct ion, u {kr) is the control vector, x {kr) 

is the system vector at t ime instant k and r indicates the control ler resolut ion or 

granulari ty. The order of the dynamic system is g iven b y the constants n and m, 

w h i c h may be inf ini te. h\ this thesis, we assign n 二 4 and m = 3. 
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Figure 3.2: A dynamic system can be mapped into a static cascade neural network 

by providing a time history of data as input to the network 

3.3 Task Descriptions 

I n our experiment, we study the " t i l t -up" mot ion of the single wheel robot and 

hope to develop a human-based controller for automatic " t i l t -up" mot ion. Our 

goal of " t i l t -up" is to have : lean angle |3 « 90^ We want to demonstrate that HCS 

mode l can abstract human t i l t -up skills and corresponding human-based controller 

is capable of control l ing the robot w i t h similar skills. 

la our system, there are three control variables, uo control l ing ro l l ing speed of 

single wheel 7, ui control l ing the angular posi t ion of flywheel 礼 and u2 control-

l ing spinning rate of flywheel 7«. We do not model u2 s imply because the control 

variable u2 is usual ly kept at constant. 

A t the beginning of the task, the states of the robot is shown i n f igure 3.3 (a). 

Then, the robot starts to ro l l as uo increases. By changing the angular momentum of 

the f lywheel as shown i n f igure 3.3 Qo), a t i l t ing torque is acted on the system. As a 

result, the robot can t i l t up as shown i n figure 3.3 (c). The human ski l l i n control l ing 

the t i l t -up mot ion strategy is shown i n f igure 3.4. 

> 
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Figure 3.3: The interaction of the Wheel and flywheel during tilt-up motion. 
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Figure 3.4: Tilt-up motion strategy of Gyrover. 

3.4 Modeling HCS in Controlling the Robot 

Mode l ing HCS means to model the human operator's control action i n response to 

the system real-time feedback. That is w h y we use the cascade neural network to 

construct the mapp ing between the dynamic human control action (control com-

mands) and the system response (state variables). A dynamic HCS can be approx-

imated by the difference equation[28]. Thus, the human control strategy Uh at the 

t ime instant k + 1 can be approximated by equation 3.6. The equation 3.6 considers 

the previous state variables and control commands because these previous vari-

ables are significant for human operators to control the robot. The cascade neural 

ne twork w i t h extend node-decouple Kalman f i l ter ing is employed to abstract the 

input -output relationship i n the equation 3.6. 
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Figure 3.5: Human operator tilts up the Figure 3.6: Human operator tilts up the 

single wheel robot at the beginning. single wheel robot at the end. 
3.4.1 Model Input and Output 
The mode l inpu t is defined as the combination of present and pr ior state variables 

and control commands (see section 3.4). The model output is the present control 

commands. Here, we want to model human control ski l l on dr ive motor u。and 

t i l t motor t i l . Then the control commands for model input are m , u i and we have 

to select a set of data out of all available sensing variables. For convenience, the 

set of state variables for model input is called input vector. A n d the selected state 

variable is called input variable. I n selecting potential ly relevant state variables, 

we first w o u l d l ike to select a set of variables wh ich are impor tant for an operator 

to make a decision. Second, they must be measurable using the on-board sensors, 

and at the same time, i t must be visual ly observable for the operator. h \ fact, there 

are over 12 sensor values available combining their derivative. Therefore, some of 

data must be redundant because a operator is impossible to make decision based 

on numerous state variables. Preliminarily, we intu i t ive ly select the state variables 
{々，Pa’«, P, 7, Pa] as input vector, based on the mathematical model i n [10] and the d r iv ing experience for the robot. Then, we use these input -output data to train HCS 
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models. 

3.4.2 Human-based Controller 

We use the learning rule (equation 3.5) to t rain HCS model w i t h the empir ical input-

ou tpu t data. The learning procedure is terminated i f the output erms is suff iciently 

small. The resultant model is a {no + n^) x (n^ + n^) matr ix. To develop a human-

based controller f rom HCS model, the model matr ix is embedded in the controller. 

The controller requires the present and previous state variables and control com-

mands as input . The output of the controller are control commands. Figure 3.7 

shows the control d iagram of the robot. By this method, we t ra in different HCS 

models and transfer to human-based controllers. Then, we use these controllers to 

control the robot. I n next section, we w i l l experimental ly demonstrate the perfor-

mance of these controllers. 
present system state 

二 ^ ^ ~ ~ p ^ Gyrover • 

previous human control 

previous system state 

Figure 3.7: System diagram of human control strategy model. 

3.5 Result and Discussion 

Figures 3.9 - 3.15 show the experimental results for the automatic " t i l t -up" mot ion 

by using human-based controllers. I n the figures, four important variables (^, /3«, 

UQ, ui) are l isted i n the examples where /3 is the lean angle representing target of 

the mission, Pa is the t i l t angle of flywheel generating main t i l t torque force for sta-

bi l izat ion, and uo and u i are the dr ive torque and t i l t torque respectively 

I n each experiment, the goal can always achieve: |3 « 90^ even if the ini t ia l an-
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gles and the execution t ime varies. I t demonstrates that the t i l t -up ski l l we selected 

for learning is val id. The leamed control input is capable of control l ing the dynam-

‘ i ca l l y stabil ized robot. 

I n our experiment, i t is d i f f icul t to keep the in i t ia l lean angle j5 to be exactly 

same as that w h e n human manual ly control it. However, the result seems to be 

insensitive to the sl ight ly different in i t ia l lean angles we set. The perturbat ion of 

the lean angle under the learned control input is relatively small. Similar case can 

be found i n the figures 3.10-3.11, the lean angle P are overshooted over 10 degrees. 

I t is interesting to note that uo becomes small wh i le u i become large i n the f igure 

3.11 . W h e n the t i l t torque increases significantly, uo could reduce the t i l t torque, 

based on equation 1.1. I t shows the leamed HCS model have a h igh adaptabil i ty 

for stabi l izing the systemby reducing overshooting. 

From the results of the learned model, the system is unstable init ial ly, especially 

on the figures 3.13,3.14,3.15. There are two major reasons for the unstable motions. 

Firstly, the in i t ia l posi t ion is largely different f rom that i n the t ra in ing phase. The 

range of in i t ia l lean angle /3 of the learned model is w i t h i n [10、30^] wh i le the ini t ia l 

lean angle p of the source human data is « 18^. I t is d i f f icul t for the HCS controller 

to classify the situations and make a suitable reaction i n the in i t ia l phase. Secondly, 

s l id ing occurs as the tyre of the robot does not touch on the ground init ially. I t is 

one of weakness of the HCS controller as no sensor is available to detect the fric-

t ion on testing plat form. Since our testing environment is located at outdoors, i t 

is very di f f icul t to guarantee that the fr ict ion remains constant i n the whole testing 

region. Considering the figures 3.13,3.14,3.15, the control vector uo, u i fluctuate in 

the in i t ia l state and also make the wheel and f lywheel vibrate. Nevertheless, the 

single wheel robot is unstable at that moment, the leamed model could control the 

mot ion proper ly and the goal is achieved finally. Thus i t shows that HCS controller 

has learned the human t i l t -up ski l l and transferred i n control l ing the robot. 

I n the experiments, the total t ime of the leamed models for complet ing the task 

are slower than that of the source human data. The average total t ime for the 

learned models are approximately around 15s whi le the total t ime of the training 

data is around 6.5s. I t is because the HCS controllers spend lot of t ime for com-
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put ing. Sensor data are acquired at 50ms sampling rate when the human operator 

control led the robot. When the learned model is used, the runn ing clock cycle is 

• set to 100ms sampling rate in order to have enough t ime for comput ing the HCS 

controller. Thus, the response t ime of the learned model seems to be slower. More-

over, acquired data contain different degree of noise. The HCS controller could not 

classify the situation easily and make a suitable response. Similarly, when human 

receive unexpected data, he/she w i l l hesitates and respond s lowly l ike the robot. 

I n this chapter, we presented a method of model ing human operator 's strategy 

i n control l ing a dynamical ly stabilized robot. We first selected relevant state vari-

ables f rom dynamics equations. We experimentally implemented the method and 

demonstrated that the robot could be automatically controlled using the learned 

human control input . The w o r k is significant to abstract human control strategy 

for control l ing a dynamical ly system in generating a automatic control input . 
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Figure 3.8: Operator's skill in controlling the tilt-up motion 
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Chapter 4 

Input Selection 

I n the system, there are numerous state variables available for input selection. 

Moreover, sensor data contain different degree of irrelevant, noisy in format ion and 

thus, influence the learning process. Thus, the selection of model inpu t plays an 

impor tant role for extracting human skills. 

Broadly speaking, input selection can be categorized into two groups: model-

based approach and model-free approach [46][47]. Model-based approach typical ly 

involves selecting a model, choosing the inputs to use, and then measuring the per-

formance. Model-free approach is based on per forming a statistical test between 

the subsets of input variables and the desired output f rom the model. Here, we 

develop two selection methods to select suitable input variables to handle the se-

lection problem. I n the first method, we select the input variables f rom the math-

ematical model of the robot. I n the second method, we select the input variables 

based on a statistical iool,factor analysis. 

4.1 Why Input Selection 

H u m a n control data is acquired by sensors to t rain HCS model. There are numer-

ous sensor variables and their corresponding derivatives available f rom the sys-

tems, e.g. Euler angles (roll-pitch-yaw) of the robot and corresponding angular 

velocities and angular accelerations. Moreover, irrelevant data w i l l affect the mod-

38 
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el ing HCS wh i le the learning performance can be accelerated by el iminat ing re-

dundancies i n large, unprocessed human data [32]. Also, some sensor data contain 

‘ h i g h noise and thus, affect the learning process. Furthermore, as the inpu t dimen-

sionali ty increases, the computat ional complexi ty and memory requirements of the 

mode l increase. 

I n addi t ion, to control a h igh ly dynamic system such the single wheel robot, 

selecting effective inpu t state variables for the model ing HCS is relatively more im-

portant than a classically dynamical system such as car. Because the robot largely 

depends on various unmodeled parameters, such as fr ict ion. 

What variables should we select as input variables for the modeling? We do 

not k n o w the best input representation a pr ior i , as i t w i l l vary f rom one ind iv idua l 

to the next. Thus we are interested i n ident i fy ing the combinat ion of present and 

pr ior state variables and control inputs upon wh ich a human operator relies most 

heavi ly to f o rm his control strategy. 

4.2 Model Validation 

4.2.1 Why Model Validation 

I n this chapter, we concem on effect of different model inpu t on the HCS model ing. 

Therefore, we need to t ra in different HCS models f rom different combination of 

input variables and compare the performance of HCS models. I n order to compare 

the HCS models effectively, we need to define a measure to evaluate the perfor-

mance of the models 

HCS models are derived f rom empirical ly data by using cascade neural net-

work . The main advantage of the model ing HCS is that no analytical model is re-

quired. HCS models are not restricted by the l imi tat ion of current scientific knowl -

edge as we do not have adequate understanding of human intelligence at all. On 

the hand, no explicit physical model is the main disadvantage of model ing be-

cause the lack of scientific justif ication detracts f rom the confidence. As a result, 

we cannot compare different HCS models f rom the parameters of the models. This 
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prob lem becomes serious if the unmodeled process is dynamic i n nature. I n a dy-

namic process, the model ing errors feed-back on themselves to generate deviations 

、in state, and command trajectories are thus uncharacteristic of source processes. 

4.2.2 Root Mean Square Error Measure 

Simi lar i ty measure for val idat ing human control strategy models has been devel-

oped by Nechyba and Xu. This method is based on H idden Markov Mode l ( H M M ) 

w h i c h has been used i n many applications, especially a human control data, i t can 

be used to evaluate stochastic simi lar i ty between two dynamic mult i -d imensional 

trajectories using H M M s analysis. The simi lar i ty measure can be used to val i-

date the model-generated trajectories and the source HCS. By this method, the best 

learned-model can be selected wh ich has highest scores of s imi lar i ty measure for 

HCS controller. 

However, this measure is not suitable for our system. Because simi lar i ty mea-

sure addresses on comparing long, mult-dimensional, stochastic trajectories. I n our 

cases, the control skills is a short-t ime, static trajectories. A example of control ski l l 

trajectories (w。，ui) shows i n f igure 2.7. I n the Nechyba's w o r k [ l ] , the total t ime of 

control skills is around 20 minutes whi le the total t ime of d r i v ing the single wheel 

robot is around 10 seconds. We found that the results of the measure were inaccu-

rate whe n we evaluated the HCS models. Thus, we purpose to evaluate the output 

trajectories w i the the source ski l l by a simple approach, root means error measure. 

The root means square error erms measures the difference between the training data 

and predicted model output. I t is adequate to gauge the f idel i ty of a leamed model 

to the source process. Moreover, Crms can serve as the test of convergence. By this 

way, we can evaluate the performance of the HCS models. 

4.3 Experimental Setup 
I n our experiments, we have a choice to evaluate the leamed models in real envi-

ronment or i n simulation environment. I n the previous chapter, we demonstrated 
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that the human-based controller could control the robot. We collected those control 

data w h i c h were shown i n f igure 3.9 and compared these control trajectories w i t h 

• the source control trajectories. From this method, we can practical examine the 

performance of HCS models. However, f rom the figures 3.9-3.14, w e found that the 

results of ou tpu t trajectories, wh i ch generated by the same human-based controller, 

var ied greatly ( see figures 3.9-3.14). That's mean that the human-based controller 

has l o w repeatabil i ty i n practice and thus, we cannot compare the different HCS 

models by this approach. O n the other hand, we can use the source t ra in ing data as 

testing data to simulate the input variables and then, HCS mode l generates the cor-

responding trajectories. Next, we compare the output trajectories w i t h the source 

control trajectories. Unl ike the first approach, by this method, the HCS models can 

generate stable output trajectories and i t is easy for comparison. 

The performance of the models vary for the same model inpu t because the ini-

t ial we ight units of the neural network are randomly assigned and cause different 

result of learned models at the end of model ing. I n order to evaluate accurately the 

effect of the inpu t vectors, we trained 30 trials on each model inpu t and measured 

the average Crms errors of the output of the models. 

4.4 Model-based Method 

A t the beginning of this chapter, we have introduced two inpu t selection approaches. 

I n this section, we w i l l select input variables by model-based approach. We w i l l 

f irst select input variables f rom the mathematical model of the robot since these 

variables can describe the mot ion of the robot. Then, we define a measure of the 

sensitivity of each state variables w i t h respect to operator's control input to ver i fy 

the importance of these variables for the modeling. 
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4.4.1 Problem Definition 

Mode l i ng human control strategy means to model the human operator 's control 

action i n response to the system real-time feedback. That is, w e need to develop a 

relationship between the human control actions (control commands) and the sys-

tem responses (present and previous state variables and control variables) as shown 

i n f igure 4.1 

The HCS mode l can be s imply interpreted as a mapp ing funct ion $ such tha t : 

$ : M — Uh (4.1) 

where M is the mode l input and Uh is the output control. The HCS model means 

that the funct ion $ is der ived by empir ical ly input -output data. The inpu t data are 

system real-time feedback and the output data are control variables. Three factors 

are necessary to be considered for the learning process. They are (1) inpu t repre-

sentation, (2) consistent mapp ing f rom input space to ou tpu t space and (3) learning 

algor i thm. As we have ment ioned in the chapter 3, HCS is a type of reaction ski l l 

and HCS mode l requires sensory inputs to execute control commands. However, i t 

is possible that same inpu t pattern corresponds to two different output because of 

missing in format ion [13]. Therefore, input variables should be effectively enough 

to describe the mot ion of the robot. As a result, the model can more easily ident i fy 

the situation and then i t can do a suitable reaction f rom the inpu t data. Secondly, 

sensory data contain irrelevant, noisy informat ion and influence the learning pro-

cess. The first and second factors result i n discontinuous mapp ing as shown in 

f igure 4.2(a). Thirdly, the learning algor i thm we used have been wel l-developed by 

Nechyba and X u [ l ] [6] [7] . Thus, we w i l l not focus on the learning a lgor i thm i n this 

thesis. 

4.4.2 Input Representation 

I n this section, we w i l l focus on selecting a number of state variables for model 

input . Mode l Input is defined as the combination of present and prior state variables 

and control commands (see section 3.4). We select a set of suitable state variables (as 
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Figure 4.2: Inconsistent mapping from state variable space X to output control 

command space U 

i nput vector) and then fo rm the model input to t rain HCS model. 

The performance of HCS model degrades signif icantly due to insufficient learn-

ing data. Therefore, we should select a set of state variables as the inpu t variables 

w i thou t missing ski l l information. The basic requirement is that the set of state 

variables can describe the mot ion of the robot. What variables are effective enough 

to describe the mot ion of the robot? The mapping f rom input state space to output 

command space should be injective mapping. I t means that any input state vector 

should have its unique corresponding control action. Otherwise, two or more ac-

tions caused by same input state vector (figure 4.2 (a)). 
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I n our approach, we first select state variables in tu i t ive ly w i t h the aids of kine-

matic constraints and dynamic equations of the robot der ived i n [10]. From equa-

> t ion 2.4 i n chapter 2, we let Uh = [^4 u ^ ] ^ be the human control commands. As 

a result, the input -output of the HCS model must be governed by the equation 2.4 

such that 

M{q)q = F{q,q) + BUh 

The equation (2.4) can be re-wri t ten i n this form: 

BUh = M{q)q-F{q,q) (4.2) 

The above equation shows that the human control strategy Uh can be governed by 

the state variables q, q, q. The equation 4.2 can be further re-wr i t ten into this form: 

Uh 二 拟 ） (4.3) 

f j ^ • • “ •• 1 ^ 
where X is the inpu t vector such that X = [q q q] = [a P 7 pa « P 7 Pa ^ P 7 AiJ 

and 屯 is an nonlinear mapp ing function. The equation 4.3 shows that the input 

variables q, q, q provide enough state informat ion to control the robot. I t is easy 

to show that the 屯 funct ion is a injective mapping, i.e. i f ^ ( X i ) + 屯(义2) then 

Xx + X2. Therefore, the input vector X is effectively enough to describe the mo-

t ion of the robot. For the discrete case, the equation (4.3) is i n this fo rm : 

Uh[k) = ^X{k)) (4.4) 

where k is t ime instant. 

By above result, al l variables Xi G X should be selected as the input vector to 

f o rm model input. However, we cannot measure a and 7 because of unavailabi l i ty 

of sensors. I n the experiments, our goal is to t i l t up the robot un t i l the robot is 

vertical. Therefore, we only concern the lean angle and thus, the angular posit ion 

Q!, 7 are relatively unimportant as we do not care the angular posi t ion of a, 7 in the 
• . •• “ •• n T 

experiments. Thus, the resultant input vector X = [|3 Pa « P 7 Pa « P 7 Pa, 

is selected for the modeling. 
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4.4.3 Sensitivity Analysis 

From above result, we use the input vector to fo rm the mode l input . Mode l in-

pu t consists of the pr ior and present input vector and control vector. Here, we set 

n = 4’ m 二 3 i n t h e e q u a t i o n 3 . 6 a n d t h u s t h e m o d e l i n p u t i s [X{k+l),X{k),X{k-

l),X(k - 2),X(k — S),Uh{k),Uh{k — l ) ,%(A ; - 2),Uh{k - 3 ) , ¾ ( ^ — 4)](equation 

3.6) and thus, the total d imension of model input is 60. The inpu t d imension is 

large and consequently, the corresponding computat ional complexi ty and memory 

requirements of the model increase. Therefore, we want to reduce the input dimen-

sion by el iminat ing less important variables. 

From the mathematical model, we have found a number of state variables as 

the inpu t vector and the mapp ing between X(k) — Uh(k) is injective. However, i n 

practice, there exists inconsistent mapp ing [13] as shown i n f igure 4.2 0^). I t means 

that human makes different control actions U on similar model inputs. L i other 

words, very similar inputs can lead to radically different outputs U. Thus, the con-

t ro l strategy is approximately discontinuous as human have different responds for 

similar inpu t pattern. Consequently, the control strategy may not be easily express-

ible i n a discontinuous function. This poses an impossible leaming challenge not 

just for cascade neural networks, bu t any continuous funct ion approximator. I n 

theory, no continuous funct ion approximator w i l l be capable of model ing this dis-

continuous strategy. 

The cascade network is di f f icul t to extract the discontinuous mapp ing as the 

resulted models do not appear to exhibit a h igh degree of f idel i ty to the source 

human data[ l ] . We make a hypothesis that i f the ind iv idua l variable has discontin-

uous mapp ing to the output , i t is di f f icul t for the network to extract the mapping. 

Therefore, we can get r i d of this variable f rom the input vector because the effect of 

this variable for learning is weak. We w i l l ver i fy this hypothesis i n the next section. 

I n order to reduce the dimension of model input , we define a sensit ivity funct ion 

as fo l low: 

Tix-(k)) •= l | A _ ) l l 2 (4.5) 
M r A M . \\Axi(k)\\2 
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where X = [x\ x2 . " ] ^ is a set of the state variables w e selected, and % = 

• 'ui U2 . . . ]T is a set of the control commands. Both X and Uh are t ime functions 

suchthatX(A;) = [ x i ( k ) x2{k) . . . ] ^ a n d % ( A ; ) = [ u i { k ) u2{k) . . . f r e p r e s e n t i n g 

X(k) and %(fc) at t ime t 二 k, 

The idea of the sensit ivity funct ion comes f rom the gradient of control com-

mand Uh. 

- - l ^ g 1 (4.6) 

If 1 ^ = 00, the ou tpu t Uh is h igh ly sensitive to inpu t variable Xi. By this way, we 

extent theidea, thus,if||Aa;i(A;)||2 = \ \ x i { k ) - X i { k - l ) \ \ 2 decreases,while\\AUh{k)\\2 

just changes much relatively, i.e., T { x i ) becomes extreme large, i t impl ies that the 

ou tpu t command is very sensitive to the inpu t state variables Xi and the network is 

d i f f icu l t to extract this input -output relationship. Therefore, w e give up this redun-

dant variable Xi as the state variables for model reduction. The sensit ivity analysis 

of i npu t variables must be bounded: 

丨丨轉)丨丨2 < L . (4.7) 
|Aa:i(fc)||2 

where Lu is upper bound value. We can only select those state variables fu l f i l l ing 

the criterion. 

I n the exper iments, preprocessing process, wh ich proceeds the sensit ivity anal-

ysis, contains two steps: normal izat ion and mov ing average i . Firstly, we normal-

ize X and Uh. The mov ing average of X is computed before the sensit ivity analysis. 

M o v i n g average is to reduce the perturbat ion of the acquired noisy data. 

Table 4.1 il lustrates the average value of sensit ivity measure T{x^) on each sam-

ple. The T { x i ) wh i ch has h igh ly sensitive value (> 100) are under l ined i n the table. 

Here, we define the sensitive value wh ich is greater than 100 is called h igh ly sensi-

t ive value. For example, [PaJa) are not selected as the model inpu t i n the sample 

1. (/3^, |3a) are not selected as the model input i n the sample 2. I n addi t ion, we can-

not f ind any extreme h igh value in sample data 5,6 f rom the sensit ivity analysis. 

i A m o v i n g average of order N is s imply the arithmetic average of the most recent N observation, 
-/,x 一 a!(fe)+g(fc-l)+〜+ic(fe-̂ 0 X(«J = N . 
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Table 4.1: Sensitivity Analysis on human tilt-up skill data 

• average _ 

T{xi) T(0) T(0q) T(a) T{0) T("7) T(gg) T{a) T("g) r(7) T{X) 

sample 1 4.416~~13 x 10^ 3.022 2.561 1.690 14 x 10^ 1.566 1.099 13.89 2.751 

sample2 7.688 11.89 16.68 0.729 1.165 38 x 10^ 2.366 4.228 2.082 19 x 10^ 

sample3 2.714 8505 6.132 4.725 4.270 3.428 4.259 4.516 1.915 5186.6 

sample4 4.159 10.06 1.026 6.510 1.540 3 x l p 3 i.083 7.944 0.938 6 } M 

sample5 1.884 5.314 3.166 1.805 3.602 3.228 2.161 1.331 1.341 0.980 

sample6 19.91 23.50 2.906 1.381 15.21 1.646 3.421 4.711 3.757 2.601 

sample7 19.43 8.464 6.395 1.244 4.937 5 x 10^ 3.549 S x l O ^ 2.883 6 ^ 

sample 8 24.14 11.83 3.280 ; ^ 2 U ^ 9.574 2.547 8.164 6 j < ^ 7.718 j J ^ 

By this method, we can eliminate undesirable variables for model ing HCS. hv next 

section, we w i l l validate the claim of sensitivity analysis by comparing different 

model inputs and their corresponding output . 

4.4.4 Experimental Result 

I n this subsection, we demonstrate the performance of the HCS models trained 

w i t h different combination of input variables. First, the inpu t vector f rom 8 sets of 

source human t i l t -up ski l l data are used to t rain HCS model. Then, we compare the 

models trained by input vector {/?, ft^, d,台,7,反,a,玲,7, M (selected f rom section 

4.4.2) w i t h this vector w i thou t h igh ly sensitive variables in each human ski l l data. 

For further comparison, we select input vector w i thou t lowest sensitive variable in 

the table 4.1 to demonstrate the influence of different sensitive degree of state vari-

ables on the modeling. For convenience, X represents the input variables selected 

f rom section 4.4.2 , Xi represents the input variables X w i thou t h igh ly sensitive 

variables and Xs represents the input variables X w i thou t lowest sensitive vari-

able. 

Table 4.2 shows HCS model trained by different combination of input variables. 
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Table 4.2: Input vector for each HCS model 

Experiment Sample data Dimension hxput variables 

1 1 10 0 0a a 0 7 0a a /3 7 /3a 
2 2 10 0 0a d 0 7 0a a '0 7 /0a 
3 3 10 0 0a d 0 7 0a a 'j3 7 0a 
4 4 10 0 Pa d /3 7 0a a 0 7 0a 
5 5 10 P /3a d 白 7 /3a a 玲 7 0a 
6 6 10 0 /0a a 0 7 ^a a 0 7 0a 

7 7 10 0 j3a a 0 7 0a a /3 7 4a 
_8 8 W /3 i9a g 4 7 /3'g « 0 7 /3g 
~9 i 8 0 d |3 7 a /8 7 0a 

10 2 8 /3 /3a a 4 7 "吕 7 
11 3 8 3a a 0 7 /3a a 玲 7 
12 4 8 P 0a a $ 7 a 台 7 
13 5 9 /3 d $ 7 ̂ o a 玲 7 l̂ a 
14 6 9 0 d 4 7 /3a a /3 7 /3a 
15 7 7 冷 Pa d 0 i a 7 
16 8 7 P 0a d 7 g /3 7 

"1? 1 9 /3 0a a 0 i 6a a 7 â 
1 8 2 9 0 0a a 7 0a a 百 7 0a 

19 3 9 /3 /3a d 13 7 0'a a 0 0a 
20 4 9 /8 &a a /3 7 /8a a 0 0a 
21 5 9 0 0a d 4 7 0a a /3 7 
22 6 9 冷 Pa a 白 7 0a a 7 /3a 
23 7 9 /3 Pa 6t |3 7 0a a 7 /9a 
24 8 9 /3 0a g 0 7 /3q a 白 7 

I n the first 8 experiments, models were trained by inpu t variables X i n each human 

t i l t -up ski l l data. I n the experiments 9-16, models were trained by input variables 

w i thou t h igh ly sensitive variables X i i n each set data. Then, i n the experiments 17-

24, models were trained by input variables w i thou t lowest sensitive variable Xs in 

each set data. Note that i n sample data 5 and 6, we could not f i nd extremely h igh 

sensitive variable by sensitive analysis. Moreover, the different between highest 

sensitive variable and lowest sensitive variable are small i n these samples. Figure 

4.3 and 4.4 i l lustrate the performance of leamed models trained by inpu t state vec-

tors X,Xi and Xs. For details, table 4.3 and 4.4 show the result of leamed models. 

I n the f igure 4.3, i t shows erms error of leamed models trained by different input 

vectors X, Xi and Xg. We found that the leamed model trained by input vector X 

had the m i n i m u m error. I t demonstrated that the input selection i n section 4.4.2 was 

effective. Also, we found that the 6 謂 of the leamed models trained by X i sl ightly 

increased wh i le Crms of the leamed models trained by Xs increased significantly 
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except i n sample data 5,6. I t imp l ied that the networks were d i f f icu l t to extract the 

relat ionship between those sensitive variable to ou tpu t commands and thus, these 

“var iables were un impor tant for model ing. O n the other hand, the lowest sensitive 

variables were impor tant for the model ing as the model performance degraded sig-

ni f icant ly w h e n the inpu t w i thou t lowest sensitive variable. I n the sample 5 and 6, 

as w e have ment ioned before, the performance of learned models were different 

f r om the others. Since no extremely h igh ly sensitive value was found, the perfor-

mance of the models trained by X i were similar to that of the models trained by 

Xs. I n other words, al l state variables in the sample 5 and 6 were impor tant for the 

model ing. 

1.8| 1 1 1 1~— 1 1 1 _ • |' ed X 11 
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Figure 4.3: Comparison of leamed model trained with input vectors X, Xi and 

Xs 
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Figure 4.4: Relative error increase of leamed model trained with input vectors Xi 

and Xs 

Table 4.3: Performance of leamed model trained with input vector X 

Experiment Sample erms c{erms)^ 

1 1 0.0794 5.6700x10-5 

2 2 0.1841 7.2511x10-4 

3 3 0.3062 4.9649x10"® 

4 4 0.2254 2.7000x10-6 

5 5 0.0129 4.9660x10-4 

6 6 0.4795 2.4021x10-3 

7 7 0.3085 5.5670xl0_4 

8 8 0.1133 2.2432x10-4 

a. Average root-mean-squared (RMS) error Crms 

for 15-hidden-unit network (over 30 trials) 

b. Standard deviation of the average erms value 

for 15-hidden-unit network (over 30 trials) 
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Table 4.4: Performance of leamed models trained with Xi and Xs 

Experiment Sample erma (r{erms)^ E^ 

Xi 9 1 0.1947 1.1976x10-4 1.45 

10 2 0.2343 1.3885x10-4 o.27 

11 3 0.3809 6.8270x10-4 0.24 

12 4 0.3153 1.1000x10-6 o.39 

13 5 0.7923 4.7648x10-5 60.4 

14 6 0.9459 1.0198x10-2 0.92 

15 7 0.3056 1.2806x10-4 _o.009 

16 8 0.1944 2.3893x10-4 0.715 

Xs 17 1 0.8692 1.5620x10-3 9.94 

18 2 0.9708 1.1852x10-4 4.27 

19 3 1.6436 3.2130x10-5 4.36 

20 4 1.6923 3.4908x10-4 6.5 

21 5 1.6192 7.6557x10-3 124 

22 6 0.9618 9.2195x10-3 1.0 

23 7 1.0893 2.8467x10-4 2.5 

24 8 1.0418 4.0624x10-4 8.19 

a. Average root-mean-squared (RMS) error erms for 15-hidden-unit network 

(over 30 trials) 

b. Standard deviation of the average erms value for 15-hidden-unit network 

(over 30 trials) 
c. Relative e^ms increasing^ =似边 ^ % " ^ ^ "^^‘ from X to Xi and X , 
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4.5 Model-free Method 

I n the last section, we selected inpu t variables based on the mathematical model of 

the robot. However, one may argue that the method provides an alternative solu-

t ion for control prob lem only and i t depends on the existence of the mathematical 

model. Here, we want to develop model-free approach wh ich does not depend on 

pr ior knowledge of system model. 

I n this section, we w i l l introduce a statistical method, factor analysis, to solve 

the selection problem. By using factor analysis, sensor variables can be classified 

into different groups. The variables in intra-group have h igh correlations among 

themselves wh i le the variables in inter-group have l ow correlation w i t h each other. 

Then, we w i l l select the groups of variables wh ich have h igh correlation w i t h the 

control strategy as the model input. The advantage of this method is that the di-

mension of inpu t vector can be reduced. Moreover, pr ior knowledge of system 

model is unnecessary. By this feature, we can further apply this method to any 

system w i t h u n k n o w n model for analyzing and selecting inpu t variables. 

4.5.1 Problems Definition 

I n the previous section, the input selection method depended on the dynamic model 

of the robot to validate the injective mapping between state space to control com-

mand space. Moreover, the last method exists some l imitat ions on the fo l lowing 

aspects: 

• Prior knowledge of the system is assumed to be known. The situation become 

critical i f the mathematical model of the system is being developed and we 

cannot select suitable input state variables f rom the dynamic model of the 

system. As a result, irrelevant input variables are used to t ra in HCS model. 

• No isy data affect the result of sensitivity analysis. For example, the accelerom-

eter acquires h igh noise acceleration data. A n d the sensitivity analysis be-

comes meaningless under this situation. 
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Here, we w i l l demonstrate some examples that the performance of HCS models 

trained by irrelevant inpu t variables. Then, we w i l l show that the sensit ivity anal-

‘ ysis is weak to handle h igh noise data. 

Influence of Irrelevant Input 

Suppose that there do not exist the mathematical model of the robot and we de-

velop dif ferent HCS models trained by different inputs variables. Different combi-

nat ion of i npu t variables could affect the performance of learned models. Here, we 

d i d t w o evaluations ( to ta l 17 experiments) to examine the effect of different input 

state variables. We first selected all sensor variables (total 10 sensor variables) as 

the inpu t vector. They were X 二 [ 4 , A , … 7 , ?>.无,仏 A " , P]了. A l l sensor variables 

were selected because we wanted to demonstrate the effect of irrelevant input on 

the model ing. The def in i t ion of these notions are shown i n table 2.1. Then, we used 

different combinat ion of input state variables to t ra in HCS models, erms error is 

used to evaluate the performance of the learned models. 

I n the experiment 1 ( in table 4.5), all sensor variables were selected as the input 

vector for the model ing ^. Then, i n the first evaluation (experiment 2-11), we elim-

inated one state variable in the input vector X and used i t to t ra in different HCS 

models. I n the second evaluation( experiment 12-17), we el iminated sensor vari-

ables one by one i n the input vector i n order to demonstrate the effect of different 

d imension of input vector. The input vector and performance of the learned models 

are shown i n the table 4.5 and figure 4.5 . From these experiments, the performance 

of HCS models var ied w i t h different dimension of input vector. Figure 4.5 shows 

the erms of learned models in table 4.5. The performance of the learned models var-

ied sharply and the performance of the learned model upgraded signif icantly by 

suitable combination and dimension of input vector. O n the other hand, the per-

formance degraded significantly w i t h unsuitable combination of input variables. A 

HCS model trained by irrelevant input is shown in f igure 4.10. 

2see section 3.4 
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Figure 4.5: RMS error of HCS models trained with different input vector 

Influence of Noisy Data 

I n the last section, sensitivity analysis was appl ied to detect un impor tant variables 

and reduce the dimension of model input. However, that method could not pro-

v ide a good analysis on h igh noisy data. To il lustrate this problem, we consider 

one example. Suppose y(t) and u(t) represent the system state and input command 

respectively, u(t) is the human control strategy uo in the f igure 2.7 and system state 

funct ion is def ined as equation 4.8. 

y(t) = sin(7rt)+2sin(2.57Tt) (4.8) 

m( t ) = y(t) + S{t) (4.9) 

y2(t) 二 2H《) + _ ) (4.10) 

where 6 is random value. I n order to model the sensor data, we add noise on 

the or ig inal system state funct ion y{t) i n the equation 4.8. The equation 4.9 and 

4.10 shows the result noisy functions and figure 4.6 (a),⑶，(c) shows the equa-

t ion 4.8-4.10. The results of sensitivity analysis are much different f rom the original 

one. Therefore, i t induces that the sensitivity analysis can not handle the noisy data 

properly. As a result, we need another evaluation method to select important state 

variables for the modeling. 
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Table 4.5: Performance of HCS models trained by different input vector 

Experiment iV " S^ ^ e ^ <r(erma) 

‘ 1 10 nil 11 0.3294 0.0135 

2 9 0a 9 0.1454 0.0010 

3 9 0a 7 0.1364 0.0013 

4 9 0 8 0.1916 0.0038 

5 9 7 3 0.1177 0.0005 

6 9 d 6 0.3012 0.0263 

7 9 X 12 0.3150 0.0518 

8 9 y 14 0.1793 0.0034 

9 9 z 14 0.1706 0.0040 

9 9 0 4 0.2268 0.0078 

11 9 /3 13 0.1823 0.0020 

" ^ 2 9 ^ 3 0.1177 0.0005 

13 8 7 , d 5 0.1299 0.0011 

14 7 i , 0 , a 8 0.1916 0.0030 

15 6 i , 0 , a , x 3 0.2323 0.0136 

16 5 ^ J , d , x , e 6 0.2310 0.0193 

17 4 ^J,d,x,y,6 7 0.1891 0.0077 

a. Number of selected variables 

b. Variables are eUminated from the input variable X = [0a ’ /3o ’ <i ’ 7 ’ 0’ ® ’ V ’ z ’ ^，P] ^ 

c. Number of hidden nodes 

d. the average erms value 

4.5.2 Factor Analysis 

Here, we want to develop a systematic approach for inpu t selection. By this ap-

proach, pr ior knowledge of the system is not necessary. I n order to examine this 

approach, we assume that we do not know any informat ion about the input -output 

relationship. We only know that several sensors have been installed on the robot 

and we can collect these sensor data as the input variables. Therefore, we can only 

use these variables as the input variables i n this section. 

Factor analysis is a branch of statistics whose pr imary purpose is data reduction 

and summarization. Generally speaking, factor analysis concerns on the problem 

of analyzing the interrelationships among a large number of variables and then ex-

pla in ing these variables in terms of their under ly ing dimensions of factors. 

Factor analysis is usually concerned w i t h two major problems: (1) reducing 

the dimensional i ty of the original data space, whether by pr incipal components or 
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Figure 4.6: Sensitivity analysis affected by the different degree of noise 

some other factor procedure, and (2) rotation of the factor loading solution in the 

reduced space to some more interpretable orientation and re-computation of factor 

scores in the new orientation. 

Factor analysis usually operates in a common factor model wh ich assumes a 

linear relationship f rom latent factors to observed variables 

yi = Aii^i + Ai2^2 H 1" ^ir& + ei 

y2 二 入21$1 + ^22^2 H 1" ^2r(r + ^2 

Vm = Aml^l + Am2$2 H 1" Amr6* + ^r 

or i n compact fo rm described as, 

Y 二 AS + € (4.11) 

where Y = [y1,y2,.. •, Vm]^ are observed variables measured i n derivation f rom 
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Figure 4.7: Structural diagram of common factor model on the robot. 

the mean, S 二 K i , $2 , . . . ’ ̂ r V are scores for latent factors deviated f rom the mean, 

A = Xij is the factor loading matr ix and e 二 [ei, e2 , . . . , e^]^ are unique factor scores 

for observed variables. Usually, random measurement error (sensor noise), inf lu-

ences only a part icular observed variable and all other sources of error and bias 

that prevent the common factors f rom completely explaining contribute to unique 

factor e of these observed variables in equation 4.11. The unique factors e are as-

sumed to be uncorrelated w i t h each other and latent factors S. Note that the ( i , j ) 

t h element Xij of factor loading matr ix A reflects the weight for the ith observed 

variable on the j t h factors. Under the common factor model (equation 4.11), the 

populat ion covariance matr ix S of Y can be given as, 

S = A $ A ^ + e (4.12) 

where $ and 6 are covariance matrices of S and e respectively. 6 is a diagonal ma-

tr ix as unique factors are mutual ly uncorrelated. The latent factors are not unique 

defined since any nonsingular transformation matr ix A can be appl ied to S so that 

the same covariance matr ix E is reconstructed. As a result, each observed variables 

depends on some more fundamental set of factor. 
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Factors Extraction 

The ma in task of factors extraction is to estimate the factor loading matr ix A, latent 

factors factors covariance matr ix 少 and unique factor covariance matr ix 9 under 

dif ferent criteria so that the covariance among observed variables Y are reproduced 

as possible. Under different factors extraction criteria and assumptions, different 

factor extraction methods can be derived. 

The Unrestr icted M a x i m u m Like l ihood Estimation method [25] is w ide l y adopted 

method for factors extraction because i t does not impose unrealistic assumptions 

on unique factors (residual error) structure and i t provides tests of statistical signif-

icance of parameters estimated. Moreover, max imum l ike l ihood estimator for fac-

tor analysis is efficient and consistent. The populat ion of data samples is assumed 

to be mult ivar iate normal. The max imum l ikel ihood problem can be transformed 

equivalent ly to min imize 

T 二 Zc^HS| + t r [ 5 E " ^ ] - log\S\ - m (4.13) 

where m is the number of observed variables and S is the sample covariance matrix. 

I n our wo rk , max imum l ikel ihood factor estimation method is employed for the 

analysis of inpu t space of the robot. 

Varimax-Rotated Factor Loadings Analysis 

Since inf ini te pairs of A and S can reproduce the same correlations among observed 

variables w i t h the same data samples wh ich can fu l f i l l the constraint of equation 

4.12, i t is desired to estimate sets of factor loading patterns w i t h better interpreta-

t ion on the factors extraction. Then, factor rotation procedures provide refinements 

and less restrictions on estimated factor loading distr ibutions i n matr ix A. The ex-

tracted factors are interpreted in a different perspectives by factor rotation. Here, 

an orthogonal rotat ion for latent factor, names Varimax scheme [24]. Af ter the or-

thogonal rotation, rotated latent factors are uncorrelated w i t h each other and the 

variances of squared factor loading tend to have either h igh or l ow magnitudes 
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and thus this leads to interpretable factors. As a result, each variable depends on a 

set of factors. The result of factor analysis on sample 1 data is shown i n equation 

‘4.14. From this equation, each variable has linear relationship w i t h a number of 

factors and depends heavi ly on part icular factor. For example, t i l t angle pa main ly 

depends on factor 1. 

Pa = 0.423^1 + 0.2036 + 0.1946 — 0.035^4 + 0.761^5 + 0.080$e + e"a 

|3a = 0.967^1 + 0.1416 + 0.008¾ - 0.102^4 + 0.084$5 + 0.086$e + % 

； (4.14) 

u i = 0.9496 - 0.012¾ + 0.1496 + 0.136¾ + 0.197¾ + 0.091^e + e^^ 

Then we can approximate above equations into below form. We selected the terms 

of the equations w i t h its coefficient begin greater than 0.5. 

Pa « 0.761¾ H- e^a 

|3a « 0.9676 + €^^ 

': (4.15) 

u i « 0.949$i + €^i 

The simpl i f ied equations show that some factors have strong relationship on partic-

ular variables. Consequently, we can classify the variables based on factor loading. 

The variables wh ich have h igh factor loading on factor j are assigned to group j. 

Therefore, each variable is assigned to different groups based on: 

Xk e Gj iff Xxkj > C (4.16) 

As a result, the variables are classified into different groups. 

G i = { p , x , . . . { X p i , X x i ' " > C} 
• 
• 

Gi = { w i， j a， . . . |A w i i ’ A " . a i . . . 〉 C } 
• 
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Gi denotes the group of variables wh ich have h igh factor loading X^i on factor i.( 

is a threshold to classify the group of variables. Here, we assign the C equal to 0.5. 

‘ I n each group, variables have h igh correlation among themselves wh i le variables i n 

dif ferent groups have l ow correlation among themselves. For example, i n sample 

1 data, t i l t angle of the flywheel Pa, lean angle of the wheel /3, acceleration i n X-

direct ion x and t i l t torque u i are classified into group 1. The change of t i l t angle 

of the flywheel generates t i l t torque whi le , the x influences the ro l l ing speed of the 

wheel. By the gyroscopic precession (equation 1.1), larger the ro l l ing speed make 

larger the t i l t torque, the lean angle |3 is the goal of mot ion. These variables and 

t i l t - torque command u i are selected in the same group is reasonable because these 

state variables have strong relationship w i t h the t i l t - torque command u i . O n the 

same t ime, the lean angle |3 and dr ive motor uo are assigned to the same group by 

factor analysis. The dr ive motor uo controls the ro l l ing speed of the wheel and i t 

seems that the human operator observes the learn angle “ (the task goal) and makes 

corresponding command uo to achieve the goal. Figure 4.8 il lustrates the concept 

of factor analysis. I n the figure, variables i n different groups are almost orthogonal 

based on the property of factor analysis. 

6 

v ^ 
严‘' 

Figure 4.8: Variables can be classified into different groups based on the magni-

tude of factor loading 
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Table 4.6: Factor analysis on sample 1 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var. 

0a 0.423 0.203 0.194 -0.035 | 0.761 | 0.080 0.156 

“ 0a 0.967 0.141 0.008 -0.102 0.084 0.086 0.020 

/3 0.028 -0.084 0.872 0.123 0.406 0.141 0.031 

7 -0.085 -0.628 | -0.007 -0.015 -0.020 0.058 0.594 

d 0.126 0.769 0.217 0.128 | 0.549 | 0.152 0.005 

X 0.651 0.118 0.103 0.326 0.104 -0.171 0.406 

y 0.117 0.054 0.416 0.118 -0.032 0.826 0.113 

z -0.017 -0.034 -0.022 0.070 0.106 0.799 0.344 

e 0.257 0.473 | 0.787 | 0.197 -0.110 0.185 0.005 

/3 0.802 0.205 0.057 | 0.529 | 0.111 0 ^ 0.005 

uo -0.182 ~ ~ - 0 . 0 4 5 “ -0.160 | -0.770 | 0.014 -0.149 0.324 

ui 0.949 -0.012 0.149 0.136 0.197 0.091 0.011 

Input Variable Selection 

I n the last section, each variable is assigned to different groups by factor analysis. 

The variables i n each group have one common feature that they depend heavi ly 

on one latent factor. The variables in same group share part ia l in format ion and 

therefore, control command variable ui can be estimated by the other variables in 

the same group prov ided that Ui belongs to this group. For model ing a funct ion 

f rom inpu t variables to output command variable, the state variables i n the same 

group of Ui have kept ma in relevant informat ion w i t h output . Therefore, we define 

a Input Selection Rule such that: 

VGi, i f 3 U j e G i , then ^Xk e Gi are selected as the inpu t state variables (4.17) 

By the above algori thm, any variable Xk wh ich has h igh factor loading on factor i is 

selected as the input state variable prov ided that Uj also has h igh factor loading on 

factor i. We apply this method to select the variables to fo rm reduced input vector 

X r . I n the next section, we w i l l compare the performance of reduced input vector 

w i t h the irrelevant input vector on the model ing 
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Table 4.7: Factor analysis on sample 2 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var. 

‘ 0a 0.643 0.080 0.441 -0.002 0.091 0.128 0.361 

|3a 0.819 0.118 -0.013 0.391 0.222 -0.028 0.112 

$ 0.195 0.003 0.957 | -0.081 0.002 0.188 0.005 

7 -0.097 -0.101 0.207 -0.518 -0.091 0.000 0.661 

d 0.208 0.113 0.284 0.185 0.094 | 0.708 | 0.319 

X 0.302 -0.147 0.038 0.156 0.913 0.150 0.005 

y 0.102 0.717 0.159 0.330 0.056 0.030 0.336 

z 0.110 0.968 -0.116 -0.049 -0.169 0.033 0.005 

e 0.242 0.093 0.298 | 0.804 | 0.072 0-433 0.005 

/3 O.579J 0.137 -0.165 0.138 0.385 0-521 0.179 

UQ 0.018 ^ -0.049 -0.023 -0.046 | -0-815 0.329 

ui I 0.959 I 0.086 0.184 0.094 ^ ^ 0-005 

Table 4.8: Factor analysis on sample 3 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var. 

~ ~ ^ 0.544 ^ -0.028 0.007 0.355 | 0-582 0.238 

/3a 0.962 0.104 0.158 0.149 -0.044 0.096 0.005 

$ 0.066 0.082 0.005 棚 9 | 0.864 | 0.186 0.206 

y -0.101 -0.022 I -0.530 | 0.017 0.082 -0-167 0.674 

d 0.200 0.001 0.349 -0.195 0.128 | 0.696 | 0.300 

X 0.645 -0.197 0.117 >0.353 -0.001 0.134 0.389 

y 0.053 0.711 0.188 -0.042 0.279 -0.105 0.366 

z 0.027 0.984 -0.063 0.013 -0.098 0.111 0.005 

e 0.080 0.137 I 0.767 | -0.226 | 0.574 | *0.043 0.005 

" 0.730 0.090 0.178 | -0.622 | -0-066 ^ 0.005 

uo -0.031 ~ " - 0 . 0 1 5 ~ -0.061 I 0.762 | -0.076 -0.066 0.404 

wi 0.911 0.102 0.020 -0.068 0.197 0.135 0.097 

Table 4.9: Factor analysis on sample 4 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var. 

" ^ ^ ^ 4 6 ^ 0.159 “ I 0.651 | 0.126 0.163 

/3a 0.970 0.079 *0.004 "0.148 -0.070 0.092 0.017 

0 >0.218 -0.035 0.113 0.013 | 0.730 | *0.022 0.404 

今 0.010 *0.227 "0.311 -0.293 0.514 >0.454 0.295 

d 0.116 0.018 0.958 | -0.008 0.163 0.191 0.005 

X 0.736 0.106 0.206 0.034 "0.044 0.186 0.367 
y 0.146 0.603 0.118 >0.089 0.035 0.266 0.521 
z 0.085 0.975 -0.053 *0.095 -0.073 "0.140 0.005 
e 0.337 0.032 0.245 *0.345 0.008 | 0.768 | 0.118 

P 0.926 0.091 0.175 .̂233 "0.153 ^ 0-007 
uo "0.344 ^.231 0.034 ~ | 0.817 | “ 0.029 -0.193 0.122 

ui 0.962 0.109 "0.034 •0.176 0 ^ 0 ^ 0-024 
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Table 4.10: Factor analysis on sample 5 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var. 

0a ” 0.906 ~~ 0.176 0.086 0.004 0.235 0.283 0.005 

0a 0.056 0.976 I -0.025 -0.061 0.077 -0-144 0.014 

4 0.359 -0.268 0.073 0.152 0.021 | 0.875 | 0.005 

〜 0.021 0.010 0.989 -0.013 0.095 0.081 0.005 

d 0.282 0.315 0.169 -0.011 | 0.887 | 0.025 0.005 

X 0.001 0.707 -0.055 0.020 0.172 -0.035 0.465 

y -0.045 0.229 0.047 0.965 -0.087 -0.011 0.005 

z 0.014 -0.070 -0.071 | -0.725 | 0.070 -0.093 0.451 

e -0.152 0.539 -0.469 -0.254 -0.127 0.087 0.377 

3 0.057 0.933 -0.120 -0.062 0 ^ "0.188 0-028 
~ [ ^ 0.517 -0.640 I -0.050 0.043 0.148 0.148 0.274 

ui 0.095 I 0.949 | 0.106 -0.070 ^ ^ 0.067 

Table 4.11: Factor analysis on sample 6 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var. 

~Y^ ^ ^ -0.017 I 0.780 I~~ -0.001 0.354 0.169 

0^ 0.970 0.080 0.177 -0.049 -0.007 0.039 0.017 
白 -0.284 -0.049 0.019 | 0.725 | 0-234 0.048 0.334 

7 -0.015 "0.077 -0.054 0.153 | 0.765 | -0.054 0.379 

d 0.213 0.031 0.150 0.333 -0.076 | 0.677 | 0.357 

X 0.731 0.034 0.134 0.043 -0.124 0.176 0.399 
y 0.142 0.551 0.320 0.079 -0.111 0.052 0.552 

z 0.049 0.994 "0.037 -0.049 -0.010 -0.001 0.005 

e 0.357 0.061 I 0.839 | 0.115 *0.378 0.059 0.005 

/3 0.916 0.102 0.273 -0.080 "0.093 Q J ^ 0.018 

uo ^.337 “ ^ . 1 8 0 I -0.631 | 0.107 -0.241 -0.162 0.360 

ui I 0.956 I 0.109 0.189 ^ ^ ^ 0.018 
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Table 4.12: Input vector for each experiments 

‘ Experiment Source Liput vector X Experiment Source Liput vector Xr 

1 1 | 3 a , ^ a , a , j J , x , y , z , 9 , p 7 1 Pa,X,^ 

2 2 |3a,|3a,a,jJ,x,y,z,d,P 8 2 |3a,|3a,a,^ 
3 3 |3a,Pa,a,iJ,X,y,Z,e,|3 9 3 Pa,Pa,X,P 

4 4 ^ a , | 3 a , a , ^ J , x , y , z , e , P 10 4 |3a,x,P 

5 5 ^ a , P a , a , j J , X , y , Z , e , P 11 5 0a,Pa,X,9,P 

_ 6 6 0a,l3a,dcn,&,�jj/i,e,p \ 12 6 !̂’王，卢 

4.5.3 Experimental Result 

Model Training 

I n this section, we apply the input selection rule to select inpu t variables. Table 

4.6-4.11 show six sets of t ra in ing data for factor analysis. Small frame boxes in the 

tables h igh l ight that variable i n this row has h igh factor loading on the factor on 

this column. The state variables in the tables are select as input vector i f they meet 

the requirement of the input selection rule( factor loading > 0.5). I n order to make 

fair comparison of input vectors, we compared the models trained by irrelevant in-

pu t vector {|^a,|3a, a, 7, ^, x, y, i , 6>, /3} (we have ment ioned i n section 4.5.1) and and 

reduced inpu t vector i n each training data. We note that not ion X represents the 

irrelevant input vector and X r represents the reduced inpu t vector i n later descrip-

t ion. I n the table 4.6, we found that /3«, x ,从 u i had h igh factor loading on factor 1. 

A n d |3, uo belonged to factor 4. Therefore, we selected |3a, x, p as the inpu t vector 

for sample data 1. By simi lar i ty , we selected 么，Pa,«, P as the inpu t vector i n the 

table 4.7. I n the table 4.8, / ^ , Pa, x , P were selected as the inpu t vector for sample 

data 3. I n the table 4.9, pa, x, P were selected as the input vector for sample data 

4. I n the table 4.10,么’ A^, x, 0, /3 are selected as the input vector for sample data 5. 

I n the table 4.11, we selected A^, x, |3 as the input vector for sample data 6. Above 

selection of input vectors are shown in table 4.12. 
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HCS models trained by different input vector 

Figure 4.9: Comparison of the leamed model trained with input vector X and 

reduce vector Xr 
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Figure 4.10: sample 1: leamed model trained with input vector X 
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Figure 4.11: sample 1: leamed model trained with reduced input vector Xr 
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Figure 4.12: sample 3: leamed model trained with input vector X 
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Figure 4.13: sample 3: leamed model trained with reduced input vector X r 
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Figure 4.14: sample 6: leamed model trained with input vector X 

Analysis 

Tables 4.13 and 4.14 i l lustrate the experimental results of HCS mode l trained by 

the irrelevant input vector and the reduced input vector respectively. For conve-

nience, RMS{X) denotes the average erms error of leamed mode l output (com-

pared w i t h source human strategy). I n the first three sets of data, the RMS{Xr)s 

decrease significantly, compared w i t h RMS{X). For example, i n the sample 1, 

the RMS(Xr) decreases 41 percentage of the RMS(X), I n the second three set of 
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Figure 4.15: sample 6: leamed model trained with reduced input vector Xr 

data, the RMS{Xr)s are almost the same as RMS{X). From above results, we can 

conclude that the average erms error of the models trained w i t h the reduced input 

vector Xr are better than that of the or ig inal inpu t vector X. Moreover, the dimen-

sion of inpu t vector can be reduced by this selection method. For example, i n the 

sample 1, the dimension of the reduced input vector X r is on ly 3 wh i le the dimen-

sion of the inpu t vector X is 10. 

I t is interesting to note that the RMS{Xr) is sl ight ly higher than RMS(X) i n 

the sample 4 (see experiment 4 and 10). From the table 4.9, we could not f ind any 

state variable related to the control command UQ by factor analysis. The reduced 

inpu t vector might miss important in format ion for the model ing. Consequently, 

the learned model trained by reduced input vector has poor performance relative 

to the learned model trained by irrelevant input vector. 

Figure 4.10-4.15 show some representative learned models result. Figures 4.11, 

4.13,4.15 i l lustrate the leamed strategies of the model trained by X r . The dotted 

l ine shows the source human control strategies and the sol id l ine shows the strate-

gies of the leamed models. Meanwhi le, figures 4.10,4.12,4.14 i l lustrate the learned 

strategies of the model trained by X. 

4.6 Model-based Method versus Model-free Method 

Here, we compare two selection methods for the model ing. Jn the two methods, 

we used different combination of input variables to train different HCS models 

and each models has different performances. Jn order to standardize comparison. 
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Table 4.13: Performance of leamed model trained the input vector X 

Experiment Sample erms^ o-(erms)^ 

1 1 0.8130 0.0167 

2 2 0.7650 0.0061 

3 3 0.8130 0.0167 

4 4 0.5326 0.0051 

5 5 0.0596 0.0132 

6 6 1.0953 0.0609 

a. Variables are eliminated from the input vector X 

b. Average root-mean-squared (RMS) error erms for 

15-hidden-unit network (over 30 trials) 

c. Standard deviation of the average erms value for 

15-hidden-unit network (over 30 trials) 

Table 4.14: Performance of leamed model trained the input vector Xr 

Experiment Sample ^ 7 ^ " (r{erms)^ £^ 

7 1 0.3566 5.0000x10-4 _o.56 

8 2 0.2341 6.8505x10-4 _o.69 

9 3 0.1095 1.7557x10-4 -0.86 

10 4 0.5837 5.9816x10-3 0.09 

11 5 0.0079 3.1294x10-5 -0.86 

12 6 1.0853 1.5402x10-2 -0.009 

a. Average root-mean-squared (RMS) error erms for 15-hidden-unit 

network (over 30 trials) 

b. Standard deviation of the average erma value for 15-hidden-unit) 

network (over 30 trials) 

c. Relative erms increasingE = "^^ ^ % " ^ ^ erm- from X to Xr 
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we only use the leamed models showed i n table 4.3 (the model-approach method) 

and table 4.13 (the model-free method) because the leamed models i n these tables 

have best performance i n each method. Thus, the best learned models trained by 

t w o methods w i l l be compared i n this section. 

The f irst six sets of the learned models i n the table 4.3 are trained by sample 

data 1-6. Also, the six sets of the learned models in the table 4.13 are trained by 

sample data 1-6. Note that table 4.3 shows eight sets of data wh i le table 4.13 only 

shows six sets of data. Because the last two sets of t ra in ing data (sample data 7-8) 

cannot f i nd any inpu t variables by factor analysis. This is one of weakness of factor 

analysis that sample data being factor analysis may have possibi l i ty that the data 

cannot be factorized. 

Figure 4.16 compares erms of the learned models trained by the first method 

1.4j ! 1 1 j 1. 1 :^ 
^H model-based methGC 

;| I~~I model-free method | 

1.2 - -： -

1 - i : ： -

|0.8- -
0 
1 
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0 . 4 - • ； -

: . I i n l n l l : III . 1 2 3 4 5 6 
Sample no. 

Figure 4.16: erms of leamed models trained by the model-based method and the 

model-free method 

and the second method. From the figure, we f ind that four sets of learned mod-

els trained by the model-based method are less error than those models trained 

by the model-free method and we conclude that the learned model trained by the 

model-based method have better performance than the leamed model trained by 

the model-free method. 

Table 4.15 shows the comparison between the model-based method and the 

model-free method. The model-free method is l ow ly sensitive to noise data since 
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Table 4.15: Model-based method vs model-free method 

Category Model-based method Model-free method 

Prior knowledge high low 

Sensitive to noise high low 

Performance high medium 

h\put dimension high low 

because this method already considers the noise data du r ing the statistical method, 

factor analysis. I n our cases, the input variables dimension of the model-based 

method are kept i n 10 wh i le the inpu t variables dimension of the model-free method 

are always less than 5. 

The requirement of the model-based method is higher than that of the model-

free method. The performance of the model-based method is higher, however. On 

the other hand, the performance of the model-free method do not need the pr ior 

knowledge of the system and is l ow ly sensitive to noise data. Also, the input vari-

ables dimension is always smaller than that of the model-based method. We can 

use the two methods based on different situation. 

I n conclusion, we developed two evaluation methods to select suitable input 

variables to handle the selection problem i n different situations. I n the first evalu-

at ion method, we first selected the relevant state variables f rom the mathematical 

model of the robot as the HCS model input. Then, we defined a measure of sensitiv-

i ty of each state variables w i t h respect to the operator's control inpu t to validate the 

importance of model input. I n the second evaluation method, we presented a sta-

tistical method,/flctor analysis , to select the suitable state variables. By using factor 

analysis, the variables could be classified into different groups. Intra-group vari-

ables had h igh correlations among themselves whi le inter-group variables had low 

correlation among themselves. Then, we selected the groups of variables wh ich had 

h igh correlation w i t h the human strategies as the input variables. The advantage 

of this evaluation method was that pr ior knowledge of the mathematical model of 

the system was unnecessary. Besides, the overall performance of HCS models up-

graded after the reduction of model input by el iminat ing uncorrelated input. That 
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method could be further appl ied to any systems w i thou t any mode l for analyzing 

and selecting inpu t variables. 



Chapter 5 

Conclusion and Future Work 

5.1 Contributions 

I n this thesis, we presented a study of methodology for selecting inpu t variables 

and model ing human control strategy (HCS) on the single wheel robot. We also 

practically implemented HCS model to control the " t i l t -up" mot ion of the robot. 

We summarize the or iginal contributions of this w o r k below: 

• Human-based Control We appl ied flexible cascade neural ne twork w i t h node-

decoupled extended Kalman f i l ter ing to abstract human control ski l l on the 

single wheel robot. A n d we transferred the model effectively i n control l ing 

the robot. We experimentally val idated that the HCS model could abstract 

human skills and the human-based controller could control the robot. 

• Input selection for the modeling We developed two inpu t selection method 

to select suitable input variables. One was called model-based method and 

the other was called model-free method. I n the first method, we first identi-

f ied the effective state variables as the input variables f rom the mathematical 

model. Then, we defined a method, sensitivity analysis, to ver i fy the impor-

tance of these variables. By this method, any unimpor tant variable can be 

el iminated i n the bracket of input variables. We used different input combi-

nat ion to t rain HCS models and compared the corresponding model error to 

ver i fy the selection method, h i the second method, we appl ied a statistical 
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method, factor analysis, to classify the state variables into dif ferent groups. 

The advantage of the method was that pr ior knowledge of the system model 

was unnecessary. Moreover, the inpu t d imension could be fur ther reduced. 

By that feature, we could further apply this method to a system w i t h un-

k n o w n mode l for analyzing and selecting inpu t variables. 

5.2 Future Work 

I n this thesis, we prov ide the foundat ion of model ing HCS and its inpu t selection 

to the robot. I t is only the first step toward the automatic control of the robot by 

human-based controller. The fo l lowing are possible improvement and extensions 

of this wo rk : 

• Skill evaluation Once we have abstracted a HCS model, i t is important to 

access the ski l l exhibited by the model and its corresponding human con-

troller. I n this thesis, we evaluate model based on erms error. There are, 

however, other cr i ter ia- many of them task-dependent~~by wh ich we can 

evaluate performance of models. Models or control strategies w i t h different 

ski l l qualities may be more or less appropriate for a given situation, depend-

ing on the specific performance requirement of the robot. Some related re-

search have worked on this area, X u and Song [8] have studied the issue of 

ski l l evaluation by proposing two task-specific performance criteria for the 

human dr iv ing task. 

• Model optimization Given a specific requirement, i t m igh t be necessary to 

opt imize a particular HCS model w i t h respect to that performance measure. 

The unopt imized HCS model already gives an in i t ia l control strategy; opti-

mizat ion w o u l d refine the parameters i n the model to improve performance 

w i t h respect to a specific criterion. 

• Automatic Control U p to now, we have only modeled t i l t -up ski l l of the sin-

gle wheel robot. Our goal is to automatic control of the robot by human-based 
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controller. Therefore, we need to model dif ferent sk i l l i n control l ing the robot 

and integrate the models together. 



Appendix A 

Dynamic Model of the Robot 

A.1 Kinematic Constraints: Holonomic and Non-

holonomic 
Gyrover has been control led only manually, using two joysticks to control the 

dr ive and t i l t motors through a radio l ink. I n the fo l lowing sections, we w i l l de-

scribe the works done by done by A u and Xu[2] on the nonholonomic kinemat-

ics constraints, as we l l as dynamic model using the constrained generalized La-

grangian formulat ion. 

A.1.1 Coordinate Frame 

The equations of mot ion of the robot is assumed that the wheel is a r ig id, homoge-

neous disk wh ich rolls over a perfectly flat surface w i thou t sl ipping. The actuation 

mechanism, suspended f rom the wheel bearing, as a two- l ink manipulator, w i t h a 

spinning disk attached at the end of the second l ink (Figure 2.1) are modeled. The 

first l ink of length h represents the vertical offset of the actuation mechanism f rom 

the axis of the Gyrover wheel. The second l ink of length h represents the horizon-

tal offset of the spinning flywheel and is relatively smaller compared to the vertical 

offset. 

Next, four coordinates frames are defined as follows: (1) the inertial frame J2o^ 
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whose X - y plane is anchored to the flat surface, (2) the body coordinate frame ^ ^ 

{xB,VB^ZB}, whose or ig in is located at the center of the single wheel, and whose ^-

• axis represents the axis of rotat ion of the wheel, (3) the coordinate frame of internal 

mechanism Yl^�{xc, y � ^ } , whose center is located at po in t D, and whose z-^xis 

is always paral lel to ZB, and (4) the flywheel coordinates frame ^)丑{xa,ya^Za], 

whose center is located at the center of the Gyrover f lywheel, and whose ^;-axis 

represents the axis of rotat ion of the flywheel. Note that ya is always parallel to 

2/c. The def in i t ion and conf igurat ion of system and variables are shown i n Table ？? 

and Figure 2.1. Rol l ing w i thou t s l ipping is a typical example of a nonholonomic 

system, since i n most cases, some of the constrained equations for the system are 

nonintegrable. Gyrover is a similar type of the nonholonomic system, (i,j, k) and 

( / ,m ,n ) are def ined to be the un i t vectors of the coordinate system X Y Z O ( Y , o ) 

and XByBZBA{^s), respectively. Let S^ ：= sin{x) and C^ ：= cos{x). The transfor-

mat ion between these two coordinate frames is given by 

• 1 「 • 

i 1 

j = R% m (A.1) 

k n 
隱 J L • 

where R ^ is the rotat ion matr ix f rom ^ Q to ̂ ^丑. 

- S a C ^ —Ca —SaSp 

R% = CaC^ -Sa CaSp (A.2) 

-S^ 0 Cp _ 

Let VA and UB denote the velocity of the center of mass of the single wheel and its 

angular velocity w i t h respect to the inertia frame X)^ . Then, we have 

U B = - a S p l + / 3 m + ( 7 + a C ^ ) n ( A . 3 ) 

The constraints require that the disk rolls w i thou t s l ipping on the horizontal plane, 

i.e, the velocity of the contact point on the disk is zero at any instant 

vc = 0’ (A.4) 
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where Vc is the velocity of contact point of the single wheel. Now, we can express 

VA as 

VA = ^B X rAC + ^C (A-5) 

where r ^ c = —Rl representing the vector f rom the frame C to A i n Figure 5. Sub-

st i tut ing Eqs. (A.3) and (A.4) i n Eq. (A.5) gives 

;̂A = X i + i^;' + ZA^ (A.6) 

where 

X = R{jCa + diCaC^ - pSaS^) (A.7) 

Y = R{jSa + aCpSa + pCaSp) (A.8) 

Z = RpC^ (A.9) 

Eqs. (A.7) and (A.8) are nonintegrable and hence are nonholonomic whi le Eq. (A.9) 

is integrable, i.e, 

Z = RSp. (A.10) 

Therefore, the robot can be represented by seven (e.g. X, Y, a, ^ , 7’ A , 0), instead of 

eight, independent variables. 

A.2 Robot Dynamics 

I n this section, the equation of mot ion is calculated f rom Lagrangian L = T -

p of the system, where T and P are the kinetic energy and potential energy of 

the system respectively. The system is d iv ided into three parts: 1) single wheel, 2) 

internal mechanism, 3) spinning flywheel. 
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A.2.1 Single Wheel 

The kinetic energy of the single wheel is given by, 

T^ = Jm^ [ X ' + y2 + Z '̂ 
Z L 

*| 2 2 2‘ (ŷ  11、 

+ 2 [Ixxvj^x + Iyyw^y + hzw^z] (A«11) 

Subst i tut ing Eqs.(A.3) and (A.9) i n Eq . (A . l l ) yields 

T^ = \m^ [12 + y2 + ^R^c^f] + • [hxw{oLS^f 
+ I y y J ^ + Izz^MCp + 7 ) ' ] (A.12) 

The potent ial energy of the single wheel is 

P^ = m^gRS^ (A.13) 

A.2.2 Internal Mechanism and Spinning Flywheel 

I n the fo l lowing, the translational and rotational parts of kinetic energy are 

computed for the internal mechanism and f lywheel respectively, h is assumed to 

be very small compared w i t h / i , 

h ^ 0 (A.14) 

Thus, the flywheel's center of mass {E) coincides w i t h that of the internal mecha-

n ism (D). 

Let { x f , V f , Z f } be the center of mass of the internal mechanism and the flywheel 

w.r.t. X)o. The transformation f rom the center of mass of single wheel to the f ly-

wheel can be described: 

r n r n � • 
Xf X l\Ce 

yf = Y +RB hSe (A.15) 

zf Z 0 
_ • � L> J ^ • 
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Let Tj denote the translational kinetic energy of the f lywheel and the internal mech-

anism. 

‘ T} = \{mi + mf)[x} + y} + z}] (A.16) 

Di f ferent iat ing Eq. (A.15) and substi tut ing i t i n Eq. (A.16), Tj is obtained. Let Uf 

be the angular velocity of f lywheel w.r.t. ^ Q . We then have 

0 

Uf = R%UOB + Pa (A.17) 

• ^ « . 

where R% is the transformation f rom X)^ to Y1^. 
_. • 

CdS^^ - ¾ ¾ Cpa 

R% 二 Se Ce 0 (A.18) 

_ CeC^^ -C^aS$ Spa _ 

The rotat ional kinetic energy of the f lywheel is now given by, 

T} = \ [[Uf,fh,f + {Ufyflyyf + {uJfzfhzf] (A.19) 

The flywheel is assumed to be a un i fo rm disk, the pr inciple moments of inertia are 

I^^ f = Iyyf 二 ^ r 2 , I , , f = - m / r 2 . The potential energy of the flywheel and 

internal mechanism is 

Pf = (rrii + mf){RS0 - hCeS^) (A.20) 

A.2.3 Lagrangians of the System 
The Lagrangian of the system thus is 

L = [T^ + (T) + r ; ) ] - ( P ^ + P / ) (A.21) 

Substi tut ing Eqs. (A.11), (A.16), (A.19), (A.13) and (A.20) i n Eq. (A.21), we may 

determine L. There are only two control torques available on the system. One 
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is dr ive torque {ui) and the other is the t i l t torque (u2). Consequently, using the 

constrained Lagrangian method, the dynamic equation of the entire system is given 

• by 

M{q)q + N{q, q) = A^X + Bu (A.22) 

where M{q) G RJ^^ and N{q, q) € i?7xi are the inertia matr ix and nonlinear terms 

respectively. 

- 1 0 -RCaC0 RSaS0 -RCcc 0 0 1 ,. _., 
A{q) = {^A.Ad) 

[ 0 1 -RCpSa -RCaS0 -RSa 0 0 

.X 1 [ 0 0 _ 
y 0 0 

a r 1 0 0 「 1 
Ai ui 

q= |3 , A = ,B= 0 0 ,u = 
A2 U2 

7 L � ki 0 L J 

Pa 0 1 

e k2 0 
• J L ^ 

The nonholonomic constraints can be wr i t ten as, 

A{q)q = 0. (A.24) 

I t is noted that all elements ofthe last two columns ofthe matrix A are zero, because 

the nonholonomic constraints only restrict the mot ion of the single wheel, not the 

f lywheel. The last two columns represent the mot ion variables of the flywheel. 

Moreover, the matrix B only have three rows with nonzero elements since the input 

torques only dr ive the t i l t angle of the flywheel ( M and the rotat ing angle of the 

single wheel (7), so that the f i f th and the sixth rows of B are non-zero as they 

represent the t i l t ing mot ion of the f lywheel and the rotat ing mot ion of the single 

wheel respectively. Furthermore, when the single wheel rotates, the pendu lum 

mot ion of internal mechanism is introduced, thus 6 changes. Therefore, the dr ive 

torque of the single wheel w i l l also affect the pendu lum mot ion of the internal 

mechanism {0\ so that the seventh row of the matr ix B is not zero. 



Appendix B 

Similarity Measure 

Similar i ty measures have been appl ied on computer vision[43], image database re-

tr ieval [44] and 2d shape analysis [45]. However, these methods usual ly depend 

on particular properties of images and thus, is not appropriate for analyzing HCS 

trajectories. One simi lar i ty measure for val idat ing human control strategy mod-

els has been developed by Nechyba and Xu. This method is based on H idden 

Markov Mode l ( H M M ) wh ich has been used in many applications, especially a 

human control data, i t can be used to evaluate stochastic s imi lar i ty between two 

dynamic mult i -d imensional trajectories using H M M s analysis. 

A H idden Markov Mode l consists of a set of n states, interconnected through 

probabilistic transitions. Each of these states has some output probabi l i ty distri-

bu t ion associated w i t h it. A discrete H M M is completely defined by the fo l lowing 

tr ip let [26], 

A = {A,B,7T} (B.1) 

where A represents the probabilistic n x n state transit ion matr ix, B represents the 

1 X n output probabi l i ty matr ix w i t h 1 discrete output symbols, and ir represents the 

n- length in i t ia l state probabil i ty distr ibut ion vector. 

Denote 0 as discrete symbol of an observation sequence. The probabil i ty of the 

model A given for the observation sequence O is defined as P(A |0 ) and the proba-

b i l i ty that a given observation sequence 0 is generated f rom the model A is defined 

by P(0 |A) . The not ion of equivalent H M M s for two H M M s Ai and A2 such that 
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Ai 〜 A 2 , i f f P ( 0 | A i ) = P(O|A2 ) ,VO ( B . 2 ) 

let 

p.. = P^Oi\Xj)'^^% i j e { l , 2 } (B.3) 

where the probabi l i ty fo the observation sequences 0¾ given the model Xj, normal-

ized w i t h respect to the sequence lengths Ti. Then, the simi lar i ty measure is defined 

as 

糊 = 题 （B.4) 

The simi lar i ty measure can be used to validate the model-generated trajectories 

and the HCS. By this method, the best learned-model can be selected wh ich has 

highest scores of simi lar i ty measure for HCS controller. 
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