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Abstract

A single wheel, gyroscopically stabilized robot, called Gyrover, is anovel concept of
mobile robot which provides dynamic stability for rapid locomotion. It is a sharp-
edged wheel actuated by a spinning flywheel for steering and a drive motor for
propulsion. The spinning flywheel acts as a gyroscope to stabilize the robot. This
configuration conveys significant advantages over mult-wheel, statically stable ve-
hicles, including good dynamic stability and insensitivity to attitude disturbances;
high maneuverability; low rolling resistance; ability to recover from falls and am-
phibious capability. Thus, successful development of autonomous control of such
kind of robotic system will expand the range of robotic applications.

It is complicated and difficult to control the robot by classical control method be-
cause of its highly coupled, nonholonomic and underactuated nature. On the other
hand, humans are capable of mastering complex, skill control to the robot. Taking
advantage of human skill in teleoperation control of the robot, the goal of this thesis
is to study the learning and transferring human strategy in controlling the robot.
We apply the methodology in modeling the human control strategy (HCS) in this
thesis, developed by Xu and Nechyba, to abstract human skill in driving on the
robot. Then we develop a human-based controller for controlling such a dynami-
cally stable but statically unstable robot.

In the modeling, the selection of model input plays an important role for ex-
tracting human skills. There are many parameters and variables in input and out-
put space. It is impossible and inaccurate to include all variables in the modeling,
therefore, selecting a set of variables that contributes significantly to the HCS is one

of the most important tasks in the modeling. To this end, we develop two eval-
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uation methods to select suitable input variables to handle the selection problem
in different situations. In the first evaluation method, we first select the relevant
- state variables from the mathematical model of the robot as the HCS model input.
Then, we define a measure of sensitivity of each state variables with respect to the
operator’s control input to validate the importance of model input. In the second
evaluation method, we present a statistical method, factor analysis , to select the
suitable state variables. By using factor analysis, the variables can be classified into
different groups. Intra-group variables have higher correlations among themselves
while inter-group variables have lower correlation among themselves. Then, we
select the groups of variables which have high correlation with the human strate-
gies as the input variables. The advantage of this evaluation method is that prior
knowledge of the dynamic model of the system is unnecessary. By this feature, this
method can be further applied to any systems without any model for analyzing and
selecting input variables. Finally, we verified the HCS models through simulation,
and experimentally implemented the human-based controller for controlling the
“tilt-up” motion of the robot. We demonstrated that the robot can be automatically

recovered from falling.
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Chapter 1

Introduction

1.1 Robot Concept

In this thesis, we concern about a robot called Gyrover which was originally de-
veloped at Carnegie Mellon University and has been continuously studied here in
Hong Kong. Gyrover is a novel, single-wheel robot that is stabilized and steered
by means of an internal, mechanical gyroscope. Figure 1.1 shows the latest version,
the third prototype of Gyrover called Gyrover III. The robot was designed with
equipping numerous inertial sensors and wireless communication. It includes a ra-
dio system for remotely control, and an on-board computer and sensors to permit
data-acquisition and remotely control. It is built with a light-weight bicycle tire and
a set of transparent domes so that the entire system is enclosed and thus, protected

within the wheel.

This configuration conveys significant advantages over multi-wheel, statically

stable vehicles, including
¢ good dynamic stability and insensitivity to attitude disturbances;
¢ high maneuverability;
¢ low rolling resistance;

e ability to recover from falls;
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Figure 1.1: The third prototype of Gyrover

e amphibious capability.

The robot concept is based on the principle of gyroscopic precession as exhibited in
the stability of a rolling wheel. Because of its angular momentum, a spinning wheel
tends to precess at right angles to an applied torque, according to the fundamental

equation of gyroscopic precession:
T=J wxQ (1.1)

where w is the angular speed of the wheel, {2 is the wheel’s precession rate, normal
to the spin axis, | is the wheel polar moment of inertia about the spin axis, and T
is the applied torque, normal to the spin and precession axes. Therefore, when a
rolling wheel leans to one side, rather than just fall over, the gravitationally induced
torque causes the wheel to precess so that it turns in the direction that it is leaning.
the robot supplements this basic concept with the addition of an internal gyroscope
— the spinning flywheel — nominally aligned with the wheel and spinning in the
direction of forward motion. The flywheel’s angular momentum produces lateral
stability when the wheel is stopped or moving slowly. Figure 1.2 illustrates the
concept of gyroscopic precession.

Potential applications of the robot are numerous. As it can travel on both land
and water, it may find amphibious use on beach or swampy area, for general trans-

portation, exploration, rescue or recreation. Similarly, with appropriate tread, it
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Vehicle Path

Radius of curvature

T=J wx

Top View

Rear View Side View
Figure 1.2: Principle of gyroscopic precession.

should travel well over soft snow with good traction and minimal rolling resis-
tance. As a surveillance robot, the robot could use its slim profile to pass through
doorways and narrow passages, and its ability to turn in place to maneuver in tight
quarters. Another potential application is as a high-speed lunar vehicle, where the
absence of aerodynamic disturbances and low gravity would permit efficient, high-

speed mobility.

1.2 Motivations

The robot control is challenging due to the special characteristics of the robot[2].
First, it is a highly coupled dynamic system between the wheel and the flywheel.
Second, it is subject to two nonholonomic constraints due to the rolling constraints
and underactuation in the rolling direction. Third, it is inherently unstable in the
lateral direction. Preliminary studies in the research on the modeling and control
of the robot has been conducted. However, the model and the controller in [2] rely
on the assumption that the robot rolls without slipping. Thus, some kinds of robot
motions cannot be analyzed by using this model, such as “tilt-up” or sliding mo-

tions.
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In the practical point of view, it is also difficult to model the system precisely be-
cause it largely depends on various unmodeled parameters, such as friction. These
parameters are relatively more important in the dynamically stabilized system dis-
cussed here than a conventional static or quasic-static system, like a 4-wheel vehi-
cle. Moreover, the existence of sliding motion of the robot makes it more difficult
to obtain a complete model.

On the other hand, humans are capable of mastering complex, control skills for
the robot. A human operator can drive the single wheel fluently after learning for
a while. Thus, we naturally come up the idea of learning human control strategy
(HCS) to abstract the operator ‘s driving skill and develop a human based con-
troller for controlling the robot.

We can train different HCS models for carrying out different tasks. Thus, mod-
eling HCS has potential impact in a number of applications ranging from autonomous
control and teleoperation to human-robot coordination and human-machine sys-
tem simulation. For example, the Intelligent Vehicle Highway System (IVHS), cur-
rently being developed through massive initiatives in the United States, Europe,
and Japan[30], envisions automating much of the driving on our highways. The re-
quired automated vehicles will need significant intelligence to interact safely with
variable road conditions and other traffic. Modeling human intelligence offers one
way of building up the necessary skills for this type of intelligent machine.

Although modeling HCS has many potential applications, it introduces a chal-
lenging problems in implementation: input selection problem - Human control
data are acquired by sensors for modeling HCS. There are numerous sensor vari-
ables and their corresponding derivatives available from the systems,e.g. Euler
angles (roll-pitch-yaw) of the robot and their corresponding angular velocities and
angular accelerations. What variables should we select as model input?

In this thesis, our goal is to design a human-based controller for the robot. For
effective modeling HCS, the robot learns the correct behaviours by observing suit-
able variables from the human control data. In our approach, we apply cascade
neural network to model human skill through learning experimentally by suitable

input selection.
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1.3 Related Work

There are some researches on the single wheel robot because it is a novel concept,
only a few studies in modeling and control of the robot have been carried out. Xu
and Au [2][5][10][11] have done on modeling and control of Gyrover. They de-
veloped a mathematical model for Gyrover and designed a straight line tracking
controller. Also, Xu and Sun [12] has worked on stabilization of Gyrover on an
inclined plane by a back-stepping controller. These studies solely rely on analyti-
cal approach and depend on the assumption that the wheel rolls without slipping.
some motions are invalid to this assumption. On the other hand, HCS controller
has potential to be developed as a controller in this situations because modeling
HCS is a general methodology to abstract human skill and do not depend on this
assumption. It can be applied on different cases provided that the operator is able
to control Gyrover in these cases.

Early research in modeling human skills was based on control theory paradigm,
which attempted to model in the loop as a simple feedback control system [41]. By
that approach, human was often modeled as a simple time delay in the overall
human machine system. In recent works, different approaches have been done to
learn more advanced human skills. Fuzzy control is one type of approaches. In
fuzzy control schemes[36][37], human experts are asked to specify “if-then” con-
trol rules with fuzzy linguistic variables. And it has been demonstrated for auto-
mobile steering and ships helmsmen [42]. Although fuzzy system is well suited
to apply for control tasks with few inputs and outputs, they do not scale well to
the system with high dimensional input space and output space. It means that the
“if-then” rule-based is too complex to handle the input-output relationship. Asade
and Liu derived control rules from human input pattern and corresponding out-
put actions to a deburring robot[13][14]. They used Lipchitz ‘s condition to verify
the consistency of the human control data. But they only implemented the method
on the statically stable system with few input variables. Yang, Xu and Chen[5]
applied Hidden Markov Models (HMM) to open-loop skill learning in the telel-
operation control of a space system. Nechyba and Xu [1][6][7] applied machine
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learning techniques and statistical analysis towards abstracting models of human
control strategy. The learning architecture is based on flexible cascade neural net-
work with node-decoupled extended Kalman filtering. They also validated the
models by similarity measure, which measure the level of similarity between mult-
dimensional, stochastic trajectories .

The researches so far has not addressed the input selection problem as we men-
tioned in the above section. Most recent work in learning from human data dealt
with either action skills, quasi-static skills, or high-level abstraction of human skill
(e.g., assembly). People usually interested in learning methodology rather than
input selection. Since most intelligent control methods applied on the problems
that already had a solution by classical control before. e.g. neural network ap-
plied on control a robot manipulator [39] and fuzzy applied on control an inverted
pendulum[40]. Therefore, the important variables for controlling the systems are
already well-known. People can directly apply the intelligent methods with al-
ready well-known input variables. However, in our case, we are still developing
the control system of the robot and we only partially understand the mechanism of

the robot , and therefore, we need to find the variables for model input.

1.4 Overview

In our project, we focus on development of selection methods to analyze and select
suitable state variables for HCS model input. We experimentally implement HCS

model with input selection method on the robot. The thesis is organized as follows:

e Chapter 2: We will illustrate the general frame work of the single wheel robot.
We will first describe the mathematical model of the single wheel robot which
has been developed by Xu, Au and Brown [2][9][10]. Then, we will introduce
the system development of the third prototype of the robot for automatic con-
trol. We will present hardware component and the software design of the

robot.
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e Chapter 3: In this chapter, we describe the methodology to abstract human
control strategy(HCS). Then, we implement the methodology in controlling
the robot. We first record the operator’s control skills and the corresponding
states of the robot when he drives the robot. Second, we use these data to train
HCS model by using the flexible cascade neural network learning architecture
with node-decoupled extend Kalman filtering. Third, we transfer the HCS
model in controlling the single wheel robot. We experimentally demonstrate

that the robot can be automatically controlled by the Human-based controller.

e Chapter 4: we develop two methods to select suitable input variables to
handle the selection problem in different situations. In the first evaluation
method, we first select the relevant state variables from the mathematical
model of the robot as the HCS model input. Then, we define a measure of
sensitivity of each state variables with respect to the operator’s control input
to validate the importance of model input. In the second evaluation method,
we present a statistical method, factor analysis , to select the suitable state vari-
ables. By using factor analysis, the variables can be classified into different
groups. Then, we select the groups of variables which have higher correla-

tion with the human strategies as the input variables.



Chapter 2

Single Wheel Robot

The single wheel robot can be considered as a single wheel actuated by a spinning
flywheel attached to a two-link manipulator at the wheel bearing and drive motor
[2]. The robot uses the spinning flywheel, as a gyroscope, to stabilize itself. The
single robot have several advantages over multi-wheel, statically stable vehicle.
The advantages include good dynamic stability and insensitivity to attitude distur-
bances, high maneuverability, low rolling resistance and ability to recover from fall.

In this chapter, we will first describe the mathematical model of the single wheel
robot which has been developed by Xu, Au and Brown [2][9][10]. Then, we present
the system development of the robot for automatic control including hardware

component and the software design of the robot.

2.1 Mathematical Model

In this section, we present the simplified model of the single wheel robot. For
details, see Appendix A or [2] for the description of the mathematical model of
the robot. The following description in this section is the work done by Xu et. al.

[2][9][10].



2.1 Mathematical Model 9

2.1.1 Coordinate Frame

Figure 2.1 illustrates the general coordinates(X,, Y, a, 8,7) for the single wheel
fobot. Four coordinate frames are defined as follow: (1) the inertia frame ),
(2) the body coordinate frame 3" {zB,yB, 28}, (3) the coordinate frame of internal
mechanism 3. {zc, Yc, zc}, whose center is located at point D, and whose z-axis
is always parallel to zp, and (4) the flywheel coordinates frame Y& {%a:sYas Za},
whose center is located at the center of the flywheel, and whose z-axis represents
the axis of rotation of the flywheel. Link /; is rotated about the zp-axis by a swing
angle, 0. The swing angle is zero when link /; is parallel to zp axis. The flywheel is
tilted about the y.-axis by the tilt angle , 8, € (0, 7). Note that y, is always parallel
to y.. Therefore, the configuration of the single wheel robot can be described by
seven generalized coordinated (X, Y, @, 8,7,0, Ba). The definition of model vari-

ables is shown in table 2.1.

Figure 2.1: Definition of coordinate frames and system variables
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Table 2.1: Variables Definition

a,0q Precession angles of the wheel and for the flywheel, respec-
tively, measured about the vertical axis

B Lean angles of the wheel

Ba Tilt angle between the link /; and z,-axis of the flywheel

Y Ya Spin angles of the wheel and the flywheel, respectively

6 Angle between link [; and z g-axis of the wheel

My, Mi,Mf

m

R,r

Izzw, Iyywy Izzw
Tezfodyysodezg
Hs, Hg

Mass of the wheel, mass of the internal mechanism and mass
of the flywheel respectively

Total mass of the robot

Radius of the wheel and the flywheel respectively

Moment of inertia of the wheel about x, y and z axes
Moment of inertia of the flywheel about x, y and z axes

Friction coefficient in yaw and pitch directions, respectively

ug, U1 Drive torque of the drive motor and tilt torque of the tilt mo-

tor, respectively

2.1.2 Equations of Motion

The equation of motion can be derived by calculating the Lagrangian L = T — P of
the system, where T and P are the kinetic energy and potential energy of the sys-
tem respectively. The system can be divided into three parts: 1) wheel, 2) internal
mechanism and 3) spinning flywheel.

The spinning rate of the flywheel always keeps constant because it is reluc-

tance to change the spinning rate due to the large moment of inertia, thus torque

Side View

Figure 2.2: The basic configuration of Gyrover
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acting on the spin motor can be approximately constant. Thus, we only concern on
two generalized force acting the single wheel robot. One is drive torque (uo) and
the other is the tilt torque (u;). Consequently, using the constrained Lagrangian

method, the dynamic equation of entire system is given by,

M(q)§ + N(g,4) = A"A + Buy; 2.1)

Where M(q) € R”%7 and N(q,q) € R™! are the inertia matrix and nonlinear terms
respectively.

(1 0 —RcacB RsasB —Rea 0 0
Ag) = (2.2)
i 0 1 —RecBsa —Rcasp —Rsa 0 0
[ x ] 0 0|
Y 0 O
a 0 0
A] uo
q=| B ,/\=[ ],B= 0 0 ,u=[ ]
/\2 u1
Y kl 0
Ba 0 1
L 6 ! I ka2 O |
The nonholonomic constraints can be written as,
A(q)g = 0. (2.3)

It is noted that the last two columns of matrix A are all zero as the nonholonomic
constraints only restrict the motion of the wheel, not the flywheel. The last two
columns represent the motion variables of the flywheel. Moreover, the matrix B
only have three rows that are nonzero since the input torques only drive the tilt angle
of the flywheel (8,) and the rotating angle of the wheel (), so that the fifth and the
sixth rows of B are non-zero as they represent the tilting motion of the flywheel
and the rotating motion of the wheel respectively. Furthermore, when the wheel
rotates, the pendulum motion of internal mechanism is introduced, thus 6 changes.
Therefore, the drive torque of the wheel will also affect the pendulum motion of

the internal mechanism (), so that the seventh row of the matrix B is not zero.
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2.1.3 Model Simplification

Practically, /; and [3 are assumed to be zero, thus mass center of flywheel and the
intemal mechanism are coincident with the center of the robot. Moreover, the pen-
dulum motion of the internal mechanism is sufficiently small to be neglected, thus
0 equal to zero. The spinning rate of the flywheel  is assigned to be constant. Based

on the previous derivation, the normal form of the mathematical model is

M(q)§ = F(g,9) + Bu 24)
where ¢ = [, 8,7, ﬂa]T/
[ My 0 Mis 0 ]
M = 0 Ippf+ Ioow+ mR? 0 Looy
M13 0 2Ia::cw + mR2 0 ,
] 0 Iz:cf 0 Ixxf I

F= [F17F21F3,F4]T9

T
0 010 U
B= y U=
0 001 (751

My = I+ Logw + InowCh + mR?CE + Lz C g,

Myzs = 2I.;,Cs+mR*Cp

Fi = (Isgw+mR*)Sop6f + Iy 15288.64B + Ing 5286.Pa
+2100SpBY + 2152155, P%a + 21,458 . BaYa — Hs:

Fy = —gmRCs— (Isgw + mRY)CpSp6> — InssCp.5,Sp .07
—(2I45w + MR?)Sp&y — 2152558,8,0%a

Fs = 2(Izzw + mR?)Spap

Fy = —I;z;Cpp.Sp,6.4" — 2LacsSppattVa

where M(q) € R*** and F(q,q) € R**! are the inertial matrix and nonlinear term

of the single wheel robot respectively. The description of the notions shows in the
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Gyro Speed Controller
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Drive Motor and Encoder

Figure 2.3: Internal configuration of single wheel robot.

table 2.1. For details, the appendix will describe the mathematical model of the

Gyrover.

2.2 Hardware Descriptions

Compared with the previous two prototype of the robot, the third version was de-
signed on a larger scale to equip numerous inertial sensors and a computer (486
PC) for data acquisition and control. The single wheel robot was built with a light-
weight bicycle tire and a set of transparent domes so that the entire system is en-
closed. The robot travels up to 10 mph and runs about 25 minutes per charge of its
NiCad batteries. An internal gyroscope (high spinning flywheel) is installed and
is maintained a constant angular velocity (approximately 1500 RPM) by servo con-
trolled motor. Overall weight is about 7 kg.

In this section, the main components of the hardware will be described as
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follows: actuators, sensors, communication subsystem and computer subsystem.

Then, we will overview the structure of the robot’s hardware.

2.2.1 Actuators

The robot consists of three actuators. They are

1. Drive motor ug.- It drives the wheel and thus, moves the robot forward and

backward.

2. Tilt motor u, .- It tilts the angle of Gyro and thus, generates a torque, normal

to the spin and precession axes.

3. Spin motor ug.- It spins the flywheel and thus, increases the angular momen-

tum of flywheel.

In our experiments, the speed of spin motor is always kept at constant since the
operator usually controls the motors ug, u1 via two joystick of the radio transmitter
(figure 2.4). operator can control the uy by pressing the other bottom on the radio

transmitter. For convenience, we usually set maximum speed of flywheel.

2.2.2 Sensors

A number of on-board sensors have been installed on the the robot to provide infor-

mation about the state of the machine to the on-board computer. They can measure

Gyro tilt angle

Tilt servo current

Drive motor current

¢ Drive motor position/speed

Gyro speed
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e Acceleration (three axes)
e Angular rate (three axes)
e Tilt angle (two axes)

All these signals, plus the control input from the radio transmitter, can be read by
the on-board computer. The signals may be in the form of analog input quadrature
(e.g. encoder) inputs; pulse frequency (e.g. Hall sensors); or pulse-width modu-
lated signal (standard R/C signals).

The tilt potentiometer is to measure the tilt angle of the gyro. The two pulse en-
coders are to measure the spinning rate of flywheel and the single wheel. The two
gyros and accelerometer are to detect the angular velocity of yaw, pitch, roll, and
acceleration respectively. A 2-axis tilt sensor is developed and installed for direct
measuring the leaning and pitch angle of the robot. The two current-sense resistors
are to measure tilt servo current and drive motor current. These sensors and others
electronic devices are essential for automatic control.

Some sensors such as tilt sensor can acquire accurate, low noisy data. Mean-
while, some sensors such as accelerometer acquire noisy data. Figure 2.7 shows

some data acquired by sensors.

2.2.3 Communication Subsystem

The communication subsystem is composed of radio links which transmit data and
commands between the robot and the ground station or the radio transmitter. The
robot can be remotely controlled by these two remote consoles (Figure 2.4). For the
radio transmitter, human operator remotely controls the robot by the two joysticks
of the transmitter. He/she controls the drive speed and tilt angle of the robot via
the transmitter. The ground station is to download the sensor data file from the
on-board computer and start/terminate any program in the robot. For example,
human operator controls the robot via the radio transmitter and then, the ground
station downloads the sensor data file to the laptop so that we can analyze the

real-time motion.
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Figure 2.4: Communication equipments: radio transmitter (left) and laptops with

wireless Modem (right).

2.24 Computer Subsystem

A 486 computer embedded on the robot to provides enough computation power for
complicated task. The computer also responds for integrating other components of

the robot and thus, the circuit board contains
e interface circuitry for the radio system and servos
e logic components to control power of the actuators
e interface for the on-board sensors

All sensors and actuators are connected to the on-board computer. Figure 2.5 shows

the hardware architecture of the robot.

2.3 Software Descriptions

The complexity of the robotic system being developed requires a software architec-
ture where different subsystems can run independently and in parallel, while able
to exchange information an activate or inhibit each other. Therefore, in our robotic

system, a real-time operating system, QNJX, is used to run HCS-based controller
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Figure 2.5: Hardware Architecture of the single wheel robot.

so that the controller program can access on hardwares quickly and coordinates
well on system resources. In addition, client-server programming architecture is

applied so that any applications can be easily embedded on the system.

2.3.1 Operating System

QNX, a real-time microkernel operating system is used in our system. QNXis a
microkernel which do not contain device drivers. In fact, a device driver is un-
necessary for a program to communicate with hardware device. If a user program
is given sufficient privilege, it can directly access memory and I/O ports, attach
hardware interrupt service routines, etc. This makes writing hardware interface
software very easy. Moreover, QNX has very low context switch times (6 . on a 486

DX2/66) and low interrupt latency (7 u on a 486D2/66). See [31] for more details
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about the architecture of QNX.

HCS
Controller
Program

User mode

Kernel mode

Figure 2.6: Software Architecture of the System

2.3.2 Software Architecture

The software system contains three main programs. One program called HCS con-
troller and the other programs are called sensors server and communication server.
The sensor server is to acquire the system state by the sensors and control the actu-
ators. The communication server is to provide wireless communication interface.
The HCS controller is responsible for computing complicated task and accessing
hardware components via sensor server and communication server.

The programs of the robot can be classified into two groups. Any application
including HCS controller belongs to user mode. Other programs, which can access
hardware components, belong to kernel mode. Sensor server and communication
server belong to kernel mode. Figure 2.6 shows the software architecture of the sys-
tem. Application program must get permission from the kernel when it accesses
any hardware component. The advantage of this architecture is that it provides
data abstraction and protection of the hardware components. Therefore, any faulty
accessing on hardware components by application programs is forbidden. More-

over, any application program can be easily embedded on the system because it
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can access hardware resources more conveniently without considering hardware

control procedures such as timer interrupt.
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Figure 2.7: Some sensor data including state variables and control variables of

training strategy are illustrated.



Chapter 3

Human-based Control

In this chapter, we first describe the methodology to abstract human control strat-
egy(HCS). The frame work was developed by Xu and Nechyba [1][6][7]. Then,
we model human control strategy (HCS) of the single wheel robot and transfer the
HCS model in controlling the robot. We record the operator’s control skills and the
corresponding states of the robot when he/she drives the robot. We use these data
to train HCS model by using the flexible cascade neural network learning archi-
tecture with node-decoupled extend Kalman filtering. Then, we transfer the HCS
model in controlling the single wheel robot. We experimentally demonstrate that

the robot can be automatically controlled by the Human-based controller.

3.1 Why Human-based Control

Owing to its nonholonomic, underactuated and laterally unstable characteristics[2],
it is very difficult to design a model-based controller that ensures continuously tra-
jectory tracking. Furthermore, the unmodeled parameters such as friction are rel-
atively more important in the dynamically stabilized system discussed here than
a conventional statically stable system, like a 4-wheel vehicle. Although, a mathe-
matical model and model-based controller have been developed for stability action
and path following[2]. The model and the controller solely rely on the assumption

that the robot rolls without slipping. Thus, some kinds of robot motions cannot be

21
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analyzed by using this model, such as “tilt-up” or sliding motions. In the tilt-up
motion, the robot initially lies on the ground. Then, the robot can be “tilt-up” by
changing the angular momentum of the flywheel. Because the robot do not roll at
the beginning, it violates the above assumption.

On the other hand, humans are capable of mastering complex, control skills
on the robot. A human operator can control the robot fluently after operating the
robot for a while. Thus, we naturally come up the idea of learning human control
strategy (HCS) and develop a human-based controller for the robot. From previ-
ous works[1][6][7], modeling HCS can abstract human control skills and transfer in
controlling a vehicle. Moreover, human-based controller is a task-based controller
that is derived from empirical data of the task, we can develop different human-

based controllers for performing different tasks.

3.2 Modeling Human Control Strategy

The following descriptions in this section are the work developed by Xu and Nechyba
[1][6][7].

3.2.1 Human Control Strategy

Generally speaking, human skills can be classified into two groups: (1)action skill
and (2) reaction skill. Action is the state or process of doing or acting and, the
associated skill is called action skill. The main characteristic of action skill is that
sensory feedback is unnecessary in the process, or sensory information is unavail-
able from observation. On the other hand, the characteristics of reaction skill is
much more complex. Sensor, decision-making and feedback are necessary for exe-
cuting reaction skill successfully. Kicking a ball is an example of action kill. Driving
a car is an example of reaction skill, where the human closes the feedback control
loop. Human control strategy we study in this thesis is a subset of this type of re-
action skill. Human control strategy lies between low-level feedback control and

high-level reasoning, and has numerous potential applications with a reasonably
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well-defined numeric input-output representation.

Human intelligence is complex and difficult to understand at all. We cannot
analyze human intelligent analytically via existence of scientific knowledge. There-
fore, Modeling human control strategy must rely on observation or learning from
empirical data rather than analytical derivation. Because an individual HCS is
unique, complex, and unknown properties in nature, we require a learning paradigm
which can cope with many difficult challenges.

In the modeling, some factors such as structure, order, granularity and con-
trol delay inherent in a particular individual’s internal controller are necessary
to be considered. However, since each person has his/her unique characteristic,
these controller properties can vary substantially from one individual to the others.
Structure refers to the functional form which can best approximate the underlying
control strategy; order refers the extent to which an individual’s control strategy
depends on prior histories of sensor inputs and control action outputs; and granu-
larity and control delay quantify the minimum controller time resolution and reac-
tion time for a given individual, respectively.

Moreover, human control strategy is characterized by dynamic and nonlinear
natures. Humans are not machines and their actions are prone to errors and grad-
ual changes over time. In addition, human control actions can vary smoothly as
well as discontinuously with sensory inputs. Thus, human control strategy is a
nonlinear and discontinuous mapping from present and prior sensory inputs and

control actions, to future control action outputs.

3.2.2 Neural Network for Modeling

Here we introduce a continuous learning architecture for modeling human con-
trol strategy. This architecture is called the cascade neural network architecture
(CNN)[16][17]. Cascade neural networks can learn complex, nonlinear HCS map-
ping from input-output data. Unlike most conventional neural network, the struc-

ture of cascade neural network is not fixed before learning begin. The structure of
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cascade neural network evolves in learning process. Moreover, the cascade learn-

ing algorithm consists of both aspects of function approximation-the selection of

an appropriate functional form and the adjustment of free parameters in the func-

tional model to optimize some error criterion. These features are significant for

modeling HCS because few prior knowledge is known on the human controller

structure.

The cascade neural network can adjust the size of the neural network as part of

learning by the following two features.

e Feedforward cascade architecture: Hidden units of the network are automat-

ically added one at a time to an initially minimal network.

e Learning algorithm: It creates and installs new units to reduce the root mean

square error e,m,s between model output and the source human control out-

put.

3.2.3 Learning Procedure

Modeling proceeds in several steps.

1.

At the beginning, the network is only direct input-output connections. There

is no hidden unit in the network.

These weights are trained to reduce the ens. These nodes and weights de-

scribe any linear relationship between the inputs and outputs.

When the e,ms decreases slowly enough, the first hidden unit is added to
the network from a pool of candidate units. Using the quickprop algorithm ,
these candidate units are trained independently and in parallel with different

random initial weights.

. The best hidden unit is selected from the pool and installed in the network,

after no more appreciable error can be further reduced.

The weights of hidden unit input are frozen while the weights to the output

are retrained.
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6. When the e,,; is sufficiently small for the training sets, or the number of the
hidden units reaches as specified maximum number, the modeling procedure

stops, otherwise repeat step 2.

&

[

(D Input Unit @ Output Unit @ Bis Unit (O Hidden Unit

Figure 3.1: Learning procedure of cascade neural network

The process is repeated until the algorithm succeeds in reducing the erms suffi-
ciently for the training set or the number of hidden units reaches a specified max-
imum number. Figure 3.1 illustrates, for example, how a two-input, single-output
network grows as two hidden units are added. Note that a new hidden unit re-
ceives as input connections from input units as well as all previous hidden(hence
the name “cascade”). A cascade network with n; input units (including the bias

unit), n, hidden units, and no output units, will have n,, connections where,
Nw = NiNo + nr(ni + o) + (nh — 1)np /2 (3.1)

Recent theorems done by K. Funahasi[22] and K. Hornik, et. al.[23] proven that
standard layered neural networks are universal function approximators. These re-
sult can be extended to the cascade network topology. Because a cascade neural
network with k hidden units with some weight connections equal to zero is a spe-
cial case of a multi-layer feedforward neural network with k hidden units arranged
in m layers, fully connected between consecutive layer. That is why cascade neural
network is used to obtain the model of human control strategy.

The prior assumptions of the functional form of the model, that is structure of

neural network, are relaxed by the cascade architecture. These assumptions can be
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further relaxed by allowing new hidden units which have variable activation func-
tions. Different variable activations are assigned to the candidate units. During
the candidate training, the best candidate which can reduce the most e,;ms Of the
training data are selected and installed in the network. Therefore, the candidate
unit with the most appropriate activation function at that point during training is
selected. Typical alternatives to the sigmoidal activation function are the Gaussian
function, Bessel functions, and sinusoidal functions of various frequency.

For training the multi-layer neural networks, the back propagation algorithm
is usually employed. The main weakness of this algorithm is that the convergence
speed is slow and thus, the corresponding learning time is long. The training time
may last for hours or even days when the system is complex, high-dimensional
and the resultant network has large number of nodes. The quickprop algorithm is
employed to improve the speed of training time over standard back propagation
algorithm. It is still a gradient descent based algorithm, which although simple,
can require many iterations until satisfactory convergence is reached [15]. Here,
the standard cascade learning is modified by replacing the quickprop algorithm
with node-decoupled extended Kalman filtering (NDEFK), which has better con-
vergence properties and faster training than gradient-descent techniques for multi-
layer feed-forward networks[6][18].

Computational and storage complexity can be reduced by NDEFK as it decou-
ples weights by nodes so that only the interdependence of weights feeding into the
same units are considered. In this formulation, the weights in the neural network
are considered to represent the state of a nonlinear, finite-dimensional, discrete-

time system. The resulting weight update recursion is given by

whyy = wh + {(Wh)T (Akér) Y 3.2)

where w}, is the input-side weight vector of length m; at iteration k, for unit 7 €
{0,1,...,n0}, where i = 0 corresponds to the current hidden unit being trained,
and i € {1,...,no} corresponds to the ith output unit. & is the ng-dimensional

error vector for the current training pattern, ¢ is the no-dimensional vector of par-
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tial derivatives of the network’s output unit signals with respect to the ith unit’s

net input, and

¢ = Ptk (3.3)
no -1

4 = (I+Z{(§i)’-"¢i}(¢i(¢iﬂ‘)> (3.4)
1=0

i = P {0 (Ai) k(1) T} + 0l (3.5)

where {fc is the ng-dimensional input vector for the ith unit, P,i is the m; X m;
approximate conditional error covariance matrix for the ith unit, and 7 is a small

number (0.0001) which alleviates singularity problems for P;[18].

Network Model

The class of models we used in this thesis is restricted to static mapping between
inputs and outputs. Since human control strategy is dynamic in nature, HCS model
depends not only the current sensory information but also previous sensory data.
For example, figure 3.2 illustrates how this is done for a SISO system of the form. In
general, any unknown dynamic system can be approximated by providing a time
history data[28].

We can approximate a dynamic system by a difference equation of the general

form,

(3.6)

(s 1)r) =T ( u(kr),u((k—1)7),...,u((k —n)71), )

:L'((k+1)T),:1:(k'r),...,:1:((k—m)7')

where I'(-) is some arbitrary unknown function, u (k7) is the control vector, z (kT)
is the system vector at time instant k and 7 indicates the controller resolution or
granularity. The order of the dynamic system is given by the constants n and m,

which may be infinite. In this thesis, we assignn = 4 and m = 3.
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(k)

u(k+1)

Cascade Neural Network

Figure 3.2: A dynamic system can be mapped into a static cascade neural network

by providing a time history of data as input to the network

3.3 Task Descriptions

In our experiment, we study the “tilt-up” motion of the single wheel robot and
hope to develop a human-based controller for automatic “tilt-up” motion. Our
goal of “tilt-up” is to have : lean angle § ~ 90°. We want to demonstrate that HCS
model can abstract human tilt-up skills and corresponding human-based controller
is capable of controlling the robot with similar skills.

In our system, there are three control variables, ug controlling rolling speed of
single wheel 4, u; controlling the angular position of flywheel 3, and u2 control-
ling spinning rate of flywheel v,. We do not model u, simply because the control
variable u; is usually kept at constant.

At the beginning of the task, the states of the robot is shown in figure 3.3 (a).
Then, the robot starts to roll as ug increases. By changing the angular momentum of
the flywheel as shown in figure 3.3 (b), a tilting torque is acted on the system. As a
result, the robot can tilt up as shown in figure 3.3 (¢). The human skill in controlling

the tilt-up motion strategy is shown in figure 3.4.
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flywheel

(a) (c)

Figure 3.3: The interaction of the Wheel and flywheel during tilt-up motion.

Figure 3.4: Tilt-up motion strategy of Gyrover.

3.4 Modeling HCS in Controlling the Robot

Modeling HCS means to model the human operator’s control action in response to
the system real-time feedback. That is why we use the cascade neural network to
construct the mapping between the dynamic human control action (control com-
mands) and the system response (state variables). A dynamic HCS can be approx-
imated by the difference equation[28]. Thus, the human control strategy Uy, at the
time instant k + 1 can be approximated by equation 3.6. The equation 3.6 considers
the previous state variables and control commands because these previous vari-
ables are significant for human operators to control the robot. The cascade neural
network with extend node-decouple Kalman filtering is employed to abstract the
input-output relationship in the equation 3.6.
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Figure 3.5: Human operator tilts up the Figure 3.6: Human operator tilts up the

single wheel robot at the beginning . single wheel robot at the end.

3.4.1 Model Input and Output

The model input is defined as the combination of present and prior state variables
and control commands (see section 3.4). The model output is the present control
commands. Here, we want to model human control skill on drive motor uy and
tilt motor ;. Then the control commands for model input are 4o, u; and we have
to select a set of data out of all available sensing variables. For convenience, the
set of state variables for model input is called input vector. And the selected state
variable is called input variable. In selecting potentially relevant state variables,
we first would like to select a set of variables which are important for an operator
to make a decision. Second, they must be measurable using the on-board sensors,
and at the same time, it must be visually observable for the operator. In fact, there
are over 12 sensor values available combining their derivative. Therefore, some of
data must be redundant because a operator is impossible to make decision based
on numerous state variables. Preliminarily, we intuitively select the state variables
{B, Ba, c, B,4, Ba} as input vector, based on the mathematical model in [10] and the

driving experience for the robot. Then, we use these input-output data to train HCS
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models.

"3.4.2 Human-based Controller

We use the learning rule (equation 3.5) to train HCS model with the empirical input-
output data. The learning procedure is terminated if the output e;ms is sufficiently
small. The resultant model is a (no + np) X (n; + np) matrix. To develop a human-
based controller from HCS model, the model matrix is embedded in the controller.
The controller requires the present and previous state variables and control com-
mands as input. The output of the controller are control commands. Figure 3.7
shows the control diagram of the robot. By this method, we train different HCS
models and transfer to human-based controllers. Then, we use these controllers to
control the robot. In next section, we will experimentally demonstrate the perfor-

mance of these controllers.

present system state

—> %ﬂ —p-| Gyrover B

previous human control

previous system state

Figure 3.7: System diagram of human control strategy model.

3.5 Result and Discussion

Figures 3.9 - 3.15 show the experimental results for the automatic “tilt-up” motion
by using human-based controllers. In the figures, four important variables (8, Sa,
uo, uy) are listed in the examples where f3 is the lean angle representing target of
the mission, 3, is the tilt angle of flywheel generating main tilt torque force for sta-
bilization, and ug and u; are the drive torque and tilt torque respectively

In each experiment, the goal can always achieve: § ~ 90° even if the initial an-
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gles and the execution time varies. It demonstrates that the tilt-up skill we selected
for learning is valid. The learned control input is capable of controlling the dynam-
 ically stabilized robot.

In our experiment, it is difficult to keep the initial lean angle j to be exactly
same as that when human manually control it. However, the result seems to be
insensitive to the slightly different initial lean angles we set. The perturbation of
the lean angle under the learned control input is relatively small. Similar case can
be found in the figures 3.10-3.11, the lean angle 3 are overshooted over 10 degrees.
It is interesting to note that ug becomes small while u; become large in the figure
3.11 . When the tilt torque increases significantly, uo could reduce the tilt torque,
based on equation 1.1. It shows the learned HCS model have a high adaptability
for stabilizing the system by reducing overshooting.

From the results of the learned model, the system is unstable initially, especially
on the figures 3.13,3.14,3.15. There are two major reasons for the unstable motions.
Firstly, the initial position is largely different from that in the training phase. The
range of initial lean angle § of the learned model is within [10°, 30°] while the initial
lean angle 3 of the source human data is ~ 18°. It is difficult for the HCS controller
to classify the situations and make a suitable reaction in the initial phase. Secondly,
sliding occurs as the tyre of the robot does not touch on the ground initially. It is
one of weakness of the HCS controller as no sensor is available to detect the fric-
tion on testing platform. Since our testing environment is located at outdoors, it
is very difficult to guarantee that the friction remains constant in the whole testing
region. Considering the figures 3.13,3.14,3.15, the control vector ug, u; fluctuate in
the initial state and also make the wheel and flywheel vibrate. Nevertheless, the
single wheel robot is unstable at that moment, the learned model could control the
motion properly and the goal is achieved finally. Thus it shows that HCS controller
has learned the human tilt-up skill and transferred in controlling the robot.

In the experiments, the total time of the learned models for completing the task
are slower than that of the source human data. The average total time for the
Jearned models are approximately around 15s while the total time of the training

data is around 6.5s. It is because the HCS controllers spend lot of time for com-
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puting. Sensor data are acquired at 50ms sampling rate when the human operator
controlled the robot. When the learned model is used, the running clock cycle is
* set to 100ms sampling rate in order to have enough time for computing the HCS
controller. Thus, the response time of the learned model seems to be slower. More-
over, acquired data contain different degree of noise. The HCS controller could not
classify the situation easily and make a suitable response. Similarly, when human
receive unexpected data, he/she will hesitates and respond slowly like the robot.
In this chapter, we presented a method of modeling human operator ’s strategy
in controlling a dynamically stabilized robot. We first selected relevant state vari-
ables from dynamics equations. We experimentally implemented the method and
demonstrated that the robot could be automatically controlled using the learned
human control input. The work is significant to abstract human control strategy

for controlling a dynamically system in generating a automatic control input.
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Figure 3.8: Operator’s skill in controlling the tilt-up motion
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Chapter 4

Input Selection

In the system, there are numerous state variables available for input selection.
Moreover, sensor data contain different degree of irrelevant, noisy information and
thus, influence the learning process. Thus, the selection of model input plays an
important role for extracting human skills.

Broadly speaking, input selection can be categorized into two groups: model-
based approach and model-free approach [46][47]. Model-based approach typically
involves selecting a model, choosing the inputs to use, and then measuring the per-
formance. Model-free approach is based on performing a statistical test between
the subsets of input variables and the desired output from the model. Here, we
develop two selection methods to select suitable input variables to handle the se-
lection problem. In the first method, we select the input variables from the math-
ematical model of the robot. In the second method, we select the input variables

based on a statistical tool, factor analysis.

4.1 Why Input Selection

Human control data is acquired by sensors to train HCS model. There are numer-
ous sensor variables and their corresponding derivatives available from the sys-
tems, e.g. Euler angles (roll-pitch-yaw) of the robot and corresponding angular

velocities and angular accelerations. Moreover, irrelevant data will affect the mod-

38
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eling HCS while the learning performance can be accelerated by eliminating re-
dundancies in large, unprocessed human data [32]. Also, some sensor data contain
* high noise and thus, affect the learning process. Furthermore, as the input dimen-
sionality increases, the computational complexity and memory requirements of the
model increase.

In addition, to control a highly dynamic system such the single wheel robot,
selecting effective input state variables for the modeling HCS is relatively more im-
portant than a classically dynamical system such as car. Because the robot largely
depends on various unmodeled parameters, such as friction.

What variables should we select as input variables for the modeling? We do
not know the best input representation a priori, as it will vary from one individual
to the next. Thus we are interested in identifying the combination of present and
prior state variables and control inputs upon which a human operator relies most

heavily to form his control strategy.

4.2 Model Validation

4.2.1 Why Model Validation

In this chapter, we concern on effect of different model input on the HCS modeling.
Therefore, we need to train different HCS models from different combination of
input variables and compare the performance of HCS models. In order to compare
the HCS models effectively, we need to define a measure to evaluate the perfor-
mance of the models

HCS models are derived from empirically data by using cascade neural net-
work. The main advantage of the modeling HCS is that no analytical model is re-
quired. HCS models are not restricted by the limitation of current scientific knowl-
edge as we do not have adequate understanding of human intelligence at all. On
the hand, no explicit physical model is the main disadvantage of modeling be-
cause the lack of scientific justification detracts from the confidence. As a result,

we cannot compare different HCS models from the parameters of the models. This
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problem becomes serious if the unmodeled process is dynamic in nature. In a dy-
namic process, the modeling errors feed-back on themselves to generate deviations

* in state, and command trajectories are thus uncharacteristic of source processes.

4.2.2 Root Mean Square Error Measure

Similarity measure for validating human control strategy models has been devel-
oped by Nechyba and Xu. This method is based on Hidden Markov Model (HMM)
which has been used in many applications, especially a human control data, it can
be used to evaluate stochastic similarity between two dynamic multi-dimensional
trajectories using HMMs analysis. The similarity measure can be used to vali-
date the model-generated trajectories and the source HCS. By this method, the best
learned-model can be selected which has highest scores of similarity measure for
HCS controller.

However, this measure is not suitable for our system. Because similarity mea-
sure addresses on comparing long, mult-dimensional, stochastic trajectories. In our
cases, the control skills is a short-time, static trajectories. A example of control skill
trajectories (ug, u1) shows in figure 2.7. In the Nechyba’s work[1], the total time of
control skills is around 20 minutes while the total time of driving the single wheel
robot is around 10 seconds. We found that the results of the measure were inaccu-
rate when we evaluated the HCS models. Thus, we purpose to evaluate the output
trajectories withe the source skill by a simple approach, root means error measure.
The root means square error e,,s measures the difference between the training data
and predicted model output. It is adequate to gauge the fidelity of a learned model
to the source process. Moreover, e,ms can serve as the test of convergence. By this

way, we can evaluate the performance of the HCS models.

4.3 Experimental Setup

In our experiments, we have a choice to evaluate the learned models in real envi-

ronment or in simulation environment. In the previous chapter, we demonstrated
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that the human-based controller could control the robot. We collected those control
data which were shown in figure 3.9 and compared these control trajectories with
- the source control trajectories. From this method, we can practical examine the
performance of HCS models. However, from the figures 3.9-3.14, we found that the
results of output trajectories, which generated by the same human-based controller,
varied greatly ( see figures 3.9-3.14). That’s mean that the human-based controller
has low repeatability in practice and thus, we cannot compare the different HCS
models by this approach. On the other hand, we can use the source training data as
testing data to simulate the input variables and then, HCS model generates the cor-
responding trajectories. Next, we compare the output trajectories with the source
control trajectories. Unlike the first approach, by this method, the HCS models can
generate stable output trajectories and it is easy for comparison.

The performance of the models vary for the same model input because the ini-
tial weight units of the neural network are randomly assigned and cause different
result of learned models at the end of modeling. In order to evaluate accurately the
effect of the input vectors, we trained 30 trials on each model input and measured

the average e, errors of the output of the models.

4.4 Model-based Method

At the beginning of this chapter, we have introduced two input selection approaches.
In this section, we will select input variables by model-based approach. We will
first select input variables from the mathematical model of the robot since these
variables can describe the motion of the robot. Then, we define a measure of the
sensitivity of each state variables with respect to operator’s control input to verify

the importance of these variables for the modeling.
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44.1 Problem Definition

_ Modeling human control strategy means to model the human operator’s control
action in response to the system real-time feedback. That is, we need to develop a
relationship between the human control actions (control commands) and the sys-
tem responses (present and previous state variables and control variables) as shown
in figure 4.1

The HCS model can be simply interpreted as a mapping function @ such that:

&: M— Uy (4.1)

where M is the model input and U}, is the output control. The HCS model means
that the function @ is derived by empirically input-output data. The input data are
system real-time feedback and the output data are control variables. Three factors
are necessary to be considered for the learning process. They are (1) input repre-
sentation, (2) consistent mapping from input space to output space and (3) learning
algorithm. As we have mentioned in the chapter 3, HCS is a type of reaction skill
and HCS model requires sensory inputs to execute control commands. However, it
is possible that same input pattern corresponds to two different output because of
missing information [13]. Therefore, input variables should be effectively enough
to describe the motion of the robot. As a result, the model can more easily identify
the situation and then it can do a suitable reaction from the input data. Secondly,
sensory data contain irrelevant, noisy information and influence the learning pro-
cess. The first and second factors result in discontinuous mapping as shown in
figure 4.2(a). Thirdly, the learning algorithm we used have been well-developed by
Nechyba and Xu [1][6][7]. Thus, we will not focus on the learning algorithm in this

thesis.

4.4.2 Input Representation

In this section, we will focus on selecting a number of state variables for model
input. Model Input is defined as the combination of present and prior state variables

and control commands (see section 3.4). We select a set of suitable state variables (as
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Gyrover

Figure 4.1: The flow diagram of input-output relationship of HCS model

(@)

X=Input variable space
U =output command space

(b)

Figure 4.2: Inconsistent mapping from state variable space X to output control

command space U

input vector) and then form the model input to train HCS model.

The performance of HCS model degrades significantly due to insufficient learn-
ing data. Therefore, we should select a set of state variables as the input variables
without missing skill information. The basic requirement is that the set of state
variables can describe the motion of the robot. What variables are effective enough
to describe the motion of the robot? The mapping from input state space to output
command space should be injective mapping. It means that any input state vector
should have its unique corresponding control action. Otherwise, two or more ac-

tions caused by same input state vector (figure 4.2 (a) ).
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In our approach, we first select state variables intuitively with the aids of kine-
matic constraints and dynamic equations of the robot derived in [10]. From equa-
- tion 2.4 in chapter 2, we let U, = [uf} u{‘]T be the human control commands. As
a result, the input-output of the HCS model must be governed by the equation 2.4
such that

M(q)§ = F(q,4) + BU

The equation (2.4) can be re-written in this form:

BU, = M(q)§ — F(g,9) (4.2)

The above equation shows that the human control strategy Uy can be governed by

the state variables g, ¢, §. The equation 4.2 can be further re-written into this form:
Up = ¥(X) (4.3)

where X is the input vector such that X = [g ¢ ij]T =[aB7y B B Bad B ﬁa]T
and ¥ is an nonlinear mapping function. The equation 4.3 shows that the input
variables ¢, ¢, ¢ provide enough state information to control the robot. It is easy
to show that the ¥ function is a injective mapping. i.e. if ¥(X;) # ¥(X2) then
X; # Xs. Therefore, the input vector X is effectively enough to describe the mo-

tion of the robot. For the discrete case, the equation (4.3) is in this form :
Un(k) = (X (k)) (44)

where k is time instant.

By above result, all variables z; € X should be selected as the input vector to
form model input. However, we cannot measure o and vy because of unavailability
of sensors. In the experiments, our goal is to tilt up the robot until the robot is
vertical. Therefore, we only concern the lean angle and thus, the angular position
o, v are relatively unimportant as we do not care the angular position of a,y in the
experiments . Thus, the resultant input vector X = [B Ba & B* Ba & B 4 Ba) £

is selected for the modeling.



4.4 Model-based Method 45

4.4.3 Sensitivity Analysis

_From above result, we use the input vector to form the model input. Model in-
put consists of the prior and present input vector and control vector. Here, we set
n =4, m = 3in the equation 3.6 and thus the model input s [X (k+1), X (k), X (k—
1), X(k — 2), X (k — 3),Un(k), Un(k — 1), Up(k — 2),Un(k — 3), Un(k — 4)](equation
3.6) and thus, the total dimension of model input is 60. The input dimension is
large and consequently, the corresponding computational complexity and memory
requirements of the model increase. Therefore, we want to reduce the input dimen-
sion by eliminating less important variables.

From the mathematical model, we have found a number of state variables as
the input vector and the mapping between X (k) — Up(F) is injective. However, in
practice, there exists inconsistent mapping [13] as shown in figure 4.2 (b). It means
that human makes different control actions U on similar model inputs. In other
words, very similar inputs can lead to radically different outputs U. Thus, the con-
trol strategy is approximately discontinuous as human have different responds for
similar input pattern. Consequently, the control strategy may not be easily express-
ible in a discontinuous function. This poses an impossible learning challenge not
just for cascade neural networks, but any continuous function approximator. In
theory, no continuous function approximator will be capable of modeling this dis-
continuous strategy.

The cascade network is difficult to extract the discontinuous mapping as the
resulted models do not appear to exhibit a high degree of fidelity to the source
human data[1]. We make a hypothesis that if the individual variable has discontin-
uous mapping to the output, it is difficult for the network to extract the mapping.
Therefore, we can get rid of this variable from the input vector because the effect of
this variable for learning is weak. We will verify this hypothesis in the next section.
In order to reduce the dimension of model input, we define a sensitivity function

as follow:

_ [1AUx(K)]|2

T(z;i(k)) := 1Az (k)2

(4.5)
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where X = [a:l To ]T is a set of the state variables we selected, and U, =
. [u1 Ug - T is a set of the control commands. Both X and U}, are time functions
such that X (k) = [z1(k) z2(k) ]T and Uy (k) = [u1(k) uz(k) ]T representing
X (k) and Uy (k) at time t = k.

The idea of the sensitivity function comes from the gradient of control com-

mand Uy,

_0U, 09U,
VUi=l3" o ) (4.6)

If %l—i"} = oo, the output U}, is highly sensitive to input variable z;. By this way, we
extent the idea, thus, if | Az;(k)||2 = ||zi(k)—zi(k—1)||2 decreases, while || AUL(k)||2
just changes much relatively, i.e., T'(z;) becomes extreme large, it implies that the
output command is very sensitive to the input state variables z; and the network is
difficult to extract this input-output relationship. Therefore, we give up this redun-
dant variable z; as the state variables for model reduction. The sensitivity analysis
of input variables must be bounded:

[|AUL(K)||2
Ba®ll < e

where L, is upper bound value. We can only select those state variables fulfilling
the criterion.

In the experiments , preprocessing process, which proceeds the sensitivity anal-
ysis, contains two steps: normalization and moving average 1, Firstly, we normal-
ize X and Uy,. The moving average of X is computed before the sensitivity analysis.
Moving average is to reduce the perturbation of the acquired noisy data.

Table 4.1 illustrates the average value of sensitivity measure T(z') on each sam-
ple. The T(z;) which has highly sensitive value (> 100) are underlined in the table.
Here, we define the sensitive value which is greater than 100 is called highly sensi-
tive value. For example, (f,, f,) are not selected as the model input in the sample
: 1 (Ba, f3,) are not selected as the model input in the sample 2. In addition, we can-

not find any extreme high value in sample data 5,6 from the sensitivity analysis.

A moving average of order N is simply the arithmetic average of the most recent N observation,
i(k) = z(k)+z(k— 13;,{--~-+:(k—1ﬂ -
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Table 4.1: Sensitivity Analysis on human tilt-up skill data

average

T@) || 7)) | () |T@) | ) | T®) | TE) | T | TH) | TG | T(a)

sample1 || 4416 | 13 x 103 | 3.022 | 2561 | 1.690 | 14 x 10% | 1.566 | 1.099 | 13.89 2.751
sample 2 || 7.688 11.89 1668 | 0729 | 1165 | 38 x 103 | 2366 | 4228 | 2.082 | 19 x 103
sample3 || 2714 | 8505 | 6.132 | 4725 | 4270 3.428 4259 | 4516 | 1915 | 5186.6
sample4 || 4.159 10.06 1026 | 6510 | 1.540 | 3x10% | 1.083 | 7944 | 0938 | 6134
sample5 || 1.884 | 5314 | 3.166 | 1.805 | 3.602 3.228 2161 | 1331 | 1.341 0.980
sample 6 || 19.91 2350 | 2906 | 1381 | 1521 1.646 3421 | 4711 | 3757 | 2601
sample7 || 1943 | 8464 | 6395 | 1244 | 4937 | 5x10° | 3549 3x10% | 2883 | 6857
sample 8 || 24.14 11.83 | 3.280 | 7x 10% | 9.574 2.547 8164 | 6 x10% | 7.718 | 1x103

By this method, we can eliminate undesirable variables for modeling HCS. In next
section, we will validate the claim of sensitivity analysis by comparing different

model inputs and their corresponding output.

4.4.4 Experimental Result

In this subsection, we demonstrate the performance of the HCS models trained
with different combination of input variables. First, the input vector from 8 sets of
source human tilt-up skill data are used to train HCS model. Then, we compare the
models trained by input vector {8, Ba, &, B, 4, Ba, &, 8,7, ,Ba} ( selected from section
4.4.2) with this vector without highly sensitive variables in each human skill data.
For further comparison, we select input vector without lowest sensitive variable in
the table 4.1 to demonstrate the influence of different sensitive degree of state vari-
ables on the modeling. For convenience, X represents the input variables selected
from section 4.4.2 , X; represents the input variables X without highly sensitive

variables and X represents the input variables X without lowest sensitive vari-

able.

Table 4.2 shows HCS model trained by different combination of input variables.
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Table 4.2: Input vector for each HCS model

Experiment Sample data Dimension Input variables

10 B BacBABadhBHfa
10 BBachBABadf4Ba
10 BBachBadhHPa
10 BBacBABadBHfa
10 BBacBA BadhB 4 Ba
10 BBacB4BadhBHba
10 BBac B4 BadhBiBa
B BacBABadBAPBa
BaB4aBiba
BBacByaBH

Ba 6 B4 Bachi
BBacByahB4
B&B4PadcBA fa
B&B 4 BadhBH Ba
BBaaByaH
BBaciafBi
BBachB 4 Bad?y Ba
BBacBadhBHfa
BBacf 4 BadBBha
BBacBABadf Ba
BBaGBHPacBA
B BacBA BadHBa
B Ba&B A Bad? Pa
BBacBBadhBi
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In the first 8 experiments, models were trained by input variables X in each human
tilt-up skill data. In the experiments 9-16, models were trained by input variables
without highly sensitive variables X; in each set data. Then, in the experiments 17-
24, models were trained by input variables without lowest sensitive variable X; in
each set data. Note that in sample data 5 and 6, we could not find extremely high
sensitive variable by sensitive analysis. Moreover, the different between highest
sensitive variable and lowest sensitive variable are small in these samples. Figure
4.3 and 4.4 illustrate the performance of learned models trained by input state vec-
tors X,X; and X,. For details, table 4.3 and 4.4 show the result of learned models.
In the figure 4.3, it shows e error of learned models trained by different input
vectors X, X; and X,. We found that the learned model trained by input vector X
had the minimum error. It demonstrated that the input selection in section 4.4.2 was
effective. Also, we found that the e, of the learned models trained by X; slightly

increased while e,n,s Of the learned models trained by X, increased significantly
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except in sample data 5,6. It implied that the networks were difficult to extract the
relationship between those sensitive variable to output commands and thus, these
- variables were unimportant for modeling. On the other hand, the lowest sensitive
variables were important for the modeling as the model performance degraded sig-
nificantly when the input without lowest sensitive variable. In the sample 5 and 6,
as we have mentioned before, the performance of learned models were different
from the others. Since no extremely highly sensitive value was found, the perfor-
mance of the models trained by X; were similar to that of the models trained by
X,. In other words, all state variables in the sample 5 and 6 were important for the

modeling.

i
il

Figure 4.3: Comparison of learned model trained with input vectors X, X; and

Xs
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Figure 4.4: Relative error increase of learned model trained with input vectors X;

and X

Table 4.3: Performance of learned model trained with input vector X

Experiment | Sample Erms o(&rms)°

1 1 0.0794 5.6700x10~5
2 2 0.1841 7.2511x10~4
3 3 0.3062 4.9649x10~6
4 4 0.2254 2.7000x10~6
5 5 0.0129 4.9660x10~4
6 6 0.4795 2.4021x10-3
7 7 0.3085 5.5670x10~4
8 8 0.1133 2.2432x10~4

a. Average root-mean-squared (RMS) error erms
for 15-hidden-unit network (over 30 trials)
b. Standard deviation of the average erms value

for 15-hidden-unit network (over 30 trials)
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Table 4.4: Performance of learned models trained with X; and X

Experiment | Sample | &ms o(&rms)® E°
X |9 1 0.1947 1.1976x10~% | 1.45
10 2 0.2343 1.3885x10~% | 0.27
1 3 0.3809 6.8270x10~4 | 0.24
12 4 0.3153 1.1000x10~¢ | 0.39
13 5 0.7923 4.7648x1075 | 60.4
14 6 0.9459 1.0198x1072% | 0.92
15 7 0.3056 1.2806x10~% | -0.009
16 8 0.1944 2.3893x10~* | 0.715
Xs 17 1 0.8692 1.5620x1073 | 9.94
18 2 0.9708 1.1852x10~4 | 427
19 3 1.6436 3.2130x1075 | 4.36
20 4 1.6923 3.4908x10~4 | 6.5
21 5 1.6192 7.6557x10~3 | 124
22 6 0.9618 9.2195x10~3 | 1.0
23 7 1.0893 2.8467x10~4 | 2.5
24 8 1.0418 4.0624x10~4 | 8.19
a. Average root-mean-squared (RMS) error erms for 15-hidden-unit network
(over 30 trials)
b. Standard deviation of the average erms value for 15-hidden-unit network
(over 30 trials)
c. Relative erms increasingE = M—‘gﬁ‘ﬁ—em‘ from X to X; and X
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4.5 Model-free Method

_In the last section, we selected input variables based on the mathematical model of
the robot. However, one may argue that the method provides an alternative solu-
tion for control problem only and it depends on the existence of the mathematical
model. Here, we want to develop model-free approach which does not depend on
prior knowledge of system model.

In this section, we will introduce a statistical method, factor analysis, to solve
the selection problem. By using factor analysis, sensor variables can be classified
into different groups. The variables in intra-group have high correlations among
themselves while the variables in inter-group have low correlation with each other.
Then, we will select the groups of variables which have high correlation with the
control strategy as the model input. The advantage of this method is that the di-
mension of input vector can be reduced. Moreover, prior knowledge of system
model is unnecessary. By this feature, we can further apply this method to any

system with unknown model for analyzing and selecting input variables.

4.5.1 Problems Definition

In the previous section, the input selection method depended on the dynamic model
of the robot to validate the injective mapping between state space to control com-
mand space. Moreover, the last method exists some limitations on the following

aspects:

e Prior knowledge of the system is assumed to be known. The situation become
critical if the mathematical model of the system is being developed and we
cannot select suitable input state variables from the dynamic model of the

system. As a result, irrelevant input variables are used to train HCS model.

o Noisy data affect the result of sensitivity analysis. For example, the accelerom-
eter acquires high noise acceleration data. And the sensitivity analysis be-

comes meaningless under this situation.
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Here, we will demonstrate some examples that the performance of HCS models
trained by irrelevant input variables. Then, we will show that the sensitivity anal-

- ysis is weak to handle high noise data.

Influence of Irrelevant Input

Suppose that there do not exist the mathematical model of the robot and we de-
velop different HCS models trained by different inputs variables. Different combi-
nation of input variables could affect the performance of learned models. Here, we
did two evaluations ( total 17 experiments ) to examine the effect of different input
state variables. We first selected all sensor variables (total 10 sensor variables) as
the input vector. They were X = [Ba, Bay 047, B, z,9,2,0, ﬁ]T. All sensor variables
were selected because we wanted to demonstrate the effect of irrelevant input on
the modeling. The definition of these notions are shown in table 2.1. Then, we used
different combination of input state variables to train HCS models. epns error is
used to evaluate the performance of the learned models.

In the experiment 1 (in table 4.5), all sensor variables were selected as the input
vector for the modeling 2. Then, in the first evaluation (experiment 2-11), we elim-
inated one state variable in the input vector X and used it to train different HCS
models. In the second evaluation( experiment 12-17), we eliminated sensor vari-
ables one by one in the input vector in order to demonstrate the effect of different
dimension of input vector. The input vector and performance of the learned models
are shown in the table 4.5 and figure 4.5 . From these experiments, the performance
of HCS models varied with different dimension of input vector. Figure 4.5 shows
the e,ms of learned models in table 4.5. The performance of the learned models var-
ied sharply and the performance of the learned model upgraded significantly by
suitable combination and dimension of input vector. On the other hand, the per-
formance degraded significantly with unsuitable combination of input variables. A

HCS model trained by irrelevant input is shown in figure 4.10.

2gee section 3.4
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Figure 4.5: RMS error of HCS models trained with different input vector

Influence of Noisy Data

In the last section, sensitivity analysis was applied to detect unimportant variables
and reduce the dimension of model input. However, that method could not pro-
vide a good analysis on high noisy data. To illustrate this problem, we consider
one example. Suppose y(t) and u(t) represent the system state and input command
respectively. u(t) is the human control strategy u in the figure 2.7 and system state
function is defined as equation 4.8.

y(t) = sin(mt) + 2sin(2.57t) (4.8)
yi(t) = y(t)+6() (4.9)
y2(t) = y(t) +106(¢) (4.10)

where § is random value. In order to model the sensor data. we add noise on
the original system state function y(t) in the equation 4.8. The equation 4.9 and
4.10 shows the result noisy functions and figure 4.6 (a), (b), (c) shows the equa-
tion 4.8-4.10. The results of sensitivity analysis are much different from the original
one. Therefore, it induces that the sensitivity analysis can not handle the noisy data
properly. As a result, we need another evaluation method to select important state

variables for the modeling.
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Table 4.5: Performance of HCS models trained by different input vector
I |

Experiment Ne st nf, ed . a(erms)
1 10 nil 1 0.3294 0.0135
2 9 Ba 9 0.1454 0.0010
3 9 Ba 7 0.1364 0.0013
4 9 B 8 0.1916 0.0038
5 9 4 3 0.1177 0.0005
6 9 & 6 0.3012 0.0263
7 9 # 12 0.3150 0.0518
8 9 i 14 0.1793 0.0034
9 9 i 14 0.1706 0.0040
9 9 ] 4 0.2268 0.0078
1 9 B 13 0.1823 0.0020
12 9 P 3 0.1177 0.0005
13 8 4, & 5 0.1299 0.0011
14 7 4, B, & 8 0.1916 0.0030
15 6 4,8, 6, % 3 02323 0.0136
16 5 4,B,6,%,8 | 6 0.2310 0.0193
17 4 "7.3,&,5.17.4 7 0.1891 0.0077
a. Number of selected variables

b. Variables are eliminated from the input variable X = [8a, Ba, &, 4, B, &, 4, £,6, 8] T

¢. Number of hidden nodes

d. the average epm s Value

4.5.2 Factor Analysis

Here, we want to develop a systematic approach for input selection. By this ap-
proach, prior knowledge of the system is not necessary. In order to examine this
approach, we assume that we do not know any information about the input-output
relationship. We only know that several sensors have been installed on the robot
and we can collect these sensor data as the input variables. Therefore, we can only
use these variables as the input variables in this section.

Factor analysis is a branch of statistics whose primary purpose is data reduction
and summarization. Generally speaking, factor analysis concerns on the problem
of analyzing the interrelationships among a large number of variables and then ex-
plaining these variables in terms of their underlying dimensions of factors.

Factor analysis is usually concerned with two major problems: (1) reducing

the dimensionality of the original data space, whether by principal components or
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y2[t]

Figure 4.6: Sensitivity analysis affected by the different degree of noise

some other factor procedure, and (2) rotation of the factor loading solution in the
reduced space to some more interpretable orientation and re-computation of factor
scores in the new orientation.

Factor analysis usually operates in a common factor model which assumes a

linear relationship from latent factors to observed variables

y1 = b+ b+ + b ta
yo = A1+ Ao2le +or + Aopér + €2
Ym = Amié1 + Il + -+ Amr€r + €

or in compact form described as,

Y =AS+e (4.11)

where Y = [y1,92,..- ,ym]T are observed variables measured in derivation from
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Figure 4.7: Structural diagram of common factor model on the robot.

the mean, E = [{1,&2,. .. ,&:]T are scores for latent factors deviated from the mean,
A = );j is the factor loading matrix and € = [e1, €2,. .., e;]T are unique factor scores
for observed variables. Usually, random measurement error (sensor noise), influ-
ences only a particular observed variable and all other sources of error and bias
that prevent the common factors from completely explaining contribute to unique
factor € of these observed variables in equation 4.11. The unique factors € are as-
sumed to be uncorrelated with each other and latent factors Z. Note that the (4, j)
th element )\;; of factor loading matrix A reflects the weight for the ith observed
variable on the j th factors. Under the common factor model (equation 4.11), the

population covariance matrix X of Y can be given as,

T =ABAT +0 (4.12)

where ® and © are covariance matrices of E and € respectively. © is a diagonal ma-
trix as unique factors are mutually uncorrelated. The latent factors are not unique
defined since any nonsingular transformation matrix A can be applied to E so that
the same covariance matrix ¥ is reconstructed. As a result, each observed variables

depends on some more fundamental set of factor.
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Factors Extraction

The main task of factors extraction is to estimate the factor loading matrix A, latent
* factors factors covariance matrix & and unique factor covariance matrix © under
different criteria so that the covariance among observed variables Y are reproduced
as possible. Under different factors extraction criteria and assumptions, different
factor extraction methods can be derived.

The Unrestricted Maximum Likelihood Estimation method [25] is widely adopted
method for factors extraction because it does not impose unrealistic assumptions
on unique factors (residual error) structure and it provides tests of statistical signif-
icance of parameters estimated. Moreover, maximum likelihood estimator for fac-
tor analysis is efficient and consistent. The population of data samples is assumed
to be multivariate normal. The maximum likelihood problem can be transformed

equivalently to minimize

F = log|Z| + tr[SZ~Y] — log|S| — m (4.13)

where m is the number of observed variables and S is the sample covariance matrix.
In our work, maximum likelihood factor estimation method is employed for the

analysis of input space of the robot.

Varimax-Rotated Factor Loadings Analysis

Since infinite pairs of A and = can reproduce the same correlations among observed
variables with the same data samples which can fulfill the constraint of equation
4.12, it is desired to estimate sets of factor loading patterns with better interpreta-
tion on the factors extraction. Then, factor rotation procedures provide refinements
and less restrictions on estimated factor loading distributions in matrix A. The ex-
tracted factors are interpreted in a different perspectives by factor rotation. Here,
an orthogonal rotation for latent factor, names Varimax scheme [24]. After the or-
thogonal rotation, rotated latent factors are uncorrelated with each other and the

variances of squared factor loading tend to have either high or low magnitudes
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and thus this leads to interpretable factors. As a result, each variable depends on a
set of factors. The result of factor analysis on sample 1 data is shown in equation
- 4.14. From this equation, each variable has linear relationship with a number of
factors and depends heavily on particular factor. For example, tilt angle 3, mainly

depends on factor 1.
Ba
Ba = 0.967& + 0.141¢; + 0.00863 — 0.102€4 + 0.084€5 + 0.086 + €4,

0.423¢; + 0.203&5 + 0.194€3 — 0.03564 + 0.761&5 + 0.08086 + €3,

(4.14)
up = 0.949¢; — 0.012¢ + 0.149¢3 + 0.136€4 + 0.197¢5 + 0.091&6 + €4,

Then we can approximate above equations into below form. We selected the terms

of the equations with its coefficient begin greater than 0.5.

Ba = 0.761¢5 +ep,
Ba =~ 09676 +e¢4

(4.15)

Q

u 0.949¢; + €y,

The simplified equations show that some factors have strong relationship on partic-
ular variables. Consequently, we can classify the variables based on factor loading.
The variables which have high factor loading on factor j are assigned to group j.

Therefore, each variable is assigned to different groups based on:
T € Gj iff /\:ckj >( (4.16)

As a result, the variables are classified into different groups.

Gl {6,$’|/\ﬁ1a’\zl><}

G; = {ul),B.aa"'lAuﬂv’\ﬂ'ai'”>C}
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G; denotes the group of variables which have high factor loading Az; on factor i. ¢
is a threshold to classify the group of variables. Here, we assign the ¢ equal to 0.5.
- In each group, variables have high correlation among themselves while variables in
different groups have low correlation among themselves. For example, in sample
1 data, tilt angle of the flywheel f3,, lean angle of the wheel 3, acceleration in X-
direction # and tilt torque u; are classified into group 1. The change of tilt angle
of the flywheel generates tilt torque while, the i influences the rolling speed of the
wheel. By the gyroscopic precession (equation 1.1 ), larger the rolling speed make
larger the tilt torque. the lean angle 3 is the goal of motion. These variables and
tilt-torque command u are selected in the same group is reasonable because these
state variables have strong relationship with the tilt-torque command u;. On the
same time, the lean angle 3 and drive motor ug are assigned to the same group by
factor analysis. The drive motor ug controls the rolling speed of the wheel and it
seems that the human operator observes the learn angle 3 (the task goal) and makes
corresponding command ug to achieve the goal. Figure 4.8 illustrates the concept
of factor analysis. In the figure, variables in different groups are almost orthogonal

based on the property of factor analysis.
&1
A

1

T2

&2

€

Figure 4.8: Variables can be classified into different groups based on the magni-

tude of factor loading
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Table 4.6: Factor analysis on sample 1

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var.
Ba 0423 0.203 0.194 -0.035 |0.761 I 0.080 0.156
Ba 0.967 0.141 0.008 -0.102 0.084 0.086 0.020
B 0.028 -0.084 0.872 0.123 0.406 0.141 0.031
¥ -0.085 -0.628 -0.007 -0.015 -0.020 0.058 0.594
a 0.126 0.769 0.217 0.128 0.152 0.005
z 0.651 0.118 0.103 0.326 0.104 -0.171 0.406
] 0.117 0.054 0416 0.118 -0.032 0.826 0.113
z -0.017 -0.034 -0.022 0.070 0.106 0.799 0.344
] 0.257 0.473 | 0.787 | 0.197 -0.110 0.185 0.005
8 0.802 0.205 0.057 [0529 | 011 0.119 0.005
ug -0.182 -0.045 -0.160 -0.770 | 0.014 -0.149 0.324
uy 0.949 -0.012 0.149 0.136 0.197 0.091 0.011

Input Variable Selection

In the last section, each variable is assigned to different groups by factor analysis.
The variables in each group have one common feature that they depend heavily
on one latent factor. The variables in same group share partial information and
therefore, control command variable u; can be estimated by the other variables in
the same group provided that u; belongs to this group. For modeling a function
from input variables to output command variable, the state variables in the same
group of u; have kept main relevant information with output. Therefore, we define

a Input Selection Rule such that:
VG;, if3 uj € G;, then Vi € G; are selected as the input state variables (4.17)

By the above algorithm, any variable z) which has high factor loading on factor i is
selected as the input state variable provided that u; also has high factor loading on
factor i. We apply this method to select the variables to form reduced input vector
X,. In the next section, we will compare the performance of reduced input vector

with the irrelevant input vector on the modeling
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Table 4.7: Factor analysis on sample 2

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var.
Ba 0.643 0.080 0.441 -0.002 0.091 0.128 0.361
Ba 0.819 0.118 0013 0391 0222 -0.028 0.112
B 0.195 0.003 |o.957 | -0.081 0.002 0.188 0.005
5 -0.097 -0.101 0207 [-0518 | -0.091 0.000 0.661
b 0208 0113 0284 0185 0094 [0708 ] 0319
i 0.302 -0.147 0038 0.156 (o913 | 0.150 0.005
i 0102 0.717 0.159 0330 0.056 0.030 0.336
i 0.110 0.968 -0.116 -0.049 -0.169 0.033 0.005
0 0242 0.093 0298 0.072 0433 0.005
B 0579 0.137 -0.165 0.138 0385 [os21 | 0179
uo 0018 0045 -0.049 -0.023 -0.046 [-0815 | 0329
up | [oss9] 0.086 0.184 0.094 0.112 0116 0.005

Table 4.8: Factor analysis on sample 3

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var.
Ba 0544 0.023 -0.028 0.007 0.355 0.582 0.238
Ba 0962 0.104 0.158 0.149 -0.044 0.096 0.005
B 0.066 0.082 0.005 -0.039 0.186 0.206
4 0.101 0022 0.017 0.082 -0.167 0.674
& 0.200 0.001 0349 -0.195 0128 0.696 0.300
# [0645 | -0.197 0117 -0.353 -0.001 0.134 0.389
¥ 0.053 0711 0.188 -0.042 0279 -0.105 0.366
i 0.027 0.984 -0.063 0013 -0.098 011 0.005
6 0.080 0.137 {0767 | -0.226 [0574 | -0.043 0.005
B8 [0730 ] 0.090 0178 [-0622 | -0.066 0.174 0.005
ug -0.031 -0.015 -0.061 (o762 | -0.076 -0.066 0.404
wy | [osu] 0.102 0020 0,068 0197 0135 0097

Table 4.9: Factor analysis on sample 4

Factor 1 Factor 2 Factor 3 Factor 4 Factor S5 Factor 6 Unique Var.
Ba 0323 0.146 049 0.159 [ 0651 | 0.126 0.163
Ba 0079 -0.004 0148 -0.070 0.092 0017
B 0218 0035 0.113 0.013 0022 0.404
Py 0.010 0227 0311 -0.293 0514 -0.454 0295
& 0.116 0018 0.958 -0.008 0.163 0.191 0.005
i | [o73s] 0.106 0206 0034 0044 0186 0367
i 0.146 0.603 0.118 -0.089 0.035 0.266 0.521
i 0.085 0975 0.053 0.095 -0.073 -0.140 0.005
6 0337 0.032 0.245 0345 0.008 0.118
B [(0926] 0.091 0175 0233 0153 0.138 0.007
%o 0344 0231 0.034 [0817 0.029 -0.193 0122
u1 0.962 0.109 0.034 0176 0.083 0013 0024
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Table 4.10: Factor analysis on sample 5

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var.
Ba | [0906 | 0176 0.086 0.004 0235 0.283 0.005
Ba 0.056 [0976 | 0025 -0.061 0077 -0.144 0.014
8 0.359 0268 0073 0152 0.021 0.005
4 0.021 0.010 0013 0.095 0.081 0.005
& 0282 0315 0.169 0011 0.025 0.005
P 0.001 -0.055 0.020 0172 -0.035 0.465
i -0.045 0229 0.047 [ 0965 | -0.087 001 0.005
i 0014 -0.070 0071 0.070 -0.093 0451
) -0.152 0539 -0.469 -0.254 0127 0.087 0377
8 0057 0933 -0.120 -0.062 0212 0188 0.028
uo | |0517 | -0.640 -0.050 0.043 0148 0.148 0.274
uy 0.095 [ 0949 | 0.106 -0.070 0.085 0.008 0.067
Table 4.11: Factor analysis on sample 6
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Unique Var.
Ba 0301 0.082 0.017 [ 0780 | -0.001 0354 0.169
Ba 0.080 0177 0049 -0.007 0.039 0017
B -0.284 -0.049 0.019 0234 0.048 0334
4 0015 0077 0054 0.153 [0765 ] 0054 0379
P 0213 0.031 0.150 0333 -0.076 (0677 | 0357
i | [o7] 0.034 0134 0043 0124 0176 0399
i 0.142 0.551 0.320 0079 0111 0052 0552
i 0.049 0.994 -0.037 -0.049 -0.010 -0.001 0.005
0 0357 0.061 [o;wij 0.115 0378 0.059 0.005
B [0916] 0.102 0273 -0.080 0.093 0.207 0018
uo 0337 -0.180 [ 0.1 | 0.107 -0.241 -0.162 0360
wp | [0956] 0.109 0.189 0.073 0121 0.014 0.018
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Table 4.12: Input vector for each experiments

Experiment | Source Input vector X Experiment | Source Input vector Xr
1 1 BasBar 6, B, %, 1, %,0,8 | 7 1 Ba» %, B

2 2 Ba;Ba,r 6,4, B, 2,8, 2,60,8 | 8 2 Ba:Ba,ré, B

3 3 BasBarb,, B, 2,1, %,0,8 | 9 3 BaBari\B

4 4 BasBar b4, B, %, 1, %,6,8 | 10 4 Ba, i, B

5 5 BasBa, &, %, B, %,4,%,6,8 | 11 5 Ba,Ba,,6,8
6 6 BasBarb 4, B, %, 4, %,0,8 | 12 6 Ba, &, B

4.5.3 Experimental Result

Model Training

In this section, we apply the input selection rule to select input variables. Table
4.6-4.11 show six sets of training data for factor analysis. Small frame boxes in the
tables highlight that variable in this row has high factor loading on the factor on
this column. The state variables in the tables are select as input vector if they meet
the requirement of the input selection rule( factor loading > 0.5). In order to make
fair comparison of input vectors, we compared the models trained by irrelevant in-
put vector {ﬁ'a, Ba, &, 7, B,%,4, 7,0, B} (we have mentioned in section 4.5.1) and and
reduced input vector in each training data. We note that notion X represents the
irrelevant input vector and X, represents the reduced input vector in later descrip-
tion. In the table 4.6 , we found that f3,, %, 8, u1 had high factor loading on factor 1.
And f3,ug belonged to factor 4. Therefore, we selected S,,Z, B as the input vector
for sample data 1. By similarity , we selected f,, Ba, &, B as the input vector in the
table 4.7. In the table 4.8, f3,, ., &, B were selected as the input vector for sample
data 3. In the table 4.9, 8,, #, 8 were selected as the input vector for sample data
4. In the table 4.10, S,, Ba, Z, 0, B are selected as the input vector for sample data 5.
In the table 4.11, we selected f3,, #, 8 as the input vector for sample data 6. Above

selection of input vectors are shown in table 4.12.
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Figure 4.11: sample 1: learned model trained with reduced input vector X;
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Figure 4.14: sample 6: learned model trained with input vector X

Analysis

Tables 4.13 and 4.14 illustrate the experimental results of HCS model trained by
the irrelevant input vector and the reduced input vector respectively. For conve-
nience, RM S(X) denotes the average e,ms error of learned model output (com-
pared with source human strategy). In the first three sets of data, the RMS(X;)s
decrease significantly, compared with RMS(X). For example, in the sample 1,
the RM S(X,) decreases 41 percentage of the RM S(X). In the second three set of
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Figure 4.15: sample 6: learned model trained with reduced input vector X,

data, the RM S(X,)s are almost the same as RM S(X). From above results, we can
conclude that the average e, error of the models trained with the reduced input
vector X, are better than that of the original input vector X. Moreover, the dimen-
sion of input vector can be reduced by this selection method. For example, in the
sample 1, the dimension of the reduced input vector X; is only 3 while the dimen-
sion of the input vector X is 10.

It is interesting to note that the RM S(X,) is slightly higher than RM S(X) in
the sample 4 (see experiment 4 and 10). From the table 4.9, we could not find any
state variable related to the control command wug by factor analysis. The reduced
input vector might miss important information for the modeling. Consequently,
the learned model trained by reduced input vector has poor performance relative
to the learned model trained by irrelevant input vector.

Figure 4.10-4.15 show some representative learned models result. Figures 4.11,
4.13,4.15 illustrate the learned strategies of the model trained by X,.. The dotted
line shows the source human control strategies and the solid line shows the strate-
gies of the learned models. Meanwhile, figures 4.10,4.12,4.14 illustrate the learned
strategies of the model trained by X.

4.6 Model-based Method versus Model-free Method

Here, we compare two selection methods for the modeling. In the two methods,
we used different combination of input variables to train different HCS models

and each models has different performances. In order to standardize comparison,
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Table 4.13: Performance of learned model trained the input vector X

Experiment| Sample | &ms® o(&ms)C
1 1 0.8130 0.0167
2 2 0.7650 0.0061
3 3 0.8130 0.0167
4 4 0.5326 0.0051
5 5 0.0596 0.0132
6 6 1.0953 0.0609

a. Variables are eliminated from the input vector X
b. Average root-mean-squared (RMS) error erms for
15-hidden-unit network (over 30 trials)

c. Standard deviation of the average erms value for

15-hidden-unit network (over 30 trials)

Table 4.14: Performance of learned model trained the input vector X,

|
Experiment| Sample | &ms® o(&rms)° E°
7 1 0.3566 5.0000x10~4 | -0.56
8 2 0.2341 6.8505x10~4 | -0.69
9 3 0.1095 1.7557x10~4 | -0.86
10 4 0.5837 5.9816x10~2 | 0.09
1 5 0.0079 3.1294x10° | -0.86
12 6 1.0853 1.5402x10~2 | -0.009
a. Average root-mean-squared (RMS) error erms for 15-hidden-unit
network (over 30 trials)
b. Standard deviation of the average erms value for 15-hidden-unit)
network (over 30 trials)
c. Relative erms increasingE = m’—‘gﬁ'f":—g—‘nm‘ from X to Xr
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we only use the learned models showed in table 4.3 (the model-approach method)
and table 4.13 (the model-free method) because the learned models in these tables
“ have best performance in each method. Thus, the best learned models trained by
two methods will be compared in this section.

The first six sets of the learned models in the table 4.3 are trained by sample
data 1-6. Also, the six sets of the learned models in the table 4.13 are trained by
sample data 1-6. Note that table 4.3 shows eight sets of data while table 4.13 only
shows six sets of data. Because the last two sets of training data (sample data 7-8)
cannot find any input variables by factor analysis. This is one of weakness of factor
analysis that sample data being factor analysis may have possibility that the data
cannot be factorized.

Figure 4.16 compares e,ms of the learned models trained by the first method

14

T
Bl model-based methard
() model-free method

Figure 4.16: e, of learned models trained by the model-based method and the

model-free method

and the second method. From the figure, we find that four sets of learned mod-
els trained by the model-based method are less error than those models trained
by the model-free method and we conclude that the learned model trained by the
model-based method have better performance than the learned model trained by
the model-free method.

Table 4.15 shows the comparison between the model-based method and the

model-free method. The model-free method is lowly sensitive to noise data since
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Table 4.15: Model-based method vs model-free method
Category Model-based method | Model-free method
Prior knowledge high low
Sensitive to noise high low
Performance high medium
Input dimension high low

because this method already considers the noise data during the statistical method,
factor analysis. In our cases, the input variables dimension of the model-based
method are kept in 10 while the input variables dimension of the model-free method
are always less than 5.

The requirement of the model-based method is higher than that of the model-
free method. The performance of the model-based method is higher, however. On
the other hand, the performance of the model-free method do not need the prior
knowledge of the system and is lowly sensitive to noise data. Also, the input vari-
ables dimension is always smaller than that of the model-based method. We can
use the two methods based on different situation.

In conclusion, we developed two evaluation methods to select suitable input
variables to handle the selection problem in different situations. In the first evalu-
ation method, we first selected the relevant state variables from the mathematical
model of the robot as the HCS model input. Then, we defined a measure of sensitiv-
ity of each state variables with respect to the operator’s control input to validate the
importance of model input. In the second evaluation method, we presented a sta-
tistical method, factor analysis , to select the suitable state variables. By using factor
analysis, the variables could be classified into different groups. Intra-group vari-
ables had high correlations among themselves while inter-group variables had low
correlation among themselves. Then, we selected the groups of variables which had
high correlation with the human strategies as the input variables. The advantage
of this evaluation method was that prior knowledge of the mathematical model of
the system was unnecessary. Besides, the overall performance of HCS models up-

graded after the reduction of model input by eliminating uncorrelated input. That
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method could be further applied to any systems without any model for analyzing

and selecting input variables.



Chapter 5

Conclusion and Future Work

5.1 Contributions

In this thesis, we presented a study of methodology for selecting input variables
and modeling human control strategy (HCS) on the single wheel robot. We also
practically implemented HCS model to control the “tilt-up” motion of the robot.

We summarize the original contributions of this work below:

e Human-based Control We applied flexible cascade neural network with node-
decoupled extended Kalman filtering to abstract human control skill on the
single wheel robot. And we transferred the model effectively in controlling
the robot. We experimentally validated that the HCS model could abstract

human skills and the human-based controller could control the robot.

e Input selection for the modeling We developed two input selection method
to select suitable input variables. One was called model-based method and
the other was called model-free method. In the first method, we first identi-
fied the effective state variables as the input variables from the mathematical
model. Then, we defined a method, sensitivity analysis, to verify the impor-
tance of these variables. By this method, any unimportant variable can be
eliminated in the bracket of input variables. We used different input combi-
nation to train HCS models and compared the corresponding model error to

verify the selection method. In the second method, we applied a statistical

72
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method, factor analysis, to classify the state variables into different groups.
The advantage of the method was that prior knowledge of the system model
was unnecessary. Moreover, the input dimension could be further reduced.
By that feature, we could further apply this method to a system with un-

known model for analyzing and selecting input variables.

5.2 Future Work

In this thesis, we provide the foundation of modeling HCS and its input selection
to the robot. It is only the first step toward the automatic control of the robot by
human-based controller. The following are possible improvement and extensions

of this work:

e Skill evaluation Once we have abstracted a HCS model, it is important to
access the skill exhibited by the model and its corresponding human con-
troller. In this thesis, we evaluate model based on e,s error. There are,
however, other criteria— many of them task-dependent—Dby which we can
evaluate performance of models. Models or control strategies with different
skill qualities may be more or less appropriate for a given situation, depend-
ing on the specific performance requirement of the robot. Some related re-
search have worked on this area, Xu and Song [8] have studied the issue of
skill evaluation by proposing two task-specific performance criteria for the

human driving task.

¢ Model optimization Given a specific requirement, it might be necessary to
optimize a particular HCS model with respect to that performance measure.
The unoptimized HCS model already gives an initial control strategy; opti-
mization would refine the parameters in the model to improve performance

with respect to a specific criterion.

e Automatic Control Up to now, we have only modeled tilt-up skill of the sin-

gle wheel robot. Our goal is to automatic control of the robot by human-based
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controller. Therefore, we need to model different skill in controlling the robot

and integrate the models together.



Appendix A

Dynamic Model of the Robot

A.1 Kinematic Constraints: Holonomic and Non-

holonomic

Gyrover has been controlled only manually, using two joysticks to control the
drive and tilt motors through a radio link. In the following sections, we will de-
scribe the works done by done by Au and Xu[2] on the nonholonomic kinemat-
ics constraints, as well as dynamic model using the constrained generalized La-

grangian formulation.

A.1.1 Coordinate Frame

The equations of motion of the robot is assumed that the wheel is a rigid, homoge-
neous disk which rolls over a perfectly flat surface without slipping. The actuation
mechanism, suspended from the wheel bearing, as a two-link manipulator, with a
spinning disk attached at the end of the second link (Figure 2.1) are modeled. The
first link of length I; represents the vertical offset of the actuation mechanism from
the axis of the Gyrover wheel. The second link of length I, represents the horizon-
tal offset of the spinning flywheel and is relatively smaller compared to the vertical
offset.

Next, four coordinates frames are defined as follows: (1) the inertial frame ),
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whose z — y plane is anchored to the flat surface, (2) the body coordinate frame } 5
{zB,yB, 28}, whose origin is located at the center of the single wheel, and whose z-
axis represents the axis of rotation of the wheel, (3) the coordinate frame of internal
mechanism . {Z¢, Y, 2.}, whose center is located at point D, and whose z-axis
is always parallel to zg, and (4) the flywheel coordinates frame Y £ {Za1YarZa},
whose center is located at the center of the Gyrover flywheel, and whose z-axis
represents the axis of rotation of the flywheel. Note that y, is always parallel to
y.. The definition and configuration of system and variables are shown in Table ??
and Figure 2.1. Rolling without slipping is a typical example of a nonholonomic
system, since in most cases, some of the constrained equations for the system are
nonintegrable. Gyrover is a similar type of the nonholonomic system. (i, j, k) and
(1, m,n) are defined to be the unit vectors of the coordinate system XY Z 01039
and zpypzA(Y ), respectively. Let S; := sin(z) and C; := cos(z). The transfor-

mation between these two coordinate frames is given by

i |=R%|m (A1)

where R$ is the rotation matrix from )5 to 3 p.

-S.Cs —Co —SaSp
R=| CuCs —Sa CaSp (A2)
—Sp 0 Cs
Let v4 and wp denote the velocity of the center of mass of the single wheel and its
angular velocity with respect to the inertia frame 5. Then, we have

wp = —aSpl + fm + (¥ + aCp)n (A.3)

The constraints require that the disk rolls without slipping on the horizontal plane,

i.e, the velocity of the contact point on the disk is zero at any instant

ve =0, (A.4)
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where v, is the velocity of contact point of the single wheel. Now, we can express

VA as
VA = WB X TAC + Ve (A.5)

where r4c = —RI representing the vector from the frame C to A in Figure 5. Sub-
stituting Egs. (A.3) and (A.4) in Eq. (A.5) gives

va=Xi+Yj+ Zk, (A.6)
where
X = R(¥Cq + @CoCp — BSsSp) (A7)
Y = R(YSa + @CpSqs + BCaSp) (A.8)
Z = RBCs (A.9)

Egs. (A.7) and (A.8) are nonintegrable and hence are nonholonomic while Eq. (A.9)

is integrable, i.e,
Z = RSs. (A.10)

Therefore, the robot can be represented by seven (e.g. X,Y, @, 8,7, Ba,0), instead of

eight, independent variables.

A.2 Robot Dynamics

In this section, the equation of motion is calculated from Lagrangian L = T —
P of the system, where T' and P are the kinetic energy and potential energy of
the system respectively. The system is divided into three parts: 1) single wheel, 2)

internal mechanism, 3) spinning flywheel.
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A.21 Single Wheel

The kinetic energy of the single wheel is given by,

T, = %mw (2 + 72+ 27]

1
+§ [Im:cwwf; + Iyywwz + Izzw‘*’f] (A.11)

Substituting Eqgs.(A.3) and (A.9) in Eq.(A.11) yields

The potential energy of the single wheel is

A.2.2 Internal Mechanism and Spinning Flywheel

In the following, the translational and rotational parts of kinetic energy are
computed for the internal mechanism and flywheel respectively. I3 is assumed to

be very small compared with /3,
lo ~0 (A.14)

Thus, the flywheel’s center of mass (E) coincides with that of the internal mecha-
nism (D).

Let {zf,yy,2s} be the center of mass of the internal mechanism and the flywheel
wrt. 3o The transformation from the center of mass of single wheel to the fly-

wheel can be described:

yr | =] Y | +R8| uSs (A.15)
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Let T} denote the translational kinetic energy of the flywheel and the internal mech-

anism.
1 : : A
T} = §(mz +my) (% + yF + 7] (A.16)

Differentiating Eq. (A.15) and substituting it in Eq. (A.16), T} is obtained. Let wy
be the angular velocity of flywheel w.r.t. ). We then have

0
ws = REwp + | B, (A.17)

Ya
where RZ is the transformation from Y p to 3 5.

CoSp. —565p. Cpa
RE=]| S, Cy 0 (A.18)
COCﬁa _Cﬂase Sﬁa

The rotational kinetic energy of the flywheel is now given by,

1
T; — 'é [(wfz)2Ixxf + (ny)2Iyyf + (wfz)zIzzf] (A.19)

The flywheel is assumed to be a uniform disk, the principle moments of inertia are
Iigs = Lys = smpr?, Ly = Lmsr?. The potential energy of the flywheel and

internal mechanism is

Ps = (m; + my)(RSp — 11CeSp) (A.20)

A.2.3 Lagrangians of the System
The Lagrangian of the system thus is
L = [Ty+(T}+T})] - (Puw+ Fy) (A.21)

Substituting Eqs. (A.11), (A.16), (A.19), (A.13) and (A.20) in Eq. (A.21), we may

determine L. There are only two control torques available on the system. One
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is drive torque (u;) and the other is the tilt torque (u2). Consequently, using the

constrained Lagrangian method, the dynamic equation of the entire system is given

by
M(q)§+ N(q,9) = A"A\+ Bu (A.22)

where M(q) € R and N(q,q) € R™*! are the inertia matrix and nonlinear terms
respectively.

A(g) = (A.23)
Ed 0 0]
Y 0 0
a 0 O
A1 u
A2 U2
o/ ki O
Ba 0 1
i 6 ] L k2 0 |
The nonholonomic constraints can be written as,
A(¢)g = 0. (A.24)

It is noted that all elements of the last two columns of the matrix A are zero, because
the nonholonomic constraints only restrict the motion of the single wheel, not the
flywheel. The last two columns represent the motion variables of the flywheel.
Moreover, the matrix B only have three rows with nonzero elements since the input
torques only drive the tilt angle of the flywheel (5,) and the rotating angle of the
single wheel (v), so that the fifth and the sixth rows of B are non-zero as they
represent the tilting motion of the flywheel and the rotating motion of the single
wheel respectively. Furthermore, when the single wheel rotates, the pendulum
motion of internal mechanism is introduced, thus 6 changes. Therefore, the drive
torque of the single wheel will also affect the pendulum motion of the internal

mechanism (6), so that the seventh row of the matrix B is not zero.



Appendix B

Similarity Measure

Similarity measures have been applied on computer vision[43], image database re-
trieval [44] and 2d shape analysis [45]. However, these methods usually depend
on particular properties of images and thus, is not appropriate for analyzing HCS
trajectories. One similarity measure for validating human control strategy mod-
els has been developed by Nechyba and Xu. This method is based on Hidden
Markov Model (HMM) which has been used in many applications, especially a
human control data, it can be used to evaluate stochastic similarity between two
dynamic multi-dimensional trajectories using HMMs analysis.

A Hidden Markov Model consists of a set of n states, interconnected through
probabilistic transitions. Each of these states has some output probability distri-
bution associated with it. A discrete HMM is completely defined by the following
triplet [26],

A= {A,B,} (B.1)

where A represents the probabilistic 7 x n state transition matrix, B represents the
| x n output probability matrix with [ discrete output symbols, and 7 represents the
n-length initial state probability distribution vector.

Denote O as discrete symbol of an observation sequence. The probability of the
model A given for the observation sequence O is defined as P()\|O) and the proba-
bility that a given observation sequence O is generated from the model ) is defined

by P(O|)). The notion of equivalent HMMs for two HMMSs \; and A such that
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AL ~ Ag, iff P(O|A1) = P(O|Xs),YO (B.2)

let

Py = P(Os|\)YT, 4,5 € {1,2} (B.3)

where the probability fo the observation sequences O; given the model \;, normal-
ized with respect to the sequence lengths T;. Then, the similarity measure is defined

as

Py Pio
P11 Py

0(01,0) = (B.4)

The similarity measure can be used to validate the model-generated trajectories
and the HCS. By this method, the best learned-model can be selected which has

highest scores of similarity measure for HCS controller.
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