
Investigation on Prototype Learning

Keung Chi-Kin
姜 志 堅

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Master of Philosophy
in

Systems Engineering
and Engineering Management

© The Chinese University of Hong Kong
June 2000

The Chinese University of Hong Kong holds the copyright of this thesis. Any
person(s) intending to use a part or whole of the materials in the thesis in a
proposed publication must seek copyright release from the Dean of the Graduate
School.

摘要

基於實例的學習算法已被證實爲有效於不同範蜂中的模式分類。雖然

它們有著良好的歸納精確性，但同時也有高計算成本、高存儲要求及高

噪音數據敏感性的缺點。研究人員嘗試用典型例子學習方法解決這些

問題，學習典型例子的方法有很多，其中包括實例過爐及實例抽象。

以往，這兩種方法是分別地獨立使用的，經過仔細分析兩種方法的優點

及缺點後，我們發現它們可以互補不足。在這篇論文中，我們建議了

兩種不同的集成方法，用以結合實例過爐及實例抽象。第一種方法名

爲增量集成，這方法增量地採用實例過爐及實例抽象。在這種集成方

法下，實例過滤及實例抽象能夠以增量的方式互補不足。我們採用了

這種集成方法而提議出一個名爲P G F的結構。基於不同種類的實例過

爐方法及不同的過滤粒度，我們設計了不同的P G F算法。第二種集成

方法名爲概念集成，這方法首先分別以不同的典型例子學習方法學習出

不同的概念，然後把這些概念集成，整合不同概念的優點。我們採用

了這種集成方法而提議出一個名爲 I C P L的算法。我們使用了三十五個

現實中的指標數據集來試驗P G F及 I C P L算法，實驗結果顯示它們能

夠以少量的典型例子取得高水平的歸納精確性，比現存的算法優勝。

i

Abstract

Instance-based learning algorithms have been proven to be effective in pat-

tern classification in many domains. Despite their high generalization ac-

curacy, they suffer from three main drawbacks, namely, high classification

computational cost, storage requirement and noise sensitivity. Researcher

attempt to solve these problems using prototype learning. Some approaches

have been proposed to learn representative prototype sets including instance-

filtering and instance-abstraction. These two approaches are employed inde-

pendently in the past. After analyzing the strengths and weaknesses of the

two methods, we find that they can be complementary with each other. In

this thesis, we propose two approaches integrating the two methods. The

first approach is regarded as incremental integration in which filtering and

abstraction methods are applied incrementally. We develop a framework

called PGF which combines filtering and abstraction using this integration

approach. Different variants of PGF are designed based on different types

of filtering techniques and filtering granularity. The second approach is re-

garded as concept integration in which concepts are learned by filtering and

abstraction independently and integrated. It attempts to unify the strengths

of the two learned concepts. An algorithm called ICPL is proposed using this

integration approach. Empirical results of PGF and ICPL on 35 real-world

ii

benchmark data sets suggest that our proposed algorithms achieve a very

good data retention rate and noise reduction compared with state-of-the-art

algorithms with comparable or even superior generalization accuracy.

iii

Acknowledgments

Thanks to my supervisor Dr. Wai Lam for his unending advice in this work.

He taught me how to do quality research and how to solve problems logically.

It is really harsh for him to supervise such an amateur researcher like me.

Without his patient help, this work can hardly be finished.

All other kind people in the department also helped me a lot. Thanks go

to Wai Ip (Egg Big) who gave me valuable advice in many aspects including

research and technical support. He really helped me solve a lot of difficult

problems. Thank my friends for sharing with me when frustrated by the

research including Kun Chung, Silvia (Siu Fei) and Timmy. Thanks also

go to the ones spending their valuable to play and talk with me including

Aha Luk, Carmen and Tony, Ah So, Sally, Connie (Chu Ching), Brenda

and Qiuyue, etc. I would also like to thank the system administrators for

tolerating my abuse of the machines.

I am especially grateful to my lover, Ching Ching, my family and my best

friends. Their loves and supports have made life wonderful for me. Thanks

Ching Ching's physical and mental support during weekends. During these

two years, I really spent not enough time with them. After this work, it is

the time for me to pay them back. I hope that I can use the knowledge and

experience gained through these two years to serve them.

iv

Contents

1 Introduction 1
1.1 Classification 2
1.2 Instance-Based Learning 4

1.2.1 Three Basic Components 5
1.2.2 Advantages 6
1.2.3 Disadvantages 7

1.3 Thesis Contributions 7
1.4 Thesis Organization 8

2 Background 10
2.1 Improving Instance-Based Learning 10

2.1.1 Scaling-up Nearest Neighbor Searching 11
2.1.2 Data Reduction 12

2.2 Prototype Learning 12
2.2.1 Objectives 13
2.2.2 Two Types of Prototype Learning 15

2.3 Instance-Filtering Methods 15
2.3.1 Retaining Border Instances 16
2.3.2 Removing Border Instances 21
2.3.3 Retaining Center Instances 22
2.3.4 Advantages 23
2.3.5 Disadvantages 24

2.4 Instance-Abstraction Methods 25
2.4.1 Advantages 30

V

2.4.2 Disadvantages 30
2.5 Other Methods 32
2.6 Summary 34

3 Integration of Filtering and Abstraction 36
3.1 Incremental Integration 37

3.1.1 Motivation 37
3.1.2 The Integration Method 40
3.1.3 Issues 41

3.2 Concept Integration 42
3.2.1 Motivation 43
3.2.2 The Integration Method 44
3.2.3 Issues 45

3.3 Difference between Integration Methods and Composite Clas-
sifiers 48

4 The PGF Framework 49
4.1 The PGFl Algorithm 50

4.1.1 Instance-Filtering Component 51
4.1.2 Instance-Abstraction Component 52

4.2 The PGF2 Algorithm 56
4.3 Empirical Analysis 57

4.3.1 Experimental Setup 57
4.3.2 Results of PGF Algorithms 59
4.3.3 Analysis of PGFl 61
4.3.4 Analysis of PGF2 63
4.3.5 Overall Behavior of PGF 66
4.3.6 Comparisons with Other Approaches 69

4.4 Time Complexity 72
4.4.1 Filtering Components 72

4.4.2 Abstraction Component 74
4.4.3 PGF Algorithms 74

4.5 Summary 75

vi

5 Integrated Concept Prototype Learner 77
5.1 Motivation 78
5.2 Abstraction Component 80

5.2.1 Issues for Abstraction 80
5.2.2 Investigation on Typicality 82
5.2.3 Typicality in Abstraction 85
5.2.4 The TPA algorithm 86
5.2.5 Analysis of TPA 90

5.3 Filtering Component 93
5.3.1 Investigation on Associate 96
5.3.2 The RT2 Algorithm 100
5.3.3 Analysis of RT2 101

5.4 Concept Integration 103
5.4.1 The ICPL Algorithm 104
5.4.2 Analysis of ICPL 106

5.5 Empirical Analysis 106
5.5.1 Experimental Setup 106
5.5.2 Results of ICPL Algorithm 109
5.5.3 Comparisons with Pure Abstraction and Pure Filtering 110
5.5.4 Comparisons with Other Approaches 114

5.6 Time Complexity 119
5.7 Summary 120

6 Conclusions and Future Work 122
6.1 Conclusions 122

6.2 Future Work 126

Bibliography 128

A Detailed Information for Tested Data Sets 136

B Detailed Experimental Results for PGF 138

vii

List of Figures

3.1 The incremental integration method 40
3.2 The concept integration method 44

4.1 The PGFl algorithm 50
4.2 The PGF2 algorithm 57
4.3 Generalization accuracy for PGF variants vs. the random pro-

totype selection method 73

5.1 A two-class data set with noise 83
5.2 Typicality vs. distance from boundary 84
5.3 The IdentifyBorder function 87
5.4 The TPA algorithm . • 87
5.5 The Merge function 89
5.6 Two clouds of instances with different classes 91
5.7 Prototypes generated from TPA on two clouds of data 92
5.8 Prototypes generated from TPA on data set as shown in Fig-

ure 5.1 94
5.9 Prototypes generated from TPA on two clouds of data with

noise 95
5.10 A two-class data set with labeled instances 97
5.11 The class boundary learned by RT2 in a two-class data set. . . 102
5.12 The ICPL algorithm 105
5.13 The class boundary learned by ICPL in a two-class data set. . 107
5.14 The class boundary learned by ICPL in a two-class data set

with noise 108

viii

5.15 Generalization accuracy for ICPL, TPA and RT2 vs. the ran-
dom prototype selection method 117

I

ix

I.
i

List of Tables
I
！

1
I

4.1 Data sets and their codes 58 i
4.2 The average classification accuracy (acc.) and data retention |

rate (size) of 10-fold cross-validation across 35 real-world data
sets for different variants of PGFl and PGF2 60 丨

4.3 The average classification accuracy (acc.) and data retention ,
rate (size) of 10-fold cross-validation across 35 real-world data
sets for pure filtering methods and pure abstraction method. 60

4.4 The average classification accuracy (accuracy) and data reten-
tion rate (size) of 10-fold cross-validation for PGF2-ACC, C4.5
and KNN. The standard deviation of classification accuracy is
given inside the bracket 70

5.1 The (k-/-l)-nearest neighbors list of instances in Figure 5.10. . 98
5.2 The associate list of instances built from A;-nearest neighbors

listed in Table 5.1 99
5.3 The average classification accuracy and data retention rate

(size) of 10-fold cross-validation for ICPL, TPA and RT2. The
standard deviation of classification accuracy is given inside the
bracket I l l

5.4 The average classification accuracy and data retention rate
(size) of 10-fold cross-validation for ICPL, RT3, C4.5 and
KNN. The standard deviation of classification accuracy is given
inside the bracket 112

V

5.5 The average classification accuracy (accuracy) and data reten-
tion rate (size) of 10-fold cross-validation across 28 real-world
data sets for ICPL and PGF2-ACC 118

A.l Detailed information for the 35 tested data sets in the UCI
Repository 137 |

B.l The average classification accuracy and data retention rate
(size) of 10-fold cross-validation for PGFl-ENN, PGF1-RT3, !
and PGFl-ACC. The standard deviation of classification ac-
curacy is given inside the bracket 139

B.2 The average classification accuracy and data retention rate i
(size) of 10-fold cross-validation for PGF2-ENN, PGF2-RT3 /
and PGF2-ACC. The standard deviation of classification ac- |
curacy is given inside the bracket 140

B.3 The average classification accuracy and data retention rate 丨

(size) of 10-fold cross-validation for pure filtering methods, ‘
namely, ENN, RT3, ACC, as well as the pure abstraction
method. The standard deviation of classification accuracy is
given inside the bracket 141

xi

_ I

Chapter 1 \�

Introduction
t
I
\

We can deal with problems in various domains well using past experience, �
•

heuristic rules, trial-and-error, cognition as well as common sense. Compared)

with human, computer programs are rigid in solving problems. They cannot

respond to unseen situations which are not planned by program designers ‘

beforehand. However, it is usually impractical and impossible for one to

determine all possible situations that the program will be faced in advance.

People try to build robust systems by implanting human expert knowledge

in computer programs to handle new situations. This motivates the creation

of expert systems. However, if the domain knowledge is expensive or not

sufficiently developed, expert systems cannot be developed. Besides, it may

be difficult to capture in-depth knowledge of the problem domain. Expert

systems are also lack of intelligence. Once a system is implemented, expert

knowledge is hard-coded and its performance will not be improved to cope

with new situations.

In view of this, we need a learning system which can solve problems

adapting to new knowledge. This kind of learning method is called machine

1

1

learning and has become a rigorous research topic in recent decades. Machine

learning attempts to make decisions based on the accumulated experience

contained in successfully solved cases [61], that is, learning from examples.

With a learning system, compared with an expert system, we can obtain

solutions with higher accuracy at a lower cost. To date, machine learning

algorithms have been widely used in different data mining tasks, such as

clustering, classification, estimation and forecasting [6]. This thesis will focus

on classification.

1.1 Classification

Learning is the change of a system which allows it to perform better the

second time on repetition of the same task or similar task in the same domain

'52]. It involves knowledge acquisition from experience. In most problems,

the available data is limited and induction must be used for a system to

acquire knowledge. It is therefore known as inductive learning. Concept

learning, also known as classification, is a typical inductive learning problem.

Classification is a supervised machine learning that acquires knowledge from

a collection of examples to classify unlabeled cases. Typically, an example is

comprised of a feature vector representing the characteristics of the instance

and a class label indicating to which category the instance belongs. The

collection of examples is regarded as the training set. In order to classify

new cases, a system has to learn how to map input vectors into correct

class labels. When the input vector of a new case comes, it will predict

the correct output class based on the knowledge induced. This process is

called generalization. To evaluate the performance of a classifier, we usually

2

measure its generalization accuracy on unseen input vectors, known as testing

set

In recent decades, researchers investigate techniques to learn more, better

and faster from examples for concept description. Many machine learning al-

gorithms have been proposed to describe concepts including instance-based

learning, decision trees, rule induction, neural networks and genetic algo-

rithms.

Quilan proposed two decision trees algorithms which have been proved to

be successful in many applications [45, 46]. During the learning phase, trees

are built by splitting the training set using attribute values. Information gain

is adopted to be the splitting criteria. These algorithms are fast and capable

of handling problems with a large number of instances. Tree representation,

however, can only represent rectangular-shaped decision regions bounded by

lines parallel to the dimension axes [61]. This drawback greatly limits the

representation power of the models.

Rule induction algorithms have also been proposed including [14, 40.

Rules induced are usually composed of a boolean combination of attribute

tests (selectors) and an output class. Heuristic functions are used to termi-

nate the induction of rules. The induced rules are usually compatible with

human cognition, which is an important consideration in many data mining

applications. However, these algorithms are quite similar with decision trees

in terms of the representation of the acquired knowledge. Therefore, they

suffer from the same drawback.

Neural networks are non-linear predictive models that resemble biological

nervous system during learning and have been used to perforin classification

3

for a long time [32，39]. They may perform well on applications where intense

human sensory processing is required, such as speech and image recognition

61]. However, a large number of iterations may be required in the training

phase and the learned knowledge cannot be easily interpreted by human

reasoning.

Genetic algorithms [9, 35] learn concepts using heuristic search based on

genetic operators and fitness functions. In genetic algorithm, knowledge is

represented by a bit string. During the learning phase, the bit string is

changed using genetic operators so that the fitness function is optimized.

These algorithms usually terminate after a pre-defined number of iterations.

Some problems, however, cannot be easily represented using bit strings on

which the performance is highly dependent.

Another common learning algorithm is instance-based learning. This the-

sis focuses on this kind of algorithm and a detailed description is given below.

1.2 Instance-Based Learning

When we perform tasks based on memory, we often recall past experiences

and map them to the current situation. Relying on his memory of previ-

ous cases and recalling patients with similar symptoms, a doctor suggests a

treatment for a new patient. Past cases are also used when a lawyer pros-

ecutes a criminal in the court. This kind of problem solving technique lays

the foundation for instance-based learning algorithms.

Instance-based learning algorithms fall into the group of exemplar-based

learning [49]. They simply store past examples or instances in memory with-

out any change in representation. During execution, when an unseen instance

4

comes, it is compared with all the saved instances to perform some tasks. In

classification, typically, a similarity function is adopted to measure the simi-

larity between the input instance and the retained ones and the class label of

the most similar stored vector will be output. This kind of learning method is

sometimes called lazy learning where data processing is deferred until queries

(i.e., new data to be classified) come.

1.2.1 Three Basic Components

According to [2], instance-based learning algorithms in classification have the

following three components:

1. A representative instance selection function: It tells the algorithm

which of the instances to store in the memory. This function is critical

to the performance of the algorithm. If non-representative instances

are selected, we can hardly match them with the input instance and

correct prediction cannot be made.

2. A similarity function: It specifies how similar two instances are in the

target domain. Choosing a similarity function is not an easy task,

especially when there are attributes with discrete values. For example,

it is difficult to measure the difference between two color, says yellow

and red.

3. A classification function: After determining the similarities between

the stored and unseen instances, we have to develop a method to make

use of them to perform predictions. For example, this function might

return the class label of the instance to which the unseen case is geo-

5

metrically closest.

Intensive research has been conducted to improve the performance of instance-

based learner by developing new algorithms for the above components.

1.2.2 Advantages

Instance-based learning has some advantages over other machine learning

algorithms.

1. It learns quickly. As mentioned before, it just simply stores the past

examples without preprocessing them so that the time complexity of

the learning phase depends on the number of instances retained.

2. It can learn well from a very small data set. Whereas other machine

learning algorithms require a reasonable number of instances to learn,

instance-based learning can predict correctly using as little as a few

instances per each class. It is therefore useful for applications where

only a small amount of data is available. Besides, it can also learn

incrementally by just adding more instances to the system when extra

useful data is available.

3. Instance-based learners store instances without changing their repre-

sentation. Therefore, unlike other machine learning algorithms, con-

cepts can be represented in a similar way as the instance representation.

It allows the learning system to represent complex concepts. Moreover,

the induced knowledge is intuitive and easy to understand by human.

6

1.2.3 Disadvantages

However, instance-based learning algorithms have the following three draw-

backs:

1. They require high computational cost during execution. As the algo-

rithms simply store training instances in the learning phase, the burden

of data processing is deferred to on-line classification. All the retained

training instances must be searched in order to make correct predictions

and sometimes the execution time will be unacceptable long.

2. In some applications, a large amount of instances is required to rep-

resent the concepts. In order to gain a good generalization accuracy,

the storage requirement of instance-based learning methods is usually

high. For applications where millions of instances are available, it may

be impractical to save all of them.

3. They are sensitive to noisy instances. It is obvious that correct predic-

tion cannot be made using instances with wrong class labels.

1.3 Thesis Contributions

We attempt to overcome the drawbacks of instance-based learning by devel-

oping new algorithms for the representative instance selection component in

instance-based learning. With a good instance selection component, we can

use a few representative instances to substitute the entire training set. There-

fore, the high computational cost, storage requirement and noise sensitivity

can be improved. The discovery of representative instances is also known as

7

prototype learning. In this thesis, we focus on two common prototype learn-

ing approaches, namely, instance-filtering and instance-abstraction. After

analyzing the two approaches, we notice that they have their own strengths

and weaknesses and can be beneficial to each other. We design two proto-

type learners which integrate the two approaches and unify their strengths to

learn representative prototypes. Our objective is to achieve low data reten-

tion rate while maintaining or even improving the generalization accuracy.

Empirical results show that our proposed algorithms are applicable to per-

form accurate classification using small prototype sets on a wide variety of

real-world domains.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 describes two ap-

proaches to learning prototype set including instance-filtering and instance-

abstraction. We review some previous work on these two approaches and

examine the strengths and weaknesses of them.

In Chapter 3, we investigate how the two prototype learning approaches

can be complementary with each other. Two integration approaches, called

incremental integration and concept integration, are presented and some is-

sues related to them are discussed.

We propose a framework combining filtering and abstraction based on in-

cremental integration to learn representative prototypes in Chapter 4. Two

algorithms are developed under this framework. A thorough empirical anal-

ysis on the issues affecting this integration method is also conducted on 35

benchmark data sets.

8

»

Chapter 5 proposes another prototype learning algorithm developed by

combining filtering and abstraction using concept integration. It provides

a detailed analysis on designing and selecting the abstraction and filtering

components of the proposed algorithm. Experiments on 35 benchmark data

sets are also conducted to compare the performance of the algorithm with

existing classification algorithms.

In the last chapter, we provide conclusions on our research. Some future

research directions on integration of filtering and abstraction in prototype

learning are also described.

9

Chapter 2

Background

Instance-based learning methods suffer from high computational cost, storage

requirement and noise sensitivity. Researchers attempt to solve these prob-

lems by scaling-up the nearest neighbor search and data reduction. In this

chapter, we first provide some background information on these two methods.

Data reduction, regarded as prototype learning in this thesis, is chosen to im-

prove instance-based learning algorithms. Two approaches, namely, instance-

filtering and instance-abstraction, are adopted in many existing work. We

review the related literature and investigate the strengths and weaknesses of

the two approaches in this chapter.

2.1 Improving Instance-Based Learning

Though instance-based learning algorithms are found to be effective in many

applications, they suffer from some drawbacks including high on-line com-

putational cost, storage requirement and noise sensitivity. Two main ap-

proaches are employed to ameliorate instance-based algorithms in the past.

10

The first one is to scale-up the nearest neighbor search. This method im-

proves the on-line computational cost by reducing the number of distance

calculations in identifying nearest neighbors of unseen cases. The second one

is data reduction. This method attempts to find a relatively small amount

of representative instances to represent the entire training set and, there-

fore, both the storage requirement and classification computation of instance-

based algorithms can be reduced.

2.1.1 Scaling-up Nearest Neighbor Searching

During on-line classification, most instance-based learning algorithms require

the identification of the unseen cases' nearest neighbors. The computational

cost of instance-based learning can be improved using some sophisticated

nearest neighbor searching methods. Nearest neighbor search has been in-

vestigated for many years [5, 31, 43, 55, 71]. Most scaling-up searching

methods involve projections of instances to different axis in the dimension of

the target domain space in an attempt to decrease the amount of distance

calculations when locating the nearest neighbors [31, 43, 71]. These algo-

rithms usually work well under certain assumptions on the data distribution.

For example, A;-dimensional tree [55] was proposed to find nearest neighbors

in 0(logn) time in the best case where n is the number of instances stored.

However, as the dimensionality of data increases, this algorithm cannot re-

duce the searching to a large extent. Some algorithms can handle data in

high-dimensional space with some data preprocessing [5 .

11

2.1.2 Data Reduction

Improving the nearest neighbor searching can only help the computational

cost during on-line classification. However, the remaining two problems for

instance-based learning, high storage requirement and noise sensitivity, are

still not addressed. One intuitive way to solve these problems is to reduce

the data set so that the original training set can be represented using fewer

instances. With data reduction, both the number of distance calculations

and instances stored are reduced. Moreover, noisy instances can be removed

in the reduced data set so that the generalization accuracy can be improved.

Therefore, data reduction seems to be a good solution. It is, however, dan-

gerous to eliminate instances from the training set. The performance of

instance-based learning algorithms depends highly on the quality of the in-

stances retained for on-line classification. Therefore, if representative in-

stances are carelessly removed, accurate predictions cannot be made. This

characteristic explains why reducing the data set usually results in degrada-

tion in generalization accuracy if not done properly.

2.2 Prototype Learning

Different communities including machine learning and pattern recognition

have proposed different methods for data reduction in instance-based learning

in the past few decades. Starting from 1968 [25], intensive research trying

to select representative instances has been conducted in pattern recognition.

In the pattern recognition community, this problem is also called reference

set selection and algorithms for performing this task are termed editing rules

12

which edit the training set using specifically designed rules. Not until late

1980，s, researchers in machine learning showed their interest in this problem

29]. Kibler and Aha pose this problem as an instance selection in instance-

based learning triggering numerous research in this direction.

Though the same topic has been investigated in different communities,

different terminologies are adopted. In cognitive science, the term prototype

refers to an ideal example which can be distinguished from each other while

in pattern recognition it refers to an instance stored to represent the training

set. Some researchers regard prototypes as artificial instances generated by

averaging or generalizing instances in the training set [13]. To avoid ambi-

guity and confusion, we first define some terminologies used in this thesis.

The term prototype refers to an instance selected or automatically generated

by any reduction algorithm to represent the original data set and the set of

prototypes is called prototype set According to the definition, data reduc-

tion can be regarded as prototype learning in which a smaller prototype set

is learned from the original training set. In the following sections, we first

discuss the objectives of prototype learning. Related work on different proto-

type learning approaches is then reviewed and the strengths and weaknesses

of each of them are studied.

2.2.1 Objectives

The objective of prototype learning is to discover representative prototypes

from the training instances. To identify representative prototypes, we must

know how to measure the representativeness of an instance. Zhang propose

13

a typicality^ function to measure the degree of representativeness of instance

72]. However, this measure is effective in identifying how far an instance

is apart from the decision boundary (see Chapter 5) rather than a good

indicator to measure representativeness.

As for prototype learning for instance-based algorithms, our objective is

to learn as few prototypes as possible to represent the training set so as

to reduce the classification computation and storage requirement. We also

attempt to eliminate noise which cannot be effective handled by instance-

based learning methods. In view of this, we can define representativeness of

a prototype in this way: the degree of contribution of a prototype to perform

accurate classification. Moreover, this concept can be extended to the entire

prototype set rather than an individual prototype. A prototypes set con-

taining representative prototypes may not perform well if those prototypes

do not have a sufficient coverage of the target domain. However, in order to

obtain a sufficient coverage, a large amount of prototypes may be required.

Consequently, the most intuitive way to measure the performance of proto-

type learning methods is to consider both the generalization accuracy as well

as the amount of prototype retained. A representative prototype set should

achieve a high generalization accuracy and, at the same time, a low data

retention rate. This approach actually also takes into account the ability to

tolerate noise as noise usually hurts generalization accuracy.

lAn in-depth analysis of typicality will be provided in Section 5.2.2.

14

2.2.2 Two Types of Prototype Learning

Prototype learning techniques can be distinguished by the nature of the pro-

totypes it learns. Kibler and Aha classify the techniques into two groups,

namely, instance-filtering and instance-averaging [30]. Instance-filtering rep-

resents concepts by filtering in or out instances from the training set to form

the target subset. In instance-averaging, prototypes are learned by averaging

out some instances in the training set and storing the remaining ones. In this

thesis, we define methods generating artificial prototypes by summarizing or

generalizing (including averaging) training instances as instance-generation

or instance-abstraction.

2.3 Instance-Filtering Methods

Human often use past experiences to solve problems. However, it is im-

possible for us to memorize all the past cases and match them with the

current situation. Therefore, we usually just memorize some typical and

representative examples. Instance-filtering learns concepts in this manner.

In instance-filtering methods, representative prototype is learned by filtering

rules which are designed to determine whether an instance should be retained

as a prototype or not. That is, the learned prototype set is a subset of the

original training set. Previous proposed methods differ from search direc-

tions and locations of instances retained. According to Wilson and Martinez

69], filtering methods can be distinguished into three groups: 1) retaining

border instances, 2) removing border instances and 3) retaining center in-

stances, where border instances refer to instances near decision boundaries

15

while center ones refer to the ones far away.

2.3.1 Retaining Border Instances

Most instance-filtering techniques fall into this category. This method at-

tempts to represent concepts using instances in decision boundaries among

different classes while intermediate and center instances are discarded since

elimination of them usually do not affect the decision boundaries. This

method usually gain high generalization accuracy since class boundaries are

preserved and achieves a reasonable data reduction rate. In most filtering

methods, border instances are identified using the class labels of their neigh-

bors as their neighbors are usually of other classes. However, noisy instances

are also retained as they have similar behavior with border instances under

this filtering criteria.

Condensed Nearest Neighbor. The earliest editing rule called Con-

densed Nearest Neighbor (CNN) is introduced by Hart [25]. This bottom-up

algorithm randomly selects one instance for each class to form the initial

prototype set. An instance is retained if it is misclassified by the current

prototype set so that a consistent subset is obtained which means all the

training instances can be correctly classified by the prototype set. This al-

gorithm tries to retain instances in the class boundaries with a low selection

cost. However, it cannot guarantee a minimal subset and is sensitive to the

initial state and instance presentation order. Besides, since noisy instances

are usually misclassified by their neighbors, they are likely to be retained by

the algorithm.

16

Reduced Nearest Neighbor. Gates proposes an iterative, top-down vari-

ant of CNN called Reduced Nearest Neighbor (RNN) [23]. Starting with all

instances as the prototype set, this algorithm deletes an instance if its dele-

tion does not result in any misclassification of other instances. Instance 丨

deletion continues until no more instances are removed. This algorithm also

intends to find a consistent subset by retaining instance in the class bound- ！

aries. It achieves a greater reduction than CNN. Unlike CNN, RNN removes

instances which may be misclassified so that some noise will be removed.

Iterative Condensation Algorithm. Swonger proposes another variant

of CNN called Iterative Condensation Algorithm (ICA) [57]. ICA allows both

deletion and selection of instances within a iteration so that it is not sensitive

to the initial state of the algorithm. It discards instances appearing to cause

more misclassifications than correct classifications and retains those reducing

the number of classification errors. It can handle noise, outliers and allow

identical-valued instance with different labels.

Selective Nearest Neighbor. Ritter et al. introduce a top-down Selective

Nearest Neighbor (SNN) algorithm to determine a possible minimal subset

approximating the decision boundaries [48]. It ensures each instance in the

original data set is closer to an instance in the selected set of the same class

than any other instance of other classes. It leads to a consistent subset and

achieves both a greater reduction and higher accuracy than CNN. However,

in order to maintain the consistency, noise is also retained.

17

Mutual Nearest Neighbor. Gowda and Krishna introduce a new con-

cept, called mutual nearest neighborhood, which takes into account the two-

way nearness of two instances in finding prototype set [24]. They modify

CNN retaining instances misclassified by their mutual nearest neighbors in- >

stead of nearest neighbors. 丨
i i
i

Multiedit. Many previous work use all available instances to learn and test

the subset so that there is a high dependence between the training and testing

samples. Devijver and Kittler mention that this high dependence can lead to

a constantly optimistically bias in error estimation of the subset [21]. They

try to remove this bias by randomly partitioning the available instances into

multiple independent sets. They propose an iterative top-down MultiEdit

algorithm discarding instances misclassified by its nearest neighbor in other

subset. This iterative process continues until no further instance editing.

The MultiEdit algorithm initiates the use of sampling in instance-filtering.

Instance-Based Learning Algorithms. Classification accuracy can be

improved by removing noisy instances and irrelevant features in instance-

based learning. Aha et al. have investigated these two factors in instance-

filtering intensively. A noise-tolerant instance filtering called NTGrowth is

proposed by Aha and Kibler [3]. NTGrowth retains misclassified instances

and keeps track of the classification performance of each of them. Noisy data,

usually have low accuracy, will be discarded.

Later, Aha et al. formalize NTGrowth to the well-known IB2 and IBS

algorithms retaining border instances incrementally [2]. IB2 is similar to

CNN saving misclassified instances except that instances are normalized by

18

the range of attributes and missing values are handled. However, like CNN,

it is sensitive to noise.

IB3 is then proposed to tolerate noise. It accepts instances with classifi-

cation accuracy significantly greater than the frequency of the observed class.

Noise, usually has a low classification accuracy, will probably be eliminated.

However, both methods do not retain correctly classified instances which

may be useful in classification. Apart from noise tolerance, two incremen-

tal instance-based learning algorithms are proposed to determine relative

attribute relevances and handle novel attributes which comes up with the

IB4 and IB5 algorithms [1]. Later, Cost and Salzberg propose a method

called PEBLS using a weighted modified Value Difference Metric (MVDM)

to weight symbolic features [16]. Recently, Payne and Edwards a feature se-

lection method also based on Value Difference Metric [44]. A detailed review

and evaluation of several major feature weighting methods in lazy learning

has been done by Wettschereck et al. [63 .

Minimal Consistent Set. Dasarathy presents a new editing rule to achieve

a Minimal Consistent Set (MCS) by considering the distance between nearest

neighbors of the same class and that between nearest unlike neighbor [17 .

This method achieves a minimal consistent subset and is insensitive to the

initial order of presentation of instances. Instances are also selected in the or-

der of their consistency property. Empirical results show that it outperforms

the CNN approach.

Reduction Techniques. Recently, Wilson and Martinez propose three

top-down data reduction techniques called RT1-RT3 [69]. RTl removes an

19

instance if most of its associate?, instances in the current subset having it

as one of their A;-nearest neighbors, are classified correctly without it. Noisy

instances are usually removed as they can hardly categorize their associates

accurately while border instances will be retained as their associates tend to -

be classified correctly with their contribution in KNN classification. ,

RT2 improves RTl by considering associates of the original data set in- 丨
I,

stead of the selected subset. It also changes the order of instance removal

by sorting the instances in the subset by the distance to their nearest unlike

neighbor first. This technique makes RT2 insensitive to the order of data I
I

presentation.

RT3 adds a noise-filtering pass before sorting selected instances by ENN
I

and obtains a greater data reduction than RT2. RT3 achieves a high classi- |
]

fication accuracy comparable to those of pure KNN with an average 14.32% j
i

data retention rate.

Later, they formalize the three algorithms, as well as two extra variants,

to form the DR0P1-DR0P5 algorithms [68]. DR0P1-DR0P3 refer to RTl-

RT3 respectively. DR0P4 adopts a careful noise filtering processing instead

of simply applying ENN in DROPS. DR0P5 is identical to DR0P2 except

that a decision boundary smoothing pass is performed first. It is achieved

by removing instances having nearest neighbor of other classes. DROPs are

compared with a number of existing prototype learning algorithms such as

CNN, ENN and IBS and empirical results show that DROPs outperforms all

the existing methods in generalization accuracy using relatively small proto-

type sets. It is also found that DROP2-DROP5 have similar performance in

both data retention rate and generalization accuracy while DROPS performs

2 An in-depth analysis of associate will be provided in Section 5.3.1.

20

1

the best on average.

They also propose an Integrate Instance-Based Learning Algorithm which

can automatically tunes its parameters, including parameters in distance

function, instance pruning techniques and attribute and vote weighting which

are essentially the three basic components of instance-based learning, used

in the algorithm [67]. A in-depth analysis of the three components can also

be found in [66 .

2.3.2 Removing Border Instances

These methods remove instances close to decision boundaries and attempt

to describe concepts using intermediate and center instances. A smoother

decision boundary can be obtained using these methods. Besides, some misla-

beled instances can also be removed as they are all like border instances which

have neighbors of other classes. However, a relatively low data reduction rate

is obtained for this method contrasted with other filtering techniques.

Edited Nearest Neighbor. The Edited Nearest Neighbor (ENN) algo-

rithm proposed by Wilson is a top-down algorithm retaining central and in-

termediate instances [65]. Opposed to CNN, ENN eliminates those instances

misclassified by its k nearest neighbors. Since noisy instances are seldom cor-

rectly classified, they can be usually removed. However, this algorithm does

not achieve a low data retention rate if homogeneous instances are closely

packed so that most of them are correctly classified and thus are retained.

Unlimited and All K-NN Editing Nearest Neighbor. Tomek extends

ENN to unlimited editing and all K-NN algorithms [58]. Unlimited editing

21

continuously repeats ENN and terminates after the prototype set becomes

stable. In all K-NN, ENN is also repeated but different number of nearest

neighbors are used in determining the acquisition of instances. The two vari-

ants of ENN give better performance in terms of both classification accuracy

and data reduction, but they require a higher computational cost than pure

ENN.

New Edited Nearest Neighbor. A new edited nearest neighbor rule is

proposed by Hattori and Takahashi [26]. The new rule retains an instance

which k or {k-fl) nearest neighbors are of the same class of it where I is the

number of instances which tie with the A;th nearest neighbor with respect

to the distance from it. The authors show that the new algorithm outper-

forms the classical KNN and ENN algorithms. However, like ENN, the data

retention rate of the algorithm is also high.

2.3.3 Retaining Center Instances

In some applications, many instances may be required to describe decision

boundaries leading to poor data reduction rate. In view of this, some re-

searchers design filtering methods retaining center instances instead of bor-

der ones. It can greatly reduce the storage requirement for instance-based

learning algorithms. However, the decision boundaries may be severely dis-

torted with the absence of border instances resulting in poor generalization

accuracy. Therefore, center instances must be carefully selected in order to

maintain a high accuracy.

22

Typical Instance-Based Learning. Zhang proposes a measure, called

typicality, to indicate how typical an instance is by considering the aver-

age similarity of instances of the same class and that of instance of other

classes. Based on typicality, Zhang presents two instance-filtering techniques,

namely Typical Instance-Based Learning (TIBL) storing typical instances

and Boundary Instance-Based Learning (BIBL) storing atypical instances

72]. TIBL identifies new typical instances by considering their performance

on previously misclassified instances and BIBL retains least typical instances

including boundary and exceptional instances. It is found that TIBL attains

a better performance in terms of both data retention rate and generalization

accuracy.

After reviewing some the filtering techniques, we try to identify the ad-

vantages and disadvantages of them.

2.3.4 Advantages

We find that filtering techniques have the following advantages:

1. Filtering methods are usually simpler and faster. Therefore, the be-

havior such as the convergence of instance-filtering algorithms can be

investigated due to their simplicity [30 .

2. Apart from their simplicity, most filtering methods can gain high ac-

curacy which is comparable or even superior to instance-based learner

storing the entire training set.

3. As filtering techniques select representative instances from the origi-

nal instance set, they can truly represent the original concept and the

23

learned concept is easily comprehended.

4. Since filtering rules can be designed to filter in or out different in-

stances such as border [2, 23, 25, 48，69], central points [57, 58，65] and

even noise and outliers [2, 25, 69], one can easily apply different rules

simultaneously or separately to filter different instances. This flexibil-

ity can also be extended to other prototype learning methods such as

instance-abstraction.

2.3.5 D isad vantages

However, filtering techniques have the following disadvantages:

1. They assume that ideal examples can be found in the training set. If

it is not the case, the performance of filtering techniques will not be

good.

2. Filtering techniques do not perform abstraction of instances, therefore,

the representative power of prototypes may be limited by just selecting

from original instances.

3. Some methods enforcing the edited subset to be consistent may lead to

overfitting.

4. Noisy instances are usually selected by boundary instance retaining

methods as they have similar behaviors under most of the filtering

rules.

5. For filtering methods retaining or removing border points, data reten-

tion rate is usually high compared with instance-abstraction [58，65 .

24

6. Some filtering methods are sensitive to the order of presentation of

instances.

2.4 Instance-Abstraction Methods

Sometimes, to handle a large amount of past cases, instead of memorizing

representative ones, we can conduct generalization on similar cases. Through

abstracting past cases, we can generate distinctive cases and use them to

make decisions. This is the basic idea of instance-abstraction methods which

derive prototype set by abstracting or summarizing training instances. They

attempt to find the common characteristics of instances for each class. Unlike

instance-filtering methods just selecting prototypes appearing in the training

set, they involve generating artificial prototypes. Therefore, the learned pro-

totypes may not be found in the training set. We review some of the major

previously proposed algorithms below.

Chang's Averaging Method. An early instance-abstraction algorithm

is a top-down approach proposed by Chang [13]. The algorithm merges two

nearest instances by weighted averaging them. The merging process stops

when the number of incorrect classifications starts to increase. It is found to

be very effective to reduce the size of data set.

Disjunctive Spanning. Bradshaw introduces the Disjunctive Spanning

(DS) algorithm which uses weighted averaging on an selected prototype with

instances correctly classified by it [10]. Prototypes with more instances

merged have a higher weight so that its influence on the next merge will

25

be larger. However, the author claims that the learned prototypes may be

non-prototypical.

Adaptive Threshold. Kibler and Aha improve DS by adding an adaptive

threshold (AT) to limit the distance between the merged instances [30]. Dis-

tance threshold in instance-abstraction is first introduced by Sebestyen to

prevent generation of non-prototypical prototypes [51]. Kibler and Aha re-

port that AT improves both classification accuracy and data retention rate of

DS. AT is then compared with an filtering technique and it is found that the

two prototype learners achieve similar results in both accuracy and retention

rate. However, the authors claim that instance-avenging techniques gener-

ate misclassified instances in the prototype set and are unable to represent

concave concepts.

Symbolic Concept Learning. Maza describes a cognitively based sym-

bolic learning system called PROTO-TO which builds a prototype for each

class. Instead of averaging the feature values, PROTO-TO learns a pro-

totype by creating a vector for each attribute. Symbolic attribute vector

contains the number of occurrences of all the attribute values while continu-

ous one stores the mean and standard deviation of the attribute. After that,

augmented prototypes are created by adding a weight to each attribute. Per-

formance of PROTO-TO is shown to be comparable to C4.5 and superior to

NTGrowth.

Nested Generalized Exemplar. An algorithm called Nested General-

ized Exemplar (NGE) storing instances as hyperrectangles is proposed by

26

Salzberg [49]. Instances are generalized to form and resize hyperrectangles

after correct predictions. The nested hyperrectangles allow the representa-

tion of nested concepts.

However, Wettschereck and Dietterich show that NGE is significantly

inferior to KNN on some real-world data sets [64]. NGE is then improved by

avoiding the creation of overlapping rectangles and using a feature weighted

distance metric. The improved NGE is still inferior to KNN as shown by

the author. NGE is very sensitive to the shape of decision boundaries of the

learning concept.

Wettschereck also combines the nearest neighbor and hyperrectangle con-

cepts to form a hybrid algorithm that classifies unseen cases by hyperrectan-

gles if they are enclosed by any of them and by KNN otherwise [62]. In order

to perform KNN, the hybrid method has to store all the instance. Despite its

inability to reduce storage, it achieves a high accuracy comparable to KNN

with a lower computational cost as hyperrectangles are used.

Prototype Learner. Datta and Kibler introduce a top-down splitting al-

gorithm called Prototype Learner (PL) learning prototypes for a concept by

generalization of high quality example partitions [18]. This algorithm works

on nominal attributes only and partitions homogeneous instances by values

of some features. An example partition is said to be of high quality if the

randomness of the feature values in the example partition is low. Different

from other abstraction algorithms, prototypes learned by PL contain only a

subset of features with specified values as well as a class label.

They then propose a Symbolic Nearest Mean Classifiers (SNMC) trying

to learn a single symbolic prototype for each concept [19, 20]. Using the

27

MVDM metric to weigh and define distance of symbolic attributes, SNMC

begins by clustering homogeneous instances into different groups using k-

means clustering. Cluster means will then become the learned prototypes.

Different number of clusters (prototypes) are tried to obtain the best results.

A variant of SNMC using sum of squared error to determine the number of

clusters is also tested. SNMC achieves a classification accuracy superior to

C4.5 using one to two prototypes for each class.

Rule Induction from a Set of Exemplars. Domingos proposes an in-

tegrated technique, the RISE algorithm, combining instance-based learning

and rule induction [22]. Under this algorithm, instances are treated as rules

and data reduction is achieved using specific rules formed by abstraction of

instances. During the learning phase, rules (instances) are modified to cover

as many instances as possible provided that accuracy is not degraded. RISE

obtains a better performance than other rule-based systems, says CN2 and

C4.5, and a symbolic nearest neighbor classifier.

Modified Chang's Averaging. Bezdek et al. propose a modified Chang's

averaging method (MCA) learning multiple prototypes [7]. MCA averages

instances using simple instead of weighted means and restricts the merging

of instances with the same class label only. MCA is compared with three

sequential competitive learning methods including learning vector quantiza-

tion (LVQ), fuzzy LVQ (GLVQ-F) and dog-rabbit (DR) models as well as

the original Chang's method and a fuzzy c-means algorithm using resubsti-

28

tution^ error rate. Experiments on the iris data show that MCA gains a

zero resubstitution error and DR achieves a minimum number of prototypes.

Kuncheva and Bezdek further compare the resubstitution error of above al-

gorithms with that of genetic algorithm (GA) and a random search approach

35] finding a subset of instance. They find that generated prototypes usually

gain lower resubstitution than subset prototypes because the former may not

match with real instance well.

Generalized Instance Set. Lam and Ho propose a Generalized Instance

Set (GIS) algorithm which learns generalized instances to solve two-class text

categorization problems [36]. Initially, an instance is randomly selected as a

GI. Then it is abstracted with its k nearest neighbors using one of the two

generalization methods, namely, Rocchio and Widrow-HofF algorithms. A

representative power function is then used to evaluate the GI formed. The

generalization of that GI continues until its representative power function

starts to decrease. This process ends until all the instances are processed.

The two GIS algorithms are found to outperform classical KNN algorithm.

Family-Based Learning. Another abstraction technique, called Family-

Based Learning (FAMBL), in language learning tasks is proposed by Van den

Bosch [60]. It forms hyperrectangles like NGE [49] but a different instance

merging procedure is used. It abstracts an instance with its nearest neighbors

until an instance of other classes or an abstracted instance is reached. The

abstraction process terminates until all the training instances are processed.

3 Resubstitution is the classification of the original training set using the learned pro-

totype set.

29

This algorithm is found to have similar generalization accuracy with IBl

using fewer prototypes.

2.4.1 Advantages

After reviewing a number of instance-abstraction methods, we investigate

that they have the following advantages:

1. Artificial prototypes generated by instance-abstraction techniques may

be more representative than original instances.

2. Border instances may also be abstracted so that smoother decision

boundaries can be obtained.

3. Compared to instance-filtering methods, instance-abstraction techniques

have a stronger generalizing power on instances. They usually achieve

a lower data retention rate.

4. Through summarizing instances, the common characteristic of a con-

cept can be learned and the learned concept has less risk to overfit the

original data.

5. As for noise tolerance, abstraction methods can generalize away mis-

labeled instances in compact region by merging them with other in-

stances.

2.4.2 Disadvantages

On the other hand, instance-avenging methods suffer from the following

drawbacks:

30

1. They are usually more complex than instance-filtering ones. It limits

the study of the behaviors of instance-abstraction techniques such as

generality and limitations in terms of the concept descriptions [30 .

2. Resubstitution performance is not guaranteed by relabeling merged

instances in abstraction techniques. The artificial prototype set may

even contain mislabeled instances leading to misclassification for unseen

cases [30 .

3. Abstraction methods attempt to find the common characteristics of

similar instances. However, it is difficult to do so if the concepts are

very complicated.

4. Artificial prototypes may be non-prototypical and even not be the con-

cept it intends to represent [10]. Therefore, they are less comprehensive

than those selected by instance-filtering methods.

5. Simple abstraction also fails to describe concave concepts [30]. This

drawback leads to an inferior classification accuracy in such domains.

6. Though abstraction methods can generalize away mislabeled instances

in compact regions, they cannot do so for outliers. Merging instances

with outliers may form non-prototypical prototypes.

7. It is not easy to find an interpretation for abstracting discrete features

during generalization of instances.

31

2.5 Other Methods

Some researchers use stochastic approach to find a subset of original instances

as prototypes. Instead of filtering instances one by one using editing rules,

stochastic techniques search the space of sets of prototypes to determine the

best subset.

Random Mutation Hill Climbing. Skalak proposes two stochastic meth-

ods using random sampling (RS) and iterative random mutation hill climb-

ing (RMHC) to select a set of prototypes [54]. In RS, random sampling is

repeated and samples with maximum classification accuracy become the pro-

totype set. In RMHC, a prototype set is represented by a binary string and

a random bit is mutated iteratively. The result prototype set is the binary

string scoring maximum fitness. RMHC can also be designed to select pro-

totypes and features simultaneously by changing the bit coding. The author

then focuses on combining classifiers built from different samples to form

composite nearest neighbor classifiers [53]. Editing rules based on genetic

algorithms can also be found in [33, 34 .

Vector Quantization. Xie et al. use vector quantization technique to find

prototypes which are regarded as quantizers created with minimum average

distortion rate of quantization [70]. The performance of the learned proto-

type set is compared with CNN, RNN, ENN and classical nearest neighbor

algorithm and found to have higher accuracy and data reduction.

Minimum Description Length. Minimum Description Length (MDL)

principle is first applied in instance-filtering by Cameron-Jones [11]. Like

32

RMHC, choice of instances indicating the prototype set is encoded in a bit

string and a function is designed to calculate the coding cost of a bit string.

MDL retains instances which can additionally decrease the coding cost of the

current bit string. The classification accuracy of MDL is found to be slightly

superior to IBS with a significant improvement in reduction rate.

Cameron-Jones then adopts the searching heuristic of RMHC [54] to MDL

create the Explore algorithm [12]. Explore outperforms the original MDL

algorithm in both classification accuracy and data retention rate.

Probabilistic Instance-Based Learning. Tirri et al. introduce a prob-

abilistic instanced-based learning algorithm using predictive distributions of

attributes by Bayesian inference to form prototypes instead of considering

feature values [59]. Overfitting and sensitivity to choice of distance metric of

instance-based learning algorithms can be avoided by this algorithm.

Local Metrics. A local metric for nearest neighbor (LASM) using a pro-

totype set is proposed by Ricci and Avesani [47]. Given a prototype set,

which can be randomly selected from the training set, LASM tries to find a

system of asymmetric weights for each pair of prototypes. In the learning

state, weights of prototypes will be updated by the reinforcement step and

the punishment step for correct classification and misclassification of other

instances respectively. The learned weights, as well as the prototype set itself,

will be used to classify unseen cases. LASM gains a classification accuracy

comparable to KNN with optimized k using only 4.5 percent of instances as

prototypes on ten real-world data sets.

33

2.6 Summary

Prototype learning is the technique to learn prototype sets from training in-

stances. With a good prototype learning method, we can substitute the orig-

inal training set using a relatively smaller prototype set to perform accurate

classification. This method is believed to be able to ameliorate traditional

instance-based learning algorithms.

There are many approaches to learning distinctive prototype sets in-

cluding instance-filtering and instance-averaging. Instance-filtering refers to

techniques selecting representative prototypes from the original training set.

These techniques intend to find a subset of training instances to describe orig-

inal ones. They can be grouped by the location of instances they retained,

namely, 1) retaining border instances, 2) removing border instances and 3)

retaining center instances. We have reviewed some previous work for each of

the three groups. These methods are found to be fast and simple. Some of

them can achieve high generalization accuracy compared with the classical

nearest neighbor algorithm and can be flexibly designed and integrated to

handle instances in different regions. However, they cannot perform well if

ideal instances are not found in original data and are sensitive to noise. Also,

their data retention rate is usually high.

Another approach, called instance-abstraction, is to learn artificial pro-

totype set by generalizing or abstracting the training instances. Results

from previous work show that this approach can achieve low data retention

rate and generate prototypes more representative than original instances.

Noise can also be absorbed during the abstraction process. In spite of these

strengths, abstraction techniques are usually more complicated and bad pro-

34

totypes will be formed when merging distant instances, thus leading to poor

generalization accuracy.

Considering the strengths and weaknesses of the two prototype learning

approaches, we observe that the two approaches are strong in handling dif-

ferent kinds of data distribution and can be advantageous to each other. In

the next chapter, we propose two integration methods attempting to unify

the strengths of filtering and abstraction to learn representative prototypes

for instance-based learning algorithms.

35

Chapter 3

Integration of Filtering and

Abstraction

Different learning methods use different induction techniques and knowledge

representation. They behave well in different domains or even different sub-

regions within the same domain space. For this reason, some researchers are

interested in building composite learners in which decisions are made by com-

bining different component learners. In instance-based learning, researchers

try to improve the generalization accuracy and data retention rate by inte-

grating different prototype learning methods. Wettschereck integrates KNN

and hyperrectangle concepts to form a hybrid algorithm [62]. Domingos uni-

fies the strengths of rule induction and instance-based learning developing

the well-known RISE system [22]. All these methods are found to be able to

outperform any one of the component methods.

After analyzing the strengths and weaknesses of the instance-filtering

and instance-abstraction methods, we find that the two methods can be

beneficial to each other and can handle different kinds of data distributions.

36

In this chapter, we propose two approaches integrating the two methods.

The first approach is regarded as incremental integration in which filtering

and abstraction methods are applied incrementally. The second approach is

regarded as concept integration in which concepts are learned independently

and integrated.

I
I
！

3.1 Incremental Integration

In incremental integration, we attempt to integrate the two methods so that

they can help each other in an incremental fashion. Through this integra-

tion, the two methods can overcome some of their drawbacks when learning

prototypes to gain better results in both generalization accuracy and data

retention rate. Our early work shows that this integration method can out-

perform state-of-the-art classification algorithms in generalization accuracy

using a few prototypes on a number of benchmark data sets [27, 28, 37, 38 •

3.1.1 Motivation

Both the filtering and abstraction methods have their own drawbacks. After

investigating the two methods, we find that filtering can help abstraction to

overcome some of its drawbacks and vice versa. We describe how they assist

each other below.

How Filtering Helps Abstraction

We find that filtering methods can be beneficial to abstraction methods in

the following ways:

37

1. In abstraction, non-prototypical instances will be formed if distant in-

stances, especially for outliers and exceptions, are grouped. To avoid

this, we can apply specially designed filtering rules to remove outliers

and exceptions first before performing abstraction.

2. Filtering techniques can also be helpful in the middle of or after the

abstraction process. We can design a filtering rule to eliminate any

non-representative prototypes formed when the abstraction process is

in progress.

3. Kibler and Aha observe that abstraction technique may retain mis-

classified prototypes [30]. These prototypes can also be removed by

specifically designed filtering rules during or after the process of ab-

straction.

4. Some abstraction methods require high computational cost [13]. Fil-

tering rules can be adopted first to eliminate some non-representative

instances before abstraction so that computational cost of abstraction

can be reduced.

How Abstraction Helps Filtering

Instance-abstraction can assist instance-filtering too.

1. Filtering methods do not conduct generalization on instances and some

of them just discard a small portion of instances such as border points

65]. Hence, they usually cannot gain a satisfactory level of data re-

duction. With the help of instance-abstraction methods, instances in

38

compact regions can be generalized to single or a few prototype(s) lead-

ing to a significant improvement in data retention rate.

2. The representative power of filtering methods will be limited if the

good representative instances cannot be found in the original data set.

As abstraction approaches summarize the most representative char-

acteristics of similar instances, the generated instances can be more

representative than original ones. Therefore, the representation power

of filtering approaches can be improved if abstraction technique is suit-

ably integrated.

3. Abstracting instances can also provide a smoother decision boundary

for filtering methods and prevent them from overfitting the training

set.

4. Some filtering methods are sensitive to mislabeled instances [25]. Ab-

straction methods can then be used to help filtering methods generalize

away those noisy instances before filtering is applied.

We can see that the two methods can assist each other in different ways.

Therefore, we attempt to integrate the two methods so that they can com-

plement each other during their learning phases and their performance on

both generalization accuracy and data retention rate can be improved. To

do so, any effects made by the outcome of one method on the training set

should be reflected to the other one. This motivates the development of the

incremental integration.

39

Training

Set

(z F i n a l

Filtering/ \ 1, prototype
Abstraction J „ »

Li!!
Intermediate

Prototype

Set

Figure 3.1: The incremental integration method.

3.1.2 The Integration Method

In incremental integration, filtering and abstraction process the training set

incrementally. Figure 3.1 shows the overview of our incremental integration

method. Given a training set, we first apply filtering or abstraction on it

and then the counterpart method is applied on the results of the previous

method. For example, we can apply a filtering method first to eliminate

all the outliers and then perforin abstraction so that the formation of non-

prototypical prototypes can be prevented. Alternatively, abstraction can

be adopted to reduce the prototype set after performing filtering on the

training set. As a result, filtering and abstraction are applied iteratively

on the intermediate prototype set. This process continues until the target

prototype set is obtained.

40

3.1.3 Issues

The next challenge is how to design the filtering component and the abstrac-

tion component in incremental integration. We observe that there are two

main issues needed to be taken into account. The first issue is the type of

filtering techniques and the second issue is the filtering granularity. Fur-

thermore, these two factors can interact with each other leading to different

behaviors of the integration algorithm.

Type of Filtering Techniques

Abstraction techniques attempt to generalize similar instances in compact re-

gions. Therefore, they work differently on instances in different regions. For

example, center and intermediate instances will be generalized to a larger ex-

tent compared with border instances. Consequently, the data retention rate

of filtering techniques discarding border points will be more significantly im-

proved by abstraction methods than other filtering techniques. To conduct a

thorough investigation of this issue, we classify filtering techniques into three

types according to the location of instances selected. The first type of filter-

ing methods retains border instances of a cluster. The second type of filtering

removes border instances and treats the remaining ones as prototypes. The

third type of filtering retains center instances.

Filtering Granularity

The second issue is the filtering granularity. Firstly, filtering can be con-

ducted on the original instances. To do this, one can employ a loose coupling

by applying filtering as a preprocessing task and conduct abstraction subse-

41

quently. Using this method, filtering techniques can be designed to eliminate

instances, such as exceptions, which cannot be effectively handled by ab-

straction. It helps the generalization of instances in the abstraction process

and prevents the formation of non-prototypical instances.

Alternatively, filtering can be conducted on the intermediate prototypes

generated when the abstraction process is in progress. We can design a tight
1

coupling technique incorporating filtering into the abstraction process. In

the abstraction process, prototypes are generated by abstracting instances.

The quality of the generated prototypes differs from each other depending on

the locations of instances merged. It is dangerous to merge distant instances

where valuable information will be lost or even non-prototypical prototypes

will be formed, especially for concave concepts. Filtering on intermediate

prototypes can eliminate any of these undesirable prototypes generated dur-

ing the abstraction process.

In Chapter 4，we propose a prototype learning framework, called Proto-

type Generation and Filtering (PGF), which employs this integration tech-

nique. Different variants of PGF, motivated from the considerations of the

above two issues, are developed and investigated.

3.2 Concept Integration

The second approach is concept integration. In classification, we attempt to

recognize an entity as an instance of a known concept where a concept refers

to the intensional representation of a class of instances which are equivalent

with respect to the classification goal [4]. To be more concrete, a concept

can be regarded as a subset of the instances in a predefined domain [42]. In

42

this way, classification is also known as concept learning. In instance-based

learning, concepts are represented by the representative prototypes learned

by prototype learners. Our proposed concept integration method is designed

to combine the concepts separately learned from filtering and abstraction.
i

In other words, it intends to integrate the prototypes derived from the two

methods. Through this integration, we attempt to unify the strengths and

eliminate the weaknesses of the two learned concepts.

3.2.1 Motivation

Filtering and abstraction methods learn prototypes in different ways leading

to different natures of the prototypes learned. They are good at handling

instances in different kinds of data distributions or in different regions, but at

the same time, weak in processing certain type of instances. After analyzing

the strengths and weaknesses of the two methods, we find that they can be

complementary to each other in describing different concepts in the following

ways.

1. Abstraction methods cannot describe complex decision boundaries ef-

fectively leading to low generalization accuracy while some filtering

methods are strong in detecting boundary instances so that complex

concepts can be represented.

2. Abstraction methods suffer from their inability to represent concave

concepts while filtering methods can represent this kind of concept by

selecting prototypes from the training instances.

3. Filtering methods do not conduct abstraction of instances so that a

43

f \ Learned

Filtering Concept ^ ^ ^ ~ 、

Training ^ 乂 T C o n c e p t 、 _ ^ Prototype

Set \ V IntegrationJ Set

\ Learned

^ A b s t r a c t i o n ^ h — ^ Concept |

I

I
Figure 3.2: The concept integration method.

large amount of instances may be retained to describe even simple

concepts. In contrast, abstraction methods are strong in summarizing

instances in compact regions to represent simple concepts leading to a
I

low data retention rate.
I

4. Original instances selected from filtering methods may not be repre-

sentative enough to describe concepts effectively and efficiently. Using :
I

artificial prototypes generated by abstraction methods can, however, ,

summarize the common characteristics of instances for each class and

may be more representative than retaining original ones.

If the two concepts learned from each of the two methods are integrated,

instances in different regions can be handled effectively and the resulting

concept will have a richer representation power for different kinds of data

distribution using fewer prototypes. This motivates the development of the

concept integration method.

3.2.2 The Integration Method

Figure 3.2 shows the overview of our concept integration method. We first

perform filtering and abstraction on training set separately. After that, two

44

concepts, one for each method, will be learned. We develop a method to

integrate the two concepts in an attempt to unify the strengths of the filtering

and abstraction methods to form the final prototype set.

Unlike incremental integration, the two methods adopted in concept inte-

gration learn independently so that they cannot help each other during their
I

learning phases. The concepts learned from the two methods still suffer from

their corresponding drawbacks. For example, concept learned from filtering

may require a large amount of border prototypes to gain a high generalization

accuracy while the one learned from abstraction is not strong in describing

complex boundaries resulting in low generalization accuracy. Consequently,

the design of the concept integration algorithm becomes important. Before
I designing the integration algorithm, we have to choose the filtering and ab-
I

straction methods first. We discuss the issues for selecting the two methods ;

in concept integration below. ‘

3.2.3 Issues

Concept integration is useful only if the component concepts are learned by

methods with different characteristics and strengths. We discuss the consid-

erations of two issues, namely, the prototype characteristic and the concept

strength.

Prototype Characteristic

In instance-based learning, concepts are described as prototypes. Different

learners represent concepts in different ways, i.e., using different prototypes.

In filtering methods, concepts can be described by border, non-border or

45

center instances. In abstraction methods, concepts are learned by abstracting

similar instances and so center prototypes are usually generated. As different

prototypes are used, the two methods are shown to have good performance,

in terms of either generalization accuracy or data retention rate or both,
！'

in different situations [27, 38]. This observation suggests that they have
I

expertise in different kinds of data distribution.
I

In concept integration, we attempt to combine the strengths of the two

methods. If the chosen filtering and abstraction methods describe concepts |

using the same type of prototypes, it will not be useful to integrate the

learned concepts. For example, if abstraction is integrated with filtering

method retaining center prototypes, two similar concepts described by center
I

prototypes will be learned and there is little use when we combine these two
I

concepts. Therefore, the choice of the two component methods becomes cru- :

cial to the performance of the concept integration. As abstraction methods

usually learn center prototypes, we should choose filtering methods retaining

intermediate or border ones.

Concept Strength

The second issue is the concept strength. Concepts learned from abstraction

are strong in summarizing instances in compact regions to gain a low data

retention rate. However, they are weak in describing complex boundaries af-

fecting the generalization accuracy. On the contrary, some filtering methods

can represent complex boundaries effectively to gain a high generalization

accuracy. Nevertheless, too many boundary prototypes will also be retained

even in describing a simple concept, such as a linear one, leading to an un-

46

necessarily high data retention rate. Therefore, it seems that the two learned

concepts, from abstraction and filtering retaining border instances, can com-

plement to each other. We can use prototypes learned from abstraction to

represent simple boundaries so that the data retention rate can be reduced.

At the same time, boundary prototypes learned from filtering can be used to :

describe complex boundaries so that a high generalization accuracy can be
J

obtained. i
j

Summarizing the considerations of these two issues, we observe that the |

filtering methods suitable for integrated with abstraction should have the |

following properties:

1. It should retain non-center prototypes so that the prototypes learned .

will have different characteristics from those learned from the abstrac- ：

tion method.

I

2. It should be strong in learning complex boundaries as abstraction meth-

ods are not good at doing so.

Consequently, a filtering method retaining boundary prototypes should be

used in concept learning. We develop a new prototype learner, called Inte-

grated Concept Prototype Learner (ICPL), combining abstraction and border-

retaining filtering methods based on our concept integration approach. The

details of ICPL is described in Chapter 5.

47

3.3 Difference between Integration Methods

and Composite Classifiers

Instead of integrating multiple prototype learners, some researchers develop j

composite classifiers to combine different learning algorithms [53]. In this

section, we intend to point out the differences between the composite classifier ;

approach and our integration methods.

Similar to integration, composite classifiers attempt to combine the strengths |

of components classifiers as they may have expertise in different regions of 1

instance space. However, the two approaches are different in the following ‘
t

ways.

In our integration methods, one type of concept is the final output which ,
»

classifies unseen cases. During on-line classification, we only need to process

the unseen case with the output concept. However, in composite classifiers, _

multiple concepts are learned independently and output. In order to classify

unseen case, we need to pass it to each learned concepts which may be time

consuming.

In incremental integration, component methods are applied on the same

training set incrementally so that they can help each other during the learning

phase. However, in composite classifers, component methods are indepen-

dently applied on the training set without interacting with each other. This

is similar to our concept integration method. But in our concept integration,

the multiple learned concepts are integrated and unified to one final concept

while composite classifiers only combine the output of component methods

by a combination algorithm such as simple voting [53] and boosting [50, 53 .

48

j
Chapter 4 I

I » i
The PGF Framework i

！

We develop a prototype learning framework, called Prototype Generation ‘

and Filtering (PGF), based on incremental integration of instance-filtering

and instance-abstraction methods. We have proposed a simple framework |

in our previous work and empirical results show that the two methods can •

improve each other in different ways [27, 28, 37, 38]. In this section, we

investigate further and distill out two issues, namely, the type of filtering

techniques and the filtering granularity. We propose two PGF algorithms

which differ in filtering granularity. Furthermore, different variants of the

two algorithms are also designed using different filtering methods.

We first present the first PGF algorithm, called PGFl. Then we de-

scribe the two component methods used in it. The second PGF algorithm,

called PGF2 employing the same component methods as those in PGFl, is

described next. To investigate how the two components help each other in

incremental integration, a thorough empirical analysis of different variants of

PGF is conducted by comparing them with pure filtering and pure abstrac-

tion methods. We also compare them empirically with C4.5 and KNN, as

49

well as the random prototype selection method.

4.1 The PGFl Algorithm
j

The first algorithm, called PGFl, conducts filtering on original instances. ；

As shown in Figure 4.1, it first applies an instance-filtering method as spec-

ified in Statement 2 as a preprocessing step before prototype abstraction. ,
1 Statements 3 to 11 in Figure 4.1 is the prototype abstraction component. In |
^
I

1 P = Training Set. ‘
2 F I L T E R (P) . j
3 max-score = P R O T _ S E T _ S C O R E (P) . 丨

4 P' = P. :
5 whi le (no. o f proto types in P > no. of class) ；

6 Find t w o nearest prototypes, x and y in P.]
7 M E R G E (P , X, y) . j
8 If (P R O T _ S E T _ S C O R E (P) > = max.score) '
9 P' = P. ‘
10 max-score = P R O T _ S E T _ S C O R E (P) .
11 Return P'.

Figure 4.1: The PGFl algorithm.

prototype abstraction, grouping of outliers leads to the creation of poor proto-

types. These poor prototypes will likely result in degradation in classification

accuracy. If outliers or exceptions can be removed before the prototype gen-

eration is applied, the result prototypes will have a better quality. Moreover,

the computational cost of prototype generation can be significantly reduced

as the size of original data set becomes smaller after filtering. Thus, PGFl

essentially conducts filtering on the original instances.

50

After the algorithm terminates, the output prototype set will be used for

classifying unseen cases. Suppose an unseen case needs to be classified, its

distance between all the learned prototypes are calculated to find the nearest

prototype. The class label of the nearest prototype is then assigned to the

unseen case.

4.1.1 Instance-Filtering Component

Different types of filtering methods target at retaining instances in differ-

ent locations leading to different behaviors when integrated with abstraction

techniques [37]. We investigate three filtering techniques in our PGF frame-

work.

Removing Border Instances. The first one is the ENN method intro-

duced by Wilson [65]. This method discards instances misclassified by their

k nearest neighbors. As outliers and noise are seldom classified correctly

by their neighbors, they will usually be removed. This method also removes

border instances as they usually have neighbors of different classes. It retains

intermediate and center instances.

Retaining Border Instances. The second filtering rule is called RT3 pro-

posed by [69]. Initially, each instance is considered as a prototype. ENN is

applied first to filter out noisy instances. Then the presentation order of

instances is sorted in descending order by the distance of an instance to its

nearest unlike neighbor. It ensures instances further away from decision bor-

ders are processed first. It then removes an instance if most of its associates,

51

instances in the training set having it as one of their k nearest neighbors, are

classified correctly without it. A detailed analysis on the concept of asso-

ciate is provided in Chapter 5. Noisy instances are usually removed as they

can hardly classify their associates correctly while border instances will be

retained as their associates tend to be classified correctly with their contri-

bution in KNN classification.

Retaining Center Instances. The third filtering technique, called ACC

developed by us, tries to find center instances of compact regions by consid-

ering the classification performance of each prototype in the prototype set.

Each instance in the training set is classified by its nearest neighbor. If it is

correctly classified, classification accuracy of its nearest neighbor will be in-

creased. After classifying all the training instances, ACC discards instances

with accuracy lower than a certain threshold Q. As center instances are usu-

ally neighbors of other instances with the same class, they usually gain high

accuracy and thus being retained by ACC. Noisy and non-representative in-

stances such as outliers and exceptions, will be effectively removed as they

usually have lower accuracy.

4.1.2 Instance-Abstraction Component

Our instance-abstraction method is based on an agglomerative clustering

technique. A prototype is represented by a set of data instances together

with the sufficient statistics, namely, the total number, mean and standard

deviation of the instances. In Figure 4.1, from Statement 3 to 11 is the

pseudo-code of the instance abstraction component, called ABS. It learns

prototypes in a top-down fashion. At the beginning, each instance is consid-

52

ered as a prototype. Let P be the current prototype set. At each iteration,

two prototypes with the shortest distance are merged to form a new pro-

totype. The new prototype essentially contains all those instances in the

original two prototypes. We calculate the mean and standard deviation of

all the instances in the new prototype as the generalized representation of

that prototype. After this merging process, the current prototype set P is up-

dated. The majority class of all the instances in the new prototype becomes

the class of it. The prototype set is then evaluated by a prototype set score

function (PROT_SET_SCORE) to predict the quality of the prototypes. If

the prototype set is good, it is stored. The merging process continues until

the number of prototypes decreases to the number of classes in the data set.

This method can return the prototype set which attains the highest value in

the prototype set score function. The class of all the instances in a prototype

is also stored.

The Prototype Set Score Function

The choice of prototype set score function is crucial to the abstraction method.

We have tried two score functions. The first one is called the Calinski and

Harabasz index which was tested by Milligan and Cooper with 29 other dif-

ferent score function to determine the number of clusters in a hierarchical

clustering method [41]. It is observed that it performs the best among all of

the tested methods. It measures the degree of isolation and internal coher-

ence of clusters. In essence, it attempts to generate high quality clusters.

The second score function is based on classification accuracy. As our

objective is to learn prototypes to classify unlabeled instance, classification

53

accuracy on unseen cases is a reasonable indicator to predict the quality of

prototypes. We divide the training set into a sub-training set and a tuning

set. Prototypes are generated using the sub-training set. The tuning set is

used for calculating the prototype set score using classification accuracy. The

prototype set with the highest classification accuracy is the output.

Empirical results show that the second method performs better than the

first one in terms of both generalization accuracy and data retention rate.

It seems that prototypes formed from clusters with high degree of isolation

and internal coherence may not be suitable to performance classification.

Therefore, it is adopted as the score function in the abstraction component.

Distance Measure

To measure the distance between instances with continuous and nominal
feature types, we adopt a heterogeneous distance function similar to the one
proposed by [69]. We first normalize all the continuous attributes by their
feature ranges. Euclidean distance is employed to calculate distances between
continuous feature values whereas a simplified version of Value Difference
Metric (vdm) [56] is used to handle nominal features. The distance function
vdrui for feature i is defined as:

C — 1

where N(i, a) is the number of occurrences of instances with value a for
feature i and N{i, a, c) is the number of occurrences of instances with value
a for feature i and class label c. C is the total number of classes in the data
set. Our distance measure, Dist{x, y) for two prototypes x =

and y = (2/1,..., "n)，is defined as:
n

Dist(x, y)= , ^dist^i{xi,yi)
\ i=0

54

where n is the number of attributes, and

vdmi{xi, yi) for nominal features
disti{xi,yi) 二

X — y for continuous features.

We find that vdm and Euclidean distance have different ranges of values

leading to different weights for each feature in our distance measure. To

ensure an even contribution of each feature, we first calculate the maximum

distance of each feature. For continuous feature, the maximum distance is the

range of the feature. For discrete feature, the maximum value of vdm among

all the possible value pairs of that feature becomes its maximum distance.

Then we normalize dist for each feature by its maximum distance.

Entropy

In abstraction, we attempt to find common characteristics for each class.
Therefore, prototypes will be more representative if only homogeneous in-
stances are grouped. To this end, some previous works just split the training
set by each class and learn prototypes for each of them separately [20]. These
methods guarantee fully homogeneous prototypes but the entire data distri-
bution is distorted. Besides, the advantage of the abstraction method to
generalize away mislabeled instances is disabled. In view of this, we intro-
duce a component, called entropy, into our distance measure. The entropy,
Ent(x), of a prototype x is related to the class distribution of the instances
contained in the prototype. It is defined as:

c
Ent(x) = — R{x, i) log R{x, i)

where R(x, i) is the relative frequency of the occurrence of the class label i
in the prototype x. When two prototypes x and y are considered to merge,
the entropy distance between x and y, E(x, y), is defined as:

E(x, y) 二 Ent(z)

55

where 2; is a hypothetic prototype generated by merging x and y. If a small
entropy is obtained, most instances in the merged prototypes are of the same
class. As the entropy is of range from 0 to 1, we normalize Dist by the
distance calculated from the maximum distance for each feature. After the
two components are calculated, a parameter a (0 < a < 1) is then used to
control the weight of their contributions. The final distance function FDist

of PGF is:

FDist(x, y) = aDist(x, y) + {I - a)E(x, y)

This distance measure favors the merging of homogeneous instances while

preserving the original data distribution.

4.2 The PGF2 Algorithm

The second algorithm, called PGF2, differs from PGFl in filtering granu-

larity. PGF2 adopts the same filtering and abstraction components as the

ones in PGFl. Instead of filtering the training instances, it conducts filter-

ing on the intermediate prototypes in the process of prototype generation.

As shown in Figure 4.2, the filtering and the abstraction methods are more

tightly coupled in PGF2 compared with PGFl. After two prototypes are

merged to form a new intermediate prototype, we conduct filtering on the

current prototype set. The procedure “ FILTER(temp).，，conducts the filter-

ing.

Unlike PGFl which filters on the original instances, PGF2 performs fil-

tering on the prototype set. A prototype set usually contains intermediate

prototypes and original instances. The purpose of filtering is to discard less

representative prototypes and outliers which can further increase the data

56

1 P = Training Set.
2 max.score 二 P R O T _ S E T _ S C O R E (P) .
3 P' = P.
4 wh i le (no. of pro to types in P > no. o f class)
5 F ind t w o nearest pro to types, x and y in P.
6 M E R G E (P , X, y) .
7 temp = P.
8 F I L T E R (t e m p) .
9 If (P R O T _ S E T _ S C O R E (t e m p) > = max.score)
10 P' = temp.
11 max-score = PROT_SET_SCORE(t emp) .
12 Return P ' .

Figure 4.2: The PGF2 algorithm.

reduction rate. On top of this, filtering can also remove noisy prototypes or

instances, thus improving the classification accuracy.

4.3 Empirical Analysis

4.3.1 Experimental Setup

We have conducted a series of experiments to investigate the performance of

our PGF framework. Thirty-five real-world benchmark data sets from the

widely used UCI Repository [8] were tested in the experiments. Table 4.1

shows the data sets and their corresponding codes used in this thesis. These

data sets are collected from different real-world application in various do-

mains, such as the city-cycle fuel consumption (Am), Wisconsin breast can-

cer (Be) and the famous iris plant database (Ir). The detailed information

for each data set is provided in Appendix A. We basically use all instances

57

Data Set Code Data Set Code Data Set Code

Automobile Ab Letter Le Shuttle Sh
Auto-Mpg Am Liver Li Sonar Sn
Audiology Au Monk-1 M l Soyabean Sb
Balance-Scale Ba Monk-2 M2 Tic-Tac-Toe Tt
Breast-Cancer-W Be Monk-3 M3 Voting Vo
Car-Evaluation Ca Mushroom Mu Vowel Vw
Credit Screening Cs New-Thyroid Ne Wdbc Wd
Ecoli Ec Nursery Nu Wine Wi
Glass G1 Optdigits Op Wpbc Wp
Hepatitis He Pendigits Pe Yeast Ye
Ionosphere lo Pima-Indians-Diabetes Pi Zoo Zo
Iris Ir Segmentation Se

Table 4.1: Data sets and their codes.

in every data set in our experiments except seven data sets which we reduce

it by randomly selecting 1,500 instances. These seven data sets include Le,

Mu, Nu, Op, Pe, Se and Sh.

For each data set, we randomly partitioned the data into ten even por-

tions. Ten trials derived from 10-fold cross-validation were conducted for

every set of experiments. The mean the generalization accuracy and data

retention rate of 10-fold cross-validation were obtained for each data set,

where

No. of correct classifications on testing instances
generalization accuracy = No. of testing instances

and

No. of prototypes learned
data retention rate 二 —— ：~7

No. of training instances

Note that higher classification accuracy and smaller data retention rate imply

better performance.

In the first set of experiments, we investigate the performance of different

variants of our PGF framework. Each variant is constructed by integrating

58

a particular PGF method with a filtering algorithm. PGFl-ENN, PGFl-

RT3 and PGFl-ACC refer to the integration of abstraction with ENN, RT3

and ACC filtering methods respectively using PGFl algorithm. PGF2-ENN，

PGF2-RT3 and PGF2-ACC have the similar interpretation. We have also

conducted some trials on pure filtering and pure abstraction methods using

the same data partitions so that comparative analysis can be conducted.

In the second set of experiments, we compare our algorithm with existing

learning algorithms, namely, C4.5 and KNN, as well as a random prototype

learner.

4.3.2 Results of PGF Algorithms

Tables 4.2 shows the average classification accuracy and data retention rate

of 10-fold cross-validation across 35 data sets for different variants of the

PGF. A range of parameters for these algorithms were tested and the best

performance of each algorithm is presented. We observe that the performance

of PGF remains quite stable across different parameters.

We also obtained the performance of pure filtering and pure abstraction

methods so that comparative analysis can be conducted. Table 4.3 shows

the average classification accuracy and data retention rate of pure instance-

filtering and instance-abstraction (ABS) methods. The detailed performance

of each algorithm for each individual data set can be found in the Appendix B.

To investigate the behavior of integrating the two methods, for each variant

of PGF, we first compare it with the pure filtering method used in the inte-

gration and followed by the pure abstraction method. We first analyze the

behavior of PGFl and followed by PGF2.

59

PGFl

PGFl-ENN PGF1-RT3 PGFl-ACC

acc. size acc. size acc. size

Average 0.846 0.163 0.834 0.066 0.798 0.055

Better 18-16 27-8 24-11 8-27 33-2 6-29

Wilcoxon 56.60 99.50 99.50 -99.50 99.50 -99.50

PGF2

PGF2-ENN PGF2-RT3 PGF2-ACC

acc. size acc. size acc. size

Average 0.851 0.300 0.837 0.085 0.848 0.103

Better 14-20 35-0 21-14 11-23 0-0 0-0

Wilcoxon -86.89 99.50 97.89 -99.07 50.00 -50.00

Table 4.2: The average classification accuracy (acc.) and data retention rate

(size) of 10-fold cross-validation across 35 real-world data sets for different

variants of PGFl and PGF2.

Pure Filtering Pure Abstraction

ENN RT3 ACC ABS

acc. size acc. size acc. size acc. size

0.865 0.871 0.855 0.142 0.800 0.120 0.858 0.216

Table 4.3: The average classification accuracy (acc.) and data retention

rate (size) of 10-fold cross-validation across 35 real-world data sets for pure

filtering methods and pure abstraction method.

60

4.3.3 Analysis of PGFl

PGFl-ENN. We investigate ENN and PGFl-ENN to analyze how the

abstraction method can help ENN in PGFl. From Tables 4.2 and 4.3, it is

found that the data retention rate of ENN is dramatically improved from

87.1% to 16.3% with about 2% degradation in classification accuracy. ENN

retains instances which can be correctly classified by their k nearest neigh-

bors. We can imagine that if most of the instances are closely and homoge-

neously packed, a large portion of data will be retained as they are usually

correctly classified. This accounts for the large data retention rate in ENN.

On the contrary, our prototype abstraction method is strong in generalizing

data sets with this kind of structure. Instances in closely packed regions

will be generalized to a few representative prototypes resulting in significant

reduction in data retention rate.

When comparing PGFl-ENN with ABS, we find that ENN can assist

the abstraction method in PGFl too. If ENN is performed before abstrac-

tion, noise, outliers and exceptions can be removed first. The removal of

these instances can avoid the formation of non-representative prototypes in

abstraction. Furthermore, a smoother decision boundary can also be ob-

tained by the removal of border instances. It may help the generalization

of instances in abstraction. We can see from Tables 4.2 and 4.3 that the

data retention rate of ABS is improved from 21.6% to 16.3% while keeping

a similar classification accuracy.

PGF1-RT3. When comparing PGF1-RT3 with RT3, we find that the ab-

straction method reduces the average data retention rate of RT3 from 14.2%

61

to 6.6% with a 2.5% decrease in classification accuracy. RT3 retains border

instances and discards center and intermediate ones. If abstraction tech-

nique is applied on those remaining border instances, the structure of the

border may be severely distorted resulting in large degradation in classifica-

tion accuracy. However, as our ABS algorithm applies classification accuracy

as the prototype set evaluation function, a prototype set with such kind of

distorted boundaries will be eliminated. The above results suggest that our

abstraction technique can generalize the remaining border instances without

severely reducing the representative power of them.

In PGFl, RT3 is found to be beneficial to ABS by comparing PGF1-RT3

with ABS. The data retention rate of ABS is significantly improved from

21.6% to 6.6%. RT3 retains border instances only. The elimination of center

instances, noise and outliers results in the improvement in data retention rate.

However, with the absence of center instances, the representative power of

generalized prototypes formed in abstraction will be decreased. It accounts

for the 2.8% degradation in classification accuracy.

PGFl-ACC. ACC retains instances with classification accuracy higher

than a certain threshold. As center instances usually gain high accuracy,

they will be retained. When comparing ABS and PGFl-ACC, we find that

data retention rate of ABS is improved from 21.6% to 5.5%. Despite the

significant improvement in data retention rate, the classification of ABS is

degraded from 85.8% to 79.8%. We know that ABS discovers representative

instances by generalizing the common characteristics of similar instances.

However, in PGFl-ACC, about 90% of instances are discarded by ACC before

ABS is applied. Therefore the prototypes generated in abstraction will be

62

less representative leading to the degradation in classification accuracy. We

suggest that filtering methods retaining center instances should not be used

in PGFl if classification accuracy is the main concern.

On the contrary, ABS can help ACC in PGFl. When comparing PGFl-

ACC with ABS, we can see that the data retention rate of ACC is improved

from 12.0% to 5.5% while maintaining similar classification accuracy. It

shows that instances selected by ACC are further refined by ABS to form

more representative prototypes.

4.3.4 Analysis of PGF2

PGF2-ENN. We investigate how abstraction technique benefits to ENN

in PGF2. According to the results of PGF2-ENN and ENN, the data re-

tention rate of ENN is significantly improved by the abstraction technique,

from 87.1% to 30.0%, with only little degradation in classification accuracy.

ENN removes border instances only so that a low data reduction rate is

yielded. However, our abstraction technique can generalize similar instances

in compact regions using a few or single abstracted prototypes. Therefore, if

instances are generalized using abstraction before, ENN can be performed on

a relatively smaller set of generalized prototypes. The outcome is significant

improvement in data retention rate of ENN without a large degradation in

classification accuracy.

We now compare PGF2-ENN with ABS. As ENN discards noise and

exceptions, any non-representative and mislabeled prototypes formed in ab-

straction will be removed. However, after abstraction, clusters of similar

instances of the same class will be grouped to form generalized prototypes

63

and neighbors of these prototypes may probably be abstracted prototypes of

different classes. Then these representative prototypes will be discarded by

ENN as they are not correctly classified by their k nearest neighbors leading

to degradation in classification accuracy. However, this undesirable effect is

eliminated in our PGF framework. As classification accuracy is used as the

prototype set score function in PGF, prototype sets with low accuracy will

not be returned as output. From the above tables, we can see that ABS gains

almost the same level of classification accuracy when integrated with ENN in

PGF2. It is interesting to see that ABS retains more prototypes, from 21.6%

to 30.0%, when integrated with ENN. Formation of isolated and representa-

tive prototypes is usually done at later stages in the abstraction process. If

ENN is applied during these stages, useful prototypes will be discarded. To

avoid degradation in classification accuracy, PGF will select prototype set

formed in earlier abstraction stages. Therefore, the number of prototypes

formed is even larger than pure prototype abstraction method. These results

suggest that filtering techniques removing border instances cannot improve

the performance of the abstraction technique in PGF2.

PGF2-RT3. In PGF2-RT3, RT3 is applied in the abstraction process.

During abstraction process, similar instances, including border instances,

are merged to form artificial prototypes which are as representative as the

original instances. Therefore, RT3 can retain fewer prototypes to represent

the decision boundaries. Compared with RT3, PGF2-RT3 stores 5.7% fewer

of the total instances with a 2.1% degradation in classification accuracy.

When comparing PGF2-RT3 with ABS, we find that the data retention

rate of ABS is improved from 21.6% to 8.5% without large degradation in

64

classification accuracy. It is because RT3 can eliminate non-representative

prototypes formed by ABS effectively in PGF2. Besides, RT3 also further

reduces the data retention rate of ABS by removing center prototypes which

usually do not affect the decision boundaries. These reasons account for the

fact that the removal of these kinds of prototypes do not result in a large

decrease in classification accuracy in PGF2.

PGF2 -ACC. We first investigate how filtering technique assists the ab-

straction component. From the results of PGF2-ACC and ABS, we can see

that the data retention rate of ABS is improved from 21.6% to 10.3% with

about 1% decrease in classification accuracy when it is integrated with ACC

using PGF2. ACC retains instances with accuracy higher than a certain

threshold. Therefore, highly representative instances will be retained and

noise and exceptions can be discarded. If we apply ACC in the process of

abstraction, representative generalized prototypes will be selected and less

representative and mislabeled ones will be discarded. These reasons account

for the improvement in data reduction rate in PGF2-ACC with only a little

degradation in classification accuracy.

For the filtering component ACC in PGF2, ABS can also help. The results

of PGF2-ACC and ACC show that ACC improves its classification accuracy

from 80.0% to 84.8% using even 14.2% fewer prototypes when integrated with

ABS. In abstraction, the most common characteristics of similar instances

are found by generalization of those instances. Therefore, the representative

power of those generalized prototypes is often higher than original instances

in the data set. When these highly representative prototypes are selected,

the classification accuracy of filtering technique can be improved as shown

65

from the experiment results.

4.3.5 Overall Behavior of PGF

In conclusion, we find that filtering techniques and abstraction techniques

are beneficial to each other in our PGF framework. In PGFl, filtering tech-

niques can remove noisy instances and outliers. It avoids the formation of

non-representative prototypes in abstraction techniques. Also, as different

filtering techniques remove instances in different regions, we can find differ-

ent improvements in data retention rate when comparing different variants of

PGFl with pure abstraction method. Empirical results show that the filter-

ing technique discarding border instances (ENN) seems to be most beneficial

when integrated with the abstraction technique as it significantly reduces the

data retention rate of abstraction method while maintaining similar classifi-

cation accuracy. Though we find that the filtering technique retaining border

instances (RT3) obtains similar benefits from abstraction technique in PGFl,

it may not work equally well if other abstraction techniques are used. It is

because abstraction of border instances often leads to severe destruction of

class boundaries and such prototype sets may be returned as output if clas-

sification accuracy is not used in the prototype set evaluation. The filtering

technique retaining center instances (ACC) is found not suitable in PGFl as

it reduces the representative power of generated prototypes in the abstrac-

tion method. On the other hand, the abstraction method also helps filtering

techniques to improve their data reduction rates effectively in PGFl. The

three filtering techniques achieve significant improvements in data reduction

when comparing with their PGFl variants.

66

rr

In PGF2, we find that both filtering techniques removing border instances

(ENN) and retaining border instances (RT3) perform better by reducing their

data retention rate while maintaining similar classification accuracy when

integrated with ABS in PGF2. For the filtering technique retaining center

instances (ACC), in addition to the data retention rate, the classification

accuracy is also significantly improved in PGF2. It seems to be the most

suitable filtering technique to integrate with ABS in PGF2. On the other

hand, ABS, cannot be beneficial from all the filtering techniques. The data

retention rate of ABS is significantly reduced by filtering techniques retaining

border (RT3) and center (ACC) instances without severely sacrificing the

classification accuracy. However, for the filtering technique removing border

instances (ENN), we find that both the data retention rate and classification

accuracy of ABS are degraded in PGF.

PGF2-ACC vs. Other PGF Variants

Among the six variants of PGF algorithms, we find that PGF2-ACC achieves

the best mix of generalization accuracy and data retention rate. In order

to make rigorous comparisons between PGF2-ACC and other variants, we

conducted comparative analysis on their performance. These analyses are

shown in the last two rows of Table 4.2.

The first analysis counts the number of data sets in which PGF2-ACC

performs better and worse than each of the PGF variants on generalization

accuracy and data retention rate. It is shown in the row labeled as "Better".

For example, in the accuracy columns for PGFl-ENN, “18-16” is reported

in the "Better" row. The result indicates that PGF2-ACC achieves a better

67

performance for generalization accuracy on 18 data sets while gaining worse

performance on the remaining 16. Note that there can be a tie between

PGF2-ACC and other variants. Thus, the sum of the numbers of "better"

and "worse" data sets may not be equal to the number of data sets used.

In the second analysis, we adopt a one-tailed Wilcoxon Signed Ranks test

15] to compare PGF2-ACC with other variants by a more formal statistical

analysis. This test indicates whether the differences in accuracy and data

retention rate on the entire set of classification tasks are statistically signifi-

cant or not. The row "Wilcoxon" presents the confidence level of a difference

on the performance. A positive confidence indicates that the performance of

PGF2-ACC is better than that of other methods while a negative one means

a worse performance for PGF2-ACC. If the magnitude of a confidence level

is larger than 90%, the performance of the two variants can be regarded as

significant different. For example, under the variant PGFl-ENN, the con-

fidence value of accuracy is 56.60% showing that PGF2-ACC is believed to

gain a higher generalization accuracy at a low confidence level.

From Table 4.2, we find that PGF2-ACC gains similar generalization

accuracy than PGFl-ENN does. However, the data retention rate of PGF2-

ACC is significantly lower than that of PGFl-ENN. For PGF1-RT3 and

PGFl-ACC, PGF2-ACC is believed to retain a significantly larger amount of

prototypes. However, PGF2-ACC significantly outperforms these two vari-

ants on generalization accuracy. These results suggest that PGF2-ACC is

better than PGFl variants.

As for PGF2-ENN, PGF2-ACC attains a lower generalization accuracy at

a confidence level of 87%. It suggests that PGF2-ENN achieves a significantly

68

higher generalization accuracy. However, PGF2-ACC retains much fewer

prototypes to gain the comparable generalization accuracy. Comparative

results shows that PGF2-ACC learns fewer prototypes than PGF2-ENN does

in the 35 data sets and Wilcoxon test also suggests that PGF2-ACC achieves

a significantly lower data retention rate. Comparing with PGF2-RT3, PGF2-

ACC is found to obtain a significantly higher data retention rate. However,

it gains a significantly higher generalization accuracy according to Wilcoxon

test.

These comparative analyses suggest that PGF2-ACC is the best PGF

variant. In the next set of experiment, PGF2-ACC is chosen to compare

with other classification algorithms.

4.3.6 Comparisons with Other Approaches

In the second set of experiments, we compare PGF (i.e. PGF2-ACC) with

existing classification algorithms, namely, C4.5 and KNN. Table 4.4 shows

the average classification accuracy and data retention rate of 10-fold cross-

validation of these algorithms on the same 35 data sets. The two comparative

analyses used in comparing PGF variants are also used in the set of experi-

ments and the results are shown in the last two rows of the table. In KNN,

a range of 左(A; = 1,3,5,7,9,11,13,15,20) is tested and the best results are

reported.

PGF2-ACC vs. C4.5

PGF2-ACC performs slightly better than C4.5 in the average classification

accuracy across all the data sets. Based on Wilcoxon test, C4.5 is observed to

69

PGF2-ACC C4.5 KNN

Data accuracy size accuracy accuracy

Ab 0.586 (0.163) 0.202 0.794 (0.156) 0.766 (0.076)
Am 0.786 (0.076) 0.101 0.776 (0.056) 0.771 (0.082)
Au 0.672 (0.135) 0.130 0.756 (0.064) 0.761 (0.102)
Ba 0.853 (0.041) 0.012 0.792 (0.066) 0.775 (0.066)
Be 0.963 (0.037) 0.026 0.939 (0.041) 0.960 (0.014)
Ca 0.935 (0.019) 0.176 0.928 (0.012) 0.956 (0.016)
Cs 0.842 (0.041) 0.019 0.832 (0.054) 0.807 (0.047)
Ec 0.833 (0.074) 0.117 0.822 (0.060) 0.822 (0.095)
GI 0.649 (0.213) 0.051 0.666 (0.083) 0.681 (0.300)
He 0.818 (0.097) 0.031 0.773 (0.182) 0.805 (0.186)
lo 0.874 (0.074) 0.035 0.900 (0.032) 0.866 (0.058)
Ir 0.933 (0.104) 0.073 0.953 (0.063) 0.947 (0.043)
Le 0.701 (0.059) 0.206 0.692 (0.043) 0.810 (0.034)
Li 0.585 (0.119) 0.072 0.642 (0.054) 0.632 (0.089)
Ml 0.939 (0.082) 0.250 0.960 (0.084) 0.969 (0.039)
M2 0.951 (0.062) 0.120 0.625 (0.079) 0.993 (0.016)
M3 0.950 0.081) 0.093 0.988 (0.033) 0.955 (0.045)
Mu 0.995 (0.008) 0.010 0.997 (0.006) 0.999 (0.002)
Ne 0.925 (0.075) 0.059 0.921 (0.081) 0.972 (0.031)
Nu 0.853 (0.035) 0.144 0.909 (0.018) 0.863 (0.024)
Op 0.946 (0.032) 0.114 0.824 (0.029) 0.962 (0.045)
Pe 0.972 (0.028) 0.104 0.914 (0.015) 0.987 (0.009)
Pi 0.715 (0.078) 0.046 0.694 (0.085) 0.706 (0.114)
Se 0.952 (0.015) 0.143 0.951 (0.015) 0.967 (0.016)
Sh 0.985 (0.042) 0.142 0.989 (0.045) 0.987 (0.050)
Sn 0.789 (0.090) 0.131 0.706 (0.094) 0.876 (0.152)
Sb 0.861 (0.068) 0.156 0.930 (0.034) 0.908 (0.053)
Tt 0.865 (0.061) 0.197 0.862 (0.036) 0.914 (0.027)
Vo 0.926 (0.047) 0.061 0.960 (0.021) 0.935 (0.031)
Vw 0.944 (0.039) 0.210 0.779 (0.046) 0.992 (0.016)
Wd 0.942 (0.053) 0.092 0.944 (0.031) 0.945 (0.028)
Wi 0 949 (0.050) 0.086 0.888 (0.081) 0.954 (0.054)
Wp 0.748 (0.120) 0.015 0.676 (0.168) 0.701 (0.108)
Ye 0.523 (0.056) 0.103 0.545 (0.049) 0.524 (0.054)
Zo 0.920 (0.101) 0.085 0.926 (0.101) 0.970 (0.034)

Average 0.848 0.103 0-836

B e t t e r 0 - 0 0-0 19-16 9-26

Wilcoxon 50.00 -50.00 73.13 -99-50

Table 4.4: The average classification accuracy (accuracy) and data retention

rate (size) of 10-fold cross-validation for PGF2-ACC, C4.5 and KNN. The

standard deviation of classification accuracy is given inside the bracket.

70

obtain a better generalization accuracy than C4.5 does, however, without a

significantly high confidence. Among the 35 data sets, PGF2-ACC performs

better on generalization accuracy on 19 of them while C4.5 gains better

results on the remaining 16. On some data sets, such as M2, Op and Vw, ‘

PGF2-ACC achieves a significantly higher accuracy. However, C4.5 performs

significantly better than PGF2-ACC on some other data sets such as Ab and

Sb. These results suggests that the two methods are strong in processing

different kinds of data distribution.

PGF2-ACC vs. KNN

When compared with KNN, PGF2-ACC gains a 2.5% lower generalization

accuracy. KNN gains better accuracy on 26 of the 35 data sets. Wilcoxon

test also suggests that KNN significantly outperforms PGF2-ACC on gener-

alization accuracy. However, contrasted with KNN, PGF2-ACC only retains

10% of the total instances to obtain a high accuracy. It can compensate the

inferior generalization accuracy of PGF2-ACC.

PGF2-ACC vs. Random Prototype Selection

We also compare our PGF algorithm with the random prototype selection

method in which prototypes are selected randomly from the training set. A

wide range of percentage storage of the random method was tested. Fig-

ure 4.3 shows the generalization accuracy versus the data retention rate for

different PGF variants and the random prototype selection method. We find

that all the PGF variants outperform the random method showing the learn-

ing ability ofPGFs. PGF2-ACC is found to perform the best since it achieves

71

about 13% higher generalization accuracy than the random method. This

further confirms the effectiveness of the integration method in classification.

1

4.4 Time Complexity

The time complexity of prototype learners is highly dependently on the num-

ber of distance computation in the algorithms. So we focus on the amount of

distance calculation in this section. We first discuss the computational com-

plexity of the three filtering methods and then the abstraction component.

The demand on computational time in the two PGF algorithms will then be

investigated. Let n be the number of training instances and m be the time

required to calculate a distance between two instances.

4.4.1 Filtering Components

ENN. In ENN, each instance is examined using their nearest neighbors.

To find the nearest neighbors of a training instance, we have to calculate the

distance between that instance and all other training instances. The time

required to compute all the distance of an instance is 0{m{n - 1)). For n

instances, ENN requires n * (0(m(n — 1)) = Oin^m) time to process all of

them.

RT3. ENN is first applied in RT3. Therefore, RT3 also takes 0{n^m) time

in the initial state to calculate all pair-wise distance. Each instance is then

processed once by the algorithm to examine whether it should be removed.

This process does not involve the calculation of distance between instances

72

0.9 j 1 ！ ！ 1 1 1 ！

0.85 - 不 i.....• 1 1 牛 t

米 、 I I
I 0.8 I 1 i I I

I I
I ！

I / 丨 I
« 0.75 - M i i i I i

, 1 N
0.7 [3- i t • random I"

A PGFl-ACC

• PGFl-ENN

兴 PGF1-RT3

+ PGF2-ACC

X PGF2-ENN

V PGF2-RT3

Q 65 1 i i i 1 ‘ ‘ ‘ ‘ �
5 10 15 20 25 30 35 40 45 50

% Storage

Figure 4.3: Generalization accuracy for PGF variants vs. the random proto-

type selection method.

73

as all the pair-wise distance is computed in ENN. Thus, the time complexity

of RT3 is also Oin^m).

ACC. ACC stores instances with accuracy higher than a certain threshold.

Each instance in the training set is classified by it nearest neighbors. This

process is identical to the core step in ENN and also takes O(n^m) time to

complete.

4.4.2 Abstraction Component

Our ABS algorithm adopts agglomerative clustering technique to perform

abstraction. This technique merges two nearest prototypes hierarchically

until the number of prototypes is reduced to the number of class in the

target domain. It requires the computation of all the pair-wise distance after

merging two prototypes. Therefore, the time required in ABS is 0{i'^m)

in distance computation, where c is the number of class. The time complexity

of ABS is 0{n^m).

4.4.3 PGF Algorithms

PGFl. In PGFl, filtering is applied before abstraction and the compu-

tation time of filtering technique is O(n^m). As for abstraction, the time

complexity depends on the number instances retained after filtering. Con-

sidering the worst case, we can regard all the instances are selected and it

takes 0{n^m) time for ABS to finish. Consequently, PGFl requires 0{ri^m)-\-

0{n^m) 二 0(n^m) time.

74

PGF2. In PGF2, filtering is performed in middle of the process of ab-

straction. After each prototype merging in abstraction, filtering is employed

and the time needed to conduct all the filtering processes is =

O(n^m), where c is the number of class. Totally, the time complexity of

PGF2 is 0{n^m) + 0{n^m) = 0 (j i � .

Our PGF2 algorithm takes 0{n^m) time to learn prototypes. As n grows

large, a significant amount of computation resources is required. Though the

computational complexity can be reduced by scaling up the nearest neighbor

search to reduce the number of distance calculation, we need a faster algo-

rithm to handle large data set. The most complicated step in PGF is the

abstraction process and we intend to design a faster abstraction algorithm

in Chapter 5.

4.5 Summary

We have presented a new prototype learning method, called Prototype Gener-

ation and Filtering (PGF), which integrates instance-filtering and instance-

abstraction techniques based on incremental integration method. There are

two issues affecting the performance of the integration method, namely, the

type of filtering methods and the filtering granularity. We develop two PGF

algorithms taking these two issues into account. We analyze the generaliza-

tion accuracy and the data retention rate of different variants of PGF on

35 real-world benchmark data sets. Through comparative analysis, we find

that all the variants do not perform equally well. We find that most of the

integrated algorithms gain a significant improvement on data retention rate

with equal or slight degradation in generalization accuracy when comparing

75

with their corresponding component methods. It shows that the two meth-

ods can be beneficial to each other in prototype learning using incremental

integration. Empirical results also suggest our PGF algorithm achieves com-

parable results to state-of-the-art algorithms, namely, C4.5 and KNN. We

also investigate that under what circumstances the incremental integration

can be beneficial to the two methods. We find that PGF2-ACC performs

the best on average. PGF2-ACC is comprised of a filtering method retaining

center instances integrated with the abstraction method with a high filtering

granularity.

In the next chapter, our second algorithm, called Integrated Concept Pro-

totype Learning (ICPL), is proposed. Like PGF, this method also attempts to

integrate instance-filtering and instance-abstraction techniques but it adopts

concept integration instead of incremental integration in PGF. We conduct

a detailed investigation in designing the two components in ICPL. Empirical

performance of ICPL will also be provided.

76

Chapter 5

Integrated Concept Prototype

Learner

In this chapter, we present the Integrated Concept Prototype Learner (ICPL)

algorithm which is the second approach for integrating the strengths of ab-

straction and filtering methods. ICPL is based on the concept integration

approach presented in Chapter 3. We first describe the motivation of ICPL

followed by in-depth descriptions of the two components of ICPL, namely,

the abstraction and filtering methods. Then we present the concept inte-

gration of ICPL attempting to combine the two independently learned con-

cepts. Empirical results from 35 real-world benchmark data sets show that

ICPL achieves a slightly higher generalization accuracy and a significant im-

provement in data retention rate compared with existing prototype learners.

Recall that improvement in data retention rate implies a higher efficiency in

applying the learned prototypes to conduct prediction for unseen cases.

77

5.1 Motivation

Though PGF is found to be effective in representing concepts with a few

prototypes, there are still some drawbacks.

1. The training set is processed by the two methods incrementally in PGF.

After the first method is applied, the entire data distribution will be

changed. This prohibits the learning ability of the second method. For

example, if abstraction is applied first, instances in compact regions

will be abstracted to a relatively small amount of prototypes. After

that, a filtering method is performed on these prototypes in attempt

to retain representative ones, says border ones, by considering the class

label of every prototypes' nearest neighbors. However, without original

training instances, the filtering method can hardly distinguish border

prototypes from others.

2. Concepts learned from the first method may be lost. If the filtering

method is applied first to select border prototypes and followed by

abstraction method, the boundary learned by filtering may then be

severely distorted.

3. PGF suffers from high computational cost in the abstraction compo-

nent leading to inefficiency in handling large data sets.

4. Though PGF achieves a lower data retention rate than most existing

methods, it cannot outperform some of them, like RT3, in generaliza-

tion accuracy.

We attempt to design a better prototype learner by eliminating the draw-

backs of PGF. To do this, we develop a prototype learner, called Integrated

78

Concept Prototype Learner (ICPL), which integrates filtering and abstrac-

tion methods using the concept integration approach. Concept integration is

designed to solve the problems of incremental integration. In concept inte-

gration, the two component methods learn concepts independently so that it

does not suffer from the undesirable effects caused by incremental processing

of the two components.

In concept integration, the two component concepts must be of differ-

ent strengths. In the design of the two component methods, we have to

investigate the characteristics and the strengths of their learned concepts.

Chapter 3 has discussed the considerations in designing the two components.

In the following, we summarize some important criteria for the two compo-

nents.

Filtering Component. For the filtering component, it must be able to

represent complex concepts effectively so that the representative power of

the resulting concept can be increased and thus improving the generalization

accuracy. An effective way to do this is to represent concepts using border

instances. Thus, a filtering method retaining border instances should be

chosen in concept integration.

Abstraction Component. For the abstraction component, it should have

a high generalizing power for intermediate and center instances so that rep-

resentative prototypes can be learned to describe the concept effectively. As

filtering methods retaining border instances are usually sensitive to noise,

the abstraction component must be able to handle noisy data. Also, one

drawback of PGF is the high computational cost in abstraction. We attempt

79

also design an abstraction method which has lower complexity in ICPL. In

the next two sections, we will describe the abstraction component and the

filtering component adopted in ICPL.

5.2 Abstraction Component

In this section, we propose a new abstraction method, called Typical Proto-

type Abstraction (TPA), adopted in ICPL. TPA abstracts typical instances

to form prototype sets. It makes use of the typicality measure proposed

by Zhang [72] in the abstraction process. We first show how typicality can

help abstraction and then describe the TPA algorithm. Investigation of TPA

on artificial data shows that it is able to generalize instances efficiently and

tolerate the presence of noise.

5.2.1 Issues for Abstraction

In abstraction, we have to decide when to merge which instances.

Which Instances to Be Merged?

Most abstraction methods involve merging of similar instances [10, 13, 20, 36,

60]. Merging instances is an effective way to generalize different characteris-

tics of different instances. However, the performance of abstraction depends

highly on the kind of instances merged. For example, non-prototypical pro-

totypes will be formed if dissimilar instances are merged. Also, merging of

border instances may lead to distortion of class boundaries. Therefore, re-

searchers try different ways to design the merging process. Chang's averaging

80

method stops merging instances when generalization accuracy starts to de-

grade [13]. Kibler and Aha use an adaptive threshold to prevent the merging

of distant instances [30]. GIS [36] conducts generalization on instances only

if a more representative prototype is formed.

In concept integration, the role of abstraction is to generalize non-border

instances to a few prototypes to reduce the data retention rate. As for border

instances, abstraction can discard all of them since they are handled by the

filtering component in the integration. Therefore, we have to distinguish

non-border instances from border ones to conduct abstraction.

When to Merge?

Different instance merging orders result in different prototype sets learned

and thus affecting the performance of abstraction. Chang's averaging method

13] and our abstraction component in PGF (ABS) attempt to find the best

outcome by iteratively merging instances with shortest distance in the current

prototype set. These methods ensure distant instances are not merged during

early abstraction stages but they require a high computational cost to identify

nearest instances in each iteration. To reduce computation, GIS [36] and

FAMBL [60] randomly select an instance from the training set and perform

abstraction on its nearest neighbors until the merging criteria is not met.

This kind of method has less computational cost but pays no attention to

the instance merging order.

In the abstraction component of concept integration, center and interme-

diate instances should be abstracted. We believe that prototypes formed from

merging center instances are more stable and representative than instances

81

formed from merging intermediate ones. Therefore, we intend to merge cen-

ter instances first followed by intermediate ones until class boundaries are

reached. In attempt to do this, we have to know which instances are far

apart from or close to the decision boundary. Our proposed TPA algorithm

employs typicality measure to determine which instances are merged as well

as the merging order.

5.2.2 Investigation on Typicality

Typicality was first proposed by Zhang to indicate how typical an instance is

72]. It makes use of the intra-concept similarity and the inter-concept simi-

larity to calculate the typicality of an instance. In our design, the typicality

of an instance i, Typ{i), is defined as:

average similarity of i to instances of the same class
仰、）—average similarity of i to instances of other classes

The similarity for two instances x and y, Sim{x, y), is defined as:

Sim{x, y) = 1- Dist{x, y)

where Dist{x, y) is the distance measure used in our PGF algorithm (see

Chapter 4).

According to [72], typicality has the following properties:

1. Typical instances usually have typicality much larger than 1.

2. Boundary instances usually have typicality close to 1.

3. Noisy instances usually have typicality less than 1.

82

•口 ••口口 • ® • t" •• •• -1 •
昼•• 二。 。 口。••、“ ••••• • ••
H • „ • • Q a i • • • •

° • • 口 t_ • • •
印 。 • % 。 % 口“̂ •。口 D 1 ••• • ••矛••••••• 二
• • ° ••站、•• • • ••” •••• •

] • • 口 ^ mn � . _•_._- • •

y • • • • … • i • _ .
4 5 •时日.0 ô o, •• 一、 •• 广••••

• • ° 口 口 • • •

\右。 • • �0口 •口 •口 i- •• • , \

a ®。口 • i o- ° -el ill • ••�• ••• • •
B 3 巷 口二 • L • • • : • • • • • -

® � ^ o - ； • • •••
° % J广• i - • • _ ••

O ° • • • ° i • _ • •• ••
] 口 tĴ oOrf： -n O O j •• • •••• •• • ••

• o • • s � • L •_ ••• 2 . o a • 柳 • ； -
2 D • • 口 m l •

% 口 • • o ° i •• • •
" D •口 • • I •• • ••• • •

1 • • � • : • • •••宙 J .
. 。 “ 一 。 。 ! • • • • • • • •

:• 一 ^ o !.••-：/.- • •
° QDCP 93 D 口 • • • •
o ^ • • • I • ••• • class 0

J ^^ ••口 • 口口i- • • -广 • • . I • class! II
3 4 5 6 7 8 Feature 1

Figure 5.1: A two-class data set with noise.

It seems that it is a good indicator to locate border and non-border instances,

which is useful in our abstraction process.

To aid the design of using typicality in ICPL more effectively, we con-

duct an in-depth analysis on typicality. Figure 5.1 shows an artificial data

set consisting of two classes. A decision boundary, indicated by the dotted

line, is used to generate the data set. It separates instances into two classes.

Some noise is also introduced to class 0 to investigate its effects on typical-

83

1 7 I 1 1 T— 1 1 1 1 1 1 ！ ！ I
• i i i ： ； i i i i
: I i I i : i : ： ： : ： ： ： ； : : : ； ：

1 e i i jjif* ^^ -

I I I — . “ ^ l i ^ i I
1 5 - j i- i- i > i w M - - • - ^ t] • - i ^ j g ^ y f f ^ ^ ' - - …

I I 1 A i. ？ 4 •Jfc-e- jJjHPfe O ：

I I I I f
1 I i iJP-̂^ ； ：• "B

^ 1) - i ••- • r r r

•g. i 嚷 略 巧 i ^ , •： i i i i i .
1 1 i V . . . T . s ： 1" ？ ：

Li rORf •丨 jar i

1 ……...•.抽 4 i ^ r i T ： -
I ^ ^

0 . 9 - 1 1i i i t I

I i • i i i . i . i - • • i i
0.8 - i i-*-- ！̂暑暑 i t • class 0 -

‘ _ • class 1

I • I • i I •• • •
n 7 - ；. i ； ； • + I • ！ I
\J. I ： 1 _ ：

• • • ” ； ' • • i • • 丨 • 丨 i i i I ！ i i
； i i i ； i i

06 ‘ i i——i ‘ i ‘ i ‘ ‘ ‘
0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2 2 . 2

Distance from Boundary

Figure 5.2: Typicality vs. distance from boundary.

ity. We intend to find the relationship between typicality and the location

of instance. To do this, we calculate the typicality of each instance and the

perpendicular distance between the instance and the class boundary. We

plot a graph depicting the relationship between typicality and distance from

boundary as shown in Figure 5.2. We can see clearly from Figure 5.2 that

for ordinary instances, i.e., typicality greater than 1, there is a trend showing

that typicality is linearly proportional to distance from the decision bound-

84

ary. Another observation is that noisy instances have typicality less than 1，

i.e., those class 1 instances scattered in the bottom of the plot. These obser-

vations agree with the properties of typicality claimed by Zhang [72]. This

information is useful in the design of our abstraction component in ICPL.

Instances with large distance from the boundary are center instances which

should be generalized first during the abstraction process to generate more

stable and representative prototypes. Essentially, we process instances with

high typicality first as they are observed to be center instances. The abstrac-

tion process can take place towards the class boundary by merging instances

in the descending order of their typicality until border instances are reached.

Also, it is found that instances of different classes have different range

of values of typicality. We can see from Figure 5.2 that instances of class

1 have an average higher typicality than that of class 0. It suggests that

instances should be merged in the order of their typicality within the range

of typicality value of the same class. Besides, we also find that typicality of

noise is inversely proportional to the distance from the boundary.

5.2.3 Typicality in Abstraction

According to above observations, we design a function, called IdentifyBor-

der, to identify border instances for each class based on typicality. Figure 5.3

shows the pseudo code of the function. It first calculates the typicality of all

the training instances. Then training instances for each class are sorted in

descending order of their typicality. After sorting, center instances will be

processed first and border or noisy ones will be handled at appropriate time

during abstraction. Using the typicality calculated, the function can then

85

focus on identifying non-border instances which are the target elements for

abstraction. As discussed above, instances of each class may have a differ-

ent range of typicality values. It is not effective to use a single threshold to

differentiate border and non-border points of all classes. To tackle this prob-

lem, we design different thresholds on typicality for each class to distinguish

border instances. To do this, the mean and standard deviation of typicality

of instances for each class are calculated. An instance is said to be a border

one if its typicality is less than the mean typicality of its class subtracting

the standard deviation. An array of border flag Bp stores a boolean value

for each instance indicating whether the instance is in a border instance or

not. The outputs of Identify Border are Bp and the training instances sorted

by typicality.

After processing the training set with the above function, we can then

perform abstraction on non-border instances in descending order of their

typicality in the TPA algorithm presented below.

5.2.4 The TPA algorithm

We now describe the core of our abstraction component in ICPL, namely, the

Typical Prototype Abstraction (TPA) algorithm. In concept integration, the

abstraction method should have high instance generalizing power and noise

tolerance. Besides, in order to handle large data sets, it should have low

computational complexity. After presenting the TPA algorithm, we conduct

some analysis of TPA demonstrating these three strengths.

Figure 5.4 shows the TPA algorithm. The algorithm learns prototypes

in a bottom-up fashion. It begins with an empty prototype set, S. The

86

Procedure I d e n t i f y B o r d e r (T r a i n i n g Set T).

1 For each ins tance / in T :
2 F ind Typ{I), t yp i ca l i t y o f I.
3 For each class C :
4 F ind Tmean{C), t h e mean o f t yp ica l i t y o f class C instances.
5 F ind Tsd(C), t h e s tandard dev ia t ion o f t yp ica l i t y o f class C instances.
6 Sor t class C instances in descending order o f typ ica l i ty .
7 For each class C :
8 For each ins tance I o f class C in T :
9 If (Typ{I) < (TmeaniC) _)：
10 Set Bp{I) = T R U E , i nd i ca t i ng / is a border po in t .
11 Else :
12 Set Bp{I) 二 FALSE, i nd ica t ing I is no t a border po in t .
13 Return Bp.

Figure 5.3: The Identify Border function.

Procedure T P A (T r a i n i n g Set T).

1 Set S = empty .
2 Set Bp = IdentifyBorder(T).
3 For each class C :
4 Set I = f i rs t ins tance o f class C in T.
5 For each non-border instance I (i.e. Bp{I) = FALSE) :
6 If (7 is no t processed) :
7 SetP = M e r g e (r , S, Bp, I).
8 If (no. o f instances in P > 1) :
9 A d d P t o S.
10 End If.
11 End If.
12 Set I = next instance o f class C in T.
13 End For.
14 End For.
15 Return S.

Figure 5.4: The TPA algorithm.

87

Identify Border function is first called to sort instances for each class by their

typicality and identify all the border instances before doing abstraction. Af-

ter that, instances with high typicality will be processed first. It learns

prototypes for each class by merging non-border instances. A prototype is

represented in a similar way as in PGF. Specifically, it is represented by the

mean of all the merged instances. At the beginning, the first non-border

instance, says / , is selected. A prototype, says P, will then be formed by

invoking the Merge function. TPA only retains abstracted prototypes rather

than original instances since these prototypes are usually more representa-

tive. The algorithm terminates until all the non-border instances in each

class are processed.

The Merge function is described in Figure 5.5. It accepts a training set

T, a prototype set S, a border flag Bp indicating which instances in T are

border ones and an instance I. It continuously merges I with its nearest

neighbors in T until an instance of another class or a border instance is

encountered. Let P be an abstracted prototype which is equal to I initially

and N be the nearest neighbor of L If N is not a border instance and is

of the same class as / , it will then be merged with P and the next nearest

neighbor of I is examined. If N is of different class from / , then it may be

a noise or a border instance of other classes. TPA distinguishes these two

cases by considering the class label of the next neighbor of I. If N is really

a noise, the next neighbor of I should be in the same class of L In this case,

we should discard N and continue the merging process. This achieves the

noise tolerance of the TPA algorithm. The merging process continues until

one of the following two situations is encountered.

88

Procedure M e r g e (T r a i n i n g Set T, P ro to t ype Set 5 , Border Flag Bp, Instance I).

1 Set P = I.
2 Set N = nearest neighbor o f I in T.
3 W h i l e ((class o f N no t equal C) Or (N o t Bp{N))):
4 If (class o f N no t equal C):
5 Set N = next nearest neighbor o f I in T.
6 If (class o f N no t equal C):
7 Return P.
8 End If.
9 End If.
1 0 I f (Bp[N)):
11 Return P.
12 Else :
13 If (N is no t merged before) :
14 Merge P and N.
15 Set N = next nearest neighbor o f I in T.
16 Else :
17 Find M, t he pro to type con ta in ing N f r om S.
18 Merge P w i t h M.
19 Remove M f r om S.
20 Return P.
2 1 End If.
22 End If.
23 End Wh i le .
24 Return P.

Figure 5.5: The Merge function.

89

1. AT is a border instance:

Merging of border instance, either of the same or different class, may

lead to distortion of the class boundary.

2. N is an instance merged before:

In this case, the prototype containing N, says M, in S will be found

first. It will then be merged with P and discarded from S.

5.2.5 Analysis of TPA

We conduct analysis of TPA on computational complexity, instance general-

izing power and noise tolerance.

Computational Complexity

In the IdentifyBorder function, to find the typicality of each instance, we

have to calculate the similarity for each pair of instances which is of 0{n^m)

where n is the number of instances and m is the time required to calculate a

similarity between two instances. After that, each instance is only processed

once in the TPA algorithm and can be decided to be grouped into a prototype

or discarded. It dramatically reduces the time complexity of the abstraction

process compared with PGF.

Instance Generalizing Power

The instance generalizing power is the most important feature for the abstrac-

tion component in concept integration. An algorithm having high instance

generalizing power should be able to generalize instance in compact regions

into a few or single prototypes. We conduct an analysis on this characteristic

90

T 1 1 1 — 1

Xm • f •

• • • • • • • • • •
6 - • • 誦 • • • • .

二 •• ••• • _ • •‘ \

• • _ • • •• • • • • ” • • • • � •

• ' • : • • _ • � • • • ‘ • • • • •

• • • _ • • • • • •
• _ • • • • • 圓 • • 圓 • • • • • • • • • • • • • • • • •

、• • • ： • • • • • • ••
5 - • • • • • • ' • • SS • - . 1—

• • _ • • ’ • • • •

••： • •；• • • • - ••• 5
o • • • • • • • •

� • • % # - . . • • • • • • • • • • • • • • • • >
fs „ • a • as • • •• _ _ "H •••. •

I 4 目 o • •• ：. -：• - J' ••••

•• • • D • 0 P � 口 • 口 •

O 0 • 口 口 D O c S m i g ^ <3 Q %

3 - O a „ # Q • • • 峰 口 -

口普 口口•• • • • • 费 J^ d̂- • • 口 <5=。

n • • • 呼 • 口 • 目

% O ° • • ° (3 • • era
. • 口 D 口 • • S 电

o I • o D口口 • 曲 tf•曰
^ n n •口 ° o • d i n °口

’ flr n • • • • • • 口！!!）口 -

° •口• •
a B^ ° ^ ft, • • class 0

口 • class 1
I _ 1 ‘ ‘ �

2 3 4 5 6

Feature 1

Figure 5.6: Two clouds of instances with different classes.

of the TPA algorithm. Figure 5.6 shows an artificial data set consisting of

instances of two classes distributed in two clouds of regions. There are totally

900 instances in the data set, 450 for each class. After applying TPA to this

data set, we find that only three prototypes are generated to represent the

two concepts as shown in Figure 5.7. The prototypes generated are of high

quality as they achieve 92.7% generalization accuracy on 300 unseen cases.

For the data set as shown in Figure 5.1, the result of applying TPA is

91

1 1 1 1 I

6 - -

•
•

5

ts
音4 •
£

3 - •

•

2 -

Q class 0

• class 1

I I 1 ‘ ‘ •
2 3 4 5 6

Feature 1

Figure 5.7: Prototypes generated from TPA on two clouds of data.

92

depicted in Figure 5.8. The boundary used to generate the original data set is

also shown using a dotted line. It shows that TPA only retains 9 prototypes

to represent the original 1,000 training instances with generalization accuracy

higher than 80% on 340 unseen cases. The above two results demonstrate

the high instance generalizing power of TPA.

Noise Tolerance

We conduct analysis on noise tolerance. We randomly introduce 10% misla-

beled instances in class 0 for the data set in Figure 5.6 to see the noise tol-

erance of the TPA algorithm. The abstraction result is shown in Figure 5.9.

We find that noisy instances can be generalized away from the original data

set. Besides, the resulting prototype set achieves even a higher generaliza-

tion accuracy compared with that abstracted from data set without noise.

When TPA is applied on the data set in Figure 5.1, the abstraction result

is illustrated in Figure 5.8. The prototype set shown in the figure is learned

from a noisy data set in which 9.1% of mislabeled instances is introduced in

class 0. We can see that no mislabeled instance is retained in the prototype

set. These results support that TPA can handle noise effectively.

5.3 Filtering Component

In this section, we describe the filtering component in ICPL. It is derived

from RT2 which retains border instances to form prototype sets. RT2, based

on a concept called associate, was first proposed by Wilson and Martinez [69 .

We conduct some analysis of associate and briefly discuss the RT2 algorithm.

We also investigate its performance on prototype learning and find that it

93

6 I 1 1 ！ ‘ ‘ ‘
• i

5 - I •

4 -

•

fS I
2 I
I 3 • 一] • .
£ • 1

2 - 1 •

• I

1 - • • I -
• ！

I I D class 0

I • class 1

• j Boundary

0 ‘ ‘ ‘ ^
3 4 5 6 7 8

Feature 1

Figure 5.8: Prototypes generated from TPA on data set as shown in Fig-

ure 5.1.

94

I 1 1 1 1 ‘

6 • •

•
5 • “

(S

| 4 - -

3 - “

a

•

2 • • • ‘
D class 0

• class 1

I _ 1 ‘ I u
2 3 4 5 6

Feature 1

Figure 5.9: Prototypes generated from TPA on two clouds of data with noise.

95

is effective in detecting boundary instance to represent complex concepts.

This nice property is the most important feature triggering our design of the

filtering method in ICPL.

5.3.1 Investigation on Associate

Associates of an instance is the list of instances in the training set having it as

one of their A;-nearest neighbors. As the filtering component in ICPL should

be able to describe complex boundaries using border instances, we attempt

to investigate the ability of associate to locate border instances. Figure 5.10

shows a two-class data set with instances uniquely labeled according to their

classes and locations counting from left to right. The class boundary used to

generate the data set is also shown by a dashed line. Let k equal to 3. We

first find out the A;-nearest neighbors of each instance as shown in Table 5.1.

Here, the {k + l)th nearest neighbor is also shown for later use. The nearest

neighbor lists are then used to determine the associate list for each instance

as shown in Table 5.2. For example, considering the nearest neighbors of Al,

we know that A3, A8 and AlO should contain A1 in their associate lists.

After investigating the location and associate of all the instances, we have

the following findings.

1. Instances with short or even empty associate list, such as Al, A2 and

B21, are usually outer instances. They seldom contribute to the class

boundary.

2. Instances having most associates of the same class, such as AlO, A21,

B26 and B27, are usually center or intermediate instances. They also

do not affect the class boundary.

96

6 r- ‘ I I ‘ ^
q\2 I «16

I « 2 4

q \ 2 7 q \ 2 9 j

換9 • U i 4 别 9
5 - "̂ 23 I jiqft

j i
i

� J
4 6 杉 电25 « 3 2

4 - 4 5 -

电11 电 23

«M i « 1 5 2 i
3 3 - 1^5 1 “

£ q\ll i

• 換冷I9丨

2 - I _
\ HB9 « 2 8

• 5 M 2 i

^ ^ I 耿 « 2 2

1 • i «17 电27 -
H310 «26

[A8 I 。 class 0

. ^ L 棚 • class 1

^ i « 2 1 Boundary

0 ‘ ‘
4 4.5 5 5 .5 6

Feature 1

Figure 5.10: A two-class data set with labeled instances.

97

^
 -

1

1

e

r

£

 u

0
 9

 3
 7 6

 2
 o 2

 o

 7

 5
8
6
3
4
1
1
9
8
7
9
3
9
2
7
8
2
6
9
6
8

 s

1
1
1
1
1
2
1
6
2
1
2
2
2
1
2
2
2
1
2
2
2
2
1
0
^
3
1
2
2
2
1
2
1

£
 A
A
A
A
B
A
B
B
A
B
B
A
A
B
B
B
B
B
A
B
B
B
B
A
B
B
B
B
B
B
B
B

 F

n

怕

 4

 4

3
 9

 o 5 6

 6
5
 8
 9 o

 9
 6 3

 6

 2
6
5
4
9
9
2
7
1
4
7
3

 i

S

 1
4
1
1
1
1
2
2
5
2
1
7
1
1
2
1
2
1
1
7
2
2
1
1
1
2
2
2
3
2
2
2

 s

T
 A
B
A
B
A
B
A
A
B
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

 e

卿

饥

a
 1
5

 4

5

8
1
4
0
5
4
2
7
7
5
6
8
2
9
1
8
5
8
5

 a

e
 3
3
2
1
2
9
9
2
6
6
4
1
4
2
1
1
1
2
1
1
1
2
2
1
1
2
2
3
2
2
2
2

 t

n
 B
B
B
B
A
B
B
A
B
B
B
B
B
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

射

z
-
k

 n

1

 i

I
T

 7
5

 6

 o

 3

 1
9
2
9
2
3
4
5
6
7
8
9
3
7
6
9
7
2
9
0

 f

H
 1
1
1
2
7
2
5
1
7
8
1
5
1
2
1
2
2
2
2
1
2
1
1
1
2
2
2
^
^
^
^
^

 ̂

^
 A
A
B
B
B
A
B
B
B
B
B
B
B
A
B
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

 c

1

a

 u

0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2

 s

a
 1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3

 ̂

D
 B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

 3

 8

—
—
M
M
M
H
M
M
n
M
M
n
M
M
M
M
H
H
M
M
M
M
n
M
n
M
M
M
M
y
n
^
y
^
n
M
y
M
M
y
y
y
n
n

比

9

£

幼

o
 2

 2
 4

 1
1
1

 4
6

 4
5
 4

 9

 1
7
 6

 8
^
^
 r

丨
 2
5

 3

^
 A
A
A
A
A
A
A
A
A
A
A
A
B
B
A
B
A
A
A
A
A
A
A
B
B
B
A
B
A

 n

.
堪

^

朋

⑴

5

必

仙

似

仙

必

怨

§

 r
e

-
g
 A

 A
 A A A A A A A A A A

 A
 A
B
B
 A

 A
B
A
 A

 A
 A
B
A
B
A
 A

 A

 ̂

r

 Q

a
 8

 6
 4

 3
3
4
5
5
2
2
1
1
6
9
4
9
3
6

 "7

n
 ̂

A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B

 /_

^

I
T

 7

 o 5 7 6

 5

 9
8
 3
 3
 2
 1
4

 4

^
 3

 9 8 6

 6 5 9

 3
 7
 5 1 2

 1
 1
 r
-
j

 i
-
j

 1

出

 C
j

 c
^
 2
2

 i
S

 u

 u u

 /
—
^
V

^
 M
M
M
似
A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
B
A
A
A
B
B
B
A
B
B

 e

h

^
 A

 A
 A A A A A

 A
 A
 A
 A
 A A A A

 A A A A

 A A

 A
 A
 A
 A
 A
 A
 A
 A

 1.

1

 ̂

d

e

2
 7

 4

 n
^

 ̂

1

1

2

 3

 M

B

 B

 B

 B

 ̂

h

o
 o

 9
3

 5

 7

 2

 7
 9

 1

 g

4
 9

 1
2

 8

 1
2

 2

 2

 3
2
2

 3

 d

B
 B
B
B

 B

 B
B

 B

 B

 B
B
B

 B

 ̂

e
 n

•
m
 3

 2

 5

 8

 6 o 4

 5

 4
 6

 2
 o

 2 8

 8

幼

c
 3
3

 1
7

 9

 1

 6
1

 1
1
2

 2

 2
2

 2
3

 3

 2
 2

 2

 6

0

 B

 B
 B
B
B
B

 B
B

 B
B
B
B

 B
B

 B
B

 B
B
B

 B

 N

s
 ̂

A
 e
 7

6
 1
5
 6
 o

 6
3
0
1
9
2
9
2
3
6

 1
5
0
3
1
6
1
7

 9

 n

1
1
2
1
2
2
9
1
7
2
1
2
1
2
1
1
2
2
1
 2
2
3
2
2
2
3
2

 2

 r
^

A
A
B
B
A
A
B
B
B
A
B
B
B
A
B
B
B
B
B
 B
B
B
B
B
B
B
B

 B

 ̂
^

m

4
 5

 9

 o
 4

 4

 5

 8

 1
9
 1
3

 4

 5
 7
8
9
8
7
2
9
6
2
8
0

 n

1
1
1
2
1
2
5
2
6
2
4
1
4
2
1
2
2
1
1
1
 1
1
1
1
1
2
2
2
3
2
3

 c

A
A
B
B
A
A
B
A
B
A
B
B
B
A
B
A
B
B
B
B
 B
B
B
B
B
B
B
B
B
B
B

 F
R

1

 t

a

 ̂

t

 0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
^

 ⑴

a

 1
2
3
4
5
6
7
8
9
k
1
k
"
1
^
^
1
^
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3

I
P

^
 B
s
d
s
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

I
 s

卯

n
 w

 7
s

 §

A
 A

 B
B

 ̂

s

n

5
 3

 8

 -
1

6
 3

 1

 ̂

 ̂

；

f

A
 B

 B
A

 A

 A

 B
B

 o

6

S
S
 5

 ̂̂
^

 ̂

 u

g

 A
A

 A

 A
A
B
B
A
A
A
B
 A
A
A

 A
B
A

 B

 e

s

A
 a

^
 7

 5

 7
 6
 3
 4
 2 5

 3
2

 9
 4
 3
 4
 4

从
始
M
从
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
 A
A
A
B
A
A
A
B
B

阳

s

o
 4

 3
 3

 1
1
8
 2

 3

T

1

 M
•
簽
…
错
組
s
s
i
E
摄
 S

 1

U

 -

 ̂

^
 .
m

3. Instances with associates of multiple classes, such as A14, A25, B2 and

B5, are usually border instances. They form the class boundary. Be-

sides, when focusing on AI4, we can also find that most of its associates,

such as A13, A15 and B1 are border instances too.

According to the above findings, we can make use of associate to identify

instances not contributing to the class boundaries. Filtering rules can then

be applied to eliminate those instances leaving border instances. We will

present how associate is used in RT2.

5.3.2 The RT2 Algorithm

RT2 [69] learns prototypes in top-down fashion. Initially, each training in-

stance is regarded as a prototype. Given a k, RT2 first finds a nearest neigh-

bor list and an associate list for each instance. Each instance is then exam-

ined to see whether it should be removed or not. RT2 removes an instance

if the removal does not hurt the classification accuracy of the prototype set

on the training set. It calculates the classification accuracy by considering

the associate list rather than the entire training set. When an instance is

processed, its associates are identified first. The associates are then classified

using the A;-nearest neighbor algorithm with and without the presence of the

instance. If more associates are correctly classified without the presence of

the instance, it should be discarded. Supposing that Al is removed from

the prototype set, it should then be eliminated from its associates' nearest

neighbor lists, i.e., nearest neighbor lists of A3 and A8 in Table 5.1 should

become ''A8, A12, A24'' and ''A3, A12, 乂忍厂 respectively. Also, A3 and

A8 should be added to the associate list of A24. Note that the associate

100

lists of AVs neighbors, i.e., ''A3, A8 and AW remain unchanged after the

removal. The order of removal affects the performance of the filtering rule.

RT2 solves this problem by sorting the prototypes by the distance to their

nearest neighbor with other classes in attempt to remove instances furthest

from the class boundary first.

Similar to TPA, RT2 also adopts Dist{x, y), the distance measure used

in our PGF algorithm described in Section 4.1.2, to measure the distance

between instance. It is identical to the heterogeneous distance function [69

used in the original RT2 algorithm except that the distance calculated from

each feature is normalized by the maximum distance of that feature.

5.3.3 Analysis of RT2

We can see the effects of this filtering rule from Table 5.1 and 5.2. Considering

the instance A2, we can see that it has 2 associates, A7 and A9. As A7 and

A9 can be classified correctly without A2, A2 will then be discarded. This

eliminates instances which neighbors are surrounded by class instances of

the same class, i.e., center instances. On the contrary, for border instances,

removal of them may cause others to be misclassified. Near the boundary,

neighbors of instances, says A13 and Al^, are usually of different classes.

If A13 is removed, the majority of Al^'s neighbors may become instances

of other class leading to misclassification of AI4. Therefore, RT2 tends to

retain border instances instead of center one.

Figure 5.11 shows the performance of RT2 on describing the class bound-

ary. In the figure, an artificial data set consisting of 1,000 instances of two

different classes is shown as well as the boundary generating the instances.

101

6 1—® 5-° ns‘~~qi • ‘ “ ‘
• “ 口 • 口 • 口 \ _ • • • •

• o • • 叩 步 。 口 ® • / • • 、 - • •

° e ff ^ ° d? „ • . • • • ••
< •口 • ®H ® •• 丨丨• • • •_•、 •
5 • • • 口 B 口 ° 口 k . / _ • 、

n QQ ff I •••> _ • • ••圓
七：口口̂^ L • o�"̂ ^ •• • 1

S / • •• ••••••
,•口 ••口 口口 ？ • 吕 、 • • •••• • •

4- •••。宫 。口口 •••4,,.-1.、•••••••• .

• ‘ : : • • “

口 • n 丨 • • •

r« •• •• i • •_• • • • * • � •
I o ^ o o ^ "-^"'K- ： ； • • - - ：
^ • a • • a 口 m • 瑰 • • • ••誦•

• ° • • • ° • Q • • • • _ • • •

2 尸•口 • n 口••皆•目口 y • • • • • • • \ - •
O ° S V • • • 1 . - . . • •
• o • • • • • • J � J
•口 0 ° ° „ E L •！ • _ • • • •

• • o D a a j „.•••••_ • • • 圓 • • • O 目门• • D 口 i-- • . • •
n D n o n D • _ * •

1 - 、 口 D O 目 ° j \ 广 、 • • • • • • • •

Q 口 口 j....) • • • * • • �
• 當 D f i • " 扣 i - •• ••
•• • � • 田 。 : • — , • ••• _ • Class 1

• • •• o •• •• • j..• •；"——. rt2
° oon ° ° ° o T ； • • ‘ • • Real

0 kr I 四•、口 cP i • 1 ~ ^ I
3 4 5 6 7 8

Feature 1

Figure 5.11: The class boundary learned by RT2 in a two-class data set.

102

The dotted line is used to depict the decision boundary learned by RT2. We

can see that prototypes learned by RT2 can represent the class boundary

quite well. Besides, to describe this concept, RT2 retains only 40 border in-

stances. This shows that RT2 is effective in retaining representative border

instances.

RT2 versus RT3

Indeed, RT3 proposed by Wilson and Martinez [69] has similar strengths as

RT2. RT3 is identical to RT2 except that it adopts a noise-filtering pass

before sorting the instances. Experimental results show that RT3 outper-

forms RT2 on data retention rate [69]. However, RT3 is not adopted in our

ICPL for two reasons. Firstly, the noise-filtering pass of RT3 intends to re-

move noise. However, noise can be handled by the abstraction component in

ICPL. Not adopting the noise-filtering pass helps reduce the computational

cost. Besides, the noise-filtering pass is usually able to smooth the class

boundary. However, during the smoothing process, some information about

the class boundary, which is essential to our concept integration, may be

lost. Therefore, we choose RT2 instead of RT3 as our filtering component in

ICPL.

5.4 Concept Integration

This section presents the concept integration method attempting to combine

the two concepts learned by the two components. We present the ICPL

algorithm and conduct some analysis on it using artificial data sets. We find

that ICPL is capable of learning a small set of good prototypes to describe

103

concepts in domains. Next, we present the results of some experiments on

35 real-world benchmark data sets.

5.4.1 The ICPL Algorithm

As the main objective of a classifier is to correctly classify unseen cases based

on the knowledge learned from the training set, we use generalization accu-

racy of the prototype set on the original training set as the main criteria to

combine the concepts. Besides, we also attempt to reduce the data reten-

tion rate of the resulting prototype set. We design an integration method to

achieve these two goals.

Figure 5.12 shows the ICPL algorithm. Let the prototype sets learned

from abstraction and filtering be A and F respectively and S be the resulting

prototype set. In the integration, we first retain all prototypes in A. Each

prototype learned from F will then be examined whether it should be added

to the integrated prototype set. A temporary prototype set Tmp containing

both the current prototype set S and the examined prototype P is created

and is evaluated using the training set T. If the addition of P increases the

number of correct classifications on the training set, P will be accepted. It

ensures that concepts unsuccessfully learned by abstraction will be comple-

mented by prototypes learned from filtering. After all the prototypes in F

are processed, we start to refine the integrated prototype set by examining

the abstracted prototypes. Similar to filtered prototypes, abstracted ones are

also evaluated by the training set. When P is examined in the evaluation

process, a temporary prototype set Tmp is also created with P removed from

the current prototype set S. The abstracted prototype P is discarded if its

104

Procedure ICPL (T ra in ing Set T, Integer k).

1 Set A 二 TPA(T).
2 S e t F = RT2(r, k).
3 Set 5 = A.
4 For each pro to type P in F :
5 Set Tmp = Sn P.
6 Set Good 二 No. of instances in T correct ly classified by P in Tmp.
7 Set Bad = No. of instances in T incorrect ly classified by P in Tmp.
8 If (Good > Bad):
9 Set = n R
10 For each pro to type P \n A :
11 Set Tmp = S\P.
12 Set With = No. o f instances in T correct ly classified by S.
13 Set Without = No. of instances in T correct ly classified by Tmp.
14 If (Without >= With):
15 Set 5 = 5 \ P.
16 Return S.

Figure 5.12: The ICPL algorithm.

105

removal does not hurt the generalization accuracy of the current prototype

set on training set. During abstraction, not all the prototypes learned are

essential to the formation of the class boundary. This pruning step helps

eliminate those prototypes.

5.4.2 Analysis of ICPL

We try to investigate the performance of ICPL for describing concepts. A

two-class artificial data set, also used in the investigation of RT2 as shown in

Figure 5.11, containing 1,000 instances is generated to conduct the investi-

gation. We compare the boundary learned by ICPL on the data set with the

true boundary used to generate the data set. Figure 5.13 shows the results.

We can see that our ICPL algorithm is able to approximate the true bound-

ary. Most importantly, ICPL uses only 7 instances to describe the concept

while RT2 uses 40.

We also investigate the noise tolerance of ICPL. To do this, we introduce

about 10% mislabeled instance in class 0. Figure 5.14 shows the results. We

find that the integrated prototype set contains no noise and can approximate

the true boundary using only 14 instances. This shows that our ICPL is

capable of handling noise or mislabeled instances.

5.5 Empirical Analysis

5.5.1 Experimental Setup

We have conducted a series of experiments which is similar to that in PGF.

Our ICPL was tested on 35 real-world benchmark data sets from UCI Repos-

106

6 1—B 5-13 Hi~I~~q my 1 “ ‘ “ ‘
• 口 ••口 •口 • •• • •
D • • ^ 0 • c j � ： • • • • • • •

CD • 。 ！ ^ O S • • 丨 々 • • 、 • • _

• = • • … ： ！ / - ： . H • ••••

5 - 口 : 口 嘴 ' • 口 W • 、 醒 、 • •

o • • n ..••....J • • 漏 • • • 圓

C ••口 f o o : ^ V •丨 •• • 1 n % ° Eb % Q, \Eld_ • • • • [ft, • 4b • • jL ‘：! •• • _ •

与•口口 a� 0 n 口“̂ • • • • •
• � f • ”惡口 ° y •• -tf ：
“ • • • • • OO o ^ . . • •

4 • • • • • 言 • • 口 ： D o j • � • • ： • • • •

口 n \ m • _ • I • • • • • r̂ •口 • ••口 •口 \ I _ •• • • • * • � •
P 口 • •“ • •• 1 • •

崔 3 二•巧 • • 吕 • • • :：••
(U 口 n o 1 • • •

^ O • •• •口 Xai, • • • • •• •
… 日 • • •••,_•• •

o • „ n • • • • • . • •
• 0° ° n ° D L _ • • _ � • •

• „ • • O ° • • 丨【__ • • • • ••
2 - • o • n "口 •皆口 d • • • • • _ • • • _

D • 口口口。 • - - . J - - • • H • :
口 口 B • • 圓 • • • 3 口 • D HP n • • 画 • •

口 目 门 口 • • 口 “ l _ • •
n 口 门 口 。 n • • • * •

• 口 O q ^ ^ 4 m' m • • •
o m OC) • ” _ 1 - ••口 D D e ° i •、國 • • • • • •

• 口 口 • • • * • •
• •口 I ••_•••: - •• ••

• • rf^ Gh • • iT o . I •••••_• • • • D class 0
口 • 口 � • ® • ： - . f • ••； _ • class 1

• • tn口 ••口 •• ° ！ • ’ •_••••_ ICPL
° DO口。 ° ••口 今•• •• ‘• • Real —

« � . _ _ 口 cP i • 1 ^ •
3 4 5 6 7 8

Feature 1

Figure 5.13: The class boundary learned by ICPL in a two-class data set.

107

6 1—" g-ta H i I ^ • 1 “ ‘
• 口 • • ° • 口 • - • ‘ • • • •

• • • • • • • • “ •
B 口 n ••口 „ eP „ 口 ® O • •

5 • • • • B • • • • I ••
Q • • • ； " • • • • • 圓

D _ n n 0 J • • • _ _ •

� • 二 S •口二 cf ji ••••• •• i
哉 电。叱舍 ％ • •；H;—」？ • ••••• •
^ _ • n -cT • “ • • • •

n _ • •• _ •• / •••
O . - dO / • ••；： •_ •

目 ： ：• • • • •
p 口 • ••..a _ • • 麗 ••“ - •• 1 ••

養 3 : ••吕..「••:••、•••• ••‘•• ::_.
<U 0 口 • •々.. • • •

^ • • •• • if®••••••�魏• • 画 • • 圓 •

• 日 • • - •• • • 口 。 / • • • • , • • • •

• • • 口 • • • / [_ • • • • • ••

2 - ° 0 • n • • • 彦 • / d ••• •• • • • • •

• • V • • C ° ^ • _ •• • •
•口 Q o f . 口 • • • •
O • a 口 口 口 \ • N • • •

• Q 8口0 o / _ • • • _ •

] 目 口 • ^品• • • •• •

• m

1 - • • • O B i . . • • • • • •
• ° r \ • • • ' • • �

• B t • o tf o _•••••• • • • • c i ^
• •) •口如》: - H ‘ • ••• _ • Class 1

• D 。 • 口 口 坊 \ 丄 . . : 二 - - — I C P L

• • D o o • Z ^ \； • • • • ； . . — — R e a l

0 to - I 四•、口 rf^ I � ” * •
3 4 5 6 7 8

Feature 1

Figure 5.14: The class boundary learned by ICPL in a two-class data set

with noise.

108

itory [8]. The mean generalization accuracy and data retention rate of 10-fold

cross-validation were obtained for each data set. Recall that some of the large

data sets are randomly selected to form smaller subsets in experiments on

PGF. As the complexity of ICPL is reduced, we can apply it on large data

sets so that we do not need to reduce the size of those data sets. In other

words, the full amount of data is used in the experiments.

We compare ICPL with its two component methods to see the effects

of concept integration in the first set of experiments. In the second set of

experiments, we compare our algorithm with existing learning algorithms,

namely, RT3, C4.5 and KNN, as well as a random prototype learner.

5.5.2 Results of ICPL Algorithm

We have obtained the performance in terms of the generalization accuracy,

together with its standard deviation, and data retention rate of our ICPL

algorithm. Note that higher classification accuracy and smaller data reten-

tion rate imply better performance. A range of parameters k for ICPL, RT2

and KNN were tested and their best results were presented. Table 5.3 re-

ports the performance for ICPL and its component methods, namely, TPA

and RT2, on 35 real-world benchmark data sets. The average generalization

accuracy and data retention rate across 35 data sets for each algorithm are

also shown. In Section 4.3.5, we investigate the performance of different PGF

variants using two comparative analyses. The first one counts the number of

data sets in which PGF performs better or worse than each of the algorithm

on generalization accuracy and the second one employs a one-tail Wilcoxon

Signed Ranks test [15] to compare the significance of the improvement of

109

PGF by formal statistical analysis. These two analyses are also adopted here

to make rigorous comparison between ICPL and other algorithms and the

results are shown in the last two rows of the table.

The performance for the state-of-the-art prototype learner, namely, RT3,

and classification algorithms, namely, C4.5 and KNN are also obtained for

each of the data set. Table 5.4 presents the average generalization accuracy

and data retention rate of the 10-fold cross-validation results for each data

set and the average performance across the data sets.

5.5.3 Comparisons with Pure Abstraction and Pure

Filtering

In this set of experiment, we analyze ICPL by comparing its performance with

pure abstraction and pure filtering. The pure abstraction method tested is

TPA which is the abstraction component of ICPL. The pure filtering method

tested is RT2 which is the filtering component of ICPL.

ICPL vs. TPA

TPA has a good instance generalization power which can abstract compact

instances into a few prototypes but it is ineffective to describe complex con-

cepts. It leads to its good average data retention rate but poor generaliza-

tion accuracy as shown in Table 5.3. When comparing ICPL with TPA,

we observe that ICPL achieves a 11.8% higher generalization accuracy with

only about 3% more in prototype set size. ICPL is found to outperform

TPA in generalization accuracy on all the 35 data sets and the Wilcoxon

test shows a 99.5% confidence that ICPL gains a significant higher accuracy

110

Pure abstraction Pure filtering

ICPL TPA RT2

Data accuracy size accuracy size accuracy size

~Ab II 0 . 6 2 4 (0 . 0 5 8) 11 0.196 0.566 (0.064) 0.141 0.620 (0.060) 0.372
Am 0.812 (0.084) 0.062 0.744 (0.106) 0.036 0.804 (0.035) 0.200
Au 0.685 (0.107) 0.131 0.601 (0.096) 0.109 0.716 (0.112) 0.271
Ba 0.859 (0.043) 0.016 0.849 (0.107) 0.008 0.839 (0.034) 0.170
Be 0.968 (0.055) 0.009 0.951 (0.035) 0.005 0.960 (0.030) 0.060
Ca 0.946 (0.020) 0.053 0.822 (0.063) 0.039 0.949 (0.041) 0.136
Cs 0.851 (0.045) 0.035 0.762 (0.050) 0.015 0.831 (0.049) 0.177
Ec 0.846 (0.102) 0.053 0.827 (0.087) 0.028 0.872 (0.101) 0.171
G1 0.677 (0.279) 0.154 0.592 (0.280) 0.097 0.692 (0.214) 0.259
He 0.864 (0.076) 0.052 0.800 (0.111) 0.020 0.855 (0.231) 0.166
lo 0.878 (0.086) 0.048 0.783 (0.148) 0.017 0.906 (0.036) 0.092
Ir 0.947 (0.071) 0.043 0.887 (0.092) 0.030 0.960 (0.044) 0.107
Le 0.691 (0.047) 0.179 0.598 (0.048) 0.093 0.716 (0.044) 0.305
Li 0.644 (0.076) 0.151 0.577 (0.077) 0.082 0.597 (0.051) 0.278
M l 0.914 (0.047) 0.116 0.698 (0.106) 0.078 0.953 (0.056) 0.291
M2 0.968 (0.026) 0.082 0.753 (0.258) 0.055 0.987 (0.021) 0.184
M3 0.946 (0.062) 0.037 0.701 (0.110) 0.017 0.966 (0.051) 0.127
Mu 0.987 (0.006) 0.001 0.933 (0.012) 0.002 1.000 (0.000) 0.003
Ne 0.935 (0.076) 0.031 0.903 (0.065) 0.020 0.944 (0.043) 0.127
Nu 0 941 (0.006) 0.063 0.828 (0.008) 0.055 0.947 (0.011) 0.174
Op 0.958 (0.021) 0.023 0.924 (0.019) 0.009 0.965 (0.017) 0.060
Pe 0 976 (0.006) 0.015 0.869 (0.025) 0.005 0.986 (0.004) 0.042
Pi 0 716 (0.111) 0.087 0.699 (0.111) 0.039 0.733 (0.077) 0.230
Se 0.937 (0.032) 0.040 0.821 (0.045) 0.020 0.949 (0.009) 0.102
Sh 0.998 (0.002) 0.003 0.784 (0.058) 0.003 0.998 (0.002) 0.008
Sn 0.880 (0.095) 0.135 0.687 (0.194) 0.072 0.861 (0.108) 0.236
Sb 0 903 (0.053) 0.085 0.822 (0.049) 0.061 0.899 (0.073) 0.176
Tt 0 851 (0.031) 0.089 0.745 (0.026) 0.043 0.861 (0.032) 0.209
Vo 0 947 (0.050) 0.029 0.869 (0.041) 0.009 0.924 (0.030) 0.092
Vw 0 923 (0.045) 0.151 0.722 (0.104) 0.089 0.957 (0.013) 0.292
Wd 0946 0.019) 0.025 0.912 (0.021) 0.010 0.943 (0.048) 0.086
Wi 0 960 (0.105) 0.040 0.944 (0.039) 0.031 0.943 (0.087) 0.126
WD 0 763 0.182) 0.119 0.631 (0.128) 0.058 0.692 (0.137) 0.258
Ye 0 566 0.042) 0.141 0.538 (0.028) 0.087 0.549 (0.041) 0.270
Zo 0.950 (0.069) 0.083 0.920 (0.101) 0.085 0.950 (0.126) 0.149

Average 0.864 0.074 0.773 0.045 0.866 0.172

B e t t e r [T m [T m 3 5 - 0 2-33 14-21 35-0
Wilcoxon 50.00 || -50.00 99.50 -99.50 || -85.01 99.5

Table 5.3: The average classification accuracy and data retention rate (size)

of 10-fold cross-validation for ICPL, TPA and RT2. The standard deviation

of classification accuracy is given inside the bracket.

I l l

ICPL RT3 C4.5 KNN

Data accuracy size accuracy size accuracy accuracy

II 0.624 (0.058) 0.196 || 0 . 6 2 1 (0 . 1 5 2) 0.319 0.792 (0.066) 0.766 (0.076)
Am 0.812 (0.084) 0.062 0.794 (0.067) 0.136 0.939 (0.041) 0.771 (0.082)
Au 0.685 (0.107) 0.131 0.667 (0.116) 0.247 0.666 (0.083) 0.761 (0.102)
Ba 0.859 (0.043) 0.016 0.837 (0.065) 0.103 0.900 (0.032) 0.775 (0.066)
Be 0 968 (0.055) 0.009 0.957 (0.035) 0.033 0.953 (0.063) 0.960 (0.014)
Ca 0.946 (0.020) 0.053 0.952 (0.018) 0.112 0.692 (0.043) 0.956 (0.016)
Cs 0 851 (0.045) 0.035 0.826 (0.035) 0.085 0.642 (0.054) 0.807 (0.047)
Ec 0 846 (0.102) 0.053 0.878 (0.059) 0.108 0.921 (0.081) 0.822 (0.095)
G1 0 677 (0.279) 0.154 0.672 (0.341) 0.211 0.894 (0.031) 0.681 (0.300)
He 0 864 (0.076) 0.052 0.856 (0.208) 0.093 0.964 (0.007) 0.805 (0.186)
lo 0 878 (0.086) 0.048 0.869 (0.047) 0.068 0.694 (0.085) 0.866 (0.058)
Ir 0 947 (0.071) 0.043 0.947 (0.114) 0.080 0.962 (0.014) 0.947 (0.043)
Le 0:691 0.047) 0.179 0.696 (0.050) 0.282 0.999 (0.001) 0.810 (0.034)
Li 0 644 (0.076) 0.151 0.566 (0.110) 0.218 0.706 (0.094) 0.632 (0.089
M l 0 914 0.047) 0.116 0.971 (0.071) 0.296 0.779 (0.046) 0.969 (0.039)
M2 0.968 (0.026) 0.082 0.984 (0.014) 0.182 0.944 (0.031) 0.993 (0.016
M3 0.946 (0.062) 0.037 0.955 (0.069) 0.086 0.888 (0.081) 0.955 (0.045
Mu 0 987 (0.006) 0.001 1.000 (0.000) 0.003 0.676 (0.168) 1.000 (0.000
Ne 0.935 (0.076) 0.031 0.948 (0.073) 0.111 0.545 (0.049) 0.972 (0.031
Nu 0 941 0.006) 0.063 0.968 (0.008) 0.167 0.756 (0.064) 0.991 (0.004)
On 0958 0.021) 0.023 0.964 (0.029) 0.057 0.928 (0.012) 0.985 (0.010
Pe 0 976 0.006) 0.015 0.986 (0.003) 0.040 0.960 (0.084) 0.994 (0.005)
Pi 0 716 (0.111) 0.087 0.719 (0.097) 0.141 0.625 (0.079) 0.706 (0.114
Se 0 937 0 032) 0.040 0.949 (0.008) 0.091 0.988 (0.033) 0.969 (0.015)
Sh 0998 0.002) 0.003 0.998 (0.001) 0.007 1.000 (0.000) 0.999 (0.001
Sn 0.880 0.095 0.135 0.812 (0.046) 0.226 0.979 ' (0.004) 0.876 0.152
Sb 0.903 0.053 0.085 0.889 (0.051) 0.155 0.930 (0.034) 0.908 0.053
Tt 0 851 0.031 0.089 0.876 (0.025) 0.181 0.862 (0.036) 0.914 (0.027
Vo 0947 0.050) 0.029 0.922 (0.098) 0.062 0.960 (0.021) 0.935 (0.031
Vw 0923 0.045 0.151 0.956 (0.017) 0.293 0.926 (0.101) 0.992 0.016
Wd 0 946 0.019 0.025 0.952 (0.041) 0.056 0.776 (0.056) 0.945 0.028
Wi 0960 0.105 0.040 0.938 (0.125) 0.114 0.794 (0.156) 0.954 0.054
Wn 0763 0.182 0.119 0.723 (0.153) 0.138 0.832 (0.054) 0.701 0.108
Ye 0 566 0 042) 0.141 0.544 (0.040) 0.173 0.822 (0.060) 0.524 (0.054)
Zo 0:950 (0'.069) 0.083 0.931 (0.059) 0.169 0.773 (0.182) 0.970 (0.034)

Average 0.864 0.074 0.861 0.138 || 0.842 0.875

B e t t e r [T m 0-0 17-17 35-0 17-18 15-19
Wilcoxon -50.00 || 74.01 99.50 || 73.66 || 1 4 8

Table 5.4: The average classification accuracy and data retention rate (size)

of 10-fold cross-validation for ICPL, RT3, C4.5 and KNN. The standard

deviation of classification accuracy is given inside the bracket.

112

than TPA. This result suggests that with the help of the filtering component

RT2, TPA can retain border prototypes, learned from RT2, to describe more

complicated concepts resulting in significant improvement in generalization

accuracy.

ICPL vs. RT2

RT2 retains border instances to describe concepts while center and interme-

diate instances, which do not affect the decision boundary, are discarded.

Therefore, RT2 can gain a very high generalization accuracy and, at the

same time, achieve a rather low level of data retention rate. However, we

find that RT2 retains unnecessarily large amount of instances to describe

even a very simple concept. From Figure 5.11, we can see that a rather

complex boundary is learned by RT2 to represent a linear boundary in the

lower half of the plot. With the integration of abstraction component TPA,

we attempt to eliminate those extra instances to reduce the data retention

rate while maintaining the high generalization accuracy. From Table 5.3, we

observe that when integrated with TPA, RT2 achieves a significant reduc-

tion in data retention rate, from 17.2% to 7.4% with only a 0.23% decrease

in generalization accuracy. When further investigating the performance of

the two methods, we notice that RT2 does not gain a high confidence level

in accuracy on Wilcoxon test which indicates that it has a similar accuracy

to ICPL. As for data retention rate, ICPL is found to be able to achieve a

significantly better performance than RT2 with over 99% confidence level.

These results show that our ICPL is capable of discarding border prototypes

which do not contribute much to represent the class boundary.

113

In conclusion, after testing our ICPL algorithm on real-world benchmark

data sets, we find that the two component methods, TPA and RT2, are

strong in summarizing instances and detecting decision boundaries respec-

tively. Empirical results also suggest that ICPL can unify the strengths of

filtering and abstraction technique in prototype learning to achieve a high

generalization accuracy and low data retention rate.

5.5.4 Comparisons with Other Approaches

In the second set of experiments, we compare with other algorithms, namely

RT3, C4.5 and KNN. We then contrast ICPL with a random prototype

learner to show its learning ability. Our ICPL algorithm is also compared

with the PGF algorithm proposed in Chapter 4. We first compare ICPL

with RT3 and then C4.5 and KNN. Table 5.4 shows the average generaliza-

tion accuracy and data retention rate of ICPL and the three algorithms on

35 real-world data sets.

ICPL vs. RT3

RT3 and its derivatives, renamed as DR0P1-DR0P5, were intensively in-

vestigated in [68]. Among the five algorithms, DROPS (actually the RT3

algorithm) is found to have the best mix of generalization accuracy and data

retention rate. DROPS is also compared with 10 other prototype learners,

namely, CNN [25], SNN [48], IB2, IBS [2], ENN [65], Unlimited and All K-

NN [58] and Explore [12]. Experiments on 31 real-world benchmark data sets

show that DROPS performs the best among these data reduction techniques

considering both the average generalization accuracy and data retention rate.

114

Therefore, we choose RT3 in our comparative study.

It is found from Table 5.4 that ICPL achieves a slightly higher general-

ization accuracy than RT3. ICPL outperforms RT3 in generalization accu-

racy on 17 data sets while RT3 gains better performance on the other 17.

Wilcoxon test on accuracy also suggests that the two methods obtain similar

performance over the 35 data sets. However, we can see that ICPL is better

than RT3 in terms of the data retention rate. Compared with RT3, ICPL

only retains half amount of prototypes to gain such a high generalization

accuracy. From the table, we observe that ICPL retains only 7.4% in size of

the original training set while RT3 stores 13.4%. Using the Wilcoxon test, we

can see that ICPL has a significant lower data retention rate than RT3 does.

All these results support that our ICPL algorithm outperforms the state-of-

the-art prototype learner, RT3, in learning representative prototypes.

ICPL vs. C4.5 and KNN

Contrasting ICPL with C4.5, we notice that ICPL outperforms C4.5 in av-

erage generalization accuracy across all the data sets by 2.5%. The two

algorithms achieve high generalization accuracy on nearly the same number

of data sets. Based on Wilcoxon test, ICPL is observed to obtain a better

generalization accuracy than C4.5 does, however, without a high confidence

level. On some data sets, such as Ab and Am, C4.5 gains a significantly

higher generalization accuracy while on some other data sets, such as Ca

and Cs, ICPL performs significantly better. These results suggest that the

two methods are strong in handling different kinds of data distribution.

When comparing ICPL with KNN, we observe that KNN has a 1.27%

115

higher average generalization accuracy. Among the 35 data sets, KNN per-

forms better on generalization accuracy on 19 of them while ICPL gains

better results on other 15. A value of —84.48 confidence level is obtained

indicating that KNN is believed to be able to achieve a better generaliza-

tion accuracy, however, with only a low confidence level. The above results

suggest that our ICPL achieves comparable, or even higher, generalization

accuracy with state-of-the-art learning algorithms such as C4.5 and KNN.

We now consider the data retention rate of ICPL and KNN. In KNN, all

the training instances are retained to perform classification. It leads to high

data retention rate and classification computation. In contrast, as for our

ICPL algorithm, only 7.4% of the total instances are stored. For some data

sets, such as Be, Mu and Sh, ICPL obtains similar or even better generaliza-

tion accuracy than KNN with only less than 1% of the total instances. With •

significantly fewer prototypes, ICPL can classify unseen cases with lower

computational cost and storage requirement than that of KNN.

ICPL vs. Random Prototype Selection

Our ICPL algorithm and its two component methods are also compared with

a random prototype selection method in which prototype set is formed by

randomly selecting a subset of the training instances. We present the gener-

alization accuracy of the random prototype selection method with different

size of the selected subset. Figure 5.15 indicates the generalization accuracy

versus the data retention rate for ICPL, TPA, RT2 and the random prototype

selection method. The three methods are found to more effective than the

random method to describe concepts. Specifically, TPA and RT2 gain 10%

116

0.9 p ！ 1 1 ！ ！ ！ ！ 1

V I I + I I I I I
0 85 '-i I [< j

g Q g j ？ ： T

I x| I
I J I I
爸 0 75 _.� - I ^ i

卞 1 I I I ： I I
r \ ^ / i i ： r
1 1 „J.； 1 ： 丨 ： ：

[]I I
• random

+ R T 2

丨 丨 X T P A

I 1 I • ICPL

5 10 15 20 25 30 35 40 45 50

% Storage

Figure 5.15: Generalization accuracy for ICPL, TPA and RT2 vs. the random

prototype selection method.

117

and 9% higher generalization accuracy respectively compared with the ran-

dom method at the same level of data retention rate. The results show that

our component methods can learn from the training set to get better per-

formances. As for ICPL, a significantly higher generalization accuracy, i.e.,

17%, is obtained. It suggests that concept integration is useful for improving

component methods in prototype learning.

ICPL vs. PGF

Although both ICPL and PGF are tested on the same 35 data sets, the size

of seven data sets tested in PGF is reduced due to the high complexity of the

PGF algorithms. Therefore, we cannot directly compare the results of the

two algorithms on the reduced data sets. Instead, we analyze the results on

the remaining 28 data sets to compare the performance of PGF and ICPL.

PGF2-ACC is chosen to contrast with ICPL as it performs the best among

the six PGF variants. Table 5.5 shows the average generalization accuracy

and data retention rate of ICPL and PGF2-ACC across the 28 data sets.

The results of two previous used comparative analyses are given in the last

two rows of the table.

ICPL PGF2-ACC

accuracy size accuracy size

Average 0.85 0.08 0.83 0.10

Better 0-0 0-0 24-4 17-11

Wilcoxon 50.00 -50.00 99.50 95.25

Table 5.5: The average classification accuracy (accuracy) and data retention

rate (size) of 10-fold cross-validation across 28 real-world data sets for ICPL

and PGF2-ACC.

118

According to Table 5.5, we find that ICPL gains a higher average gen-

eralization accuracy and lower average data retention rate than PGF2-ACC

does. Also, ICPL outperforms PGF2-ACC in both accuracy and data reten-

tion rate on most of the data sets. Wilcoxon test also suggests that ICPL

gains significantly better results. These results show that ICPL learns fewer

prototypes to gain higher accuracy on the 28 data sets compared with PGF2-

ACC.

5.6 Time Complexity

As shown in Section 5.2.5, the abstraction component in ICPL, TPA, takes

0{ri^m) time to learn prototypes where n is the number of training instances

and m is the time to calculate a distance between two instances. As for

the filtering component, RT2, its time complexity is similar to that of RT3

except that ENN is not employed. However, to find the associate lists of all

the training instances, Oin^m) time is still required. In order to integrate

the two concepts, we need to calculate the distance between prototypes of

the two concepts learned by the two components. In the worst case, both

the two concepts contain the whole training set and the number of distance

computation is n * n and the time to calculate all the required distance is

0(n2m). Therefore, the time complexity of our ICPL algorithm is 0{n'^m) +

0(v?m) + 0{n^m) which is 0{n^m).

119

5.7 Summary

We have proposed a second prototype learning methods, called Integrated

Concept Prototype Learner (ICPL), which integrates the strengths of instance-

filtering and instance-abstraction techniques using the concept integration

approach. ICPL attempts to unify the high instance generalizing power of

abstraction and high boundary description power of filtering to learn pro-

totype sets with high generalization accuracy and low data retention rate.

To do this, we propose an abstraction method, called TPA, which adopts

typicality in deciding the order and choice of instances to be merged. As for

filtering component, we employ RT2 to retain boundary instances. A thor-

ough investigation on the behavior of RT2 and on artificial data sets confirm

the ability of RT2 to represent the class boundary. In ICPL, two concepts

are independently learned by the two component methods. After that, an

integration method, based on the classification accuracy on the training set,

is used to combine the strengths of the two learned concepts to form the

target prototype set.

We conduct comparative analysis of our ICPL and the pure filtering and

pure abstraction methods on both generalization accuracy and data reten-

tion rate. Empirical results on 35 real-world benchmark data sets show that

ICPL can gain a high generalization accuracy using few prototypes. ICPL

is found to be able to unify the strengths of the two component methods.

ICPL is also contrasted with the state-of-the-art filtering algorithm (RT3)

and classification algorithms (C4.5 and KNN). Through comparative analy-

sis, we observe that our ICPL algorithm obtains a significant improvement in

data retention rate with comparable generalization accuracy. In particular,

120

ICPL gains comparable or even superior generalization accuracy to C4.5 and

KNN using a prototype set with only 7.4% of the training set in size.

121

Chapter 6

Conclusions and Future Work

This chapter summarizes this thesis and discusses its main contributions.

Future research directions for our work are also suggested.

6.1 Conclusions

Traditional instance-based learning algorithms suffer from high on-line com-

putational cost, storage requirement and noise sensitivity. Our goal in this

thesis is to overcome these drawbacks using prototype learning methods. In

prototype learning, a relatively small prototype set is learned to represent the

original training set. This method can obviously reduce the computational

cost and storage requirement of instance-based learning algorithms. More-

over, a good prototype set removing noise can solve the problem of high noise

sensitivity.

Instance-filtering and Instance-abstraction

There are many approaches to learning representative prototype sets includ-

122

ing instance-filtering and instance-abstraction. Instance-filtering refers to

techniques selecting representative prototypes from the original training set.

They intend to find a subset of training instances to describe original ones.

Filtering techniques can be grouped according to the location of instances

they retained, namely, 1) retaining border instances, 2) removing border in-

stances and 3) retaining center instances. Another approach, called instance-

abstraction, is to learn artificial prototype set by generalizing or abstracting

training instances.

We have reviewed major previous work on these two prototype learning

approaches and investigate the strengths and weaknesses of them. Filtering

methods are found to be fast and simple. Some of them can achieve high gen-

eralization accuracy compared with the classical nearest neighbor algorithm

and can be flexibly designed and integrated to handle instances in different

regions. However, they cannot perform well if prototype instances are not

found in original data and are sensitive to noise. Also, their data retention

rate is usually high.

As for instance-abstraction, results from previous work show that this

method can achieve low data retention rate and generate prototypes more

representative than original instances. Noise can also be absorbed during the

abstraction process. In spite of these strengths, abstraction techniques are

usually more complicated and bad prototypes will be formed when merging

distant instances, thus leading to poor generalization accuracy.

Incremental Integration and Concept Integration

After analyzing the strengths and weaknesses of these two methods, we find

that they can be beneficial to each other and are strong in handling different

123

kinds of data distributions. We propose two approaches integrating the two

methods. The first approach is regarded as incremental integration in which

filtering and abstraction methods are applied incrementally. Under this ap-

proach, filtering and abstraction can be complementary with each other in an

incremental fashion. Some drawbacks of one component can be overcome by

the counterpart component in incremental integration. The second approach

is regarded as concept integration in which concepts are learned indepen-

dently and integrated. It attempts to unify the strengths of the two learned

concepts.

We develop two new integration algorithms, namely, PGF and ICPL, one

for each of the two approaches.

PGF

The first prototype learning method, called Prototype Generation and Fil-

tering (PGF), which integrates instance-filtering and instance-abstraction

techniques based on incremental integration approach. We propose an ab-

straction method, called ABS, based on an agglomerative clustering tech-

nique to merge nearest prototypes forming the prototype set. Three filtering

methods, i.e., retaining prototypes in border, non-border and center regions,

are investigated to integrate with the abstraction method. There are two

issues affecting the performance of this integration method, namely, the type

of filtering methods and the filtering granularity. We propose two PGF al-

gorithms which differ in filtering granularity. This design leads to different

variants of the two algorithms using different filtering methods as well as

state-of-the-art algorithms, such as C4.5 and KNN.

124

ICPL

The second prototype learning method, called Integrated Concept Proto-

type Learner (ICPL), which integrates the strengths of instance-filtering and

instance-abstraction techniques based on concept integration approach is also

proposed. ICPL attempts to unify the high instance generalizing power of

abstraction and high boundary description power of filtering to learn proto-

type sets with high generalization accuracy and low data retention rate. To

do this, we propose an abstraction method, called TPA, which adopts typi-

cality in deciding the order and choice of instances to be merged. It is found

that TPA achieves high instance generalizing power using artificial data sets.

As for filtering component, we employ an existing algorithm, called RT2, to

retain boundary instances. A thorough investigation of the behavior of RT2

and investigation on artificial data sets confirm the ability of RT2 to repre-

sent the class boundary. In ICPL, two concepts are independently learned

by the two component methods. After that, an integration method, based on

classification accuracy on the training set, is used to combine the strengths

of the two learned concepts to form the target prototype set. Through com-

parative analysis, we suggest that our ICPL algorithm obtains a significant

improvement in data retention rate for existing prototype learners. In par-

ticular, ICPL gains comparable or even superior generalization accuracy to

C4.5 and KNN using a prototype set with only 7.4% of the training set in

size.

125

6.2 Future Work

Instance-based learning algorithms consists of three main components, namely,

representative instance selection function, similarity function and classifica-

tion function. The performance of instance-based learning algorithms de-

pends highly on these three components. Our thesis focuses on the first

component. One future work can investigate the remaining two compo-

nents. Instance-based learning involves learning from the similarity between

instances. In many applications, instances may contain both continuous and

discrete features. A good similarity function is therefore essential to instance-

based learning. In our proposed algorithms, the class label of prototype with

shortest distance to the unseen case is the output. Although this simple clas-

sification may perform well on many applications, the generalization accuracy

may be improved if a more sophisticated classification function is employed.

Another future work is to focus on feature selection. In instance-based

learning, instances are retained without any change in data representation.

However, this method stores irrelevant features as well which will normally

hurt the classification performance. With the removal of irrelevant features,

both the generalization accuracy and storage requirement of instance-based

learning algorithms can be improved.

In our prototype learning algorithms, a lot of computation is required on

identifying nearest neighbors of instances. Therefore, the learning computa-

tional cost of our integrated systems can be further reduced if appropriate

scaling-up nearest neighbor search method is adopted. This method can

also be applied on on-line classification so that unseen cases can be classified

faster.

126

In abstraction, merging of outliers may lead to formation of non-representative

prototypes. Therefore, we design filtering rules to discard outliers. However,

some outliers may be informative in classifying unseen cases. The perfor-

mance of prototype learner may be improved by designing filtering rules to

retain the useful outliers.

Also, in ICPL, we proposed a new abstraction method (TPA) based on

typicality to merge non-border instances. It will be interesting to consider

the use of TPA in the PGF framework so that its computational complexity

can be reduced.

127

Bibliography

1] D.W. Aha. Tolerating noisy, irrelevant, and novel attributes in instance-
based learning algorithms. International Journal of Man-Machine Stud-

ies, 36:267-287, 1992.

2] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algo-
rithms. Machine Learning, 6:37-66, 1991.

3] D.W. Aha, D. Kibler, and M.K. Albert. Noise-tolerant instance-based
learning algorithms. In International Joint Conference on Artificial In-
telligence, pages 794-799, 1991.

4] R. Bareiss. Exemplar-Based Knowledge Acquisition: A Unified Ap-
proach to Concept Representation, Classification and Learning. Aca-
demic Press, Inc., 1989.

[5] S. Berchtold, B. Ertl, D. A. Keim, H. P. Kriegel，and T. Seidl. Fast
nearest neighbor search in high-dimensional space. In Proceedings of
Fourteenth International Conference on Data Engineering, pages 209—
218，1998.

6] Michael (Michael J. A.) Berry. Data mining techniques : for marketing,
sales, and customer support / Michael J.A. Berry, Gordon Linoff. New
York : Wiley Computer, 1997.

7] J.C. Bezdek, T.R. Reichherzer, G.S. Lim, and Y. Attikiouzel. Multiple-
prototype classifier design. IEEE Transactions on Systems, Man, and
Cyberneics, 28(l):67-79, 1998.

128

8] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,

1998.

9] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and
genetic algorithms. Artificial Intelligence, 40:235—282, 1989.

10] G. Bradshaw. Learning about speech sounds: The nexus project. In
Proceedings of the Fourth International Workshop on Machine Learning,
pages 1-11, 1987.

11] R.M. Cameron-Jones. Minimum description length instance-based learn-
ing. In Proceedings of the Fifth Australian Joint Conference on Artificial
Intelligence, pages 368-373, 1992.

12] R.M. Cameron-Jones. Instance selection by encoding length heuristic
with random mutation hill climbing. In Proceedings of the Eighth Aus-
tralian Joint Conference on Artificial Intelligence, pages 293-301, 1995.

13] C.L. Chang. Finding prototypes for nearest neighbor classifiers. IEEE
Transactions on Computers, 23(11):1179-1184，1974.

14] p. Clark and T. Niblett. The cn2 induction algorithm. Machine Learn-

ing, 3(4):261-283, 1989.

15] W.J. Conover. Practical nonparametric statistics. New York: Jogn
Wiley, 1971.

16] S Cost and S. Salzberg. A weighted nearest neighbor algorithm for
learning with symbolic feature. Machine Learning, 10:57-78, 1993.

17] B.V. Dasarathy. Minimal consistent set (MCS) identification for opti-
mal nearest neighbor decision systems design. IEEE Transactions on
Systems, Man, and Cyberneics, 24(3):511-517, 1994.

18] P. Datta and D. Kibler. Learning prototypical concept description. In
Proceedings of the Twelfth International Conference on Machine Learn-
ing, pages 158-166, 1995.

129

19] P. Datta and D. Kibler. Learning symbolic prototypes. In Proceedings

of the Fourteenth International Conference on Machine Learning, pages
75-82, 1997.

20] P. Datta and D. Kibler. Symbolic nearest mean classifier. In Proceedings

of the Fourteenth National Conference of Artificial Intelligence, pages
82-87, 1997.

21] P.A. Devijver and J. Kittler. On the edited nearest neighbor rule. In Pro-

ceedings of the IEEE Fifth International Conference on Pattern Recog-

nition, pages 72-80, 1980.

22] P. Domingos. Unifying instance-based and rule-based induction. Ma-

chine Learning, 24:141-168, 1996.

23] G.W. Gates. The reduced nearest neighbor rule. IEEE Transactions on

Information Theory, 18� : 431 -433 , 1972.

24] K.C. Gowda and G. Krisha. The condensed nearest neighbor rule using
the concept of mutual nearest neighborhood. IEEE Transactions on
Information Theory, 25(4):488-490, 1979.

25] RE. Hart. The condensed nearest neighbor rule. IEEE Transactions on

Information Theory, 14(3):515-516, 1968.

26] K. Hattori and M. Takahashi. A new edited A;-nearest neighbor rule
in the pattern classification problem. Pattern Recognition, 33:521-528,

2000.

27] C. K. Keung and W. Lam. Prototype generation based on instance filter-
ing and averaging. In Processings of the Fourth Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 142—152, 2000.

28] C.K. Keung and W. Lam. Discovering representative instances using
clustering and pruning. In Proceedings of International Conference on
Artificial and Computational Intelligence for Decision, Control and Au-
tomation in Engineering and Industrial Applications (ACIDCA,2000),

2000.

130

29] D. Kibler and A.W. Aha. Learning representative exemplars of con-
cepts: An initial case study. In Proceedings of the Fourth International
Workshop on Machine Learning, pages 24-30, 1987.

30] D. Kibler and D.W. Aha. Comparing instance-averaging with instance-
filtering learning algorithms. In Proceedings of the Third European
Working Session on Learning, pages 63-80, 1988.

31] B. S. Kim and S. B. Park. A fast k nearest neighbor finding algorithm
based on the ordered partition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 8(6):367-372, 1986.

32] T. Kohonen. The self-organizing map. Proceedings of the IEEE,

78(9) :1464-1480, 1990.

33] L.I. Kuncheva. Editing for the 於-nearest neighbors rule by a genetic
algorithm. Pattern Recognition Letters, 16:809—814, 1995.

34] L.I. Kuncheva. Fitness functions in editing 左-nn reference set by genetic
algorithms. Pattern Recognition, 30(6):1041-1049，1997.

35] L.I. Kuncheva and J.C. Bezdek. Nearest prototype classification: Clus-
tering, genetic algorithms, or random search? IEEE Transactions on
Systems, Man, and Cyberneics, 28(1):160-164，1998.

36] W. Lam and C. Y. Ho. Using a generalized instance set for automatic
text categorization. In Proceedings of the Twenty-First Annual Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pages 81-89, 1998.

[37] W. Lam, C.K. Keung, and C.X. Ling. Learning Via Prototype Gener-
ation and Filtering, chapter 13. To appear in Instance Selection and
Construction - A Data Mining Perspective, Kluwer Academic, 2000.

[38] W. Lam, C.K. Keung, and C.X. Ling. Learning good prototypes for
classification using filtering and abstraction of instances. Submitted to
Pattern Recognition.

131

39] R. P. Lippmann. An introduction to computing with neural nets. IEEE

ASSP Magazine, 3(4):4-22, 1987.

40] R. S. Michalski. A theory and methodology of inductive learning. Arti-

ficial Intelligence, 20:111-161, 1983.

41] G.W. Milligan and M.C. Cooper. An examination of procedures for
determining the number of clusters in a data set. Psychometrika,
50(2):159-179, 1985.

42] B. K. Natarajan. Machine Learning: A Theoretical Approach. San
Mateo, Calif. : M. Kaufmann Publishers, 1991.

43] Papadimitriou, H. Christos, and Jon Louis Bentley. A worst-case anal-
ysis of nearest neighbor searching by projection. Lecture Notes in Com-
puter Science, 85:470-482, 1980.

44] T.R. Payne and P. Edwards. Implicit feature selection with the value
difference metric. In Proceedings of the Thirteenth European Conference
on Artificial Intelligence, pages 450—454, 1998.

45] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81—106,

1986.

46] J. R. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

47] F. Ricci and P. Avesani. Date compression and local metrics for nearest
neighbor classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(4):380-384, 1999.

48] G丄.Ritter, H.B. Woodruff, and S.R. Lowry. An algorithm for a selec-
tive nearest neighbor decision rule. IEEE Transactions on Information
Theory, 21(6):665—669, 1975.

49] S. Salzberg. A nearest hyperrectangle learning method. Machine Learn-

ing, 6:251-276, 1991.

132

50] R. E. Schapire, Y. Singer, and A. Singhal. Boosting and Rocchio applied
to text filtering. In Proceedings of the Twenty-First Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 215-223, 1998.

51] G.S. Sebestyen. Decision-Making Process in Pattern Recognition. New
York: The Macmillan Company, 1962.

52] H. A. Simon. Why should machines learn. In R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell, (Eds), Machine Learning: An Artificial
Intelligence Approach, pages 25-37, 1983.

53] D. B. Skalak. Prototype Selection for composite nearest neighbor classi-
fiers. PhD thesis, University of Massachusetts Amherst, 1997.

54] D.B. Skalak. Prototype and feature selection by sampling and random
mutation hill climbing algorithms. In Proceedings of the Eleventh Inter-
national Conference on Machine Learning, pages 293—301, 1994.

55] R. F. Sproull. Refinements to nearest-neighbor searching in k-
dimensional trees. Algorithmica, 6:579-589, 1991.

56] C. Stanfill and D. Waltz. Toward memory-based reasoning. Communi-
cations of the ACM, 29:1213-1228, 1986.

57] c .W. Swonger. Sample set condensation for a condensed nearest neigh-
bor decision rule for pattern recognition. In Watanabe, S., editor, Fron-
tiers of Pattern Recognition, pages 511-519. Academic Press, New York,

NY, 1972.

58] I. Tomek. An experiment with the edited nearest-neighbor rule. IEEE
Transactions on Systems, Man, and Cyherneics, 6(6):448-452, 1976.

59] H. Trri, P. Knotkanen, and P. Myllymaki. Probabilistic instance-based
learning. In Proceedings of the Thirteenth International Conference on
Machine Learning, pages 158—166, 1996.

133

60] A. van den Bosch. Instance-family abstraction in memory-based lan-
guage learning. In Proceedings of the Sixteenth International Conference
on Machine Learning, pages 39—48, 1999.

61] S. M. Weiss and C. A. Kulikowski. Computer systems that leam : clas-
sification and prediction methods from statistics, neural nets, machine
learning, and expert systems. San Mateo, Calif. : M. Kaufmann Pub-
lishers, 1991.

62] D. Wettschereck. A hybrid nearest-neighbor and nearest-hyperrectangle
algorithm. In Proceedings of the Seventh European Conference on Ma-
chine Learning, pages 323-335, 1994.

63] D. Wettschereck, D.W. Aha, and T. Mohri. A review and empirical
evaluation of feature weighting methods for a class of lazy learning al-
gorithms. Artificial Intelligence Review, 11:273-314, 1997.

[64] D. Wettschereck and T.G. Dietterich. An experimental comparison of
the nearest-neighbor and nearest-hyperrectangle algorithms. Machine

Learning, 19:5-27, 1995.

65] D. L. Wilson. Asymptotic properties of nearest neighbor rules using
edited data. IEEE Transactions on Systems, Man, and Cyberneics,
2(3):431—433, 1972.

66] D. R. Wilson. Advances in Instance-Based Learning Algorithm. PhD
thesis, Department of Computer Science, Brigham Young University,

1997.

67] D. R. Wilson and T. R. Martinez. In integrated instance-based learning
algorithm. Computational Intelligence, 16(1):1-28, 2000.

68] D. R. Wilson and T. R. Martinez. Reduction techniques for instance-
based learning algorithms. Machine Learning, 38:257-286, 2000.

[69] D.R. Wilson and T.R. Martinez. Instance pruning techniques. In Pro-
ceedings of the Fourteenth International Conference on Machine Learn-
ing, pages 403-411, 1997.

134

70] Q. Xie, C.A. Laszlo, and R.K. Ward. Vector quantization technique for
nonparametric classifier design. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(12):1326-1330, 1993.

71] T. P. Yunck. A technique to identify nearest neighbor. IEEE Transac-
tions on Systems, Man, and Cybernetics, 6(10):341-346, 1976.

72] J. Zhang. Selecting typical instances in instance-based learning. In
Proceedings of International Conference on Machine Learning, pages
470-479, 1992.

135

Appendix A

Detailed Information for Tested
Data Sets

136

“ [1 Number of
Data Set Instance | Class | Feature: continuous symbolic Missing Value

Automobile p 0 5 [7 p 5 p p
Auto-Mpg 398 5 7 4 3 Y^s
Audiology 226 24 69 0 69 :
Balance-Scale 625 3 4 4 0 no
Breast-Cancer-W 699 2 9 9 0 ，

Car-Evaluation 1728 4 6 0 Q no
Credit-Screening 690 2 15 6 9 yes
Ecoli 336 8 7 5 2 no
Glass 214 6 9 9 0 no
Satitis 155 2 19 32 68 yes
Ionosphere 351 2 34 34 0 no
Iris 150 3 4 4 0 no
*Letter 20000 26 16 16 0 no
Liver 345 2 6 6 0 no
Monks-1 432 2 6 0 ^ no

Monks-2 432 2 6 0 ^ no
Monks-3 432 2 6 0 6 no
*Mushroom 8124 2 22 0 2 yes
New-Thyroid 215 3 5 5 0 no
*Nurserv 12960 5 8 0 S no
* o S t 5620 10 64 64 0 no
* 二 gt 10992 10 16 16 0 no
Pima-Indians-Diabetes 768 2 8 8 K 二

*Segmentation 2310 7 19 19 0 no
*Shuttle 14500 7 9 9 0 no
Sonar 208 2 60 60 0 no
S a L a n 683 19 35 0 19 =
Tic-Tac-Toe 958 2 9 0 9 二

Voting 435 2 16 0 16 yes

y Z e f 990 11 10 10 0 no
Wdbc 569 2 30 30 0 no
Wine 178 3 13 13 0 no
: b c 198 2 33 33 0 yes
Yeast 1484 10 8 8 0 no
Zoo II 101 I 7 16 Q Lî

Table A.l: Detailed information for the 35 tested data sets in the UCI Repos-
itory.
* 1,500 instances are randomly selected in conducting experiments on PGF algorithms.

137

Appendix B

Detailed Experimental Results
for PGF

138

d
d
d
a
d
a
d
a
a
a
 g
g
o
o
o
o
o
o
o
o

 o
o
o
o
o
o
o
o
o
o

 O
O
O
O
Q

o
 (
c

^

冗
 k

 c
 k

^

 L
i
l
l
i
a
n
s
 E

^
 ̂

 i
溫
I
旗
•
则
獨
溫
溫
皿
溫
溫
溫
搬
|
|
g
隱
_

 1

 wn

 1

M
a
a
a
a
a
a
a
a
a
 a
a
a
o
o
o
o
o
o
o

 o
o
o
o
o
o
o
o
o
o

 O
O
O
O
Q

 Q

仏

 S

仙

I
r

溫
i
§
溫
溫
i
§
溫
溫
溫
观
溫
溫
厕
^
恤
腸
1

3
 .1

 §§
S
§
§
§
肌
§
§
§

 d
d
d
d
d
a
a
a
a
d

 a
g
a
a
a
a
o
o
o
o
 O
O
O
O
Q

 o

 T

^
 ̂

 i
i
l
l
l
a
s
s
 I
〒
！

^
 ̂

 ̂

 N
 c

 3

-
g
u
i
l
l
l
l
l
l
l
l
i
i
i
l
i
i
y

 1

N
 o

 ̂

柳

 I
J
l
l
l
s
l
l
a
B
a

 零
=

^

 i
i
B
i
i
s
l
l
l
l
^
 霍
=

p
 §

 2
9
4
1
0
2
2
0
8
3

犯

豹

站

町

邪

w

 站
？
2
1

科

？

3

沾

叨

鄉

臉

.

1

a

l

l

^

i

i

l

l

l

l

謹

隱

讀

•

滥

溫

謹

•

請

T
 §

彻

=
 M

 d

^
 B

 f
o
 ̂

啦
 ̂

 n
^

 ̂

l
i
t
飲
恕
a
監
溫
I
忠
一
您
g
n
忍
I
聚
恐
色
m
m
l

•
I

 a
a
a
a
a
a
a
a
g
a

 g
a
g
o
o
o
o
o
o
o

 o
o
o
o
o
o
o
o
o
o

 o
o
o
o
o

 o

 ̂

冗
 ̂

 c
 k

^

 ̂
i
i
^
i
i
s
i
l
s
 E

^
 ̂

 i
i
g
s
•
•
認
•
溫
•
愿
i
i
摘
怨
•
•
溫
偏
|
讓

S
 _
她
1
5

s
a
a
a
d
a
a
a
a
a
 a
a
a
a
o
o
o
o
o
o

 o
o
o
o
o
o
o
o
o
o

 o
o
o
o
o

 o

 ̂

 §

贴

I
r
溫
溫
溫
溫
§
1
 二
溫
溫
溫
滥
I
溫
滥
溫
溫
挪
i
溫
二

 1
3

3
 .1

 S
肌
s
§
§
§
a
a
a
a

 a
a
a
a
a
a
a
a
g
o

 o
o
o
o
o
o
o
o
o
o

 o
o
o
o
o

 o

肌
 U

1
7

 i
i
s
s
i
l
i
l
i
l
l
l
l
l
l
m
l
l
f

讓
『
叩

 I

p

 ̂

雜
鑑
I
I
憩
§
i
溫
溫
i
溫
溫
i
滥
溫
滥
二
滥

I
】
I
�

 u

a
a
a
a
a
a
a
a
a
a
 a
a
o
o
o
o
o
o
o
o

 o
o
o
o
o
o
o
o
o
o

 o
o
o
o
o

 o

 g

 .2

I
 M
n

 I

 —
—

 y

 c

 穴
-
g

I
 s
^
^
g
g
™

腦

础

兀 eg

™
I
i
i
^
l
l
a
l
l
a
s
a

零
I
?

^

 ̂
i
i
s
i
i
f
t
l
l
l
l
^

講
-
卯

p
 ̂

 l
i
i
i
i
l
i
s
i
i
l
i
i
i
s
l
i
l
i

I

 I

 M

 d

^
 B

 f
o
 ̂

a

 ̂

 ̂
 n
^

 ̂

处
t
監
a
a
監
i
b
k
技
m
溫
I
忠
一
您
g
監
誌
忍
^
一
游
恐
互
h
i
 I

二

l
i
n
i
l
i
i
i
l
l
l
i

溫

 i
l
i
i
g
g
二
讓

 1一
•
一

a
a
a
a
a
a
a
a
g
a
 g
o
o
o
o
o
o
o
o
o

 o
o
o
o
o
o
o
o
o
o

 o
o
o
o
o
 o

)
3
'
f

1
1

；

 i
i
a
l
i
l
s
s
l
 I
二

^

 ⑶
 ̂̂
^
^
^

 ̂

M

I

S

!
 ̂

 j
g
i
溫
滥
溫
•
溫
溫
溫
溫
滥
g
g
s
g
g
g
g
肢
⑶
g
g
s
g
g

 ̂

 .
二
^

i
r

i

i

溫

溫

盟

溫

溫

§

§

溫

溫

观

§
 二
*

•
i

§
§
5
肌
a
a
a
a
a
a
a
a
g
a
 q
a
a
g
o
o
o
o
o
o

 o
o
o
o
o
 o

 ̂

 n

 ̂

§

；

 H
l
l
i
l
f
i
B
 =
，
版
.

^
E
B
H
f
f
i
B
B
M

 -
二
1

l
l
i
m
l
i
i
i
l
i
i
i
l
g
 ̂.
S
=
J

 ⑷

f
e

 R

側

 g
l
g
l
l
l
^
^
^

 e
s
e
e
e
s
s
e
e
^

 f
o

 ̂

 ̂

^
 ̂

 I
f
f
l
f
f
B
l
f
i

M

l
^
i
i
i
i
i
l
i
i
i
l
i
i
i
i
 二
=

•
•

 I
I
m
l
l
l
j

X
 s

 a

胁
 I

 ss
s
^
s
s
l
^
m
^
i
s
 s

 1

二

^
 l
l
i
l
溫
溫
滥
臨
滥
溫
滥

 •

 s
 g
 I

H
 —

 T

 d
 A
 d

,r

-

.
 ,
.
.
.

•

•

•

•

 ；•

1

•

.

-

：

•

•

•

.

.

 -
一

二
；
，
 ”〕

：

：

 -

 A

.
1
:

 ̂

,
L
.
.

..

 I
:

 i
h
l
»
(

 ”：-,、.…

 .，.：

 ̂
^

•
,
:
-
r
I
-
l
l
l
t
l
v
l
L
r
l
l
r
l
l
^

 ̂

 f
f

 ：；

,

.

.

i

i

T

A

l

CUHK L i b r a r i e s

圓__11
••3AD3AE3

