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ABSTRACT 

Dynamic Constraint Satisfaction Problem (DCSP) is a class of problems that 
extends the traditional Constraint Satisfaction Problem (CSP) framework for 
dynamic environments, in which the sets of constraints are modified. In many 
real-life applications such as dynamic scheduling, after the problem is modified 
by external factors, it is desirable to find a new solution which is the most 
similar to the previous one. In the literature this is called a stability problem. 
As the definition of similarity between two solutions are different from problems 
to problems, a metric called distance is used as an objective measurement. 

We propose to model the stability problem as a fuzzy CSP (FCSP) by impos-
ing supplementary fuzzy constraints into the DCSP, with adequate assignment 
of degrees of satisfaction according to the distance requirement of the problem: 
higher degrees of satisfaction are assigned to tuples that are associated with 
more stable solutions, and lower degrees of satisfaction to tuples in less stable 
solutions. User's preference can then be easily represented by the supplemen-
tary fuzzy constraints, which serves to guide the search to regions of higher 
stability. 

Fuzzy GENET, a local search solver, is used as our basis for building a 
specialized solver to not only make use of the degrees of satisfaction of the sup-
plementary fuzzy constraints to achieve better stability, but also successively 
improve the best solution at hand over time. Experiments on a wide range of 
randomly generated problems show that solutions obtained by using our ap-
proach are very close to the optimal ones. As fuzzy GENET is not a complete 
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search algorithm, optimal solutions are not guaranteed. However, it is substan-
tially faster than branch-and-bound complete search, which is advantageous in 
dynamic environments as quick response is often required. 
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利用模糊約束方法使動態約束滿足問題之解趨向穩定 

黃彦邦 

摘 要 

動態約束滿足問題（D C S P )是爲了使到傳統的約束滿足問題能應用於動態環 

境而延伸出來的一個範®壽。它的特點是問題中的約束關係有機會被變更。當 

問題受到外在因素所影響，以致它本身要作出改變時，我們都希望新的答案 

會跟舊的那個最接近。在很多現實生活的問題就是如此，例如動態調度。在 

文獻中，含有這個要求的問題被稱爲穩定問題（stability problems)�然而，每 

個問題對於“接近”的定義都不一樣，因此我們採用距離這個單位來做客觀 

量度的準則。 

我們提議把一些模糊約束條件附加到動態約束滿足問題中，將穩定問題化 

成模糊約束滿足問題來解決。這些模糊約束條件中的元組之隸屬度必需要與 

距離要求吻合：較穩定的解中出現的元組得到較高的隸爲度；相反，出現在 

較不穩定的解中的元組將會得到較低的隸屬度。根據這個模式，用者對穩定 

解的偏好就能輕易地利用這些附加模糊約束條件表達出來。而且，它們更能 

繁助引領搜索過程到含有高穩定解的區域。 

基於模糊 G E N E T這個局部搜索求解器，我們設計了 一個可連續不斷地搜 

索出比已知的解更佳的求解器。在一系列隨機產生的問題之實驗中，證實用 

我們的方法所取得的解與最優解很接近。因爲模糊 G E N E T求解器並非採用 

完全搜索，因此它不能保證一定能夠找到最優解，但是在運算速度上，它更 

比branch-and-bound完全搜索快很多。這個優點在動態環境下很重要，因爲 

這類問題一般都需要快速的回應。 
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Chapter 1 
Introduction 
Constraint satisfaction provides a convenient and powerful framework to formu-
late many kinds of artificial intelligence tasks, which are often NP-hard prob-
lems. They include resource allocation, scheduling and time-tabling problems. 
In the traditional constraint satisfaction framework, dynamic problems, whose 
problem formulations change when they are being solved, are not considered. 
There are two aspects of such dynamic problems that are most interesting to 
us. One is to find a solution of the new problem efficiently, and the other is 
to find a solution of the new problem that is most similar to the old one. The 
latter belongs to the class stability problems, which is what we focus in this 
thesis. Our definition of stability follows the one proposed by Gerard Verfaillie 
and Thomas Schiex in [40], namely the similarity of successive solutions. 

To solve the stability problem, we model it as d^ fuzzy CSP [29, 21’ 33] (FCSP) 
by imposing additional fuzzy constraints into the altered CSP, and solve this 
FCSP instead of the altered one. The purpose of these fuzzy constraints is to 
represent the user's preference on what tuples the stable solutions are consti-
tuted of. Higher degrees of satisfaction are assigned to the fuzzy constraints' 
tuples that exist in more stable solutions, and lower degrees of satisfaction are 
assigned to the tuples that exist in less stable solutions. If the fuzzy constraints 
are properly defined according to the stability requirement of the problem, these 
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Chapter 1. Introduction 

supplementary fuzzy constraints can guide the search to find more stable solu-
tions. 

We adapt fuzzy GENET [49, 50] to our need for solving the FCSP produced 
by using our modelling scheme. Fuzzy GENET is a local search algorithm that is 
fast in finding solutions. As fuzzy GENET is not a complete search algorithm, 
optimal solutions are not guaranteed. However, in some situations it worths 
sacrificing stability for efficiency. We also propose enhanced versions of fuzzy 
GENET that are specifically good for achieving higher solution stability. 

1.1 Constraint Satisfaction Problems 
A Constraint satisfaction Problem (CSP) is defined as a problem of finding an 
assignment of values to a set of variables such that they satisfy a set of relations 
simultaneously. We call these relations constraints because the values that the 
variables can take are constrained by them. 

Here, we define a constraint satisfaction problem as: 

Definit ion 1.1.1 (Constraint Satisfaction Problem) A constraint satis-
faction problem (CSP) can be expressed as a triple [Z, D,C), where 

• Z is a finite set of variables {zi, z-2,..., Zn). 

• D is a set of finite domains, each element Di of which is the set of possible 
values for Zi. 

• C is a finite (possibly empty) set of constraints, each on an arbitrary 
subset of Z. 

Constraints in C restrict the values that the variables can take simultane-
ously. 

A variable assignment is of the form {zi^.Vi^) • • • meaning that 
Vik E Afc is assigned to Zi ,̂ where {zi^,. C Z. When the context is 

2 



Chapter 1. Introduction 

clear, we abuse notation by using the value tuple (vi^, . . . , Vi^) to denote also 
the same variable assignment. To solve a CSP, we need to find an assignment 
of values for all variables in Z from their corresponding domains such that all 
the constraints in C are satisfied simultaneously. Such an assignment is called 
a solution of the CSP. 

CSP algorithms can be divided broadly into two types. One is systematic 
tree search [20], and the other is stochastic local search. The former builds a 
complete solution by choosing a value for a variable one at a time. This kind of 
method always maintains a consistent assignment for a subset of the variables. 
Consistency algorithms [20] are often applied to speed up the search. These 
algorithms are used to prune away domain values and relation tuples which will 
lead to inconsistency, so as to reduce the search space. 

On the other hand, local search methods generate a possibly inconsistent 
assignment first, and then "repair" the variables by modifying their values until 
a complete solution is found. Candidates of this kind include the basic hill-
climbing method [37], min-conflict heuristic [23], GSAT [34], and GENET [8 . 
Local search strategies usually have the disadvantage of getting stuck in "local 
minima," that means that the algorithm cannot find a move which would give 
rise to a better state, but at the same time, the current state is not a solution. 
As a result, various strategies, such as the breakout method [26], have been 
proposed in order to escape from or to avoid being trapped in local minima. 

1.2 Solution Stability in Dynamic Constraint 
Satisfaction Problems 

In this section we first define what a dynamic constraint satisfaction problem is. 
Based on it, we define the stability problem, and describe the axioms that all 
valid distance functions, which are metrics for measuring stability, must obey. 

3 



Chapter 1. Introduction 

Definition 1.2.1 (Dynamic Constraint Satisfaction Problem) A dy-
namic constraint satisfaction problem (DCSP) is a sequence of CSPs 
(Po, Pi, • • •, Pi, • • •)• Each CSP Pi, z > 0, is resulted from a change in the 
preceding one Pj_i. A change can either be a restriction (addition of con-
straints) or a relaxation (retraction of constraints) [11]. In this thesis, we only 
consider restrictions because solutions remain valid after a relaxation. 

Definit ion 1.2.2 (Stability Problem) Given a tuple Pj, P^+i, d) where 
s^ is a solution to CSP Pi, and P^+i = Pi U C for some set of constraints 
C', a stability problem is to find a solution s^+i for Pj+i so that d(s\ s终丄)is 
minimized for the distance metric d. 

Intuitively, stability implies similarity between s^ and s计i. Quantitatively, 
distance is used as the metric for measurement. The shorter the distance, 
the more stable the new solution is, and vice versa. It is calculated by a 
distance function d(vi, V2), which takes two vectors of variable assignments 
Vi = (vi^, • • • and V2 = ,. •.，仍„) as input, and outputs the distance, 
which is a real number greater than or equal to zero. In other words, d defines 
a mapping (D,, x . •. x x {D,, x . . . x {0} U M+, where M+ is the 
set of positive real numbers. Moreover, given any variable assignment V3, any 
distance function d must meet the following metric axioms: 

d{vi,V2) = 0 i f f vi = V2 (1.1) 

d{vi,V2) = d{v2,vi) (1.2) 
d{vi,V2) < d{vi,v3) + d(v3,v2) (1.3) 

Note that the above axioms automatically imply that d(vi , V2) > 0. 
Since the meaning of stability varies from problems to problems, each prob-

lem has its own way to compute the distance. Users are obliged to define 
distance functions for their problems. Although there does not exist a distance 
function that fits all stability problems, examples are shown in Section 4.1 to 
illustrate how distance functions can be defined in different scenarios. 
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1.3 Motivation of the Research 
The need to modify a CSP during the problem solving stage often arises in 
real-life applications, whether it is due to input of new information or unan-
ticipated incidents, such as machine break-down and under- or over-estimation 
of resources usage. Since changes usually imply re-allocation of resources and 
informing the parties involved, it is ideal to find a new solution for the modified 
CSP such that it is as similar to the previous one as possible, so that the number 
of people and resources affected can be kept to minimal. 

To quote an example from [1], consider that there is a system that makes 
use of constraint satisfaction to schedule gates to arriving and departing flights 
in an airport. If the schedule is interrupted by unforeseen events such as bad 
weather, the gates assignment must be rearranged immediately and with as 
few modifications as possible in order to minimize the impact. Examples of 
other real-world problems include train rescheduling [7], operation scheduling 
for remote sensing satellites [39] and aircraft utilization problems [31 . 

1.4 Overview of the Thesis 
The structure of the thesis is as follows. Chapter 2 reviews the major literature 
on the DCSP and algorithms for doing optimization on CSPs. DCSP algorithms 
for solution stability are distinguished from those for efficiency to provide a 
clearer comparison. As the stability problem is intrinsically an optimization 
problem, constrained optimization algorithms are also presented. 

Chapter 3 gives the background knowledge for the thesis: the definition of 
the fuzzy CSP and how it can be solved using fuzzy GENET. A deficiency in 
fuzzy GENET, which we discovered while we were experimenting with it, is 
discussed. Due to this problem, a rectification is hence proposed. 

Chapter 4 begins our contribution to the stability problem. We first illustrate 
how to model a stability problem as a fuzzy CSP and the rationale behind the 
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modelling, and then extend fuzzy G E N E T to fuzzy G E N E T ( D C S P ) SO that it 
is able to find solutions that are more stable progressively. Experiments are 
performed on a wide range of randomly-generated binary CSPs, and the results 
are compared with optimal solutions. 

Chapter 5 presents an enhancement to the scheme of the last chapter. 
The modelling process for stability problems with different distance require-
ments is unified by an n-ary fuzzy constraint called the distance bound. Fuzzy 
G E N E T ( D C S P ) is also enhanced further to fuzzy G E N E T ( D C S P 2 ) to deal with 
the distance bound and for finding stable solutions more effectively. Fuzzy 
G E N E T ( D C S P 2 ) is compared empirically with optimal solutions on small prob-
lems, and with fuzzy G E N E T ( D C S P ) on larger problems. Finally, we propose 
an idea to potentially increase the performance of fuzzy GENET(DCSP2) based 
on the analysis of the results. 

Chapter 6 concludes the thesis by summarizing our contributions and gives 
possible directions for future research. 
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Chapter 2 
Related Work 
The notion of dynamic constraint satisfaction problem can be traced back to 
Dechters [11], in which a CSP is represented as a constraint network, and a dy-
namic constraint network is defined as a sequence of static constraint networks 
each resulting from a change in the preceding one. While emphasizing on how 
to achieve belief maintenance of the constraint network in dynamically chang-
ing environments, Dechters have not presented a complete method to solve a 
dynamic CSP. In Sections 2.1 and 2.2, we survey existing DCSP algorithms, 
which are roughly divided into two main classes. The first class includes com-
plete search algorithms that aim for efficiency, while the second class targets 
for solution stability. In Section 2.3, we survey algorithms for optimizing CSPs, 
since the stability problem can be viewed as an optimization problem. Lastly, 
we present an interesting real-life application called CASPER, which is created 
by the Jet Propulsion Laboratory. 

2.1 Complete Search Algorithms 
In this section, we focus on DCSP complete search algorithms, which are all 
based on backtrack tree-searching. As they become slower when the size of 
the search space grows, the major goal of these algorithms is to improve the 
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execution speed. 

2.1.1 DnAC-4 
Since the problem of proving the existence of a solution in a CSP is NP-complete, 
arc-consistency algorithms [25, 20, 24] are developed to prune away values that 
are irrelevant in any of the problem's solutions from variable domains. Arc-
consistency methods are popular because they are effective in reducing the 
problem's search space. Bessiere proposes DnAC-4 [2, 3], the first AC method 
to tackle the DCSP, which is based on AC-4 [24 . 

AC procedures, which only reduce the size of variable domains, are intrinsi-
cally incremental with respect to problem restrictions, because addition of con-
straints and variables will only lead to more inconsistent values being deleted. 
Therefore, an arc-consistent state can be achieved again by executing AC from 
the last consistent state. However, when dealing with problem relaxation, some 
of the removed values have to be restored, that is to be put back to the con-
straint network. It is because after some constraints or variables have been 
taken away from the problem, some domain values are no longer inconsistent. 
It is fine to restore more values than necessary, then add the extra constraints 
and variables and execute the AC procedure again. In other words, we can put 
back all the values that are originally present at the start of the problem. This 
is identical to solving the problem from scratch again. Although this approach 
works, obviously it is inefficient. 

� The idea of Bessiere's DnAC-4 is to keep track of the justification of the 
values that are deleted during restrictions. A justification is the first constraint 
that makes a value without support and hence being deleted from its domain. 
With the help of the recorded justifications, domain values can be restored 
during relaxation. 

However, DnAC-4 has an expensive worst-case space complexity and a bad 
average time complexity comparing with the subsequent methods. 
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2.1.2 AC|DC 

Aiming at reducing the space complexity, Neveu et al. abandon the mecha-
nism of reasons maintenance, and develop AC|DC [27]. The idea of AC|DC can 
be summarized in the following three steps, which are taken after a problem 
relaxation has occurred: 

1. Propose : For the variables that connect to the deleted constraints, pro-
pose a set S of values that should be restored due to the removal of this 
constraint. 

2. Propagate : Assume that all elements of the set S are restored, propagate 
the values throughout the whole constraint network to identify values in 
other variables that should also be restored due to the re-addition of values 
in S. 

3. Filter : Add the restorable values identified in the last two steps, and 
then use any AC procedure to filter out any inconsistent values that have 
been added, since the set of values previously restored is over-estimated. 

Compare with DnAC-4, AC|DC always perform poorer, although its execu-
tion time becomes faster and faster when the number of restored values in-
creases. This is due to the inaccurate estimation of the restorable values which 
have to be removed again in the Filter step. At the sacrifice of efficiency, the 
space complexity of AC|DC can be reduced, because AC|DC does not need any 

� data structures to store extra information like justifications. 

2.1.3 DnAC-6 
DnAC-6 [10] is an algorithm that strikes a balance between DnAC-4 and AC|DC 
in space complexity, and is less expensive than DnAC-4 in time complexity. 
DnAC-6 works like DnAC-4, in which it also keeps track of justifications of 
deleted values. However, it performs better than DnAC-4 because it benefits 
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by the feature of AC-6 [4], which considers a total ordering on values. If a value 
i in variable x is deleted, and is currently supporting value j of variable y, to 
see if j is still being supported by any other values, it is sufficient to check the 
values that are larger than i. In this case, i is called the current support of 
j. Due to this reason, the size of the set of lists to store justifications can be 
reduced, since it is no longer needed to record which values in variable x are 
supporting value j in variable y. It is enough to record the current support of 
j. This results in a smaller space complexity. 

2.2 Algorithms for Stability 
Research on stability problems starts from [1], and techniques have become more 
mature since then. More diversified techniques, such AC algorithms, stochastic 
local search and linear programming, have been employed to tackle the problem. 

2.2.1 Bellicha 
The approach of Bellicha et al [1] is to transform the constraint graph of a CSP 
into a directed tree (if such transformation is possible) and take it as the input. 
And then it counts the minimal number of modifications needed for each pair 
(X, a), where a is the value that will be assigned to X. This is done by starting 
the procedure at the leaves of the tree, and then propagate their minimal num-
bers of modifications to the parent nodes. This method is only applicable to 
CSPs that can turn their constraint graphs into directed trees. If the constraint 
graph is cyclic, then such transformation is impossible. In this case, the graph 
is decomposed by the cycle cutset method, and then the algorithm is applied in 
each subgraph accordingly. However, the time complexity of the whole process 
for cyclic graphs is 0 ( ?nc f+2) , ^here m is the number of constraints, d the size of 
the largest domain, and c the size of the cutset. The drawback of this method is 
that it cannot be easily applied to any CSPs. There is also no empirical results 
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to verify its performance. 

2.2.2 Dynamic Dynamic Backtracking^ 
Verfaillie and Schiex propose an extension of dynamic backtracking to solve 
DCSPs, and named the algorithm dynamic dynamic backtracking (ddbt) [38, 39 . 
Despite the name implies, dynamic backtracking [14] does not solve dynamic 
CSPs. The name of dynamic backtracking comes from the fact that the search 
can backtrack to a variable without unassigning other variables in between. 
However, dynamic backtracking has some good features that can be exploited 
on DCSPs. Dynamic backtracking records some sets that are called eliminating 
explanations. Eliminating explanations are defined as a pair (v, 5), meaning 
that the variable that value v belongs to cannot take the value v because of the 
values already assigned to variables in set S. This mechanism helps dynamic 
backtracking not to erase the work done in the past. 

Verfaillie and Schiex extended this notion and replaced the eliminating expla-
nation with variable eliminating explanation and constraint eliminating expla-
nation. Variable eliminating explanation is the same as eliminating explanation 
in the context of dynamic backtracking. Constraint eliminating explanation is 
similar to the variable counterpart, but it refers to the constraints that prohibit 
the assignment of a certain value rather than variables that have been previously 
assigned. The dynamic dynamic backtracking algorithm can be summarized in 
the following steps: 

1. Remove assignments : Unassign variables that are suppressed by the 
newly added constraints, and create eliminating explanations at the same 
time. 

2. Remove variable el iminating explanations : Remove the variable 
eliminating explanations that are related to the unassigned variables. 

iThis is not a typing mistake, there are two Dynamics in the name. 
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3. Remove constraint eliminating explanations : Remove the con-
straint eliminating explanations that are related to the retracted con-
straints. 

4. Restart : At this point a consistent starting point is created and the 
search can proceed again. 

Dynamic dynamic backtracking has the notable feature that the previous 
solution and eliminating explanations are systematically reused in the new 
search, which may provide good results in terms of stability as well as effi-
ciency. Randomly-generated CSPs of 16 variables, domain size of 13，constraint 
tightness ranging from 0.1 to 0.9 and constraint density from 0.2 to 0.9 are 
tested [39]. Experimental results confirm that by reusing the previous solu-
tions, the distance between two successive solutions are about half of those 
attained by using conflict-directed backjumping and dynamic backtracking to 
solve the new CSP from scratch, but the solution quality is comparable to that 
of min-conflicts [22 . 

2.2.3 Wallace and Freuder 
Wallace and Freuder have discussed stable solutions for DCSPs in [47], but their 
definition of stability is different from ours. They define a stable solution as one 
that is most likely to remain valid upon future CSP modifications, while our 
definition is to find a solution that is the most similar to the one in the previous 

� CSP. Nevertheless, it is worth mentioning that their search scheme is based on 
min-conflicts hill-climbing [22], which is a kind of local search methods. In order 
to improve solution qualities, apart from the straightforward solution reuse, 
penalties are imposed on 'bad' values to direct the search away from them. 
Their initial experiments show that their strategies are generally effective in 
finding stable solutions, and in some cases can also balance the tradeoff between 
solution quality and efficiency quite well. 
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2.2.4 Unimodular Probing 
Sakkout et al. develop an algorithm called unimodular probing [31, 30，32] to 
reconfigure schedules in a changing environment with minimal perturbation to 
the existing schedules. The kind of scheduling problems they target for is the 
kernel resource feasibility problem (KRFP), which can be modelled as a CSP. 
The objective of KRFP is to find the start and end times of activities, such 
that temporal constraints (e.g. start time of activity A < end time of activity 
B + 10 units of time) and resource constraints (quantities of available resource 
cannot be over-allocated) are satisfied. The famous job shop scheduling problem 
is a KRFP instance. In a changing environment, constraints can be added or 
deleted, it is optimal if a solution of minimal perturbation can be found, where 
perturbation is measured by a user defined function to calculate the difference 
between two complete assignments. 

Unimodular probing is an algorithm that combines linear programming (LP) 
and constraint programming (CP). It works by using an LP solver on a subset of 
the constraints that possess the total unimodular (TU) property, and returns a 
solution, which is called a unimodular probe. If this probe violates any resource 
constraints, a violated constraint is selected among them and a new temporal 
constraint, which satisfies the TU property, is imposed. Since there may be 
several choices for a violated constraint, backtracking may be done at this point 
later. Addition of this new constraint prohibits some values to be assigned to 
the variables in this violated constraint. Local consistency methods are then 
applied to produce more TU constraints. The LP solver is then activated again. 
The procedure is repeated until the LP solver finds a probe that satisfies all the 
constraints; this probe is hence a solution. After a solution is found, branch 
and bound search can be conducted to find the optimal solution. 

The algorithm has been tested on a large scale commercial application and 
the authors report it "significantly outperform rival algorithms" in [32], but 
due to the sensitivity of the data, they cannot publish the problems. Neverthe-
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less, it performs better than CPLEX, a commercial mixed integer programming 
package, in their experiments on some benchmark problems. 

2.2.5 Train Rescheduling 
Due to unexpected events, a train timetable may become infeasible and has 
to be modified. Chiu et al. attempt to automate the process of rescheduling 
an infeasible train timetable [7] to generate a feasible one. They formulate 
the train rescheduling problem as a CSP, and derive an algorithm to perform 
the rescheduling based on a propagation-based constraint solver. Although 
efficiency of the algorithm is their main concern, as rescheduling must be ac-
complished in a timely manner, two definitions of optimality are also defined. 
These two optimality criteria are (1) minimum-changes optimal, which aims at 
a timetable with the least number of modified station visits, and (2) minimum-
delay optimal, which wants to minimize the longest delay among all train visits. 
Variable and value ordering heuristics are proposed to try to fulfill the optimal-
ity criteria. A prototype system is done and real-life data are tested to confirm 
the feasibility of their proposed algorithms and heuristics. 

2.3 Constrained Optimization Algorithms 
The stability problem is a form of an optimization problem since the aim of 
stability problems is to minimize the distance between the new solution and the 

� old one. In the following, we cover two stochastic local search algorithms for 
solving constrained optimization problems. 

2.3.1 Guided Local Search 
Guided local search (GLS) [41, 44，42] is a general optimization technique for 
combinatorial optimization problems. Like its predecessor, GENET [8], and 
as its name implies, it looks for solutions by using local search. Optimization 
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is done by realizing features that are specific to the problem, and associates 
costs to each feature. For instance, in the travelling salesman problem (TSP), 
a feature could be "whether the candidate tour travels immediately from city 
A to city B," and the cost is the distance between cities A and B. 

GLS has been tested on some well-known benchmark problems, such as 
TSP [44] and radio link frequency assignment problem (RLFAP) [43]. Experi-
mental results show that it can find high quality and optimal solutions for TSP, 
and it has been able to discover better solutions than the best known ones for 
some RLFAP instances in 1998. 

2.3.2 Anytime CSA with Iterative Deepening 
Constrained Simulated Annealing (CSA) [46] is a global optimization algorithm 
that achieves asymptotic convergence to constrained global minima (CGM) with 
probability one for solving discrete constrained nonlinear programming prob-
lems (NLPs). In short, solving an NLP is to find the values for a vector of 
variables, such that some functions (constraints) are satisfied and the objective 
function is minimized. Based on CSA, Wah et al. develop CSAAT-ID [45], the 
anytime CSA with iterative deepening. CSAAT-ID consists of two main com-
ponents. First, iterative deepening is performed by executing CSA with a set 
of geometrically increasing cooling schedules, each involving multiple runs of 
CSA. Second, the anytime property is realized by setting a new objective target 
f when a solution of quality f is found, so that better solutions can be found 
when more time is used to repeat the steps in the first component. 

Wah et al. not only show that CSAAT-ID is optimal, in the sense that the 
average time spent is up to an order of magnitude with respect to that of the 
original CSA with an optimal cooling schedule, but also show that CSAAT-ID 

performs better than CSA as an anytime algorithm: CSAAT-ID finds better 
solutions than CSA within a given time frame, and CSAAT-ID spends one to 
two order less CPU time to find solutions of the same quality than CSA does. 
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2.4 A Real-life Application 
In this section, we introduce a real-life application called CASPER, which aims 
at shortening the time for automatically replanning autonomous spacecrafts 
around updated information coming from execution monitoring. 

As onboard computational resources in an autonomous spacecraft are typi-
cally limited, purposeful activities must be performed to ensure that long-term 
science and engineering goals are achieved. This requires planning in advance 
to avoid a series of shortsighted decisions. However, spacecraft plans may need 
to be modified due to fortuitous events such as early completion of observations 
and setbacks such as failure to acquire a guidestar for a science observation. 
It is advantageous if the planning process is more responsive to changes in the 
operations context since it would increase the overall time for which the space-
craft has a consistent plan, so that the spacecraft can keep busy working on the 
requested goals as long as a consistent plan exists. 

To achieve a higher level of responsiveness in a dynamic planning situation, 
Chien et al. in the Jet Propulsion Laboratory utilize a continuous planning ap-
proach and implement a system called CASPER (Continuous Activity Schedul-
ing Planning Execution and Replanning) [6, 5, 12]. Rather than considering 
planning a batch process in which a planner is presented with goals and an ini-
tial state, the planner has a current goal set, a plan, a current state, and a model 
of the expected future state. The planner is responsible for maintaining a con-
sistent plan with the most current information. CASPER is built by using the 
A S P E N (Automated Scheduling and Planning ENvironment) framework [28]， 

which employs iterative repair techniques [23] to enable incremental changes to 
the goals or the plan and then iteratively resolve any conflicts in the plan. 
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Background 
In this chapter, we introduce the definition of fuzzy constraint satisfaction prob-
lems (FCSPs), and review the local search algorithm fuzzy GENET for solving 
FCSPs. Fuzzy GENET forms the basis of our algorithm for solving stability 
problems. Moreover, during our experimentation, we discovered a deficiency 
in the original fuzzy GENET, which makes it unable to solve some FCSPs. A 
rectification to this problem is thus proposed. 

3.1 Fuzzy Constraint Satisfaction Problems 
The classical constraint satisfaction framework handles constraints as crisp en-
tities, which means that they are either satisfied or unsatisfied. It is thus im-
possible to model situations involving partially (un)satisfied constraints. Fuzzy 
constraint satisfaction problem [29, 33，21] extends classical CSP by modelling 
constraints as fuzzy relations in order to handle partial satisfaction of con-
straints. 

Formally, a fuzzy constraint satisfaction problem is defined as follows: 

Definition 3.1.1 (Fuzzy Constraint Satisfaction Problem) A fuzzy con-
straint satisfaction problem is a tuple (Z, D, C^), where 
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• Z is a finite set of variables {2:1，2:2,…，2：„}. 

• D IS Si finite set of domains, each element Di of which is the set of possible 
values for Zi. 

• C , is a finite (possibly empty) set of fuzzy constraints { c f , . . . ,c4}. Each 
fuzzy constraint c{ G is a /c-ary fuzzy relation R{ among variables 
[zi^^..., Zj^}, which is a subset of Z. 

Definit ion 3.1.2 (Membership Function) The membership function iIR( of 
R{ defines the mapping: 

f̂ Rf : D � X … X D � 4 [0,1] 

for assigning a value called the degree of satisfaction <^�2…^n�…�zi…t�G [0,1] to 
each tuple . •., ？；於)G X . • . X D^.^ . 

The degree of satisfaction indicates the extent that the tuple {vi , . . . jVk) 
satisfies c{. The larger the degree of satisfaction, the more (？；!,.. .,Vk) satisfies 
c/. A value of 1 means (jJi,...,Vk) fully satisfies c{ and a value of 0 means it 
fully violates c{. An intermediate value denotes a partial satisfaction. 

In order to measure the overall satisfaction of an FCSP P and to compare 
how well the constraints are satisfied in aggregation when different values are 
assigned to the variables, a global satisfaction degree ^{zuvi)-{zn,vn) ^ [0,1] is 
used. This global satisfaction degree is calculated by applying an aggregate 
operator f � t o the degrees of satisfaction of the tuples in P ' s constraints, one 
tuple for each constraint, as follows: 

^{zuVl)-{Zn,Vn) = / a ( " 对 • • . • • ’ /i 丑么…叫，. . •， J ) (3.1) 

where rij is the arity of R j , Vi. is the assigned value to variable 而尸 and m is 
the number of fuzzy constraints in P . 

Ruttkay [29] introduced 3 plausible aggregate operators: 
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1. minimum: min£ i 

2. product: 叫，••.,叫„》，and 

3. average:击 E 二 / (叫 , … ，巧 

The choice for an aggregate operator is problem-dependent. 
Every FCSP is also associated with a user-specified threshold a � G [0，1 

which defines the lowest acceptable global satisfaction degree of the problem. 
Hence a solution of an FCSP is a variable assignment (vi,v2, • • • ,Vn) which 
fulfills the requirement dL(̂ zuvi)-{zn,vn) > Q̂o-

3.2 Fuzzy GENET 
Fuzzy GENET [49, 50] is a stochastic local search algorithm for solving binary 
FCSPs, that is one with only unary and binary constraints. It is achieved by 
incorporating the concept of fuzziness into the CSP solver GENET [8]. Fuzzy 
GENET consists of two parts: one is the network architecture and the other 
is the convergence procedure. The network architecture concerns the repre-
sentation of an FCSP, while the convergence procedure includes an iterative 
improvement algorithm that is responsible for finding solutions. 

3.2.1 Network Architecture 
A fuzzy GENET network consists of 3 main components: clusters, label nodes 
and connections. Given an FCSP P , each variable in P is represented in the 
network as a cluster which consists of one or more label nodes that correspond 
to the values in the domain of this variable. A label node for value j in the 
domain of variable i is denoted as {i,j). Each label node has two states: on 
and o f f . A label node in the on state is described as an on-node; likewise, one in 
the off state is an off-node. An on-node indicates that its corresponding value 
is assigned to the variable associated with the cluster that the on-node belongs 
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to. Obviously there can only be exactly one and only one node that is being 
turned on in a cluster at any time and all the other nodes must be off，because 
you cannot assign more than one value to a variable at the same time. 

For each binary fuzzy constraint between variables i and k, a weighted con-
nection is placed between each pair of label nodes of the two clusters of variables 
i and k. In the case of a unary fuzzy constraint, the connections are linking to 
the label nodes themselves. There are two values associated with each weighted 
connection. One is the degree of satisfaction, which has been described in Def-
inition 3.1.2, and the other is the weight. The degree of satisfaction is fixed at 
the time when the network is built and will never change, but the weight may 
be decremented during the learning phase in the convergence procedure. For 
the connection between label nodes (z, j ) and {k, /), its degree of satisfaction 
is (̂ {i,j){k,i) and its weight, denoted as W^�i’j��fc’z〉，is initially set to 讯 _ 1-
For clarity, connections with H^�i’力�fc’z�= 0 (i.e. Q;�i’j��fc乃=1) are usually not 
shown in the network graph explicitly because no connection implies totally no 
conflicts between the two label nodes. 

The output 0 � i ’ j � o f the node (z, j ) is 1 if {i,j) is on and 0 otherwise. The 
node {i,j) also has an input /�i，)〉，which is calculated as the weighted sum of 
the outputs of all label nodes connecting to (i, j ) : 

where I)) is the set of all label nodes that are connected to (z, j ) . 
We give an example to illustrate all the concepts presented so far. The 

problem we use is a slightly modified version of the Robot Dressing Problem [13, 
49]. In this problem, a robot tries to select matching clothes while getting 
dressed in the morning. The robot has only a minimal wardrobe: sneakers 
or Cordovans for footwear, a white and a dark green shirt, and three pairs of 
trousers: blue slacks, grey slacks, and denims. The robot has been told that: the 
sneakers only go with the denims; the Cordovans only go with the gray slacks 
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{Cordovans, sneakers} 

{(Cordovans, white)} ^ ^ {(Cordovans, gray), 
J / ^ (sneakers, denims)} 

( S H I R T J (^TROUSERS^ 
^ {(green, dress gray), (white, denims)?^ 

{green, white} (white, dress blue)} {denims’ dress blue, 
dress gray} 

Figure 3.1: Constraint graph of the Robot Dressing Problem 

and the white shirt; the white shirt goes with either denims or blue trousers; 
and the green shirt only goes with the gray trousers. The constraint graph for 
this CSP is depicted in Figure 3.1. Since the problem is over-constrained, it 
has no solution. The problem is then relaxed and modelled as an FCSP with 
the degrees of satisfaction (and the corresponding initial weights) specified in 
Table 3.1. The first column compound label is a shorthand notation (i,j){k, I) 
to denote a tuple ( j , I) of the constraint with variables i and k. Combining all 
the information, we get a fuzzy GENET network in Figure 3.2. 

3.2.2 Convergence Procedure 
The convergence procedure of fuzzy GENET is shown in Algorithm 3.1. First, 
a label node in each cluster is selected to be turned on, and the weights of all 
the tuples are initialized according to their predefined degrees of satisfaction as 
described in Section 3.2.1. The algorithm will then enter the convergence cycle, 
which will only be exited when the global satisfaction degree of the FCSP is 
larger than or equal to the threshold Q;O, in which case a solution is found. In 
each cycle, states of all label nodes are updated asynchronously in parallel for 
each cluster. In a sequential implementation of fuzzy GENET, asynchronous 
update is done by updating each cluster in a predefined order. The update 
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compound label t at Wt 
{Shirt, green) (TVousers, denims) 0.9 —0.1 

(Shirt, green) (Trousers, blue) 0.7 - 0 . 3 
(Shirt, green) (Trousers, gray) 1.0 0.0 

(Shirt, white) {Trousers, denims) 1.0 0.0 
{Shirt, white) (Trousers, blue) 1.0 0.0 
(Shirt, white) (Trousers, gray) 0.5 —0.5 

(Footwear, Cordovans) {Trousers, denims) 0.1 —0.9 
{Footwear, Cordovans) (Trousers, blue) 0.8 —0.2 
(Footwear, Cordovans) {Trousers, gray) 1.0 0.0 
(Footwear, sneakers) (Trousers, denims) 1.0 0.0 

(Footwear, sneakers) (Trousers, blue) 0.1 —0.9 
(Footwear, sneakers) (Trousers, gray) 0.7 —0.3 
(Shirt, green) (Footwear, Cordovans) 0.6 —0.4 
(Shirt, green) (Footwear, sneakers) 0.1 —0.9 

(Shirt, white) (Footwear, Cordovans) 1.0 0.0 
(Shirt, white) (Footwear, sneakers) 0.2 - 0 . 8 

Table 3.1: Degrees of satisfaction and weights of the relaxed robot dressing 
problem 

.QJ 
0.6 

•....•. 

膨 : — . . / G X . . . . . . . . ： ： : ： £ \ 
green � . � . ( . . denims K ^p.-- ..•• Cordovans 

. . . . . . 广 / 
/ . .少 . . . . . . \ dress blue l y • • � . • < 1 / 
•••..旧 ....••••••....0.7.•.•••.••.7 

| \ white / '"••：.. \dres s gray/ X sneakers/ 

.�^^ � v y v y 
.......•••••• Shirt Trousers Footwear 

Figure 3.2: The Fuzzy GENET network of the relaxed robot dressing problem 
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1： randomly turn on a label node per cluster 
2: for each do 
3: W(ij)(k,i}卜 o^(ij}(k,i} 一 1 4: end for 
5: whi le Oip,(zi,vi}-izn,vn} < Q̂o do 
6: for each cluster do 
7: (asynchronously in parallel) 
8: calculate the input of each label node 
9: turn on the label node with maximum input 

10: end for 
11: if local maximum reached then 
12: (Heuristic learning rule) • 
13: for each l̂ �i，j��fc,o do 
14: update W / • � � � � , � : W ^ � i � = W � ( � � � + 0〈力凡。&(邮’力��0 “ 1) 
15: end for 
16: end if 
17: end while 

Algorithm 3.1: The fuzzy GENET convergence procedure 

always turns on the label node that takes the maximum input in each cluster, 
and all other label nodes are turned off. If there are more than one node that 
receive the same maximum input in a cluster, then one of the nodes is chosen 
randomly, unless one of them is already on in the last cycle. In the latter case, 
the node remains on in the next cycle. 

If, in a certain cycle, the states of all the nodes remain unchanged, fuzzy 
GENET is in a state known as local maximum. Solutions can no longer be found 
merely by using the state updating procedure illustrated before, since the inputs 
of all on-nodes are already the maximum and thus no better move can be found. 
In this situation, the heuristic learning rule is applied, which decrements the 
weights of those connections that are linking two on-nodes by a{i,j){k,i) - 1: 

= + 0 � t丄0 S � ( �〈⑶� � 0 一 1) (3.3) 

The current state will no longer be a local maximum since there will be other 
nodes that have higher inputs, possibly after applying the heuristic learning rule 
more than once consecutively. 
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Connected nodes should not be on simultaneously as far as possible. The 
heuristic learning rule tries to penalize such occurrences when the network is 
trapped in a local maximum. This makes the penalized pairs of on-nodes {i,j) 
and {k, I) less likely be turned on simultaneously again in the future. This effect 
favours the selection of nodes with higher inputs, which are more possibly be in 
the solutions. 

3.3 Deficiency in Fuzzy GENET 
While we were carrying out the experiments with fuzzy GENET, we discovered 
its inability to solve a certain kind of FCSPs, having the variables oscillate from 
state to state indefinitely. 

The deficiency described is manifested by solving the following FCSP: 

• The FCSP consists of four variables zi,z2, z^ and Z4, and they all have the 
domain {0,1,2,3}. 

• There are two crisp constraints between any two variables: “Zi / z/, and 

• 4 more unary fuzzy constraints “Zi = 0" for i € {1’ 2,3，4} , one for each 
variable. Degrees of satisfaction are defined as 

Value Degree of satisfaction 
0 LOO 
1 0.10 
2 0.10 
3 0.10 

• The threshold is 0.10. 

• Initial variable assignment is (0,1,0,1). 

• During the convergence procedure, always select the node with the small-
est value when there are more than one node that have the maximum 
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input, unless the input of the current on-node is also the maximum: in 
this case, the on-node is remain to be on. (This is a special case of the 
usual "break-tie-randomly" strategy used in fuzzy GENET.) 

The first 10 iterations of the execution are summarized in Figure 3.3. The 
underlined numbers correspond to the on-nodes of the variables at the end of 
that iteration, whereas the inputs of nodes shown are not the inputs at the end 
of that iteration, but are those during the node selection step of that particular 
variable, that is, during steps 5 to 8 in Algorithm 3.1. For instance, in iteration 
1, we show -2 .0 , -2 .9 , -2 .9 , - 0 . 9 as inputs of nodes 0 to 3 in variable zq, which 
are what we get while we are choosing the best node, but at the end of iteration 
1, their inputs become -2 .0 , -2 .9 , -1 .9 , - 0 . 9 due to changes of on-nodes in the 
other variables. 

The inability of fuzzy GENET can be attributed to the fact that some con-
straints are penalized unnecessarily, such that the cost surface is distorted to 
the extent that some local maxima originally corresponding to solutions are 
destroyed. As these solutions are no longer located at local maxima, they can-
not be found by the convergence procedure. This can be seen in Figure 3.3(i). 
According to the problem specification, the assignment (2,0，3,1) is obviously a 
solution. However, in the next iteration (Figure 3.3(j)) node 0 of variable zq is 
turned on in favour of node 2 because the input of node 0 is the highest among 
all the others. This shows that the search moved away from the solution state 
and did not settle there. As a result, solutions were not found. 

Actually this also happens toward the end of iteration 4 (Figure 3.3(d)), 
though less obviously: node 0 in variable Z3 is chosen instead of staying at the 
current node then, that is node 1, due to the higher input of node 0. If the state 
of variable 勿 remains unchanged, a solution has already been found, which is 
(2,0,3,1). 

Detailed examination of past iterations sheds light on the cause of this cost 
surface distortion. Consider the fact that selected nodes must have the highest 
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inputs, node 1 of variable Z3 in iteration 4 and node 2 of variable ZQ in iteration 
9 must have been penalized inappropriately in the past such that they are 
less appealing. Their inputs at the moment when they move away from the 
"solution states" are both -1 .8 . By tracing the past iterations, it reveals that 
these penalties are accumulated by penalizing the unary constraint "2:3 = 0" 
during the learning phase in iteration 2 (Figure 3.3(b)) when Z3 = 1 and the 
unary constraint % = 0" during the learning phase in iteration 5 (Figure 3.3(e)) 
when zo = 2. If they are not penalized, their inputs will both be - 0 . 9 and then 
will remain in their original states in these two iterations, and hence solution 
would be found. 

This indicates that penalizing them at those moments is problematic. 
The purpose of penalization in GENET is to alter the cost surface in order 

to distinguish between the tuples that are promising and those that should be 
avoided. As such it is not helpful, or even harmful (as shown in the example), 
to penalize the constraints that are not really violated. Refer to the example 
again. In iteration 2’ the constraint "2:3 = 0" should not be regarded as violated 
because Z3 = 1 can rightfully be part of the solution, as long as all the hard 
constraints are satisfied and the global satisfaction degree is above the threshold. 
The same applies to the case in iteration 5. However, fuzzy GENET just tries to 
penalize all connecting connections whose degrees of satisfaction is not equal to 
1，which ignores the effects brought by the aggregate function and the threshold 
of FCSPs. In Section 3.4, we will generalize this idea and propose a remedy to 
this behaviour. 

3.4 Rectification of Fuzzy GENET 
To correct the problematic behaviour of fuzzy GENET described in the last 
section, we propose to change the conditions under which the constraints are 
penalized. Before doing that, we need to first introduce the concept of contribu-
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Variable | ^ ^ _ ^ t ? f n o d � Variable 1 1 � f nod，� 
u 丄 2 cS • 1 2 3 

I I - 2 . 0 - 2 . 9 - 2 . 9 - 0 . 9 之O 11 - 2 . 0 - 2 . 9 - 1 . 9 - 0 . 9 
H a -2.9 - 1 . ^ -2.9 ^ i X -2.9 
^ ^ - 3 . 9 ~A.9 - 1 . 9 勿 - 1 . 9 

之3 I I - 2 . 0 z M - 2 . 9 - 2 . 9 0 3 I I - 2 . 0 - 1 . 9 - 2 . 9 - 2 . 9 

(a) Iteration 1 (b) Iteration 2 (local maximum) 

Variable l ^ ^ t y f y f ^ | Variable | •；叩广 二 ^ 
ZQ II -2.0 -2.9 -1.9 -1.8 zq 11 -1.0 -3.9 -0.9 -2.8 
zi 1 M -2.9 - 2 . T -2.9 ^ i X -2.9 

- 2 . 0 - 3 . 9 - 1 . 9 勿 

之3 I I -2 .0 I M - 2 . 9 - 2 . 9 I I -1 .0 -1 .8 -3 

(c) Iteration 3 (d) Iteration 4 

仏 ” “ 仏 II Input of node ” L . . , , 11 Input of node 
Variable • ^ l ] � 3 Variable | 2 | 3 

II - 2 . 0 - 2 . 9 - 3 . 8 Z q II - 2 . 0 - 2 . 9 

iLO -1-9 —-3.9 -2.9 >31 -2.9 
-3.0 -2.9 -2.8 “ -0.9 

2:3 II iLO -1-8 -3.9 -1.9 2:3 II -1.0 -1.8 - 2 j _ -2.9 

(e) Iteration 5 (local maximum) (f) Iteration 6 

仏”;-̂ kin II Input of node . , , 11 Input of node 
Variable • ^ 厂 � 2 3 Variable ? 丫 2 3 

之0 II i M I - 2 . 9 - 2 . 8 II • I - 2 . 9 - 2 . 8 

-3.0 -L9 -2.9 -1.9 
- 3 . 0 - 2 . 9 - 3 . 8 H X 勿 - 3 . 8 ^ 

之3 11 i M I -2.8 -1.9 -3.9 II -1.0 -2.8 -1.9 
(g) Iteration 7 (h) Iteration 8 (local maximum) 
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Variable f T ' ^ f , Variable 11 , ！丨叩二^ nod， u 丄 z 0 1 2 3 
II - 4 . 0 - 2 . 9 - 2 . 8 - 3 . 8 之• 11 - 1 . 0 - 3 . 9 - 1 . 8 - 2 . 8 

I M - 2 . 8 - 3 . 9 " - 2 . 9 之 1 ^ i X - 4 . 8 

- 3 . 0 - 2 . 9 - 2 . 7 

之3 I I - 2 . 0 - 3 . 9 - 1 . 9 I I - 4 . 0 - 1 . 8 - 2 . 9 S 
(i) Iteration 9 (j) Iteration 10 

Figure 3.3: An example showing the inadequacy of fuzzy GENET 

tion of a constraint to the violation of an FCSP. This concept identifies whether 
or not a constraint is responsible for making the FCSP unsatisfiable. Having 
this knowledge, only the constraints that actually contribute to the FCSP's 
unsatisfiability are penalized in the learning phase. 

Defini t ion 3 .4.1 Given a constraint c{ . . . , Zi 丄 where Zi. is assigned 
by Vi-• c{ contributes to the violation of the FCSP iff 

a tuple (vi,v2,. • . ， € x x . . . x D'“ 

{Vfc} if̂：̂； e {2:ii，2:i2’...’2i„J’ where D^^ = (3.4) 
Dzf̂  otherwise. 

such that a^zuv,)...{zn,vn) > ^o-
Consider the case in Figure 3.3(b) again. If contribution is considered, 

the constraint % = 0" will not be penalized because there exists a tuple 
(2,0,3,1) such that the global satisfaction degree of the FCSP is 0.10, that 
is ^(zi,vi)-(zn,vn} > . Wc caii conclude that the constraint “幻 = 0 " is not 
contributing to the violation of the FCSP. 

The modified fuzzy GENET that makes use of Definition 3.4.1 is outlined 
in Algorithm 3.2. Specifically, line 13 of the algorithm is altered to overcome 
the mentioned deficiency in the original fuzzy GENET. 

However, most of the time it is practically infeasible to check all possible 
tuples because the number of tuples is large. We should exploit the nature of 
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1: randomly turn on a label node per cluster 
2： for each W^ij^^^j) do 
4: end for 
5: while A�zi，”i�...�2„’如〉< CXQ do 
6: for each cluster do 
7: (asynchronously in parallel) 
8: calculate the input of each label node 
9： turn on the label node with maximum input 

10: end for 
11: if local minimum reached then 
12: (Heuristic learning rule) . 
13: for each lV(i’识kj) that contributes to the FCSP violation do 

u P ^ e ： W 口 = + — 1) 
15: end for 
16: end if 
17: end while Algorithm 3.2: The rectified fuzzy GENET convergence procedure 

the aggregate operator that is being used in the FCSP to reduce the number of 
tuples to check. For instance, if minimum is being used, it is sufficient to check 
whether the degree of satisfaction of the tuple of the constraint c{ is smaller 
than ao. If it is, then we can conclude that c{ is contributing to the violation 
of the FCSP, because no matter what the degrees of satisfaction of the other 
tuples are, ^(zi,vi}-{zn,vn} is always smaller than ao. 
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Using Fuzzy GENET for Solving 
Stability Problems 
In this chapter, we propose a scheme to model a stability problem as an FCSP 
and solve it by a specialized fuzzy G E N E T that we call fuzzy G E N E T ( D C S P ) . 
We choose fuzzy GENET as the basis of our solver since it is substantially faster 
than complete search methods. Although optimal solutions are not guaranteed, 
due to the "hill-climbing" nature of the convergence procedure in fuzzy GENET, 
solutions of high stability can still be achieved. 

4.1 Modelling Stability Problems as FCSPs 
In view of the fact that the degree of satisfaction assigned to each tuple 

， . . . ， o f a fuzzy constraint c^ indicates the extent that this tuple satisfies 
cf, these degrees of satisfaction can be used to represent the user's preference on 
the tuples. By making use of this property, we can create some artificial fuzzy 
constraints to indicate which tuples and values are more beneficial to minimizing 
the distance, thus enhancing the stability of the solution of a restricted CSP. 

Hence, we attempt to impose supplementary fuzzy constraints into a CSP 
after it is modified, and assign degrees of satisfaction to the tuples of these new 
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fuzzy constraints such that they reflect how stable they will give rise to the 
solution. Higher degrees of satisfaction are assigned to the tuples which involve 
in solutions of better quality, and lower degrees of satisfaction are assigned to 
those that involve in poorer solutions. Moreover, the fuzzy constraints should 
be modelled in such a way that the global satisfaction degree will be larger then 
or equal to the threshold, so that there will not be any subversive effect to the 
solution space of the original problem. 

Recall that a DCSP is a sequence of CSPs {Pq, . . . , Pi) i^i，. • •}. To achieve 
a stable solution, s终 1，for P^+i with respect to the solution of 尸“ we add sup-
plementary fuzzy constraints C乂 into P^+i to form a new FCSP Pj^^. The role 
of the supplementary fuzzy constraints is to encourage the variables to select the 
values so as to minimize the distance between and The supplementary 
constraints must be fuzzy because they can optionally be violated. Otherwise 
some solutions may be lost. 

Since the meaning of stability varies from problems to problems, the distance 
metrics of the problems are defined differently. As a result, there does not exist 
a universal way to model the supplementary fuzzy constraints, the membership 
function and the threshold of the resultant FCSP. However, the guideline is to 
define them in order to differentiate the tuples of the supplementary constraints 
according to the quality of the solutions that they belong to. This is further ex-
plained in the following two examples, which show how this guideline is applied 
to complete the modelling. 

Example 4.1.1 Suppose we want to measure the number of different variable 
assignments between a = ( a i , . . . , and & = (61’ • . . ’ We use the Ham-
ming distance dn as the distance function: 

F 
1 if (X I b d f f i a , b) = S(ai,bi), where 6{ai,bi) = ‘ “ (4.1) 
0 otherwise. 

\ 

After CSP Pi is restricted to become P^+i due to the introduction of new 
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constraints, supplementary fuzzy constraints of the following form can be added 
into Pi+i to try to enforce the stability of the new solution of Pî i： 

: 孙 = 4 ’ ( 4 . 2 ) 

where s\ is the value of Zk in the solution of the preceding problem Pi. 
The unary fuzzy constraint 叫 is actually a fuzzy relation with a 

single attribute acting on variable Zk, the membership function of ̂ /謂化隱 be 
defined as follows: . ( 

1 if a = sj., 
(4.3) 

a otherwise. 
V 

where a G [0’ 1). 
For instance, if the assignment of Zi in the solution of Pi is 2，and the 

domain of 2；! is {1, 2，3’ 4，5}. The list of degrees of satisfaction produced by its 
membership function is as follows (a = 0.50 in this case): 

Tuple Degree of satisfaction 
(1) KEo 
(2) 1.00 

(3) 0.50 
(4) 0.50 
(5) 0.50 

Table 4.1: Degrees of satisfaction of Example 4.1.1 

The fuzzy constraints in (4.2) suggest that it is the best for the variables 
to take the values that have been assigned to them in the preceding solution. 
Because the tuple ( 4 ) has the highest degree of membership 1.0, it is more 
preferable than all the other tuples. This is a straightforward way to minimize 
the distance. However, constraints introduced into Pi may prohibit variables to 
take their values from the preceding solution. Thus, the degrees of satisfaction 
of the supplementary fuzzy constraints and the threshold of the FCSP must be 
set so as to allow the violation of these fuzzy constraints. 
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For the FCSP in Example 4.1.1, the minimum function should be used as 
the aggregate operator and the threshold ao be set to a , because a is the 
highest acceptable global satisfaction degree to make it possible to violate the 
supplementary fuzzy constraints^ while preventing it from violating the original 
hard constraints. This setting of parameters ensures that all original constraints 
shall be fully satisfied and the supplementary fuzzy constraints can just be 
partially satisfied. 

Example 4.1.2 Suppose we are dealing with a CSP with only integer domains. 
In this example we use Manhattan distance (IM between the variable assign-
ments a = (di，…，a„) and 6 = . . . , as: 

n 

dM[a, b) = ^ \ai - bi\ (4.4) 
i=l 

This distance metric is suitable for stability problems that want to choose values 
which are as close to those in the preceding solution as possible, in the sense 
that the smaller the absolute difference between two values, the better. 

After new constraints are introduced into CSP P, to become P^+i, the same 
supplementary fuzzy constraints as shown in (4.2) of Example 4.1.1 are added, 
but the membership function of the constraint is defined differently, as follows: 

� “ � = 1 - max(i^,)-m?n(D,) + l (4.5) 
where s\ is the value of Zk in s\ the solution of Pi. 

Using the scenario in Example 4.1.1 again, the degrees of satisfaction of � are 
listed in Table 4.2. Alternatively, it is shown graphically in Figure 4.1. As it can 
be seen from the figure, the choice of (4.5) fits nicely to the Manhattan distance: 
when the value goes farther away from the assignment in the preceding solution 
(that is the distance becomes greater), the corresponding degree of satisfaction 
decreases. 

^Actually ao can be any value in (0，a]，because no global satisfaction de-
g e e …〜仍� � t ; „ � i s in (0，a) and hence if a � G (0’a]，Aôl’,l〉…〈知’^；„〉> o； 
^{zuvi)-{zn,vn) > that is, the solution condition is unchanged. 
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^ I~~Momborship function • “ 
Tuple Degree of satisfaction 

~ ( T ) ^ I o,e. 
(2) 1.00 « 

3 0.80 卜 Q 
M J Q 60 。2 thrMhold_ __ 一 (5) 0.40 0 I ‘ ‘ ‘ 

1 2 3 4 5 

Table 4.2: Degrees of satisfaction ��-僅' 
of Example 4.1.2 Figure 4.1: Manhattan distance mem-

bership function of Example 4.1.2 

The aggregate operator should be the minimum function and the threshold 
should be the lowest value of {zk) among all Zk. The reason for choosing 
them is the same as that in the last example. The threshold cannot be set 
higher than 0.4 in the example, otherwise some of the domain values will be 
excluded from selection, which may result in loss of solutions. 

Example 4 .1 .3 To present all the concepts that we have discussed so far, here 
is a complete running example. 

Suppose we have a stability problem P^, P^+i, rf), where Pi has three 
variables x, y, and z, with domains {1,2,3,4 ,5}, and consists of the following 
two constraints (equations): 

x + y + z = l{) (4.6) 

x + y-z = 6 (4.7) 

There are many possible solutions for Pi. Suppose we arrive at the solution 
which is denoted as s\ by using any technique (whichever is 

not important in illustrating this example). 
After has been found, the following new constraint is added into Pi： 

x + z = 7 (4.8) 

As a result, the new CSP, denoted as P^+i, has totally three constraints: 
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� I 1 2 3 4 5 
� / — � 0 . 1 0 0.40 0 . 7 0 1 . 0 0 0.70 

V ) 1 2 3 4 5 
� / _ (y)0.10 0.40 0.70 1.00 0.70 

\z) 1 2 3 4 5 
/IP/ { z ) ^ 1 . 0 0 0.70 0.40 0.10 

Table 4.3: Degrees of satisfaction of a; = 4, y = 4, and z = 2 

(4.6)，(4.7), and (4.8). Note that the variables and their domains have not been 
altered. 

According to our modelling scheme, we do not solve P^+i directly to achieve 
stable solutions. Instead, we introduce some supplementary fuzzy constraints 
into Pj+i to produce P/+” and then solve P/^^ by fuzzy GENET. Suppose 
the d in (s\Pi,Pi^i,d) is the Manhattan distance, these supplementary fuzzy 
constraints will be introduced into P̂ +i： 

= 4 (4.9) 
y = 4 (4.10) 
z = 2 (4.11) 

The degrees of satisfaction of (4.9) to (4.11) are defined as in Table 4.3 
according to (4.5) when ao = 0.1. 

Thus, have three more new constraints than P^+i, and all of them are 
fuzzy. Variables and their domains have not been altered. Now, everything is 
prepared. We then use fuzzy GENET, with the initial values of the variables 
the same as in s\ to solve P/+i. 
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4.2 Extending Fuzzy GENET for Solving Sta-
bility Problems 

FCSPs created by the method in Section 4.1 can be solved by any FCSP solver. 
However, the modelling strategy is designed specifically for the fuzzy GENET 
FCSP solver to obtain more stable solutions. By making some modifications 
to fuzzy GENET and use this specialized version to solve the FCSPs, solutions 
of even higher quality can be obtained. The enhanced algorithm is shown in 
Algorithm 4.1, which we call it 
1: initialize states of nodes as the last solution 
2: for each W(i淋’i) do — -1 
4: end for 
5： d max distance + 1 
6: while stopping criteria not met amd d ^ 0 do 
7: while ap < ao do 
8: for each cluster do 
9: (asynchronously in parallel) 

10: calculate the input of each label node 
11: turn on the node with maximum input 
12: end for 
13: if local maximum reached then 
14: for each W îĵ ^k.i) that contributes to the FCSP violation do 

update W纖,1、 : W i l l i ) = W路 ( � , � + O坊、O芯、 -嚇,� - 1) 16: end for 
17: end if 
18: end while 
19: if current distance < d then 
20: record solution 

� 21: d — current distance 
22: end if 
S:: e n ? : J e d a t e �"•〉〈'’'〉： = 界 然 • + 〇坊、。^^碰、A - D 

Algorithm 4.1: The fuzzy GENET convergence procedure for DCSP 一 fuzzv 
G E N E T ( D C S P ) 

The main difference between the original fuzzy GENET and fuzzy 
G E N E T ( D C S P ) is that, for the original fuzzy G E N E T , the procedure stops 

36 



Chapter 4. Using Fuzzy GENET for Solving Stability Problems 

once a solution is found, but fuzzy G E N E T ( D C S P ) does not. Instead, it will 
continue to look for a solution that is more stable than the solutions that have 
been found so far. Since the optimum of a problem is not known beforehand, 
when a better solution is found, fuzzy G E N E T ( D C S P ) moves on to look for an 
even better solution, if possible. This strategy improves fuzzy GENET in terms 
of solution quality, since solutions found by fuzzy G E N E T ( D C S P ) must be at 
least of the same quality as those found by fuzzy GENET. 

However, simply restarting the search after a solution is found is futile be-
cause the solutions found are located at local maxima. As there is no better 
neighbourhood to move to at a local maximum, it will continue to be stuck there 
no matter how many times the search is restarted. The strategy employed by 
fuzzy G E N E T ( D C S P ) is to forcibly penalize the supplementary fuzzy constraints 
right after a solution is found and before restarting the search (Algorithm 4.1, 
line 23). The purpose of this penalization step is to disturb the cost surface a 
little in order to bring the search out of the local maximum, so that there are 
chances for it to migrate to its neighbourhood and proceed to look for better 
solutions. 

To see how this works, let us consider a CSP P of 4 variables, Z0,Zi,Z2,Z3, 
with a known solution (0,0,0,0). Later, new constraints are introduced into P 
to make it P'. By modelling it with the settings in Example 4.1.1 with a = 0.1, 
suppose we found the solution (1,3,0,2). At this point all hard binary con-
straints in the problem are satisfied, but 2；0, Zi and zs are not totally satisfying 
the respective supplementary fuzzy constraints. If the heuristic learning rule is 
now applied, the inputs of the label nodes (2:0,1),〈勿,3〉，(23, 2) will decrease 
from 0 to -0 .9 . Since an input of - 0 . 9 is still the highest among all states, 
there will not be any variable that can change its state in the convergence cy-
cle. If the heuristic learning rule is applied again, the inputs of the label nodes 
〈之0,1),〈勿,3) and〈2:3, 2) will all decrease from - 0 . 9 to - 1 . 8 . Depending on the 
preceding execution of fuzzy G E N E T ( D C S P ) , it may now be possible for 卻 ’ zi 
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and 2；3 to go to other states if their inputs are high enough. Note that Zi will 
remain to be 0 because the fuzzy unary constraint = 0" is not penalized. 
If fuzzy G E N E T ( D C S P ) continues to be stuck, the learning rule will be applied 
again until it eventually escapes the local maximum. 

There are also 2 minor differences between the original and the new fuzzy 
GENET. First, as pointed out before, the algorithm will not stop once it is 
started and there is no way to know when an optimal solution is found, we need 
to make some predefined stopping criteria and monitor the program execution, 
once the stopping criteria are met we stop the execution (Algorithm 4.1’ line 
6). Stopping criteria can be any arbitrary limits, but they are usually resources 
bounds, such as the number of iterations, time budget, memory usage, distance 
upper bound, or any combinations of them. 

Second, as we are using fuzzy G E N E T ( D C S P ) to solve DCSPs, we need a 
way to know how good the solutions are. Therefore a procedure for calculating 
the distance is required. This procedure is executed to find out the distance be-
tween the current and the preceding solutions when a local maximum is reached, 
and hence can be used to determine whether the current solution is better (Al-
gorithm 4.1, line 19). If a better one is found, the solution is recorded for later 
comparison (Algorithm 4.1, line 20-21). 

4.3 Experiments 
Two sets of experiments are performed to evaluate the solution quality of fuzzy 
G E N E T ( D C S P ) . They are presented in Sections 4 .3 .2 and 4 .3 .4 respectively. 
We test on randomly-generated problems and compare the solutions of fuzzy 
G E N E T ( D C S P ) against the optimal ones. Optimal solutions are obtained using 
a complete search method. All experiments were executed on Sun Ultra 5/270 
workstations running Solaris 2.6. 

The first set of experiment uses the Hamming distance (4.1) as the metric for 
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measuring stabi l i ty, and the second set uses the Manha t tan distance funct ion 

(4.4). I n each set, we varies the four parameters, number of variables, domain 

size, density and tightness, of the randomly-generated CSPs independently so 

tha t the performance can be observed indiv idual ly. We adopt this notat ion to 

represent a randomly-generated CSP instance: x-y-z-w, which denotes a problem 

of constraint density z% and tightness w% having x variables, each having y 

domain values. 

Besides vary ing the 4 parameters, we also study the effect on solut ion qual i ty 

when different thresholds are used. 

In order to make a fair comparison between solutions found by fuzzy 

GENET(DCSP) and opt ima l distances, we define a un i t called discrepancy, which 

is a value larger than or equal to 0: 

distance - op t ima l distance 
discrepancy = ^ ^ ― (4.12) 

op t ima l distance ‘ 

Discrepancy is 0 when the solut ion found by fuzzy GENET(DCSP) is opt imal . 

Before presenting the empir ical results and analysis, we f irst describe in the 

next section the DCSP instance generation procedure tha t we use in al l of our 

experiments. 

4.3.1 Dynamic CSP Generation 

The DCSP instances tested in the experiments are constructed f rom randomly-

generated CSPs. Since a DCSP is a sequence of CSPs, we simulate a DCSP 

by creat ing two different but consecutive ( in the sense of a DCSP) CSPs, PQ 

and P i , out of a single CSP (Z,D,C). The steps involved are summarized as 

follows: given a CSP a subset of constraints C is selected f rom C 

to make another CSP {Z,D,C'), whi le mak ing sure tha t variables in Z are al l 

involved in C'. A DCSP is thus created: (Z , L>, C) as PQ and [Z,D,C) as Pi. 

I n th is way, the constraints being asserted in to PQ are those in the set C - C , 

mak ing f \ more restricted. Because we make sure tha t al l variables in Z are 
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involved in C', the number of variables is unchanged. 
In order to test on a wide variety of DCSP instances, the routine shown 

in Algorithm 4.2 is employed to generate a large set of different DCSPs from a 
single CSP. For testing purpose we define a DCSP instance as a triple (Pi ,C' , v), 
where Pi is the second CSP (Z,D,C) in the DCSP sequence. C' is the set of 
constraints in the preceding problem PQ. Vector v is the starting point for Pi. 
It is a vector of values denoting the variable assignment of a solution of PQ, 
which is also the initial variable assignment for Pi. Provided that PQ is not an 
extremely tight CSP, there are many solutions for PQ, which will in turn lead 
to very different results for By regarding v as part of a DCSP instance, we 
introduce one more level of granularity of details for investigating the behaviours 
of our algorithms on solving different DCSPs. 

The routine in Algorithm 4.2 requires 4 parameters: 

Pi : The second CSP (Z,D,C) in the DCSP sequence. 

Np ： The number of different PQ'S to be generated out of Pi. Since Z and D 
are the same for PQ and Pi, Np of different C are created. For instance, if 
Np = 5, then among all generated DCSP instances there will be 5 different 
Po (namely {Z, D, C；), (Z,D, Q ) ) . 

Nsp : The number of different starting points for each PQ. That is, for each PQ, 
Nsp different starting points are selected. 

R ： This ratio of \C'\ to \C . 

The total number of DCSP instances generated by this routine is thus Np x 
Nsp. 

In all of our experiments, we set Np to 10 and N p̂ to 10, and run the DCSP 
generation procedure 5 times with R set to 0.5, 0.6, 0.7, 0.8，and 0.9. Thus, for 
a CSP x-y-z-w, 10 x 10 x 5, i.e. 500, DCSP instances are generated. Moreover, 
since fuzzy G E N E T ( D C S P ) is a stochastic algorithm, 10 runs are performed for 
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Procedure DCSP-generate (Pi, Np, Nsp, R) 
for i -f- 1 to Âp do 

DCPSs — 0 
C — randomly select R% of constraints from C 
(ensure all variables are involved in C) 
PO — ( Z , D , C ) 

for j [ 1 to NSP do 
solve Po 
S 卜 Solution of Po 
DCSPs — DCSPs U (Pi, C", S) 

end for 
end for 
return DCSPs 

Algorithm 4.2: The DCSP generation routine 

each DCSP instances in order to get an average of the results. In total, 5000 
runs are performed for each x-y-z-w problem. 

4.3.2 Problems Using Hamming Distance Function 
The objective of this experiment is to test fuzzy G E N E T ( D C S P ) using DCSPs 
with Hamming distance (4.1) as the distance function, and evaluate the quality 
of solutions by comparing them with the optimal solutions. We used the Branch-
and-Bound algorithm in ILOG Solver 4.0 [16, 15] to find the optimal solutions. 

In each of the following subsections, we execute the experiments by varying 
one of the 4 randomly-generated CSP parameters. As the Hamming distance 
is being used, we employ the membership function (4.3), with a = 0.001. The 
aggregate operator is minimum and the threshold is also 0.001. 

As mentioned in Section 4.2, fuzzy G E N E T ( D C S P ) will only stop when some 
stopping criteria are met. In these experiments we use an iteration limit of 
200,000 as the bound. Once the bound is reached the algorithm stops and the 
best distance found so far is reported. 
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4.3.2.1 Variation in Number of Variables 
In this experiment, we compare problems of different number of variables: 40, 
45 and 50. Results are shown in Table 4.4. The first column is the randomly-
generated binary CSPs that correspond to Pi. The second column contains the 
C'\ : \C\ ratios. The third column is the average distance of all solutions found 

in the 1000 runs of fuzzy G E N E T ( D C S P ) for a single row. The fourth column 
contains the average optimal distances of the 100 DCSP instances for a single 
row. The fifth column shows the absolute difference of distances between the 
solutions found by fuzzy G E N E T ( D C S P ) (third column) and the optimal solu-
tions (fourth column). The sixth column shows the percentage of discrepancy, 
which is calculated using (4.12). 

The seventh column shows the average number of iterations passed till the 
distance shown in the third column is reached. And the last two columns show 
the average CPU time spent on solving the problems, and they are mainly for 
reference only. For fuzzy G E N E T ( D C S P ) , this is the time for the procedure to 
run until the stopping criteria are met. For the Branch-and-Bound method, it is 
the time that the procedure took to find the optimal solutions. We feed the best 
distance found by fuzzy GENET (DCSP) to the Branch-and-Bound algorithm as 
its initial bound. Its execution time will be longer if we do not do so. Thus 
it is meaningless to report its exact CPU time. Note that the time shown for 
the fuzzy G E N E T ( D C S P ) depends heavily on how the stopping criteria are set, 
since the algorithm will only terminate when the criteria are fulfilled. Suppose 
the stopping criteria is set to a very large iteration limit. It becomes unfair 
to compare the time taken by the fuzzy GENET (DCSP) and the Branch-and-
Bound method, because fuzzy G E N E T ( D C S P ) may spend much of its time on 
looking for a better solution even after the optimum is reached. 

In terms of solution quality, the fifth and sixth columns are what we are 
interested in. The differences of distance for all the problems we tested are 
between 0.101 and 1.319, which shows that solutions of fuzzy G E N E T ( D C S P ) do 
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Figure 4.2: Convergence behaviours of fuzzy G E N E T ( D C S P ) on problems with 
different number of variables when using the Hamming distance 

not deviate from the optima more than 2 variables on average. The discrepancy 
for the 40-10-20-35 problem is quite small, which is below 3%. For the larger, 
and hence more difficult, problems, the discrepancy increases but is still below 
5%. 

As mentioned before, it is unfair to compare the time taken between the 
two algorithms. Nevertheless, fuzzy G E N E T ( D C S P ) still spends significantly 
less time than Branch-and-Bound. This confirms that for small to medium-
sized problems, fuzzy G E N E T ( D C S P ) can attain near-optimal solutions in 画 c h 
shorter time. 

Graphs in Figure 4.2 are plotted to visualize the convergence behaviours of 
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fuzzy G E N E T ( D C S P ) for all the problems tested in this section. Each curve 
shows the average convergence behaviour (1000 runs for 100 instances) of our 
method on instances of a particular \C'\ : \C\ ratio in percentage. We also 
indicate the average optimal distance of each percentage as a horizontal dashed 
line. The plotting of each curve ends when all 1000 runs will not obtain any 
further improved solution after that time point. From the graphs it can be seen 
that fuzzy G E N E T ( D C S P ) converges very fast. For the 40- and 45-variables 
problems, it takes 1 to 2 seconds before the distance improvement slows down. 
Longer time is needed for the 50-variables problems as they are harder, but 10 
seconds are already enough to let fuzzy G E N E T ( D C S P ) to converge. From these 
observations, we conclude that the convergence rate of fuzzy G E N E T ( D C S P ) is 
very good, which takes only a few seconds. 

4.3.2.2 Variation in Domain Size 
In the second experiment, we compare problems with domain sizes of 10，15 
and 20, with a fixed number of variables of 45, constraint density of 20%, and 
tightness of 35%. Results are shown in Table 4.5，which has the same layout as 
the last one. Some data in the branch-and-bound columns for the 45-15-20-35 
and 45-20-20-35 problems are missing, since the branch-and-bound procedure 
takes much longer time to finish than on the 45-10-20-35 problems. It is not 
uncommon to have problems that spend more than one week to find the optimal 
solutions. It becomes more impractical to get the optimal distance when the 
problem size is larger. Nevertheless, results of fuzzy G E N E T ( D C S P ) are still 
reported (Table 4.5). 

From the 9 0 % rows in Table 4.5, we can see that fuzzy G E N E T ( D C S P ) also 
attains solutions that are close to the optimal ones. In fact, it is even more so 
when the domain size increases. This is not surprising as according to [35, 36], 
the expected number of solutions increases when the domain size g r o w s � w h i c h 

2For the problem m-n-pi-p), the expected number of solutions E(N) is 
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makes it an easier stability problem. 

4.3.2.3 Variation in Density and Tightness 
The third experiment investigates the solution quality by altering the density 

and tightness of the randomly-generated binary CSPs while keeping the number 

of variables and domain sizes constant. It is difficult to find good testing values 

for the constraint density and tightness since, for problems of around 45 and 50 

variables and domain size of 10, too high a value for the two parameters can 

easily result in unsatisfiable instances. Therefore, we fix the number of variables 

to 50 and domain size to 10，and test all four combinations of constraint density 

15% and 20%, and constraint tightness 30% and 35%. Results are tabulated in 

Table 4.6. Since experiments on the 50-10-20-35 problems have already been 

done, they are copied from Table 4.4 for ease of comparison. Some results for 

the branch-and-bound procedure are not available since there is not enough 

time to finish them. The trend in Table 4.6 shows that fuzzy G E N E T ( D C S P ) 
exhibits better solution quality for the easier, i.e. less constrained, problems, 

and is generally faster at the same time. 

4.3.3 Comparison in Using Different Thresholds 
As it is unclear of the influence on the solution quality and execution time 

when different thresholds are used, we repeated some of the experiments in 

Section 4.3.2 and a 150-variables problem, with a and QQ being set to 0.001, 

0.01, 0.1, 0.5 and 0.9. The results are tabulated in 3 tables: Table 4.7 shows 

the comparison of solution quality, Table 4.8 compares the number of iterations 

used, and Table 4.9 compares the CPU time taken. From Table 4.7, we cannot 

find any evidence to confirm that there is a strong relationship between the 

threshold being used and the corresponding solution quality. The results do not 

show any trend on how the solution quality changes when different thresholds 

0.01 广("一 i).o.oi.pi/2. 
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Chapter 4. Using Fuzzy GENET for Solving Stability Problems 

Problem C . C Distance found when threshold = 
• 0.001 0.01 0.1 0.5 

丽 1 2 . 9 4 7 1 2 ： ^ 1 2 ： ^ 1 2 . 9 8 0 

80% 16.603 16.609 16.590 16.666 16.587 
40-10-20-35 70% 19.517 19.494 19.471 19.473 19.463 

60% 21.092 21.098 21.106 21.105 21.105 
50% 22.142 22.101 22.130 22.101 22.093 
90% 37.861 37.894 38.010 37.979 37.933 
80% 39.613 39.573 39.641 39.494 39.426 

50-10-20-35 70% 41.537 41.547 41.521 41.589 41.536 
60% 41.697 41.710 41.754 41.685 41.631 
50% 41.944 41.801 41.923 41.863 41.794 
90% 60.858 61.045 61.079 61.785 61.650 
80% 80.717 80.970 80.689 81.269 81.345 

150-10-15-15 70% 89.280 89.408 89.507 89.870 89.990 
60% 95.597 95.536 95.400 95.803 96.022 
50% 99.437 99.351 99.516 99.964 99.552 

Table 4.7: Comparison of solution quality on randomly-generated binary CSPs 
when different thresholds are used 

Problem C . C Number of iterations used when threshold = 
‘ 0-001 0.01 0.1 0.5 

90% 11064.6 11729.8 10076.6 11455.4 10269.8 
80% 19869.0 19582.6 19841.3 22290.2 19340 4 

40-10-20-35 70% 23371.0 23959.7 25434.7 23964.9 24527.0 
60% 27931.4 29296.6 28535.2 30988.4 27133.9 
50% 27256.4 28472.4 27061.7 28228.9 27021.8 
^ 28436.3 27688.7 31442.7 32523.0 27527 8 
80% 30321.3 27000.6 30573.6 30350.8 27709 4 

50-10-20-35 70% 30694.1 31011.7 30451.3 31127.6 33208 0 
60% 31998.7 31452.3 32097.2 30661.8 31074.2 
50% 30486.7 28113.8 34116.9 30132.8 30282.4 
^ 51229.8 48303.8 51654.2 53489.1 54343 2 
80% 47120.9 47961.0 50173.2 54049.6 58817 7 

150-10-15-15 70% 49225.5 47763.8 47976.0 51644.3 55759.4 
60% 48081.1 48132.6 48763.5 52741.1 55737.2 
50% 52076.0 53360.0 49966.4 54647.1 57090.7 

Table 4.8: Comparison of the number of iterations used on randomly-generated 
binary CSPs when different thresholds are used 
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Problem C . C ^ ^ ^ time (second) taken when threshold = 
0.001 0.01 0.1 0.5 

90% 0.49 0.58 0.44 0.49 0.46 
80% 0.88 0.98 0.87 0.96 0.86 

40-10-20-35 70% 1.05 1.22 1.12 1.06 1.10 
60% 1.27 1.50 1.29 1.37 1.23 
50% 1.26 1.47 1.23 1.28 1.24 
^ ^ m ^ hSf 
80% 2.17 1.95 2.16 2.05 1.91 

50-10-20-35 70% 2.22 2.24 2.19 2.11 2.26 
60% 2.31 2.27 2.30 2.09 2.14 
50% 2.23 2.07 2.45 2.06 2.10 
^ ^ 1036 lO?^ 
80% 10.02 10.12 10.65 11.31 12.34 

150-10-15-15 70% 10.71 10.40 10.52 11.13 12.12 
60% 10.77 10.71 10.84 11.51 12.31 
50% 11.70 11.94 11.23 12.19 12.81 

Table 4.9: Comparison of CPU time taken on randomly-generated binary CSPs 
when different thresholds are used 

are used. We conclude that the value of threshold does not affect the solution 

quality. 

We also cannot find any relationship between the threshold being used and 

the efficiency of the algorithm. There does not exist a consistent change in 

the number of iterations and the CPU time with respect to the increase of the 

threshold. 

Due to these observations, we find that which threshold value to use does 

not matter too much. Thus we stick to 0.001. 

4-3.4 Problems Using Manhattan Distance Function 
In this section, we evaluate the solutions quality of fuzzy G E N E T ( D C S P ) with 

the Manhattan distance function (4.4) as the distance metric. We define the 

membership function of the supplementary fuzzy constraints as in (4.5). The 

aggregate operator is minimum and the threshold is 0.1, because the lowest 

degree of satisfaction above 0 is 1 - i.e. 0.1. Again, we use an iteration 
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l imit of 200,000 as the stopping criterion. 

As usual, all the optimal solutions are found by using the Branch-and-Bound 

algorithm in ILOG Solver 4.0 [16, 15]. Like the Hamming distance experiment, 

we vary the number of variables, domain size, and constraint density and tight-

ness for comparison. The results are tabulated in Table 4.10, 4.11，and 4.12 

respectively. 

The difference of distance between solutions of fuzzy G E N E T ( D C S P ) and 

branch-and-bound is within 0.543 and 5.121 for all the problems. I t is higher 

than those in the Hamming distance experiments, but given that the Manhattan 

distance is more demanding (the worst possible distances of the experiments 

are ranging from 360 to 855)，and by the fact that the highest discrepancy 

is only 5.931%, fuzzy G E N E T ( D C S P) still attains good solution quality in the 

Manhattan distance experiments. Although comparison with optimal solutions 

are unavailable in some of the experiments due to lack of branch-and-bound 

results, there does not seem to be abnormality in the outcome of the fuzzy 

G E N E T ( D C S P ) experiments. The figures in the three tables share the same 

trend as those in the Hamming distance experiments, and the analysis can be 

equally applied here. We conclude that fuzzy G E N E T ( D C S P ) is as effective (and 

efficient) in dealing with the Manhattan distance as in handling the Hamming 

distance problems. 

As in the Hamming distance experiment, graphs for observing fuzzy 

G E N E T ( D C S P ) ' S convergence behaviours are plotted in Figure 4.3. Only the 

problems on varying the domain size are plotted, since the others show similar 

trends. Curves of the 40- and 45-variables problems exhibit very fast conver-

gence，while the 50-variables one show comparatively much slower convergence 

and irregularities in the curves. These both suggest that this problem is a very 

hard stability problem, and it may be necessary to lengthen the stopping criteria 

if more stable solutions are to be found. 
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Figure 4.3: Convergence behaviours of fuzzy G E N E T ( D C S P ) on problems with 

different number of variables when using the Manhattan distance 
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Chapter 5 

Enhancement of the Modelling 
o 

Scheme 
In this chapter, we propose an enhancement to the modelling scheme and the 

fuzzy G E N E T ( D C S P ) procedure that we discussed in the last chapter. In the 

new scheme, we use a fuzzy constraint called distance bound for any stability 

problems. Employing distance bound in our new convergence procedure, fuzzy 

GENET(DCSP2)，which is based on fuzzy G E N E T ( D C S P ) and is designed for 

the distance bound, we can limit the space being searched and achieve better 

solutions within the same time limit. Since the distance bound is an n-ary 

constraint, fuzzy G E N E T ( D C S P 2 ) is designed to be able to handle it. 

5.1 Distance Bound 
In our original scheme, what kind of fuzzy constraints to use depends on how 

the distance is defined in the stability problem. Modelling the problem may 

require some efforts if the distance requirement is unusual. In the new scheme, 

this is simplified to using only one supplementary fuzzy constraint called the 

— 霞 bound. Given a stability problem (s\P”P“i,d), the distance bound 
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takes the following form: 

d(z,s') = 0 ( 5 . 1 ) 

where 2 = ( z i , is the tuple of all variables of i ^ i (and also Pi). The 

FCSP must use the minimum function as the aggregate operator in this case. 

The ideas behind the distance bound and the supplementary fuzzy con-

straints used in our last scheme are the same: exploit the degrees of satisfaction 

to express preferences for the tuples. Initially, degrees of satisfaction of the 

tuples in the distance bound constraint are assigned in a monotonically de-

creasing fashion from variable assignments that give a distance of zero (the best 

solutions) to those that give the largest distance (the worst solutions). The 

suggested initialization for variable assignment 2 is: 

= (5.2) 

^MAX 
where ao is the threshold and (Imax is the largest possible distance. This equa-

tion makes equal increment of degree of satisfaction from the worst distance to 

the best distance, and assigns the value of threshold as the degree of satisfaction 

for the worst distance and 1.0 to that of the best distance. 
For instance, if there are 10 variables in the problem with the threshold of 

0.01，and Hamming distance is used as the distance function, according to (5.2), 

degrees of satisfaction of all possible variable assignments can be initialized like 

this: 

• ’ 叫 0 1 2 3 4 5 6 7 8 9 1 0 

0 . 9 0 1 0 . 8 0 2 0 . 7 0 3 0 . 6 0 4 0 . 5 0 5 0 . 4 0 8 0 . 3 0 7 0 . 2 0 8 0 . 1 0 9 0 . 0 1 0 

5.2 Enhancement of Convergence Procedure 
I f fuzzy G E N E T ( D C S P ) is used, a forceful penalization wil l be done on the 

distance bound when a solution is found. However, we perceive that there are 

two enhancements that can be made to the distance bound constraint to boost 

the solution quality. The first one is to treat all variable assignments of the same 
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distance as one entity, such that there is only one degree of satisfaction for each 

distance，even though there are in fact many different variable assignments 

that are of the same distance, and the second one is to replace the forceful 

penalization step to lowering the degrees of satisfaction of all poorer solutions 

to zero. 

The first enhancement is to treat variable assignments of the same distance 

as one entity. Since the distance bound involves all variables of the problem, the 

total number of tuples is The storage needed for keeping this number 

of weights can be enormous. For a problem with 10 variables, each variable 

having 10 values, the total number of tuples is ICP. Suppose it takes 4 bytes to 

store the weight, 4 x ICP bytes are required to store all of them, that is about 

40 GBytes of memory, which is immense in today's computers. Although the 

memory consumption can dramatically be reduced by storing only the weights 

that have been decremented due to penalization as proposed by Lee et al. [19], 

weights are stored in an AVL-tree as suggested, which induces overhead when 

a new weight has to be added. More importantly, we conceive that there is no 

reason to store the weights of the tuples with the same distance individually. I t 

makes more sense to treat all the tuples of the same distance equally by sharing 

a single weight, because they are equally that bad in the sense of stability 

problems. In this way we can also unify the heuristic learning of these tuples. 

Besides, it can simplify the implementation, reduce memory consumption, and 

shorten the execution time because indexing the weight can be done in 0(1) by 

merely using an array. 

Furthermore, fuzzy G E N E T ( D C S P ) is unable to handle the N-ary distance 

bound because connections in its network cannot relate more than two variables. 

In order to implement the new idea and to handle the n-ary distance bound 

constraint, we adapt the idea of constraint node and intermediate node from 

E-GENET [18，48，19] to our new convergence procedure. Basically this is done 
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by breaking the distance bound into two constraints: 

D = d(z,s')AD = 0 (5.3) 

where D is an artificial variable specially created for the transformation, and its 

domain is the set of all possible distance between z and calculated using the 

distance metric d. Fuzzy G E N E T ( D C S P) does not handle the crisp (N + l)-ary 

constraint D = d ( z , s” as a regular constraint. It is used purely to determine 

the value for D according to the current variable assignment Thus there is 

no degree of satisfaction and weight associated with the tuples m D = d ( z , s'). 

Instead D = 0 is the actual fuzzy constraint that fuzzy G E N E T ( D C S P ) deals 

with like other normal constraints. It guides the search according to the user's 

preference for solutions, which is recorded in the degrees of satisfaction of tuples 

in this unary fuzzy constraint. 

The second enhancement is to make the search concentrate on finding more 

stable solutions. Once a better solution, say is found, the degrees of 

satisfaction of all tuples a in D = 0 such that d ( a , > are dropped 

to zero immediately, while keeping the others unaffected. Moreover, among such 

tuples, weights of those that are between 0 and - 1 wil l be lowered to - 1 at the 

same time. Weights that have been cumulated to below 一 1 are retained. Using 

the example in the last section, if d(s i+\ s ” = 5, the degrees of satisfaction of 

the tuples in the distance bound will become: 

D ( A , 8 ” I 0 1 2 3 4 5 6 7 8 9 10 
� L T ( A ) 11.000 0.901 0.802 0.703 0.604 0.000 0.000 0.000 0.000 0.000 0.000 

Recall that the objective of the forceful penalization step in fuzzy 

G E N E T ( D C S P ) is to make the search depart from the local maximum so that 

the search can continue to other states. The above method can also achieve this 

purpose, because the degree of satisfaction of the current variable assignment 

has become zero, and thus the global degree of satisfaction is now below the 

threshold. This makes the current state unacceptable, and the search will then 

look for other better states. 
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Besides that, the main advantage of this method is it can effectively avoid 

many regions in the search spaces that do not have better solutions. Because 

their degrees of satisfaction are now lower than the threshold, weights wil l grad-

ually grow up on these tuples as the search progresses. This wil l build up a 

significant factor over time to deter the search from going into the worse regions 

again, and thus wil l concentrate in the better areas. This can speed up the 

search and we expect it to achieve better results within the same time budget 

or iteration l imit than using fuzzy G E N E T ( D C S P) with the original modelling 

scheme. 

Combining these ideas with fuzzy G E N E T ( D C S P) , we devise our new con-

vergence procedure fuzzy G E N E T ( D C S P 2 ) IN Algorithm 5.1. The major change 

to Algorithm 4.1 is the forceful penalization in lines 19—23 has been replaced by 

resetting of degrees of satisfaction and weights in lines 22-28 of Algorithm 5.1. 

5.3 Comparison with Optimal Solutions 
The first set of experiments is to compare the solutions of fuzzy G E N E T ( D C S P 2 ) 
to optimal solutions, and study how good the new method performs in terms 

of solution quality as well as efficiency. Except the membership function is 

now Equation. 5.2, all the other experimental settings are the same as those 

used in the last chapter's experiments: the aggregate operator is the minimum 

function, the threshold for the Hamming distance experiments is 0.001 and that 

for the Manhattan distance experiments is 0.1, and the stopping criterion is 

200,000 iterations. Problems tested are 40-10-20-35, 45-10-20-35 and 50-10-20-

35, Results are tabulated in Table 5.1 for the Hamming distance experiment 

and Table 5.2 for the Manhattan distance one. 

Solution qualities on both sets of experiments are very satisfactory. Gen-

erally，the trend is that i t becomes more difficult to maintain good solution 

quality when the CSP problems become harder. For the Hamming distance 
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1: initialize states of nodes as the last solution 
2: f o r each d o 

^(ij}(k,i} — oi^ijm) 一 1 
4: e n d for 
5: for each W(i(z,zO) do 
6: ^d{z,zO)卜 Oid{z,zO) — 1 
7: e n d for 
8: d -f- max distance + 1 
9: whi le stopping criteria not met and d 0 do 

10: whi le a p < QQ d o 
11： f o r each cluster d o 
12: (asynchronously in parallel) 
13: calculate the input of each label node 
14: turn on the node with maximum input 
15: e n d for 
16: if local maximum reached t h e n 
17: f o r each that contributes to the FCSP violation d o 

u P ^ e W •〈幼〈、 ,〉 :〈：从 = + - 1) 
19: e n d for 
20: e n d if 
21: e n d whi le 
22: record solution: z^ ^ z 
23: d ^ current distance 
24: {update distance bound} 
25: for all d(z,z^) >= d do 
26： ad{z,zO) 0 
2 7： - 1 

28: e n d for 
29: e n d wh i l e 

Algorithm 5.1: The fuzzy G E N E T ( D C S P 2 ) convergence procedure 
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Chapter 5. Enhancement of the Modelling Scheme 

experiments, the absolute differences of distances of the 40- and 45-variables 

problems are well below 0.1，and that of 50-10-20-35 problem is below 0.5, show-

ing that results are very near to optimal solutions. Results on the Manhattan 

distance experiments have similar trends, but the results of the 50-10-20-35 

problem are distinctly further away from the optima, indicating that it is a 

rather hard stability problem. 

5.4 Comparison with Fuzzy G E N E T ( D C S P ) 

In this section fuzzy G E N E T ( D C S P ) and fuzzy G E N E T ( D C S P 2 ) are compared. 

As both methods are much faster than the branch-and-bound algorithm, it be-

comes practical to examine them on larger problems. We have chosen problems 

with 150 variables and domain size from 10 to 50. As we already obtained the 

results of both of them on the smaller problems from previous experiments, we 

wil l first compare them by using these data directly. 

5.4.1 Medium-sized Problems 
Data obtained from experiments in Section 4.3 and 5.3 are reused to compare 

fuzzy G E N E T ( D C S P 2 ) with fuzzy G E N E T ( D C S P) . For ease of comparison, re-

sults of the two methods are put together into Table 5.3 and 5.4，with a new 

column "Distance difference" added, which is calculated by subtracting the 

distance of fuzzy G E N E T ( D C S P 2 ) from the distance of fuzzy G E N E T ( D C S P ) . 
Apparently, by looking at this column, solutions of fuzzy G E N E T ( D C S P 2 ) are 

more stable than those of fuzzy G E N E T ( D C S P) . The difference is not large since 

fuzzy G E N E T ( D C S P ) already accomplishes near-optimal results and leaves l itt le 

room for improvement. 
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Chapter 5. Enhancement of the Modelling Scheme 

fuzzy GENET(DCSP) — fuzzy GENET(DCSP2) D i ^ 
Dist. Iteration Time(s) Dist. Iteration Time(s 厂 diff. 

9 0 % 6 0 . 7 7 7 5 1 5 4 5 . 3 1 0：^ 50.310 6 4 8 3 1 . 1 W ^ W W 
80% 80.887 46547.0 9.89 66.237 72062.6 30.70 14 650 
70% 89.547 49313.8 10.71 74.519 74839.0 32.03 15 028 
60% 95.490 52806.6 11.68 80.729 74888.2 32 46 14 761 
50% 99.483 48223.2 10.88 85.078 73395.2 32.01 14.405 

Table 5.5: Comparison between fuzzy G E N E T ( D C S P ) and fuzzy 
G E N E T ( D C S P 2 ) on the 150-10-15-15 randomly-generated binary DCSPs 
using Hamming Distance ， 

5.4.2 The 150-10-15-15 Problem 
The objective of this experiment is to compare fuzzy G E N E T ( D C S P 2 ) with fuzzy 

G E N E T ( D C S P ) only. There are no optimal solutions for comparison since the 

time needed to find them wil l be exceptionally long. Due to the large number of 

variables, the problem's density and tightness have to be adjusted accordingly 

to 15 and 15 respectively, as unsolvable problems begin to appear when higher 

density and tightness are used. Except the problem size, all other experimental 

settings are identical to the ones used in Section 5.3. As usual, we test both 

Hamming and Manhattan distance functions. 

Results for Hamming distance are tabulated in Table 5.5. Distances of so-

lutions of fuzzy G E N E T (D C S P 2 ) are generally about 10 to 15 better than those 

of fuzzy GENET(DCSP)，showing that fuzzy GENET(DCSP2) can achieve even 

more stable solutions on larger problems. Data in Table 5.5 shows that fuzzy 

G E N E T ( D C S P 2 ) seemingly takes longer time and more iterations to finish. How-

ever，these figures are actually the averaged value of time and number of itera-

tions used when the best solutions are found. To conduct a more comprehensive 

study, we plot two sets of curves (Figures 5.1 and 5.2) to observe the change 

of solution stability when the program executes. The first set of graphs plots 

the change of distance as the number of iteration increases, and the second set 

plots the change of distance as time progresses. The latter one is needed be-

cause the time elapsed for one iteration in fuzzy G E N E T ( D C S P ) and in fuzzy 
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Figure 5.1: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and fuzzy 

G E N E T ( D C S P 2 ) against the number of iterations in the 150-10-15-15 problem, 
using Hamming distance 
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Figure 5 .2: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and fuzzy 

G E N E T ( D C S P2) against the CPU time taken in the 150-10-15-15 problem, using 
Hamming distance 
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I广,IZ fuzzy GENET(DCSP) fuzzy GENET(DCSP2) — D i s t . 
Dist. Iteration Time(s) Dist. Iteration Time(s) diff. 

9 0 % 1 9 9 . 4 4 6 5 8 5 1 7 . 8 11.52 1 7 2 . 5 6 3 1 0 5 3 0 8 . 0 39.59 26.883 
80% 251.351 53938.3 11.16 213.461 106708.0 38.90 37.890 
70% 271.385 47922.4 10.26 231.457 104906.0 37.76 39.928 
60% 285.902 49348.0 10.74 244.453 102233.0 36.59 41.449 
50% 293.162 51333.0 11.21 251.174 103514.0 41.01 41.988 

Table 5.6: Comparison between fuzzy G E N E T ( D C S P) and fuzzy 
G E N E T ( D C S P 2 ) on the 150-10-15-15 randomly-generated binary DCSPs, 
using Manhattan distance 

G E N E T ( D C S P 2 ) are different. Please note that the CPU time corresponding to 

a curve's end point is the time for the last improvement among all the runs. For 

example in Figure 5.2(a), the fuzzy G E N E T ( D C S P) curve ends at 54.84 seconds, 

which means there is a run that makes its last improvement at 54.84 second, 

and there is no other runs that have made any improvement since then. It has 

no relationship to the value of time shown in the table (which is the average 

CPU time spent), therefore they are different. 

Figures 5.1 and 5.2 show that fuzzy G E N E T ( D C S P 2 ) begins to attain better 

results than fuzzy G E N E T ( D C S P) at the very early moment of program execu-

tion, and it continues to be so throughout the whole execution. That means the 

overall performance of fuzzy G E N E T ( D C S P 2 ) is superior. 

Results for Manhattan distance experiments are tabulated in Table 5.6. 

Once again fuzzy GENET ( D C S P 2 ) exhibits similar behaviour as in the last Ham-

ming distance experiments: more stable solutions as distance difference is from 

26.883 to 41.988, but it seemingly uses more iterations and longer time. The 

same kind of curves are again plotted in Figures 5.3 and 5.4 to study the change 

of distance as the program executes. 

The graphs display a special characteristic: fuzzy G E N E T ( D C S P ) attains a 

relatively good distance rapidly at the very beginning, and after that the dis-

tance improvement slows down. On the other hand, fuzzy G E N E T ( D C S P 2 ) does 

not do as good as fuzzy G E N E T ( D C S P) at the beginning (before the first 20000 
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Figure 5.3: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and fuzzy 

GENET ( D C S P 2 ) against the number of iterations in the 150-10-15-15 problem, 

using Manhattan distance 
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Figure 5.4: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and fuzzy 

G E N E T ( D C S P 2 ) against the CPU time taken in the 150-10-15-15 problem, using 
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iterations or 10 seconds), but the distance keeps going down until it finally passes 

the best distance of fuzzy G E N E T ( D C S P) and achieves much better results at 

the end. We delay the discussion of this phenomenon to Section 5.5, because 

some of the results in subsequent experiments also have the same phenomenon. 

Nevertheless, fuzzy G E N E T ( D C S P 2 ) outperforms fuzzy G E N E T ( D C S P ) in the 

long run. 

5.4.3 Variation in Density and Tightness 
The next 3 sets of experiments again test problems of 150 variables and domain 

size of 10. By varying the constraint density and tightness, we have a diver-

sity of problems with different numbers of constraints and invalid tuples per 

variable. Since we cannot raise the values of density and tightness any more 

(over-constrained problems will appear), we elect to lower both of them to 10, 

which makes up to 3 combinations of constraint density and tightness: 10-10, 

10-15 and 15-10. Apart from the change in the numbers of constraints and 

invalid tuples, the numbers of possible solutions are also different as they vary. 

According to Smith and Dyer [35, 36], the expected number of solutions in these 

problems decreases in this order: 150-10-10-10 > 150-10-15-10 > 150-10-10-15 

> 150-10-15-15. 

The best distance obtained and the distance difference are tabulated 

in Table 5.7 for Hamming distance and Table 5.8 for Manhattan distance 

experiments. For all the Hamming distance experiments, distances of both 

methods are very close, which illustrates that they perform equally well in the 

less constrained CSPs. However, fuzzy G E N E T ( D C S P 2 ) evidently achieves bet-

ter solutions in the Manhattan distance experiments. We can see that the 

distance function plays a crucial role in testing the effectiveness of a stabil-

ity algorithm. Given the same CSP, although fuzzy G E N E T ( D C S P ) and fuzzy 

G E N E T ( D C S P 2 ) performs equally well in the Hamming distance experiment, 

fuzzy G E N E T ( D C S P 2 ) is capable of finding better solutions when the more de-

73 



Pr
ob

le
m

 
C 

• C
 

fu
zz

y 
GE

NE
T(

DC
SP

) 
fu

zz
y 

G
EN

ET
(D

5^
 

D
is

ta
nc

e 
Ite

ra
tio

ns
 

Ti
m

e 
(s

) 
D

is
ta

nc
e 

Ite
ra

tio
ns

 
T

im
^

^
^ 

D
is

ta
nc

e 
di

ffe
re

nc
e 

^ 
11

-7
94

 
0?

^ 
r

r
^ 

m 
Z

Q
-^

 
80

%
 

20
.0

43
 

24
24

1.
4 

2.
11

 
20

.0
87

 
21

55
2.

5 
1.

99
 

-0
 0

44
 

15
0-

10
-1

0-
10

 
70

%
 

27
.5

56
 

32
67

7.
1 

3.
13

 
27

.5
67

 
33

43
7.

5 
3.

32
 

一
 0

0
1

1
 

6
0

%
 

3
3
.8

5
5
 

35
28

9.
5 

3.
60

 
33

.9
27

 
32

94
8.

8 
3 

52
 

—
0 

07
2 

50
%

 
38

.7
22

 
36

24
4.

2 
3.

92
 

38
.7

35
 

33
22

1.
2 

3.
67

 
-0

 0
13

 
O

 
1
9
-
5
0
1 

2
7
5
4
3
.
6 

^ 
1

9
：

4
^

2
7

5
6

6
.

7 
^ 

^ 

80
%

 
32

.1
17

 
28

57
9.

4 
3.

31
 

32
.1

71
 

29
40

7.
1 

3.
47

 
-0

 0
54

 
¥ 

^ 
15

0-
10

-1
5-

10
 

70
%

 
41

.8
79

 
33

44
9.

9 
4.

18
 

41
.8

71
 

31
94

0.
3 

4.
08

 
0 

00
8 

6
0

% 
4
9
.
4
2
6 

3
8
7
1
6
.
2 

5
.
1
4 

4
9
.
2
8
7 

3
7
6
7
7
.
1 

5
.
1
1 

0 
1
3
9 

肉
 

5
0

%
 

5
5
.8

5
5
 

42
96

9.
6 

5.
95

 
55

.8
04

 
39

12
9.

2 
5 

53
 

0 
05

1 
^ 

2
1

.
4

5
3

3
0

^ 
^ 

2
1

4
3

7
2

9
^ 

^ 
o

^ 
| 

80
%

 
35

.0
75

 
33

17
9.

0 
4.

05
 

35
.0

76
 

32
37

3.
2 

3.
92

 
—

0 
00

1 
§ 

15
0-

10
-1

0-
15

 
70

%
 

44
.4

58
 

38
85

6.
5 

5.
08

 
44

.5
04

 
34

62
7.

2 
4.

50
 

-0
 0

46
 

§ 
60

%
 

52
.2

94
 

34
33

9.
3 

4.
82

 
52

.3
08

 
36

63
2.

4.
 

5.
06

 
—

0 
01

4 
o 

50
%

 
57

.6
04

 
46

12
5.

1 
6.

53
 

57
.5

14
 

41
79

2.
8 

6.
00

 
0.

09
0 

S
：

 
‘

“
‘

~ 
‘ 

“ 
ct>

 
Ta

bl
e 

5.7
: 

C
om

pa
ris

on
 b

et
w

ee
n 

fu
zz

y 
GE

NE
T(

DC
SP

) 
an

d 
fu

zz
y 

GE
NE

T(
DC

SP
2) 

on
 r

an
do

m
ly

-g
en

er
at

ed
 b

in
ar

y 
D

C
SP

s 
of

 
| 

di
ffe

re
nt

 c
on

st
ra

in
t 

de
ns

ity
 a

nd
 t

ig
ht

ne
ss

, 
us

in
g 

H
am

m
in

g 
D

is
ta

nc
e 

g- K
m

. tJ i f
t
) 



P
ro

bl
em

 
|C

'| 
：

 |
C

|
F

U
Z

Z
Y 

GE
NE

T(
DC

SP
) 

fu
zz

y 
GE

NE
T(

DC
SP

2
) 

D
is

ta
nc

e 
Ite

ra
tio

ns
 

Ti
m

e 
(s

) 
^

i^
n

c
e 

Ite
ra

tio
ns

 
Ti

m
e 

(s
) 

D
is

ta
nc

e 
di

ffe
re

nc
e 

9
0

% 
2
1
.
1
2
9 

5
9
3
3
3
.
1 

5
.
2
4 

1
8
.
8
7
1 

1
1
4
8
1
.
4 

4
.
3
7 

2
.
2
5
8 

80
% 

38
.33

2 
62

66
5.4

 
6.2

8 
30

.93
3 

18
30

7.0
 

7.0
0 

7 
39

9 
15

0-
10

-1
0-

10
 

70
% 

54
.42

3 
65

97
3.3

 
7.4

1 
40

.74
8 

25
88

3.9
 

9.8
2 

13
.67

5 
60

% 
67

.12
9 

65
03

6.3
 

7.8
7 

48
.67

5 
34

80
3.4

 
12

.82
 

18
 4

54
 

50
% 

76
.06

8 
69

37
1.9

 
8.8

7 
54

.50
1 

37
11

1.0
 

14
.06

 
21

.56
7 

O 
^ 

46
.96

6 
53

62
3.4

 
Kl9

 
4lJ

E2
 

26
64

1.6
 

IT
OO

 
5：

^4
 

80
% 

76
.53

9 
51

11
0.8

 
6.7

6 
61

.65
3 

47
34

6.8
 

18
.92

 
14

.88
6 

| 
^ 

15
0-

10
-1

5-
10

 
70

% 
99

.90
8 

52
22

8.1
 

7.6
4 

77
.76

4 
56

53
0.7

 
22

.40
 

22
.14

4 
O. 

6
0

% 
1
1
6
.
2
2
3 

6
1
9
4
3
.
0 

9
.
5
5 

8
8
.
5
9
0 

6
0
4
9
3
.
0 

2
4
.
2
6 

2
7
.
6
3
3 

肉
 

50
% 

12
9.7

90
 

61
29

3.3
 

9.9
2 

97
.96

4 
62

47
8.1

 
24

.63
 

31
.82

6 
| 

^ 
52

.61
0 

54
96

8.0
 

^ 
29

01
5.9

 
Y

?^
 

窝
 

80
% 

85
.30

0 
56

54
6.1

 
8.0

1 
68

.44
8 

49
87

7.9
 

21
.01

 
16

.85
2 

I 
15

0-
10

-1
0-

15
 

70
% 

10
7.0

02
 

56
91

7.6
 

8.7
2 

83
.28

8 
57

89
7.8

 
23

.76
 

23
.71

4 
| 

60
% 

12
4.2

73
 

59
63

1.4
 

9.7
5 

95
.40

8 
63

06
9.9

 ‘ 
26

.48
 

28
.86

5 
O 

50
% 

13
6.0

67
 

62
21

4.8
 

10
.51

 
10

3.7
70

 
65

70
3.4

 
26

.64
 

32
.29

7 
S：

 
CD

 
Ta

bl
e 

5.8
: 

C
om

pa
ris

on
 b

et
w

ee
n 

fu
zz

y 
GE

NE
T(

DC
SP

) 
an

d 
fu

zz
y 

GE
NE

T(
DC

SP
2) 

on
 r

an
do

m
ly

-g
en

er
at

ed
 b

in
ar

y 
D

C
SP

s 
of

 
di

ffe
re

nt
 c

on
st

ra
in

t 
de

ns
ity

 a
nd

 t
ig

ht
ne

ss
, 

us
in

g 
M

an
ha

tta
n 

di
st

an
ce

 
^ ts g CD

 
5 ct>

 



Chapter 5. Enhancement of the Modelling Scheme 

manding Manhattan distance function is used. 

Progresses of distance achievement of all the problems are plotted in Fig-

ures 5.5 to 5.16. In all the problems that use Hamming distance, it is not surpris-

ing that the curves of both methods are very near to each other, since the dis-

tance achieved and effort spent are similar. Graphs on the Manhattan distance 

problems are more intriguing. Although the distance of fuzzy G E N E T ( D C S P 2 ) 
are always lower than fuzzy G E N E T ( D C S P), showing that the solutions of fuzzy 

G E N E T ( D C S P 2 ) are more stable than those of fuzzy G E N E T ( D C S P ) all the time, 

its improvement in solution stability slows down suddenly at the beginning and 

only after a short while that it proceeds normally like in earlier experiments. 

I t reveals that after fuzzy G E N E T ( D C S P 2 ) has found the first few solutions, it 

becomes reluctant to improve until the algorithm has been run for some time. 

We wil l present an explanation in Section 5.5. 

5.4.4 Variation in Domain Size 
The aim of the final set of experiment is to study the algorithms' behaviours on 

problems with large domain size. We increase the domain size from 10 to 50 and 

keep the other parameters and settings identical except the threshold, which is 

now 0.02 (1 - 49/50) according to Equation 4.5. Although the domain size is 

larger, the 150-50-15-15 problem is in general easier than 150-10-15-15 in the 

sense of CSP solving, because the expected number of solutions of 150-50-15-15 

is more than that of 150-10-15-15 by about 10通 times, but the search space 

、 is only 5 times larger. Results on Hamming distance and Manhattan distance 

experiments are shown in Tables 5.9 and 5.10 respectively. 

Like previous experiments on the 150-10-10-10，150-10-15-10 and 150-10-10-

15 problems, when the distance function is Hamming distance, solution stability 

of fuzzy G E N E T ( D C S P ) and fuzzy G E N E T ( D C S P 2 ) are very close: the absolute 

difference in distance is ranging from -0.061 to 0.066. However, when Manhat-

tan distance is used, the difference between them becomes obvious. Solutions of 
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Figure 5 .11: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 
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Figure 5 .12: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 
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Figure 5 .13: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 

fuzzy G E N E T ( D C S P2) against the number of iterations in the 150-10-10-15 prob-
lem, using Hamming distance 
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Figure 5 .15: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 

fuzzy GENET ( D C S P 2 ) against the number of iterations in the 150-10-10-15 prob-

lem, using Manhattan distance 
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Figure 5.16: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 
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\R'\I^C\ FUZZY GENET(DCSP) fuzzy GENET(DCSP2) D I ^ 
Dist. Iter. Time(s) Dist. Iter^ Time(s) diff. 

9 0 % 2 4 . 0 6 7 5 5 4 9 4 . 4 4 7 7 3 2 4 ^ 7 5 2 7 ^ ~ ~ O W 
80% 39.620 84839.6 78.37 39.554 88312.7 81.95 0 066 
70% 49.044 95290.9 98.99 48.980 92410.0 94.79 0.064 
60% 56.155 97817.9 106.95 56.216 106141.0 124.82 -0 061 
50% 61.208 98636.9 118.28 61.189 104924.0 115.69 0.019 

Table 5.9: Comparison between fuzzy G E N E T ( D C S P) and fuzzy 
G E N E T ( D C S P 2 ) on the 150-50-15-15 randomly-generated binary DCSPs, 
using Hamming distance ’ 

FUZZY GENET(DCSP) fuzzy GENET(DCSP2) D I ^ 
Dist. Iter. Time(s) Dist. Iter. Time(s) diff. 

9 0 % 1 4 6 . 1 1 6 7 5 4 1 3 . 4 9 4 J T 4 1 1 8 2 8 7 . 0 3 4 ^ 5 2 002 
80% 250.930 86791.8 90.40 143.986 122239.0 357 58 106 944 
70% 307.872 91297.7 102.14 167.020 126274.0 370.21 140 852 
60% 343.366 96090.4 110.93 180.038 128212.0 374 89 163 328 
50% 370.294 99097.1 118.79 191.950 128603.0 384.36 178.344 

Table 5.10: Comparison between fuzzy G E N E T ( D C S P ) and fuzzy 
G E N E T ( D C S P 2 ) on the 150-50-15-15 randomly-generated binary DCSPs 
using Manhattan distance ’ 

fuzzy G E N E T ( D C S P 2 ) are much more stable, the absolute difference in distance 

is ranging from about 52.002 to 178.344. 

In order to study their performance, progresses of distance achieved in this 

set of experiments are plotted in Figures 5.17, 5.18, 5.19 and 5.20. 

For the Hamming distance experiments, both methods again progress "hand 

in hand" during the whole program execution. In the Manhattan distance 

experiments, fuzzy G E N E T ( D C S P 2 ) obtains more stable results than fuzzy 

� G E N E T ( D C S P ) from the start and keep it until the programs finish. We also 

notice an irregularity in the curves of fuzzy G E N E T ( D C S P 2 ) that they stay 

“flat，，at the beginning for a longer time than in the previous 150-variables 

experiments. Section 5.5 will try to answer this question. 

We conclude that for a problem having moderately large domain size, both 

methods perform equally well in terms of solution quality when a simple distance 

function like Hamming distance is used. When a more demanding distance 
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Figure 5.18: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 

fuzzy G E N E T ( D C S P 2 ) against the CPU time taken in the 150-50-15-15 problem, 
using Hamming distance 
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Figure 5.19: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 

fuzzy G E N E T ( D C S P 2 ) against the number of iterations in the 150-50-15-15 prob-
lem, using Manhattan distance 
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Figure 5.20: Comparison of distance achieved by fuzzy G E N E T ( D C S P ) and 

fuzzy G E N E T ( D C S P2) against the CPU time taken in the 150-50-15-15 problem, 
using Manhattan distance 

93 



Chapter 5. Enhancement of the Modelling Scheme 

function, such as the Manhattan distance, is used, solution quality of fuzzy 

G E N E T ( D C S P 2 ) can surpass that of fuzzy G E N E T ( D C S P) by a large degree. 

5.5 Analysis of Fuzzy G E N E T ( D C S P 2 ) 

In some of the experiments, fuzzy G E N E T ( D C S P 2 ) exhibits a slowdown in dis-

tance improvement during the early moment of program execution, but after 

a while it gradually gains momentum. I t is noticeable in the experiments on 

the 150-10-10-10, 150-10-10-15 and 150-10-15-10 problems using the Manhattan 

distance, and most prominently in the 150-50-15-15 problem. 

We conjecture that this is because the distance bound is too "tight" to the 

search such that its movement is too restricted. The purpose of the distance 

bound is to establish a barrier on the landscape to confine the search to be within 

the areas that contain better solutions. However if the area being searched does 

not have a better solution, the search wil l be forced to enter a local maximum. 

Heuristic learning wil l then be applied and it wi l l eventually come out of the 

confined area and continue in other places. 

I f the search is too confined in an area by the distance bound, it wil l spend 

a lot of time inside it before coming out from it by the help of the heuristic 

learning rule. On the other hand, if the "height" of this barrier can be lowered, 

we believe that this wasted heuristic learning cycle can be avoided since the 

search wil l become easier to retract to variable assignments of poorer stability 

but with fewer constraint violations. 

Consider the following example: we are solving a stability problem, of which 

the CSP has 150 variables and a uniform domain size of 10，and uses Manhattan 

distance. The best distance found so far is 301. The algorithm has been run for 

some time already, and the weights of the constraints are as shown in Table 5.11. 

We are now selecting a value for variable and it turns out that 3 is chosen 

because the input is the highest. 
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Value Distance 
Degree of Weight 

Input 
satisfaction distance bound others 

0 304 0.77800 -0.22200 -6.0 -6.22200 
1 303 0.77726 -0.22274 -7.0 -7.22274 
2 302 0.77652 -0.22348 -7.0 -7.22348 
3 301 0.77578 -0.22422 -5.0 -5.22422 
4 300 0.77504 -0.22496 -5.0 -5.22496 
5 301 0.0 -1.0 -5.0 -6.0 
6 302 0.0 -2.0 -4.0 -6.0 
7 303 0.0 -3.0 -4.0 -7.0 
8 304 0.0 -3.0 -4.0 -7.0 
9 305 0.0 -2.0 -6.0 -8.0 

Table 5.11: Weights of variable z in our hypothetic example under fuzzy 
GENET(DCSP2) 

Value Distance 
Degree of Weight 

Input 
satisfaction distance bound others 

0 304 0.77800 -0.22200 -6.0 -6.22200 
1 303 0.77726 -0.22274 -7.0 -7.22274 
2 302 0.77652 -0.22348 -7.0 -7.22348 
3 301 0.77578 -0.22422 -5.0 -5.22422 
4 300 0.77504 -0.22496 -5.0 -5.22496 
5 301 0.0 -0.22570 -5.0 -5.22570 
6 302 0.0 -0.45288 -4.0 -4.45288 
7 303 0.0 -0.68154 -4.0 -4.68154 
8 304 0.0 -0.68376 -4.0 -4.68376 
9 305 0.0 -0.45732 -6.0 -6.45732 

Table 5.12: Weights of variable z in our hypothetic example if weights of tuples 
in distance bound are not reset to -1 and tuples are penalized by their original 
weights 

If, however, weights of all tuples in the distance bound are retained when 

a better solution is found, in other words no tuples will have their weights re

initialized to -1, and when penalizing them the original values of their weights 

are used instead of using - 1, we will have the values in Table 5.12. In this case, 

domain value 6 is chosen instead of 3. The purpose of this strategy is to lower 

the barrier of the distance bound, because the weights are now less negative. As 

expected, values that lead to poorer stability (but with few constraint violations) 

will now have a higher chance to be selected. 
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Figure 5.21: Execution of fuzzy GENET(DCSP2) on the 150-10-10-10 problem 

(IC'I : ICI = 90%, Manhattan distance) when weights of. tuples in distance 

bound are not reset to -1 and tuples are penalized by their original weights 

As a proof of concept, we employ the strategy just mentioned to test the 150-

10-10-10 problem (IC'I : ICI = 90%) using Manhattan distance again. Results 

are plotted in Figure 5.21. Interestingly enough, solution quality is improved in 

a much more rapid rate, and the best solution is just as good as that found by 

the original scheme. 

To complete our study, we tested the opposite of this strategy by enlarging 

the weights, which are reset to -4 instead of -1 , and are penalized by adding 

-4 each time. Figure 5.22 shows that it really does worsen the performance. 
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Figure 5.22: Execution of fuzzy G E N E T ( D C S P 2 ) on the 150-10-10-10 problem 

(|C'| ： |C| = 90%, Manhattan distance) when tuples in distance bound are reset 
to and penalized by —4 
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Chap te r 6 

Conclusion 

We end the thesis by summarizing our contributions in this research and pre-

senting possible directions for future work. 

6.1 Contributions 
Our major contribution is we propose a fuzzy constraint satisfaction approach 

to solve stability problems effectively and efficiently. 

This dissertation describes two schemes to model a stability problem as a 

fuzzy CSP. The first one is to impose supplementary unary fuzzy constraints 

into a modified CSP. Users can express their criteria of a stable solution with 

the help of the degrees of satisfaction in the tuples of these supplementary 

constraints. F\izzy GENET is modified to make it successively look for better 

solutions until stopping criteria are met. In this regard, fuzzy G E N E T ( D C S P ) 
is an anytime search algorithm [9’ 51], for the stability of the solutions can be 

improved as long as more time is given. Experimental results on small problems 

show that fuzzy G E N E T ( D C S P ) is a good anytime search algorithm, as initial 

solutions can be found quickly and are of reasonable quality. The results also 

illustrate that the final results are very close to the optimal solutions. 

As the first approach cannot model any distance metrics, we then improve 
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the first modelling formulation by replacing the unary fuzzy constraints with 

an n-ary fuzzy constraint called distance bound. The distance bound con-

straint makes modelling stability problems simpler and more flexible. Fuzzy 

G E N E T ( D C S P ) is further enhanced by incorporating a strategy to limit the 

search to only look for better solutions, which is coincidentally similar to the 

idea of iterative deepening [17J. We show that this approach achieves solutions 

that are at least as stable as those found by the first one, and are substantially 

better in some cases. The second approach is also more efficient than the first 

one most of the time as seen from the convergence graphs. Its advantage is 

more obvious when the problem size is large and when the Manhattan distance 

is used. 

6.2 Future Work 
As pointed out in Section 5 .5 , fuzzy G E N E T ( D C S P 2 ) does not converge well for 

the large-size problems at the beginning of program execution, especially in the 

150-50-15-15 case. Explanations and preliminary testing have been presented 

to show that retaining the weights of the tuples in the distance bound and de-

creasing the value for penalization may improve the effectiveness and efficiency 

of the algorithm. An extensive experimentation and more in-depth analysis are 

needed to ensure the usefulness of this approach. Moreover, the reason of the 

irregularities shown in Figure 4.3(c) is still unknown to us, and investigation 

should be carried out. 

Since carrying out this research is motivated by the practical necessity in 

real-life problems, it is worthwhile to test our proposals on real-life applications, 

such as the train rescheduling problem [7] and the ones mentioned in Section 2.2. 

However, fuzzy G E N E T ( D C S P 2 ) is not powerful enough to solve many kinds of 

these applications because it can only handle binary constraints. Decompos-

ing non-binary constraints into binary ones is impractical due to the possible 
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tremendous increase in the number of constraints. Hence we have to first extend 

fuzzy G E N E T ( D C S P 2 ) to handle non-binary constraints. E-GENET [48, 18] is 

an enhancement of GENET to remedy this shortcoming of GENET. Many of its 

ideas can be applied to fuzzy G E N E T ( D C S P 2 ) , most notably the concept ofcon-

stmint node and intermediate node. The ability to efficiently handle the linear 

arithmetic constraints^ and general constraints, for instance the i l l e g a l con-

straint, the atmost constraint and the among constraint, is also very desirable, 

because they often appear in real-world applications. 

It is also interesting to discover some applications with unique stability re-

quirements to examine how the algorithm performs on a wider range of distance 

metrics. 

lA linear arithmetic constraint is of the form X o F , where X and Y are linear 
anthnjetic expressions and o e { = ’ /，<’ <,〉，>}. ^ and F can be written as 
A) + Ai^^i + . . . + AkUk, where each Ai,0<i<kisan integer and Ui,l < j < k 
IS a variable. — 
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