
An Intelligent IP-based Call Center with

Fault Tolerance Design

Leung Cheung-chi

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science & Engineering

Supervised by:

Prof. Y.S. Moon

• The Chinese University of Hong Kong

June 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or whole of the materials in the thesis in a proposed

publication must seek copyright release from the Dean of the Graduate School.

f卜(统系較^^、

(r(2 3 m ^ i
叫丨V:R�:iTY

論文題目：備有容錯設計的IP作基礎之智能呼叫中心

作者：梁祥智

學院：工程學院

學部：計算機科學與工程

修讀學位：哲學碩士

摘要

利用話音在互聯網協定（VoIP)的技術’我們建議了一個用來作線上客戶

服務的I P作基礎之智能呼叫中心模型。爲了令這個應用模型適合於不同行業

上的客戶服務，我們將介紹一個三層式的軟件結構用來作模型的實施°這個三

層式的設計加強建議模型中各元件的再用性及縮短令這建議模型適應於某一行

業的開發時間。

自動來電分配器（ A u t o m a t i c C a l l D i s t r i b u t o r

)是這個建議模型中的主要元件。它運作於三層式的軟件結構之中層。它的功

肯g是選擇適當的服務員去接聽來電及執行來電管理。自動來電分配器依照顧客

的資料、flE務員的資料、所有現存來電的狀態和過去來電記錄去執行這些這些

工作。我們對來電管理內有的功能及來電分配策略將會作詳細討論。

令自動來電分配器有一個好的界面與其他元件接合及縮短其開發時間，我們考

察了兩個著名的伺服器端元件架構，它們分別是E n t e r P r i S e J a

v a B e a n s (E J B) 及 C 0 M + °因爲 E JB模型較爲適合自動來電分

配器的需要，所以我們在建議模型的實施時會利用到E J B模型。

因爲高可用性是呼叫中心的基本條件，所以我們需要考慮到容錯(fault

t o l e r a n c e)這個問題。這篇論文會討論到怎樣去設計軟件架構和怎

樣利用E JB模型所提供的功能去解決在建議模型中各元件可能的失效問題。

我們會提到其他在利用E J B模型去實施自動來電分配器時遇到的技術要求。

有了實施的設計才是完整的設計。我們利用討論過的技術去實施了一個實驗的

自動來電分配器。我們還會觀察一下這個實施的結果。最後我們會對完成的工

作作出總結。

An Intelligent IP-based Call Center with

Fault Tolerance Design

submitted by

Leung Cheung-chi

for the degree of Master of Philosophy

at the Chinese University of Hong Kong

Abstract

Based mainly on VoIP techniques, an Intelligent IP-based Call Center Model

is proposed for online help desk services. To make the application model suitable for

customer services in different industries, a three-layer software structure is

introduced for its implementation. This three-layer design enhances the reusability of

components in the proposed model and shortens the development time for adapting

the application model to a specific industry domain.

The core component of the proposed model is an Automatic Call Distributor

(ACD). The ACD operates in the middle layer of the three-layer software structure.

The tasks of the ACD are to choose a suitable operator to answer an incoming call

and to perform the call management. The ACD performs these tasks based on

customers' profile, operators' information, states of current calls and past call records.

The functionality in call management and the routing mechanism are discussed in

detail.

- i -

To provide the ACD with a well-defined interface with other components and

shorten its development time, two prominent server-side component architectures,

Enterprise JavaBeans (EJB) and COM+, are examined. As the EJB model suits the

ACD's needs more, the EJB model is deployed in the implementation.

Since high availability is essential for a call center, the issue of fault tolerance

is considered. This thesis discusses how the software architecture is designed and

features provided in the EJB model are used to tackle the possible failure problems

of the key components, namely the VoIP gateways and the ACD, in the proposed

model. Other technical requirements for the implementation of the ACD using the

EJB model are figured out.

No design is really complete without implementation. We implemented an

experimental ACD using the discussed technique and made observations of the

implementation results. Finally, we complete this thesis with concluding remarks on

our completed works.

-ii -

Acknowledgment

I would like to thank my supervisor, Prof. Y.S. Moon, who entrusts me to

work on this research topic and supports me with much guidance and references

along the research period.

Moreover, two classmates, Mr. H C. Ho and Mr. K.N. Yuen, who have

worked closely with me for these two years and I thank for their research

collaboration and useful suggestions.

At last, I would like to thank my parents, who support me continuously

during these two years.

-iii -

Table of Contents

1 INTRODUCTION 1

1.1 Background 1

1.2 Objective 2

1.3 Overview of the Thesis 3

2 APPLICATION OF VOIP IN CALL CENTER 6

2.1 An Intelligent IP-based Call Center Model 6

2.1.1 Major Components 7

a) VoIP Gateways 7

b) Automatic Call Distributor (ACD) 8

c) Operators g

d) Monitoring Tool 9

2.1.2 Major Functions 9

2.2 Experimental Study of an IP-to-IP Call Center - VoIP Application in

Education 10

2.2.1 Architecture 11

2.2.2 Voice Connection Server 12

2.2.3 Call Establishment 14

2.2.4 A Preliminary Implementation 14

3 THE ACD AND ITS SOFTWARE STRUCTURE 17

3.1 Three-Layer Software Structure 17

3.1.1 Network Infrastructure Layer 1 g

3.1.2 Call Management Layer \g

3.1.3 Application Layer \ 9

3.1.4 Interoperation Between Layers 19

3.2 Advantages of Adopting this Software Structure 20

- i v -

3.3 Functional Overview of the ACD 21

3.3.1 Call Establishment 21

3.3.2 Call Waiting 23

3.3.3 Call Forwarding 25

3.3.4 Routing Mechanism in the ACD 26

a) Queues, Operator Groups and Operators 26

b) Priority Based Call Routing 28

c) Routing of New Incoming Calls 29

d) Assigning Calls in Waiting Queues to Operators 32

4 IMPLEMENTATION OF THE ACD 34

4.1 Requirements in implementing the ACD 34

4.1.1 Asynchronous Method Call 34

4.1.2 Transaction Planning 36

4.1.3 Failure Handling 37

4.2 Available Technologies 38

4.2.1 Enterprise JavaBean (EJB) 38

a) Entity Bean 40

b) Session Bean 40

c) Usage of Session Beans and Entity Beans 41

4.2.2 COM+ 42

4.2.3 EJB vs COM+ 43

4.3 Implementation 47

4.3.1 Mapping the EJB model to the Implementation of the ACD 47

4.3.2 Design of Entity Beans 49

4.3.3 Design of Session Beans 51

4.3.4 Asynchronous Method Call 53

4.3.5 Transaction Planning 55

4.3.6 Failure Handling 57

a) Failure Handling for VoIP gateways 58

b) Failure Handling in the ACD 60

- V -

5 AN EXPERIMENT 64

5.1 Experiment on the Call Center Prototype 64

5.1.1 Setup of the Experiment 64

5.1.2 Experimental Results 66

a) Startup Time for Different Components 66

b) Possessing Time for Different Requests 67

5.2 Observations 69

5.2.1 Observations on Experimental Results 69

5.2.2 Advantages and Disadvantages of Using EJB 70

6 CONCLUSIONS 72

BIBLIOGRAPHY 76

-vi -

Table of Figures

Figure 2-1 The CRM application model 6

Figure 2-2 The IP-to-IP center application model used in education environment. 11

Figure 2-3 Software architecture of the Voice Connection Server 13

Figure 2-4 Establishing a call between a student and a teacher 14

Figure 3-1 The software structure of the CRM model 17

Figure 3-2 Interoperation between layers when a customer phones to the call center

20

Figure 3-3 Typical call establishment 22

Figure 3-4 Example of call waiting 24

Figure 3-5 Example of call forwarding 25

Figure 3-6 Relationship between Queues, Operator Groups and Operators in a

Bank's Call Center 27

Figure 3-7 Flow diagram for handling a new incoming call in the ACD 31

Figure 3-8 Customers in three queues which Operator E serves 33

Figure 4-1 (a) asynchronous method call and (b) synchronous method call 35

Figure 4-2 Software architecture of Enterprise JavaBean 39

Figure 4-3 Session beans and entity beans 41

Figure 4-4 Software architecture of COM+ 42

Figure 4-5 EJB vs COM+ 46

Figure 4-6 Various components of the call center system and their interactions..... 48

Figure 4-7 Relationships among entity beans created 50

Figure 4-8 Methods defined in two session beans 52

Figure 4-9 An asynchronous call method achieved via a RMI client-side callback 54

Figure 4-10 Transaction attributes and their behavior 57

Figure 4-11 Failure handling for a gateway when (a) the ACD or (b) an operator

detects the failure 59

Figure 4-12 Failure handling for the ACD if (a) the naming service, (b) the database

server or (c) the active EJB server fails 62

Figure 5-1 Setup of the experiment 65

Figure 5-2 Configuration of computers in the call center prototype 65

Figure 5-3 Measurements on startup time for different functional compoents 67

-vii -

Figure 5-4 Measurement on average processing time on different requests in the

ACD 68

-viii -

1 Introduction

1.1 Background

Traditionally, telephone line network is used to carry analog voice signal

between telephones while data network is used to carry digital data between

computers. With the advancement of the CPU computation power, voice-coding

technologies and computer network technologies, voice can be converted into digital

format for transport over IP based networks. There are several developing standards

that aid the transmission of voice over IP. For example, H.323 [1] which is targeted

to the transmission of multimedia over packet-based network; Session Initiation

Protocol (SIP) [2] which aims at the creation of sessions between different parties;

Real-Time Transport Protocol (RTP) [3] which transmits real-time packet over

network. These factors make the computer networking infrastructure changing

towards integrated service networks capable of simultaneously supporting real time

conversational services and data services.

Voice over IP techniques can be deployed in many areas, such as

international calling, telemarketing, education and customer support. In this thesis,

an Intelligent IP-based Call Center Model is proposed for customer support services.

In the proposed model, VoIP gateways connect a Public Switched Telephone

Network (PSTN) to the Intranet of the call center. Each operator in the call center

works with a multimedia PC which provides telephone services and relevant

information for the incoming call. When an incoming telephone call comes into a

gateway, the gateway routes the call to an Automatic Call Distributor (ACD) [4],

Page 1

which finds the most appropriate operator to serve the incoming call.

In a traditional call center, an analog and proprietary-designed private branch

exchange (PBX) which allows all operators in the call center to share a certain

number of external phone lines is used. However, most PBX-based call center

designs are limited to choose a low capacity solution that cannot grow beyond a few

dozen operators, or a high capacity solution that is cost prohibitive for less than a

hundred or more operators. Moreover, the telephone calls and relevant information

about the calls are separated. This often leads to problems that make quality

customer service incomplete or difficult.

Regarding these limitations, IP based call center designs emerged. The IP

network and its inherent ability to connect data devices via packet switching replace

analog and proprietary-designed PBXs, so the telephone call and the call information

can be linked easily. This linkage makes call handling and customer service a

simpler task. The distribution of incoming calls is handled by an Automatic Call

Distributor, which is a software implementation utilizing industry standard computer

hardware. This enables the system to start small and expand with an almost

completely linear cost structure along the growth curve.

1.2 Objective

Based mainly on the VoIP techniques, a Customer Relationship Management

(CRM) [5] [6] application model, Intelligent IP-based Call Center Model, is

proposed for customer support services. Consider the following scenario. A customer

Page 2

who requests customer support services phones to a call center. According to the

caller ID of this new incoming call, the call center tries to search for the identity of

this customer. According to the identity and the request of the customer, a suitable

operator is chosen to answer this call. When this operator answers this call, the

profile of this customer pops up on the operator's workstation. If the customer

accesses a webpage and his/her questions are related to this webpage, the web-

surfing status of the customer can be transferred to the operator when necessary. This

feature is called collaborative browsing [7]. In this way, the customer can receive

personalized service.

In this application model, data packets from the Internet and analogue voice

signal from PSTN can enter the call center system through a digital voice gateway to

replace a traditional analogue Private Branch Exchange (PBX). In such a way, we

have a voice and data unified environment [8]. In this unified environment, value-

added services such as collaborative browsing and comprehensive profile of

customers given to operators facilitate the call center to know ahead enough

information about the customers in order to provide them with the right

services/products at the right time.

1.3 Overview of the Thesis

Chapter 2 of this thesis discusses the application of VoIP in call center. This

section first shows a proposed Intelligent IP-based Call Center Model. To test the

feasibility of implementing a call center system with VoIP technologies, a prototype

of IP-to-IP call center which is used for an education environment is implemented

Page 3

and mentioned in this section.

To make the proposed model suitable for customer services in different

industries, a specific software structure is adopted for the application model. Chapter

3 of this thesis discusses the software structure of the proposed model. The ACD, the

key component of the application model, operates in the call management layer of

the software structure. This call management layer provides call management such as

establishing calls, maintaining call states and supporting advanced telephony features

and fault tolerance. Chapter 3 also describes the functional overview of the ACD. It

includes how the ACD establishes a call, provides call-waiting and call-forwarding

features and the routing mechanism in the ACD

To provide the ACD with a well-defined interface with other components and

shorten its development time, two prominent server-side component architectures,

Enterprise JavaBeans (EJB) and COM+，are examined in Chapter 4. This chapter

shows how the EJB model suits the ACD's needs in the implementation more than

the COM+ model does. High availability is essential for a call center, so the issue of

fault tolerance is considered. When a fiinctional component fails, this must be

identified and reported, and a mechanism to overcome the failure must be provided.

This arrangement allows the remaining functional components to continue to provide

service. This chapter also discusses how the software architecture is designed and

features provided in the EJB model are used to tackle the failures of key components

in the proposed model. Other technical requirements in implementing the ACD are

discussed. We also describe the way in which the ACD is implemented to fulfill

these requirements using the EJB model.

Page 4

Chapter 5 presents results and observations in implementing the proposed

model. Chapter 6 concludes this thesis.

Page 5

2 Application of VoIP in Call Center

This chapter firstly describes a proposed Intelligent IP-based Call Center

Model for customer support services. In the proposed model, customers use

traditional telephones to phone to the call center. However, operators in the call

center are located in an IP network to handle calls. To test the feasibility of this

proposed model, a simple call center system which is specifically used in education

is implemented and mentioned in this chapter. In this simple system, both caller and

callee are located in an IP network and no user is located in a Public Switched

Telephone Network (PSTN).

2.1 An Intelligent IP-based Call Center Model

I I
/ ‘ 1 • A(|d Web/Server

I J S ^ : — o B B
• V y v y 1/ T n \ Workstation Workstation Workstation
• VoIP Intranet 1 1 ~ I J _ I ！ _

f n B s
ML I • • ‘ Z l^z f r . , ! r T R H l Workstation 冒0厂1181«1100 Workstation

_ Internet g K „ ,

Customer s J V J J S Operators

CollaboratiTe | |[
browsing server i.ti*'*.'^

Monitoring
tool

Figure 2-1 The CRM application model

Page 6

The proposed Intelligent IP-based Call Center Model is depicted in Figure 2-

1. A customer who requests customer support services uses a PSTN to communicate

with an operator in the call center. The VoIP gateway connects the PSTN to the

Intranet of the call center. The VoIP gateway digitizes, compresses, puts the voice of

the customer from the PSTN into data packets and forwards the packets to the

operator. When a new telephone call comes into the gateway, the gateway routes the

call to the Automatic Call Distributor (ACD). The ACD finds the most appropriate

operator to serve the incoming call. If there is no suitable operator to handle this call

immediately, this call is put into a waiting queue temporarily.

2.1.1 Major Components

The proposed model consists of four major components, including VoIP

gateways, an Automatic Call Distributor (ACD), operators and a monitoring tool.

a) VoIP Gateways

The PSTN carries voice as a 64-kbps stream using pulse-code-modulation

encoding, while the Intranet of the call center carries voice using the Real-Time

Transport Protocol (RTP) and various encoding schemes over a range of bit rates.

VoIP gateways convert between voice formats in the PSTN and the Intranet. VoIP

gateways enable phone connections to be made between users in the PSTN and the

IP network.

Page 7

When a customer phones to the call center, the call is received by a VoIP

gateway. The VoIP gateway sends a call request to the ACD on behalf of a customer.

The gateway then converts the telephone call to an IP session with the selected

operator.

b) Automatic Call Distributor (ACD)

The main task of the ACD is to choose a suitable operator to answer an

incoming call. When a customer requests to talk to an operator, the ACD assigns an

operator that served the customer before or assigns an operator that possesses certain

skills to help the customer better. If there is no suitable operator to handle this call

immediately, this call is put into a waiting queue temporarily. The ACD also stores

customers' profile, operators' information, all current call states and past call records.

The ACD processes the call routing mainly based on such information.

c) Operators

When an operator starts his/her work, he/she logins an workstation. The

system then updates the information about an operator who is ready to accept calls

and the IP address of the operator's workstation. When an operator is assigned to

answer a call, the profile of the caller/customer, if available, will appear on the

operator's screen. If the operator is not able to answer the customer's questions, the

operator can forward the call to his/her supervisor or forward the call to the ACD

server with specified parameters (e.g. skills needed).

Page 8

d) Monitoring Tool

The system administrator is equipped with a monitoring tool. When a failure

occurs in the system, the system administrator can identify it and then replace the

failed component to recover the system. For example，if a gateway makes a request

to the ACD and does not receive any reply from the ACD until the timeout, the

gateway informs the monitoring tool that the ACD fails. The monitoring tool then

checks whether this has been reported before and prompts this information to the

screen. The system administrator can replace the failed gateway with a new one.

Before the recovery, the system can still provide part of service as other gateways

still work.

2.1.2 Major Functions

Three main functions, namely typical voice connection, call waiting and call

forwarding, are provided in the proposed model.

The call forwarding feature lets an operator forward a call to another operator

when the operator is not able to answer a customer's question in this call.

The call waiting feature lets an operator hold a current call and accept a new

call. Operators probably do not receive a new incoming call when they are answering

calls. The situation may occur only when an operator forwards a call to a specific

operator who is answering another call at that time.

These three functions will be discussed in details in Section 3.3, Functional

Page 9

Overview of the ACD.

2.2 Experimental Study of an IP-to-IP Call Center - VoIP

Application in Education

Due to the popularity of Web, educational organizations use the web for self-

learning purposes. They create course homepages which show reading lists, lecture

notes and handouts, and provide some form of feedback and assessment in this

courseware. It allows the individual to acquire new knowledge and skills at any time,

at any location, at any pace. However, a major shortcoming of the Web-Lecture is

the lack of interaction between students and teachers in real time. With the

integration of the VoIP technology into the Web-Lecture, this problem can be tackled.

An IP-to-IP call center prototype is built to allow students to communicate

with their tutors/lecturers using VoIP. As a result, students can study at their own

pace. When they encounter problems, they can ask their tutors/lecturers through

VoIP. This scenario is a call center that is specifically used in an education

environment [9].

There are three important elements in this call-center: call management, voice

transmission and collaborative browsing. Call management provides user

authentication, call establishment, some advanced call features via a Voice

Connection Server. Voice transmission provides two-way voice communication

using VoIP technologies. Collaborative browser provides the same browser window

to both sides for collaborative working. Voice transmission [10] and collaborative

Page 10

browsing [11] are constructed by other members in the VoIP research group.

2.2.1 Architecture

In this IP-to-IP call center, there are four components: students with their

computers, lecturers/tutors with their computers, an Intranet and a Voice Connection

Server.

The IP-to-IP call center application is depicted in Figure 2-2. In the proposed

system, students' multimedia PCs and teachers' multimedia PC are all connected to

an IP network. The voice connection server is connected to the network for user

authentication, user identification, call establishment and some advanced call

features such as call waiting and call forwarding.

Voice Connection
Server

k
——1 _ li ^——

盧 W

student's PC Teacher's PC

A 门 • Intranet f —

- J I \ / ' � [_

^^ — m i
Student's PC J _ Teacher's PC

_ l | ：
.

/ 邑 /

Collaborative t - B ^ ^
Students PC Browsing Server Teacher, s PC

Figure 2-2 The IP-to-IP center application model used in education environment

Page 11

Students attend a lesson on multimedia PCs at their own pace. However,

when a student has difficulties in understanding parts of the lesson, he/she may raise

questions to a teacher through his/her PC's multimedia system. To do so, the student

activates particular VoIP software by clicking the button "Ask teacher" in the main

window where class material resides. This request is sent to the Voice Connection

Server which finds the IP address of the selected teacher's PC and replies the IP

address to the student. The VoIP software in the student then establishes a voice

connection with the teacher's PC. As a result, students may ask the teacher questions

even when the teacher is not in the same room with the students.

If the questions cannot be answered orally, students and teachers can

exchange their ideas through collaborative browsing software. This software

component processes the screen transfer to allow teachers to view and control

students' navigation of lecture materials. Moreover, under students' permission, the

system may pass their web navigation history to teachers such that teachers can

understand the overall progress of students more thoroughly. Lastly, teachers may

redirect students to pages that answer their questions.

2.2.2 Voice Connection Server

The software architecture of the Voice Connection Server is shown in Figure

2-3. The Voice Connection consists of three major components, including a RMI

receiver，a core part and a database server. The RMI receiver and the core part are

Page 12

implemented in the Java programming language.

The RMI receiver receives requests from clients (students or teachers) via

Remote Method Invocation (RMI) [12] and transfers these requests to the core part.

RMI, which is the Java version of the remote procedure call, provides a way that

objects on different computers can interact in a distributed network. When a reply is

obtained from the core part, the reply is forwarded to the corresponding client.

The core part provides services to clients (students or teachers), such as

logging into the system, establishing calls and call forwarding etc. The core part also

maintains the online status of students and teachers who have logged into the system,

such as IP addresses of PCs which these people are using.

The database maintains teachers' and students' profiles (e.g. user name, user

password, etc) in persistence storage. When the system needs such information, the

core establishes a connection with the database server through Java Database

Connection (JDBC) [13]. The JDBC API provides a call-level API for SQL-based

database access in Java programming language.

Voice Connection Server

Request from client
(students I teachers) ^

via RMI I S m C ^
• RMI I • Core •

M receiver W — 4 Database

r “ k ^

Figure 2-3 Software architecture of the Voice Connection Server

~ Page 13

2.2.3 Call Establishment

Figure 2-4 shows steps to set up a voice connection between a student and a

teacher.

/ /I
m 尹I

Login ^ “

r ^ r 3 J
1 Voice Connection Server

I Request to Teacher B

‘

丨,1::.巡••丄-J Success + Teacher B's TP address

Student A’ s workstation

i i h Request ‘
• / J

make voice connection ^ J ^ ^ J •

Bake voice connection 丨丨,丨

Teacher B' s workstation

Figure 2-4 Establishing a call between a student and a teacher

When students or teachers activate the VoIP client software, they need to type

in their user name and password to login the system. The user authentication is done

in the Voice Connection Server. When a student wants to talk to a specific teacher,

the student sends this request to the Voice Connection Server. The server replies the

student with the IP address of the PC which the teacher is using currently. Then the

student sends a call request to the teacher and then a voice connection is established

between them.

2.2.4 A Preliminary Implementation

The implementation of this IP-to-IP call center shows that it is feasible to

Page 14

implement user authentication, user identification, call establishment and some

advanced call features such as call waiting and call forwarding (services provided the

Voice Connection Service) as software on top of a PC connected to an IP network.

The implementation is mainly based on the Java programming language and

some of its APIs. This provides a platform independent environment. With the

deployment of Java applets, our system can be easily integrated with the Web. Also,

the rich support from APIs can shorten the implementation time.

During the setup of voice communication, interactions between the Voice

Connection Server and two client software (the caller and the callee) are

implemented through Java RMI. With the deployment of Java RMI, Network socket

programming between client and server which is a quite cumbersome work need not

concerned. We can mainly concentrate on the interface and the implementation of the

service requested from the clients.

However, it is found that the system is not reliable enough. The Voice

Connection Server contains the online status of students and teachers who have

logged into the system in volatile memory. When the Voice Connection Server

crashes, this information disappears. Even if the Voice Connection Server restarts,

this information cannot be recovered.

Secondly, even if the system puts all system information in a database, we

still cannot guarantee that all the information stored in database is consistent. When

the Voice Connection Server processes operations on behalf a client's request, the

Voice Connection Server updates the system information in the database. Meanwhile,

if the Voice Connection Server crashes, all database updates may not be finished

Page 15

before the crash. This makes the information stored in the database in consistent.

Problems related to the system reliability are figured out in this experimental

implementation. These problems will be tackled in the ultimate implementation of

the proposed Intelligent IP-based Call Center Model.

Page 16

3 The ACD and Its Software Structure

The chapter firstly describes a three-layer software structure for the proposed

Intelligent IP-based Call Center model. The ACD operates in the middle layer of this

three-layer software structure. The chapter shows how this middle layer interacts

with other layers and provides a functional overview of the ACD.

3.1 Three-Layer Software Structure

To make the proposed model suitable for customer services in different

applications, a specific software structure is designed.

Application Layer

Call Management Layer
—

Figure 3-1 The software structure of the CRM model

Figure 3-1 shows the software structure. This software structure contains

three layers, namely network infrastructure layer, call management layer and

application layer.

Page 17

3.1.1 Network Infrastructure Layer

In the button, there is a network infrastructure layer which facilitates the

transmission of voice over IP networks. Codecs [14] and transmission protocols for

voice and data reside in this layer. Before transmitting voice over IP networks, the

voice is digitized from analog form using codecs. In our case, the GSM codec [15] is

currently used. After codec is employed to digitize analog voice signal into binary

form, we divide the resultant data into segments and place these segments into

packets to be transmitted over the network. Realtime Transport Protocol (RTP)

which is particularly designed for transmission of real time packets is used to

transmit voice packet. Transmission Control Protocol (TCP) [16] is used to transmit

the control data.

3.1.2 Call Management Layer

Located on top of the network infrastructure layer, the call management layer

can be considered as the middleware layer which provides call management such as

establishing calls, maintaining call states and supporting advanced telephony features

and fault tolerance. Call management of gateways, the monitoring tool and the ACD

operate in this layer. The call management layer is based on TCP/IP provided by the

network infrastructure layer.

Page 18

3.1.3 Application Layer

Located on top of the call management layer is an application layer which

provides services to operators, such as logging into the system, notification of

receiving a call, accessing the profile of customers and collaborative browsing

service. Operator applications operate on the application layer. The application layer

interfaces with the network infrastructure layer through the RTP socket API for

sending and receiving voice stream. The application layer interfaces with the call

management layer via a self-defined API for sending and receiving control data.

3.1.4 Interoperation Between Layers

Figure 3-2 illustrates how these layers interoperate when a customer phones

to the call center. When a gateway receives a new incoming call, the call

management layer in the gateway initiates a Remote Method Invocation (RMI)

request to the call management layer in the ACD. RMI, which is the Java version of

the remote procedure call, provides a way that objects on different computers can

interact in a distributed network. If there is a suitable operator who is available to

answer this call, the ACD then replies to the gateway with the IP address of the

operator. If the gateway does not receive any response from the ACD, this implies

that the ACD has failed. The call management layer in the gateway informs the call

management layer in the monitoring tool that the ACD fails to respond through a

RMI request. If the gateway receives the reply with the IP address of the operator

from the ACD, the gateway requests a voice connection with this operator. In the

operator application, the call management layer receives this request and propagates

Page 19

it to the application layer. The application layer decides whether to accept this call

and sends this decision to the call management layer. Then the call management

layer of the operator application replies to the call management layer of the gateway.

If the operator accepts the incoming call, a voice connection is established between

the gateway and the operator application through RTP packets.

Operator

Gateway ACD 八卯 � � ―"
" “ c o n t r o l voice

I •本丨 - t | 个

_ _ _ • m i l

request via RMI

2. reply ,
3. request to talk via RMI

4. reply

5. RTP packets

Monitoring Tool

I I Application Layer

I I Call Manageient Layer

r . , . H H I I H H I H ^ I ^ ^ ^ H Infrastructure Layer
report failure in 1 via RMI

Figure 3-2 Interoperation between layers when a customer phones to the call center

3.2 Advantages of Adopting this Software Structure

This three-layer design increases the reusability of components in the

proposed model and shortens the development time of the application model.

Interfaces between various layers are clearly defined. Components in the application

Page 20

layer can be changed to suit specific needs while components in other layers remain

unchanged. For example, if a VoIP enabled web lecture [9] is built, we can keep the

components in the network infrastructure layer and the call management layer in the

Intelligent IP-based Call Center Model. The collaborative browsing service and the

operator software in the proposed model can be altered to suit the needs of the

interactive web lecture system. In such a system, students can ask teachers remotely

and they work collaboratively to find solutions to problems by exchanging screens

and the relevant webpages.

3.3 Functional Overview of the ACD

The ACD, as the core component of the proposed model, provides services to

gateways and users. Services provided include call establishment, call waiting and

call forwarding.

When a customer phones to the call center, the ACD finds the most

appropriate operator to serve the incoming call. If there is no suitable operator to

handle this call immediately, this call is put into a waiting queue temporarily. This

section will describe the routing mechanism in the ACD.

3.3.1 Call Establishment

When a customer phones to the call centre, the phone call is answered by a

VoIP gateway. The gateway acts as a mediator to request service on behalf of the

Page 21

customer. Figure 3-3 depicts steps to set up a voice connection between a customer

and an operator.

10. disconnect

3. new incoming call | 2. ok
• ACD

： ^
4. waiting in queue I • 1. login

J i

• 6. next caller's ，�

information ‘
€ra|eway ^ 7. ready to talk • f ^ i ^ M

5. ready for next call h ” 、城；

iiTi i

8. request call connection

9. disconnect

Figure 3-3 Typical call establishment

Before a customer phones to the call centre, at least one operator has logged

into the system (Step 1 and 2). When a customer phones to the call centre, the

gateway sends an "new incoming call" request to the ACD with parameters, such as

the caller id, the phone number the customer has dialed and the selection made by the

customer from touch-tone input (Step 3). The ACD checks whether an suitable

operator is available to answer this call. If so, the ACD informs the gateway an

operator is assigned to the customer (Step 7; Steps 4-6 skipped). Otherwise, the ACD

Page 22

informs the gateway that this call is assigned to a certain queue according to these

parameters (Step 4) (The mechanism is explained in Section 3.3.4 "Routing

Mechanisam in the ACD" in detail). When an operator finishes a call, the operator

informs the ACD that he/she is ready to answer another call (Step 5). The ACD

replies to the operator with the information of the next caller (Step 6) and informs the

gateway that this call is answered by this operator (Step 7). Then the gateway

initiates a call connection to this operator. When the call is to be finished, either the

operator or the gateway can disconnect the call (Step 8) and the one who invokes the

disconnection needs to report the disconnection to the ACD (Step 9).

3.3.2 Call Waiting

The call waiting feature lets an operator to hold a current call and accept a

new call. Figure 3-4 shows how the operator uses this feature. Operators probably do

not receive new incoming calls when they are answering calls. The situation may

occur only when an operator forwards a call to a specific operator who is answering

another call at that time.

We assume that customer 1 and operator 1 have already made a voice

connection (Step 1). When customer 2 requests a call connection to operator 1 (Step

2)，operator 1 accepts the new call (Step 3). At the same time, operator 1 needs to

hold the original call and temporarily close the voice connection with customer 1

(Step 4). The gateway reports the ACD that the customer I ' s call is being held (Step

5). The voice connection between customer 2 and operator 1 is established (Step 6).

When Operator 1 wants to hold customer 2's call and talk to customer 1 again,

Page 23

operator 1 send a "hold" message to customer 2 (Step 7) and the gateway reports to

the ACD that customer 2，s call is being held (Step 8). Operator 1 then informs

customer 1 to resume the call (Step 9) and the gateway reports this to the ACD (Step

10). Voice connection is re-established between customer 1 and operator 1.

8. being hold

I ,1 ‘
10. resume call

• ACD
•

5. being hold L ™ — = = J

11. voice connection re-established

l i
gpfl^—

• a t e w a y ^ 1» talking ‘
J ， O p a ' a t a r l ^

customer 1) 7 m
4. hold

i L

^ ^ 2. request call connection
� ^ s y f c l m l f o f ^

cttifomey 2) ^ ~
1 1 3.0k

T 6. voice connection established

7. hold

Figure 3-4 Example of call waiting

Page 24

3.3.3 Call Forwarding

The call-forwarding feature lets an operator forward a call to another operator

when the operator is not able to answer a customer's question in this call. Figure 3-5

shows an example of call forwarding. Here assumes that a customer is talking with

operator 1 now (Step 1). When operator 1 finds that he/she is not able to answer the

customer's questions, the operator can forward the call to a specific operator or

forward the call to another queue (Step 2 and 3). The ACD may give the customer

high priority to leave the queue as the customer has waited in a queue once before.

When there is an available operator (operator 2) to answer the customer's call, the

ACD sends a “ready to talk" to the gateway (Step 4). Then the gateway initiates a

call connection to operator 2 (Step 5).

4. ready to talk 2. forward to a specific queue
ACD 4

(1, talking ，

I'm&w^ _ •
4

^ 3. wait in another queue L—

^
5. request call connection

.•妥

Figure 3-5 Example of call forwarding

Page 25

3.3.4 Routing Mechanism in the ACD

In the proposed model, a new incoming call is handled by a suitable operator

immediately or waits in one of the waiting queues. To effectively find an operator

who has specific skills to solve a certain kind of questions, operators are organized

into groups according to skills these operators possess. If an application service

provider (ASP) provides call center system help desk service to more than one

customer, operators need to handle different kinds of questions from customers of

different companies. In this situation, it is also important to organize the operators

into groups. This section firstly describes the relationships between queues, operator

groups and operators. To provide better service to more valuable customers, the

waiting queue is priority based rather than first-come-first-serve based. The policy is

mentioned in this section. When an operator has just completed a call, the ACD

assigns another call from a waiting queue to the operator. The method of assigning

calls to operators is also mentioned in this section.

a) Queues, Operator Groups and Operators

To effectively find an operator who has specific skills to solve a certain kind

of questions, operators are organized into groups according to skills of these

operators. Take a bank's call center system as an example. Questions from

customers are probably related to savings account service, credit card service,

mortgages and loans and etc. Operators are provided with a series of training and

each of them has his/her strength or knowledge related to a certain kind of service.

Each operator belongs to an operator group. For example, some operators who are

Page 26

more capable to handle questions about saving account service form an operator

group as shown in Figure 3-6. Some operators who are more capable to handle

questions about credit card service, and mortgages and loans form another operator

group.

Service Operator Operators Operators' Queues
Queues Groups ^ (Queues)

(^ " ^ " ^ a t o i T " ^ 丄 , O p e r a t o r A’s
, \ ••••••••'̂ w ^ ^ Queue

Saving Account 1 (Operator ^
Service V Group 1 W

‘ 乂 (Operator B) 丄 > Operator B's
^ ^ Queue

(Operator C ^_丄.一 Operator C’s

S e — J , . I Queue

\ Z ^ ^ ^ ^ Operator D Operator D's
^ ^ ^ Queue

(^ p e r a t o r F ^ . l . > ^p^ratoj^F's

^ serves (priority value = n)

^ belongs to

has his/her own queue (priority value = n)

Figure 3-6 Relationship between Queues, Operator Groups and Operators in a
Bank's Call Center

The notion of operator group may decrease the flexibility in setting the

characteristic for individual operators. If a new service queue is created, a number of

Page 27

operator groups are assigned to serve this service queue. It is not easy to assign a

subset of operators in a group to serve this service queue. As an alternative design,

operator groups are eliminated. Each operator is assigned to serve a number of

queues with different priority value. However, this alternative design decreases the

efficiency in finding suitable operators available to answer incoming calls. This issue

is to be discussed in Section 4.3.2.

Incoming calls are put into different queues according to the services required

by the customers. Before the call has been taken care by an operator, the service

which the customer needs can be identified by the phone number dialed and the

touch-tone input from the customer. Using the previous example, services which

customers need are related to savings account, credit card, and mortgages and loans

in this bank. Therefore, three service queues are created as shown in Figure 3-6. Each

service queue is served by any number of operator groups with certain priority values

and each operator group serves any number of service queues.

Each operator has his/her own queue. When a customer phones to the call

centre, he/she may want to talk to a specific operator. When a customer makes such a

request, the ACD assigns the customer to the operator's own queue. The number of

phone calls entering this kind of queue is limited to a certain value. Otherwise,

customers will wait for a long time when they want to talk to the same operator.

b) Priority Based Call Routing

To provide better service to more valuable customers, waiting queues are

Page 28

priority based rather than first-come-first-serve based. From the caller id, the ACD

can retrieve the customer's profile. Each customer is provided with a priority value

in the customer profile. In the same queue, the customer with higher priority gets

served faster than those with lower priority.

c) Routing of New Incoming Calls

When the ACD is informed by a VoIP gateway that a new incoming call

arrives to this gateway, the gateway provides the ACD with the information about

this call, including the caller id of this call, the phone number the caller has dialed

and the selection made by the caller through touch-tone input. The ACD either

assigns a suitable operator to answer this call immediately or puts this call in one of

waiting queues.

Figure 3-7 shows how the ACD handles this request from the VoIP gateway.

First of all, the ACD finds whether the caller id matches any customer's telephone

number in the database. If there is a match, it is probably that the caller is this

customer stored in the database and the profile of this customer is retrieved from the

database; otherwise, the caller is asked to input his/her customer id.

From the phone number the caller has dialed, the ACD can identify a domain

of services the caller needs. If necessary, the ACD can further identify the exact

service that the caller needs through the selection made by the caller from touch-tone

input. Then the ACD checks whether another call with equal or higher priority exists

in the queue which is corresponding to the service the customer needs. If another call

Page 29

with equal or higher priority exists in this queue, this new incoming call is put into

this queue; otherwise, the ACD finds an available operator who serves this queue to

handle this call. If no operator is available, this call is put into this queue. If exactly

one operator is available, the ACD assigns this operator to handle this call. If more

than one operator who serves this queue is available, the ACD chooses an operator

who has served this customer recently to answer this call.

Incoming calls are put into different queues according to the service which

the customer needs.

Page 30

New incoming call

The caller id no Ask the caller to input
Z existed in \ ^ .
< ‘ ， > • the customer id

customers 乂

database? ^ ^

Yes
t Have valid ^ ^ No

1. From the phone number dialed and the touch- customer ^ ^
tone input from the caller: id? ^ ^ ^
- determine the service which caller needs ^ s . ^ ^ ^

(the ACD knows the queue to be assigned)
Yes

2. From the caller id/customer id: ^
- retrieve the client's information
- retrieve a list of operators who have

served this caller before
- retrieve the priority of this caller

e.g.
caller = Peter
operatorList = {operator C, operator D, operator E}
priority = 2

，�q u e u e = Credit Card Service

^ ^ x i s t s any call witiNv No / A n y o p e r a t o i \ Yes
Z equal or higher \ X in the \
\ F;onty already in > K operator list >

二 二 be Z available?

Yes No

y r ~ 1
Put the call into the Assign this call to one of

corresponding queue available operators immediately
^

\ r
e.g. …--

“ Put the call into a queue
e er according to the phone

~ ： ~ ~ , ^ "Credit Card Service” n u m L dialed
^ \ Queue

\ r
caller D caller C caller B caller A name

3 3 2 1 priority

Figure 3-7 Flow diagram for handling a new incoming call in the ACD

Page 31

d) Assigning Calls in Waiting Queues to Operators

Incoming calls which are waiting in queues get served until operators become

available. This section describes how the ACD assigns an incoming call in a queue to

an operator when this operator becomes available.

When an operator finishes a call, he/she sends a "ready for next call" message

to the ACD as shown in Figure 3-3. Then the ACD assigns a new call from a certain

queue to the operator. Here take operator E as an example. The ACD assigns a new

call from one of three queues (credit card service, mortgages and loans, and Operator

E，s own queue shown in Figure 3-6) after operator E finished a call. The ACD makes

the assignment based on the following values:

1) priority value associated with each queue for this operator

As shown in Figure 3-8，Operator E serves a number of queues with

different priority values. The ACD chooses a call from a queue with the highest

priority. Since the queue for credit card service and Operator E's own queue have

the highest priority and these two queues are not empty, the queue for mortgages

and loans is ignored.

2) priority value and enqueue time associated with each call

When two queues have the same priority value, the ACD looks up a call

with the highest priority value from these two queues. When there are more than

one call with the same highest priority value, the call with the earliest enqueue

time will be chosen. Therefore, the ACD assigns caller A's phone call to

Operator E.

Page 32

caller C caller B > caller A �N a m e

2 1 1] Priority Queue for Credit Card Service
J (Priority value = 1)

09:00:30 09:00:50\ 09:00:00 严 ？ 隨 \ A time
'V^^^」

caller F caller E caller D Name

2 1 1 Priority Queue for Mortgages and Loans
(Priority value =2)

09:00:15 09:00:00 08:59:50 匕“广ue

time

I caller G �N a m e

1 Priority Operator E’s own Queue
(Priority value = 1)

\ 09:00:15 / — u e
�� ‘ t i m e
� • 广̂ 丨

Figure 3-8 Customers in three queues which Operator E serves

Page 33

4 Implementation of the ACD

The functional overview of the ACD has been provided in the last chapter. In

this chapter, some technical requirements in implementing the ACD are figured out.

The ACD can be considered as server-side components which operate upon requests

from client-side components (gateways or operators). This chapter introduces two

available technologies, Enterprise JavaBean (EJB) [17] and COM+ [18], which are

used to build server-side components. Then this chapter describes the way in which

the ACD is implemented to fulfill these requirements using the EJB model.

4.1 Requirements in implementing the ACD

In the last chapter, functional requirements for the ACD have been described.

In this section, technical requirements related in the implementation are discussed.

They include asynchronous method call provided, transaction planning in the ACD

and the failure handling of the ACD and other components.

4.1.1 Asynchronous Method Call

In most situations, when a client (a gateway or an operator) makes a request

to the ACD, the ACD replies to the request immediately. However, when a gateway

sends a request from a newly arrived incoming call to the ACD. The ACD may not

be able to assign an operator to answer this call immediately. The ACD sends the

reply that an operator is assigned to answer this call when a suitable operator is

Page 34

available to answer this call.

In most architecture models provided for building server-side components,

only synchronous method call to server-side components from clients is provided [19]

[20]. In synchronous method call, when a client sends a request to a server-side

component, the control of the client is blocked. The control is returned to the client

until the client receives the reply from the server-side component. In most situations,

synchronous method call is suitable to implement the ACD because the ACD can

most of time reply to clients' requests immediately (as shown in Figure 4-1 (b)).

However, when a gateway sends a request about the arrival of a new incoming call to

the ACD, the ACD may find that there is no suitable operator available to handle this

new call at this moment. The ACD does not know at what time an operator becomes

available to handle this call (as shown in Figure 4-1 (a)). In this situation,

asynchronous method call is also needed.

1. new incoming call 1. new incoming call

r ~ a v a i l a b l e H g M ^ H ————
Gateway operator Gateway

3. operator A is assigned 2. operator A is assigned
(15 seconds later) (reply immediately)

(a) (b)

Figure 4-1 (a) asynchronous method call and (b) synchronous method call

Page 35

4.1.2 Transaction Planning

When a client (a gateway or an operator) sends a request to the ACD, the

ACD should execute a series of operations as a transaction. The transaction must be

executed in all-or-nothing manner. For example, when an operator disconnects

his/her current call with a customer, the operator sends a "disconnect" request to the

ACD. The ACD executes the following operations:

1) The ACD records that this operator has communicated with this customer from

time unit A to time unit B in the call history.

2) The ACD records that this operator has stopped communication with this

customer since this moment.

3) The ACD changes the status of this operator from "talking" mode to "offline"

mode.

This series of operations forms a transaction which either completes

successfully and the effects of all of its operations are saved in permanent storage or

(if it fails) it has no effect at all.

A transaction should possess four properties as follows:

1) Atomicity

The transaction must be all-or-nothing.

2) Consistency

The transaction takes the system from one consistent state to another

Page 36

consistent state. For example, after a transaction, it is impossible for the ACD to keep

an inconsistent state in which an operator is talking with a customer but the status of

the operator is in offline mode.

3) Isolation

Operations taken on behalf of a client are invisible to other operations taken

on behalf of other clients.

4) Durability

After a transaction, all its effects are saved in permanent storage. Data saved

in permanent storage will survive in case the server process crashes. For example, an

operator has logged in to the system and has been talking with a customer. When the

ACD crashes, all the status about this operator and this customer are saved in

permanent storage. When the ACD restarts, the ACD can retrieve all the status about

this operator and this customer.

4.1.3 Failure Handling

The call center, like all distributed applications, faces several potential points

of failure. A single point of failure that will impact operation must then be identified

and a mechanism to overcome each of the potential failures must be provided. This

will allow the system to recover relatively quickly from the loss of a functional

component. The failure handling for VoIP gateways and the ACD should be

considered.

Page 37

If a VoIP gateway crashes, the system should detect this failure. A failure-

handling procedure should be designed to replace the failed gateway with a new one.

Meanwhile, other ftinctional components continue to provide services without any

influence from the failed gateway. Moreover, the system should call back to those

customers whose calls are cut due to the failure.

If the ACD crashes, other components in the system inevitably get affected

because the ACD is the core component to provide services to other components.

Therefore, it is necessary to improve the reliability of the ACD. If a component in the

ACD fails, we try to recover the failed component transparently to clients. Even if

the ACD needs to restart, the ACD should keep all consistent system information

before the crash after the ACD restarts.

4-2 Available Technologies

The section introduces two available technologies, EJB and COM+，which

are used to build server-side components.

4.2.1 Enterprise JavaBean (EJB)

EJB is Sun Microsystems' specification in distributed system. It is used to

develop server-side components at enterprise-level. Distributed components run on

different hosts to form the system.

Page 38

Figure 4-2 shows the software architecture of the EJB model. The EJB Server

is the outermost container of the various elements making up an EJB environment.

The server manages one or more EJB containers and provides the required support

services, such as transaction management, persistence, and client access. The server

also provides the operation resources, such as multi-threading, memory, distributed

naming, remote invocation, and so on, to the containers and their elements within.

This allows application developers to concentrate on the business logic of the

application, which is implemented as enterprise bean objects. Since EJB provides a

well-defined component-model that promotes the separation of business logic from

the underlying services, re-implementing business logic to reflect evolving business

practices in EJB is considerably easy.

3. equest EJB Server

Client ^ " ^ � EJB Container

o o : : c z ： ： .

. H E ^ H H ^ H I ^ ^ H ^ H via JDBC
二 , 4 i m m m g i ^ Database
Service regi

O Enterprise bean objects
(entity bean / session bean)

Figure 4-2 Software architecture of Enterprise JavaBean

Clients use Java Naming and Directory Interface (JNDI) [21] calls to locate

enterprise beans and RMI calls to invoke functions on the bean's well-defined

interfaces. JNDI which is a standard extension to the Java platform provides Java

Page 39

applications with a unified interface to multiple naming services in the enterprise.

Encapsulation separates client code from the bean implementation. Server developers

can change a bean behavior without requiring corresponding client-side changes.

The EJB model offers two types of enterprise beans: entity and session bean.

a) Entity Bean

Entity beans are data components. A data component is an in-memory replica

of data stored in a database. Data components encapsulate access to permanent data

by wrapping that data in an object, and associating methods with that data. A simple

entity bean could be defined to represent a single row in a database table, where each

instance of this bean represents specific row. The EJB server and container maintain

a pool of database connections and transparently handle transactions for generated

entity beans.

b) Session Bean

Session beans are business process components. A business process

component represents a logical extension of a client program that runs on the server.

It performs operations on behalf of the client. Examples of session beans include

allocating a suitable operator to answer a new incoming call, forwarding a call to

another operator and verifying the login of an operator.

Page 40

c) Usage of Session Beans and Entity Beans

Figure 4-3 shows a usage of session beans and entity beans and their

relationships. Take the proposed call center model as an example; operators'

information and customers' profile are stored in a database. When an operator logins

the system, the request is handled by an operator session bean in an EJB server. The

session bean checks whether the password the operator types in is identical to the one

stored in the database. The session bean accesses the password stored in the database

through an operator entity bean. When a gateway receives a new incoming call, the

gateway sends a "new incoming call" request to the ACD. A gateway session bean in

the EJB server handles this request. The gateway session bean finds the identity of

the customer from the database through a customer entity bean with the caller id of

this incoming call. According to the customer's profile, a suitable operator is found

from the database through an operator entity bean.

Clients Session Beans Entity Beans Database

^
Operator Table

^ ― i d name password

“ ” “ ” " ” [^ l o g ^ n Opera to r l \ 1 ^ p e r a t o r i N 001 Operator 1 ~ x v i n n d n d
P 。r B ^ ^ ^ n t i t y Beay/ 002 Operator 2 fidfdjsd

2 b /
/ Customer Table

new /
incoming / id name email

Gateim A Sateyay A ^ ^ ^ ^ u s t o i e r 101 customer A may0abc.com
a 隱y \Session B e a n y E n t i t y BeanJ • 102 customer B peterfidef. com

• 二 I
^

Notes:
1. check whether the password the operator types in equals the one stored in the database
2a. find the identity of the custoier through the caller id
2b. find a suitable operator to handle this call

Figure 4-3 Session beans and entity beans

Page 41

4.2.2 COM+

COM+, which is an extension of Component Object Model (COM) [22], is

Microsoft's architecture for building re-usable, server-side components.

Except the terminology, the software architecture of the COM+ model as

shown in Figure 4-4 is similar to that of the EJB model. A Microsoft Transaction

Server (MTS) [23], which is the equivalent of the EJB Server in the EJB model, is

the outermost container of the various elements making up a COM+ environment.

The MTS manages one or more MTS Executives and provides the required support

services, such as transaction, security, multi-threading. An MTS Executive acts like

the EJB container, hosting MTS objects rather than enterprise beans. MTS objects

are typically designed to encapsulate some set of business functionality. For example,

a MTS object helps a gateway to choose a suitable operator to answer an incoming

call. This allows application developers to concentrate on the business functionality

of the application, which is implemented as MTS objects.

Microsoft Transaction

1 3. request Server (MTS)
� • N j l aDCDM —
Client ^ ^ ^ ^ MTS Executive

O O a c c e s s , _ ^
i or update |C1 二

Active L OLE-DB Database
D i — r y i T ^ r ^ m m j j i f ^

MTS components

Figure 4-4 Software architecture of COM+

Page 42

Clients use Microsoft's Active Directory [24] to locate MTS objects in the

MTS, and use DCOM [25] to invoke methods on those objects. Encapsulation

separates client code from the implementation of MTS objects. Server developers

can change a MTS object's behavior without requiring any corresponding client-side

change.

COM+ supports business process components, which are called COM+

components. However, COM+ has no notion of a data component, so a business

process component must operate on rectangular rows in database tables, rather than

on data components, which is highly non-intuitive. To integrate with databases in the

COM+ model, Microsoft's Active Database Objects (ADO) [26] along with

OLE/DB [27] and Open Database Connectivity (ODBC) [28] have to be used.

4.2.3 EJB vs COM+

EJB and COM+ are two prominent choices for building server-side

components. In this section, in order to select the particular technologies for the

implementation of our proposed model, these technologies are compared as follows

and the comparisons [29] are summarized in Figure 4-5:

1) Platform supported

COM+ is tied to the NT platform. However, EJB can run on any platform that

supports the Enterprise JavaBeans standard, such as Windows 95, NT and Unix.

2) Component types supported

Page 43

COM+ provides business process components only, while EJB provides both

business process components (named "Session Bean") and data components (named

"Entity Bean").

The support for data component types is important in developing server-side

components [29]. COM+ has no concept of data component, so a developer's

business process components must operate on rectangular rows, rather than on data

components, which is highly non-intuitive. It is much more natural to call a method,

operator.getPasswordO than to deal with a relational result set.

Moreover, the support for data component types provides abstraction on

underlying database schema from business process code. This enables a database

administrator to change a relational database schema for performance, or change to a

different database product without modifying a single line of code in business

process code. For example, operator.getPassordQ corresponds to retrieving an

attribute "password" in a certain row in a database table "Operator". If a company

has defined a different database schema for its operator's information (such as using

another name of attribute "passwd" to record operators' login passwords), we can

simply change the mapping of the operator.getPassword() to the new attribute for the

retrieval in a specific description file. In this way, the EJB development tool

automatically generates a new set of program code.

3) State management

EJB provides support for stateftil business processes through statefUl session

beans, whereas COM+ provides no support for statefiil business processes. A statefUl

business process is a business process that spans multiple method calls. A stateless

Page 44

business process is a business process that spans a single method call. A stateful

session bean maintains state on behalf of a particular client, and is tied to that client

for the component's lifecycle.

The support for stateful business processes in the underlying EJB architecture

provides convenience in the implementation of our proposed model. In our proposed

call center, after an operator logins the system, the ACD should hold the state of the

operator throughout the login session. This can be well-modelled with stateful

business process components.

4) Asynchronous method call

EJB provides no support for asynchronous method call, whereas COM+

provides support for asynchronous method call.

As mentioned previously, asynchronous method call is needed in the

proposed model. In COM+, a client thread can execute a method asynchronously.

COM+ starts the call and then immediately returns control back to the client. The

client thread is then free to do other work and can later obtain the results of the

method call.

5) Transactions supported

Both EJB and COM+ support transactions in a similar manner. EJB and

COM+ give the developer control of transactions both programmatically and

declaratively. In EJB, developers can control transactions programmatically through

the Java Transaction API (JTA) [30], or set attributes on components at method-level

rather than writing code to an API. Similarly, in COM+, transactions can be

Page 45

controlled programmatically via OLE Transactions [31], or transactional

characteristics can be set on components rather than writing code.

EJB COM+

'Platform supported NT only Windows 95’ NT, Unix
and etc.

Data component supported V x

Statefiil processes supported V x

Synchronous method calls ^ ^

supported

.； •.

Transactions supported V V

Figure 4-5 EJB vs COM+

In terms of the above comparisons, it is found that EJB is suitable for the

implementation of the proposed model. In the proposed model, supports for data

components and stateful business processes are relatively important. Changes in

underlying database schema to suit the requirement in the application layer of the

proposed model are necessary. Data components abstract the underlying database

schema from business process code. This reduces the need to change lines of

business process code when making changes in underlying database schema.

Page 46

Moreover, stateful business processes are suitable in the implementation of

the proposed model. As mentioned in point 3 in Section 4.2.3, states of gateways and

operators should be held on the ACD among multiple method calls. Stateful business

processes provide an intuitive paradigm in the implementation.

Due to these reasons, the EJB model is employed to construct the core part of

the system. PowerTier for Enterprise JavaBeans [32] from Persistence Software Inc.

is used. Although asynchronous method call is not supported in the EJB model, the

way to provide asynchronous method call in the implementation will be discussed in

detail in a later section.

4.3 Implementation

4.3.1 Mapping the EJB model to the Implementation of the ACD

The ACD is considered as a server-side component in the software

architecture. The ACD is formed by a naming service, a PowerTier EJB server and

an Oracle 8i database server. The naming service provides location transparency of

the EJB server to client-side components. The PowerTier EJB server transparently

allocates threads to manage requests from operators and VoIP gateways and provides

service such as transaction, database connection, and cache management. The

container provides support for enterprise beans. In the ACD, the container registers

the EJB class home interface with the naming service. The OracleSi database server

provides persistence for the information stored in the call center system, such as

profiles of the customers, status of the operators and status of the incoming calls in

Page 47

the system.

Figure 4-6 illustrates the various components of the call center system and

their relationships. Operators are considered as clients in the software architecture.

They contact the naming service and obtain a remote object reference to a session

bean in the EJB server in the ACD. Operators contact the ACD through method calls

provided in the session bean. For example, when an operator logins a workstation to

answer customers' calls, the operator's software uses this object reference to inform

the EJB server in the ACD.

Monitoring
Tool

report failure in " 八
case of failure (via

J a v a RMI) report failure in
Gateways / " c a s e of failure (via
C a t e r s ' < 5. reply J a v a RMI)

3. request

2. lookup
ACD

丨 i
Naming Service ^mmmm EJB Server Database 攀

'1. register 4. access 獲:
and update

Figure 4-6 Various components of the call center system and their interactions

VoIP gateways are also considered as clients in the architecture. They contact

the naming service and obtain a remote object reference to a session in the EJB

server in the ACD. VoIP gateways contact the ACD through method calls provided

Page 48

in the session bean. When there is a new incoming call, the gateway uses this object

reference to inform the EJB server in the ACD.

The monitoring tool receives failure reports from different components

including gateways, operators and the ACD. These components report that other

failed components which are unable to reply to requested services. Failure reports are

prompted to the screen so that the administrator can replace the failed component.

Failure handling procedures will be described in details in the next section.

4.3.2 Design of Entity Beans

Entity beans encapsulate access to permanent data by wrapping that data in

an object, and methods associated with that data. Ten types of entity beans are

created in the implementation. Figure 4-7 depicts the relationships among these

entity beans. "CustomerProfile" bean models the profile of customers. When a

customer phones the call center, a "OnlineCustomerStatus" bean is created to model

the status of the customer. If there is no available operator to handle this incoming

call immediately, the customer will join one of waiting queues which is modeled by a

"Queue" bean. In the system, operators which are modeled by "Operator" beans are

grouped according to their knowledge. An operator group is modeled by a

"OperatorGroup" bean. Each operator group is assigned to serve one or more queues.

The assignment is modeled by a "OperatorGroup_QueueAssignment" bean. When an

operator is assigned to handle an incoming call, a "consultsWith" relationship is

created between the corresponding "Operator" bean and the corresponding

"OnlineCustomerStatus" bean. When the operator or the customer disconnects the

Page 49

call, the "consul tsWith" relationship is removed and the system keeps a record of this

call. The record is modeled by a "Call History" bean.

worksFor
*

OperatorGroup • OperatorGroup-
_ 一 Queue Assignment

1 describesOperatorGroup *

A •
hasOperators

BelongsTo , ^ „ , A . JT describesQueue OperatorGroup AssignedTo
OperatorGroup

• +

hasOperator * personalQueue 1 worksForCompany

CallHistory • ^ Operator • ^ Queue Company

j * _ 丨0…1 - — J 1
* made 0...1 be longsToOpera ty / ^belongsToOperator

tookPartIn hasCustomer consults f / , \
isConsulted / / / - . c r ibeA \ \ AssignedTo

By j o i n s / / / describes\ \ \ GatewayChannels
I + / / / C o n t a i n s Queue \ \ \

1 hasOnlineStatus * / * ^ \ *

CustomerProfile • OnlineCustomerStatus GatewayChannel-
丨 1 Queue Assignment

hasDetailedProfile
本

A

, ^ ^ describesGateway
worksForQueues channel

+
1

GatewayChannel

Figure 4-7 Relationships among entity beans created

In Section 3.3.4(a), we have ment ioned an alternative design in which

operator groups are eliminated. In this approach, when assigning an operator to serve

a queue, one more entry of information is created in the

Page 50

"OperatorGroupQueueAssignment" entity. This approach, which largely requires

more information stored in the "OperatroGroupQueueAssignment" entity, may

increase the time taken to find suitable operators available to answer incoming calls.

Due to this reason, this alternative approach is not adopted.

PowerTier for Enterprise JavaBeans provides an Object Builder to assist the

creation of entity beans for the implementation. In the Object Builder, the structure

of and relationship between beans are described and the mapping of the generated

beans to the relational database is specified. Then the Object Builder automatically

generates the program code.

4.3.3 Design of Session Beans

A session bean represents a logical extension of a client program that runs on

the server. It performs operations on behalf of the client. Since there are two types of

client (operators and gateways) in the proposed model, two types of session bean are

created. Figure 4-8 shows the two session beans and their related methods. For

simplicity, parameters and return types associated with each method and some helper

methods are not shown in the figure.

Page 51

OperatorSessionBean

一 createO
一 getUpdatedlnfoO
_ disconnectO
一 readyForNextCallO
一 forwardCallToAnotherQueueO
—logoffO
——removeO

GatewaySessionBean

一 createO
一 newIncomingCallO
——leaveQueueO
一 beingHeldO
—callResumedO
_ disconnectO
—removeO

Figure 4-8 Methods defined in two session beans

The session bean called "OperatorSessionBean" is used to serve operators. In

this session bean, the create�method is used for operators to login the system.

Operators use getUpdatedlnfoQ method to get updated system information.

Operators use the disconnectO method to inform the ACD that the current call is

disconnected. If an operator becomes available to handle another call after

disconnecting a call, the operator can use the readyForNextCallO method to ask the

ACD to assign another new call to him/her. An operator can use

forwardCallToAnotherQueueO method to forward his/her current phone call to

another operator. When the operator logs off the system, he/she calls the logoffQ

method.

Page 52

The session bean called "GatewaySessionBean" is used to serve gateways.

When a gateway starts up, it creates a session bean by obtaining the bean's home

interface and calling a createQ method. This action informs the ACD that the

gateway is ready to work. When the gateway receives a new incoming call from the

PSTN，the gateway call the newIncomingCallQ method to ask the ACD to assign an

operator to handle this call. When the caller disconnects the call before an operator is

assigned to handle the call, the gateway informs this situation to the ACD by using

the leaveQueueO method. Two methods, beingHeldQ and caUResumeQ, are used in

call-waiting. If the caller disconnects the call which has been handled by an operator,

the gateway calls the disconnectQ method to inform the ACD the call disconnection.

The gateway uses the removeQ method to inform the ACD that the gateway is going

to shut down.

4.3.4 Asynchronous Method Call

As mentioned previously, the EJB model has no support for asynchronous

method calls. If a client calls a remote method, the client is blocked until the remote

service finishes processing the call. However, in the proposed call center model,

gateways (as a client in the model) need to call remote service in the EJB server

asynchronously in some situations. When a gateway informs the EJB server of the

arrival of a new incoming call, the gateway may not get an operator to handle this

call immediately. The gateway should be free to do other work and obtain the result

from the EJB server later.

To tackle this problem，gateways must also act as RMI servers so that the

Page 53

EJB server can make a remote call to the gateway. This arrangement enables the

RMI client-side callbacks to act as an implicit mechanism for clients to call remote

methods to the EJB server asynchronously. Figure 4-9 shows how a gateway calls

the remote service in the EJB server asynchronously via a RMI client-side callback.

Gateway

Q 10. establish a voice connection ‘

Remote * Core . . , „ ^ ^ 4. no available operator _ Service Part Operators

A

1. bind 8. ready 2. new 5. ready
for next incoming for next

call call call

—
• � …l o o k u p / 6. p . ^

• • • access
Lming Service [JB Server ^ 她 b a s e

CIZ5 gateway session bean

^ ^ ^ operator session bean

Figure 4-9 An asynchronous call method achieved via a RMI client-side callback

To enable the EJB server to locate the remote service in the gateway, the

gateway binds its remote service to the naming service in the ACD when the gateway

starts. When the gateway receives a new incoming call, the gateway sends a “new

incoming call" request to a gateway session bean in the EJB server. The gateway

session bean processes the request. If it finds a suitable operator who is currently

available to handle this call, the gateway session bean replies to the gateway of this

Page 54

result immediately. The gateway also establishes a voice connection with the

operator assigned subsequently. Otherwise, the gateway session bean replies to the

gateway that no suitable operator is available to handle this call at this moment. Then

the gateway is free to perform other work. When an operator has just finished

another call, the operator sends a “ready for next call" request to an operator session

bean in the EJB server. If the operator session bean finds that the operator is suitable

to handle the incoming call being held previously, the operator session bean lookups

the location of the remote service of the corresponding gateway and calls the "ready

to talk" method provided in the remote service of the gateway. As a result, the

gateway knows that an operator is available to the call which has been held

previously and the gateway establishes a voice connection with the operator.

4.3.5 Transaction Planning

The EJB model provides three approaches to demarcating transaction

boundaries [33]:

1) Client-managed transactions, where a client makes explicit calls to begin and end

each transaction

2) Container-managed transactions, which allow a client to reply on the EJB

container to begin and end transactions automatically

3) Bean-managed transactions, where an enterprise bean makes explicit calls to

begin and end transactions

Page 55

The first and third approaches control transactions programmatically, while

the second approach controls transactions at the EJB component method-level. The

second approach is more preferable in our implementation because the transaction

APIs are not written in the application code. This shortens the implementation time

and eases the maintenance of the application code. In the second approach,

transaction attributes are associated with an entire session or with individual methods

on the session bean. Every time a client invokes a method on a bean, the EJB

container intercepts the method and delegates the transaction management according

to the method's transaction attribute. EJB will automatically commit a transaction if

it completes all of its operations without catching any exception. If an exception is

caught, the EJB server will rollback the transaction. If the client finds that a rollback

transaction, the client will have to retry the transaction. Figure 4-10 briefly

summarizes the EJB transaction attributes and their behavior.

Attribute Type Description

TX_NOT—SUPPORTED Not transactional. If you call a method with this

transaction attribute from within a transaction, the

server suspends the transaction until the method returns.
i.i-i.Li.11 .mjiiiiiiiimiii； Hijii： r III Ml , III. I II, II. 1.丨丨.丨-I

TX__BEAN__MANAGED The EJB container expects the bean to handle the

transaction.

TX一REQUIRED The EJB container accepts a call to a bean or method

with this attribute within a transactional scope or

invokes a new transaction if there is none present.

Page 56

TX—SUPPORTS The EJB container does not require a transaction

context but allows invocation within a transaction

scope.

TX—REQUIRES一NEW The EJB container always invokes in the scope of a new

. transaction and commits the transaction as soon the call

'•J： • . c o m p l e t e s .
> -

TX—MANDATORY The EJB container only invokes in the scope of an

existing transaction.

Figure 4-10 Transaction attributes and their behavior

In the implementation of the proposed model, all methods in the operator

session bean and the gateway session bean are set with the TX_REQUIRES_NEW

transaction attribute. This is because a set of operations which one of these methods

performs should be committed immediately.

4.3.6 Failure Handling

To allow the proposed system to recover relatively quickly from loss of a

functional component, single point of failure that will impact operation must be

identified and a mechanism to overcome each of the potential failures must be

provided. A functional component giving no response until a timeout upon a request

is considered to be a failure.

The failure is detected when an exception is caught in calling a RMI method

Page 57

in the remote object reference representing the failed component. Our focus in this

section is the failure handing for VoIP gateways and the ACD.

a) Failure Handling for VoIP gateways

Operators or the ACD may receive no reply from a VoIP gateway until a

timeout upon a request. We consider these as the failure of the VoIP gateway. The

failure is detected when an exception is caught in calling a RMI method in the

remote object reference representing this gateway. Operators or the ACD reports this

failure to the monitoring tool, so the system administrator can take failure handling

procedures to recover the system. In the meanwhile, the call center system provides

part of service as other gateways can still receive incoming calls. There are some

differences in the handling procedure for the failure detected by an operator and by

the ACD.

The ACD keeps a list of all active gateways. The system administrator can

manipulate the list by calling methods provided in the ACD's remote reference

through the monitoring tool. When one of these gateways fails, the system

administrator needs to remove the record of this gateway from the list. After the

system administrator has replaced the failed gateway with a new one, the system

administrator inserts the record of the new gateway into the list.

When the ACD detects that a gateway has failed as shown in Figure 4-11(a),

the customer call coming through this gateway is probably in a waiting queue. Since

this gateway has failed, the PSTN connection between the customer and this gateway

Page 58

is probably disconnected. The system needs to update the status of the customer to

offline and record this call as a failure call in the call history record. Moreover, the

system needs to assign another gateway to callback this customer.

4. call back to
the customer Monitoring

Gateways < Tool ^ ^ ,,
_ _ _ _ _ _ _ _ change the

2. report f a i l u r e X l customer to offline
with exception mode, mark the call
caught (via RMI) ，厂 . a s a failure and

P • unregister gateway
Gateway A < X ACD A from the system

1. r equest —

(a) f Ihe customer via
[t h i s gateway is in a }
\walting queue J

3. change the customer to offline
mode, mark the call as a failure and

^ ^ ^ ^ unregister gateway A from the system

Monitoring
Gateway B < Tool

4. call back to the
customer; this call can 备 ^ 2. report failure with
be handled by the exception caught (via
previous operator RMI)

Gateway A < X Operator
^ 1. r equest L - -

(b)
X the customer via this

I gateway has talked to \
operator �

Figure 4-11 Failure handling for a gateway when (a) the ACD or (b) an operator
detects the failure

Page 59

When an operator detects that a gateway malfunctions as shown in Figure 4-

11(b), the PSTN connection between the customer and this gateway is probably

disconnected. The system also needs to update the status of the customer to offline

and records this call as a failure in its call history. However, in this case, the

customer whose call has come through this gateway probably has talked to an

operator. When the system is relinked to this customer through another gateway, the

system gives a choice to the customer whether the new call connection is to be

handled by a new operator or not.

When a gateway fails, the customer whose call is cut due to the failure is

likely to phone to the call centre again. According to the customer's identity and call

history, the system can check whether the customer's previous call was cut due to a

system failure. If this is the case, the system calls back to this customer through

another gateway and this gateway plays back an apology message to the customer.

The system gives a choice to the customer whether this new call connection is

handled by a previous operator or not. Higher priority is given to this customer so

that he/she can get served as soon as possible if no available operator can handle

his/her call immediately.

b) Failure Handling in the ACD

As mentioned previously, the ACD is formed by a naming service, a database

service and an EJB server. Therefore, we need to consider the failure handling for

these three components in the ACD.

Page 60

The naming service we use can be regarded as reliable [34]. When operators

login the call center system or gateways start up, they go to naming service to

retrieve the ACD remote object reference. If the naming service fails, an exception is

caught when calling the naming service API. When such a failure is detected, we can

simply restart the naming service. It is not necessary for the EJB server to restart and

register with the naming server again. This is because the naming service put all

registration records in persistence storage and read it on startup. The naming server

automatically registers to the naming server when it restarts.

The database server can also be considered as a reliable component as its

replication support [35]. The EJB server can lose its connections to the database

because of network failures, database server restarts or failovers, or hardware failures.

When a database connection is lost, the database client libraries raise exceptions.

Alternative database connections which provide continuous data availability can be

reestablished with an API provided in the PowerTier EJB server. Restarting the EJB

server is not necessary.

The high availability of EJB server can be provided by redundant EJB servers,

a set of error detector and resource management. When the EJB server gives no

response until a timeout upon a request, we consider this as the failure of the EJB

server. The failure is detected when an exception is caught in calling a method in the

remote object reference of the EJB server. In the ACD, only one EJB server is active

and others are in standby mode. When a primary EJB server fails this server can be

shutdown and a standby server is brought into active mode by registration with the

naming service. This new primary server accesses the original database, which still

keeps consistent data for the call center system.

Page 61

Monitoring
Tool 广

(3 . restart)
2. report failure ^ < ^ ^ ^ A C D
with exception — • •• ,
caught (via RMI) 1. lookup j f —. —

I r Naming
Gateways / _ Sei-vice
Operators , ,

‘ 4. lookup

"浏° EJB Server Database

(a)

Monitoring ACP^
Tool TA. restartorN

Naming V f a i i o v e r ^
3. report failure ^ ‘ Service , ^ ^ / 1

. • r ^ connection _ _ _ _ /
with exception eL ‘

caught (via RMI) 1. request，j ‘
“ ； E J B Server Database
Gateways / ^ < >
Operators "^ request S. connection

(b) again reestablished

Monitoring ACP
Tool ^

Naming
2. report failure > ‘ 《 i ^^kup J f Ser\ lce

with exception Z . — —

— — — / J EJB Server I
Gateways / ^ (Active) Database
Operators ^

_ rTTT̂ TTT Z 6 . access

requesTV 叙 EJB Server ^ and update
— (Standby)^

f 3. shutdown the active EJbX
(C) 1 server and turn a standby j

server iilto

Figure 4-12 Failure handling for the ACD if (a) the naming service, (b) the
database server or (c) the active EJB server fails

Page 62

When operators or gateways receive no response from the ACD until a

timeout, they report this failure with the type of exception caught to the monitoring

tool. The monitoring tool can decide the particular component in the ACD that has

failed based on the exception caught and prompts this information to the control

screen. Then the system administrator can take proper actions to recover the failed

component as shown in Figure 4-12 and operators or gateways can go to the naming

service again to get the new ACD's remote reference. With the support of data

persistence from the database server and the transaction service provided in the EJB

server, data integrity can be guaranteed in the system at the time just before a failure

occurs in the ACD.

Page 63

5 An Experiment

This chapter presents an experiment on prototyping the proposed call center

model. Some observations on the experiment will also be presented.

5.1 Experiment on the Call Center Prototype

The experiment is conducted to evaluate the performance of the ACD,

gateways and operators' software. The evaluation is done by measuring the startup

time for the different functional components and the processing time for different

requests in the ACD. Due to unavailability of technical information from the PSTN,

we are unable to retrieve caller id from VoIP gateway cards up to now. Moreover,

there is only one telephone line in our research laboratory, making it impossible to

test the feature of call waiting and call forwarding provided in the ACD. Due to these

reasons, a simulation program is used as a VoIP gateway in the experiment. This

simulation program which is implemented with Java programming is able to send

different kinds of requests with different parameters to the ACD.

5.1.1 Setup of the Experiment

The setup of the experiment is shown in Figure 5-1.

Page 64

ACD
/ 7
f S \

Y r - ^
Gateway 1 Operator 1 ,s PC

a m
Gateway 2 Operator 2 ,s PC

Figure 5-1 Setup of the experiment

In the experiment, an ACD and two gateway simulation programs first start

up. Then, we start two operators' software to login the call center prototype. These

five programs run on five computers. These five computers are connected in a local

area network. The configuration of these computers is shown in Figure 5-2.

IP address 137.189.89.19 137.189.88.161 137.189.88.162 137.189.88.163 137.189.88.164

Hardware Pentium m Sun Ultra Sun Ultra Sun Ultra Sun Ultra

Model 550MHz 5/333 5/333 5 /333 5/333

RAM 512MB 128MB 128MB 128MB 128MB

Plat Win NT Solaris 2.6 Solaris 2.6 Solaris 2.6 Solaris 2.6

Program ACD Operator 1 Operator 2 Gateway 1 Gateway 2

Figure 5-2 Configuration of computers in the call center prototype

Page 65

5.1.2 Experimental Results

In the experiment, we firstly measure the startup time for different functional

components, including the ACD, gateways and operators' software. Then, the

processing time for different requests in the ACD is measured. In this experiment,

there are only about 60 entries of customers' profiles and 20 entries of operators'

information stored in the database. In a real situation, as the number of customers'

profiles and operators' information is greater, the processing time for different

requests may increase due to the increase in the searching time on the larger number

of customers' profile and operators' information. However, it is expected that the

searching time will not greatly increase with the use of indexing techniques.

a) Startup Time for Different Components

Startup times for the ACD, a gateway and an operator are recorded. When the

ACD starts up, it takes time to load the EJB server and container. When a gateway or

an operator starts up, it takes time to locate the EJB server via the naming server and

call the createO method to create a session bean in the EJB to serve this gateway's or

this operator's request.

All the measurements are shown in Figure 5-3.

Page 66

Name of functional component Startup time for the component

ACD 30s

Operator 3.6s

Gateway 3.6s

Figure 5-3 Measurements on startup time for different functional compoents

b) Possessing Time for Different Requests

When the simulation program sends a "new incoming call" request to the

ACD, the average time taken for receiving response from the ACD is recorded. The

response is either that an operator is assigned to the gateway or that no appropriate

operator is available to answer this incoming call at this moment.

When a call is held by an operator through the feature of call waiting, the

gateway sends a "being held" request to the ACD to update the status of this call.

The average time taken to finish this request is recorded. When the operator returns

to take this call, the corresponding gateway sends a "resume call" request to the ACD

to update the status of this call. The average time taken to finish this request is also

recorded.

When an operator forwards a call to another operator, the operator sends a

"forward to a specific queue" to the ACD to update the status of this call. The

average time taken to finish this request is recorded.

Page 67

When an operator or a caller disconnects their call connection, the operator or

the caller sends a "disconnect" request to the ACD to update the status of this call.

The average time taken to finish this request is recorded.

When an operator finishes a call and becomes available to receive a new

incoming call, the operator sends a "ready for next call" request to the ACD to assign

a new incoming call to him/her

All the measurements are summarized in Figure 5-4.

Name of component Average processing
！ Name of request

invoking the request time on the request

New incoming call Gateway 700ms

Being held Gateway 30ms

Call resumed Gateway 25ms

Forward call to a specific queue Operator 192ms

Gateway 270ms
Disconnect

Operator 270ms

Ready for next call Operator 345ms

Figure 5-4 Measurement on average processing time on different requests in the
ACD

Page 68

5.2 Observations

5.2.1 Observations on Experimental Results

The ACD takes longer to startup than gateways and operators do. Gateways

and operators take a similar time to startup. It is because when the ACD starts up, it

needs to start up its naming services and the EJB server. When the EJB server starts

up, it takes time to start some of its underlying services. Then the EJB server

registers its location with the naming service through JNDL Gateways and operators

take fewer tasks when they start up. They only need to locate the EJB server via the

naming service and call createQ methods to create session beans in the EJB to serve

gateways' or operators' requests.

Startup times for gateways and operators are acceptable. Operators take

around 4 seconds to login the call center system. Callers probably do not perceive the

startup time for gateways because gateways probably have started before callers

phone to the call center. Moreover, when a gateway completes an incoming call and

receives another new call, the gateway does not need to restart. Although the ACD

takes a period of time to startup, operators and gateways probably do not perceive

this delay. This is because the ACD probably has started long before operators and

gateways start. Moreover, the ACD seldom restarts once it starts.

Processing times for different requests in the ACD are reasonable. The most

time-consuming task for the ACD is to process the "new incoming call" request. This

is because it needs to search the identity of the caller in the database according the

caller id, find operators who have served the caller before in the past call record,

Page 69

check the current status of operators who are suitable to handle this call and update

the current status of the caller. All of these procedures involve searching and

updating entries in the database.

The ACD takes less time to process the "being held" request and the "call

resumed" request. This is because the EJB server only needs to update the current

status of the corresponding users when processing these requests.

When a gateway receives a new incoming call, the customer needs to wait for

the ACD to assign an operator to get served. The average waiting time is 700

milliseconds, the processing time of the "new incoming call" request, if there is a

suitable operator available to answer this call immediately. The waiting time

excludes the time taken to establish VoIP connection between the gateway and the

operator assigned. However, in this experiment, there are only about 60 entries of

customers' profiles stored in the database. In real situation, as the number of

customers' profiles is greater, the processing time for the request may increase due to

the increase in the searching time on the larger number of customers' profile.

5.2.2 Advantages and Disadvantages of Using EJB

The EJB model facilitates the failure recovery of the ACD in our system by

transaction management and persistence service provided in the model. To ensure

that our system can keep the processing data and recover quickly in case of any

failure in the ACD, all data processed by the ACD are stored persistently in the

database server. A row of data stored in a table in the database server is represented

Page 70

by an entity bean by the EJB model. The entity bean methods provide operations for

manipulating the data represented by the bean. Establishing a database connection

and accessing the data through SQL statement are not necessary in our programming

implementation. Moreover, we need to keep the integrity of the data processed by the

ACD after a failure. The EJB server provides transaction implementation in method

call level for every operation in the ACD. In case of any failure, the data processed

by the ACD can be rollback automatically into a consistent state. After failure

handling procedures, data integrity is guaranteed in the system.

Multithreading service provided by the EJB server enables concurrent

requests from other functional components. However, resource sharing is not an

issue in our programming implementation.

One disadvantage of using the EJB model is that asynchronous method

calling is not supported. This increases the complexity in implementing the "new

incoming call" requests in the ACD.

Moreover, as the EJB is a relatively new technology, EJB vendors introduce

differences in their products to gain proprietary advantage, making it occasionally

difficult to leam the technology and to find technical support.

Page 71

6 Conclusions

In this thesis, a three-layer software structure of the Intelligent IP-based Call

Center Model has been presented. To test the feasibility of this proposed model, an

IP-to-IP call center system which is specifically used in education is implemented. In

this IP-to-IP implementation, we identified the importance of system reliability,

which becomes one of major concerns in the proposed model. Moreover, we need to

ensure that different application modules can be constructed easily on top of the call

management layer.

Using the EJB model, we have achieved these two goals in the

implementation of the proposed model. Using the EJB model, an ACD is built with a

well-defined interface to the application layer. This enables different application

modules to be constructed easily on top of the call management layer. The EJB

model also facilitates the failure recovery of the ACD in our system by transaction

management and persistence service provided in the model. To ensure that the our

system can keep the processing data and recover quickly in case of any failure in the

ACD, all data processed by the ACD are stored persistently in the database server.

The EJB server provides transaction implementation in method call level for every

operation in the ACD. In case of any failure, the data processed by the ACD can be

rollback automatically into a consistent state. After failure handling procedures, data

integrity is guaranteed in the system. This enhances the system availability of the

proposed model

Using the EJB model allows us to concentrate on the ftinctional logic of the

Page 72

ACD and shorten its development time. If we implement the proposed model from

scratch with the Java programming language only, we need to write some classes to

access the database. When there is any change in the database schema, we need to

modify the code in these classes. We also need to deal with the creation of threads in

the ACD so as to serve multiple clients simultaneously. To keep the data stored in

the ACD consistent, separate and concurrently running threads which share data

must consider the state and activities of other threads. This thread synchronization is

also handled by us. To handle transactions, we need to call transaction methods

explicitly inside the application code. We cannot simply set transactional

characteristics at method-level. The EJB model also has its disadvantages in the

implementation as discussed in Section 5.2.2.

There are some weaknesses in the proposed model. Although failures of VoIP

gateways and the ACD are handled by our application model, these mechanisms

involve manual decisions and replacements by the system administrator. Failures of

VoIP gateways are detected if exceptions are caught when making requests to these

distributed components. Unfortunately, automatic failure recovery mechanism for

VoIP gateways cannot be implemented due to the lack of APIs to access the

hardware status of VoIP gateways. Thus, we are unable to know whether the

exception caught is due to unrecoverable failure or not. To simplify the

implementation of the model, exceptions caught when making requests to the ACD

are not categorized in detail. This requires the current implementation of the system

to involve manual decisions to be made by the system administrator when recovering

the failed components. To improve the performance of our system, these exceptions

caught should be further categorized. In the ACD, when a database connection is lost,

Page 73

the database client libraries raise exceptions. These exceptions vary across the

different database vendors. This creates difficulty to use another database server

from a different vendor.

In the experiment, we have found that the overall performance of different

functional components is satisfactory. When a gateway receives a new incoming call,

the customer needs to wait for 700 milliseconds, the processing time of the "new

incoming call" request, if there is a suitable operator available to answer this call

immediately. Preliminary experimental results show that it is feasible to implement

user authentication, call routing, call establishment and some advanced call features

such as call waiting and call forwarding (services provided in an Automatic Call

Distributor) as software on top of a PC connected to an IP network.

However, due to unavailability of technical information from the PSTN, we

are unable to retrieve caller ID from VoIP gateway cards. Moreover, there is only

one telephone line in our research laboratory. In the experiment, the number of

customers' profiles and operators' information stored in the database is smaller than

those in the real situation. The absence of such information may limit the integrity of

the performance evaluation to a minor degree.

Although an experimental ACD is implemented and its performance is

evaluated, we still do not have a complete call center prototype. This thesis presents

only a part of the research in our VoIP research group. Our other two group members

are working on voice transmission and collaborative browsing respectively. By

combining our three persons' research work, a complete intelligent IP-based call

center can be created. Moreover, we need to package and modularize the prototype

Page 74

so as to decrease the configuration time taken to adopt the proposed model to suit the

needs of any specific industry.

Page 75

Bibliography

[1] ITU-T H. Series, "H.323 - Line Transmission of Non-Telephone Signals -

Visual Telephone Systems and Equipment for Local Area Networks which

Provide a Non-Guaranteed Quality of Service," May 28，1996.

[2] M. Handley et al.，"SIP: Session Initiation Protocol," IETF RFC 2543, March

1999.

[3] H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson, IETF Audio-Video

Transport Working Group RFC 1889, "RTP: A Transport Protocol for Real-

Time Applications," January 1996.

[4] Vanderbilt University, "Automatic Call Distribution",

http://www.vanderbilt.edu/telecom/automati.htm.

[5] M. Meltzer, "Integrating a Call Center with Customer Information", CRM

Forum Resources, 2000.

[6] Y.S. Moon, C.C. Leung, K.N. Yuen, H.C. Ho, X. Yu, "A CRM Model Based

on Voice Over IP", IEEE Canadian Conference on Electrical and Computer

Engineering, 2000，vol 1，pp 464 -468.

[7] H.C. Ho, "Customer Relationship Management (CRM) by Computer

Telephony Integration (CTI) -Collaborative Browsing", Internal Report, Dept.

of Comp. Sci. & Eng., The Chinese University of Hong Kong, December 2000.

[8] G. Held, Voice Over Data Networks, McGraw-Hill, 1998.

[9] K.N. Yuen, H.C. Ho, C.C. Leung, Y.S. Moon, "Voice-Over-IP Application in

Education 一 VoIP enabled web lecture", GCCCE2000, vol 1, pp 1023.

[10] K.N. Yuen, "A Comprehensive VoIP System with PSTN Connectivity", MPhil

Thesis, Dept. of Comp. Sci. & Eng., The Chinese University of Hong Kong,

July 2001.

[11] H.C. Ho, "Three-Tier Feature-based Collaborative Browsing for Computer

Telephony", MPhil Thesis, Dept. of Comp. Sci. & Eng., The Chinese

University of Hong Kong, July 2001.

[12] Sun Microsystems, Inc., "Java'^'^ Remote Method Invocation",

http ://j ava. sun.com/products/j dk/rmi/.

Page 76

http://www.vanderbilt.edu/telecom/automati.htm

[13] Sun Microsystems, Inc., "JDBC™ Technology", http://java.sun.com/products/

jdbc/.

[14] K.N. Yuen, "Studies on the Implementation of a VoIP System in a PSTN -

Intranet Environment", Internal Report, Dept. of Comp. Sci. & Eng.，The

Chinese University of Hong Kong, December 2000.

[15] E. Jorg, J.V. Hans, "GSM Switching, Services and Protocols", John Wiley &

Sons, 1999，pp 89.

[16] J.Postel, "Transmission Control Protocol", IETF RFC 793, 1981.

[17] Sun Microsystems, Inc., "Enterprise JavaBeans'^^ Technology",

http://www.javasoft.com/products/ejb/index.html.

[18] Microsoft Corporation, "COM+ - Papers, Presentations, Media Coverage, and

Resources for Microsoft COM+ Technology", http://www.microsoft.com/coin/

tech/COMPlus.asp.

[19] IDevResource.com, "What is Async COM? ”，http://www.idevresource.coin/

com/library/articles/async.asp.

[20] Liaoning University, "Tutorial on Distributed Objects", http://www.lnu.edu.cn/

corba/cl/c3.htmL

[21] Sun Microsystems, Inc., "Java Naming and Directory Interface^'^ (JNDI)",

http ://j ava. sun.com/products/j ndi/.

[22] Microsoft Corporation, "Microsoft COM Technologies - Information and

Resources for the Component Object Model-based technologies",

http://www.microsoft.com/com/default.asp.

[23] Microsoft Corporation, "COM Technologies: Microsoft Transaction Server

(MTS)”，http://www.microsoft.com/coin/tech/MTS.asp.

[24] Microsoft Corporation, "Active Directory Overview",

http://www.microsoft.eom/windows2000/server/evaluation/features/dirUst.asp.

[25] Microsoft Corporation, "Distributed Component Object Model (DCOM)’’，

http://www.microsoft.com/com/tech/DCOM.asp.

[26] Microsoft Corporation, "Microsoft ActiveX Data Objects (ADO)",

http://www.microsoft.com/data/ado/default.htm.

[27] Microsoft Corporation, "Microsoft OLE DB，’，http://www.microsoft.com/data/

oledb/default.htm.

Page 77

http://java.sun.com/products/
http://www.javasoft.com/products/ejb/index.html
http://www.microsoft.com/coin/
http://www.idevresource.coin/
http://www.lnu.edu.cn/
http://www.microsoft.com/com/default.asp
http://www.microsoft.com/coin/tech/MTS.asp
http://www.microsoft.eom/windows2000/server/evaluation/features/dirUst.asp
http://www.microsoft.com/com/tech/DCOM.asp
http://www.microsoft.com/data/ado/default.htm
http://www.microsoft.com/data/

[28] Microsoft Corporation, "Microsoft ODBC", http://www.microsoft.com/data/

odbc/default.htm.

[29] A. Thomas, "Comparing MTS and EJB", Distributed Computing, December

1998，http://java.sim.com/products/ejb/pdf/9812MTSEJB.pdf.

[30] Sun Microsystems, Inc., “Java™ Transaction API (JTA)",

http://java.sun.com/products/jta/.

[31] Microsoft Corporation, "OLE Transactions Reference",

http://msdn.microsoftxom/library/default.asp?URL=/library/psdk/cossdk/pgole

ref_5uan.htm.

[32] Persistence Software, Inc., "Persistence Software: Powertier",

http://www.persistence.com/powertier/index.html.

[33] Microsoft Corporation, "Comparing Microsoft Transaction Server (MTS) to

Enterprise JavaBeans", http://www.microsoft.com/coin/wpaper/mts-ejb.asp.

[34] Persistence Software Inc., "PowerTier for Enterprise JavaBeans Programming

Guide", Version 6.0，March 2000.

[35] Oracle Corp., "0racle8(TM) Server Replication Release 8.0”，June 1997,

http://www.oradoc.eom/ora8doc/DOC/server803/A54651_01/toc.htm.

Page 78

http://www.microsoft.com/data/
http://java.sim.com/products/ejb/pdf/9812MTSEJB.pdf
http://java.sun.com/products/jta/
http://www.persistence.com/powertier/index.html
http://www.microsoft.com/coin/wpaper/mts-ejb.asp
http://www.oradoc.eom/ora8doc/DOC/server803/A54651_01/toc.htm

V ‘

N

‘ ,

一

CUHK L i b r a r i e s

_ _ _

0 0 3 a ? l b 2 1

