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Abstract 

Abstract 

Cytokines are a group of protein cell regulators that are mainly 

produced by a wide variety of cell types, especially cells of the 

immune system. Recently, i t has been shown that cytokines can 

induce immune responses on the cells of central nervous system. 

Since cytokines play an important role in the communication 

between cells of the immune and nervous systems, i t is of 

considerable interest to study their effects on C6 glioma cells, which 

represent a good model system for studying the conditions and 

factors which regulate the proliferation and differentiation of glial 

cells and the signalling pathways that might be involved in these 

processes. 

Results of the present study indicated that cytokines such as 

TNF-a, IL- la , IL- lp and LIF stimulate PH]-thymidine incorporation 

in C6 cells, in a dose- and time-dependent manner. Not only D N A 

synthesis was increased but the growth of the C6 cells was also 

markedly enhanced by these cytokines. In addition, 

lipopolysaccharide (LPS), a well-known potent inducer of cytokine 

secretion, was found to induce significant proliferation in C6 cells. 

The present study demonstrated that both TNF-a- and LIF-

induced proliferation in C6 cells involve protein kinase C (PKC), Ca2+ 

V 



Abstract 

and tyrosine kinase. The involvement of PKC mediating the action of 

TNF-a was demonstrated by observations that potent PKC inhibitors, 

Ro31-8220, staurosporine and calphostin C, inhibited both the TNF-

a - and LIF-stimulated proliferation in C6 cells; whereas PKC 

activators, PMA and PDA, induced C6 cell proliferation. In addition, 

the proliferative effects of PMA and PDA were also blocked by the 

three PKC inhibitors tested. 

Since some PKC isoforms are calcium-dependent, the effects of 

A23187, a calcium ionophore, as well as some calcium channel 

blockers on cytokine-induced proliferation were investigated. A23187 

alone stimulated C6 cell proliferation; and in the presence of a sub-

optimal dose of cytokines such as TNF-a, IL- la , IL- ip and LIF, 

A23187 further enhanced the proliferation induced by these 

cytokines. The involvement of calcium in mediating the proliferative 

effects of TNF-a and LIF is further supported by observations that 

calcium channel bl0ckers-LaCl3, verampil and nifedipine, inhibited 

the proliferative effects of these two cytokines in a concentration-

dependent manner. In addition, EGTA, a Ca〗+ chelator, has similar 

inhibitory action on the cytokine-induced C6 cell proliferation. 

Since tyrosine kinase is a well known second messenger in 

cytokines function, its involvement in cell proliferation was also 

examined in this project. It was found that C6 cell proliferation 

induced by TNF-a and LIF was sensitive to the presence of selective 
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tyrosine kinase inhibitors, herbimycin A and tyrphostin, which could 

block the proliferative effects of PMA and PDA. 

In addition, the present study also showed that nitric oxide 

synthase inhibitors, NG-methyl-L-arginine and NW-nitro-L-arginine 

methyl ester, were capable of inhibiting the proliferative effect of 

TNF-a or LIF on C6 cells. On the other hand, the exogenous nitric 

oxide donor, sodium nitroprusside, did not show any proliferative 

effect on C6 glioma cells. Though the nitric oxide formation was 

induced by cytokines including TNF-a, LIF, I L - l a and IL- ip , the 

increase was much lower than the reported data. 

Finally, the involvement of cyclic nucleotides and p-adrenergic 

receptor in cytokine-induced C6 cell proliferation was also 

investigated. It was found that cyclic nucleotides, including dbcAMP 

and dbcGMP, and a p-adrenergic agonist, isoproterenol, significantly 

increased the proliferation of C6 cells. Likewise, propranolol, an 

antagonist of p-adrenergic receptor, was shown to reduce greatly the 

stimulatory effect of TNF-a or isoproterenol on PH]-thymidine 

incorporation in C6 cells at a concentration of 25 ^iM. The exact 

mechanism(s) by which cyclic nucleotides and P-adrenergic receptor 

might modulate C6 cell proliferation remains to be elucidated. 
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Chapter 1 Introduction 

Chapter 1 INTRODUCTION 

1.1 Cytokines in the Central Nervous System 

1.1.1 Basic Properties of Cytokines 

Cytokines are a group of protein cell regulators, which are 

produced by a wide variety of cells in response to various inducing 

stimuli, and may have effects on cells distant f rom the cells of origin. 

Addit ionally, they are defined as a class of inducible, water-soluble, 

heterogeneous proteinaceous mediators of animal origin w i th 

molecular weights greater than 5,000 that exercise specific, receptor-

mediated effects in target cells, or in mediator-producing cells 

themselves (Meager, 1990). 

Cytokines are usually subdivided into well-characterized 

classes including "growth factors", "colony stimulating factors 

(CSF)", "interleukins (IL)", "tumor necrosis factors (TNF) : 

"interferons (IFN)" and "chemotactic factors", etc. The properties of 

some major cytokines are given in Table 1.1. Cytokines may be 

considered to have hormone-like activities. Since they mostly exhibit 

direct mitogenic effect and act at short range in local cellular 

environments, they have been described as a new category of 
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Chapter 1 Introduction 

intercellular mediators, even though, sometimes, they act at a 

distance when released into the blood. Secondly, they are pleiotropic 

mediators, which can act on many different cell types, or on cells of 

the same lineage at different stages of development. Moreover, 

cytokines can be produced by specialized and unspecialized cells of 

many tissues and organs, and their receptors are usually found on 

many cell types other than the predicted target cells. Furthermore, 

their biological activities are often highly overlapped. In brief, all the 

above properties of cytokines are different f rom those of hormones. 

Table 1.1 Properties of Some Major Cytokines* 

Cytokine No of MW(kD) Receptor Principal sources 

A. A. types 

TNF-a 157 51 55 kD/75 kD types macrophages 
(trimer) 

LIF 179 38-67 a-chain: 200 kD T lymphocytes; carcinoma 
p-chain: 130 kD cells 

(gpl30) 

IL-la 159 17.5 80 kD/68 kD types monocytes and many other 
cell types 

IL-ip 153 17.3 80 kD/68 kD types monocytes and many other 
cell types 

IL-6 184 21 a chain: 80 kD T lymphocytes; monocytes; 
P chain: 130 kD many other cell types 

* From Clemens, 1991; Nicola, 1994 and Pimentel, 1994. 
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Chapter 1 Introduction 

Following receptor occupancy by cytokines, intracellular 

signaling pathways are activated to effect metabolic changes, gene 

induction, and structural alterations leading to proliferative, 

differentiating, or functional responses of the target cells. The genes 

coding for cytokines appear to be tightly regulated. A specific 

stimulus is usually required for induction or de-repression of 

cytokine genes. In many instances, a number of these substances and 

entities act by binding to the cell surface, in a way much resembling 

the binding of cytokines to their cell receptors, to stimulate cytokine 

synthesis. For example, part of the cell wal l of pathogenic Gram-

negative bacteria known as, lipopolysaccharide (LPS), binds to the 

cell surface of macrophages and induces the synthesis of a number of 

cytokines (Lee et aL, 1993b). 

I t is well-documented that cytokines have important roles in 

the growth, development, and maintenance of advanced 

multicellular, multi-organ species where the orderly assembly and 

function of cells is vital to normal morphogenesis, not only during 

embryogenesis and neonatal development but also through to 

adolescence and adulthood (Nicola, 1994). In addition, cytokines play 

a large number of physiological roles, such as control of host 

defenses against infections, cell proliferation and differentiation, 

regulate hematopoiesis, immune responses and inflammatory 

responses and fever, wound healing and tissue remodelling, and 

influence on cellular metabolism etc. (Clemens, 1991). 
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Chapter 1 Introduction 

1.1.2 The General Characteristics of Glial Cells 

The first account of neuroglia was cited by Dutrochet in 1824, 

who noticed the existence in the central nervous system (CNS) of 

non-neuronal components made up of spindle-shaped cells which 

were morphologically distinct f rom neurons (Virchow, 1860). These 

cells were considered as a form of connective tissue wi th in the CNS, 

and were called "neuroglia", which means nerve glue. There are two 

broad sub-groups of glial cells: the macroglia, which consists of 

astrocytes, oligodendrocytes and ependymal cells, and microglia. The 

basic properties of astrocytes, oligodendrocytes and microglia are 

described below. 

1.1.2.1 Astrocytes 

The astrocyte is the most abundant cell type in the CNS, 

outnumbering neurons by about 10:1. They are, in reality, a lineage 

representing a large family of cells that share certain biochemical and 

morphological specialization, while diverging in certain functional 

capabilities. Classically, there are two principal types of astrocytes, 

the protoplasmic (type-l) and fibrous (type-2) astrocytes, which are 

classified according to their morphological properties, antigenic 

phenotypes, kinetic development, appearance, and responses to the 

growth factors. The protoplasmic astrocytes are characterized by 
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Chapter 1 Introduction 

thick, branched processes wi th spiny projections and are localized 

primari ly w i th in the gray matter. The fibrous astrocytes, in contrast, 

consist of relatively long, thin processes wi th few branches and are 

the predominant type in the white matter. 

There are fundamentally three characteristic features that 

define astrocytes in the mammalian CNS. The most important is the 

cytoplasmic inclusion of 6- to 9-nm intermediate filaments whose 

major structural component is a 49-kD protein, the glial f ibri l lary 

acidic protein (GFAP) (Eng et al., 1971). The two other features are the 

presence of glycogen granules observed by electron microscopy 

(Revel et aL, 1960), and membrane-associated orthogonal-particle 

complexes by freeze-fracture studies. These complexes are strictly 

unique to astrocytes and are not found on myelin, neurons or other 

glial cells (Dermietzel, 1974). Recently, other biochemical markers in 

astrocytes are also found, such as glutamine synthetase (GS), the 

calcium binding protein, S-100, and glutathione-S-transferase subtype 

Yb (Cammer et al., 1989; Norenberg & Martinez-Hernandez, 1979; 

Waniewski & Martin, 1986). 

Along wi th the great variety of astrocyte types, there is an 

equal diversity of specified functions that can be ascribed to 

particular astrocytes based upon their positional relationships wi th in 

the neuraxia and some of them are listed in Table 1.2. 
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Chapter 1 Introduction 

Table 1.2. Some Known Astrocyte Functions* 

1. Neuronal support 

2. Guidance for developing neurons 

3. Regulation of the extraceUular environment 

4. Synaptic encapsulation 

5. Regulation of synaptic modulation 

6. Participation in node of Ranvier formation 

7. Regulation of cerebral blood flow by K+ siphoning 

8. Liduction of blood-brain barrier properties in endothelial ceUs 

9. Scar formation and repair of CNS foUowing injury 

10. Response capabiKty to a variety of transmitters and peptides 

* From Frohman et al., 1989b. 

1.1.2.2 Oligodendrocytes 

Oligodendrocytes arise from the oligodendrocyte-type-2 (0-2A) 

progenitor cell. The function of the oligodendrocyte is to produce 

myelin. Myelin sheaths are cytoplasmic projections which extend 

from the oligodendrocyte cell body to wrap around nerve fibers in a 

spiral fashion. There are three kinds of oligodendrocyte-specific 

markers. The most common one is the galactocerebroside, which is 

unique to oligodendrocytes and is the major glycolipid of myelin 

(Raff et al., 1978). The other type of marker is the protein markers, 

which include myelin basic protein, proteolipid protein and myelin-

associated protein (Lees & Brostoff, 1984). Additionally, 

oligodendrocytes have several cell-specific enzymes, such as 2',3'-
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Chapter 1 Introduction 

cyclic nucleotide 3'-phosphohydrolase (CNP) and glycerol-3-

phosphate dehydrogenase (de Vellis et aL, 1967; Drummond et aL, 

1962). 

1.1.2.3 Microglial 

Microglia constitute approximately 10% of the total glial cell 

population, which are considered as the resident macrophages of the 

brain (Benveniste, 1992b). According to their variable morphology, 

there are several major subtypes of microglia including ramified, 

ameboid and perivascular microglia. The major function of microglia 

is the phagocytosis of cellular debris (Perry & Gordon, 1988). 

Microglia can be identified by a number of cell markers, such as 

immunoglobulin Fc receptor (Perry et al., 1985), type 3 complement 

receptors (Giulian & Baker, 1986), P2-integrins (Akiyama & McGeer, 

1990), nonspecific esterase (Suckling et al., 1983) and lectin Ricinus 

communis agglutinin I (Mannoji et al" 1986). However, all these 

known phenotypic markers for microglia are shared wi th other cell 

types. 

1.1.3 The Effects of Cytokines on Neural Cells 

Cytokines, many of which have been discovered in studies of 

the hematopoietic system, are well known to regulate immune cell 

development and functions. Interestingly enough, a number of 
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Chapter 1 Introduction 

cytokines, such as TNF-a, IL- la , IL- lp, IL-6 and LIF, have also been 

found to have the ability to regulate neural cell proliferation and gene 

expression. These cytokines are known to affect the survival, growth, 

and gene expression in various types of neurons and glial cells in 

culture (Bartfai & Schultzberg, 1993). Moreover, several of these 

cytokines are either normally expressed in the nervous system or are 

up-regulated in the central or peripheral nervous system after injury 

or in neurological disease (Merril l & Chen, 1991; Patterson, 1994). In 

view of the importance of these cytokines as signals in neuroimmune 

interactions, the basic characteristics of these cytokines and their 

modulatory effects on neuronal cells w i l l be further discussed in the 

fol lowing sections. 

1.1.3.1 TNF-a and Neural Cells 

TNF-a is a 17 kD protein produced by macrophage in response 

to a wide variety of stimuli including mitogens, cytokines, bacteria, 

viruses and parasites (Spriggs et aL, 1992). TNF-a has been shown to 

take part in altering vascular endothelial cell functions during 

inflammation. For instance, TNF-a enhances their permeability (Brett 

et al； 1989), induces their expression of adhesion molecules (Prober et 

al" 1986) and increases local adhesion of neutrophils, monocytes or 

lymphocytes to endothelial cell surfaces (Pohlman et al., 1986). TNF-a 

is known to stimulate other cell types to produce cytokines, including 

IL-1, IL-6 , CSFs and TNF-a itself (Aggarwal & Vilcek, 1992; Beutler, 
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1992). TNF-a can also regulate immune responses by modulating the 

expression of class I and I I major histocompatibility complex (MHC) 

molecules on a variety of cell types. TNF-a is also an endogenous 

pyrogen which acts on cells in the hypothalamic regions of the brain 

to induce fever (Beutler & Cerami, 1989). In addition,- TNF-a plays a 

role in mult iple sclerosis, and is involved in autoimmunity and in 

bacterial, parasitic, and viral infection (Beutler, 1992). 

TNF-a has been shown to mediate myelin damage in vitro 

(Selmaj & Raine, 1988), and has cytotoxic activity against rat 

oligodendrocytes, which results in cell death (Robbins et al., 1987). 

These observations suggest that TNF-a contributes to the 

demyelination process in neurological diseases. TNF-a also has 

multiple effects on astrocytes which are noncytotoxic in nature, and 

may function in an autocrine manner as astrocytes express specific 

high affinity TNF-a receptors (Benveniste et al., 1989), and secrete 

TNF-a upon activation by a variety of stimuli (Chung & Benveniste, 

1990; Lieberman et aL, 1989). Astrocytes also respond to TNF-a by 

secreting IL-6, granulocyte colony stimulating factor (G-CSF) and 

granulocyte/ macrophage colony stimulating factor (GM-CSF) 

(Benveniste et al； 1990; Frei et al； 1989; Malipiero et al, 1990). 

Additionally, mouse microglia produce TNF-a in response to LPS or 

IFN-y (Frei et al" 1987). In primary astrocytes, TNF-a increases class I 

MHC and intercellular adhesion molecule-1 (ICAM)-1 expression, 

and enhances class I I MHC expression induced by IFN-y or virus 
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(Frohman et ah, 1989a; Massa et al, 1987). This indicates that astrocyte 

can function as an antigen presenting cell (APC) wi th in the CNS. 

TNF-a has a direct mitogenic effect on both primary astrocytes 

(Selmaj et al, 1990) and human astroglioma cell lines (Bethea et al, 

1990; Lachman et aL, 1987), which is thought to contribute to the 

reactive astrogliosis associated wi th various neurological diseases. 

On the other hand, TNF-a also targets on the neurons of 

hypothalamus in fever (Dinarello et al, 1986). In peripheral tissues, 

such as pancreatic cells, TNF-a has been shown to induce insulin 

secretion (Southern et al, 1990). These observations confirm the 

diverse functions of TNF-a in the body. 

1.1.3.2 LIF and Neural Cells 

LIF is a basic and heavily glycosylated monomeric protein 

whose molecular weight is about 32-62 K (Hilton, 1992). LIF has been 

shown to be involved in the regulation of proliferation, 

differentiation and other functions in a wide diversity of cell types 

(Kurzrock et al, 1991; Metcalf, 1991). Some examples are: 

hematopoietic stem cell growth and differentiation (Escary et al., 

1993), megakaryocyte maturation (Burstein et al” 1992) and 

embryonic tissue development (Conquet & Brulet, 1990). Also, LIF 

can induce the production of IL-6 or other acute phase proteins in the 

liver (Murray et al, 1990). Through the induction of a variety of 

cytokines, LIF can modulate inflammation, immune responses, and 
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Chapter 1 Introduction 

connective tissue metabolism, and can act as a pathogenetic mediator 

in different disease states (Villiger et aL, 1993). 

In the nervous system, LIF promotes the transition f rom 

noradrenergic to cholinergic function in cultured sympathetic 

neurons, concomitantly decreasing tyrosine hydroxylase activity and 

inducing the activity of choline acetyltransferase and vasoactive 

intestinal polypeptide (Murphy et al., 1991; Sendtner et al, 1990). 

Also, LIF affects the survival or differentiation of motor and sensory 

neurons (Murphy et al" 1991; Sendtner et al, 1990). When applied to 

peripheral nerves in vivo, this cytokine is retrogradely transported, 

and rescues damaged sensory neurons (Cheema et al., 1994; Hendry 

et al" 1992) as it does in cultured neurons (Murphy et al, 1993). LIF 

also alters the phenotype of sensory neurons in culture (Fan & Katz., 

1993; Nawa et al., 1990). There was evidence that LIF can be produced 

by glial cells in culture (Patterson & Chun, 1974; Shadiack et al； 1993). 

In addition, recombinant LIF can duplicate the effects of nerve injury 

in the induction of particular neuropeptides in sympathetic neurons 

(Jonakait, 1993; Patterson & Nawa., 1993; Sun et al., 1994). In the 

brain, LIF level rises after injury (Jonakait, 1993). Collectively, these 

results indicate that LIF production in the nervous system is induced 

by injury, and plays an important role in neuronal responses during 

injury. 
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Chapter 1 Introduction 

1.1.3.3 IL-1 and Neural Cells 

IL-1 is a cytokine responsible for mediating a variety of 

processes in the host response to microbial and inflammatory 

diseases. There are two forms of IL-1, I L - l a and IL- ip , which are the 

products of two different genes (Pimentel, 1994). Al though these two 

forms of IL-1 have less than 30% structural homology to one another, 

they both bind to the same surface receptor, and have essentially 

identical biologic activities (Arai et al, 1990; de Giovine & Duff, 1990). 

IL-1 is the major co-stimulator for T-cell activation via the 

augmentation of both IL-2 and IL-2 receptor expression. These effects 

allow antigen-stimulated T cells to proliferate rapidly and expand in 

number. IL-1, in cooperation wi th other cytokines, enhance the 

growth and differentiation of B cells (Arai et aL, 1990; de Giovine & 

Duff, 1990). IL-1 is a principal participant in inflammatory reactions 

through its induction of other inflammatory metabolites, such as 

prostaglandin, collagenase, and phospholipase A2 (Arai et aL, 1990; 

de Giovine & Duff, 1990). Similar to TNF-a, IL-1 acts on endothelial 

cells to promote leukocyte adhesion and stimulates numerous cell 

types to produce various cytokines, such as IL-6, TNF-a, CSFs and 

IL-1 itself (Arai et al., 1990; de Giovine & Duff, 1990). 

IL-1 affects a wide range of target cells in the nervous system. 

Purified IL-1 was shown to have a stimulatory activity for astrocyte 

growth in vitro (Giulian & Lachman, 1985), and when injected into the 
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brain, IL-1 can stimulate astrogliosis (Giulian et al" 1988a). 

Recombinant IL-1 has also been shown to stimulate the proliferation 

of a human astrocytoma cell line, U373, and to modulate gene 

expression in astrocytes (Lachman et al, 1987). Moreover, IL-1 can 

increase the expression of ICAM-1 adhesion molecule on human 

astrocytes (Frohman et al； 1989a). This is particularly important 

because the expression of ICAM can enhance the ability of an APC to 

present antigen when the number of MHC molecules on the cell 

surface is low. This suggests that the combined expression of I C A M 

and M H C may be synergistic in eliciting a more potent imrmme 

response (Demaine, 1989). 

IL-1 is also a potent inducer of other cytokine production in 

astrocytes. The stimulation of primary cultured rat astrocytes by IL-1 

results in the secretion of TNF-a (Chung & Benveniste, 1990) and IL-6 

(Benveniste et al., 1990; Frei et al； 1989), while in human astroglial cell 

lines CSFs (Tweardy et al., 1990), TNF-a (Bethea et al., 1991), and IL-6 

(Yasukawa et aL, 1987) are produced in response to IL-1. The 

production of IL-1 can be induced by LPS in C6 glioma cell line 

(Fontana et al,, 1982), murine astrocytes and microglia (Giulian et al, 

1986; Malipiero et al" 1990). Additionally, IL-1 acts as an autocrine 

stimulator of astrocytes, as they can secrete and respond to this 

cytokine. 
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In neurons, IL-1 has been shown to stimulate the synthesis of 

nerve growth factor (NGF) during peripheral nerve injury (Bartfai & 

Schultzberg, 1993; Berkenbosch et al" 1987). IL- lp mRNA has been 

detected in the rat hippocampal pyramidal cell layer (Bandtlow et al., 

1990), and IL-1 receptor is observed in the dentate gyrus of 

hippocampus in rat (Farrar et al, 1987) and mouse brains (Haour et 

al, 1990; Takao et al, 1990). Further studies on purif ied, 

homogeneous cell populations of neural crest origin, such as PC12 

cells, also support the claim that neuronal cell types may synthesize 

IL-1 (Alheim et al., 1991). These studies suggest that IL-1 is 

synthesized by neurons. 

The effects of IL-1 on the neuroendocrine system include 

regulation of corticosterone and gonadal hormone production, 

induction of slow-wave sleep, fever, corticotrophin-releasing factor 

and gastric acid secretion (Bartfai & Schultzberg, 1993). 

1.1.3.4 IL-6 and Neural Cells 

IL-6, along wi th IL-1 and TNF-a, are pleiotropic cytokines 

involved in the regulation of inflammatory and immunologic 

responses (Kishimoto, 1989). IL-6, a 26 kD molecule, is secreted by a 

wide range of cells. Depending on the cell types, the synthesis of IL-6 

is induced by a variety of agents, including the cytokines IL-1, TNF-a 

and IFN-y (Le & Vilcek, 1989). The two better known actions of IL-6 
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are on hepatocytes and B cells. In these cells, IL-6 can stimulate 

hepatocytes to produce several plasma proteins, such as fibrinogen 

and C-reactive protein, which contribute to the acute phase response 

(van Snick, 1990). In the immune system, IL-6 is the principal 

cytokine for inducing terminal differentiation of activated B cells into 

immunoglobulin-secreting plasma cells (van Snick, 1990). A minor 

function of IL-6 is as co-stimulator of T cells and thymocytes (van 

Snick, 1990). 

IL-6 has been demonstrated to have multiple effects on 

astrocytes, and functions in an autocrine manner as astroglioma is 

found to express specific high-affinity receptors for IL-6 (Taga et aL, 

1987). There are two endogenous CNS sources for IL-6, the astrocyte 

and microglia. Primary rat and murine astrocytes can secrete IL-6 in 

response to a variety of stimuli including virus, IL-1, TNF-a, IFN-y 

plus IL-1, LPS and calcium ionophore (Benveniste et al., 1990; Frei et 

aL, 1989; Lieberman et ah, 1989), while transformed microglia clones 

also produce IL-6 (Rigi et al； 1989). IL-6 has direct mitogenic effect on 

astrocytes (Selmaj et al., 1990) and the astrocytes secrete nerve growth 

factor in response to IL-6, which induces neural differentiation (Frei 

et al, 1989). IL-6 has been found to induce the differentiation of PC 12 

cells, as wel l as to increase the number of voltage-dependent Na+ 

channel (Satoh et al； 1988). Moreover, IL-6 has also been shown to 

inhibit TNF-a production by monocytes (Aderka et al., 1989). As 

astrocytes can secrete TNF-a, and TNF-a induces IL-6 production by 
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astrocytes, this may represent a negative regulatory pathway for 

controlling TNF-a expression in the CNS. 

In addition to the above effects on differentiation and cytokine 

production, IL-6 has many actions on the pituitary gland, such as 

stimulation of ACTH, gonadotropins and prolactin release (Naitoh et 

aL, 1988). Recently, i t has been shown that IL- lp induced an increased 

release of IL-6 f rom cultured rat anterior pituitary (Yamaguchi et al" 

1990). 

1.1.4 Immune Responses in the Central Nervous System 

From the above discussion, it is clear that cytokines play an 

important role in inducing immune responses on the cells of the 

central nervous system. However, the CNS has traditionally been 

considered as an "immunologically privileged site" for three major 

reasons. Firstly, the CNS lacks for the most part a lymphatic system 

that drains the tissues and captures potential antigens. Secondly, the 

CNS is protected from the blood by the blood-brain barrier (BBB), 

which is basically impermeable to many soluble substances, 

including cytokines, and restricts the migration of lymphoid cells into 

CNS. Lastly, the cells of the CNS express very low levels of antigens 

encoded by the MHC genes, whose products play a fundamental role 

in the induction and regulation of immune response (Booss et aL, 

1983; Peters et al., 1976; Wong et al； 1984). 
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Despite the above observation, recent work has shown that T 

cells in very low numbers are found wi th in normal brain tissue, and 

also in normal cerebrospinal fluid (Booss et al, 1983). However, the 

presence of lymphatic-like capillaries in the brain provides a possible 

natural, untraumatized, route for lymphoid cells into the CNS 

(Prineas, 1979). Another evidence is that pathological events wi th in 

the CNS often result in a breakdown of BBB, which permits cells of 

the peripheral immune system to enter this site. During human CNS 

diseases, such as viral encephalitis (Prineas, 1979), multiple sclerosis 

(Hauser et al, 1983, Prineas & Wright, 1978; Traugott et al, 1983), 

AIDS dementia complex (Navia et al, 1989) and animal models of 

CNS diseases, such as experimental allergic encephalomyelitis (EAE), 

inflammatory infiltrates composed of activated T cells, B cells, and 

macrophages are found in the brain. Furthermore, glial cells, 

especially astrocytes, can secrete immunoregulatory molecules that 

influence immune cells, as well as the glial cells themselves. Table 1.3 

shows the involvement of some cytokines in various diseases in the 

brain (Morganti-Kossmann et al., 1992; Pimental, 1994). Thus, 

astrocytes, which have been demonstrated to act as intracerebral 

antigen presenting cells (Frohman et al" 1989b), may play a crucial 

role in the immune response in the CNS via soluble cytokines. 
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Table 1.3 Cytokines and Neuropathogenesis* 

Cytokine Disease/Infection Probable Sources 

IL-1 multiple sclerosis, macrophages, microgUa, 
Alzheimer's disease injury astrocytes 

TNF-a multiple sclerosis, bacterial macrophages, 
meningitis, HW, injury astrocytes 

TNF"P multiple sclerosis, T lymphocytes 
microgUa, astrocytes 

IL-6 viral or bacterial meningitis, macrophages, microgUa, 
HIV, meningoencephaUtis, injury astrocytes 

IFN-y multiple sclerosis, lymphocytes 

TGF"P HIV, cytomegalovirus macrophages, microgUa, 
astrocytes 

* From Morganti-Kossmann et al., 1992; Pimental, 1994. 

Although brain cells do not constitutively express class I I M H C 

antigens, IFN-y and TNF-a can induce the expression of these 

molecules in astrocytes and microglia (Fierz et al., 1985; Fontana et al., 

1984; Pulver et al； 1987; Suzumura et al, 1987). Furthermore, viral 

infections, such as hepatitis and measles virus infection, also result in 

class I I M H C antigen expression in the CNS (Massa & ter Meulen, 

1987; Massa et al； 1986). Like astrocytes, endothelial cells can produce 

class I I M H C antigens upon treatment w i th IFN-y (Male et al, 1987; 

Pober et al, 1983), and ICAM-1 is also presented on vascular 

endothelial cells and fibroblasts upon the stimulation w i th cytokines, 

such as IFN-y, IL-1 and TNF-a etc. (Dustin et al, 1986). After 
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induction, class I I MHC and ICAM-1 positive endothelial cells could 

then act as the first APC encountered by blood-borne T cells, 

resulting in activation of these cells (Figure 1.1). These activated T 

cells wou ld then be able to penetrate the BBB in a variety of fashions, 

such as passing through altered tight junctions- between the 

endothelial cells, or dissolving the extracellular matrix produced by 

endothelial cells (Frohman, 1989b; Merril l, 1987). Activated T cells 

have been shown to secrete an endoglycosidase that digests the 

proteoglycans of the extracellular matrix (Naparstek et al., 1984). 

Once in the brain, activated T cells release cytokines along w i th 

entering macrophages. These cytokines could exert a potent influence 

on astrocytes, thus creating an environment for local immune 

responses wi th in the CNS. Additionally, astrocytes, 

oligodendrocytes, and microglia have been shown to constitutively 

express low levels of class I antigens (Wong et al., 1984), which could 

be increased by cytokines, including IFN-y, in a wide variety of 

species (rat, mouse and human) (Hirayama et al., 1986; Suzumura et 

aL, 1986). The enhanced class I MHC antigen expression implicates 

that they can be rendered susceptible to lysis by class !-restricted 

cytotoxic T cells. In fact astrocytes were shown to serve as targets for 

class I MHC-restricted cytotoxic T cells in vitro (Skias et al., 1985). 

The subsequent immune response in the CNS is summarized in 

Figure 1.1. The proliferation of astrocytes is induced by TNF-a and 

IFN-y from T cells, and IL-1 produced by astrocytes themselves. IL-2, 
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Figure 1.1 The blood T cells penetrate the BBB and initiate the 
immune response in the central nervous system. (Modified f rom 
Frohman, 1989b and Merril l, 1987). 
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produced by activated T cells, is specific for oligodendrocytes and 

induces their proliferation. In contrast, brain macrophages could 

cause demyelination. The further immune reactions result in 

inflammation, demyelination or remyelination, plaque formation etc., 

which are usually observed in the brain diseases (Merrill, 1987). 

1.2 The C6 Glioma As a Model for the Study of Glial Cell 

Growth and Differentiation 

1.2.1 The Rat C6 Glioma Cells 

The term glioma describes the group of glial neoplasms 

including astrocytoma, glioblastoma, ependynoma, 

oligodendroglioma and mixed gliomas, such as oligoastrocytoma. 

Astrocytic gliomas, which contain fibrillary neoplastic cells, are the 

most common gliomas. Glioma cells are particularly easy to grow in 

tissue culture, thus in unselected material about 20 % of glioblastoma 

mult i form cells can be grown as continuous cell lines (Westermark et 

al., 1973). Although they may not be true representatives in all 

aspects of glioma or glial cells in vivo, the relative ease wi th which 

such cell lines can be established has made them widely used as 

model system for studies on the biology of glioma or glial cells. A 

number of rat brain tumors induced by N-nitrosomethylurea and 

consisting of more or less differentiated astrocyte-like cells are found 

to contain S-100 protein, a characteristic protein of glial cells. It was 
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shown that injection of newborn rats wi th these cultured tumor cells 

resulted in a high efficiency of tumor formation (Benda et al, 1968). 

Five morphologically distinct clonal cell strains were established 

f rom these tumors, only one contains appreciable amounts of S-100, 

and this is the C6 glioma cell line (Benda et al, 1968 ) . . 

C6 glioma cells have provided a useful model to study glial cell 

properties, glial factors and sensitivity of glial cells to various 

substances and conditions. As a k ind of transformed cell line, the 

growth characteristics of C6 cells are immortal, anchorage 

independent, loss of contact inhibition, high plating efficiency and 

shorter population doubling time. In addition to its homogeneous 

genetic properties, C6 cells are tumorigenic and angiogenic 

(Freshney, 1987). On the other hand, C6 cells express several glial-

specific markers such as S-100, GFAP and GS, the markers for 

astrocytes, and CNP, an enzyme marker for oligodendrocytes, have 

been proved to be expressed in the C6 cell line (Kempski et al, 1992; 

Vernadakis et al, 1992). Additionally, the expression or activity of 

these markers in C6 cells could be induced. For instance, CNP is 

induced by neuron-derived factors, epidermal growth factor and 

fibroblast growth factor, whereas GFAP and GS are induced by 

insulin, cyclic AMP, platelet-activating factor, muscle-derived factors, 

chronic p-receptor activation and IL-4 (Brodie & Goldreich, 1994; 

Brodie & Vernadakis, 1991; Parker et al" 1980; Vernadakis et al, 1991). 

Interestingly, cytokines are known to be involved in the expression of 

� 22 



Chapter 1 Introduction 

astrocytic and oligodendrocytic properties expression in C6 cells of 

early passages (Brodie & Goldreich, 1994). 

C6 glioma cells have been found to respond to several 

cytokines, such as TNF-a, IL-6, IFN-y and IL-4. The growth of C6 

glioma cells is stimulated by TNF-a, IL-6 and IFN-y (Munoz-

Fernandez et al, 1991; Munoz-Fernandez & Fresno, 1993). In addition, 

IL-4 exerts a biphasic effect on C6 cell proliferation, increasing cell 

proliferation at concentrations ranging from 10-50 ng /m l , and 

inhibit ing at higher concentrations (Brodie & Goldreich, 1994). The 

inhibit ion of cell proliferation is associated wi th differentiation of the 

cells to express astrocytic phenotypes as evidenced by morphology, 

increased GFAP immunoreactivity and elevated GS expression 

(Brodie & Goldreich, 1994). IL-4 also induced the secretion of nerve 

growth factor by C6 glioma cells (Brodie & Goldreich, 1994). These 

results suggest that the C6 cell line represents a good cell model for 

the study of the proliferation and differentiation of glial cells in vitro, 

1.2.2 The Differentiation and Proliferation of C6 Glioma Cells 

It is well-known that the starting point for the cellular analysis 

of glial development was the optic nerve, the simplest part of the 

CNS (Figure 1.2). The first glial cell type to appear in the optic nerve 

during embryonic development is the type-1 astrocyte. The next two 

/ 
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Figure 1.2 The development of glia and C6 glioma cell line (Modified 
f rom Linskey & Gilbert, 1995 and Vernadakis et al, 1991). 

� 24 



Chapter 1 Introduction 

glial cell types, type-2 astrocyte and oligodendrocyte, which appear 

during development of the rat optic nerve, are both derived f rom a 

single progenitor cell, the oligodendrocyte-type-2 astrocyte (0-2A) 

progenitor cell (Raff et al, 1983), which migrates into the optic nerve 

f rom the optic chiasm during embryogenesis (Small et al" 1987). In 

vitro studies suggest strongly that division of the 0 -2A progenitor 

cells is promoted by the type-1 astrocytes derived f rom the optic 

stalk, through the secretion of platelet-derived growth factor (Noble 

& Murray, 1984; Raff et al., 1988). 0 -2A progenitors give rise to either 

type 2 astrocytes or oligodendrocytes, depending on the 

environmental influence. In vitro experiments have shown that the 〇-

2A progenitor cell, in the presence of fetal calf serum, differentiates 

into a type 2 astrocyte, and in the absence of serum, into an 

oligodendrocyte. Another member of the 0 -2A lineage is the 0 -2A 

adult progenitor cell, which differs from its perinatal counterpart in 

many aspects, including antigen expression, morphology, cell-cycle 

length, motil ity, time-course of differentiation, in the manner in 

which i t generates astrocytes and oligodendrocytes and seemingly 

also in its capacity for extended self-renewal (Wolswijk & Noble, 

1989). 

The influence of mitogenic factors and cytokines on macroglia 

development have also been studied. Mitogenic brain extracts f rom 

embryonic days 16-18 brain were found to induce a 4-fold increase in 

neonatal astrocytes in vitro (Morrison et al； 1982). The astroglial 
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proliferation is due to the peptides released f rom ameboid microglia 

which act as glial promoting factors (Giulian, 1984; Giulian & Baker, 

1985). One of these factors is IL-1, which is produced by ameboid 

microglia f rom rat cerebral and cerebellar cortex derived f rom the 

late embryonic period (Giulian et al., 1986; Gordon & Hirsch, 1981). 

Thus, clusters of ameboid microglia found along growing axons in 

fetal corpus callosum may stimulate astroglial pathways which in 

turn determine the direction of axonal growth (Giulian et aL, 1988 a 

and b). Since this occurs during the critical developmental periods 

involving glial cell appearance, i t has been suggested that substance 

P (SP), a neuro-transmitter, may play a role in cytokine production 

and maturation of glial and neuronal elements (Charnay et al., 1983; 

Nomura et aL, 1982). Indeed, SP has been shown to stimulate 

astrocytes to produce IL-1, TNF-a and IL-6 (Kimball et aL, 1988; Lotz 

et aL, 1988). Conversely, IL-1 has also been demonstrated to induce 

SP production in sympathetic ganglia (Jonakait & Schotland, 1990). 

Thus, SP may influence glial cells during development in an 

autocrine loop involving various cytokines. In addition, several 

cytokines including IL-1 and TNF-a, as mentioned before, have 

effects on the proliferation and differentiation of glial cells. Since IL-1 

and TNF-a are capable of co-inducing each other and that astrocytes 

produce IL-1 and TNF-a, both autocrine and paracrine events ensure 

proliferation and activation of astrocytes during development. 
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Early passage C6 glioma cells express the properties of the 

progenitor glial cells. Since they are GFAP, GS and CNP positive, C6 

glioma cells have the properties of both astrocyte and 

oligodendrocyte. It has also been reported that C6 glioma cells 

exhibited differential enzyme expression wi th cell passage: the 

activity of CNP, an enzyme marker for oligodendrocytes, was 

markedly high and that of GS, an enzyme marker for astrocytes, was 

low in early passages (up to passage 26). However, this relationship 

was reversed in the late passages (beyond passage 70) (Parker et al； 

1980). In addition, early-passage cells express low level of GFAP 

immunoreactivity in contrast to late passage cells which express a 

high intensity of immunoreactive staining (Brodie & Vernadakis, 

1991). These observations suggest that C6 glioma cells, as a 

bipotential progenitor, may give rise to oligodendrocytes at the early 

passages and to astrocytes at the later passages (Vernadakis et al； 

1991). 

As mentioned before, a number of factors, such as insulin, 

cyclic AMP, platelet-activating factor, muscle-derived factors, 

transferrin and IL-4, can induce C6 cells to generate astrocytic 

phenotypes. On the other hand, factors including neuronal-derived 

factors, epidermal growth factor, fibroblast growth factor and 

platelet-derived growth factor can trigger the C6 cells to give rise to 

oligodendrocytic phenotypes (Figure 1.2). It has been known that 

many of these inducible factors, such as growth factors and 
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interleukins, are also involved in the inflammation and immune 

response in the CNS. These findings clearly indicate that various 

microenvironmental factors, including cytokines, play a prominent 

role in influencing the glial phenotypes of C6 glioma cells. 

1.3 Signal Transduction Pathways in Cytokine-stimulated 

Glial Cells 

1.3.1 Intracellular Signalling Pathways of Cytokines 

Cytokines transmit their biological signals to responsive cells 

by interaction wi th specific high-affinity cell surface receptors. 

However, there is still relatively little knowledge of the mechanisms 

by which cytokines transmit signals via their receptors. At present, at 

least two signal-transmitting or activation pathways have been 

described that appear to be related directly to cytokine-mediated 

cellular response. One of these involves the calcium-binding protein 

calmodulin, guanine nucleotide-binding proteins (G-protein), and the 

enzymes adenylate cyclase and protein kinase A. In the other 

activation pathway, the receptor molecules themselves contain a 

tyrosine kinase which, when activated, subsequently activates 

phospholipases, possibly also through G-protein intermediates. The 

latter are responsible for the breakdown of plasma membrane inositol 

phospholipids to inositol triphosphate and diacylglycerol (DAG) 

which are active intermediates for intracellular Ca2+ release and 
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protein kinase C activation respectively (Meager, 1990). In fact, 

several mechanisms are involved in cytokine-triggered cell-specific 

responses. Among them, protein kinase C, tyrosine kinase, cyclic 

nucleotides and nitric oxide are highlighted here. 

1.3.1.1 Protein Kinase C Pathway 

Protein kinase C (PKC) comprises a family of related enzymes, 

which are a, Pi, Pii, y, 8, 8, X, ^ and 0. They possess regulatory and 

catalytic domains, wi th a site between them that is susceptible to 

proteolytic cleavage (Coussens et aL, 1986). Each molecule contains 

both conserved and variable sequence: C1-C4 are regions of conserved 

amino acids, V1-V5 are variable regions (Coussens et al., 1986). Protein 

kinase C can be divided into two main groups: the Ca2+-dependent, 

or conventional PKCs (cPKCs) and the Ca2+-independent, or novel 

PKCs (nPKCs). The PKC isoforms a, Pi, Pii and y, belong to the Ca?+-

dependent group, while the isoforms 5, s, X, ^ and 0，in which the C2 

conserved sequence is absent, belong to the Ca^^-independent group 

(Hug & Sarre, 1993). 

For the cPKCs, a model of activation was sufficient and 

convincing. It includes (1) the generation of diacylglycerol and 

inositol 1,4,5-triphosphate from plasma membrane-associated 

phosphatidylinositol 4,5-bisphosphate by the action of phospholipase 

C, (2) the release of Ca2+ from intracellular storage sites stimulated by 
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inositol 1,4/5-triphosphate, (3) the binding of Ca2+ to the Ci conserved 

region of PKC and subsequent translocation of the enzyme to the 

plasma membrane where i t is activated, via its Ci conserved region, 

by diacylglycerol and phosphatidyserine (PtdSer), the latter being 

constitutively present in the membrane (Bell &• Bum, 1991; 

Zidovetzki & Lester, 1992). In this model, phorbol ester, such as 

phorbol 12-myristate 13-acetate (PMA) and phorbol-12,13-diacetate 

(PDA), would mimic the action of DAG by their persistence in the 

cellular membrane, leading to a long-term activation of PKC 

(Gschwendt et aL, 1991). On the other hand, members of the nPKC 

group do not require Ca〗+ for activation, but require either 

DAG/PtdSer, or PMA/PtdSer (Lee & Bell., 1991). 

Cytokines, such as IFN-a, IL-1 and IL-3, have been reported to 

induce phosphatidylcholine hydrolysis (Cataldi et al., 1990). The 

selective activation of PKC p and 8 by IFN-a treatment of HeLa and 

Daudi cells respectively, have been demonstrated (Pfeffer et al, 1990, 

1991). The activated PKC can alter the phosphorylation of proteins, 

which could trigger the further intracellular biological function. 

1.3.1.2 Tyrosine Kinase Pathway 

Cell proliferation appears to be regulated by the tyrosine 

kinases which phosphorylate tyrosines in specific protein substrates 

(Ullrich & Schlessinger, 1990). The stimulation of various cell types 
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by IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, GM-CSF, erythropoietin (EPO) and 

ciliary neurotrophic factor (CNTF) has been shown to activate 

intracellular tyrosine kinases (Taga & Kishimoto, 1992). This kinase 

family includes Src, Ty2, JAK1 and JAK2 (Stahl & Yancopouls, 1993). 

Several cellular tyrosine kinases are also receptors for growth factors 

or cytokines, such as insulin-like growth factor-I, epidermal growth 

factor and macrophage colony stimulating factor (Aderem, 1993; 

Kishimoto et al., 1994). In addition, some cytoplasmic tyrosine kinases 

that do not require ligand binding for activation are nevertheless 

often associated wi th the plasma membrane or cytokeleton of the cell 

(Eiseman & Bolen, 1990). Cytokine receptors themselves that do not 

possess kinase activity might regulate activity of associated non-

receptor kinases. For example, the IL-3 receptor has no tyrosine 

kinase activity, but binding of IL-3 to sensitive cells causes increased 

tyrosine phosphorylation of several proteins (Linnekin & Farrer, 

1990). One recent evidence showed that JAK2, a nonreceptor type 

tyrosine kinase, might be activated by this cytokine (Silvennoinen et 

aL, 1993). The protein substrates for tyrosine kinases have not been 

well defined. Often, the enzymes themselves become phosphorylated 

on one or more tyrosine residues, and cytokines receptors are often 

auto-phosphorylated after the binding of their ligands (Weiss & 

Littman, 1994). Thus, tyrosine phosphorylation may be the first event 

in a cascade of reactions leading to the many biological effects of the 

cytokine, as demonstrated for the insulin, IGF-I, platelet-derived 

growth factor (PDGF) and M-CSF receptors (Weiss & Littman, 1994). 
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1.3.1.3 Cyclic Nucleotide Pathway 

The best characterized second messenger system in mammalian 

cells is the well-known adenylate cyclase / adenosine 3',5' 

monophosphate (cAMP) pathway. cAMP-dependent protein kinase 

mediates a wide variety of serine/ threonine-specific protein 

phosphorylation events, directly or indirectly (Clemens, 1991). The 

wide range of cAMP-dependent protein kinase substrates explains 

why ligands that activate or inhibit adenylate cyclase have diverse 

effects, and is perhaps a precedent for understanding the multiple 

effects of other cytokines that use alternative pathways. Surprisingly, 

few cytokines appear to act directly through cAMP as a second 

messenger. Conversely, cAMP-dependent protein kinase can 

phosphorylate and regulate proteins involved in other signal 

transduction mechanisms. On the other hand, cyclic guanosine 3。5, 

monophosphate (cGMP) has a much more restricted second 

messenger role than cAMP. It is synthesized by guanylate cyclase 

and removed by phosphodiesterase-catalyzed hydrolysis to 5'GMP. 

As yet there are only a few reports suggesting possible involvement 

of cGMP in cytokine-stimulated signal transduction systems 

(Clemens, 1991). 
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1.3.1.4 Nitr ic Oxide Pathway 

Nitr ic oxide (NO), a vascular and neuronal messenger and a 

cytotoxic and cytostatic agent, is synthesized f rom L-arginine by the 

enzyme nitric oxide synthase (NOS). Although mult iple subtypes of 

NOS have been reported, they can be classified into two main 

categories (Nathan, 1992). One type of NOS is constitutively 

expressed in several cell types including neurons and endothelium, 

and can be activated by the reversible binding of calmodulin in a 

Ca2+-dependent manner. The activity of the second type, whose 

expression can be induced in several cell types, including 

macrophages, hepatocytes, neutrophils, endothelial cells and 

astrocytes, is independent of Ca〗+ and once expressed can be active 

for extended intervals. The latter one is described as inducible NOS 

(iNOS). This isoform requires NADPH and tetrahydrobiopterin as 

cofactors as wel l as flavoproteins. iNOS expression in nervous tissues 

can be induced not only by LPS but also by various cytokines, such as 

IFN-y, IL- ip and TNF-a, alone or in combination (Hartung et al" 1992; 

Ki lbourn & Belloni, 1990). 

A major action of NO is to stimulate soluble guanylate cyclase; 

in the CNS this would elevate cGMP levels in presynaptic nerve 

endings and glial cells. Cyclic GMP has been shown to decrease free 

calcium level wi th in cells, possibly owing to stimulation of the 

Na+/Ca2+ transporter (Furukawa et al., 1991), and/or to inhibit the 
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Chapter 1 Introduction 

formation of inositol phosphates evoked by agonists, perhaps by 

interaction w i th a G-protein (Hirata et al； 1990). In astrocytes, i t has 

been shown that agonists evoke inositol phosphates formation and 

induce calcium fluxes (McCarthy & Salm, 1991), thus NO-induced 

increases in cGMP level may serve to modulate these events. In this 

connection, i t is interesting to note that nitric oxide has been shown 

to be involved in cytokine-induced growth of glial cells (Munoz-

Fernandez & Fresno, 1993). These observations may indicate that NO 

associated w i th cGMP is seemingly both an intercellular messenger 

and a regulatory molecule in glial cells. 

1.3.2 Intracellular Signalling Pathways in Cytokine-stimulated C6 

glioma cells 

There has been an increasing interest in the studies of the 

biological effects of cytokines on astrocytes and the possible 

signalling pathways that are involved. For example, IL- lp alone can 

induce NO production in astrocytes (Lee et aL, 1993a). However, NO 

production was markedly enhanced when the astrocytes were co-

stimulated wi th IFN-y and TNF-a (Lee et al, 1993a). On the other 

hand, the NO releasing compound sodium nitroprusside (SNP) 

down-regulates, in a concentration-dependent manner, the IFN-y-

induced MHC II expression on astrocytes (Heuschling, 1995). It is 

known that C6 glioma cells can respond to the induction of cytokines 

including TNF-a, IFN-y, IL-6 and IL-4 (Munoz-Fernandez et al； 1991; 
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Chapter 1 Introduction 

Munoz-Fernandez & Fresno, 1993). These indicate that similar 

signalling pathways may be triggered in cytokine-induced C6 glioma 

cells. 

Similar to astrocytes, nitric oxide associated cGMP increase is 

found to act as a signal transducer in C6 glioma cells (Simmons & 

Murphy, 1993; Vigne et al, 1993). It has been observed that C6 cells 

treated w i th LPS or LPS plus TNF-a show Ca2+-independent and L-

arginine-dependent NOS activity. The NOS induction may be 

dependent on new protein synthesis. In the presence of cofactors, 

such as NADPH, L-arginine and Ca〗+ etc., the activated NOS could 

result in the increase in level of cGMP in C6 cells (Simmons & 

Murphy, 1992) and primary rat glial cultures (Galea et al" 1992). On 

the other hand, cGMP production is significantly decreased by IL-4, 

IL-10 or transforming growth factor (TGF)-Pi (Demerle-Pallardy et al； 

1993; Simmons & Murphy, 1993). One hypothesis regarding the 

mechanism of LPS induction is that i t causes these cells to release 

cytokines which induce the enzyme directly. As expected, IFN-y, IL-

1P and TNF-a can induce L-arginine-dependent cGMP synthesis in 

C6 glioma cells whereas TGF-Pi non-specifically decreased the 

induction (Simmons & Murphy, 1993). The observation that TNF-a, 

IFN-y, and/or IL- lp and LPS plus TNF-a or IFN-y increased NO 

production has supported the role of NO as a signal transducer 

triggered by cytokines in astroglial cells (Feinstein et ah, 1994b; Galea 

et al, 1992). Moreover, NO is also likely to be involved in the 
1 
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Chapter 1 Introduction 

cytokine-induced growth of C6 cells, including TNF-a and IFN-y 

(Munoz-Fernandez & Fresno, 1993). 

The involvement of tyrosine kinase as a second messenger for 

the NOS production by C6 glioma has also been reported. Genistein 

and tyrphostin, the two selective inhibitors of tyrosine kinase 

(Akiyama et al, 1987; Holen et al, 1995), have been shown to prevent 

both LPS and cytokine-induced NOS activity in a dose-dependent 

manner (Feinstein et al； 1994a). The results suggest that NOS 

induction in C6 glioma cells is tyrosine kinase dependent. I t means 

that tyrosine kinase activation might be an upstream signal. 

Significant PKC activity has been demonstrated in rat C6 

glioma cells which correlated wi th the proliferation rate of the cells. 

Also, PKC can act as a kind of second messenger in A172, a human 

glioma cell line (Couldwell et al, 1992). Furthermore, a PKC inhibitor, 

H-9, inhibited the TNF-a- and IFN-y-induced C6 cell proliferation 

(Munoz-Fernandez & Fresno, 1993). These findings strongly suggest 

that activation of PKC is a potential common signal transduction 

mechanism induced by cytokines on glioma cells. 

Besides the above mentioned signal transducer molecules, the 

existence of other signalling pathways, including cAMP, Pi-

adrenergic receptor and phospholipase A2, is also found in the C6 

glioma cells. GFAP expression on C6 cells is induced by the addition 
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of dibutyryl cyclic adenosine monophosphate (dbcAMP), which can 

linearly increase the intracellular cAMP level. The result indicates 

that GFAP synthesis is regulated at the transcription level and that a 

cAMP-dependent mechanism determines its ultimate synthesis 

(Messens & Slegers, 1992). In addition, exposure of rat C6 glioma 

cells to either agonists or agents that increase cAMP levels leads to 

down-regulation of Pi-adrenergic receptor (Hosoda et aL, 1994). The 

regulation of pi-adrenergic receptor mRNA occurs at the level of 

gene transcription and by the induction of a repressor of the Pi-

adrenergic receptor gene (Hosoda et al., 1994). More recently, i t has 

been reported that treatment of the rat C6 glioma cell line w i th IL- ip 

resulted in an accumulation of cytosolic phospholipase A2 mRNA 

(Ozaki et aL, 1994). Nevertheless, whether pi-adrenergic receptor and 

phospholipase A2 are directly involved in the cytokine-induced 

signal cascades has yet to be determined. 

1.4 The Aims of This Project 

Cytokines are a heterogeneous group of polypeptide mediators 

that have been associated classically wi th the activation of the 

immune system and inflammatory response. An increasing number 

of related mediators have been shown to act on a variety of cell types, 

including cells of the nervous system. As reviewed in the previous 

sections, i t is clear that the cells of immune system and CNS can have 

similar functions: secretion of immunoregulatory cytokines, response 
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to cytokines and antigen presentation. The activation of astrocytes 

and microglia may contribute to either the init iation and/or 

propagation of intracerebral immune response. Recently, several 

lines of evidence show that cytokines, such as IL-1, IL-6, IFN-y and 

TNF-a, are implicated as signals in neuroimmune interactions 

(Blalock, 1994; Roszman & Brooks, 1992). It is well-known that the 

cells of the CNS, particularly the glial cells, are modulated by various 

cytokines. However, little is known about the cellular and molecular 

mechanisms involved in the cytokine modulation of various neuronal 

cell types. To understand better the relationship and communication 

between the immune system and the nervous system, i t is important 

to study the modulatory effects of various cytokines and their 

interactions in regulating the growth and differentiation of cells of 

the CNS. In addition, the elucidation of the nature of the second 

messenger signals involved in neuroimmune interactions can 

provide better insights into the molecular and cellular actions of 

cytokines in the CNS. 

Although cytokines such as TNF-a and IFN-y can induce glial 

cell proliferation and differentiation in vitro (Benveniste et ah, 1991; 

Selmaj et al； 1990), whether or not these cytokines can interact wi th 

one another and the signalling pathways mediating the activities of 

these cytokines in glial cells remain to be established. Because of the 

homogeneity of the C6 glioma cells and their known responsiveness 

to various cytokines, they were used as a model to study the 
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modulatory effects of cytokines on the proliferation and 

differentiation of glial cells in vitro. In this project, cell proliferation 

assay was primari ly used to investigate the regulatory effects of 

various cytokines on C6 cells. Moreover, the cytokine-induced C6 cell 

proliferation was used as a major parameter to monitor the second 

messenger systems that mediate the actions of cytokines. 

In the first set of experiments, the modulatory effects of various 

cytokines, including TNF-a, IL- la, IL- lp and LIF on C6 glioma cell 

proliferation were examined. Attempts were also made to determine 

whether combinations of these cytokines can act synergistically or 

antagonistically in C6 cell proliferation. In the second set of 

experiments, the involvement of second messenger systems in 

cytokine-induced C6 cell proliferation was studied, w i th particular 

reference to the activation of protein kinase C and tyrosine kinase, 

the roles of cyclic nucleotides and nitric oxide etc. PKC, a common 

second messenger system in many cell types, was first examined 

since its activity is very high in C6 glioma cells. Two PKC activators, 

12-myristate 13-acetate (PMA) and phorbol-12,13-diacetate (PDA), 

were studied for their effects on C6 cell proliferation. Also, three PKC 

inhibitors, staurosporine, calphostin C and Ro31-8220, were tested if 

they could inhibit the proliferation of C6 cells triggered by cytokines 

or PKC activators. In addition, the possible involvement of tyrosine 

kinase, cyclic AMP or GMP, nitric oxide and P-adrenergic receptor in 
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cytokine-induced C6 cell proliferation was examined using specific 

inhibitors, agonists or antagonists. 

In addition, the role of Ca2+ in cytokine-triggered C6 cell 

proliferation was elucidated. The intracellular Ca〗+ level in C6 cells 

was raised by incubating C6 cells wi th calcium ionophore, and 

reduced by addition of calcium channel blockers, such as LaCl3, 

verampil and nifedipine, or the calcium chelator, EGTA. 

It is known that the C6 glioma cell line has bipotential glial 

progenitor properties. During its development, the early passage C6 

cells can be induced to express the astrocytic or oligodendrocytic 

phenotype by different stimuli. By morphological study and 

GFAP/ hematoxylin staining, the influence of cytokines on the 

differentiation the rat C6 glioma cells was also examined. By 

studying the modulatory effects of well-characterized cytokines on 

C6 cell proliferation and differentiation in vitro, i t is hoped that this 

would provide valuable information on the biological role of 

cytokines in regulating glial cell growth in normal and pathological 

states. 

n 
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Chapter 2 MATERIALS AND METHODS 

2.1 Rat C6 Glioma Cell Culture 

2.1.1 Preparation of Culture Media 

2.1.1.1 Complete Dulbecco's Modified Eagle Medium 

Dulbecco's modified Eagle medium (DMEM) wi th high glucose 

and L-glutamine was purchased from Gibco Lab. (Grand Island, NY, 

U.S.A.). The powdered DMEM for 1 liter solution and 3.7 g sodium 

bicarbonate (NaHCO3) were dissolved in 1 liter of double-distilled 

water. The medium was adjusted to p H 7.2 and filtered (filter: 0.2 jum. 

Micro Filtration Systems, Dublin, CA, U.S.A.) immediately under 

suction. Then, horse serum (Gibco) and antibiotics (penicillin, 10,000 

U / m l ; streptomycin, 10,000 ^g/ml ; fungizone, 25 ^g /m l ; Gibco) were 

added, the complete DMEM (CDMEM) obtained contains 10% (v /v ) 

horse serum and 100 U / m l penicillin, 100 ^ g / m l streptomycin and 

0.25 | i g /m l fungizone. This medium was stored at 4。C unti l use. 
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2.1.1.2 Complete Roswell Park Memorial Institute 1640 Medium 

Roswell Park Memorial Institute (RPMI) medium was prepared 

almost the same as DMEM except that 2.0 g sodium bicarbonate 

(NaHCO3) was added. The complete RPMI (CRPMI) medium 

contains 10% (v /v ) fetal bovine serum (FBS, Gibco), 100 U / m l 

penicillin, 100 ^ig/ml streptomycin, and 0.25 ^ig/ml fungizone. 

Because RPMI medium contains N-[2-hydroxyethyl]piperazine-N'-[2-

ethanesulfonic acid] (HEPES) as a buffering system, its p H is more 

stable than DMEM; hence, the CDMEM was used in the maintenance 

of cell culture while the CRPMI medium was used in assays. 

2.1.2 Maintenance of the C6 Cell Line 

Rat C6 glioma cells were obtained from the American Type 

Culture Collection (U.S.A.). They were cultured, under aseptic 

conditions, in CDMEM at 37 °C in a humidified incubator (Shel-Lab, 

Model 2400, Sheldon Manufacturing, Inc.) under an atmosphere of 

50/0 CO2/95 % air. 

The cells were subcultured after 2-3 days in culture, at which 

time they had reached confluence. For the subculture procedure, the 

medium was discarded, and cells washed wi th sterilized phosphate 

buffered saline (PBS, 8.18 g NaCl, 0.2 g KC1, 0.2 g K H 2 P O 4 and 1.44 g 

Na2HPO4 2H2O per liter double-distilled water, p H 7.4). The cells 
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were treated w i th 1 m l of 0.25% trypsin (Gibco) at 37。C for 5 minutes. 

Then 10 m l of CDMEM was added and the cells were dispersed by 

repeated pipetting. After the cells were washed twice w i th DMEM, 

they were adjusted to a cell density of 10^ cel ls/ml and further 

cultured in a 75 cm^ culture flask (Falcon, Becton Dickinson Labware, 

NJ, U.S.A.) containing 20 ml CDMEM. 

For long-term storage, 1 ml of cells (10^ cells) suspended in FBS 

wi th 5% dimethyl sulfoxide (DMSO, Sigma) was stored in l iquid 

nitrogen in plastic ampoules (Nunc., Denmark). When required, 

aliquots were thawed rapidly in CDMEM at 37°C, subcultured and 

cells of passages 18-28 were used in this study. To ensure the puri ty 

of the cell line, cells were checked regularly for contamination under 

a microscope and histochemically wi th antibody against glial 

fibril lary acidic protein (see Section 2.9 for details). 

2.1.3 Cell Preparation for Assays 

As described above, cells of passages 18-28 were trypsinized, 

centrifuged and resuspended in CRPMI medium. For assays using 

96-well microtiter plate (Corning Laboratory Sciences Company, 

U.S.A.), 0.1 m l of 2 . 5x104 cells/ml cell suspension was added to each 

well. For 24-well plate and 6-well plate (Corning, U.S.A.), 0.5 m l cells 

( 3 x 1 0 4 cells/ml) or 1 ml cells (7 .5x104 cells/ml) were seeded in each 

well respectively. 
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2.2 Determination of Cell Proliferation 

2.2.1 Determination of Cell Proliferation by PH]-Thyrrddine 

Incorporation 

Rat C6 glioma cells were treated and plated as described in 

Section 2.1.3. A l l procedures were performed under aseptic 

conditions in a cell culture hood (Biogard hood, the Baker Company, 

Inc.). 

To study the effects of cytokines and/or drugs on C6 cell 

proliferation, cells were incubated in the presence, or absence of 

cytokine(s), w i th or without the addition of drug(s) for various time 

periods as indicated in the text. Then, 0.5 [iCi PH]-thymidine (specific 

activity: 2 Ci /mmol ; Amersham, U.K.) was added to each wel l and 

further incubated for 6 hours to estimate the incorporation of PH]-

thymidine into DNA. At the end of incubation, cells were frozen and 

thawed once and harvested wi th a semi-automatic cell harvester 

(Flow Lab, U.K.). The radioactivity trapped by glass-fiber filters 

(GF/C, Whatman, U.S.A.) was determined in a l iquid scintillation 

counter (Beckman, Model LS 1801, U.S.A.) 
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2.2.2 Measurement of Cell Viability Using Neutral Red Assay 

To test for the viability of the cells fol lowing cytokine and/or 

drug treatment, cells were plated in a 96-well microtiter plate as 

described in section 2.2.1, except that the cell density was adjusted to 

105 cells/ml. After 48 hours of incubation, the medium was removed, 

and the wells were washed wi th 150 )il normal saline (0.9 % NaCl) 

followed by 50 ^1 neutral red solution (0.5% neutral red in normal 

saline). Then the cells were incubated wi th 0.5% neutral red solution 

(100 ^1 per well) at 37。C for 1 hour. After washing six times w i th 

normal saline, 100 jiil of 1% sodium dodecylsulfate (SDS, Sigma) was 

added to each well to solublize the cells and to release the neutral red 

dye. The plate was shaken in a plate shaker (Lab-Line Instruments, 

Inc.) for 2 hours and the optical density (OD) at 540 nm was 

determined wi th a microplate reader (Bio-Rad, Model 3550). 

2.2.3 Data Analysis 

The cytokine or drug induced C6 cell proliferation was 

measured by the increase in the amount of PH]-thymidine 

incorporated and expressed as % stimulation. This was calculated by 

subtracting the counts per minute (CPM) determined in the absence 

of cytokine and/or drug (control) from the CPM determined in the 

presence of cytokine and/or drug (sample), then divided by the 

control CPM which is shown as follows: 
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% Stimulation = 100 X ( C P M s a m p l e - C P M c o n t r d ) / C P M c o n t r o l 

The measurement of cell growth was expressed as % 

stimulation according to the formula below: 

% Stimulation = 1 0 0 X ( O D s a m p l e - 〇 D c 。 n t r 。 l ) / 〇 D con t ro l 

A l l results were expressed as the arithmetic mean 土 standard 

error of quadruplicate determinations. The data shown were 

representative of at least 2-3 similar experiments. The Student's " t " 

test was used to determine the confidence limits in group 

comparison. Normally p< 0.05 was regarded as significantly 

different. 

2.3 Effects of Cytokines and Lipopolysaccharide on C6 

Cell Proliferation 

Recombinant human and mouse tumor necrosis factor-a (TNF-

a, specific activity is 6 x lCF U/mg) were obtained from Boehringer 

Mannheim (Germany), whereas interleukin-la (IL-la, specific 

activity is 1 x 10» U/mg), interleukin-ip (IL-ip, specific activity is 1 x 

108 U/mg), interleukin-6 (IL-6, specific activity is 5 x 10^ U/mg) and 

leukemia inhibitory factor (LIF, specific activity is 1 x 10^ U/mg) 

were obtained from R & D Systems (U.S.A.). Lipopolysaccharide 
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(LPS) was purchased from Sigma (U.S.A.). Cytokines were dissolved 

in RPMI medium containing 2% heat-inactivated (56。C for 30 

minutes) FBS, while LPS was prepared in sterilized PBS. Cytokines 

were stored in aliquots at -20 ̂ C, except LPS at -70 °C unt i l use. 

For the time course of cell proliferation triggered by various 

cytokines, cells were cultured in 96-well microtiter plate overnight, 

then the medium was removed and cells were exposed for 15, 30, 60, 

90, 120 or 240 minutes to cytokines, after which cells were washed 

twice w i th CRPMI medium and further incubated unt i l a total period 

of 48 hours. The PH]-thymidine incorporation was determined as 

described in Section 2.2.1. 

2.4 Effects of Protein Kinase C Activators and Inhibitors 

on Cytokine-induced C6 Cell Proliferation 

Two kinds of PKC activators: phorbol 12-myristate 13-acetate 

(PMA, Sigma) and phorbol-12,13-diacetate (PDA, Sigma), were 

dissolved in absolute ethanol at 1.62 m M and 2.23 m M respectively, 

and stored at -20 °C unti l use. On the other hand, three kinds of PKC 

inhibitors: staurosporine (ST, Sigma), calphostin C (Cal C, Sigma) and 

3-{l-[3-(Amidinothio)propyl]-3-indolyl)-4-(l-methyl-3-indolyl)-lH-

pyrrole-2,5-dione methanesulfonate (Ro31-8220, Roche Producs Ltd., 

U.K.), were dissolved in absolute ethanol, RPMI medium and DMSO, 
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respectively (Sigma) at concentrations of 100 ^M, lO^M and 100 ^ M 

before use. 

The effects of PMA and PDA on C6 cell proliferation and the 

effects of ST, Cal C and Ro31-8220 on TNF-a (100 U / m l ) or LIF (1 

ng / ml)-induced C6 cell proliferation were assayed as described in 

Section 2.2.1. 

2.5 Effects of cAMP or cGMP on Cytokine-induced C6 

Cell Proliferation 

N^-2'-0-dibutyryl cyclic adenosine-3',5'-monophosphate 

(dbcAMP, Sigma) and N6-2'-0-dibutyryl cyclic guanosine-3'.5'-

monophosphate (dbcGMP, Sigma) were dissolved in RPMI medium 

at 10 m M and stored in -20。C unti l use. The effects of dbcAMP or 

dbcGMP alone, or in combination wi th TNF-a or LPS on C6 cell 

proliferation were studied as described in Section 2.2.1. 

2.6 Effects of Tyrosine Kinase Inhibitors on Cytokine-

induced C6 Cell Proliferation 

Two kinds of tyrosine kinase (TK) inhibitors: tyrphostin (TYR, 

Sigma) and herbimycin A (Her A, Sigma), were dissolved in RPMI 

medium and stored at -20 ^C before use. C6 glioma cells were 
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exposed to different doses of TYR or Her A in the presence or 

absence of TNF-a (100 U/mI) , or LIF (1 ng/ml ) for 48 hours, and cell 

proliferation assay was studied as described in Section 2.2.1. 

2.7 Effects of Calcium Ion on Cytokine-induced C6 Cell 

Proliferation 

In these experiments, C6 cells were exposed to ethylene glycol-

bis (p-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA, Sigma), a 

calcium ion chelator; lanthanum chloride (LaCl3) (Sigma), verampil 

(Sigma) or nifedipine (Sigma), all are calcium ion channel blockers; or 

A23187 (Sigma), a calcium ionophore; in the presence or absence of 

various concentrations of TNF-a or LIF for 48 hours. Then, PH]-

thymidine incorporation in C6 cells was examined as described in 

Section 2.2.1. Because some calcium drugs are light sensitive, 

experiments were carried out in the dark and the culture plates were 

wrapped wi th aluminum foil. 

2.8 Effects of Nitric Oxide on Cytokine-induced C6 Cell 

Proliferation 

2.8.1 Effects of Sodium Nitroprusside and Nitric Oxide Synthase 

Inhibitors on Cytokine-induced C6 Cell Proliferation 
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Sodium nitroprusside (SNP, Sigma), an exogenous nitric oxide 

donor, was used to investigate the effect of nitric oxide on C6 cell 

proliferation. SNP was freshly prepared in PBS (20 mM) and diluted 

in CRPMI medium before use. 

On the other hand, NG-methyl-L-arginine (NMA, 10 m M in 

RPMI medium, Sigma) and N^-nitro-L-arginine methyl ester (NAME, 

20 m M in RPMI medium, Sigma), both being nitric oxide synthase 

inhibitors, were added to C6 glioma cell cultures in the presence or 

absence of TNF-a (100 U /m l ) or LIF (1 ng/ml) . The method for PH]-

thymidine incorporation was the same as described in Section 2.2.1. 

2.8.2 Nitric Oxide Production Assay 

Nitric oxide (NO) formation was detected by nitrite 

accumulation in the culture supernatant using Griess reaction (Green 

et aL, 1982). In aqueous solution, NO reacts rapidly w i th O2 and 

accumulates in the culture medium as nitrite and nitrate ions. Nitrite 

forms a chromophore wi th the Griess reagent and thus its 

concentration can be determined by a colorimetric assay. C6 glioma 

cells were incubated at 37^C with different cytokines in a 96-well 

microtiter plate (Section 2.2.1). After 72 hours, 50 ^1 cell free 

supernatant was transferred to another 96-well microtiter plate. Then, 

an equal volume (50 jul) of freshly prepared Griess reagent was added 

to the well, and the plate was shaken at room temperature for 15 
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minutes. Griess reagent consists of one part of 0.1% 

napthylethylenediamine dihydrochloride in distilled water and one 

part of 1% sulfanilamide in 5% concentrated H3PO4. The absorbance 

was read at a wavelength of 540 nm by a microplate reader (Bio-Rad, 

Model 3550). The nitrite concentration can be quantified using 

sodium nitrite (0 - 50 |iM) as a standard. 

2.9 Effects of p-Adrenergic Receptor Agonist and 

Antagonist on C6 Cell Proliferation 

Isoproterenol, a p-adrenergic receptor agonist, and propranolol, 

an antagonist of the p-adrenergic receptor, were purchased f rom 

Sigma Chem. Co. They were dissolved in double-distilled water at 

250 m M and 10 m M respectively and stored at -20^C unt i l use. C6 

glioma cells were cultured for 48 hours in control medium, 1 juM of 

isoproterenol, or TNF-a (10 U / m l or 100 U/ml ) , plus various 

concentrations of propranolol (0 - 25 juM), and the PH]-thymidine 

incorporation was determined as described in Section 2.4. 

2.10 Morphological Studies on Cytokine-Treated C6 

Glioma Cells 
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A l l photographs were taken under the Axiophot microscope 

(Zeiss, 7082 Oberkocken, Germany). The cells were prepared and 

stained as described below. 

2.10.1 Wright-Giesma Staining 
o o 

C6 glioma cells were plated on 15 m m cover slips placed in 6-

wel l plates and incubated wi th or without TNF-a (100 U /mI ) or LIF 

(1 ng/ml ) , according to the protocols in Section 2.1.3. After 24, 48 or 

72 hours of incubation, the cells were washed wi th PBS, stained w i th 

modified Wright-Giemsa staining solution (Sigma) for 30 seconds, 

followed by destaining. The air-dried cover slips were mounted wi th 

Canada Balsam mounting solution and the morphology examined 

under a l ight microscope. 

2.10.2 Glial Fibrillary Acidic Protein Staining 

C6 glioma cells were plated on 12 m m cover slips placed in 24-

wel l plates and incubated wi th different doses of TNF-a or LIF. After 

48 hours of incubation, cultures were fixed wi th 4% 

paraformadehyde in 0.1 M PBS for 15-30 minutes at room 

temperature. Then, the cells were exposed to primary antibody 

(rabbit IgG anti-glial fibrillary acidic protein (anti-GFAP, Sigma)) for 

2 hours at room temperature, followed by secondary antibody (goat 

anti-rabbit IgG, Sigma) for 1 hour at room temperature. After the 
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immuno-reactions, the cells were treated wi th Vectastain Elite ABC 

Ki t (Vector Laboratories) for 1 hour at room temperature, and then 

incubated w i th 3,3'-diaminobenzidine solution (10 mg/10 m l 0.05M 

Tris, p H 7.5) containing 0.01 % H2O2 for about 2-5 minutes to develop 

the color. Cells were stained wi th hematoxylin (see Section 2.10.3) 

and examined microscopically, and the percentage of GFAP positive 

cells were scored by counting at least 200 cells. 

2.10.3 Hematoxylin Staining 

C6 glioma cells plated on 12 m m cover slips were treated w i th 

cytokines, and stained wi th anti-GFAP antibody according to the 

methods described above (Section 2.9.2). Then, the cells were stained 

w i th Mayer's hematoxylin solution for 1-5 minutes, and washed in 

water. Excess stain was removed selectively by immersing the cover 

slips in acid alcohol (1% HC1 in 70% alcohol) followed by bluing in 

Scott's tap water (alkaline ammonium water). After being washed in 

water, the stained cells were dehydrated stepwise in 70%, 80% and 

95% alcohol quickly, and finally in 100% alcohol three times for five 

minutes each time. 

Mayer's hematoxylin solution consists of the fol lowing 

ingredients: hematoxylin 5 g, ammonium alum 50 g, sodium iodate 

0.3 g, distilled water 700 ml, glycerol 300 mI and glacial acetic acid 20 

mL For the preparation of the Mayer's hematoxylin solution, 
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ammonium alum was poured into distilled water, and the solution 

was boiled. Then, hematoxylin was added and the ammonium water 

was kept boil ing for further 2 minutes. When sodium iodate was 

added, the solution was stirred and cooled down. As the last step, 

glycerol and glacial acetic acid were dissolved in the solution. Finally, 

the solution was filtered before use. 
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Chapter 3 RESULTS 

3.1 Effects of Cytokines on C6 Cell Proliferation 

Since cytokines play an important role in the communication 

between cells of the immune and nervous systems (Benveniste, 

1992a; Mart in & Tracey, 1992), i t is of considerable interest to study 

their effects on astrocytes, the most abundant cell type in the CNS. 

Astrocytes are reported to express a number of different cytokine 

receptors which are known to be important in regulating the 

proliferation and differentiation of astrocytes (Benveniste, 1992a). 

Like astrocytes, C6 glioma (astrocytoma) cells also respond to a large 

number of cytokines, including TNF-a, IFN-y, IL-4 and IL-6 (Brodie & 

Goldreich, 1994; Munoz-Fernandez & Fresno, 1993; Simmons & 

Murphy, 1992; 1993), thus they represent a good model system for 

studying the conditions and factors which regulate the development 

and differentiation of glial cells and the signalling pathways that 

might be involved in these processes (Mangoura et al., 1989). In this 

thesis project, the effects of various cytokines in triggering DNA 

synthesis in C6 glioma cells were examined. In the first set of 

experiments, C6 glioma cells were treated wi th different cytokines, 

such as TNF-a, IL- la, IL-ip, IL-6 and LIF, for various time periods, 

and the PH]-thymidine incorporation was measured according to the 
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methods described in Section 2.2.1. Moreover, since LPS is known to 

stimulate the production of cytokines (Lee et al" 1993b), the effect of 

LPS on C6 cell proliferation was also investigated. 

3.1.1 Effects of Cytokines on C6 Cell Proliferation 

In this study, C6 glioma cells were cultured w i th different 

cytokines at various concentrations, including TNF-a, IL- la , IL- lp, 

IL-6 and LIF, and the PH]-thymidine incorporation was measured. 

Fig. 3.1 showed the effects of recombinant mouse and human TNF-a 

on C6 cell proliferation. The proliferation of C6 cells was increased by 

mouse, or human, TNF-a in a dose-dependent manner and in case of 

mouse TNF-a, the proliferation also increased in a time-dependent 

manner. Moreover, the proliferative effect of mouse TNF-a was 

found to be more potent than that of the human one. With the mouse 

TNF-a, optimal stimulation (an increase of 62 %, in pH]-thymidine 

incorporation) was obtained with 100 U / m l TNF-a after 48 hours of 

incubation and the stimulatory effect declined at a higher 

concentration of TNF-a (500 U/ml) . Because of these observations, 

mouse but not human TNF-a was used in all subsequent studies, and 

48 hours incubation was chosen in the following experiments. 

As it has been reported that TNF exerted its proliferative effect 

via the biosynthesis and/or secretion of other cytokines (Frei et aL, 

1989), thus the effects of other cytokines were studied. Fig. 3.2 
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Fig. 3.1 The effects of mouse and human TNF-a on C6 cell 
proliferation. PH]-thymidine incorporation was determined 
according to the methods in Section 2.3 and expressed as percentage 
of stimulation as described in Section 2.2.3. Each point represents the 
mean 士 standard error of four replicate wells. The X-axis was 
represented in a logarithmic scale. 
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Fig. 3.2 The effects of LIF and IL-6 on C6 cell proliferation. C6 cells 
were cultured wi th various concentrations of LIF or IL-6 for 48 hours, 
and PH]-thymidine incorporation was determined as described in 
Section 2.3. Results were expressed as percentage of stimulation and 
each point represents the mean 土 standard error of quadruplicate 
wells. The X-axis was represented in a logarithmic scale. 
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showed the results of IL-6 and LIF on C6 cell proliferation. IL-6 at the 

range of 0.01-10 n g / m I had no significant effect on C6 cell 

proliferation. On the other hand, LIF was very effective at 

concentrations f rom 0.4 ng /m I to 5 ng/ml . Maximum stimulation 

(51% increase in PH]-thymidine incorporation) was obtained w i th 1 

n g / m I of LIF. A t concentrations lower than 0.1 n g / m l of LIF, no 

stimulation was observed, while slight inhibition was seen at 10 

ng /ml . The latter may be due to the cytotoxic effect of LIF at higher 

doses. 

In addition to TNF-a and LIF, IL - la and IL- lp also showed dose-

dependent stimulation on C6 cell proliferation, and maximum 

stimulation of 65 % and 67 % were observed wi th 1 n g / m l of I L - l a 

and 100 p g / m I of IL- lp, respectively (Fig. 3.3). These two interleukins 

appeared to be more potent than LIF as stimulation was observed 

wi th p g / m l of either IL-1, while ng /m l of LIF was required to attain 

similar stimulation. Additionally, IL- ip was found to be more 

effective than IL- la, especially at lower concentrations. 

3.1.2 The Time Course of Cytokine-induced C6 Cell Proliferation 

Preliminary studies showed that 100 U / m l TNF-a or 1 n g / m l LIF 

could induce maximal proliferation of the C6 glioma cells, therefore 

these concentrations were used to investigate the time course for the 
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Fig. 3.3 The effects of I L - l a and IL- ip on C6 cell proliferation. C6 
cells were cultured wi th various concentrations of I L - l a or IL - lp for 
48 hours, and PH]-thymidine incorporation was determined as 
described in Section 2.3. Results were expressed as percentage of 
stimulation and each point represents the mean 土 standard error of 
quadruplicate wells. Significant difference between the 
corresponding points of IL - la and IL- lp (P<0.05) was indicated by an 
asterisk. The X-axis was represented in a logarithmic scale. 
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proliferative effect of these two cytokines. The experimental 

procedure used was as described in Section 2.3. 

Fig. 3.4 showed the results of C6 cell proliferation after exposing 

the cells to 100 U / m l TNF-a or 1 n g / m l LIF for different durations. 

The proliferative effect induced by these two cytokines did not 

require the continuous presence of these cytokines in culture. 

Significant stimulation was observed after 60 minutes exposure to 

100 U / m l of TNF-a, and higher stimulation was observed at longer 

incubation periods. On the other hand, treatment wi th 1 n g / m l of LIF 

for 15 minutes caused significant stimulation, which increased only 

slightly at longer incubation periods. Because of the rapid 

proliferative action of this cytokine, LIF was also included in the 

second messenger study (Section 3.3) in order to determine if TNF-a 

and LIF triggered different signalling pathways in C6 cells. 

3.1.3 Effects of Lipopolysaccharide on C6 Cell Proliferation 

LPS has been shown to induce cytokine production in human 

primary cultured astrocytes (Lee et al 1993b), i t was therefore of 

interest to examine if LPS could also affect cell proliferation in C6 

cells. Fig. 3.5 showed the effect of various doses of LPS on C6 cell 

proliferation. The stimulatory effect of LPS was both dose-dependent 

and time-dependent, and maximum stimulation (50 % increase in 
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Fig. 3.4 The time course of C6 cell proliferation induced by TNF-a or 
LIF. The C6 glioma cells were seeded overnight and then incubated 
w i th TNF-a or LIF for different durations as shown, and pH]-
thymidine incorporation was determined as described in Section 2.3. 
Results were expressed as percentage of stimulation and each point 
represents the mean 土 standard error of quadruplicate wells. The X-
axis was represented in a logarithmic scale. 
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Fig. 3.5 Effects of exposure time and doses of LPS on C6 cell 
proliferation. PH]-thymidine incorporation was carried out as 
described in Fig 3.1 and results were expressed as the percentage of 
stimulation as described in the Section 2.3. The results were obtained 
in the presence of different doses of LPS for 1, 2 and 3 days. Values 
shown are mean 土 standard error of quadruplicate wells. The X-axis 
was represented in a logarithmic scale. 
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PH]-thymidine incorporation) was obtained wi th 100 n g / m l LPS 

after 48 hours of incubation. 

3.1.4 Effects of Cytokines on the Growth of C6 Cells 

In order to examine if cell growth was affected by different 

cytokines, the C6 glioma cells were cultured in the presence of 

different doses of cytokines, then the cell growth was monitored w i th 

the uptake of the vital dye neutral red as described in Section 2.2.2. 

After 48 hours of incubation, there was no significant change in cell 

number compared wi th the control (data not shown). However, after 

72 hours of treatment wi th cytokines-TNF-a, LIF, IL - la or IL- lp, the 

cell number was markedly increased (Fig. 3.6). Among the two forms 

of interleukin 1 studied, IL- lp appeared to be more effective than IL-

l a in stimulating C6 cell growth (Fig. 3.6B). 

3.2 Morphology and GFAP Expression in Cytokine-

treated C6 Glioma cells 

3.2.1 Effects of Cytokines on the Morphology of C6 cells 

As discussed in the introduction, early passages of C6 glioma 

cells exhibit progenitor properties and can differentiate into either 

oligodendrocytic or astrocytic phenotype (Brodie & Vernadakis, 1991; 

Parker et al., 1980). Moreover, cell morphology has been shown to be 
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Fig. 3.6 biduction of C6 ceU growth by TNF-a (A), LIF and IL-1 a or p (B). 
C6 ceUs were cultured for 3 days in the presence or absence of various 
concentrations of cytokines. The ceU growth was estimated with neutral 
red staining as described in Section 2.2.2. Results were expressed as 
percentage of stimulation and each point represents the mean 士 standard 
error of quadruplicate weUs. The X-axis was represented in a logarithmic 
scale. 
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a useful criterion for monitoring cell differentiation (Brodie & 

Vernadakis, 1991; Vernadakis et al, 1991). Therefore, i t is of interest 

to know whether treatment wi th cytokines can alter the 

morphological appearance of C6 cells. In this study, C6 glioma cells 

were exposed to cytokines, including 100 U / m l TNF-a and 1 n g / m l 

LIF 3 days before they were stained wi th the Wright-Giemsa stain. It 

was observed that these cytokines did not induce significant 

morphological changes except that the cells were smaller (Fig. 3.7) 

Although no significant changes in morphology were observed, there 

was a clear increase in the cell number in each case. This observation 

is in agreement wi th the results that these cytokines significantly 

increased the PH]-thymidine incorporation in C6 cells. 

3.2.2 The Effects of Cytokines on GFAP Expression in C6 Glioma Cells 

Since early passages of C6 glioma cells can be stimulated to 

differentiate into oligodendrocytic or astrocytic phenotype, the 

expression of GFAP was examined wi th anti-GFAP antibodies. Figure 

3.8 showed C6 cells incubated wi th 100 U / m l of TNF-a or 1 n g / m l 

LIF for 48 hours, followed by exposure to anti-GFAP antibodies. No 

obvious changes in cell morphology could be observed except that 

the size of the cytokine-treated cells was smaller. Interestingly, i t was 

found that the number of GFAP-negative cells in the LIF-treated cells 

was slightly higher than that of the untreated control cells, whereas 
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Fig. 3.7 Effect of TNF>a and UF treatment on the morphology of C6 cells. C6 
cells were cultured on a 15 mm cover slip in the presence of 100 U/ml TNF-a 
(B) or 1 ng/ml UF (C) or in medium (A) for 3 days, then stained with Wright-
Giesma stain as described in Section 2.10.1. The bar represents 50 ^m. 
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Fig. 3.8 Effect of TNF-a and UF treatment on the morphology of C6 ceUs. C6 
ceUs were cultured on a 12 mm cover sHp in the presence of 100 U/ml TNF^ 
(B) or 1 ng/ml UF (C) or in medium (A) for 2 days, then stained with 
GFAP/hematoxylin stain as described in Section 2.10.2 and 2.10.3. The bar 
represents 50 ^m. 

68 



Chapter 3 Results 

no significant difference was observed between the control and the 

TNF-a-treated cells (Fig. 3.9). 

3.3 The Signalling Pathway of Cytokine-induced C6 Cell 

Proliferation 

Experiments described in Section 3.1 showed that several 

cytokines could induce C6 glioma cell proliferation; however, the 

underlying mechanism remains unclear and very little is known 

about the signal-transduction pathways mediating the action of 

various cytokines. Since TNF-a and interleukin-l have been reported 

to stimulate various second messengers in primary glial cell cultures 

(Norris et al, 1994), the possible involvement of various signalling 

pathways in cytokine-induced proliferation in C6 cells was studied. 

The second messenger systems examined include protein kinase C 

(PKC), tyrosine kinase (TK), calcium ions, cyclic nucleotides, as well 

as the nitric oxide. As the p-adrenergic mechanism has been shown to 

stimulate proliferation in primary astrocyte cultures (Mantyh et al” 

1995), therefore, the effects of isoproterenol, a p-adrenergic agonist, 

on cytokine-induced proliferation in C6 cells were investigated to see 

if a relationship exists between p-adrenergic mechanism and the 

inflammatory cytokines. 
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Fig- 3.9 Effect of cytokine treatment on GFAP expression in C6 cells. 
Cells were incubated wi th TNF-a (100 U/ml) , or LIF (1 ng/ml ) for 2 
days, then exposed to GFAP antibodies and followed by hematoxylin 
staining as described in Section 2.10.2 and 2.10.3, and the percentages 
of the GFAP positive cells were counted. Values shown are means 土 

standard error of three determinations. *P<0.05, significantly 
different from control by using the Student's t-test. 
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3.3.1 The Involvement of Protein Kinase C in Cytokine-induced C6 

Cell Proliferation 

Since certain cytokines have been shown to induce 

phosphatidycholine hydrolysis (Cataldi et al, 1990) and activate 

certain PKC isozymes (Pfeffer et al., 1990), i t is of interest to see if 

PKC is involved in mediating the proliferative effect of cytokines in 

C6 cells. In the present study, phorbol 12-myristate 13-acetate (PMA) 

and phorbol-12,13 diacetate (PDA), which are potent PKC activators 

(Hug & Sarre, 1993), were used to investigate whether the 

proliferative effect of cytokines is mediated through activation of 

PKC In the range of 8.11 p M to about 1.62 n M PMA and 22.2 p M to 

about 2.23 n M PDA, either PKA activator was able to increase DNA 

synthesis in C6 cells. The maximum stimulation was observed w i th 

162 p M PMA and 223 p M PDA respectively (Fig. 3.10). 

To test if PKC mediated the proliferative effect of TNF-a and LIF, 

the effect of three PKC inhibitors on cytokine-induced C6 cell 

proliferation was investigated. The three PKC inhibitors examined 

were staurosporine, calphostin C and Ro31-8220, and all of them 

have been shown to be potent PKC inhibitors (Davis et al., 1992; H u 

& Fan, 1995; Tamaoki et al, 1986). Incubation of the cells in any one of 

these three PKC inhibitors caused a slight (maximum 10 %) 

stimulation in C6 cells (Figs. 3.11-3.13), except at higher 
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Fig- 3. 10 Effects of PKC activators on C6 cell proliferation. C6 
glioma cells were treated wi th various concentrations of PMA or 
PDA for 48 hours, and proliferation was assayed as described before 
(Section 2.4). Values shown are mean 士 standard error of 
quadruplicate wells. The X-axis was represented in a logarithmic 
scale. ECso is the concentration of drug which causes 50 % of 
maximum stimulation. Estimated EC50： PMA « 12.3 pM, PDA « 16 7 
pM. 
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Fig. 3.11 Effects of various concentrations of staurosporine on TNF- i 
a or LIF-induced proliferation of C6 cells. Cells were cultured for 48 ‘ 
hours w i th or without TNF-a (100 U /m l ) or LIF (1 ng /m l ) in the 
presence of indicated concentrations of staurosporine. D N A 
synthesis was estimated as described before (Section 2.4). Values 
shown are mean 士 standard error of quadruplicate wells. IC50 is the 
concentration of the drug which inhibits 50 % of maximum 
stimulation. Estimated IC50 values: TNF-a « 0.3 nM, LIF « 0.34 nM. 
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Fig. 3.12 Effects of various concentrations of calphostin C on TNF-a 
or LIF-induced proliferation in C6 cells. Cells were cultured for 48 
hours wi th or without TNF-a (100 U/ml ) or LIF (1 ng/ml ) in the 
presence of indicated concentrations of calphostin C. DNA synthesis 
was estimated as described before (Section 2.4). Values shown are 
mean 土 standard error of quadruplicate wells. The X-axis was 
represented in a logarithmic scale. Estimated IC50: TNF-a « 4.3 nM, 
LIF « 1 nM. 
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Fig. 3.13 Effects of various concentrations of Ro31-8220 on TNF-a or 
LIF-induced proliferation of C6 cells. C6 cells were cultured for 48 
hours w i th or without TNF-a (100 U/ml ) or LIF (1 ng /ml ) in the 
presence of indicated concentrations of Ro31-8220. DNA synthesis 
was estimated as described before (Section 2.4). Values shown are 
mean 土 standard error of quadruplicate wells. The X-axis was 
represented in a logarithmic scale. Estimated IC50: TNF-a « 1 5 nM, 
LIF «10 nM. 
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concentrations of staurosporine (0.5 nM) or calphostin C (100 nM) 

where a slight inhibitory effect was observed (Fig. 3.11 and 3.12). 

Staurosporine at a low concentration (0.125 nM) inhibited the 

proliferation induced by the optimal dose of TNF-a (100 U /m l ) , or 

LIF (1 ng/mI) significantly, and complete inhibit ion of the 

proliferative action induced by either TNF-a or LIF was observed 

w i th 0.5 n M of this inhibitor (Fig. 3.11). The IC50 values for TNF-a 

and LIF were estimated to be 〜0.3 n M and 〜0.34 n M of staurosporine, 

respectively. 

Calphostin C, which is a potent PKC inhibitor, reduced the 

proliferation induced by TNF-a or LIF in a concentration-dependent 

manner (Fig. 3.12); and complete or almost complete inhibit ion was 

observed w i th 50 n M of calphostin C. The IC50 values for TNF-a and 

LIF were estimated to be 〜4.3 nM and 〜1 nM, respectively. 

To ensure that the proliferative effect of TNF-a and LIF was 

mediated through PKC, the effect of Ro31-8220 was tested. Similar to 

calphostin C and staurosporine, Ro31-8220 also reduced the 

proliferative effect of TNF-a and LIF in a concentration-dependent 

manner (Fig. 3.13) The IC50 values for TNF-a and LIF were estimated 

to be 〜15 n M and 〜10 nM, respectively. 
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Comparing the inhibitory effects of the three PKC inhibitors 

examined, staurosporine, calphostin C and Ro31-8220 (Fig. 3.11 -

3.13), i t was clear that the inhibitory effect of these three inhibitors 

was in the order of staurosporine » calphostin C > Ro31-8220. 

Results described above showed that the PKC activators 

stimulated proliferation in C6 cells (Fig. 3.10), and the proliferative 

effect of TNF-a and LIF was blocked by PKC inhibitors (Figs. 3.11-

3.13). In order to demonstrate that PKC was indeed involved in the 

proliferation of C6 cells, cells were treated wi th optimal dose of PMA 

or PDA in the presence of different concentrations of one of the three 

PKC inhibitors for 48 hours before PH]-thymidine incorporation was 

measured. Data showed that DNA synthesis in C6 cells induced by 

either PMA or PDA was significantly inhibited by staurosporine (Fig. 

3.14), calphostin C (Fig. 3.15) or Ro31-8220 (Fig. 3.16) in a dose-

dependent manner. Moreover, the effect of PMA appeared to be 

more sensitive to staurosporine and Ro31-8220 (Figs. 3.14 and 3.16), 

while that of PDA was more sensitive to the action of calphostin C 

(Fig. 3.15). Like the inhibitory effects of these PKC inhibitors on 

cytokine-induced proliferation, staurosporine was the most potent 

inhibitor of PKC activator-induced proliferation in C6 cells, and 

complete inhibition was observed with 0.25 nM of staurosporine (Fig. 

3.14). Whatever on cytokine- or PKC activator-induced proliferation, 

the effect order of these three inhibitors was parallel to that of their 
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Fig. 3.14 Effects of various concentrations of staurosporine on PMA-
or PDA-induced C6 cell proliferation. C6 cells were cultured for 48 
hours w i th various concentrations of staurosporine, in the presence 
or absence of 1 n g / m l PMA or PDA. DNA synthesis was estimated as 
described before (Section 2.4). Values shown are mean 土 standard 
error of quadruplicate wells. Estimated IC50： PMA « 0.067 nM, PDA « 
0.09 nM. 
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Fig. 3.15 Effects of various concentrations of calphostin C on PMA-
or PDA-induced C6 cell proliferation in C6 cells. Cells were cultured 
for 48 hours w i th various concentrations of calphostin C, in the 
presence or absence of 1 n g / m l PMA or PDA. D N A synthesis was 
estimated as described before (Section 2.4). Values shown are mean 士 

standard error of quadruplicate wells. The X-axis was represented in 
a logarithmic scale. Estimated IC50: PMA « 9 nM, PDA « 0.3 nM. 
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Fig. 3.16 Effects of various concentrations of Ro31-8220 on PMA- or 
PDA-induced C6 cell proliferation in C6 cells. Cells were cultured for 
48 hours w i th various concentrations of Ro31-8220, in the presence or 
absence of 1 n g / m l PMA or PDA. DNA synthesis was estimated as 
described before (Section 2.4). Values shown are mean 土 standard 
error of quadruplicate wells. The X-axis was represented in a 
logarithmic scale. Estimated IC50： PMA « 1.5 nM, PDA « 7 nM. 

80 



Chapter 3 Results 

inhibi t ion on PKC activity (Couldwell et al； 1994; Davis et al., 1992; 

Keller and Niggli, 1993; Kobayashi et al, 1989). 

3.3.2 The Involvement of Tyrosine Kinase in the Cytokine-induced 

C6 Cell Proliferation 

Tyrosine kinase, a common second messenger, was reported to be 

involved in both cytokine and LPS-induced nitric oxide synthase 

expression in C6 cells (Feinstein et al, 1994a). It is of interest to 

examine whether tyrosine kinase activity also plays a role in 
( 

cytokine-induced C6 cell proliferation. Therefore, the effects of two : 
！ 

selective tyrosine kinase inhibitors, herbimycin A and tyrphostin, J 

were investigated in this study. The latter has been reported to be { 

highly specific for the enzyme tyrosine kinase (Bianchi et al, 1995; I 

Feinstein et al, 1994a). Figures 3.17 and 3.18 showed the inhibitory • 
] 

effects of herbimycin A and tyrphostin on TNF-a- and LIF-induced \ 

C6 cell proliferation. Neither inhibitor alone had significant effect on • 

the incorporation of PH]-thymidine, while herbimycin A, at 25 nM, 

and tyrphostin, at around 1 ^M, completely blocked the stimulation 

induced by these two cytokines (Figs. 3.17 and 3.18). This observation 

also suggested that herbimycin A was more potent than tyrphostin, 

as the latter required jiiM concentrations in order to block the 

cytokine-induced proliferation completely. This result was in 

agreement wi th that herbimycin A blocks tyrosine kinase more 
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Fig. 3.17 Effects of various concentrations of herbimycin A on TNF-a 
or LIF-induced proliferation. C6 cells were cultured for 48 hours w i th 
or wi thout TNF-a (100 U /m l ) or LIF (1 ng /ml ) in the presence of 
indicated concentrations of herbimycin A. D N A synthesis was 
estimated as described before (Section 2.4). Values shown are mean 士 

standard error of quadruplicate wells. Estimated IC50: TNF-a » 8.2 
nM, LIF » 5.8 nM. 
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Fig. 3.18 Effects of various concentrations of tyrphostin on TNF-a or 
LIF-induced proliferation. C6 cells were cultured for 48 hours w i th or 
wi thout 100 U / m l TNF-a or 1 n g / m l LIF in the presence of indicated 
concentrations of tyrphostin. DNA synthesis was estimated as 
described before (Section 2.4). Values shown are mean 土 standard 
error of quadruplicate wells. The X-axis was represented in a 
logarithmic scale. Estimated IC50: TNF-a « 0.14 ^M, LIF « 0.12 /iM. 
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effectively than tyrphostin (Migita et al； 1994; Gazit et al., 1989). In 

the presence of 25 n M of herbimycin A or 5 ^iM of tyrphostin, almost 

no proliferative effect could be observed (Figs. 3.17 and 3.18). 

Another point to be noted was that the action of LIF appeared to be 

slightly more sensitive to these two tyrosine kinase inhibitors which 

wou ld indicate that the LIF-induced proliferation is mediated, at least 

in part, via tyrosine kinase. 

In order to investigate whether there is any relationship between 

tyrosine kinase and protein kinase C activity on the proliferation of 

C6 cells, the cells were treated wi th a PKC activator in combination 

w i th a tyrosine kinase inhibitor for 48 hours, and cell proliferation 

was measured by the method as described in Section 2.6. From 

Figures 3.19 and 3.20, the stimulatory effect of PMA and PDA was 

blocked by either herbimycin A or tyrphostin. Moreover, herbimycin 

A was found to be more effective than tyrphostin (Compare Figs. 3.19 , 

and 3.20), which was cooperated wi th their inhibitory effects on ‘ 

tyrosine kinase activity (Gazit et al； 1989; Migita et al., 1994). The 

stimulatory action of PDA was more sensitive to these two tyrosine 

kinase inhibitors. Like before (Figs. 3.17 and 3.18), neither herbimycin 

A nor tyrphostin alone showed any significant proliferative effect on 

C6 glioma cells. 
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Fig. 3.19 Effects of various concentrations of herbimycin A on PMA-
or PDA-induced C6 cell proliferation. C6 cells were cultured for 48 
hours w i th various concentrations of herbimycin A, in the presence 
or absence of 1 n g / m l PMA or PDA. DNA synthesis was estimated as 
described before (Section 2.4). Values shown are mean 土 standard 
error of quadruplicate wells. Estimated IC50: PMA « 1 5 nM, PDA « 7 
nM. 
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Fig. 3.20 Effects of various concentrations of tyrphostin on PMA- or 
PDA-induced C6 cell proliferation. C6 cells were cultured for 48 
hours w i th various concentrations of tyrphostin, in the presence or 
absence of 1 n g / m l PMA or PDA. DNA synthesis was estimated as 
described before (Section 2.4). Values shown are mean 土 standard 
error of quadruplicate wells. The X-axis was represented in a 
logarithmic scale. Estimated ICso： PMA « 36 nM, PDA « 26 nM. 
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3.3.3 The Involvement of Calcium Ions in Cytokine-induced C6 Cell 

Proliferation 

As Ca2+ has been shown to mediate the action of a number of 

neurotransmitters and biologically active peptides (Frazer et aL, 1990; 

Meyer & Mil ler, 1990), the actions of A23187, a calcium ionophore, 

and three different calcium channel blockers, namely LaCl3, verampil 

and nifedipine on cytokine-induced proliferation were tested. 

Figure 3.21 showed the effect of A23187 on cytokine-induced C6 

cell proliferation. A23187 alone was able to increase the proliferation 

of C6 cells, and maximum stimulation was observed w i th 20.7 nM. 

This stimulation was further enhanced by TNF-a, IL- la , IL- ip and 

LIF. Among the cytokines studied, maximum stimulation (72 % 丨 

increase in PH]-thymidine incorporation) was observed w i th 10 

U / m l of TNF-a plus 20.7 nM A23187. In the presence of 83 n M of 

A23187, w i th or without cytokine, the proliferative effect decreased, . 

and this may be due to the cytotoxic effect of this calcium ionophore 

at higher concentrations. 

Since the increase in intracellular calcium ion concentration by 

A23187 stimulated proliferation in C6 cell, the effects of some Ca2+ 

channel blockers were then examined. The three Ca^+ channel 

bl0ckers--LaCl3, verampil and nifedipine, themselves did not affect 

PH]-thymidine incorporation significantly (Figs. 3.22-3.24); however, 
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Fig. 3.21 Effects of A23187 and cytokine on C6 cell proliferation. C6 
cells were cultured for 48 hours in control medium or in the presence 
of a cytokine plus various concentrations of A23187. DNA synthesis 
was estimated as described before (Section 2.4). Values shown are 
means 士 standard error of quadruplicate wells. 
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Fig. 3.22 Effect of LaCl3 on cytokine-induced proliferation in C6 
cells. Cells were cultured for 48 hours wi th or without TNF-a (100 
U / m l ) or LIF (1 ng /ml ) and in the presence of various concentrations 
of LaCl3. PH]-thymidine incorporation was estimated as described 
before (Section 2.4). Values shown are means 土 standard error of 
quadruplicate wells. Estimated IC50： TNF-a « 0.06 mM, LIF « 0.11 
mM. 
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Fig. 3.23 Effect of verampil on cytokine-induced proliferation in C6 
cells. Cells were cultured for 48 hours wi th or without TNF-a (100 
U / m l ) or LIF (1 ng /ml ) and in the presence of various concentrations 
of verampil. PH]-thymidine incorporation was estimated as 
described before (Section 2.4). Values shown are means 土 standard 
error of quadruplicate wells. The X-axis was represented in a 
logarithmic scale. Estimated ICso： TNF-a « 1.25 ^M, LIF « 5.25 jitM. 
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Fig. 3.24 Effect of nifedipine on cytokine-induced proliferation in C6 
cells. Cells were cultured for 48 hours wi th or without TNF-a (100 
U / m l ) or LIF (1 ng/ml) and in the presence of various concentrations 
of nifedipine. PH]-thymidine incorporation was estimated as 
described before (Section 2.4). Values shown are means 土 standard 
error of quadruplicate wells. The X-axis was represented in a 
logarithmic scale. Estimated IC50: TNF-a » 0.4 | iM, LIF » 1.8 ^M. 
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they effectively reduced the TNF-a- and LIF-induced C6 cell 

proliferation in a dose-dependent manner (Figs. 3.22-3.24). TNF-a 

and LIF were chosen as the former produced the highest while the 

latter the least proliferative effect in the presence of A23187 (Fig. 

3.21), although the maximum degree of inhibit ion varies w i th the 

compounds added. From the Figures 3.22, 3.23 and 3.24, i t was clear 

that the stimulatory effect of TNF-a was more sensitive to these three 

channel blockers, and complete or almost complete inhibit ion was 

observed w i th the LaCb (0.3 mM), verampil (10 ^M) and nifedipine (5 

fiM). On the other hand, the stimulatory effect of LIF was less 

sensitive to these calcium channel blockers (Figs 3.22-3.24). To further 

prove that calcium ions are involved in cytokine-induced 

proliferation, the effect of EGTA, a potent calcium chelator, was 

studied. Figure 3.25 showed that EGTA, at several concentrations, 

had no significant effect on PH]-thymidine incorporation in C6 cells. 

However, the cytokine-induced proliferation was significantly 

inhibited by this calcium chelator. In agreement wi th the results 

obtained wi th calcium channel blockers, the TNF-a-induced 

proliferative effect was more sensitive to EGTA (Fig. 3.25). 

3.3.4 The Involvement of Cyclic Nucleotides in Cytokine-induced C6 

Cell Proliferation 

Since the accumulation of cGMP in C6 cells can be regulated by 

cytokines (Simmons & Murphy, 1993; Vigne et aL, 1993), the effects of 
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Fig. 3.25 Effect of EGTA on cytokine-induced proliferation in C6 
cells. Cells were cultured for 48 hours wi th or without TNF-a (100 
U / m l ) or LIF (1 ng/ml) and in the presence of various concentrations 
of EGTA. PH]-thymidine incorporation was estimated as described 
before (Section 2.4). Values shown are means 土 standard error of 
quadruplicate wells. Estimated IC50: TNF-a » 26 fiM, LIF « 48 juM. 
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dbcAMP and/or dbcGMP on C6 cell proliferation were investigated. 

Moreover, i t is of particular interest to examine whether these two 

cyclic nucleotides mediate the proliferative effect of TNF-a or LPS on 

C6 cells. 

Figure 3.26 showed that both dbcAMP and dbcGMP can increase 

C6 cell proliferation and maximum stimulation was observed w i th 1 

m M of either cyclic nucleotide. The maximum stimulation observed 

w i th dbcAMP was 29 % which was slightly lower than that of 

dbcGMP (38 %). At 100 juM of dbcAMP, the incorporation of PH]-

thymldine was significantly inhibited, while significant stimulation 

was observed wi th the same concentration of dbcGMP. The reason 

for such difference is unclear. 

3.3.5 The Involvement of Nitric Oxide in Cytokine-induced C6 Cell 

proliferation 

Figure 3.26 has clearly shown that cyclic nucleotides, especially 

cGMP, may be involved in the signalling pathway of cytokine-

induced proliferation in C6 cells. Since cyclic GMP production is 

related to nitric oxide biosynthesis in C6 cells (Demerle-Pallardy et 

al" 1993; Simmons & Murphy, 1993; Vigne et al, 1993), i t is of interest 

to study the effects of sodium nitroprusside (SNP), an exogenous NO 

donor, and N^-methyl-L-arginine (NMA) and N^-nitro-L-arginine 

methyl ester (NAME), both being nitric oxide synthase (NOS) 
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Fig. 3.26 The effect of cyclic nucleotides on C6 cell proliferation. C6 
cells were cultured for 48 hours in medium or in the presence of 
indicated concentrations of dbcGMP or dbcAMP. DNA synthesis was 
estimated as described before (Section 2.4). Values shown are means 
士 standard error of quadruplicate wells. The X-axis was represented 
in a logarithmic scale. 
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inhibitors, on C6 cell proliferation. Contrary to expectation, SNP at 

concentrations of 10_7 - 10_4 M had no effect on PH]-thymidine 

incorporation, while higher concentrations were inhibitory (Fig. 3.27). 

On the other hand, dose-dependent inhibition of TNF-a- and LIF-

induced proliferation by both N〇S inhibitors--NMA and N A M E was 

observed (Figs. 3.28 and 3.29). The proliferative effects of TNF-a and 

LIF were decreased to 15 % and 5 % respectively by 400 ^ M of N M A , 

and to -3 % and 1 % respectively by 500 ^ M of NAME. However, at 

these concentrations N M A or NAME alone exerted only a slight 

effect (< 10 % inhibition or stimulation) on C6 cell proliferation (Figs. 

3.28-3.29). 

To assess the effects of various cytokines on NOS activity in C6 

cells, nitrite accumulation in the cell culture media was determined 

as described by Section 2.8.2. When C6 glioma cells were incubated 

w i th various cytokines, including 500 U / m l TNF-a, 5 n g / m l LIF and 

1 n g / m l IL - la or p, for three days, the increases in nitrite 

concentration were found to be 41 %, 38 % , 50 % and 51 % in the 

presence of TNF-a, LIF, IL - la and IL-ip, respectively (Figure 3.30) 

when compared to that of the control cells. 
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Fig. 3.27 The effect of SNP on C6 cell proliferation. C6 cells were 
cultured for 48 hours in presence or absence of various 
concentrations of SNP. PH]-thymidine incorporation was estimated 
as described before and % Inhibition = 100 x (CPMcontroi -
CPMsampie)/CPMcontroi (Section 2.4). The amount of PH]-thymidine 
incorporation was 60023 土 889.84 cpm/well. Values shown are means 
土 standard error of quadruplicate wells. The X-axis was represented 
in a logarithmic scale. 
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Fig. 3.28 Effect of N M A on cytokine-induced C6 cell proliferation. 
C6 cells were cultured for 48 hours in the presence or absence of the 
TNF-a (100 U /m l ) or LIF (1 ng/ml), wi th or without NMA. PH]-
thymidine incorporation was determined as described before (Section 
2.4). Values shown are means 士 standard error of quadruplicate 
wells. The X-axis was represented in a logarithmic scale. Estimated 
I C 5 0 : TNF-a « 208 ^iM, LIF « 8 ^M. 
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Fig. 3.29 Effect of NAME on cytokine-induced C6 cell proliferation. 
C6 cells were cultured for 48 hours in the presence or absence of the 
TNF-a (100 U / m l ) or LIF (1 ng/ml) , w i th or without NAME. PH]-
thymidine incorporation was determined as described before (Section 
2.4). Values shown are means 士 standard error of quadruplicate 
wells. The X-axis was represented in a logarithmic scale. Estimated 
ICso： TNF-a «15 ^M, LIF » 7 ^M. 
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Fig. 3.30 Effects of various cytokines on nitrite production in C6 
cells. C6 cells were incubated with the indicated cytokine for three 
days, and the nitrite formed in the culture media was determined 
using the Griess reagent as described in Section 2.8.2. Values shown 
are means 土 standard error of quadruplicate wells. * P < 0.05 
compared wi th control by Student's t test. 
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3.3.6 The Involvement of P-Adrenergic Receptor in Cytokine-induced 

C6 Cell Proliferation 

Since astrocytes are known to express P-adrenergic receptors on 

their surfaces (Mantyh et al., 1995), the effects of isoproterenol, a p-

adrenergic agonist, and propranolol, an antagonist of P-adrenergic 

receptor, on the proliferation of C6 cells were also investigated. It 

was found that the addition of 1 j jM of isoproterenol alone caused a 

30 % increase in PH]-thymidine incorporation in C6 cells (Fig. 3.31). 

On the other hand, propranolol at concentrations varying f rom 0.4 to 

25 | jM had no significant effect on the PH]-thymidine incorporation 

(Fig. 3.31). The stimulatory effect of isoproterenol was not affected by 

concentrations of < 10 jj,M of propranolol, but greatly reduced to 

below the control level wi th 25 juM of propranolol. Interestingly 

enough, 25 j jM propranolol also greatly reduced the stimulatory 

effect of TNF-a-induced PH]-thymidine incorporation in C6 cells 

(Fig. 3.32). The mechanism involved, however, is unclear at present. 

Further experiments are needed to confirm the involvement of p_ 

adrenergic receptor in cytokine-induced C6 cell proliferation. 
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Fig. 3.31 Effects of isoproterenol and propranolol on C6 cell 
proliferation. C6 cells were cultured for 48 hours in presence or 
absence of 1 fxM isoproterenol, plus various concentrations of 
propranolol. PH]-thymidine incorporation was estimated as 
described before (Section 2.4). Values shown are means 土 standard 
error of quadruplicate wells. The X-axis was represented in a 
logarithmic scale. 
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Fig. 3.32 The inhibit ion of TNF-a-induced C6 cell proliferation by 
propranolol. C6 cells were cultured for 48 hours in medium or in the 
presence of 10 or 100 U / m l TNF-a, plus various concentrations of 
propranolol. D N A synthesis was estimated as described before 
(Section 2.4). Values shown are means 士 standard error of 
quadruplicate wells. The X-axis was represented in a logarithmic 
scale. 
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Chapter 4 DISCUSSION AND CONCLUSIONS 

Results of the present study indicated that TNF-a, IL - la , IL- lp 

and LIF stimulate PH]-thymidine incorporation in C6 cells, in a dose-

and time-dependent manner. Not only was DNA synthesis increased 

but the growth of the C6 cells was also markedly enhanced by these 

cytokines. In addition, the present work demonstrated that LPS also 

stimulates proliferation of C6 cells (Fig. 3.5). LPS is known to be a 

potent cytokine inducer (Lee et al； 1993b), thus its effect may be via 

the cytokine(s) produced. These findings are in agreement w i th 

reports that TNF-a and IL-1 stimulate proliferation of astrocytes, both 

in vivo and in vitro (Giulian & Lachman, 1985; Selmaj et aL, 1990), as 

wel l as in rat C6 glioma cells (Munoz-Fernandez et al., 1991; Munoz-

Fernandez & Fresno, 1993). The morphological studies showed that 

neither TNF-a nor LIF caused any significant changes in the 

cytokine-treated cells (Figs. 3.7-3.8). The observation wi th TNF-a is in 

agreement wi th that reported by Munoz-Fernandez et al. (1991). C6 

cells are known to express both the astrocytic and oligodendritic 

phenotypes (Brodie & Vernadakis, 1991; Parker et al" 1980; 

Vernadakis et al" 1991). Our studies with GFAP antibody showed 

that over 90 % (Figs. 3.9) of the untreated C6 cell or C6 cells exposed 

to TNF-a for 48 hours were GFAP positive. Since GFAP is a marker 

protein for astrocytes (Eng et aL, 1971), the results suggest that the 
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cells used in the present study were mainly astrocytic. This finding 

may explain why TNF-a was mitogenic for astrocytes but caused 

damages to myelin and oligodendrocytes in vitro (Selmaj & Raine, 

1988, Selmaj et al； 1990). The proliferative effect observed suggest 

that cytokines, including TNF-a, LIF, IL - la and IL- ip, could play an 

important role during nerve tissue regeneration by stimulating the 

proliferation of glial cells as an autocrine growth factor and inducing 

differentiation of neurons as a neurotrophic factor. Since glial cells 

play an important role in guiding developing neurons (Rakic, 1971a 

and b), i t is possible that cytokines may influence neuron 

development. 

Primary and murine astrocytes can secrete IL-6 in response to a 

variety of stimuli, including virus, IL-1, TNF-a, IFN-y, LPS and 

calcium ionophore (Benveniste et al., 1990; Frei et al, 1989; Lieberman 

et al, 1989; Norris et al, 1994). Astrocytoma cells are known to 

express specific high-affinity receptors for IL-6 (Taga et al, 1987), and 

that this cytokine has a mitogenic effect on astrocytes (Selmaj et al,, 

1990). It is possible that the proliferative effect of TNF-a and other 

cytokines tested is mediated by the IL-6 produced upon stimulation 

w i th these cytokines. However, this possibility seems rather unlikely 

as no proliferative effect of IL-6 on C6 cells was observed. This notion 

is further supported by the observation that IL-6 was less potent that 

TNF-a and IFN-y in requiring much higher doses of up to 1,000 U / m l 

to reach maximum stimulation of thymidine incorporation in glial 
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cells (Munoz-Fernandez & ]Fresno, 1993). Receptors for LIF have not 

been reported on C6 cells, thus it is not known if this cytokine 

exerted its action by binding to its, or related, receptors. In this 

connection, i t is interesting to note that the LIF receptor has a 

significant sequence homology to the p subunit of IL-6 receptor 

(Gearing et al, 1991). As TNF-a also induces the secretion of 

granulocyte-colony stimulating factor and granulocyte-macrophage 

colony stimulating factors in astrocytes (Malipiero et al" 1990), the 

possible role of these two colony-stimulating factors in mediating the 

proliferative effect of TNF-a and other cytokines on C6 cells cannot 

be excluded from the present study and is currently under 

investigation in our laboratory. 

The data showed that LIF was inhibitory to C6 cell proliferation 

at 10 ng/mI , while lower concentrations of LIF were found to be 

stimulatory (Fig. 3.2). This differential effect of cytokine on glial cell 

proliferation had been reported in studies wi th IL-4, which affected 

cell proliferation in a similar fashion (Brodie & Goldreich, 1994). The 

reason for the stimulatory and inhibitory effects of these cytokines in 

C6 cells is unclear at present. In view of the fact that multiple 

receptors of different affinities for various cytokines exist in other 

cells (Miyajima et al, 1992), the biphasic effects of these cytokines 

may be due to the possibility that different cytokine concentrations 

affect interactions between the cytokine with its receptors of different 

affinities. This possibility is supported by binding studies which 
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showed the existence of high and low-affinity IL-4 receptors and the 

presence of both 55 kD and 75 kD TNF receptors in certain blood 

cells (Barna et al, 1992; Foxwell et al, 1989). 

In the present study, i t was found that the proliferative effects 

of TNF-a and LIF required a relatively short exposure time to these 

cytokines. It seems reasonable to speculate that receptors for these 

two cytokines already exist on the cell surface. More, since the 

proliferative effects of TNF-a and IL - la or p were additive rather 

than synergistic (data not shown), it is possible that these cytokines 

caused proliferation by affecting a (some) common signalling 

pathway(s) in C6 glioma cells. This thought seems more likely than 

the action of different cytokines on common receptors as selective 

receptors for various cytokines had been demonstrated (Barna et al,, 

1992; Benveniste et al, 1990; Gearing et al” 1991; and Selmaj et al, 

1990). 

Our study demonstrated that both TNF-a- and LIF-induced 

proliferation in C6 cells involve protein kinase C (PKC) (Figs. 3.10-

3.16), Ca2+ (Figs. 3.21-3.25) and tyrosine kinase (Figs. 3.17-3.20). The 

involvement of PKC mediating the action of TNF-a was 

demonstrated by observations that potent PKC inhibitors, Ro31-8220, 

staurosporine and calphostin C (Gescher, 1992), inhibited both the 

TNF-a- and LIF-stimulated proliferation in C6 cells (Fig. 3.11-3.13); 

whereas PKC activators, PMA and PDA, induced proliferation (Fig. 
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3.10). In addition, the proliferative effects of PMA and PDA were also 

blocked by the three PKC inhibitors tested (Figs. 3.14-3.16). This 

finding is supported by the recent reports that TNF-a and IL- lp 

activated PKC in cultured rat astrocytes (Norris et al, 1994), and that 

astrocyte proliferation is regulated by PKC (Bhat, 1989; Honegger, 

1986; Sawada et al, 1993). However, our f inding is different f rom that 

of Munoz-Fernandez & Fresno (1993), who reported that the 

proliferative effect of TNF-a and IFN-y in C6 cells was unaffected by 

H7, the only PKC inhibitor tested in their study. The lack of effect of 

H7 in their report may be due to the different potencies of various 

PKC inhibitors on different PKC isozymes (Gescher, 1992). In fact, we 

have found that Ro31-8220, a cogener of staurosporine, reduced the 

PMA inhibitory action on C-type natriuetic peptide-induced cGMP 

formation in C6 cells, while H7 was ineffective (Tsang, D. et al, 

unpublished observation). 

Since some PKC isoforms are calcium-dependent (Berridge, 

1993), the effects of A23187, a calcium ionophore, as well as some 

calcium channel blockers on cytokine-induced C6 cell proliferation 

were investigated. A23187 alone stimulated C6 cell proliferation (Fig. 

3.21); and in the presence of a sub-optimal dose of cytokines, such as 

10 U / m l of TNF-a, 0.1 ng /m l of LIF, 5 pg /m l of IL - la and 1 p g / m l of 

IL- ip, A23187 further enhanced the proliferation induced by these 

cytokines. The involvement of calcium in mediating the proliferative 

effects of TNF-a and LIF is further supported by observations that 
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blockers of calcium influx--LaCl3, verampil and nifedipine, inhibited 

the proliferative effects of these two cytokines in a concentration-

dependent manner (Figs. 3.22-3.24). In addition, EGTA, a Ca】+ 

chelator, also has similar inhibitory action on the cytokine-induced 

C6 cell proliferation (Fig. 3.25). The finding that Ca2+ is involved in 

the proliferative action of cytokines agrees wi th reports that cytosolic 

calcium is a key messenger in controlling many cellular processes, 

including gene transcription and programmed cell death (Nicotera et 

flZ., 1992; Petersen et al； 1994). The mechanism by which Ca2+ 

stimulated proliferation in C6 cells is unclear at present. As certain 

neurotransmitters, e.g., glutamate, are known to exert their effects by 

affecting ion channels and/or transporters (Frazer et al； 1990; Meyer 

& Mil ler, 1990), i t is conceivable that TNF-a may affect Ca2+ fluxes in 

C6 cells. This reasoning is supported by our findings that the 

cytokine-induced proliferative effect was inhibited by some selective 

calcium channel blockers, LaCl3, verampil and nifedipine (Figs. 3.22-

3.24). Another possibility is due to the intrinsic channel-formation 

property of TNF-a. It has been shown that TNF-a can insert into the 

hydrocarbon core of phospholipid bilayers (Baldwin et al., 1988). 

Moreover, TNF-a has been reported to form pH-dependent, voltage-

dependent, ion-permeable channels in planar l ip id bilayer 

membranes and increase the sodium permeability of human U937 

histiocytic lymphoma cells (Kagan et al； 1992). As A23187 is known 

to activate PKC, and that some PKC isoforms are calcium-dependent 

(Berridge, 1993), thus, it is quite possible that the action of Ca2+ is 
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mediated by activating PKC. However, this idea requires further 

testing w i th C6 cells. In view of the fact that the products produced 

upon the hydrolysis of phosphatidyl inositol 4, 5 bisphosphate by 

phospholipase C can activate PKC and mobilize calcium, the present 

findings do not allow us to discern whether calcium mobilization or 

activation of PKC is the primary signal transducing pathway 

mediating the proliferative effect of the cytokines studied. As A23187 

has been shown to enhance phospholipase A2 activity in pulmonary 

arterial smooth cells (Chakraborti et al, 1991), and that IL- lp induced 

phospholipase A2 activity in C6 cells, the involvement of 

phospholipase A2 in mediating the proliferative effects of cytokines 

in C6 cells is certainly worthy of serious consideration. This study is 

currently under close examination in our laboratory. 

Since tyrosine kinase is a well known second messenger in 

cytokines function (Stahl & Yancopoulos, 1993), its involvement in 

cell proliferation was also examined in this project. It was found that 

C6 cell proliferation induced by TNF-a and LIF was sensitive to the 

presence of the selective tyrosine kinase inhibitors, herbimycin A and 

tyrphostin (Bianchi et al； 1995; Feinstein et al, 1994a). The mechanism 

whereby TNF-a- and LIF-induced cell proliferation in C6 cells 

remains to be elucidated. In this connection it is interesting to note 

that the activity of nitric oxide synthase could be enhanced by LPS, or 

the combinations of IFN-y, IL-lp and TNF-a, and this activation was 

mediated by the tyrosine kinase pathway(Feinstein et al； 1994a and 
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b). In the present study, i t was found that the two tyrosine kinase 

inhibitors were able to block the proliferative effect of PMA and 

PDA. This would suggest that in the cytokine-induced proliferation 

signal cascade the tyrosine kinase activation may be located down-

stream to that of PKC activation. 

As mentioned above, Feinstein et al (1994a and b) reported that 

tyrosine kinase was involved in the expression of nitric oxide 

synthase in glial cells. Moreover, it was observed that high 

concentrations of N^-monomethyl-L-arginine, an active nitric oxide 

synthase (NOS) inhibitor, but not NG-monomethyl-D-arginine, a 

stereoisomer without NOS inhibitory activity, reduced the cytokine-

induced growth of C6 cells (Munoz-Fernandez & Fresno, 1993). These 

observations suggest that nitric oxide may be involved in cytokine-

induced proliferation of C6 cells. The present study demonstrated 

that the nitric oxide synthase inhibitors, N<^-methyl-L-arginine and 

N^-nitro-L-arginine methyl ester (Knowles & Moncada, 1994), 

reduced the proliferative effect of TNF-a or LIF on C6 cells (Figs. 3.28 

and 3.29), while neither inhibitors alone affected the PH]-thymidine 

incorporation of the cells. However, the participation of nitridergic 

pathway in mediating cytokine-induced proliferation in C6 cells 

seems to be less important as it was recently reported that LPS alone 

was not a sufficient inducer, but rather the presence of cytokines was 

needed to stimulate NOS expression (Feinstein et al” 1994b). 

Moreover, the addition of TNF-a or IFN-y alone, but without LPS, 
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had no effect on NOS activity in C6 cells (Feinstein et aL, 1994b). 

Furthermore, Simmons and Murphy (1993) found that in C6 cells LPS 

and cytokine increased the production of cGMP, one of the primary 

products related to the signal transduction of nitric oxide (Synder & 

Bredt, 1992) and this stimulatory action had a r igid dependency on 

the presence of L-arginine. Since no extra L-arginine (except the small 

amount present in the culture medium) was added in our 

experiments, this would suggest that the nitridergic pathway is less 

important in mediating the cytokine-induced proliferation in C6 cells. 

Even in the presence of added L-arginine, neither TNF-a alone nor a 

combination of IFN-y and IL- lp caused any detectable increase in 

cGMP production in C6 cells unti l 4 hours after the addition of 

cytokines (Simmons and Murphy, 1993). In our study, however, 

significant proliferative effect of TNF-a was observed after 60 

minutes exposure to TNF-a (Fig. 3.4) Moreover, the exogenous nitric 

oxide donor, sodium nitroprusside at non-cytotoxic concentrations, 

d id not show any proliferative effect on C6 glioma cells (Fig. 3.27). 

Though the nitric oxide formation was induced by cytokines 

including TNF-a, LIF, IL - la and IL-ip (Fig. 3.30), the increase was 

much lower than the reported data of Munoz-Fernandez & Fresno 

(1993). The reason for the discrepancy is unclear, but may be due to 

the higher concentrations of cytokines and longer time of incubation 

used in their proliferation assays. In short, i t seems reasonable to 

conclude that the nitridergic pathway plays a necessary but less 
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important role compared to other transducing pathways, in 

mediating the proliferative effect of cytokines in C6 cells. 

Recently, i t was reported that cGMP production in glial cells 

was induced and regulated by cytokines (Simmons & Murphy, 1992 

and 1993; Vigne et al； 1993). These authors found that the cytokine-

induced cGMP production had a rigid dependency on L-arginine, 

and was NO-dependent. However, we were unable to show the 

increase in cGMP production by TNF-a in several attempts (data not 

shown). The reason may be due to the lack of extra addition of L-

arginine in our studies. On the other hand, in agreement w i th the 

reports of Simmons & Murphy (1992 and 1993), we found that cGMP 

as wel l as cAMP increased PH]-thymidine incorporation in C6 cells 

(Fig. 3.26). The mechanism through which cGMP increased pH]-

thymidine incorporation in C6 cells remains unclear. It is possible 

that the action of cGMP may involve changes in calcium fluxes and 

phospholipases as it had been shown that cGMP could regulate 

calcium fluxes and induce the formation of inositol phosphates in 

astroglia (Fumkawa et al” 1986; Hirata et al, 1990). 

In summary, the present study showed that a number of 

cytokines, including TNF-a, LIF, IL- la and IL-lp, stimulated pH]-

thymidine incorporation in C6 glioma cells. The reason why so many 

cytokines can stimulate C6 cell proliferation is unclear, i t may be that 

these cytokines after binding to their respective receptors trigger the 
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same signal transducers in C6 cells, and this would explain the 

redundant biological effects of cytokines (Meager, 1990). The 

proliferative effect of these cytokines on C6 cells suggests that 

cytokines produced by glial cells could play an important role in the 

nervous system in response to trauma and inflammation. Similar 

conclusions have been reached by other investigators in their studies 

w i th cultured astrocytes (Chung & Benveniste, 1990; Eddleston & 

Mucke, 1993; Kasahara et al 1990). In addition, astrocytes are known 

to synthesize and secrete NGF and other neurotrophic factors which 

play an important role in the survival, growth and differentiation of 

neurons in the CNS (Furukawa et al, 1986). Recent studies indicate 

that NGF synthesis can be regulated by a variety of growth factors 

and cytokines (Yoshida & Gage, 1992), and can be induced in reactive 

astrocytes during brain injury (Goedert et al, 1986). Our finding that 

various proinflammatory cytokines can stimulate C6 cell proliferation 

indicates that these and possibly other cytokines may provide 

neurotrophic effect in the CNS during instances of injury and 

inflammatory events. In addition to these pathological implications, 

increasing evidence supports the ideas that cytokines coordinate 

migration and proliferation of glial cells, as well as regulate neuronal 

network formation during normal development of the nervous 

system (Merrill, 1992). 
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