
Analysis on the Less Flexibility First
(LFF) Algorithm and Its Application
to the Container Loading Problem

WU Yuen-Ting

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Master of Philosophy

In

Computer Science and Engineering

© The Chinese University of Hong Kong
August 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any
‘ Person(s) intending to use a part or whole of the materials in the thesis in a

proposed publication must seek copyright release from the Dean of the
Graduate School.

vljr~~UNIVERSITY 7 0 /
Xjâ BRARY SYSTEMX'W

Abstract of thesis entitled:
Analysis on the Less Flexibility First (LFF) Algorithm and Its

Application to the Container Loading Problem
Submitted by WU Yuen-Ting
for the degree of Master of Philosophy
at The Chinese University of Hong Kong in August 2005

This thesis is a deep investigation in the Less Flexibility First (LFF)

algorithm for solving packing problems. LFF is an effective deterministic

heuristic originally designed for solving 2D packing problems. It

generated up to 99% packing densities. Yet the algorithm may generate

unsatisfactory packing densities when the length/width ratio of the

rectangles is very large. To improve its performance, the algorithm is

analyzed by applying it to those extreme cases. The inexistence of LFF

error bound is proven, followed by a discussion on the causes of the

unsatisfactory results. This research result can help improving original

LFF in future.

As the average packing density of LFF in 2D packing problems is very

high comparing to other 2D-packing algorithms, it is also extended to the

container loading problem with the objective to maximize volume

utilization. The principle is to pack objects according to their flexibilities.

Less flexible objects are packed to less flexible positions of the container.

Pseudo-packing procedures enable improvements on volume utilization.

Encouraging packing results with up to 93% volume utilization (average

volume utilization is about 87.93%) are obtained in experiments running on

benchmark cases from other authors. The result of this research was

published in the paper "A Less Flexibility First Based Algorithm for the

Container Loading Problem" in the Operations Research Proceedings 2004.

-i -

The disadvantage of the LFF algorithm is its large CPU time. To cut
up the CPU time, we try to modify the algorithm by applying tightness
calculation. This algorithm is called "Less Flexibility First with Tightness
Measure" (LFFT). There is a substantial reduction in CPU time. The
volume utilization is also reduced as the trade-off. Detail comparison of
the two algorithms is done by a series of experiments and reported in this
thesis.

“

-ii -

摘要

論文題目：「低靈活性優先處理法」分析及應用於三維包裝的硏究

作者：胡婉停

修讀學位：哲學碩士

香港中文大學計算機科學及工程學部

曰期：二零零五年六月

本論文就如何將「低靈活性優先處理法」應用於三維包裝問題作出深

入硏究。「低靈活性優先處理法」最早見於二零零二年的一本《歐洲

運籌學期刊》一篇名爲「模擬人類思維法以解決平面方形的包裝問題」

的文章內，該篇文章透過標準測試案例證實運用「低靈活性優先處理

法」包裝平面方形，可達致99個百分點的密度。可惜這種有效的「模

擬人類思維法]仍有其不足之處。在某些極端情況下，「低靈活性優先

處理法」可能產生極不理想的包裝密度。本文嘗試找出這些影響「低

靈活性優先處理法」表現的極端情況，並加以硏究，計算錯誤邊界及

分析其成因，冀能改善「低靈活性優先處理法」的整體表現。

由於「低靈活性優先處理法」在平面包裝的問題上表現勝於其他

同類程式，是次硏究的另一重點便放在如何擴大「低靈活性優先處理

法」的應用，將這種方法運用在三維包裝問題上，以求取得更好空間

‘ 佔用率的一種包裝方法。「低靈活性優先處理法」的原則是根據物件的

• 靈活性決定其入箱的先後次序°由於大型的物件較欠缺靈活性，故會

優先處理。至於箱內的空間也列入靈活性的考慮因素之內。體積較小

的空間靈活性較低，因此會被優先檢查是否適合存放正被處理的物

件。虛擬包裝步驟有助改善空間佔用率。「三維低靈活性優先處理法」

曾被應用在標準包裝案例上，並產生出高達93個百分點的空間佔用率

(平均空間佔用率約爲88至89個百分點），實在是令人鼓舞的結果。

「低靈活性優先處理法」的缺點在於較長的程式作業時間。爲了

縮短其作業時間，作者在程式中加入緊密度的計算。結果作業時間被

大大降低，而程式所計算出來的空間佔用率亦相對減低了。本論文將

對兩種不同的設計作出討論，並比較其實驗結果。

-iii -

Acknowledgement

I would like to take this opportunity to express my gratitude to my

supervisor Prof. David Y.L. Wu, for his generous guidance and patience

given to me in the past three years. His numerous support and

encouragement, as well as his inspiring advice are extremely essential and

valuable and valuable in my research paper (conference paper published in

Operations research 2004 Proceedings) and my thesis.

I am also grateful for the time and valuable suggestion that Prof. Y.S.

Moon and Prof. Evan Young have given in marking my term paper.

Without their effort, I will not be able to strengthen and improve my

research project and papers.

I would also like to show my gratitude to the Department of Computer

Science and Engineering, CUHK, for the provision of the best equipment

and pleasant office environment required for high quality research.

Special thanks should be given to Miss Chan Pik Wah and Miss Chan

Pik Hin who have given me valuable suggestions, encouragement and

supports. And, I would like to give my thanks to my fellow colleagues.

They have given me support, and a joyful and wonderful university life.

Finally, I am deeply indebted to my family for their unconditional love

and support over the years.

-iv -

This work is dedicated to my family for the support and
patience

-V -

Contents
1. Introduction 1

1.1 Background 1
1.2 Research Objective 4
1.3 Contribution 5
1.4 Structure of this thesis 6

2. Literature Review 7
2.1 Genetic Algorithms 7

2.1.1 Pre-processing step 8
2.1.2 Generation of initial population 10
2.1.3 Crossover 11
2.1.4 Mutation 12
2.1.5 Selection 12
2.1.6 Results of GA on Container Loading Algorithm 13

2.2 Layering Approach 13
2.3 Mixed Integer Programming 14
2.4 Tabu Search Algorithm 15
2.5 Other approaches 16

2.5.1 Block arrangement 17
2.5.2 Multi-Directional Building Growing algorithm 17

2.6 Comparisons of different container loading algorithms 18
3. Principle of LFF Algorithm 8

3.1 Definition of Flexibility 8
3.2 The Less Flexibility First Principle (LFFP) 23
3.3 The 2D LFF Algorithm ： 25

3.3.1 Generation of Corner-Occupying Packing Move (COPM)
26

3.3.2 Pseudo-packing and the Greedy Approach 27
3.3.3 Real-packing 30
3.4 Achievement of 2D LFF 31

4._Error Bound Analysis on 2D LFF 21
4.1 Definition of Error Bound 21

-vi -

4.2 Cause and Analysis on Unsatisfactory Results by LFF 33
4.3 Formal Proof on Error Bound 39

5. LFF for Container Loading Problem 33
5.1 Problem Formulation and Term Definitions 48
5.2 Possible Problems to be solved 53
5.3 Implementation in Container Loading 54

5.3.1 The Basic Algorithm 56
5.4 A Sample Packing Scenario 62

5.4.1 Generation of COPM list 63
5.4.2 Pseudo-packing and the greedy approach 66
5.4.3 Update of corner list 69
5.4.4 Real-Packing 70

5.5 Ratio Approach: A Modification to LFF 70
5.6 LFF with Tightness Measure: CPU time Cut-down 75
5.7 Experimental Results 77

5.7.1 Comparison between LFF and LFFR 77
5.7.2 Comparison between LFFR, LFFT and other algorithms 78
5.7.3 Computational Time for different algorithms 81
5.7.4 Conclusion of the experimental results 83

6. Conclusion 85
Bibiography 88

1.

-vii -

List of Figures

Fig. 3.1a) Flexibility of a corner 21
Fig. 3.1b) Flexibility of a side 22
Fig. 3.1c) Flexibility of a central void area 22
Fig. 3.2 Flexibility of objects 23
Fig. 3.3 Candidate packing position for an object 24
Fig. 3.4 Candidate COPM in a certain packing configuration 27
Fig. 3.5 Object A pseudo-pack to its COPM 28
Fig. 3.6 Object C pseudo-pack to its COPM 29
Fig. 3.7 Object A, B and C can all be pseudo-packed into the container.... 30
Fig. 4.1 The optimal packing result with Rectangles 1 to 3 all packed 34
Fig. 4.2 Example of pseudo-packing process 35
Fig. 4.3 The optimal solution 37
Fig. 4.4 Sample steps of LFF 38

Fig. 4.5 The maximized optimal solution with input size n 43

Fig. 5.1a) An upper left corner 50
Fig. 5.1b) A lower left corner 50
Fig. 5.1c) A lower right corner 50
Fig. 5.1d) An upper right corner 50
Fig. 5.2a) A corner for bottom-up packing (side view) 51
Fig 5.2b) A corner forTop-down packing (side view) 51
Fig. 5.3 The representation of an object in a 3D coordinate system 51
Fig. 5.4 A flowchart showing the flow of LFF 55
Fog 5.5 The six possible orientation of a box 58
Fig. 5.6 The LFF algorithm 62
Fig. 5.7 Corners in the container 63
Fig. 5.8 The pseudo-pack of COPM (14，8，6，0，0，0，0) 66
Fig. 5.9 The second step of pseudo-packing 68
Fig. 5.10 Packing configuration after bo and bi are pseudo-packed 69

-viii -

Fig. 11a) Dimension of bi 71
Fig. l ib) Dimension of bi 71
Fig. 5.12 Rule selection approach Ifor determining flexibility 74
Fig. 5.13 Rule selection approach 2 for determining flexibility 74
Fig 5.14a) Tightness measure points in 2D case 75
Fig 5.14b) Tightness measure points in 3D case 75
Fig. 5.15 Algorithm of LFF with tightness measure 76

Fig 5.16 A graph showing the relatoinship of CPU time and Problem Size for

LFFR and LFFT 82

A

-ix -

List of Tables

Table 5.1 Six possible orientations of a box 56

Table 5.2 Numerical results obtained by LFF on 700 problems of

Bischoff and Ratcliff. 78

Table 5.3 Numerical results obtained by six algorithms on

15 problems of Loh and Nee 79

Table 5.4 Numerical results obtained by six algorithms on 15 problems of

Loh and Nee 80

Table 5.5 Average computational time of LFFR and LFFT on different

problem size 81

Table 5.6 Average computation time for 5 different algorithms 82

.k

-X -

Chapter 1

Introduction

Recently, packing problems have received increasing attention due to its

importance in the area of production and distribution of goods. An

effective three-dimensional packing algorithm can increase the packing

density of a transportation device such as containers and palettes. The

higher the packing density, the better is the utilization of transportation

capacities. As the volume of waste space is reduced, the reduction on

resources used on transportation can in turn be achieved. Therefore,

research on three-dimensional packing problem is of great economic values,

especially for the transportation and logistics industry.

1.1 Background

In Three-Dimensional Packing Problems, a set of rectangular-shaped boxes

is to be packed into single or multiple container(s) with fixed dimensions

orthogonally. All packed boxes must, be completely stowed inside the

container with all edges parallel to the container edges. Overlapping of

boxes is not allowed. All boxes should be supported by the container base,

by any other boxes or by added supporting materials underneath to an

extent that it is stable. Orientation constraints are usually considered in

real-life applications.

-1 -

CHAPTER 1 INTRODUCTION - 4 -

The problem was firstly studied by Gilmore and Gomory [9] in early sixties.

Thereafter many researchers have published papers discussing several

variants of this problem. Classification of 3D packing problems can be

done in two ways: by types of boxes and by objective functions. The

former classified the problem into three types. In homogeneous cases, a

single type of boxes (all with the same dimensions) is to be packed. A

weakly heterogeneous box set refers to a few number of box types with a

lot of individual box in each type. A strongly heterogeneous box set

refers to a large number of box types with only a few individual boxes in

each type [25]. For the latter classification, three objectives are usually

considered: [8，12, 13]

(i) Strip Packing. All boxes should be packed into a container with

fixed width and height but infinite depth. The depth is

continuously increased during the packing process until all boxes

are loaded. The objective here is to minimize the depth of the

container. Many heuristics and algorithms are designed for this

application. The first heuristic for this problem was presented by

George and Robinson in [18]. Approximation algorithms are

widely used for solving container loading problems. In [7], a

parametric online algorithm for packing boxes is illustrated. [5]

describes another approximation algorithm. A comparison of

several algorithms focusing on strip packing can be found in [21].

(ii) Bin Packing. All boxes should be packed into containers (or bins)

with fixed dimensions. Multiple containers are usually necessary.

The objective is to minimize the number of containers used. [3]

- 2 -

CHAPTER 1 INTRODUCTION _ 3 -

presents an incorporation of approximation algorithm with exact

algorithm to solve 3D bin packing problem. It first defines an

exact algorithm ONEBIN for finding the best filling of a single bin

by branch-and-bound, then incorporates approximation algorithm to

perform bin packing. Greedy algorithms are applied to variable

sized bin packing in [4], where Iterative first-fit decreasing (IFFD)

and Iterative best-fit decreasing (IBFD) are illustrated.

(iii) Knapsack Loading. In this variant of the problem, some boxes can

be left unpacked. A subset of the given boxes is chosen to be

packed into a fixed dimension container to maximize a pre-defined

profit. Heuristics for knapsack loading are presented in [17] and

[19]. When the profit is set to be the utilized volume, the objective

will be the minimization of wasted space. In industries, knapsack

loading is applied to the loading of cargoes into a container in a way

that can minimize the wasted space and in turn reduce the

transportation cost. This is called Container Loading.

Our research is focused on the container loading problem, aiming at

maximizing the volume utilization of the container. This is proven to be

NP-complete [15]. No existing algorithms are able to give optimal

solutions in polynomial time. Heuristics are the mostly adopted

approaches for this kind of problems.

Several heuristics using layering approach is introduced in [8, 25]. The

advantage is mainly on the balancing of load inside the container. An

unbalanced condition can be solved by simply exchanging the order of

layers. As the width and height of each layer coincide with the

-3 -

CHAPTER 1 INTRODUCTION - 4 -

corresponding dimensions of the container, a key factor affecting packing

density is the determination of layer depth. [8] presents several ranking

rules for selection of the most promising layer depths. [25] introduces a

hybrid genetic algorithm, also based on layering. It uses basic heuristics

developed by [27] to generate and complete stowage plan layers while

genetic algorithm is used in later phase to perform layer transfer and layer

extension.

Genetic algorithms are common on non-layering methods. [16, 20] are

some examples. Other methods are also developed. An integer

programming model is presented in [6]. [15] presents a greedy heuristic

improved by tree search. [26] runs tabu search in several computers in

parallel to generate local optimum solutions. The diversity is increased by

exchanging solutions between different computers.

1.2 Research Objective

... In this thesis, we present a Less Flexibility First (LFF) based algorithm for
«

solving the container loading problem. The objective is to maximize

volume utilization, i.e. the % of the container volume occupied by the

packed items.

The LFF algorithm was originally applied to two-dimensional packing

problems and was in fact proposed in [1]. It is a quasi-human based

heuristic. The term “quasi-human” means cogitative, which refers to the

accumulated experience of human beings in solving similar problems in

everyday life [10，11]. The idea is inspired by an old strategy known by

Chinese ancient professionals for packing polygon-shape stone plates. In

- 4 -

CHAPTER 1 INTRODUCTION - 5 -

2D packing cases demonstrated in [1], it consistently produces results with

around 99% packing densities in a large number of randomly generated

rectangle packing instances with at least 45 rectangles.

According to some past research [24], algorithms with good

performance in two-dimensional packing can probably generate

satisfactory results when similar techniques are extended to three

dimensional cases. The performance of 2D LFF shows its potential to

produce promising volume utilization if it is extended to 3D.

In our research, the first step is to evaluate the 2D LFF algorithm by

analyzing its worst case performance. Although there is even no error

bound for this algorithm in the worst cases, its average performance is very

satisfactory.' The algorithm is determined to be possible to have good

performance in 3D packing problem. The next step is to identify the

possible problems which may be encountered. Such problems should be

taken into consideration during implementation. Overcoming these

difficulties is important in our research.

The major objective is to implement the 3D LFF algorithm which can

do packing with high volume utilization. Its performance was evaluated

by running it on the benchmark test cases and compared its results with

other container loading algorithms through which the pros and cons of 3D

LFF will be disclosed and evaluated.

1.3 Contribution

Our research has the following contributions:

• The 2D LFF algorithm is evaluated. Worst Case Analysis is

performed on the algorithm and the inexistence of Error Bound of this ..

- 5 -

CHAPTER 1 INTRODUCTION - 6 -

algorithm is proven. Such analysis facilitates further research on

improvement of this algorithm.

參 The LFF algorithm is firstly applied on container loading problem.

Its performance is satisfactory when being run on benchmark cases.

In Bischoff and Ratcliff benchmark cases, the average volume

utilization achieved by our algorithm is 87.93%.

參 In 3D packing research area, genetic algorithms and layering approach

are the two most common solutions under research. The 3D LFF is

an innovative approach which can provide a new direction for further

research.

1.4 Structure of this thesis

There are six sections in this thesis. Section 1 is the Introduction which
gives reader a brief description about what the research topic is, the
objective and its contributions. Section 2 is Literature Review which
compares�different algorithms proposed by other researchers on the same
problem. Section 3 introduces the Principle of the Less Flexibility First
(LFF) and discusses how it was applied to 2D packing problems. Section
4 contains a worst case analysis as well as a proof on the error bound of
LFF algorithm. Section 5 explains how the LFF algorithm is extended to
3D container loading problem and demonstrates some experimental results
on benchmark test cases. Section 6 is the Conclusion discussing the
superiorities and also issues of the LFF algorithm.

4t

- 6 ~

Chapter 2

Literature Review

Two traditional approaches for solving Knapsack Loading (Container
Loading) problems are Genetic algorithms (GA) [16，20, 24, 25] and
Layering approach [19, 25, 29，31]. Some algorithms use one of them
while combination of the two is also possible. Other approaches like Tabu
Search [26], Mix Integer Programming [6] are also proposed. As the
problem is NP-complete, exact algorithm is normally not employed.

2.1 Genetic Algorithms

Genetic algorithm was introduced by HOLLAND (1975). It can be

regarded as a type of meta-heuristics. In GA, the genetic operators

Crossover and Mutation can explore the solution space and generate

different solutions for evaluation. The Selection procedures ensure that

only the' individuals considered as the best are allowed to stay in the

population and act as parents to generate offsprings. As the individuals

with low fitness values are eliminated, GA can gradually improve the

fitness of the whole population and finally achieve satisfactory results.

Therefore it is involved in many researches on NP-complete problems [16,

20, 24, 25,31].

H.Gehring and A.Bortfeldt had published twice on using genetic

algorithms to solve container loading problem. Their first proposal [24] is

. to arrange boxes into tower sets and make use of an already developed 2D

- 7 -

CHAPTER 2 LITERATURE REVIEW - 8 -

Packing GA in [17] to obtain a tower packing result. This is called

stack-building. Their second proposal [25] is similar. This is a

combination of GA and layer approach. Boxes are packed into layers and

the packing of layers is done by GA. C. Pimpawat and N. Chaiyaratana

divided the individuals into sub-populations (or species) and performed GA

on each sub-population by which the solution space is explored [20]. D.Y.

He and J.Z. Cha represented packing patterns by permutations and applied

GA on the permutations [16].

In this section, the operations and performance of the above four GAs

are compared and analyzed.

2.1.1 Pre-processing step

Before generating the initial populations, the GA will do some

preprocessing steps to encode the problem into a suitable data structure to

facilitate further genetic operations. Such preprocessing steps are always

very important for forming a suitable initial condition for GA to be run.

In [24], boxes to be packed are firstly built into a set of disjunctive «
towers. In a pair of disjunctive towers, none of the boxes is shared by

both towers. Generation of a tower set comprises the subdivision of the

given set of boxes into disjunctive subsets as well as the fitting together of

the boxes of each subset into a tower. �

The generation of towers takes volume utilization into consideration.

The first step is to try using each free box (boxes which are not packed) as

the base box of a new tower. By repeatly dividing the residual spaces into

three regions, i.e., the space in front of, besides and above the packed box,

and packing the remaining boxes to the residual spaces, a tower is built.

CHAPTER 2 LITERATURE REVIEW - 9 -

As the step repeats for each free box and different orientations are also

considered, many towers are formed and the one with the minimal spare

space is chosen. This ensures that the formed towers are those with better

volume utilization. The sets of towers are finally sorted in descending

order according to the area of the tower bases. This ends the

preprocessing step of this algorithm.

The preprocessing step in [25] is very similar to that in [24], but with some

improvements. This time the tower sets are regarded as "layers" while

both are referring to sets of boxes grouped together by certain criteria.

The major difference is that in each step of packing, one or two boxes

can be selected to be placed. The order of space-filling is determined by a

new rule. As mentioned before, after packing a box to a tower, three

regions of residual spaces are formed. These spaces, called daughter

spaces, are filled in arbitrary orders in [24] but are filled in ascending order

of volume this time. Smaller daughter spaces have higher priority to be

filled next. Rules are also defined to determine rotation variants and

allocation of boxes to the current and residual daughter-space.

Another difference is the ability to extend residual sister-spaces. In

daughter-space formation, there can always be two ways to define the

"in-front" space and "beside" space. Before choosing either of these

division methods, the algorithm will first determine whether any of them

will lead to unfillable daughter-space. If one method leads to waste of

daughter-space while another does not, the latter one will be selected.

This improvement can reduce the volume of unfillable spaces as much as

possible. ‘

Except these two differences, other steps of layer filling steps are

similar to the tower set formation in [24]. The preprocessing step ends
••

CHAPTER 2 LITERATURE REVIEW - 10 -

with all the layers outputted for generating initial populations.

The CCGA algorithm [20] aims at exploring the solution space by

means of utilizing a number of species or sub-population where each

individual in a species represents a component of a complete solution.

The major preprocessing of this algorithm is to initialize M sub-populations

where each sub-population has N individuals. These sub-populations are

all regarded as a part of the original problem which will be optimized

separately.

No preprocessing is performed in [16].

2.1.2 Generation of initial population

In [24], after the tower sets are generated, the remaining problem is to

arrange tower bases on the container floor. To encode the initial

population as chromosomes, the base box of each tower is related to an

index indicating its sequence of placement and a rotation variant specifying

its orientation. As the unit under consideration is a tower, the number of

feasible orientations can only be two.

Two approaches of GAs are introduced. The process of initial

population generation of the first one runs on a random basis while the

second one hybridizes this process by running serial testing before inserting

a tower base into the placement vector of the chromosome. -

In [25], with the layers generated as described in previous section,

stowage plans are formed as the initial populations. These stowage plans

are generated by the start procedure in which an empty container is to be

filled by a list of feasible layer definitions. Feasible layers should have its

base box free (unpacked before) and can be placed in the remaining

CHAPTER 2 LITERATURE REVIEW - 11 -

container area with its own rotation variant. These layer definitions are

added one by one to the stowage plan under the rule that the feasible layer

with the highest volume layer utilization should always be added. The

total packed volume is calculated as the objective function value (fitness

value) of that stowage plan. Start can be operated on different layer

definition lists to generate different stowage plans for further processing by

GA.

In CCGA [20], during generation of initial population, all possible

combinations between all individuals from different species are explored.

This means that an individual will participate in more than one solution

which results in a number of fitness values for each individual. Finally

the highest fitness value for each individual is assigned to it and is used in

other genetic operations.

The initial population of permutations is randomly initialized in [16].

2.1.3 Crossover

The crossover can be considered as a standard operator for all genetic

algorithms. It is always done by selecting two parents with high fitness

value and cross them to generate two descendents. The difference in

crossover for different algorithms is not on this operation itself, but on the

chromosomes. The result of crossover for different chromosomes will

certainly be different.

However, the crossover operator in [25] involves two phases and is

quite different from the traditional crossover. The first phase layer

transfer of layers from parents is similar to generic crossover, yet the

transfer is traced by constraints which, when violated, will stop the transfer

CHAPTER 2 LITERATURE REVIEW - 12 -

of a layer from parent to offspring. Therefore some layers may not be

transferred to the descendant. The second phase is layer extension which

generates new layers to extend the descendant into a complete stowage

plan.

2.1.4 Mutation

The mutation operator varies more in different algorithms. In [24], two

types of mutation, namely scramble sublist mutation and mutation by

inversion are adopted. The mutation in CCGA [20] is a standard one,

using the reciprocal change approach. In [16], mutation is carried out by

inversion. Same as the case in crossover, the author of [25] applies two

types of special mutation operators involving layer transfer and layer

extension. One type is standard mutation in which 1% to 50%

(determined randomly) of the layers with maximum utilization are

transferred from parent to descendant which is followed by extending the

incomplete mutant to complete stowage plan by inserting newly generated

layers. For merger mutation, all layers are transferred from parent layer to «
offspring except two layers. Layer extension is then performed in the

same way as in crossover but only a single additional layer is generated

which causes the stowage plan to contain one layer fewer than the parent

stowage plan. This mutation does not follow the generic approaches but

is tailored for the problem under investigation.

2.1.5 Selection

The standard selection for all algorithms is by evaluating the fitness value

CHAPTER 2 LITERATURE REVIEW - 13 -

according to the objective function and selecting those individuals with

higher fitness value. Different algorithms have different objective

functions due to different constraints and objective of the particular

algorithm.

2.1.6 Results of GA on Container Loading Algorithm

Among the four papers discussed, [16] and [20] do not present packing

results for benchmark cases. [24] and [25] achieved 87.5% and 88.6%.

Comparison with other algorithms will be done in later sections.

2.2 Layering Approach

Layering approach means that packing is achieved by building vertical

layers first and the layers are then packed one by one into the container.

This is a traditional approach for solving container loading problem [17, 2,

21, 29, 32]. In fact, one of the GAs [25] discussed in last section employs

the layering approach

In [19], a wall-building layering approach is proposed. In this

algorithm, layers are formed by firstly selecting box to determine the depth

of a layer. The ranking of boxes are based on their length of smallest

dimension as well as the frequency of the dimensions. The longer the

length of smallest dimension, the higher is the rank for that box as such box

may be difficult to accommodate in later stage. With the depth of a layer

determined, the wMl is packed in a greedy way as a number of horizontal

strips. Each of these strips is packed by inserting boxes with largest

CHAPTER 2 LITERATURE REVIEW - 14 -

ranking to the strips. This heuristic is a greedy one. The determination

of layer depths and strip widths are very important decisions.

This algorithm uses a tree-search heuristic for determining the above

two factors. Ranking rules are set for choosing depth based on the

dimensions of the remaining boxes. The second step is to fill the strips by

the free boxes.

In that paper, different ranking rules are discussed. According to the

author, the volume utilization achieved by the algorithm can reach 95% for

"large sized instances". The results in the paper shows that the % volume

utilization can achieve about 88-90% for weakly heterogeneous and strong

heterogeneous problems while its performance on homogeneous problems

are not that satisfactory. The % of volume utilization drops to 75-83%.

The algorithm is proven to be unstable for different packing instances.

2.3 Mixed Integer Programming

An analytical model is presented for the container loading problem to %
capture the mathematical essence of the problem [6]. Container loading

process is formulated as a zero-one mixed integer programming.

This approach involves many mathematical concepts and the problem

is modeled by a set of mathematical expressions representing the problem

itself and some constraints to be evaluated during packing.

Details of mixed integer programming will not be presented here as it

is not the focus of this research.

CHAPTER 2 LITERATURE REVIEW - 15 -

2.4 Tabu Search Algorithm

A. Bordfeldt, H. Gehring and D. Mack have proposed a parallel tabu search

algorithm (TSA) for solving the container loading problem [26]. This

tabu search algorithm is emphasized on weakly heterogeneous packing

instances.

The basic heuristic of this algorithm is to firstly generate all 1-local

arrangements (involving one type of boxes only) and 2-local arrangements

(two types of boxes are packed in different arrangements). The local

arrangements are evaluated to determine which should be inserted to the

stowing list. New residual spaces are generated after the packing step.

The generation of local arrangements is based on greedy heuristics.

In order to enhance the chances of loading small packing spaces, the

packing space with the smallest volume is always process first due to its

low flexibility.

The generated local arrangements are used in sequential TSA for

-encoding feasible solutions. With the encoded solutions, two

neighbourhoods, one large and one small, are defined for starting tabu «
search. All packing sequences of the feasible solutions are embraced by

the large neighbourhood. Tabu search then starts.

A drawback of the tabu search problem may be the risk of stucking at

the local neighbourhood. This violates the aim of tabu search algorithm, •�

which is searching a solution near the global optimum. In this algorithm,

the greedy heuristic applied on the basic heuristic fills all packing spaces in

a local-optimizing way. To solve this problem, the parallel TSA approach

is developed.

In parallel TSA, a distributed environment is used to run tabu search.

CHAPTER 2 LITERATURE REVIEW - 16 -

This is based on the concept of multi-search threads [33]. For each thread,

the normal sequential TSA is run, but with different parameter

configuration. The difference in parameter configuration results in

diversification of solutions for different threads.

The difference between the sequential and parallel approaches is that

the solutions generated by the threads in parallel approach are diversified

due to different parameter configuration. At the end of neighbourhood

search of each thread, the threads will communicate with one another to

exchange the foreign solutions generated by other threads. This foreign

solution becomes the starting point of next round of search in each thread.

In this way, the diversity of solution in each thread can gradually be

increased.

When sequential TSA and parallel TSA are applied to Bischoff and

Ratcliff test cases (BR cases), their volume utilization is 92.0% and 92.7%

respectively. The BR cases are divided into 7 sets, ranging from

homogeneous to heterogeneous packing instances. The result of most

homogeneous test cases is about 93% for both while for most

heterogeneous packing result is about 90%. Although there are

differences in results between the two types of packing, the worst case of

TSA is still better than the average performance of some other algorithms.

This proves that TSA is not only good at solving homogeneous packing

problems, but also can generate a satisfactory result for heterogeneous

ones.

2.5 Other approaches

Some researchers choose not to use traditional packing approaches like

CHAPTER 2 LITERATURE REVIEW - 17 -

layering and GA, but design new heuristics for solving the container

loading problem.

2.5.1 Block arrangement

The most innovative part of the algorithm in [15] is the formation of blocks.

In this algorithm, the first step is to group identical items in blocks. One

of the advantages is that homogeneous blocks are easy to arrange and

therefore enable a quicker loading time.

Greedy heuristic is also pursued. The items are sorted by volume

with larger items being chosen first. All possible positions for stowing

more items in the container are examined.

The steps following the block formation is to stow the item at the

lower back left corner of the empty space and then residual spaces are

generated. When stowing each item, all empty space should be

considered. The process repeats itself for stowing other items until no

-empty space or no item is left in the list.

‘ The experimental result shows that this algorithm favors the

homogeneous packing instances while its performance in heterogeneous

packing instances is the worst.

2.5.2 Multi-Directional Building Growing algorithm

This approach introduces the idea of packing the objects by using wall of

containers as starting surface of packing [30]. User can chooses the walls

of container for acting as ground, (the base from which the boxes are

CHAPTER 2 LITERATURE REVIEW - 18 -

packed). Then the packing steps continue based on the best matching

between base area of boxes and empty spaces.

Experimental results of this algorithm do not come from benchmark

cases and will not be used to evaluate and compare performance with other

algorithms.

2.6 Comparisons of different container loading algorithms^

Among all container loading algorithms which have benchmarking results,

the Parallel Tabu Search algorithm achieves the most satisfactory result

(92.7% volume utilization). This is due to its increasing diversity in

solution space being searched.

The two GAs employing stack-building and layering approach have

lower volume utilization, 87.5% and 90.1% respectively, because in both

stack building and layering approach, the packing unit becomes a large set

of boxes as a whole instead of individual boxes. This will in fact reduce

the flexibility of packing units due to their large size after grouping together.

As the boxes in a layer may be of different dimensions, wasted space

formed between layers will usually larger than gaps formed between

individual boxes. Though the merger mutator is already introduced to

minimize such wastage of space, the problem cannot be completely

eliminated. It is very difficult avoid wasting such space if layering

approach is used.

The problem of the block arrangement approach is quite similar

because its lower volume utilization (88.75%) is due to the decrease in

flexibility of objects as blocks are formed from them. The large size of a

‘ D a t a for comparisons in this section come from the reports from other authors

CHAPTER 2 LITERATURE REVIEW - 19 -

block prevents the block to be placed in narrow gaps, but if only one of the

items in the block is packed individually, it may be able to fill the gap.

This is the major cause of lower volume utilization of these algorithms

comparing with parallel TSA.

Chapter 3

Principle of LFF Algorithm

The "Less Flexibility First" (LFF) algorithm was firstly introduced in [1].

It is a simple but effective heuristic inspired by a strategy used by Chinese

ancient masons. Having been applied on packing problems for more than

1000 years, its effectiveness and value had already been proven. Such

heuristics developed based on accumulated experience of human beings are

called quasi-human based heuristics. Before going into the details of LFF

algorithm, some concepts, rules and the basic principle will firstly be

discussed in this section.

3.1 Definition of Flexibility
«

The core idea of LFF algorithm is the concept of flexibility. The order of

packing is determined by the flexibility of objects, in ascending order (i.e.

less flexible objects are packed before more flexible ones). The space of a

container also has an order of flexibility. Flexibility measure is based on

two rules:

• Flexibility of empty space follows this order: flexibility of a comer is

less than flexibility of a side, while flexibility of a side is less than

flexibility of a central void area. This order is determined according

-20-

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 21 -

to the freedom of move. In Fig. 3.1a), an object at a corner is bound

by two sides and can no longer be moved. If it is moved in any of the

three directions as shown, it will leave the comer position, resulting in

an invalid location, i.e., no longer a corner. Therefore, no movement

is possible if the object is required to stick to a comer. In Fig. 3.1b),

objects on a side can be moved along the side as shown. However,

only the two horizontal moves towards left or right can keep it

touching the side. The flexibility is one-dimensional. In Fig.S.lc),

those objects at centre void area can move freely to any direction as

shown in Fig. 3.1c) without violating the rule of keeping the object at

void area [1]. In this case, flexibility is multi-dimensional, i.e., the

most flexible.

r : ！ I"
j No longer at a comer I I No longer at a comer
j I]
I (invalid movement) | j (invalid movement)

- I ！ 1 、、 A
Move d i a g o n a l l y � � � Move upward ,

« \ � I
� j i

j No longer at a comer ！Move Object at corner

i 1
i (invalid movement) | s ideway
1........_.....…...._....._..."_.....，…--]

Fig. 3.1a) flexibility of a corner (move along dashed arrows place the object in non-comer positions)

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 22 -

J 1 t i t 1

j No longer on a side J | No longer on a side ! J No longer on a side |

f (invalid movement) ！ ((invalid movement) t i (invalid movement) t

> r
\ I z

�� Move upward _ Z
Move d i a g o n a l l y � � � j Z Move diagonally

� I •
I — 1 ‘ t 1

J On a side | M o v e Object along a M o v e | On a side ；

！ (valid movement) ！ s ideway side s ideway ！ (valid movement) ！

I i

Fig. 3.1b) flexibility of a side (move along dashed arrows place the object in positions not along a side)

^ ^ r ,
At center (valid) | At center (valid) | At center (valid) |

I f I
丨 ‘ 丨 — — 飞 ‘] I

\ T X
j ^ “ r r

i I
“ A t center (valid) Object at center J At center (valid) i

r ^ ^ I ！

^ Z T T ^ — — �
[I [1 , ！

At center (valid) ！ At center (valid) l 丨 At center (valid) |
I ‘ ！ I

1 ‘ ！ 1 i I I

Fig. 3.1c) flexibility of a central void area (can move in any direction)

參 Flexibility of objects to be packed cannot be evaluated by an exact

formula, but can be roughly determined based on the size and shape of

an object. In general, there are fewer positions that can accommodate

a larger object, while a space may be found for smaller object more

“ easily. Fig. 3.2 shows the condition. The smaller object Y can be

packed into space I, II or III while the bigger object X can only be

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 23 -

packed into space II. This implies that flexibility of larger objects

(with longer side) is less than that of smaller objects.

n prn
� II I III

Y I 1

' Fig.3.2 Flexibility of objects

3.2 The Less Flexibility First Principle (LFFP)

LFFP is inspired by the wisdom of ancient Chinese masons who perform

packing task using the rule "Golden are the corners; silvery are the sides,

'and strawy are the voids" [1]. From this rule, the selection criterion of

empty space is clear: empty corners should be filled first, which is followed

by boundary sides and void areas come last.

We derived our LFFP from this ancient packing strategy. Comers are

defined as the least flexible space for packing while larger objects are less

flexible objects. For detailed explanation of flexibility, please refer to

Section 3.1 of this thesis. LFFP packs the least flexible objects to the least

flexible empty space. In other words, large objects are packed first to the

empty corners. This ensures that a box has at least two adjacent boxes (or

•‘ sides of container walls) touching two of its lateral surface and its base is

supported by another box (or container walls) at the bottom (or touches

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 24 -

another box on the top, if gravity is not taken into consideration). Packing

in a void space should be avoided as this creates empty space surrounding

the packed box bp. Such space may not be large enough for

accommodating other boxes in later stages. The box bp becomes an

obstacle in this case.

Fig.3.3 illustrates an example (Top view). Dashed arrows points to

the directions with empty space left while other arrows points to directions

bounded by container walls or adjacent boxes. Consider three candidate

packing positions I，II and III for a box. Position I has empty space on its

right only while position II has empty spaces on two sides. Position III is

surrounded by empty spaces in all directions. I is the best choice among

the three (two corners are occupied in I). II is the medium choice (one

corner is occupied). Ill is the worst (object placed in central void area).

It is obvious that the more the corners occupied by a box, the lower is the

probability of having empty spaces surrounding this box.

‘ r ' ^ n
I Packed object A： < - - � II •

. _] 」 卞 -
I ‘ I I ~

I I I I - I
^ I 一 厂 I" 一寸― “

, _ I 卞 」

Fig.3.3 Candidate packing position for an object

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 25 -

There are always corners in any packing configuration unless 100%

packing density is achieved. In LFF, the only candidates of space for

packing an object are the comers. A packed object must occupy at least one

corner in the current packing configuration.

To select a corner for packing the current object among all the

available corners, a mechanism should be developed to evaluate the

suitability for the object under investigation to be put to the evaluated

corner. The following section describes the 2D LFF algorithm introduced

in [1] which achieves around 99% packing density in most randomly

generated large-sized examples.

3.3 The 2D LFF Algorithm

As the 3D LFF algorithm is developed based on the 2D LFF algorithm,its

predecessor is introduced here to give readers a better understanding before

proceeding to the later sections. But to avoid repetition, the 2D LFF is

'described briefly. More detailed concepts and examples will be discussed

in Section 5 in the 30 LFF part, which is the focus of this research.

In the 2D Packing problem, a large empty rectangle (acting as a

container for packing) and a set of smaller rectangles with arbitrary sizes

are given. The aim is to find out whether it is possible for the container to

accommodate all the smaller rectangles, provided that the placement is:

• orthogonal

• no overlapping and

“ • with all rectangles packed within the container, i.e. the boundary of the

container is not exceeded.

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 26 -

If a complete packing solution does not exist, the algorithm will obtain a

partial solution with minimized unpacked space, i.e. the highest packing

density. The following briefly describes the steps of the 2D LFF

algorithm.

3.3.1 Generation of Corner-Occupying Packing Move (COPM)

As mentioned before, there may be more than one corner for an object to be

packed to. In order to represent the relationship between objects and the

corners occupied by them, a quinary-tuple is introduced:

� longer side, shorter side, orientation, x!,y!>

where longer side and shorter side are the length and width, respectively, of

the rectangle being packed. Orientation indicates whether the rectangle's

length is placed horizontally or vertically, jc； and y j are the coordinates of

“the lower-left corner of the rectangle.

‘ Based on the current configuration, every unpacked rectangle can be

used to generate a list of COPMs representing the possible corners and

orientations for packing them into the container. The invalid COPMs

causing overlapping of rectangles or exceeding the boundary will not be

included in the COPM list.

This COPM list is firstly sorted in lexicographical order to indicate

their priority. The longer side will be the first key for sorting while the

shorter side will be considered when resolving a tie. The COPMs are

“ sorted in descending order, which follows the concept of less flexibility

first mentioned in Section 3.2 as the longer rectangles are less flexible and

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 27 -

therefore, being assigned with a higher priority in the packing process.

Fig. 3.4 shows some candidate COPMs for an object.

,/:'�.:‘�玄. I II • . , • - � Object to be
�’[',t'、、？.'、r . - - - . J

Object already packed packed

Object already ： 一、,,
. . COPM 1

� I
fM , I

I I

• ： • • �C O P M 3 I ! 哪 舉 … � .
• . ；, ..VVt'x I " ， …

Object already - �

- C O ， ' 猫 ‘ d : 參 ‘ 1

_� I K f e \ :
Fig.3.4 Candidate COPM in a certain packing configuration

Corners marked with I and II are invalid for packing the object because

such arrangements will result in overlapping. The next step is to evaluate

the three COPMs to see which corner is the best to accommodate the

object. �

The evaluation of a COPM is based on a fitness cost function (FFV).

Each COPM is associated with an FFV which indicates the resulting total

area of packed space if this COPM is applied. ‘ To measure the FFV of

COPMs, pseudo-packing and greedy approach should be carried out.

3.3.2 Pseudo-packing and the Greedy Approach

With all the COPMs generated, every rectangle will be pseudo-packed ••

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 28 -

according to its own COPM list. Pseudo-packing means to temporarily

pack a rectangle to a corner indicated in the COPM, do greedy-packing on

other rectangles left, measure the fitness cost function (FFV) and remove

rectangles from the corner. The pseudo-packing process then repeats by

packing the same rectangle to another comer mentioned in next COPM.

The pseudo-packing priority follows that in COPM, with the less flexible

objects being handled first.

To simplify the problem while giving readers a whole picture of

pseudo-packing and greedy approach, we consider a packing scenario with

three rectangles only. The dimension of the container is “9m x 6m’，and

that of the three objects for packing are object A (6m x 4m), B (5m x

4m) and C (5m x Im). When evaluating the COPM list for the largest

object, A, pseudo-packing is carried out. A is firstly pseudo-packed

according to one of its COPM:

2mt p ^

” J

«

4 m

A

” Im iv_
^ 6m • ^ S m — ^

Fig. 3.5 Object A pseudo-pack to its COPM

To calculate the FFV for this COPM of A, greedy packing of the remaining

objects is carried out. It means that the objects are packed to the first

corner which can accommodate them without violating the three rules

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 29 -

mentioned in the beginning of this section. It is obvious that object B

cannot be packed to the container because its width is 4m, which is larger

than the widest gap left in the current packing configuration. Object C

can in fact be packed to corner I，II, III, IV and V. However, in greedy

approach, no selection is required. C will just be packed to the first

available corner, i.e. I, without considering other candidates. The result is

shown in Fig. 3.6

2mt I " ^ �

c
，r
i L

4 m

A

U |lll IV
^ 6 m ^ 3 m •

Fig.3.6 Object C pseudo-pack to its COPM

FFV(COPMl) = Area of A + Area of C = 6m x 4m + 5m x lm = 29 m^

After the FFV of COPMl is calculated, the pseudo-packed objects are

all removed from the container and the original packing configuration (in

this case, an empty container) is restored. The pseudo-packing continues.

The second COPM under consideration is to pack A to the same comer

but with another orientation, B and C are then greedily packed to the first

available corner. The result is shown in Fig. 3.7
II

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 30 -

c

, A
6m B

^ 4m 5m •

Fig.3.7 Object A, B and C can all be pseudo-packed into the container

FFV(C0PM2) = 6m x 4m + 5m x 4m + 5m x lm = 49 m^

Therefore the FFV of C0PM2 is higher than that of COPMl, which

implies that C0PM2 is a better candidate. In this case, as complete

packing is achieved, further pseudo-packing to other COPMs are skipped

and the pseudo-packing step stops here. However, in real situation, there

are always many objects to be packed. Complete packing is difficult to be

achieved. Normally all COPMs for an object will be evaluated by the

above steps and the best one is then chosen. -

3.3.3 Real-packing

The COPM with the highest FFV will be selected and applied in the real

packing step and the COPM list of the' next unpacked object will be

CHAPTER 3 PRINCIPLE OF LFF ALGORITHM - 31 -

processed by repeating steps described in this section.

3.4 Achievement of 2D LFF

According to the experimental results shown in [1], when 2D LFF is run on

randomly generated test problems, it found existing optimum solutions for

40% of test cases and the average packing density is around 99%. When

packing benchmarks are used to run the experiments, the unpack area

ranges from 2% to 0% with the average unpack ratio of 0.92%. The

performance is quite consistent, while packing density increases with the

number of rectanglesr

Due to the effectiveness of 2D LFF proven in the experiments on

benchmarks, its potential in producing good results in 3D packing problem

is believed to be large. However, LFF may have extremely low

performance in particular types of problem instances. The next section

focuses on analyzing the worst case and the error bound of LFF algorithm.

Chapter 4

Error Bound Analysis on 2D LFF

Error bound is a kind of performance bound. It can be considered as a

measure on the worst case performance of an approximate algorithm. As

mentioned in previous sections, LFF is an approximate algorithm, aiming at

finding a near-optimal solution, for the packing problem which is

NP-complete.

4.1 Definition of Error Bound

When applying an approximation algorithm to an optimization problem, the

‘result is always reflected by a cost, which is calculated in different ways for

different problems.�For a maximization problem, the optimal solution is

the one with the highest cost while the optimal for a minimization problem

is the one with the lowest cost.

The solution given by an approximate algorithm is usually

near-optimal. Let the cost of optimal solution be C* and that of

near-optimal be C. To assess how good the near-optimal result is, the

relative error is calculated..

” C - C *
Relative error = (4.1)

C* ‘

-32-

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 33 -

The larger the relative error, the worst the result is. To evaluate the

performance of an algorithm, the worst case analysis is important. Error

bound is the relative error when the program processes the worst case.

For any input size n, an approximation algorithm has a relative error bound

of £(n) if

… （ 4 . 2)

where s(n) < 1 and it shows dependency on n. Error bound independent

of n uses the notation s.

For the 2D (or 3D) packing problems, the objective is to maximize the

packing density (or volume utilization) and they are thus maximization

problems. The cost is the occupied area (or volume) in the bounding

rectangle (or container). Consider a 2D packing problem. Let A* be the

optimal area packed with object while A is the near-optimal area given by

LFF. The relative error of this packing algorithm is calculated by:

' A*—A
Relative Error = (4.3)

- A*

In Section 4.2, some packing scenarios for which LFF generates

unsatisfactory results are demonstrated. Section 4.3 is a mathematical

proof to show that the solution given by LFF does not have an error bound.

4.2 Cause and Analysis on Unsatisfactory Results by LFF

The principle of LFF algorithm is to pack the less flexible objects to the

less flexible space. Logically this works since the less the flexibility of an

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 34 -

object, the higher is the difficulty for it to be packed. Packing them at

early stage can increase the chance for them to find a valid location. Yet

in some special cases, LFF may give very low packing density. Problem

arises when the evaluation of "flexibility" does not reflect the real situation

or when a "less flexible object" is packed in such a way that blocks many

other objects from being packed. The existing version of LFF decides

flexibility of an object by the length of its longest side. The object with its

longer side being longest among all other objects is regarded as the least

flexible and will be packed first, without taking other factors into account.

Consider the following incomplete packing scenario:

Dimensions of Bounding Rectangle = 150 cm x 40 cm

Dimensions of Rectangles to be packed:

Rectangles 1 to 3 = 50 cmx40 cm

Rectangle 4 = 111 cm x 5 cm

The optimal solution is obvious. The packing density is 100%, if

Rectangle 4 is left unpacked. Fig. 4.1 shows the optimal packing result

with Rectangles 1 to 3 all packed.

1 2 ‘ 3

Fig. 4.1 the optimal packing result with Rectangles 1 to 3 all packed

•‘ 2
The packed area = 3x50 cmx40 cm= 6000cm

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 35 -

According to the LFF algorithm, Rectangle 4 is the least flexible because

its longer side is 60 cm while that of others is 50 cm. Pseudo-packing

starts with Rectangle 4. Some of the pseudo-packing process is shown in

Fig. 4.2

a) Pseudo-pack Rectangle 4 at the

lower left comer. It has the
4

/ l o n g e s t longer side and is

considered as the least flexible
I

‘ V

b) Greedily pack Rectangle 1 is

I illegal because part of Rectangle

/ 4 1 is outside the bounding

rectangle. Rotating Rectangle 1

I by 90° results in the same

situation

- Fig. 4.2 Example of pseudo-packing process

As Rectangles 1 to 3 are of the same dimensions, none of them can be

packed after Rectangle 4 is placed at the lower left comer. The next

pseudo-packing step will be placing Rectangle 4 at another orientation by “

rotating it 90° but this again exceeds the boundary of the bounding

rectangle. Pseudo-packing Rectangle 4 at the other three corners

generates the same result. Therefore, it is packed to the first COPM, i.e.,

“ the lower left corner. None of the other three rectangles can be packed.

The packed area is the area of Rectangle 4," i.e., I l l cm x 5 cm = 555 cm^

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 36 -

(6000-555)
Relative error = ̂ ’- = 0.9075

6000

In this case, the rectangle that should be left unpacked is chosen to be

processed at the first place. The packing order according to "flexibility"

becomes the cause of the large relative error. In fact, the area occupied by

Rectangle 1 is much larger than Rectangle 4. If area is regarded as the

criteria for assessing flexibility，the packing density here will become 100%.

Therefore, assessing "flexibility" carefully by considering different factors

instead of only length of the longer side may lead to better results.

Low packing density may also occur in complete packing. In

complete packing, all objects can be packed inside the container when

optimal solution is achieved. However, LFF may generate a solution far

from optimal by packing an object at a place which blocks other objects

from being packed. Consider this example:

‘ Dimensions of Bounding Rectangle = 25 cmx20 cm

Dimensions of Rectangles to be packed:

Rectangles 1 = 19 cm x 19 cm

Rectangles 2 to 4 = 20 cm x 2 cm

The optimal solution is shown in Fig. 4.3.

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 37 -

3 — _ , 1

4 .

Fig. 4.3 The optimal solution

Packed area = 20 cmx2 cmx3 + 19cmx 19 cm = 481 cm^

Packing Density = = 器 x 100% = 96.2%

When this packing scenario is processed by LFF, Rectangles 2 to 4 will be

packed first as they are "less flexible". In pseudo-packing and greedy

packing of LFF，the horizontal placement will be tried first. For greedy

packing, if horizontal placement is legal，vertical placement^ will not be

considered. Some of the steps of LFF are shown in Fig, 4.4

a) Pseudo-pack Rectangle 2 to

lower-left comer
«

2 一 ^

2 Horizontal Placement "means that the longer side of the rectangle is placed horizontally whi le the
“ shorter side is placed vertically

Vertical placement means that the shorter side of the rectangle is placed horizontally whi le the
longer side is placed vertically

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 38 -

b) Greedily pack other rectangles

until no more can be packed. Now

Rectangles 2 to 4 are pseudo-packed.
4 — •

The packed area is 20 cm x 2cm x 3 =

2 • ‘ ^ 120 cm̂

Some steps are —

omitted

c) Rectangle 2 is then packed to

lower-left comer by rotating 90°.

2 ^ Rectangles 3 and 4 are greedily

4 packed. Rectangle 1 cannot be

^ — packed. The packed area is
3

~ = ^— still 120 cm̂

Fig. 4.4 Sample steps of LFF

The pseudo-packing continues by placing Rectangle 2 to the other three

corners with these two orientations. The total packed area after greedy

packing is also 120 cm^ in each case. The first COPM is chosen for

real-packing.

After packing Rectangle 2 at the first COPM, the algorithm continues

to perform pseudo-packing until no more rectangles can be packed. In

fact, it is obvious that Rectangle 1 cannot be packed into any comers in the

bounding rectangle. Since there is not enougK space for accommodating

Rectangle 1，the maximum packed area will be 120 cm^. Packing density

120
is X100% = 24%，which is very low.

500 .

‘ Relative error = = 0.751, to 3 sig. fig. (4.4)

“

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 39 -

If the second COPM of Rectangle 2 is chosen for real-packing, it can be

possible for optimal solution to be achieved. The reason for discarding

this COPM is because it generates the same packed area as the first COPM

after greedy packing of other rectangles. According to LFF, the choice

sticks to the first. Yet the second COPM can in fact lead to the optimal

solution. The problem here is on greedy packing, which proceeds to

another object immediately after the current one being packed find a place.

If greedy packing packs the current object to more than one COPM, say,

instead of greedily pack Rectangle 3 as shown in Fig. 4.4 and proceed to

pack Rectangle 4, rotate Rectangle 3 by 90° as the second step of greedy

pack and assess the two greedy pack options by tightness measure [2], it is

possible to obtain the optimal solution as the second COPM will be

selected for Rectangle 2. However, in the original LFF, this situation is

not handled and may lead to large relative errors.

From the above two scenarios, it is discovered that when there are long

but narrow rectangles, i.e., large length/width ratio, the risk of getting large

error bound increases.

4.3 Formal Proof on Error Bound

As mentioned in Section 4.1，relative error bound is the maximum relative

error of the result produced by an algorithm in the worst case. From the ’�

definition of relative error, we can deduce the situation in which LFF

generates the largest relative error.

In most cases, packing algorithm deals with complete packing

scenarios rather than incomplete packing scenarios. We will try to

calculate the error bound for complete pactcing.

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 40 -

In the worst case, the relative error is at maximum. By equation (4.4)，to

simulate the worst case, the relative error should be the largest, i.e., when

J * is set to be as large as possible while A is set to be as small as possible.

In other words, the cases with the largest wasted space should be

considered.

To simplify the case, assume there are two types of rectangles, Ri and

R2, only. Let length and width of container be L and W respectively,

length and width of Ri be l^j and w尺/ respectively, length and width of R2 be

Ir2 and Wr2 respectively, where L> W, > wrj and Ir2>

By investigating the properties of the second example shown in

Section 4.2, we have come up with a series of deductions shown below

which can gradually lead to a simulation of the general worst case for LFF.

Note that the following steps always have two goals: to maximize the

optimal packed area (A*) and minimize the packed area (A) achieved by

LFF.

Step 1: Deduce the dimensions for the rectangles being packed:

a. There should be rectangles with very large length/width ratio.

These rectangles will be referred to as Ri. The large length

ensures that such rectangles are pseudo-packed before other

rectangles. This increases their chances to block other

rectangles from being packed and reduces A. Irj should be

maximized. The short width ensures that their area is small so

that A is further reduced. Wrj should be minimized.

b. With reference to the complete packing scenario in Section 4.2,

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 41 -

Ri should not be packed with length placed vertically but should

be placed in another orientation so that they prevent a large area

from being filled with other rectangle. By Step la), //?； must be

as large as possible, provided that they can be placed with their

longer side along the width of the container to generate optimal

solution:

hn=W (4.5)

c. There should be rectangles with very large area but with their

length slightly shorter than Ri to ensure that they will be

processed after all Ri are packed. These rectangles will be

referred to as R2. They should have their length and width as

large as possible to ensure that they will be blocked by Ri. In

fact, the larger the length and width, the larger is the area. If

these rectangles cannot be packed, its large area will result in

small A. To maximize 1^2 and w/?2：

‘ (4.6)

Step 2: Deduce the number of rectangles in each type

It is better to have one R2 only. If multiple rectangles are present,

each of these rectangles will be smaller in area and their flexibility will

increase. This means that it is easier for each of them to be packed

and the wasted area will be reduced. The relative error will become

smaller. ,

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 42 -

No. of Ri = « - 1

No. ofR2= 1 (4.7)

Step 3: Some constraint to minimize packed area by LFF

a. To ensure that the area "above" or "below" Ri cannot be filled by

the R2, the following must be satisfied:

(4 . 8)

b. Step la) states that Wri should be minimized. According to (4.5)

and (4.7)，the minimum value of w^i should be 2.

Wr2 = 2 (4.9)

' c. To ensure horizontal orientation of Rj disables R2 to be packed on

‘ their "left? or "right":

(4.10)

Step 4: Deduce the dimensions of the container to maximize optimal

packed area

The packed.. area in optimal solution should be maximized by

” occupying as large area in bounding rectangle as possible. L and W

should be set to values that can just accommodate all rectangles. •

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 43 -

According to the above deductions, the maximized optimal solution

with input size n is shown in Fig. 4.5:
L

^ ^

rfcuiiiiiiiiiiiiiir
A rectangle of Type R2

X V
Here are (n - 1) rectangles of type Ri

W - 1
Their length is W and width is 2 cm

Fig. 4.5 the maximized optimal solution with input size n

The area filled with color is left empty.

As shown in Fig. 4.5，

L = 2{n-\) + {W-\) (4.11)

Step 5: Deduce the maximized optimal packed area

- .
a. By (4.7), to maximize relative error for input size n ，the number of Ri

should be {n - 1) and the number of R�should be 1.
* $

4 Input size n means there are n rectangles to be packed. Therefore, n> 0

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 44 -

= + 1 (4.12)

b. By (4.5)，Iri = PTand by (4.9), Wrj = 2, therefore,

+ (4.13)

By (4.6), Ir2 = Wr2 = Iri-Y, with (4.5), Ir2 = wr2=W-\

A*= fVx2x(n-l) + (W- 1)2 (4.14)

Step 6: Deduce the minimized packed area by LFF

Consider the packed area A generated by LFF. Since horizontal placement

is chosen for the first rectangle, by (4.8) and (4.10), it is certain that the R2

rectangle cannot be packed. For large fV, all R\ can be packed, therefore,

A=lRjxwii]X 0 -1)

=Wx2x{n-l) (4.15)

By (4.3), relative error e(n) in this worst case:

(�A * - A
V) J*

_fVx2x(n-l) + (fV-iy-fVx2x(n-l) (4 ^^

fVx2x(f7-l) + (fV-iy 丨

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 45 -

Step 7: Proof for the inexistence of error bound

For any given value of n, which must be positive, e(n) increases with fV.

By (4.11), L increases with W and L > W. Thus the Ri can always be

packed in the worst case at horizontal position and equation (4.15) and

(4.16) always hold.

By the definition of Error Bound of an approximate algorithm, for any

input size n, the error bound s(n) is always larger than or equal to the

relative error e{n) produced by the algorithm, i.e.,

s(n) = max. e{n) (4.17)

As e(n) increases with W, maximum e{n) can be achieved when W is

maximum. To prove whether any error bound exists, we attempt to find

the limit of the error bound deduced in (4.16) on next page.

•A

CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 46 -

[Wx2x{n-\) + {W-\f]

=lim 5 ^
w^. 2W{n-\)-v(W-\f

{w-\y

fV'-2fV + l
=lim ；

�“2fV(n-l) + fV'-2fV + l

= l i m — 妒 2

1 2 1
1 ——+ —7

= l i m 妒 � 2 _
2(n-\) 1 2 1
— - + 1 +

w w W^
_ l + 0 + 0

(4.18)

It is impossible for relative error to be 1 because there will surely be at least

one rectangle packed, no matter how worst the case is. A cannot be 0 and

relative error cannot be 1. However, when W increases and approaches

infinity, the relative error increases and approaches 1. Therefore in LFF,

error bound does not exist for any input size n. This can be regarded as a

theorem which will be a useful reference for future research.

.k

Theorem:

No error bound exists when applying LFF to 2D packing problems of any

input size n

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM

Chapter 5

LFF for Container Loading Problem

Although the performance of LFF in worst case can be very unsatisfactory,

on average it works very well. It consistently produces about 99%

packing densities on most randomly generated large examples. As its

application on 2D packing gives encouraging results, its usage is extended

to 3D packing problems.

As mentioned in Section 1, based on "objective function

classification", there are three types of 3D packing cases. Our research is

focused on the container loading problem, aiming at maximizing the

volume utilization of the container. This is proven to be NP-complete

[15]. No existing algorithms are able to give optimal solutions in

polynomial time. Heuristics are the mostly adopted approaches for this

kind of problems.

According to the Literature Review in Section 2, it is not difficult to

discover that some researchers [24] develop their 3D packing algorithms

based on some 2D packing algorithms with satisfactory results. The

algorithm we are going to introduce is also an extension from 2D to 3D.

LFF is a heuristic for solving packing problems by the principle

"packing the less flexible object to the less flexible space". Its success in

2D is the reason for implementing it as a container loading algorithm. It

is believed that its extension to 3D packing can produce promising volume

utilization. Although 2D and 3D packing problems are similar in nature,

- 4 7 -

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 48 -

3D cases are more complicated due to the larger number of possibilities.

The number of COPMs for each object is much larger than that in 2D since

there are much more corners in a 3D space and for each corner, six possible

orientations can be considered. The container loading problem is

formulated in Section 5.1.

5.1 Problem Formulation and Term Definitions

The problem being studied involves the packing of a subset of boxes into a

single container with fixed dimensions. The objective is to maximize the

volume utilization of the container. Given a set of n rectangular-shaped

boxes {bi, b2,办3’ ... , with known dimensions /,xw,x/z,，where

hi, for the i'^ box, and a single rectangular-shaped container B with fixed

dimensions Lx Wx H, a subset of the boxes should be chosen and packed

orthogonally and entirely into the container. Orientation constraints and

stability constraints should be taken into consideration.

‘ Orientation defines horizontal or vertical placement of the box's

surfaces. It states, which sides of the box are placed along x-dimension,

少-dimension and z-dimension. Orientation constraints states that some

sides of the box cannot be placed vertically. This restricts the rotation of

the box and reduces the number of possible packing position.

Stability constraints require every packed box to be supported by the

container base or by another box underneath. The supporting material

must ensure that the box on the surface is supported in a stable and

balanced manner, i.e., will not fall off. This constraint is normally

“ handled in two ways. The first way is to ensure that the ratio of supported

surface area to the total surface area of the upper box exceeds a predefined ••

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 49 -

value, i.e., the area supported by underneath layer / the total base area > a

predefined value (— >R), usually 0.5 is taken as a default value R if no
A

value is specified by users. Another way is to fill all empty space with foam

rubber to ensure a proper support of boxes on top. The latter way is a

simpler one as the computation time for area ratio calculation can be saved.

In our research, the space-filling approach is used for handling stability

constraints.

Volume utilization is defined as the percentage of occupied volume in

the container. It can be calculated by: Volume of occupied space / total
V

volume of the container (-^) .

The core idea of LFF is "flexibility". The flexibility of objects and

flexibility of space are taken into account. The definitions of these two

"flexibility" are described in Section 3.1.

A corner C in a 3D space is defined in Fig. 5.1a) to Fig. 5.Id). It

shows the top view (on x - plane) of the packing configurations.

-Consider the points pointed by arrows. Draw a cross on the point to form

four regions I，II，II and IV as shown. The shaded regions are occupied by

packed objects while the white region is empty space. A point is a comer

when three criteria are satisfied:

(i) Any three out of the four regions are occupied by other

objects (or the boundary of the container). Four types of

corners are shown.

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 50 -

Fig. 5.1a) An upper left comer Fig. 5.1b) A lower left comer

Fig. 5.1c) A lower right comer Fig. 5.Id) An upper right comer

(ii) The corner points must lie on the container base or on the

upper surface of another object. These comer points are for

bottom-up packing. In this research, as foam rubber is used

for supporting purpose, comer points lying below the

container roof or below lower surface of another object are

also considered. This direction of packing is top-down

packing.

(iii) In the height dimension, the upper surface of the three

surrounded objects must be higher than the comer point,

unless the corner is bounded by container walls when

considering bottom-up packing. Fig.5.2a) shows a comer

of this type. For top-down packing, the lower surface of the

three surrounded objects must be lower than the comer point,

unless the comer is bounded by container walls. An

example is shown in Fig 5.2b).

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 51 -

Corner here ^ " ^ H M U ^

MM
Fig 5.2a) a corner for bottom-up Fig 5.2b) a comer for top-down packing

packing (side view) (side view)

The representation of an object in a container in the 3D space is by six keys

in a 3D coordinate system. The coordinates of its lower-left point nearer

to the origin of the coordinate system forms the first three keys (x；, yj, zj)

while the coordinates of its upper-right point farther from the origin forms

the last three keys (x�’ y2, z � . T h e exact region occupied by the object can

now be determined by these keys. A box with keys (0，0，0，3, 2，5) in the

coordinate system is illustrated in Fig. 5.3.

“ z
y

^ (3, 2，5) ^

I /
I /

/

(0，0;0) ^ • A：

‘ Fig. 5.3 The representation of an object in a 3D coordinate system

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 52 -

Following the object representation and definitions, the problem can also

be formulated as follows.

Given a triple of coordinates [xgi, ysi, ^bi, b̂2> yB2’ ^52} representing

the container and a set of n positive number triples </；, w；, /z/>, <l2, W2,

h2>, ..., <ln, hn> representing the length, width and height of the

corresponding boxes to be packed, the objective is to find a solution

composed of n sets of tuples {xjj, y"，z", x � ’ yn, z/2}’ ."，{x„i, yni, z„i, x„2,

y„2, z„2} where x"< Xi2 andyu < 乃：and z" < z,̂ for all 1 < i <n while the

following conditions should be satisfied:

(i) According to the representation of the object, there are six possible

orientations:

• [(X/2 — x") = h and iya - yu) = w, and {z^ - z") = /zj

• [0/2 — Xij) = w, and (y,2 _ 少")=h and (z,2 — z") = /zj

• [{Xi2 - Xii) = li and (y,? -yu) = hi and (z,: - z") = w j

• [(Xi2 - X") = hi and {ya -yu) = /, and (z,2 - z") = w,]

• [(x/2 - xu) = w, and (y,2 - y ") = /z, and (z,-2 - z") = /,]

• [f e - Xi!) = hi and {y^ — ̂ y") = and (z丨2 — z ,y) = / ,]

(ii) To ensure no overlapping of objects occur, for all 1 < i, j < n, at

least one of the following six conditions must be met: Xj! > x,� ,Xj�

^ ^ihyji^ yi2,yii ^ yji.zji > z^,z,-； > zj2,

(iii) To ensure all the boxes are completely inside the container, for all

1< / ^ n\ Xbi < Xii,Xi2< XB2,yBl^ yU, yi2 ^ yB2, Zbi< Z",

Zi2 ^ Zb2’ ,

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 53 -

If such a solution cannot be obtained, a subset of the given boxes is chosen

and packed in a way that minimizes the volume of wasted space, i.e.

maximizes the volume utilization.

The above definitions and notations are used throughout this section

unless specified.

5.2 Possible Problems to be solved

In our research, the first step is to analyse the 2D LFF algorithm to see if it

is suitable for being extended to 3D. Possible difficulties include:

參 Region query: As the scenarios of overlapping of 2D items are much

fewer than 3D items, this research should involve an analysis on how

to detect overlapping of objects in 3D. The region queries are

performed by using the data structure K-D tree [35] which can

“ effectively represent, update and query for the current packing

“ configuration.,

• Corner list maintenance: For 3D packing problem, the number of

corners generated after each packing step will be much more than that

in 2D. If corner formation is by testing for conditions of each

possible scenario, the corner list maintenance will take a very long �

time to process the current packing configuration. The comer

detection method must be efficient and no corners should be missing

.. during corner update procedures. The method for detection of comer

is developed based on the corner definition shown in Section 5.1.

For each potential comer point, we test for all rules of a corner to see •

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 54 -

if any of the rules cannot be satisfied. A corner is inserted to corner

list only when all the conditions of a corner are satisfied.

參 Substantial increase in the number of COPMs during pseudo-packing

procedure should be handled with care to prevent errors when the

program is running.

參 The long running time due to the great increase in pseudo-packing

steps should be cut down, if possible. This problem is handled in the

development of Less Flexibility First with Tightness Measure (LFFT)

algorithm.

5.3 Implementation in Container Loading

The LFF for the container loading problem involves 4 major steps:

(i) COPM generation
(ii) Pseudo-packing and greedy packing
(iii) Real packing

The details of the steps will be discussed in this section. To illustrate the
complete flow of the LFF algorithm, we first visualize the flow in Fig 5.4.

A

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 55 -

ZInMai Packing / —̂—
Conftguratioo 广' ‘ ‘

v̂ COPM
r-y^^r^-..…..—- •

hto
I ±

COPM gefn̂mtkify

/ t ^ t o ' / / A : o f 7 / A s i o f 7 / / / COPM for / / COPM tor /
/ r / / / / O^WC/

Select an T T No unpadied COPM 1 1 (or pseudo-pacidno Seteot aw fsral Selsd the Aral available COPM or avatebteCOPMoJ I - obHictBtromltet objMdCfromHst

Pseudo-Packing

/ NawPadtlno / / Connguratio" /

Greedy Packing — |
(obieclB) t ••.•.

ZNewPadtkig / * CorKftgurAtlDn /

Gnwdy Packing — J
(object C) 令 — “：

No 1
i r 厂 i I .�

• *

Fig 5.4 A flowchart showing the f low of LFF algorithm

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 56 -

5.3.1 The Basic Algorithm

For each unpacked object, there can be more than one candidate corners to

which it can be packed, without violating the three conditions stated in

Section 5.1. The representation of a packing relationship between an

object and a corner is defined as a comer-occupying packing move

(COPM), in the form of a tuple

� longest side, medium side, shortest side, orientation, X/, yi, zj>

where longest side, medium side and shortest side are the length, width and

height of the box being packed. Orientation states which sides of the box

are placed along x-dimension, j^-dimension and z-dimension. There are

six possible orientations:

Orientation ID Actual Placement

‘ 0 �width // x-axis, length II >^-axis, height // z-axis>

‘ 1 �height // x-axis, length //jz-axis, width // z-axis>

2 � length // x-axis, width II j^-axis, height // z-axis>

3 �height II x-axis, width //_y-axis, length // z-axis>

4 � length // x-axis, height // _y-axis, width II z-axis>

5 �width // x-axis, height// -axis, length // z-axis>

Table 5.1 Six possible orientations of a box

‘ Fig. 5.4 shows the six possible orientations of a box. SI here represents

the "width-height" surface; S2 represents the "length-height" surface while

S3 represents the "length-width" surface. Fig.5.4a) shows the case with

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 57 -

orientation ID = 0; Fig.5.4b) shows the case with orientation ID = 1;

Fig.5.4c) shows the case with orientation ID = 2 and so on. Fig.5.5 is

shown on next page.

Note that Xy, yi, z； are the coordinates of the object's lower-left comer

nearer to origin, which are the first three keys representing this candidate

location. With the given dimensions, the last three keys can easily be

calculated.

Given a current packing configuration in which all boxes are packed at

fixed locations, the first step of LFF algorithm is to generate a list of

COPMs representing all valid candidate packing positions for all unpacked

boxes. Consider packing an object which does not have any orientation

constraints, i.e. six orientations are possible. For a packing configuration

with 6 corners, a maximum of 6x6 = 36 COPMs can be generated, assume

all of them obey the conditions stated in Section 3. Section 5.4 will

present a detailed example of COPM generation process.

The generated COPM list, containing all valid COPMs for all

unpacked objects, is sorted in descending order according to the first three

members of the tuple (the sorting consider longest side first and use

medium side and shortest side to solve a tie). This order is significant as it

places the less flexible objects (longer and larger) in higher ranks of the list

and this list is processed from top to bottom in order. This ensures that

less flexible objects are packed first, which is the principle of LFF.

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 58 -

t z
/N 个

； A

M m H K 、、！ X̂
a) ‘ b)

I z

7 1 ^
. I l l 圓 I _ _ I i l l I i i i i I I I I I I I _ I _ i i _ | | : 、 m

— • 丨 7
r/ . 、办、'�：： WSBm �,�/> i z c—q

k ？—^x b ： ^ — — E >x
c) d)

‘ I. z

m m n f f f ^ t 揭
i i i i m i i i i i — w i i i l E ! ^x

- €) f)
‘

Fig.5.5 The six possible orientations of a box

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 59 -

A fitness cost function (FFV) is calculated and associated to each COPM in

the list to determine which candidate is the best one. This FFV is

calculated through a procedure called "Pseudo-Pack". A COPM is said to

be "pseudo-packed" when the corresponding box is temporarily packed to

the specified corner for the assessment of the FFV of this COPM. After

FFV is obtained, the box can be removed from that corner and

pseudo-packing of the next COPM is performed. In each pseudo-packing

step, the left-over boxes (excluding the pseudo-packed one) are

pseudo-packed to the first available corner greedily, following the COPM

list order until no further packing is possible. The FFV for this COPM

candidate is the total volume of all pseudo-packed boxes. The packing

configuration is reverted and the pseudo-pack process continues for the

next COPM for the same box, which is finally packed to the comer with the

highest FFV. By evaluating the FFV of the COPM of each box, the

packing process repeats until no large enough empty space is left or all

boxes have been packed. The volume utilization is then calculated by the

_ Vo / V,

\

5.3.1.1 Generation of Corner Occupying Packing Move (COPM)

There can be more than one candidate corners for an unpacked box. The

representation of a packing relationship between a box and a corner is

defined as a corner occupying packing move (COPM), in the form of a

„ tuple:� longest side, medium side, shortest side, orientation, Xj, yj, zy>

where longest side, medium side and shortest side are the dimensions of the

•‘ box being packed.

Orientation states which sides of the box are placed along x, y and

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 60 -

z-dimensions. It can be set to 0-5. Please refer to the earlier part of this

Section for the placement of each orientation. zj are the coordinates

of the box's lower-front-left corner in a 3D coordinate system representing

the container.

Given a current packing configuration in which all boxes are packed at

fixed locations, the first step of LFF algorithm is to generate a COPM list

representing all valid candidate packing positions for all unpacked boxes.

When packing a box to a comer, without orientation constraints, six

orientations are possible. For a packing configuration with six corners, a

maximum of 6x6 = 36 COPMs can be generated. This COPM list is sorted

in ascending order of flexibility in the way discussed in Section 3. As this

list is processed from top to bottom, less flexible boxes are packed first,

which obeys the principle of LFF. Note that as the longest side is the first

parameter for sorting, the object with the "longest longest side" will be

considered as the least flexible.

5.3.1.2 Pseudo-Packing and the Greedy Approach

Each COPM for an unpacked box is then evaluated to choose the best as

the final packing position. COPMs that cause overlapping of adjacent

boxes or exceeding container boundary are deleted before evaluation takes

place. �

"Pseudo-Packing" means placing a box temporarily to a location

specified by a COPM. In each pseudo-packing process, the least flexible

unpacked box 办,is pseudo-packed to one COPM in the list. A Fitness Cost

•‘ Function Value (FFV) is associated with every COPM of bi for assessing

the suitability of that COPM. The boxes left unpacked are

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 61 -

"pseudo-packed" to the first available corner in the current packing

configuration greedily, without violating the criteria stated in Section 5.1,

until no valid corners can be found for any of the unpacked boxes. The

volume utilization (^) is the FFV of that COPM of Z?,. Then all
^ V ^ ^ t

"pseudo-packed" boxes, including Z?,, are removed from the container and

pseudo-packing continues to evaluate other COPMs of b卜

5.3.1.3 Update of Corner List

Coordinates of corners are stored in a list for generation of COPMs. After

"pseudo-packing" a box, at least one existing corner is occupied and some

new corners are produced. The comer list must be updated before

pseudo-packing the remaining boxes. Occupied comers are deleted while

new corners are inserted.

5.3.1.4 Real-Packing

“ A f t e r all COPMs of a box are evaluated, the box will be "real-pack" to the

COPM with the highest FFV. The corner list is updated and the COPMs

of the next unpacked box will undergo pseudo-packing. The process

continues until no boxes can be packed to any comers. The LFF

algorithm is shown in Fig. 5.6. -

•«

, “

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 62 -

LFF algorithm for container loading:

Starting with a empty container

1. Based on the current packing configuration, find all possible COPMs for each

unpacked box; represent each COPM by a t up le� l onges t side, medium side,

shortest side, orientation, xi,yi, zi>.

2. Sort all of these tuples according to their flexibility.

3. For each candidate COPM, do 3.1 to 3.3 to find its fitness function value (FFV).

3.1 Pseudo-pack this COPM.

3.2 Pseudo-pack all the remaining boxes based on the current COPM list and

with a greedy approach, until no more COPM can be packed.

3.3 Calculate FFV of this candidate COPM as the occupied volume

Note: Before the pseudo-packing for the next candidate COPM is evaluated, the

previously pseudo-packed COPMs must be removed.

4. Pick the candidate COPM with the highest FFV and really pack the corresponding

box according to the COPM. The corner list is updated for later packing

procedures.

. Fig 5.6 The LFF Algorithm

5.4 A Sample Packing Scenario

This example illustrates part of the packing process of a container loading

problem. For the sake of simplicity, only three boxes and a small portion

of steps are considered. Orientation constraints are not applicable.

The dimensions of the bounding box (the container) B is <20m x

15m X 10m>. The three boxes to be packed are with dimensions bj <8m

.X 14m X 6m>, b2<\2m x 6m x 4m> and bs <9m x 7m x 9m>.

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 63 -

The packing process is assumed to be started with the empty container.

Before generating the COPM list, we should find out all of the available

corners. Fig. 5.7 shows the empty container and the corners. The four

corners on the base of the container are valid because boxes packing at

these corners can satisfy the four conditions stated in Section 5.1. The

four corners at the top of the container will be excluded from consideration

when dealing with the effect of gravity. However, as our algorithm makes

use of rubber foam to fill up all spaces, we need not exclude these corners.

In this case, all corners are valid.

20 m ^ •

» I m lOm

z ‘ — —
ml

Fig. 5.7 Comers in the container (Black ones are valid, grey ones are invalid)

5.4.1 Generation of COPM list

The six keys representing the container are (0, 0, 0, 20, 15, 10). Initial .�

corners are 1(0, 0, 0), 11(20, 0，0), 111(20, 15, 0), IV(0, 15, 0)，V(0, 0，10)，

VI(20, 0, 10), VII(20, 15, 10) and VIII(0, 15, 10). The dimensions of the

three boxes to be packed should be rearranged in descending order, i.e.

<14m X 8m X 6m>, <12m x 6m x 4m> and <9m x 9m x 7m>.

.The COPM list is as follows (the base dimensions are written in the form

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 64 -

< x X 少>) :

(14，8，6, 0, 0，0，0) - box bj packed at corner I with surface <14m x 8m>

as the base

(14, 8，6，1，0，0, 0) - box hi packed at corner I with surface <8m x 14m>

as the base

(14, 8, 6, 2, 0, 0，0) - box bj packed at corner I with surface <14m x 6m>

as the base

(14，8，6，3, 0, 0, 0) - box bj packed at corner I with surface <6m x 14m>

as the base

As the side 14m cannot be placed vertically (otherwise it exceeds the

container boundary), only four orientations are possible here

(14, 8, 6, 0, 6, 0, 0) - box bj packed at corner II with surface <14m x 8m>

as the base

(14, 8，6，1，12，0，0) - box bj packed at comer II with surface <8m x

14m> as the base

(14, 8, 6, 2, 6, 0, 0) - box bj packed at comer II with surface <14m x 6m>

as the base

(14, 8，6，3, 14，0, 0) - box bj packed at comer II with surface <6m x

14m> as the base

(14, 8, 6, 0，6，7, 0) - box bj packed at corner III with surface <14m x

8m> as the base 八

(14，8，6, 1, 12，1, 0) — box bi packed at corner III with surface <8m x

14m> as the base

...omitted COPM for box bj

(12, 6，4, 0, 0，0，0) — box packed at comer I with surface < 12m x 6m>

as the base

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 65 -

(12, 6, 4, 1,0，0，0) - box b2 packed at corner I with surface <6m x 12m>

as the base

...omitted COPM for box Z): at corner I

(12, 6, 4，0, 8, 0, 0) - box b] packed at corner II with surface <12m x 6m>

as the base

(12, 6, 4, 1, 14，0, 0) - box b) packed at comer II with surface <6m x

12m> as the base

(12, 6, 4，0，8，9, 0) — box b�packed at corner III with surface <12m x

6m> as the base

(12, 6，4，1, 14, 3，0) - box b] packed at corner III with surface <6m x

12m> as the base

(12，6，4，0, 0，9，0) - box b) packed at comer IV with surface <12m x

6m> as the base

(9，9，7，0, 0, 0, 0) 一 box b̂ packed at corner I with surface <9m x 9m> as

the base

No orientation 1 since the length and width are both 9m

(9，9, 7, 2，0，0，0) - box h^ packed at corner I with surface <9m x 7m> as

the base

(9, 9, 7, 3, 0, 0，0) - box bs packed at corner I with surface <7m x 9m> as �

the base

(9, 9, 7, 0, 11, 0, 0) - box bs packed at corner II with surface <9m x 9 m �

as the base

(9, 9，7, 2，11，0, 0) - box b̂ packed at comer II with surface <9m x 7m>

as the base

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 66 -

(9，9, 7，0, 11, 6, 0) - box packed at corner III with surface <9m x 9m>

as the base

(9，9,1,2, 11，8，0) - box bs packed at corner III with surface <9m x 7m>

as the base

...omitted

This COPM list has been sorted in decreasing order which is the processing

order in pseudo-packing process.

5.4.2 Pseudo-packing and the greedy approach

According to the list, the first COPM processed is (14, 8，6，0, 0，0，0). b]

is pseudo-packed as shown in Fig. 5.8. The corner occupied is (0，0，0).

Z j I Z |

二 -二Mt^
Fig. 5.8 The pseudo-pack of COPM (14，8’ 6，0’ 0，0’ 0)

The COPMs at the corner (0，0，0) can be deleted as no pseudo-packing at

this corner is possible. The COPMs of bj can also be skipped after bj is

pseudo-packed. The following COPM list is the shortened version:

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 67 -

(12，6，4, 0，8, 0，0) - box 办2 packed at corner II with surface < 12m x 6m>

as the base

(12, 6，4, 1，14, 0，0) — box b) packed at comer II with surface <6m x

12m> as the base

(12, 6, 4，0, 8, 9，0) - box b�packed at comer III with surface <12m x

6m> as the base

(12, 6, 4，1, 14，3, 0) - box b) packed at corner III with surface <6m x

12m> as the base

(12, 6, 4, 0，0，9，0) - box b] packed at corner IV with surface <12m x

6m> as the base
• • •

(9, 9，7，0，11, 0, 0) - box bi packed at comer II with surface <9m x 9m>

as the base

(9, 9, 7, 2, 11, 0, 0) - box b̂ packed at corner II with surface <9m x 7m>

as the base

(9，9, 7，0, 11, 6, 0) - box b^ packed at comer III with surface <9m x 9m>

as the base

(9，9，7, 2, 11，8, 0) - b o x bs packed at comer III with surface <9m x 7m>

as the base

...omitted

This shortened COPM list can save the time for the subsequent steps of

pseudo-packing. The list is scanned from the top to bottom. When a

COPM is found to be valid (no overlapping of boxes and no cross of

boundaries), the box is immediately packed according that COPM and

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 68 -

shorten the list again. Other COPMs for that box will not be considered in

this pseudo-packing step. The next box is again packed to the first valid

COPM directly without scanning through the whole list.

The first tuple of the COPM list results in overlapping of boxes b/ and b �

and is thus invalid. The second tuple (12, 6, 4, 1, 14, 0, 0) is checked to

be valid and the pseudo-packing result is shown in Fig. 5.9.

b 一 少 ， 二 - 二 - 3 5 : : : 岁 广

k：
Fig. 5.9 The second step of pseudo-packing, b: is pseudo-packed by greedy approach

The COPM is shortened to contain only one box b! associating with comer

“ I I I and IV.

‘(9, 9, 7, 0，11, 6, 0) - box bs packed at corner III with surface <9m x 9m>

as the base

(9, 9, 7，2, 11，8，0) - box bs packed at comer III with surface <9m x 7m>

as the base �

...omitted

The first tuple is invalid while the second is valid, bs is pseudo-packed at

comer III.

The three boxes are all pseudo-packed into the boxes. The total occupied ‘

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 69 -

volume is:

1 4 x 8 x 6 + 1 2 x 6 x 4 + 9 x 9 x 7 = 1527

The FFV for the COPM (14，8，6, 0，0, 0, 0) is 1527. The FFV of other

COPMs are calculated in the same way.

5.4.3 Update of corner list

Three boxes bo, 14m x 8m x 6m; bj, 12m x 6m x 5m and b� , 9m x 9m x 4m

are being packed into a container 20m x 15m x 10m. Some COPMs of bo

is listed in Section 5.4.1. The FFV of COPM <14, 8，6，0, 0, 0，0> is

calculated by pseudo-packing bo at (0, 0，0) with 14m side along

x-dimension, 8m along j;-dimension and 6m along z-dimension^ Comer

at (0, 0, 0) is deleted from comer list. Corners at (14, 0, 0)，(0，8’ 0) and

(0, 0，6) are inserted, bj can neither be packed at (0，0, 6) nor (0, 0，10).

The first available comer for pseudo-packing b! greedily without

overlapping is (0, 8，0). New corners are (0，8，5), (0, 15, 5), (12，8，0) and

(12, 15, 0). Fig. 5.10 shows the packing configuration.
- (0,16.10) (20,15.10)

^ C T """" """"""— (12.15,0)

； b b o f ^ • (_)
(0.0,6) — H ^ ^ n i z i U ^ 八

\ (14.0,0) (20,0,0)

(0.0.10)
‘ Fig. 5.10 Packing configuration after bo and b| are pseudo-packed (all comers are shown)

, ‘

5 ；c-dimension refers to the length of the container,少-dimension refers to the height o f the container,
z-dimension refers to the depth of the container

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 70 -

If there is no orientation constraints for b� , it can be placed at (0, 0, 6) with

4m side along z-dimension. FFV is total volume of bo, bi and b � . A l l

boxes are then removed, bo is pseudo-packed to another COPM till all

COPMs are evaluated.

5.4.4 Real-Packing

After all COPMs of a box are evaluated, the box will be "real-pack" to the

COPM with the highest FFV. The corner list is updated and the COPMs

of the next unpacked box will undergo pseudo-packing. The process

continues until no boxes can be packed to any corners. The LFF

algorithm is shown in Fig. 5.5.

5.5 Ratio Approach: A Modification to LFF

As discussed in Section 4，the LFF will obtain extremely low volume
utilization when the assessment of "flexibility" does not reflect the real

- situation. This often happens in cases with objects having very large
-length/width ratio. This phenomenon can also happen in 3D problems.

In this Section, we try to consider alternative ways to measure
flexibility of objects. After investigation, we discovered that if the
difference between the longest sides of two boxes is very large while that
between their shortest sides is very small, flexibility will largely depend on
the longest side, and vice versa. However, in cases with comparable “
longest and shortest sides ratios, the flexilibilty can be dependent on either.
Such dependency in flexibility evaluation can greatly affects the result of
our LFF algorithm. To illustrate the situation, some examples are shown
first. -

• Consider the flexibility of the following two boxes. In fig 5.11a), the
length of the box, named bj is 40cm, its' width is 30cm and its height is 1

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 71 -

cm. In fig 5.11b), the length of the box, named b � i s 39cm, its width is
38cm and its height is 37cm.

l � m Z b ' 1 参
^ 40cm ^

Fig 1 la) Dimension of b,

k \

- b2

‘ 37cm, /

/ /
/ / 3 8 c m

^ 39cm • Z

Fig. 5.11b) Dimension of

It is obvious that bj can fit into narrow gaps with base area large enough
while requires a very large space to accommodate it. However, based
on the principle of the original LFF, bi is considered to be less flexible as
its longest side is 40cm, i.e., 1cm longer than the longest side of b � . I n •

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 72 -

this case, the flexibility determined by LFF does not reflect the real
flexibility of the two boxes. Such wrong determination of packing order
may lead to very low volume utilization, which is similar to the 2D cases
discussed in Section 4.

If we focus on the above example, we may draw the conclusion that
the box with larger volume has lower flexibility. However, this is not
always a fact. Consider two boxes: The dimension of b^ is 30cm x
20cm X 5cm while the dimension of 80cm x 5cm x 2cm. If the
dimension of the container is 80cm x 30cm x 5cm, it is obvious that the
flexibility of b4 is lower because it only can be placed with one orientation
while b3 can rotate to fit in spaces with different dimensions if necessary.
However, volume of bs is larger. Therefore, it can be concluded that volume
is not always a good measure of an object's flexibility.

If an object is said to be more flexible than another object, the basic
definition is that there are more possibilities of spaces to accommodate this
object. If we consider two objects bs and be with dimensions 20cm x
16cm X 10cm and 22 cm x 20cm x 4cm respectively, the flexibility of
be is higher because the difference between their lengths is not very large.
Comparison between their heights becomes an important factor for
assessment on flexibility. In fact an object with a longer shortest side can

‘ always lead to higher difficulty for itself to be placed to a space. For
‘objects with shorter shortest sides, despite orientation constraint, they can

rotate to fit themselves to narrow gaps. Generally speaking, determining
flexibility by the lengths of the shortest side is reasonable because for
objects with "longest longest side" but rather short shortest side, they may
still have higher possibility to fit into narrow residual spaces while those
objects with long shortest side can in no way rotate itself to be packed to
narrow residual spaces. •

We have tried to implement the LFF by changing the way to assess
flexibility. In original LFF, the objects with longest longest side are
regarded as the least flexible but in our new version, objects with longest
shortest side are regarded as the least flexible. It is found that the average
volume utilization has a slight increase. For some cases the improvements

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 73 -

are very obvious while reduction in volume utilization can be found in
some other cases.

The reduction occurs in packing instances with objects having large
"longest side / shortest side" ratio. When a pair of objects have their
shortest sides differ by only 1cm while the difference between their longest
sides is very large, we should switch back to compare their longest side.
In fact, under different situations, the assessment of flexibility should be
different. It is very difficult to apply one standard to all cases otherwise
there must be undesirable results for some cases.

Therefore we have two rules for determining object flexibility:

(i) by comparing the longest sides
(ii) by comparing the shortest sides

The problem is how to choose which rule should be used.
Two approaches have been tested for rule selection. During the

flexibility assessment, the rule selection is based on each pair of objects
under comparison. This means that the rule for each pair of objects can be
different.

Assume there are two objects by and bg with dimensions 20cm x
‘ 10cm X 4cm and 12cm x 10cm x 8cm respectively. The first

“approach is to compare their longest side ratio and their shortest side ratio.
Note that when calculating these ratios, we pick the larger number to be
numerator and the smaller number to be denominator, i.e., the ratio is
ensured to be larger than 1. For example, if the ratio of the longest side
(length) is calculated by Ij / it is not necessary to have another ratio
(height) calculated by h j l hg. If hg > hj, we will calculate the ratio by hg/
hj. The pseudo-code is as shown in Fig 5.12:

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 74 -

1. Ri = ratio of the objects' longest sides

2. R2 = ratio of the objects' shortest side

3 . I f (R , > R 2)

Use Rule (i)

Else

Use Rule (ii)

Fig. 5.12 Rule selection approach Ifor determining flexibility

In this case, the ratio of their longest sides is 20/12 = 1.67 (to 3 sig. fig.)
while the ratio of their shortest sides is 8/4 = 2. Therefore, rule (ii) will be
used.

The second approach is to set rule (ii) as default and change it to rule (i)
under certain condition. The pseudo-code is as shown in fig 5.13:

1. Use Rule (ii) as the default rule

2. Ri= ratio o f the objects' longest side

3. If Ri > a preset constant

Use Rule (i)

- Fig. 5.13 Rule selection approach 2 for determining flexibility
%

The preset value here is defined by running experiments to see which value
is most likely to obtain a better result.

After running experiments on benchmark test cases, it is discovered
that the second approach leads to better results. The difference is about
0.5%-0.8%. •

The second approach is therefore selected to generate experimental
results shown in Section 5.7. It is named as LFF in ratio approach

. (LFFR).

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 75 -

5.6 LFF with Tightness Measure: CPU time Cut-down

The tightness measure concept was firstly introduced to the 2D LFF in [2].
The original objective of the tightness measure is to improve the packing
density. With the tightness measure being introduced to the algorithm,
when a box is being pseudo-packed greedily, it is no longer placed to the
first available corner and skipping other candidate COPM. Instead the
whole list of COPMs is evaluated to find out the "tightness" value of
packing the box there. Fig. 5.14b) shows how this tightness value is
obtained. The 12 circles indicate the points for tightness measure. If a
point with circle is touching with another box or the container boundary,
the tightness value will be incremented by 1.

I ^ «» ^ »

、 〔广

^ cr
Fig 5.14a) Tightness measure points in 2D case Fig 5.14b) Tightness measure points in 3D case

Note that for each corner, it is surrounded by 3 surfaces for measuring
tightness value. The higher the tightness value, the better the COPM is.
Please refer to Section -3.1, Fig 3.3 for an explanation based on a 2D
problem. In 2D, for each comer, we have two points for evaluating the
tightness, as shown in Fig.5.14a). In Fig 3.3，position I is considered to be
the best because it is bound by three sides. The tightness value for
position I is 2 x 2 + 1 + 1 = 6 . The tightness for position II is 1 x 2 + 1

+ 1 = 4 . The position with higher tightness value is obviously having less •

•

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 76 -

flexibility and considered to be a better position for packing.
We do not apply this idea to greedy packing step because our LFF

algorithm for container loading problem already takes quite long CPU time
to complete. If the tightness measure is integrated to the algorithm, the
CPU time will further increase.

As tightness measure is also a reflection of the suitability for an object
to be packed to a certain position, in other words, it can be used to evaluate
the fitness of a COPM.

In our LFF described earlier in this Section, the fitness of a COPM is
evaluated by pseudo-pack that COPM, greedily pack remaining objects to
valid COPMs to calculate the packed volume which is then assigned to be
the fitness. The long CPU time for the algorithm is due to the greedy
packing steps. If we avoid doing greedy packing and evaluate the fitness
by measuring tightness of each COPM, the CPU time is expected to be
sharply cut down. The algorithm of LFF with tightness measure is
presented in fig 5.15:

LFF algorithm with tightness measure for container loading:

Starting with a empty container

1. Based on the current packing configuration, find all possible COPMs for each

- unpacked box; represent each COPM by a t u p l e � l o n g e s t side, medium side, shortest

side, orientation, Xi, yi, zj>.

2. Sort all of these tuples according to their flexibility.

3. For each candidate COPM, do 3.1 to 3.3 to find its fitness function value (FFV).

3.1 Pseudo-pack this COPM.

3.2 Calculate the tightness after this COPM is pseudo-packed

3.3 Assign the tightness value to be the FFV of this candidate COPM •�

Note: Before the pseudo-packing for the next candidate COPM is evaluated, the

previously pseudo-packed COPM must be removed.

‘ 4. Pick the candidate COPM with the highest FFV and really pack the corresponding box

according to.the COPM. The comer list is updated for later packing procedures.

Fig. 5.15 Algorithm of LFF with tightness measure •‘

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 77 -

Experimental results generated by this algorithm are shown in Section 5.7.
When comparing with the original approach, a very large reduction on
running time is observed. However, there is trade-off in its volume
utilization, which is also reduced. Please refer to the experiments in
Section 5.7 for further details.

5.7 Experimental Results

To evaluate the performance of the proposed algorithms, container loading

experiments are run on the original LFF and its two variants: the LFF in

ratio approach (LFFR) and the LFF with Tightness Measure (LFFT).

The test cases for generating experimental results are benchmarks from

Bischoff and Ratcliff [8] and Loh and Nee [11]. The performance of the

proposed algorithms is compared with the results from other researchers

[22, 23，24, 25, 26].

All experiments are run on the Sun Blade 1000 machines with 2GB

RAM. The Operating System is Solaris 8. The machines are accessed

remotely and it is possible for many connections to access the same

machine simultaneously. Therefore the CPU utilization by our program

may vary throughout the experiments. This did not affect the results on

volume utilization of the container loading problem. The area that may be

affected is the CPU time of the experiments.

5.7.1 Comparison between LFF and LFFR

The LFF in Ratio Approach (LFFR) is introduced in Section 5.5. It is a
variant of LFF with an alternative method to evaluate objects' flexibility.
For details, please refer to Section 5.5. To compare the performance of
the LFF and LFFR, we run experiments on both of them and obtain the

‘results in Table 5.2:

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 78 -

Test case (no. o f Average vo lume Best vo lume Average vo lume Best vo lume

box types, mean no. utilization (%) by utilization utilization (%) by utilization (。/。）

o f boxes per type) LFF (%) by LFF LFFR by LFFR

B R l (3 , 5 0 . 1) 85.41 93 .42 87 .19 9 3 . 4 2

B R 2 (5 , 2 7 . 3) 86 .47 93 .54 87 .97 93 .92

B R 3 (8，16.8) 87.15 93 .4 88 .37 9 3 . 8 4

B R 4 (1 0 , 13.3) 87 .18 91 .23 88 .07 92 .45

BR5 (12, 11.1) 87 .09 91 .83 88 .10 9 2 . 0 9

B R 6 (1 5 , 8 . 8) 87 .09 90 .33 88.15 92 .43

B R 7 (2 0 , 6 . 5) 86 .89 90 .86 87.65 90 .90

Average 86.75 9 2 . 0 9 87 .93 9 2 . 7 2

Table 5.2 Numerical results obtained by LFF and LFFR on 700 problems of Bischoff and Ratcliff

In Bischoff and Ratcliff test cases, there are seven sets with 100 individual

cases in each set. The heterogeneity increases from BRl to BR7.

The average volume utilization of the seven sets obtained by LFF is

__ 86.75% while that obtained by LFFR is 87.93%. The best volume

.utilization in every set is over 90% for both LFF and LFFR. When

focusing on the results in each of the seven sets, it can be noticed that the

LFFR can always obtain volume utilization higher than LFF by 0.8% -

1.2%. Hence from this experiment, the better performance of LFFR has

been proven. The experimental results shown in later sections are .�

obtained by LFFR.

5.7.2 Comparison between LFFR, LFFT and other algorithms

Table 5.3 shows the volume utilizations obtained by LFFR, LFFT and 5
“

other algorithms.

C
H

A
P
T

E
R

5
 L

F
F
 F

O
R

C

O
N

T
A

IN
E

R

L
O

A
D

IN
G

P
R

O
B

L
E

M

-
 7

9
-

»

T
es

t
ca

se
 (

no
.

of

B
is

ch
of

f
et

 a
l.

B
is

ch
of

f
et

 a
l.

G
eh

ri
ng

 a
nd

G

eh
ri

ng
 a

nd

A
.

B
or

tf
el

dt
 e

t
L

F
F

R
 v

ol
u

m
e

L
F

F
T

V
ol

um
e

b
ox

 t
yp

es
,

m
ea

n
[2

3]
 V

ol
um

e
[2

2]
 V

ol
um

e
B

or
tf

el
dt

 [
24

]
B

or
tf

el
dt

 [
25

]
al

.
[2

6]

ut
il

iz
at

io
n

(%
)

ut
il

iz
at

io
n

(%
)

nu
m

be
r

of
 b

ox
es

ut

il
iz

at
io

n
(%

)
ut

il
iz

at
io

n
(%

)
V

ol
um

e
V

ol
u

m
e

V
ol

u
m

e

pe
r

ty
pe

)
.

ut
il

iz
at

io
n

(%
)

ut
il

iz
at

io
n

(%
)

ut
il

iz
at

io
n

(%
)

B
R

l
(3

,5
0.

1)

81
.7

6
83

.7
9

85
.8

0
87

.8
1

93
.5

2
87

.1
9

82
.7

3

B
R

2
(5

,2
7.

3)

81
.7

0
84

.4
4

87
.2

6
89

.4
0

93
.7

7
87

.9
7

84
.0

8

B
R

3
(8
，

16
.8

)
82

.9
8

83
.9

4
88

.1
0

90
.4

8
93

.5
8

88
.3

7
84

.2
1

B
R

4
(1

0
,

13
.3

)
82

.6
0

83
.7

1
88

.0
4

90
.6

3
93

.0
5

88
.0

7
84

.4
8

B
R

5
(1

2,
 1

1.
1)

82

.7
6

‘
83

.8
0

87
.8

6
90

.7
3

92
.3

4
88

.1
0

84
.8

4

B
R

6
(1

5,
8.

8)

81
.5

0
82

.4
4

87
.8

5
90

.7
2

91
.7

2
88

.1
5

84
.8

4

B
R

7
(2

0,
6.

5)

80
.5

1
82

.0
1

87
.6

8
90

.6
5

90
.5

5
87

.6
5

84
.2

9

A
ll

te
st

 c
as

es

82
.0

83

.5

87
.5

90

.1

92
.7

87

.9

84
.2

T
ab

le
 5

.3
 N

um
er

ic
al

 r
es

ul
ts

 f
or

 t
he

 7
00

 p
ro

bl
em

s
fr

om
 B

is
ch

of
f

an
d

R
at

cl
if

f
[2

2]
 b

y
L

FF
R

,
L

F
F

T
an

d
5

ot
he

r
al

go
ri

th
m

s

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 80 -

From Table 5.2, we can see that although the volume utilization obtained

by LFFR is not the best among the seven algorithms, its advantage is on its

stability when being run on cases with different heterogeneity. The result

obtained by the GA in [24] shows that the algorithm achieves its best

performance in heterogeneous problems and the performance degrades

when the algorithm is being applied to homogeneous problems. The

situation for the hybrid GA in [25] is the opposite. Its design favors its

performance in homogeneous cases while in heterogeneous cases, it obtains

lower volume utilization. When using LFFR to solve container loading

problem, the average volume utilization for weakly heterogeneous set BRl

is only slightly lower than that of strongly heterogeneous ones but the

difference is very small. This shows that the performance of LFFR is

stable for all kinds of cases.

The volume utilization obtained by LFFT is quite low when compared

with other algorithms. However, its computational time is much faster

than other algorithms. Please refer to Section 5.7.3 for details.

Test cases Ngoi Bischoff Bischoff Gehring Bortfeldt LFFR LFFT

et.al. et al. [23] and and and

[28] Ratcliff Bordfeldt Gehring

[22] [25] [26]

Mean Vol. Util.(%) 69.0 69.5 68.6 70.0 70.1 70.1 69.4 „

Table 5.4 Numerical results obtained by six algorithms on 15 problems of Loh and Nee

Table 5.4 shows results obtained by six algorithms on 15 Loh and Nee

problems.

Using LFFR, no boxes are left unstowed in 13 out of 15 Loh and Nee

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 81 -

problems. The average volume utilization is 70.1%, which is better than

four other methods. For LFFT, it achieves higher volume utilization than

LFFR in 2 out of the 15 cases while there are no box left unstowed in 10

out of 15 Loh and Nee problems.

5.7.3 Computational Time for different algorithms

To see how LFFT outperforms LFFR in terms of computational time, we

firstly compare their computational time for solving the Bischoff problems.

To make analysis easier, the grouping of cases is not by heterogeneity.

Instead we group the problems by their sizes, i.e. the number of objects to

be packed.

Problem size Average computational time Average computational t ime

(No. o f objects being packed) o f LFFR (s) o f LFFT (s)

< = 1 0 0 228 .25 1.03

- 101 - 120 339 .00 1.77

‘ 121 - 140 , 537 .39 2 .60

141 - 160 782.95 3 .22

161 - 180 965.11 4 .00

181 - 2 0 0 1361.00 ‘ 4 .30

201 - 3 0 0 3375 .00 5.05

> 3 0 0 ” 10542.75 9 .33

^ Table 5.5 Average computational time of LFFR and LFFT on different problem size

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 82 -

The relationship of CPU time and Problem Size for LFFR
and LFFT

g � ‘. � � � •缺 CPU time for
p 恐) 《 着 麵 L F F R
£ 4000 "…"产:…:，V, Î T : � �C P U time for

0 I _ I _ I 龜 I 蠢 I

發 <9 ^ ^ 冷 r^ r^ .

Problem Size

Fig 5.16 A chart showing the relatoinship of CPU time and Problem Size for LFFR and LFFT

Fig. 5.16 is a graph showing the relationship of CPU time and Problem
Size for the two algorithms being discussed. Obviously even when there
is a substantial increase in problem size, LFFT can still handle the cases in
very short CPU time, i.e., a little increase in CPU time while great increase
in problem size. For LFFR, the increase in CPU time is very large when

‘ the problem size increases. The last step in the graph is very large
.because it includes all cases >300. Only several cases are in this category

but it ranges from 319 to 476. When the problem size becomes 476,
LFFR takes 6 hours, i.e., about 21600 seconds to obtain the result, leading
to such a sharp increase in the chart. For LFFT, the CPU time handling
the case with 476 boxes is 12.11 seconds, which is 1/1783 of the LFFR
CPU time. �

Algorithm Gehring and Gehring and A. Bortfeldt and LFFR LFFT

Bortfeldt [24] Bortfeldt [25] Gehring [26]

Average 11.7 316.0 121.0 812.4 2.7

CPU time(s)

Table 5.6 Average computation time for 5 different algorithms

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 83 -

5.7.4 Conclusion of the experimental results

Although the volume utilization obtained by LFFR is lower than that given

by [24] and [25], it still has its advantage. The lower volume utilization in

LFFR may be further improved in future if:

眷 the measure of flexibility can be further modified to reflect flexibilities

of objects in a better way. In fact, the orientation constraint is also a

factor affecting flexibility. One possible improvement can be setting

weights to each factor affecting flexibility so that all aspects are

considered. -This is one of the extensions of this research.

• the greedy-packing procedure is modified in such a way that objects

are not just greedily packed to the first available corner. Instead,

they will be greedily packed to the COPM that can achieve a better

result.

‘ F o l l o w i n g these two directions, the performance of LFFR can be further

improved and its stability will remain high. Therefore the stable

performance of LFFR in different heterogeneity is of very important

value. �

It is obvious that LFFT obtains lower volume utilization when being �

compared with four other algorithms in Table 5.2. The value of LFFT is

. on its very short computation time. In Table 5.5 and 5.6, we can see that

the computational time of LFFT is 1/301 of LFFR, 10/43 of the GA in

[24], 1/117 of the GA. in [25] and 1/45 of the parallel T.S.A. in [26].

The computational time of the other two algorithms in Table 5.2 is not

CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 84 -

reported by their authors.

The lower volume utilization in LFFT is the trade-off of its short

computational time. In fact, among all container loading algorithms with

their computational time reported, the LFFT is the fastest algorithm for

solving this type of problem.

A

I. ‘ ‘

Chapter 6

Conclusion

This thesis presents the LFF algorithm that achieves a satisfactory volume

utilization in container loading problems. By comparing with other

algorithm, the underlying principle of LFF, the Less Flexibility First

concept, is in fact shared by other researchers. [24] packs large objects

first and [25] gives smaller spaces higher priority to be filled. LFF has

two superiorities:

參 Comparing with the layering or block management approach,
which regards layers or blocks as packing unit, the LFF pack
boxes one by one and the flexibility of each packing unit is much
higher due to their smaller sizes. The higher the flexibility of
items, the higher is the chance for the item to be packed to a
container because smaller space can only be filled by smaller
items.，

參 The available packing positions for items are "spaces" in most of
the algorithms by other researchers and items can only be packed
to lower, left and rear corner of the space. Instead of "spaces",
the possible packing positions in LFF are "comers". In each
space，there are 8 possible corners. Although some comers are

. invalid, the number of valid comers must be more than 1.
Therefore the solution space searched by LFF is more.

• 'I

- 8 5 - “

CHAPTER 6 CONCL USION - 8 6 -

Yet there is still room for improvements.

• The evaluation of object flexibility greatly affects the result. We
believe that, as mentioned in Section 5 , more can be done to sort
the flexibility in a way leading to higher volume utilization.

• Another direction of improvement is the choice of packing
position of boxes based on the FFV of their COPMs. There are
often many COPMs having the same FFV. The first one is
always selected without further assessment. If a mechanism is
introduced to solve this tie, a further raise in volume utilization is
possible.

• The running time of LFF is a great concern. As the problem size
increases, the number of COPMs will increase at a very fast rate,
leading to long running time for packing instances with more than
200 objects. Reduction in running time can make the LFF
algorithm more practical.

Future research can focus on these three issues.

‘ To conclude our work, we contribute on the followings:

參 We have perform the Worst Case Analysis to evaluate the 2D LFF
algorithm and prove the inexistence of the Error of this algorith.
This can facilitate further research on improvement of this
algorithm. �

• We have firstly aplied the LFF algorithm to the container loading
problem. Its performance is satisfactory when being run on
benchmark cases.

參 We have proposed another version of LFF with tightness measure
to substantially cut down the CPU time of the original LFF.

CHAPTER 6 CONCL USION - 8 7 -

However, there is trade-off in the volume utilization.

參 The proposed 3D LFF is an innovative approach providing a new
direction for further research.

t

-88-

Bibiography

[1] Y. L. Wu, W. Q. Huang, S. C. Lau, C. K. Wong and G H. Young, "An effective
quasi-human heuristic for solving the rectangle packing problem", European
Journal of Operational Research 141 (2002), pp. 341 - 358

[2] Y. L. Wu, C. K. Chan, S. Dong, X. Hong, "A simple but powerful
Least-Flexibility-First packing and cutting algorithm"

[3] S. Martello, D. Pisinger, D. Vigo, "The three-dimensional bin packing
problem", Operations Research 48 (2000), pp. 256 - 267

[4] J. Kang, S. Park, "Algorithms for the variable sized bin packing problem",
European Journal of Operational Research 147 (2003)，pp. 365 - 372

[5] F. K. Miyazawa, Y. Wakabayashi, "An algorithm for the three-dimensional
packing problem with asymptotic performance analysis", Algorithmica 18
(1997)，pp. 122-144

[6] C. S. Chen, S. M. Lee, Q. S. Shen, An analytical model for the container
loading problem", European Journal of Operational Research 80 (1995), pp.
68 -76

_ [7] F. K. Miyazawa, Y. Wakabayashi, "Parametric on-line algorithms for packing
rectangles and boxes", European Journal of Operational Research, to appear.

[8] D. Pisinger, "Heuristic for the container loading problem", European Journal
of Operational Research 141 (2002), pp. 982 - 392

[9] P. C. Gilmore，R. E. Gomory, "Multistage cutting stock problems of two and
more dimensions", Operations Research 13 (1965), pp. 94-120

[10] W. Huang, "Quasi-physical and quasi-social methods for tackling NP-hard �

problems", Proc. International Workshop on Discrete Mathematics and
Algorithms, Jinan University Press, Guang Zhou, China, 1994.

[11] W. Huang, R. Jin, "The quasi-physical and quasi-sociological algorithm solar
for solving SAT problem", Science in China 27 (2) (1997), pp. 179-186.

[12] H. Dyckhoff, "A typology of cutting and packing problems", European
Journal of Operational Research 44 (1990), pp. 145 - 159

[13] H. Dyckhoff, G Scheithauer, J. Terno, "Cutting and Packing" MDell'Amico,

-89-

E Mqffioli, S. Martello (Eds.), Annotated Bibliographies in Combinatorial
Optimization, Wiley, Chichester, 1997

[14] T. H. Loh, A. Y. C. Nee, "A packing algorithm for hexahedral boxes",
Proceedings of the Conference of Industrial Automation, Singapore (1992)
pp. 115-126

[15] Michael Eley, "Solving container loading problems by block arrangement",
European Journal of Operational Research 141 (2002) pp. 393 - 409

[16] D. Y. He, J. A. Cha, "Research on solution to complex container loading
problem based on genetic algorithm", Proceedings of the First International
Conference on Machine Learning and Cybernetics, Beijing (2002)

[17] M. Gehring, K. Menscher, M. Meyer, "A computer-based heuristic for
packing pooled shipment containers", European Journal of Operational
Research 44 (1990) pp. 277 - 288.

[18] J. A. George,' D. F. Robinson, "A heuristic for packing boxes into a
container", Computers and Operations Research 7 (1980), pp. 147 - 156.

[19] D. Pisinger, "The container loading problem", Proceedings NO AS '97, 1997.
[20] C. Pimpawat, N. Chaiyaratana, "Using a co-operative co-evolutionary

genetic algorithm to solve a three-dimensional container loading problem",
Evolutionary Computation, 2001, Proceedings of the 2001 Congress, pp.
1197-1204 Vol.2

‘ [21] E. E. Bischoff, M. D. Marriott, "A comparative evaluation of heuristics for
- container loading", European Journal of Operational Research 44 (1990), pp.

267 - 276 ‘
[22] E. E. Bischoff, B. S. W. Ratcliflf, “Issues in the development of approaches to

container loading", Omega 23 (1995), pp. 377 - 390
[23] E. E. Bischoff, F. Janetz, M. S. W. RatclifiF, "Loading pallets with

non-identical items", European Journal of Operational Research 84 (1995), ‘
pp. 681 -692

[24] H. Gehring, A. Bortfeldt, "A genetic algorithm for solving the container
loading problem", International Transactions in Operational Research 4
(1997), pp. 401 -418

[25] A. Bortfeldt, H. Gehring, "A hybrid genetic algorithm for the container
loading problem", European Journal of Operational Research 131 (2001),

-90-

pp. 143-161
[26] A. Bortfeldt, H. Gehring, D. Mack, "A parallel tabu search algorithmfor

solving the container loading problem", Parallel Computing 29 (2003), pp.
641 -662

[27] H. Gehring, K. Menschner, M. Meyer, "A computer-based heuristic for
packing pooled shipment containers", European Journal of Operational
Research 44 (1990)，pp. 277 - 288

[28] B. K. A. Ngoi, M. L, Tay, E. S. Chua, "Applying spatial representation
techniques to the container packing problem", International Journal of
Production Research 1 (1994)，pp. 59 - 73

[29] J. Hemminki, "A heuristic for container loading, Report 141，Univerisity of
Turku, Department of applied mathematics, 1993

[30] A. Lim and Y. Wang, "A new method for the three dimensional container
packing problem"

[31] J. Hemminki, "Container loading with variable strategies in each layer",
presented in ESI-X, EURO Summer Institue, Jouy-en-Josas, France, 2-15
July 1994

[32] George, GA., Robinson, D.F., "A heuristic for packing boxes into a container,
Computers and Operations Research 9 (1980), 147-156
presented in ESI-X, EURO Summer Institue, Jouy-en-Josas’ France, 2-15

“ July 1994
-[33] Toulouse et al., "Issues in designing parallel and distributed search

algorithms for discrete optimization problems", Publication CRT-96-36,
Centre de recherche sur les transports, Universitede, Montreal, Canada,
1996

[34] Y. T. Wu, Y. L. Wu, "A less flexibility first based algorithm for the container
loading problem", Operations Research Proceedings 2004，pp. 368 - 376

[35] J.B.Rosenberg, Geographical data structures compared: A study of data
structures supporting region queries, IEEE Transaction on Computer-aided
Design CAD-4 (1) (1985) 5, pp. 3 - 57.

• • •

：
.
、
：
，
《
。
^
^
^

；二、、；；V

菱
身
轟
 1

.

：

 •

 .

 “
 .

 ？
：
遣
藝
 纖
I

<

/

 ：
广

i
蕩
售

.

“

‘

.

.

-

:

•

、
^

^

l
e
t
.

,
.
 .
,

 .

 ‘

.

.

.

.
‘

5..V.

.

 .
•
:
.
.
.
.

 •

 ,
 ‘

 .

 “

 •

 ̂

*

CUHK L i b r a r i e s

mmmmi
004270388 -

