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Abstract of thesis entitled: 
Analysis on the Less Flexibility First (LFF) Algorithm and Its 

Application to the Container Loading Problem 
Submitted by WU Yuen-Ting 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in August 2005 

This thesis is a deep investigation in the Less Flexibility First (LFF) 

algorithm for solving packing problems. LFF is an effective deterministic 

heuristic originally designed for solving 2D packing problems. It 

generated up to 99% packing densities. Yet the algorithm may generate 

unsatisfactory packing densities when the length/width ratio of the 

rectangles is very large. To improve its performance, the algorithm is 

analyzed by applying it to those extreme cases. The inexistence of LFF 

error bound is proven, followed by a discussion on the causes of the 

unsatisfactory results. This research result can help improving original 

LFF in future. 

As the average packing density of LFF in 2D packing problems is very 

high comparing to other 2D-packing algorithms, it is also extended to the 

container loading problem with the objective to maximize volume 

utilization. The principle is to pack objects according to their flexibilities. 

Less flexible objects are packed to less flexible positions of the container. 

Pseudo-packing procedures enable improvements on volume utilization. 

Encouraging packing results with up to 93% volume utilization (average 

volume utilization is about 87.93%) are obtained in experiments running on 

benchmark cases from other authors. The result of this research was 

published in the paper "A Less Flexibility First Based Algorithm for the 

Container Loading Problem" in the Operations Research Proceedings 2004. 
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The disadvantage of the LFF algorithm is its large CPU time. To cut 
up the CPU time, we try to modify the algorithm by applying tightness 
calculation. This algorithm is called "Less Flexibility First with Tightness 
Measure" (LFFT). There is a substantial reduction in CPU time. The 
volume utilization is also reduced as the trade-off. Detail comparison of 
the two algorithms is done by a series of experiments and reported in this 
thesis. 

“ 
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摘要 

論文題目：「低靈活性優先處理法」分析及應用於三維包裝的硏究 

作者：胡婉停 

修讀學位：哲學碩士 

香港中文大學計算機科學及工程學部 

曰期：二零零五年六月 

本論文就如何將「低靈活性優先處理法」應用於三維包裝問題作出深 

入硏究。「低靈活性優先處理法」最早見於二零零二年的一本《歐洲 

運籌學期刊》一篇名爲「模擬人類思維法以解決平面方形的包裝問題」 

的文章內，該篇文章透過標準測試案例證實運用「低靈活性優先處理 

法」包裝平面方形，可達致99個百分點的密度。可惜這種有效的「模 

擬人類思維法]仍有其不足之處。在某些極端情況下，「低靈活性優先 

處理法」可能產生極不理想的包裝密度。本文嘗試找出這些影響「低 

靈活性優先處理法」表現的極端情況，並加以硏究，計算錯誤邊界及 

分析其成因，冀能改善「低靈活性優先處理法」的整體表現。 

由於「低靈活性優先處理法」在平面包裝的問題上表現勝於其他 

同類程式，是次硏究的另一重點便放在如何擴大「低靈活性優先處理 

法」的應用，將這種方法運用在三維包裝問題上，以求取得更好空間 

‘ 佔用率的一種包裝方法。「低靈活性優先處理法」的原則是根據物件的 

• 靈活性決定其入箱的先後次序°由於大型的物件較欠缺靈活性，故會 

優先處理。至於箱內的空間也列入靈活性的考慮因素之內。體積較小 

的空間靈活性較低，因此會被優先檢查是否適合存放正被處理的物 

件。虛擬包裝步驟有助改善空間佔用率。「三維低靈活性優先處理法」 

曾被應用在標準包裝案例上，並產生出高達93個百分點的空間佔用率 

(平均空間佔用率約爲88至89個百分點），實在是令人鼓舞的結果。 

「低靈活性優先處理法」的缺點在於較長的程式作業時間。爲了 

縮短其作業時間，作者在程式中加入緊密度的計算。結果作業時間被 

大大降低，而程式所計算出來的空間佔用率亦相對減低了。本論文將 

對兩種不同的設計作出討論，並比較其實驗結果。 
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Chapter 1 

Introduction 

Recently, packing problems have received increasing attention due to its 

importance in the area of production and distribution of goods. An 

effective three-dimensional packing algorithm can increase the packing 

density of a transportation device such as containers and palettes. The 

higher the packing density, the better is the utilization of transportation 

capacities. As the volume of waste space is reduced, the reduction on 

resources used on transportation can in turn be achieved. Therefore, 

research on three-dimensional packing problem is of great economic values, 

especially for the transportation and logistics industry. 

1.1 Background 

In Three-Dimensional Packing Problems, a set of rectangular-shaped boxes 

is to be packed into single or multiple container(s) with fixed dimensions 

orthogonally. All packed boxes must, be completely stowed inside the 

container with all edges parallel to the container edges. Overlapping of 

boxes is not allowed. All boxes should be supported by the container base, 

by any other boxes or by added supporting materials underneath to an 

extent that it is stable. Orientation constraints are usually considered in 

real-life applications. 
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The problem was firstly studied by Gilmore and Gomory [9] in early sixties. 

Thereafter many researchers have published papers discussing several 

variants of this problem. Classification of 3D packing problems can be 

done in two ways: by types of boxes and by objective functions. The 

former classified the problem into three types. In homogeneous cases, a 

single type of boxes (all with the same dimensions) is to be packed. A 

weakly heterogeneous box set refers to a few number of box types with a 

lot of individual box in each type. A strongly heterogeneous box set 

refers to a large number of box types with only a few individual boxes in 

each type [25]. For the latter classification, three objectives are usually 

considered: [8，12, 13] 

(i) Strip Packing. All boxes should be packed into a container with 

fixed width and height but infinite depth. The depth is 

continuously increased during the packing process until all boxes 

are loaded. The objective here is to minimize the depth of the 

container. Many heuristics and algorithms are designed for this 

application. The first heuristic for this problem was presented by 

George and Robinson in [18]. Approximation algorithms are 

widely used for solving container loading problems. In [7], a 

parametric online algorithm for packing boxes is illustrated. [5] 

describes another approximation algorithm. A comparison of 

several algorithms focusing on strip packing can be found in [21]. 

(ii) Bin Packing. All boxes should be packed into containers (or bins) 

with fixed dimensions. Multiple containers are usually necessary. 

The objective is to minimize the number of containers used. [3] 
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presents an incorporation of approximation algorithm with exact 

algorithm to solve 3D bin packing problem. It first defines an 

exact algorithm ONEBIN for finding the best filling of a single bin 

by branch-and-bound, then incorporates approximation algorithm to 

perform bin packing. Greedy algorithms are applied to variable 

sized bin packing in [4], where Iterative first-fit decreasing (IFFD) 

and Iterative best-fit decreasing (IBFD) are illustrated. 

(iii) Knapsack Loading. In this variant of the problem, some boxes can 

be left unpacked. A subset of the given boxes is chosen to be 

packed into a fixed dimension container to maximize a pre-defined 

profit. Heuristics for knapsack loading are presented in [17] and 

[19]. When the profit is set to be the utilized volume, the objective 

will be the minimization of wasted space. In industries, knapsack 

loading is applied to the loading of cargoes into a container in a way 

that can minimize the wasted space and in turn reduce the 

transportation cost. This is called Container Loading. 

Our research is focused on the container loading problem, aiming at 

maximizing the volume utilization of the container. This is proven to be 

NP-complete [15]. No existing algorithms are able to give optimal 

solutions in polynomial time. Heuristics are the mostly adopted 

approaches for this kind of problems. 

Several heuristics using layering approach is introduced in [8, 25]. The 

advantage is mainly on the balancing of load inside the container. An 

unbalanced condition can be solved by simply exchanging the order of 

layers. As the width and height of each layer coincide with the 
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corresponding dimensions of the container, a key factor affecting packing 

density is the determination of layer depth. [8] presents several ranking 

rules for selection of the most promising layer depths. [25] introduces a 

hybrid genetic algorithm, also based on layering. It uses basic heuristics 

developed by [27] to generate and complete stowage plan layers while 

genetic algorithm is used in later phase to perform layer transfer and layer 

extension. 

Genetic algorithms are common on non-layering methods. [16, 20] are 

some examples. Other methods are also developed. An integer 

programming model is presented in [6]. [15] presents a greedy heuristic 

improved by tree search. [26] runs tabu search in several computers in 

parallel to generate local optimum solutions. The diversity is increased by 

exchanging solutions between different computers. 

1.2 Research Objective 

... In this thesis, we present a Less Flexibility First (LFF) based algorithm for 
« 

solving the container loading problem. The objective is to maximize 

volume utilization, i.e. the % of the container volume occupied by the 

packed items. 

The LFF algorithm was originally applied to two-dimensional packing 

problems and was in fact proposed in [1]. It is a quasi-human based 

heuristic. The term “quasi-human” means cogitative, which refers to the 

accumulated experience of human beings in solving similar problems in 

everyday life [10，11]. The idea is inspired by an old strategy known by 

Chinese ancient professionals for packing polygon-shape stone plates. In 
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2D packing cases demonstrated in [1], it consistently produces results with 

around 99% packing densities in a large number of randomly generated 

rectangle packing instances with at least 45 rectangles. 

According to some past research [24], algorithms with good 

performance in two-dimensional packing can probably generate 

satisfactory results when similar techniques are extended to three 

dimensional cases. The performance of 2D LFF shows its potential to 

produce promising volume utilization if it is extended to 3D. 

In our research, the first step is to evaluate the 2D LFF algorithm by 

analyzing its worst case performance. Although there is even no error 

bound for this algorithm in the worst cases, its average performance is very 

satisfactory.' The algorithm is determined to be possible to have good 

performance in 3D packing problem. The next step is to identify the 

possible problems which may be encountered. Such problems should be 

taken into consideration during implementation. Overcoming these 

difficulties is important in our research. 

The major objective is to implement the 3D LFF algorithm which can 

do packing with high volume utilization. Its performance was evaluated 

by running it on the benchmark test cases and compared its results with 

other container loading algorithms through which the pros and cons of 3D 

LFF will be disclosed and evaluated. 

1.3 Contribution 

Our research has the following contributions: 

• The 2D LFF algorithm is evaluated. Worst Case Analysis is 

performed on the algorithm and the inexistence of Error Bound of this .. 

- 5 -



CHAPTER 1 INTRODUCTION - 6 -

algorithm is proven. Such analysis facilitates further research on 

improvement of this algorithm. 

參 The LFF algorithm is firstly applied on container loading problem. 

Its performance is satisfactory when being run on benchmark cases. 

In Bischoff and Ratcliff benchmark cases, the average volume 

utilization achieved by our algorithm is 87.93%. 

參 In 3D packing research area, genetic algorithms and layering approach 

are the two most common solutions under research. The 3D LFF is 

an innovative approach which can provide a new direction for further 

research. 

1.4 Structure of this thesis 

There are six sections in this thesis. Section 1 is the Introduction which 
gives reader a brief description about what the research topic is, the 
objective and its contributions. Section 2 is Literature Review which 
compares�different algorithms proposed by other researchers on the same 
problem. Section 3 introduces the Principle of the Less Flexibility First 
(LFF) and discusses how it was applied to 2D packing problems. Section 
4 contains a worst case analysis as well as a proof on the error bound of 
LFF algorithm. Section 5 explains how the LFF algorithm is extended to 
3D container loading problem and demonstrates some experimental results 
on benchmark test cases. Section 6 is the Conclusion discussing the 
superiorities and also issues of the LFF algorithm. 

4t 
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Chapter 2 

Literature Review 

Two traditional approaches for solving Knapsack Loading (Container 
Loading) problems are Genetic algorithms (GA) [16，20, 24, 25] and 
Layering approach [19, 25, 29，31]. Some algorithms use one of them 
while combination of the two is also possible. Other approaches like Tabu 
Search [26], Mix Integer Programming [6] are also proposed. As the 
problem is NP-complete, exact algorithm is normally not employed. 

2.1 Genetic Algorithms 

Genetic algorithm was introduced by HOLLAND (1975). It can be 

regarded as a type of meta-heuristics. In GA, the genetic operators 

Crossover and Mutation can explore the solution space and generate 

different solutions for evaluation. The Selection procedures ensure that 

only the' individuals considered as the best are allowed to stay in the 

population and act as parents to generate offsprings. As the individuals 

with low fitness values are eliminated, GA can gradually improve the 

fitness of the whole population and finally achieve satisfactory results. 

Therefore it is involved in many researches on NP-complete problems [16, 

20, 24, 25,31]. 

H.Gehring and A.Bortfeldt had published twice on using genetic 

algorithms to solve container loading problem. Their first proposal [24] is 

. to arrange boxes into tower sets and make use of an already developed 2D 
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Packing GA in [17] to obtain a tower packing result. This is called 

stack-building. Their second proposal [25] is similar. This is a 

combination of GA and layer approach. Boxes are packed into layers and 

the packing of layers is done by GA. C. Pimpawat and N. Chaiyaratana 

divided the individuals into sub-populations (or species) and performed GA 

on each sub-population by which the solution space is explored [20]. D.Y. 

He and J.Z. Cha represented packing patterns by permutations and applied 

GA on the permutations [16]. 

In this section, the operations and performance of the above four GAs 

are compared and analyzed. 

2.1.1 Pre-processing step 

Before generating the initial populations, the GA will do some 

preprocessing steps to encode the problem into a suitable data structure to 

facilitate further genetic operations. Such preprocessing steps are always 

very important for forming a suitable initial condition for GA to be run. 

In [24], boxes to be packed are firstly built into a set of disjunctive « 
towers. In a pair of disjunctive towers, none of the boxes is shared by 

both towers. Generation of a tower set comprises the subdivision of the 

given set of boxes into disjunctive subsets as well as the fitting together of 

the boxes of each subset into a tower. � 

The generation of towers takes volume utilization into consideration. 

The first step is to try using each free box (boxes which are not packed) as 

the base box of a new tower. By repeatly dividing the residual spaces into 

three regions, i.e., the space in front of, besides and above the packed box, 

and packing the remaining boxes to the residual spaces, a tower is built. 
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As the step repeats for each free box and different orientations are also 

considered, many towers are formed and the one with the minimal spare 

space is chosen. This ensures that the formed towers are those with better 

volume utilization. The sets of towers are finally sorted in descending 

order according to the area of the tower bases. This ends the 

preprocessing step of this algorithm. 

The preprocessing step in [25] is very similar to that in [24], but with some 

improvements. This time the tower sets are regarded as "layers" while 

both are referring to sets of boxes grouped together by certain criteria. 

The major difference is that in each step of packing, one or two boxes 

can be selected to be placed. The order of space-filling is determined by a 

new rule. As mentioned before, after packing a box to a tower, three 

regions of residual spaces are formed. These spaces, called daughter 

spaces, are filled in arbitrary orders in [24] but are filled in ascending order 

of volume this time. Smaller daughter spaces have higher priority to be 

filled next. Rules are also defined to determine rotation variants and 

allocation of boxes to the current and residual daughter-space. 

Another difference is the ability to extend residual sister-spaces. In 

daughter-space formation, there can always be two ways to define the 

"in-front" space and "beside" space. Before choosing either of these 

division methods, the algorithm will first determine whether any of them 

will lead to unfillable daughter-space. If one method leads to waste of 

daughter-space while another does not, the latter one will be selected. 

This improvement can reduce the volume of unfillable spaces as much as 

possible. ‘ 

Except these two differences, other steps of layer filling steps are 

similar to the tower set formation in [24]. The preprocessing step ends 
•• 



CHAPTER 2 LITERATURE REVIEW - 10 -

with all the layers outputted for generating initial populations. 

The CCGA algorithm [20] aims at exploring the solution space by 

means of utilizing a number of species or sub-population where each 

individual in a species represents a component of a complete solution. 

The major preprocessing of this algorithm is to initialize M sub-populations 

where each sub-population has N individuals. These sub-populations are 

all regarded as a part of the original problem which will be optimized 

separately. 

No preprocessing is performed in [16]. 

2.1.2 Generation of initial population 

In [24], after the tower sets are generated, the remaining problem is to 

arrange tower bases on the container floor. To encode the initial 

population as chromosomes, the base box of each tower is related to an 

index indicating its sequence of placement and a rotation variant specifying 

its orientation. As the unit under consideration is a tower, the number of 

feasible orientations can only be two. 

Two approaches of GAs are introduced. The process of initial 

population generation of the first one runs on a random basis while the 

second one hybridizes this process by running serial testing before inserting 

a tower base into the placement vector of the chromosome. -

In [25], with the layers generated as described in previous section, 

stowage plans are formed as the initial populations. These stowage plans 

are generated by the start procedure in which an empty container is to be 

filled by a list of feasible layer definitions. Feasible layers should have its 

base box free (unpacked before) and can be placed in the remaining 
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container area with its own rotation variant. These layer definitions are 

added one by one to the stowage plan under the rule that the feasible layer 

with the highest volume layer utilization should always be added. The 

total packed volume is calculated as the objective function value (fitness 

value) of that stowage plan. Start can be operated on different layer 

definition lists to generate different stowage plans for further processing by 

GA. 

In CCGA [20], during generation of initial population, all possible 

combinations between all individuals from different species are explored. 

This means that an individual will participate in more than one solution 

which results in a number of fitness values for each individual. Finally 

the highest fitness value for each individual is assigned to it and is used in 

other genetic operations. 

The initial population of permutations is randomly initialized in [16]. 

2.1.3 Crossover 

The crossover can be considered as a standard operator for all genetic 

algorithms. It is always done by selecting two parents with high fitness 

value and cross them to generate two descendents. The difference in 

crossover for different algorithms is not on this operation itself, but on the 

chromosomes. The result of crossover for different chromosomes will 

certainly be different. 

However, the crossover operator in [25] involves two phases and is 

quite different from the traditional crossover. The first phase layer 

transfer of layers from parents is similar to generic crossover, yet the 

transfer is traced by constraints which, when violated, will stop the transfer 
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of a layer from parent to offspring. Therefore some layers may not be 

transferred to the descendant. The second phase is layer extension which 

generates new layers to extend the descendant into a complete stowage 

plan. 

2.1.4 Mutation 

The mutation operator varies more in different algorithms. In [24], two 

types of mutation, namely scramble sublist mutation and mutation by 

inversion are adopted. The mutation in CCGA [20] is a standard one, 

using the reciprocal change approach. In [16], mutation is carried out by 

inversion. Same as the case in crossover, the author of [25] applies two 

types of special mutation operators involving layer transfer and layer 

extension. One type is standard mutation in which 1% to 50% 

(determined randomly) of the layers with maximum utilization are 

transferred from parent to descendant which is followed by extending the 

incomplete mutant to complete stowage plan by inserting newly generated 

layers. For merger mutation, all layers are transferred from parent layer to « 
offspring except two layers. Layer extension is then performed in the 

same way as in crossover but only a single additional layer is generated 

which causes the stowage plan to contain one layer fewer than the parent 

stowage plan. This mutation does not follow the generic approaches but 

is tailored for the problem under investigation. 

2.1.5 Selection 

The standard selection for all algorithms is by evaluating the fitness value 
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according to the objective function and selecting those individuals with 

higher fitness value. Different algorithms have different objective 

functions due to different constraints and objective of the particular 

algorithm. 

2.1.6 Results of GA on Container Loading Algorithm 

Among the four papers discussed, [16] and [20] do not present packing 

results for benchmark cases. [24] and [25] achieved 87.5% and 88.6%. 

Comparison with other algorithms will be done in later sections. 

2.2 Layering Approach 

Layering approach means that packing is achieved by building vertical 

layers first and the layers are then packed one by one into the container. 

This is a traditional approach for solving container loading problem [17, 2, 

21, 29, 32]. In fact, one of the GAs [25] discussed in last section employs 

the layering approach 

In [19], a wall-building layering approach is proposed. In this 

algorithm, layers are formed by firstly selecting box to determine the depth 

of a layer. The ranking of boxes are based on their length of smallest 

dimension as well as the frequency of the dimensions. The longer the 

length of smallest dimension, the higher is the rank for that box as such box 

may be difficult to accommodate in later stage. With the depth of a layer 

determined, the wMl is packed in a greedy way as a number of horizontal 

strips. Each of these strips is packed by inserting boxes with largest 



CHAPTER 2 LITERATURE REVIEW - 14 -

ranking to the strips. This heuristic is a greedy one. The determination 

of layer depths and strip widths are very important decisions. 

This algorithm uses a tree-search heuristic for determining the above 

two factors. Ranking rules are set for choosing depth based on the 

dimensions of the remaining boxes. The second step is to fill the strips by 

the free boxes. 

In that paper, different ranking rules are discussed. According to the 

author, the volume utilization achieved by the algorithm can reach 95% for 

"large sized instances". The results in the paper shows that the % volume 

utilization can achieve about 88-90% for weakly heterogeneous and strong 

heterogeneous problems while its performance on homogeneous problems 

are not that satisfactory. The % of volume utilization drops to 75-83%. 

The algorithm is proven to be unstable for different packing instances. 

2.3 Mixed Integer Programming 

An analytical model is presented for the container loading problem to % 
capture the mathematical essence of the problem [6]. Container loading 

process is formulated as a zero-one mixed integer programming. 

This approach involves many mathematical concepts and the problem 

is modeled by a set of mathematical expressions representing the problem 

itself and some constraints to be evaluated during packing. 

Details of mixed integer programming will not be presented here as it 

is not the focus of this research. 
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2.4 Tabu Search Algorithm 

A. Bordfeldt, H. Gehring and D. Mack have proposed a parallel tabu search 

algorithm (TSA) for solving the container loading problem [26]. This 

tabu search algorithm is emphasized on weakly heterogeneous packing 

instances. 

The basic heuristic of this algorithm is to firstly generate all 1-local 

arrangements (involving one type of boxes only) and 2-local arrangements 

(two types of boxes are packed in different arrangements). The local 

arrangements are evaluated to determine which should be inserted to the 

stowing list. New residual spaces are generated after the packing step. 

The generation of local arrangements is based on greedy heuristics. 

In order to enhance the chances of loading small packing spaces, the 

packing space with the smallest volume is always process first due to its 

low flexibility. 

The generated local arrangements are used in sequential TSA for 

-encoding feasible solutions. With the encoded solutions, two 

neighbourhoods, one large and one small, are defined for starting tabu « 
search. All packing sequences of the feasible solutions are embraced by 

the large neighbourhood. Tabu search then starts. 

A drawback of the tabu search problem may be the risk of stucking at 

the local neighbourhood. This violates the aim of tabu search algorithm, •� 

which is searching a solution near the global optimum. In this algorithm, 

the greedy heuristic applied on the basic heuristic fills all packing spaces in 

a local-optimizing way. To solve this problem, the parallel TSA approach 

is developed. 

In parallel TSA, a distributed environment is used to run tabu search. 
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This is based on the concept of multi-search threads [33]. For each thread, 

the normal sequential TSA is run, but with different parameter 

configuration. The difference in parameter configuration results in 

diversification of solutions for different threads. 

The difference between the sequential and parallel approaches is that 

the solutions generated by the threads in parallel approach are diversified 

due to different parameter configuration. At the end of neighbourhood 

search of each thread, the threads will communicate with one another to 

exchange the foreign solutions generated by other threads. This foreign 

solution becomes the starting point of next round of search in each thread. 

In this way, the diversity of solution in each thread can gradually be 

increased. 

When sequential TSA and parallel TSA are applied to Bischoff and 

Ratcliff test cases (BR cases), their volume utilization is 92.0% and 92.7% 

respectively. The BR cases are divided into 7 sets, ranging from 

homogeneous to heterogeneous packing instances. The result of most 

homogeneous test cases is about 93% for both while for most 

heterogeneous packing result is about 90%. Although there are 

differences in results between the two types of packing, the worst case of 

TSA is still better than the average performance of some other algorithms. 

This proves that TSA is not only good at solving homogeneous packing 

problems, but also can generate a satisfactory result for heterogeneous 

ones. 

2.5 Other approaches 

Some researchers choose not to use traditional packing approaches like 
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layering and GA, but design new heuristics for solving the container 

loading problem. 

2.5.1 Block arrangement 

The most innovative part of the algorithm in [15] is the formation of blocks. 

In this algorithm, the first step is to group identical items in blocks. One 

of the advantages is that homogeneous blocks are easy to arrange and 

therefore enable a quicker loading time. 

Greedy heuristic is also pursued. The items are sorted by volume 

with larger items being chosen first. All possible positions for stowing 

more items in the container are examined. 

The steps following the block formation is to stow the item at the 

lower back left corner of the empty space and then residual spaces are 

generated. When stowing each item, all empty space should be 

considered. The process repeats itself for stowing other items until no 

-empty space or no item is left in the list. 

‘ The experimental result shows that this algorithm favors the 

homogeneous packing instances while its performance in heterogeneous 

packing instances is the worst. 

2.5.2 Multi-Directional Building Growing algorithm 

This approach introduces the idea of packing the objects by using wall of 

containers as starting surface of packing [30]. User can chooses the walls 

of container for acting as ground, (the base from which the boxes are 
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packed). Then the packing steps continue based on the best matching 

between base area of boxes and empty spaces. 

Experimental results of this algorithm do not come from benchmark 

cases and will not be used to evaluate and compare performance with other 

algorithms. 

2.6 Comparisons of different container loading algorithms^ 

Among all container loading algorithms which have benchmarking results, 

the Parallel Tabu Search algorithm achieves the most satisfactory result 

(92.7% volume utilization). This is due to its increasing diversity in 

solution space being searched. 

The two GAs employing stack-building and layering approach have 

lower volume utilization, 87.5% and 90.1% respectively, because in both 

stack building and layering approach, the packing unit becomes a large set 

of boxes as a whole instead of individual boxes. This will in fact reduce 

the flexibility of packing units due to their large size after grouping together. 

As the boxes in a layer may be of different dimensions, wasted space 

formed between layers will usually larger than gaps formed between 

individual boxes. Though the merger mutator is already introduced to 

minimize such wastage of space, the problem cannot be completely 

eliminated. It is very difficult avoid wasting such space if layering 

approach is used. 

The problem of the block arrangement approach is quite similar 

because its lower volume utilization (88.75%) is due to the decrease in 

flexibility of objects as blocks are formed from them. The large size of a 

‘ D a t a for comparisons in this section come from the reports from other authors 
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block prevents the block to be placed in narrow gaps, but if only one of the 

items in the block is packed individually, it may be able to fill the gap. 

This is the major cause of lower volume utilization of these algorithms 

comparing with parallel TSA. 



Chapter 3 

Principle of LFF Algorithm 

The "Less Flexibility First" (LFF) algorithm was firstly introduced in [1]. 

It is a simple but effective heuristic inspired by a strategy used by Chinese 

ancient masons. Having been applied on packing problems for more than 

1000 years, its effectiveness and value had already been proven. Such 

heuristics developed based on accumulated experience of human beings are 

called quasi-human based heuristics. Before going into the details of LFF 

algorithm, some concepts, rules and the basic principle will firstly be 

discussed in this section. 

3.1 Definition of Flexibility 
« 

The core idea of LFF algorithm is the concept of flexibility. The order of 

packing is determined by the flexibility of objects, in ascending order (i.e. 

less flexible objects are packed before more flexible ones). The space of a 

container also has an order of flexibility. Flexibility measure is based on 

two rules: 

• Flexibility of empty space follows this order: flexibility of a comer is 

less than flexibility of a side, while flexibility of a side is less than 

flexibility of a central void area. This order is determined according 

-20-
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to the freedom of move. In Fig. 3.1a), an object at a corner is bound 

by two sides and can no longer be moved. If it is moved in any of the 

three directions as shown, it will leave the comer position, resulting in 

an invalid location, i.e., no longer a corner. Therefore, no movement 

is possible if the object is required to stick to a comer. In Fig. 3.1b), 

objects on a side can be moved along the side as shown. However, 

only the two horizontal moves towards left or right can keep it 

touching the side. The flexibility is one-dimensional. In Fig.S.lc), 

those objects at centre void area can move freely to any direction as 

shown in Fig. 3.1c) without violating the rule of keeping the object at 

void area [1]. In this case, flexibility is multi-dimensional, i.e., the 

most flexible. 

r : ！ I"  
j No longer at a comer I I No longer at a comer 
j I ] 
I (invalid movement) | j (invalid movement) 

- I ！ 1 、、 A 
Move d i a g o n a l l y � � � Move upward , 

« \ � I 
� j i 

j No longer at a comer ！Move Object at corner 

i 1 
i (invalid movement) | s ideway 
1........_.....…...._....._..."_.....，…--] 

Fig. 3.1a) flexibility of a corner (move along dashed arrows place the object in non-comer positions) 
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J 1 t i t 1 

j No longer on a side J | No longer on a side ! J No longer on a side | 

f (invalid movement) ！ ( (invalid movement) t i (invalid movement) t 

> r  
\ I z 

�� Move upward _ Z 
Move d i a g o n a l l y � � � j Z Move diagonally 

� I • 
I — 1 ‘ t 1 

J On a side | M o v e Object along a M o v e | On a side ； 

！ (valid movement) ！ s ideway side s ideway ！ (valid movement) ！ 

I i 

Fig. 3.1b) flexibility of a side (move along dashed arrows place the object in positions not along a side) 

^ ^ r , 
At center (valid) | At center (valid) | At center (valid) | 

I f I 
丨 ‘ 丨 — — 飞 ‘ ] I 

\ T X 
j ^ “ r r  

i I 
“ A t center (valid) Object at center J At center (valid) i 

r ^ ^ I ！ 

^ Z T T ^ — — � 
[ I [ 1 , ！ 

At center (valid) ！ At center (valid) l 丨 At center (valid) | 
I ‘ ！ I 

1 ‘ ！ 1 i I I 

Fig. 3.1c) flexibility of a central void area (can move in any direction) 

參 Flexibility of objects to be packed cannot be evaluated by an exact 

formula, but can be roughly determined based on the size and shape of 

an object. In general, there are fewer positions that can accommodate 

a larger object, while a space may be found for smaller object more 

“ easily. Fig. 3.2 shows the condition. The smaller object Y can be 

packed into space I, II or III while the bigger object X can only be 
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packed into space II. This implies that flexibility of larger objects 

(with longer side) is less than that of smaller objects. 

n prn 
� II I III 

Y I 1 

' Fig.3.2 Flexibility of objects 

3.2 The Less Flexibility First Principle (LFFP) 

LFFP is inspired by the wisdom of ancient Chinese masons who perform 

packing task using the rule "Golden are the corners; silvery are the sides, 

'and strawy are the voids" [1]. From this rule, the selection criterion of 

empty space is clear: empty corners should be filled first, which is followed 

by boundary sides and void areas come last. 

We derived our LFFP from this ancient packing strategy. Comers are 

defined as the least flexible space for packing while larger objects are less 

flexible objects. For detailed explanation of flexibility, please refer to 

Section 3.1 of this thesis. LFFP packs the least flexible objects to the least 

flexible empty space. In other words, large objects are packed first to the 

empty corners. This ensures that a box has at least two adjacent boxes (or 

•‘ sides of container walls) touching two of its lateral surface and its base is 

supported by another box (or container walls) at the bottom (or touches 
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another box on the top, if gravity is not taken into consideration). Packing 

in a void space should be avoided as this creates empty space surrounding 

the packed box bp. Such space may not be large enough for 

accommodating other boxes in later stages. The box bp becomes an 

obstacle in this case. 

Fig.3.3 illustrates an example (Top view). Dashed arrows points to 

the directions with empty space left while other arrows points to directions 

bounded by container walls or adjacent boxes. Consider three candidate 

packing positions I，II and III for a box. Position I has empty space on its 

right only while position II has empty spaces on two sides. Position III is 

surrounded by empty spaces in all directions. I is the best choice among 

the three (two corners are occupied in I). II is the medium choice (one 

corner is occupied). Ill is the worst (object placed in central void area). 

It is obvious that the more the corners occupied by a box, the lower is the 

probability of having empty spaces surrounding this box. 

‘ r ' ^ n 
I Packed object A： < - - � II • 

. _ ] 」 卞 -
I ‘ I I ~ 

I I I I - I 
^ I 一 厂 I" 一寸― “ 

, _ I 卞 」 

Fig.3.3 Candidate packing position for an object 
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There are always corners in any packing configuration unless 100% 

packing density is achieved. In LFF, the only candidates of space for 

packing an object are the comers. A packed object must occupy at least one 

corner in the current packing configuration. 

To select a corner for packing the current object among all the 

available corners, a mechanism should be developed to evaluate the 

suitability for the object under investigation to be put to the evaluated 

corner. The following section describes the 2D LFF algorithm introduced 

in [1] which achieves around 99% packing density in most randomly 

generated large-sized examples. 

3.3 The 2D LFF Algorithm 

As the 3D LFF algorithm is developed based on the 2D LFF algorithm,its 

predecessor is introduced here to give readers a better understanding before 

proceeding to the later sections. But to avoid repetition, the 2D LFF is 

'described briefly. More detailed concepts and examples will be discussed 

in Section 5 in the 30 LFF part, which is the focus of this research. 

In the 2D Packing problem, a large empty rectangle (acting as a 

container for packing) and a set of smaller rectangles with arbitrary sizes 

are given. The aim is to find out whether it is possible for the container to 

accommodate all the smaller rectangles, provided that the placement is: 

• orthogonal 

• no overlapping and 

“ • with all rectangles packed within the container, i.e. the boundary of the 

container is not exceeded. 
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If a complete packing solution does not exist, the algorithm will obtain a 

partial solution with minimized unpacked space, i.e. the highest packing 

density. The following briefly describes the steps of the 2D LFF 

algorithm. 

3.3.1 Generation of Corner-Occupying Packing Move (COPM) 

As mentioned before, there may be more than one corner for an object to be 

packed to. In order to represent the relationship between objects and the 

corners occupied by them, a quinary-tuple is introduced: 

� longer side, shorter side, orientation, x!,y!> 

where longer side and shorter side are the length and width, respectively, of 

the rectangle being packed. Orientation indicates whether the rectangle's 

length is placed horizontally or vertically, jc； and y j are the coordinates of 

“the lower-left corner of the rectangle. 

‘ Based on the current configuration, every unpacked rectangle can be 

used to generate a list of COPMs representing the possible corners and 

orientations for packing them into the container. The invalid COPMs 

causing overlapping of rectangles or exceeding the boundary will not be 

included in the COPM list. 

This COPM list is firstly sorted in lexicographical order to indicate 

their priority. The longer side will be the first key for sorting while the 

shorter side will be considered when resolving a tie. The COPMs are 

“ sorted in descending order, which follows the concept of less flexibility 

first mentioned in Section 3.2 as the longer rectangles are less flexible and 
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therefore, being assigned with a higher priority in the packing process. 

Fig. 3.4 shows some candidate COPMs for an object. 

,/:'�.:‘�玄. I II • . , • - � Object to be 
�’[',t'、、？.'、r . - - - . J 

Object already packed packed 

Object already ： 一、,, 
. . COPM 1 

� I 
fM , I 

I I 

• ： • • �C O P M 3 I ! 哪 舉 … � . 
• . ；, ..VVt'x I " ， … 

Object already - � 

- C O ， ' 猫 ‘ d : 參 ‘ 1 

_� I K f e \ : 
Fig.3.4 Candidate COPM in a certain packing configuration 

Corners marked with I and II are invalid for packing the object because 

such arrangements will result in overlapping. The next step is to evaluate 

the three COPMs to see which corner is the best to accommodate the 

object. � 

The evaluation of a COPM is based on a fitness cost function (FFV). 

Each COPM is associated with an FFV which indicates the resulting total 

area of packed space if this COPM is applied. ‘ To measure the FFV of 

COPMs, pseudo-packing and greedy approach should be carried out. 

3.3.2 Pseudo-packing and the Greedy Approach 

With all the COPMs generated, every rectangle will be pseudo-packed •• 
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according to its own COPM list. Pseudo-packing means to temporarily 

pack a rectangle to a corner indicated in the COPM, do greedy-packing on 

other rectangles left, measure the fitness cost function (FFV) and remove 

rectangles from the corner. The pseudo-packing process then repeats by 

packing the same rectangle to another comer mentioned in next COPM. 

The pseudo-packing priority follows that in COPM, with the less flexible 

objects being handled first. 

To simplify the problem while giving readers a whole picture of 

pseudo-packing and greedy approach, we consider a packing scenario with 

three rectangles only. The dimension of the container is “9m x 6m’，and 

that of the three objects for packing are object A (6m x 4m), B (5m x 

4m) and C (5m x Im). When evaluating the COPM list for the largest 

object, A, pseudo-packing is carried out. A is firstly pseudo-packed 

according to one of its COPM: 

2mt p ^ 

” J  

« 

4 m 

A 

” Im iv_ 
^ 6m • ^ S m — ^ 

Fig. 3.5 Object A pseudo-pack to its COPM 

To calculate the FFV for this COPM of A, greedy packing of the remaining 

objects is carried out. It means that the objects are packed to the first 

corner which can accommodate them without violating the three rules 
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mentioned in the beginning of this section. It is obvious that object B 

cannot be packed to the container because its width is 4m, which is larger 

than the widest gap left in the current packing configuration. Object C 

can in fact be packed to corner I，II, III, IV and V. However, in greedy 

approach, no selection is required. C will just be packed to the first 

available corner, i.e. I, without considering other candidates. The result is 

shown in Fig. 3.6 

2mt I " ^ � 

c 
，r  
i L 

4 m 

A 

U |lll IV 
^ 6 m ^ 3 m • 

Fig.3.6 Object C pseudo-pack to its COPM 

FFV(COPMl) = Area of A + Area of C = 6m x 4m + 5m x lm = 29 m^ 

After the FFV of COPMl is calculated, the pseudo-packed objects are 

all removed from the container and the original packing configuration (in 

this case, an empty container) is restored. The pseudo-packing continues. 

The second COPM under consideration is to pack A to the same comer 

but with another orientation, B and C are then greedily packed to the first 

available corner. The result is shown in Fig. 3.7 
II 
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c 

, A 
6m B 

^ 4m 5m • 

Fig.3.7 Object A, B and C can all be pseudo-packed into the container 

FFV(C0PM2) = 6m x 4m + 5m x 4m + 5m x lm = 49 m^ 

Therefore the FFV of C0PM2 is higher than that of COPMl, which 

implies that C0PM2 is a better candidate. In this case, as complete 

packing is achieved, further pseudo-packing to other COPMs are skipped 

and the pseudo-packing step stops here. However, in real situation, there 

are always many objects to be packed. Complete packing is difficult to be 

achieved. Normally all COPMs for an object will be evaluated by the 

above steps and the best one is then chosen. -

3.3.3 Real-packing 

The COPM with the highest FFV will be selected and applied in the real 

packing step and the COPM list of the' next unpacked object will be 
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processed by repeating steps described in this section. 

3.4 Achievement of 2D LFF 

According to the experimental results shown in [1], when 2D LFF is run on 

randomly generated test problems, it found existing optimum solutions for 

40% of test cases and the average packing density is around 99%. When 

packing benchmarks are used to run the experiments, the unpack area 

ranges from 2% to 0% with the average unpack ratio of 0.92%. The 

performance is quite consistent, while packing density increases with the 

number of rectanglesr 

Due to the effectiveness of 2D LFF proven in the experiments on 

benchmarks, its potential in producing good results in 3D packing problem 

is believed to be large. However, LFF may have extremely low 

performance in particular types of problem instances. The next section 

focuses on analyzing the worst case and the error bound of LFF algorithm. 



Chapter 4 

Error Bound Analysis on 2D LFF 

Error bound is a kind of performance bound. It can be considered as a 

measure on the worst case performance of an approximate algorithm. As 

mentioned in previous sections, LFF is an approximate algorithm, aiming at 

finding a near-optimal solution, for the packing problem which is 

NP-complete. 

4.1 Definition of Error Bound 

When applying an approximation algorithm to an optimization problem, the 

‘result is always reflected by a cost, which is calculated in different ways for 

different problems.�For a maximization problem, the optimal solution is 

the one with the highest cost while the optimal for a minimization problem 

is the one with the lowest cost. 

The solution given by an approximate algorithm is usually 

near-optimal. Let the cost of optimal solution be C* and that of 

near-optimal be C. To assess how good the near-optimal result is, the 

relative error is calculated.. 

” C - C * 
Relative error = (4.1) 

C* ‘ 

-32-
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The larger the relative error, the worst the result is. To evaluate the 

performance of an algorithm, the worst case analysis is important. Error 

bound is the relative error when the program processes the worst case. 

For any input size n, an approximation algorithm has a relative error bound 

of £(n) if 

… （ 4 . 2 ) 

where s(n) < 1 and it shows dependency on n. Error bound independent 

of n uses the notation s. 

For the 2D (or 3D) packing problems, the objective is to maximize the 

packing density (or volume utilization) and they are thus maximization 

problems. The cost is the occupied area (or volume) in the bounding 

rectangle (or container). Consider a 2D packing problem. Let A* be the 

optimal area packed with object while A is the near-optimal area given by 

LFF. The relative error of this packing algorithm is calculated by: 

' A*—A 
Relative Error = (4.3) 

- A* 

In Section 4.2, some packing scenarios for which LFF generates 

unsatisfactory results are demonstrated. Section 4.3 is a mathematical 

proof to show that the solution given by LFF does not have an error bound. 

4.2 Cause and Analysis on Unsatisfactory Results by LFF 

The principle of LFF algorithm is to pack the less flexible objects to the 

less flexible space. Logically this works since the less the flexibility of an 
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object, the higher is the difficulty for it to be packed. Packing them at 

early stage can increase the chance for them to find a valid location. Yet 

in some special cases, LFF may give very low packing density. Problem 

arises when the evaluation of "flexibility" does not reflect the real situation 

or when a "less flexible object" is packed in such a way that blocks many 

other objects from being packed. The existing version of LFF decides 

flexibility of an object by the length of its longest side. The object with its 

longer side being longest among all other objects is regarded as the least 

flexible and will be packed first, without taking other factors into account. 

Consider the following incomplete packing scenario: 

Dimensions of Bounding Rectangle = 150 cm x 40 cm 

Dimensions of Rectangles to be packed: 

Rectangles 1 to 3 = 50 cmx40 cm 

Rectangle 4 = 111 cm x 5 cm 

The optimal solution is obvious. The packing density is 100%, if 

Rectangle 4 is left unpacked. Fig. 4.1 shows the optimal packing result 

with Rectangles 1 to 3 all packed. 

1 2 ‘ 3 

Fig. 4.1 the optimal packing result with Rectangles 1 to 3 all packed 

•‘ 2 
The packed area = 3x50 cmx40 cm= 6000cm 
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According to the LFF algorithm, Rectangle 4 is the least flexible because 

its longer side is 60 cm while that of others is 50 cm. Pseudo-packing 

starts with Rectangle 4. Some of the pseudo-packing process is shown in 

Fig. 4.2 

a) Pseudo-pack Rectangle 4 at the 

lower left comer. It has the 
4 

/ l o n g e s t longer side and is  

considered as the least flexible 
I  

‘ V 

b) Greedily pack Rectangle 1 is 

I illegal because part of Rectangle 

/ 4 1 is outside the bounding 

rectangle. Rotating Rectangle 1 

I by 90° results in the same 

situation 

- Fig. 4.2 Example of pseudo-packing process 

As Rectangles 1 to 3 are of the same dimensions, none of them can be 

packed after Rectangle 4 is placed at the lower left comer. The next 

pseudo-packing step will be placing Rectangle 4 at another orientation by “ 

rotating it 90° but this again exceeds the boundary of the bounding 

rectangle. Pseudo-packing Rectangle 4 at the other three corners 

generates the same result. Therefore, it is packed to the first COPM, i.e., 

“ the lower left corner. None of the other three rectangles can be packed. 

The packed area is the area of Rectangle 4," i.e., I l l cm x 5 cm = 555 cm^ 
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(6000-555) 
Relative error = ̂  ’- = 0.9075 

6000 

In this case, the rectangle that should be left unpacked is chosen to be 

processed at the first place. The packing order according to "flexibility" 

becomes the cause of the large relative error. In fact, the area occupied by 

Rectangle 1 is much larger than Rectangle 4. If area is regarded as the 

criteria for assessing flexibility，the packing density here will become 100%. 

Therefore, assessing "flexibility" carefully by considering different factors 

instead of only length of the longer side may lead to better results. 

Low packing density may also occur in complete packing. In 

complete packing, all objects can be packed inside the container when 

optimal solution is achieved. However, LFF may generate a solution far 

from optimal by packing an object at a place which blocks other objects 

from being packed. Consider this example: 

‘ Dimensions of Bounding Rectangle = 25 cmx20 cm 

Dimensions of Rectangles to be packed: 

Rectangles 1 = 19 cm x 19 cm 

Rectangles 2 to 4 = 20 cm x 2 cm 

The optimal solution is shown in Fig. 4.3. 
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3 — _ , 1 

4 . 

Fig. 4.3 The optimal solution 

Packed area = 20 cmx2 cmx3 + 19cmx 19 cm = 481 cm^ 

Packing Density = = 器 x 100% = 96.2% 

When this packing scenario is processed by LFF, Rectangles 2 to 4 will be 

packed first as they are "less flexible". In pseudo-packing and greedy 

packing of LFF，the horizontal placement will be tried first. For greedy 

packing, if horizontal placement is legal，vertical placement^ will not be 

considered. Some of the steps of LFF are shown in Fig, 4.4 

a) Pseudo-pack Rectangle 2 to 

lower-left comer 
« 

2 一 ^  

2 Horizontal Placement "means that the longer side of the rectangle is placed horizontally whi le the 
“ shorter side is placed vertically 

Vertical placement means that the shorter side of the rectangle is placed horizontally whi le the 
longer side is placed vertically 
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b) Greedily pack other rectangles 

until no more can be packed. Now  

Rectangles 2 to 4 are pseudo-packed. 
4 — • 

The packed area is 20 cm x 2cm x 3 = 

2 • ‘ ^ 120 cm̂  

Some steps are — 

omitted 

c) Rectangle 2 is then packed to 

lower-left comer by rotating 90°. 

2 ^ Rectangles 3 and 4 are greedily 

4 packed. Rectangle 1 cannot be 

^ — packed. The packed area is 
3 

~ = ^— still 120 cm̂  

Fig. 4.4 Sample steps of LFF 

The pseudo-packing continues by placing Rectangle 2 to the other three 

corners with these two orientations. The total packed area after greedy 

packing is also 120 cm^ in each case. The first COPM is chosen for 

real-packing. 

After packing Rectangle 2 at the first COPM, the algorithm continues 

to perform pseudo-packing until no more rectangles can be packed. In 

fact, it is obvious that Rectangle 1 cannot be packed into any comers in the 

bounding rectangle. Since there is not enougK space for accommodating 

Rectangle 1，the maximum packed area will be 120 cm^. Packing density 

120 
is X100% = 24%，which is very low. 

500 . 

‘ Relative error = = 0.751, to 3 sig. fig. (4.4) 

“ 



CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 39 -

If the second COPM of Rectangle 2 is chosen for real-packing, it can be 

possible for optimal solution to be achieved. The reason for discarding 

this COPM is because it generates the same packed area as the first COPM 

after greedy packing of other rectangles. According to LFF, the choice 

sticks to the first. Yet the second COPM can in fact lead to the optimal 

solution. The problem here is on greedy packing, which proceeds to 

another object immediately after the current one being packed find a place. 

If greedy packing packs the current object to more than one COPM, say, 

instead of greedily pack Rectangle 3 as shown in Fig. 4.4 and proceed to 

pack Rectangle 4, rotate Rectangle 3 by 90° as the second step of greedy 

pack and assess the two greedy pack options by tightness measure [2], it is 

possible to obtain the optimal solution as the second COPM will be 

selected for Rectangle 2. However, in the original LFF, this situation is 

not handled and may lead to large relative errors. 

From the above two scenarios, it is discovered that when there are long 

but narrow rectangles, i.e., large length/width ratio, the risk of getting large 

error bound increases. 

4.3 Formal Proof on Error Bound 

As mentioned in Section 4.1，relative error bound is the maximum relative 

error of the result produced by an algorithm in the worst case. From the ’� 

definition of relative error, we can deduce the situation in which LFF 

generates the largest relative error. 

In most cases, packing algorithm deals with complete packing 

scenarios rather than incomplete packing scenarios. We will try to 

calculate the error bound for complete pactcing. 
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In the worst case, the relative error is at maximum. By equation (4.4)，to 

simulate the worst case, the relative error should be the largest, i.e., when 

J * is set to be as large as possible while A is set to be as small as possible. 

In other words, the cases with the largest wasted space should be 

considered. 

To simplify the case, assume there are two types of rectangles, Ri and 

R2, only. Let length and width of container be L and W respectively, 

length and width of Ri be l^j and w尺/ respectively, length and width of R2 be 

Ir2 and Wr2 respectively, where L> W, > wrj and Ir2> 

By investigating the properties of the second example shown in 

Section 4.2, we have come up with a series of deductions shown below 

which can gradually lead to a simulation of the general worst case for LFF. 

Note that the following steps always have two goals: to maximize the 

optimal packed area (A*) and minimize the packed area (A) achieved by 

LFF. 

Step 1: Deduce the dimensions for the rectangles being packed: 

a. There should be rectangles with very large length/width ratio. 

These rectangles will be referred to as Ri. The large length 

ensures that such rectangles are pseudo-packed before other 

rectangles. This increases their chances to block other 

rectangles from being packed and reduces A. Irj should be 

maximized. The short width ensures that their area is small so 

that A is further reduced. Wrj should be minimized. 

b. With reference to the complete packing scenario in Section 4.2, 
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Ri should not be packed with length placed vertically but should 

be placed in another orientation so that they prevent a large area 

from being filled with other rectangle. By Step la), //?； must be 

as large as possible, provided that they can be placed with their 

longer side along the width of the container to generate optimal 

solution: 

hn=W (4.5) 

c. There should be rectangles with very large area but with their 

length slightly shorter than Ri to ensure that they will be 

processed after all Ri are packed. These rectangles will be 

referred to as R2. They should have their length and width as 

large as possible to ensure that they will be blocked by Ri. In 

fact, the larger the length and width, the larger is the area. If 

these rectangles cannot be packed, its large area will result in 

small A. To maximize 1^2 and w/?2： 

‘ (4.6) 

Step 2: Deduce the number of rectangles in each type 

It is better to have one R2 only. If multiple rectangles are present, 

each of these rectangles will be smaller in area and their flexibility will 

increase. This means that it is easier for each of them to be packed 

and the wasted area will be reduced. The relative error will become 

smaller. , 



CHAPTER 4 ERROR BOUND ANALYSIS on 2D LFF - 42 -

No. of Ri = « - 1 

No. ofR2= 1 (4.7) 

Step 3: Some constraint to minimize packed area by LFF 

a. To ensure that the area "above" or "below" Ri cannot be filled by 

the R2, the following must be satisfied: 

( 4 . 8 ) 

b. Step la) states that Wri should be minimized. According to (4.5) 

and (4.7)，the minimum value of w^i should be 2. 

Wr2 = 2 (4.9) 

' c. To ensure horizontal orientation of Rj disables R2 to be packed on 

‘ their "left? or "right": 

(4.10) 

Step 4: Deduce the dimensions of the container to maximize optimal 

packed area 

The packed.. area in optimal solution should be maximized by 

” occupying as large area in bounding rectangle as possible. L and W 

should be set to values that can just accommodate all rectangles. • 
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According to the above deductions, the maximized optimal solution 

with input size n is shown in Fig. 4.5: 
L 

^ ^ 

rfcuiiiiiiiiiiiiiir 
A rectangle of Type R2 

X V 
Here are ( n - 1) rectangles of type Ri 

W - 1 
Their length is W and width is 2 cm 

Fig. 4.5 the maximized optimal solution with input size n 

The area filled with color is left empty. 

As shown in Fig. 4.5， 

L = 2{n-\) + {W-\) (4.11) 

Step 5: Deduce the maximized optimal packed area 

- . 
a. By (4.7), to maximize relative error for input size n ，the number of Ri 

should be {n - 1) and the number of R�should be 1. 
* $ 

4 Input size n means there are n rectangles to be packed. Therefore, n> 0 
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= + 1 (4.12) 

b. By (4.5)，Iri = PTand by (4.9), Wrj = 2, therefore, 

+ (4.13) 

By (4.6), Ir2 = Wr2 = Iri-Y, with (4.5), Ir2 = wr2=W-\ 

A*= fVx2x(n-l) + (W- 1)2 (4.14) 

Step 6: Deduce the minimized packed area by LFF 

Consider the packed area A generated by LFF. Since horizontal placement 

is chosen for the first rectangle, by (4.8) and (4.10), it is certain that the R2 

rectangle cannot be packed. For large fV, all R\ can be packed, therefore, 

A=lRjxwii]X 0 -1 ) 

=Wx2x{n-l) (4.15) 

By (4.3), relative error e(n) in this worst case: 

( �A * - A 
V ) J* 

_fVx2x(n-l) + (fV-iy-fVx2x(n-l) (4 ^^ 

fVx2x(f7-l) + (fV-iy 丨 
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Step 7: Proof for the inexistence of error bound 

For any given value of n, which must be positive, e(n) increases with fV. 

By (4.11), L increases with W and L > W. Thus the Ri can always be 

packed in the worst case at horizontal position and equation (4.15) and 

(4.16) always hold. 

By the definition of Error Bound of an approximate algorithm, for any 

input size n, the error bound s(n) is always larger than or equal to the 

relative error e{n) produced by the algorithm, i.e., 

s(n) = max. e{n) (4.17) 

As e(n) increases with W, maximum e{n) can be achieved when W is 

maximum. To prove whether any error bound exists, we attempt to find 

the limit of the error bound deduced in (4.16) on next page. 

•A 
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[Wx2x{n-\) + {W-\f] 

=lim 5 ^ 
w^. 2W{n-\)-v(W-\f 

{w-\y 

fV'-2fV + l 
=lim ； 

�“2fV(n-l) + fV'-2fV + l 

= l i m — 妒 2 

1 2 1 
1 ——+ —7 

= l i m 妒 � 2 _ 
2(n-\) 1 2 1 
— - + 1 + 

w w W^ 
_ l + 0 + 0 

(4.18) 

It is impossible for relative error to be 1 because there will surely be at least 

one rectangle packed, no matter how worst the case is. A cannot be 0 and 

relative error cannot be 1. However, when W increases and approaches 

infinity, the relative error increases and approaches 1. Therefore in LFF, 

error bound does not exist for any input size n. This can be regarded as a 

theorem which will be a useful reference for future research. 

.k 

Theorem: 

No error bound exists when applying LFF to 2D packing problems of any 

input size n 
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Chapter 5 

LFF for Container Loading Problem 

Although the performance of LFF in worst case can be very unsatisfactory, 

on average it works very well. It consistently produces about 99% 

packing densities on most randomly generated large examples. As its 

application on 2D packing gives encouraging results, its usage is extended 

to 3D packing problems. 

As mentioned in Section 1, based on "objective function 

classification", there are three types of 3D packing cases. Our research is 

focused on the container loading problem, aiming at maximizing the 

volume utilization of the container. This is proven to be NP-complete 

[15]. No existing algorithms are able to give optimal solutions in 

polynomial time. Heuristics are the mostly adopted approaches for this 

kind of problems. 

According to the Literature Review in Section 2, it is not difficult to 

discover that some researchers [24] develop their 3D packing algorithms 

based on some 2D packing algorithms with satisfactory results. The 

algorithm we are going to introduce is also an extension from 2D to 3D. 

LFF is a heuristic for solving packing problems by the principle 

"packing the less flexible object to the less flexible space". Its success in 

2D is the reason for implementing it as a container loading algorithm. It 

is believed that its extension to 3D packing can produce promising volume 

utilization. Although 2D and 3D packing problems are similar in nature, 

- 4 7 -
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3D cases are more complicated due to the larger number of possibilities. 

The number of COPMs for each object is much larger than that in 2D since 

there are much more corners in a 3D space and for each corner, six possible 

orientations can be considered. The container loading problem is 

formulated in Section 5.1. 

5.1 Problem Formulation and Term Definitions 

The problem being studied involves the packing of a subset of boxes into a 

single container with fixed dimensions. The objective is to maximize the 

volume utilization of the container. Given a set of n rectangular-shaped 

boxes {bi, b2,办3’ ... , with known dimensions /,xw,x/z,，where 

hi, for the i'^ box, and a single rectangular-shaped container B with fixed 

dimensions Lx Wx H, a subset of the boxes should be chosen and packed 

orthogonally and entirely into the container. Orientation constraints and 

stability constraints should be taken into consideration. 

‘ Orientation defines horizontal or vertical placement of the box's 

surfaces. It states, which sides of the box are placed along x-dimension, 

少-dimension and z-dimension. Orientation constraints states that some 

sides of the box cannot be placed vertically. This restricts the rotation of 

the box and reduces the number of possible packing position. 

Stability constraints require every packed box to be supported by the 

container base or by another box underneath. The supporting material 

must ensure that the box on the surface is supported in a stable and 

balanced manner, i.e., will not fall off. This constraint is normally 

“ handled in two ways. The first way is to ensure that the ratio of supported 

surface area to the total surface area of the upper box exceeds a predefined •• 
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value, i.e., the area supported by underneath layer / the total base area > a 

predefined value (— >R), usually 0.5 is taken as a default value R if no 
A 

value is specified by users. Another way is to fill all empty space with foam 

rubber to ensure a proper support of boxes on top. The latter way is a 

simpler one as the computation time for area ratio calculation can be saved. 

In our research, the space-filling approach is used for handling stability 

constraints. 

Volume utilization is defined as the percentage of occupied volume in 

the container. It can be calculated by: Volume of occupied space / total 
V 

volume of the container ( -^ ) . 

The core idea of LFF is "flexibility". The flexibility of objects and 

flexibility of space are taken into account. The definitions of these two 

"flexibility" are described in Section 3.1. 

A corner C in a 3D space is defined in Fig. 5.1a) to Fig. 5.Id). It 

shows the top view (on x - plane) of the packing configurations. 

-Consider the points pointed by arrows. Draw a cross on the point to form 

four regions I，II，II and IV as shown. The shaded regions are occupied by 

packed objects while the white region is empty space. A point is a comer 

when three criteria are satisfied: 

(i) Any three out of the four regions are occupied by other 

objects (or the boundary of the container). Four types of 

corners are shown. 
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Fig. 5.1a) An upper left comer Fig. 5.1b) A lower left comer 

Fig. 5.1c) A lower right comer Fig. 5.Id) An upper right comer 

(ii) The corner points must lie on the container base or on the 

upper surface of another object. These comer points are for 

bottom-up packing. In this research, as foam rubber is used 

for supporting purpose, comer points lying below the 

container roof or below lower surface of another object are 

also considered. This direction of packing is top-down 

packing. 

(iii) In the height dimension, the upper surface of the three 

surrounded objects must be higher than the comer point, 

unless the corner is bounded by container walls when 

considering bottom-up packing. Fig.5.2a) shows a comer 

of this type. For top-down packing, the lower surface of the 

three surrounded objects must be lower than the comer point, 

unless the comer is bounded by container walls. An 

example is shown in Fig 5.2b). 
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Corner here ^ " ^ H M U ^ 

MM 
Fig 5.2a) a corner for bottom-up Fig 5.2b) a comer for top-down packing 

packing (side view) (side view) 

The representation of an object in a container in the 3D space is by six keys 

in a 3D coordinate system. The coordinates of its lower-left point nearer 

to the origin of the coordinate system forms the first three keys (x；, yj, zj) 

while the coordinates of its upper-right point farther from the origin forms 

the last three keys (x�’ y2, z � . T h e exact region occupied by the object can 

now be determined by these keys. A box with keys (0，0，0，3, 2，5) in the 

coordinate system is illustrated in Fig. 5.3. 

“ z 
y 

^ (3, 2，5) ^ 

I / 
I / 

/ 

(0，0;0) ^ • A： 

‘ Fig. 5.3 The representation of an object in a 3D coordinate system 
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Following the object representation and definitions, the problem can also 

be formulated as follows. 

Given a triple of coordinates [xgi, ysi, ^bi, b̂2> yB2’ ^52} representing 

the container and a set of n positive number triples </；, w；, /z/>, <l2, W2, 

h2>, ..., <ln, hn> representing the length, width and height of the 

corresponding boxes to be packed, the objective is to find a solution 

composed of n sets of tuples {xjj, y"，z", x � ’ yn, z/2}’ ."，{x„i, yni, z„i, x„2, 

y„2, z„2} where x"< Xi2 andyu < 乃：and z" < z,̂  for all 1 < i <n while the 

following conditions should be satisfied: 

(i) According to the representation of the object, there are six possible 

orientations: 

• [(X/2 — x") = h and iya - yu) = w, and {z^ - z") = /zj 

• [0/2 — Xij) = w, and (y,2 _ 少")=h and (z,2 — z") = /zj 

• [{Xi2 - Xii) = li and (y,? -yu) = hi and (z,: - z") = w j 

• [(Xi2 - X") = hi and {ya -yu) = /, and (z,2 - z") = w,] 

• [(x/2 - xu) = w, and (y,2 - y " ) = /z, and (z,-2 - z") = /,] 

• [ f e - Xi!) = hi and {y^ — ̂ y") = and (z丨2 — z ,y) = / , ] 

(ii) To ensure no overlapping of objects occur, for all 1 < i, j < n, at 

least one of the following six conditions must be met: Xj! > x,� ,Xj� 

^ ^ihyji^ yi2,yii ^ yji.zji > z^,z,-； > zj2, 

(iii) To ensure all the boxes are completely inside the container, for all 

1< / ^ n\ Xbi < Xii,Xi2< XB2,yBl^ yU, yi2 ^ yB2, Zbi< Z", 

Zi2 ^ Zb2’ , 
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If such a solution cannot be obtained, a subset of the given boxes is chosen 

and packed in a way that minimizes the volume of wasted space, i.e. 

maximizes the volume utilization. 

The above definitions and notations are used throughout this section 

unless specified. 

5.2 Possible Problems to be solved 

In our research, the first step is to analyse the 2D LFF algorithm to see if it 

is suitable for being extended to 3D. Possible difficulties include: 

參 Region query: As the scenarios of overlapping of 2D items are much 

fewer than 3D items, this research should involve an analysis on how 

to detect overlapping of objects in 3D. The region queries are 

performed by using the data structure K-D tree [35] which can 

“ effectively represent, update and query for the current packing 

“ configuration., 

• Corner list maintenance: For 3D packing problem, the number of 

corners generated after each packing step will be much more than that 

in 2D. If corner formation is by testing for conditions of each 

possible scenario, the corner list maintenance will take a very long � 

time to process the current packing configuration. The comer 

detection method must be efficient and no corners should be missing 

.. during corner update procedures. The method for detection of comer 

is developed based on the corner definition shown in Section 5.1. 

For each potential comer point, we test for all rules of a corner to see • 
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if any of the rules cannot be satisfied. A corner is inserted to corner 

list only when all the conditions of a corner are satisfied. 

參 Substantial increase in the number of COPMs during pseudo-packing 

procedure should be handled with care to prevent errors when the 

program is running. 

參 The long running time due to the great increase in pseudo-packing 

steps should be cut down, if possible. This problem is handled in the 

development of Less Flexibility First with Tightness Measure (LFFT) 

algorithm. 

5.3 Implementation in Container Loading 

The LFF for the container loading problem involves 4 major steps: 

(i) COPM generation 
(ii) Pseudo-packing and greedy packing 
(iii) Real packing 

The details of the steps will be discussed in this section. To illustrate the 
complete flow of the LFF algorithm, we first visualize the flow in Fig 5.4. 

A 
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ZInMai Packing / —̂—   
Conftguratioo 广' ‘ ‘ 

v̂  COPM 
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/ NawPadtlno / / Connguratio" / 

Greedy Packing — | 
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i r 厂 i I .� 

• * 

Fig 5.4 A flowchart showing the f low of LFF algorithm 
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5.3.1 The Basic Algorithm 

For each unpacked object, there can be more than one candidate corners to 

which it can be packed, without violating the three conditions stated in 

Section 5.1. The representation of a packing relationship between an 

object and a corner is defined as a comer-occupying packing move 

(COPM), in the form of a tuple 

� longest side, medium side, shortest side, orientation, X/, yi, zj> 

where longest side, medium side and shortest side are the length, width and 

height of the box being packed. Orientation states which sides of the box 

are placed along x-dimension, j^-dimension and z-dimension. There are 

six possible orientations: 

Orientation ID Actual Placement 

‘ 0 �width // x-axis, length II >^-axis, height // z-axis> 

‘ 1 �height // x-axis, length //jz-axis, width // z-axis> 

2 � length // x-axis, width II j^-axis, height // z-axis> 

3 �height II x-axis, width //_y-axis, length // z-axis> 

4 � length // x-axis, height // _y-axis, width II z-axis> 

5 �width // x-axis, height// -axis, length // z-axis> 

Table 5.1 Six possible orientations of a box 

‘ Fig. 5.4 shows the six possible orientations of a box. SI here represents 

the "width-height" surface; S2 represents the "length-height" surface while 

S3 represents the "length-width" surface. Fig.5.4a) shows the case with 
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orientation ID = 0; Fig.5.4b) shows the case with orientation ID = 1; 

Fig.5.4c) shows the case with orientation ID = 2 and so on. Fig.5.5 is 

shown on next page. 

Note that Xy, yi, z； are the coordinates of the object's lower-left comer 

nearer to origin, which are the first three keys representing this candidate 

location. With the given dimensions, the last three keys can easily be 

calculated. 

Given a current packing configuration in which all boxes are packed at 

fixed locations, the first step of LFF algorithm is to generate a list of 

COPMs representing all valid candidate packing positions for all unpacked 

boxes. Consider packing an object which does not have any orientation 

constraints, i.e. six orientations are possible. For a packing configuration 

with 6 corners, a maximum of 6x6 = 36 COPMs can be generated, assume 

all of them obey the conditions stated in Section 3. Section 5.4 will 

present a detailed example of COPM generation process. 

The generated COPM list, containing all valid COPMs for all 

unpacked objects, is sorted in descending order according to the first three 

members of the tuple (the sorting consider longest side first and use 

medium side and shortest side to solve a tie). This order is significant as it 

places the less flexible objects (longer and larger) in higher ranks of the list 

and this list is processed from top to bottom in order. This ensures that 

less flexible objects are packed first, which is the principle of LFF. 



CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 58 -

t z 
/N 个 

； A 

M m H K 、、！ X̂ 
a) ‘ b) 

I z 

7 1 ^ 
. I l l 圓 I _ _ I i l l I i i i i I I I I I I I _ I _ i i _ | | : 、 m 

— • 丨 7 
r/ . 、办、'�：： WSBm �,�/> i z c—q 

k ？—^x b ： ^ — — E >x 
c) d) 

‘ I. z 

m m n f f f ^ t 揭 
i i i i m i i i i i — w i i i l E ! ^x 

- €) f) 
‘ 

Fig.5.5 The six possible orientations of a box 
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A fitness cost function (FFV) is calculated and associated to each COPM in 

the list to determine which candidate is the best one. This FFV is 

calculated through a procedure called "Pseudo-Pack". A COPM is said to 

be "pseudo-packed" when the corresponding box is temporarily packed to 

the specified corner for the assessment of the FFV of this COPM. After 

FFV is obtained, the box can be removed from that corner and 

pseudo-packing of the next COPM is performed. In each pseudo-packing 

step, the left-over boxes (excluding the pseudo-packed one) are 

pseudo-packed to the first available corner greedily, following the COPM 

list order until no further packing is possible. The FFV for this COPM 

candidate is the total volume of all pseudo-packed boxes. The packing 

configuration is reverted and the pseudo-pack process continues for the 

next COPM for the same box, which is finally packed to the comer with the 

highest FFV. By evaluating the FFV of the COPM of each box, the 

packing process repeats until no large enough empty space is left or all 

boxes have been packed. The volume utilization is then calculated by the 

_ Vo / V, 

\ 

5.3.1.1 Generation of Corner Occupying Packing Move (COPM) 

There can be more than one candidate corners for an unpacked box. The 

representation of a packing relationship between a box and a corner is 

defined as a corner occupying packing move (COPM), in the form of a 

„ tuple:� longest side, medium side, shortest side, orientation, Xj, yj, zy> 

where longest side, medium side and shortest side are the dimensions of the 

•‘ box being packed. 

Orientation states which sides of the box are placed along x, y and 
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z-dimensions. It can be set to 0-5. Please refer to the earlier part of this 

Section for the placement of each orientation. zj are the coordinates 

of the box's lower-front-left corner in a 3D coordinate system representing 

the container. 

Given a current packing configuration in which all boxes are packed at 

fixed locations, the first step of LFF algorithm is to generate a COPM list 

representing all valid candidate packing positions for all unpacked boxes. 

When packing a box to a comer, without orientation constraints, six 

orientations are possible. For a packing configuration with six corners, a 

maximum of 6x6 = 36 COPMs can be generated. This COPM list is sorted 

in ascending order of flexibility in the way discussed in Section 3. As this 

list is processed from top to bottom, less flexible boxes are packed first, 

which obeys the principle of LFF. Note that as the longest side is the first 

parameter for sorting, the object with the "longest longest side" will be 

considered as the least flexible. 

5.3.1.2 Pseudo-Packing and the Greedy Approach 

Each COPM for an unpacked box is then evaluated to choose the best as 

the final packing position. COPMs that cause overlapping of adjacent 

boxes or exceeding container boundary are deleted before evaluation takes 

place. � 

"Pseudo-Packing" means placing a box temporarily to a location 

specified by a COPM. In each pseudo-packing process, the least flexible 

unpacked box 办,is pseudo-packed to one COPM in the list. A Fitness Cost 

•‘ Function Value (FFV) is associated with every COPM of bi for assessing 

the suitability of that COPM. The boxes left unpacked are 
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"pseudo-packed" to the first available corner in the current packing 

configuration greedily, without violating the criteria stated in Section 5.1, 

until no valid corners can be found for any of the unpacked boxes. The 

volume utilization ( ^ ) is the FFV of that COPM of Z?,. Then all 
^ V ^ ^ t 

"pseudo-packed" boxes, including Z?,, are removed from the container and 

pseudo-packing continues to evaluate other COPMs of b卜 

5.3.1.3 Update of Corner List 

Coordinates of corners are stored in a list for generation of COPMs. After 

"pseudo-packing" a box, at least one existing corner is occupied and some 

new corners are produced. The comer list must be updated before 

pseudo-packing the remaining boxes. Occupied comers are deleted while 

new corners are inserted. 

5.3.1.4 Real-Packing 

“ A f t e r all COPMs of a box are evaluated, the box will be "real-pack" to the 

COPM with the highest FFV. The corner list is updated and the COPMs 

of the next unpacked box will undergo pseudo-packing. The process 

continues until no boxes can be packed to any comers. The LFF 

algorithm is shown in Fig. 5.6. -

•« 

, “ 
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LFF algorithm for container loading: 

Starting with a empty container 

1. Based on the current packing configuration, find all possible COPMs for each 

unpacked box; represent each COPM by a t up le� l onges t side, medium side, 

shortest side, orientation, xi,yi, zi>. 

2. Sort all of these tuples according to their flexibility. 

3. For each candidate COPM, do 3.1 to 3.3 to find its fitness function value (FFV). 

3.1 Pseudo-pack this COPM. 

3.2 Pseudo-pack all the remaining boxes based on the current COPM list and 

with a greedy approach, until no more COPM can be packed. 

3.3 Calculate FFV of this candidate COPM as the occupied volume 

Note: Before the pseudo-packing for the next candidate COPM is evaluated, the 

previously pseudo-packed COPMs must be removed. 

4. Pick the candidate COPM with the highest FFV and really pack the corresponding 

box according to the COPM. The corner list is updated for later packing 

procedures. 

. Fig 5.6 The LFF Algorithm 

5.4 A Sample Packing Scenario 

This example illustrates part of the packing process of a container loading 

problem. For the sake of simplicity, only three boxes and a small portion 

of steps are considered. Orientation constraints are not applicable. 

The dimensions of the bounding box (the container) B is <20m x 

15m X 10m>. The three boxes to be packed are with dimensions bj <8m 

.X 14m X 6m>, b2<\2m x 6m x 4m> and bs <9m x 7m x 9m>. 
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The packing process is assumed to be started with the empty container. 

Before generating the COPM list, we should find out all of the available 

corners. Fig. 5.7 shows the empty container and the corners. The four 

corners on the base of the container are valid because boxes packing at 

these corners can satisfy the four conditions stated in Section 5.1. The 

four corners at the top of the container will be excluded from consideration 

when dealing with the effect of gravity. However, as our algorithm makes 

use of rubber foam to fill up all spaces, we need not exclude these corners. 

In this case, all corners are valid. 

20 m ^ • 

» I m lOm 

z ‘ — — 
ml  

Fig. 5.7 Comers in the container (Black ones are valid, grey ones are invalid) 

5.4.1 Generation of COPM list 

The six keys representing the container are (0, 0, 0, 20, 15, 10). Initial .� 

corners are 1(0, 0, 0), 11(20, 0，0), 111(20, 15, 0), IV(0, 15, 0)，V(0, 0，10)， 

VI(20, 0, 10), VII(20, 15, 10) and VIII(0, 15, 10). The dimensions of the 

three boxes to be packed should be rearranged in descending order, i.e. 

<14m X 8m X 6m>, <12m x 6m x 4m> and <9m x 9m x 7m>. 

.The COPM list is as follows (the base dimensions are written in the form 
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< x X 少>) : 

(14，8，6, 0, 0，0，0) - box bj packed at corner I with surface <14m x 8m> 

as the base 

(14, 8，6，1，0，0, 0) - box hi packed at corner I with surface <8m x 14m> 

as the base 

(14, 8, 6, 2, 0, 0，0) - box bj packed at corner I with surface <14m x 6m> 

as the base 

(14，8，6，3, 0, 0, 0) - box bj packed at corner I with surface <6m x 14m> 

as the base 

As the side 14m cannot be placed vertically (otherwise it exceeds the 

container boundary), only four orientations are possible here 

(14, 8, 6, 0, 6, 0, 0) - box bj packed at corner II with surface <14m x 8m> 

as the base 

(14, 8，6，1，12，0，0) - box bj packed at comer II with surface <8m x 

14m> as the base 

(14, 8, 6, 2, 6, 0, 0) - box bj packed at comer II with surface <14m x 6m> 

as the base 

(14, 8，6，3, 14，0, 0) - box bj packed at comer II with surface <6m x 

14m> as the base 

(14, 8, 6, 0，6，7, 0) - box bj packed at corner III with surface <14m x 

8m> as the base 八 

(14，8，6, 1, 12，1, 0) — box bi packed at corner III with surface <8m x 

14m> as the base 

...omitted COPM for box bj 

(12, 6，4, 0, 0，0，0) — box packed at comer I with surface < 12m x 6m> 

as the base 
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(12, 6, 4, 1,0，0，0) - box b2 packed at corner I with surface <6m x 12m> 

as the base 

...omitted COPM for box Z): at corner I 

(12, 6, 4，0, 8, 0, 0) - box b] packed at corner II with surface <12m x 6m> 

as the base 

(12, 6, 4, 1, 14，0, 0) - box b) packed at comer II with surface <6m x 

12m> as the base 

(12, 6, 4，0，8，9, 0) — box b�packed at corner III with surface <12m x 

6m> as the base 

(12, 6，4，1, 14, 3，0) - box b] packed at corner III with surface <6m x 

12m> as the base 

(12，6，4，0, 0，9，0) - box b) packed at comer IV with surface <12m x 

6m> as the base 

(9，9，7，0, 0, 0, 0) 一 box b̂  packed at corner I with surface <9m x 9m> as 

the base 

No orientation 1 since the length and width are both 9m 

(9，9, 7, 2，0，0，0) - box h^ packed at corner I with surface <9m x 7m> as 

the base 

(9, 9, 7, 3, 0, 0，0) - box bs packed at corner I with surface <7m x 9m> as � 

the base 

(9, 9, 7, 0, 11, 0, 0) - box bs packed at corner II with surface <9m x 9 m � 

as the base 

(9, 9，7, 2，11，0, 0) - box b̂  packed at comer II with surface <9m x 7m> 

as the base 
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(9，9, 7，0, 11, 6, 0) - box packed at corner III with surface <9m x 9m> 

as the base 

(9，9,1,2, 11，8，0) - box bs packed at corner III with surface <9m x 7m> 

as the base 

...omitted 

This COPM list has been sorted in decreasing order which is the processing 

order in pseudo-packing process. 

5.4.2 Pseudo-packing and the greedy approach 

According to the list, the first COPM processed is (14, 8，6，0, 0，0，0). b] 

is pseudo-packed as shown in Fig. 5.8. The corner occupied is (0，0，0). 

Z j I Z | 

二 -二Mt^ 
Fig. 5.8 The pseudo-pack of COPM (14，8’ 6，0’ 0，0’ 0) 

The COPMs at the corner (0，0，0) can be deleted as no pseudo-packing at 

this corner is possible. The COPMs of bj can also be skipped after bj is 

pseudo-packed. The following COPM list is the shortened version: 
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(12，6，4, 0，8, 0，0) - box 办2 packed at corner II with surface < 12m x 6m> 

as the base 

(12, 6，4, 1，14, 0，0) — box b) packed at comer II with surface <6m x 

12m> as the base 

(12, 6, 4，0, 8, 9，0) - box b�packed at comer III with surface <12m x 

6m> as the base 

(12, 6, 4，1, 14，3, 0) - box b) packed at corner III with surface <6m x 

12m> as the base 

(12, 6, 4, 0，0，9，0) - box b] packed at corner IV with surface <12m x 

6m> as the base 
• • • 

(9, 9，7，0，11, 0, 0) - box bi packed at comer II with surface <9m x 9m> 

as the base 

(9, 9, 7, 2, 11, 0, 0) - box b̂  packed at corner II with surface <9m x 7m> 

as the base 

(9，9, 7，0, 11, 6, 0) - box b^ packed at comer III with surface <9m x 9m> 

as the base 

(9，9，7, 2, 11，8, 0) - b o x bs packed at comer III with surface <9m x 7m> 

as the base 

...omitted 

This shortened COPM list can save the time for the subsequent steps of 

pseudo-packing. The list is scanned from the top to bottom. When a 

COPM is found to be valid (no overlapping of boxes and no cross of 

boundaries), the box is immediately packed according that COPM and 
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shorten the list again. Other COPMs for that box will not be considered in 

this pseudo-packing step. The next box is again packed to the first valid 

COPM directly without scanning through the whole list. 

The first tuple of the COPM list results in overlapping of boxes b/ and b � 

and is thus invalid. The second tuple (12, 6, 4, 1, 14, 0, 0) is checked to 

be valid and the pseudo-packing result is shown in Fig. 5.9. 

b 一 少 ， 二 - 二 - 3 5 : : : 岁 广 

k：  
Fig. 5.9 The second step of pseudo-packing, b: is pseudo-packed by greedy approach 

The COPM is shortened to contain only one box b! associating with comer 

“ I I I and IV. 

‘(9, 9, 7, 0，11, 6, 0) - box bs packed at corner III with surface <9m x 9m> 

as the base 

(9, 9, 7，2, 11，8，0) - box bs packed at comer III with surface <9m x 7m> 

as the base � 

...omitted 

The first tuple is invalid while the second is valid, bs is pseudo-packed at 

comer III. 

The three boxes are all pseudo-packed into the boxes. The total occupied ‘ 
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volume is: 

1 4 x 8 x 6 + 1 2 x 6 x 4 + 9 x 9 x 7 = 1527 

The FFV for the COPM (14，8，6, 0，0, 0, 0) is 1527. The FFV of other 

COPMs are calculated in the same way. 

5.4.3 Update of corner list 

Three boxes bo, 14m x 8m x 6m; bj, 12m x 6m x 5m and b� , 9m x 9m x 4m 

are being packed into a container 20m x 15m x 10m. Some COPMs of bo 

is listed in Section 5.4.1. The FFV of COPM <14, 8，6，0, 0, 0，0> is 

calculated by pseudo-packing bo at (0, 0，0) with 14m side along 

x-dimension, 8m along j;-dimension and 6m along z-dimension^ Comer 

at (0, 0, 0) is deleted from comer list. Corners at (14, 0, 0)，(0，8’ 0) and 

(0, 0，6) are inserted, bj can neither be packed at (0，0, 6) nor (0, 0，10). 

The first available comer for pseudo-packing b! greedily without 

overlapping is (0, 8，0). New corners are (0，8，5), (0, 15, 5), (12，8，0) and 

(12, 15, 0). Fig. 5.10 shows the packing configuration. 
- (0,16.10) (20,15.10) 

^ C T """" """"""— (12.15,0) 

； b b o f ^ • ( _ ) 
(0.0,6) — H ^ ^ n i z i U ^ 八 

\ (14.0,0) (20,0,0) 

(0.0.10) 
‘ Fig. 5.10 Packing configuration after bo and b| are pseudo-packed (all comers are shown) 

, ‘ 

5 ；c-dimension refers to the length of the container,少-dimension refers to the height o f the container, 
z-dimension refers to the depth of the container 
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If there is no orientation constraints for b� , it can be placed at (0, 0, 6) with 

4m side along z-dimension. FFV is total volume of bo, bi and b � . A l l 

boxes are then removed, bo is pseudo-packed to another COPM till all 

COPMs are evaluated. 

5.4.4 Real-Packing 

After all COPMs of a box are evaluated, the box will be "real-pack" to the 

COPM with the highest FFV. The corner list is updated and the COPMs 

of the next unpacked box will undergo pseudo-packing. The process 

continues until no boxes can be packed to any corners. The LFF 

algorithm is shown in Fig. 5.5. 

5.5 Ratio Approach: A Modification to LFF 

As discussed in Section 4，the LFF will obtain extremely low volume 
utilization when the assessment of "flexibility" does not reflect the real 

- situation. This often happens in cases with objects having very large 
-length/width ratio. This phenomenon can also happen in 3D problems. 

In this Section, we try to consider alternative ways to measure 
flexibility of objects. After investigation, we discovered that if the 
difference between the longest sides of two boxes is very large while that 
between their shortest sides is very small, flexibility will largely depend on 
the longest side, and vice versa. However, in cases with comparable “ 
longest and shortest sides ratios, the flexilibilty can be dependent on either. 
Such dependency in flexibility evaluation can greatly affects the result of 
our LFF algorithm. To illustrate the situation, some examples are shown 
first. -

• Consider the flexibility of the following two boxes. In fig 5.11a), the 
length of the box, named bj is 40cm, its' width is 30cm and its height is 1 
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cm. In fig 5.11b), the length of the box, named b � i s 39cm, its width is 
38cm and its height is 37cm. 

l � m Z b ' 1 参 
^ 40cm ^ 

Fig 1 la) Dimension of b, 

k \ 

- b2 

‘ 37cm, / 

/ / 
/ / 3 8 c m 

^ 39cm • Z 

Fig. 5.11b) Dimension of 

It is obvious that bj can fit into narrow gaps with base area large enough 
while requires a very large space to accommodate it. However, based 
on the principle of the original LFF, bi is considered to be less flexible as 
its longest side is 40cm, i.e., 1cm longer than the longest side of b � . I n • 
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this case, the flexibility determined by LFF does not reflect the real 
flexibility of the two boxes. Such wrong determination of packing order 
may lead to very low volume utilization, which is similar to the 2D cases 
discussed in Section 4. 

If we focus on the above example, we may draw the conclusion that 
the box with larger volume has lower flexibility. However, this is not 
always a fact. Consider two boxes: The dimension of b^ is 30cm x 
20cm X 5cm while the dimension of 80cm x 5cm x 2cm. If the 
dimension of the container is 80cm x 30cm x 5cm, it is obvious that the 
flexibility of b4 is lower because it only can be placed with one orientation 
while b3 can rotate to fit in spaces with different dimensions if necessary. 
However, volume of bs is larger. Therefore, it can be concluded that volume 
is not always a good measure of an object's flexibility. 

If an object is said to be more flexible than another object, the basic 
definition is that there are more possibilities of spaces to accommodate this 
object. If we consider two objects bs and be with dimensions 20cm x 
16cm X 10cm and 22 cm x 20cm x 4cm respectively, the flexibility of 
be is higher because the difference between their lengths is not very large. 
Comparison between their heights becomes an important factor for 
assessment on flexibility. In fact an object with a longer shortest side can 

‘ always lead to higher difficulty for itself to be placed to a space. For 
‘objects with shorter shortest sides, despite orientation constraint, they can 

rotate to fit themselves to narrow gaps. Generally speaking, determining 
flexibility by the lengths of the shortest side is reasonable because for 
objects with "longest longest side" but rather short shortest side, they may 
still have higher possibility to fit into narrow residual spaces while those 
objects with long shortest side can in no way rotate itself to be packed to 
narrow residual spaces. • 

We have tried to implement the LFF by changing the way to assess 
flexibility. In original LFF, the objects with longest longest side are 
regarded as the least flexible but in our new version, objects with longest 
shortest side are regarded as the least flexible. It is found that the average 
volume utilization has a slight increase. For some cases the improvements 
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are very obvious while reduction in volume utilization can be found in 
some other cases. 

The reduction occurs in packing instances with objects having large 
"longest side / shortest side" ratio. When a pair of objects have their 
shortest sides differ by only 1cm while the difference between their longest 
sides is very large, we should switch back to compare their longest side. 
In fact, under different situations, the assessment of flexibility should be 
different. It is very difficult to apply one standard to all cases otherwise 
there must be undesirable results for some cases. 

Therefore we have two rules for determining object flexibility: 

(i) by comparing the longest sides 
(ii) by comparing the shortest sides 

The problem is how to choose which rule should be used. 
Two approaches have been tested for rule selection. During the 

flexibility assessment, the rule selection is based on each pair of objects 
under comparison. This means that the rule for each pair of objects can be 
different. 

Assume there are two objects by and bg with dimensions 20cm x 
‘ 10cm X 4cm and 12cm x 10cm x 8cm respectively. The first 

“approach is to compare their longest side ratio and their shortest side ratio. 
Note that when calculating these ratios, we pick the larger number to be 
numerator and the smaller number to be denominator, i.e., the ratio is 
ensured to be larger than 1. For example, if the ratio of the longest side 
(length) is calculated by Ij / it is not necessary to have another ratio 
(height) calculated by h j l hg. If hg > hj, we will calculate the ratio by hg/ 
hj. The pseudo-code is as shown in Fig 5.12: 
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1. Ri = ratio of the objects' longest sides 

2. R2 = ratio of the objects' shortest side 

3 . I f ( R , > R 2 ) 

Use Rule (i) 

Else 

Use Rule (ii) 

Fig. 5.12 Rule selection approach Ifor determining flexibility 

In this case, the ratio of their longest sides is 20/12 = 1.67 (to 3 sig. fig.) 
while the ratio of their shortest sides is 8/4 = 2. Therefore, rule (ii) will be 
used. 

The second approach is to set rule (ii) as default and change it to rule (i) 
under certain condition. The pseudo-code is as shown in fig 5.13: 

1. Use Rule (ii) as the default rule 

2. Ri= ratio o f the objects' longest side 

3. If Ri > a preset constant 

Use Rule (i) 

- Fig. 5.13 Rule selection approach 2 for determining flexibility 
% 

The preset value here is defined by running experiments to see which value 
is most likely to obtain a better result. 

After running experiments on benchmark test cases, it is discovered 
that the second approach leads to better results. The difference is about 
0.5%-0.8%. • 

The second approach is therefore selected to generate experimental 
results shown in Section 5.7. It is named as LFF in ratio approach 

. (LFFR). 
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5.6 LFF with Tightness Measure: CPU time Cut-down 

The tightness measure concept was firstly introduced to the 2D LFF in [2]. 
The original objective of the tightness measure is to improve the packing 
density. With the tightness measure being introduced to the algorithm, 
when a box is being pseudo-packed greedily, it is no longer placed to the 
first available corner and skipping other candidate COPM. Instead the 
whole list of COPMs is evaluated to find out the "tightness" value of 
packing the box there. Fig. 5.14b) shows how this tightness value is 
obtained. The 12 circles indicate the points for tightness measure. If a 
point with circle is touching with another box or the container boundary, 
the tightness value will be incremented by 1. 

I ^ «» ^ » 

、 〔广 

^ cr 
Fig 5.14a) Tightness measure points in 2D case Fig 5.14b) Tightness measure points in 3D case 

Note that for each corner, it is surrounded by 3 surfaces for measuring 
tightness value. The higher the tightness value, the better the COPM is. 
Please refer to Section -3.1, Fig 3.3 for an explanation based on a 2D 
problem. In 2D, for each comer, we have two points for evaluating the 
tightness, as shown in Fig.5.14a). In Fig 3.3，position I is considered to be 
the best because it is bound by three sides. The tightness value for 
position I is 2 x 2 + 1 + 1 = 6 . The tightness for position II is 1 x 2 + 1 

+ 1 = 4 . The position with higher tightness value is obviously having less • 

• 
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flexibility and considered to be a better position for packing. 
We do not apply this idea to greedy packing step because our LFF 

algorithm for container loading problem already takes quite long CPU time 
to complete. If the tightness measure is integrated to the algorithm, the 
CPU time will further increase. 

As tightness measure is also a reflection of the suitability for an object 
to be packed to a certain position, in other words, it can be used to evaluate 
the fitness of a COPM. 

In our LFF described earlier in this Section, the fitness of a COPM is 
evaluated by pseudo-pack that COPM, greedily pack remaining objects to 
valid COPMs to calculate the packed volume which is then assigned to be 
the fitness. The long CPU time for the algorithm is due to the greedy 
packing steps. If we avoid doing greedy packing and evaluate the fitness 
by measuring tightness of each COPM, the CPU time is expected to be 
sharply cut down. The algorithm of LFF with tightness measure is 
presented in fig 5.15: 

LFF algorithm with tightness measure for container loading: 

Starting with a empty container 

1. Based on the current packing configuration, find all possible COPMs for each 

- unpacked box; represent each COPM by a t u p l e � l o n g e s t side, medium side, shortest 

side, orientation, Xi, yi, zj>. 

2. Sort all of these tuples according to their flexibility. 

3. For each candidate COPM, do 3.1 to 3.3 to find its fitness function value (FFV). 

3.1 Pseudo-pack this COPM. 

3.2 Calculate the tightness after this COPM is pseudo-packed 

3.3 Assign the tightness value to be the FFV of this candidate COPM •� 

Note: Before the pseudo-packing for the next candidate COPM is evaluated, the 

previously pseudo-packed COPM must be removed. 

‘ 4. Pick the candidate COPM with the highest FFV and really pack the corresponding box 

according to.the COPM. The comer list is updated for later packing procedures. 

Fig. 5.15 Algorithm of LFF with tightness measure •‘ 
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Experimental results generated by this algorithm are shown in Section 5.7. 
When comparing with the original approach, a very large reduction on 
running time is observed. However, there is trade-off in its volume 
utilization, which is also reduced. Please refer to the experiments in 
Section 5.7 for further details. 

5.7 Experimental Results 

To evaluate the performance of the proposed algorithms, container loading 

experiments are run on the original LFF and its two variants: the LFF in 

ratio approach (LFFR) and the LFF with Tightness Measure (LFFT). 

The test cases for generating experimental results are benchmarks from 

Bischoff and Ratcliff [8] and Loh and Nee [11]. The performance of the 

proposed algorithms is compared with the results from other researchers 

[22, 23，24, 25, 26]. 

All experiments are run on the Sun Blade 1000 machines with 2GB 

RAM. The Operating System is Solaris 8. The machines are accessed 

remotely and it is possible for many connections to access the same 

machine simultaneously. Therefore the CPU utilization by our program 

may vary throughout the experiments. This did not affect the results on 

volume utilization of the container loading problem. The area that may be 

affected is the CPU time of the experiments. 

5.7.1 Comparison between LFF and LFFR 

The LFF in Ratio Approach (LFFR) is introduced in Section 5.5. It is a 
variant of LFF with an alternative method to evaluate objects' flexibility. 
For details, please refer to Section 5.5. To compare the performance of 
the LFF and LFFR, we run experiments on both of them and obtain the 

‘results in Table 5.2: 
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Test case (no. o f Average vo lume Best vo lume Average vo lume Best vo lume 

box types, mean no. utilization (%) by utilization utilization (%) by utilization (。/。） 

o f boxes per type) LFF (%) by LFF LFFR by LFFR 

B R l ( 3 , 5 0 . 1 ) 85.41 93 .42 87 .19 9 3 . 4 2 

B R 2 ( 5 , 2 7 . 3 ) 86 .47 93 .54 87 .97 93 .92 

B R 3 (8，16.8) 87.15 93 .4 88 .37 9 3 . 8 4 

B R 4 ( 1 0 , 13.3) 87 .18 91 .23 88 .07 92 .45 

BR5 (12, 11.1) 87 .09 91 .83 88 .10 9 2 . 0 9 

B R 6 ( 1 5 , 8 . 8 ) 87 .09 90 .33 88.15 92 .43 

B R 7 ( 2 0 , 6 . 5 ) 86 .89 90 .86 87.65 90 .90 

Average 86.75 9 2 . 0 9 87 .93 9 2 . 7 2 

Table 5.2 Numerical results obtained by LFF and LFFR on 700 problems of Bischoff and Ratcliff 

In Bischoff and Ratcliff test cases, there are seven sets with 100 individual 

cases in each set. The heterogeneity increases from BRl to BR7. 

The average volume utilization of the seven sets obtained by LFF is 

__ 86.75% while that obtained by LFFR is 87.93%. The best volume 

.utilization in every set is over 90% for both LFF and LFFR. When 

focusing on the results in each of the seven sets, it can be noticed that the 

LFFR can always obtain volume utilization higher than LFF by 0.8% -

1.2%. Hence from this experiment, the better performance of LFFR has 

been proven. The experimental results shown in later sections are .� 

obtained by LFFR. 

5.7.2 Comparison between LFFR, LFFT and other algorithms 

Table 5.3 shows the volume utilizations obtained by LFFR, LFFT and 5 
“ 

other algorithms. 
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From Table 5.2, we can see that although the volume utilization obtained 

by LFFR is not the best among the seven algorithms, its advantage is on its 

stability when being run on cases with different heterogeneity. The result 

obtained by the GA in [24] shows that the algorithm achieves its best 

performance in heterogeneous problems and the performance degrades 

when the algorithm is being applied to homogeneous problems. The 

situation for the hybrid GA in [25] is the opposite. Its design favors its 

performance in homogeneous cases while in heterogeneous cases, it obtains 

lower volume utilization. When using LFFR to solve container loading 

problem, the average volume utilization for weakly heterogeneous set BRl 

is only slightly lower than that of strongly heterogeneous ones but the 

difference is very small. This shows that the performance of LFFR is 

stable for all kinds of cases. 

The volume utilization obtained by LFFT is quite low when compared 

with other algorithms. However, its computational time is much faster 

than other algorithms. Please refer to Section 5.7.3 for details. 

Test cases Ngoi Bischoff Bischoff Gehring Bortfeldt LFFR LFFT 

et.al. et al. [23] and and and 

[28] Ratcliff Bordfeldt Gehring 

[22] [25] [26] 

Mean Vol. Util.(%) 69.0 69.5 68.6 70.0 70.1 70.1 69.4 „ 

Table 5.4 Numerical results obtained by six algorithms on 15 problems of Loh and Nee 

Table 5.4 shows results obtained by six algorithms on 15 Loh and Nee 

problems. 

Using LFFR, no boxes are left unstowed in 13 out of 15 Loh and Nee 
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problems. The average volume utilization is 70.1%, which is better than 

four other methods. For LFFT, it achieves higher volume utilization than 

LFFR in 2 out of the 15 cases while there are no box left unstowed in 10 

out of 15 Loh and Nee problems. 

5.7.3 Computational Time for different algorithms 

To see how LFFT outperforms LFFR in terms of computational time, we 

firstly compare their computational time for solving the Bischoff problems. 

To make analysis easier, the grouping of cases is not by heterogeneity. 

Instead we group the problems by their sizes, i.e. the number of objects to 

be packed. 

Problem size Average computational time Average computational t ime 

(No. o f objects being packed) o f LFFR (s) o f LFFT (s) 

< = 1 0 0 228 .25 1.03 

- 101 - 120 339 .00 1.77 

‘ 121 - 140 , 537 .39 2 .60 

141 - 160 782.95 3 .22 

161 - 180 965.11 4 .00 

181 - 2 0 0 1361.00 ‘ 4 .30 

201 - 3 0 0 3375 .00 5.05 

> 3 0 0 ” 10542.75 9 .33 

^ Table 5.5 Average computational time of LFFR and LFFT on different problem size 
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The relationship of CPU time and Problem Size for LFFR 
and LFFT 

g � ‘. � � � •缺 CPU time for 
p 恐 ) 《 着 麵 L F F R 
£ 4000 "…"产:…:，V, Î T : � �C P U time for 

0 I _ I _ I 龜 I 蠢 I 

發 <9 ^ ^ 冷 r^ r^ . 

Problem Size 

Fig 5.16 A chart showing the relatoinship of CPU time and Problem Size for LFFR and LFFT 

Fig. 5.16 is a graph showing the relationship of CPU time and Problem 
Size for the two algorithms being discussed. Obviously even when there 
is a substantial increase in problem size, LFFT can still handle the cases in 
very short CPU time, i.e., a little increase in CPU time while great increase 
in problem size. For LFFR, the increase in CPU time is very large when 

‘ the problem size increases. The last step in the graph is very large 
.because it includes all cases >300. Only several cases are in this category 

but it ranges from 319 to 476. When the problem size becomes 476, 
LFFR takes 6 hours, i.e., about 21600 seconds to obtain the result, leading 
to such a sharp increase in the chart. For LFFT, the CPU time handling 
the case with 476 boxes is 12.11 seconds, which is 1/1783 of the LFFR 
CPU time. � 

Algorithm Gehring and Gehring and A. Bortfeldt and LFFR LFFT 

Bortfeldt [24] Bortfeldt [25] Gehring [26] 

Average 11.7 316.0 121.0 812.4 2.7 

CPU time(s) 

Table 5.6 Average computation time for 5 different algorithms 
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5.7.4 Conclusion of the experimental results 

Although the volume utilization obtained by LFFR is lower than that given 

by [24] and [25], it still has its advantage. The lower volume utilization in 

LFFR may be further improved in future if: 

眷 the measure of flexibility can be further modified to reflect flexibilities 

of objects in a better way. In fact, the orientation constraint is also a 

factor affecting flexibility. One possible improvement can be setting 

weights to each factor affecting flexibility so that all aspects are 

considered. -This is one of the extensions of this research. 

• the greedy-packing procedure is modified in such a way that objects 

are not just greedily packed to the first available corner. Instead, 

they will be greedily packed to the COPM that can achieve a better 

result. 

‘ F o l l o w i n g these two directions, the performance of LFFR can be further 

improved and its stability will remain high. Therefore the stable 

performance of LFFR in different heterogeneity is of very important 

value. � 

It is obvious that LFFT obtains lower volume utilization when being � 

compared with four other algorithms in Table 5.2. The value of LFFT is 

. on its very short computation time. In Table 5.5 and 5.6, we can see that 

the computational time of LFFT is 1/301 of LFFR, 10/43 of the GA in 

[24], 1/117 of the GA. in [25] and 1/45 of the parallel T.S.A. in [26]. 

The computational time of the other two algorithms in Table 5.2 is not 



CHAPTER 5 LFF FOR CONTAINER LOADING PROBLEM - 84 -

reported by their authors. 

The lower volume utilization in LFFT is the trade-off of its short 

computational time. In fact, among all container loading algorithms with 

their computational time reported, the LFFT is the fastest algorithm for 

solving this type of problem. 

A 

I. ‘ ‘ 



Chapter 6 

Conclusion 

This thesis presents the LFF algorithm that achieves a satisfactory volume 

utilization in container loading problems. By comparing with other 

algorithm, the underlying principle of LFF, the Less Flexibility First 

concept, is in fact shared by other researchers. [24] packs large objects 

first and [25] gives smaller spaces higher priority to be filled. LFF has 

two superiorities: 

參 Comparing with the layering or block management approach, 
which regards layers or blocks as packing unit, the LFF pack 
boxes one by one and the flexibility of each packing unit is much 
higher due to their smaller sizes. The higher the flexibility of 
items, the higher is the chance for the item to be packed to a 
container because smaller space can only be filled by smaller 
items.， 

參 The available packing positions for items are "spaces" in most of 
the algorithms by other researchers and items can only be packed 
to lower, left and rear corner of the space. Instead of "spaces", 
the possible packing positions in LFF are "comers". In each 
space，there are 8 possible corners. Although some comers are 

. invalid, the number of valid comers must be more than 1. 
Therefore the solution space searched by LFF is more. 

• 'I 

- 8 5 - “ 
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Yet there is still room for improvements. 

• The evaluation of object flexibility greatly affects the result. We 
believe that, as mentioned in Section 5 , more can be done to sort 
the flexibility in a way leading to higher volume utilization. 

• Another direction of improvement is the choice of packing 
position of boxes based on the FFV of their COPMs. There are 
often many COPMs having the same FFV. The first one is 
always selected without further assessment. If a mechanism is 
introduced to solve this tie, a further raise in volume utilization is 
possible. 

• The running time of LFF is a great concern. As the problem size 
increases, the number of COPMs will increase at a very fast rate, 
leading to long running time for packing instances with more than 
200 objects. Reduction in running time can make the LFF 
algorithm more practical. 

Future research can focus on these three issues. 

‘ To conclude our work, we contribute on the followings: 

參 We have perform the Worst Case Analysis to evaluate the 2D LFF 
algorithm and prove the inexistence of the Error of this algorith. 
This can facilitate further research on improvement of this 
algorithm. � 

• We have firstly aplied the LFF algorithm to the container loading 
problem. Its performance is satisfactory when being run on 
benchmark cases. 

參 We have proposed another version of LFF with tightness measure 
to substantially cut down the CPU time of the original LFF. 
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However, there is trade-off in the volume utilization. 

參 The proposed 3D LFF is an innovative approach providing a new 
direction for further research. 

t 
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