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Abstract  

Abstract 

Materials with high uniaxial magnetocrystalline anisotropy, such as FePt in fct phase, 

are attractive for ultra-high-density magnetic recording applications because they 

could provide smaller magnetic grains while maintaining a sufficiently high thermal 

stability. 

In this work, we have prepared FePt-C and FePt-Cu multilayer films with different 

composition and film thickness by pulsed filtered vacuum arc deposition. Several 

characterization techniques were employed in this project. These include Rutherford 

backscattering spectrometry (RBS) for film composition determination, x-ray 

diffraction (XRD) to study the structure, vibrating sample magnetometery (VSM) to 

measure the magnetic properties, and transmission electron microscopy (TEM) for 

high resolution structural analysis. 

FePt-C and FePt-Cu films with different thickness have been investigated for their 

magnetic and structural properties. Results of both series of samples show that the 

degree of fct phase ordering decreases with decreasing film thickness. The reduction 

in coercivity and grain size in thinner film supports the argument that the 

disorder-order transformation is grain size dependent. Grain growth limitation is 

achieved by reducing film thickness, but higher ordering temperature becomes the 

trade-off. 

Moreover, C ion-implantation has been employed after multilayer film deposition. 

The implanted FePt-C samples were found to have similar coercivity but smaller grain 

size when compared with the un-implanted one. The XRD peaks ratio suggests there 
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is long range order in implanted sample, this explains why they have such large 

coercivity despite of the small grain size. 

Furthermore, by changing the C/Cu spacer thickness between FePt layers, films with 

different composition have been investigated. It is shown that the chemical ordering 

of FePt greatly depends on the additive spacer thickness. The degree of fcc-fct phase 

transformation simply decreases with increasing spacer thickness in FePt-C samples. 

While in FePt-Cu films, the chemical order reaches maximum when thin Cu spacer 

layers are inserted between FePt layers. This indicates the phase transformation 

enhancement mechanisms of the two additives are different. 
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摘要 

基於其在可以產生更小的磁性晶粒的同時能保持足夠高的熱穩定性的特性，單軸 

各向異性的磁性材料，比如fct相的FePt，在高密度磁記錄領域有很大的潛在應 

用° 

本論文利用脈衝磁過爐真空弧方法製備不同組分和厚度的FePtC和FePtCu複合 

磁性薄膜。使用慮瑟福背散射(NRBS)技術測定薄膜的成分，用X-射線衍射(XRD) 

分析其晶體結搆，用振動樣品磁強計(VSM)表徴其磁學性能，又利用透射電子顯 

微鏡(TEM)得出其原子結搆圖像0 

我們檢測了不同厚度的FePtC和FePtCu薄膜的磁學性能及結搆。結果顯示FePt 

的fct相變程度隨著薄膜厚度減少而遞減。橋頑力値和晶粒體積的同時減小證明 

了有序化過程跟晶粒大小有密切關係。雖然減薄薄膜可達至控制晶粒體積大小的 

效果，但同時也令有序化溫度提高。 

另一方面，我們把炭離子注入到磁性薄膜中。跟其他薄膜比較，被離子注入的薄 

膜有著差不多的橋頑力値和較小的晶粒。在X-射線衍射圖中峰強的比例表明注 

入的樣品是長程有序的，同時解釋了即使小的晶粒也具有較強的橋頑力。 

此外，硏究了不同成分薄膜由於改變FePt分割層C/Cu的厚度對此產生的影響. 
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同時化學有序度強烈依賴於添加分割層的厚度。在FePt-C當中fcc-fct相變隨著 

分割層厚度增加而遞減。但在FePt-Cu當中，當加入薄的Cu分割層至FePt層之 

中時，化學有序度達到最大。這表明相變增強在這兩種樣品當中的機制是不同的。 
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Chapter 1 Introduction 

Chapter 1 

Introduction 
1.1 Overview 

Introduced in 1957 by IBM, the random access method of accounting and control 

(RAMAC) was the first hard disk drive. It consisted of 50 magnetic disks of 24-inch 

in diameter. The storage capacity of this system was 5 MB with the data rate of 12.5 

kB/s. It's areal density is only 0.002 Mb/in^, and the slider / disk spacing was about 20 

micrometers. About 50 years later, the IBM "Travelstar 80GN" drive has 2.5 inch 

disks with 80,000 MB capacity and 350 Mb/sec data transfer rate. Areal density of 

70,000 Mb/in^ is achieved by antiferromagnetic coupled (AFC) technology. The 

spacing between the disk and the sliders with heads working on magneto-resistive 

principles is only about a few dozens nanometers! In fact, this drive is not the newest 

and the best, it just was randomly chosen to make one point that there was a huge 

progress in the field of hard disk drive (HDD) technology in the past 50 years. [1] 

The introduction of magnetoresistive (MR) and giant magnetoresistive (GMR) heads 

in 1990，s has greatly catalyzed the rapid development of hard disk drive in the past 

decade. In March 2005, the Hitachi Global Storage Technologies demonstrated an 

areal density of 230 gigabits per square inch (Gb/in^) on perpendicular recording 

technology [1]. The rapid development and great demand from world-wide business 

and individual user in magnetic data storage over the past decade have led to intensive 

research effort in ultra high density recording media with areal density more than 

lOOGb/inl 

1-1 
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1.2 Conventional recording 

Longitudinal magnetic recording technology has been dominating the hard disk drive 

industry for nearly 50 years. Under this technology, the magnetization of each bit is 

aligned parallel to the platter surface. Shown in Fig. 1.1 is the schematic showing the 

working principle of longitudinal recording [1]. 

Inductive Write Head 

1 

^ • 1 
GMR Read Head—II J : j Coil 

I 
T^- J'/  
、、： 

一 • A —Recording Layer 

Fig. 1.1 Working principle of longitudinal recording 

In longitudinal recording, the magnetization of each bit is aligned parallel or 

anti-parallel to the direction in which the head is moving relative to the disc. Each bit 

is approximately made up of 100 magnetic grains. Co-based alloys with the h.c.p. 

crystal structure are widely used as the recording media. Various alloy additions to the 

Co (Cr, Ta, Pt, etc) change some of the intrinsic magnetic properties of the alloy. 

1.3 Superparamagnetism 

To increase areal density, as well as overall storage capacity, in longitudinal recording, 

the data bits on a disc must be made smaller and put closer together. However, there is 

limitation on the shrinkage of bit size. If individual bit becomes too small, the 

magnetic energy holding the bit in place may also become so small that thermal 

1-2 
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energy can cause it to demagnetize. This phenomenon is known as 

superparamagnetism. Shown in Fig. 1.2 is a schematic showing this phenomenon. 

The recording media can be modeled as assemblies of single-domain, isolated or 

weakly coupled particles with uniaxial anisotropy which magnetization reversal is 

achieved by coherent rotation. Based on the Stoner-Wolfarth model [2], in the absence 

of an external field H, the activation energy barriers is determined by the anisotropy 

energy density Ku and the particle volume V 

E s = K J (1.1) 

At sufficiently high temperatures, the magnetic anisotropy energy barriers of the 

single-domain particles are overcome by thermal energy keT where ke is Boltzman 

constant and T is temperature. Under these conditions the magnetic vector of each 

particle is not fixed but fluctuates rapidly in the directions of particle magnetic 

moment. 

If every bit size, so as the particle volume V，has to be reduced to a certain dimension, 

the activation energy barrier Eb will be too small that is comparable to thermal energy 

given in room temperature. Then the magnetic information stored in the recording 

media can be easily affected by thermal fluctuation and causing data loss. For 

Co-based media used in present longitudinal recording, such as CoPtCr, Ku = 2x10^ 

erg/cm^. It cannot satisfy the above requirement if the grain size becomes smaller than 

10 nm at room temperature [3]. 

1-3 
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(MXIXIXD 
Stored Data 

= = = 

Data Loss 

Fig. 1.2 Superparamagnetism: thermal energy causes data loss when grain size is 
small 

1.4 Possible solutions 

The exact areal density at which the superparamagnetic effect occurs, or the so-called 

superparamegnetic limit, has been changed by scientists and researchers from time to 

time. The limit was believed to be 25 megabits per square inch in the 1970’s. But the 

truth is that the limit has been pushed forward several times through innovations in 

laboratories, those limits have moved forward dramatically. Today, the highest areal 

density with longitudinal recording is more than 100 gigabits per square inch. But no 

matter how much effort is put to increase the areal density, the problem of thermal 

instability will sooner or later comes. However, there are several possible solutions to 

move the superparamegnetic limit further, as well as to make it vanishes by using 

brand new idea for magnetic recoding. 
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1.4.1 Perpendicular recording 

In perpendicular recording, the magnetization of each bit is aligned vertically such 

that they are perpendicular to the disk surface. Shown in Fig. 1.3 is the schematic 

showing the working principle of the perpendicular recording. 

Inductive Write Head 

1 

GMR Read Head—1| • • 

I • • Coil 

I — J 
U  

言 真 言 t ^ 一Recording Layer 

m a m m i r • 一Sott Undenayer 

Fig. 1.3 Working principle of perpendicular recording 

As shown in Fig. 1.1, the magnetization of each bit is aligned parallel to the surface of 

the platter in longitudinal recording. In the interface of two bits with opposite 

‘magnetization, the field lines repel each other, making it unstable against thermal 

fluctuation. 

In perpendicular recording, the magnetization of each bit is aligned vertically. The 

magnetizations of adjacent bits not only don't repel each other, but also stabilize each 

other by completing the field lines. This geometry is the key to making the bits 

smaller without superparamagnetism causing them to lose their memory. 
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1.4.2 Patterned media 

In conventional media, each data bit is made of about 100 nano-scale magnetic grains 

randomly chosen form the recording media. The boundary between bits may not be a 

sharply cut and may be blurred by thermal fluctuation, causing data loss. 

In patterned media, the recording media is made up of a matrix of many small islands. 

Each data bit is an isolated magnetic island. The boundaries between adjacent bits are 

now clearly defined and the problem of blurring boundary vanishes. 

Since we no longer need on the order of 100 grains per bit, but just one single 

grain-sized switching volume, density can be increased by roughly two orders 

magnitude compared to conventional recording media. Since each island is a single 

magnetic domain, patterned media is thermally stable, even at densities far higher 

than can be achieved with conventional media. 

Single Domain Magnetic Island 

o o 力 

. / o o o // 
/ q Q Q 么 

— 

Substrate 

Fig. 1A Patterned media 

‘ 
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1.4.3 High Ku material for recording media 

The superparamagnetic effect tells us that when product of the grain volume V and its 

anisotropy energy Ku fall below a certain value, the magnetization of that grain can 

flip spontaneously. If a significant fraction of the grains on the disk flip spontaneously, 

the data stored on the disk erases itself. Since we need to keep reducing size (and 

therefore V) to record at higher densities, one way to maintain thermal stability would 

be to increase Ku. Shown in Table 1.1 is a summary of magnetic properties of 

different materials [3-6]. 

Alloy system Materials Ku Ms Dp 
(10^ erg/cm^) (emu/cm^) (nm) 

CoPtCr 0.2 : m ^  
Co alloy ^ ^ O  

； CojPt ^ n ^ ^  

FePd O n ^ ^  
L10 phases FePt 6.6-10 3.3-2.8 

CoPt ^ ^ ^  
MnAl ^ ^  

Rare-earth FenNdzB 4.6 3.7 
Transition metals SmCog 11-20 910 2.7-2.2 

*Dp is the smallest thermally stable grain size 

Table 1.1 Magnetic properties of various materials 

High uniaxial magnetocrystalline anisotropy {Ku) materials are attractive for 

ultra-high-density magnetic recording media application, since they can provide 

smaller thermally stable grains. Prominent candidates include fct or I l o phases of 

near-equiatomic composition intermetallic compounds of CoPt, FePt, and rare-earth 

transition metals of CosSm, PrCo and NdiFcnB. Recently, FePt attracts great research 

1-7 
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interest due to the high magnetocrystalline anisotropy {Ku-7xl(ferg/cc) of its ordered 

tetragonal Llo phase. Normally, post-annealing at temperatures higher than 600�C is 

needed to achieve the Llo phase. The high temperature process is not desirable for the 

industry. So, great effort has been put to lower the ordering temperature of the desired 

phase. Examples of such researches will be given in next section. 

1.5 FePt-based material research 

There are two phases of FePt, namely, face centered-cubic (fee) and 

face-centered-tetragonal (fct) phases [7-9]. Shown in Fig. 1.5(a) is the structure of the 

fct phase, which is chemically ordered from the a-c plane. The fee chemically 

disordered phase is shown in Fig 1.5(b) 

( - > _ : 纖 一 

^ " CheniicHll; Ordered 

i f v f ：：：：：：：：： 

— — Chemically Disordered 

Fig. 1.5 Schematic of (a) chemically ordered fct phase and (b) chemically 
disordered fee phase 

In the bulk material，equi-composition FePt forms a chemically ordered fct structure 

below 1300^'C, where there are alternating atomic planes of Pt and Fe along the c axis. 

The chemical ordering drives a tetragonal distortion in the unit cell, and in bulk FePt， 

c/a= 0.96, where c is the lattice parameter along the chemical order direction and a is 

the lattice parameter orthogonal to this [10]. However, in thin films, films deposited 
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near room temperature adopt a disordered fee (high energy) phase. A 

high-temperature (法00�C) treatment such as thermal annealing or high temperature 

deposition is necessary to overcome the energy barrier to obtain the ordered fct (low 

energy) phase with high Ku[ll]. 

For fct superstructures, there are two kinds of positions, which are designated a and p 

sites [12]. For ideal equiatomic composition and perfect long-range ordering, the a 

sites of FePt are all occupied by Fe atoms and the (3 sites by Pt atoms. The red and 

blue dots in Fig. 1.5a are representing the a and p sites respectively. The uniaxial 

ordering in a fct FePt films can be described by a long range order (LRO) parameter S, 

which is defined as [13-14] 

S - = 2(ra-xpe) = 2 ( r p - x p j ( 1 . 2 ) 

where xpe and xpt are the atomic fractions of Fe and Pt, and Fa and rp are the 

fractions of the a and p sites occupied by the correct atom, respectively. 

For fully ordered equiatiomic FePt alloy, xpe = xpt =0.5, ra= rp=l, then S =1. Parameter 

S can be obtained from the ratio of the integrated XRD intensities of the fundamental 

• (looi) and superlattice (I002) reflections [5]. 

The literature predicted the media for future ultra-high density longitudinal recording 

should have the following properties [3,15]: 

1. Coercivity of about 4 kOe~5 kOe, since the common writing field is about 5 

kOe in longitudinal recording 

2. Weakly exchange-coupled grains with size of < 10 nm and with the preferred 

in-plane orientation. 
_ - ‘ ^ 
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The high ordering temperature (�600�C) of FePt fct phase is a major problem in its 

application for ultra-high density recording media. Not only the high temperature is 

not favorable for industrial process, but also the high temperature process leads to 

particle coalescence and loss of particle positional order. Particle coalescence leads to 

increased particle size, which defeats the objective of making smaller grains for 

higher areal recording density. Therefore, there are intensive research efforts to lower 

the processing temperature of FePt in order to apply the high Ku material for 

commercial ultra-high density recording. Several studies reported that the addition of 

Cu, Ag, Au, C or Zr in FePt greatly reduced the ordering temperature to moderate 

temperatures [16-18]. Also, Ag or MgO underlayers were used to reduce the FePt 

ordering temperature due to the strain effect [18-19]. Fe/Pt multilayer film structure 

has also been proved to be able to lower the processing temperature [20]. On the other 

hand, in combined use of 130 keV He ions and simultaneous heating at 280°C led to 

atomic displacements and atomic rearrangement together with lattice relaxation, 

Ravelosona et al. [21] have successfully applying ion irradiation method to lower the 

ordering temperature of FePt films. 

Recently in our laboratory, Chiah has investigated the influence of C and Cu additives 

on the Llo ordering and grain growth of the multilayer-deposited FePt films prepared 

by filtered vacuum arc deposition [22]. His results showed that with the C or Cu 

additives the ordering temperature can be reduced down to 350 °C and 300 °C 

respectively. However, the grain sizes of the ordered films are all larger than 10 nm, 

which is too large for ultra-high density recording with low noise. 

“ ‘ M O . 
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1.6 Project goal 

In Chiah's work, it was demonstrated that for multilayer FePt film prepared by filtered 

vacuum arc deposition with C or Cu as additives a lower ordering temperature of fct 

phase was achieved. However at the same time the grain size became too large and 

was not suitable for practical applications. The present work is a follow-up of Chiah's 

work. We shall adopt the multi-layer deposition approach and to study how the layer 

thickness and other processing parameters will affect the microstructures and 

magnetic properties of these films. The ultimate goal is to see if films with the 

desirable properties suitable for high density magnetic recording medium applications 

could be achieved. In particular, FePt-C and FePt-Cu multilayer films with different 

composition and film thickness were prepared by filtered vacuum arc deposition. In 

addition, a post-deposition ion-implantation process is adopted for some samples. The 

samples were characterized using a number of techniques including Rutherford 

backscattering spectrometry (RBS), x-ray diffraction (XRD), vibrating sample 

magnetometery (VSM), and transmission electron microscopy (TEM). In chapter 2, 

the details of the sample preparation and characterization will be described. In chapter 

3 results and discussions of the FePt-C films will be given and those of FePt-Cu films 

will be discussed in chapter 4. In the final chapter, a summary of the main research 

results and suggestions for future work will be given. 

— 
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Chapter 2 
Sample Preparation and 

Characterization Techniques 

In this chapter, principle of the deposition system used in this project, namely pulsed 

filtered vacuum arc deposition (PFVAD), will be given in detail. It is then followed by 

the details of sample preparation processes and conditions. Furthermore, several 

characterization techniques employed in this work will also be briefly described. 

These include Rutherford backscattering spectrometry (RBS) for film composition 

determination, x-ray diffraction (XRD) to study the structure, vibrating sample 

magnetometery (VSM) to measure the magnetic properties, and transmission electron 

microscopy (TEM) for high resolution structural analysis. 

2.1 Pulsed filtered vacuum arc deposition (PFVAD) 

Shown in Fig. 2.1 is a schematic diagram of the pulsed filtered vacuum arc deposition 

system (PFVAD). The main chamber is equipped with three filtered arc plasma 

sources so that three different species of plasmas can be provided simultaneously for 

deposition. The high density plasma of cathode material is produced by vacuum arc 

discharge. Ions are then guided through a bent magnetic filter to deposit on the 

substrate in the vacuum chamber. The composition and thickness of the films can be 

precisely controlled by monitoring the integrated charges arriving at the sample 

holder from the arc sources. 

The sample holder is designed to have six positions (1-6) as shown in the figure. 

When the holder is stretched out, deposition of material in source number 1，2 and 3 

can be done by setting the holder in position 1，3 and 5 respectively. When the holder 
— 
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is at the centre, co-deposition of two or three materials can be done depending on the 

holder position. Position 2 and position 4 are facing the middle of two sources, so 

co-deposition of two materials can be done. Position 6 is facing source number 2, as it 

is located in the chamber centre, co-deposition of three materials can be carried out in 

this position. 

No. 2 Source 

No. 3 | l | No. 1 
I / • , Cathode 
； ！；! 

MagnetiT^ ^ ^ ^ ^ Negative B i a s \ 

T。 3 6 o A ^ ! ^ 3 6 O \ C� ' I i 

pump 4 2 个 y 

Sample holder J 
Filter V y 

magnetic coil ] \ 
Door pump 

(«) (b) 

Fig. 2.1 Schematic of the PFVAD system; (a) top-view; (b) side-view. 

When the arc is initiated by a high voltage pulse trigger and sustained between the 

• solid cathode and the cylindrical anode, there are cathode spots produced at discrete, 

minute areas across on the cathode surface. The cathode spot may be regarded as a 

micrometer sized source of neutral plasma which, in the absence of external fields, 

moves across the cathode surface in a random manner. It ranges from 1 to 20 um in 

diameter and is an intense source of photons, electrons, metal atoms, and micrometer 

sized droplets of the cathode material. Electron-atom collisions result in the formation 

of positive ions in a region close to the cathode spot surface. 
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The pressure within the cathode spot is extremely high, up to lO'^Pa [1]. Driven by 

the intense pressure gradient, the dense plasma rapidly expands into the vacuum or 

low-pressure gas ambient. Ions are accelerated by the combined forces of the pressure 

gradient, local electric fields, and electron-ion friction. It has been found that the final 

ion velocity for all cathode materials is about l -2xl0Ws, corresponding to ion 

energies of 20 -200eV depending on the ion mass [1]. 

Focus magnetic field is employed to sweep the spots over the cathode surface in order 

to provide for more uniform cathode erosion and to focus the plasma from the source. 

The concentrated heat flux and the bombardment of ions under electric field at the 

cathode surface form microscopic liquid pools and then form droplets or so-called 

macro-particles which are ranged from 0.1 um to 10 um in dimensions. If the 

macro-particles become entrained in the plasma stream and arrive at the substrate 

surface, they can cause serious contamination to the films deposited such as inclusion 

and pinhole defects. So a conventional method, curved magnetic filtering technique is 

used to reduce macro-particles from the vacuum arc plasma in order to drastically 

reduce the macro-particle contamination of the films. The underlying principle of 

filtering is that the macro-particles travel in nearly straight lines due to their inertia 

while the plasma can be guided to a substrate location which is out of line-of-sight to 

the cathode spot. Because of their light mass, and by Lorentz force, electrons will 

move basically along the magnetic field lines. Ions are bound to the electron motion 

by plasma internal electric fields, and consequently the plasma as a whole follows the 

magnetic field lines. ‘ 

There are two DC voltage bias supplies available to be connected to the sample holder 

in the main chamber. One of them can supply a DC voltage of 0-300 V to provide a 

. 
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negative bias to the substrate for deposition. The other one can supply a negative DC 

voltage of 0-30 kV for implantation. A three-channel beam current integrator is 

connected in series to the substrate power circuit to measure the current arriving at the 

sample holder. Hence the composition and thickness of the films can be precisely 

controlled by monitoring the integrated charges arriving at the sample holder from the 

arc sources. 

2.1.1 Sample preparation 

FePt-C and FePt-Cu nanocomposite thin films were prepared by PFVAD on thermally 

grown Si02 of lOOnm on (100) silicon wafers. The substrate was placed at the centre 

of the main chamber while the three cathode sources, Fe, Pt and C/Cu were installed 

separately. To achieve multilayer film structure, the three sources were operated one 

by one in a well designed sequence. During the operation of each source, the substrate 

was turned to face the corresponding source by a stepping motor connected with the 

sample holder. -80 V bias was applied to the substrate during deposition, while 

negative voltage in kV order Owas used during post-deposition implantation. 

Thickness of intended deposited layer is monitored by the charge counter in the 

sample holder, although the actual thickness and composition of the film was 

determined by RBS. Details of experiment setting are given in Appendix 1. 

2.2 Rutherford backscattering spectroscopy (RBS) 

Rutherford backscattering spectroscopy is a non-destructive method to determine 

chemical composition as a function of depth and thickness of the samples. The sample 

under investigation is bombarded with high energy Helium ions. These ions penetrate 
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the sample and eventually they collide with the atoms in the structure. Some of them 

will reflect backwards and get out of the sample. Finally these reflected ions are 

collected by a detector which records their energy. The energy is a function of the 

depth of the collision and the mass of the target atom. Thus, from the measured 

energy distribution of the reflected ions, we can deduce the location of the collision 

and the mass of the target atom. However, RBS is not sensitive for light elements 

embedded in matrices of hervier elements such as carbon in silicon. Therefore, for 

films consist of C atoms as one of the components, non-Rutherford backscattering 

spectrometry (NRBS) was used to determine the C composition. In my work, a beam 

of 3.5MeV He^ ions was used to perform NRBS, which have a non-Rutherford 

resonance scattering cross-section with C atoms so that the sensibility of detecting 

carbon is greatly enhanced in order to achieve a more accurate film composition and 

thickness determination. 

Nuclear Partcle 
Detector 

CI “ • * , Scattered 
S c a t t e n n g A n g l e ^ MeVHe 

I I B m i u 

W I " 

Sample Collimators 

Fig. 2.2 Schematic of RBS measurement 

In this project, non-Rutherford backscattering spectrometry (NRBS) was performed 

with a 2MV tandem accelerator. A beam of 3.5MeV He^ ions was irradiated an 

incident angle of T to the normal of the film plane and the backscattered He^ ions 

were collected at a scattering angle of 170° with respect to the incident direction. To 
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determine the thickness and composition of the film, the NRBS spectra were fitted 

and simulated by the computer software SIMNRA [2]. Accuracy of thickness 

determined by fitting can be found in Appendix 2. 

2.3 X-ray diffraction (XRD) 

X-ray diffraction (XRD) is a non-destructive method to characterize crystalline 

materials. It provides structural information of the investigated samples, such as 

crystal structure, phase and texture. X-ray diffraction peaks are produced by 

constructive interference of the monochromatic beam scattered from each set of 

lattice planes at specific angles. The peak intensities are determined by the atomic 

decoration within the lattice planes. Consequently, the x-ray diffraction pattern is the 

fingerprint of periodic atomic arrangements in a given material. An on-line search of a 

standard database for x-ray powder diffraction pattern enables quick phase 

identification for a large variety of crystalline samples [3]. 

In this project, grazing angle configuration has been employed. Shown in Fig. 2.3 is 

the schematic diagram of the XRD configuration used. The grazing incidence angle 

was fixed at 1° and the 29 angle ranged from 20° to 60� . The patterns were obtained 

by a standard x-ray diffractometer with a Cu anode. 

2̂ 6 
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^ ^ I I /V Detector 

厂 
X-ray Source/ 

Fig. 2.3 Schematic diagram of an x-ray-diffractometer in the a-29 mode 

configuration 

The grain size can be determined by the Scherrer formula, which is shown below [4]: 

D = (2.1) 
WCOS0 

where D is the grain size, K is the constant 0.9 if half-maximum width is used, X is the 

wavelength of the x-ray source ( in this work the Cu-Ka line of wavelength 

0.15405nm is used), W is the fiill-width-half-maximum of the peak and 0 is the 

diffraction angle. Generally, when grain size is larger than 100 nm, the grain 

size-related peak broadening is not significant. But the broadening becomes 

significant when the size is around 10 nm. By repeated experiments, the accuracy of 

grain size estimation is within 0.1 nm in sample with grain size of 6.5 nm. 

2.4 Vibrating sample magnetometery (VSM) 

Vibrating sample magnetometery was employed to determine the magnetic properties 

of samples. Sample is placed inside a uniform magnetic field and is made to undergo 

sinusoidal motion by mechanical vibration. This motion of the magnetized sample 
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creates magnetic flux change. This induces voltage in the pick-up coils, which is 

proportional to the magnetic moment of the sample. 

In this project, the Oxford Instruments Vibrating Sample Magnetometer with a 9 Tesla 

superconducting magnet with a maximum sensitivity of about 10"̂  emu was employed. 

The sample under investigation was mounted on a plastic sample holder attached to a 

carbon fiber rod. A mechanical vibrator is connected with the carbon fiber rod to 

provide vertical vibration in 55 Hz with amplitude 1.5 mm. A uniformly applied 

magnetic field up to 9 Tesla is provided by a superconducting magnet immersed in 

liquid helium. The magnetic moment of the sample is obtained by the pick-up coils 

surrounding the sample holder during the vibrating motion at the presence of the 

applied field. .Shown in Fig. 2.4 is a schematic diagram of the VSM and it's 

controlling system [5 ]. 

I—I Vibrator  
• II •• I I I •••••••• 

Controller 

Position _ _ 
Controller 

Fre-amplifier 

Lock-in _ _ 
Amplifier 

Temperature 
， � Controller 

P\ 7 1 Field _ 
. \ / Controller 

剛 ^ y  

^ ^ ^ ^ ^ ^ Computer — — • 

Applied field coil P 

Fig. 2.4 Schematic of VSM measurement [5] 
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2.5 Transmission electron microscopy (TEM) 

Transmission electron microscopy is a powerful technique to investigate the sample's 

structural properties with ultra high magnification. An electron beam, instead of 

visible light in conventional optical microscope, is employed in TEM to form image 

of the sample. Because the wavelength of electrons is much smaller than that of light, 

the resolution attainable for TEM images can be many orders of magnitude higher 

than that for a light microscope. The image can be in atomic resolution and lattice 

structure can be identified. 

In this project, cross-sectional TEM images of different samples have been obtained 

in order to provide a clear picture of the grain size distribution and nano-scale 

structural image. 



Chapter2 Sample Preparation and Characterization Techniques 

Reference 

[1] Specification of PFVAD, Institute of Low Energy Nuclear Physics, Beijing 

Normal University. 

[2] Matej Mayer, SIMNRA Version 4.40, (1997) 

[3] Nuffield, E. W., "X-ray diffraction method" (1996) 

[4] M. J. Buerger, 'Vector space and its application in crystal-structure investigation', 

(Wiley, New York 1959) 

[5] Specification of Oxford VSM. 

ITo 



Chapter 3 Chaiacteiization of FcPt-C Nanocomposite Thin Film 

Chapter 3 
Characterization of 

FePt-C Nanocomposite Thin Film 

In this chapter, the preparation of FePt-C thin films with different total thickness, 

different spacer thickness and post-deposition implantation will be described. Then 

characterization of these films by using XRD, VSM and TEM will be discussed. 

3.1 Experiment design 

From Chiah's work [1], multilayer FePt film with carbon additive was found to be 

able to lower the ordering temperature to 350°C. However, the grain size of the 

correspondent nanocomposite film is larger than 10 nm, which is too large for 

ultrahigh density recording media. Therefore it is of interest to explore methods to 

control the grain growth during thermal treatment. One simple approach is to limit the 

total film thickness. In Chiah’s work, the film thickness was 50 nm. In this project, 

films with thickness of 25 nm and 10 nm have been prepared and characterized. On 

the other hand, post-deposition ion-implantation has also been employed and was 

believed to be able to lower the ordering temperature. 

3.2 Experiment detail 

Multilayer structures were first produced using the PFVAC system. Iron, platinum 

and carbon layers of various designs were deposited on thermally grown SiCh films. 

By monitoring the charge counter of the PFVAD system, thickness of each deposited 

layer can be precisely controlled. The substrate, silicon wafer with approximately 100 

nm thermally grown SiO!，was placed at the centre of the deposition chamber with a 

negative 80 V DC bias. The iron, platinum and carbon cathode source were operated 
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alternatively in pulse mode with a 2.5 ms pulse duration and a frequency of 4 pulses/s. 

No substrate heating is applied during deposition. Shown in Fig. 3.1 is a schematic 

diagram of one typical multilayer film. 

“ ~ ~ 300 mC C ‘ 

"75 mC Pt 

— 200 mC Fe 
" ISmC Pt 

0-400 mccfapaeed 
75 mC Pt  

200 mC Fe 
75 mC Pt 

“ 0-400 mC C feMCa^ 
75 mC Pt  

200 mC Fe 
75 mC Pt 

300 mCC ‘ 

Si02~100nm 
— Si 

Fig. 3.1 Schematic of a "3-cycle" multilayer FePtC film 

The multilayer Fe/Pt films are separated by several carbon spacer layers of different 

thickness. Besides varying the spacer thickness, total thickness of film have also been 

varied. Shown in Fig. 3.1 is a schematic for a batch of samples with 3 metal layers to 

be referred to as the 3-cycle films. There is also another batch of samples consisting 

of 9 metal layers to be referred to as 9-cycle samples. With these, the composition 

dependence, as well as total thickness dependence, of fct phase formation in these 

films were investigated. 

Post-deposition carbon ion-implantation - into these multilayer films was also 

performed. The implantation was done in the PFVAD system immediately after 

deposition. Carbon ions with high energy were obtained by increasing the negative 

substrate bias voltage from 80 V to kV order. 
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Thermal annealing was performed in argon atmosphere after deposition or 

implantation. All films were annealed for 10 minutes at temperatures ranging from 

370�C to 670�C. Shown in Fig. 3.2 is a typical temperature-time profile of the rapid 

thermal processing with a target temperature of 470�C. 

500 -

一 
o 400 -
o 
0) • 
^ 300 - I 

2 
0) 200 -Q. 
E 
® 100 - I • 

I • 
0 - ‘ 

1 1 1 • 1 ‘ 1 “  
0 5 10 15 20 

Time (s) 

Fig. 3.2 A typical temperature-time profile of the rapid thermal processing 

3.3 Results and discussion 

3.3.1 NRBS measurements 

In the PFVAD system, thickness of the deposited film is controlled by charge 

counters. To ensure repeatability, wafers with the same area were used in each 

deposition, so that a particular amount of charge for a specific material is corresponds 

to a particular thickness. To find out the relationship between the accumulated charge 

and the thickness, 1000 mC (mini Coulomb) of Fe, Pt and C were deposited on SiO! 

and their thicknesses were determined by NRBS measurement. Shown in Fig. 3.3 is 

the NRBS spectrum of this film. The result is tabulated in Table 3.1. 
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Fig. 3.3 NRBS spectrum of 1000 mC of C, Fe and Pt deposited on SiOi 

Charge counted (mC) Thickness (nm) 

T e 丽 41 

. "Pt 

Table 3.1 Fitted thickness of the lOOOmC C, Fe and Pt film from NRBS spectrum 

Based on the charge-to-thickness relationship found, multilayer films with different 

total thickness and composition were designed and deposited. Shown in Fig. 3.4 is the 

NRBS spectrum of the as-deposited 3-cycle FePtC multilayer films and the film 

structure model built from the deposition sequence. The experimental spectrum was 
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fitted with the model and thickness of each layer was estimated. Shown in Fig. 3.5 is 

the NRBS spectrum of the as-deposited 9-cycle FePtC films with the corresponding 

film structure model. The result is tabulated in Table 3.2. The variation in 

composition is not expected and comparison between different samples has to be 

careful. Improvement in controlling system during deposition is needed. 
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Fig. 3.4 (a) NRBS spectrum oftbe 3-cycle FePtC film with a 100 mC C spacer and (b) 

the multilayer film model used in fitting 
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Fig. 3.5 (a) NRBS spectrum of the 9-cycle FePtC film with 100 mC C spacer and (b) 

the multilayer film model used in the fitting 
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Spacer Spacer f t Elemental Total J ” J (C) thickness thickness . , deposited ， 广、 广、 ratio thickness  thickness (75 mC) (200 mC)  
OmC 0 0.5nm 0.9nm Fe24Pt2oCs6 9.7nm 

lOOmC 0.7nm O.Snm 0.8nm FeioPtisCez 11.4nm 
3-cycle  

200mC 1.2nm O.Snm 0.9nm FcigPtisCe? 12.6nm 

300mC 2.0nm O.Snm O.Snm FeisPtnCTi13.8nm 

OmC 0 0 .4nm“ 0.6nm Fe3iPt35C3417.3nm 

9-cycle lOOmC 0.6nm 0.4nm~ 0.9nm i F e ^ S ^ ^ 2 5 . 4 n m 

200mC 1.2nm O.Snm O.Snm FezePtiiCsi 27.0nm 

Table 3.2 The fitted results of each of the as-deposited multilayer film from the NRBS 

“ spectra 
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3.3.2 XRD measurements 

The structural properties of the films were studied by glancing angle x-ray 

diffractometry with the incident angle of 1� . Shown in Fig. 3.6 are the XRD spectra of 

the 3-cycle FePtC film with lOOmC spacer annealed at various temperatures ranging 

from 470 to 670 °C for 10 minutes. For the as-deposited film, no superlattice peak is 

observed, indicating that the film stayed in fee phase. Upon annealing the film to 570 

the superlattice (001), (110) and (201) peaks of FePt can be clearly seen. This 

implies that the disorder-order transformation in the FePt films has started. Another 

feature is the overlapping of the fee (200) and superlattice (002) peaks. When the 

annealing temperature increased to 670 the superlattice (002) peak moved away 

from the fee (200) peak, and the increased intensities of the fct peaks indicates a more 

complete phase transformation. 

.K—N 
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Fig. 3.6 XRD spectra of the 3-cycle FePtC film with a 0.7 nm C spacer annealed at 

various temperatures for 10 minutes 
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Shown in Fig. 3.7 are the XRD spectra of the 3-cycle FePtC films annealed at 470°C 

with different carbon spacer thickness, ranging from 0 to 2.4 nm. The results indicate 

that the transformation temperature strongly depends on the carbon spacer thickness. 

For the film without or with thin C spacer layer, they show the presence of fct FePt 

peaks. This implies the disorder-order transformation has started at this temperature. 

However, for the film with thicker C spacer thickness, no fct FePt peaks are observed. 

These suggest that a thicker C spacer layer between the magnetic metal layers tends to 

prohibit the ordering phase transformation. 
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Fig. 3.7 XRD spectra of 3-cycle FePtC films annealed at 470°C with different carbon 

spacer thickness 

Shown in Fig. 3.8 are the XRD patterns of the 9-cycle FePtC film with 100 mC spacer 

annealed at various temperatures ranging from 370 to 570 °C for 10 minutes. 
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Fig. 3.8 XRD patterns of the 9-cycle FePtC film with 0.6 nm C spacer annealed at 

various temperatures 

When compared with the similar plot for the 3-cycle samples in Fig. 3.6，they show 

similar trend: fct superlattice peaks appear after annealing and become more 

significant for higher annealing temperatures. However, under the same annealing 

temperature, the intensities of the fct peaks of the 9-cycle samples are stronger. It was 

suggested that the lack of chemical order in thinner films was due to a lack of 

nticleation sites [3]. Our results are consistent with this reasoning and there are reports 

of similar findings on the dependence of ordering temperature on film thickness [4]. 

Shown in Fig. 3.9 are plots of the grain sizes of the 3-cycle and 9-cycle FePtC films 

against C spacer thickness. The grain sizes were estimated by Scherrer's formula 

using the FWHM of the (111) peaks. Generally, grain sizes decrease when the C 

spacer thickness increases. Thicker C spacer may prevent the coalescence of FePt 

grains in different layers to form larger grains. Grains are isolated in different layers 

- — 
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separated by the thicker carbon layer, resulting in a smaller grain size. On the other 

hand, when comparing the results for the 3-cycle and 9-cycle FePtC films with the 

same C spacer thickness, the 9-cycle samples show a larger grain size. This could be 

due to the fact that there is a larger amount of FePt available in the 9-cycle samples, 

therefore larger grains could be formed. 
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Fig. 3.9 Grain size of the 3-cycle and 9-cycle FePtC samples with different carbon 
spacer thickness annealed at 470�C 

Shown in Fig. 3.10 are the plots of grain size versus annealing temperatures. The 

grain size increases with annealing temperature as expected because the grain growth 

rate is higher at higher temperatures. Also, the grains in the 9-cycle samples all have 

larger sizes than those in the 3-cycle samples under the same heat treatment 

conditions. 
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Fig. 3.10 Grain size of the 3-cycle and 9-cycle FePtC samples without carbon spacer 
after annealing at different temperatures 

In summary, at the same annealing temperature, the 9-cycle FePtC samples have 

larger grain size than the 3-cycle samples have. At the same time, the 9-cycle samples 

show more complete phase transformation than the corresponding 3-cycle samples. 

This is consistent with the reported grain size dependence of the phase formation that 

large grains favor fct phase formation [2]. On one hand, grain growth is limited by 

reducing the total film thickness, but on the other hand, a higher ordering temperature 

is required. 

Some of the multilayer samples have been implanted with 200 mC carbon ions by 

increasing the negative bias voltage at the substrate from -80 V to various energies in 

the 4-14 kV range. Shown in Fig. 3.11 are the XRD spectra and the plot of grain size 

estimated by Scherrer's formula vs. substrate bias. Generally the implanted samples 

have smaller grains than the un-implanted one (0 kV) has. It is believed that the post-

deposition ion bombardment has led to atomic displacements and produced a lot more 
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nucleation sites for the ordering transformation, hence leading to enhancements of the 

phase formation during annealing [5]. As the XRD (001)/(002) peak intensity ratio 

can provide useful information on the ordering transformation that is highly related to 

the magnetic properties, we shall further discussed these effects in conjunction with 

the magnetic properties in the subsequent sections 
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Fig. 3.11 XRD spectra and grain size of implanted samples after annealing at 470°C 
for 10 minutes versus implantation energy (the data at 0 kV corresponds to the un-

implanted sample) 
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3.3.3 VSM measurements 

The magnetic properties were studied by vibrating sample magnetometery. Magnetic 

hysteresis loops were obtained at 300K in the presence of an in-plane applied field. 

Shown in Fig. 3.12 is the hysteresis loops of 3-cycle FePtC sample with a 0.7 nm 

carbon spacer layer annealed at various temperatures ranging from 370 to 570 ''C for 

10 minutes. The saturation magnetization and coercivity as a function of annealing 

temperature were summarized in Fig. 3.13 
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Fig. 3.12 Hysteresis loops of the 3-cycle FePtC samples with a 0.7 nm carbon spacer 

layer annealed at various temperatures for 10 minutes 
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Fig. 3.13 He and Ms of the 3-cycle FePtC samples with a 0.7 nm carbon spacer layer 

annealed at various temperatures for 10 minutes 

The coercivity of the as-deposited sample is only 0.3 kOe, which shows the film is in 

the weak FePt fee phase structure. The coercivity starts to increase to 0.7 kOe when 

the film was annealed in 370°C. Then it increases sharply to 3.7 kOe when the 

annealing temperature is raised to 470°C. The rapid increase indicates that the 

disorder-order transformation started and the magnetically hard FePt fct phase started 

to form. A further increase of annealing temperature to 570°C led to a more complete 

fee to fct phase transition and a rather high coercivity of 5.1 kOe. The magnetic 

properties obtained by VSM show strong correlations with the phase information 

‘ obtained by XRD measurements. The higher the annealing temperature, the clearer 
/ 

are the fct superlattice peaks in the XRD spectra, and also the larger the coercivity. 

“ 
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Shown in Fig. 3.14 are the hysteresis loops of 3-cycles FePtC samples annealed at 

470"C with different carbon spacer thickness, ranging from 0 to 1.8 nm. The 

saturation magnetization and coercivity as a function of carbon spacer thickness were 

summarized in Fig. 3.15. 
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Fig. 3.14 Hysteresis loops of 3-cycles FePtC annealed at 470*^0 with different carbon 

spacer thickness 
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Fig. 3.15 He and Ms of the 3-cycles FePtC annealed at 470�C with different carbon 

spacer thickness 

The coercivities are decreasing when carbon spacer thickness increases. This agrees 

with the XRD results shown before. In the films without carbon spacer (0 nm) or with 

thin spacer (0.6 nm), fct superlattice peaks present in their XRD spectra, and their 

coercivities are relatively large (4.6 and 2.7 kOe respectively). Both the presence of 

fct peaks and large coercivity are the results of disorder-order transformation. The as-

deposited magnetically soft fee phase begins to transform to hard fct phase at 470°C 

in these two samples. On the other hand, the coercivities of samples with 1.2 nm and 

1.8 nm C spacer are both 0.3 kOe only. This shows that the FePt still remains in fee 

‘ phase, which is also supported by the absence of superlattice peak in XRD spectra. 
I 
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Shown in Fig. 3.16 are the hysteresis loops of the 9-cycle FePtC samples with a 0.6 

nm carbon spacer annealed at various temperatures ranging from 370 to 570 "C for 10 

minutes. The saturation magnetization and coercivity as a function of annealing 

temperature were summarized in Fig. 3.17 
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__ Fig. 3.16 Hysteresis loops of the 9-cycle FePtC with a 

0.6 nm carbon spacer annealed at various temperatures for 10 minutes 
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Fig. 3.17 He and Ms of the 9-cycle FePtC with a 

0.6 nm carbon spacer annealed at various temperatures for 10 minutes 

The coercivity of the as-deposited sample is only 0.3 kOe. This shows that the FePt 

grains in the film are in the magnetically soft fee phase. The coercivity starts to 

increase to 1.5 kOe when the film was annealed in 370°C. Then it increases sharply to 

. 5.8 kOe when the annealing temperature is raised to 470°C. A further increase of 

annealing temperature to 570°C caused a more complete fee to fct phase transition 

with 7.3 kOe coercivity. The increase of coercivity with annealing temperature shows 

similar trend as in the 3-cycle samples. But generally the coercivities of the 9-cycle 

samples are larger than those of the 3-cycle samples for the same annealing 

temperature. A clearer picture will be shown and discussed later in this chapter. 

, Shown in Fig. 3.18 is the hysteresis loops of the 9-cycles FePtC samples annealed at 

470°C with different carbon spacer thickness, ranging from 0 to 1.2 nm. The 
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saturation magnetization and coercivity as a function of carbon spacer thickness were 

summarized in Fig. 3.19. 
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Fig. 3.18 hysteresis loops of the 9-cycles FePtC annealed at 470"C with different 

carbon spacer thickness 
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Fig. 3.19 He and Ms of the 9-cycles FePtC annealed at 470''C with different carbon 

spacer thickness 

The coercivities are decreasing when carbon spacer thickness increases. The sample 

without a C spacer has the largest coercivity of 8.4 kOe. The increase of spacer 

thickness to 0.6nm causes the decrease of coercivity to 5.8 kOe. It further reduces to 

0.9 kOe in the sample with the thickest spacer of 1.2 nm. This shows a similar trend 

as in the 3-cycle samples. Moreover, with the same spacer thickness, all the coercivity 

values of the 9-cycle samples are larger. 

From the above, both the 3-cycle and 9-cycle samples showed the same trend in their 

magnetic properties: (i) the coercivity increases with annealing temperature, (ii) the 

coercivity deceases when the C spacer thickness increases. But the 9-cycle samples 

have larger coercivity values than those of the 3-cycle samples when the spacer 
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thickness and annealing temperature are the same. For comparison, a plot of the 

coercivities of these samples versus the C spacer thickness is shown in Fig. 3.20. 
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Fig. 3.20 Coercivity of the 3-cycle and 9-cycle FePtC samples annealed at 470°C for 
10 minutes versus carbon spacer thickness 

This plot shows a similar picture with the plot of grain size against spacer thickness in 

Fig. 3.9. Both the coercivity and grain size are decreasing with increasing spacer 

thickness. On the other hand, both coercivity and grain size are larger in 9-cycle 

samples than in 3-cycle samples. This could be an indication of grain size dependence 

of FePt fct phase formation. 

Regarding the spacer thickness effect, a thicker C spacer will be unfavorable for the 

FePt grains at the two sides of the spacer to coalesce into a larger grain, hence also 

unfavorable for the fct phase formation. As a result, the coercivity is smaller. 

Regarding the total thickness effect, a smaller total film thickness will also limits the 
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grain growth in the vertical dimension, hence the overall grain size is also limited. 

Therefore the coercivities are smaller in the 3-cycle samples. 

3.3.4 Some preliminary results on effects of post-deposition implantation 

We have also performed some preliminary experiments to explore the effects of post-

deposition implantation to the properties of these films. Shown in Fig. 3.21 is a plot of 

the coercivities of the multilayer samples implanted by carbon ions with a total 

implantation charge of 200 mC corresponding to a dose of 1.56x10^^ C ions/cm^. The 

coercivity of the un-implanted sample (0 kV) is also shown for comparison. The 

coercivities of the as-implanted samples and the un-implanted sample before 

annealing all show a small coercivity of 0.3 kOe. After annealed at 470°C, the 

coercivities increase. It- might be tempted to expect that the coercivities of the 

implanted samples will be larger than that of the un-implanted one, due to the extra 

energy brought by the implanted ions to the film for disorder-order transformation. 

But as shown in Fig. 3.21, there is no obvious correlation between the coercivities and 

the implantation energy. Rather, all of them are in the same order. But from XRD 

results, as shown in Fig. 3.11, it is found that generally the implanted samples have 

“ smaller grain size. As we noted earlier that larger grains are favorable for the fct phase 

formation, larger grains will usually have larger coercivity for films with otherwise 

similar conditions. In this case, the implanted samples are having similar coercivity 

with smaller grain size when compared with the un-implanted one. This post-

deposition implantation effect of reducing the final grain size while achieving a 

similar coercivity certainly suggests for more flexibility in the processing of these 

magnetic thin films to fine tune their magnetic and structural properties to suit the 

application requirements. It is also noticed that the grain size does not seem to depend 

^23 
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on the implantation energy. These results could be discussed as follows. The as-

deposited film is only partially crystallized as evidenced from the XRD results. As the 

implant dose is the same for this batch of samples and at these implantation energies, 

most of the implanted C atoms will not stay in the deposited magnetic thin films, the 

implanted C atoms will serve to introduce a lot more nucleation sites for the 

crystallization. Hence the implanted films will result in more grains with smaller size 

and are expected to have narrower size distribution according to classical nucleation 

and growth theory. At the same time, the number of nucleation sites for the ordering 

transformation is also enhanced probably due to the additional energy transfer 

processes among atoms during the implantation. Hence the ordering is more complete, 

as indicated by the XRD (001)/(002) peak intensity ratio, at the same annealing 

temperature compared with the un-implanted films. 
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Fig. 3.21 Coercivity of the C implanted multilayer samples versus the substrate bias 

voltage. The results for the un-implanted sample (indicated as 0 kV) are also included 

for comparison 

3-25 



Chapter 3 Characterization of FePt-C Nanocomposite Thin Film 

3.3.5 TEM images 

Shown in Fig. 3.22 are the cross-sectional TEM images of the as-deposited 9-cycle 

samples with 1.2 nm C spacer. From the high resolution image, the 8 spacer layers of 

C are not uniform in thickness. Rather, there are two main thick layers of carbon with 

several thinner layers. A possible reason for the non-uniformity of the C layers 

thickness is that the TEM image was taken 4 months after the sample preparation, 

during that 4 months time, the C in different layers might diffuse to nucleation sites 

and form thicker layers while thinning the others. The self-assembly of C into 

multilayer in thin film at room temperature was also reported by the other group [6]. 

Shown in Fig. 3.23 is the cross-sectional TEM image of the same sample annealed at 

470°C. Only two main G layers left and they are separating the metal layers. The 

previous thin carbon layers disappeared while the two main C layers became thicker 

and more solid. This is due to the diffusion of carbon during annealing. The two thick 

C layers acted as nucleation sites and C in other layers diffused towards them forming 

thicker continuous carbon layers. Crystallized metal grains are found in different 

layers. 

“ .1 
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Fig. 3,22 Cross-sectional TEM images of the as-deposited 9-cycle samples with a 1.2 

nm C spacer. 
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Fig. 3.23 Cross-sectional TEM image of the 9-cycle sample with a 1.2 nm C spacer 

after annealing at 470�C 



Chapter 3 Chaiacteiization of FcPt-C Nanocomposite Thin Film 

3.3.6 Overall Discussion 

3.3.6.1 Total film thickness effect 

Shown in Fig. 3.24 are the plots of coercivity against annealing temperature of 

different samples. Fig. 3.24(a) shows Chiah's results of his FePtC multilayer samples 

with -50 nm film thickness [1]. Fig. 3.24 (b) and (c) are respectively the results of the 

9-cycle (-25 nm) samples and 3-cycle (-10 nm) samples of the present work. All the 

plots are in the same scale and for each graph a horizontal dotted line is inserted at a 

coercivity of 5kOe for easy comparison. In Chiah's results, the coercivity of the film 

with the thinnest C spacer (Feo.41Pto.38Co.21) reaches a value of 5 kOe at an annealing 

temperature of 350°C. For films with thicker spacer layers, annealing temperatures 

higher than 500�C were required in order to have the same 5 kOe coercivity. When 

the total film thickness is reduced to � 2 5 nm (the 9-cycle samples of this work), as 

shown in Fig. 3.24(b), the annealing temperature needed for the films to achieve a 5 

kOe coercivity became higher. When the film thickness is further reduced to � 1 0 nm 

(the 3-cycle samples), as shown in Fig. 3.24(c), the required annealing temperature to 

achieve the same coercivity rises to 570°C. As the coercivity is highly related to the 

crystal phase structures of the films, the temperature needed to achieve a certain 

"‘ coercivity value is related to the temperature needed to achieve a certain degree of 

FePt crystallization in the fct phase. Therefore the above result indicates that the 

thinner the total thickness, the higher is the temperature required to transform the FePt 

grains from the magnetically soft fee phase to the hard fct phase to a certain degree. In 

general, a thinner film thickness is associated with a higher ordering temperature. 

• — 
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Fig. 3.24 Coercivity of (a) Chiah's 50 nm samples, (b) 9-cycle ( �2 5 nm) samples and 

(c) 3-cycle ( � 1 0 nm) samples versus annealing temperatures 
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Shown in Fig. 3.25 are the plots of grain size against annealing temperature of 

different samples. Shown in Fig. 3.25(a) are Chiah's results of his FePtC multilayer 

samples with -50 nm film thickness [1] and in Fig. 3.25 (b) and (c) are respectively 

the results of the 9-cycle (-25 nm) samples and 3-cycle (-10 nm) samples of this 

work. In each graph a horizontal dotted line is inserted at a grain size of 10 nm for 

easy comparison. Chiah's results show that the grains grew to larger than 10 nm after 

annealing at 350-400°C. However the grains are smaller in the 9-cycle samples with 

similar annealing temperatures. When the film thickness is further reduced (the 3-

cycle samples), the grain growth is further suppressed and the grain sizes are well 

below 10 nm even after annealing at higher temperatures. These results clearly show 

that grain growth is suppressed by reducing the total film thickness. 
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From the above, it is seen that grain growth can be successfully suppressed by 

reducing the film thickness. But at the same time, thinner film needs higher ordering 

temperature to achieve the same coercivity. These results are obviously related to the 

grain size dependence of the FePt ordering transformation [1-2]. As a thicker film 

contains more amount of FePt to form larger grains, it is more favorable to transform 

into the ordered fct phase. 

3.3.6.2 Degree of ordering from XRD (001)/(002) peak intensity ratio 

The ratio of the (001) superlattice peak to the (002) fundamental peak in XRD 

spectrum is an indication of the degree of chemical ordering in FePt, i.e. the periodic 

layer-by-layer arrangement of Fe and Pt atoms. Unfortunately, in many of the XRD 

spectra obtained for our, samples, the (002) peak intensity is too weak and not 

significant. Therefore only for some samples the XRD peak intensity ratios can be 

determined and they are tabulated in Table 3.3 for comparison. 

Annealing . 
Sample Temperature He (kOe) „ ̂  . (001)/(002) 

(oc) oize (nm) 
- a 3-cycle (0.7 nm spacer) 570 5.1 6.8 1.6 

V Chiah，s Feo.37Pto.32Co.31 500 5.5 16.5 1.2 — 
c 9-cycle (1.2 nm spacer) 570 ^ 5.7 2.25 
d 9-cycle (0.6 nm spacer) ^ ^ ^ 2.1 
e 3-cycle (C implanted at 8kV) 570 M 5.7 3.8 
f Chiah，s Feo.41Pto.38Co.21 ^ 6.7 17 1.9 

_g 3-cycle (no spacer) 570 6.7 6 2.8 

Table 3.3 He, grain size and XRD (001)/(002) peak intensity ratio of various samples 

— 



Chapter 3 Chaiacteiization of FcPt-C Nanocomposite Thin Film 

For easy comparison the table is sorted in ascending order of coercivity. In sample (b) 

and (c), they have similar coercivities while having very different grain sizes. This 

can be explained by the difference in the (001)/(002) ratio. Although sample (c) has a 

smaller grain size, the large (001)/(002) ratio indicates that there is better long range 

order (LRO) inside the grain, which means a more complete fcc-fct phase 

transformation in this sample. Similar is true when comparing sample (f) and (g). On 

the other hand, when we compare samples (c) and (e) which have a similar grain size, 

as the grains in sample (e) have a more complete fcc-fct transformation indicated by 

the large (001)/(002) ratio, the coercivity is larger. However, larger (001)/(002) ratio 

does not necessarily mean a larger coercivity. In samples (e) and (f), although there is 

a big difference in the (001)/(002) ratio, they have similar coercivity. This is because 

the larger grain size in (f) with a shorter range order can still provide a large 

coercivity. We may conclude that the coercivity of a sample is decided by both the 

size of grains and the degree of long range ordering in the grains. In other words, if 

we regard the degree of long range ordering as the quality of grain, then the coercivity 

is depending on the size, as well as the quality, of grains. 

«� 

3.3.6.3 C spacer thickness effect 

In both the 3-cycle and 9-cycle samples, the coercivity decreases with increasing C 

spacer thickness. Although the films without a spacer have the largest coercivities, the 

grain sizes are also the largest. When considering the grain size dependence of fct 

phase formation, the inserted C layers suppress the fct phase formation by limiting 

grain growth. The mechanism of carbon additives in the disorder-order transformation 

of FePt/C thin films is not clear. One possibility is that the ordering process was 
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enhanced by defects included in the FePt grains after the C additive atoms intermixed 

into the FePt layers so that the ordering temperature could be lowered. However, for 

the thicker carbon layer films, it requires larger activation energy to break the carbon 

layers and to activate the intermixing process. 

3.3.6.4 Implantation effect 

Implanted samples have similar coercivity and smaller grain size when compared with 

the un-implanted ones. From Table 3.3, the implanted sample, (e), has the largest 

(001)/(002) ratio. This means that it has the most complete fcc-fct phase 

transformation in its grains among the samples shown. The long range ordering 

provides the films with large coercivity despite of its small grain size. This implies 

that ions implantation may help to enhance the degree of long range ordering in 

individual grains, making it possible to make films to have large coercivity with 

smaller "high quality" grains. 

3.4 Summary 

The -10 nm thick (3-cycle) and -25 nm thick (9-cycle) FePtC multilayer films have 

been prepared and studied and their properties have been compared with Chiah's -50 

nm thick films. Although the grain size can be limited in thinner films, the coercivity 

is reduced. This means higher temperature treatment is needed for thinner films to be 

in ordered phase with sufficiently large coercivity. On the other hand, post-deposition 

carbon ions implantation is found to be able to increase the degree of long range order 

of the FePt grains. 
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Chapter 4 

Characterization of 

FePt-Cu Nanocomposite Thin Film 

In this chapter, the preparation of FePt-Cu thin films with different total thickness, 

and different spacer thickness will be described. Then characterization of these films 

using RBS, XRD and VSM will be discussed. 

4.1 Experiment design -

In Chiah's work [1], it was shown that with the introduction of copper additive into 

the multilayer FePt films the ordering temperature could be lowered to 300°C. 

However, the grain size of the corresponding nanocomposite film is larger than 10 nm, 

which is too large for ultrahigh density recording media. Just like FePt-C samples 

discussed in the last chapter, restriction in the total film thickness has also been 

- employed in the FePt-Cu films in order to limit the grain growth. FePt-Cu films with 

25 nm and 10 nm thickness have been prepared and characterized. 

4.2 Experiment detail 

Again, multilayer structures have been employed in depositing all FePt-Cu films. Iron, 

platinum and copper were deposited separately on thermally grown Si02 films by the 

PFVAD system. By monitoring the charge counter of the PFVAD system, thickness 

of each element deposited can be precisely controlled. A - 80 V DC bias was applied 
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to the substrate. The iron, platinum and copper cathode sources were operated 

separately in pulse mode with a 2.5 ms pulse duration and a frequency of 4 pulses/s. 

No substrate heating is applied during deposition. Shown in Fig. 4.1 is a schematic 

diagram of the multilayer films. 
300 mC Cu 

75 mC Pt 
200 mC Fe 

75 mC Pt — 
.0 -300 mCCu ftpKgjl 

75 mC Pt  
200 mC FT 

75 mC Pt — 
, 0-300 mC Cufapaoa) 一 

75 mC Pt . 
200 mC Fe~ 

75 mC Pt — 
300 mC Cu 

Si02~100nm 

Si — 

.Fig. 4.1 Schematic of "3-cycle" multilayer FePtCu film 

The multilayer Fe/Pt films are separated by several copper spacer layers of different 

thickness. Also, just like in the study of the FePt-C films, both 3-cycle and 9-cycle 

FePt-Cu films have been prepared to investigate the total film thickness dependence 

of the FePt fct phase formation. 

Thermal annealing was performed at 370-570°C in argon atmosphere for 10 minutes 

after deposition. 
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4.3 Results and discussion 

4.3.1 RBS measurements 

In the PFVAD system, the thickness of the deposited film is monitored by the 

integrated charge arriving at the substrate. As a calibration, 1000 mC of Cu were 

deposited on Si02 and its thickness was determined by RBS measurement. Shown in 

Fig. 4.2 is the RBS spectrum of this film. The result is tabulated in Table 4.1. 

5000 - —o—experimental  
simulated 

4000 -

f 3000 -
3 

2000 - 0 
Si 

o A I 

• \ [ 
0 - L .汽 

I 1 1 1 I I I 1 

‘ .. 200 400 600 800 1000 

Channel 

Fig. 4.2 RBS spectrum of 1000 mC Cu deposited on Si02 

Charge counted (mC) Thickness (nm) 

Cu 1000 3.5 

Table 4.1 Fitted thickness of the lOOOmC Cu from RBS spectrum 
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Based on the charge-to-thickness relationship found, multilayer films with different 

total thickness and composition were designed and deposited. Shown in Fig. 4.3 is the 

RBS spectrum of the as-deposited 3-cycle FePtCu multilayer film and the film 

structure model built from the deposition sequence. The experimental spectrum was 

fitted with the model and then the thickness of each layer was estimated. Shown in 

Fig. 4.4 is the RBS spectrum of the as-deposited 9-cycle FePtCu film with the 

corresponding film structure model. The fitted result is tabulated in Table 4.2. 
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“ " " “ ’ 300 mC Cu 
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t Z Si ： 

Fig. 4.3 (a) RBS spectrum of a 3-cycle FePtCu film with 100 mC Cu spacer layers 

and (b) multilayer film model used in fitting 
‘ . 
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Fig. 4.4 (a) RBS spectrum of a 9-cycle FePtCu film with 100 mC Cu spacer layers 
and (b) multilayer film model used in fitting 
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Spacer Pt Fe 
Spacer Elemental Total 

(Cu) thickness thickness 
deposited ratio thickness  

thickness (75mC) (200mC)  

OmC 0 0.5 0.9 FeaTPtaoCuss 7.1 

3-cycIe 

lOOmC 0.4 0.5 0.8 Fe3iPt29Cu4o 7.7 

200mC 0.8 0.5 0.8 Fe29Pt25Cu46 8.1 

OmC 0 0.5 1.0 FesoPt37Cui3 19.9 

9-cycle lOOmC 0.4 0.5 0.8 Fe38Pt34Cu28 20.2 

200mC 0.8 0.6 0.7 Fe27Pt36Cu37 23.8 

Table 4.2 THe fitted results of each as-deposited multilayer film from RBS spectra 

• 
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4.3.2 XRD measurements 

The structural properties of the films were studied by a glancing angle x-ray 

diffractometry with the incident angle of 1� . Shown in Fig. 4.5 are the XRD spectra of 

the 3-cycle FePtCu film annealed at 470°C with different values of copper spacer 

thickness, ranging from 0 to 0.8 nm. The result indicates that the transformation 

temperature strongly depends on the copper spacer thickness. In the film without a Cu 

spacer (0 nm), the fct peak is hardly visible, if any, and the main (111) peak is 

relatively broad. In the sample with a 0.4 nm thick Cu spacer, the fct (001) and fct 

(110) peaks are clearly observed indicating the disorder-order transformation has 

started. Moreover, the main (111) peak becomes sharper than that of the previous 

sample without a Cu spacer. This means the grain growth in the sample with a Cu 

spacer is faster. The intensity of the fct peaks however becomes weaker when the Cu 

spacer thickness increases to 0.8 nm. 

c fct (001) 

4 、 〜 〜 • • ^ 一 , , 、一一..... — — 一 0 . 8 nm 

二 fct (001) 

二 fct (110) A 
(/) 、...、、 / ： V 

C � � . . � � • . � , � V . 0.4 nm 

1 1 1 I 1 I I 
20 30 40 50 60 

2theta 

Fig. 4.5 X ] ^ spectra of the 3-cycles FePtCu films annealed at 470�C with different 
copper spacer thickness 
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Chapter 3 Chaiacteiization of FcPt-C Nanocomposite Thin Film 

Shown in Fig. 4.6 is a plot of the grain sizes of these samples against Cu spacer 

thickness. The grain sizes were estimated by Scherrer's formula using the (111) peak 

FWHM. This plot shows that the sample with a 0.4 nm thick Cu spacer has the largest 

grain size. When compared with the plot of grain size of FePtC samples shown in Fig. 

3.8, they show different trend. In the FePtC samples, the film without a spacer has the 

largest grains and the grain size decreases with increasing spacer thickness. However 

in the FePtCu samples, the films with a Cu spacer have larger grains than that without 

a spacer. It seems that with the inserted Cu spacers, there is grain growth 

enhancement. 

7 

I 6-
0) ^ ^ ^ 
W 
c 
•c5 5_ 
o 

4 1 i 1 I  
- 0.0 0.4 0.8 

Cu spacer thickness (nm) 

Fig. 4.6 Grain size of 3-cycle FePtCu samples with different copper spacer thickness 
annealed at 470�C 
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4.3.3 VSM measurements 

The magnetic properties were studied by vibrating sample magnetometery. Magnetic 

hysteresis loops were obtained at 300K in the presence of an in-plane applied field. 

Shown in Fig. 4.7 are the hysteresis loops of the 3-cycle FePtCu films annealed at 

570"C with different Cu spacer thickness, ranging from 0 to 0.8 nm. The sample with 

a 0.4 mil thick Cu spacer shows the largest coercivity indicating the disorder-order 

transformation in this sample is more complete The magnetic result agrees with the 

XRD result which also showed that the fct peaks are more significant in this sample. 

The fcc-fct phase transformation is cnhanccd by inserting thin layers of Cu between 

the FePt layers. But when the spacer layers become thicker, the enhancement effect 

however reduces. This may be an indication that the disorder-order transformation 

enhancement mechanisms of C and Cu in FePt are different. A more detailed 

discussion will be presented in the following section. 

1000 -

一 500 - o，nm 

J , � 4 關 

-1000 -
— I — . — I — . — I — . — I — . — I — . I I  

-3 -2 -1 ' 0 1 2 3 

H (Tesia) 

Fig. 4.7 Hysteresis loops of 3-cycles FePtCu annealed at 570"C with different copper 

spacer thickness 
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Shown in Fig. 4.8 is the plot of coercivities of 3-cycle and 9-cycle FePtCu samples 

with different Cu spacer thickness and annealing temperatures. Hollow circles 

represent the 3-cycle samples and the solid circles represent the 9-cycle samples. The 

same colour is used for the samples with the same annealing temperature. In the 2 red 

curves, they both show that all FePtCu samples have small coercivities after annealing 

at 370�C. The values of the coercivity are about the same as the as-deposited samples 

(not shown). This means that the disorder-order transformation has not started in such 

a low annealing temperature in the FePtCu samples. When the annealing temperature 

is increased to 470°C and 570°C, corresponding to the blue and green curves 

respectively, the coercivities increase accordingly. When comparing both pairs of 

curves, the 9-cycle samples have larger coercivities that the 3-cycle samples with the 

same Cu spacer thickness. This agrees with the findings in the FePtC samples and 

suggests that there is grain size dependence in the fcc-fct transformation. On the other 

hand, all curves show a peak at the 0.4 nm Cu spacer thickness. This suggests that Cu 

has a different role as C in FePt phase formation. There is an optimal Cu spacer 

thickness to achieve a more complete fcc-fct phase transformation in FePt film. This 

finding is in agreement with the results of Chiah [1] and will be discussed in the 

" following section. 

“ • 
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Fig. 4.8 Coercivity of 3-cycle and 9-cycle FePtCu samples with different copper 
spacer thickness annealed at various temperature for 10 minutes 
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4.3.4 Discussion 

4.3.4.1 Total film thickness 

Shown in Fig. 4.9 is the plot of the coercivities of the FePtCu samples annealed at 

different temperatures including Chiah's results for his 50 nm FePtCu samples. At 

370�C, Chiah’s sample has a coercivity larger than 5 kOe, while the coercivities of the 

3-cycle and 9-cycle samples are much smaller than 0.5 kOe. As the annealing 

temperature increases, the coercivities of both the 3-cycle and 9-cycle samples 

increase. However, the coercivities of the 9-cycle samples are always larger than 

those of the 3-cycle samples. This shows the same trend as in the FePtC samples 

which can be explained by grain size dependence of the phase transformation. Thicker 

films have more nucleation sites for grain growth and is therefore also in favor of the 

fcc-fct phase transformation. 

In both the FePtC and FePtCu films, the film coercivity greatly depends on the total 

film thickness: the thinner the film, the smaller is the coercivity. In other words, the 

thinner the film, the higher is the ordering temperature. This implies that if we want to 

limit the grain growth by limiting the vertical dimension, there will be a trade-off in 

the increase of the ordering temperature. 
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Fig. 4.9 Coercivities of FePtCu samples annealed at different temperature 

4.3.4.2 Cu spacer thickness 

In the FePtC samples, film coercivities decrease with increasing C spacer thickness. 

However in the samples with Cu as additive, the samples without a Cu spacer have 

relatively small coercivities. The coercivities increase to a maximum in samples with 

a thin Cu spacer. Then they decrease again in samples with a thicker Cu spacer. This 

- provides evidence that the mechanisms in enhancing the fcc-fct phase transformation 

by adding C and Cu are different. The C atoms have low solubility in both Fe and Pt. 

They tend to diffuse out of the FePt lattice after annealing at progressively higher 

temperatures, and hence lead to lattice vacancies and defects, through which 

enhancement of the order-disorder transformation of FePt is achieved. On the other 

hand, it has been suggested that Cu can form a stable alloy with FePt which can 

enhance the phase transformation [2-3]. As Cu has a similar atomic volume as that of 

Fe, the diffusion length of Cu atoms inside the film is limited. Therefore, the Cu 

atoms in the top and bottom layers are not able to diffuse deep into the middle of the 

4 . 1 3 , 
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film nor to form alloy with the FePt layer in the middle of the film. The inserted Cu 

spacer layers can however provide extra Cu atoms to form FePtCu alloy inside the 

film thus enhancing the phase transformation. But in the case of thicker spacer 

samples, the Cu spacer layers are too thick that merging of grains across layers are 

prevented. Therefore small grains remain in different layers. The small grain size does 

not favor fcc-fct transformation hence leading to smaller coercivities. 

On the other hand, it is noted that in the samples without a Cu spacer, the coercivities 

are so small that they are even smaller than those of pure FePt films! This means that 

the top and bottom Cu layers somehow suppress the fcc-fct phase transformation. To 

verify this statement, FePtCu samples without the top and bottom Cu layers were 

prepared. Shown in Fig. 4.10 are the hysteresis loops of the 3-cycle FePtCu samples 

(with 0.4 nm Cu spacer layers) with and without Cu top and bottom layers. The 

samples were annealed at 470°C for 10 minutes. The one without the top and bottom 

Cu layers shows a larger coercivity. Similar experiments were performed for the 

9-cycle samples and similar results were obtained as shown in Fig. 4.11. The 

‘ shoulder-like shape in the hysteresis of the sample without Cu top and bottom layers 

indicates that there are two decoupled phases, the hard fct phase and the soft fee phase, 

in the film. While there are some recent reports on the suppression of the fcc-fct phase 

transformation by adding Cu into the films [4，5], there are also published works 

showing that Cu is able to accelerate the fct phase formation [2, 3]. Further 

investigation is needed to find out the exact role of Cu in the FePt system. 
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Fig. 4.10 Hysteresis loops of 3-cycle FePtCu samples (with 0.4 nm Cu spacer layers) 

with and without Cu top and bottom layers after annealing at 470 '̂C for 10 minutes. 
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Fig. 4.11 Hysteresis loops of 9-cycle FePtCu samples (with 0.4 nm Cu spacer layers) 

with and without Cu top and bottom layers after annealing at 470^'C for 10 minutes. 
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4.4 FePt films without additive 

For comparison, 3-cycie and 9-cycle multilayer FePt films without additive atoms 

have been prepared by PFVAD. Shown in Fig. 4.12 is the XRD spectra of the two 

films annealed at 470®C. Obviously, the 9-cycle sample show more significant fct 

peaks which means the fcc-fct transformation is more complete than the 3-cycle one 

at the same annealing temperature. Grain size is estimated by Scherrer's formula 

using the FWHM ot the (111) peak and is tabulated in Table 4.3. Their grain sizes are 

larger than those of the FePtC and FePtCu films with similar thickness and annealing 

conditions. This implies that without the limiting effects on grain growth due to the 

additive atoms, large grains can be formed by merging of small FePt grains from all 

layers. Shown in Fig. 4.13 are the hysteresis loops of the two samples without 

additive atoms annealed at 470"C. The coercivity of the 9-cycle sample is larger than 

that of the 3-cycle sample This supports the observation in the XRD spectra that the 

9-cycle sample has gone through a more complete phase transformation hence a larger 

cocrcivity is obtained. 
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3 3-cycle FePt 
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Fig. 4.12 XRD spectra of 3-cycle and 9-cycle FePt films annealed at 470T. 
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Grain size after annealing at 470"C 

3-cycle FePt 6.3 nm 

9-cycle FePt 12.1 nm 

Table 4.3 Grain size of pure FePt multilayer film 
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Fig. 4.13 Hysteresis loops of 3-cycle and 9-cycle FePt films annealed at 470"C. 

4.5 Summary 

The � 1 0 nm thick (3-cycle) and � 2 5 nm thick (9-cycle) FePtCu multilayer films have 

been prepared and studied and their properties have been compared with those of 

Chiah's - 5 0 nm thick films. Similar to the FePtC samples, the thinner films are found 

to have smaller coercivities. The phase formation enhancement mechanism of Cu in 

FePt is believed to be different with that of C. On the other hand，it was found that the 

top and bottom Cu layers suppress the fcc-fct phase transformation. The reason for 

such a phenomenon is not clear at the moment and needs further investigation to find 

out the exact role of Cu as an additive in the FePt system. 
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Chapter 5 

Conclusion and Future Works 

5.1 Conclusion 

Materials with high uniaxial magnetocrystalline anisotropy such as FePt in Llo (fct) 

phase, are attractive for ultra-high-density magnetic recording applications because 

they could provide smaller magnetic grains while maintaining a sufficiently high 

thermal stability. Normally, post-annealing at temperatures higher than 600°C is 

needed to achieve the Llo phase. The high temperature process is not desirable for the 

industry. Great effort has been put to lower the ordering temperature of the desired 

phase. Chiah [1] has investigated the influence of C and Cu additives on the Llo 

ordering and grain growth of the multilayer-deposited FePt films. However, the grain 

sizes of the ordered films are too large for application. 

In this project, thinner FePt-C and FePt-Cu multilayer films were prepared by filtered 

vacuum arc deposition. The reduction in film thickness was expected to be able to 

limit grain growth during annealing. Also, post deposition carbon ion-implantation 

was performed for some samples aiming at enhancing the ordering transformation of 

the FePt grains. 

Our results show that the degree of the fct phase ordering generally decreases with 

decreasing film thickness. Besides ordering, grain size is also reduced in thinner film. 

This supports the argument that the disorder-order transformation is grain size 

dependent. Since there is less amount of FePt and also the restriction in dimension for 

the grain growth in thinner films, small grain size will result. However, while the goal 

一 n 
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of limiting grain size is achieved in thinner film, the degree of ordering is also 

reduced. Hence higher annealing temperature is required to achieve the same 

coercivity as in thicker film. 

The implanted FePtC samples were found to have similar coercivity and smaller grain 

size when compared with the un-implanted one. Their relatively large (001)/(002) 

ratio in XRD spectra explains why they have such large coercivity despite of the small 

grain size. It is believed that the ion bombardment process has led to atomic 

displacements that favour local atomic arrangements and lattice relaxation, hence 

leading to enhancements in the phase formation during annealing [2]. Our preliminary 

results suggest that the ion implantation process is helpful to enhance the degree of 

long range ordering in individual grains, and it is a promising method to produce 

films with a large coercivity while maintaining sufficiently small "high quality" 

grains. 

It is shown that the chemical ordering of FePt greatly depends on the additive spacer 

thickness. The degree of the fcc-fct phase transformation simply decreases with 

- increasing spacer thickness in the FePt-C samples. The C atoms have low solubility in 

both Fe and Pt. They tend to diffuse out of the FePt lattice after annealing at 

progressively higher temperatures, and hence lead to lattice vacancies and defects, 

through which enhancement of the order-disorder transformation of FePt is achieved. 

In FePtCu films, the chemical order reaches a maximum when thin Cu spacer layers 

are inserted between the FePt layers. This indicates that the phase transformation 

enhancement mechanisms are different of the two additives. However, it requires 

further investigation to understand the exact role of the Cu additives in the FePt 

system. 

‘ 
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5.2 Future works 

Perpendicular recording has been demonstrated in research laboratories recently [3]. 

The superparamagnetic limit can then be pushed further. Nevertheless, the limit will 

come sooner or later. High magnetic anisotropic material is believed to be the 

promising solution and research work in this field is still actively on going. In this 

work, it is found that reducing the film thickness can limit grain growth but at the 

same time will lead to a lower coercivity, or a higher ordering temperature. 

Nevertheless, ion-implantation seems to be able to increase the chemical ordering of 

individual grains such that a smaller grain can provide a relatively large coercivity. By 

making use of the advantage of the pulsed filtered vacuum arc deposition system, ion 

implantation can be done at various dose and energies right after the multilayer film 

deposition. As the sample implanted by 8 keV C has larger coercivity than the 

un-implanted one, we can implant different C dose while keeping the substrate bias at 

8 kV to investigate the dose effect. Moreover, the deposition and implantation 

sequence can be interchanged easily so that an implantation process can be performed 

right after the deposition of a layer of FePt, and the sequence can be repeated or 

- changed in a very flexible manner. It seems that the combination of the multilayer »� 

deposition and ion implantation processing approach could provide a lot of new 

possibilities in tuning the structural and magnetic properties of these magnetic 

nanocomposite thin films to suit the future application needs and is worth further 

investigations. 
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Appendix 1 
口 No.2 Sotu*cc 

NO' 丨 / 令 N � . l cathode 

p - 3 柴 ； w ^ y - s n ^ y j 

\ / \ Sample / 
\ / \ holder / 

y Filter magnetic coU 

door 

Fig. 2.1 Schematic of the PFVAD system; (a) top-view; (b) side-view. 

Pressure during deposition: <4xlO"'̂ Pa 
Pt ^ C Cu 

Bias 100 V 100 V 100 V 100 V 
Focus 120 uA 120 uA 80 uA 80 uA 
Arc 120 V 120 V 100 V 100 V 

Trigger 150 V 150 V 150 V 150V 
Deflect 160 uA 160 uA 150 uA 150 uA 

Bias: Applied between the anode and the filter duct. It s used to restain the ions in 
the plasma arriving at the duct. 

Focus: Provides current for the focus solenoid to generate magnetic field, which 
focuses the plasma from the source. 

Arc: Applied between the cathode and anode electrodes to pulsely sustain the 
main arc. 

Trigger: It is applied between the trigger and the cathode electrodes. When a pulsed 
high voltage applied between trigger and cathode, there is a spark produced 
which initiates the arc. 

Deflect: It is applied on the guiding solenoid to produce filtering and guiding 
magnetic field for the plasma. 
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Appendix 2 

Shown in Fig. A.l are the RBS spectra of a 9-cycle FePtC sample with simulated 

curves of fitting models with different Fe thickness. The graphs show that the 

experimental curve is best fitted with simulated curve of 0.9 nm Fe thickness. Both 

the 1.0 nm and 0.8 nm Fe simulated curves don't fit the experimental curve well. This 

indicates that the accuracy of the fitting is 0.05 nm. 
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Fig. A. 1 RBS spectra of 9-cycle FePtC with simulated curves of fitting models with 
(a) 1.0 nm Fe, (b) 0.9 nm Fe and (c) 0.8 nm Fe 
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