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Abstract of thesis entitled: 
FPGA Technology Mapping Optimization by Rewiring Algo-

rithms 
Submitted by TANG Wai Chung 
for the degree of Master of Philosophy 
at The Chinese University of Hong Kong in June 2005 

FPGA Technology Mapping is an important design automation 
problem which affects floorplanning, placement and routing dra-
matically. Depth-optimal technology mapping algorithms were 
proposed and produced quality mapping solution for delay min-
imization. However such algorithms fail to further reduce area 
consumption by applying powerful logic transformation techniques. 

Our work is the first and successful attempt to apply rewiring 
techniques, state-of-the-art logic transformation techniques, on 
FPGA technology mapping problem. We focused on reduction 
on the number of LUTs used while keeping the depth optimal-
ity. Our approach is based on a greedy but effective heuristic to 
choose good alternative wires to transform the network for less 
LUTs. Experiment results show our approach can effectively re-
duce 20% of LUTs over initial mapping solutions by FlowMap, 
FlowSYN and Cut Map. Our final optimized mapping solutions 
are the best among all network-flow-based mapping algorithms 
and also very comparable to logic-based approach such as BDS-
pga. 

Our result also provides solid recommendations on the choice of 
rewiring techniques which can provide flexible trade-offs between 
optimization effort and runtime constraints. REWIRE allows 
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complete transformation ability while REWIRE can carry out the 
optimization process at high throttle. The proposed greedy LUT 
minimization approach is highly practical and further alleviate 
burdens on placement and routing for FPGA technology. 
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論文題目：基於換綫法的現場可編程門陣列的技術映射最優化算法 

學生名字：鄭偉宗 

學位：計算機科學及工程學哲學硬士 

日期：二零零五年六月 

現場可編程門陣列的技術映射是一個對布圖規Si布局與布縫具重大 

影響的重要設計自動化問題。縱然最優選深度技術映射算法為延遲 

最小化提供了極好質量的映射解答，它們並沒有進一步以強而有力的 

邏輯變換技術來減少芯片面積消耗量。 

我們成功嘗試使用頂尖的換縫法技術在現場可編程門陣列的技術映 

射問題上。我們集中於保持深度最優性的同時減少硬件查找表的數 

目。我們的方法根據一貪焚但有效的探索法來選擇良好的導線來變換 

網路，以減少硬件查找表的數目。實驗結果展示這方法可有效地在 

FlowMap，FlowSYN R CutMap最初的映射解答中減少兩成硬件查 

找So我們的優化映射解答已是在所有網路流動根據映射算法之中最 

佳的，同時還可跟邏輯根據方法如BDS-pga等再同價比較。 

我們的結果並且提供堅實的建議來提供在優化努力和運行時間限制 

之間權宜換縫法技術的選擇：REWIRE允許完整變換能力而 

RAMFIRE能以高速執行整個優化過程。我們所提出的貪梦硬件查找 

表最少化方法既具高度實用性，且能進一步緩和布圖規劃與布緣的負 

擔。 

1 



Acknowledgement 

I would like to thank my labmates for inspiring discussions on 
different rewiring techniques and they provide me a lot of insight 
on this work. 

Also I would like acknowledge UCLA VLSI CAD lab for pro-
viding the source code of FlowMap, FlowSYN and CutMap. 

iii 



For Winky, my family and all my friends. 

iv 



Contents 

Abstract i 

Acknowledgement iii 

1 Introduction 1 

2 Rewiring Algorithms 3 
2.1 REWIRE 5 
2.2 RAMFIRE 7 
2.3 GBAW 8 

3 FPGA Technology Mapping 11 
3.1 Problem Definition 13 
3.2 Network-flow-based Algorithms for FPGA Tech-

nology Mapping 16 
3.2.1 FlowMap 16 
3.2.2 FlowSYN 21 
3.2.3 CutMap 22 

4 LUT Minimization by Rewiring 24 
4.1 Greedy Decision Heuristic for LUT Minimization 27 
4.2 Experimental Result 28 

V 



5 Conclusion 38 

Bibliography 40 

vi 



List of Figures 

2.1 (A)Original Circuit (B) Modified Circuit 4 
2.2 MA values for s-t-1 fault on 6 
2.3 Unobservability and Uncontrollability Propagation 

Rules (Basic) 7 
2.4 Circuit Containing a GBAW LOCAL 13 Pattern . 9 
2.5 Resultant Circuit After Rewiring based on GBAW 

LOCAL 13 Pattern 9 
2.6 Local 13 Pattern(A) and its Backward Wire(B) . 10 

3.1 Schematic of a SRAM-based 3-LUT 12 
3.2 Simple Boolean Network k. its Corresponding Circuit 14 
3.3 FPGA mapping example 15 
3.4 Label Calculation in FlowMap 18 
3.5 Label Calculation in FlowMap (Cont，） 19 

4.1 Initial Mapping Solution 26 
4.2 Final Mapping Solution after transformation . . . 26 
4.3 Algorithm Flow of REMAP： Greedy LUT Mini-

mization 28 

vii 



List of Tables 

3.1 Relationship between k and LUT Utilization . . . 20 

4.1 Experimental Results: REWIRE on FlowMap . . 30 
4.2 Experimental Results: REWIRE on FlowSYN . . 31 
4.3 Experimental Results: REWIRE on CutMap . . . 31 
4.4 Experimental Results: RAMFIRE on FlowMap . 32 
4.5 Experimental Results: RAMFIRE on FlowSYN . 33 
4.6 Experimental Results: RAMFIRE on CutMap . . 33 
4.7 Experimental Results: GBAW on FlowMap . . . 34 
4.8 Experimental Results: GBAW on FlowSYN . . . 35 
4.9 Experimental Results: GBAW on CutMap . . . . 35 
4.10 Comparison between REWIRE on CutMap and 

BDS-pga 37 

viii 



Chapter 1 

Introduction 

Rewiring techniques had been developed by EDA research com-

munity in the past decade. Those techniques are able to find out 

alternate wires for a given target wire, and allow logic transfor-

mation on the network without changing any behaviours of the 

circuit at primary outputs. The techniques were applied success-

fully in various design automation problem such as circuit parti-

tioning and proves the power of the techniques for efficient and 

flexible logic synthesis. 

We studied FPGA technology mapping problem and reviewed 

several depth-optimal mapping algorithms. Statistics showed that 

the logic block components in the FPGA is not fully utilized by 

current algorithms. Moreover, logic transformation is not in-
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CHAPTER 1. INTRODUCTION 2 

eluded or fully used in these algorithms. This suggests us to 

investigate the feasibility of adding in rewiring techniques into 

technology mapping algorithms. 

The thesis is organized as follows: chapter 2 introduces rewiring 

algorithms and compares their abilities and speed; chapter 3 re-

views network-flow-based technology mapping algorithms which 

guarantee depth-optimal mapping solutions; chapter 4 explains 

our approach and discusses our extensive experiments. This chap-

ter also includes our analysis on the experimental results; chapter 

5 give the final conclusion. 



Chapter 2 

Rewiring Algorithms 

Redundancy addition and removal (RAR), or rewiring, can mod-

ify the structure of a logic circuit by adding redundant wire(s) or 

gate(s) to force removable redundancies on another part of the cir-

cuit, and throughout the whole process the function implemented 

by the circuit is remained unchanged. We call the wire which is 

assigned to be removed the target wire and the new wire to be 

added to the circuit the alternate wire. Rewiring algorithms are 

referring to the techniques to identify any target / alternate wire 

pair for a given circuit. We denote a wire by a duple of gates -

(s, d) refers to a wire from gate s to gate d. 

Consider the example circuit shown in figure 2.1, where the 

target wire is (^1,^6). We can see that the circuit functionality 

3 
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c ； — c — 

(A) (B) 

Figure 2.1: (A)Original Circuit (B) Modified Circuit 

will be maintained by: 

1. Replacing (c, gb) with the output of an AND gate whose 

inputs are gl and c respectively. 

2. Removing (^1,^6). 

The modified circuit is shown in figure 2.1. Clearly, the output 

function y remains to be (a + b){ab + c) = (a + b)c + ah after 

rewiring. 

Although rewiring was first designed for logic minimization, 

the technique is prove to be powerful in areas like post-layout 

timing optimization [13], circuit partitioning [7] [15] and FPGA 

routing [4]. Prom all the examples, we can understand that 

rewiring algorithms provide flexible and powerful logic transfor-

mation which can be used to optimized circuits' performance for 

different goals. This strongly motivates us to apply rewiring tech-

niques in optimization for FPGA technology mapping. 
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To analyze and compare extensively with the performance of 

different rewiring techniques, the best three rewiring techniques, 

namely REWIRE, RAMFIRE and GBAW, are chosen for our 

purpose. The techniques were applied and tested with our tech-

nology mapping optimization in order to characterize their abili-

ties for our problem. They are briefly introduced in the following 

sections. 

2.1 REWIRE 

REWIRE [5] is based on the idea of MA (Mandatory Assign-

ments) .These are the assignments that are required in order for 

a test of a fault to exist. If the set of MA for a fault is inconsistent, 

no test is possible for that fault. REWIRE tries to add wires that 

force the set of MA for the stuck-at fault test of the target wire 

to become inconsistent, that is, after the addition of the wire, the 

target wire's stuck-at fault will become untestable and the wire 

will become redundant. It then ascertains the added wire itself is 

also redundant so its addition will not change the circuit function-

ality. There are fast filters in REWIRE to screen out those wires 

that cannot become redundant so that less redundancy tests are 

needed. 
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a _ OjpXO . 
1 oJ  

0 

Figure 2.2: MA values for s-t-1 fault on (pi, ^6) 

To illustrate the idea of mandatory assignments, we consider 

again the circuit shown in 2.1 A. If we perform a stuck-at-1 fault on 

the wire (pi, ^6), the values of MA are shown on 2.2. We can see 

that if we insert an AND gate with inputs gl and c in front of p5 

the MA values become inconsistent, making the stuck-at-fault not 

testable. In this way, the target wire is hence removable after the 

addition of the alternate wire. REWIRE identifies alternate wires 

for different target wires based on this simple idea of creating 

conflicts in MA. 

REWIRE is found to be the most powerful rewiring algorithm 

which can find the largest number of target / alternate wire pairs. 

However, it consumes large amount of computation time due high 

computational complexity in doing logic propagation and justifi-

cation. 
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^ ^ 0 ( 1 ) 

\ 0(1) 

Figure 2.3: Unobservability and Uncontrollability Propagation Rules (Basic) 

2.2 RAMFIRE 

RAMFIRE[2][3] is another ATPG^-based rewiring algorithms. It 

utilizes a polynomial-time redundancy identification technique 

called FIRE[12] to reduce unnecessary redundancy checking. FIRE 

applied the concept of uncontrollability and unobservability di-

rectly on implications. A signal is assigned 1(0) if we cannot 

control the signal to be 1(0)，and a signal will be marked as * 

when any faults on this signal line is not able to be propagated 

to primary output for observations. During the implications, un-

controllability will propagate based rules on gate types and un-

observability will propagate mainly backwards. The propagation 

rules from [2] is reproduced in figure 2.3 for reference. 

The algorithm first starts implication of 1 and 0 on the tar-

get wire and get two sets of uncontrollability and unobservability 

values 5(1) and 5'(0). And the alternate wire(s) will be identified 
1 automatic test pattern generation 
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checking the potential of redundancy based on the following def-

inition: 

A gate is potentially redundant in S if 

• the gate output is assigned unobservable (*) in S, or 

• the gate output has a MA of 0(1) in stuck-at-fault test and 

a value of 0(1) in S, 

given that the gate is in the transitive fanout cone of the target 

wire. 

Experimentally, RAMFIRE has a speed up of 20 times over 

REWIRE but REWIRE can find 70% more alternative wires than 

RAMFIRE. 

2.3 GBAW 

GBAW [16] does not apply any logic implications. What it de-

pends on is a set of graph configurations, which are called "pat-

terns" .Patterns are pre-defined graph representations of sub-

circuits which contains alternative wires. An example pattern is 

shown in figure 2.6. The target wire to the NOR gate can be re-
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: = | = g > ^ 

C fl" """1 

Figure 2.4: Circuit Containing a GBAW LOCAL 13 Pattern  
^ ^ 

^ 

Figure 2.5: Resultant Circuit After Rewiring based on GBAW LOCAL 13 
Pattern 

placed by the alternative wire to the AND or NAND gate. Figure 

2.4 shows a circuit containing a pattern local 13 (the pattern is 

embraced with the dashed box). Thus when GBAW finds alter-

native wires on this circuit, local 13 pattern will be matched and 

then we can identify (c, p5) or (分2, ^5) as the target wire. Suppose 

we replace (p2, by a new alternative wire (^2, ̂ 6) (equivalent 

adding a new AND gate after ^6), we get a logically equivalent 

circuit shown in figure 2.5. 

GBAW finds alternative wires by performing pattern matching 

on the circuit with the library of patterns. GBAW is able to find 

alternate wires with high speed, and on average it is around 150 
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NOR AND/NAND NOR AND/NAND 

a Target Wire ^ ^ ^ ^ / ^ A l t e r n a t i v e W i r e ^ ^ 

Alternative Wire Target Wire 

(A) (B) 

Figure 2.6: Local 13 Pattern(A) and its Backward Wire(B) 

times faster than REWIRE. However, GBAW can only locate 

23% of alternate wires found by REWIRE. 

• End of chapter. 



Chapter 3 

FPGA Technology Mapping 

Field Programmable Gate Arrays (FPGA) is a popular technol-

ogy for digital designers, especially in Application Specific Inte-

grated Circuit (ASIC) area. The reuseablility and programma-

bility of FPGA dramatically reduce the design turn-around time 

and development cost. FPGA is also widely used in benchmark 

testing and prototyping of digital circuits. 

One of the most important components in FPGA are logic 

block, which is responsible for implementing all the combinato-

rial functions of the circuit. In conventional FPGA, the logic 

block is implemented by lookup tables (LUT), which is found 

to be an area-efficient method for Boolean function implementa-

tions on VLSI. Usually, fixed size LUTs are used among the whole 
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> — R A M cell 一 

a _ I — R A M cell — 
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一 R A M cell — 
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Figure 3.1: Schematic of a SRAM-based 3-LUT 

FPGA chip and the size of every LUT is denoted by k, which is 

commonly chosen to be 4 or 5. Every LUT is implemented by 

memory cells with /c-bit address decoder. Any inputs to a 

Boolean function will be taken as an address to read correspond-

ing bit pre-loaded inside the memory cell. Therefore a /c-LUT can 

implement any A;-variable Boolean functions by saving the truth 

of the function inside the list of memory cells. Figure 3.1 shows 

a possible structure of a 3-LUT^ 

During the design automation process, after a circuit is syn-

thesized by technology-independent optimization algorithms, we 

have to carry out a technology mapping to assign functions to 

be saved on the LUTs - when the circuit consists of small input 

gates, the mapping process needs to collect and group the gates to 

together to fit into a LUT; when the circuit is originally in com-
1 Wired-OR: The outputs of the SRAM cells are connected through a shared BUS 

I 
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plex form, for instance, PLA, the mapping process is required to 

break down the circuit into smaller pieces which can be imple-

mented by LUTs. The following section explains the technology 

mapping problem more formally. 

3.1 Problem Definition 

A circuit is modeled as a Boolean Network. There is a set of 

nodes PI representing the primary inputs (PI) and another set 

of nodes PO representing the primary outputs (PO). All other 

nodes in the network is called internal and these nodes are asso-

ciated with specific functions. The function type can be simple 

(AND, OR, NOT, XOR) or complex. Every wire in the circuit is 

represented by an edge between two nodes. All incoming edges 

to a node is called fanin of this node and all outgoing edges are 

called fanout] Nodes in PI has only fanouts while nodes in PO 

has only fanins. If the in-degrees of all nodes are less than or equal 

to k, the network is /c-bounded. Clearly /c-bounded network can 

be implemented by a FPGA using /c-LUTs as logic block. A sim-

ple Boolean network and its corresponding circuit are shown in 

figure 3.2 
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PI PO 
r I internal , 

E擁丨丨 
Figure 3.2: Simple Boolean Network k its Corresponding Circuit 

The FPGA technology mapping problem is formulated as fol-

lows: 

• INPUTS: A Boolean Network N, LUT size k, delay model 

D 

• OUTPUT: A /c-bounded network N' 

• OBJECTIVES: 

1. Minimize the number of LUTs used to map the circuit, 

denoted by . 

2. Minimize the delay of N', d{N'), according to D, 

The original network can be /c-bounded or /c-unbounded. For 

the latter case, we have to decompose the /c-unbounded network 

into a /c-bounded one before we can process it with the technology 

mapping algorithms. This process is usually referred as gate de-

composition. We should notice that gate decomposition will alter 

the initial network structure supplied to the mapping algorithms, 
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thus affect the final mapping solutions. Figures 3.3 shows an ex-

ample on this problem. In this example, k is chosen to be 3. The 

gates within dashed polygons can be packed in a 3-LUT. 

c i FS'I 

« _ q ^ - � � � � � 

U j i > l _ � � � � � � � 1 
d ‘……--： 

a , ' D ~ _ L L ^ / 
- — — P I S ： z I / 
b _ L 93 J z i / 
^ ^ ^ … … … - — — u J . / 

Figure 3.3: FPGA mapping example 

For a quick but accurate delay estimation, unit delay model 

can be used to estimate the overall delay of the circuit. In unit 

delay model, every node is assumed to have delay 1 over the 

signal propagations, and therefore the total delay of the circuit 

is determined by the depth of the circuit. In other words, the 

number of nodes on the longest signal path (or critical path) is 

the total delay under this model. Depth of the network can be 

found by doing a depth first search (DFS). 
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3.2 Network-flow-based Algorithms for FPGA 

Technology Mapping 

In this section, we will introduce three network-flow-based al-

gorithms for the technology mapping problem. These algorithms 

guarantee to produce mapping solutions with optimal depth. There-

fore in later design process, the wiring delay of the circuit can be 

reduced as much as possible. This is rather important when the 

wiring delay dominates the overall delay on the whole chip in 

deep sub-micron technology in VLSI. In our work, these three 

algorithms are used and compared for the best result. 

3.2.1 FlowMap 

FlowMap [9] is the first depth-optimal technology mapping al-

gorithm developed. The algorithm will first apply DMIG[6] to 

decompose the network into network composed of small gates. 

The author of FlowMap believes small gates can be packed and 

grouped more efficiently by their algorithms than large input 

gates. And experimentally they showed that the depth of the 

mapped network is the smallest when the original was first de-

composed into 2-input gates. 
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After gate decomposition, the algorithm enters the labeling 

phase. The algorithm calculate a label l{t) for every node t in 

topological order. The label l{t) gives the minimum depth of any 

mapping solution of the subnetwork rooted at node t, denoted 

by Nt. Moreover, l{t) is either equal to the maximum label p 

of the nodes in fanin of t or one more than the maximum label. 

FlowMap first collapses all nodes with label p in Nt to get a new 

network Nj., then it continues with computation of the maximum 

volume min-cut of Nj. by the classic network flow technique. If the 

cut size is less than or equal to k, the label l{t) is assigned to be 

p, otherwise l{t) = p+1, indicating a new LUT is used to map Nt-

After label calculation, FlowMap starts /c-LUT generation with 

a list of PO nodes. It iteratively takes a non-PI nodes on list and 

generate a LUT to implement the function for all the nodes with 

the same label. The fanins to this newly generated LUT is then 

put on the list. 

To illustrate the label calculation we show the network for the 

circuit in previous example in figure 3.4. For simplicity, we take 
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cK 

Figure 3.4: Label Calculation in FlowMap 

k = 3. Suppose during the label phase we need to compute the 

label for node g8 with p = 2 (l(g7) = 2). Thus we collapse node 

gl with gS together and consider this collapsed node as the sink 

node. After addition of a dummy source node connecting to all 

PI nodes, we find a minimum cut on the network by network flow 

technique. Figure 3.5 shows the collapsed network and the graph 

for flow calculation. The min-cut simply separates the sink node 

with all other nodes, which implies that nodes gl and g込 can be 

collected together and implemented by a 3-LUT. Since the cut 

size equals 3, the label of node is 2，same as that of gl. 
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Figure 3.5: Label Calculation in FlowMap (Cont，） 

FlowMap has a polynomial time complexity of O(kmn) where 

n and m are the number of nodes and the number of edges in N, 

Therefore the algorithm is extremely fast even for large circuits 

with thousands of gates. However, during our experiments we 

found that the mapping solutions by FlowMap does not guarantee 

high utilization of LUTs, despite its depth optimality. In other 

words, many /c-LUTs do not have all k inputs used, and this 

situation goes worse when k increases. One prime reason is that 

when k increases, the utilization drops since the algorithm finds 

it harder and harder to push in nodes in an old LUT when no 

modification is allowed during mapping. Table 3.1 shows the 

statistics collected. 
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Number of Inputs used 
Circuit 2 I 3 I 4 I 5 

3-LUT � 

alu2 I 120 I 146 I 0 0 
alu4 186 ^ 0 0 
des 一 1528 982 “ 0 0 

Total 1834 (56.4%) T4I8 (43.6%) 0 0 
4-LUT  

alu2 I 68 I 59 I 87 I 0 一 

alu4 108 107 179 0 
des 346 ~ ~ 292 ~ 1076 0 “ 

Total 552 (22.5%) 458 ( 1 9 . 7 ^ 1342 (57.8%) 0 
5-LUT  

alu2 I 37 I 23 I 37 I 77  
alu4 一 77 45 S 110 “ 
des 361 ^ 641 _ 

Total 475 (23.4%) 270 ( 1 3 . 3 ^ 453 (22.4%) 828 (40.9%) 

Table 3.1: Relationship between k and LUT Utilization 
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3.2.2 FlowSYN 

FlowMap does not take the logic information stored into consid-

eration during the technology mapping process. It is obviously 

true by re-synthesis of the network the delay and the number of 

LUTs can be further reduced. FlowSYN[8] attempts to augment 

FlowMap with logic reconstruction technique. When FlowSYN 

finds a min-cut with size more than /c, instead of incrementing 

the label by 1，it tries to re-synthesize the subnetwork based on 

functional decompositions. The principal decomposition form is 

/(:ri，:r2，...，:zv) = f ( g i , . . . , g j , X k + i , … w h e r e gi for z = 1 

to j are functions for Xi,X2,... ,Xk, j < k and r > k. If such 

decomposition is possible, all gi functions can be implemented by 

/c-LUT and resultant number of inputs from f to f' is reduced 

by 1. This follows to recursively decompose the function so that 

all subfunctions are fitted into /c-LUTs. After all, such recursive 

decomposition can allow the label to remain p and thus there is 

higher chance to have a smaller depth in the final mapping solu-

tion. 

The functional decompositions are carried out using ordered 

binary decision diagrams (OBDD) [1] efficiently. Nevertheless, 
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more memory usage and computation time are expected in FlowSYN. 

3.2.3 CutMap 

CutMap [10] introduced two important concepts - depth relax-

ation on non-critical nodes and node cost functions based on max-

imum fanout free cone. 

CutMap relaxes the rule to assign depth-optimal labels on 

nodes which are not on the critical path in order to gain room 

for area minimization. Instead it keeps track on the difference be-

tween the current label and the depth-optimal label. During label 

calculation for non-critical nodes, the node collapse originated in 

FlowMap for depth optimization is not used, and this is replaced 

by the minimum cost /c-feasible cut computation in CutMap. 

The cost function for every node is determined by the maxi-

mum fanout free cone (MFFC) it belongs to. The root node of 

every MFFC is assigned the cost zero since they are more likely 

to be implemented by a single LUT and they have high number 

of fanouts. PI and PO nodes have cost zero and other nodes have 

cost one. Consequently this avoids cuts along the MFFCs and 

prevents more nodes to be implemented by unnecessary LUTs. 
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CutMap preserves the depth optimality of FlowMap but at 

the same time minimize the number of LUTs used through min-

cost cut computation. Clearly, the computation for such cuts 

dominates the runtime of the algorithm. Although the algo- , 

rithm is speed-up by careful case handling, its time complexity 

is 0(2/077177̂ /2+1) Taking /c = 4 or 5, CutMap runs slowly than 

FlowMap by a factor of n\ 

• End of chapter. 



Chapter 4 

LUT Minimization by Rewiring 

Prom our discussion on several network-flow-based FPGA tech-

nology mapping algorithms, we can see that most of the logic 

information available in the network is not utilized for reduction 

of number of LUTs in the mapping solution. Though FlowSYN 

employs functional decomposition inside the algorithm, its main 

goal is still on depth optimization. On the other hand, CutMap 

tries to reduce the number of LUTs solely by taking better cuts 

along non-critical paths on the network and the algorithm does 

not consider the network contains digital logic information inside. 

Therefore we explored the possibility of linking logic transfor-

mation with technology mapping together and work out a co-

herent collaboration so that we can on one hand keep the depth 

24 
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optimality provided by FlowMap / FlowSYN / Cut Map, but at 

the same time transform the network to allow less LUTs used in 

the mapping solution. We chose network-flow-based mapping al-

gorithms since they provide optimal-depth solutions and we can 

thus focus on LUT reduction using logic transformation. 

To illustrate the idea, we first present an example of LUT re-

duction by rewiring technique. Consider the sub-circuit shown 

in figure 4.1. Suppose initially we get 4 LUTs rooted at gl, 

g5 and g6 respecitively, as bounded by dotted lines. More here 

we assume that l{gl) equals l{g5). If we find an alternate wire 

{g2, gb) for the target wire we can allow more efficient 

packing with 3 LUTs only, and the overall depth of the circuit is 

unchanged. The final mapping is should in figure 4.2. 

Rewiring was chosen to provide transformations available to 

the network. The first reason for this choice is that rewiring is 

powerful in which it is proved that any logic transformation can 

be archived by apply rewiring. Therefore rewiring technique pro-

vides us with high reachability in good starting network for the 

mapping algorithms. The second reason is that rewiring tech-
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i  ……i:::::::::::::::.. I 

- i — — = i ^ n 

Figure 4.1: Initial Mapping Solution 

— [ = = : • , 

；:KVf-

Figure 4.2: Final Mapping Solution after transformation 
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niques usually work better on network decomposed in small gates 

so we can link rewiring technique with the technology mapping 

algorithms seamlessly. 

4.1 Greedy Decision Heuristic for LUT Mini-

mization 

Rewiring technique provides a set of target / alternative wire pairs 

for a given network. In our approach, the pair will be evaluated 

directly using the mapping algorithms to determine the number 

of LUTs and the depth after the transformation applied to the 

network. Even the evaluation can be completed in polynomial 

time\ we would like to make the trial evaluation as least as pos-

sible. Therefore heuristically we always take the first alternate 

wire which can reduce the number of LUTs with no penalty on 

depth. So after the transformation, the depth can be smaller or 

at the least, but we use less number of LUTs to map the circuit. 

And the greedy strategy will be applied through the whole opti-

mization process until we reach a minimum point and no more 

improvement can be done by transformation on the network. The 
iwhen fc = 4 or 5, FlowMap runs at O(kmn) and FlowSYN and CutMap runs at 0{kmn^) 

approximately. 
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Algorithm ReMap 
Input: Boolean network N 
Output: LUT minimization network N' 
1. finding a set of alternate wires W oi N 
2. for each AW w in W 
3. do transform N according to w 
4. Nf flowmap(N) 
5. if lut{Nf) < lut(N) and d(Nf) < d(N) 
6. then N —Nf 
7. goto step 1 
8. /* no more possible reduction */ 
9. return N � 

Figure 4.3: Algorithm Flow of REMAP： Greedy LUT Minimization 

algorithm is outlined in figure 4.3a. 

We conducted a series of experiments in linking the rewiring 

technique with the technology mapping algorithms based on our 

greedy decision heuristic in order to verify the usefulness of this 

approach. REWIRE, RAMFIRE and GBAW are chosen to work 
V 

with FlowMap, FlowSYN and CutMap. The experimental results 

and analysis are given in the following section. 

4.2 Experimental Result 

We conducted all the following experiments with 12 small to 

medium sized MCNC benchmark circuit on a personal computer 

with 2.4-GHz CPU and 1028 MB memory. The experiments were 
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written in C language with SIS [11] library on Fedora Core 3 Linux 

platform. 

We started with REWIRE on the three map algorithms since 

REWIRE should be the most powerful which enables us to full 

understand the extent of effectiveness of the approach. Table 4.1, 

4.2 and 4.3 show the initial depth, the initial number of LUTs, 

the new depth, the optimized number of LUTs, the reduction 

percentage and finally the execution time measured in minutes. 

We can see that REWIRE can readily reduce the number of 

LUTs used for mapping into LUTs. The overall percentage re-

duction is 22.7%, 24% and 22.1% on FlowMap, FlowSYN and 

CutMap respectively. In general the depth of the circuit remains 

the same after the optimization. This can explain that REWIRE 

does not length the depth very much during the transformation 

for less LUTs and actually we have margins on each level of LUTs 

to accommodate a few more level of small gates so that the fi-

nal mapping depth is kept unchanged. For small-sized circuits, 

REWIRE completed optimization within one to three minutes 

while for medium-sized circuits the time taken will be around 
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two to three hours on FlowMap and FlowSYN. The runtime will 

be longer on CutMap due to higher complexity in evaluation, and 

it takes around six to eight hours to optimize a medium-sized cir-

cuits. 

"Ch^uit Init. d Init. n New d Opt, n Red. (%) C ^ 
comp 4 27 4 W ^ 0.4 
f51m 3 ~ ^ ~ ~ 3 ^ 1 7 ^ 0 . 4 
5xpl 3 30 3 ^ 1 3 . 3 0.8  

pclerS 3 ~ 47 3 35 — 25.5 0.2  
b9-n2 3 ~~47~~ 3 ~ ^ ~ ~ 19.1 —0.3 
ttt2 3 ^ 3 42 ^ ^ 3.6 

terml 4 ~ ~ ^ 4 S ^ 1 0 . 6 
C880 8 ^ 7 ^ 106 27.9 —20.5 
alu2 9 m 9 m ^ 2 6 1 . 0  

duke2 4 4 ~ 25.3 114.6 
misexS 7 ^ 7 ^ 2 3 4 . 1 

x3 5 5 13.9 63.7 
Total — 1302 “ 1006 22.7 710.2— 

Table 4.1: Experimental Results: REWIRE on FlowMap 

Then we proceeded with experiments with RAMFIRE and re-

sults are shown on table 4.4，4.5 and 4.6. The reduction brought 

by RAMFIRE is quite satisfactory even when compared to results 

using REWIRE - the reduction percentages are 19.3%, 16.7% 

and 15.4% respectively and the ratios to results on REWIRE are 

84.8%, 69.5% and 69.9%. However RAMFIRE used only one-fifth 
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Circuit l ^ t . d Init. n || New d Opt, n Red. (%) CPU 
comp 4 27 4 ^ ^ I ? 0.4 
f51m 3 ~ ^ 3 16 ^ L0~~ 
5xpl 2 ^ 2 ~ 1 8 ~ ~ 14.3 1.0 

pclerS 3 47 ^ 3 ^ ^ 0.2 
b9-n2 3 ~~47""“ 3 39 17.0 ~0.3 
ttt2 3 59 ^ 3 41 ^ 4.0 

terml 4 76 4 52 ^ 10.7 
C880 8 - 146 — 7 106 一 27.4 23.3 

9 “ 164 — 9 114 “ 30.5 316.8 
duke2 4 ~ 1 8 7 ~ 4 139 ^ 121.1 
misexS 7 221 7 249 258.9 

x3 5 5 216 14.6 59.1 
Total 968 —24.0 796.8 

Table 4.2: Experimental Results: REWIRE on FlowSYN 

"cTrcuit Init. d Init. n New d Opt, n Red. (%) CPU 
comp 4 22 4 21 4.5 1.7 
f51m 3 ^ ~ ~ 3 ~ ~ ^ ~ ~ 21.4 1.3 
5xpl 3 " " “ ^ ~ ~ 3 24~~ 11.1 —1.2 

pclerS 3 ~~34~~ 3 ^ ~ ~ 14.7 0.2 
b 9 _ n � 3 ~ 42 3 ~ 37 ~ 11.9 
ttt2 3 48 3 ^ 42 12.5 2.7 

terml 4 ^ 4 49 21.0 21.6 
C880 8 m 7 9 2 2̂7.6 171.8 
alu2 9 150 9 118 21.3 1450.2 

duke2 4 153 4 " ~ 1 2 0 ~ 21.6 334.4 
misex3 8 7 146 28.4 3573.6 

^ ^ 5 m 5 1 7 9 22.5 140.3 
Total 1129 879 22.1 5699.8 

Table 4.6: Experimental Results: RAMFIRE on CutMap 
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of CPU time to complete the set of experiments. Prom this we 

believe RAMFIRE is quite promising to produce substantial LUT 

reduction even if short amount of CPU time is allowed. 

"circuit Init. d Init. n New d Opt, n Red. (%) CPU 
comp 4 ？ 7 4 ~ ~ ^ ~ ~ 3.7 0.1 
f51m 3 28 3 W~~ 7.1 0.1 
5xpl 3 ^ 3 2 7 10.0 0.1 

pclerS 3 4 7 3 35 25.5 0.0 
b9_n2 3 4 7 3 ~ ~ ^ ~ ~ 17.0 0.1 
ttt2 3 ^ ^ 3 44 29.0 0.9 

4 77 4 59 23.4 1.7 
C880 8 147 7 109 25.9 8.4 
alu2 9 m 9 ~ 1 3 6 21.8 35.4 

duke2 4 4 1 4 8 20.4 10.7 
7 225 ~ ~ 7 ~ ~ 180 20.0 55.2 

^ 5 ~ 252 5 222 11.9 21.8 
Total 1302 1051 19.3 1345" 

Table 4.4: Experimental Results: RAMFIRE on FlowMap 

Finally we repeated the experiments with GBAW, the fastest 

rewiring technique. Obviously GBAW can finish the optimiza-

tion in extremely short time, yet we need to analyze the power of 

GBAW in specifically reduction for LUTs. Table 4.7, 4.8 and 4.9 

show the experimental results for our analysis. Here we show the 

CPU time in seconds since GBAW finished every circuit with 10 

seconds. Nevertheless, the alternative wires found by GBAW is 
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"Circuit Init. d Init. n New d Opt, n Red. (%) CPU 
comp 4 ZZ 4 ^ ^ 0.1 
f51m 3 ^ 3 ^ 16 36.0 0.2 
5xpl 2 S 2 ~~18~~ 14.3 —0.2 

pclerS 3 47~~ 3 35""“ 25.5 ~0.0 
b9-n2 3 ""“47~~ 3 39 17.0 —0.1 
ttt2 3 ^ ^ 3 42 28.8 1.0 

terml 4 76 4 ~ ~ m ~ ~ 21.1 一 1.9 
C880 8 146 7 1 0 9 25.3 9.6 
alu2 9 m 9 ^ 133 18.9 41.9 

duke2 4 187 4 0.0 ~1.0 
" M I S ^ 7 221 — 7 173 21.7 64.6 

^ ^ 5 m 5 2 2 3 11.9 —18.9 
Total i m 1061 16.7 139.5 

Table 4.5: Experimental Results: RAMFIRE on FlowSYN 

"circuit Init. d Init. n New d Opt, n Red. (%) CPU 
comp 4 2 2 4 21 4.5 0.6 
f51m 3 2 8 3 ~ ~ ^ 3 . 6 0.3 
5xpl 3 ^ ~ ~ 3 26~~ 3.7 —0.4 

pclerS 3 34 3 29 14.7 0.1 
b9_n2 3 4 2 ~ ~ 3 36 14.3 0.5 
ttt2 3 4 8 3 43 10.4 0.8 

terml 4 ^ ~ ~ 4 59~~ 4.8 3.8 
C880 8 127 7 96 24.4 141.2 
alu2 9 150 9 116 22.7 403.1 

duke2 4 4 ^ 125 18.3 64.6 
misex3 8 ^ 8 ^ 159 22.1 750.9 

^ ^ 5 m 5 ^ 217 6.1 34.5 
Total 1128 — 954 “ 15.4 1400.8 

Table 4.6: Experimental Results: RAMFIRE on CutMap 
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not very useful in LUT reduction, and we can only reduce 1.8%, 

1.6% and 1.2% of LUTs on FlowMap, FlowSYN and CutMap 

by GBAW respectively. The problem is especially serious when 

GBAW works on small-sized circuits, in most cases, no reduction 

is found. 

"circuit Init. d Init. n New d Opt, n Red. (%) CPU(s) 
comp 4 2 7 4 ^ 0 . 0 ~ 0.57 
f51m 3 ^ 28 3 28 0.0 0.42 
5xpl 3 ^ 30 3 29 ^ 0.1 

pclerS 3 4 7 3 47 0.0 “ 0.16 
b9_n2 3 4 7 3 47 0.0 0.21 
ttt2 3 ^ 3 61 1.6 0.07 

terml 4 7 7 4 74 3.9 0.44 
C880 8 147 8 146 0.7 0.4  
alu2 9 174 9 171 1.7 "~0.81 

duke2 4 4 179 3.8 0.8  
misex3 7 2 2 5 ~ ~ 7 ~ ~ 221 1.8 1.42  

^ 5 252 5 249 1.2 4.19  
Total 1302 1279 1.8 9.6 

Table 4.7: Experimental Results: GBAW on FlowMap 

To sum up, we found that REWIRE and RAMFIRE is a strong 

optimization tool for the technology mapping algorithms under 

experiments. They are capable to reduce at least 15% of LUTs 

used by all three mapping algorithms. The final mapping solution 

is the best when we take REWIRE on CutMap and it uses only 
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"circuit Init. d Init. n New d Opt, n Red. (%) CPU(s) 
comp 4 27 4 27 0.0 0.63 
f51m 3 ~ ~ ^ ~ ~ 3 ~ 1 8 ~ ~ 28.0 0.14 
5xpl 2 ^ ~ ~ 2 ~ ~ ^ ~ ~ 0.0 — 0.58 

p c l e ^ 3 47 ~ ~ 3 ~ 47 0.0 “ 0.18 
b9-n2 3 ~ 4 7 ~ 3 ~ ~ 4 7 0 . 0 一 0.22 
ttt2 3 ^ 3 5 6 5.1 0.08 

terml 4 W 4 7 4 2.6 1.82 
C880 8 146 8 ~ ~ 145 0.7 
alu2 9 m 9 ^ 164 0.0 8.55 

duke2 4 187 4 — 187 0.0 ~ T 5 4 ~ 
m i s e ^ 7 221 7 ~ 217 1.8 6.07 

^ ^ 5 ^ 5 2 5 0 1.2 4.67 
Total i m 1253 1.6 34.6 

Table 4.8: Experimental Results: GBAW on FlowSYN 

Circuit Init. d Init. n New d Opt, n Red. (%) CPU(s) 
comp 4 ^ 4 ^ 22 0.0 2.89 
f51m 3 28 3 2 8 0.0 1.52 
5xpl 3 ？ 7 3 ~ ^ ~ ~ 0.0 2.13 

pclerS 3 ^ 34 3 33 2.9 0.09 
b9_n2 3 4 2 3 42 0.0 0.82 
ttt2 3 48 3 4 8 0.0 5.26 

terml 4 ^ ~ 4 60 3.2 6.46 
C880 8 127 8 1 2 7 0.0 74.46 
alu2 9 9 ^ 150 0.0 105.32 

duke2 4 4 ^ 148 3.3 11.46 
misexS 8 2 0 4 7 ~~20r~ 1.5 34.9 

^ ^ 5 ^ 5 m ~ 0.9 14.25 
Total" 1128 1115 1.2 259.6 

Table 4.6: Experimental Results: RAMFIRE on CutMap 
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879 LUTs to map all 12 circuits, when compared to 1302 LUTs 

used by FlowMap solely, we have already a 33% improvement. 

Such an improvement can readily ease floorplan, placement and 

routing in later design stages and also allow the whole design pro-

cess to be completed in short time. 

On the other hand, we do not recommend the use of GBAW 

for the mapping optimization problem since the alternative wires 

found by GBAW are more type-limited when compared to ATPG-

based rewiring technique (REWIRE, RAMFIRE). Despite its high 

speed, the reduction in LUTs is not very significant. 

Besides network-flow-based mapping algorithm, logic-based al-

gorithms are also proposed in literature. One of the logic-based 

algorithms is BDS-pga introduced in [14]. The algorithm first 

decomposes the network using OBDD and finalized the mapping 

with FlowMap. Table 4.10 shows the comparison between our 

approach using REWIRE on CutMap and BDS-pga. Our work is 

comparable with BDS-pga with better results in several circuits. 

Yet BDS-pga can perform better in XOR-intensive circuits like 

alu2 or comp. 

V 
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V 

REWIRE + CutMap BDS-pga + FlowMap 
Circuit new d opt. n delay LUTs 
comp 4 21 3 14 

~b9-n2 3 37 — 3 — 40 
C880 7 ~ 92 8 103 
alu2 ~~9 118 4 41 一 

duke2 4 120 8 173 
rot — 7 213 10 223 

Table 4.10: Comparison between REWIRE on CutMap and BDS-pga 

• End of chapter. 



Chapter 5 

Conclusion 

We proposed a new approach to optimize FPGA technology map-

ping by using rewiring techniques. Our approach can effectively 

reduce the number of LUTs by 15 - 18% on average and it works 

even better with large circuits where a lot of alternative wires can 

be found. Our result is already better than all network-flow-based 

mapping algorithms found in literature and also very comparable 

to logic-based mapping algorithms. 

We also conducted experiments to verify the power of various 

rewiring algorithms on the LUT minimization problem. We found 

that REWIRE is the most powerful technique which can on av-

erage reduce more than 20% of LUTs in initial mapping solution. 

However, when design time is a concern, we recommend the use of 

38 
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RAMFIRE since it can reduce 15% of LUTs in one-fifth of CPU 

time used by REWIRE. 

The thesis reveals our preliminary effort in apply logic transfor-

mation with technology mapping and the result is clearly encour-

aging. The LUT reduction is advantageous to all later physical 

design process after technology mapping. Therefore we believe 

this coherent approach is a very good and challenging research 

area and we truly hope more effort will be made in the future. 

• End of chapter. 
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