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Abstract of thesis entitled: 

Using Duration Information in HMM-based Automatic 

Speech Recognition 

Submitted by Zhu Yu 

for the degree of Master of Philosophy 

in Electronic Engineering 

at The Chinese University of Hong Kong 

in Feb 2005. 

Hidden Markov Model (HMM) is the most predominant technique for 

automatic speech recognition (ASR). However, HMM is inadequate in representing 

the temporal structure of speech signal. An HMM does not give effective control to 

the duration properties of speech segments being modeled. In many applications, 

HMM-based systems frequently make errors. A significant portion of these 

recognition errors exhibit unreasonable absolute duration or relative duration. To 

alleviate this problem, explicit modeling of duration information has been proposed to 

confine the duration of recognized segments. 

In this research, we focus on explicit duration modeling for Cantonese 

connected-digit recognition. Connected-digit recognition has many practical 

applications that often require high accuracy. Despite its limited vocabulary size, it is 

not straightforward to attain the desired performance level mainly because the 

combination of digits is unrestricted. The syllable compositions of Cantonese digits 

are generally very simple. In particular, the digit "5" and "2" can be regarded as of 

single phonemes. In our baseline recognition system without duration modeling, it is 

observed that a significant portion of recognition errors are due to the insertion of 
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digit "5" and "2" with very short durations. We propose to use both absolute duration 

models and relative duration models to constrain the duration of recognized digits. In 

particular, the relative duration of the tail part of a Cantonese digit is proposed as a 

kind of useful duration information. Considering that speaking rate variation may 

weaken the effectiveness of the duration model, speak-rate-dependent duration 

models are also investigated. 

The duration models are integrated into the dynamic programming search 

algorithms for speech recognition. For each decision on path extension, the duration 

models are used to contribute an additional probabilistic score to the acoustic path 

score. Algorithms are developed for incorporating state-level duration score and 

word-level duration score to HMM-based recognition respectively. In the decoding 

algorithm, a weighting factor is used to balance the contribution from the acoustic 

model and the duration model. 

Experiments have been carried out with the CUDIGIT corpus to evaluate the 

effectiveness of the models for various types of duration information. Empirical 

weights for different duration information are developed by many trials on male 

speech data. With these weights, the use of different duration information shows 

performance improvement to various degrees. For male speech, the recognition 

accuracy is improved by up to 1.06%. For female data, the recognition accuracy is 

improved by up to 0.51%. Speaking-rate-dependent duration models have also been 

evaluated. It shows further performance improvement over the speaking-rate-

independent models. 

Lastly, experiments have been carried out on a separate set of speech data. The 
results show that the empirical weights trained from CUDIGIT data are equally 
effective. The improvement of recognition accuracy is up to 2.36%. 
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摘要 

隠馬爾可夫模型(腿M)技術是R前自動語音識別領域的最主要的技術。然而當使 

用HMM刻劃語音信號的時候，它不能充分刻劃語音信號的時間結構。這表現在 

它不能對它所刻劃的語音段的段長和相對段長加以有效的控制。這裡所指的語 

音段包括H匪狀態和詞。在許多採用HMM技術的自動語音識別系統中，識別錯 

誤常常發生。有一大部分錯誤呈現出不合理的段長或相對段長特徵。爲了減少 

這些識別錯誤，顯式段長信息模型可以用來約束被識別出的語音段段長。 

在這項研究中我們致力於為廣東話數字串識別建立顯式段長信息模型以 

提高識別性能。數字串識別有廣泛的應用，這些應用常常要求很高的識別率。 

儘管它的詞彙量很小，但是數字組合的任意性使得期望的識別率不容易達到。 

廣東話數字的音節十分簡單。數字“5”和数字“2”可以看成是只有一個音素 

的音節。在基綫系統中，我們發現有大量的識別錯誤是因爲非常短的“5”和 

“2”的插入。我們建議為段長和相對段長建立模型來約束段長。特別的，我們 

提出為廣東話数字的相對尾長建立模型。考慮到語速變化會影響段長模型的有 

效使用，我們進一步探討了語速相關的段長信息模型。 

段長信息模型被使用到進行語音識別的動態規劃算法中。在每次作出路 

徑延長的決策時，由段長信息模型計算出來的概率得分被加到傳統的路徑概率 

得分裹面。我們分別實現了採用HMM技術的自動語音識別系統使用狀態段長和 

詞段長模型的語音識別算法.在識別算法中我們使用權重系數來平衡聲學模型和 

段長信息模型的相對貢獻。 

我們在廣東話数字語音資料庫CUDIGIT上進行了使用不同段長信息的實 

驗。通過在男性語音数據的多次探測性試驗，我們得到了對不同段長信息的經 

驗權重系数。使用這些系数，識別性能得到了不同程度的提高。在男性語音識 

別試驗中，識別率最多可提髙1.06%。在女性語音識別試驗中，識別率最多可 
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提高0.51%。我們也進行了使用語速相關的段長信息模型的實驗，這為識別性 

能帶來了進一步的提高。使用之前得到的經驗系數，我們又在其他語音資料庫 

進行了實驗來撿驗經驗系数的有效性，發現識別率最多可提高2.36%。 
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Chapter 1 

Introduction 

1.1. Speech and its temporal structure 

Acoustically, speech is characterized by its spectral properties and temporal structure. 

By spectral properties, we refer to the short-time frequency spectrum. From the 

spectrographic representation, we can observe the energy of the frequency content 

over time. The temporal structure includes the duration of sound segments, intonation, 

loudness of sounds. It is also commonly referred to as the prosodic pattern. 

Duration of sound segments provides important acoustic cues for human 

speech recognition. In many languages, there are cases that differentiating between 

some certain word(s) pair depends heavily on the duration. For instance, in English, 

there are confusing word pairs, "cheap" and "chip", "beat" and "bit", in which the 

vowel durations are contrastively different. In Finish [1], phone durations can be the 

clue in discriminating between certain words. Temporal structure modeling has 

attracted considerable attention in the ASR and relevant speech research areas. 

This thesis concerns the use of duration for automatic speech recognition 

(ASR). In particular, we focus on the word-level and subword-level duration for the 

recognition of Cantonese connected digits. 

1.2. Previous work on the modeling of temporal 

structure 

The research on exploiting temporal features started in the early 1970s, when non-

linear time normalization using dynamic programming was established as the most 
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effective speech recognition technique. Endpoint constraints, monotonicity constraints, 

various local continuity constraint, global path constraints, and slope weights [2]-[4] 

were adopted to impose control in the search for optimal warping path for, 

acoustically as well as linguistically meaningful, time normalization to account for the 

inherent temporal variability in speech utterances. 

In recent years, data-driven statistical approaches have become predominant 

for ASR. In particular, Hidden Markov Model techniques provide a formal 

mathematical framework for modeling temporal and spectral variability in speech 

signals. This framework is amenable to a set of mathematically rigorous algorithms 

for automatic model parameter estimation and pattern classification [russel87]. For 

speech recognition, an HMM has a number of states that are arranged in a left-to-right 

topology. The HMM states may be thought of as a sequence of acoustic targets that 

constitute an utterance. The conditional independent state output probability density 

functions (pdf) describe the spectral variability in the realization of these targets. The 

underlying assumption of first-order Markov model governs the temporal variability. 

With these assumptions, HMM is sufficiently simple to enable mathematically 

rigorous optimization and search strategies such as Viterbi algorithm to be employed 

[5]. The successful application of HMM techniques in ASR makes HMMs become 

the most prominent techniques for speech recognition today. 

However, in many applications, HMM-based systems frequently make errors. 

A significant portion of these recognition errors exhibit unreasonable time durations 

or relative duration proportion. For instance in the connected-digit task of Cantonese, 

Korean, mandarin and English, a large portion of recognition errors are due to 

insertions of short sounds. 

This is due to the over-simplified assumptions of HMM in representing the 

temporal structure of speech signal. Under the first order Markov assumption, 

transition probability depends on the immediately neighboring states. It is inadequate 

to control the time duration of speech segments that correspond to an HMM state or 

the entire model. It is inadequate to give control to the relative duration of speech 

segments to each other. It is also pointed out that implicit duration modeling of HMM 

is not appropriate [5]-[7]. With the probabilistic self-transition in the Markov model, 

state duration is implicitly modeled by a geometric distribution. However, the 

geometric distribution often mismatches with the measured data in practical cases. 
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In summary, HMM-based recognizer under-utilizes duration information in 

the incoming speech due to inadequate modeling or knowledge in duration. To 

alleviate the problem, we can develop duration knowledge explicitly to complement 

HMM. With the duration knowledge, duration information in the incoming speech 

signal would be better utilized. The duration knowledge source should be a 

quantitative model. Then it can be used to assess the duration feature' extracted and 

output duration probability. This technique is referred to as explicit duration modeling. 

Subsequently, the duration probability can be used to contribute to the overall 

probability for speech recognition. 

1.3. Integrating explicit duration modeling in 

HMM-based ASR system 

There are a number of issues concerned with the approaches to integrate explicit 

duration modeling into the ASR process. They are mainly on constructing of explicit 

duration model and using the explicit duration model for recognition. Firstly, 

appropriate duration features need to be identified for duration modeling. Secondly, a 

parametric distribution has to be assumed for statistical characterization the duration 

features. The subsequent problem is how to estimate the parameters of duration model. 

Lastly, the problem is how to incorporate of duration models to the recognition 

process. 

1.4. Thesis outline 

Previous works on integrating explicit duration information in ASR will be reviewed 

in Chapter 2. A baseline system will be described in Chapter 3. Its recognition 

performance will be analyzed. Suggested techniques on explicit duration modeling 

and using explicit duration modeling for Cantonese connected-digit recognition will 

be discussed in Chapter 4 and Chapter 5. Experimental results and analysis of the 

‘The measurement of duration information is referred as the duration feature. 
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experiments on using duration modeling are given in Chapter 6 and Chapter 7. Lastly, 

the conclusion will be given in Chapter 8. 
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Chapter 2 

Background 

The principles of automatic speech recognition and HMM-based ASR system are 

described as the basis of our study. Previous works on using explicit duration 

information in ASR are reviewed and various issues on explicit duration modeling are 

addressed. 

2.1. Automatic speech recognition process 

Automatic speech recognition is a computation process that generates the most likely 

word string associated with a given speech waveform. The basic process of ASR is 

illustrated in Figure 2-1. 

The incoming speech is first transformed and represented by a sequence of 

feature vectors, which is regarded as the incoming patterns for recognition. 

Subsequently, the similarities between the incoming speech patterns with a set of 

reference patterns (model) are measured. Each of these reference patterns essentially 

corresponds to a symbol that represents a specific speech sound. This similarity is 

measured with pattern matching techniques. The symbol (or sequence of symbols) 

whose reference pattern has the highest degree of similarity to the incoming speech 

patterns would give the recognized word string. 
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Figure 2-1: The basic process of ASR 

In state-of-the-art ASR techniques, the reference patterns in the above process are 

represented by hidden Markov models. 

2.2. HMM for ASR 

2.2.1. HMM for ASR 

HMM provides a good means to characterize two significant properties of speech 

signal, namely, temporal structure and spectral properties. Speech signal is time -

varying as HMM states evolve from one to the other. On the other hand, speech signal 

is short-time quasi-stationary. Its short-time spectral properties are described by the 

state-specific probability density function. 

In HMM-based acoustic modeling, it is assumed that the sequence of feature 

vector O = {o/, 02, ....or} that associated with a speech symbol are generated by an 

HMM that represents the designated speech sound. At time t when state j is entered, a 

feature vector 0, is generated by bj(ot),XhQ probability density function. Furthermore, 

the transition from state i to state j is also probabilistic and is governed by the 

probability aij. Figure 2-2 illustrates, as an example, a six-state HMM generates the 

sequence o\ to ot with the corresponding state sequence Q = {qj, q2,.…qr). 

The joint probability that O is generated by an HMM 6 with the corresponding 

state sequence Q is computed as the product of the transition probabilities and the 

output probabilities, i.e., 

6 



= (2-1) 
t=2 ^ ^ 

The probability that 0 is generated by an HMM 6 is then give by summation 

of P{0,Q\E) over all legitimate Q\ 

= (2-2) 

For recognition, the similarity between 6 and O is measured by the 

likelihood P{0 16). However, it is preferable to base recognition on the likelihood of 

the most likely state sequence. This likelihood generalizes easily to the continuous 

speech recognition case. 

^22 ^33 ®44 ®55 ^66 

/li /J 4! i ^ 
» ) I \ I I I 1 

^ ^ jir ^ ji- ^ ^ 含 
• • • • • • 

O, <>2 O3 O4 O5 Of Oj 

Figure 2-2: A hidden Markov model for speech recognition 

2.2.2. HMM-based ASR system 

An HMM-based ASR system consists of three key modules as shown in Figure 2-3. 

They are namely feature extraction, HMM decoding and HMM training. The feature 

extraction module transforms the speech waveform to feature vector sequence. The 

HMM decoding (recognition) is a computation process that generates word string 

associated with speech waveform. The HMMs needed for decoding is estimated by 

the HMM training module. The training process requires a large amount of speech 

data. 
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Figure 2-3: Block diagram of HMM-based ASR system 

Feature extraction 

For speech recognition, the raw acoustic waveform is not appropriate to represent the 

linguistic contents of speech directly. The raw speech signal contains a variety of 

information, and only some of them are relevant to a particular ASR task. It's 

necessary to derive more compact and efficient representations, termed as speech 

features, to reduce the redundancy and irrelevant content in raw signals. Ideal features 

for ASR would therefore be ones that can contain only the speech information of 

interest and remain immune to other sources of acoustic variation in the raw data [8]. 

The most commonly used speech features include Linear Prediction Cepstral 

Coefficients (LPC)，Mel-frequency Cepstral Coefficients (MFCC) and their 

extensions. In particular, MFCCs are the choice in many practical applications. They 

give good discrimination and lend themselves to a number of manipulations [9]. 

MFCC is based on filter-bank analysis. It employs a number of Mel-scaled 

band-pass filters to achieve non-linear frequency resolution that resembles how 

human ear resolves frequencies across the audio spectrum. Since filter bank outputs 

are highly correlated and hence, a cepstral transformation is applied to de-correlate 

them. The features then can be modeled by multivariate distributions with diagonal 

covariance matrixes. Otherwise, full covariance matrixes are computationally very 

expensive. 

HMM training 
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Training of an HMM involves the estimation and adjustment of model 

parameter 6 \{Kp bj(o^, aij}according to certain optimization criteria. Given a 

sequence of acoustic observations O = [oi, 02, ....OT), maximizing the probability 

P(0\6) is a reasonable criteria for ASR applications and is commonly used. The 

difficulty is due to that the maximization has to be done with incomplete data because 

the state sequence from which the acoustic observation is generated is unknown. 

There is no known way to analytically solve the problem in a closed form. However, 

e can be determined such that the likelihood P(0\6) is locally maximized using an 

iterative procedure like the Baum-Welch method or using gradient techniques[10]. 

Baum-Welch algorithm is widely used for HMM training. It accomplishes 

likelihood maximization in a two step procedure, known as "re-estimation". Based on 

an existing model 0, the first step of the algorithm is to transform the objective 

function P(0\9) into a new auxiliary function Q{e,e) .It can be proved that 

Q{E,9)-^Q{E,D) implies P{0 \ e) ^ P{0 \ E). The second step of the algorithm is to maximize 

Q{D,E) as function of 9 to obtain a higher likelihood P(0\6).l\iQ two steps iterate until 

the likelihood P(0\6) converges. 

HMM decoding 

For the expedience of explanation, we start the discussion from the decoding process 

in the task of isolated-word recognition. Suppose we have a vocabulary of V words to 

be recognized and each word is modeled by a distinct HMM. Let O represents the 

incoming speech pattern. The likelihood P(0\di) is calculated for each HMM. The 

word whose model has the maximum likelihood to generated the incoming speech 

patterns are selected as the recognition result. As mentioned earlier, P(0\6i) refer to 

the likelihood associated with the most likely state sequence for recognition. The most 

likely state sequence can be efficiently determined by the Viterbi algorithm [11]. 

Each legitimate state sequence can be represented by a path in the search space 

formed by HMM states. The Viterbi algorithm essentially finds the optimal path in the 

search space. 

The Viterbi algorithm utilizes the idea of dynamic programming [12]. It 

divides a complicated problem to sub-problems that can be sequentially solved. In the 

case of speech recognition, the problem of optimal path search can be divided into 

sub-problems at frame level, i.e. for each time index t. The sub-problems at frame t is 
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to find the best path extends to each possible state. We denote (t,j) as the token of the 

partial optimal path extends to state j at frame t. L(t,j) refers to the likelihood of the 

path. A sub-problem at frame t can be solved given the solutions of sub-problems at 

frame t-1. The algorithm is described below: 

o Initialization: to solve the sub-problems at frame 1: 

\<j<N (2-3) 

o Recursion (path extension): to solve the sub-problems at Frame t given the 

solutions of sub-problems at Frame t-1. The predecessor of (t,j) can be any 

state than can transit to it. Each possible predecessor (t-\,i) needs to be 

evaluated. A path extension decision is made to choose the best 

predecessor according to the following equation: 

L {t, j) = maj [L (/ -1, /) X a,j} x bj [o,) 2<t<T,\<j<N (2-4) 

In each recursion, the path is extended by one frame. 

o Termination, to terminate the recursion at frame T\ 

P{0\G,) = L{T,N) (2-5) 

Subsequently, the best matching model is obtained by comparing P(0\6i) for all the 

HMMs: 

recognized word = arg max P{0 19/) ( 2 - 6 ) 
I 

In this procedure, the choice of step size for path extension is important. The step size 

is also known as speech dynamics. Under assumption of HMM, we can choose a 

frame. 

For the ease of computation, log likelihood is commonly used for calculating 

path likelihood. In the subsequent study, log likelihood is referred to as score. 

For connected-word recognition, HMMs that represent different speech units 

are connected. In this case, path extension can be within or across models. There are a 

couple of realizations of dynamic programming algorithm for connected word 

recognition such as two-level dynamic programming approach [13], level-building 

approach [14] and one-stage approach [15]-[17]. In the two-level algorithms, the time 
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span of a word was chosen as the step size for path extension. In one-stage algorithm, 

a frame was chosen as the step size for path extension. One-stage algorithm is 

essentially the Viterbi algorithm for connected word recognition. 

For large-vocabulary continuous speech recognition (LVCSR) or grammar-

constrained connected word recognition, in addition to the HMM-based acoustic 

models, the recognition process needs to invoke the linguistic knowledge from the 

lexicon and the language model in order to produce a meaningful word sequence. 

These knowledge sources are different with HMM. The probability from these 

information sources can not obtained frame by frame. To use these knowledge 

sources, path extension need to cover a much longer time span. In this case, the search 

process becomes computationally very expensive and sometimes even unaffordable. 

To alleviate this problem, sub-optimal algorithms have been developed for efficient 

decoding at the cost of performance degradation. Actually, explicit duration of speech 

sounds is such kind of knowledge source. Similar problem will be encountered in 

using of duration information. 
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2.3. General approaches to explicit duration 

modeling 

Incorporation duration model in d e c p d m g - - � � � 

^ ^ , Recognition ) 

New Decoding \ output / 
• 

,, ��� 
� � � T e s t da一tg,' TL 

• Feature  
extraction 

��� ^ L I ""“ 
XTraining d a t a / • ‘ 

� ’ ’ Training of 0 ' ~ ~ ~ ^ " Duratio � 

r ^ ^ Markov M o d e l s �0 ' 

‘ 

Duration feature 

Statistical distribution of duration feature 

Training of duration model 

Figure 2-4: Integrating explicit duration modeling into ASR 

In general, the incorporation of explicit duration knowledge into to the ASR involves 

two steps: 

1) Development of duration models 

In the construction of the model 0' with duration models included, there are three 

major issues. Firstly, appropriate duration feature need to be identified for duration 

modeling. Secondly, a reasonable distribution has to be assumed for statistical 

characterization the duration feature. Lastly, an algorithm of estimating parameters of 

0' needs to be developed. 

2) Incorporate the duration model into HMM-based recognition 

For the use of duration models, a new decoding algorithm is needed. 
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2.3.1. Explicit duration modeling 

2.3.1.1 Different duration features 

Duration can be measured and modeled at segments of various lengths. The 

measurement of duration information is referred to as duration feature. In an HMM-

based system, HMM is used to model and segment speech signals. Basically, 

measurement of state-level time duration and model-level time duration can be 

obtained. Model-level duration essentially gives the duration of a linguistic unit. 

State-level duration contains information about the length of sub-segments of a 

linguistic unit. 

Modeling of duration information at state and model level has been intensively 

investigated. At state level, the time duration of state was explicitly modeled in [5]-[7] 

[18] [19]. It was aimed to complement the problematic implicit state duration 

modeling by HMM. At model level, the duration information are expected to be 

meaningful since an HMM corresponds to a linguistic unit. The time duration of a 

model was explicitly modeled in [20]-[22]. In contrast to absolute duration, there is 

another kind of duration feature, namely relative duration. Relative duration of a 

speech segment reflect possible internal adjustment between the sub-components of 

this segment. It is expected to be more stable and robust against speaking rate 

variation. In [10] [22], relative state duration of an HMM was explicitly modeled. In 

Power's experiments, recognition performance of using relative duration model is 

better than that of using duration model for state duration and model duration. 

For accurate modeling of absolute state duration, hidden semi-Markov model 

(HSMM), or variable duration HMM was proposed. HSMM is obtained by replacing 

the underlying Markov model in a conventional HMM by a semi-Markov model [5]-

[7]. In other words, the self-transition probabilities are ignored and the state 

occupancy is defined by a state duration distribution. 

Another two frameworks, ESHMM and IHMM were also for accurate state 

duration modeling. They implicitly model the state duration other than explicit 

modeling. ESHMM [24] was obtained by replacing each state in a conventional 

HMM with another HMM, referred to as a sub-HMM. The output pdfs of each sub-
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HMM are identical to the output pdf of the state in the original model which they 

replace. The resultant ESHMM is said to be functionally equivalent to a HSMM in 

which the duration pdf for a given state is the overall duration pdf of the associated 

sub-HMM. In [25], IHMM was proposed. It uses time-dependent state transitions 

rather than the time-independent one in HMM. 

Generally speaking, by using duration models with appropriate duration 

features, speech recognition performance is always improved to some extent. In 

particular, the normalized duration features have been shown very effective. However, 

there has not been a widely accepted conclusion on which duration feature is 

necessary more useful than others. The effectiveness of duration model depends on 

many factors including the task specification, the quality of acoustic data, the way 

how duration feature is modeled and the way how the duration model is used. 

Computation expensiveness cost of using different duration feature is different. 

This will be elaborated in details in section 2.3.3. 

2.3.1.2 Statistical distribution of duration features 

Duration model is typically a statistical model that describes the distribution of a 

specific duration feature. Empirical distribution, i.e., the actual distribution duration 

measured from real speech data, is the most accurate estimation that can be achieved. 

It was used in [6] [22]. However, it is a non-parametric model. Each probability 

should be estimated. A huge amount of training data is necessary for accurate 

modeling. 

Parametric distribution can be used. Only a few free parameters need to be 

estimated for parametric model. Poisson assumption was suggested to modeling state 

duration in [5]. 

P{d = k) = e-^'X.' /k\ (2-7) 

with parameter X, which is the expected duration of /'th state. It has only 1 free 

parameter. This may limit its flexibility to model distribution of various shapes. In 

particular, its variance is always equal to the mean. This is inappropriate in most cases 

and people resort to other parametric distributions. Some continuous distribution 

assumptions were adopted. Although it is seems inappropriate to model discrete 
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values, it does not affect the effectiveness of duration models. Proposal included the 

Gaussian family 

= (2-8) 

with parameters and ct/, or the Gamma family 

a-\ -xlb 

= — ^ (2-9) 
厂'、 bTia) V 

with parameters a and b, and with mean ab and variance ab^ [7]. 

The Gamma distribution was further used for model-level duration modeling 

[20] [26]. The Gaussian distribution was proposed for model-level duration modeling 

[21][27]. 

The Gamma distribution has a very flexible shape that can be from very skew 

to very symmetric. In addition, the Gamma distribution assigns zero probability to 

negative duration. David Burshtein compared the Gamma distribution and the 

Gaussian distribution for duration modeling. In his experiment, he showed that the 

Gamma distribution is almost always closer to the empirical distribution than the 

Gaussian distribution for the modeling of both state duration and model duration. 

Rong Dong found that the Gamma distribution is superior to the Gaussian distribution 

and the Poisson distribution in terms of recognition accuracy. 

The mixture Gaussian distribution is able to model arbitrary distribution if 

there are sufficient mixture components. Therefore, it is capable to model any kind of 

duration features. Sufficient data is necessary because more free parameters need to 

be estimated. In [28], word duration feature, which is a vector comprising of the 

durations of the individual phones in a word, was modeled by the mixture Gaussian 

distribution. 

2.3.1.3 Irrelevant factors that affect duration properties 

For durations to be useful information source in ASR, it is desirable if they only 

contain only speech information of interest and immune to other source of acoustic 

variation. However, many irrelevant factors may affect the absolute duration of a 

certain speech segment like a phone or a word. They include the phonetic context, the 
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prosodic state, speaking rate, personal style of speaking, etc. The variability of above 

factors leads to large variation of the absolute durations. This made absolute duration 

not a good feature to use. The study presented in [27] reached a discouraging but 

realistic conclusion that many duration features are not as consistent as expected and 

only some of them would be of potential importance for speech recognition purpose. 

Several approaches can be employed to alleviate this problem. They can be divided 

into two major categories. 

The first category of approaches is to build context-dependent duration models. 

Contextual factors may include syllable or phone context in [1] [29], speaking rate 

category context in [30] [31]，prosodic state context in [27] [30] - [32]. 

The second category of methods is to develop robust duration feature. For 

speaking rate to be a major concern of duration, several features which are expected 

to be less sensitive to variation in speaking rate were proposed. Normalized state 

duration was proposed in [10] [22]. Penalty of relative duration of neighboring 

syllables and syllable structural penalty were proposed in [33]. Speaking rate 

normalized duration was proposed [26] [27]. 

Context-dependent duration modeling and modeling of normalized duration by 

context were found to be effective in improving ASR performance. The difficulty for 

using them is on the estimation or identification of context. Many contexts are phrase-

level or utterance-level information, which cannot be estimated as recognition 

proceeds. A possible solution is two-pass decoding. 

2.3.2. Training of duration model 

Like HMM training, training of model 0' involves adjusting model parameters to 

maximize the likelihood. If all the parameters of model & are trained simultaneously, 

this is referred to as one-pass ^ training. One-pass training has its limitations. Multi-

pass training can be used as an alternative approach. 

2 Note that one-pass doesn't mean a single iteration.. 
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2.3.2.1 One-pass training 

Among many previous studies, the training of HSMM [5] - [7] employed the one-pass 

training technique. These training algorithms for HSMM are analogous to the Baum-

Welch re-estimation procedures. They guarantee a local optimum solution. 

However, one-pass training is not applicable when sophisticated duration 

features such as relative duration are modeled. Another limitation of this approach is 

due to the expensive computation. The cost of including duration distribution was 

rather high. The cost of the increased computation tended to make the one-pass 

training techniques infeasible in many applications. 

2.3.2.2 Multi-pass training 

Multi-pass training can be used to simplify the training process of duration models 

and to model sophisticated duration features. It was employed in many works [19]-[22] 

[26H36]. 

Generally, the multi-pass training is done by the following steps. 

1) The acoustic models (HMMs) are trained. 

2) State or word segmentations of training data are obtained by forced alignment 

with the trained HMMs. Subsequently, duration information are obtained from 

the segmentations. 

3) Duration features concerned are chosen as training samples 

4) Finally, the parameters of duration models are estimated over training samples 

using maximum likelihood techniques. 

Multi-pass training approach has its limitation in nature. Parameters of 

acoustic model are estimated with the absence of parameters of duration model. 

However, experiences show that its recognition performance is essentially as good as 

that obtained using the theoretically correct duration model [10]. 
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2.3.3. Incorporation of duration model in decoding 

The HMM decoding problem involves searching for the optimal path in an search 

space formed by HMM states. The probabilistic score of a path is contributed by state 

output probability and state transition probability. The optimal path is usually 

determined by Viterbi algorithm. 

When duration model is used, an additional score computed based on duration 

models can be added to the path score. If the recognized speech units in this path 

exhibit unreasonable duration patterns, the duration score may be used to penalize the 

path. This is the general idea of using duration modeling to assist HMM-based 

recognition. Depending on how the duration score is added to the path, there are one-

pass decoding method and multi-pass decoding method. 

2.3.3.1 One-pass decoding 

In one-pass decoding, the solution of the optimal path is obtained in a single pass of 

search with all the knowledge sources presented. The solution may be optimal or sub-

optimal. 

Optimal solution 

As mentioned earlier, knowledge sources such as explicit duration model are different 

with HMM. To incorporate these knowledge sources in recognition processes, the 

dynamic programming algorithm can still be used. However, each path extension 

needs to cover much longer time span. With different levels of duration models to be 

incorporated, the decoding algorithm should be changed accordingly for optimal 

search. If state duration was modeled and the speech dynamics been considered is a 

time span of an HMM state. In [21], the digit duration was modeled and the speech 

dynamics been considered is a time span of a whole-word HMM. If D is the 

maximum duration of speech dynamics considered, a D-fold increase in computation 

would be required for the one-pass decoding. 

If explicit duration modeling is going to be used in an LVCSR task or speech 

segments for duration modeling are long, substantial computation cost is required by 
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one-pass decoding. It might be necessary or even compelling use one-pass suboptimal 

solutions or multi-pass decoding strategies. 

Suboptimal solution 

In [22] [36], it is suggested to apply duration penalties at each inter-model transitions 

in Viterbi algorithm. In [20] a different modification of Viterbi algorithm was 

proposed for English connected digit recognition. It was suggested to apply duration 

penalties gradually. Rong Dong [26] followed Burstein's approach in a mandarin 

connected-digit task. These methods achieved significant improvement in recognition 

performance. 

However, this kind of modification theoretically violates the principle of 

dynamic programming. Duration score does not involved in all of the path extension 

decisions. In other words, the path is locally not optimal since the decision is made on 

the subset of knowledge sources. According to Bellman's principle of optimality [11], 

an optimal policy has the property that, whatever the initial state and decisions are, the 

remaining decisions must constitute an optimal policy with regard to the state 

resulting from the first decision. Locally non-optimum path will not be global 

optimum. Therefore, the kind of modification only leads to a sub-optimal solution. 

2.3.3.2 Multi-pass decoding 

One major kind of multi-pass decoding is the post-processing approach. Generally, N-

best list or word lattice are generated from the first pass of search to get a reduced 

search space. Duration information at various levels can be readily obtained on the 

basis of N-best list or word lattice. Moreover, speaking rate or other speech context 

can be readily obtained. Context information can be used for choosing appropriate 

context-dependent duration model or normalizing duration features. In the second 

pass of search, obtained duration information contribute to search optimal path in the 

reduced search space. 

Post-processing approaches were adopted in many recognition tasks with 

explicit duration modeling. [27] [28][37] [38] [30][31]. 
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Multi-pass decoding has the potential to introduce inadmissible pruning. 

Pruning decisions made in the first pass are based on simplified models (KSs). If a 

pruning decision is erroneous, the pruning error can not be recovered by successive 

passes. 

Weighted use of duration modd 

Weighting is commonly used to balance the contribution of multiple information 

sources such as multiple models, multiple features and multiple modals when they are 

combined used for speech recognition. The magnitude of weighting factor depends on 

the relative importance and relative OOM (order of magnitude) from one information 

source to others. Weighted use of tone information is employed in [39]. Weighted use 

of Static and Dynamic MFCC features is proposed in [8]. Weighted use of utterance 

information and speaker information for speaker authentication is proposed in 

[40]. Weighted use of visual information and acoustic information is proposed in [41]. 

Use of weighting factor shows significant improvement in recognition performance. 

Most of the work on explicit duration modeling also employs a weighting 

factor for the effective contribution of duration models. It was found to be effective to 

achieve further performance improvement. 
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Chapter 3 

Cantonese connected-digit 
recognition 

In this chapter, HMM based connected-digit recognition will be discussed. We adopt 

the approach of whole-word modeling, i.e. each Cantonese digit is modeled by a 

dedicated HMM. A baseline system will be described. It will serve as the basis for our 

subsequent work on applying duration information. The recognition performance of 

this baseline system will be analyzed. In particular, the potential benefit of using 

duration information will be addressed. 

3.1. Cantonese connected digit recognition 

Connected-digit recognition has many practical applications such as voice dialing, 

automatic data entry, credit card number entry, pin personal identification, entry of 

access codes for transactions, etc. These applications generally require very high 

accuracy. Despite its limited vocabulary size, it is difficult to attain the satisfactory 

accuracy level because the combination of digits is unrestricted. Previous efforts on 

high performance connected-digit recognizer were reported in [37] [39] [46] - [49]. 

3.1.1. Phonetics of Cantonese and Cantonese digit 

Cantonese is one of major dialects of Chinese. It is the mother tongue of over 60 

million populations in Southern China and Hong Kong. Cantonese is also commonly 

used in overseas Chinese communities. 

As a spoken language, Cantonese is quite different from Western languages. 

Cantonese is monosyllabic. As shown in Table 3-1, each Cantonese digit is 

pronounced as a monosyllable sound. Cantonese is tonal. Each syllable is associated 
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with a specific lexical tone among six Cantonese tones. As seen in Table 3-2, LSHK^ 

labels the lexicon with an Arabic digit suffix. Cantonese digits cover all the six tones. 

Table 3-1: Phonetic transcriptions of 10 Cantonese digits 

Digit IPA LSHK 
0 1 工 C ling4 

1 j 它t jatl 

2 j i — ji6 

3 sam saaml 

4 s e i sei3 

5 D ng5 

6 l u k luk6 

7 t s ^ B t catl 

8 p a t baat3 

9 k e u gau2 

As shown in Figure 3-1, each Cantonese syllable is seen as the concatenation 

of two types of phonological units: Initial and Final. Initials of Cantonese digits have 

a diversity of semi-vowel (4 cases), fricative (2 cases), affricative (1 case) as well as 

plosive (2 cases) and no initial (1 case). Finals of Cantonese digits exhibit a large 

diversity too. They include vowel (1 case), diphthong (2 cases), vowel with nasal coda 

(2 cases), vowel with stop coda (3 cases) and syllabic nasal (1 case). 

BASE SYLLABLE 

Initial Final 

[onset] Nucleus [coda] 

Figure 3-1: Structure of a Cantonese syllable ([] means optional) 

The syllable compositions of Cantonese digits are generally very simple. This 

makes Cantonese connected-digit task relatively difficult comparing with other 

languages in which the phonetic compositions of spoken digits are more complicated. 

In English connected-digit task, the major insertions and deletions are caused by the 

3 Transcription scheme developed by Linguistic Society of Hong Kong 
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vowel-only digit "oh". Other digits are sandwiched by two consonants, like digit "six" 

or "seven", preceded by two consonants, like digit "two", or succeeded by a 

consonant, like digit "eight". In machine recognition of continuously spoken digits, 

the consonant onset or coda help to alleviate inter-digit coarticulation, hence 

decreasing acoustic confusion [49]. In Cantonese, digits do not contain as many 

consonant onsets and codas. In particular, digits “2” and "5" can be regarded as a 

single vowel segment and a single nasal segment respectively. The two mono-phone 

digits are phonetically very similar to the coda or tail part of other digits, e.g. "0", "3" 

and “4”. Consequently, they will be likely to be co-articulated with other digits and 

cause severe confusion in recognition. It was reported that "one of the major sources 

of errors was due to frequent insertions of digit "5", pronounced as a mono-syllabic 

nasal[ng5], which may be confused with and treated as part of nasal coda in the digits 

“0” and “3” [50]. 

Similar observations were reported on Mandarin connected-digit recognition 

tasks [26] [33] [49] and Korean connected-digit recognition tasks [21] [29]. In 

Mandarin, all digits are mono-syllabic. Two of them consist of only single vowels, i.e., 

digit "1" and digit "5". The digit "2" also has a heavily rhotacized vowel. These three 

digits, due to their short duration and vowel-only structure, are strongly co-articulated 

with adjacent digits. There are insertions, e.g., digit “7” is often recognized as double 

digits "7 1", and deletions, e.g., repeated digits "5 5" is often recognized as a single 

"5". It was found that most of the insertion errors and deletion errors are related to 

those three digits [49]. 

Korean is mono-syllabic, too. Two mono-phonemic digits "2" and "5" are 

said to be involved in most insertion and deletion errors [21]. 

Explicit duration modeling techniques were applied to Korean and mandarin 

connected-digit recognition tasks to help reducing the error rate. Significant 

improvement was achieved. 
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3.2. The baseline system 

The baseline system is an HMM-based ASR system established for Cantonese 

connected digit recognition. It consists of the feature extraction part, the HMM 

training part and the HMM decoding part. The first two parts are done by HTK^. 

3.2.1. Speech corpus 

All our experiments on Cantonese connected-digit recognition are based on the 

CUDIGIT speech database, which was developed at the Digital Signal Processing 

Laboratory, the Chinese University of Hong Kong [51]-[52]. CUDIGIT is part of a 

whole series of Cantonese spoken language corpora developed for speech processing. 

CUDIGIT is a collection of Cantonese digit strings. The data collected are all 

read speech. Speakers were prompted with the digit strings one by one, with Chinese 

characters and Arabic digits displayed in parallel. The speech data are of low noise 

good quality. The recordings were carried out in a confined room providing a closed 

silent recording environment. The recording was done using high-quality microphone. 

The signal was passed through a pre-amplification mixer to the DAT recorder for real 

time A/D conversion at 48 kHz with 16-bit resolution. The digital data was then 

down-sampled to 16 kHz. All data and annotations in this corpus were manually 

verified in a two-stage process. 

CUDIGIT contains exhaustive permutation of digit strings from one to four 

syllables. In addition, there are also randomly generated strings of 7，8 and 16 digit 

long. There were 25 male speakers and 25 female speakers being recorded. Each 

speaker spoke about 570 utterances. The average utterance length is 3.65 digits. The 

reading materials can be classified into seven sections where each section is broken 

down into partitions for sharing amount a large number of speakers. The table below 

shows the partition of the sections and the corresponding amount of digit strings per 

speaker. 

4 HTK is a toolkit for building HMMs. It is commonly used for building HMM-based recognition 

system. 
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Table 3-2: Distribution of digit string length for each speaker in CUDIGIT 

Sections Contents Partition Amount 

1 Calibration 1 10 

l i Single Digit 1 10 

I n Double Digit 1 

T v Triple Digit 5 ^ 

"V 4-Digit 50 200 

VI Random 7-Digit Per speaker 20 

VII Random 8-Digit Per speaker 20 

VIII Random 16-Digit Per speaker 10 

Number of string per speaker 570 

Recognition experiments were carried out on male and female data separately. 

For the experiments on male speech, the data include 11,387 training utterances from 

20 speakers and 2,847 test utterances from another 5 speakers. Female speech data 

include 11,393 training utterances from 20 speakers and 2,848 test utterances from 

another 5 speakers. 

3.2.2. Feature extraction 

We choose to use MFCC features for recognition. The feature parameters are obtained 

by the following procedures: 

o Frame blocking: to divide the speech signal into consecutive frames for short-

time spectral analysis. A length of 20 msec is used for each frame. Adjacent 

frames overlap by 10 msec. 

o Pre-emphasis: to boost high frequency, the pre-emphasis factor is set to 0.97 

by following the empirical value employed in HTK. 

o Hamming windowing: to minimize the effect of discontinuities at the edges of 

a frame. 

o DFT: to transform acoustic waveform to frequency domain. 
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o Mel-scale filtering: to approximate the non-linear frequency resolution of 

human ear. In our experiments, the number of filter banks is set to 32. 

o Log compression: to prepare for separation of spectral envelope and details in 

cepstra domain. 

o DCT: to de-correlate the Mel-scale filter-bank output. By DCT, Mel-scale 

filter bank output is transformed to cepstra domain. Number of cepstra 

coefficients is set to 12. Liftering is applied to rescale the cepstra coefficients 

to have similar magnitude with the liftering factor 22. The resultant cepstra 

coefficients form a vector, which is the MFCC feature vector. 

o Cepstral mean subtraction: to compensate for long-term spectral effects such 

as those caused by different microphones and audio channels. 

o Energy term: to augment the MFCC feature vector by energy information. 

o Dynamic features: to augment the basic MFCC vector by adding time 

derivatives. It is aimed to complement the problematic assumption of the 

HMM that each acoustic feature vector is independent. First order and second 

order derivatives are used. 

For each short-time frame, the resultant acoustic feature vector has 39 components, 

which include 12 Mel-Frequency Cepstral Coefficient (MFCC), log-energy term，and 

their first and second order derivatives. 

3.2.3. HMM models 

Each Cantonese digit was modeled by a whole-word HMM which consists of 6 states. 

These states are of left-to-right topology without state skipping transition. Each state 

is defined with an observation probability distribution, which is represented by an 8-

mixture components Gaussian. Diagonal covariance matrices are assumed. There are 

also a six-state "silence" model and a one-state "sp" model to model to non-speech 

signal. The "silence" model is of left-to-right topology with optional state skipping. It 

is aimed to model the background silence. The single state of "sp" model is tied with 

the third state of "silence model". It is aimed to model the transition effect of speech 
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such as short pause and noise bursts [9]. "sp" model is shown to be useful in reducing 

insertion errors [36]. Without 'sp' model, those transition segments are more likely to 

be recognized as digit. 

The HMM parameters were estimated by the Baum-Welch algorithm with 

HTK tools, using the features extracted from the training speech and a transcription 

file of training speech. 

3.2.4. HMM decoding 

A Viterbi decoder was used for connected-digit recognition. No grammar constraint 

was imposed. Details of that decoder will be given in Chapter 4. 

3.3. Baseline performance and error analysis 

3.3.1. Recognition performance 

Table 3-3 gives the recognition performance of the baseline system. 

Table 3-3: Performance of the baseline recognition system 

baseline Dig acc (%) Sen acc(%) Deletion substitution insertion 

Male 96.77 89.50 87 69 181 

Female 98.12 93.43 30 44 121 

The above results were obtained using a decoding algorithm implemented by the 

author. The same tests were also done using the decoder in the HTK and the results 

are shown as in Table 3-4. Seen from the two tables, our baseline system performs 

almost the same as the HTK. 
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Table 3-4: Recognition performance by HTK 

Baseline Dig acc (%) Sen acc(%) Deletion Substitution insertion 

Male 96.73 89.36 87 69 184 

Female 98.09 93.29 30 43 126 

Distribution of different types of errors 

As shown in Table 3-5，insertion and deletion errors account for about 80% of the 

recognition errors for both male and female experiments. 

Table 3-5: Percentage of deletion, substitution and insertion in the baseline system 

Del% Sub% Ins% 

Male 2 5 ^ ^ 5 ^ 1 

Female 15^ ^ ^ 

3.3.2. Performance for different speaking rates 

Two speaking rate^ thresholds were chosen so that the training data was evenly 

divided to three speaking rate categories. Using the same threshold, the test data can 

be also divided to three categories. The recognition performance on each category are 

given in Table 3-6 and Table 3-7 for male and female respectively. 

5 Speaking rate will be defined in Chapter 4. 
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Table 3-6: Baseline recognition performance for different speaking rates (male) 

Digit acc% Sen acc% Del Sub 

F ^ 96.00 85.99 ^ 54 ^ 

Medial 97.57 91.34 16 15 ^ 

Slow 96.37 91.06 3 0 T\ 

Table 3-7: Baseline Recognition performance for different speaking rates (female) 

Digit acc% Sen acc% Dd Sub INS 

F ^ 98.08 92.88 ^ S ^ 

Medial 98.24 9151 5 9 ^ 

S i ^ 98.11 94.05 0 2 ^ 

Clearly, the recognition performance depends on speaking rate. In terms of 

accuracy, the best performance is obtained for medial category. It is observed more 

obviously on male data. In terms of distribution of different errors, fast category tends 

to have more deletion and substitutions. This is possibly due to the extremely heavy 

co-articulation. Medial and slow category tends to has more insertions. The possible 

reason is that long speech segments are not preferred by the implicit duration models 

in conventional HMMs. 

Distribution of recognition errors among utterances 

To understand more about the relation between string error rate and digit error rate, 

the distribution of errors among different utterances is analyzed. The statistics are 

given as in Table 3-8. As seen in the table, most of wrongly recognized utterances 

contain only one digit error. In this case, digit error rate multiplies the average number 

of digits per utterance approximates sentence error rate. 
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Table 3-8: Distribution of recognition errors among utterances 

Utterances Utterance with Utterance with Utterance with 

with 1 error 2 errors 3 errors 7 errors 

Male ^ ^ 3 1 

Female 6 1 nZ \ 

3.3.3. Confusion matrix 

Table 3-9: Confusion matrix of baseline recognition result (male) 

‘0， ‘1’ ‘2’ ‘3’ '4' ‘5， ‘6' ‘7’ ‘8， ‘9’ del %c/%e 

‘0’ 1028 4 0 0 0 7 0 0 0 0 2 98.9/0.1 

‘1’ 2 1029 0 0 1 0 1 2 2 1 12 99.1/0.1 

'2' 0 0 985 0 0 1 0 0 0 0 26 99.6/0.0 

‘3’ 0 0 0 1022 0 0 0 1 4 0 0 99.5/0.0 

‘4’ 0 1 0 0 1066 0 0 1 0 0 0 99.8/0.0 

‘5’ 3 0 1 0 0 972 1 0 0 0 39 99.5/0.0 

‘6’ 0 1 0 0 0 0 1025 0 0 3 4 99.6/0.0 

‘7’ 0 1 0 2 3 0 0 1065 0 0 2 99.4/0.1 

‘8’ 0 1 0 0 0 0 0 0 1050 1 1 99.8/0.0 

‘9， 0 1 0 0 0 0 5 0 15 991 0 97.9/0.2 

ins 34 16 23 1 2 82 10 4 8 1 

As seen in above confusion matrix, some recognition error frequently occurs. For 

insertion and deletion, “5” "1" "2" "6" "0" are involved in most cases. For 

substitution, "9" and "8" are easily confused pair. In the following, we attempt to 
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explain the error patterns observed on the baseline system. Meanwhile, we will 

discuss about how duration information can be made helpful to deal with these 

recognition errors. 

Recognition error in relation to the digit “2” 

The Cantonese digit "2" is involved mainly in error patterns: 1) A single "2" is split to 

cause an insertion; 2) A digit "4" is split to “4 2" to cause an insertion. 3) Repetitions 

of "2" are merged to cause a deletion; and 4) "4" and "2" are merged to cause a 

deletion. The frequency counts of these errors are given as in Table 3-10. 

Table 3-10: Patterns of recognition errors related to digit "2" 

Error p a t t e r n " 2 2’，— "2" "2" “2 2 " " 4 " — “4 2 ” " 4 2" — "4" 

Frequency 17 3 17 6 

丨:|i 纖 I 
2 一 I 
1- 1 

——rn^mmmmA^.  
• lofa a I : 3 

' I ' I • I • I • I • I « I • I • I • I • I ' I ' 
time p. 1 0.2 0.3 0.4 D.5 D. 6__D.7 ••8 G.9 1.0 1.1 1.2 1 

Figure 3-2: Spectrogram plot of Cantonese digit "2" 

A digit "2" can be approximately regarded as a single vowel segment. As 

shown in Figure 3-2, the formant trajectories of "2"are flat over time. When multiple 

"2" are repeated at a relatively fast speaking rate, they will co-articulate closely with 

each other, and consequently, there will be great ambiguity on the exact number of 

digits that are actually spoken. An instance of such a situation is show in Figure 3-3. 
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Figure 3-3: Spectrogram plot that explains the deletion error “22” —>"2" 

Figure 3-3 gives the spectrogram of an utterance. There are two time 

alignments under the spectrogram. The upper time alignment in the plot is the correct 

one, which was obtained by forced alignment. The lower time alignment is the 

recognized one in baseline. The combination of "22" is wrongly recognized as a 

single "2". However, no discontinuity of formant trajectory from the spectrogram can 

be observed and the spectrum transition from the digit “2” to another "2" is rather 

smooth. It is difficult for the recognizer to judge the exact number of "2" been 

uttered using spectral knowledge only. These errors can not be corrected even by 

discriminative training such as Generalized Probability Descent method [21]. 

In the cases where multiple digits are merged or a single digit is split in the 

recognition process, the duration of the recognized digits usually changes a lot from 

what it used to be. The duration would be much shorter or longer than those in the 

normal cases. In this situation, duration knowledge would be helpful to correct the 

error. 

"2" is phonetically similar to the tail part of digit "4". Figure 3-4 shows a 

typical spectrogram of "4". 
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Figure 3-4: Spectrogram plot of Cantonese digit “4” 

Therefore, "2" may be confused with and treated as part of "4". The possible 

errors will be that a digit “4” is recognized as combination of "42" or a "42" 

combination is recognized as "4" only. Figure 3-5 shows an instance of such an 

insertion. "2" is exactly inserted at the end of "4". 

^ u p g H H m n i i i m i m m i m p ^ r ^ i n r i i ^ 

� - 肅 丨 肩 t o , 
6. — i t ! l i « j � i ‘ 

5 - 丨 4i 二 ‘ n二‘广V” .讀 I l l l l l j 

亀 i i t ! 
IPvk： ； t_�w!im);m，#M_ • 

•iQfa — 3 I 3613 • |p nCfS ‘ 3 

• 1 曲 g I a I a e i 3 | j i 6 | ngS | 3 I s | 
' 1 • I • I • I I • I > I • I • I 

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 U 

Figure 3-5: Spectrogram plot that explains the insertion "4" —，，42’’ 

When a "42"combination is misrecognized as "4" or vice versa, 

absolute duration of recognized digit(s) would be unreasonable. In addition to 

absolute duration, there is another kind of duration, relative duration of sub-segments 

of a digit. When "42" combination is misrecognized as “4” or vice versa, the relative 
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duration of "4" would be unreasonable as well. In other words, the time duration 

occupied by individual states of "4" would be not in appropriate proportion. Both 

absolute duration information and relative duration information would be helpful to 

reduce such recognition errors. 

Recognitions errors in relation to digit "5" 

As seen from Table 3-11，"5", "0" and "3" cause severe confusion in recognition. 

Table 3-11: Patterns of recognition errors related to digit "5" 

Error pattern “3" _>‘‘35’， "Q"—>"0 5" “3 5”~">“3’’ “05”~>‘‘0” “5，，~V‘55’’ “55’，—“5” 

Frequency ^ 5 H 17 9 

"5" (/ng/) is a nasal-only syllable. Sometimes it is pronounced as another nasal-only 

syllable /m/. A typical spectrogram of "5" is shown in Figure 3-6. Fomiant 

trajectories of "5" are flat over time. Therefore, similar to the situation of "2", "5" is 

prone to co-articulate with it itself and cause confusion between "55" combination 

and "5". For instance, a combination "55" is wrongly recognized as a single "5" in 

Figure 3-7. 

kHz 

丨:‘ 
1- ^ I i^BHfr 

讓 

• iQ^ s ！ ngS 3 
' I • I • I • I « I • I • I • I • I • I ' I • I • 

t ime 0 . 1 0 . 2 — 0 . 4 D.5 0 . 6 0 . 7 O.B 0 . 9 1 . 0 1 . 1 — 1 . 2 — 1 

Figure 3-6: Spectrogram plot of Cantonese digit "5" 
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[ ‘ I * I • I • I • I • I • I • I * 
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Figure 3-7: Spectrogram plot that explains the deletion "55" —，’5，’ 

When "55" combination is misrecognized as "5" or vice versa, the absolute duration 

of the recognized digits would changes a lot from what it used to be and become 

unreasonable. Prior knowledge about time duration of "5" would be useful. 

Confusion between "35" combination and "3" and confusion between "05" 

combination and "0" are due to digit "3" and "0" being end with nasal sound, which is 

also the only sound of digit "5". "5" would be confused with and treated as part o f"0" 

("3"). The typical spectrogram o f ' 0 ' and '3 ' are plotted in Figure 3-8 and Figure 3-9. 
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Figure 3-8: Spectrogram plot of Cantonese digit "3" 
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Figure 3-9: Spectrogram plot of Cantonese digit "0" 

Therefore, it is very hard to differentiate the "05" combination from a single digit "0" 

or the "35" combination from "3" using spectral knowledge only. Figure 3-10 shows 

an instance that "3" is misrecognized as the combination of "35". Figure 3-11 shows 

an instance that "0" is misrecognized as the combination of "05". 
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Figure 3-10: Spectrogram plot that explains the insertion “3” —>"35" 
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Figure 3-11: Spectrogram plot that explains insertion "0" —，’05” 

Similarly, if the "05" ("35") combination is misrecognized as "0" ("3") or vice 

versa, the absolute duration and the relative duration of "0" and "3" would be 

unreasonable. The absolute duration of "5" would be unreasonable as well. 

Consequently, the absolute and relative duration information of relevant digits would 

be helpful. 
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Confusing pair of digit “9” and “8” 

There are totally 15 cases where "9" is misrecognized as “8. This is the most frequent 

substitution error. The Initial of "9" is a plosive consonant /g/and its Final is a 

diphthong /auA Whilst the Initial of “8” is a plosive consonant and its Final consists of 

a long vowel /aa/ and consonant coda /t/. Figure 3-12 and Figure 3-13 show the 

spectrogram plot of ‘8’ and '9 ' respectively. In the figures their phonological structure 

can be clearly seen. 

kHz 
7 -

r； 
6 -

1 ; i " ‘ 

：： • i l f i 

3 b a a t 3 ‘ 3_ L 
' 1 ' I ' I • I < I • 1 • I . I • I • I • I • I 

t 细e 0 . 1 0 . 2 0 . 3 0 . 4 j 0 • 5 0 . 6 0 . 7 ' 0 . 8 0 . 9 1 . 0 1 . 1 1. 

Figure 3-12: Spectrogram plot of Cantonese digit "8" 
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Figure 3-13: Spectrogram plot of Cantonese digit "9" 

The possible reason of confusion between “9” and "8" is their similarities. The Initials 

of both two digits are plosive consonants. The Finals of both two digits have the 

vowel portion /a/. Figure 3-14 shows an instance of such an error. Nevertheless, when 

there is such a substitution, the time duration and the relative duration of "8" still 

remains reasonable. Therefore, the use of prior knowledge of duration does not help 

to decrease such errors. 

I丨丨�iBMmmMiiiiMi^Bmi' •• • • 

^̂WMff r^^^W^iiWIIiBBf 痛 “““. 
• 1 刮 I l u k S p .歉。 q a . u 2 b ‘ l i n g 4  

.iQfa I l u k 6 I b a a t 3 | l i n g 4 I 3 
[ I ' I • 1 I I • I • I < I « I ' I 
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Figure 3-14: Spectrogram plot that shows the substitution "9" ->"8" 
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Noise-induced recognition errors 

Some cases of error are caused by noise. The noise segments are inisrecognized as 

digits, especially, ‘0” and "5". Consequently, digit "0" has a high insertion rate. Most 

of the noise segments being inisrecognized contain spikes with small magnitude. 

Figure 3-15 shows an example. 

^ ^ u p B m m H u m i W H H H P ^ •• • • x 
kHT' 7 I 

： - I j i 
i ) 

4- ir m 

1' f l i 
iIL 幽I L  

• 1 曲 1 ngS lipat ijaaamljpatT .“as . . . . . . • • ' 

. l a b ng5 l iat l^aarel jcat l l 3 3 a j a l i n g 4 j a 

t i m e 0 . 5 3 . 5 

Figure 3-15: Spectrogram plot that illustrates the insertion due to a noise segment 

being inisrecognized as "0" 

In Figure 3-15, the noise segment from 1.9s to 3.0s is misrecognized as digit "0". This 

is an unreasonably long duration for digit "0". The time duration of a noise segment is 

random, while the time duration of a digit should be regular. Hence, the absolute 

duration information would be helpful when the misrecognized digit lasts for an 

unreasonable duration. 

On the other hand, it is observed that the value of tail part ratio^ of "0" is 

extremely large when such a noise segment is misrecognized as "0". These tail part 

ratio values are much longer than those in normal cases. It indicates that the duration 

adjustment between sub-segments of misrecognized "0" is not in proportion. In this 

regard, the relative duration information would be useful to correct the error. 

6 Tail part ratio is a kind of relative duration. It is defined as the relative duration of last two states in a 

digit. 
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Chapter 4 

Duration modeling for Cantonese 
digits 

This research is focused on the use of duration information in an HMM-based ASR 

system for Cantonese connected-digit recognition. The duration information is 

extracted from the input speech as supplementary information for the ASR process. 

We are going to discuss about the design and the construction of statistical duration 

models for Cantonese connected-digit recognition. The appropriate duration features 

will be identified. The Gamma distributions will be examined in comparison to the 

distribution of empirical measurement. The method of estimating the free parameters 

of duration models will be described. Furthermore, speaking-rate-dependent duration 

model will be described. 

4.1. Duration features 

As mentioned in the background review, the absolute and relative duration of speech 

segments have been commonly used as the features for duration modeling. In the 

following, we will investigate on the use of both of them. Our work is focused on 

duration modeling at state and model level. In our application, model-level duration 

essentially gives the duration of a Cantonese digit. State-level duration contains 

information about the length of sub-segments of a digit. 

4.1.1. Absolute duration feature 

In an HMM, the implicitly assumed distribution for state duration is inappropriate for 

real speech signals. This can be observed in our baseline recognition system. Figure 

4-1 shows the distribution of state duration in the HMM for Cantonese digit "0". The 

empirical distribution is obtained by supervised segmentation of training data with the 
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HMM, and the implicit distribution is computed from the transition matrix of the 

HMM by the following equation: 

. . (4-1) 
=probability ofd consecutive observations in state i 

From the figure, it can be seen that the actual state duration derived from empirical 

data does not approximate a Geometric distribution. This is observed consistently for 

other digits as well (see Appendix). Therefore, absolute state duration (AS) is a useful 

feature to describe speech signal and should be modeled accurately as a 

supplementary cue to assist HMM based recognition. 

„ , state 1 of digit "0" state2 of digit "0" state3 of digit "0" 
0.41 0.41 0.41  

0.3 0.3 / I 0.3 f x 

0.2 . 0.2 \丨 \ . 0.2 

� . i 严 〜 . � . i r � . \ 0.1 i \ 

0 10 20 0 10 ' ' 20 0 10 20 

state4 of digit "0" stateS of digit "0" state6 of digit "0" 
0.41 — ~ 0.41 — 0.25, n 

- o - empirical 
fk) n o —I. implicit 

0.3 ] 0.3 0.2 \  
, I 1 \ 
\l t0.15 \ 

0.2 t 0.2 I M 
f \ i I 0.1 \\ 

。_1 / 、 ’ 、 . 。 . 1 . 0 . 0 S \ 

0 10 20 0 10 20 0 10 20 

AS(absolute state duration) 

Figure 4-1: Distribution of the absolute state duration (AS) for Cantonese digit “0” 

In addition to the absolute state duration, we consider the absolute word 

duration (AW). As is mentioned earlier, when an insertion or deletion occurs, absolute 

duration of recognized digit(s) tends to be unreasonable. In this case, accurate 

modeling of absolute word duration would be helpful. 
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Figure 4-2: Histogram of the absolute word duration for digit '5 ' involved in 

recognition errors (male) 

For instance, as shown in Figure 4-2, most wrongly recognized ‘5，are found 

to have unreasonable durations that do not match with the empirical observations. 

Digits "5" involved in an insertion are likely to have a short duration and those 

involved in a deletion are likely to have a long duration. It is possible to correct 

recognition error by applying duration models that penalize the unreasonable short or 

long segments. Nevertheless, some of the '5 ' involved in recognition errors posses an 

acceptable duration. This kind of error can not be eliminated by using duration 

knowledge only. 

It is observed that the implicit word duration distribution is inappropriate in 

our recognition system. For instance, the implicit digit duration distribution 

mismatches the empirical one for digit "0" as shown in Figure 4-3. The implicit 

distribution is obtained by the following steps: 

1) duration distribution of each states in the same HMM is calculated 

2) Model duration is obtained as the summation of state duration in that HMM. 

Assuming that state durations are independent, the duration distribution of a 

word is the convolution of state duration distribution. 
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The figure reveals that HMM favors short digit durations. This is consistently 

observed for other digits as well (see Appendix). This indicates the inadequacy 

absolute word duration modeling in HMM. It may explain why there are more 

digit "0" 
0.081 > 1 1 , 1 I I 

i-- implicit 
_ empirical 
U.U/ -

0 . 0 6 - -

0.05 - 八 -

复0.04- / 丁\ \ -

卞 I � \ 
0.03 - f I \ \ -

/ \ \ 
0 . 0 2 - I / \ V -

� . � 1 - / / -

0 10 20 30 40 50 60 70 80 
AW 

insertion errors than deletion errors in the baseline recognition results. In this regard, 

AW should be utilized as a supplementary cue. 

Figure 4-3: Distribution of the absolute word duration for digit “0” 

Many factors of variability cumbered absolute duration to be a useful 

information source. Obviously, the speaking rate is a major concern of time duration. 

Here we address the speaking rate variability only and let other variability embodied 

in the natural variation. Construction of speaking-rate-dependent models will be 

explained in 4.4. 

4.1.2. Relative duration feature 

The relative duration of HMM states (RS) are investigated. It is observed that the 

implicit RS distribution is inappropriate in our recognition system. Figure 4-4 

compares the implicit distribution and empirical distribution of all the states in digit 
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“0”. It is possible to get the implicit distribution of RS analytically or numerically in 

the same way as we calculated the implicit AW distribution. However, the 

implementation is difficult for . The implicit duration is obtained by 

simulation. The simulation procedure is as follows. For each HMM states, a large set 

of random numbers are generated from the implicit state distribution. The 

corresponding RS values are then computed. With sufficient samples, an 

approximated RS distribution can be obtained. 

The figure shows the mismatch between the implicit distribution and empirical 

distribution. This is consistently observed for other digits (see Appendix). It indicates 

inadequate modeling of duration adjustment among HMM states. Therefore, RS 

should be modeled accurately to supplement HMM. 
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Figure 4-4: Distribution of the relative duration of HMM states for digit "0" 

We also propose to use the tail part ratio (TP) for Cantonese connected-digit 

recognition, which measures the relative duration of the tail part of a digit. The tail 

part is defined to cover the last two states of the 6-state HMM. The tail part ratio can 

be considered as a variation of normalized state duration. Observing many cases in the 

baseline recognition result, we find that the tail part defined above roughly 
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corresponds to the last phonetic unit in a Cantonese digit. As mentioned in Chapter 3， 

the two mono-phone digits are very similar to the tail part of another three digits. If 

this tail part happens to be deleted or prolonged, the tail part ratio would be 

unreasonable. In this regard, accurate modeling of the tail part ratio would be helpful. 
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Figure 4-5: Histogram of tail part ratio (TP) for digit “3” involved in recognition 

errors 

As shown in Figure 4-5，we find when ‘3’ is involved in an insertion it is likely to 

have a small TP value. Similarly, when ‘3’ is involved in a deletion, it is likely to 

have a large TP value. Such recognition error is possible to be corrected by applying 

duration modeling so as to penalize the speech segments with unreasonable duration 

adjustment among its sub-segments. However, there are cases that digits involved in 

recognition error posses a very reasonable TP values. Again, this kind of error can not 

be eliminated by using duration model. 

4 6 



Furthermore, implicit TP distribution is found inappropriate in our recognition 

system. Figure 4-6 plots the empirical distribution and the implicit distribution of TP 

for digit “3”.The implicit distribution of TP is obtained by simulation. It can be seen 

from this figure that the implicit duration distribution has a much larger variation than 

the empirical observation. This is consistently seen for other digits (see Appendix). 

This implies that unreasonable tail part ratios are usually allowed. In this sense, TP 

should be modeled accurately as a supplementary cue. 

digit "0" 
4 r  

--s>- empirical 
- implicit 

- f \ 

I J - � \ 

‘ - / t \ \ 
1- / / \ � 

/ / \ \ 
0.5- / Z \ � \ . 

� � � . � . � . 
——I 1 —1 I I I fr- - -4)—.分...........s 

0 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 1 

TP (tail part ratio) 

Figure 4-6: Distribution of tail part ratio (TP) for Cantonese digit "0" (male) 

4.2. Parametric distribution for duration modeling 

The Gamma distribution has been widely accepted as the best candidate for duration 

modeling. We try to investigate whether the Gamma distribution is appropriate for 

duration modeling in our system. 

For each duration feature that we considered, the Gamma fit is investigated. 

The following plots show how the distribution derived from empirical data is fit. 

These plots are for Cantonese digit "0". Plots for other digits are given in Appendix. 
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1) Plot for TP 

digit "0" 
4 I r 1 1 1 1 1 1 1— I 

^ ^ Gamma 
, . � � 如...empirical | 

3.5- r 人 \ -

/ A \ 
3- “ \\ -

/ / \ \ 
2.5- / / \ \ -

丨 : ： / \ : 

‘ P \ _ 
>•>7 � \ 

0.5 - / / o \ -/ \ / / � � > � . ’ 
0-1' 1 1 _ _ _ — — I I I ...... ^    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
TP 

Figure 4-7: Distribution of TP for digit “0” 

As is shown in Figure 4-7，the Gamma distribution fits well for empirical distribution 

of TP. This consistency is observed for other digits as well (see Appendix). 
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2) Plot for AW 

digit "0" 
0.081 1 1 1 1 I   

一一 Gamma 
.-令.empirical 

0.07 - -

0 .06 - -

0.05 - -

10.04- i r ” V , -
If \ \ 

0.03 ^ M -

0.02 / \ -

� . � 1 - J � � -
0 — I . I I I '" f̂rfi-ftjfcetft-̂ jfc .̂i. 

0 10 20 30 40 50 60 
AW 

Figure 4-8: Distribution of AW for digit "0" 

It is shown in Figure 4-8 that Gamma distribution fits well for empirical distribution 

of AW. This is observed consistently for other digits (see Appendix). 
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3) Plot for AS 

State 1 .digit "CP state 2 .digit "0" state 3,digit "0" 
0.21 • 1 0.4 [ 1 0.41  

—^ Gamma ； 
vv； empirical /' 

0.15 “ ‘ 0.3 ^ 0.3 A 

” . � f \ � ’ [ \ 

V . � . i _ k 
0 '• 彻t̂ îlj 0 0 

0 10 20 0 10 20 0 10 20 
AS 

state 4 .digit "0" state 5 .digit "0" state 6 .digit "0" 
0.4 [ 0.2, 0.25 r - — 1 y 

0.3 k 0.15 1 �.2 
i \ l ！ i 

i I r\ 0.15 
0.2 I I 0.1 气 \ 

0.1 \ 0.05 � 0 5 \ j \ 0.05 

0 10 20 0 10 20 0 10 20 

Figure 4-9: Distribution of AS for the HMM states of digit ‘0’ 

As seen in Figure 4-9, in most cases the Gamma distribution fits well for empirical 

distribution of AS. This is observed consistently for other digits (see Appendix). 

However, the Gamma assumption is inappropriate in a few cases. In Figure 4-9，the 

Gamma distribution fits badly for the fifth state since the shape of empirical 

distribution is irregular. 

5 0 



4) Plots for RS 

state 1 .digit "0" state 2 .digit "0" state 3,digit "0" 
12, n 12| 12|  

G a m r r a ~ 

10 -<•• empirical |. 10 . 1 0 

.f 8 f : 8 8 
« 6 ！1 6 f \ 6 f \ 

H I . ^ \ 
2 �� 2 / \ � 2 / \ 
0：： _ _！ ^ — , o i 0 . / , 

0 0.2 0.4 0.6 6 0.2 0.4 0.6 0 0.2 0.4 0.6 
RS 

state 4 .digit "0" state 5 .digit "0" state 6 .digit "0" 
12, 12| -1 12, 
10 10 10 

8 8 - 8 

： A - : : 
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6 

Figure 4-10: Distribution of RS for the HMM states of digit ‘0’ 

It can be seen from Figure 4-10 that in most cases Gamma distribution fits well for the 

empirical distribution of RS. This is observed consistently for other digits (see 

Appendix). However, problems are seen in a few cases. In Figure 4-10, Gamma fit for 

the first and sixth state are bad due to the irregular shape of empirical distribution. 

4.3. Estimation of the model parameters 

In Chapter 2, it was mentioned that there are one-pass training and multi-pass training 

for estimating the parameters of duration models. For sophisticated duration feature 

such as TP and RS, one-pass training method would be difficult to be applicable. Thus 

we will use multi-pass training method to estimate the parameters of the designed 

duration models. 
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4.4. Speaking-rate-dependent duration model 

Large dynamic range of speaking rate in data is often seen in practical ASR 

applications. It is also true for CUDIGIT. As mentioned in Chapter 2, speaking rate 

variation may cause duration model ineffectual. We employed two speaking-rate-

dependent duration modeling approaches to address this problem. One approach is to 

construct duration model for the normalized duration feature. The other approach is to 

construct speaking-rate-category-dependent duration model. 

Before investigating on the speaking-rate-dependent models, we need to have 

a measure to quantify the speaking rate. It is assumed that the speaking rate is 

constant within the same utterance. Thus in the subsequent study, the speaking rate 

refers to the utterance-level speaking rate. There are several concerns when measuring 

the utterance-level speaking rate [53]-[58]. One concern is the treatment of mid-

sentence silences. It is of more value to exclude mid-sentence silence periods since 

these durations may be dependent on factors other than speech rate [53]. 

Another concern is the metric of measuring speaking rate. We choose to use 

the number of words per second as the metric. However, word counting has its 

disadvantages. It has been pointed out that word rate is unsatisfactory because of 

unpredictability in the structure and length of a word [54]. Although Cantonese are all 

monosyllabic, different digits vary in phonetic compositions. Consequently, they have 

different intrinsic duration. We may approximate the intrinsic duration by the average 

duration over the training data of that digit. Table 4-1 and Table 4-2 give the average 

duration from male training data and female training data respectively. 

Table 4-1: Average duration of different digits (male) 

fV ling4 I j a t l s a a m l sei3 ng5 luk6 catl baat3 gau2 

//_„,>(frame) 26.74 19.59 27.42 3 3 . 1 4 3 2 . 1 4 27.75 21.46 23.14 22.66 28.97 
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Table 4-2: Average duration of different digits (female) 

W ling4 jatl ji6 saaml sei3 ng5 luk6 catl baat3 gau2 

(frame) 30.78 21.16 30.12 3 5 . 2 5 3 3 . 3 3 30.07 23.02 24.43 24.55 31.21 

The above tables show that the intrinsic durations of digits are quite different from 

each other. It is desirable to exclude this factor when measuring speaking rate. We 

choose to follow the UROS (utterance-level rate of speech) metric proposed in [lee98]. 

It was proposed to address similar problem in a Swedish LVCSR task. Another 

observation is that the average durations from female data are consistently longer than 

those from male data. This might be one of the reasons that higher recognition 

accuracy can be achieved on female data in baseline. 

The formula of UROS metric in [27] is as below: 

W 释 � = 1 (4-2) 
MDURM ( ) 

UROS (w) = average,, {WROS (w)) (4-3) 

The first equation calculates the instantaneous WROS (word-level ROS). In the second 

equation, UROS is defined as the average of WROS in that utterance. The following 

plots show histogram of UROS values for female and male training data of CUDIGIT 

respectively. 

I 
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minimum UROS=0.443 
_ maximum UROS=2.240 
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Figure 4-11: Histogram ofUROS (male) 

3000 r 
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Figure 4-12: Histogram ofUROS (female) 
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The plots of UROS of both male and female show a large dynamic range of speaking 

rate. 

Given a UROS of an utterance, we may normalize the state durations and 

word durations (divide them by UROS) in that utterance. Alternatively, we may 

categorize them to a predefined speaking rate category. After categorization and 

normalization, the variance of state and word durations is reduced. Table 4-3 gives the 

variance of normalized and categorized word durations for each digit on male data. As 

seen in Table 4-3, variance of word durations are reduced a lot. Similar reduction can 

be observed for state durations and durations on female data. 

Table 4-3: Variance of the normalized and categorized word durations (male) 

lAbsoluteiNormalized ICategorized durations 
Digit durations durations Fast iMedial ISlow 

7.9354 6.3417 5.9686~~ 4 . 9 0 0 9 ~ 4.7409 

T 5.9422 5 . 0 2 1 9 3 . 7 9 7 4 ~ 3 . 8 9 4 6 

6 . 8 4 5 4 5 . 7 8 4 6 6 . 2 3 3 6 

7 . 5 3 5 9 6 . 1 0 2 8 6 . 4 5 4 3 

1 0 . 4 9 6 4 8 . 1 2 6 3 ~ 7 . 0 5 6 3 6 . 9 7 8 6 

6.432 6.2024~6.6225 

6.0162 4.9324 4.87723.8516~~3.5721~ 

T 6.0254 5 ? ! ^ 4 . 6 1 0 8 4 . 3 3 1 8 4 . 2 5 3 2 

6^07^~~5?1047 5.3895 3.9747 3.973 

^ 9^04^ 7^67^ 7 . 5 8 9 5 6 . 3 6 2 8 6 . 1 4 2 1 

With the normalized durations, speaking-rate normalized duration models are 

then built. With the categorized durations, speaking-rate-category dependent duration 

models are then built. 

For use of speaking-rate-dependent model in recognition, speaking rate of test 

utterances need to be estimated. In this work, speaking rate of a test utterance is 

estimated based on the number of detected digits per second with a preliminary run of 

decoding. 

In summary, we establish the following explicit duration models for Cantonese 

connected-digit recognition: 
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AW model: duration model for absolute model-level duration 

AS model: duration model for absolute state duration 

RS model: duration model for relative duration of a HMM state 

TP model: duration model for relative duration of last two HMM states (tail part) 

All the above duration models are digit-dependent regarding that different digits have 

different phonetic compositions. For these models, they are further improved to 

speaking-rate-dependent models, namely, speaking-rate category dependent duration 

model and speaking-rate normalized duration model. 
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Chapter 5 

Using Duration modeling for 
Cantonese digit recognition 

Optimal decoding is superior to other approaches. Certainly, we have to pay attention 

to the extra computation required and make sure that it is affordable. Considering that 

Cantonese connect-digit recognition is a small-vocabulary task, we choose to use one-

pass decoding. Algorithms are developed for incorporating state-level duration model 

and word-level duration model to HMM-based recognition respectively. 

5.1. Baseline decoder 

As mentioned in Chapter 2, the connected-word recognition problem involves 

optimal path searching in an search space formed by HMM states. The optimal path 

can be obtained by dynamic programming algorithm. The problem of optimal path 

search is divided into sub-problems at frame level. In the baseline system, Viterbi 

algorithm is employed. The step size for path extension is one frame. 

For Cantonese connected digit recognition, the HMMs representing different 

Cantonese digits and silence are connected. The HMM states form the search space. 

The sub-problem at a particular frame t is to find the optimal partial path extends to 

each legitimate state. Let {t,v,j) denote the optimal partial path extends to state; of 

model V and at frame t. The accumulated path score is denoted by L{t,v,j). A sub-

problem at frame t can be solved given the solution of sub-problems one step before, 

i.e., the immediately preceding frame. The algorithm is described as follows: 

o Initialization: to solve the sub-problems at frame 1: 

L ( l ’ v ’ l ) 二 1 (5-1) 

= (5-2) 
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o Recursion (path extension): to solve the sub-problems at frame t given the 

solution of sub-problems at frame t-\. 

1) If the path is extended to the first state of a HMM, its predecessor can be the 

last state of any HMM or the current state itself. Each possible predecessor 

[t -1，u, Nu) or (/ -1，V，1) is evaluated, where Nu is the last state of HMM u. A 

decision is made to choose the best predecessor according to the following 

equation. 

L{t,v,\) = max N,, ) x 乂,, L{t-l,v,l)xa„}xZ), [o,) (5-3) 

At the same time, a back pointer pointing to the best predecessor is recorded 

冲，V，1) = arg max [ l (卜 1，w，iV") x ―,’�} (5-4) 

2) If the path is extended to the jth state of a HMM with;关 1，its predecessor 

can be any state of the same HMM that can make transition to it. Each 

possible predecessor {t -1 ’ v, i) will be evaluated. The best predecessor is 

chosen according to the following equation. 

L(t,V’ J) = max {l(t-1，v，/) xo-.-jx (o,) (5-5) 

Similarly, the corresponding back pointer is recorded. 

B{t,v, j) = arg max {丄(/ -1，V’ i) x a"} (5-6) 

o Termination: to terminate at frame T, Token qr with highest likelihood d is 

selected as the end of the optimal path. 

cJ = m,?x{Z^(7>，A0} (5-7) 

和=argmax{L(r，w，iV„)} (5-8) 
u 

o Backtracking: to trace back the most likely sequence from qr according to the 

back pointers recorded before. 

q卜、=B(q,) , = r ， r - 1 , r - 2 ’ …’ 1 ( 5 - 9 ) 
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As mentioned in the chapter of background, knowledge sources such as explicit 

duration model are different with HMM based acoustic models. To incorporate these 

knowledge sources into the recognition processes, dynamic programming algorithm 

can still be used. However, the path extension needs to cover much longer time span. 

To use duration model for state-level features, the path extension should cover a time 

span of a HMM state. To use duration model for model-level features, the path 

extension should cover a time span of a model. 

5.2. Incorporation of state-level duration model 

A dynamic programming algorithm is developed to incorporate duration model for 

state-level duration feature, i.e. absolute state duration feature, into the HMM-based 

connect word recognition. 

In this algorithm, the step size of path extension is chosen to be a time span of 

state. Duration probability is incorporated into the path extension. After each 

extension decision, the path is extended to the beginning of a new state. 

The optimal path problem is divided into sub-problems at consecutive frames. 

The sub-problem at a particular frame t is to find the optimal partial path just extends 

to each legitimate state. Let [t,v,f) denote the optimal partial path just extends to 

state j of model v and at frame t, and L{t,v,j) be the corresponding accumulated path 

score. A back pointer B(t,v,j) is also recorded for back tracing the most likely path • A 

sub-problem at frame t can be solved given the solution of sub-problems at the 

previous state. The algorithm is described in details below: 

o Initialization: to solve the sub-problems at Frame 1: 

丄(l,v，l) = l (5-10) 

Z^(i,v,y) = cx)0->1) (5-11) 

o Recursion (path extension), to solve the sub-problems at Frame t given the 

solution of sub-problems at one step size before: 

1) If the path is extended to the first state of a HMM, its predecessor can be the 

last state of any HMM. For each possible predecessor { t - , the 
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duration probability D “ � is calculated. ；̂  (d) is the probability that 

state Nu in model u has a time duration of d. "" {d) is then incorporated in 

the path extension decision by 

L(“v’l)= max 乂 H 乂广 x , [^々^。…["‘凡�j j x办 i�(5-12) 

where w is for balance use. d„,ax and d„,i’, are the up bound and low bound of 

state duration respectively. A back pointer pointing to the best predecessor is 

recorded: 

( � 
5 ( / ’ v ’ l ) = arginax (卜义w,7V„)x“",_,"" x J J �( 力 ] ( 5 - 1 3 ) 

II l-d<T<l • 

"min 組"nrn 

2) If the path is extended to the jth state of HMM withy predecessor can 

be any state of the same HMM that can transit to it. For each possible 

predecessor (t-d,vj) , the duration probability D^ .{d) is calculated and 

incorporated into the path extension decision as in the following equation. 

L(j,v,fj= max \L{t-d,v,i)xa.jX f ] \xbj{o,) (5-14) 

Similarly, the back pointer is recorded. 

B{t,v, j ) = argmax ] L - d,v,/) x a., x f j I (5-15) 
t-d<T<t 一 

奶"max 

o Termination: to terminate at frame T and select the token qs with highest 

likelihood ŝ  as the final solution to the optimal path. 

Sr= max \L{T-d,u,N 1 1 � ,K ) x [ A , ’乂,� ]" j (5-16) 
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丄 " J ” “ ' 如 ， 

S is the number of path extensions required to constitute the optimal path. 

o Backtracking: to trace back the most likely sequence from qs according to the 

back pointers recorded before. 

^一, = B � t= S，S — 1，...，1 (5-18) 

The above formulation is referred to as the 3-dimensional optimal decoder 

because the token {t,v,J) has three elements. This 3D optimal decoder has a large 

number of repetitive computations of b̂  {o^) due to common partial paths. The 

t-d<r<l 

main advantage of dynamic programming is to save this kind of repetitive 

computations by having intermediate results stored. Hence, dynamic programming 

techniques can be applied in this case. A new variable state duration “cT is introduced 

to the path token. The token (t,vj,d) refers to a path gets to the dth. frame of the yth 

state in HMM v at frame t. Re-write the 3D decoder and we have: 

o Initialization: 

M l ’ v，U ) = l (5-19) 

L ( l , v , l , t / ) = oo (J>1) (5-20) 

o Recursion: 

L(/，v，y.’l) = i^yax 卜 - 1 ’ v，/，"）x x x b. (o,) (5-21) 

L (,，V，j, d) = L{t-\,vJ,d-\)x bj (o,) (5-22) 

Z^(/’v’l，l)= max 卜(卜1’"，"„’")"",,_1’乂 x[D„’""(")j]xZ)i(o,)(5-23) 

Back pointer: 

B{t,v,j\\) = ajgmax {t - \,vj,d) x a., x (5-24) 

B{t,v,J,d) = (t-\,v,j\d-l) (5-25) 
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B{t,V，1，1) = a r g m a x ( t - 1 ， u , N 身 ‘ x [ D , , ’ 乂 , � ] ( 5 - 2 6 ) 
"min 如"max 

o Termination: 

max {z(7>’iV„，")xa""-,’""x[Z)„’""^�} (5-27) 
奶"max 

知 = m a x { L ( 7>， i V , ' ’ J ) x a " " _ | ’ " " x [ D „ , " " ( " ) j ] (5-28) 

o Backtracking: 

q ,=B{q, , , ) , = r ， r - l , r - 2 , … ’ 1 (5-29) 

This resultant 4D decoder is essentially equivalent to the decoding framework 

in [18], which is oriented for isolated word recognition task. The computation of this 

decoder will be d„,ax times that of baseline decoder. In implementation, we will limit 

the d„,ax to a reasonable value, say, 15 to limit the searching region of path extension. 

5.3. Incorporation word-level duration model 

A dynamic programming algorithm is developed to incorporate duration model for 

word-level duration feature, i.e. AW, RS and TP. 

In this algorithm, the step size of path extension is chosen to be a time span of 

a word when incorporating the duration probability. After each path extension, the 

path is extended to the beginning of a word. The sub-problem at a particular frame t is 

to find the optimal partial path just extends to each legitimate word. Let (t,v) denote 

the optimal partial path just extends to model v and at frame t, and L(t,v) be the 

corresponding accumulated path score. A back pointer B(t,v) is recorded for back 

trace the most likely path . A sub-problem at Frame t can be solved given the solution 

of sub-problems one step before, i.e., the preceding word. The algorithm is described 

as follows: 

o Initialization: to solve the sub-problems at Frame 1: 
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L(l,v) = l (5-30) 

o Recursion (path extension): to solve the sub-problems at Frame t given the 

solution of sub-problems one step size before. The predecessor of (t,v) can be 

the beginning of any HMM. For each possible predecessor (t-d,u), the duration 

probability is calculated and incorporated in the path extension 

decisions as in the following equation: 

L(t,v)= max j l ( t -c/,u)x warp{u,t-d,t-\)^ } (5-31) 
"min 挑"max 

，where warp{u, t-d,t-\) is the probability that the feature vector sequence 

t-d through t-\ is generated by HMM u. It is a dynamic programming at 

another level. and d,„in are the up bound and low bound of word duration 

respectively. Du(d) can be the duration score contributed by one or more word-

level duration models, which include the AM models, RS models, TP models. 

If it is RS model, D M will be U P, ( d j . Where is the state duration value, 

s 

P u ( d s ) is the probability that duration of state 5 in model u has a value of ds. 

We assume probability from each state are independent and can be multiplied 

to give the overall probability. 

At the same time, the back pointer point to the best predecessor is recorded. 

B (/’ V) = arg max (t-d,u)x warp{u, t-d,t-\)^ [Z)„ (5-32) 
"min 奶 

o Termination: to terminate at Frame T and select the token 办 with highest 

likelihood �a s the final solution to the optimal path. 

dj= max \L{T-d + \,u)x warpiu,T-d+ ( d ) Y | (5-33) 
"min 她"max 

qs = arg max {丄(r — J +1，w) x warp(u, T-d + l,T)x (5-34) 
心in奶"max 

o Backtracking: to trace back the most likely sequence according to the back 

pointers recorded before according to 

^=万(仏+,)广=S —1’ S-2’…，1 (5-35) 
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,where S is the number of path extensions to constitute the optimal path. 

Similarly, there are a large number of repetitive warp operations. To reduce 

cost of computation, a new variable, word duration "d" is introduced to the path 

token. Token (t，v’j,d) refer to a path gets to the d\h frame of HMM v with state j at 

time t. Re-writing above 2D decoder and we have: 

o Initialization: 

L(l，v，l，l) = l (5-36) 

L[\,v,\,d) = \ d>\ (5-37) 

o Recursion: 

L { t , v X \ ) = max [ L { t - \ , u , N ^ , d ) y . x ( d ) Y } x b, {o,) (5-38) 

L {t, V，j, d) = m a x [l {t -1，v, i, ^ / - l ) x a . . } x b�{o,) ( 5 - 3 9 ) 

B(/,V, 1,1) = a r g m a x [ l { t x { d ) ] ' } (5-40) 
1/ ^ 

B (t, V，J, d) = arg max {丄(/ — 1，v，/，" - 1 ) x � } (5-41) 
j ^ 

o Termination: 

S = max (5-42) 

= argmax[L{T,u,N^„d)x^^ ^ x [D^id) ] ' ] (5-43) 

心in奶"max 

o Backtracking: 

q , = B ( q 〖 + \ ) t = T , T - \ , T - 2 , . . . , 1 (5-44) 

This resulted 4D decoder is essentially the same as that was proposed in [21] 

for Korean connected-digit recognition. The computation cost of this decoder is d„,ax 
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times that of baseline decoder. In practical implementation, we can limit the d^ca to a 

reasonable value, say, 80 to restrict the searchable region in path extension. The 

computation and storage caused is much heavier as compared to that of baseline 

decoder and decoder for use of state-level duration model. 

5.4. Weighted use of duration model 

Experimental observations in our experiments show that, the acoustic score from 

HMM always have a much larger OOM than that of the duration score. Score from 

HMM and Duration models in some random selected cases are given in Table 5-1. 

Therefore, the effect of duration models tends to be overshadowed by that of HMM. 

In this work, a positive weighting factor w is used to balance the situation. 

Table 5-1: Score from HMM and duration models for “0” in random selected cases 

HMM AW RS TP AS 

-1758.8 -3.1 -4.2 -0.4 -10.8 

-1786.5 -3 -3.4 -0.6 -10.7 

-1889.6 -3 -4.2 -0.3 -8.1 

-2419.6 -3.2 -2.1 -0.5 -9.8 

-1660.6 -3.1 -4.1 -0.1 -9 

-2619.5 -3.4 -6.5 -2.2 -8 

-1735.4 -3.1 -3.5 -0.1 -10 
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Chapter 6 

Experimental results and analysis 

In the previous chapters, we have discussed about duration models at various levels. 

We also explained two optimal decoding algorithms that can incorporate the duration 

models into HMM-based recognition of Cantonese connected-digits. Recognition 

experiments have been carried out to evaluate the effectiveness of the duration models 

for different duration features with optimal decoding algorithms. Furthermore, use of 

speaking-rate-dependent duration models has been evaluated. 

Experiments with speaking-rate-independent duration models will be referred 

to as the 'g ' scheme. Speaking-rate-dependent duration models include speaking-rate 

normalized duration models and speaking-rate category dependent duration models. 

Experiments with them are denoted as the 'n ' scheme and the 'c ' scheme respectively. 

The list of our experiments is given in Table 6.1. Similar to the experiments with the 

baseline system, speech data from male and female speakers in the CUDIGIT are 

tested separately. 

Table 6-1: List of experiments 

Word-level duration model State-level duration m o d e l ~ 

AM [ R S T P AM+RS A M + T P A S 

AM+RS A M + T P A S 

AM+RS A M + T P A S 

6.1. Experiments with speaking-rate-independent 

duration models 
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Table 6-2: Recognition performance with different duration features (male) 

Digit acc% Sen acc% Del Sub Ins 

Baseline 96.77 89.50 ^ ^ 181 

AW 97；45 m ^ ^ 

97^8 92A\ 103 10 78 

TP 97.40 ^ ^ 

AW+RS 97.68 m ^ ^ 

~ A W + T P 97.82 92.87 m ^ 44 

AS 9 7 ^ 9 2 ^ ^ ^ 

Many trials of experiments have been carried out with different weights within a 

limited range on duration scores. The results in Table 6.2 are the performance with the 

best weight. 

Table 6-3: Best weight obtained from trials on male speech data 

[ A W R ^ FTP AW+RS A W + T P P ^ 

Weight 6 4 4 ^ ^ 3 

For the subsequent recognition experiments, we will continue using the weight 

obtained in this stage for balance the contribution of duration models. 
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Table 6-4: Recognition performance with different duration features (female) 

Digit acc% Sen acc% Del Sub Ins 

Baseline 98.12 93.43 30 44 \2\ 

AW 94J7 ^ 48 42 

R^ 98.48 94.66 51 48 59 

TP 98.26 93.96 40 45 % 

AW+RS 98.63 95.08 ^ 45 ^ 

AW+TP 98.59 ^ 47 ？7 

AS 98.60 95^01 54 40 52 

6.1.1. Discussion 

Table 6-2 and Table 6-4 show the recognition performance with different duration 

features on male and female data respectively. It can be seen that in all cases the 

recognition performance is improved as compared with the baseline system. For male 

speech, the recognition accuracy is improved by up to 1.06%. For female data, the 

recognition accuracy is improved by up to 0.51%. 

Word-level duration features 

From Table 6-2’ it can be seen that using word-level duration model noticeably 

improves the recognition accuracy. Among the three word-level features, RS (relative 

state duration) offers the best improvement. If the AW model and the RS model are 

used in combination, a slight degree of further improvement can be achieved. This 

implies that they are complementary to each other to some extent. For example, the 

baseline recognition output of an utterance is as follows: 
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Table 6-5: Baseline recognition output of "data/CD 16M/data/5667.mfc" 

Duration (frame) TP Recognized digit 

s 

0.083333 ^ 

0.428571 ^ 

0.454545 ^ 

As can be seen in Table 6-5，a combination of "56" of this utterance is 

misrecognized as "6". Use of AW failed to reduce the error, since the time duration of 

recognized "6" still reasonable. However, use of TP and RS is able to reduce this 

error since sub-segments of recognized "6" are in unreasonable portion. The 

combination of AW and TP attained 97.82% accuracy, which is comparable to that 

attained by combination of AW and RS model. It shows that TP is equally effective as 

RS in supplementing the AW information. 

In Table 6-4, the use of AW or RS model consistently achieves noticeable 

improvement. Nevertheless, the TP model shows only marginal improvement. As 

discussed in Chapter 4, the motivation of TP was to deal with the possible insertion or 

deletion that come with the digits “0’’’，’3” and “4”. It was observed, for male data in 

CUDIGIT, that if the coda of these happen to be deleted or prolonged, the TP of these 

digits would become unreasonable. However, this observation does not hold on 

female data. Therefore, TP is not as good a duration feature as RS for relative 

duration modeling. Combined use of AW and either of relative duration model gives 

further improvement 

State-level duration features 

As shown in Table 6.2 and Table 6.3, the use of state-level duration model shows 

better recognition performance than use of any of the word-level duration model. On 

the other hand, it shows similar performance to the combined use of word-level 

features. It indicates that the state-level information is as useful as word-level 
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information. In this regard, using of state-level duration model is a better approach 

because it does not take as much computation as that of using word-level duration 

model. 

Confusion matrix of digits 

With use of duration modeling in recognition, noticeable change has been taken place 

in confusion matrix from that of baseline. For expedience of illustration, the confusion 

matrix of using AS on male data is given in Table 6.6. It is observed that: 

1) Number of insertions is greatly reduced for most of digits, in particular, the 

digit "2" and “5”. Duration model shows to be effective to reduce recognition 

errors that caused by insertion of digits with short duration. 

2) Number of deletion for most digits is increased for most of digits, especially 

the digit "5". The reason will be analyzed later. 

3) Insertions of "0" are reduced a lot. As we mentioned earlier, "0" has a high 

insertion rate because some noise segments are misrecognized to "0". It 

indicates that duration modeling would be helpful in noise robust ASR. 

4) No significant change is observed in the number of substitution. Duration 

model shows marginal effect on substitution error. 
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Table 6-6: Confusion matrix of recognition results with duration model (male: AS) 

‘0’ ‘1’ ‘2’ '3' '4' ‘5’ ‘6， ‘7’ ‘8， ‘9’ del %c/%e 

‘0’ 1028 6 0 0 0 2 0 0 0 0 5 98.9/0.1 

‘1， 1 1030 0 0 1 0 0 0 2 0 16 99.1/0.1 

'2 ' 0 3 987 0 0 1 0 0 0 0 24 99.6/0.0 

‘3’ 0 0 0 1018 0 0 3 0 5 0 1 99.5/0.0 

‘4’ 0 1 0 0 1066 0 0 1 0 0 0 99.8/0.0 

'5' 0 0 1 0 0 965 1 0 0 0 49 99.5/0.0 

‘6’ 0 1 0 0 0 0 1022 0 0 3 7 99.6/0.0 

'7' 0 2 0 2 3 0 0 1062 0 0 4 99.4/0.1 

' 8 ' 0 2 0 0 0 0 0 0 1048 0 4 99.8/0.0 

'9 ' 0 2 0 0 0 0 4 1 15 989 0 97.9/0.2 

ins 4 7 10 1 0 25 2 0 1 2 

6.1.2. Analysis of the error patterns 

In the experiments, it is observed that some recognition errors are reduced with the 

use of duration information, but at the same time, some new errors are introduced. 

Statistics are given in Table 6-7 and Table 6-8 for male and female experiments 

respectively, 
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Table 6-7: Reduced recognition errors and newly introduced ones (male) 

Duration model No of reduced No of newly introduced 

AW+TP 159 49 

AS m 53 

Table 6-8: Reduced recognition errors and newly introduced ones (female) 

Duration model No of reduced No of newly introduced 

AW+TP ^ 45 

AS no 47 

In comparison to the number of reduced errors, the number of newly 

introduced errors is not a negligible number. There are two possible reasons that can 

be used to explain the trade-off between reduced errors and newly introduced errors. 

The first reason is that some correctly recognized digits may exhibit unreasonable 

duration as well. Duration model may falsely penalize these digits and introduce new 

recognition errors. The other reason is that our duration models have a tendency to 

prefer longer duration. This helps to penalize the cases with unreasonably short 

duration and prevent to penalize the unreasonable long durations. Consequently, there 

will be a tradeoff between reduced insertion errors and new deletion errors. This 

tradeoff will be elaborated in details in the next section. 

6.1.3. Reduction of deletion, substitution and insertion 

The trade-off between reduced errors and newly introduced errors is further analyzed 

in terms of deletion, substitution and insertion. Table 6-9 and Table 6-10 give the 

statistics on the experiments with duration models on male data. 
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Table 6-9: Reduced recognition errors and newly introduced ones (male: AW+TP) 

Reduced Newly introduced 

D d 2 37 

S ^ 17 10 

INS 140 2 

Table 6-10: Reduced recognition errors and newly introduced ones (male: AS) 

Reduced Newly introduced 

D d 10 S 

S ^ 17 12 

INS 137 8 

From these tables, it is observed that: 

1) Substitution errors do not change as much as insertion and deletion errors. It 

may due to that digits been substituted for still exhibit reasonable durations. 

2) Most of the newly introduced errors are deletion errors. 

3) Most of the reduced errors are insertion errors. 

The last two observations lead to a conclusion that longer duration is preferred in the 

decoding with the proposed duration models. The preference to longer duration or 

shorter duration depends on the strength and polarity of duration score. Negative 

supra-segmental scores tend to prefer less digits and longer duration, which will lead 

to more deletion errors. In our experiment, the duration scores are all negative. As a 

result, we see this tendency in the experiment results. Furthermore, when the positive 

weight is applied on the duration score is heavier, there will be more deletion errors 

and insertion errors. 
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Similar phenomenon can be observed from the experiment results on female 

data. As shown in Table 6-11 and Table 6-12，most of the reduced errors are insertion 

errors and most of the newly introduced errors are deletion errors. 

Table 6-11: Reduced recognition errors and newly introduced ones (female: AM+TP) 

Reduced Newly introduced 

Dei 0 33 

^ 9 12 

INS ^ 0 

Table 6-12: Reduced recognition errors and newly introduced ones (female: AS) 

Reduced Newly introduced 

D d 7 25 一 

S ^ b 15 11 

INS ^ 11 

Insertion penalty is usually used to adjust the balance of insertion errors and 

increase the deletion errors. Many trials have been carried out with different insertion 

penalty on male speech data. With a value of-18 the highest accuracy can be obtained. 

Table 6-13 gives the recognition performance of using duration penalty with the 

empirical weight-18 on male and female speech data respectively. 

Table 6-13: Recognition performance with insertion penalty 

Digit acc (%) Sent acc (%) Del Sub Ins 

97；46 9 1 ^ ^  

female 94T4 ^ 47 ！ 
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6.1.4. Recognition performance at different speaking rates 

Using the same threshold of defining speaking rate for training data, we divide the test 

data into three categories. Table 6-13 shows the baseline recognition performance for 

each speaking rate category. Table 6-14 and Table 6-15 give the recognition 

performance with duration models. All these results are on male speech data. 

Table 6-14: Baseline recognition performance at different speaking rates (male) 

Digit acc% Sen acc% Del Sub INS 

Fa^ 96.00 85.99 ^ 54 ^ 

Medial 97.57 91.34 16 15 ^ 

S i ^ 3 0 71 

Table 6-15: Recognition performance at different speaking rates (male: AW+TP) 

Digit acc% Sen acc% Del Sub INS 

F ^ 9 5 ^ 100 47 U 

Medial 99.02 17 14 14 

S i ^ 9 m 9 7 ^ 4 0 19 

By comparing Table 6-14 and Table 6-15，it is seen that the recognition 

performance for the fast category drops from 96.00% to 95.78% due to a large 

number of newly introduced deletion errors. Recognition performances on the medial 

category and slow category are improved because of significant reduction on insertion 

errors. This trade-off is expected. Fast speech has shorter digit durations, which is not 

preferred by our duration models. 

Similar phenomenon is observed in the experimental results on the use of AS 

model for male data. As shown in Table 6-15, the medial category and slow category 

achieve better performance than Fast category. 
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Table 6-16: Recognition performance for different speaking rate category (male: AS) 

Digit acc% Sen acc% Dd Sub 

F ^ 95.89 95.24 % 49 10 

Medial 99.04 96.47 13 15 16 

S i ^ 98 .67 96.79 1 0 ^ 

Figure 6-1 shows the recognition performance on different speaking rate 

category for experiments on female data. It is also observed that the medial and slow 

category achieves better performance than the fast category. 

• baseline • AW+TP • AS 

^ 100 
of, 9 9 . 5 j ^ j  

. 9 8 . 5 • • - -

o 9 8 f • ~ — — ~ • — — • — 
Z 9 7 . 5 - • - - • — 
B 9 7 — • - - • - 一 • 

9 6 . 5 I ~ � 1 _ ~ ™ - n — I ~ ~ 1 

fast medial slow 

Figure 6-1: Recognition performance at different speaking rates (female) 
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6.2. Experiments with speaking-rate-dependent 

duration models 

Experiments with speaking-rate-dependent duration models include two runs of 

decoding. The speaking rate is estimated based on the detected number of digits per 

second in a preliminary run of decoding. Corresponding duration model is then 

integrated into the second run of decoding. 

6.2.1. Using true speaking rate 

To probe the up bound of the performance improvement with speak-rate-dependent 

models, we use the true speaking rate in an oracle experiment instead of using 

estimated speaking rate first. 

• baseline • ’g' • 'c' • 'n' 

98.5 — 

98.3 

〜 9 8 . 1 … … ^ 們 - -

97.9 • : - - • 

？一-rl ……fl …-Tl --
——• — • — • I I I —• — • — • 

96.7 I • - - - - I • - - - - I “ • 

96.5 U ~ ~ H _ L ^ J _ _ H _ _ _ H _ L | 
AW+RS AW+TP AS 

Figure 6-2: Recognition performance of using speaking-rate-dependent models with 

true speaking rate (male) 

Figure 6-2 and Figure 6-3 give recognition performance of using speaking-

rate-dependent models with true speaking rate. The recognition performance of 
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baseline and using speaking-rate-independent duration models is shown for compare. 

As shown in the figures, noticeable improvement is achieved by using speaking-rate-

dependent models in comparison to using speaking-rate-independent duration models. 

口 baseline • 'g' • 'c' • _n, 

99 

98.9 1 ~ 円 -

一 98.8 ——In d • -
t 98.7 • • • 

f 98.6 ---i—B p i rm ---•——•——•-
二 98.4 … - - • — — • • - -

- - - - • • • - -—— • • • 
- I ~ • — — • - - - - “ • - -

98 U _ _ _ • _ L _ J _ _ H _ L j _ _ H _ L | 
AW+RS AW+TP AS 

Figure 6-3: Recognition performance of using speaking-rate-dependent models with 

true speaking rate (female) 
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6.2.2. Using estimated speaking rate 

Recognition performances of using speaking-rate-dependent models with estimated 

speaking rate are given in Figure 6-4 and Figure 6-5 on male data and female data 

respectively. 

• baseline • 'g' • ,c, • 'n, 

98.5  

98.3 

98.1 

g 97.9 (—T r ^ Z m n f B H " 

1=…riH ……rll:=rl -
… - • - - - - - • • 

… - I … … - I I ： 
- - - - • • • 
——• — • — • 
- 「 • … 厂 • … 厂 • 

96.5 L J _ _ H _ _ L — I ~ ~ “ “ ― ‘ ― r - J ® ~ ~ ‘ ― I 

AW+RS AW+TP AS 

Figure 6-4: Recognition performance of using speaking-rate-dependent models with 
estimated speaking rate (male) 

The speaking-rate-dependent duration models do offer improvement over 

speaking-rate-independent duration models. It indicates that estimated speaking rate 

information is useful to some extent in guiding the second run of decoding. However, 

the improvement is limited as compared to the upper bound. More accurate speaking 

rate information is necessary for effective use of the speaking-rate-dependent models. 

Nevertheless, accurate speaking rate is difficult to be obtained currently. This is the 

limitation of using speaking-rate-dependent duration models. 
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• baseline • 'g' • 'c' • 'n' 

99 

98.9 

98.8 円 

g 98.7 

1^98.6 f m r - M H B ^ - -

卜 . 5 … - • — — • — — • -
- • — — • — — • -

98.3 ----- • • • -

• • • - -

98.1 - I ~ • ——~ • ——• 

AW+RS AW+TP AS 

Figure 6-5: Recognition performance of using speaking-rate-dependent models with 

estimated speaking rate (female) 

Of the two speaking-rate-dependent duration models, speaking-rate 

normalization duration models and speaking rate category dependent duration models, 

no consistent superiority of either kind of models can be observed in our experiment 

results. Their effectiveness depends on other factors such as speech data, duration 

feature and so on. 

6.3. Evaluation on another speech database 

In Section 6.1, the weights used for duration model score were trained by many trials 

on test data set. The values are therefore data specific. One may argue that the 

recognition results could not fully reveal the effectiveness of our method. In this 

section, further experimental work will be presented to address this issue. 

6.3.1. Experimental setup 

Evaluation data 

In the following experiments, the evaluation data are not from CUDIGIT. Instead, 
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they are a subset of speech data for speaker recognition recently collected at the 

Chinese University of Hong Kong. This subset is a collection of Cantonese digit 

strings. The speech data were recorded with the same acoustic condition as CUDIGIT. 

The entire database has 52 speakers. Only 5 of them are used in our experiments. 

There are about 180 utterances for each speaker. Each utterance contains exactly 14 

digits. All data and annotations were verified manually. In terms of numbers of digits, 

the amount of evaluation data is similar to that of used in Section 6.1 and 6.2. 

List of experiments 

Recognition experiments have been carried out with state-level duration model and 

word-level duration models, as well as speaking-rate dependent and speaking-rate 

independent duration model. (See Table 6-17) 

Table 6-17: List of experiments 

Word-level duration model State-level duration m o d e l ~ 

AM+RS “ A M + T P AS 

AM+RS “ A M + T P AS 

" V AM+RS “ AM+TP AS 

Weights for duration models 

The best weights developed from CUDIGIT in the previous sections as listed in Table 

6-18 are used. 

Table 6-18: The best weights obtained for male data of CUDIGIT 

Insertion Penalty AW+RS AW+TP AS 

Weight -18 (6,2) (6,4) 3 
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6.3.2. Experiment results and analysis 

6.3.2.1 Experiments with speaking-rate-independent duration models 

Table 6-19: Recognition performance with different duration features 

Digit acc% Del Sub Ins 

Baseline 95.09 82 116 418 

AW+RS 97.22 142 90 116 

AW+TP 97.24 133 90 124 

AS 97.45 105 88 127 

Insertion penalty 96.37 124 117 215 

In the baseline recognition system, insertion and deletion errors account for more than 

80% of the recognition errors. Seen from confusion matrix in Table 6-20, 68.2% of 

insertion errors and deletion errors are due to "2" and "5". 
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Table 6-20: Confusion matrix of baseline recognition results 

‘0’ ‘1’ ‘2’ ‘3’ '4' ‘5’ ‘6’ ‘7’ ‘8’ ‘9, del 

‘0’ 1333 1 0 0 0 0 0 0 0 0 1 

‘1’ 12 1236 3 1 3 8 0 4 0 0 7 

‘2， 2 0 1274 0 0 0 0 0 1 0 16 

‘3’ 3 0 0 1196 0 4 0 4 1 2 0 

‘4' 2 0 2 0 1288 0 0 1 0 0 0 

‘5， 5 0 1 1 0 1133 1 0 0 3 51 

'6 ' 3 0 0 0 0 0 1268 0 4 3 6 

'7 ' 0 0 0 5 4 4 0 1205 0 1 1 

‘8’ 1 0 0 2 0 1 2 1 1301 7 0 

'9 ' 2 3 0 1 0 0 5 0 2 1124 0 

ins 75 4 55 1 2 224 4 14 5 34 

Table 6-19 gives the recognition results on the new evaluation data with different 

duration features. The result with insertion penalty is also shown for comparison. 

Obviously, the use of explicit duration model results in noticeable improvement over 

the baseline. State-level models show better performance than use of word-level 

models. The combination of AW and RS attains similar improvement to the 

combination of AW and TP. 

Similar to the observation in Section 6.1 and 6.2’ the insertion errors are 

greatly reduced while the deletion errors are increased at the same time. Additionally, 

the substitution errors are reduced in all cases. Use of insertion penalty can also 

improve the recognition accuracy. However, it is less effective than the proposed 

duration models. 

83 



Figure 6-6 shows the recognition performance for each speaking rate category 

on the new evaluation data. 

[•basel ine DAW+RS • AW+TP DAS J 

99 
^ 9 8 ——97:4—9 97:4- _ 

�97 ； ——rB —riSTi 一 
2 96 ” • - • —一 • -
3 95 • 『 • — — • -
S3 94 • • - p • 

92 • • — • -
91 ： ~ ” ~ , ~ ― “ ™ ~ ‘ -r ~ ~ “ ' - n 

fast medial slow 

Figure 6-6: Recognition performances for different speaking rates 

Recognition performances are improved for all categories. The slow category 

achieves the most significant improvement while the fast category achieves marginal 

improvement due to a large number of new deletion errors. The improvement of the 

medial category is also significant. 

6.3.2.2 Experiments with speaking-rate-dependent duration models 

Experiments with speaking-rate-dependent duration models include two runs of 

decoding. The speaking rate is estimated in a preliminary run of decoding, and the 

respective duration model is then integrated into the second run of decoding. 

Using true speaking rate 

To know the up bound of the performance improvement with speak-rate-dependent 

models, we use the true speaking rate in an oracle experiment, and the results are 

given in 

Figure 6-7. Noticeable improvement can be observed on the use of speaking-rate-

dependent models as compared to using speaking-rate-independent duration models. 
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I • baseline • 'g' • 'c' • 'n'| 

98 
97.63 97 6 97.67 97.65 

97 5 " H ~ - L M I U 

9 7 - … … … p j … … • — 

f 9 6 . 5 … - • … … • … … • -

9 6 … • — — • ——•-

95.5 • • • 
^ H ^ H ^ H 

95 - p • … 广 • - - - p • - -

9::H IH I hi • h 
AW+RS AW+TP AS 

Figure 6-7: Recognition performance of using speaking-rate-dependent models with 
true speaking rate 

Using estimated speaking rate 

Recognition performances of using speaking-rate-dependent models with estimated 

speaking rate are given in Figure 6-8 . 

「口 baseline • 'g' • 'c' • 'n'] 

97 4597.5197.54 

97.5 — — r U n -

97…fi……ri -……I… 
^ 96.5 • • • -

9 6 • • • -
——• • • -

^ B ^M ^ B 
95 --r- • - - - 厂 • - - - - 厂 • -

- • • — • - -

94 I I I • I j 丨 • I I I I • I I 
AW+RS AW+TP AS 

Figure 6-8: Recognition performance of using speaking-rate-dependent models with 
estimated speaking rate 
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As compared with the upper bound, the speaking-rate-dependent duration models 

offer only limited improvement over speaking-rate-independent duration models. It 

implies that more accurate speaking rate information is necessary for effective use of 

the speaking-rate-dependent models. 

Between the two speaking-rate-dependent duration models, namely, the 

speaking-rate normalization duration models and the category-specific duration 

models, no consistent superiority of either kind of them can be observed in our 

experimental results. 

86 



Chapter 7 

Conclusions and future work 

7.1. Conclusion and understanding of current 

work 

The basic assumptions of HMM are inappropriate to characterize the temporal 

structure of speech signals. It does not give effective control on both the time duration 

and relative duration of speech segments that it models. For HMM-based Cantonese 

digit recognition, it is observed that a significant portion of recognition errors exhibit 

unreasonable duration properties. 

We have investigated on the use of both absolute duration models and relative 

duration models to confine the duration of recognized digits. In particular, the relative 

duration of the tail part of a Cantonese digit has been proposed. Algorithms have 

developed to incorporate state-level duration score and word-level duration score to 

HMM-based recognition process. For each decision on path extension, the duration 

models are used to contribute an additional probabilistic score to the conventional 

path score. Use of word-level duration model is computationally much expensive than 

state-level duration models. In the decoding algorithm, a weighting factor is used to 

balance the contribution of acoustic model and duration model. 

Experiments have been carried out on CUDIGIT corpus. A set of empirical 

weights for different duration information are obtained by many trials on male test 

data set. With these weights, use of different duration information shows performance 

improvement of various degrees. For male speech, the recognition accuracy is 

improved by up to 1.06%. For female data, the recognition accuracy is improved by 

up to 0.51%. 
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Among the three word-level features, the relative state duration (RS) and the 

absolute word (AW) consistently offer noticeable improvement. The relative duration 

of tail part (TP) provides noticeable improvement only on male speech. TP is not as 

good as RS for relative duration modeling. Relative duration features are shown to be 

a good supplement to the absolute duration features. If the AW model and the RS 

model or TP model are used in combination, further improvement can be achieved. 

The use of state-level duration feature AS always shows better recognition 

performance than any of the word-level duration feature. On the other hand, the 

combined use of word level duration features provides comparable recognition 

performance to the use of AS. 

With the use of duration model, the performance improvement is mainly 

reflected in the reduction of insertion errors. Slow speech benefits more than fast 

speech. In the case of fast speech, new errors are introduced. Use of explicit duration 

model attains higher accuracy than the use of word insertion penalty. 

Regarding that speaking rate variation may weaken the effectiveness of the 

duration model. Speaking-rate-dependent duration models are suggested. With the 

estimated speaking rate by a preliminary run of decoding, use of speaking-rate-

dependent model shows further improvement in comparison to the speaking-rate-

independent models. However, the improvement is not significant. Further 

improvement on the characterization of speaking rate information is needed for 

effective use of the speaking-rate-dependent model. 

In view of that those empirical weights are data specific, further evaluation 

experiments have been carried out on a different set of speech data. The experiments 

results are consistent with earlier observations. The improvement of recognition 

accuracy is up to 2.36%, which is achieved by the use of AS. The most significant 

improvement is observed on slow speech. Using speaking-rate-dependent duration 

model consistently shows further improvement. 
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7.2. Future work 

Explicit duration modeling would be useful for ASR under noise conditions. As we 

mentioned in experiment result, insertion errors related to noise are reduced a lot with 

duration modeling. Noise segments do not posses regular duration properties like 

speech units. If the noise segments are misrecognized as speech units, the recognized 

speech units tend to have unreasonable duration properties. In this regard, explicit 

duration modeling would be helpful. 
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A Appendix 
1) Plots for AS 
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Figure A-1: Distribution of state duration For Cantonese digit “1” 
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Figure A-2: Distribution of state duration For Cantonese digit "2" 
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