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Abstract 

This dissertation identifies a unified formulation for most existing split and 

unsplit perfectly matched layers (PMLs) for solving the time-dependent Maxwell's 

equations. 

Several finite difference schemes are proposed for efficiently solving the ID 

time-dependent Maxwell's system, these schemes including the first order scheme, 

modified Yee scheme and Lax-Wendroff scheme. Convergence and stability are 

rigorously demonstrated for the finite difference schemes. 

Numerical experiments are presented, which validate the effectiveness of the 

finite difference schemes proposed in this dissertation. 



摘要

这篇论文主要针对目前文献上已有的，处理时间相关的 Maxwell 方程的
分裂与不分裂的完全匹配层方法(Perfectly Matched Layer)，找到了一个统
一的形式.

对于一维时间相关的 Maxwell 系统的多种完全匹配层方法提出了一些

行之有效的差分格式包括一阶格式改进的 Ye闵e 格式和 La缸X
格式式.并严格地论证了这些差分格式的收敛性和稳定性.

数值实验进一步验证了本文所提出差分格式的效果.
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Chapter 1 

Introduction 

1.1 The Generalized PML Theory 

1.1.1 Background 

With the rapidly increasing interest in solving Maxwells equations in the time 

domain comes the need to develop effective and reliable mathematical methods 

to truncate the infinite computational domain. This question is closely related 

to the solution of wave problems and has received tremendous attention in the 

past two decades (c.f. [BT] & [EM]). It is still one of the central and largely 

open challenging problems to engineers and applied mathematicians. The de

velopment of such methods is essentially necessary due to the increasing use of 

high-order accurate methods to avoid ruining the accurate interior solutions by 

artificial reflections from the computational boundary. A new and exciting ad

vance in this direction was achieved about 10 years ago by Berenger in [B1]. This 

new approach suggests to use an absorbing layer, instead of the commonly used 

absorbing boundary, designed in such a way that all waves entering the layer, re

gardless of their frequency and angle of incidence, would be absorbed completely 

and without reflections into the computational domain. Such layers, often called 

perfectly matched layers (PMLs), seemed to overcome the reflection problems 

6 
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and their derivation, first presented for the two-dimensional Maxwells equations, 

were then generated to three-dimensional systems [B2], the equations of acoustics 

[Hu], and the equations of linear elasticity [CL], and so on [AGH]. 

Since the first PML invented by Berenger, numerous PMLs have been con

structed. In [B1], Berenger introduced a novel boundary condition for truncating 

two-dimensional finite difference-time domain meshes. His PML technique is 

based on using a layer of lossy material to absorb outgoing radiation from the 

computational domain. Inside the PML layer, the Cartesian field components 

are split into two subcomponents (i.e. Hx == Hxy + Hxz). Late in 1994, another 

formulation of PML was given by Chew and Weedon late in 1994 [CW], and 

is also closely related to the one by Rappaport [R]. Their approach is based 

on introducing complex coordinate stretching variables, and Maxwell's equations 

were modified to add additional degrees of freedom. The modifications allow the 

specification of a lossy material layer such that a planar interface between the 

PML material and free space is refiectionless for all frequencies, polarizations, 

and angles of incidence [SKLL]. 

In 1996, a new PML formulation was proposed by Sacks et al. [SKLL], based 

on a properly constructed anisotropic medium. This approach appears more at

tractive in view of the fact that there is no need for the Chew-Weedon modifica

tion of the spatial derivative operators via coordinate stretching, thus Maxwell's 

equations maintain their usual physical form, except for the strange properties of 

the anisotropic medium. However, as it will be seen below, these two approaches 

are mathematically identical, provided that the electric and magnetic fields pre

sented in the Chew-Weedon stretching -coordinate formulation are properly de

fined [ZC1]. Also in 1996, Veihl and Mittra [VM] proposed another alternative 

formulation of the Berenger's scheme where the spItting of the field components 

is again avoided. Instead, time- and field-dependent sources are introduced. As 

suggested in [ZCl], an unsplit-field implementation of PMLs in the time domain 
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can also be effected directly from the anisotropic medium formulation of the PML 

[ZC2]. In the same year, Zhao and Cangellaris improved Veihl and Mittra's work 

in two of their important contributions [ZC1] & [ZC2]. In 1997, Ziolkowski con

structed an absorber that deals with ultrafast pulses, the time-derivative Lorentz 

material model for the polarization and magnetization fields [Z]. 

1.1.2 Derivation 

In this subsection, we shall review the main steps in the derivation of the perfectly 

matched layers in three dimensions, following the ideas of [ZC2]. In this way 

the two-dimensional TE (scalar magnetic field) and TM (scalar electric field) 

polarizations will be simultaneously treated. A more detailed presentation can 

be found in [ZC2]. Using Fourier transform in time (e iwt dependence) and the 

frequency-domain anisotropic constitutive relations D == E . E and B == J-l . H, 

Maxwell's equations (with J == 0) and the divergence-free conditions are reduced 

to 

jWJ-l' H -\7 x E , 

jwE·E \7 x H, 
(1.1.1) 

\7 . (c· E) 0, 

\7 . (J-l . H) 0, 

where c, J-l are the permittivity and permeability tensors of the medium, which 

are assumed [SKLL] to be of the form 

{ 

E = fdi~g{ ax, ay, az } = fA, 

J-l == J-ldlag{ ax , ay, az } == J-lA, 
(1.1.2) 

with c and J-l being real numbers that satisfy c > co and J-l > J-lo. In (1.1. 2), the 

entries of the diagonal matrix 

(1.1.3) 

are, in general, complex dimensionless constants. 
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By the definition, the scaled fields can be written as 

{! 
and 

== G- 1{Ex, Ey , Ez}T 

== G- 1{Hx, Hy , Hz}T, 
(1.1.4) 

(1.1.5) 

with gx, gy, gz being, in general, complex constants. Using the notation G and A 

to denote the tensors with matrix representations G and A, respectively, we may 

rewrite (1.1.1) in terms of the scaled fields as follows: 

__ A 

-\7x(G.E) jWJ-LA· G . H 
__ A 

\7x(G·H) jwcA· G· E 

\7 . (cA· G . E) 0 

\7 . (cA· G . H) o. 

The choice of the scaling factors, gx, gy, gz, according to the equations 

(
gy)2==az , 
gz ay 

allows us to rewrite (1.1.6) in the form 

where 

jWJ-LH 

jwcE 

\7a · (cE) 

\7 a . (J-LH) 

o 

0, 

~ 1;:) A 1 a A 1 a A 

Va - U x X + y Y + z z, 
y'ayaz y'azax y'axay 

(1.1.6) 

(1.1.7) 

(1.1.8) 

and X, y, z are unit axial vectors in the cartesian coordinate system. The system 

(1.1.8) is very similar to the modified Maxwell system with complex coordinate 

stretching used in [CW]. Indeed, using the notation 

Sx == y'ayaz , Sy == y'azax , Sz == y'axay , (1.1.9) 
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the system (1.1.8) becomes mathematically equivalent to the modified Maxwell 

system in frequency domain in [CW]. However, there is an important difference 

between the two: (1.1.8) is for the scaled fields while the equivalent one in [CW] 

was proposed assuming that the fields are physical fields. The nonphysicality of 

the fields in [CW] manifests itself as the requirement for an arbitrary field-splitting 

in order to produce the time-domain equations for the absorbing layer. 

Assuming plane wave propagation has following form for the scaled fields in 

the anisotropic medium, namely 

{ 
~ = C-1 . E = Eoe-jk-r 

H == C-1 . H == Hoe- j k·r 

(1.1.10) 

where k == kx-x. + kyY + kzz, and Eo and Ho are the scaled complex-constant field 

amplitudes. Using (1.1.10) in the system (1.1.8), and noting that the medium is 

assumed to be homogeneous, one obtains 

ks x E wp,H 

ks x H -wEE 

ks·E 0 

ks·H 0 

where 

k 
kx A ky A kz A 

s -x+ -y+ -z. 
8 x 8 y 8 z 

Eliminating H between the first two equations of (1.1.11) results in 

A 2 A 

ks x ks x E == -w p,EE 

and, finally, along with (1.1.12), we get 

k2 k2 k2 

w2 p,E == 2. + -..J!... + -2.. 
8 2 8 2 8 2 

x Y z 

(1.1.11) 

(1.1.12) 

(1.1.13) 
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The relation (1.1.13) is the dispersion relation for the anisotropic medium cur

rently considered. Obviously, (1.1.13) is satisfied by 

kx == ksx sin () cos cp 

ky == ksy sin () sin cp 

kz == ksz cos (), 

(1.1.14) 

where k == w#. Clearly, the propagation characteristics of the wave along X, y 

and z can be controlled by varying the variables sx, Sy and s z or, effectively (see 

(1.1.9) ), by varying the properties of the anisotropic medium. 

1.1.3 Reflection Properties 

In this subsection, we discuss the reflection properties, following the ideas of 

[PZC]. A relationship between the tensors of two anisotropic media separated by 

a planar interface can be established for the interface to be reflectionless for all 

frequencies and all angles of incidence. We shall present below this relationship 

wi thou t any proof. 

Without loss of generality, the planar interface is taken to coincide with the 

x == 0 plane in a cartesian coordinate system. The space x > 0 (Medium 

1) is filled with a homogeneous medium with tensors cIAI, J-LIAI, where Al == 

diag{ al x , al y , al z } and the corresponding values of SIx, Sly, and Slz are given by 

(1.1.9). The space x < 0 (Medium 2) is filled with a homogeneous medium with 

tensors C2A2, J-L2A2, where A2 == diag{ a2x, a2y, a2z}, and the corresponding values 

of S2x, S2y, and S2z are given by (1.1.9). A plane wave propagating from Medium 

1 toward Medium 2 is assumed to be obliquely incident on the interface at x == O. 

Its polarization is assumed to be arbitrary. Then the reflective ratios are given 

by 

RTE == kls J-L2 S 2x - k2s J-LISlx 

k ls J-L2 S 2x + k2s J-LI SIx 

RT M == kls C2S 2x - k2s C I SIx 

kls C2S 2x + k2s C I SIx 

(1.1.15) 

(1.1.16) 
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(c.f. [CWJ). Therefore, for the material interface to be refiectionless the following 

relationships between the properties of the two anisotropic media are necessary 

(1.1.17) 

(1.1.18) 

The relations in (1.1.18) are instrumental for achieving the reflectionless interface. 

In terms of the entries of the tensors Al and A2 and making use of (1.1.9), we 

derive 

(1.1.19) 

For clarity, we summarize the results we have derived above. Let i denote 

one of the axes in a righthand Cartesian coordinate system xy z, and j, k the 

other two axes in the system. The j k-plane interface between two anisotropic 

media characterized by the tensor Cl diag{ ali, alj, alk}, J-lI diag{ ali, alj, alk} and 

c2diag{ a2i, a2j, a2k}, J-l2diag{ a2i, a2j, a2k}, respectively, will be reflectionless for all 

frequencies and any angle of incidence if Cl == c2, J-lI == J-l2 and the elements of the 

tensors satisfy the relation 

(1.1.20) 

The use of this result in the construction of absorbing PMLs for the numerical 

grid truncation is discussed in the next section. 

1.2 Unified Formulation 

1.2.1 Face-, Edge- and Corner-PMLs 

In this subsection, we review the classification of various PML regions, following 

the ideas of [ZC2]. Consider a rectangular volume 0, in a linear, homogeneous 

and isotropic medium of permittivity C and permeability J-l. We shall take a 
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z 

)-Y PMLxyz 

X 
~--. PMLyz 

PMLzx PMLy 

PMLx PMLxy 

Figure 1.1: Classification of the various PML regions. 

finite method to model electromagnetic interactions insider this volume, and it 

will be done by surrounding the volume by a PML developed on the basis of 

the aforementioned theory with the additional property that they dissipate the 

waves propagating through them. For the purposes of numerical computation, a 

PML should be of finite thickness. If sufficient attenuation is effected by these 

absorbing PMLs, zero field values may be assumed at the end of the PMLs, 

thus effecting simple Dirichlet boundary conditions at the ends of the domain of 

numerical computation without giving rise to spurious reflections. 

Fig 1.1 gives one fraction of the volume n with a PML of finite thickness 

attached on its outer surface. We shall now review three types of PMLs: face

PMLs, edge-PMLs and corner PMLs. 

Face-PMLs 

These PMLs are rectangular volumes, placed next to the six faces. Layers 

PMLy and PMLz in Fig 1.1 fall in this category. Let us analysis the layer PMLx . 

This layer is expected to be perfectly matched to the homogeneous medium inside 

n. Let Medium 1 be the medium inside n, thus , Cl == C, J-Ll == J-L, and alx == aly == 

al z == 1. Let Medium 2 be the layer PMLx . According to the results in the 
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previous section, layer PMLx will be perfectly matched to the interior medium if 

C2 == C, J-l2 == J-l and, from (1.1.20) we should have 

1 
a2x == -, a2y == a2z == w x , 

Wx 

or, in matrix form, 

(1.2.1) 

Similarly, we can workout the matrices AY and AZ: 

(1.2.2) 

Edge-PMLs 

These PMLs are rectangular volumes, placed next to the twelve edges. In 

Fig 1.1 one can see three of these edge-PMLs, PMLxy , PMLyz and PMLzx . Let 

us look at the layer PMLxy . This PML must be constructed in such a way 

that it is matched to both face-PMLs PMLx and PMLy . In view of (1.1.20) 

and the fact that the [A]-matrices of the the face-PMLs PMLx and PMLy are, 

respectively, diag{ -.L, w x , w x } and diag{ wY ' -.L, w y }, this edge-PML should have 
Wx Wy 

the parameters c and J-l, and the elements of its A-matrix should satiesfy the 

relations 
-1 

Wx ay Wx a x 
-1 

Wy Wy 

a x Wx a z Wy ay a z 

It is easy to see that these relations imply the following A-matrix for this edge-

PML: 

Axy _ d. {Wy Wx } - lag -, -, WxWy , 
Wx Wy 

(1.2.3) 

which can be written as 

This last relation is very useful since it presents a simple means for us to construct 

the tensors of other edge-PMLs. 
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Corner-PMLs 

These PMLs are rectangular volumes, placed next to the eight corners, see, 

e.g., PMLxyz in Fig 1.1. Their construction is based on the observation that 

they should be matched to the three edge-PMLs, PMLxy , PMLyz and PMLzx . 

A pplication of (1.1.20) at the three relevant interfaces leads to the following 

expression for the A-matrix of the corner-PML 

(1.2.4) 

or simply, 

1.2.2 Unified PML Equations in 3D 

Next, we focus on the edge-PMLs to derive the PML equations (the corner-PMLs 

is similar). Substituting (1.2.3) into (1.1.1), we obtain 

Wy 0 0 Wx 

V x E == -jWJ-L 0 Wx 0 H, 
Wy 

0 0 WxWy 

Wy 0 0 Wx 

V x H == jWE 0 Wx 0 E, 
Wy 

0 0 WxWy 

which gives a 3D edge-PMLs in the frequency domain as follows: 

- jWJ-L Wy Hx == 
Wx (V x E)x == (oEz _ OEy ) 

oy oz 

- jWJ-L Wx H == Wy Y (V x E)y == (oEx _ oEz ) 
OZ ox 

-jwJ-LwxwyHz == (V x E)z == (OEy _ OEx) 
ox oy (1.2.5) 

jWE Wy Ex == (V x H)x == (oHz _ oHy ) 
Wx oy OZ 

jWE Wx E == Wy Y (V x H)y == (OHx _ oHz) 
OZ ox 

jWEwxwyEz == (V x H)z == (OHy _ oHx) 
ox oy· 
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1.2.3 Unified PML Equations in 2D 

In this subsection, we will establish the equations of a PML medium for the 

two-dimension TE (traverse electric) mode case. And the TM (traverse mag

netic) mode case is similar. In the Cartesian coordinates let us consider a prob

lem without variation along z, but with the electric field lying in (x, y) plane. 

The electromagnetic field involves three components only, Ex, Ey , Hz , and the 

Maxwell equations reduce to a set of three equations. From the fourth, fifth and 

third equation of (1.2.5), we derive these three equations in the frequency domain 

jwc Wy Ex == 
W x 

jwc W x E == 
Wy y 

8Hz 
8y 

8Hz 
- 8x 

8Ey 8Ex 
8x - 8y . 

(1.2.6) 

We claim that all the existing PML formulations can be derived from (1.2.6) 

through the relations: 

ax 
Wx == 1 + -. -, 

JWc 
ay 

Wy == 1 + -.- , 
JWc 

az 
W z == 1 + -.- , 

JWE 

Le. the formulation (1.2.6) is a unified formulation of all PMLs .. 

1.2.4 Examples of PML Formulations 

(1.2.7) 

In this subsection, we shall take the 5 most popular existing PML formulations 

as examples to demonstrate that all of them can be all derived from the unified 

system (1.2.6). In all this derivations, we shall assume that all fields are zero for 

t < 0 in the PML regions, which are necessary for inverse Fourier transform back 

to the time domain. 

Formulation 1: Zhao-Cangellaris's formulation [ZC2]. 

A different mathematical formulation was investigated by Zhao-Cangellaris in 

[ZC2] for Maxwell's equations using some properly constructed anistropic media 

and no any splitting of the fields. The edge-PML formulation in the frequency 
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domain can be written as follows: 

jwcwyEx == 

jwcwxEy == 

-jwJ-LwxwyHz == 

W 8Hz 
x 8y 

-W 8Hz 
y 8x 

8Ey 8Ex 
8x - 8y , 

(1.2.8) 

which leads directly to the following edge-PML formulation in the time domain: 

8Ey + ECm a x y-

8Hz + lJx+lJy H + 
8t c z 

(1.2.9) 

Clearly, by multiplying the first and second equation of the unified formulation 

(1.2.6) by Wx and Wy respectively, then we deduce the Zhao-Cangellaris's formu

lation (1.2.8) directly from (1.2.6). Furthermore, using the edge-PML (1.2.8), 

we can obtain the following face-PML formulation in the frequency domain, by 

taking ay == 0, i.e. Wy == 1: 

jwcEx == 

jwcwxEy == 

-jwJ-LwxHz == 

W 8Hz 
x 8y 

8Hz 
- 8x 

8Ey 8Ex 
8x - 8y . 

(1.2.10) 

The corresponding face-PML formulation in the time domain can then be written 

as: 

(1.2.11) 

Formulation 2: Gedney's formulation [G]. 

In his paper, Gedney proposed a mixed finite element method, based on the 

anisotropic uniaxial formulation of the PML, to simulate wave propagation on 

unbounded domains. His derivatives led to the following edge-PML formulation 
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in the frequency domain: 

jwwyDx == 8Hz 
8y 

Ex == IWxDx c 

jwwxDy == 8Hz 
- 8x 

Ey == ~WyDy 
(1.2.12) 

-jwwxBz == 8Ey 8Ex 
8x - 8y 

wyHz == IBz, 
J-L 

which implies readily the formulation in the time domain: 

8Dx - -la D + 8Hz 
----at - c y x 8y 

8Ex _ 18Dx + ax D at - c 8t c2 x 

8Dy _ -la D _ 8Hz 
----at - c x Y 8x 

8Ey _ I 8Dy + ay D 
at - c 8t c2 y 

(1.2.13) 

8Bz - -a B _ (8Ey _ 8Ex ) at - x z 8x 8y 

8Hz - H + 18Bz 
8t - ay z -;; at . 

If define 

in the unified formulation (1.2.6), we find that formulation (1.2.12) is equivalent 

to (1.2.6). Furthermore, using the edge-PML (1.2.12), we can obtain the following 

face-PML formulation in the frequency domain, by taking ay == 0, i.e. Wy == 1: 

jwDx == 

Ex == 

jwwxDy == 

Ey == ID c y 

8Ey 8Ex 
8x - 8y 

~Bz. 

(1.2.14) 

The corresponding face-PML formulation in the time domain can then be stated 



Some Recent Advances in Numerical Solutions of Electromagnetic Problems 19 

as: 

8Dx _ 8Hz 
at - 8y 

8Ex _ 1. 8Dx + Ux D at - c 8t c2 x 

8Dy _ _1.1T D _ 8Hz 
at - c VX Y 8x 

8Ey _ 1 8Dy 

at - "€at 

8Bz - -(J" B _ (8Ey _ 8Ex ) at - x z 8x 8y 

8Hz _ 18Bz 
at - Mat· 

Formulation 3: Becache-Joly's formulation [BJ]. 

(1.2.15) 

Becache and Joly further developed the Zhao-Cangellaris's work and intro

duced the following edge-PML equations in the frequency domain: 

jwDx == 

jwDy == _8Hz 
8x 

~WyDy 
8Ey _ 8Ex 
8x 8y 

tBz, 
which implies readily the formulation in the time domain: 

8Dx _ 8Hz 
8t ay 

8Ex + u y E == 1. 8Dx + U x D 
8t c x c 8t c2 x 

8Dy _ 8Hz at - 8x 

8Ey + U x E == 1. 8Dy + uy D 
8t eYe 8t c 2 Y 

8Bz _ (8Ey 8Ex ) at - - 8x - 8y 

If define 

(1.2.16) 

(1.2.17) 

in the unified formulation (1.2.6), we find that formulation (1.2.16) is equivalent 

to (1.2.6). Moreover, using the edge-PML (1.2.16), we can obtain the following 
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face-PML formulation in the frequency domain, by taking ay == 0, i.e. Wy == 1: 

jwDx == 8Hz 
8y 

Ex == IWxDx c 

jwDy == 8Hz 
- 8x 

(1.2.18) 
wxEy == ID c y 

-jwBz == 8Ey _ 8Ex 
8x 8y 

w x H z == tBz. 

The corresponding time domain system is then stated as follows: 

8Dx _ 8Hz 
8t - 8y 

8Ex _ I8Dx + CTx D at - c 8t c2 x 

8Dy _ 8Hz at - 8x 

8Ey + CJx E == 1 8Dy 

8t c y Eat 

(1.2.19) 

8Bz _ _(8Ey _ 8Ex ) 
at - 8x 8y 

8Hz + CJ x H == 1 8Bz 
8t c z p,at· 

Formulation 4: Ziolkowski 's formulation [Z]. 

Ziolkowski introduced a new concept "Lorentz material" for an absorbing 

layer , and derived the following edge-PML system: 

8Hz - J 
8y x 

J"wcJ -a 8Hz 
G x == x 8y 

jWEwx Ey == - 8f!xz - J y 

jWEJy == a 8Hz 
y 8x 

" H+l( +)H _1(8EY _8Ex )_K J w z E a x ay z == J-L 8x 8y 

jWE
2 K == a x ayHz, 

(1.2.20) 
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which gives then the time domain equations: 

If define 

C 8Ex + E - 8Hz - J at ay x - 8y x 

c 8lx - -a 8Hz 
8t - x 8y 

8Ey + E - 8H J Cat a x y - - 8x
z 

- Y 

8ly _ 8H c-
8t 

- a-z 
y 8x 

8Hz + 1 ( +)H _1.(8Ey _ 8Ex ) - K at € a x ay z == J.L 8x 8y 

c
28K - a a H 

c..., 8t - x Y z· 

(1.2.21) 

in the unified formulation (1.2.6), we find that formulation (1.2.20) is also equiv

alent to (1.2.6). And moreover, using the edge-PML (1.2.20) we can obtain the 

following face-PML formulation in the frequency domain, by taking ay == 0, i.e. 

Wy == 1: 

jwcwyEx == 

jwcJx == 

jwcWx Ey == 

jwHz + ~axHz == 

8Hz - J 
8y x 

-a 8Hz 
x 8y 

8Hz 
- 8x 

_1(8Ey _ 8Ex ) 
J.L 8x 8y' 

and the corresponding time domain equations: 

c 8Ex + a E == 8Hz - J 8t y x 8y x 

c 8lx - -a 8Hz 
c 8t - x 8y 

8Ey + E _ 8Hz Cat a x y - - 8x 

8Hz + la H == _1(8Ey _ 8Ex ) 
8t E x z J.L ax ay' 

Formulation 5: Berenger's formulation [B1]. 

(1.2.22) 

(1.2.23) 

In his first innovative work on PMLs, Berenger used the techniques to split 

the transverse electric wave equation and introduce a damping factor a(x) in each 
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equation in those places where the normal derivative operator Ox appears. The 

PML system in the time domain derived by Berenger can be stated as: 

c 8Ex _ 
c..- 8t -

8Ey + E -Em a y-

8HX + ~Hx == 
8t c 

8Hz 
8y 

8Hz 
- 8x 

1 8Ey 

--p, 8x 

8HY _ 18Ex 
8t -p, 8y . 

If we introduce a new variable Ex by 

then we can derive 

which yields the PML equations in frequency domain: 

jWEEx == 

jWEwxEy == 
. H _ (8Ey _ 8Ex ) 

JW J-LW x z == 8x 8y 

(1.2.24) 

(1.2.25) 

(1.2.26) 

(1.2.27) 

Recalling the unified formulation (1.2.10), we find that if we let (Ex, E y , H z ) 

satisfy the unified formulation (1.2.10), then we obtain the following system: 

~ 

jWEEx == 

jWEwxEy == 

-jwJ-LwxHz == 

which is equivalent to (1.2.27). 

W 8Hz 
x 8y 

8Hz 
- 8x 

8Ey 8Ex 
8x - 8y , 

(1.2.28) 
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1.3 Inhomogeneous Initial Conditions 

The homogeneous initial conditions are used for the derivations of PML equa

tions in most existing works. In this section, we shall demonstrate that the PML 

equations with inhomogeneous initial conditions can be converted into PML sys

tems with homogenous initial conditions and some extra lower-order terms. All 

our subsequent considerations take place in the PML regions . Consider the TEz 

model with inhomogeneous initial conditions 

and taking 

c 8Ex _ 
c.... 8t -

8Ey _ 

Cat -

I/. 8Hz -
fA' 8t -

8//uz , Ex(x, y, 0) == Eox(x, y), 

- 8!/xz , Ey(x, y, 0) == Eoy(x, y), 

_(8Ey _ 8Ex) H ( 0) H ( ) 8x 8y' z X, y, == Oz X, Y , 

Ex(x, y, t) == Ex(x , y, t) + Eox(x, y), 

Ey(x, y, t) == Ey(x, y, t) + Eoy(x, y), 

Hz(x, y, t) == Hz(x , y, t) + Hoz(x, y), 

~ ~ ~ 

then (Ex, E y, Hz) satisfy the following equations: 

c 8Ex == 8Hz + 8Hoz 
8t 8y 8y' 

8Ey _ _ 8Hz _ 8Hoz 
cat - 8x 8x' 
1/.8Hz _ _(8EY _ 8Ex) _ (8EOY _ 8Eox) 
fA' 8t - 8x 8y 8x 8y' 

E x(x , y, 0) == 0, 

Ey(x, y, 0) == 0, 

Hz(x, y, 0) == O. 

(1.3.1) 

(1.3.2) 

Using (1.2.8), we see that the PML equations in the frequency domain are 

. E~ W 8Hz + 2rrr ~(W)W 8Hoz J W cWy x == x 8y 11 U x 8y 

-W 8Hz - 27r6(w)w 8Hoz y 8x y 8x (1.3.3) 

_ (8Ey _ 8Ex) _ 27r6(w) (8E
OY _ 8Eox). 

8x 8y 8x 8y 

By the inverse Fourier transform 
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we obtain the corresponding PML equations in the time domain 

with homogenous initial conditions. 

Similarly, for Formulation 2 with inhomogeneous conditions 

aDx _ aHz Dx(x, y, 0) == Dox(x, y), at- ay , 
aEx _ 1 aDx Ex(x , y, 0) == Eox(x, y), at- ~at ' 
aDy _ aHz Dy(x, y, 0) == Doy(x, y), at- - ax ' (1.3.5) aEy _ 1 aDy Ey(x, y, 0) == Eoy(x , y), at- ~at' 
aBz _ _(aEy _ aEx) Bz(x, y, 0) == Boz(x, y), at ax ay' 
aHz _ 1 aBz Hz(X, y, 0) == Hoz(x, y), at- j;at' 

we set 

Dx(x, y, t) == Dx(x, y, t) + Dox(x, y), 

Ex(x , y, t) == Ex(x, y, t) + Eox(x, y), 

Dy(x, y, t) == Dy(x, y, t) + Doy(x , y), 

Ey(x , y, t) == Ey(x , y, t) + Eoy(x , y) , 

Bz(x , y, t) == Bz(x , y, t) + Boz(x, y), 

Hz(x, y, t) == Hz(x , y, t) + Hoz(x , y), 

- -- -- -- -- --
then using (1.2.13) , we derive the PML equations for (Dx, Ex, Dy, Ey, Bz, Hz): 

(1.3 .6) 

with homogenous initial conditions. 



Chapter 2 

Numerical Analysis of PMLs 

Perfectly Matched layer (PML) was introduced by Berenger in 1994 for numer

ically solving Maxwell equations in infinite domains. This technique has been 

widely and successfully applied in solving different types of wave propagation 

problems [Ha]. Numerous PML formulations have been proposed, and several 

survey articles have appeared in the literature in which authors have mainly fo

cused on the derivations of PML equations, main advantages and shortcomings 

of various different types of PML equations and their applications in engineering 

problems. To our knowledge, there have been very few results that are concerned 

with the convergence, stability and error estimates of this powerful techniques. 

Most discussions on convergence of PMLs are based on Helmholtz type equations 

in the frequency domain, due to its simplicity and the availability of exact solu

tion representations outside of disk or one side of a straight line in 2D. These can 

be found in the work of Collino and Monk [CM], Chew and Weedon [CW], Chen 

and Wu [CWu] and Petropoulos [P]. It seems that there is still no discussion on 

stability, convergence and error estimates in the time domain for PML equations, 

which are in fact listed as open problems in the survey papers (c.f. [CM] & [HaJ) . 

It is the purpose of this chapter to present a complete discussion about the 

numerical analysis for the ID PML equations in the time domain. Though our 

25 
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techniques are only applicable for ID, they also provide some insights on 2D or 

3D problems. 

The plan of this chapter is as follows. In section 2.1 we introduce several PMLs 

for continuous wave equations, Maxwell equations, acoustic equations and I-D 

hyperbolic systems, and give the exponential decays estimates for each continuous 

PMLs. Section 2.2 deals with the various up-winding schemes corresponding to 

the continuous PMLs proposed in section 2.1, and presents the exponential decays 

estimates for each discrete schemes. Finally, in section 2.3 and section 2.4 we 

propose the modified Yee scheme and Lax-Wendroff scheme respectively, which 

both are second order in spatial and also have exponential decays. 

2.1 Continuous PMLs 

In this section we consider two types of perfectly matched layers for hyperbolic 

systems, which include Maxwell's equations, acoustic equations in I-D, and so 

on. Some similarities and differences are compared. This section is organized 

as follows: At the beginning, we introduce infinite and finite PMLs for wave 

equations, Maxwell equations and acoustic equations respectively. And then, we 

propose the PML equations for general ID hyperbolic systems. 

First, let us recall from [Ha] a general formulation of PMLs for the hyperbolic 

system: 

8u 8u ~ 8u 
iJt +A(Y)iJx + Lt Bj(Y)iJYj +C(y)u=o, 

J 

(2.1.1) 

where U ERn, A(y) E Rn xn, Bj(y) E Rn xn, and the physical domain is located 

at x < 0, the interface is at x ~ 0, and the absorbing region is x > O. Then the 

PML equation for x > 0 is given by 

8u 8u ~ 8u 
iJt + A(Y)(iJx + O"IW) + Lt Bj(y) iJYj + C(y)u + w = 0, 

J 

(2.1. 2) 
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t 

(u ,v ) ° (0,0) x 
o 0 

Figure 2.1: Infinite Perfectly Matched Layers. 

aU 
Rw + aw + aA(Y)(ax + a/-Lu) == 0, (2.1.3) 

where 
a a 

R = at + L!3j ay + et, 
j J 

and {3j, a are constants. This system in fact contains a artificial variable w. 

2.1.1 PMLs for Wave Equations 

We start with the following one dimensional system of wave equations: 

{

Ut == Vx, Vt == U X , x E R, t > 0, 

U ( x, 0) == Uo ( x ) , v ( x, 0) == Vo ( x ) , x ER, 
(2.1.4) 

where Uo and Vo are known functions, and Uo and Vo have support only for x < 0, 

i.e. we use x == 0 as the interface. Taking U == U + v, V == U - v , we obtain from 

(2.1.4) that 

{

Ut == Ux , 

Vi + Vx == 0, x E R, t > 0 

x E R, t > 0, 
(2.1.5) 

and U(x ,O) == Uo + Vo , V(x, 0) == Uo - vo. By observation of the system (2.1.5) , 

we see that the characteristic curves for U and V are , respectively, given by 

x + t == ~ and x - t == ~ , ~ E R. 
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Therefore U and V satisfy 

U(x, t) == uo(x + t) + vo(x + t), V(x, t) == uo(x - t) - vo(x - t) 

and we can calculate easily that 

1 
u ( x, t) == "2 ( Uo (x + t) + Vo (x + t) + Uo (x - t) - Vo (x - t)), 

1 
v ( x, t) == "2 ( Uo (x + t) + Vo (x + t) - Uo (x - t) + Vo (x - t)). 

Since it is obviously seen that U vanishes in the positive real axis, which in 

turn implies by the characteristic method that U vanishes identically in the first 

quadrant of the (x, t)-plane, i.e., U(x, t) == ° for x > 0, t > 0. For V, noticing 

that there exist some constant Co only dependent on Uo and Vo such that V < Co 

on the whole real axis, we can analogously deduce as above that V < Co in the 

upper plane of R2. 

Let W == (u, v)T, then (2.l.4) can be written as 

where A == . ( ° -1) By (2.l.2)-(2.1.3), we see that Hagstrom's PML for 

-1 ° 
x > ° is given by 

where 

Ut + au == Vx + av, 

Vt + av == Ux + au, 

x >0, 

x >0, 

u(x,O) == v(x, 0) == 0, x > 0, 

t > 0, 

t > 0, 

{ 

a(x), 
a(x) == 

0, 

x > 0, a' ( x) > 0, 

x <0. 

Note that for x < 0, (2.l.6) is reduced to (2.1.4) with a(x) == 0, x < 0. 

(2.l.6) 

We shall demonstrate below that for any a(x) with a(O) == 0, and a'(x) > 0, 

the solution of (2.1.4) and (2.l.6) are identical for x < 0, and the solution of 

(2.1.6) decay to zero exponentially as x -+ +00. 
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For simplicity, let (uO", vO") denote the solution of (2.1.6), with (UO, VO) being 

the solution of the original wave equation (2.1.4). 

Lemma 2.1.1 Assume that a(x) E C 1(R) with a(O) == 0 and a'(x) > 0, then the 

system (2.1.6) has a unique solution (uO", vO"), and 

U 0" == U 
0 

, v 0" == V 
0 f or x < 0, t > 0 (2.1.7) 

and there exists some constant Co > 0 independent of a, x and t, such that 

{ 

UO" == UO" t x , 

~0"+2aVO"+V:==0, xER, t>O 

x E R, t > 0, 
(2.l.9) 

and UO"(x,O) == Uo + Vo, VO"(x, 0) == Uo - vo. In order to eliminate a from the 

second equation above, we set 

(2.l.10) 

then it follows from (2.1.9) that 

{ 

UO" == UO" MO" + MO" == 0 t x , t x , 

UO" (x, 0) == Uo + Vo, MO" (x, 0) == Uo - Vo, x E R. 

x E R, t > 0, 
(2.l.11) 

Therefore UO" and MO" satisfy 

UO" ( x, t) == Uo (x + t) + Vo (x + t), MO" ( x, t) == Uo (x - t) - vo (x - t) 

and 

We can calculate easily that 
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which implies the existence of (u lT , vlT) . 

Clearly the above transformation (2.1.10) is also valid for a == 0, i.e. MO == 

u - v , UO == u + v, and 

{ 

UtO == U~ , M? + M~ == 0, x E R, 

UO(x,O) == Uo + Vo, MO(x,O) == Uo - Vo· x E R. 

t > 0 

By the uniqueness of the hyperbolic system, we see clearly that 

UlT == UO, MlT == MO , x E R, t > 0, 

which in turn implies 

Therefore we have derived ulT == uO, v lT == vO, for x < 0, t > O. 

(2.1.12) 

(2.1.13) 

Next, by observation of the system (2.1.12) , we see that the characteristic 

curves for UO and MO are, respectively, given by 

x + t == ~ and x - t == ~, ~ E R. 

Since it is obviously seen that UO vanishes in the positive real axis, which in 

turn implies by the characteristic method that UO vanishes identically in the first 

quadrant of the (x, t)-plane, i.e., UlT( x , t) == 0 for x > 0, t > O. For MO, noticing 

that there exist some constant Co only dependent on Uo and Vo such that MO < Co 

on the whole real axis, we can analogously deduce as above that MO < Co in 

the upper plane of R2. Now, by (2.1.13), we have that UlT == 0, MlT < Co for 

x > 0, t > O. By the definition of MlT (2.1.10), further we obtain 

together with UlT == ulT + vlT , VlT == ulT - vlT , we obtain the decay result (2.1.8). 
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Figure 2.2: Finite Perfectly Matched Layers. 

2.1.2 Finite PMLs for Wave Equations 

The discussion in Sect. 2.1.1 demonstrate that the infinite PML equations produce 

non-reflection matched layers, but it is not suitable for computational purpose. 

We shall now consider the finite PML. In what follows, we consider the interval 

(-(X), d) instead of interval (-d, d) for convenience. 

The finite Hagstrom's PML equations for (2.1.4) are given by 

UO",d(X,O) == uo(x ), 

vO",d(x ,O) == vo(x ), 

uO",d(d, t) + vO",d(d, t) == 0, 

x E (-00, d), 

x E (-00, d), 

x E (-00 , d), 

x E (-00, d) , 

t > o. 

t > 0, 

t > 0, 

(2.l.14) 

Lemma 2.1.2 Assume that o-(x ) E C 1(R) with 0-(0 ) == 0 and o-'(x ) > 0, then the 

system {2.1.14} has a unique solution (uO",d, vO",d) and there exists some constant 

Co > 0 such that 
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we get 

UeJ,d == UeJ,d ( d) t x , x E -00, , 

T .reJ,d + 2l'TVeJ,d + VeJ,d == ° E ( d) Vt v x ,x -00, , 

UeJ,d(X,O) == Uo + VO, 

VeJ,d(X,O) == Uo - VO, 

UeJ,d(d, t) == 0, 

x E (-00, d), 

x E (-00, d), 

t > 0. 

We introduce notation 

where UeJ and VeJ satisfy (2.1.9), then we have 

8Eu - 8Eu X E ( 00 d) 
8t 8x ' - , , 

8fft + 2a£v + Bf; == 0, x E (-00, d), 

£u(x, O) == £v(x, 0) == 0, x E (-00, d) 

£u(d, t) == UeJ(d, t), t > O. 

By the Maximum Principle, we have 

together with Lemma 2.1.1 which shows that 

implies 

From Lemma 2.1.1, we also obtain 

t > 0, 

t > 0, 

t > 0, 

t > 0, 
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together with uu,d == UU - Cu and VG",d == VG" - Cv, we have 

which imply immediately 

From the proof of Lemma 2.1.2, we note that 

Le. 

l[uG"(x, t) +vG"(x, t)] - [uG",d(x, t) +vG",d(x, t)]1 == lUG" - UG",dl == Icul < Coe-2JodG"(~)d~, 

l[uG"(x, t) - vG"(x, t)] - [uu,d(x, t) - vG",d(x, t)]1 == IVG" - VG",dl == Icvl == 0, 

therefore we have the following corollary: 

Corollary 2.1.1 Assume that a(x) E Ll(R) with a(O) == ° and a'(x) > 0, then 

for Hagstrom's PML, we have 

luG"(x, t) - uG",d(x, t)1 < Coe-2JodG"(~)d~, x E (-00, d), t > 0, 

IvG" (x, t) - vG",d(x, t) I < Coe-2 J; u(~)d~, x E (-00, d), t > 0. 
(2.1.15) 

Remark 2.1.1 (2.1.15) implies that at the interface x == 0, the difference be

tween the infinite PML fields uG"(O, t), vG"(O, t) and finite PML fields uG",d(O, t) and 

VG",d(O, t) are very small, exponentially small in terms of the width d > ° of the 

finite PML and the PML parameter a(x). 

2.1.3 Berenger's PMLs for Maxwell Equations 

In this subsection, we consider another kind of PMLs equation different from 

Hagstrom's PML in subsection 2.1.1: the Berenger's PML equations. Applying 

the theory developed in [B1] to the Maxwell system: 

oE oH oH oE 
ot - ox 'ot ox' x E R, t > 0, (2.1.16) 
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we derive the PML equation: 

{ 

8E+aE==_8H 
8t 8x ' 
8H+ a H==_8E 
8t 8x' 

x E R, 

x E R, 

t>O 

t > O. 
(2.1.17) 

The physical domain is x < 0, and the PML domain is x > 0, x == 0 is the 

interface, the initial data E(x, 0) and H(x,O) are assumed to have the support 

for x < 0, i.e. 

Eo(x) == Ho(x) == 0, x > o. 

For simplicity, let (ECT, HCT) denote the solution of (2.1.17), with (EO, HO) 

being the solution of the original system (2.1.16). Then we have 

Lemma 2.1.3 Assume that a(x) E C 1 (R) with a(O) == 0 and a'(x) > 0, then 

there exists a unique solution (ECT, HCT) to {2.1.17}, and 

(2.1.18) 

and for some constant, the following holds 

Proof. Taking UCT == ECT + HCT and VCT == ECT - HCT, we obtain from (2.1.17) that 

(2.1.20) 

and UCT(X, 0) == Eo(x) + HO(X),VCT(X, 0) == Eo(x) - Ho(x). In order to eliminate a 

from the above equations, we set 

(2.1.21) 

then MCT and NCT satisfy 

{ 

MCT + MCT == 0 NCT == NCT t x , t x 

MCT(X, O) == Eo + Ho, NCT(X, 0) == Eo - Ho, x E R. 

x E R, t > 0, 
(2.1.22) 
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This yields 

MU(x, t) == Eo(x - t) + Ho (x - t), NU(x, t) == Eo (x + t) - Ho (x + t) 

and 

UU(x, t) == e-2JoXu(~)d~(Eo(x - t) + Ho (x - t)), 

VU(x, t) == e2Jox u(~)d~(Eo(x + t) - Ho(x + t)). 

From these relations, we can calculate easily that 

E" = ~ [e-2 g ,,(~)d~ (Eo(x - t) + Ho(x - t)) + e2 g ,,(~)d~ (Eo(x + t) - Ho (x + t))] , 

H" = ~ [e-2 fox "(Od~ (Eo(x - t) + Ho (x - t)) - e2 g ,,(~)d~ (Eo(x + t) - Ho(x + t))] , 
which implies the existence of (EU,HU). 

From (2.1.22), we have MU == MO, NU == NO, or EU(O, t) == EO(O, t), HU(O, t) == 

HO(O, t) for all t > 0, therefore EU == EO, x < 0, t > 0. Because VU(x, 0) == 0, 

x > 0, by the same arguments as the final part of the proof in Lemma 2.1.1, we 

have deduce VU == ° for x > 0, t > ° and IMul < Co, and further we obtain 

together with Vu == ° for x > 0, t > 0, implies (2.1.19). 

Remark 2.1.2 The PML equations {2.1.6} and {2.1.17} are perfect without any 

reflection, but with different exponential decay, i. e. the fields given by {2.1.6} 

decay twice faster than the fields given by the Berenger 's PML {2.1.17}. 

2.1.4 Finite Berenger's PMLs for Maxwell Equations 

Similar to the subsection 2.1.2, here we shall consider the Berenger 's PMLs for 

Maxwell Equations with finite width d > ° corresponding to the Berenger 's PML 
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equations last subsection. Let Ea,d and Ha,d be the solution of the following 

system: 

Ea,d(X 0) == E Ha,d(x 0) == H , 0, , 0, 

Ea,d(d, t) - Ha,d(d , t) == 0, 

Then we have 

x E (-oo,d), 

x E (-oo,d), 

x E (-00, d), 

t > O. 

t > 0, 

t > 0, 
(2.1.23) 

Lemma 2.1.4 Assume thata(x) E C1(R) witha(O) == 0 anda'(x) > 0, then the 

system (2.1.23) has a unique solution (Ea,d, Ha,d) and there exists some constant 

Co > 0 such that 

Proof. Taking Ua,d(x, t) == Ea,d(x, t) + Ha,d(x, t), Va,d(x, t) == Ea,d(x, t) -

Ha,d(x, t), we get 

Ua,d + aUa,d + Ua,d == 0 
t x' x E (-oo,d), t > 0, 

y:a,d + aVa,d - Va,d == 0 
t x' x E (-oo,d), t > 0, 

Ua,d(x,O) == Uo + vo, x E (-00, d), 

Va,d(x , O) == Uo - Vo, x E (-00, d), 

Va,d(d, t) == 0, t > O. 

We introduce notation 

where Ua and V a satisfy (2.1.20), then we get 

8fftU + 2a£u + 8:xu == 0, x E (-00, d), t > 0, 

8fftV + 2a£v - Bf; == 0, x E (-00, d), t > 0, 

£u(x, O) == £v(x, 0) == 0, x E (-00, d), 

£v(d , t) == va(d, t), t > 0. 
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By the Maximum Principle, we have 

IEu(x, t) 1 < max{ IEu(x, 0) I} == 0, 
x 

IEv(x, t)1 < max{IEv(x, 0)1, IEv(d, t)l} < max{IVO"(d, t)I}, 
x, t t 

together with Lemma 2.1.3 which indicates that 

IEO"(d, t)1 < Coe- fodO"(Od~, IHO"(d, t)1 < Coe- fOdO"(Od~, 

1 UO" (d, t) 1 < Coe- fo
d 
O"(Od~, IVO" (d, t) 1 < Coe- f; O"(~)d~, 

implies 

From Lemma 2.1.3, we also obtain 

together withUO",d == UO" - Eu and VO",d == VO" - Ev, we have 

Now, it is easy to see 

From the proof of Lemma 2.1.4, we note that 

I.e. 

which lead the following corollary: 

I UO" - UO",d I 

IEul == 0, 

I VO" - VO",d I 

IEv I < Coe- f; O"(~)d~, 
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Corollary 2.1.2 Assume that a(x) E L1(R) with a(O) == 0 and a'(x) > 0, then 

for the Berenger's PML, we have 

IEO"(x,t) - EO",d(x , t)1 < Coe-JodO"(~)d~, x E (-oo, d), t> 0, 

IHO"(x, t) - HO",d(X, t)1 < Coe- JodO"(~)d~, x E (-00, d), t > 0. 

2.1.5 PMLs for Acoustic Equations 

(2.1.24) 

In this subsection, we shall introduce the PML equations for the acoustic equa

tions. Now consider the following 1-D acoustic equations: 

{

Ut + Uoux == -.lPx, 
Po 

Pt + UoPx == -Poc5ux, 

x E R, t > 0, 
(2.1.25) 

x E R, t > 0, 

where Po is density, Co is speed of light and Uo is the mean speed in x-direction. 

One can rewrite (2.1.25) as 

( 
U ) (uo .l) (u) + Po == 0, 
P t Poc5 Uo P x 

x E R, t > O. (2.1.26) 

Using (2.1.2), its Hagstrom's PML is given by [Ha] 

where x == ° is the interface between the computational domain and the PML. 

Lemma 2.1.5 Assume that a(x) E C1(R) with a(O) == 0 and a'(x ) > 0, then 

Hagstrom's PML {2.1.27} and the original system {2.1.26} generate the same 

solution for all x < 0, t > 0, and there exists some constant Co > 0 such that 

(2.1.28) 

Proof. Let 

A== 
( 

Uo .l) R == 1 
2:~ ' VI + P5c5 Poco uo ( 1 1) - 1 ( U ) , U==R . 

-Poco Poco P 
(2.1.29) 
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We see from (2.1.27) that 

Ut + aU + A(Ux + aU) == 0, 

where A == diag(Uo - co, Uo + co) formed by the two eigenvalues of A, and R is the 

matrix consisting of eigenvectors associated with eigenvalues Uo + Co and Uo - co, 

or componentwise, 

Ul + a(l + Uo - co)U1 + (Uo - co)U; == 0, 

U? + a(l + Uo + co)U2 + (Uo + co)U; == 0, 

( ~:~:: ~~ ) = R-
1 

( :: ) . 

(2.1.30) 

Since U1 (x, 0) == 0 for x > 0, it follows U1 (x, t) == 0 for x > 0, t > 0 due to 

Uo - Co < O. For U2 (x, t), by completely the same arguments as the final part of 

the proof in Lemma 2.1.1, it is clearly that 

IU2 (x,t)1 < Coe-et~~~~O)f;CT(~)d~, x >0, t> O. 

thus, by ( : ) = R ( ~: ), we find that 

lu(x, t) I + Ip(x, t) I < Coe -et~~~~O) fox CT(Od~, V X >0, t > O. 

Remark 2.1.3 Clearly we have Uo < Co) since Co is speed of light. 

2.1.6 Berenger's PMLs for Acoustic Equations 

In this subsection, we give two kind of Berenger's PML for equation (2.1.26), 

which are equivalent under the coordinate transformation. The first type Berenger's 

PML for equation (2.1.26) is given by 

( : ) t + ~ ( : ) + (P~:6 ;0) (: ) x = 0, x E R, t > 0, (2.1.31) 

where x == 0 is interface. We shall derive the following exponential decay results : 
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Lemma 2.1.6 Assume that a(x) E C1(R) with a(O) == 0 and a'(x) > 0, then 

the Berenger's PML {2.1.31} and the original system {2.1.26} generate the same 

solution for all x < 0, t > 0, and there exists some constant Co > 0 such that 

(2.1.32) 

Proof. Let A, U and R be the same as in (2.1.29). Then we can write (2.1.31) 

as 

Ut + aU + AUx == 0, 

where A == diag(Uo - co, Uo + co) formed by the two eigenvalues of A, and R is the 

matrix consisting of eigenvectors associated with eigenvalues Uo + Co and Uo - co, 

or componentwise, 

Ul + aU1 + (Uo - co)U~ == 0, 

Ul + aU2 + (Uo + co)U; == 0, 

( ~:~:: ~~ ) = R-
1 

( :: ) . 

(2.1.33) 

Since U1 (x, 0) == 0 for x > 0, it follows that U1 (x, t) == 0 for x > 0, t > 0 due to 

Uo - Co < O. For U2 (x, t), by the same arguments as the final part of the proof 

in Lemma 2.1.1, it is clearly that 

thus, by ( : ) = R ( ~: ) , we conclude that 

lu(x, t) 1+ Ip(x, t) I < Coe -( uo~co) fox (J(~)d~, V X >0, t > O. 

Remark 2.1.4 The decay rates of scheme {2.1.27} is e- f; (J(~)d~ time faster than 

the decay rate of the scheme {2.1.31}. 
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Using coordinate transform, one may derive another form of the Berenger 

PML for equations (2.1.26), which is given by [TY] 

{

Ut - ~Pt + (1 - M2) ~ coau == _ I-M2
p 

PoCo PO x, 

Pt - POCOMut + (1 - M2)~coap == -Poc6(1 - M2)ux, 
(2.1.34) 

where M == Uo < 1. For this system, we have Co 

Lemma 2.1.7 Assume that a(x) E C 1 (R) with a(O) == 0 and a'(x) > 0, then 

the B erenger' s PM L (2.1.34) and the original system (2.1.26) generate the same 

solution for all x < 0, t > 0, and there exists some constant Co > 0 such that 

(2.1.35) 

Proof. Let W == (u,p)T, then one may rewrite (2.1.34) as 

( 
1 -p~o) Wt+(1-M2)~coaW+ ( 0 1~0~2) Wx==O 

-PocoM 1 Poc6(1 - M2) 

or simply it is written as 

(2.1.36) 

where 

( M) D == ( POC6(1
0
_ M2) I-PO Mo 2 ) S = -po~oM - ~oco , 

The eigenvalues of S are given by 1 + M and 1 - M, and eigenvalues of D by 

co(l - M2) and CO(M2 - 1). And Sand D can be diagonalized simultaneously by 

R given by (2.1.29), i.e. by letting R- I W == Z, we find 

{

(I + M)Zl + (1 - M2)~coaZl - co(l - M2)Z~ == 0, 

(1 - M)Z; + (1 - M2)~coaZ2 + co(l - M2)Z; == 0. 

By completely the same arguments as the final part of the proof in Lemma 2.1.1 , 

since ZI(X,O) == 0, X >0, then Zl(X,t) == 0, for x >0, t > ° and 

IZ2(X, t)1 < Coe - (1_~2)1/2 J; (T(~)d~, x >0, t > O. 
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Thus, by ( : ) = R ( ~: ), we find that 

2.1.7 PMLs for 1-D Hyperbolic Systems 

In the last subsection of the part, we propose the PML equations for the general 

ID hyperbolic systems: 

{

Ut + Aux == 0, 

u(x,O) == uo(x), x E R, 

x E R, t > 0, 
(2.1.37) 

where uo(x) == 0 for x > 0, and A is a hyperbolic matrix, l.e. there exist 

constants AI, ... ,Ak, At+l' ... ,At such that 

(2.1.38) 

where Ai < 0 and Ai > O. 

We recall that the Hagstrom's PML equations corresponding to (2.1.37) are 

as follows: 

{

Ut + au + A(ux + au) == 0, x E R, 

u(x,O) == uo(x), x E R, 

t > 0, 

where a(x) == 0, x <0, a'(x) > O. Let w == R-1u, we find that 

or 

{ 
Wt + (JW + ~:Wx + (Jw) = 0, x E R, 

u(x,O) == R uo(x), x E R, 

t > 0, 

{ 
wi + a(1 + Ai)w l + Aiw; == 0, l == 1, ... ,k, 

wi + a(l + Ai)w l + Aiw; == 0, l == k + 1, ... ,S 

(2.1.39) 

(2.1.40) 
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and wl(x, 0) == 0 for x > O. Because At: < 0 and Ai > 0, by completely the 

same arguments as the final part of the proof in Lemma 2.1.1, we have that 

w l 
( x , t) == 0, x > 0, t > 0, l == 1, . . . ,k and 

+ l+A[ rx 

I 
l ( ) I C (- A + ) Jo (J(~)d~ 

W x, t < oe [ , x > 0, t > 0, l == k + 1, ... ,s. 

Lemma 2.1.8 Assume that a(x) E C1(R) with a(O) == 0 and a'(x) > o. Let U O 

be the solution of (2.1.37) and u be the solution of (2.1.39), then we have 

( i) u ( x, t) == u 0 
( x, t), x < 0, t > O. 

(ii) lu(x,t)1 < Coe-JLf;(J(Od~, x >0, t> 0, where J-L == min {l:~t}. 
l~k+l I 

Now we consider the Berenger's PML for equation (2.1.37): 

{

Ut + au + Aux == 0, x E R, 

u(x,O) == uo(x), x E R, 

t > 0, 
(2.1.41 ) 

where a(x) == 0, x < 0, a'(x) > o. Letting w == R-1u, it is easy to check that 

{ 

Wt + aw + Awx == 0, x E R, 

u(x,O) == R-1uo(x), x E R, 

or it can be written componentwise as follows: 

t > 0, 

{ 

w~+awl+Aiw~==O, l==l,··· ,k, 

w~ + awl + Atw~ == 0, l == k + 1, ... ,s. 

(2.1.42) 

clearly, w l (x , 0) == 0 for x > O. Because Ai < 0 and At > 0, by completely the 

same arguments as the final part of the proof in Lemma 2.1.1, we derive that 

w l (x, t) == 0, x > 0, t > 0, l == 1, ... , k and 

I 
l ( ) I C (- A ~) foX (J(~)d~ 

W x, t < oe I , x > 0, t > 0, l == k + 1, ... ,s. 

This with u == Rw leads to the following lemma: 
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Lemma 2.1.9 Assume that a(x) E C 1(R) with a(O) == 0 and a'(x) > O. Let U O 

be the solution of (2.1.37) and u be the solution of (2.1.41), then we have 

( i) u (x, t) == u 0 (x, t), V x < 0, t > O. 

(ii) lu(x, t) I < Coe- Il fox l7(~)d~, V X > 0, t > 0, where Jl == min {~}. 
l~k+l l 

Remark 2.1.5 The decay rates of scheme (2.1.39) is e- fc~ l7(~)d~ time faster than 

the decay rate of scheme (2.1.41). 

2.2 Discrete PMLs 

In this section, we shall propose some modified first order up-winding schemes for 

the spatial discretization of those various continuous PML equations established 

in section 2.1. Convergence and stability analysis are made to those schemes, 

which together with the exponentially decay results obtained in this section, man

ifest the favorable aspects of these schemes theoretically. 

This section is organized as follows: we deduce the infinite and finite discrete 

PMLs for the wave equation in the first two subsections and subsection 2.2.3 and 

2.2.4 give the infinite and finite discrete Berenger's PMLs for the wave equation 

respectively. At the end of this section, we shall give the discrete PMLs for general 

ID hyperbolic systems. 

2.2.1 Discrete PMLs for Wave Equations 

In this subsection, we shall derive two infinite discrete PML equations correspond

ing to the continuous PML equations. The first one is the so called up-winding 

scheme, and the second one is non-reflective in perfectly matched layers, which 

is an improvement of the first one. Recall the wave equation (2.1.4): 

{

Ut == V x , Vt == ux , x E R, t > 0, 

u(x,O) == uo(x), v(x,O) == vo(x), x E R 
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and its Hagstrom's PML equation (2.1.6): 

Ut + au == Vx + av, 

Vt + av == Ux + au, 

x E R, 

x E R, 

t > 0, 

t > 0, 

u(x,O) == Uo, v(x,O) == vo, x E R. 

Let U == u(J + v(J V == u(J - v(J we obtain , , 

x E R, t > 0, 

t > O. 
(2.2.1) 

We first study the up-winding scheme for discretizing the system. To do so, we 

consider finite time 0 < t < T and divide the time interval [0, T] into equally

distributed subintervals: 

o == to < tl < ... < t M == T, 

with tn == nT and T == ~ being the time step size. For the space interval, we also 

partition in uniformly as follows: 

-00 < ... < X_j < ... < Xo < ... < Xj < ... 00, 

wi th x j == j hand h being the space mesh size. Let (Uj, Vjn) be finite difference 

solution of (2.2.1), that is 

Un+1 un un un 
j - j - j+1 - j == 0 

f::lt f::lx ' 
vn+1 _v.n v.n_vn 

2 J + 2a . V!l + J 2 -1 == 0 
f::lt J J f::lx ' 

(2.2.2) 

-00 < j < 00, 0 < n < M, 

where uj,n and vj,n are defined by 

{ 

Un _ (J,n + (J,n . - u · v· 
J J J' 

V n _ (J,n (J,n 
j - u j - Vj . 

We need to study the stability of (2.2.2) and the decay properties for j > O. 

Clearly, if r == ~! < 1 (CFL-condition), then 



Some Recent Advances in Numerical Solutions of Electromagnetic Problems 46 

A simple calculation show that {Vjn} satisfy 

therefore, we get 

v:n+1 == [1- r(2a'~x + l)]V,n + rV:n J J J J-1 

for some aj ~ a(xj). Now if we set (2aj~x + l)r < 1, then 

{I - r(2aj~x + 1) + r} ~ax IVjnl 
JEZ 

thus the scheme (2.2.2) is stable. 

Lemma 2.2.1 Assume that a(x) E C 1(R) with a(O) == 0 and a'(x) > O. Let 

(Uj, Vjn) be the solution of {2.2.2} and aj be given by 

2~x 
(2.2.3) 

When the mesh size satisfies r == ~~ < 1) then we have 

~ax IUjl < ~ax IUJI , 1 < n < M. 
JEZ JEZ 

Takeing m"!- == V!le2 J;j (}'(~)d~ then we obtain 
J J ) 

~ax Imjl < ~ax ImJI, 
JEZ JEZ 

which implies that 

v j > O. 

Proof. In order to show that ~n decays exponentially for j > 0, we multiply the 

second equation of (2.2.2) by e2 J;j (}' ( ~ ) d~ , and set 

(2.2.4) 
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Then {mj} satisfy 

which implies 

Noting 

m"!'+l 
J 

together with (2.2.5), we can deduce 

and therefore 

2~x 

Then from (2.2.3) and (2.2.6), we obtain 

(2.2.5) 

for all j E Z, 

(2.2.6) 

\I j > O. 

By Lemma 2.2.1, we see that the finite difference solution obtained by (2.2.2) 

decays exponentially as j -+ +00. But v~n+l, U~+l for n > 0, will not agree with 

the original finite difference solution obtained without PML. In order to have 

a perfectly matched finite difference solution, i.e., non-reflective finite difference 

solution at J' == 0 we first set m == Ve2 fox O"(~)d~ then , , 

mt + mx == 0, \Ix E R, t > O. 

Clearly, the up-winding scheme for this system is given by 

m,,!,+l - m"!- m"!- - m"!- 1 
J J + J J- == 0 
~t ~X ' 

j E Z. (2.2.7) 
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Define Vjn == mje-2 foXj (}"(~)d~, and substituting into (2.2.7) , we obtain the finite 

difference equation for Vjn: 

V:n+ 1 - v·n v.n - V!1 
J J + 2a . _ V:n + J J - 1 == 0 

6.t J 1 J-1 6.x 

where 

Lemma 2 .2.2 Assume that a (x) E C 1(R) with a(O) 

(Uj, Vjn) be the finite difference solution of 

un+1 un un un 
j - j - j+1 - j == 0 

6.t 6.x ' 

j E Z, (2.2.8) 

(2.2.9) 

o and a'(x) > O. Let 

v .n+1 _ vn v .n_ v.n 1 

J 6.t J + 2aj - 1 Vjn + J 6.xJ
- == 0, (2.2.10) 

- 00 < j < 00, 0 < n < M, 

and aj - 1 be given in (2.2.9) . When the mesh size satisfies r == ~! < 1) then we 

have 

ll!ax I Uj I < ll!ax I UjO I , 
JEZ JEZ 

1 < n < M. - -

Taking mY!- == V!1e2 foXj (}"(~)d~ then we obtain 
J J ) 

which implies that 

j > O. 

Thus the scheme (2. 2.10) is stable and its solution decays exponentially. More

over) the scheme (2. 2.1 0) is non-reflective. 

Proof. The first part of the lemma is obvious by the construction of the scheme. 

Next, we want to show the scheme (2.2.10) is also non-reflective. Consider (2.1.4) 

and let UO == UO + vO and VO == UO - vO, then we obtain 

x E R, 

x E R, 

t > 0, 

t > O. 
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The corresponding u p-winding scheme is 

u? ,n+1_ U?,n uO ,n _uO,n 
J J j+1 j == 0 

6.t 6.x ' 
v .O,n+1_ v? ,n v .O,n _ v .O,n 

J J + J J-1 == 0 
6.t 6.x ' 

-00 < j < 00, 0 < n < M, 

thus U; and UJ ,n satisfy the same difference equation and Uo == ug,n. By the 

construction, since 10n satisfies (2.2.8) and 10ne2 J;j (J(~)d~ == mj, then mj satisfies 

(2.2.7). Therefore mj and 10o,n satisfy the same difference equation and Van == 

mo == Voo ,n. So, we have derived that u~,n == u~,n and v~,n == vg,n, which means 

the scheme (2.2.10) is non-reflective. 

Thanks to the Taylor series expansions, we can derive the convergence of 

scheme (2.2.10). 

Lemma 2.2.3 Assume that a(x) E C1(R) with a(O) == 0 and a'(x) > O. Let 

(U, V) be the exact solution of {2.2.1}, and (U;, Vjn) be the finite difference solu

tion of {2.2.10} and aj-l be given by {2.2.9}. If 

and the mesh size satisfies r == ~; < I, then for any n > 0, we have 

Proof. For the first equation of (2.2.1) at x == Xj, t == tn , we have 

o 

due to the Taylor expansion, where tn < 'T}n < tn+l' Xj < ~j < Xj+ l . 

(2 .2.11) 

(2.2.12) 

(2 .2.13) 
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Letting ej == Uj - U(Xj, tn), subtracting (2.2.13) from (2.2.10), we obtain 

e~+l - eT!-
J J 

~t 

which gives 

Since the mesh size satisfies r == ~! < 1, we deduce 

together with Ileoll oo == O(~x + ~t), we derive 

Consider the second equation of (2.2.1) at x == Xj and t == tn, we have 

Thanks to the Taylor series expansions, the above equation can be written as 

o 

+ (2.2.14) 

where tn < 'rJn < tn+1' Xj < (j < Xj+1. Letting ej == V(Xj, tn) - ~n, subtracting 

(2.2.10) from (2.2.14), we obtain 

e~+l - eT!- eT!- - eT!- 1 t1t t1x 
J t1t J + 2aj-1ej_1 + J t1xJ

- == 2 vtt(Xj, 'rJn) + 2 Vxx(~j, tn) 

[ 

_ ) 2 a' ( x j ) ] 2 + 2 Vx ( (j, tn) a j -1 - (a ( x j + 2 ) V ( x j -1, tn) t1x + 0 ( ( t1x) ), 

and noting that V(x, t), Vx(x, t), Vxx(x, t), vtt(x, t), a(x) and a'(x) are bounded, 

we deduce 

ej+1 == (1 - r)ej + (r - 2aj-16.t)ej_1 + t1t O(t1x + t1t). 
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When r < 1 and ~x is small enough, we have 

together with IleDlloo == O(~x + ~t), we derive 

m<;1x Iy~t - V(Xj, tn) I == Ilenll oo < O(~X + ~t). 
J . 

Therefore we obtain the following convergence estimate: 

m<;1x luj'n - u(Xj, tn) I < O(~X + ~t), 
J 

m<;1x Ivj,n - v(Xj, tn) I < O(~X + ~t). 
J 

2.2.2 Finite Discrete PMLs for Wave Equations 

The discussions in last subsection demonstrate that the second infinite discrete 

PML equations produce non-reflective matched layers, but it is not suitable for 

computational purpose. we shall now consider finite discrete PML. The up

winding scheme for infinite Hagstrom's PML (2.1.9): 

x E R, t > 0, 

x E R, t > 0 

is given by 

(2.2.15) 

- 00 < j < 00, 0 < n < M, 

where 

{ 

U(J,n _ (J ,n + (J,n 
. - u· v · 

J J J' 

V (J,n _ (J,n (J ,n 
. - u · - v · 

J J J' 

and aj-l be given in (2.2.9). The up-winding scheme for finite Hagstrom's PML: 

x E (-00, d), 

x E (-00, d), 

t > 0, 

t>O 
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is given by 

U~ , d , n+l_U~,d,n Ua,d ,n _Ua,d ,n 
J J j+l j == 0 

b..t b..x ' 
Va ,d,n+l_ Va ,d,n Va ,d,n _ Va ,d,n 

j b..t j + 2aj-l Vj~~,n + j b..x j- l == 0, (2.2.16) 

- 00 < j < N, 0 < n < M, 

where 

{ 

Ua,d,n _ a,d,n + a,d,n . - u · v · 
J J J' 

V a,d,n _ a,d,n a,d,n 
. - U · -v · 

J J J' 

and U;;d ,n == 0 for 0 < n < M. 

Lemma 2.2.4 Assume that a(x) E C1(R) with a(O) == 0 and a'(x) > O. Let 

Uj,d,n and Vja,d,n be the difference solution (2.2.16), then we have 

n > 0, N > j > O. 

Proof. Taking E~ ,n == Uc:,n - Uc:,d,n E~,n == V.a,n - V.a,d,n then we obtain 
J J J' J J J' 

By the Maximum Principle, we have 

IEj,nl 

IEj,nl 

< max {IEU ,ol IEu,nl} < ma {IUa,nl} 
-00< '<N O<n<M j ' N - O<n<~ N _J_ , _ _ _ _ 

< ma.x {IEj,ol} == 0, 
-oo~J~N 

together with Lemma 2.2.2 that 

implies 

(2.2.17) 
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By Lemma 2.2.2 , we also get 

together with U~,d,n == U~,n - [~ ,n and V.O",d,n == V .O",n - [~,n we can deduce 
J J J J J J 

From the proof of Lemma 2.2.4 w note that 

M >n> 0, (2.2.18) 

and 

th n w have the following corollary: 

Corollary 2.2.1 Assume that a(x) E C 1 (R) with a(O) == 0 and a' (x) > O. For 

Hag tram s PML) we have 

lu?n _ uj,d n I 

I j d,n _ j d nl 
< Co -2 foX O"(Od( 

< Co -2 foX O"(Od( 
(2.2.19) 

N > j > O. 

2.2.3 Discrete Berenger's PMLs for Wave Equations 

In hi and n x u b Ion \\ propo h infini and fini di er tc B r ng r 

Pt\IL for \\ \' \\ hi h hav he am xpon ntial bili y and 

on\' rg n Hag rom Pi\IL. 

0\\ \" on id r th f 110\\ ing B r ng r P:\IL for h qu Ion (2.1.4): 

xE R t>O 

r + a 0" == u~ x E R. t > 
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{

Ut + aU - Ux == 0, x E R, 

"\It + aV + Vx == 0, x E R, 

t > 0, 

t > o. 
(2.2.20) 

In order to have perfectly matched finite difference solution, i.e. non-reflective fi

nite difference solution at J. == ° we first set M == U e- f; (J(~)d~ and N == V ef; (J(~)d~ , , 

then 

{ 

Mt - Mx == 0, 

Nt + Nx == 0, 

and its up-winding scheme is given by 

x E R, 

x ER, 

t > 0, 

t > 0, 
(2.2.21 ) 

(2.2.22) 

Then define UJr:t and v·n by Ur:t == Mr:tef;j (J(Od~ and v .n Nr:te- foXj (J(~)d~ and 
J J J J J ' 

substituting into (2.2.22), we obtain the finite difference equations for Uj and 

V !L· J . 

where 

(2.2.23) 

(2.2.24) 

Lemma 2.2.5 Assume that a(x) E C1(R) with a(O) == ° and a'(x) > 0. Let 

(Uj, Vjn) be the finite difference solution of {2. 2. 23) and aj-l be given in {2. 2. 24). 

Taking Nr:t == v ·ne2 foXj (J(~)d~ then we have 
J J ) 

which implies that 

j > 0. 

So the scheme (2.2.23) is stable and its solutions decay exponentially. Moreover) 

the scheme (2. 2. 23) is non-reflective. 
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Proof. By the construction of the scheme, we have 

j > O. 

Since the scheme is up-wind and initial data UJ == 0, j > 0, then Uj == 0, j > ° 
for any n. Thus we have 

Next, we want to show the scheme (2.2.23) is also non-reflective. Consider (2.1.4) 

and let UO == UO + VO and VO == UO - vO, we obtain 

{ 

UO == UO 
t x' 

11:0 + VO == ° t x , 

x E R, 

x E R, 

t > 0, 

t > 0, 

and the corresponding up-winding scheme is given by: 

{ 

U ?,n+1_uO,n uO,n _uO,n 
J J j+1 j == ° 

I::lt I::lx ' 
v .O,n+1_ vO ,n vO,n _ v.0 ,n 

J J + J J - 1 == O. 
I::lt I::l x 

By the construction, SInce ujn, ~n satisfies (2.2.23) and UjefoXj (J(~)d~ == Mj, 

~nefoXj (J(Od~ == Nj, then Mjn, Nj satisfies (2.2.22). Therefore Mj and UJ ,n, 

Njn and ~o ,n satisfy the same difference equations, then U[; == M[; == ug,n and 

T 7n N,n T 70,n Th h (J,n O,n d (J,n O,n th t th vo == ° == Vo' us we ave Uo == Uo an Vo == Vo , a means e 

scheme (2 .2.23) is non-reflective. 

Similar to the proof of Lemma 2.2.3, we can derive the convergence of scheme 

(2.2.23) . 

Lemma 2.2.6 Assume that a(x) E C1(R) with a(O) == 0 and a'(x) > O. Let 

(U, V) be the exact solution of {2.2.1}J and (ujn, ~n) be the finite difference solu

tion of {2.2.23} and aj-l be given in {2.2.24}· If 

~ax IUJ - U(Xj, 0)1 == ~ax I~o - V(Xj, 0)1 == O(.6x + .6t) , 
JEZ JEZ 
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and the mesh size satisfies r ~ ~! < 1, then for any n > 0, we have 

2.2.4 Finite Discrete Berenger's PMLs for Wave Equa-

tions 

For the computational purpose similar to the subsection 2.2.2, here we propose 

the finite discrete Berenger's PMLs for wave equations. The up-winding scheme 

for infinite Berenger's PML (2.1.20): 

is given by 

where 

{ 

Ur + aU(J + U: ~ 0, 

V:(J + aV(J - V(J ~ 0 
t x ' 

x E R, t > 0, 

x E R, t > 0 

- 00 < j < 00, 0 < n < M, 

{ 

U
(J,n _ (J,n + (J,n . - u · v · 
J J J' 

V
(J,n _ (J ,n (J ,n 
. - u · - v · 

J J J' 

(2.2.25) 

and aj-l be given in (2.2.24). The up-winding scheme for finite Berenger's PML: 

is given by 

where 

{ 

U(J,d + aU(J,d - U(J,d ~ 0 
t x' 

V':(J,d + a V(J,d + V(J,d ~ 0 
t x ' 

x E (-00, d) , 

x E (-00, d), 

- 00 < j < N, 0 < n < M, 

{ 

U~,d,n ~ u~,d,n + v~,d,n 
J J J' 

V .(J,d,n ~ u~,d,n _ v~,d ,n 
J J J' 

t > 0, 

t>O 

(2.2.26) 
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and U;.;d,n == 0 for 0 < n < M. 

Lemma 2.2.7 Assume that a(x) E C 1 (R) with a(O) == 0 and a'(x) > O. Let 

Uj,d,n and ~O",d,n be the difference solution {2.2.26}, then we have 

n > 0, N > j > O. (2.2.27) 

Proof. Taking [,~,n == Uc:,n - Uc:,d,n [,~,n == V .O",n - V?",d,n then we obtain 
J J J' J J J' 

with 

cu,n _ UO",n > 0 
0N - N' n _ . 

By the Maximum Principle, we have 

together with Lemma 2.2.5 that 

lu~n I < Coe- J;N O"(e)de, Iv~n I < Coe- Jo
XN 

O"(e)de, 

IUO",nl < C e- JoXN O"(e)de 
N - 0 , IVO",nl < C e- JoXN O"(e)de 

N - 0 , 

implies 

By Lemma 2.2.5 , we also get 

h . h UO" d n U(J" n C u n d M(J" d n MO" n cm n d d toget er WIt · " == .' - 0 . ' an . " == .' - 0 ·' we can e uce 
J J J J J J ' 
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From the proof of Lemma 2.2.7, we note that 

M >n> 0, (2.2.28) 

and 

then we have the following corollary: 

Corollary 2.2.2 Assume that a(x) E C1(R) with a(O) == ° and a'(x) > 0. For 

Berenger's PML, we have 

I 
(J',n (J' ,d,nl u· - u · 
J J 

I 
(J',d,n (J',d,nl v · - v · 
J J 

< Coe- foxN (J'(Od~, 

< Coe- fox N (J'(~)d~, M >n> 0, N > j > 0. 

2.2.5 Discrete PMLs for I-D Hyperbolic Systems 

(2.2.29) 

In the first part of this section, we give several infinite and finite discrete PMLs 

for wave equations, we shall propose the discrete PMLs for general ID hyperbolic 

systems as the end of this section. 

Consider the ID hyperbolic system 

Ut + Aux == 0, x E R, t > 0, 

its Hagstrom's PML equation is given by: 

Ut+au+A(ux+au) ==0, x ER, t>O. (2.2.30) 

Suppose R is a matrix consisting of eigenvectors associated with eigenvalues of 

A, we can then transform the system (2.2.30) into a diagonal system by using the 

transformation w == R-1u. The original hyperbolic system (2.2.30) becomes 

Wt + aw + A(wx + aw) == 0. 

We set A == A-+A+, where A- == diag(A1,"',Ak,0,"',0), A+ == diag 

(0"" ,0,At+l"" ,AT), then we get A == A- +A+, where A- == RA-R-l, 
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A + == RA + R-1
. Thus the up-winding scheme for (2.2.30) can be written as 

Lemma 2.2.8 Assume that a(x) E C1(R) with a(O) == 0 and a'(x) > O. The 

scheme (2. 2.31) is stable and its solutions decay exponentially. 

Remark 2.2.1 The scheme (2.2.31) is not perfectly matched at j == 0, zn gen

eral. Of course perfectly matched discrete version finite difference scheme can be 

constructed. But it seems not so necessary as the reflection magnitude at j == 0 

(interface) is very small, i. e. Coe-J-l fad CT(~)d~, where J-l == min {l:~t}. 
l2:k+1 l 

Remark 2.2.2 Using an infinite PML, the true scattered field and the PML so

lution agree near the scatterer. Once the P ML is truncated (as is necessary to 

obtain a finite computational domain) some error is introduced due to reflections 

from the truncation boundary. Discretizing the PML leads to a further pertur

bation of the solution due to dispersion and scattering from the numerical P ML. 

All these errors can be controlled by a suitable design of the layer, which means 

by optimal choice of parameters a(x) and the length of the PML [CM} . 

2.3 Modified Yee schemes for PMLs 

In section 2.2 , we introduce some up-winding schemes for discretization of the 

continuous PML equations, but they are all first order in spatial. In order to 

obtain high order schemes and have the same decay properties, we propose two 

kinds of numerical schemes which both are second order in spatial in this and 

next section. 

The first second order scheme is the modified Yee scheme. Yee scheme is the 

principal finite difference method used in the electromagnetic community, and has 
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been developed and extended extensively. In this section, we introduce a modified 

Yee scheme, so the numerical scheme is stable and the numerical solution decays 

exponentially in the perfectly matched layers. We shall concentrate on studying 

the order of convergence in space (the time discretization is quite standard). For 

the space interval [-00, d], we partition in uniformly as follows: 

-00 < .. . < X-I < 0 == Xo < Xl < ... < XN == d, 

with Xj == j hand h == ~ being the space mesh size. Its dual partition is given 

by: 

with x j +! == Xj + %, j < N - 1. 

For vectors u == (. .. Uo··· UN_I)T and v == (. .. VI ... VN I)T we define , , , '2"' , -2" ' 

the discrete norms as: 

N-I 

Il u l16,h - L hu;, 
j=-oo 

and discrete inner-products as 

N-I 

< UI, U2 >h L hUljU2j, 

j=-oo 

N-I 

Il v I16,h* - L hv]+!, 
j=-oo 

N-I 

< VI, v2 >h*- L hVI ,j+!V2,j+!· 

j=-oo 

It will also be convenient to introduce 

for given vectors wi == (uT, vi) and wf == (uf, vf)· 

(2.3.1) 

(2.3.2) 

(2.3.3) 

This section is organized as follows: we discuss the stability of the Yee scheme 

for wave equations in first subsection, and then we deduce the exponential decays, 

stability and convergence of the Yee scheme solution to the Berenger's PMLs in 

subsection 2.3.2 and 2.3.3 respectively. The last two subsections give the same 

properties of the Yee scheme solution to the Hagstrom's PMLs. 
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2.3.1 Stability of the Yee Scheme for Wave Equation 

In this subsection, we shall deduce a stability result of the Yee scheme for the 

wave equation, which will be extensively used in the rest of this section. Recall 

the wave equation 

x E (-00, d), t > 0, 

x E (-oo,d), t> 0, 

and its corresponding Yee scheme given by 

{ 

V, +l-V , 1 
• _ J ~ J-~ 

Uj - h ' 

. _ Uj+l- U j 

Vj+~ - h ' 

j < N, 

j < N - 1, 

where " . " denotes the derivative with respect to the time variable. 

(2.3.4) 

Lemma 2.3.1 For the Yee scheme (2.3.4), we have the following stability esti-

mate 

Ilu(t)116 h + Ilv(t)116 h* < Co, , , V t > O. 

Proof. Since U-oo == UN == 0, we get 

N-l 

~ hu 'u ' ~ J J 
j=-oo 

N-l 

L (Vj+~ - Vj_~)Uj 
j=-oo 

(VN+l - VN_l)UN + ... + (v~ - Vl)Ul + (Vl - V_l)UO + ... 
2 2 2 2 2 2 

UNVN+l - (UN - UN-l)VN_l - ... - (Ul - UO)Vl - ... 
2 2 2 

N-l 

- L (Uj+l - Uj )Vj+~ 
j=-oo 

and similarly we can obtain 

N - l N-l 

L hiJj+~ Vj+~ == L (Uj+l - Uj )Vj+~' 
j=-oo j=-oo 

From the above two equalities, we may deduce 

N N-l 

:t (1Iu(t)II~,h + Ilv(t)II~ , h') =L hUjuj + .L hVj+!vj+! = 0, 
J=-OO J=-OO 
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and integrate on [O,t], then we have 

Ilu(t)116,h + Ilv(t)116,h* < Ilu(O)116,h + Ilv(O)116,h* < Co t > O. 

2.3.2 Decay of the Yee Scheme Solution to the Berenger's 

PMLs 

In this subsection, we shall derive a decay result of the Yee scheme solution to 

the Berenger's PML equations. Now, we consider the Berenger's PML equation 

{

Ut + au == vx , 

Vt + av == ux , 

x E (-00, d), t > 0, 

x E (-oo,d), t> 0 

and its corresponding Yee scheme given by 

(2.3.5) 

(2.3.6) 

A decay result for this scheme will also be derived in the rest of this subsection. 
x . 1 

f J + "2" ( e) de p . - p -: 1 
Firstly, we introduce the notations Pj == e Xj (J and etj == J h J ,and for our 

subsequent use, we give an estimate as follows: 

Lemma 2.3.2 If a (x) is a smooth enough real function and 

m. == ~ [_ (aj + aj+~) + 
J 2 h2 

then we have 

(aj - aj+~)2 + 4et; 

h4 

mj == (3j + O(h). 

Here aj == a(xj), aj+~ == a(xj+~) etc. as the usual utilizations and 

which is a constant independent of h. 

(2.3.7) 

(2 .3.8) 
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Proof. By the Taylor series expansions, we can derive 

a', a'! a'!' a~ 4) 
a ' + a , 1 ==2a ' + --.l.h + ~h2 + _J_h3 + _J_h4 + O(h5) 

J J+ 2 J 2 8 48 384 ' 

(OJ - aj+ ~) 2 + 41Y; =4a; + 2ajajh + ~ (2a; + 3( aj)2 + 2aja'j) h2 (2.3.9) 

1 (8 3 I 5 I " "')h3 O(h4) + 24 ajaj + ajaj + ajaj + . 

Substitute (2.3.9) into (2.3.7), and make use of the fact 

we can get after straightforward but a little tedious algebraic calculations that 

m ' J 
_1_( 4aJ~ + 3(aJ

,
,)2 - 2ajaJ',) 96aj 

+ 1 2 (12a;aj - 3(oj)3 + 60jaja'j - 2aja'j')h + O(h2). 
384aj 

So the dominated constant term in mj is 

(3j == _1_(4aJ + 3(aj)2 - 2ajaj) , 
96a' J 

which is independent of h. 

Next, we give the sufficient conditions for the above Yee scheme (2.3.6) to 

have the decay result. 

Theorem 2.3.1 For the Yee scheme (2.3.6), if we take 

- h2 
a '+ 1 == a '+ 1 + m J' J 2 J 2 ' 

with mj == Cj + O(h), where 

(2.3.10) 
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and {3j is given by (2.3.8), then for any given 0 < k < N - 1, we have 

N-l L h(Uj(t))2 < Coe-2foXk(J"(Od~, 
j=k 

N-l x k+ 1 L h( Vj+~ (t))2 < C oe-2 fo :J (J"(~)d~, V t > O. (2.3.11) 
j=k 

x 0+ 1 

Proof. Set Uj == ujefoXj (J"(Od~, Vj+~ == Vj+~ efo J :J (J"(~)d~ and multiply the first 

equation of (2.3.6) by ef;j (J"(~)d~, we get 

Next, multiply the both hand sides of (2.3.12) by Uj , we can further get 

Completely the same manipulations as above for the second equation of (2.3.6) 

lead to 

(2.3.14) 
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Now, summing up (2.3.13) and (2.3.14) over j < N - 1, and noting that U-oo == 

UN == 0, U -00 == UN == 0, we deduce 

N-1 N-1 N-1 N-1 

L UjUj + L Vj+~ Vj+~ + L ajUJ + L aj+~ Vj~~ 
j=-oo j=-oo j=-oo j=-oo 

< 

which gives 

[ 

-1 ] 2 p. 1 - P ·+l 
)+2 ) 2 U? (2 3 15) h )+1 .. 

In order to get the stability result, it is sufficient for us to have in (2.3.15) that 

(2.3.16) 

(2.3.17) 

hold for j < N - 1. Since aj == aj + mjh2, aj+~ == aj+~ + mj h2 as given in 

the theorem, then substitutions of both of them into (2.3.16) can reduce the 

inequality to 

(2.3.18) 
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which can be further reformulated as a quadratic inequality for mj, 

(2.3.19) 

The corresponding quadratic equation for (2.3.19) has two distinct solutions 

due to the fact that 

(aj + aJo+l)2 ajaJo+l - O:J~ 
.6.== 2 -4 2 

h4 h4 

(aj - aj+~)2 + 40:; 
h4 

Here, mj and mj denote the left root and the right root in the real axis, respec

tively. By a(x) > 0, we have that 

(aj - aj+~)2 + 40:; 
h4 

and by Lemma 2.3.2, we have for the other root 

(aj - aj+~)2 + 40:; 
h4 

< 0, 

that mj == (3j + O(h), with (3j given by (2.3.8). Since we take in the theorem that 

which implies that mj == Cj + O(h) > max{O, mj}, and this subsequently ensure 

the inequality (2.3.19) holds for this mj, i.e., (2.3.16) holds with such selection of 

mj . Analogously, we can show that (2.3.17) also holds with this mj. 

Now, by (2.3.15), the stability result follows easily that 

N-l N-l 

L UjUj + L ~+~ Vj+~ < 0, 
j=-oo j=-oo 

and therefore 
N-l N-l N-l N-l 

L h(Uj (t))2+ L h(Vj+~(t))2 < L h(Uj (0))2+ L h(Vj+~(O))2 < Co, Vt > 0, 
j=-oo j=-oo j=-oo j=-oo 
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which, together with the definitions of Uj and Vj+~, we draw the conclusions that, 

N L h(Uj(t))2 < Coe-2!oXk (J(Od~, V t > 0, 
j=k 

for any given 0 < k < N - 1. The proof is completed. 

2.3.3 Stability and Convergence of the Yee Scheme for 

the Berenger's PMLs 

In this subsection, we shall derive the stability and convergence results of the 

Yee scheme for the Berenger's PML equations. Firstly, we discuss the stability. 

Consider the Berenger's PML equation (2.3.5) 

{

Ut + au == vx , 

Vt + av == ux , 

x E (-oo,d), t> 0, 

x E (-00, d), t > 0 

and its corresponding Yee scheme given by (2.3.6) 

Next, we give the sufficient conditions for the above Yee scheme to be stable. 

Theorem 2.3.2 For the Yee scheme (2.3.6), if we take 

then the scheme (2. 3.6) is stable. 

Proof. By the choice of aj and aj+~' the scheme (2.3.6) can be rewritten as 

(2.3.20) 
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Multiplying the first and second equation of (2.3.20) by Uj and Vj+~ respectively, 

and summing up them over j < N - 1, we deduce 

N-l N-l N-l N-l 

L hUjuj + L erjhu~ + L hVj+~ Vj+~ + L erj+~hvJ+~ 
j=-oo j=-oo j=-oo j=-oo 

which gives 

d (2 2 ) dt Ilu(t)llo,h + Ilv(t)llo,h* < O. 

Therefore we have the stability of semi-discrete solution, 

Ilu(t)116 h + Ilv(t)116 h* < Ilu(0)116 h + Ilv(0)116 h* < Co, , , , , V t > O. (2.3.21) 

The proof is completed. 

Setting ej(t) == u(Xj, t) - Uj(t) and e;+~ (t) == v(Xj+~' t) - Vj+~ (t), we have the 

following theorem about convergence: 

Theorem 2.3.3 For the Yee scheme (2. 3. 6), we take 

- h2 er "+ 1 == er"+ 1 + m J" J 2 J 2 ' 

where mj == Cj + O(h) is given by (2.3.7), 

and (3j is given by (2.3.8). If IleU(O)llo,h == IleV(O)llo,h* == O(h2), then we have 

(2.3.22) 

Proof. Consider the continuous PML equations (2.3.5) at x == Xj, and by the 

Taylor series expansions, we derive 

V(x"+ 1 ,t)-v(x" l,t) 
J "2" J -"2" 

h 

- 2~ Vxxx(Xj, t)h2 + O(h4), 
U(Xj+l ,t)-u(Xj ,t) 

h 

- 2
1
4 U xxx ( X j + ~ , t) h 2 + 0 ( h 4 ) , 

(2.3.23) 
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Subtracting (2.3.20) from (2.3.23), we derive 

Multiplying the first and second equation of (2.3.24) by ej and e;+~ respectively, 

and summing up them over j < N - 1, we can deduce 

N-l N-l N-l N-l 

L hejej + L ajh(ej)2 + L he;+~e;+~ + L aj+~h(e;+~)2 
j=-oo j=-oo j=-oo j=-oo 

which gives 

~ :t (lieU (t) II~, h + Ilev (t) II~, h*) 

< -h2 t~oo h[Cl (t)]jej(t) + j~OO h[C2(t)]j+~ej+~ (t) } + O(h
5

), (2.3.25) 

where [Cl(t)]j == 214vXXX(Xj, t) - mjuj and [c2(t)L+~ == 214uXXX(Xj+~' t) - mjvj+~' 

Using notation (2.3.2), the inequality (2.3.25) is equivalent to 

which implies 

(2.3.26) 

where A == (Cl(t),C2(t))T and B == (eU(t),ev(t))T. 

Integrating (2.3.26) over [0, t], we obtain 

IIB(t) 11 < IIB(O) 11 + h21t IIA( T) 11 dT, \;j t > 0, 
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which is equivalent to 

1 

{lleU(t)116,h + IleV(t)116,h*}2 

< {lieU (0) 116, h + lIeV (0) 116, h* } ~ + h21t [llcl (T) 116, h + 11 C2( T) 116, h* 1 ~ dT. 

By (2.3.21) we know that Ilc1(r)116,h+llc2(r)116,h* < Co, together with IleU(O)llo,h == 

IleV(O)llo,h* == O(h2), we draw the conclusion that: 

The proof is completed. 

2.3.4 Decay of the Yee Scheme Solution to the Hagstrom's 

PMLs 

Subsection 2.3.3 and 2.3 .4 have discussed the exponential decays, stability and 

convergence of Yee scheme solution to the Berenger's PMLs, in this and next 

subsection we shall propose these properties of the Hagstrom's PMLs. 

In this subsection, we shall derive a decay result of the Yee scheme solution to 

the Hagstrom's PML equations. Now, we consider the Hagstrom's PML equation 

{

Ut + au == V x + av, x E (-00, d), t > 0, 

Vt + av == U x + au, x E (-00, d), t > 0 

and its corresponding Yee scheme given by, 

(2.3 .27) 

(2.3.28) 

. d . 2 f J+~ (}'(~)d~ d Pjl_pj _1 (-* -1 -* .) x. 1 [ ] 
We Intro uce notatIons Pj e Xj an {);j - h + 2 ajPj + aj+~PJ , 

and for our subsequent use, we give an estimate as follows: 
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Lemma 2.3.3 If a(x) is a smooth enough real function and 

m . == ~ [_ (aj + aj+~) + (aj - aj+~)2 + 40j 
J 2 h2 h4 

then we have 

mj == {3j + O(h). 

Here aj == a(xj), aj+~ == a(xj+~) etc. as the usual utilizations and 

(3j = - 9:aj [16aj + 24a;aj - 3(aj)2 + 4ajaj], 

which is a constant independent of h. 

Proof. Thanks to the Taylor series expansions, we can derive 

a'· a'! a'!' a~4) 
2a . + ---.Lh + _J h2 + _J_h3 + _J_h4 + O(h5) 

J 2 8 48 384 

together with 

(2.3.29) 

(2.3.30) 

(aj - aj+!)2 + 4a; 4a; + 2ajajh + ~[-8aj - 12a]aj - 3(aj)2 + ajaj'lh2 

1 [ 8 3 I 3 2" 6 (') 2 I"] h3 0 (h4) + '6 - aj aj - aj aj - aj aj + ajaj + , 

we obtain 

mj == _-1-[16aJ~ + 24aJ~aJ" - 3(aj)2 + 4ajaj] 
96aj 

- 1 2 [48ajaj + 24a;(aj)2 + 3(aj)3 + 24aJaj - 6ajajaj + 4a]aj'Jh + 0(h2). 
384aj 

Here we have used the fact that 

Va + bh + ch2 + dh3 bh b2 c 2 

y'a + 2y'a + (- 8a3/2 + 2y'a)h 

b
3 

bc d 3 (4) + (16a5/ 2 - 4a3/2 + 2y'a)h +0 h . 

Therefore the dominated constant term in mj is 

which is is independent of h. 
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Theorem 2.3.4 For the Yee scheme (2.3.28), if we take 

- h2 a .+ 1 ==. a .+ 1 + m)' 
) 2 ) 2 ' 

with mj ==. Cj + O(h), where 

(2.3.31 ) 

and /3j is given by (2.3.30), then for any given 0 < k < N - 1, we have 

N-1 

L h( Uj (t))2 < Coe-2 Ioxk CT(Od~, 
j=k 

N-1 x 1 L h(Vj+t(t))2 < Coe-2Jo k+! C1(~)d~, \j t > o. (2.3.32) 
j=k 

x . 1 

Proof. Set U)' ==. U ·e2 I;j CT(~)d~ V. 1 ==. V· 1 e2 10 J+2' CT(~)d~ and multiply the first 
) ')+2 )+2 

equation of (2.3.28) by eI;j CT(~)d~, we get 

U'+a'U , ) )) 

(2.3.33) 

Next , multiply the both hand sides of (2.3.33) by Uj , we can further get 

. - 2 1 [ ] 1 [-1 ] 1 [ ] UjUj + ajUj ==. h Vj+~ - Vj-~ Uj + h Pj - 1 Vj+~Uj + h 1 - Pj-~ Vj_~Uj. 

(2.3.34) 

Completely the same manipulations as above for the second equation of (2.3.28) 

lead to 

ij+~ VJ+t + O"j+t ~~t = ~ [Uj +1 - Uj ] VJ+~ + * [pj1t - 1] Uj+l VJ+~ 
+* [1 - Pj] Uj Vj+~ + ~a;+~Pj~~ Vj+~ Uj +1 + ~a;+~pj Vj+~ Uj . (2.3.35) 

Now, summing up (2.3.34) and (2.3.35) over j < N - 1, and noting that U-oo == 



Some Recent Advances in Numerical Solutions of Electromagnetic Problems 73 

UN == 0, U- oo == UN == 0, we deduce 

N-l N-l N-l N-l 

L Upj + L ~+~ VJ+t + L ap] + L aj+~ Vj~t 
j=-oo j=-oo j=-oo j=-oo 

(2.3.36) 

(2.3.37) 

hold for j < N - 1. Since aj == aj + mjh2, aj+~ == aj+~ + mjh2, a; == aj and 

a~ 1 == aJ"+l as given in the theorem, then substitutions of both of them into 
J+ 2 2 

(2.3.36) can reduce the inequality to 

> O. (2.3.38) 

The corresponding quadratic equation for (2.3.38) has two distinct solutions 

due to the fact that 

(aj - aj+~)2 + 4a; 
h4 
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Here, mj and mj denote the left root and the right root in the real axis, respec

tively. By a(x) > 0, we have that 

(aj - aj+~)2 + 40j 
h4 

and by Lemma 2.3.3, we have for the other root 

(aj - aj+~)2 + 4a; 
h4 

< 0, 

that mj == (3j + O(h), with {3j is given by (2.3.30). Since we take in the theorem 

that 

Cj == max{O, {3j, {3j-~} > 0, 

which implies that mj == Cj + O(h) > max{O, mj}, and this subsequently ensure 

the inequality (2.3.38) holds for this mj, i.e., (2.3.36) holds with such selection of 

mj . Analogously, we can show that (2.3.37) also holds with this mj. 

Now, by (2.3.36) and (2.3.37), the stability result follows easily that 

N-l N-l 

L UjUj + L ij+~ "J+~ < 0, 
j=-oo j=-oo 

and therefore 

N-l N-l N-l N-l 

L h(Uj(t))2+ L h("J+~(t))2 < L h(Uj(0))2+ L h("J+~(0))2 < Co, Vt > 0, 
j=-oo j=-oo j=-oo j=-oo 

which, together with the definition of Uj and "J+~, we draw the conclusion that: 

N L h( Uj (t))2 < Coe-2 J;k (J(~)d~, 
j=k 

for any given 0 < k < N - 1. The proof is completed. 
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2.3.5 Stability and Convergence of the Yee Scheme for 

the Hagstrom's PMLs 

In last subsection, we discuss the exponential decays, here we shall derive the 

stability and convergence results of the Yee scheme for the Hagstrom's PML 

equations. Firstly, we discuss the stability. Consider the Hagstrom's PML equa-

tion (2.3.27) 

{

Ut + au == Vx + av, x E (-(X), d), t > 0, 

Vt + av == U x + au, x E (-(X), d), t > 0 

and its corresponding Yee scheme given by (2.3.28), 

Next, we give the sufficient conditions for the above Yee scheme to be stable. 

Theorem 2.3.5 For the Yee scheme (2.3.28), if we take 

with mj == Cj + O(h), where 

and 1j is given by 
(a'. )2 

I"\j _ J 
tj - 32a · ' 

J 

then the scheme (2.3.28) is stable. Moreover, if we set 

(2.3.39) 

(2.3.40) 

(2.3.41 ) 

where {3j given by (2. 3. 30), then the semi-discrete solution decays exponentially. 
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Proof. By directly calculate, we can derive 

N-l N-l N-l N-l 

L hUjuj + L ha;u~ + L hiJj+~ Vj+~ + L ha;+~ v~+~ 
j=-oo j=-oo j=-oo j=-oo 

N-l N-l 
'" aj '" aj+~ ~ 2h(vj+~ + Vj_~)Uj + ~ -2-h (Uj+l + Uj)Vj+~ 

j=-oo j=-oo 

N-l 1 N-l 1 
L -;;,h(oj + (]j+!)vj+!Uj + L -;;,h((]j+1 + (]j+~)Vj+~Uj+l 

j=-oo j=-oo 

(2.3.42) 

Comparing the left and right hand sides, we see that for the stability, we only 

need: 

(2.3.43) 

and 

(2.3.44) 

Let us first consider (2.3.43), which is equivalent to 

(2.3.45) 

The corresponding quadratic equation for (2.3.45) has two distinct solutions 

m* 1 [ (aj + aj+l) 1 ] 
J = -;;, - h2 2 ± h2 V2(]j + 2(]J+! . 

due to the fact that 

(aj + aJ'+1)2 ajaJ'+l - aJ~ 
~== 2 -4 2 

h4 h4 

Here, mj and mj denote the left root and the right root in the real axis, respec

tively. By a(x) > 0, we have that 
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and thanks to the Taylor series expansions, we have for the other root 

that mj == rj + O(h), with rj is given by 

(a'. )2 
ry _ J 

tj - 32a · ' 
J 

Since we take in the theorem that 

which implies that mj == Cj + O(h) > max{O, mj}, and this subsequently ensure 

the inequality (2.3.45) holds for this mj, i.e., (2.3.43) holds with such selection of 

mj . Analogously, we can show that (2.3.44) also holds with this mj. 

Now, by (2.3.42), the stability results follows easily that 

:t (1Iu(t)116,h + Ilv(t)116,h') < 0, 

and therefore 

Ilu(t)116,h + Ilv(t)116,h* < Ilu(0)116,h + Ilv(0)116,h* < Co, t > O. (2.3.46) 

Moreover, if we set 

where (3j given by (2.3.30), then we see that the semi-discrete solution decays by 

(2.3.32) and is stable by (2.3.46). The proof is completed. 

Next, we consider the convergence of the Yee scheme solution. Setting ej(t) == 

u(Xj, t) - Uj(t) and ej+~(t) == v(Xj+~' t) - Vj+~(t), we have the following theorem 

about convergence: 
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Theorem 2.3.6 For the Yee scheme (2.3.28), if we take 

where mj == Cj + O(h) is given by (2.3.29), Cj is by (2.3.41). Then we have 

Proof. Consider the continuous PML equations (2.3.27) at x 

Taylor series expansions, we have 

v(x .+ 1 ,t)-v(x . 1,t) 
U(Xj, t) + (aj + mjh2)u(Xj, t) == J"2" h J-"2" 

+(T1(V(Xj+~,t) +V(Xj_~,t)) - 214VXXX(Xj,t)h2 

-~Vxx(Xj, t)h2 + mjh2u(xj, t) + O(h4), 

. ( t) ( + h2 ) ( t) - U(Xj+l ,t)-u(Xj ,t) 
V Xj+~' + aj+~ mj v Xj+~' - h 

+ <Tj;~ (U(Xj+1' t) + U(Xj, t)) - 2
1
4 UXXX(Xj+~' t)h2 

-~UXx(Xj+~' t)h2 + mjh2v(Xj+~' t) + O(h4). 

Subtracting (2.3.28) from (2.3.48), we derive 

eV -eV 

e)'lf + (a)· + m)· h 2 ) e)'lf == j + ~ j - ~ + (T j (e ~ 1 + e ~ 1) 
h 2 )+2" )-2" 

(2.3.47) 

Xj. By the 

(2.3.48) 

- 2
1
4 VXXx(Xj, t)h2 - ~Vxx(Xj, t)h2 + mjh2u(xj, t) + O(h4), 

Similarly to the proof of stability (2.3.46) of the semi-discrete solution, we obtain 

j=-oo j=-oo 
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which gives 

where 

1 1 
[Cl (t)]j == 24 vxxx(Xj, t) + 4Vxx (Xj, t) - mjuj, 

1 1 
[c2(t)L+~ == 24 Uxxx(Xj+~' t) + 4Uxx(Xj+~' t) - mjvj+~' 

Using notation (2.3.2), the inequality (2.3.50) is equivalent to 

which implies 

:tlIBII < h
211AII + O(h

5
), 

where A == (Cl(t), C2(t))T and B == (eU(t), eV(t))T. 

Integrating (2.3.51) over [0, t], we obtain 

IIB(t)11 < IIB(O)II + h21t IIA(T)II dT, \if t > 0, 

which is equivalent to 

1 

{lleU(t)116,h + IleV (t)116,h*} 2 

(2.3.51) 

< {lieU (0) II~ , h + IleV (0) II~, h' } ~ + h21t [llcl (T) II~, h + Ilc2( T) II~, h'] 4 dT. 

By (2.3.46) we know that Ilcl(T)116,h+llc2(T)116,h* < Co, together with I/eU(O)llo,h == 

IleV(O)llo,h* == O(h2), we draw the conclusion that: 

The proof is completed. 
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2.4 Modified Lax-Wendroff Scheme for PMLs 

In section 2.3, we proposed a modified Yee scheme which is second order for PMLs, 

and here, we shall derive another second order scheme: modified Lax-Wendroff 

scheme. The Lax-Wendroff scheme is a principal finite difference method used in 

the electromagnetic community. The modified Lax-Wendroff scheme present in 

this section is stable and decays exponentially in the perfectly matched layers as 

Yee scheme. Similarly to the discussion about the modified Yee scheme, we shall 

concentrate on studying the order of convergence in space. 

This section is organized as follows: At the beginning, we shall show the 

exponential decays in parabolic equations by the Maximum Principle and its 

stability. In subsection 2.4.2, we use the same ideas to get exponential decays in 

hyperbolic equations with a viscous term and stability. At the end of this section, 

we derive the modified Lax-Wendroff scheme with exponential decays and show 

the stability of this scheme . 

2.4.1 Exponential Decays in Parabolic Equations 

In this subsection, we shall show how the parabolic equations decays Exponen

tially by the Maximum Principle. We first consider following the parabolic equa

tion 

x E R, 0 < t < T, (2.4.1) 

with homogeneous initial conditions, and its corresponding semi-discrete scheme 

o <n< M-I. (2.4.2) 

Lemma 2.4.1 The solution of equation (2.4.1) has following decay property 

(2.4.3) 

Proof. Setting w ~ uel.t in (2.4.1), we may derive 
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Using the Maximum Principle, we obtain 

w(x, t) < max{O, w(O, t)} == max{O, u(O, t)}. 

Therefore, we deduce 

v x >0. 

Lemma 2.4.1 shows that the equation (2.4.1) is stable. For the semi-discrete 

scheme (2.4.2), we have the following lemma about the stability. 

Theorem 2.4.1 For any 0 < 62 < ~ < 61 < 1 and 61 +62 < 1, if r == ~! satisfies 

(2.4.4) 

then the scheme (2.4.2) is stable, where Co is a constant depending only on mesh 

size ~x. 

Proof. Equation (2.4.2) is equivalent to 

Multiplying (2.4.5) by un+l, we can deduce 

lu
n+112 _ lunl2 + lun+1 - unl2 

----------- + ~tlun+112 
2~t x 

< un un+1 > +~t < (un+1 - un) un+1 > x' x, x 

< lun+1 - unllu~+11 + ~t(Co~x)-llun+l - unllu~+11 

(2.4.5) 

1 1 
< 46

1
11t lun

+1 - un 12 + 61 l1tlu~+112 + l1t[ 46
2 
(Col1X) -21 Un+1 

- Un 12 + 62Iu~+1121 

( ~t 1 )1 n+l nl2 (~ ~)A 1 n+11 2 
462C5(~X)2 + 461~t u - u + Ul + U2 ut U x , 
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together with 61 + 62 < 1 and r = ~! < COJ61 (2 -l), we see that 

V n > 0, 

which implies that the scheme is stable. 

2.4.2 Exponential Decays in Hyperbolic Equations 

Since the parabolic equation converges to the corresponding hyperbolic equation 

as coefficient of the viscous term goes to zero, and using the Maximum Principle 

of parabolic equation which we have used in last subsection, we would obtain the 

exponential decays in hyperbolic equations with a viscous term. 

Next , we consider the following hyperbolic equation with a viscous term 

vt + 2aV + Vx == .6tVxx , x E (-L, d), 0 < t < T, (2.4.6) 

where L is the length of the computational domain for x < 0 and d is the length 

of the PML. 

Lemma 2.4.2 When a and L ) d satisfy 

(2.4 .7) 

then for any 0 < d1 < d) the solution of (2.4. 6) satisfies 

(2.4.8) 

Proof. Setting w == Ve2 J; (J(~)d~ in (2.4.6) , we may derive 

.6te2 J; (J(~)d~Vxx 

.6te2 Jox 
(J(~)d~ { e -2 JoX 

(J(Od~ W }xx 

.6te2 J; (J(~)d~ {( Wx - 2aw )e-2 J; (J(~)d~w}x 

.6t[( Wx - 2aw) x - 2a( Wx - 2aw)], 



Some Recent Advances in Numerical Solutions of Electromagnetic Problems 83 

l.e., 

Wt + Wx - ~t[(wx - 2aw)x + 2a(wx - 2aw)] == O. (2.4.9) 

Multiplying (2.4.9) by w, we can calculate easily that 

Since 

then 

together with condition (L + d) Ilall oo < V;, we derive 

2 jd jd 222 
(L d)2 w dx > 4a (x)w dx, + -L -L 

which gives (Wt, w) < O. Hence, we get 

so, for any 0 < d1 < d, we have 

Next, we discuss the stability of the semi-discrete scheme for equation (2.4.6). 

Since it is difficult for us to discuss the sufficient conditions for equation (2.4.6) di

rectly, we consider the formulation (2.4.9) which is equivalent to equation (2.4.6). 

The formulation (2.4.9) can be rewritten as: 

Wt -Wx + ~t(wx - 2aw)x - 2aflt(wx - aw) 

-Wx + fltwxx - 2flt(aw)x - 2fltawx + 4flta2w (2.4.10) 
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and its semi-discrete scheme is given by 

(2.4.11) 

We have the following theorem about the stability for the semi-discrete scheme 

(2.4.11): 

Theorem 2.4.2 For any 0 < Cl < ~, 0 < 62 < ~ - Cl < ~ < 61 < 1 - Cl and 61 + 

62 < 1 - Cl , when (L + d) Ilall oo < JI[, ~x small enough, and r == ~! satisfies 

(2.4.12) 

then the scheme (2.4.11) is stable, where Co is a constant depending only on mesh 

size ~x. 

Proof. Multiplying (2.4.11) by w n+1
, we have 

Iw
n+112 _ Iwnl2 + Iwn+1 - wnl2 

----------- + ~tlwn+112 
2~t x 

~t ((wn+1 - wn)x, W~+l) + (-(1 + 2a~t)w~, wn+1) 

(~t(2awn)x, wn+1) + (4~ta2wn, wn+1) 

I + I I + I I I + IV. 
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For first three items, we can estimate as follows: 

I ~t( (wn+1 - wn)x, W~+l)) 

< ~tl(wn+l - wn)xllw~+ll 

< ~t((Co~x)-l)lwn+l - wnllw~+ll, 

11 (-(1 + 2a~t)w~,wn+l) 

< I( -(1 + 2a~t)w~+1, wn+1)1 + 1((1 + 2a~t)(wn+l - wn)x, wn+1)1 -

< (1 + 21Ialloo~t) IW~+l, wn+1
1 + (1 + 21Ialloo~t) I (wn+1 - wn), wn+1

1 -

< (1 + 21Ialloo~t)lwn+l - wnllw~+ll, 

III I( -2~t(awn)x, wn+1)1 == 1(2~tawn, w~+l)1 

< 1(2~tawn+l, w~+l)1 + 1(2~ta(wn+l - wn), w~+l)1 -

< 2~tllallool(wn+l, w~+l)1 + (2~ta(wn+l - wn), W~+l) -

< 2~t"a"oolwn+l - 2n"w~+11. -

Since Iw 12 < (L~d)2Iwx 12, then for the last item, we have 

< 4~t"a"~(wn, wn+1) 

< 4~t"a"~[(wn+l, wn+1) + (wn _ wn+1, wn+l)] 

< 4~t"a"~[lwn+112 + Iwn+1 - wn"wn+11] 

< 2~t"a"~(L + d)2Iw~+112 + 2v'2~t"a"~lwn+l - wn"w~+ll. 
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Hence, we obtain 

Iw
n+112 _ Iwnl2 + Iwn+1 _ wnl2 
-----~~---~ + .6.tlwn+112 

2.6.t x 

< Iwn+1 - wnllw~+ll + 2.6.tllall~(L + d)2Iw~+112 

+ 6t[(C06X)-1 + 411all 00 + 2,;2(L + d)llall~] Iwn+1 - wnllw~+11 
1 

< 40
1
6t Iwn+1 - wnl2 + 016tlw~+112 + 26tllall~(L + d?lw~+112 

.6.t + 
40

2 (C06X)-2Iwn+1 - Wnl2 + 026tlw~+112 

[01 + 02 + 2(L + d)2Iall~] Iw~+112 + [40:6t + (C064~-26t] Iwn+1 - wnl2. 

By the conditions 0 < Cl < !, 0 < 52 < ! - Cl < ! < 51 < 1 - Cl, 51 +52 < I-cl, 

(L + d)llall oo < ~, and r < COV02(2 - 6
1
,), we draw the conclusion that 

V n > 0, 

which implies that the scheme is stable. 

2.4.3 Exponential Decays of Modified Lax-Wendroff So-

lutions 

Finally, we shall show that the numerical solution of the modified Lax-Wendroff 

scheme decays exponentially. For ease of exposition, we introduce the following 

forward-, backward- and centered-difference operators, 

A - _ Uj - Uj-l 
Ll Uj - h ' 

~ + ~ _ . _ Uj+l - 2uj + Uj-l 
uJ - h2 

Next, for our discussions in the sequel, we firstly derive the following two prop

erties of these difference operators. 
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Lemma 2.4.3 For any sequence {Uj}f=-.!MJ we have 

N-l N-l 

(i) L (~+uj)hvj == - L (~-vj)huj, (2.4.13) 
j=-M j=-M 

(ii) (2.4 .14) 
j=-M j=-M 

Proof. (i) Using Uo == UN == 0, we may derive 

N N-l N-l N-l 

'" ~+u · hv' ~ J J L (Uj+l - Uj)hVj == L hUj+lVj - L hUjVj 
j=-L j=-M j=-M j=-M 

N-l N-l N-l 

L hUjVj-l - L hUjVj == - L h(Vj - Vj-lUj) 
j=-M j=-M j=-M 

N-l 

- L ~-VjhUj. 
j=-M 

(ii) Similarly to the proof of the Poincare inequality, we can deduce 

N-l N-l 
'" Uj+l - Uj Uj U-L + L (Uj+1 - Uj) = ~ h . h, 

j=-L j=-M 
N-l N-l N-l u; < L (Uj+1

h
- Uj)2. L h2 = (M + N)h L h(f).+Uj)2, 

which implies 

j=-M j=-M j=-M 

N-l 

L 
j=-M 

hu~ < 
J -

N-l 

[(M + N)h]2 L h(~+Uj)2. 
j=-M 

In the same way, we can obtain 

N-l N-l 

Lhu~ < [(M+N)h] 2 Lh(~-Uj)2, 
j=-M j=-M 
N-l 

L hu~ 
j=-M 

N-l (A+ )2 (A- )2 
< [L + d]2 L h Ll Uj ; Ll Uj 

j=-M 
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Now, we shall show that the numerical solution of the modified Lax-Wendroff 

scheme decays exponentially. The modified Lax-Wendroff scheme for equation 

(2.4.6) is given by 

V?l+1 - v:n v:n - v:n V·~1 - 2v·n + v:n 1 
J J + 2a.v.n + )+1 )-1 == t6.t ) ) )-

t6.t J ) 2h h2 ' 
(2.4.15) 

which can rewritten as 

V?l+1 - V:n 1 
) ) + 2a · V?l + - (t6. +V·n + t6. - v.n) == t6.t(t6. + t6. - v .n). 

t6.t J J 2 )) J 
(2.4.16) 

Setting Wp == e2J;j (J(Od~Vjn == Pj Vjn in (2.4.16), it is easy to verify that 

W~+1 - W~ W~ - W~ 1 Xj+l Xj ) ) + )+1 )+1+W~[2a . +-(e-2Jxj (J(~)d~_e2Jxj_l(J(~)d~)] 
t6.t 2h )) 2h 

t6. t [ t6. + t6. - Wp + (t6. - WP) P j ( t6. + P j 1
) + P j t6. + (WP ( t6. - P j 1 

) ) ] . ( 2 . 4.1 7) 

and 

2(61 + 62 + 63 ) < 1 - Cl, r < CoJ62 (1 - C2 - 4~1)' 
then the scheme {2.4.17} is stable, where Co is a constant depending only on mesh 

size t6. x . Furthermore, for any given 0 < k < N - 1, we have 

V n > o. (2.4.18) 
j=k 
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Proof. Multiplying (2.4.17) by hWjn+1 and summing up over j == -M, 1,' .. ,N-

1, we can derive the estimates for the three terms on the left-hand side: 

N-1 W n+1 _ wn 
I = L j 6..t j. hWjn+1 

> 

11 

+ 

where 

j=-M 
N-1 N-1 N-1 
L: h1Wjn+112 - L: hlWPl2 + L: hIW?+l - Wpl2 

j=-M j=-M j=-M 

2~t 
N-1 wn _ wn N-1 1 
'" j+1 j+1 . hW:t+1 == '" _(~ +W:t + ~ -W:t)hW:t+1 
L..t 2h J L..t 2 J J J 

j=-M j=-M 
N-1 
'" ~(~+W:t+1 + ~-W:t+1)h~+1 L..t 2 J J J 

j=-M 
N-1 
L ~ [6..+(wt - Wrl) + 6..-(wt - wt+1)] hWjn+l 

j=-M 
N-1 
'" ~h(-W:t + W:t+1)(~+W:t+1 + ~-W:t+1) L..t2 J J J J' 

j=-M 

j=-M 
N-1 N-1 
L AW?+lhW?+l + L A(W? - Wjn+1)hWjn+1, 

j=-M j=-M 

A 

For the first term on the right-hand side of equation (2.4.17), we know 

~t(~ +(~ -Wj
n+1))W?+1 + ~t~ + ~ -(W? - Wjn+1)w?+1 

IV! + IV2 , 
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where 

IV1 6:..t( 6:.. + (6:.. - Wjn+l)) Wp+l 

-6:..t(6:.. -Wp+l )(6:.. -Wp+l) 

-6:..t(6:.. +Wjn+l) (6:.. +Wjn+l) 

-~~t((~-Wp+1)2 + (~+Wrl)2), 
6:..t6:.. + 6:.. - (W~ - W~+I)W~+1 

) ) ) 

-6:..t6:.. - (w"!' - W~+I)6:.. -W~+1 
)) ) 

< 6:..t[IW~ _ W~+11 + IW~ - W~+II]I6:..-W~+II. h )) )-1 )-1 ) 

Then we see from above that 

N-l 
IV == ~ 6:..t6:..+6:..-W~hW~+1 ~ )) 

j=-M 
N-l N-l 

< ~t L ((~-Wrl)2 + (~+Wrl)2) + 2~t L IWP - Wrlll~-Wp+1l. 
j=-M j=-M 

For the second term of the RHS of equation (2.4.17), we know 

6:..t(6:.. -Wj
n)Pj(6:.. + Pjl )Wp+l 

6:..tB (6. - Wjn) Wjn+l 

6.tB(6. -Wp+l)Wjn+l + 6.tB(6. -(Wjn - Wjn+l))wp+l. 

Then we can further deduce 

N-l 
V == 6.t L B(6.-Wjn)pj(6.+pjl)Wp+l 

j=-M 
N-l N-l 

< 6.t L BI6.-Wp+lll w j
n+11+6.t L Blwp-Wjn+l116.+Wjn+l/, 

j=-M j=-M 

where 



Some Recent Advances in Numerical Solutions of Electromagnetic Problems 91 

For the third term of the RHS of equation (2.4.17), we know 

~tPj~ +Wp(~ - pjl)Wjn+l 

~tPj~+(Wjn+l(~-pjl))Wp+l + ~tPj~+((WP _ Wjn+l)(~-pjl))Wjn+l, 

then we can derive 

N-l 

VI == ~t L pj~+WP(~-pjl)Wp+l 
j=-M 
N-l N-l 

< ~t L pjIWp+l(~-pjl)II~-Wp+ll + ~t L pjlWj
n - Wp+ll(~-pjl)I~-Wjn+] 

j=-M j=-M 
N-l N-l 

~t L BIWjn+lll~ -Wjn+11 + ~t L BIWP - Wjn+lll~ -Wjn+11· 
j=-M j=-M 

From I to V I, we can obtain 

N - l N-l N-l 

L h1Wjn+112 - L hlWPI2 + L hlWjn+l - WPI 
j=-M j=-M j=-M 

2~t 
N-l N-l 

+ t::.t L ~ [( t::. +Wt+1)2 + (t::. - Wr 1 )2] + L Ahl Wt+112 
j=-M j=-M 

N-l 

< L ~ Iw t+1 - Wjnllt::. +wr1 + t::. -wr11 
j=-M 
N-l 

+ L AhIWP+l - WjnIIWP+l I 
j=-M 

(2.4.19) 

N-l N-l 

+ t::.t L (~)hIWrl - Wjnl 1t::.-wr1 I + t::.t L 2Bhlt::.-wrlIIWjn+11 
j=-M j=-M 
N-l N-l 

+ ~t L BhIWjn+l-WPII~+WP+ll+~t L BhIWjn+ l -WPII~-Wjn+ll· 
j=-M j=-M 
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Then by direct computing, we have: 

N-1 N-1 N-1 
I: h1WP+112 - I: h1W;12 + I: hIWP+1 - W;I 

j=-M j=-M j=-M 
fj.t 

N-1 N-1 
+ fj.t L h[(fj. +Wp+1)2 + (fj. -Wp+1 )2] + L Ah1Wjn+112 

j=-M j=-M 
N-1 N-1 

< 401L\t L hlWjn+1 - WPl2 + 201L\t L h((L\ +Wrl)2 + (L\ -Wrl)2) 
1 . M . M J=- J=-

N-1 N-1 

+ 4~ L\t L [( ~ + 4B)fhlwr1 
- WPl2 + 202L\t L h((L\ +Wrl)2 + (L\ -Wp+1 )2) 

2 . M . M J=- J=-
N-1 N-1 2 

+ L\t[ L 203hlL\ -Wrl l2 + (L + d)2 L ~3 h~((L\ +Wrl)2 + (L\ -Wrl)2)] 
j=-M j=-M 

N-1 
+ L AhlWjn+1 - WPI2. 

j=-M 

Since Cl, c2, 61, 62 and 63 satisfy conditions 

and 

which implies 

26 + 26 + 26 + Ilall~(L + d)2 < 1 
1 2 3 4 -, 

we then can derive 
N-1 N-1 
E h1Wjn+112 < E hIWPI2, 

j=-M j=-M 
V n > O. 

Finally by the definition V:n == e2 foXj a(e)deW?1- we see that: for any given 0 < k < 
, J J ' - -

N -1 , 

V n > O. 
j=k 



Chapter 3 

Numerical Simulation 

In this section, we shall show some numerical experiments to demonstrate the 

effectiveness of the PML theories developed in the thesis. We shall focus on the 

one-dimensional Maxwell's equations 

{ 

8Ey _ 8Hz 

lit = iffy' 
8t - 8x' 

(3.0.1) 

and its Berenger's PML equations 

{ 

8Ey 8Hz 

fllt + (J Ey _ iffy' 
at+ crHz - 8x' 

(3.0.2) 

The computational domain consists of a domain with x E [-50,50] as illustrated 

in Fig 3.1. To terminate the computational domain in the x-direction, we add 

two additional layers, having 50 < Ixl < 60, in which the PML equations are 

solved. As the initial condition we use a magnetic pulse of the form 

H (x 0) == e -In(2) ~ z , , -60 < x <60. 

In all computations cS == 3 and the initial electric field components are zero. Here, 

we choose the boundary conditions as 

E( -60, t) == H(59.5, t) == 0, o < t < 70. 

93 
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-60 -50 50 60 

Computational Domain 

t """" """"" 

t PM:::~ion PML region 

x 

Figure 3.1: The geometry of the test case used throughout. 

The time behavior of the computation is illustrated in Fig 3.2 and Fig 3.3, 

showing how the initial pulse spreads, enters the PML and is being effectively 

absorbed. In this particular case we have used the Yee scheme (2.3.6) with 

~x == 1, ~t == 0.01 and choose an absorption profile given as 

{ 
( Ixl- 50)m 50 < Ixl < 60, 

a(x) == 10 

o Ixl < 50, 

where m is the order of the profile. Typical values are m == 2,3,4 and we have 

chosen m == 3 in our computations [AGH]. 

The time behavior of the computation of Hagstrom's PML is illustrated in 

Fig 3.4 and Fig 3.5. 
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Figure 3.2: Short time dynamics of PML solutions subject to an initial magnetic 

pulse. The snapshots are given at T== 0,10, ... ,70 for the component E y . 
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pulse. The snapshots are given at T== 0,10, .. . ,70 for the component H z . 
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