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Abstract 
Awareness of environmental problems induced by rapid urbanization began to 

emerge in many cities, especially those in China, in the last 5 years. There has been 

increasing volume of literature concerning the interaction between the structure of urban 

green space and urbanization in different Chinese cities. This research aims at comparing 

two Chinese cities, Chongqing and Nanjing, which have high disparities in locations, 

urbanization and industrialization levels, in respect of their landscape structure of green 

space within and surrounding the city propers. Landscape metrics are utilized to 

anatomize the different aspects of landscape structure of urban areas. 

Thematic information, such as different land covers, can be extracted from remotely 
sensed data using various image classification algorithms. Conventional classification 
methods tend to use only spectral reflectance to decide on class assignments. The main 
problem of these classifiers is that such spectral classification methods fail to utilize 
textural and shape information from the image, which are crucial for characterization of 
some land uses, especially woodland and urban areas. Besides, Most of them are "hard 
classifiers" in the sense that they classify each pixel of the image to the class to which the 
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pixel has the highest membership values, while the possibilities of these pixels to other 

classes are largely discredited. 

Object-oriented classification concept has emerged in recent years which are able to 

extract textural, shape and other contextual information from remotely sensed images and 

utilize them to constitute object features of different land covers, which may be 

contributive to more accurate image classification. Object-oriented system is equipped 

with Multiresolution segmentation, which allows the generation of image objects at user-

specified segmentation scales. Segmented objects of different scales are linked up under 

object hierarchy. Numerous spectral, textural and shape features of each object can be 

extracted, which can be selected to formulate classifying rules for each land cover class. 

Classification procedure is operated in the form of decision tree under class hierarchy, 

through which class assignment is based on comparison of segmented objects with 

classifying rules at each node of the decision tree. In this research, object-oriented 

classification of ASTER images of Chongqing and Nanjing are compared with other 

conventional spectral classifiers. 

Results of the research show that when spectral-shape ratio is decreased during 

segmentation, image objects generated are larger in average size at each segmentation 

level. Besides, low spectral-shape ratio seriously distorts the images. On the other hand, 

too high spectral-shape ratio may create image objects which are too fractal. Observation 

of the variation of various spectral, textural and shape features along segmentation levels 

reveals that for most of the land cover objects, object features obviously show break 

points at segmentation level 5，indicating that level 5 is suitable to be selected as one of 

the object levels. Break points are less discernible at other segmentation levels. Above all, 
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the research found that transferability of classifying rules between Chongqing and 

Nanjing is possible for many classes. Water body in both cities has particularly low 

values in GLCM Contrast and Standard Deviation of VNIR channels at high object level. 

At the lowest object level, “low density urban" in both cities has particularly high GLCM 

Contrast of VNIR 1 and 2. These findings confirm the earlier literature that textural and 

shape information, if utilized, is contributive to classification of some land covers which 

are not satisfactorily classified by solely spectral classifiers. 

Object-oriented classification of images in both cities are compared with maximum 

likelihood classification, linear spectral unmixing and supervised fuzzy classification 

utilizing additional shortwave infrared (SWIR) channels. Results of this research show 

that classification using linear spectral unmixing attained the lowest accuracy, followed 

by that using supervised fuzzy classification. Accuracies attained by Object-oriented 

classification and maximum likelihood classifier are not significantly different. Serious 

class mixing negatively affect the performance of these two classifiers. 

Patch- and class-metrics are used to analyze the 4 aspects of landscape structure 

urban green space: landscape composition, fragmentation pattern, contagion and patch 

shape complexity. Buffer rings and circles surrounding city centers of the two cities are 

applied to study the change of landscape structure of green space along distances from 

city centers. Results found that both cities have low proportion of green occupation and 

highly fragmented green space configuration, with low contagion, within 2 km buffer. 

Beyond 4 to 5 km buffer, both green coverage and aggregation begins to increase. 

However, green space in both cities are disaggregated in nature and simple in shape. 
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重慶及南京市城市綠地的硏究一利用物體主導的遙感分類技術�ASTER衛星圖像 
及景觀生態學 

論文摘要 

中國城市於最近五年城市發展非常迅速，引來很多惹人關注的環境問題。大 

量有關中國城市化與環境問題之間的互動關係的文獻在近年出現，當中有不少硏究 

城市化對城市綠地結構的影響。本文主要討論兩個中國城市一重慶及南京一市內綠 

地景觀結構的差異。本文將會從景觀生態學的角度對這兩城市內綠地的狀況進行分 

別。 

利用遙感分類技術可從遙感圖像析出很多主題資訊，如土地利用分佈。一般 

的遙感分類法多倚重圖像的光譜反射資訊來決定土地利用分類.它們的缺點是忽略 

了圖像內的有關組織及形狀的資訊對某些土地利用，如林地和城市，0勺辨認的重要 

性.另外，一般的遙感分類法假設了每一個像元只有一種土地利用分類，否定了 

「混亂像元」的可能性。因此很多研究需要更靈活的分類技術。 

物體主導的遙感分類技術在近年出現。除了光譜反射資訊，它更可從遙感圖 

像析取組織及形狀的資訊以改善遙感分類的準確度。它能利用M u l t i i e s o l u t i o n 

Segmentation技術把圖像分割，從而製造不同空間比例的「圖像物體」。從而製造 

不同空間比例的「圖像物體」由Object hierarchy連繫。大量的組織及形狀的資訊 

更可從物體析出。這些資訊可作成不同土地類別的特質。物體主導的遙感分類技術 

利用每一土地類別的特質建構Decis ion tree，把各「圖像物體」分類（Definiens-
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Imaging, 2 0 0 3 ) �這硏究利用此遙感分類技術把重慶和南京市的A S T E R衛星圖像分 

類° 

此硏究的結果顯示當「光譜一形狀比率」下降，分割所產生的「圖像物體」 

的平均面積便會變大；而且，「光譜一形狀比率」過低會扭曲圖像。過高的「光譜 

一形狀比率」貝U會使「圖像物體」的形狀過於複雜。大部分的土地類別的物體的特 

徵會在「第五分割層」出現改變。這顯示「第五分割層」適合作爲其中一層Object 

level�土地類別的物體特徵在其他的「分割層」出現的改變較難辨識。此硏究的結 

果亦顯示很多土地類別的分類法則在重慶及南京十分相近。如：水體在兩城均顯示 

很低的 G L C M Contrast和VNIR Standard Deviation ；在最底「物體層」，兩城的低 

密度城區在綠色及紅色波段均顯示很高的GLCM C o n f r a s t �這些發現肯定了組織及 

形狀的資訊在遙感分類技術上應更充分利用。 

此硏究亦把物體主導的遙感分類技術跟另外三種分類技術一包括最大可能性 

分類法（MLC)�線性光譜反混合分類法（Linear spectral unmixing)及模糊分類法 

(Supervised fuzzy classification)—進行比較。結果顯示線性光譜反混合分類及模糊 

分類法準確度最低，而物體主導的遙感分類及最大可能性分類法準確度相若。土地 

類別間的模糊性對這兩分類法產生負面影響。 

「塊狀景觀測量」及「類別景觀測量」被利用分析兩城城內綠地四方面的結構， 

包括景觀成分、景觀分裂狀態、景觀連接度及景觀塊狀的形狀複雜度。這研究從兩 

城中心劃出多個緩衝以分析城內綠地與市中心的距離是否影響城內綠地的景觀結 
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構。結果顯示兩城的綠地的某些景觀特質十分相似，包括：距離市中心兩公里之內 

城市的綠地覆蓋率低、綠地分裂度高、景觀連接度底°距離市中心四至五公里外的 

綠地覆蓋率及連接度開始上升°但總括而言，兩城的綠地都是連接度偏低及形狀簡 

單。 
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CHAPTER 1. Introduction 

1.1 Problem Statement 
Urbanization and its impacts on the environment is now one of the most urgent 

concerns of both policy makers and scholars in the world. Global urban population grows 
much faster than does the total world population (Sui & Zeng, 2000), in which rate of 
urbanization in the developing countries has long surpassed that in the developed world. 
Far more important, however, is not the speed of urbanization; but rather the 
"environmental stress" brought about by it, which manifests itself as urban sprawl, traffic 
congestion and various types of pollution (De Ridder, 2003). Urban green space is highly 
potential in mitigating the adverse effects of urbanization and enhancing people's sense 
of quality of life, therefore making cities livable and sustainable human settlements (De 
Ridder, 2003). Careful investigation and planning of green areas in urban areas, 
especially in respect of their compositional condition and spatial relationships with urban 
concrete fabrics, are substantiated. 

Awareness of environmental problems induced by rapid urbanization and the 
importance of urban greening began to emerge in the five years, which is evidently 
shown by surge in volume of literature concerning urban green space in Chinese cities. 
Most of the relevant literature pointed out directions on how to improve vegetation 
coverage in urban areas of China. However, amount of researches falls short of enough 
when it comes to analyses of existing condition of vegetation within and bounding cities. 
This finding provides aspiration for this research project. Particularly, we are concerned 
about the differences between cities in the eastern seaboard, which are more developed 
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and urbanized; and those in inner China, which are backward and less urbanized. 

Question as to whether disparity in the state of urban growth brings forth different 

conditions of urban green space in China is by and large unknown. It constitutes one of 

the two goals of this research. 

Landscape ecology provides an established theoretical framework under which our 

research concerning with the condition of urban green space in China can be undertaken. 

It is a relatively new branch of ecology specifically focusing on the interaction between 

structure of landscape element and ecological processes operating within the landscape 

element; plus patterns of changes of the interaction over time (Forman & Godron, 1986). 

One of the basic premises of landscape ecology is that it perceives a landscape as patches 

(basic homogeneous units of landscape) of different types/classes embedded within a 

background matrix. Different states of a landscape can be indicated by the changes in 

configuration of patches of a particular type (Turner et al., 2001). Based on this reason, 

landscape ecologists have been striving to work out methods to describe spatial structure 

of landscape patches, the most common of which being landscape metrics. Landscape 

metrics is a variety of quantitative measures of spatial pattern of landscape mosaic (Frohn, 

1998; Farina, 1998; Leitao & Ahern，2002 McGarigal, 2001). The development of 

landscape metrics has been very rapid. Hundred of metrics have been developed to 

quantify different aspects of landscape structure. Chiefly, four types of spatial patterns 

can be revealed: landscape composition, contagion/aggregation of a particular patch type, 

fragmentation, and patch shape complexity (Frohn, 1998). Using metrics of these four 

types, insight is expected to be shed on the disparities of landscape structure in different 

Chinese cities. 
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Analysis of any urban phenomenon relies upon remotely sensed data and 

geographic information. A classification map derived from remotely sensed imagery 

describing accurately the spatial distribution of different land covers is a prerequisite for 

landscape study at the later stage. Conventional classification methodologies, especially 

those using spectral features as sole data input for classification, has been increasingly 

found inadequate in many classification tasks. Their operations are usually so simple that 

Gaussian probability distribution of spectral variables for each class is assumed. Such 

simplicity is often criticized as too unrealistic to apply in real case (e.g. Frizzelle & 

Moody, 2001; Foody, 1996; Gopal & Woodcock，1994; Low et al.，1999). Besides, many 

of them assume within-pixel homogeneity, regardless of spatial resolutions of sensors and 

sizes of real-world features under investigation (Fisher, 1997). Such rigidity is also too 

inflexible to deal with real case in which mixture of land covers within a pixel is a norm 

(Atkinson et al., 1997; Frizzelle & Moody, 2001). Moreover, conventional classifiers 

tend to neglect the importance of contextual and texmral features to accurate 

classification. For instance, size, shape, and texture of a spatial object can be helpful in 

identifying which class a local region belongs to. Failure of recognizing meaningful 

spatial entities, and their inter-linkages, to derive image semantics from an image deems 

conventional classifiers inhuman (Blaschke et al., 2000; Definiens-Imaging, 2003). 

Object-oriented classification concept allowing segmentation of image at whatever 

scale of image abstraction is suitable to represent a particular spatial feature. A diversity 

of attributes about an image segment, including configuration and texture, is 

automatically obtained and used as features for classification at a later stage (Definiens-

Imaging, 2003). Segmented image objects of different scales are linked by hierarchical 

network. Fuzzy rules can be generated to define a class based on spectral, spatial and 
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semantic information about image objects, by which membership values to each potential 

class is derived and ordered. By making use of the knowledge extracted from the 

segmented image, a decision tree can be created which is similar to Figure 1.1 (Lawrence 

& Wright，2001; Borak & Strahler, 1999). 

In this research, object-oriented classification concept will be tested on the interface 

of ecognition™ whether classification accuracy can be significantly increased by this 

approach compared to conventional classifiers. In light of multitudes of possibilities for 

operating segmentation in terms of size, spectral and shape heterogeneities; and 

numerous statistics to formulate features for each class, we are especially interested in 

how different possibilities of segmentation affect the representation of different land 

covers; and which object statistics are suitable to identify a particular land cover. 

Accompanying by these knowledge, we expect to find the best series of segmentation 

levels and classifying rules for our multi-level object-based classification. 
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Figure 1.1 Semantic net based on prior knowledge and image interpretation. 
Source: Antunes et al., (2003) 
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1.2 Research Objectives 

The goal of this research is twofold: In the field of image classification techniques, 

this research aims at understanding whether object-oriented classification concept is 

capable of improving the defects of conventional classification methods, by which 

classification accuracy can be lifted. In the aspect of urban landscaping in China, it 

applies the measurements derived from landscape ecology in order to identify landscape 

structure of urban green space in Chinese cities, and compare the urban green landscape 

between coastal and inland cities. 

Specifically, the research is expected to attain the following tasks: 

In the field of object-oriented classification: 

I. Identifying spectral, shape and textural features of image objects generated by 

multiresolution segmentation, which constitute "class signatures，，for expected land 

cover classes; and tracking their variability for each class along different scales of 

segmentation, thus extracting classifying rules for classification. 

II. Detecting the variability of class mixing within segmented objects at different 

scales and spectral-shape ratios, in an attempt to optimize the segmentation 

operation, with which multi-level object-based classification can be optimized. 

III. Comparing both segmentation specifications and “class signatures" of expected 

class between different Chinese cities to investigate into the transferability of object 

classification knowledge in different locations. 

IV. Operating multi-level classification with segmentation at optimized scales and 

spectral-shape ratio and pre-designed Decision Tree structure，which is of higher 

accuracy compared to other conventional pixel-based classification methods. 
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In the field of urban landscaping in China: 

I. Analyzing structure of urban green space in two Chinese cities, Nanjing in the 

eastern seaboard and Chongqing in inland China, and its changes from city center to 

periphery with class-based landscape metrics, focusing on landscape composition, 

fragmentation pattern, class contagion and patch shape complexity. 

II. Explaining the similarities and disparities of structure of urban green space in the 

two cities with respect to their patterns of urban development. 

1.3 Research Significance 
Increasing awareness of the importance of green space to the environment of urban 

China is revealed by the surge in volume of literature concerning with the issue in the last 
five years. Also, much of the relevant literature advocates the application of landscape 
ecological concepts in improving urban parks and other green areas in urban China. 
Nevertheless, researches which focus on anatomizing specific problems of urban green 
space in different cities are found insufficient. Accompanying with remotely sensed data 
and spatial metrics derived from landscape ecology, this research is able to detail the 
structure of green areas of Chinese cities at macro-scale. Structure of urban green space 
of a city will be indicated with respect to composition, fragmentation, contagion and 
complexity of the shape of green "patches". Collectively, these indicators help identify 
the anthropogenic impacts on urban green space. 

The research adopts a buffer approach to investigating the change in landscape 
structure of green space from city center to urban periphery, which is expected 
contxibulive to understanding of the interaction between urban green space and urban 
development in China. Above all, disparities of both socio-economic conditions and 
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urbanization levels between eastern cities and cities in inner China have been widely 

documented (e.g. China Urban Statistical Yearbook, 2003; Luo & Chen，1999; etc.). 

Whether these discrepancies lead to obvious differences in patterns of urban development 

and thus green landscaping is, however, generally untouched. This research is expected to 

shed insight on such uncertainties. 

Segmentation is actually not a new remote sensing technique. Much literature has 
critiques of its strengths and weaknesses (e.g. Raucoules & Thompson, 1999; Ivitis et al., 
2002). However, less literature point out that segmentation is actually a process grouping 
heterogeneous pixels as one homogenous segment, which intrinsically induces within-
segment heterogeneity. Therefore, it is by and large unknown as to how the within-
segment heterogeneity extends with increasing scale of segmentation, and how such 
heterogeneity extension in turn influences the quality of object-oriented classification. 
Besides, most of the researches testing object-oriented classification focus on one study 
site at a time (e.g. Hero Id et al., 2002; Gomes & Mar gal, 2003; etc.); while this research 
also investigate into the transferability of the classification knowledge (mainly classifying 
rules derived from "class signatures") in different sites. 

1.4 Organization of the thesis 
This thesis is organized as follows: 

The first chapter is introduction, briefly explaining the rationale of this research. It 
is followed by Chapter 2, in which literature concerning major concepts in this research is 
reviewed. It includes the definitions and various classification methods of urban green 
space and different approaches to studying it; development of image classification 
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methods, specifically pinpointing weaknesses of conventional classification methodology 

and uniqueness of object-oriented classification concept; and basic principles and 

application of landscape ecology on recent landscape studies. 

Study sites and methodology of the research are outlined in Chapter 3. Two study 

sites, Chongqing and Nanjing, will be preliminarily described and compared regarding 

their geographical settings, political and governance statuses, and quality of environment 

and landscaping. ASTER data, which is the main data source of this research, will be 

introduced next, concerning chiefly its spectral and spatial resolution and pre-processing. 

The workflow of the object-based classification will then be elaborated step-by-step. 

Landscape analyses with focuses set on buffer analysis approach and metrics applied in 

the research are discussed to finish the chapter. 

Presentation and interpretation of results of the research go through the thesis from 

Chapter 4 to Chapter 6. In Chapter 4，variations in spectral, shape and textural features of 

segmented image objects along the segmentation gradient will be interpreted, which has 

two aims: Firstly, detecting the extension of within-object heterogeneity, thus class 

mixing, with increasing scales and spectral-sh叩e ratio of segmentation; by which 

segmentation process is optimized, generating three object levels for classification. 

Secondly, the distinctiveness of each land cover class in terms of "object features" is 

revealed, which is a means of extracting classifying rules for the object-oriented 

classification. 

Chapter 5 details the design of Decision Tree, or Class Hierarchy (Definiens-
Imaging, 2003), for object-oriented classification in both Chongqing and Nanjing, with 
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classifying rules of some special land cover classes enumerated as case studies. After that, 

comparison of object-oriented classification with other conventional classification 

methods in terms of classification accuracy and proportion of land cover in the study site 

will follow. Comments on the defects of classification rules and the transferability of 

classifying rules based on our classification experience will conclude this chapter. 

Results of landscape ecological analyses of urban green space in Chongqing and 
Nanjing are summarized in Chapter 6. Structure of urban green space in each city, in 
aspects of landscape composition, fragmentation, class aggregation and patch shape 
complexity, and its change from city center to city periphery, will be discussed with the 
aid of class-based metrics. Comparison of the structure of urban green space in total 
landscape between two cities will be followed in order to interpret their similarities and 
disparities. Precautions about the explanation power of landscape metrics and limitations 
of buffer analyses will also be added. 

Chapter 7 is a conclusion chapter. Summary of research results are briefed, 
followed by discussion of limitations and constraints of the research. It will also shed 
light on the future of further research in this field. 

1.5 Definition of Urban Green Space 
Operational definition of urban green space in this research includes all vegetation 

in the city proper areas, which is the 10-km buffer from city centers. It includes natural 
woodland and grassland, wetland vegetation in riparian areas, plantation in urban parks, 
residential, commercial and other land uses and agricultural crops. 

9 



CHAPTER 2. Literature Review 

2.1 Introduction 
In this chapter, major relevant concepts related to this thesis are reviewed. It will 

begin with urban green space, the sole target of the research. Following it is a brief 

discussion of crises and futures of contemporaneous urban landscaping in major Chinese 

cities. After that, remote sensing techniques, especially image classification methodology, 

will be evaluated, with particular focus put on object-oriented image classification 

techniques, which will be assessed in this research. Finally, concepts and applied metrics 

of landscape ecology will be canvassed in an attempt to generate a conceptual frame 

under which this thesis proceeds. 

2.2 Urban Green Space 
Value of urban greenery in terms of facilitating effective functioning of a city is 

well documented. Fabos's (1995) review paper helped generalize the importance of urban 
green space to urban centers. Its benefits are threefold. Green open space enhances a 
healthy environment, in which a range of recreation needs, either active or passive, are 
satisfied. Besides, some green space contains and thus helps preserve historical and 
cultural heritage. Most of all, urban green space is often the only landscape element in 
urban centers which possesses the ability to maintain and enhance biodiversity. This is 
especially the case in many Asian cities characterized by high pace and density of urban 
development (Jim, 1989; Jim, 1989a; Jim, 1998; Jim & Uu, 2001). 
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Therefore, a proper arrangement of urban green space is an essential element with 

which urban planning is concerned. Before any green space plan of a city is to be 

blueprinted, systematic investigation of existing condition and spatial distribution of the 

city's urban green space system is necessary. 

2.2.1 Classification of Urban Green Space 
Researchers classify urban green space in different ways depending upon their own 

research objectives and perspectives into urban green space. Jim (2002) used the ideology 
of town planning in Hong Kong to classify Tlantable Spaces (PSs)", that is potential 
urban green space, in terms of their locations and land ownership. Such kind of 
classification approach is seldom adopted in landscape ecological studies which focus 
more on functions, distribution patterns, habitats and scales of green space. For instance, 
Tyrvainen and Vaananen (1998) divided urban forests based on their functions into three 
categories: forested parks, wooded recreational areas and protection forest belts 
separating housing. 

On the other hand, some researchers use their classification schemes to indicate 
different relationships between urban green space and urban settlements at varying scales. 
Gobster (2001) categorized urban open space according to four scales: Interspaces (i.e. 
small planters and lawns along pavements, parking lots and so forth) within 
neighborhood at the lowest scale; public park shared by different neighborhoods; regional 
green ways that spans across counties or even states; and metropolitan bioreserve at the 
highest scales. 
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2.2.2 Configuration of Urban Green Space System 
The classification described above is chiefly based on different roles urban green 

space play in the urban context. There are also classification schemes which differentiate 

urban green space with the criterion of green space's configuration. Configuration of 

urban green space is a representation of size and shape of green canopy in urban area 

(Jim, 1989). According to Yu (1998), configuration of urban green space system can be 

analyzed at different scales. Each scale indicates a particular level of spatial details and 

carries different meanings: 1) Macro-scale一a regional planning issue which 

conceptualizes an open space system as a manifestation of relationship between green 

space system and urban concrete built-up; 2) Meso-scale~a more detailed analysis of 

layout of open space system components, with special attention being paid to the 

planning of urban center open space; and 3) Micro-scale—every green space unit is 

anatomized for design, protection and management. 

Not all scales of green space are able or needed to be considered in landscape 
ecological studies (Turner et al.，2001). It depends largely on research objectives 
concerned and research tools that are used. For studying urban green system as a whole 
with remote sensing tools, as in the case of Jim (1989 & 1989a), a classification of urban 
green space spatial structures at meso-scale or higher is apparently more practical. 

Yu (1998) generalized four classical models of spatial arrangement of green space 
system at macro-scale after analyzing green space system development overseas: 

1. Concentric Ring Pattern—a pattern in which open space acts as a 
concentric barrier cordoning off urban sprawl. The whole urban region is 
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encircled by 4 concentric green rings including: inner-city ring, suburban 

ring, green belt and rural ring. The most notable example is the Greater 

London. 

2. Embedment Pattern—open spaces and urban settlements exist 

alternatively resulting in ribbons, rings, polygons and especially wedges 

extending from suburbs. Green spaces often exist between growth axes 

such as highways and railways. The Greater Copenhagen is one of those 

typical examples. 

3. Nuclei Pattern—individual settlements (nuclei) develop around a "green 

heart" at the center well protected by greenbelts separating them apart. It 

is not very common because of intense urban growth. But we can still find 

a close example in the Amsterdam-Rotterdam-Hague metro region. 

4. Ribbon Pattern—usually evolved in metropolis with linear growth. 

(Linear) green space runs along the sides of linear metropolis so as to 

prevent against excessive urban sprawl. The linear green space tends to go 

along river channels or hi幼ways parallel to urban region. The Greater 

Paris grows following such pattern. 

In short, green spaces are most commonly classified with respect to their functions, 

forms and shapes. However, the best classification method should be tailor-made in 

different cases, fully considering research objectives, research methodology and local 

condition. In the next section, different approaches to urban green space study are 
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presented. Their implications on data and tools used, and henceforth classification 

schemes applied, are discussed. 

2.2.3 Different Approaches to Urban Green Space Study 
There are mainly two approaches to the analysis of urban green spaces. The first 

approach is small-scale investigation of individual trees or small tree patches such as 

local parks by ground survey. This approach merits itself by its comprehensiveness and 

high precision in terms of both targeted population and variables. For example, Jim and 

Liu (2001) survey urban trees in five zones of Guangzhou and acquire a comprehensive 

record of individual tree patches, which includes species composition, location, 

frequency, dimensions, growth forms and amenity characteristics, at 100 percent 

sampling intensity. However, the coverage of ground survey is often insufficient to reveal 

a distribution pattern of green space of a whole city; or it is very expensive if anyone 

wants to conduct a comprehensive survey at such a high precision level (O'Neill et. al., 

1997). 

Another approach is synoptic identification and subsequent investigation of urban 
green space in a large area from remotely sensed imagery. This approach studies a large 
region (e.g. a city) as a landscape, into which green space is investigated. It is the reason 
why it is sometimes called “landscape approach" (O'Neill et. al., 1997). Research using 
landscape approach commonly resort to remotely sensed images as main data source, 
from which different classes of green space and other land uses are extracted through 
automatic classification or visual interpretation, with respect to their spectral signatures, 
configuration and distribution patterns (Jim & Liu, 2001). For example, Bin et al. (2003) 
extract green space and other urban land uses of Pudong of Shanghai from Lands at TM 
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imageries and analyze their multi-temporal variations. Landscape approach to urban 

green space study has many limitations, For example, scale and image classification 

accuracy may influence the interpretation of landscape pattern (Chuvieco, 1999; O'Neill 

et. al., 1999). Its limitations will be discussed in detail in later sections on landscape 

ecology. Notwithstanding its weaknesses, landscape approach is less expensive and more 

practical than ground surveys when labor and budget is constrained while research is to 

focus on spatial distribution of green space in a city, rather than detailed variables about 

individual trees or tree patches (O'Neill et. al” 1997). 

Implication from this section is that in case of green space study in which detailed 
in-situ investigation is difficult to carry out (like this research), remotely sensed imagery 
is the dominant data source, from which spectral reflectance and configuration are key 
variables for identifying green spaces. Henceforth, sizes and forms of, and spatial 
relationships between green space will be quintessential to research (Jim, 1989). 

2.3 Urban Green Space in China 
Needs of green space are soaring in China where an increasing proportion of people 

will live in cities (Jim, 1989; Jim, 1989a; Jim, 1998; Jim & Liu, 2001). There is a lot of 
literature about urban green space published in China in the last 5 years (Zhang, 1999; 
Cao, 2001; Wang, 1999; Fang et al., 2001; Feng et al., 2003; Qin, 2001; Zhou & Tao, 
2003; Zang & Feng, 2003). A rising awareness of the need of urban green space in China 
is palpable. A summarized description of the general problems and potential development 
of landscaping in major Chinese cities is provided in the following sections. 
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2.3.1 General Problems 
Urban green spaces in Chinese cities are mainly threatened by 3 problems. First of 

all, unrestrained urban development and chaotic land use allotment have seriously 

contaminated, or even outrageously destroyed, urban green space and other natural 

habitats within and around cities. Second, urban green spaces in many cities are unevenly 

distributed. A few very large scale public parks take a predominant share of the total 

urban green coverage, with insufficient number of medium or small green spaces which 

can serve local residential neighborhoods. Third, patches of green spaces in urban 

districts seldom have connections with one another or to natural environment outside city 

proper. Lack of green corridors paralyzes some critical ecological functions of urban 

green spaces such as species migration and genetic exchange. 

2.3.2 Increasing Awareness of Environment 
Scientists and government decision makers are increasingly aware of the 

environmental impacts of rapid urbanization of urban cities. Sui and Zeng (2000) argue 
their paper that promotion of the development of middle-lev el and intermediate cities by 
many policy makers in China will impose harmful impacts on the environment by 
seriously fragmenting forested and agricultural land neighboring cities. The Tenth Five-
Year Plan for Social and Economic Development in Chongqing (2001) revealed 
government's attention on the functions of urban greening: controlling soil erosion and 
river pollution. Volume of literature concerning improvement of city landscapes has been 
multiplying in the last few years. Some of them are about ecological analyses of 
vegetation within and bounding big cities in China. Guan et al. (1999) compared 
landscape structures between old urban areas and new urban areas in Guangzhou using 
landscape metrics and pointed out the merits of high landscape heterogeneity of 
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vegetation on urban environmental quality. Zhang et al. (2004) used both class-level and 

landscape-level metrics to analyze the spatial pattern of urbanization in the Shanghai 

metropolitan area and its impact on fragmentation of surrounding rural landscape. Zhao 

et al. (2003) also analyzed urban landscape of Shanghai focusing on landscape 

heterogeneity and stability of Pudong, city center of Shanghai. 

Most of the research articles about Chinese landscaping, however, punctuated 

directions to improve the existing green space system, which are rather similar to one 

another. They are more or less inspired by two critical concepts. The first one is 

landscape ecology, which is a subject trying to explore the interaction between landscape 

pattern and ecological processes, and their changes over time. (Forman & Godron, 1986) 

Chinese landscape experts are increasingly inclined to adopt models and measuring 

methodology derived from landscape ecology to analyze urban green spaces and 

synthesize landscape plans to ameliorate persistent environmental problems. Elaborated 

discussion of landscape ecology, its concepts, models and metrics, will be left to later 

section. 

The second one is the so called Greenway Movement, which aims at creating 

"green corridor" along urban linear features such as river channels to connect existing 

isolated patchy green spaces within and around the city region, an attempt to enhance 

green space connectivity and diversified functions (Little, 1990; Fabos, 1995; Walmsley, 

1995). Much literature about Chinese landscaping set up plans to utilize "urban lines" to 

provide connecting green corridors interweaving both inside and surrounding cities (Jim 

& Chen，2003; Yan & Wang，1999; Yang, 2003). 
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2.3.3 Chinese Definition of Urban Green Space 
Urban development in many Chinese cities is different from western countries 

because they are the results of blending of planned economy (before 1980) with market 

economy, especially after 1990s (Zhou, 1998; He et al., 2002). This fact seems to deviate 

from western green space spacing model when it comes to analyzing green space 

configuration in China. For this reason, Zheng (1999) grouped urban green space in 

Chinese cities into 4 types: 

1. Patchy pattern一usually found in old cities like Shanghai and Tianjin in 

which large public green parks spread regularly in the city proper. Such 

pattern is criticized mainly of its lack of green connection, which can 

enhance green spaces' capacity of supporting flora and fauna (which in 

turn enhancing its amenity values), and shading and absorbing pollutants 

(esp. greenhouse gases), which help improving the atmospheric 

environment of urban areas (Jim & Chen, 2003). 

2. Ribbon pattern一green space develops along waterway systems, road 

networks and ancient city walls and other linear features, forming 

greenways or even green web of capricious patterns such as rectangular, 

radiated and ring. Its strength in terms of beautifying city scape is eminent. 

Examples include Nanjing and Harbin. 

3. Wedge pattern一green space at the outskirt of city infiltrates into city 
proper with decreasing width, forming wedge shape. For example, Hefei 
is surrounded by wedges. Generally, designers utilize river channels, 
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natural landforms and radiated highways to create greenways which then 

connect to agro-forests or windbreak woodlands in suburbs. 

4. Combined pattern—that is to say, a composite of the layouts mentioned 

above. Its merit is an integration of the strength of all the three patterns. 

The resulting arrangement is likely to be a composite of urban green 

"points, lines and polygons". 

After taking balance between green space classification scheme of Chinese 

government and the ability of Lands at TM and SPOT to identify green features, Che and 

Song (2001) classified urban green space in Shanghai into 5 types: public green space, 

resident green space, auxiliary green space, agro-forest space and remnant natural green 

space. This classification scheme is similar to that generated by Zhou and Tao (2003) in 

Ningbo, who created an extra class "roadside green space" while deleting the classes 

"agro-forest" and "remnant natural green space". Advantages of imposing such kind of 

classification schemes are twofold: green space categories under such classification 

systems have clear definitions offered by landscaping and gardening authorities in China 

(Cheng & Lo, 1999). Besides, the green space categories are readily recognizable on 

remote sensing imagery. For example, roadside green spaces are often recognizable by 

their linear forms; whereas public green spaces are easily distinguished from residential 

and auxiliary green spaces by their much larger sizes and more compact patch shapes. 

A brief review of literature about urban planning and specifically landscape 
planning in China reveals that definition of green space adopted in urban planning, which 
mainly includes vegetation in designated plan table spaces, may not be suitable for 
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landscape ecological studies. In fact, woodland and grassland in other land uses, such as 

those planted beside residential areas, parking lots, etc., contribute as much to 

improvement of urban environment as designated green spaces do. Besides, agro-

vegetation within the urban boundary is common in many Chinese cities and hardly 

found different from other urban vegetation from the perception of both urban inhabitants 

and landscape ecologists (Che & Song, 2001). 

Furthermore, both academia and governments tend to decompose urban green 

space system into points, lines and polygons (Guan et al., 1999; Then, 1999; He et al.,. 

2002; Zhou & Tao, 2003; Zhang, 1999). Such decomposition looks simple and coarse, 

but it may be very convenient for green space identification, investigation and planning in 

Chinese cities. It is easy to associate green space categories under Chinese classification 

system with these three spatial features, especially when remote sensing technique is 

applied in landscape study. For instance, public green spaces are usually large scale 

public parks and thus exJiibit polygonal shapes in satellite image; linear features in 

satellite image logically represent roadside green space or other types of green corridors; 

scattered residential pockets may reveal themselves as green pixels. It is thus possible to 

first identify green "points, lines and polygons" on satellite image and then associate 

them spatially, which may help illustrate the urban green space system structure. 

Landscaping problems in a city investigated may henceforth be discerning after 

comparison between observed green space pattern and Chinese cities' green space 

models mentioned above. 
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2.4 Remote Sensing Techniques 
Analysis of any urban phenomenon and urban green space in particular, relies upon 

remotely sensed data and geographic information, which can provide a synoptic view of 

an urban landscape (Turner et al., 2001). An accurate recognition and subsequent 

classification of spatial layouts of different land cover types from these kinds of data is a 

prerequisite. In this section, focus is on evolution of image classification to 10 years. A 

short review of image classification techniques is reported in the first sub-section, which 

includes description of some conventional classification methods, discussion of mixed 

pixel problems一a common deadlock in the field of remote s e n s i n g a n d their impacts 

on conventional classifier. Because of basic deficiencies of conventional classifications, 

alternatives have been developed in the last 5 years. Their advantages, defects and 

implications will be reviewed next. A new image analysis software, e-Cognition, 

emerged 2 years ago and is expected to solve problems still plaguing alternative 

classifiers. Its multiple functions and merits will be presented at the last portion of this 

section. 

2.4.1 Review of Image Classification Techniques 
According to Jensen (1996), one of the most commonly used methods, by which 

thematic information (such as land use/land cover) can be extracted out of a remote 
sensing image, is image classification. It is a procedure of categorizing image units 
(usually pixels) into land cover classes useful to a particular study based on available 
information (usually multi-spectral digital values) from each image unit. As Lilies and, et 
al. (2004) stated, there is a large variety of image classification procedures, which can 
dichotomoLisly into: supervised procedures in which statistical descriptors of the various 
land cover classes are pre-specified to classification system by representative "training" 
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samples of known classes; and unsupervised procedures which aggregate pixels into 

spectral "clusters" whose corresponding land cover classes in real world are determined 

by analysts afterwards. In the following section, only supervised procedures will be 

discussed because they are more commonly used during image classification and easier to 

be handled. 

2.4.1.1 Conventional Classification Methods 
Conventional classification methods (classifiers) can be termed as spectral 

classifiers because they tend to use only information provided from multivariate spectral 
reflectance to decide on which one of pre-defined classes is most probable to be assigned 
to a pixel (Atkinson et al., 1997). Atkinson and Tatnall (1997) pointed out that the most 
significant similarity shared by most of the traditional classifiers is their parametric 
nature, that is, they assume a muIti-spectral Gaussian distributed feature space for each 
class. 

Much literature has accounted for characteristics and drawbacks of conventional 
classifiers (Frizzelle & Moody, 2001; Foody, 1996; Gopal & Woodcock, 1994; Low et al., 
1999). Summing them up, conventional spectral classifiers, particularly those applying 
Gaussian distribution assumption (such as discriminant analysis classifier), have two 
major characteristics: the first is that they are per-pixel classifications, in which each 
pixel in an image is treated individually during class assignment, while spatial 
relationships between pixels within a close neighborhood are ignored. It implies that 
classification of image can only rely on spectral reflectance of pixels, while many 
researches have pinpointed that such spectral classification methods cannot generate 
satisfying classification results, because textural and shape information are crucial for 
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characterization of some land uses, especially woodland and urban areas (Zhang, 2001; 

Fung & Chan, 1994). The second is that they are “hard，’ classification because every 

pixel in an image is assigned to only one class. Conventional classifiers assume land 

cover homogeneity within an entire area represented by a pixel and class labeling is thus 

based on multi-dimensional digital values of training sample pixels for each land cover 

class. They then assign each pixel to the class to which the pixel has the highest 

probability of membership, while the remaining classes of lower membership values are 

totally disregarded. 

From the above descriptions about conventional classifiers, it is obvious that their 
limitations to image classification are rooted into their two fundamental assumptions: 
purity of pixel and membership dichotomy. These two weaknesses of traditional 
classification methods will be elaborated in the next sub-section on mixed pixel problem. 
Besides, these classification methods have the third weakness: unrealistic assumption 
about parametric probability distribution of spectral variables for each class. In real 
situation, the spectral values for defining feature space of a class do not always follow 
this parametric model. In short, conventional classification methods are constraints-
ridden, even though they are widely used because of their ease of operation and 
automatic classification nature. 

2.4.1.2 Mixed Pixels Problem 
In remote sensing analysis, it is commonly agreed that pixels (the basic mapping 

units of an image) are "pure" in the sense that each of them represents an area assumed to 
be homogeneous, regardless of spatial resolutions of different sensors and sizes of real-
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world features under investigation (Fisher, 1997). Actually, it is this assumption about 

pixel from which various conventional classification methods are derived. 

Nevertheless, there are both intrinsic and extrinsic properties which render this 

basic assumption about pixel unrealistic and thus inappropriate. Intrinsically, Cracknell 

(1998) confirmed the non-uniform response within Geometrical Instantaneous Field of 

View (GIFOV) of a sensor corresponding to the pixel in image. That is, the sensitivity of 

sensor to a source of reflectance in terms of digital values (DVs) is variable within the 

GIFOV, rather than spatially homogeneous as commonly assumed, because of constant 

motion of spacecraft and continuous rotation of scanning mirror. Extrinsic problem which 

hampers basic concept of pixel is incurred by ground objects themselves. If a ground 

object is to be fully represented by a pixel, it has to fulfill three conditions: first, it is of 

the same size as that of the IFOV or its multiples; second, its edges run parallel or 

perpendicular to, or exactly overlapping pixel edges; and third, it should be such aligned 

that its center overlaps that of the pixel. However, few objects can satisfy even one of the 

above conditions. It is therefore reasonable that many pixels in an image cannot represent 

ground features purely. While intrinsic problems of pixel can be improved by sensor 

calibration and resampling, extrinsic pixel representation problems cannot be reversed 

unless some mutations of traditional image analysis methods arise (Fisher, 1997). 

Because of the problems of pixel representation described above, especially the 
extrinsic pixel representation problems, a mismatch between scale of detection and that 
of details of spatial variation in land cover occur frequently, which results in a mixture of 
land cover classes within a pixel (Atkinson et al., 1997; Frizzelle & Moody, 2001). This 
phenomenon is termed as mixed pixel (such as Gulinck et al., 1993), sub-pixel mixing 
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(Atkinson et al., 1997) or "mixels" (Zhang & Foody, 1998). Mixed pixels can be 

discovered in almost all remotely sensed data. But they are particularly serious in urban 

environment, which is chaotically conglomerated by different land cover types with 

contrasting configurations and spectral signatures (Lein, 2003), as well as along 

boundaries of ground objects (Fisher, 1996). Fisher (1997) pinpointed four major forms 

of mixed pixel problems whenever a study attempts to extract information which is 

smaller than pixel size: 

1. Boundaries between two or more land cover classes within a pixel; 

2. Intergrade between land cover classes, i.e. ecotones; 

3. Linear sub-pixel objects, e.g. rivers; and 
4. small sub-pixel objects 

2.4.1.3 Mixed Pixels' Effects on Conventional Classifiers 
As mentioned above, conventional classification techniques are characterized by 

their two assumptions—pixel purity and “hard，，membership. The fact that these two 
characteristics impose great limitation on their abilities to deal with mixed pixel problems 
is widely discussed in literature (Blaschke et al., 2000; Cracknell, 1998; Fisher, 1996; 
Foody, 1996; Foody & Boyd, 1999; Zhang & Foody，1998; Leung, 1988). They mainly 
spot two major weaknesses of conventional classifiers in terms of mixed pixels handling: 
first, per-pixel classification assumes sub-pixel homogeneity, which is an over-
simplification of real world situation in which several features of interest can be found in 
an area represented by one pixel however high the spatial resolution. Second, the relative 
strengths of membership to all possible classes are shredded during production of "hard" 
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classification result, overlooking much classification information such as uncertainty of 

classification and class definition and inter-class similarity. 

In short, conventional classification techniques are inadequate, or even erroneous, 

image analysis methods when an image is occupied by mixed pixels (a rather normal 

situation). Alternative methodologies may be needed to enhance the representation of 

actual land cover distribution. 

2.4.1.4 Alternative Solutions to Mixed Pixels Problems (Fuzzy Sets) 
Leung (1988) gave a clear definition of a fuzzy set, which is shown in equation 2.1. 

Let X be a universe of discourse (i.e. all objects of interest) with a generic element of X 
being denoted by x. Then a fuzzy set A in X is a set of ordered pairs: 

[x, jd入e X， (equation 2.1) 

where X M is a membership function which maps x e X into (;c) in 

an ordered set M which is called the membership set. {x) indicates the grade of 

membership of x in the fuzzy set A. Unlike conventional “two-valued logic approach", 

The membership set M can be any real number within a closed interval [0,l], in which 

0<ju^ (x) <1 implies that x belongs to A to a certain degree. 

Implication of this definition is that a transition from membership to non-
membership of a certain concept is gradual rather than abrupt This concept has potential 
to be utilized in classification of real world objects because, according to Gopal and 
Woodcock (1994), categories in the real world are usually easily differentiable in their 
central states, while they are getting less separable with decreasing distances from 
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dividing lines between the categories. Trees and grassland often form an ecotone in 

which separation between these two classes is getting more difficult near the middle 

region of transitional area (Foody & Boyd, 1999). 

Because of its distinctive ability to handle uncertainty and concept imprecision, 

fuzzy sets techniques, if adopted in image classification, may provide a feasible way to 

solve mixed pixel problems, informing image analysts of sub-pixel class proportion, 

which in turn delivering them with knowledge of classification uncertainty (Gopal & 

Woodcock, 1994; Foody, 1996). From the definition of fuzzy sets given above, it is 

understood that the most distinguishing feature of fuzzy representation is the subtle 

variation in membership values of object to different classes. It can then be inferred that 

fuzziness of classification can be modeled by assigning (or deriving) each pixel real 

membership values (within the range between 0.0 and 1.0) to all candidate classes. As a 

result, output of classification will be a set of membership values of apixel to all possible 

classes, instead of a definitive judgment about the classification of any pixel. Such a 

classification approach is called soft classification approach (Lein, 2003; Frizzelle & 

Moody, 2001). 

There are 2 main ways of deriving fuzzy membership values to land cover classes 
for pixels: the first method is to "soften" the output of conventional classification 

procedures by deriving a measurement of fuzziness of membership. For example, 
discriminant analysis classifier such as Maximum-Likelihood Classifier contains a 
posteriori probability of class membership to each class for each pixel, which can be 
utilized to surrogate pixels' membership values to the corresponding class. In the case of 
Artificial Neural Network (ANN) classification, the strength of class membership can be 
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converted from the activation level of network output unit for a particular class (Foody, 

1996; Zhang & Foody, 1998). The second method is using Fuzzy classifier directly, 

which calculates the membership values to each class based on the measurement of the 

distances between value points (usually spectral values) of a pixel and mean value points 

of each class in class-defining feature space. The most widely used fuzzy classifier is 

Fuzzy C-means Clustering Algorithm (FCM) (Atkinson et al., 1997). 

A 'fuzzified" or soft classification method does not always mean sub-pixel 
classification. It is only the case if fuzzy membership values of a pixel in various land 
cover classes derived from soft classification can help estimate the proportions of pixel 
area occupied by the corresponding land cover classes consistently. Fortunately, much 
literature found that the proportions of each land cover classes in a pixel are highly and 
positively correlated to their corresponding class membership values, no matter which 
types of soft classification procedures (direct or indirect fuzzy) are used (Foody, 1996; 
Zhang & Foody, 1998; Atkinson et al., 1998), which is a fact that makes the problems of 
mixed pixels solvable. 

2.4.1.5 Problems Fuzzy Classifications are unable to solve 
It is undoubted that soft classification techniques can highly improve the accuracy 

of classification, especially in terms of mixed pixels handling. Nevertheless, there are 
many problems inherent in classification yet to be solved. One of the most significant 
problems is still incurred from pixel representation. Fung and Chan (1994) and Blaschke 
et al. (2000) argued that mixed pixel problems is only one side of the mismatch between 
scale of sensor detection and scale of variations in landscape a particular research is 
interested in investigating. While mixed pixels can be satisfactorily solved by fuzzified 

28 



classification methods, another side of the scale problem (i.e. spatial resolution is too fine 

relative to some more generalized features such as urban land) is not the same case. Tools 

may be needed to group relatively homogeneous neighboring pixels in its stead. More 

generally, a universal scale of observation for different spatial features in an image does 

not exist. Image analysis system should be flexible enough to engender multiresolution 

perspectives into spatial features of different sizes (Blaschke et al., 2000). 

Related to the first problem is the second one: pixel-based image representation is 

fundamentally limited and not intuitive to human beings. Human beings do not interpret 

remote sensing image like that. Rather, they rely on their recognition of some meaningful 

spatial entities, or objects, and their inter-link ages, i.e. image semantics (Blaschke et al., 

2000). For instance, image interpreter will not perceive a highway as a string of pixels, 
but recognize it by its shape (long), its size compared to other roads nearby (bigger), 
complexity of linkages with other roads and volumes of vehicles within it. All of these 
attributes of a highway cannot be recognized until pixels can be regrouped into more 
meaningful items. It implies that only by acquiring knowledge at object level is it 
possible to attain a better image classification result (Sester, 2000). Various methods of 
modeling compact objects out of pixels have been developed. Filtering techniques with 
floating windows to generate similar textural units were widely adopted due to ease of 
their operations (Kiema, 2000; Teng & Fairbairn, 2002; Low et al., 1999; Franklin et al., 

2001). However, such techniques induce loss of details provided by an image (Fung & 
Chan, 1995; Blaschke et al., 2000). Another main method of object extraction is 

segmentation or grouping of similar pixels. Although many segmentation algorithms 
have been developed, few of them lead to convincing results (such as Raucoules & 
Thompson, 1999). One reason is that segmentation involves many parameters and thus 
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enormous possibilities, some of which are unexpected (Ivitis et al., 2002). In other words, 

an image can be segmented into different numbers of image objects of varying sizes, 

which are then up to analysts to interpret. Besides, image objects created by segmentation 

may still be meaningless. A real object-based image analysis will be needed to explicitly 

express and handle a network of objects at multiple scales. 

Summing up, a better image analysis and classification system will have the 

following requirements: 1) it may adopt soft classification approach to solve sub-pixel 

problems; 2) it may be sufficiently flexible to allow multi-scale perspectives into spatial 

features on an image~from pixel level to "region" level; and 3) it may evolve into a real 

object-based analysis, thereby image objects are not only extracted out of pixels, but also 

inherit a set of semantics relationships with objects of different scales. Such a system will 

rely on analysts to define object features, which implies a more integrated and interactive 

collaboration between computer system and human knowledge (Definiens-Imaging, 

2003). 

2.4.2 Object-oriented Classification Concept 
Object-oriented classification concept has three characteristics with respect to 

image classification and analysis compared to other conventional software: 
multiresolution segmentation, fuzzy classification and object-based image processing 
environment (Definiens-Imaging, 2003). 

2.4.2.1 Multiresolution Segmentation 
Multiresolution segmentation is a function allowing extraction of image "object 

primitives" (i.e. image objects without semantics information) at different scales without 
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much prior knowledge about the site of interest. Pixels are grouped into spatially compact 

and spectrally similar regions. Different scales of image objects are linked together by 

object level hierarchy (Definiens-Imaging, 2003). 

Unlike conventional pixel-based image classification methods, segmentation is an 
operation aggregating raw image pixels into regions which are spectrally and texrurally 
intact. As Ivits et al. (2002) stated, hierarchical object-based image analysis has two 
major advantages: first, different segmentation levels enable perception of landscape 
objects at different scales； second, objects of different levels are such linked up that each 
object has its own set of relationships with its neighboring objects, "sub-objects" and 
"super-objects" which are interchangeable with human lexicon such as "containing", 
“part o f and so on (Definiens-Imaging, 2003). Besides, a diversity of attributes about an 
object segment, including configuration, reflectance, texture and spatial relationship, is 
automatically calculated and will be used in later classification process. 

2.4.2.2 Fuzzy Classification Procedure 
Unlike conventional classifiers, fuzzy logic features during class assignment 

process is offered, allowing us to consider uncertainties of all kinds. In fuzzy logic space, 
an object has a variable membership value, term "z-scoresto each and every class, 
depending on its degree of similarity to those classes (Definiens-Imaging, 2003; Foody, 
1996; Foody & Boyd, 1999; Leung, 1988; Zhang & Foody, 1998). 

Two fuzzy tools are provided: manual fuzzy rule and automatic nearest neighbor 
classifier. Manual Fuzzy rule allows us to create our own fuzzy "if-then" rules to define a 
class, based on the spectral, morphological, and hierarchical statistics pre-calculated for 
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segmented objects (Definiens-Imaging, 2003). For example, a class "vegetation" can be 

defined as "NDVI higher than 0.2". Fuzzy membership function can be edited to refine 

class definition. Nearest Neighbor Classifier, on the other hand, is an automatic 

classification operation. The principle behind is simple: selecting representative samples 

for each class. Based on the samples, multivariate class rules for a class is automatically 

defined, using same statistics mentioned above. The algorithm will then search for the 

closest sample object of each class in the multivariate feature space for each object. “Z-

scores“ of an object to a class is converted from the distance between the location of the 

object in the feature space and that of the closest sample of that particular class 

(Definiens-Imaging, 2003). 

It is meaningless if the classification only displays the class assignment with the 
highest membership value, ignoring other class assignments with lower membership 
values, which is the way conventional classification evaluation approaches (Foody, 1996; 
Ricotta & Avena, 1999; Zhang & Foody, 1998). So, classification evaluation is available 
by which the class assignments with the highest, the second highest and the third highest 
membership values are shown. 

2.4.2.3 Object-oriented Approach to Image Processing 
Object-oriented Approach is originally a new concept of database modeling in 

which class and objects, rather than relational tables, are basic units for representing real 
world features (Laurini, 2001). In object-oriented database, each entity is considered as 
an object which has a set of variables that describe the object, a set of messages that the 
object can use to communicate with other objects, and a set of methods which hold the 
codes to implement messages. Objects which share common properties are grouped into 
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an object class, while object classes are grouped into class hierarchy. Properties of a class 

would automatically "pass" to its sub-classes by inheritance, while the sub-classes can 

has its own specific properties (Han & Kamber，2001; Leung, 1999). 

A similar concept is adopted in this research. A class hierarchy is formulated by 
users to define a set of classes and relationships between the classes according to their 
classification scheme. However, it is different from the original concept of object-orient 
approach in that a class does not automatically have a set of objects and attributes to 
define its objects. Rather, a class is merely a split between membership and non-
membership which is determined by a set of rules (manual fuzzy rules or nearest 
neighbor rules described in earlier section) defined by users, or what are called "class 
properties" (Definiens-Imaging, 2003). Image objects are assigned membership to a 
particular class if their values of attributes satisfy properties of the class. It is important to 
know that knowledge for determining a rule is usually based on analysis of spectral, 
shape, spatial signatures, or all of them, which is already measured by the image analysis 
system. Therefore, knowledge base is inherent in the image system itself, rather than the 
user-defined class hierarchy. 

2.4.2.4 Ecognition 
In our research, ecognition™ is used to apply object-oriented image classification 

concept. The image analysis system will be used due to the following features. Image 
objects of different scales can be generated by multiresolution segmentation; object 
semantics are formulated from object level hierarchy and a diversity of measurements 
describing image objects are automated. Fuzzy classification procedures allow explicit 
expression of classification uncertainty. Above all, Fuzzy rules can be generated to define 
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a class based on spectral and spatial information about image objects obtained from the 

system. By making full use of the above functions, a decision tree can be created with 

specified fuzzy rules forming a series of dichotomous splits. Image objects will in turn 

use these rules to derive membership values in each class (Lawrence & Wright, 2001; 

Borak & Strahler, 1999). Classification result may be optimized by a more interactive 

cooperation between computer and human expertise and experience in a fuzzified semi-

automated image analysis interface (Definiens-Imaging, 2003). 

2.4.2.5 Research about ecognition 

Several researches have been done to solve different landscape problems using 
ecognition™. Hero Id et al. (2002) applied multiresolution segmentation techniques to 
operate mult-level classification of IKONOS data, aiming to differentiate urban functions 
of Santa Barbara urban area and prepare the data for further landscape studies. Ivits et al. 
(2002) also applied the multiresolution segmentation and object-based classification 
concept through e c o g n i t i o n T M to classify forested landscape from Lands at-ETM+ and 
aerial photography, with which landscape connectivity is then calculated. Compared with 
visual interpretation, researchers found that object-based classification leads to more 
accurate detection of forested patches. An tunes et al. (2003) utilized the spatial, textural 
and semantic information provided by the object-based image processing technique to 
improve the classification of riparian environment, to which only spectral information is 
not enough, and attained positive classification accuracy. 
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Multiresolotion segmentation can be operated at a numerous compositions of color 

and shape and a variety of scale parameter/size value. Infinite possibilities will thus occur 

when image objects are to be generated while which one among them is the best in 

representing a particular landscape element and for classification is yet to be known. 

Gomes and Margal (2003) also pointed out that the "best" parameters for image 

segmentation is difficult to be identified. It implies that a systematic investigation of 

multiresolution segmentation to identify a set of parameters: color-shape ratio, average 

object size, object features, etc., suitable for separating land covers is reasonably needed. 

2.5 Landscape Ecology 
Landscape ecology is a new branch of ecology which specifically focuses on spatial 

dimension of ecological processes. Its concepts and derived metrics provide a linkage 
between a variety of disciplines such as biology, planning, geography, etc., which help 
academics and practitioners concerned realize sustainability (Leitao & Ahem, 2002). 

2.5.1 Basic Principles 
Landscape ecology, according to Form an and Godron (1986), is a subject which 

specifically focuses on the three characteristics of landscape: 1) structure, the spatial 
patterns of landscape elements and such ecological components as animals, biomass, 
energy and so forth; 2) function, or the interactions of objects between landscape 
elements, which are fundamentally assumed to be highly related to landscape structure; 
and 3) change, alterations in the landscape structure and^unction through time. From this 
definition, it can be inferred that landscape ecology attempts mainly to understand the 
interactions between spatial pattern and ecological processes of a landscape (Zhang et al., 
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2004). In fact, many natural phenomena about natural landscapes seem to show that 

reciprocal relationship between ecological processes and patterns exist That is to say 

process creates, modifies, and maintains a landscape pattern whereas pattern constrains, 

promotes, or neutralizes a process (Li & Wu，2004). 

Another remarkable concept of landscape ecology is that all landscapes can be 
perceived as essentially composites of patches, corridors and a background matrix. 
Variations in sizes, numbers, shapes, compositions and configurations of these three 
components are compelling indicators to differentiate one landscape from others. This so 
called ‘‘patch-corridor-matrix,’ landscape model have been widely adopted in many 
different landscape researches, especially urban landscape planning and architecture 
projects (Jim & Chen, 2003; Ivitis et al., 2002). 

2.5.2 Landscape Metrics 
Landscape metrics can be defined as a variety of quantitative measures of spatial 

pattern of landscape mosaic (Frohn, 1998; Farina, 1998; Leitao & Ahem, 2002 
McGarigal, 2001). As pinpointed by Turner et al. (2001), a method of quantifying and 
describing spatial pattern of landscape components is necessary for the establishment of 
understanding of structure-process relationships in landscape ecology. Knowledge of 
landscape pattern is contributive to at least four practical aspects: 1) confirmation of the 
occurrence and nature of landscape change; 2) comparison between two or more 
landscapes in terms of the degree of similarity; 3) a quantitative yardstick for evaluation 
of land management or development alternatives; and 4) an objective tool for description 
of spatial patterns, which in turn can implicate ecological processes e.g. movement 
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patterns of organisms. These four tangible functions of landscape metrics render it 

fruitful in addressing the spatial issues of landscape planning (Leitao & Ahern, 2002). 

The development of landscape metrics has been very rapid. However, utilization of 

landscape metrics should be cautious. Neel et al. (2004) tested 55 commonly used class-

level landscape metrics using both modeled and real landscape at gradients of class area 

proportion and class autocorrelation levels. The test reveals many significant findings 

about behavior of these class-level metrics. Several metrics purported to measure certain 

landscape attributes, such as class autocorrelation do not show high correlation to them 

during the test. A number of those whose correlation values are high fail to output non-

linear responses to what they are supposed to measure. For instance, class area proportion 

metrics may behave asymmetrically at low versus high level of spatial autocorrelation. In 

addition, some metrics which are the most commonly used even exhibit erratic behavior 

at very high or low level of class area proportion. Unstable behavior of metrics deems 

interpretation of them very difficult or even misleading. Above all, the test also find that 

some metrics which are claimed to measure conceptually different attributes of landscape 

pattern actually show similar response to same attribute. It implies that some metrics are 

highly correlated to each other and thus redundant, which is a point criticized frequently 

in literature (Turner et al., 2001; Cifaldi et al., 2004). These major limitations, together 

with others such as vulnerability to scale of observation and accuracy of classification 

map (Li & Wii, 2001; O'Neill et al., 1997), are needed to be considered before we choose 

any metrics for describing landscape pattern. 

Roughly, landscape metrics tend to indicate the following 5 types of spatial patterns 

of landscape (Frohn, 1998): 
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• Diversity: Total number of landscape types 

• Dominance: Degree of dominance of a landscape by a few patch types 

• Contagion: The tendency of a land cover type to cluster into a few large 

patches 

• Fragmentation: The tendency of a land cover type to break into small 

patches 

• Patch shape complexity: The relationship between the perimeter of a 

patch and the area of that patch. 

2.5.3 Application of Landscape Ecology in Landscape Analysis 
Applications of landscape ecological concepts and metrics in research and policy 

address applying landscape ecological concepts and landscape metrics are enormous, 
especially in study of rural landscape. Weiers, et al. (2004) chose 3 principal metrics 
(mean patch size, patch density and mean shape index) to evaluate the effects of 
European agricultural policy on improvement of ecological structure in Germany. 
Selinger-Looten et al. (1999) quantitatively analyzed the spatial patterns of meadows to 
establish the relationships between landscape pattern of meadows, ecological processes 
and effects of human activities in the flood plains in north-east France. Because 
landscape metrics are sensitive to class area proportion and class aggregation, (Neel et al. 
2004), they are widely used in studying trends of forest or habitat fragmentation 
(Belandger & Grenier, 2002; Schumaker, 1996) and other similar themes (Gulink et al., 
1993; Chuvieco, 1999). 

However, application of landscape ecology should go beyond the scope of rural or 
natural landscape. Zhang et al. (2004), Guan et al. (1999) and Wu and David (2002) 
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argued that landscape ecology is in fact able to provide new perspectives into study of 

spatial pattern and dynamics of urban system, henceforth facilitating our understanding of 

urban settlements, major habitats for human beings. Actually, research on urban 

landscape with landscape pattern indices is numerous. Fung and Ski (2001) analyzed 

temporal change in magnitude and variability of NDVI and their spatial patterns using 

entropy of NDVI. Guan et al. (1999) Guan et al. (1999) studied urban vegetation in 

Guangzhou classified in species, districts and patch sizes using a suit of heterogeneity 

indices. In metropolitan centers of China like Shanghai and Beijing, some research 

attempt to quantify urbanization processes with class-based landscape metrics (Bin et al., 

2003; Zhang et al., 2004; Qi et al., 2004). 

Among urban landscape research, most of those operate analyses on pixel-based 
classification data. Whether result would be different if object-approach classification 
data is used is by and large unknown. Object-based classification produces more natural 
pattern of landscape than pixel-based classification does, thus potentially improve quality 
of environmental monitoring (Blaschke et al., 2000; Ivitis et al., 2002). Herold et al. 
(2002) used object-based classification to map and analyze land cover/land use in urban 
area. Their research reaches similar conclusion that object approach improve separation 
of some otherwise confusing urban land covers. It implies that urban landscape analysis 
with landscape metrics may be different using object-oriented classification map from 
that using pixel-based mapping. 

2.6 Conclusion 
Summing up, urban green space is a landscape element which maintains/enhance 

the biodiversity and livability of every city and thus deserves much more attention paid 
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by academics and planners than it has ever been. It is especially so in Chinese 

metropolitan areas which are often plagued with dense and chaotic urban development at 

the expense of urban green space. 

There are two ways of studying urban green space, each of which has particular 

characteristics and merits. However, studying urban green space using remote sensing 

and image classification data is preferred for research in which detailed field 

investigation is hardly feasible. Besides, image classification method concerned should 

be able to take into consideration the spatial relationship between patches of urban green 

space from an image. In this respect, multi-scale image segmentation and object-oriented 

approach to classification may outperform other conventional pixel-based classification 

methods in study of urban green space. 

Landscape ecology is a branch of ecology which explicitly expresses the 

importance of spatial dimension in analyzing the interaction between ecological pattern 

and processes. Some of its core concepts, such as patch-corridor-matrix model, and 

derived landscape metrics may be useful in interpretation of landscape problems of a city 

if they are used with precaution. 
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CHAPTER 3. Study Sites and Methodology 

3.1 Introduction 
After the review of all the concepts and researches relevant to this research in the 

previous chapter, study sites and methodology of this research will be detailed in this 
chapter. The two cities under investigation, Chongqing and Nanjing, will be introduced in 
terms of their geography, administration characteristics and environmental problems. The 
differences between them in urban layout are briefed by interpretation of their images. 
Next, the whole working procedure of this research will be discussed. First, ASTER data 
and its pre-processing will be introduced; Second, hierarchical classification systems of 
the two cities and their disparities will be presented; Third, the process of object-oriented 
classification will be explained, which includes image objects analyses, creation of object 
hierarchy, design of class hierarchy and classification accuracy after the classification is 
accomplished. After that, organization of landscape analyses of urban green space will be 
discussed, which is followed by conclusion of this chapter. 

3.2 Study Area 
3.2.1 Chongqing 

Chongqing is a very special place with respect to its geographical, geomorphologic, 
political and ecological situations. Its city proper region deserves special focus because it 
is one of the most vivid economic centers in western China (Zhao, 2000). 
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3.2.1.1 Geography and geomorphology 
Chongqing is situated at the joint of Changjiang River and Jialing River (Zhongguo 

Chengshi Dituji Bianji Weiyuan Hui, 1995a). It extends from 105�17 ' to 107�04 'E in 

longitudes and 2 8 � 2 2 ' to 3 0 ° 2 6 ^ in latitudes (Liu, 1989; Zhao, 2000), occupying an area 

of over 82,000 km". By classification of mountainous cities innovated by He et al. (2003), 

Chongqing is composed of very distinctive landforms: high mountain ranges in eastern 

and southern parts while low hills and valleys in the middle. The city proper is located at 

the middle low-hill region, which is further divided by Changjiang and Jialing River into 

3 regions. The 3 regions are in aggregate about 600 km". Low hills and rivers arrange 

themselves alternatively across the city proper. 

3.2.1.2 Administration and governance 
Chongqing Municipality (直聿害市）was set up during the 8【卜 National People's 

Congress in March 1997 because of its two strategic characteristics: First, Chongqing is 
located at the upper course of Changjiang and thus can act as another growth pole of the 
"Changjiang Fazhan Janliue" besides Shanghai at the lower course. Second, Chongqing 
can act as the main city supporting the "Xianshia Kuqu Fazhan Janliue" (Luo & Chen, 
1999). Chongqing city proper includes Yu zhong district, Nan an district, Jiu long bo 
district, Jiang bei district, Yu bei district and Sa ping ba district. Yu zhong district is the 
city center, attracting the highest population and most of the governmental commercial 
and cultural functions ("Zhang ling yang zi zhu lu xing shou ce" bian xie zu, 2002). 
Master Plan of Chongqing City Proper (Chongqing Gueihua Sheji Yanjiouyuan, 1995) is 
shown in Figure 3.1. For nearly seven years after the establishment of the Municipality, 
Chongqing developed rapidly in urban size, population and economic strength. 
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Considering the landscape situation of Chongqing and the ambition of its government, it 

is reasonable to deepen investigation into the landscape pattern, problems and 

opportunities of Chongqing. 

3.2.1.3 Environmental Quality 
In spite of its rapid development, Chongqing is still backward compared with the 

other three Municipalities in terms of environmental quality. As shown from Table 3.1, 
green coverage in built-up area (21.8%) ranks second lowest among the four 
municipalities, only higher than Shanghai. Its per-capita green space coverage is the 
lowest among the four cities. Besides, like other major cities in China, green space of 
Chongqing is often highly patchy, without sufficient connections provided by green 
corridors (He et al., 2003). 

3.2.1.4 Government Attempt to Improvement 
In order to tackle the problems faced with Chongqing, municipal government 

resorted to the re-planning of main urban centers. Chongqing Municipal General 
Committee passed the "Chongqing Municipal Area Landscape Planning 2001-2020" in 
2002, aiming at re-forestation across the whole city and integrating trees into the hill 
slopes and meandering rivers in the city proper. Moreover, new zone development was 
initiated north of the original old urban centers in an attempt to focus all the main 
financial and transportation functions in the north. The target is to increase forest 
coverage by 30% and decrease water silting by 45% (Luo & Chen, 1995; Chongqing 
Zhenfu Gongzhong Xinxiwang, 2003; Duan, 2002; Yang, 2003). 
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Figure 3.1 Chongqing (City proper) Urban Master Plan, 1996-2010 
Source: Chongqing Gueihua Sheji Yanjiouyuan, 1995 
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3.2.2 Nanjing 
Nanjing was the capital of many dynasties of ancient China and has long been the 

political, economic and cultural centre of Jiangsu province (Nanjing Urban Planning 

Bureau, 2003). Its geographical, demographic and political characteristics render Nanjing 

one of the most suitable urban centers to be compared with Chongqing, which will be 

further elaborated later. 

3.2.2.1 Geography and Geomorphology 
Nanjing is situated in the hilly region at the lower course of Changjiang. Its 

geographical location is 33°31' N latitude and 118°47' E longitude, occupying an area of 
6597 km" (Nanjing Urban Planning Bureau, 2003). Mountains, river channels and low 
land interweave one another within the political boundary of Nanjing (Jiangsu Almanac, 
2003). Two major lakes (Xuanwu and Muochou) are located in the northeast and west of 
major urban area bounded by the ancient city walls. Two rivers (Qinhuai and J inch u an g) 
running through the city from south to north, together with Changjiang on the west, 
constitute water system of Nanjing. Most of the mountains distribute in the east-west 
direction, such as Zi Jing Shan, Wu Tai Shan, etc. Gup in and Shizi mountains, on the 
other hand, run from south to north (Nanjing Urban Planning Bureau, 2003; Jim & Chen, 
2003; Jim & Chen, 2003a). 

3.2.2.2 Administration and Governance 
Nanjing is the provincial capital of Jiangsu province. Unlike Chongqing 

Municipality, Nanjing is not ranked the highest in terms of city hierarchy level of China. 
It governs fewer regions than Chongqing does. 13 Districts and Counties, 69 Street 
Affairs Offices, 58 towns, 797 Residential Committees and 997 Village Committees are 
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under the governance of Nanjing municipal government. Major urban districts include: 

Yuanmu (northeast), Qinhuai (southeast), Jianye (southwest), Guliu (northwest), Xiaguan 

(northwest), Yuhuatai (southwest suburb), Jianning (southwest), Liuhe (north suburb), 

and Pukou (northwest) (Nanjing Urban Planning Bureau, 2003; Jiangsu Almanac, 2003). 

3.2.2.3 Landscape Planning of Nanjing 
According to Nanjing Master Plan 1981-2000 (Nanjing Urban Planning Bureau, 

2003), landscape and urban structure of Nanjing municipal area has a clear concentric 
ring pattern. Nanjing is divided into 3 ring zones. The first ring zone is the city proper 
zone: an ellipse nucleus of 2 km radius bounded by Xinmuofanmalu (north), Neiqiao 
(south), Longpan Road (east), and Fuju Road (west). This zone is planned to be political 
center, university and science research center, commercial center and high quality 
residential area. The second zone surrounds the first ring zone at 3 to 4 km radius. It 
mainly serves as mechanics and textile industrial agglomeration. The third zone is termed 
the Boundary zone, which defines the boundary of municipal Nanjing. Logistics 
infrastructure occupies the northern and southern edge, while natural landscape spots and 
vegetables production bound from east and west. From the master plan shown in Figure 
3.2, it can be inferred that Nanjing seems to have a distinct gradient of urban density from 
urban center (city wall zone) outwards in all directions. Landscape distribution may be 
planned based on this urban density gradient. 

3.2.3 Comparison between Chongqing and Nanjing 
After separate description of the two cities under investigation, they are compared 

in various aspects in the following sections. Their similarities or discrepancies are used 
later in the interpretation of the results of landscape studies in these two cities. 
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Figure 3.2 Nanjing (City Proper) Urban Master Plan, 1991-2010 
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Source: Nanjing Urban Planning Bureau, 1995 

3.2.3.1 Geographical setting 
Both cities are located in similar latitudinal setting: northern end of the sub-tropical 

region ranging from 28° N to 30° N. Additionally, both of them are major cities along the 

Yangtze development region. The paramount difference between Chongqing and Nanjing 

is their distance from the coast. Nanjing is much nearer to coast, which is the reason of its 

sub-tropical monsoon climate, vis-a-vis Chongqing which is an inland city and 

experiences continental climate (Nanjing Urban Planning Bureau, 2003; Liu, 1989; Zhao, 

2000). Whether such locational and climatic differences are able to explain their 

differences in green space quality is unknown. 

3.2.3.2 Population 
Comparisons of Nanjing and Chongqing are shown in Table 3.2. Chongqing was 

upgraded into Municipality in 1997 and occupies larger area and thus population (Luo & 
Chen, 1999). Non-agricultural population in the municipal area of Chongqing is more 
than that of Nanjing by 1 million. Another fact which deserves our attention is the rapid 
growth of population in Chongqing compared to Nanjing, which is evidenced by over 
2.5% natural growth rate in Chongqing municipal area. Based on this fact, it is logical to 
state that Chongqing is growing at a faster pace in terms of both total population and 
urban non-agricultural population as compared to Nanjing. 
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Table 3.2 Comparison of Population between Nanjing and Chongqing 

Nanjing Chongqing 
Non-agricultural 3.23 million 4.24 million 
(Municipal) (8) (6) 
Total population 4.80 million 9.99 million 
(Municipal) (9) (3) 
Natural growth rate o.74% 2.53% 
(Municipal) 
Note: Number in the blanket is the city's national ranking in that variable 

Source: China Urban Statistical Yearbook 2003 

Table 3.3 Industrialization and Urbanization Levels of Nanjing and Chongqing 

Nanjing Chongqing 
Industrial output 197 billion (Yuan) 123 billion (Yuan) 
P r o p o r : n of employment 45.06% 51.91% 
m the 2 industry 
Percentage of Urban population* 67% 42% 
Urban population density 皿^^⑴”— ^ i W 
Urban builtup area 二 m � 
Note: Number in the blanket is the city's national ranking in that variable 
* It is the non-agricultural population divided by total population in the urban area 

Source: China Urban Statistical Yearbook 2003 
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3.2.3.3 Urbanization and Industrialization Levels 
Industrialization level of the two cities is hard to be compared based on the 

indicators in Table 3.3. While Nanjing has a higher industrial output than Chongqing 

does, higher proportion of labor force is in industrial activities in Chongqing. On the 

other hand, Nanjing ranks on top of Chongqing in various indicators of urbanization 

levels, including percentage of non-agricultural/urban population in municipal area and 

urban population density. It may imply that Nanjing is a comparatively more urbanized 

area. From the images shown in Figure 3.3 and 3.4 it is observed that Nanjing built-up 

area are spreading and nuclei towns are developing in the close neighborhood. On the 

other hand, built-up area of Chongqing is more compact, with its spread confined by Gele 

Shan and Nan Shan on the east and west. New urban development is only found on the 

northern and southern borders of original city proper. Whether different development 

pattern of built-up areas influences the structure of green space can thus be revealed by 

selecting these two cities as study sites. 

3.2.3.4 Variation in Landscape Quantity 
Huge difference can be noticed from Table 3.4 which illustrates urban landscape 

quantities of the two cities. While both per-capita urban green area and built-up area 
green coverage of Nanjing rank among the top at national level, Chongqing barely 
reaches the national ranking of 200 in both indicators. Taking into account the rap id 
urban development and population growth of Chongqing, further reduction in quantity of 
green space coverage seems to be imminent. However, from national data, we can at best 
determine the difference in quantity of urban green space between the two cities, while 
their difference in aspects of landscape structure is largely ignored. In the research, 
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remote sensing is a tool to analyze urban green space of the two cities, Nanjing and 

Chongqing, in both composition and spatial configuration. 

Table 3.4 Comparison between Nanjii^ and Chongqing in urban green coverage 

Nanjing Chongqing 
BuUt-up area (km^) ：芸 

^ , 2 � 138.19 10.82 Per-capita green acreage (m勺 � (2oo) 
Proportion of green coverage in 42.87 17.40 
built-up area (%) (15) (233) 
Note: Numbers in the blanket are national ranks of the cities with respect to the variables. 

Source: China Urban Statistical Yearbook, 2003 

3.2.3.5 Comparison from Satellite Images 
Differences between Chongqing and Nanjing can be compared using the satellite 

images (Figure 3.3 and 3.4). Chongqing city area is identified on the image as being 
dissected by two big river channels, Changjiang running north-south and Jialing River 
west-east. Bright urban regions are located on the northern and southern ends while the 
dark urban area concentrating at the center. Besides, numerous lakes of irregular shapes 
scatter in the boundary area. Major woodland (of dark red) runs north and south in Gele 
Shan and Nan Shan, while patchy woodland are also found scattering in the suburban area. 
Special species of vegetation cannot be distinguished. 

From Figure 3.4, city centers of Nanjing are more compacted, which are located at 
the center of the satellite image. Agricultural and natural landscapes, compared to 
Chongqing, produce clear-cut contrast with urban landscapes. Unlike in Chongqing, 
different species of agricultural crops and wetland vegetation are easily distinguished 
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from woodland and grassland. Moreover, patches of fallow agricultural land are 

noticeable mainly in the bottom and bottom-right, which are highly contrasted with the 

construction sites at the top of the image. Lakes and flooded paddy fields of larger size 

and more regular shape are located at the rural landscape. 
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國 
Figure 3.3 Satellite Image of Chongqing 
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3.3 Working procedures 
Schematic diagram of working procedures for the research is shown in Figure 3.5. 

The first section will discuss ASTER data and its pre-processing procedure. A thorough 

description of the image object analysis, which is critical to the effective undertaking of 

object-oriented classification, is followed. Process of accuracy assessment for object-

oriented classification is then delivered. 

3.3.1 Data 
ASTER images of Chongqing (July 21 2000) and Nanjing (Nov 6 2001) were 

acquired from the EROS Data Center's (EDC) Land Processes Distributed Active 
Archive Center (LP-DAAC). ASTER is the abbreviation of Advanced Spaceborne 
Thermal Emission and Reflection Radiometer which has been operating on NASA's 
Terra Spacecraft since December 1999. ASTER Lev el-IB data, which means that data set 
has been pre-processed with basic radiometric calibration and geometric resampling, is 
used for the research (ASTER Users Handbook, 2002). 

ASTER data acquired is stored in Hierarchical Data Format (HDF) (ASTER Users 
Handbook, 2002), which has to be transferred into Pix format using OrthoEngine in PCI 
Geomatics V. 9.1.0®. City proper is clipped out from the whole image of 60 X 60 km 
using Subset operation equipped in PCI V. 9.1.0 • Image Works. Clipped images of 
Chongqing and Nanjing are shown in Figure 3.3 and 3.4, respectively. 
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ASTER covers a total of 14 spectral bands from visible to the thermal infrared 

electromagnetic region (ASTER Handbook, 2002). In the research, three visible plus near 

infrared (VNIR) channels are used in object-oriented classification approach, whereas 6 

more shortwave infrared (SWIR) channels are added, that is to say a totality of 9 spectral 

channels, are used in conventional classification approaches, including maxinuim 

likelihood classification (hereafter MLC), linear spectral unmixing method (hereafter 

LSU), and supervised fuzzy classification (hereafter SFC). Brief comparison of VNIR 

and SWIR channels are shown in Table 3.5. VNIR channels and SWIR channels are pre-

processed separately. 

Table 3.5 Basic information of VNIR and SWIR channels 

Spectral Band Spectral Range ([Mn) Spatial Quantization 
channels Resolution, m Levels 

VNIR 1 0.52-0.60 \5 
“ 2 0.63-0.69 

3N 0.78-0.86 
SWIR 4 1.60-1.70 30 8 bits 

5 2.145-2.185 
“ 6 2.185-2.225 
“ 7 2.235-2.285 

8 2.295-2.365 
9 2.360-2.430 

Source: ASTER Users Handbook, 2002 

3.3.1.1 VNIR channels 
In theory, a good image registration, or georeferencing, should be based on a set of 

ground control points, which have accurate X- and Y-coordinates, and altitude/height 
values (usually derived from Digital Elevation Model) with a particular local map 
projection. In this research reliable DEM or other topographic data of neither Chongqing 
nor Nanjing is available. Therefore, Level-IB VNIR data is used, which is LI A data 
being radiometrically and geometrically corrected (ASTER User Handbook, 2002). 
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Universal Traverse Mercator (UTM) is loaded on the interface of PCI ImageWorks to 

indicate coordinates of the images. 

3.3.1.2 SWIR channels 
SWIR channels will be used as additional input channels for conventional 

classification methods. As previously mentioned, unavailability of topographic data in 

both study sites deems formal image registration unfeasible. Instead, 15 m resolution 

VNIR data (Level- IB) is assumed geometrically correct and utilized as reference data 

and SWIR channels are directly translated into the PIX file containing VNIR channels. 

3.3.1.3 Data Fusion 
SWIR data (30 m resolution) is "scaled up" to 15 m resolution so as to match with 

15 m VNIR data. In the research, image fusion technique called Smoothing Filter-based 

Intensity Modulation (SFIM) is used (Liu, 2000). It preserves spectral information of the 

lower resolution image while sharpening its edge information. Algorithm for SFIM is in 

the following: 

IMAGE丨�JMAGE_ ( … i � IMAGE …似二 — (equation 3.1) 
謂 IMAGE 

where …is a pixel of a lower resolution image while IMAGE丨圳、is the 

corresponding pixel of a co-registered higher resolution image. IMAGEis a smoothed 

pixel of IMAGE,using averaging filter over a neighborhood equivalent to the actual 

resolution of the IMAGE,^^^. Kernel size depends on the resolution ratio between lower 

resolution image and higher one, which is 2 x 2 in this case. 
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SFIM procedure is operated in PCI Xpace. Average data of the higher resolution 

image can be produced using PCI Xpace Average Filter. Equation 3.1 can be written in 

PCI Xpace Image Modelling. A comparison between raw SWIR image and SFIM SWIR 

image is shown in Figure 3.6. 

(a) (b)  
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Figure 3.6 Comparison between original SWIR data and SFIM S W I R data, (a) is raw S W I R channel 

4. Edge details of lakes, roads and buildings are blurred. After SFIM, edges are sharpened, 
very much like a normal 15 m VNIR image, which is shown in (b) 

3.3.2 Designing Hierarchical Classification System 
Conceptually, a hierarchical classification scheme is designed, which organizes 

land cover classes expected to be extracted from the satellite imagery. Schematic 
classification systems of Chongqing and Nanjing are shown in Table 3.6, in which 
general classes in level 1 are further classified into more detailed classes in levels 2 and 3. 

3.3.2.1 Chongqing 
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Eight land cover classes are targeted The 8 expected classes are set up based on 

secondary data such as Chongqing City Proper 1996-2010 Urban Master Plan 

(Chongqing Zhenfu Gongzhong Xinxiwang, 2003), and preliminary visual inspection of 

the satellite image. At the top level, the image will be classified into 3 general classes: 

"Water", "vegetation" and "non-vegetation". These three classes will be further divided 

into more detailed classes at the medium class level. At the lowest class level, it is 

expected that "impervious" is further sub-divided into three urban classes: "industrial", 

"high density urban" and "low density urban". 

3.3.2.2 Nanjing 
Difference in classification system between Chongqing and Nanjing is expected due 

to local distinctiveness. 11 instead of 8 classes are formulated based on Nanjing City 
Proper 1991-2010 Urban Master Plan (Nanjing Urban Planning Bureau, 2003) and visual 
inspection of the image. It is found that in Nanjing, "agricultural crops" and "wetland" 
which have higher spectral values than "woodland" and "grassland" are observed so that 
they can be added in the classification system. Besides, 'fallowed land" are widely 
distributed in agricultural land covers. They are thus added in the classification scheme as 
well. 
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Table 3.6 Three-tiered classification scheme for object-oriented classification in Chongqing (a) and 
Nanjing (b) 

(a) • — I 
LEVEL I LEVEL II LEVEL III 

Water Lake 
River 

Vegetation Woodland 
Grassland/Crops 

Non-vegetation Bare soil Bareland 
Impervious Industrial sites 

High density urban  
Low density urban  

(b) LEVEL I LEVEL II LEVEL ill 

Water Lake 
River 

Vegetation 
Bright Agricultural crops I 

vegetation Agricultural crops II 
Wetland 
Woodland 

Dull vegetation Grassland 

Non-vegetation 已are soil Fallowed land 
Bareland 

Impervious High density urban  
Low density urban  

3.3.3 Object-oriented Classification 
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3.3.3.1 Introduction 

In Object-oriented classification, image objects of different scales at different 

locations and resolutions are hierarchically linked up and the inter-relationships between 

objects explicitly defined in object level hierarchy (Definiens-Imaging, 2003). A diversity 

of features is available to assist the interpretation of each object. Class hierarchy can then 

be designed which defines each land cover with those object features and its relationship 

with another class. In class hierarchy, the whole classification can be divided into several 

levels which are closely linked with object level hierarchy, such that a decision tree can 

be constructed. 

Two major operations are involved during the formation of object level hierarchy, 
which are Multiresolution Segmentation and networking of image objects. 

Multiresolution Segmentation is a bottom up region-growing technique starting 
with one-pixel objects. Smaller image objects are merged into bigger ones with minimal 
heterogeneity until it exceeds the threshold defined by the scale parameter (Definiens-
Imaging, 2003; Blaschke et al., 2000). Heterogeneity is pre-defined by users and 
calculated in terms of spectral or shape. Spectral heterogeneity is calculated using the 
following algorithm: 

/z = ^ V �• C^ (equation 3.2) 

where w is weight of each channel while O] is standard deviation of spectral values in 
each channel of pixels within each object Spatial heterogeneity is a deviation of an 
object from either a compact or smooth shape (Definiens-Imaging, 2003). A deviation 
from compact shape is calculated using the following algorithm; 
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, I 
n 二 ~ j = (equation 33) 

yjn 

where I stands for border length of the image object w h i l e • is the square root of the 

number of pixels forming the image object A deviation from smoothness can be 

calculated using the following algorithm: 

h =— (equation 3.4) b 
where b stands for the shortest possible border length given by the bounding box of the 
image object. 

Merging of image objects inevitably increase heterogeneity within an image object. 
Scale parameter, which is also pre-defined by users, takes the role of controlling the 
maximum heterogeneity within object tolerated (Definiens-Imaging, 2003). Technically, 
it determines the maximum average object size allowed during each segmentation 
process. 

Networking of Image Objects organizes image objects generated at different 
scales through "object level hierarchy" so that each object is related explicitly to its 
"neighborhood" at the same segmentation level, its "sub-objects" at lower level, and its 
“super-object” at higher level, enabling adaptation of the scale of observation to the 
phenomena of interest (Definiens-Imaging, 2003; Li & Wu，2004; Wu & David, 2002). 

Ivits et al. (2002) claim that multiresolution segmentation and hierarchical image 
object network are particularly expedient in patch-scale landscape ecological studies 
because different segmentation levels allow for visualization of landscape objects at 
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different scales. They assert that tiny patches of habitat, which are usually smoothed out 

from visual interpretation, are able to be assessed about their presence, distributions and 

connectivity with the help of segmentation and object level hierarchy. 

In this research, object levels are produced by segmentation with reference to the 
corresponding levels of classification. That is to say three object levels are generated. 
Object level 1 is anticipated to be used for Level I classification; Object level 2 is 
proposed for level II classification; and so on. However, as mentioned in Ivits et al. 
(2002), image segmentation is a problem with infinite possible solutions. It is up to 
researchers who define weights of spectral and shape, plus scale parameter/average object 
size during each segmentation operation. Which spectral-shape ratio and scale parameter 
can produce the best representation of land cover of interest is by and large unknown and 
becomes a critical research question to be addressed. 

3.3.3.2 Procedure of Object-oriented Classification 
The whole classification involves the following procedure: 

3.3.3.2.1 Analysis of Image Objects 
Image objects segmented using multiresolution segmentation are primitive image 

objects, plethoric of spectral, shape and textural features potentially conducive to 
intelligent classification (Definiens-Imaging, 2003). However, it is not informed that 
which of these features are truly usable to distinguish each land cover. Thus, systematic 
analyses of segmentation and image objects are undertaken to select the best spectral-
shape ratio and scale parameters for segmentation. 
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Total number of image objects generated and average object size are calculated for 

entire images of Chongqing and Nanjing at increasing segmentation scales and at 

different spectral-shape ratios for segmentation. Besides, a series of analyses are operated 

in an attempt to increase the understanding of behavior of a list of spectral, shape, and 

textural features (shown in Table 3.7) of different land cover class as segmentation scale 

increases in the object-oriented classification. Similar methodology has been approached 

by Neel et al. (2004) to evaluate responses of a suit of landscape metrics equipped in 

FRAGS TATS to a gradient of fragmentation levels and class-area proportions. However, 

their tests mainly resort to neutral landscape models for simulating the variations in 

landscape ecological condition; while tests of this research use real cases (Chongqing city 

and Nanjing) to explore the behavior of spectral, spatial and textural features of objects 

belonging to different classes at varying object sizes. Algorithms of these features will be 

listed in Appendix 1. 

The analysis is conducted for three main purposes: First, selecting the spectral-
shape ratio for segmentation which best represents the spatial variation of an image; 
second, choosing the most suitable scale parameters to generate 3 segmentation levels; 
and third, picking up a list of spectral, shape and textural features, which best distinguish 
each class, to set up classifying rules for each class in the decision tree classification 
structure. It involves the following procedure: 
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Table 3.7 Features calculated for image object analyses 

Features calculated for the entire image Features calculated for each class 
Spectral Features:  

Spectral Mean 
Standard Deviation 

Total Number of Objects Mean Difference to Neighbor  
Shape Features:  

Area 
Border Length/Perimeter 
Length/width Ratio 
Shape Index 
Density  

Textural Features:  
Average Object Size GLCM Homogeneity (all direction)~ 

GLCM Contrast (all direction) 
GLCM Dissimilarity (all direction) 
GLCM Entropy (all direction) 
GLCM Angular Second Moment (all direction) 

3.3.3.2.2 Image Segmentation 
The first step is to generate 10 segmentation levels for images of Chongqing and 

Nanjing across a gradient in scale parameter (SP = 2 - 20 in 2 increments) using 6 
different color-shape combinations (0.1:0.9; 0.3:0.7; 0.5:0.5; 0.7:0.3; 0.9:0.1; 1.0:0.0). 
Except at color-shape ratio of 1.0:0.0, I additionally duplicate two more segmentations at 
SP 二 10 with varying smoothness-compactness ratios (0.1:0.9; 0.5:0.5 and 0.9:0.1), 
whereas the ratio of 0.5:0.5 is used to generate other segmentation levels. Overall, a total 
of 70 segmentation combinations have been generated for each site in this analysis. 

3.3.3.2.3 Selection of Features and Data Conversion 
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The second step is to export objects generated from these 70 segmentation 

combinations. Spectral, shape and textural features listed above are selected as attributes 

of each object generated from the image concerned. Values of these features of each 

object will then be calculated automatically and exported from TIFF format to ArcView 

SHP format. Total number of image objects and Average object size at each segmentation 

level and spectral-shape ratio are recorded manually on Excel files. 

3.3.3.2.4 Class-based Objects Sampling 
30 to 50 samples are targeted for each land use class to recognize their variations in 

object features along segmentation sizes. A total of 400 samples are drawn using 
Stratified Systematic Random Sampling method on IDRISI interface. Some land use 
classes, such as "lakes" and "industrial", have low proportional shares of total area of the 
study site and may have insufficient samples for themselves. Additional random sample 
points are selected and digitized for these classes. Samples thus generated are converted 
into ArcView SHP format 

3.3.3.2.5 Class-based Objects Analysis 
Objects analysis is mainly carried out in Arc Map 9.0. Sample vectors of a particular 

land use class are selected. Object polygons of that land use class are then extracted using 
Select by Attribute function, which selects all image object polygons intersecting sample 
vectors of that land use class. After that, database of selected object polygons, composed 
of each polygon's spectral, shape, and textural features listed above (in DBF format), is 
exported to Office Excel, in which means of these features are calculated for all objects 
belonging to each land use class. Distribution of means are plotted along segmentation 
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gradient and used to interpret the changes in object characteristics for each land cover 

class. The result will be presented in the next chapter. 

3.3.3.2.6 Designing Object Level Hierarchy 
Selection of optimal spectral-shape ratio for segmentation is guided by total number 

of objects generated, Average object size resulted and segmented image interpretation for 
different spectral-shape ratios. The three object levels for the creation of object level 
hierarchy are then selected based on the findings about the variations of object features 
along increasing segmentation levels. 

3.3.3.2.7 Designing Class Hierarchy 
Class-based objects analysis will help derive classifying rules for classes expected. 

Object features which best differentiate a particular class from the others will be 
identified. Besides, comparison of feature values between land cover classes at different 
object levels helps illustrate the optimal object level for classification of each expected 
class. Based on the information, class hierarchy well linked with object hierarchy can 
then be designed for the three-tiered classification system. 

3.3.3.2.8 Decision Tree Classification Structure 
Decision tree classification is a branch of rule-based classification system 

(Lawrence & Wright，2001). In the system, classifying rules are such hierarchically 
structured that remote sensing dataset is recursively and dichotomously split into 
increasingly homogeneous subsets. Output classes are contained by the notes at the 
bottom of the hierarchy, or "terminal notes". This classification structure is in a sense like 
that of a tree and thus called tree-based classifier (Borak & Strahler, 1999). 
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In this research, Tree-based approach is adopted. However, while tree-based 

approach can be implemented automatically in computer using training data (Borak & 

Strahler, 1999; Lawrence & Wright^ 2001), it is accomplished manually in this research 

by setting up a class hierarchy. In class hierarchy, all classes are defined manually and 

hierarchically organized. Decision rules/class properties for each class, which determine 

membership of image object to the class, can be set up by users based on the spectral, 

spatial and textural features of the class previously mentioned. Function of inheritance, 

that is to say a passing down of class properties from higher level class to lower ones, is 

provided to reduce redundant effort in setting up class properties. Decision rules of a 

particular class will translate pertinent feature values of image objects into 

fuzzy/membership values at a close interval [0 ； 1] during classification. The output of 

the classification will include a crisp classification, where each object has exactly one 

class assignment, and fuzzy values to the three most possible classes which indicate class 

mixing. (Definiens-Imaging, 2003). 

3.3.4 Comparison with other classification algorithms 
Besides object-oriented classification approach, three more classifications are 

generated using maximum-likelihood classification (hereafter MLC), linear spectral 
unmixing (hereafter LSU), and supervised fuzzy classification (SFC) for comparisons. 
These three algorithms are widely used in image classification because of their ease of 
operation. Methods of producing MLC and SFC are very similar. Training samples for 
each class are selected randomly from the image, with the multispectral values of training 
samples utilized to model feature space for classification. While MLC generates Gaussian 
distribution of multispectral values for each class, SFC utilizes multispectral values to 
model the membership functions for classification (Lillisand, et al., 2004). LSU adopts a 
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different methodology in which Endmembers, which are multispectral values of pure 

classes, are required from image. Linear equation is then generated, under which class 

assignment of each pixel is based on the relative composition of the pure classes in that 

pixel (Roberts et al., 1998). These three algorithms are merited for their automated and 

relatively transparent characteristic during operation, and so are used in this research as 

reference of comparisons (Schiewe et a l , 2001). MLC is generated in PCI Image Works 

while the other two in IDRISI. 

Accuracy Assessment of all classification methods are carried out in PCI 
ImageWorks. Con gal ton's (1991; quoted by Jensen, 1996) suggestion about sample size 
for significant accuracy assessment is followed such that 50 independent samples for 
each land use class are selected randomly with Stratified Systematic Random Sampling 
(on IDRISI interface). 400 random samples are then selected in Chongqing while 500 
random samples are selected in Nanjing. The sample vectors are imported into PCI 
ImageWorks, with their reference land use classes obtained by visual inspection of the 
image. Confusion matrix, producer's and user's accuracies, and kappa coefficient are 
then automatically generated, which will be presented in the CHAPTER V. 

3.4 Landscape Analyses 
The whole procedure of landscape analyses are implemented using FRAGS TATS 

3.3 (McGarigal, 2001). Two analysis approaches to investigate the study sites are 
undertaken. The first approach describes landscape structural and compositional 
characteristics of a particular study site as an entirety. The result indicates the average 
situation of the cities. The second approach is through buffer analysis by which variations 
of landscape characteristics with increasing distance from city centers will be analyzed. 
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3.4.1 Selection of Landscape Metrics 
Although hundreds of landscape metrics have been developed to analyze the 

landscape structure, most of which are strongly correlated with one another (Leitao & 

Ahern, 2002). In studies of McGarigal and McComb, (1995) 15 out of 25 landscape 

metrics selected for quantification of landscape configuration are tested redundant after a 

series of statistical analyses. Their findings are confirmed by Cifaldi et al.'s (2004) 

studies in which 25 landscape variables are input into Principal Component Analysis 

(PCA) to identify their major relationships to changes in land cover patterns. Five PCs 

contain nearly 80% of the land cover variations of landscape, which are sufficiently 

described by within 10 landscape metrics. 

Additional to high correlation of them, many landscape metrics fail to behave in a 
way universally expected. It is widely accepted that landscapes are heterogeneous in 
respect of various components, which can be grouped into two elements: non-spatial 
composition and spatial configuration (Leitao & Ahern, 2002; Li & Reynolds, 1995; Neel 
et al., 2004). Researches of both Li and Reynolds (1995) and Neel et al. (2004) reveal 
that responses of many landscape indices, which are claimed indicating variations of one 
landscape element, are prone to the influences of another, resulting in theoretical trends 
of responses of many landscape metrics to variations in a particular landscape structure 
component being inconsistent with their observations. 

The goal of this research is comparing Chongqing and Nanjing in terms of the 
spatial dimension of their green space within and neighboring city centers. In light of that, 
focus should be focused on describing the size, shape, and contagion of vegetation 
patches. Therefore, a suit of patch- and class-metrics is selected from FRAGSTATS 3.3， 
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(McGarigal, 2001) which is listed in Table 3.8. Their explanations and equations are 

listed in Appendix 1. 

Table 3.8 Landscape metrics calculated in the research 

Patch Metrics Class Metrics  
Area/Perimeter  

Area Total Class Area 
Perimeter Percentage of Landscape 

Number of Patches 
Patch Density 
Largest Patch Index 
Edge Density 
Area {area-weighted mean) 
Area {coefficient of vanation) 
Radius of Gyration {area-weighted mean) 
Radius of Gyration (coefficient of variation) 

Shape  
Perimeter-Area Ratio Fractal Dimension Index (area-weighted mean) 
Fractal Dimension Index Fractal Dimension Index (standard deviation) 

Perimeter-Area Ratio {area-weighted mean) 
Perimeter-Area Ratio (standard deviation) 
Perimeter-Area Fractal Dimension 

Proximity/Isolation  
Proximity Index Proximity Index (area-weighted mean) 
Euclidean Nea rest-Neighbor Euclidean Nearest-Neighbor Distance 

Distance (area-weighted mean)  
Contagion  

Cliimpiness Index 
Interspersion Juxtaposition Index 
Landscape Division Index 
Effective Mesh Size 
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3.4.2 Landscape Analysis for entire cities 
Classified image in PIX format will be exported and converted into IDRISI raster 

format because FRAGS TATS 3.3 does not accept PIX format data (McGarigal, 2001). 

Conversion of data format is undertaken in PCI ImageWorks Utility. After that, the 

interface of FRAGS TATS 3.3 is accessed, in which Input Data Type, Background Value, 

Patch Neighbor Rules and all landscape metrics can be selected. Output statistics of both 

different land cover classes and individual patches can be converted into EXCEL format 

for analysis. 

3.4.3 Buffer Analysis 
Landscape metrics describing vegetation within and around municipal area are 

presented according to distance of vegetation patch from the urban center/central 
business district (CBD). Urban centers of two case study cities are located based on 
visual interpretation and ancillary information. In Chongqing, this point is located at Yu 
Zhong district which is the city center ("Zhang ling yang zi zhu lu xing shou ce" bian xie 
zu, 2002); while in Nanjing, this point is located in the city proper zone defined by 
Nanjing Master Plan 1981-2000 (Nanjing Urban Planning Bureau, 2003). They are 
shown in Figure 3.7. Buffers (in forms of both entire circles and rings) of increasing 
distance to city center are drawn on the imagery. Landscape metrics variables of green 
patches within each ring are then tabulated and interpreted. 
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Figure 3.7 City centers of Chongqing (a) and Nanjing (b) are highlighted by stars 

This approach is used in an attempt to illustrate the relationship between the spatial 

and compositional structure of green patches and the distance from urban core, which is a 

surrogate of descending level of urban density. Similar method was used by Mesev et al. 

(1995) to study the spread of density and fractal dimension of a variety of urban land use 

categories from CBD. Also, Zhang et al. (2003) used a series of west-east and south-

north transects, which cut across the urban center of Shanghai metropolitan area, to test 

the hypotheses of Forman and Godron (1986) on the variations of patch density, patch 

shape complexity, patch size and its variance, and landscape connectivity of an average 

landscape along urbanization gradient. In this research, concentration is put on green 

landscape elements within as well as bounding urban boundary. 

Buffer analysis involves the following steps. First, classified image in PIX format is 

exported and converted similar to the first step of landscape analysis for entire cities. The 

difference, though, is that it will be converted to Arc BIL format. In the interface of 
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ArcGlS 9 ArcToolbox, the BIL raster file will be converted to SHP vector format using 

Conversion: from raster to polygon. 

In the second step, based on the city center, ten buffers are generated using 

ArcToolbox: Buffer, f rom 1 kilometer to city center to 10 kilometers to city center, each 

with 1 kilometer increment (shown in Figure 3.8). Smaller buffers are not included in the 

analysis because the amount of greenness will be too low. Besides buffer circles, buffer 

rings are also generated with the same method. However, the base features input for 

generating buffer are buffer circles of increasing sizes instead. While buffer rings can be 

used to study the changes in landscape structure of green space at specific distance from 

city centers, they may seriously distort the spatial configuration of green space. Therefore, 

the interpretation of some metrics about green space extracted from buffer rings may not 

be valid, especially those which quantify shape complexity of green space. In this 

situation，buffer circles have to be used instead, although they tend to suppress the large 

variations of green space structure at a particular distance from city centers. 
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After that, classified image covered by buffers are clipped out using ArcToolbox: 
Clip function. They are finally converted to ArcGrid format using Conversion; from 
feature to raster, which are input to FRAGS TATS 3.3 for landscape metrics calculation 
in the same manner as landscape analysis for entire cities. 

3.5 Conclusion 
In this chapter, methodology of this research is introduced, with the expected flow 

of the research explained, as well as all the object features and landscape metrics 
involved in listed. Besides, a crude comparison between the two study sites, Chongqing 
and Nanjing, has been accomplished. Results and findings of this research will be 
presented in the next 3 chapters. 
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CHAPTER 4. Results and Discussion I 
Variations of Image Object Signatures for Sampled Land 

Covers 

4.1 Introduction 
This chapter will discuss the interpretation of image object features, and their 

variability along the ascending scale of segmentation. Having detailed in Chapter HI, in 
object-oriented classification concept, each segmented object has its own feature, which 
is defined by a list of spectral, textural and shape variables, integrating into "object 
signature” (Definiens-Imaging, 2003). As an image object grows larger and absorbs 
neighboring pixels/objects, its object signature becomes heterogeneous. The change in 
signature/nature of the original image object concerned will be reflected on the variations 
in values of the spectral, textural and shape variables. The pattern of change in object 
signatures along segmentation scales may in itself vary for different land cover classes, 
and with different spectral-shape ratio at which segmentation is operated. This chapter is 
going to search for the optimal scales and spectral-shape ratio for multi-level 
segmentation. 

Moreover, the application of object signature can be extended to define land cover 
class signature. Inferring from the above assumption, land covers are distinct from each 
other in terms of spectral, textural, or even shape variables. Image objects of the same 
land cover category thus have common object signatures, which are different from those 
of other categories. In this sense, object signatures can be utilized to derive land cover 
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class signatures, which may be useful for formulating dichotomous classifying rules, 

quintessential elements of decision tree classifier which will be discussed in the next 

chapter. 

Features of sampled image objects and segmentation levels will be studied case-by-
case, Chongqing being the first and Nanjing comes the second. Within each case, focus is 
set on the alteration of the object signatures at different sizes and spectral-shape ratios for 
different image object variables as well as land cover categories. Besides, common class 
signature of each land cover is extracted based on the findings. Limitations of this 
analysis and comparisons between Chongqing and Nanjing come as a small conclusion 
for this chapter. 

4.2 Chongqing 
4.2.1 Spectral-shape ratio 

The first objective of image object analysis is to select the best spectral-shape ratio 
for multi-scale segmentation. Merging of pixels/image objects with ascending 
segmentation level inevitably increases heterogeneity within an image object. If high 
spectral-shape ratio is set for segmentation, higher weight will be put on preserving 
spectral similarity within object during segmentation. On the other hand, low spectral-
shape ratio weighs higher on keeping the shape of objects as close to square/circle as 
possible (Definiens-Imaging, 2003). Therefore, different spectral-shape ratio may lead to 
totally different representation of land cover objects by image. In this section, how 
different spectral-shape ratios for image segmentation affects overall image quality is 
presented. 
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4.2.1.1 Selection Criteria 
The choice of spectral-shape ratio is decided by summarizing the total number of 

image objects created. Standard deviation of spectral means of objects (which shows the 

intra-object spectral variances) and differences in image appearance at 6 different 

spectral-shape ratios, which is listed as follows: 

• 0%-the weight of shape on spectral-shape ratio is 0%; 

• 10%--the weight of shape is 10%; 

• 30%-the weight of shape is 30%; 

• 50%—the weight of shape is 50%; 

• 70%—the weight of shape is 70%; and 

• 90%--the weight of shape is 90%. 

Some important observations concerning with different spectral-shape ratios and 
segmentation levels are presented in the following: 

4.2.1.2 Observations 
1. A decrease in spectral-shape ratio yields smaller number of image objects and 

larger average size of image object at each segmentation level. 

Figure 4.1 shows the relationship between amount of segmented image objects and 
segmentation levels at varying spectral-shape ratios. An increase in segmentation level 
leads to generation of larger image objects, which is reflected on the decrease of number 
of objects in the figure. This relationship is most obvious when segmentation level 
proceeds from 1 to 2, that is to say when scale parameter is switched from 2 to 4; while 
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the decrease in number of image objects becomes negligible at segmentation levels 5 to 

12. 

With an increasing weight of shape in the spectral-shape ratio, this exponential 

relationship is getting more evident. At segmentation level 1, over 800,000 image objects 

are generated when the weight of shape is 0%, while only 600,000 image objects are 

generated with 10% weight of shape for segmentation at level 1. When the ratio increases 

to 90%, the number of image objects generated at level 1 is reduced to 300,000, nearly 

three times fewer than the amount that segmentation at the spectral-ratio of 10 to 0 can 

produce. 

Larger number of image objects segmented with higher spectral-shape ratio also 

implies that image objects produced are in average smaller in size at every segmentation 

level if higher spectral-shape ratio is set. This fact is supported by average object size 

generated at different segmentation levels with different spectral-shape ratios, which is 

shown in Appendix 3. 
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2. Decreasing the spectral-shape ratio leads to the surge of Standard Deviation of 
spectral values of image objects at every segmentation level. 

The variability of Standard Deviation is selected to indicate the change in within-
object variances along segmentation levels. Figure 4.2 shows the change in SD (VNIR 3) 
for three classes: "lake", "woodland" and "low density urban". Standard Deviation 
calculates the variance of the spectral values of all pixels forming an image object. 
Standard Deviation increases with the weight of shape throughout the segmentation 
gradient, with 90% weight of shape resulting in the most heterogeneous image objects. 
When spectral-shape ratio is set at 10:0，a comparatively consistent increase in Standard 
Deviation is observed. Further, Standard Deviation of it is the lowest throughout all land 
covers shown. Standard Deviation of other VNIR channels and land covers are shown in 
Appendix 3. 
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Figure 4.2 Variability of Standard Deviation (VNIR 3) of image objects along segmentation gradient 
for land cover classes: "Woodland" (a), "Lake" (b) and "Low density urban" (c). Case in 
Chongqing 
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3. Low spectral-spatial ratio generates segmented objects with very regular 
shapes; while 10:0 spectral-shape ratio produces too fractal objects. 

When high weight of shape is selected, segmentation will preserve the shape of 

image objects as close as squares/circles (shown in Figure 4.3). However, segmentation 

with no weight on shape may create image objects which are too complex (Definiens-

Imaging, 2003), which can also be validated in Figure 4.3. 

翻國 
mm "IK ^s 
Figure 4.3 Segmented images at the lowest segmentation level (left) and highest segmentation level 

(right). Top figures are segmented at spectral-shape ratio of 1:9 (a); the bottom ones are 
segmented at 10:0 (c); the middle at 5:5 (b). Notice that as spectral-shape ratio goes down, 
the images become more distorted from reality, esp. at high segmentation levels. 
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In short, high spectral-shape ratio leads to more objects of smaller size segmented at 

every segmentation level. It also yields smaller spectral variances within objects 

(revealed by Standard Deviation of objects) across segmentation gradient. It is possible 

that complexity of the distribution of different land covers can be better preserved if a 

high spectral-shape ratio is selected. However, 10:0 spectral-shape ratio creates objects 

too complex in shape. Balancing these factors, 9:1 spectral-shape ratio is recommended 

for multi-level segmentation. 

4.2.2 Segmentation levels 
The second objective is to select three segmentation levels for multi-level 

classification. Having mentioned in Chapter HI, classification scheme is a three-tiered 
system, top level being designed for parent classes, or general classes, such as "water"; 
while bottom level for child classes, or more detailed classes, such as "low density urban". 
The aim of this chapter is to create a match between object levels and classification levels. 
That is to say for each classification level, with specific degree of generalization, a 
suitable segmentation level with corresponding degree of generalization, or critical 
segmentation level, is selected. 

4.2.2.1 Selection Criteria 
Five object features are analyzed for selecting critical segmentation levels, namely: 

Standard Deviation (SD), GLCM Homogeneity (HOM), GLCM Contrast (CON), GLCM 
Entropy (ENT) and GLCM Angular Second Moment (ASM). VNIR 2 and 3 are 
considered for they can explain most of the differences between land covers. Variability 
of these variables is interpreted for three classes: "lake", "grassland" and 'high density 
urban" because they are representative to classes of water, vegetation and urban 
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respectively. Variability for other classes are shown in Appendix 3. These variables 

describe the relationships among pixels forming an object. When segmentation level 

increases, these variables will change. Sharp change indicates drastic variation of image 

objects when object scale increases while small change indicates object nature stabilizes. 

A break point can be located at a segmentation scale where the change of these variables 

switches obviously, which forms the critical segmentation level. 

4.2.2.2 Observations 
1. Most of the object variables under study break at segmentation level 5. 

It is found that in most of the object variables' variations mentioned above, break 
point can be clearly located at segmentation level 5, or when scale parameter is set at 10. 
Variables which have break point at level 5 include: SD for all the three classes, ASM for 
all the three classes, ENT for all the three classes, CON of VNIR 2 for all the three 
classes, and HOM for “lake” and "grassland". Only HOM for "high density urban" and 
CON of VNIR 3 do not break at level 5. 

Figure 4.4 shows the variations of SD and ASM for "lake", "grassland" and "high 
density urban". Critical level is apparent at level 5 for the three classes through which 
rapid change in the object variable switch into much slower change. It is especially so for 
ASM, which measures the orderliness of pixel-pairs of different values within GLCM 
table. ASM sharply drops from level 1 to 4 and changes suddenly into slight change at 
level 5 onwards. Such a drastic variation of objects substantiates level 5 being one of the 
three critical segmentation levels. 
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2. Break points are not dearly defined after segmentation level 5. 

Break points after segmentation level 5 are different for different variables and land 

covers. However it is observed that most of the object variables which show break points 

break at levels 8，9 or 10. The findings are listed in the following: 

Variables which show break points at level 8 include: 

• HOM (VNIR 3) for grassland 

• HOM (VNIR 3) for lake 

• CON (VNIR 3) for grassland 

• CON (VNIR 2) for grassland 

For instance, Figure 4.5 shows that HOM (VNIR 3) for grassland turns from 
horizontal trend to rapid rise again at level 8. 

Grassland 

0.135 

0.131 • ^ ^ ~ 
0 1 20 / ^^HOM (vnir 3] 

a,29. 
0.1 28 -

0.127 -

0.126 -j 1 1 1 , , , , , , r 1 2 3 4 5 6 7 8 9 10 11 12 
Level 

Figure 4.5 Variability of H O M (VNIR 3) for “grasshmcT in Chongqii^ 
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Variables which show break points at level 9 include: 

• CON (VNIR 2) for lake 

• CON (VNIR 2) for high density urban 

• CON (VNIR 3) for lake 

• ASM (VNIR 3) for grassland 

• SD (VNIR 2) for high density urban 

For example, Figure 4.6 shows that SD of VNIR 2 for grassland suddenly rises at 

level 9 and then stabilizes afterwards, indicating objects change to another stage of 

heterogeneity. 

High density urban 

10.00 1 

8.00 -

6.00 -

— S D (vnir2) 

4.00 - / 
2 . 0 0 -
0.00 - J I 1 I ~ I ~ ~ I ~ I I I ~ ~ I ~ ~ I ~ ~ ‘ I 

1 2 3 4 5 6 7 8 9 10 11 12 
Level 

Figure 4.6 Variability of Standard deviation (VNIR 2) for "high density urban in Chongqing 

Variables which show break points at level 10 include: 
• HOM (VNIR 2) for high density urban 

• HOM (VNIR 2) for grassland 

• ENT (VNIR 2) for high density urban 

89 



For example, HOM (VNIR 2) for “grassland’，increases its speed of falling at level 

10 (Figure 4.7), indicating that object of grassland starts becoming more heterogeneous at 

that level. 

Grassland 

0.254 -j 

\ +H〇M(vnir2) 

� . 2 5 � -
0.248 -
0.246 -
0.244 -I 1 1 1 . 1 . 1 1 1 1 1 

2 3 4 5 6 7 8 9 10 11 12 
Level 

Figure 4.7 Variability of H O M (VNIR 2) for “grasslancf, in Chongqing 

Summing up the above findings, break points are commonly found at levels 8，9，or 

10 for GLCM HOM and CON. Among them, it is applicable for only "grassland" and 
"lake" when level 8 is set as critical; while it can be applied to only "grassland" and 
"high density urban" when level 10 is set as critical. Level 9 can be applied to define 
break points for all of the three classes. Therefore, it is selected as another critical 
segmentation level. 

3. Within-object homogeneity is high at segmentation level 1 

Object SD (VNIR 2 and 3) is used to interpret the homogeneity of pixels forming 
objects at segmentation level I. As shown in Figure 4.8, SD at level 1 is low for classes 
"grassland", "woodland" and "low density urban". SDof VNIR 2 is the highest for “Low 
density urban", reaching as high as 4; while SD for other classes is seldom over 2 at 
segmentation level 1. 
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L a k e Lake 

5 '6 4.5 - ^ ,4 
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0 I 2. X 

1 2 3 4 5 6 7 8 9 10 1 1 12 ^  
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7 14 -
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1 2 3 4 5 6 7 8 £ ,0 II 12 \ 
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W o o d l a n d woodland 
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Lo^ Density urban Low DenslV Urba, 
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Figure 4.8 Standard Deviation of VNIR 2 (left) and VNIR 3 (right) for “lake,，，"grassland", 
"woodland" and "low density urban" in Chongqing. Key: 0%-0 % weighting of shape for 
segmentation; 10%-10 % weighting of shape forsegn^ntation 
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Figure 4.9 shows the comparison of segmented image at segmentation level 1 with 

pixel image in Chongqing. It is found that they are not much different with each other 

from visual inspection. However, considering that many patches of "woodland", 

"grassland" and urban covers are of very small size and they often mix with one another 

in image, scale parameter 1, that is pixel level, is set for segmentation to generate the 

lowest object level. 

國 mm 
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_ 
Figure 4.9 Image segmented at scale parameter 2 (Upper) and without segmentation (Lower) in 

Chongqing 

In short, three segmentation levels are selected as object levels for multi-tiered 

classification. The largest level is level 9; the middle level being level 5; and the lowest 

level being the pixel level. 

4.2.3 Classifying Rules 
The third objective is to extract some indicators which can be used to distinguish 

land covers among one another. Having selected the three object levels for classification, 
object signature for each class is investigated in order to identify class signatures for 
different classes at each object level, which will serve as classifying rules for the decision 
tree classification at the next stage. 

4.2.3.1 Selection Criteria 
Tables 4.1 to 4.3 present values of a list of spectral, shape and textural features for 

designated land covers at object levels 9, 5 and 1. A particular feature will be selected as 
class signature of a class when value of this feature for the class concerned is 
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discerningly different from other classes. Features suitable for being class signature are 

bolded in tables and will be explained in the following sections. 

4.2.3.2 Level 9 
Level 9 is suitable for classifying water body and "industrial". As shown in Table 

4.1’ "lake" has obviously large values of SD and GLCM CON of VNIR 3. Its Spectral 
means of all VNIR channels, as well as Area, are among the lowest. "River" is 
distinguished by its large values of HOM of all VNIR channels and low values of both 
CON and SD of VNIR 1 and 2. Besides, Area of "river" is the largest of all classes. 
"Industrial" is obviously small in both Area and VNIR 3 Spectra] mean. 
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Figure 4.10a visualizes the values of SD VNIR 1 on image. "River" can be 

distinguished by its dark color, which indicates its significantly low value compared with 

other land covers. In Figure 4,10b, most of "lakes", especially those on eastern bank of 

Changjiang, becomes bright when GLCM CON of VNIR 3 is visualized. Low spectral value 

of VNIR 3 for industrial compared with other classes can also be shown in Figure 4.10c. 

mm 
Figure 4.10 Image objects of "river" (a), "lake" (b) and "industrial"(c) and their visualization 
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It is worth noticing that Area serves best classifying "lake" and "industrial" from 

other classes at segmentation level 9 because their differences from other classes are not 

so significant at level 5 or level 1 (shown in Figure 4.11). These two classes can then be 

divided from each other by Mean difference to neighbor in VNIR 3 and Density (higher 

value of it indicating that the shape of object approaches circle), as shown in Table 4.1. 

500000.0C1 180000.0C n , , -

4_00.0C- .60000.00 丨 , 
400000.0C - / 140000.00 - — H.gh density urban / 
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300000.0G - - * 100000.00 - / 
..".Q-- Lake 

250000.00 - 80000.00 - - v" 
. . . . .R iver ...••••• 
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50000 00 • ...s.........3.曰. 0_00 I I I I I I I I I I I I 
二 … - 〜 一 … . . . . ' 1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 Level 
Level 

Figure 4.11 Comparisons of Area: between Lake and River (Left) and between Industrial and 
High density urban (Right) in Chongqing 

4.2.3.3 Levels 
After "lake", "river" and "industrial" are classified at segmentation level 9，in this 

level object features are identified to differentiate among the remaining classes, that is 
"grassland", '\voodland", "bareland", "high density urban" and "low density urban". 
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As shown in Table 4.2, level 5 can be used to distinguish vegetation from other 

classes because both "grassland" and "woodland" have high value in VNIR 3 Spectral 

mean and low value in VNIR 2 Spectral mean compared to other classes. Figure 4.12 

shows the visualization of values of VNIR 3/VNIR 2 ratio. The contrast between 

vegetation and non-vegetation can be clearly seen. Thus, it can be utilized to depict the 

border of green space. 

mm ^ ̂ Ĥ H 
Figure 4.12 Visualization of contrast between "vegetation" and "non-vegetation" at segmentation 

level 5 using VNIR 3/VNIR 2 ratio (a); and between "low density urban" and other non-
vegetation classes using G L C M contrast VNIR 2 (b). Case in Chongqing 
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For the non-vegetation classes, "low density urban" can be classified out of 'tiigh 

density urban" and 'bareland" as it has obviously high value in both Spectral means and 

GLCM Contrast in VNIR 1 and 2. As shown in Figure 4.12b, “low density urban", 

especially the new highway on the north, reveals high contrast against other urban fabric 

on the south. Thus, "low density urban" can be classified at this level. 

4.2.3.4 Level 1 
"Lake", "river", "industrial", "vegetation", and "low density urban" have been 

identified at the top 2 object levels. The remaining classes, which are "grassland", 

"woodland", "bareland" and “high density urban", are left at object level 1 to be 

classified. 

At level 1，both textural and shape features are not suitable to be used because it is 

in fact pixel-level. Thus, only spectral means can be utilized to classify those classes. 

From Table 4.3，spectral means of all VNIR channels VNIR 3 is not very sensitive to the 

difference between "woodland" and "grassland". Therefore, Spectral means of VNIR 1 

and 2 are main class descriptors of these two classes at level 1. Equivalently, although 

Table 4.3 indicates that spectral mean of every channel can be used to divide between 

"high density urban" and "bareland", Figure 4.13 shows that contrast between them under 

VNIR 3 spectral mean is not sufficiently strong. Therefore, spectral means of VNIR 1 

and 2 will be used to classify them. 
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_ _ _ mmm 
Figure 4.13 Comparison between the original image (a), visualization of spectral mean VNIR 2 (b) 

and visualization of spectral mean VNIR 3 (c) for "woo(lland"-"grassland" contrast 
(Upper) and “high density urban"-"bareland" contrast (Lower). Notice the low contrast 
for VNIR 3. 

4.3 Nanjing 
4.3.1 Spectral-shape ratio 

Like the case of Chongqing, the first objective of image object analysis in Nanjing 
I 

is to optimize spectral-shape ratio to minimize the distortion of image by segmentation, 
j The impact of different spectral-shape ratios on the representation of land cover objects 

in the image is studied. 
I 
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4.3.1.1 Selection Criteria 
In order to optimize the spectral-shape ratio, the total number of image objects 

generated, Standard deviation of spectral means of objects and appearance of the 

resultant segmented image at the same 6 spectral-shape ratios as those investigated in 

Chongqing are studied. 

4.3.1.2 Observations 
1. An increase in weight of shape on spectral-shape ratio generates smaller 

number of image objects and larger average size of image object at every 
segmentation level. But the difference between spectral-shape ratio of 10:0 and 
9:1 is not significant. 

Like the case study in Chongqing, an increase in segmentation level results in a rise 
of average size of image object, which is reflected on the descending number of objects 
across segmentation gradient as shown in Figure 4.14. Decrease in number of objects 
generated is most obvious from segmentation level 1 to level 2, followed by negligible 
variation in object amount after level 5. 

Another shared characteristic between Chongqing and Nanjing is the negative 
relationship between the weight of shape on spectral-shape ratio and number of objects 
generated, which is most discerning at segmentation level 1. What is different from 
Chongqing is that when the weight of shape is increased from 0% to 10%, the decrease in 
number of objects is not significant throughout the segmentation levels. But when the 
weight of shape is increased to 90%, number of objects generated at segmentation level 1 
falls by half from 100,000 to 50,000. 
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It is deduced that with decreasing spectral-shape ratio, image objects generated by 

segmentation tend to be larger in average size at every segmentation level, which is 

shown in Appendix 4. However, the difference in number of objects generated, and thus 

average size of objects, is not obvious between spectral-shape ratio of 10:0 and 9:1. 

Nanjing 

1 200000 1 ~•~0% ~^~ 1 0�/< 
1 。 睡 气 30% 

\ …50�/< 
800000 \ * 雇  

\ ~•90�/< 
600000 • ‘ * • ... Jfc I ‘ d 400000 

I H....................： 
1 2 3 4 5 6 7 8 9 10 11 12 

0 % - 0 % wight of spectral-shape ratio; 10%--10% weight of spectral-shape ratio; 30%-30% weight of spectral-shape ratio; 
50% "50% weight of spcctral-shape ratio; 70%--70% weight of spectral-shape ratio; 90% - 9 0 % weight of spectral-shape ratio. 

Figure 4.14 Object number generated by varyir^ spectral-shape ratio across segmentation gradient 
Case in Nanjing 

2. Decreasing in the spectral-shape ratio increases Standard deviation of spectral 
values of image objects at every segmentation level. Difference in SD between 
spectral-shape ratio of 10:0, 9:1 and 7:3 is slight when the segmentation level is 
tow. 

The relationships between pixels' spectral variances within objects of different 
scales and spectral-shape ratios, which are measLired by Standard deviation of VNIR 3， 

for three classes: "lake", "agricultural crop I" and "bareland" are illustrated in Figure 
4.15. These three classes are chosen because they represent land covers of water, 
vegetation and non-vegetated land respectively. VNIR 3 is sensitive to the differences 
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between water, vegetation and non-vegetation. So S D of it is used to study the 

heterogeneity of pixels within objects. SD of other VNIR channels and land cover objects 

are shown in Appendix 4. 

In spite of minor abnormalities in case of "bareland", all classes follow the same 

pattern of increase in SD with the weight of shape on spectral-shape ratio. When the 

weight of shape is 90%, S D is the largest for all classes throughout the segmentation 

gradient. Besides, it rises most rapidly from segmentation 1 to 4. Spectral heterogeneity 

of objects is the lowest when the weight of shape is 0% at every segmentation level. 

However, very similar same values of S D are observed when the weight of shape is 

switched to 10% or 30%, especially when segmentation level is lower than 3. 

3. Segmented objects are in regular shapes when spectral-shape ratio is low; 10:0， 

9:1 and 7:3 segmentation are very similar to pixel image at low segmentation 
scale. 

Appearance of segmented images at different spectral-shape ratios are shown in 

Figure 4.16. They confirm that high weight of shape tends to generate objects which 

contain pixels of high spectral variances, especially when segmentation level is high. 
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0%"0% weight of spectral-shape ratio; 10%--10% weight ofspectral-shape ratio; 30%--30% weight of 
spectral-shape ratio; 50% - 5 0 % weight ofspectral-shape ratio; 70 % - 7 0 % weight of spectral-shape ratio; 
90% "90% weight ofspectral-shape ratio. 

Figure 4.15 Variability of Standard deviation (VNIR 3) of land covers "Pond" (a), "Agricultural 
crop r (b) and "Bareland" (c). Case in Nanjing 
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Segmented images at level 1 represent the original pixel image equally well when 

spectral-shape ratio is set 10:0, 9: 1 and 7:3. However, objects at level 12 are too complex 

in shape when the spectral-shape ratio is set to 10:0 or 9: 1; while 7:3 produces segmented 

image more conformable to human view of landscape at smaller scale. 
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Figure 4.16 Segmented images of Nanjing at segmentation level 1 (left) and 12 (right). They are 
generated at spectral-shape of 10:0 (a), 9:1 (b)，7:3 (c) and 1:9 (d). Notice: First the 
regular shapes of objects at 1:9; second the similarity of image quality at level 1 for 10:0, 
9:1 and 7:3 and third the fractal objects at both 10:0 and 9:1. 

In summary, the higher the spectral-shape ratio more objects of smaller sizes are 

segmented at every segmentation level. Besides, smaller spectral variances between 

pixels forming an object are resulted when spectral-shape ratio is increased. However, the 

differences between the spectral-shape ratios of 10:0, 9:1 and 7:3 are negligible regarding 

both object number and spectral SD, particularly at segmentation levels lower than 3. 

Both 10:0 and 9:1 spectral-shape ratios result in objects too complex in shape at high 

segmentation level; while the appearance of image at 7:3 is closer to human view of 

landscape at lower "map" scale. Therefore, 7:3 spectral-shape ratio is recommended for 

multi-level segmentation. 
110 



4.3.2 Segmentation Levels 
The second objective is to select three critical segmentation levels for the three 

classification levels of different degrees of generalization. As in the case of Chongqing, a 

match between each classification level and an object level of suitable degree of 

generalization is to be found in this part of study. 

4.3.2.1 Selection Criteria 
The same object features as in the case of Chongqing are analyzed in Nanjing, 

which are: Standard Deviation (SD), G L C M Homogeneity (HOM), G L C M Contrast 

(CON), G L C M Entropy (ENT) and G L C M Angular Second Moment (ASM) of VNIR 2 

and 3. They can depict the spectral variations of pixels within objects along segmentation 

levels. Classes which are focused are "lake", "agricultural crop 11” and "low density 

urban" because they are highly responsive to the change in segmentation scale. 

Variations of these features for other classes are referred to Appendix 4. Like the case of 

Chongqing, the selection criterion is whether breakpoints, or critical segmentation levels, 

can be identified at a segmentation scale where the trends of these variables changes 

significantly. 

4.3.2.2 Observations 
1. Most of the object variables break at segmentation level 5. But break points 

can also be frequently observed at segmentation level 4. 

Most of the object features listed above are still found breaking at segmentation 

level 5 just as the case of Chongqing. However, fewer variables have break points at level 
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5 for all classes. (Only SD of VNIR 2 and E N T VNIR 3) Others variables break at level 5 

for 1 or 2 classes, which are shown in Table 4.4. 

Table 4.4 Object variables and the classes which have break points at segiwntation level 5 in Nanjing 

Object variables which break at ^ 
levels a 聰 
SDCVNIR 2) M classes 

SD (VNIR 3) Lake, low density urban 

H O M (VNIR 2) Agricultural crop n 

H O M (VNIR 3) Agricultural crop H 

C O N (VNIR 3) Lake, agric ulturai crop II 

ENT (VNIR 2) Lake, low density urban 

ENT (VMR 3) AJl classes 

A S M (VNIR 2) Low density urban 

A S M (VNIR 3) Low density urban 

5 object variables are found breaking at segmentation level 4 instead of 5. They 

include: SD (VNIR 3) for "agricultural crop 11”，CON (VNIR 2) for "lake", E N T (VNIR 

2) for "agricultural crop 11" and A S M (VNIR 2 and 3) for "agricultural crop II and lake". 

Figure 417 shows variability of C O N (VNIR 3) and A S M (VNIR 3) for "lake" and 

"agricultural crop 11". The former breaks at level 5 while the latter level 4. Although 

more features are found breaking at level 5, it is also found that image at level 5 is too 

coarse to illustrate the contrast between different types of vegetation (shown in Figure 

4.18). Segmentation level 4 is thus selected as critical level. 
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Figure 4.17 Variability of Contrast (VNIR 3) (Left) and Angular Second Moment (VNIR 3) (Right) 

for lake (a) and agricultural crop II (b) in Nanjing 

mmm 
Figure 4.18 Image of "agricultural crop 11" from pixel image (a) to segmentation level 4 (b) to level 5 

(c) in Nanjing. Notice the gradual loss in details 
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2. Most of the break points can be found at segmentation levels 8 and 9. 

Most of the object variables show break points at level 8 or 10. The findings are 

listed in the following: 

Variables which break at level 8 include: 

• SD (VNIR 2) for agricultural crop II 

• H O M (VNIR 2) for lake 

• H O M (VNIR 3) for lake and low density urban 

• C O N ( V M R 2) for agricultural crop H 

For instance, Figure 4.19 shows that C O N (VNIR 2) for "agricultural crop 11” starts 

to increase sharply after level 8. 
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24 

22 • 

21 • , / 
20 - / 

19- >Z.z..•\................./ 

18- — 一.Z 
…“•.…CON(vnir2) 

17 -
16- / 

* 
15-
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Figure 4.19 Variability of C O N (VNIR 2) for "agricultural crop 11” in Nanjing 
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Variables breaking at level 10 include: 

• SD (VNIR 2) for lake 

• SD (VNIR 3) for lake and low density urban 

• C O N (VNIR 2) for lake 

• C O N (VNIR 3) for lake 

Figure 4.20 shows that C O N (VNIR 2) for "lake" keeps at about 20 from level 4 

onwards and rises sharply at level 10 to over 25 and stays around that value to level 12. 

Lake 

30-1 

A  
25 • / / 

.一•*—...-•.”..-./ 20 - > — — A ^ 

15 - …如 CON (vnir 2> 

1 0 -

5 -

0 -I , , , , , 1 , 1 1 1 1 
1 2 3 4 5 6 7 8 9 10 11 12 

Leyd  

Figure 4.20 Variability of C O N ( V N m 2) for “lake，，in Nanjing 

When level 8 is set at critical level, break points can be defined for the three classes 

tested; while they can only be defined for "lake" and "low density urban" when 

segmentation level 10 is set at critical level. Besides, level 8 is more capable of 

preserving contrast between different types of land covers. Therefore, level 8 is selected 

as another critical segmentation level 
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3. Within-object homogeneity is high at segmentation level 1. 

The lowest critical segmentation level can be determined after analyses of spectral 

variances of objects for "lake", "agricultural crop 11" and "low density urban", which are 

graphically shown in Figure 4.21. Focusing on segmentation level 1 discovers that 

spectral variances within objects are low. Most of the classes have SD of about 1. 
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Figure 4.21 Variation of Standard Deviation of VNIR 2 (Left) and VNIR 3 (Right) for "lake" (a), 

"agricultural crops 11" (b) and “low density urban" (c) in Nanjing 
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This finding is also established for other land covers that have not been presented in 

this chapter (referring to Appendix 4), which implies that the lowest object level can be 

set at segmentation level 1 or scale parameter: 2. In fact, visual inspection in the Nanjing 

image also cannot find out significant differences between pixel-level and segmentation 

level 1 (Figure 4.22). Therefore, segmentation level 1 is selected as critical level. 
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Figure 4.22 Comparison between pixel image of Nanjing (a), segmented image at segmentation level 1 
at spectral-shape ratio of 7:3 (b), and segmented image at segmentation level 1 at 
spectral-shape ratio of 9:1 (c). Difference is hardly found even at large scale 
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Summing up, three segmentation levels are selected as object levels for 

classification, which are level 8，level 4 and level 1. 

4.3.3 Classifying Rules 
The third objective is to extract indicators to classify land covers. Classifying rules 

will be extracted from spectral, shape and textural features which best define each land 

cover at pre-selected object levels, which are levels 8，4 and 1. 

4.3.3.1 Selection Criteria 
Tables 4.5 to 4.7 show spectral, shape and textural values for different land cover 

classes at object levels 8, 4 and 1. As in the case of Chongqing, if a feature value of a 

particular class is obviously different from other classes, that feature will be used as 

classifying rules for that class during the design of decision tree. Features which can be 

used to differentiate a class have their values bolded in the table for illustration. 

4.3.3.2 Levels 
The top object level can be used to identify water body. Both "river" and "lake" 

have low spectral values in VNIR 3. Besides, they are particularly low in C O N and SD of 

VNIR 1. The ability of spectral value (VNIR 3) in distinguishing water body from "high 

density urban", which also has low values in other spectral channels, is illustrated in 

Figure 4.23. 
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Water body can then be further divided into "river" and "lake" by its larger area, 

higher spectral value in VNIR 1 and higher H O M in all channels. From the image there 

are smaller river channels which Area cannot be used to classify. They can be 

distinguished instead by its larger value in length-width ratio, which is shown in Figure 

4.24. 
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Figure 4.23 Image of Nanjing showing "river", “lake，，and "high density urban" and their values in 

terms of spectral mean VNIR 3 

Figure 4.24 Image showing small river channels and lakes; and how they are divided from each other 
by length-width ratio 

4.3.3.3 Level 4 
"River" and "lake" are classified at the top object level. So, level 4 will be used to 

classify the remaining classes. Table 4.6 shows that all vegetation classes have ratio 

vegetation index (RVI, i.e. VNIR 3/VNIR 2) larger than 1 while other classes (“fallowed 

land", "bareland", "high density urban" and "low density urban") have RVI lower than 1. 

At this level, therefore, vegetation classes can be grouped together to form a parent class 

"vegetation" which is defined by RVI, based on which different types of vegetation can 

be further classified. 
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Further, from Table 4.6 it is found that 5 classes of vegetation can be divided into 3 

super-categories at level 4. They are signified in the table. The first super-category is 

actually "agricultural crop I" which has particularly high values in terms of both spectral 

mean and C O N of VNIR 3’ which is printed in Italic form; The second super-category is 

composed of "agricultural crops 11" and "wetland", which have medium VNIR spectral 

mean and C O N values, which is emphasized with dots; The third is constituted by 

"woodland" and "grassland", which have the lowest values in VNIR 3 spectral mean and 

CON, which are shaded in grey. Visualization of these three categories in terms of C O N 

VNIR magnitude is shown in Figure 4.25. 

Level 4 is also the object level where “low density urban" can be separated from 

other non-vegetation class because of its significantly high C O N values of both VNIR 1 

and 2, which is shown in Figure 4.26. 
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Figure 4.25 Three super-categories of vegetation and visualization of their varying magnitude in 

C O N (VNIR 3) 
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mm 
Figure 4.26 Image showing "low density urban，，and “high density urban，，. Notice the relative 

brightness of "low density urban" in the visualization of C O N VNIR 1 

4.3.3.4 Level 1 
Level 1 will be used to further classify vegetation category 2 into "agricultural crop 

11" and "wetland"; vegetation category 3 into "woodland" and "grassland"; and the 

remaining non-vegetation into "fallowed land", "bareland" and "high density urban". 

At level 1，object size is too small and thus shape and texture features cannot be 

used. From Table 4.7，"wetland" is significantly higher in spectral mean VNIR 3 than 

"agricultural crop 11"; "Woodland" has particularly high values in spectral mean of VNIR 

2 compared to "grassland". So it is used to discriminate between them. "High density 

urban" has the lowest values in spectral mean of all channels, followed by "fallowed 

land" and "bareland" having the highest values. Therefore these three non-vegetation 

classes can be classified spectrally. Discrimination of all these classes against one another 

is shown in Figure 4.27. 
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讕圓 

Figure 4.27 Discrimination of land covers using spectral mean at level 1: "wetland" vs. "agri crop II，， 
with VNIR 3 (a); "woodland" vs "grassland" with VNIR 2 and "bareland" vs "fallowed 
land" with VNIR 1 (b); and "high density urban" vs "bareland" with VNIR 3 (c) 
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4.4 Discussion 
After summary of image objects' features in line with segmentation separately in 

Chongqing and Nanjing, and their implications on spectral-shape ratio for segmentation, 

critical segmentation levels, and classifying features for each designated classes, the 

following section delves into the comparisons between the two study sites in terms of 

image objects' features. 

In this chapter, comparisons between the two study sites, Chongqing and Nanjing, 

are based on the segmentation specifications presented previously, which include 

spectral-shape ratio, critical segmentation levels, and classifying rules derived. 

Explanations will be given on their differences. 

Spectral-shape ratio for image segmentation is 9:1 in the case of Chongqing while it 

is 7:3 for Nanjing. High weight of shape on spectral-shape ratio will produce image 

objects of larger sizes and within-object spectral variances, which in turn induce more 

class mixing. On the other hand, too low weight of shape on spectral-shape ratio will 

generate objects of too complex/fragmented shape. In Nanjing, 10:0’ 9:1 and 7:3 

generates very similar object average size and object SD. But at 10:0 and 9:1 object shape 

is too fractal. So 7:3 is adopted instead. 

Chongqing and Nanjing differ from each other in critical segmentation levels. The 

first, second and third object levels for segmentation in Chongqing are defined as scale 

parameter 1, 10 and 14 respectively; while they are defined as scale parameter 2, 8 and 12 

in Nanjing. The difference reflects the two cities' disagreement in urban complexity, 

which is the result of distinct spatial arrangement of urban elements within a particular 
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city. Urban planning of Chongqing city center is more chaotic according to visual 

inspection of the satellite image, which explains the lower scale parameters being defined 

at the first and second object levels. Higher scale parameter is however defined for the 

largest object level, considering that many artificial lakes and industrial sites of small size 

but irregular shape are widespread in the image of Chongqing. Nanjing is characterized 

by many small patches of vegetation well mixing with concrete urban elements. Such 

mixing may be hidden by segmentation at the highest object level if scale parameter is set 

over 12, adversely degrading differentiation between green element and urban element at 

the highest classification level. 

Transferability of classifying rules is to a certain extent possible between 

Chongqing and Nanjing. For example, water body is suitable to be classified at the 

highest object level in both sites. Both "river" and "lake" have low values in terms of 

Contrast and SD, even though in Chongqing C O N and S D of VNIR 1 and 2 are used to 

classify them while C O N and SD of VNIR 3 is used in Nanjing. "River" is then 

distinguished from “lake，’ by its higher H O M values of all channels and large area. At the 

medium object level in cases, vegetation and non-vegetation can be discriminated against 

each other using ratio of VNIR 3 and VNIR 2. Besides, “low density urban" is singled 

out in both sites because of its particularly high values of C O N of VNIR 1 and 2. At the 

lowest object level, "grassland" and "woodland" are separated with each other utilizing 

higher spectral means for all VNIR channels for "grassland"; while "high density urban" 

is discriminated against non-urban classes with its obviously lower spectral means in all 

spectral channels. 
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Differences between Chongqing and Nanjing are mainly induced by the local 

variations between the two sites, and the different seasons in which data was acquired, 

including: First, industrial land use of regular shape is obvious in Chongqing while it is 

not so in Nanjing; Second, distinctive agricultural crops and wetland are found in Nanjing 

while they may mix with "woodland" and "grassland" in case of Chongqing; third, 

"fallowed land" in agricultural land use is discerning in the image of Nanjing because the 

acquisition of Nanjing data was in winter while it is not found in the image of Chongqing, 

which was obtained in summer when green coverage is at maximum. 
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CHAPTER 5. Results and Discussion II 
Image Classification 

5.1 Introduction 
Having discussed about different patterns of variations in object features with a 

variety of segmentation specifications (mainly size and spectral-shape ratio) for expected 

land cover classes in the last chapter, classifying rules for each and every land cover class 

are conceptualized. These classifying concepts will be put into practice in building up the 

class hierarchy for object-oriented classification. In the class hierarchy, every class is 

defined by class description formulated chiefly by the object features. Further, 

relationships between classes can be explicitly defined (Definiens-Imaging, 2003). The 

design for classification is composed of three classification levels which link with three 

object levels. Top classification level will specialize in defining general "super-classes" 

such as "water", "land" etc. manipulating the coarseness of high object level. Bottom 

level will further sub-divide these "super-classes" into destined land cover classes. This 

procedure of classification adopts the principle of decision-tree classification approach. 

This chapter will present the classification in the two study sites, Chongqing and 

Nanjing. In each site, class hierarchy design will be detailed. Classification flows of three 

land covers will be studied as a case. After that, comparison of object-oriented 

classification with other conventional classification methods in terms of classification 

accuracy and proportion of land cover in the study site will follow. Comments on the 

transferability of classifying rules based on the classification experience will conclude 

this chapter. 
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5.2 Chongqing 
5.2.1 Class hierarchy 

Class hierarchy is used to organize the structure of the operational decision tree and 

describe the nature of each land cover category with object rules (Definiens-Imaging, 

2003). Based on the classification system, the operational decision tree of Chongqing is 

formulated (shown in Figure 5.1). 

輕 r w T O 輙 梦 贊 焚 璧 1：為 

P , Level 3 

- • M ^ m 
O others 
# River[l] 

- - # Lakje or Industrial or small river 

o Small river [ 1 ] 

- 邀 Lake or Industr id 

^ Industrial [1] 

• Late[l] 

: 1 ) Level 2 

Sm-all river 

• River [1] 

• Lake[l] 
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- others ： 

# vegetat ion 丨： 

non-vegetat ion 

3 Level 1 

• Lake 

• River 

- 邀 Vegetat ion 
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% Woodland 

• iridustrial 

- f - J o n - v e g e t a t i o n 

- ：'Barren land and High density urban , 

Barren land ！ 

# High density urban 

Low density urban 

_ i ,「... Inheritance Group：^ 入 Structure / 

Figure 5.1 Class hierarchy for classification of Chongqing 

Source: Definiens-Imaging, 2003 

A conceptual decision tree is shown in Figure 5.2, in which a decision tree can be 

further compartmentalized into series of steps, or splits, from the most general land 

covers to the destined land covers. The splits are often dichotomoiis so that a general 

class is sub-divided into two classes at the next lower level, one of them being designated 
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category “X，，while another category "Not X,，，which are complimentary to each other 

(Borak & Strahler，1999). 

Determination of whether an object belongs to one of the two categories is guided 

by a list of rules generalized from the findings in C H A P T E R IV. Figure 5.2 illustrates the 

decision tree designed for classification of the Chongqing image. Three destined land 

cover classes (lake", "grassland and crops" and "low density urban") will be discussed in 

detail on their flows along the classifying decision tree and classifying rules. 

Classification flows of other land covers are listed in Appendix 3. 

5.2.2 Description of the site 
Chongqing is segmented by two big river channels, Jialing River running east-west 

and Changjiang running north-south. The main city is located at the intersection of these 

two rivers at the center of the image. "Low density urban" is mainly the new 

development zone to the north of main city and on the eastern bank of the Changjing to 

the south of main city. Industrial facilities of regular shape are distributed within the 

urban area and have low reflectance. Numerous small lakes of different shapes are 

distributed in the suburban area around the city. Main woodland zone is along Nan Shan 

north-south to the east of the city. Main vegetation types bounding the city are grassland 

and crops, with patchy woodland distributed on them. Appearance of “lake，’，"grassland" 

and ‘‘low density urban" on the image is shown in Figure 5.3. 
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H Intermediarv class 

Destined class 

Figure 5.2 Conceptual Decision Tree for Classification of Chongqing 
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mmm 
Figure 5.3 Appearance of "lake" (a), "grassland" (b) and "low density urban" (c) in Chongqing 

5.2.3 Classification of “lake” 
It is observed that "lake" in Chongqing is distinguishable by its low reflectance of 

V N I R 3，small size and high scores in G L C M Contrast VNIR 3. Specific to these 

characteristics, classification of "lake" is operated as follows: It is first classified as "lake, 

industrial, or small river" in classification level 3，which is coincident with object level 3 

(that is Segmentation level 9, referring to C H A P T E R III). "Lake, industrial, or small 

river" has the following classifying rules: 

• Mean difference to neighbor (VNIR 3): smaller than -18 (Spectral) 

• Spectral mean (VNIR 3) x Spectral mean (VNIR 2): smaller than 4400 (Spectral) 

• Spectral mean (VNIR 3)/Spectral mean (VNIR 2): smaller than L95 (Spectral) 

• Area: smaller than 119,000 (pixels) (Shape) 

Because "lake" is spectrally very similar to "small river", which also has low 

reflectance value of V N I R 3, the next step of classifying "lake" is to distinguish "lake and 

industrial" (which are both more compact in shape) from "small river" (which is 

elongated in shape) using Shape feature: 

• Density: smaller than 0.91 (Shape) 
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Finally, "lake" and “industrial” have to be separated from each other even though 

they resemble each other in terms of both spectral and shape variables. Compared to 

"industrial", 'lake" has higher reflectance in VNIR 3 along segmentation gradient, and a 

higher score of G L C M dissimilarity VNIR 3. Classifying rules are thus set as follows: 

• GLCM Dissimilarity (VNIR 3): greater than 10 (Textural) 

• Spectral mean (VNIR 3)/Spectral mean (VNIR 2): greater than 1.0 (Spectral) 

5.2.4 Classification of “crops and grassland" 
According to Chongqing (City proper) Urban Master Plan 1996-2001 (Chongqing 

Gueihua Sheji Yanjiouyuan, 1995), there are also ‘‘agricultural crops" and "wetland" 

distributed around Chongqing city proper. However, they are found mixing with 

"grassland" from the Chongqing image. It may be because the image is obtained in 

summer when different types of vegetation are thriving. Spectral reflectances of 

"grassland", "agricultural crops" and "wetland" are very similar. Therefore, these three 

classes are grouped together to form a class "crops and grassland". 

"Crops and grassland" is easily dissected from non-vegetation using Ratio 

Vegetation Index (RVI, i.e. V M R 3 / VNIR 2). However, dichotomous split of vegetation 

and non-vegetation cover at Classification level 3 imposes serious effect on overall 

classification accuracy. It is because there are many tiny patches of vegetation 

neighboring bare soil. Many of them are grouped as the same objects at high object level, 

which induces excessive class mixing between vegetation and non-vegetation. Therefore, 

the dichotomous split between "vegetation" and "non-vegetation" starts at classification 

level 2，that is Segmentation level 5 as follows: 
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• Spectral mean (VNIR 3)/Spectral mean {VNIR 2): greater than 1.25 (Spectral) 

Further segmenting "vegetation" into "woodland" and "crops and grassland" is 

done at Classification level 1，considering that "woodland" is very patchy and fragmented 

from the image of Chongqing. Classification of them thus has to be accomplished at pixel 

level (that is Scale parameter I). Classifying rules of “crops and grassland" are as follows: 

• Not "woodland", which is classified by: 

o Spectral mean (VNIR 1): smaller than 86.1 (Spectral) 

o Spectral mean (VNIR 2): smaller than 50.1 (Spectral) 

o Spectral mean (VNIR 3): smaller than 112 (Spectral) 

5.2.5 Classification of “low density urban" 
Classifying "low density urban" requires first separation of land objects from water 

objects and industrial sites at Classification level 1. These two super-classes are separable 

in both spectral and shape terms. Classifying rules of land are as follows: 

• Not “lake，industrial or small river", which is classified by: 

o Mean difference to neighbor (VNIR 3): smaller than -18 (Spectral) 

o Spectral mean (VNIR 8) x Spectral mean (VNIR 2): smaller than 4400 

(Spectral) 

o Spectral mean (VNIR 3)/Spectml mean (VNIR 2): smaller than 1.95 

(Spectral) 

• Then, Not "river", which is classified by: 

o Standard deviation (VNIR I): smaller than 4.51 (Spectral) 
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o Standard deviation {VNIR 2): smaller than 4.51 (Spectral) 

o Standard deviation {VNIR 3): smaller than 4.51 (Spectral) 

〇 Spectral mean {VNIR 3): Spectral mean {VNIR 2): smaller than -19.9 

(Spectral) 

Second, "low density urban" is grouped in the class "non-vegetation" with other 

non-vegetated land covers at Classification level 2 using RVI. Applying such a 

vegetation index is particularly effective because "low density urban" is comprised of 

highways, new buildings and construction sites which are all notably non-vegetated cover. 

Classifying rules of "non-vegetation" is as follows: 

• Not “vegetation”’ which is classified by: 

〇 Spectral mean (VNIR 3)/Spectral mean (VNIR 2): greater than 1.2 (Spectral) 

Lastly, a way is sought to separate "low density urban" from "bare land" and "high 

density urban". It is accomplished finally by using specifically high G L C M contrast 

values in both VNIR 1 and 2 at Classification level 1 (that is pixel-level). Values of 

G L C M contrast are actually very unstable at this object level and thus C O N should be 

used at medium classification level. Nonetheless, after trial-and-error it is found that 

C O N of VNIR 1 and 2 are most effective in identifying "low density urban" at pixel level. 

Therefore, classifying rules of “low density urban" are as follows: 

• GLCM contrast {VNIR 1): greater than 80 (Textuml) 

• GLCM contrast (VNIR 2): greater than 90 (Textuml) 
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6.3.3 Classification Result 
Classified image of Chongqing using object-oriented classification approach is 

shown in Figure 5.4, which is compared with classified image using conventional 

classification algorithm. (MLC—maximum likelihood classification; SFC—supervised 

fuzzy classification; LSU~linear spectral unmixing) L S U fails to classify all our 

designated land covers so the classification scheme is modified in case of LSU: "river" 

and "lake" are aggregated into more general class "water" while "industrial" is discarded. 

Their classification overall accuracies and kappa coefficients are presented in Table 5.1. 

Table 5.1 Comparison of classification accuracy between different classification algorithms. Case 
in Chongqing 

Classification Algorithms Accuracy" %) KAPPA 
Object-oriented approach 64.16 .514 

Maximum Likelihood ^ “ • 
^ T . 62.66 .478 
Classification 

Supervised Fuzzy Classification 52.88 .409 

Linear Spectral Unmixing 42.00 .228 

Object-oriented classification approach attains the highest overall accuracy, 

followed in descending order by MLC, SFC and LSU. However, the differences between 

object-oriented approach and other algorithms are not sufficiently large to assert its 

superiority. It is especially N O T so when object-oriented classification is compared with 

MLC, where the difference is less than two percent in overall accuracy. 
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11 
11 

Figure 5.4 Classified images of Chongqing using different approaches: Object-oriented 
classification (a), maximum-likelihood classification (b), supervised fuzzy classification 
(c) and linear spectral unmixing (d) 
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5.2.7 Error matrix 
From the error matrix and class-based accuracy statistics produced by Object-

oriented approach and M L C (Tables 5.2 and 5.3), class mixture between "crops and 

grassland" and "woodland"，"bare land" and urban land covers are serious: In M L C , 45 

out of 102 sample points which are "woodland" are classified as "crops and grassland"; 

35 out of 49 "bare land" sample points are classified as "crops and grassland"; of 35 

"high density urban" sample points 21 are classified as "crops and grassland"; 13 "low 

density urban" sample points are mixed with "crops and grassland". In object-oriented 

classification, the mixture problem between "crops and grassland" with other land covers 

does not seem to be significantly improved: Of 87 ‘\voodland” sample points, 37 are 

classified as “crops and grassland"; while 49 of 78 points of "bare land" are classified as 

"crops and grassland". 

5.2.8 Class Proportion 
Areal proportion of each land cover is presented in Table 5.4. "Crops and 

grassland" occupies the most area of Chongqing (over 50%), followed by "woodland" 

(18.67%) and "high density urban area" (7.09%). "Lake" and "industrial" take the least 

proportions of total area: 1.75% and 0.62% respectively. Urban landscape (including 

"bareland", "industrial", "low density urban" and "high density urban") occupies about 

20% of the whole landscape, which is about 121 km', which is much lower than the 

amount documented in China City Statistical Yearbook (2003). It is because the image of 

Chongqing classified delineates mainly the city proper, excluding many districts, 

prefecture-level cities and prefectures which are administered by Chongqing municipality. 
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Table 5.4 Class proportion (by Object-oriented approach). Case in Chongqing. 

Area (in km") Class proportion 
Lake 1.75% 
River 36.36 5.97% 
Grassland 325.90 53.52% 
Woodland 113.61 18.67% 
Bare land 41.12 6.76% 
Industrial 3.77 .62% 
Hfeh density urban 43.16 7.09% 
Low density urban 34.07 5.60% 
Total 608.63 

5.2.9 Post-classification Aggregation 
Although object-oriented classification produces the best classification result 

among the classification methods selected and tested, 64% accuracy is insufficient to 

validate us further analyzing the classified image with landscape metrics. Post-

classification aggregation is thus required. "Lake" and "river" will be aggregated into 

"water"; "woodland" and “crops and grassland" are grouped into "green space"; “bare 

land", "industrial" and two urban land covers are mixed up into the class “land’，. 

Resultant image after aggregation is shown in Figure 5.5 whereas accuracy statistics are 

shown in Table 5.5. Overall classification accuracy increases to 86% after aggregation. 

Table 5.5 Accuracy Statistics for Object-oriented Classification after Aggregation. Case in 
Chongqing 

广， 、丁 Producer's User's Kappa Class Name ‘ , ‘？‘. Accuracy Accuracy Statistic 
Water 77.14% 87.10% .859 % 
Urban Green Space 97.17% 84.81% .601 % 
Land 64.96% 89.41 % .850 % 

Overall Accuracy: 86% 
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5.3 Nanjing 
5.3.1 Class Hierarchy 

Figure 5.6 shows the operational decision tree of Nanjing while Figure 5.7 is the 

conceptual decision tree for object-oriented classification of the city. 

I- J 國 1； 
- not Big River , 

- • 5mall river, pond 

O •；mall river 
# pond (3) 

O Big River ： 

- # level 2 I 
- others 丨 

bright urban 
珍 dark urban 
？笼 rural 

• pond(2) 
O vegetation 

- r i v e r (2) 
- O level 1 

river 

• pond 
- - i ^ green space , 

S woodl.and 
- n o t woodland 

grassland 1 
grassland 2 

barel.and i 
low den urban ‘ 

錄 high den urb.ari | 

_ _ j I Inheritance , Groups >,, Structure / 

Figure 5.6 Class hierarchy for Classification of Nanjing 

Source: Definiens-Imaging, 2003 

Like the case of Chongqing in previous section, only three destined land cover 

classes will be detailed on their flows along the classifying decision tree and classifying 

rules, which are: "lake", "grassland and crops IT and “low density urban". Classification 

of other land cover categories are detailed in Appendix 3. 
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M i 麵 圓 

^ ^ Intermediary classes 

广…；Destined classes 

Figure 5.7 Conceptual decision tree for classification of Nanjing 
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5.3.2 Description of the site 
Referring back to C H A P T E R III, classification system of Nanjing is different from 

that of Chongqing because of the local uniqueness of Nanjing city is. Sizes of lakes in 

Nanjing are much larger than those in Chongqing. Besides, industrial facilities cannot be 

differentiated from "high density urban" from the image as in the case of Chongqing. 

Main city is located on the eastern bank of Changjiang, with "low density urban" abutting 

by the south. "Low density urban" can also be found on the new development zone to the 

southeast of the main urban zone. Most of all, unlike Chongqing, agricultural land uses 

are clearly observed on the suburb, which include different types of agricultural crops and 

wetland easily distinguished from grassland spectrally; and "fallowed land" distributed 

patchily on farmlands which may be left uncultivated in winter time. Figure 5.8 shows 

the appearance of agricultural crops, lakes, and low density urban on the image. mmm 
Figure 5.8 Appearance of "lake" (a), "agricultural crop II，，(b) and "low density urban" (c) in 

Nanjing 

5.3.3 Classification of lake 
Unlike in case of Chongqing, classification of "lake" in case of Nanjing cannot be 

accomplished solely at the highest classification level. It is because "lake" is very much 

like some of "high density urban" objects in spectral characteristics: both of very low 

spectral reflectance. Mixing happens especially between high building shadows and 
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"lake". Solution is finally found through trial-and-error: delineating city regions manually 

in PCI in Bitmap format, which is transformed into an image channel named urban 

boundary. Rule that "lake" is out of urban zone is then set to discriminate "lake" against 

building shadow at classification level 2. Also, "lake" and "small river" have similarly 

low spectral values in all VNIR channels so that Shape features are resorted to 

differentiate between them. Therefore, classifying rules of "lake" are as follows: 

At Classification Level 3: 

• Not ''Big River", which is: 

o Spectral Mean (VNIR 1): smaller than 78 (Spectral) 

〇 Spectral Mean (VNIR 3): smaller than 37 (Spectral) 

o Standard Deviation (VNIR 3): smaller than 8 (Spectral) 

o Spectral Mean (VNIR 3) - Spectral Mean (VNIR 2): smaller than -17 

(Spectral) 

• Classified as “Small river and lake", which is: 

o Urban boundary: 0 

o Spectral Mean (VNIR 3): smaller than 28 (Spectral) 

o Spectral Mean (VNIR 3) / Spectral Mean (VNIR 2): smaller than 1.01 

(Spectral) 

• Not “Small river", which is: 

o Density: smaller than 1.81 (Shape) 

At Classification Level 2: 

• Existence of "Lake “ super-object:! (Relation to Super-object) 
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OR: 

• Spectral Mean {VNIR 3): smaller than 32 (Spectral) 

• Urban boundary: 0 

• Spectral mean (vnir 3) /Spectral mean (vnir 2): smaller than 1.01 (Spectral) 

5.3.4 Classification of "crops and grassland IF' 
Mixing between crops, wetland vegetation and ordinary grassland is complicated. 

Separating them in object-oriented classification would seriously lower the overall 

classification accuracy. Eventually, different types of vegetation are re-grouped into two 

main vegetation categories: "crops and grassland I" which have very high spectral values 

especially in VNIR 3，composed of mainly "agricultural crop I" and ‘‘wetland，，； and 

"crops and grassland 11” with comparatively lower VNIR 3 spectral values while higher 

V N I R 1 values, which is composed of "agricultural crop 11” and "grassland". 

Classification of "crops and grassland 11" starts with discrimination of "land" against 

"water bodies" by the following classifying rules: 

• Not “Big River”，which is: 

o Spectral mean (VNIR 1): smaller than 78 (Spectral) 

o Spectral mean (VNIR 3): smaller than 37 (Spectral) 

o Standard deviation (VNIR 3): smaller than 8 (Spectral) 

o Spectral mean (VNIR 3)-Spectral mean (VNIR 2): smaller than -17 (Spectral) 

• Not "small river, lake”，which is: 

o Urban boundary: 0 

o Spectral mean (VNIR 3): smaller than 28 (Spectral) 
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O Spectral mean (VNIR 3)/Spectml mean (VNIR 2): smaller than 1.0] 

(Spectral) 

At Classification level 2, it is classified as "vegetation" using the following rules: 

• Spectral mean {VNIR 3) /Spectral mean (VNIR 2): greater than .98 (Spectral) 

At Classification level 1: 

• Not “woodland’’，which is: 

o Spectral mean (VNIR 1): smaller than 53 (Spectral) 

o Spectral mean (VNIR 2): smaller than 36 (Spectral) 

o Spectral mean (VNIR 3): smaller than 51 (Spectral) 

• Then, Not “crops and grassland /，，，which is: 

o ND VI: greater than 0 .3 (Spectral) 

o Spectral mean (VNIR 1): smaller than 61 (Spectral) 

5.3.5 Classification of "low density urban” 
The image of Nanjing reveals lower brightness contrast between “low density 

urban" and "high density urban". Much of the "high density urban" objects are found 

mixed with "low density urban" objects even at the lowest object level. Therefore, the 

urban boundary channel has to be used again to delineate urban boundary. Classification 

of "high density urban" is implemented at Classification level 2 in the following: 

• Not “Big River", which is: 

o Spectral mean (VNIR 1): smaller than 78 (Spectral) 

o Spectral mean (VNIR 3): smaller than 37 (Spectral) 
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o Standard deviation {VNIR 3): smaller than 8 (Spectral) 

〇 Spectral mean (VNIR 3)-Spectral mean (VNIR 2): smaller than -17 (Spectral) 

• Not “small river, lake", which is: 

〇 Urban boundary: 0 

o Spectral mean (VNIR 3): smaller than 28 (Spectral) 

o Spectral mean (VNIR 3)/Spectml mean (VNIR 2): smaller than 1.01 

(Spectral) 

At Classification level 2, it is classified as: 

• Not ‘‘vegetation”，which is: 

o Spectral mean (VNIR 3)/Spectral mean (VNIR 2): greater than .98 (Spectral) 

Then, further classified as the destined class ''low density urban ” by: 

• GLCM Dissimilarity (VNIR 1): greater than 4 (Textural) 

• Spectral mean (VNIR 1): greater than 66 (Spectral) 

• Spectral mean (VNIR 2): greater than 50 (Spectral) 

• Spectral mean (VNIR 3): greater than 35 (Spectral) 

5.3.6 Classification Result 
Classified image of Nanjing using object-oriented classification approach is shown 

in Figure 5.9, which is compared with classified image using conventional classification 
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algorithm (MLC, SFC and LSU). Their classification accuracies and kappa coefficients 

are presented in Table 5.6. Compared to Chongqing, classification result of Nanjing is 

poorer across all classification methods selected. Linear spectral unmixing produces the 

lowest classification accuracy, which is barely above 20%, followed by supervised fuzzy 

classification whose overall accuracy is about 35%. MLC, however, rank the top in 

accuracy rate (straightly 50%) over object-oriented classification. In spite of it, these two 

methods do not have significant difference in terms of overall accuracy. 

Table 5.6 Comparison of classification accuracy between different classification algorithms. Case in 
Nanjing 

Classification Algorithms Accuracy"%) KAPPA 
Object-oriented approach 47.40 .327 

Maximum Likelihood ^^ _ ^ 
^ ... • 50.00 .340 
Classification 

Supervised Fuzzy Classification 34.80 .239 

Linear Spectral Unmixing 20.00 .144 

5.3.7 Error Matrix 
Comparison between object-oriented classification and maximum-likelihood 

classification in terms of both error matrix and class-based accuracy (in Table 5.7 and 5.8) 

lead us to very similar conclusion to that for Chongqing: Inter-class mixing is easily 

observed. In MLC, of 79 points which are "woodland", 29 are classified as "crops and 

grassland 11" while 11 are classified as "bareland", which results in low producer's 

accuracy for "woodland" (36.7%). For the non-vegetation classes, 23 out of 70 sample 

points of "bareland" are classified as "crops and grassland 11". Only 10 of 43 "low 

density urban" sample points are correctly classified, with the remainder mostly mixed 
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with “crops and grassland H", "bareland" and "high density urban", which account for a 

very low producer's accuracy for "low density urban" (23.3%). 

For Object-oriented classification, nearly half of the "woodland" sample points are 

classified as "crops and grassland 11", which explains the low accuracy rate for the class 

(34%). 32 out of 70 points of "bareland" are classified as "crops and grassland 11" while 

another 14 points mix with “low density urban", which explains the very low rate of class 

accuracy (27%). Accuracy of "high density urban" is dragged down to about 28% 

because 12 out of 35 points are classified as "low density urban" while 9 of them mix 

with "crops and grassland 11". 
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m m 
M l 

Figure 5.9 Classified images of Nanjing using different approaches: Object-oriented classification 
(a)，maximum-likelihood classification (b), supervised fuzzy classification (c) and linear 
spectral unmixing (d) 
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5.3.8 Class Proportion 
Areal proportion occupied by each destined land cover class in Nanjing is shown in 

Table 5.9. "Lake", as in case of Chongqing, occupies the least area (3.65%), which 

together with “river，，making about 11% of area in Nanjing from image occupied by 

water body. A m o n g vegetation covers, "crops and grassland 11" takes the largest areal 

share (37.11%), followed by "woodland" which takes 11% of the area. "Bare land” 

occupies over 18% while the two urban classes each take 9%. In sum, non-vegetation 

land takes 36% of the total area of study site. Built-up area, including "low density 

urban", "high density urban" and "bareland" is about 342 km". Compared to the built-up 

area of 439 km- documented in China City Statistical Yearbook (2003), the figure 

calculated in this research is much smaller because large area of green space which is 

within Nanjing city has not been counted. 

Table 5.9 Class proportion (by Object-oriented approach). Case in Nanjing 

Area (km^) Class proportion Name  
Lake 3.65% 
River 72.34 8.02% 
Woodland 102.06 11.32% 
Crops & grassland I 17.18 1.91% 
Crops & grassland H 334.67 37.11% 
Bareland 171.19 18.98% 
Low density urban 89.88 9.97% 
High density urban 81.52 9.04% 
Total 901.73 

5.3.9 Post-classification Aggregation 
Like the case of Chongqing, “lake’，and “river，，will be aggregated into "water"; 

"woodland" and "crops and grassland" are grouped into "green space"; "bare land", 

"industrial" and two urban land covers are mixed up into the class "land". Resultant 
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image after aggregation is shown in Figure 5.8 whereas accuracy statistics are shown in 

Table 5.10. Overall classification accuracy increases to 66.8% after aggregation. 

Aggregated classified image will then be the basis for landscape analyses in the next step. 

M 
Figure 5.10 Classified Image of Nanjing after class aggregation 
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Table 5.10 Accuracy Statistics for Object-oriented Classification after Aggregation Case in Nanjing 

Class Name P — c e r ， s " " u i ^ K^PP^ Accuracy Accuracy Statistic 
Water 64.52% 70.18% .660 % 
Urban Green Space 68.97 % 78.74% .494 % 
Land 63.51% 49.74 % .286 % 

Overall Accuracy: 66.8% 

5.4 Discussion 
Based on the two case studies in Chongqing and Nanjing, this section will discuss 

the pros and cons of object-oriented classification and transferability of classifying rules 

between different sites. 

5.4.1 Problems of object-oriented classification 
The result of case studies show object oriented classification cannot produce 

classification accuracy significantly higher than that produced by conventional classifiers, 

especially maximum likelihood classification. In the case of Nanjing, using object-

oriented approach actually lowers the overall accuracy percentage. Some intrinsic 

weaknesses which may critically affect the classification quality are highlighted. 

The fundamental assumption is that if an image object belongs to a particular land 

cover class, it will carry an object signature comprised by a set of spectral, textural, and 

shape variables. Image objects of the same class should have similar object variables 

which should also be significantly different those of another class. Under this assumption, 

each land cover class can be defined by identifying corresponding value ranges in the 
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multi-dimensional feature space. In the real case, however, features of different land 

covers are quite ambiguous, deeming them ineffective in distinguishing each land cover 

class. Within-class variations in many object variables of some land cover are too large, 

while between-class variations too narrow, to serve as good class signatures. 

The design of class hierarchy is such that classification levels links to 

object/segmentation levels. That is to say classification of parent classes/super classes is 

implemented at the highest object level with the largest-sized objects, while destined 

classes are classified at the lowest object level based on the parent classes at the top class 

hierarchy. Inter-linkage between parent classes and destined classes on the one hand, and 

between class hierarchy and object level hierarchy on the other, implies that the 

classification accuracy of the destined classes strongly depends on the classification 

accuracy of the parent classes at the highest object levels. As object level increases, 

within-object heterogeneity is then increased and thus the problem of class mixing within 

the larger objects will aggravate accordingly. Classification of parent classes may be 

adversely affected if within-object heterogeneity is too high, which in turn imposes 

impact on the classification accuracies of destined classes at the lower classification 

levels. This problem aggravates when it is unknown at which object level can the 

classification quality of parent classes be best preserved 
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5.4.2 Strengths of object-oriented classification 
Despite the defects discussed above, object-oriented classification significantly 

multiplies the variety and amount of information for classification. Objects are generated 

from pixels through segmentation from which a diversity of information about the objects 

can be extracted. In this research, spectral, shape and textural features are studied to 

derive useful classifying rules for the formulation of object-based decision tree. 

In this chapter, shape and textural features are proved applicable to classify some of 

the classes if pixels are grouped into suitable scales. For example, two shape features 

(Area and Density) are critical in the discrimination of "lake" against “river，，at the top 

object level in the images of both sites. Standard Deviation of spectral values within 

object is used to define "river" at the same level in both sites as well. G L C M texture 

features ( C O N and DISS) are used at the lowest object level in both sites to discriminate 

"low density urban" against other non-vegetation covers. Besides shape and texture 

features, object-oriented classification also allows information about relationship between 

objects of different object levels to be utilized for classification. For instance, the concept 

'Existence of "lake" Super-objects' is used to classify "lake" at medium classification 

level in the case of Nanjing. All these information cannot be used for other pixel-based 

classification algorithms. 

In short, object-oriented classification concept greatly increases the complexity of 

classification task and the time it needs, especially in searching for the most suitable 

segmentation levels at which class mixing of pixels within objects can be kept at 

minimum and object features for each destined class which best differentiates it from 
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other classes, the concept allows a lot more information about local regions of satellite 

image to be extracted from the image, which are proved effective in classifying some of 

the land covers in the two case studies of this research. 

5.4.3 Transferability of classifying rules 
Comparing two cases, we find that most classifying rules are transferable from one 

place to another. Most of the common land covers can be defined by the object variables 

which can be used in both Chongqing and Nanjing, even though activation values of the 

classifying rules need to be adjusted with site-specific situation. For example, small river 

channel and "lake" can be separated by shape variables Density at the top object level; 

big "river" can be defined by spectral variable Standard Deviation of spectral channel 

(especially of VNIR 3) for its relatively high spectral homogeneity within an average 

image object; urban, especially "low density urban" is distinguished from other land 

covers by its distinctively high GLCM CON/DISS concerning VNIR 1 and 2; "woodland" 

is separable from "crops and grassland" for its lower spectral values in all VNIR channels. 

However, whether classifying variables of these classes can be reused again in other 

places is perhaps topics for further research. 
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C HAPTER 6. Results and Discussion III 
Landscape Structure of “Urban Green Space，，，Chongqing and 

Nanjing 

6.1 Introduction 
C H A P T E R VI provides the classification maps of Chongqing and Nanjing. Both 

cities are classified into three classes: "water", "urban green space" and "land". In this 

chapter, '\irban green space" will be focused. Class-based metrics will be used to 

anatomize landscape structure of green space in the city area and their variation tendency 

as a function of distance from old city centers. The objective of this chapter is twofold: 

First, studying the configuration of "urban green space" in both cities from city center to 

periphery with the aid of class-based metrics. W e will focus on mainly four aspects of 

green space condition: landscape composition, fragmentation pattern, contagion and 

patch shape complexity. Other class-based metrics are listed in Appendix 6 and 7. Second, 

comparing entire "urban green space" in the two cities and explaining their 

similarities/disparities in line with their patterns of urban development. 

6.2 Chongqing 
6.2.1 Landscape composition 

Class total area (CA) measures the absolute land occupation of green space along 

distance from city center (Figure 6.1). It increases linearly with distances from city center, 
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which is expected because the buffer ring is getting increasingly bigger in size away from 

center. Absolute area of green space should increase accordingly. 
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Figure 6.1 Total class area of "urban green space" aloi^ distance to city center for circle (a) and ring (b) 
buffers. Chongqii^ as a case 

Proportion of landscape (PLAND) occupied by "urban green space" shows the relative 

abundance of green area From Figure 6.2b, it is found that "urban green space" occupies less 

than 50% of land covered by buffer rings within 5 km of city center. After 5 km, P L A N D 

increases to about 70%. Besides, increase in P L A N D within 2 km of urban center is negligible. 

All these indicate that there is not enough space for expansion of green space within Yu zhong, 

city center district of Chongqing. 
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Figure 6.2 Proportion of landscape occupied by “urban green space" along distance to city center for circle (a) and ring 
(b) buffere. Chongqing as a case 
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6.2.2 Fragmentation 
Fragmentation is a description of the process and tendency of a landscape 

component to break into small patches (Frohn, 1998). It can be revealed in Chongqing by 

a sharp increase in Patch number of green area from below 200 patches to over 400 at 3 

k m buffer ring. Accompanying with the fact that P L A N D increases from 10% to over 

20% at the same buffer ring, sharp increase in PN may imply that more space is available 

for landscaping. They are however small and scattering, which can be shown by small 

mean patch area in the same ring (Figure 6.3c). They are urban parks (such as E ling 

gungyuan) and small-scale green areas in residential and industrial land uses. 

Multiplication of small green patches also increases the Patch density at 3 km, which 

measures the amount of green patches in relative terms. 
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Figure 6.3 Number of Patch (a), Patch Density (b)，Area-weighed mean (c) and Coefficient of 
Variation (d) {ring) for the class "urban green space，，. Chongqing as a case 
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Sharp rise in Mean patch size (MPS) and Coefficient of Variation in Patch size 

(Patch Area-CV) is observed at 6 k m ring, implying that some large patches of green 

space begin to emerge at 6 k m from city center to lift both M P S and variations of patch 

size significantly. It is observed that green areas become extensive and contiguous at 6 

k m ring (Figure 6.4a), which are mainly mountain areas in Nanan District, Yubei District 

and Jiangbei District. Combining it with the facts of constant increase in P L A N D and 

decrease in PD, it is apparent that fragmentation of "urban green space" is related to the 

small green patches at 3 km from city center; while mountains (such as Nan shan) 

provide extensive space for greening at 6 km from city center. 

M P S decreases sharply to about 550 ha at 9 km from city center. Obvious increase 

in Patch number occurs at 8 km from city center. These indicate that green space 

becomes more patchy compared to that at 6 km ring. This phenomenon can be explained 

by new urban zones are developed at the north, west and south of original urban area, 

although contiguous green area can be found at east and southeast (Figure 6.4b). 

(a) (b)  

mm _ 
Figure 6.4 6 km (a) and 9 km (b) buffer rings of Chongqing 
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6.2.3 Contagion 
Contagion, or class aggregation, refers to the tendency of a class to occur in large 

and aggregated distribution. It measures the extent to which pixels/grids of the same class 

are aggregated (McGarigal, 2002). 

"Urban green space" of Chongqing is not highly aggregated throughout the buffer 

distances, dumpiness Index (ring) does not rise above 0.9 at any buffer ring distance 

(Figure 6.5). dumpiness Index consistently increases from 1 km to 7 km, during which 

Mean patch size is increasing as well. It may imply that emergence of large green areas is 

related to the increment of aggregation of "urban green space". Nevertheless, the slight 

increment of dumpiness Index (from 0.67 to 0.85) means that green areas are not well 

connected even at the peripheral region of Chongqing. 

Landscape Division Index decreases from 97% to 88% at 6 km from city center, 

where sharp increase in M P S occurs coincidentally. It then rises again to the secondary 

peak (93%) at 9 km, where decrease in M P S is observed. It confirms that emergence of 

large green patches helps lower the probability of observing dissected green patches. 

Nevertheless, the index is high throughout the buffers of Chongqing city center, 

indicating that disaggregated green areas are dominating the landscape. 

6.2.4 Patch Shape Complexity 
Buffer in ring shape may artificially change the shape of green space, which affects 

the interpretation of patch shape indices. So indices in this section reflect the cumulative 

shape of green patches as buffer circle grows larger away from city center. 
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Figure 6.5 dumpiness Index and Landscape Division Index (ring) of "urban green space，，in 
Chongqing 

Fractal Dimension Index (circle) increases from 1 k m to 5 km from the city center. 

It implies that vegetation patches tend to become increasingly more fractal until the 

maximal fractal dimension is reached after 5 km, which is reflected from flatness of 

curve from 6 to 10 km (Figure 6.6). Minimal Fractal Dimension Index is below 1.15 at 1 

k m while the maximum is hardly over 1.3, indicating overall green space in Chongqing is 

inclined to be simple in shape. 

Perimeter-Area ratio decreases from 900 to 300 before 5 k m from city center. It 

decreases by only about 200 after 5 km. Considering that total area of green space 

increases exponentially away from the city center (Figure 6.1)，smaller decrease in P A 

ratio after 5 km implies that shape of green patches becomes more complex after 5 k m 

away from city center, where mountain ranges and reservoir regions provide more space 

for free development of woodland and grassland, such as Nan shan and Jin shan. Besides, 

most of the northern part of Chongqing has not been developed, which provides extensive 

and complex green space after 5 km from the city center. 

172 



i.3n 

- ： ： : \ 
1.2- / 7。C \ 

Z Rac-AM s o c \ | _ » _ p a r a . a m | 
1.15- ^ ^ 50C 

40C 

30C 

2。C ^ ^ 
1 2 3 4 5 6 7 8 9 ,0 

0 J , , , , 
� Distance to city center ( � 1 2 3 4 5 6 7 8 9 lo 

Distance to city center 

Figure 6.6 Area-weighted mean of Fractal Dimension Index (circle) (a) and Area-weighted mean of 
Perimeter-Area Ratio (circle) (b) of "urban green space，，in Chongqing 

6.3 Nanjing 
6.3.1 Landscape composition 

Class total area (ring) of "urban green space" starts to rise at 2 km buffer. Before 5 

k m from the city center, class area increases from 0 to about 1000 ha After 5 km, it 

increases sharper from 1000 to over 3000 ha at 10 km. It is because the area of buffer 

ring increases exponentially at the same time (Figure 6.7). 

Proportion of land occupied by green area (PLAND) increases from 15% to 25% at 

3 km from city center (Figure 6.8). From the image (Figure 6.9a) it is the periphery of old 

city center where landscaping parks emerge such as Shiuanwuhu gungyuan and 

Chingliang Shan gungyuan. Another sharp rise in P L A N D starts to occur after 5 km from 

city center, where P L A N D increases from about 30% to about 55%, where large-scale 

green areas occur, such as Zijingshan and Lieshi lingyuan (Figure 6.9b). 
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6.3.2 Fragmentation 
Fragmentation pattern of green space in Nanjing resembles that of Chongqing. 

Number of patches (NP) increases consistently from about 200 at 1 k m ring to nearly 

1200 at 4 km, an increase 1000 within only 4 km. The greatest increase happens at 4 k m 

from city center, in which many small patches of green space and parks are observed by 

water bodies, in tourist spots (such as Wang On Shi Guju) and along old city wall. After 

4 kilometers, however, rise of NP becomes much slower and less consistent, even though 

a general ascending trend is still noticeable (Figure 6.10a). 

Patch density (PD) shows an overall decreasing trend. The rise in P D happens at 4-

k m buffer ring, coinciding with the sharpest rise in NP; the greatest slump happens 

between 4- and 6-km buffer rings, at which NP rise comes to a halt (Figure 6.10b). 
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Figure 6.10 Number of patches (a) and patch density (b) of ‘"urban green space，，along buffer rings in 
Nanjing. Notice the coincidence between leveling of NP and falling of PD. 
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Like the case of Chongqing, decrease in P D coincides with increase in Mean Patch 

Size and Variation of patch sizes in Nanjing. As illustrated in Figure 6.1 la, sharp 

increase in Patch area happens at 5 km from city center, where a large piece of woodland 

is found at the southwestern tip of Zi Jing Shan; and at 7 km buffer ring, which passes 

through the middle of Zi Jing Shan from north to south. 

No further rise in M P S and patch size C V occur after the 7-ldlometer buffer, 

indicating that sizes of green patch have already reached maximum. Coefficient of 

Variation of patch sizes also peaks at 5 km and 7 km (Figure 6.11b). Similar 

interpretation as in the case of Chongqing can be drawn: green space is highly 

fragmented within 4 km buffer, notable by low class total area, proportion of landscape 

and M P S and high patch density; outside this buffer, green space becomes less 

fragmented because some large green patches emerge to increase both C A and proportion 

of landscape. They also lower density of green patches. 
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Figure 6.11 Area-weighted mean (a) and Coefficient of variation (b) of patch area for the class 
‘‘urban green space" in ring buffers in Nanjing 
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6.3.3 Contagion 
Like fragmentation pattern, aggregation of "urban green space" in Nanjing is very 

similar to that of Chongqing. The most disaggregated region is at 2 km from city center, 

with Landscape Division Index reaching its maximum (Figure 6.12). Emergence of large 

vegetation patches at 5 k m buffer ring and 7 k m buffer ring helps increase the overall 

contagion in the corresponding regions, which can be reflected on the steep slump of 

Landscape Division Index at the above rings. However, the scores are very high 

throughout the buffer zones (all higher than 0.95), indicating that the frequency of small, 

disaggregated green patches are very high throughout the study site, which is shown in 

Figure 6.12. 
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Figure 6.12 Landscape Division Index (a) and dumpiness Index (b) of "urban green space，，for ring 
buffers in Nanjing 

dumpiness Index before 4 k m buffer ring is lower, between about 0.65 (1 km) and 

0.7 (3 km). Emergence of larger-scale parks such as Xianwuhu gungyan at 3 k m 

increases both P L A N D , Mean Patch size and dumpiness. Emergence of Zi Jing Shan 

increases the score to 0.8 after 4 k m from the city center, which is then stabilized from 5 

k m to 10 km. It means that aggregation of green space cannot be further increased. It is 

because periphery of Nanjing is occupied by agricultural land uses, which are 
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disaggregated by nature. Besides, new urban development is found in the southern east of 

Nanjing city, which limits the development of green coverage (Figure 6.13). 

釅 
Figure 6.13 Periphery of Nanjing city. 9-km buffer ring is outlined in yellow 6.3.4 Patch Shape Complexity 

Similar results about patch shape complexity to Chongqing are observed. Fractal 

Dimension Index increases with the distance from city center (Figure 6.14a), implying 

that not only is the total area and landscape proportion of green space increasing, but also 

the green patches are becoming more complex in configuration in general away from city 

center. Fractal Dimension Index hardly rises above 1.3, indicating that vegetation patches 

in Nanjing are overall inclined to be simple in shape. 

Decrease in Perimeter-Area ratio becomes less rapid after 5 kilometers, suggesting 

patches of more complex shape appear (Figure 6.14b). Area around the city center of 

Nanjing is old developed urban zone, leaving less space for spontaneous growth of 

vegetation; while in the outskirt area very large green landscape such as Ningdan 
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gungyuan at the southern tip of Chongqing city allows extensive growth of vegetation, 

causing them larger in size and comparatively complex in shape. 
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Figure 6.14 Area-weighted mean Fractal Dimension Index (a) and Perimeter-Area Ratio (b) of 
"urban green space" for buffer circles in Nanjing 

6.4 Discussion 
In this section, two cities, Chongqing and Nanjing are put together for comparison 

in terms of landscape structure of urban green space. In fact, from the findings presented 

above we can observe more similarities than disparities between the two cities, even 

though they look very different from the imagery. 

6.4.1 SimUarities 
Both cities have very low proportion of landscape occupied by "urban green space" 

within 2 km buffer (about 10%), which is the city center region, and densely populated 

and developed urban area. Considering that city center regions of both Chongqing and 

Nanjing have very long history of urban development (referring to C H A P T E R IE), niche 

for vegetation should be scarce. Beyond the 2 km buffer, however, steady increase in 

landscape proportion of vegetation can be observed until maximum proportion is reached 
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at 7 to 8 kilometers from the urban centers. Land use gradually changes from high dense 

urban to low dense urban and agricultural activities, freeing more land for vegetation 

coverage. This pattern of variation in land uses with distance from city center is 

consistent with many researches earlier done (e.g. Zhang et al., 2004; Zong et al., 2002;). 

Especially similar is the fragmentation pattern, which is revealed by number of 

patches (NP), patch density (PD) and patch area distribution of the study sites. In both 

cities, sudden increase in NP occurs at the 3 km region followed by fluctuation of NP 

from 3- to 10-kilometer buffer rings. It can be interpreted as space for vegetation begins 

to be more available at 3-kilometer ring. From 4 kilometers onwards, green space of 

increasingly larger sizes emerge so steep increase in both are a-weigh ted mean and 

coefficient of variation of patch area can be observed. These large green space patches 

stabilize NP and lower PD in both urban areas. 

Figures 6.15 and 6.16 illustrate the frequency distribution of patch size of "urban 

green space" within the 10 km buffer circles of city centers of Chongqing and Nanjing 

respectively. In Chongqing, green patches which are smaller than 1 hectare take up over 

92% of total amount of green areas. Only about 70 out of 3500 total green patches are 

larger than 5 hectares. In Nanjing, green patches smaller than 0.1 hectare are even more 

dominant, taking over 70% of total amount of green areas. Green areas over 5 ha in area 

take up barely 1%. These observations confirm that green spaces of both Chongqing and 

Nanjing are fragmented. Besides, except the large mountains such as Nanshan in 

Chongqing and Zi Jing Shan in Nanjing provide space for extensive development of 

green space, most of the green space in both cities is tiny in size, which are mainly 

roadside planting, green lawns within residential areas or schools and agricultural fields. 
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More parks and cultural heritage can be found in Nanjing, for example Shiuanwuhu 

gungyuan, Ming Gugung yiji, etc., which provide space for planting. However, most of 

them are small in size and far away from one another. Roadside trees fail to provide good 

connection between them so as to increase aggregation of the overall green landscape. 
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Figure 6.15 Frequency distribution of area of "urban green space" in Chongqing 
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Figure 6.16 Frequency distribution of area of “urban green space" in Nanjing 

Equally similar is that green space in both Chongqing and Nanjing is generally 

simple in shape. Although some large patches of more fractal shape in the outer urban 

obviously reduce the rate of decrease in Perimeter-Area Ratio at 5 to 6 kilometers from 

the city centers, shape of an average green space patch tends to be simple, which explains 

low scores in area-weigh ted mean FRAC. After all, Chongqing and Nanjing are very 

established cities. Urban functions such as residential and commercial dominate. Green 
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space is treated more as human amenity embedded in a planned urban mosaic than a 

means of ecological conservation. Therefore, free growth of vegetation into fractal shape 

is generally not allowed. 

6.4.2 Differences 
Table 6.1 shows the metrics values of "urban green space" within the 10 k m buffer 

circles of both Chongqing and Nanjing. They are different from each other in aspects of 

landscape composition and fragmentation; while similar in terms of complexity of patch 

shape. Compared with Chongqing, lower proportion of landscape in Nanjing is occupied 

by "urban green space". While green space takes up over 60% of the entire landscape 

within the 10 k m buffer circle of Chongqing, it takes up less than 50% in Nanjing. 

Besides, the largest patch of green space takes up 30% of 10 km buffer circle of 

Chongqing; while it takes about 10% in case of Nanjing. 

In the case of fragmentation, Nanjing is over 3 times higher in P D and nearly twice 

the level of E D in Chongqing. Average patch of Nanjing (1079 m") is about one-fifth the 

size of Chongqing (5380 m"). Green space in Nanjing has slightly lower dumpiness 

Index while higher Landscape Division Index as compared to Chongqing. However, 

Proximity Index of Nanjing (14480) is significantly higher than that of Chongqing (7979)， 

which may suggest that green space in Nanjing is smaller in size and lower in landscape 

occupation; while it is better connected with each other compared to that of Chongqing. 

182 



Table 6.1 Qass-level landscape metrics for "urban green space，，in the 10 k m buffer circles of 
Chongqing and Nanjing 

Metrics Chongqing Nanjing 

Landscape Composition 

Class Total Area (ha) 18675.07 14061.38 
Proportion of Landscape (%) 60.12 44.76 
Largest Patch Index (%) 30.51 10.25 
Fragmentation 

Number of Patches 3533 10642 
Patch Density (per 100 ha) 11.37 33.87 
Edge Density (m per ha) 69.10 138.30 
Patch Area-AM (ha) 5380.01 1079.15 
Patch Area-CV (%) 3188.74 2856.09 
Radius of Gyration-AM (m) 3095.12 1220.31 
Radius of Gyration-CV (%) 424.09 303.95 
Patch Shape Complexity 

Fractal Dimension lixiex-AM 1.28 1.27 
Fractal Dimension Index-SD 0.05 0.05 
Perimeter-Area Ratio-AM 151.26 305.96 
Perimeter-Area Ratio-SD 641.08 718.59 
Perimeter-Area Fractal 
Dimension � .仏 
Class Aggregation 

Proximity Index-AM 7979.68 14480.33 
Euclidean Nearest Neighbor 
Distance-AM (m) 丄力。 
dumpiness Index 0.86 0.79 
Interspersion & Juxtaposition 
1 1 //r/ \ jy.oi JD. 1 y 
Index (%) 
Landscape Division Index 0.90 0.98 
Effective Mesh Area (ha) 3234.28 483.01 
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Different levels and patterns of urban development contribute to the discrepancy 

between two cities in landscape structure of green space. Being one of the most 

developed cities in the eastern seaboard of China, Nanjing is experiencing more rapid 

economic and urban development. From the image, it is easy to notice many large scale 

constructions and dragging activities operating on western, eastern and northern edges of 

the city. New urban development can also be observed in Jiangning prefecture, which is 

to the southeast of Nanjing (Atlas of Cities of China, 1995, Vol. 1). These clues suggest 

Nanjing is still vibrantly extending. This factor may greatly limit space available for 

contiguous green space development in Nanjing periphery. Only in large scale mountain 

ranges such as Zi Jing Shan can the continuous green space coverage be allowed. On the 

other hand, Chongqing is located in western China, which is much less developed 

compared to the east Municipal area is unsurprisingly smaller in size and more compact 

in shape. From the image, the city is very compact, dissected only by Changjiang and 

Jianing River. Extension of city seems to be constrained by steep mountain ranges by 

both the east (Nanshan) and the west (Gele Shan). The only new development zone in 

Yubei is actually abutting old development zone of Chongqing. The pattern of urban 

development allows much more niche for development of vegetation cover in suburban 

zone, greatly increasing both proportion and size of "urban green space". 

Aggregation of green space, however, is slightly higher in Nanjing, especially 

within 5 km from the city center. This phenomenon can be stemmed from the fact that 

Nanjing is rich in cultural heritage, such as Ming Palace, ancient city wall, etc., which 

requires vegetation as amenity and preservation. Roadside trees are better developed to 

improve the urban environment for tourism. Large trees are protected from felling in 

Nanjing which enable connected "tree-ways" along major commercial centers, such as 
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Zhongshan Road and Hanzhong Road (Jim & Chen, 2003). All these reasons may help 

increase the connection of urban green space within old city region of Nanjing. On the 

other hand, center region of Chongqing mainly serves residential, commercial and 

industrial functions. Less attention is paid on greening within the district, which is 

confirmed by the lack of parks in Chongqing city. 

“Urban green space" in both cities is similar in terms of shape complexity. Shape of 

vegetation tends to be simple. It may be because green space in these two cities serves 

more as amenity to urban settlement, such as public parks, roadside shade, etc., or as 

agricultural field supporting city with food, rather than ecological reserve, providing 

habitats for local fauna and flora. Therefore, most of them are inherently simple in shape 

and artificial in nature. 
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CHAPTER 7. Conclusion 

7.1 Summary on findings 
This section sums up the findings of image object analyses, object-oriented 

classification, comparison between different classification methods and studies of "urban 

green space" of Chongqing and Nanjing using landscape metrics. 

7.1.1 Summary on image object analyses 
Image object analyses have been undertaken for the A S T E R images of Chongqing 

and Nanjing. It is observed that in both sites decreasing spectral-shape ratio yields 

smaller number of image objects of larger average size during segmentation across scales. 

It also increases spectral variances within image objects at all scales. Pixels/objects of 

different land covers may merge together as the same object if the weight of shape is set 

too high for spectral-shape ratio, thus causing severe class mixing. On the other hand, if 

spectral weight is too dominant in the spectral-shape ratio, objects generated will be too 

fractal in shape. Guided by these observations, spectral-shape ratio of 9:1 is chosen for 

Chongqing while 7:3 is set for Nanjing. 

Three critical segmentation levels are chosen for the hierarchical classification 

system in both sites based on the analysis of variations of spectral and textural features 

along segmentation levels. Critical segmentation level can be identified if break point is 

observed along the variation. In Chongqing, break point can be identified at segmentation 

level 5 for most of the object variables under study. Break points at other levels are more 

difficult to be defined. Level 9 is selected as another critical level because break points 

can be observed for more classes. Pixel level is selected as the smallest object level to 
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facilitate the identification of patchy "woodland". In Nanjing, segmentation level 4 

instead of level 5 is chosen as critical level because the latter is found too coarse to 

differentiate different types of vegetation. Level 8 is selected as another critical level 

because object variables are found breaking at this level for more classes. Pixel level and 

segmentation level 1 produces insignificant difference in image resolution so that latter is 

chosen as object level 1. 

Classifying rules are derived for expected classes after segmentation levels are 

chosen from comparing various object features of different classes at 3 object levels. 

Many classifying rules are transferable between Chongqing and Nanjing. At the top 

object level, "river" is distinguishable by its large area and low within-object 

heterogeneity. "Lake" is characterized by its low spectral values in all VNIR channels 

and higher spectral variances compared to "river". At the second object level, vegetation 

can be separated from non-vegetation using ratio vegetation index (RVI). In case of 

Nanjing, vegetation can be further divided into 3 sub-categories based on G L C M C O N 

values of vnir 3. This level can also be used to separate “low density urban" from other 

non-vegetation classes due to its high G L C M C O N values in VNIR 1 and 2. At the 

lowest object level, object size is too small to generate valid shape or textural information 

and thus spectral means of different VNIR channels are the main information for 

classification of the remaining classes. 

7.1.2 Summary on object-oriented classification 
Based on the findings of object analyses, decision tree is designed for classification 

of the images of both sites. Three classes are chosen to be smdied intensively regarding 

the classifying rules. In Chongqing, "lake", "crops and grassland" and "low density 
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urban，，are chosen as cases. "Lake" can be classified at object level 3 mainly using 

features of Area, Density and G L C M DISS. "Grassland" is combined with "crops" to 

form a class "crops and grassland" which is classified mainly by higher ratio vegetation 

index (RVI) at object level 2 and then further distinguished from “woodland，，at object 

level 1 using spectral means of all VNIR channels. "Low density urban" is classified at 

object level 1 instead of level 2 because its higher G L C M C O N of VNIR 1 and 2 are 

most significant at that level. In Nanjing, classification of "lake", "crops and grassland 11" 

and “low density urban" is studied. For "lake", it is classified in both object levels 3 and 

2 from "small river" using shape feature of density, "agricultural crop 11”，"wetland" and 

"grassland" are difficult to be distinguished so they are combined into the class "crops 

and grassland 11", which is classified as "vegetation" at object level 2 using RVI and then 

separated from 'Nvoodland" and "crops and grassland I" using mainly spectral means. 

‘‘Low density urban" is separated from other non-vegetation classes at object level 1 by 

its higher G L C M DISS in VNIR 1. 

Comparisons of different classification methods in terms of accuracy in both 

Chongqing and Nanjing are similar. Linear spectral unmixing yields the lowest overall 

accuracy, followed by supervised fuzzy classification. Object-oriented classification 

yields overall accuracy similar to that of maximum likelihood classification. In 

Chongqing, object-oriented classification attains 64.14 % overall accuracy while 

maximum likelihood classification attains 62.66 %, only about 2 % lower. In Nanjing, 

object-oriented classification attains 47.4 % overall accuracy while M L C increases the 

overall accuracy to 50 %. From the confusion matrices, it is revealed that serious mis-

allocation occurs between grassland, bare soil and urban. For landscape analyses at the 

next step, post-classification aggregation is implemented in both cases. All classes are 
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combined into only three classes: "water", "urban green space" and "land". It increases 

the overall accuracy of object-oriented classification to over 80 % and 66 % in case of 

Chongqing and Nanjing respectively. 

7.1.3 Summary on landscape studies of "urban green space，， 

"Urban green space" in Chongqing and Nanjing are studied using landscape metrics 

in terms of landscape composition, fragmentation pattern, contagion and patch shape 

complexity. Both cities have low proportion of landscape occupied by "urban green 

space" within 2 km buffer ring surrounding the city centers. Dense urban development 

suppresses green coverage at about 10 %. Beyond the 2 km buffer ring, steady increase of 

landscape proportion of green space can be observed. Maximum of green coverage is 

reached at about 8 k m from the city center, where land use changes into low dense urban 

and agricultural activities. Green space in both cities is highly fragmented, which is 

evidenced by high frequency of patches which are below 1 hectare in size. Fragmentation 

is most serious within the 3 km buffer ring, where patch number suddenly increases. 

Beyond the 3 km buffer, very large and contiguous green space emerges to reduce both 

patch number and patch density. Aggregation of green space is low for both cities. 

Besides, most of the green space is simple in shape, revealed by low fractal dimension 

index. It is because urban green space is allowed mostly in parks, roadsides and lawns 

within residential and commercial areas, which are confined in size and simple in shape. 

Comparing between Chongqing and Nanjing shows that green space in Nanjing 

within the 10 km buffer circle ranks lower in landscape proportion and fragmentation. 

Patch density and edge density are much higher in Nanjing than in Chongqing. It may be 

because Nanjing is more rapidly developed, which greatly limit space available for large 
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scale green space development Suburban Nanjing is occupied mainly by agricultural 

crops from the image, which are fragmented in nature and small in size. It also 

contributes to the high patch density and small patch size in Nanjing. On the other hand, 

Chongqing city proper is more compact, with its development greatly constrained by 

steep mountain slopes on both eastern and western sides. Continuous vegetation cover is 

allowed around the city proper of Chongqing, which greatly increases the landscape 

composition and fragmentation of green space. However, aggregation of green space is 

slightly higher for Nanjing, especially within 5 km from the city center. It is because 

Nanjing is endowed with cultural heritage which provide more space for landscaping 

within city proper. Roadside trees are found more prominent within the old urban center, 

which connects with the cultural heritage well. On the other hand, fewer planting and 

parks can be found within city proper which can connect with green space outside the 

city center. 

7.2 Limitations of the research 
This research has several limitations in data preparation, image classification and 

landscape analyses: 

7.2.1 Data preparation 
Some important first-hand and secondary information cannot be acquired at the 

stage of data pre-processing. Topographic maps of Chongqing and Nanjing are 

inaccessible. Coordinates and altitude information of the two sites are not available as 

well. Without such information, geo-referencing of ASTER data is unable to be 

undertaken. Land use maps of the two cities used as the reference of this research were 

issued in 1995, while the images for classification and landscape studies were acquired in 
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2000 and 2001. Some changes in land covers identified on images cannot be captured in 

land use maps. Post-classification adjustment and accuracy assessment are made more 

difficult because of this reason. 

7.2.2 Image classification 
Object-oriented classification is faced with several problems. Having mentioned in 

Chapter i n , object features of each land cover class are actually averages of thirty to fifty 

random samples collected for each of expected classes. No consideration has been put on 

the heterogeneity of features within the same land cover class. During implementation of 

classification, it is discovered that variances of object features within a class are 

unexpectedly large for some land cover classes. Facing with the situation, many pre-

formulated classifying rules have to be adjusted with trial-and-error method, or even 

discarded. Some classes which can be easily identified by visual inspection are found 

difficult to be distinguished from one another in object-oriented classification because 

they are very similar in respect of some objects' features. For example, in both cases of 

Chongqing and Nanjing, "vegetation" and "bareland" are mainly divided using ratio 

vegetation index. (RVI) However, it is found that some "grassland" objects have their 

RVI very similar to those of "bareland" objects. 

Optimal segmentation scales, which minimize class mixing of the segmented 

images, are difficult to be decided. Especially in case of Nanjing, it is found that severe 

mixing between "vegetation" and "non-vegetation" occurred at Object level 2. Because 

Object-oriented classification adopts decision tree methodology, accuracy of 

classification at higher level strongly influences the classification accuracy at lower level. 

Serious class mixing between "vegetation" and "non-vegetation" directly lowers the 
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classification accuracy of "woodland", “crops and grassland 11”，"bareland", "fallowed 

land”，"high density urban" and “low density urban" at the lowest classification level, 

which is the main cause of low overall classification accuracy in case of Nanjing. 

Although A S T E R image has 15 spectral channels spanning across visible band, 

near infrared band, shortwave infrared band and thermal infrared band, only 3 visible and 

near infrared bands have been input into object-oriented classification while 6 more 

bands in shortwave infrared band are input into other three classifiers. It implies that 

object-oriented classification is solely dependent on the visible and near infrared 

information, while much of the information about the different land covers provided in 

other spectral regions have not been extracted and utilized. 

Spectral unmixing and supervised fuzzy classification produced classification 

accuracy far lower than maximum likelihood classification and object-oriented 

classification in this research, which is inconsistent in many earlier findings that these 

two classification approaches attain classification accuracy comparable with that of 

maximum likelihood classifier (Foody, 1996; Zhang & Foody，2001; Roberts et al., 1998). 

Operating spectral unmixing classifier requires spectral data of endmembers. In this 

research, endmembers can only be collected from the image. Such image endmembers 

are vulnerable to spectral changes caused by changes in space, illumination and other 

radiometric conditions, which may affect the classification quality (Roberts et al., 1998). 

Supervised fuzzy classifier needs intensive fine-tuning of training samples and fuzzy 

threshold curves. Less effort has been put in these tasks due to time constraint. Because 

of the above reasons, comparison of classification is mainly made between object-

oriented classification and maximum likelihood classifier. 
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7.2.3 Landscape Analysis 
Scrutiny of landscape metrics variables in this research reveals that many metrics 

are highly correlated with one another and thus redundant. It confirms many researchers' 

findings (Leitao & Ahern, 2002; McGarigal & McComb, 1995; Cifaldi, et al., 2004). For 

example, Area-weighted Mean Patch Size, Area-weighted Radius of Gyration and 

Effective Mesh Size behave nearly the same regardless of the change in distance from 

city center, even though they are supposed to account for different aspects of landscape 

configuration. Moreover, most of the metrics selected fail to show obvious patterns for 

interpretation. In light of the above problems, only a few metrics variables are sifted out 

to describe four fundamental aspects of landscape structure: landscape composition, 

fragmentation, contagion/class aggregation and shape complexity of patches. The 

remainders are put in Appendix 3. 

Caution should also be taken on the methodology of landscape studies. As 

mentioned in C H A P T E R III, 10 buffers of extending sizes in forms of both circles and 

rings are generated around city centers of Chongqing and Nanjing. Both buffers have 

impacts on the behavior of metrics variables. Metrics for buffer circles reflect cumulative 

condition of the whole landscape. Large variations in landscape structure due to distance 

changes tend to be suppressed. On the other hand, buffer rings artificially distort the 

original configuration of landscape components, severely confounding some metrics 

variables, especially those which are sensitive to shape of landscape components. 

Another problem of landscape studies of this research stems from data of data 

acquisition. Data of Chongqing is acquired in mid-summer, in which both natural 
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vegetation and agricultural planting are more exuberant and thus connected; while data of 

Nanjing is acquired in autumn，leaving much larger area of fallowed land. 

Classification accuracy of Nanjing (66%) is lower than that of Chongqing (about 

80%). Landscape studies based on a land use map of low accuracy may seriously affect 

the validity of the findings concerning with landscape variables. In this sense, there is 

high probability of underestimating the coverage of "urban green space", especially 

concerning about the 30% error of omission of "urban green space" in Nanjing. 

Two cities, Chongqing and Nanjing, are compared only, while there are many cities 

worth being researched have not been studied in this research. In terms of landscape 

studies of Chinese cities, this research lacks comprehensiveness due to this reason. 

7.3 Suggestions for further research 
Further research can be undergoing in the following fields. Object-oriented 

classification greatly increases the data volume for image classification. Not only spectral 

values, but also sh叩e and textural features can be generated from image objects at 

different segmentation scales. In this research, it is found difficult to extract useful 

knowledge about class properties from such a large database just by human expertise. In 

future research about object-oriented classification data mining techniques can be 

adopted to assist in the extraction of classification knowledge. Data mining is an 

important part of knowledge discovery from database (KDD) which helps discovering 

interesting patterns from large amounts of data stored in databases, under which some 

functionalities such as association rule mining, emerging patterns searching, etc., which 

have been suggested contributive in enhancing the classification accuracy of decision tree 
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classification. Some algorithms integrating data mining techniques with decision tree 

inductions have been developed, such as SLIQ and SPRINT, which may improve the 

existing object-oriented classification (Han & Kamber, 2001). 

This research tests the effectiveness of using shape and textural features to classify 

A S T E R images, which have 15 m spatial resolution for VNIR channels and 30 m for 

SWIR channels. However, it is unknown whether shape and textural features are 

expeditious in classifying remotely sensed data which has lower spatial resolution. 

Commercial satellite images nowadays advance greatly in spatial resolution, such as 

I K O N O S which has 1 m spatial resolution for panchromatic image and 4 m for 

multispectral image. With these low resolution satellite images, future research about 

object-oriented classification can extend its scope to studying the changes in 

interpretation of object features with images of different resolutions, from images as low 

as 1 m resolution to those as high as 1 km resolution (such as AVHRR), and its 

implications on the usage of object-oriented classification. 

Last but not least, there are many Chinese cities which have not been analyzed in 

respect of their landscape structures of urban green space. Comparisons can be done in 

many perspectives: cities of different latitudes, cities of different political hierarchies, etc. 

A more thorough investigation into urban green space in Chinese cities in future research 

is necessary for directing landscape planning policies of China. 
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Appendix 1一Equations of object features 
Spectral Statistics: 

• Spectral Mean of a particular spectral layer 

&丄 tCu 

where Q . is the spectral value of a particular layer of all n pixels forming an image 

object The value range is [0 ； 255] for 8 bit data. 

• Standard Deviation of a spectral layer~which calculates the variance of the layer 

values of all n pixels forming an image object. 

• Mean Difference to Neighbors—computing the layer mean difference for each 

neighboring object and then weighted with regard to the length of the border between 

the objects: 

I i=\ 

where, 

I border length of the image object of concern 

l^. border length shared with direct neighbor i 

L layer mean value of the image object of concern 

C^- layer mean value of neighbor i 

n quantity of neighbors 
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Shape Statistics: 

• Area~in nongeoreferenced data the area of a single pixel is 1. Therefore, the area of 

an image object is the number of pixels forming it. 

• Border Length一defined as the sum of edges of the image object that are shared with 

other image objects or are situated on the edge of the entire image. In non-

georeferenced data the length of a pixel edge is 1. Feature value range starts from 4. 

• Length/width一there are two ways to compute the ratio: 

H^ eig,(S) 

which is the ratio of the eigenvalues of the covariance matrix of x- and y-coordinates of 

pixels forming an image object; or: 

I 乂 +((1-/).Z02 r - “ 
w A 

when length/width ratio is approximated using the bounding box, where a md b are 

length and width of the bounding box, while / is the degree of filling, which is the area 

A covered by the image object divided by total area of the bounding box. Feature value 

range is [0 ； 1] 

• Shape Index~describing the smoothness of the image object borders: 

s 一 e 
4-VA 

where, 

e border length of the image object 

205 



A area of the image object 

Feature value range starts from 1. 

• Densitydescribing the deviation of the form of the image objects from square, 

expressed by the area covered by the image object divided by its radius: 

rn 
l + -^Var(X) + Var{Y) 

where, 

n number of pixels forming the image object 

Var{x) and Var(Y) are covariance matrix of x- and y-coordinates of all pixels 

forming the image object respectively. They are used to approximate the radius of the 

image object. 

Textural statistics (Texture after Haralick): 
• Homogeneity~high weights are put along the diagonal frequencies, while the 

weights are decreasing exponentially with distance from the diagonal. It is a measure 

of smoothness of an image object: 

/v-i p 
H = y � � 2 

where P�)is the relative frequency at the ( i j ) entry, N is spectral quantization of 

pixels. 

• Contrast—the opposite of homogeneity. It is a measure of the amount of local 

variation within the image object. 
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⑶ “ 二 J 卜 7)2 
i’j=0 

• Dissimilarity一similar to contrast, but the weights increase linearly instead of 

exponentially. 

i,J = 0 

• Entropy一high if the frequencies distribute equally. It is low if the elements are close 

to either 0 or 1. 

ij=0 

• Angular Second Moment—using P̂  . as a weight for itself. High value if frequencies 

within the G L C M are very orderly. 

N-\ 2 
耀 二 
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Appendix 2—Equations for Landscape Metrics 
Patch Metrics 

Patch Metrics are computed for every patch in the landscape, with patch type/land 

cover class of each patch also recorded, which includes the following: 

• Perimeter-Area Ratio一a simple measure of shape complexity, without 

standardization to a simple Euclidean shape: 

PARA=— 

where P.. equals perimeter (m) of patch ij; a., equals area (m") of patch ij. 

• Fractal Dimension Index—reflects shape complexity across a range of patch sizes. 

21n (0.25/7 J 
In〜 

where p^ equals perimeter (m) of patch ij; ay equals area (m") of patch ij. 

• Proximity Index—equals the sum of patch area divided by the nearest edge-to-edge 

distance squared between the patch and the focal patch of all patches of the 

corresponding patch type whose edges are within a specified distance of the focal 

patch. It is a dimensionless index considering simultaneously the size and proximity 

of patches in a specified radius of neighborhood. 

PROX 
么h i傳 
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where a-̂  equals area (m") of patch ijs within specified neighborhood (m) of patch ij. /z工 

equals distance (m) between patch ijs and patch ijs, based on patch edge-to-edge distance, 

computed from cell center to cell center. 

• Euclidean Nearest-Neighbor Distance—simple calculating the shortest straight-line 

distance between the focal patch and its nearest neighbor of the same class. 

ENN 二 h,丨 

where hy is the distance (m) from patch ij to nearest neighbor patch of the same patch 

type, based on patch edge-to-edge distance, computed from cell center to cell center. 

Class Metrics 
They are indices computed of every patch type or land cover in the landscape, with 

the result presented separately for each class. They include the following: 

• Patch Number一simply number of patches of a particular patch type/land cover; a 

crude measure of the level of fragmentation of the patch type. 

NP=n, 

where n! equals number of patches in the landscape of patch type i. 

• Patch Densityexpresses number of patches per unit area, (in number per 100 

hectares) It facilitates comparisons among different landscapes like our research. 

PZ)=^(10,000)(100) 
A 
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where rij equals NP of patch type I; A is total landscape area in m", which are converted 

into 100 hectares by multiplying 10,000 and 100. 

• Percentage of Landscape~quantifying the proportional abundance of a particular 

land cover in the landscape. It measures the non-spatial composition of a landscape. 

n 
I X 

where Pi is the proportion of the landscape shared by the patch type I; ay is area (in m') of 

patch ij; A is total landscape area in m^. 

• Patch Area~equal to the area (m~) of the patch, divided by 10,000 in order to convert 

to hectares. Statistics of Patch area will be calculated for each patch type in order to 

depict an overall situation in each land cover, which includes: 

• Are a-weigh ted mean—equal to the sum of all patches of a particular land cover of the 

corresponding patch metric value multiplied by area of each patch of the class divided 

by the total sum of patch areas of all patches of that class, that is: 

- / 

n a.. 

z � 
. V .戶1 力 

• Coefficient of Variation—equal to the standard deviation divided by the mean, 

multiplied by 100 to convert to a percentage, for the patch metric concerned, that is: 

cv~{m) MN 
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where SD equals standard deviation: 

" 7 ~ 7 ~ n ^ 

z � -̂  
7 = 1 fh 

H . 
M N equals Means: 

n 
I X 

where Xy refers to metric values of a patch j of class i. 

• Radius of Gyration~equal to the mean distance between each cell in the patch and 

the patch centroid. It is another way of patch size measurement. 

GYRATE 二么丄 

where hyr is the distance (m) between cell ijr (located within patch ij) and the centroid of 

patch ij (the average location), based on the cell center-to cell center distance; z is the 

number of cells in patch ij. Area-weighted mean of Gyrate will be calculated for each 

land cover class. 

• Largest Patch Index~equal to the percentage of the landscape comprised by the 

largest patch. In this sense, it is a simple way of measuring class dominance. 

max (〜） 

LPI=^""“(100) 
A 

where â  is area in squared meter of patch ij in class i. A is the total landscape area. 
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• Edge Densityequals the sum of lengths of all edge segments involving the patch 

class concerned, divided by total landscape area. A "true" edge segment is pixels 

abutting patches of different classes. 

in 

z。， 
ED=过(10,000) 

A 

where eik is the total length (m) of edge involving patch class I; A is the total landscape 

area. 

• Fractal Dimension Index~calculation of class-level Fractal Dimension Index is the 

same as patch-level algorithm. Area-weighted mean, standard deviation and 

correlation of variation of F R A C will be calculated for each land cover. 

• Perimeter-Area Fractal Dimension一another form of measurement of patches' shape 

complexity. This index bases its calculation on regression analysis and linear 

logarithmic relationship between area and perimeter of patches a across a large range 

of patch sizes/scales. The equation is as follows: 

pafrac =— ^^————Y 

_ •/二 1 � 入 . / =丨 J . 
f \ / \ 2 n I n 
"/ZlnP^ - Zln/̂ 'y 

V ./=' / V y 

where â  is area (m^) of patch ij; py is the perimeter (m) of patch ij; and n! is the number 

of patches of land cover class i. 
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• Perimeter-Area Ratio~~the calculation in class-level equals that in patch-level. Area-

weighted mean and standard deviation of the metric value will be calculated for each 

land cover class. 

• Proximity Index—same as Proximity Index in patch-level metrics. Area-weighted 

mean of P R O X will be calculated for each land cover. 

• Euclidean Nearest Neighbor Distance一same as E N N D in patch-level. Are a-weighted 

mean for each class will be calculated. 

• dumpiness Index"equals the proportional deviation of the proportion of like 

adjacencies involving a particular land cover from the expected proportion under 

spatially random distribution. Clumpy takes on a range between -1 and 1，where -1 

means the focal land cover is maximally disaggregated while 1 means another 

maximal end. It is calculated as follows: 

( \ 

Gi廳 Gi 二 Y  

llSi, -miiw, 

^ ^ for G, <P丨 SlPI <0.5; else 

CLUMP: P丨 
0-P, 
_ 1-厂 . 

where gi, is the number of like adjacencies between pixels of patch class i based on the 

double-count method; gî is the number of adjacencies between pixels of patch class i and 

k based on double-count method; min-Ci is minimum perimeter of patch class i for a 

maximally clumped class; Pi is the proportion of the landscape occupied by patch class i. 
213 



• Interspersion and Juxtaposition Index一a proportion between the observed 

interspersion over the maximum possible interspersion for the given number of patch 

classes. Unlike Clumpiness Index, it is based on patch adjacencies rather than pixel 

adjacencies. 

'/ \ / \ “ 

- Z i in i 
JLIU m m 

U I 二 / ？=1  
In(m-l) 

where is the total length (m) of edge between patch classes i an k; m is the number of 

patch classes present in the landscape. 

• Landscape Division Index一is based on cumulative patch area distribution and is 

interpreted as the probability that two randomly chosen pixels in the landscape are not 

situated in the same patch of the corresponding land cover. It is a measurement of 

spatial autocorrelation of a landscape. 

“ ^ / n2" 

DIVISION 二 1-X — 
从 A y 

where ay is area (m') of patch ij; A is total landscape area 

• Effective mesh sizeit is absolutely but negatively correlated with DIVISION. 

While DIVISION represents the probability that a pair of randomly selected pixels is 

separated in two patches, M E S H calculates the resultant size of patches if the 

landscape is divided according to the corresponding degree of DIVISION. (Jaeger; 

cited in Neel et al. 20C4) 
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n 

1 � MESH=^ — 
A ^10,000 j 

where ay is area (m") of patch ij; A is total landscape area (in squared meters). 
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Appendix 3—Variations of Object Features along Segmentation Levels 
in Chongqing 

Chongqing 

700. 

i： p i 

1 2 3 4 5 5 7 8 9 10 
Level 

0%--0% weight ofspectral-shape ratio; 10%--10% vwight of spectral-shape ratio; 30%--30% weightof spectral-shape ratio; 
50% "50% w i g h t of spectral-shape ratio; 70% - 7 0 % weight of spectral-shape ratio; 9 0 % - 9 0 % weight of spectral-shape ratia 

Figure A. 1 Variation ot average object size along segmentation gradient Case in Chongqing. 
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Figure A.2 Variation of Standard Deviation (VNIR 1) for different land cover objects along 
segmentation gradient. Case in Chongqing. 
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Figure A.3 Variation of Standard Deviation (VNIR 2) for different land cover objects along 
segmentation gradient. Case in Chongqing. 
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Figure A.4 Variation of Standard Deviation (VNIR 3) for "river", "grassland", "bareland", 
"industriaT' and “hi澳 density urban" along segmentation gradient. Case in Chongqing. 
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Figure A.5 Variability of Standard Deviation of VNIR 2 for different land cover objects along 
segmentation gradient (Spectral-shape ratio: 9:1). Case in Chongqing. 
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Figure A.6 Variability of Standard Deviation of VNIR 3 for different land cover objects along 
segmentation gradient (Spectral-shape ratio: 9:1). Case in Chongqing. 
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Figure A.7 Variability of GLCM Homogeneity (VNIR 2 and 3) for land cover objects along segmentation 
gradient (Spectral-shape ratio: 9:1). Case in Chongqing. 
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Figure A. 8 Variability of GLCM Contrast (VNIR 2 and 3) for land cover objects abng segmentation 
gradient (Spectral-shape ratio: 9:1). Case in Chongqing. 
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Figure A.9 Variability of GLCM Entropy (VNIR 2 and 3) for land cover objects along segmentation 
gradient (Spectral-shape ratio: 9:1). Case in Chongqing. 
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Figure A. 10 Variability of GLCM Angular Second Moment (VNIR 2 and 3) for land cover objects along 
segmentation gradient (Spectral-shape ratio: 9:1). Case in Chongqing. 
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Appendix 4一Variations of Object Features along Segmentation Levels 
in Nanjing 
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Figure A.11 Variation of average object size along segmentation gradient. Case in Chongqing. 
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Figure A. 12 Variation of Standard Deviation (VNIR 1) for land cover objects along segmentation 
gradient. Case in Nanjing. 
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Figure A. 13 Variations in Standard Deviation (VNIR 2) for land cover objects along segmentation 
gradient. Case in Nanjing. 
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Figure A. 14 Variations o f Standard Deviation ( V N I R 3) fo r land cover objects along 
segmentation gradient. Case in Nanjing. 
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Figure A. 15 Variability of Standard Deviation (VNIR 2 and 3) for land cover objects along segmentation 
gradient (Spectral"shape ratio: 7:3). Case in Nanjing. 
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Figure A 1 6 Variability of GLCM Homogeneity (VNIR 2 and 3) for land cover objects abng 
segmentation gradient (Spectral-shape ratio: 7:3). Case in Nanjing. 
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Figure A. 17 Variability of GLCM Contrast (VNIR 2 and 3) for land cover objects along segmentation 
gradient (Spectral-shape ratio: 7:3). Case in Nanjing. 
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Figure A. 18 Variability of GLCM Entropy (VNIR 2 and 3) for land cover objects along 
segmentation gradient (Spectral-shape ratio: 7:3). Case in Nanjing. 
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Figure A. 19 Variability of GLCM Angular Second Moment (VNIR 2 and 3) for land cover 
objects along segmentation gradient (Spectral-shape ratio: 7:3). Case in Nanjing. 
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Appendix 5—Classifying Rules 
Chongqing 
1. River 

Classification Level 1 
• N O T 'lake, industrial or smaller river" 

• Area: smaller than 119000 pixels 
• Mean difference to Neighbor (VNIR 3): smaller than -18 
‘VNIR 3 X VNIR 2: smaller than 4400 
• VNIR 3/VNIR 2: 1.95 

• Standard Deviation (VNIR 1): smaller than 4.51 

• Standard Deviation (VNIR 2): smaller than 4.51 

• Standard Deviation (VNIR 3): smaller than 4.51 

• VNIR 3 - VNIR 2: smaller than-19.9 

O R 

• IS "small river" 
• Density: smaller than 0.91 

2. Woodland 
Classification Level 1 
• N O T "lake, industrial or smaller river" 

• Area: smaHer than 119000 pixels 
“ Mean difference to Neighbor (VNIR 3): smaller than -18 
• VNIR 3 X VNIR 2: smaller than 4400 
• VNIR 3 / VNIR 2: 1.95 

A N D 

• N O T "River" 
• Standard Deviation (VNIR 1): smaller than 4.51 
• Standard Deviation (VNIR 2 ) : smaller than 4.51 
• Standard Deviation (VNIR 3): smaller than 4.51 

Classification Level 2 
• IS "vegetation" 

• VNIR 3 / VNIR 2: greater than 1.26 

Classification Level 1 
• IS "woodland" 

• VNIR I: smaller than 86.1 
• VNIR 2:smaller than 50.1 
• VNIR 3: smaller than 112 

3. Bareland 
Classification Level 1 
• NO T "lake, industrial or smaller river" 

• Area: smaller than 119000pixels 
• Mean difference to Neighbor (VNIR 3): smaller than -18 
• VNIR 3 X VNIR 2: smaller than 4400 
• VNIR 3/VNIR 2: 1.95 
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A N D 

• N O T “River” 

• Standard Deviation (VNIR 1): smaller than 4.51 
“Standard Deviation (VNIR 2): smaller than 4.51 
• Standard Deviation (VNIR 3): smaller than 4.51 

Classification Level 2 
• N O T "vegetation" 

• VNIR 3 / VNIR 2: greciter than 1.26 

Classification Level 1 
• N O T “low density urban" 

• GLCM Contrast (VNIR 1): greater than 80 
• GLCM Contrast (VNIR 2 ) : greater than 90 

• N O T "high density urban" 
“VNIR 3: smaller than 71.5 

4. Industrial 
Classification Level 1 
• IS "lake, industrial or smaller river" 

• Area: smaller than 119000 pixels 
• Mean difference to Neighbor (VNIR 3): smaller than -18 
• VNIR 3 X VNIR 2: smaller than 4400 
• VNIR 3/VNIR 2: 1.95 

A N D 
• N O T "small river" 

• Density: smaller than 0.91 
A N D 

• N O T "lake" 
• GLCM Dissimilarity (VNIR 3): greater than 10 
• VNIR 3 / VNIR 2: greater than 1 

5. High density urban 
Classification Level 1 
• N O T "lake, industrial or smaller river" 

• Area: smaller than 119000 pixels 
• Mean difference to Neighbor (VNIR 3): smaller than -18 
• VNIR 3 X VNIR 2: smaller than 4400 
• VNIR 3 / VNIR 2: 1.95 

A N D 
• N O T "River" 

_ Standard Deviation (VNIR 1): smaller than 4.51 
• Standard Deviation (VNIR 2): smaller than 4.51 
• Standard Deviation (VNIR 3): smaller than 4.51 

Classification Level 2 
• N O T "vegetation" 

• VNIR 3 / VNIR 2: greater than 1 • 26 
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Classification Level 1 
• N O T "low density urban" 

• GLCM Contrast (VNIR I): grenter than SO 
• GLCM Contrast (VNIR 2): greater than 90 

• VNIR 3: smaller than 71.5 

Nanjing 
1. River 

Classification Level 1 
• IS “big nver" 

• VNIR 1: smaller than 78 
‘VNIR 3: smaller than 37 
• Standard Deviation (VNIR J): smaller than 8 
“VNIR 3 - VNIR 2: smaller than -17 

O R 
• IS "smaller river, pond" 

• Urban Center Boiindary=0 
• VNIR 3: smaller than 28 
• VNIR 3 / VNIR 2: smaller than 1.01 

• Density: smaller than 1.81 

2. Woodland 
Classification Level 1 
• N O T “big river” 

“VNIR 1: smaller than 78 
• VNIR 3: smaller than 3 7 
• Standard Deviation (VNIR 3): smaller than 8 
• VNIR 3 - VNIR 2: smaller than -J 7 

A N D 
• N O T "smaller river, pond" 

• Urban Center Boiindciry二0 
‘VNIR 3: smaller than 28 
• VNIR 3 / VNIR 2: smaller than 1.01 

Classification Level 2 
• IS "vegetation" 

• VNIR 3 / VNIR 2: grearer than 0.98 

Classification Level 3 
• VNER 1: smaller than 53 

• VNIR 2: smaller than 36 

• VNIR 3: smaller than 51 
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3. Crops and grassland I 
Classification Level 1 
• N O T "big river" 

“VNIR 1: smaller than 78 
• VNIR 3: smaller than 37 
• Standard Deviation (VNIR 3): smaller than 8 
• VNIR 3 - VNIR 2: smaller than -17 

A N D 
• N O T “smaller river, pond" 

• Urban Center Boiindary=0 
‘VNIR 3: smaller than 28 
‘VNIR 3 / VNIR 2: smaller than 1.01 

Classification Level 2 
• IS "vegetation" 

“VNIR 3 / VNIR 2: greater than 0.98 

Classification Level 3 
• N O T "woodland" 

• VNIR 1: smaller than 53 
• VNIR 2: smaller than 36 
• VNIR 3: smaller than 51 

• VNIR 1: smaller than 61 

• NDVI: greater than 0.3 

4. Bareland 
Classification Level 1 
• N O T “big river" 

• VNIR I: smaller than 78 
• VNIR 3: smaller than 37 
• Standard Deviation (VNIR 3): smaller than 8 
• VNIR 3 - VNIR 2: smaller than -17 

A N D 
• N O T "smaller river, pond" 

• Urban Center Boiindary=0 
• VNIR 3: smaller than 28 
• VNIR 3 / VNIR 2: smaller than 1.01 

Classification Level 2 
• N O T "vegetation" 

• VNIR 3 / VNIR 2: greater than 0.98 
A N D 

• N O T "bright urban" 
• GLCM Dissimilarity VNIR 1: greater than 4 
• VNIR 1: greater than 66 
• VNIR 2: greater than 50 
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• VNIR 3: greater than 35 
O R 

• N O T “dark urban" 
• Ut-ban Center Boiindary=l 

5. High density urban 
Classification Level 1 
• N O T “big river" 

• VNIR 1: smaller than 78 
_ VNIR 3: smaller than 37 
• Standard Deviation (VNIR 3): smaller than 8 
• VNIR 3 - VNIR 2: smaller than -17 

A N D 

• N O T "smaller river, pond" 
• Urban Center Boundary=0 
‘VNIR 3: smaller than 28 
• VNIR 3 / VNIR 2: smaller than 1.01 

Classification Level 2 
• N O T "vegetation" 

• VNIR 3 / VNIR 2: greater than 0.98 
A N D 

• N O T “bright urban" 
• GLCM Dissimilarity VNIR I: greater than 4 
• VNIR 1: greater than 66 
• VNIR 2: greater than 50 
• VNIR 3: greater than 35 

• Urban Center Boundary: 1 
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Appendix 6—Variations in Landscape Metrics along Buffers from City 
Center in Chongqing 

Patch-metrics 
Area Area 
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Fractal Dimension Index Fractal Dimension Index 
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Figure A.20 Variability of patch-metrics along buffer circles (Left) and buffer rings (Right) from 
the city center of Chongqing. 
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Class-metrics 
Number of Patches Area-weighted Mean Gyrate 
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Edge Density Edge Density 
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Coefficient of Variation of Gyrate Standard Deviation of Perimeter-area Ratio 

450-1 720 

I 况. z Z |-̂ RadusdCVa,o.Cv| 棚 丨一編 

150 620 
100. -
so- 600 
0-1 1 . . 1 . 1 . > > 1 580 J    

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

Distance to city center Distance to dty center 

Standard Deviation of Fractal Dimension Index Perimeter-Area Fractal Dimension 

0.056 1.39 

0.0545 j 1.37 \ 
0-0 级 7 . \ 卜卜 Frac-SD| . ^̂  \ V | — Pe,ime,.-AraaFraC. Dî .̂on | 
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standard Deviation of Perimeter-area Ratio Area-weighted Mean of Euclidean Nearest Neighor Distance 
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Figure A .21 Variabi l i ty o f class-metrics a b n g buffer circles (Lef t ) and buf fer rings (Right) f r o m 
c i ty center o f Chongqing. 
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Appendix 7一Variations in Landscape Metrics along Buffers from City 
Center in Nanjing 
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Figure A.22 Variability of patch-metrics along buffer circles (Left) and 
buffer rings (right) from city center of Nanjing. 
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Area-weighted Mean Patch Area Standard Deviation of Fractal Dimension Index 
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Area-weighted Mean Fractal Dimension Area-weighted Mean Euclidean Nearest Neighbor Distance 
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。.胡 

0.6 

0.55 

0 .5 J _ 
1 2 3 4 5 5 7 8 9 TO Distance to city center 295 



Interspersion and Juxtaposition Index 

40 5 

I -
•E ：： 

5.5 

0 5 J ‘ ‘ ‘ ‘ 1 • > 
1 2 3 4 5 5 7 8 9 (0 

Distance to city center 

Landscape Division Index 
V005 

1 
0 I —DIVIS 口 

0,98 ^        
1 2 3 4 5 6 7 3 9 10 

Distance to city center 

Effective Mesh Size 
600.98 • 

500 98 “ j 

1 狐 98- / 

O 300.98 • ^ I—^Effective MeshSia | ^ X 
—200.98- 乂 

' � • . . . 

0 9a J—•— • —办 • • 
1 2 3 4 5 6 7 8 9 10 

Distance to city center 

Figure A.23 Variability of class-metrics along buffer circles (Left) and buffer 
rings (Right) from city center of Nanjing. 
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